

Programming
the68000

Macintosh"" Assembly Language

--

.
\
~

Programming
the68000

Macintosh TM Assembly Language

Edwin Rosenzweig
and Harland Harrison

[JJ
Hayden Book Company

A DIVISION OF HAYDEN PUBLISHING COMPANY, INC.
HASBROUCK HEIGHTS, NEW JERSEY

/

Acquisitions Editor: BILL GROUT
Production Editor: HoNNIE GROFF
Cover design: JJM BERNARD
Cover photo: Lou OooRIGEORGE BAQUERO
Composition: ELIZABETH 'IYPEsErnNG CoMll'\NY
Printed and bound by: COMMAND WEB OFFSET, INC.

Library of Congress Cataloging-in-Publication Data

Rosenzweig, EJ. (Edwin J.)
Programming the 68000.

Includes index.
1. Motorola 68000 (Microprocessor)-Programming. 2. Assembler language

(Computer program language) I. Harrison, Harland. II. Title.
QA76.8.M6895R67 1986 005.265 86-3085
ISBN 0-8104-6310-5

Quilt Circuit is a trademark of Bishop Graphics, Inc., Wlstlake Village, CA.

People in Places is a trademark of Data and .Information Software Company,
Inc. San Francisco, CA.

PCMacBASIC is a trademark of Pterodactyl Software, Fairfax, CA.

Copyright © 1986 by Hayden Book Company. All rights reserved. No part of
this book may be reprinted, or reproduced, or utilized in any form or by any elec
tronic, mechanicai, or other means, now known or hereafter invented, including
photocopying and recording, or in any information storage and retrieval system,
without permission in writing from the Publisher, with the exception that programs
may be stored and retrieved electronically for personal use.

Printed in the United States of America

1 2 3 4 5 6 7 8 9 Printing

86 87 88 89 90 91 92 93 94 Year

Preface

This book assumes that you have some knowledge of programming. We
expect you to know how to code a simple BASIC or Pascal program. If you
know how to program in assembler, so much the better.

However, we also realize that you may never have progranimed in
assembler before, don't know what a linker is, etc. Tupics such as binaiy
and hexadecimal are covered in appendices so the less advanced program
mer can go there for additional knowledge about assembly language
programming. If you know another assembler language such as the 8080,
6502, 8088, Z80, or even 360/370, then you will find this book that much
easier-you can skip most of the appendices.

There are two essential processes involved in reading this book. One is
the process of learning about 68000 assembly language. The other process
is learning your way around the Macintosh operating system-its "guts"
which make all the graphics, menus, and windows possible. Assembler is
the gateway to the heart of the Macintosh.

If you program in Pascal or BASIC and want to keep programming .in
those languages, a knowledge of assembler is veiy useful-especially iii
debugging. You will find that certain routines have to be made· fast and
compact-your knowledge of assembler will be invaluable then.

However, the main reason that any assembler language programmer
gives for wanting to program in assembler is the feeling of POWER. You can
actually get down into the insides of the machine and make it perform to
its maximum capability. With the sophistication of 68000 assembler and
the Macintosh ROMs, your coding won't be that much slower than coding
in a highe~level language and your debugging will probably be faster.

There is also a certain FUN in programming in assembler which you
don't get when programming in a highe~level language. We suppose it is

the same thrill a mechanic gets from tuning up a fine race car or any mad
tinkerer gets from a new invention.

We look forward to helping people learn to program in 68000 as
sembler on the Macintosh without having to struggle as we did. Of course,
we didn't have this book to help us!

This book was written just the way Pterodactyl Software, the company
of which we are both part, is run. Ed Rosenzweig wrote the less technical
chapters while Harland Harrison wrote the more technical, detailed
chapters and the sample program.

EDWIN RoSENZWEIG AND HARLAND HARRISON

(Fairfax and Belmont, California)

Acknowledgments

W. \VOuld like to thank the following people:
Mike McGrath, Bill Grout, and the people at Hayden-for all their help.
April Post-for helping with the illustrations.
Kirk Austin and Bruce Southwick-for proving, by reading the manu

script and immediately starting to write code, that one could learn
Macintosh assembler and the 68000 through this book.

Rema Harrison-for patience and understanding.
Lori Sweet-for patience while an author struggled.

Organization
of this Book

'l~is book is written so that people who want to learn assembly
language on the Macintosh computer can learn at their own pace. If you
know a higher level language such as Pascal, BASIC, or C but have never
programmed in assembler then you should read all the chapters in
sequence with detours to the appendices where appropriate. If you have
programmed in assembler before, you can skim the first chapter, skip the
appendix on binary and hexadecimal, and start your in-depth reading
with Chapter 2, The Addressing Modes of the 68000. You an also skim the
sections on assemblers and linkers in Chapter 6. The section on 68000
hardware is very interesting (it explains why· all addresses must start on
even boundaries, for example) but it, too, can be skimmed.

Summary of the Chapters

The first chapter, Introduction to Assembly Language, shows how
assembly language relates to higher level languages, what a linker does,
how the Macintosh editor and assemblers work, what the format of an
assembler file is, what addresses are, and some information about the
registers and stack of the 68000. This chapter gets you up to speed with the
tools and concepts necessary to start learning 68000 assembler. People not
previously exposed to assembly language may want to read Appendix A,
The Binary Numbering System, at this time.

The second chapter, The Addressing Modes of the 68000, describes all
the various ways of finding where the data is located. When using the 68000
there are twelve different ways you can address data including modes as
powerful as Program Counter relative with index and displacement. This
chapter is one of the building blocks of the rest of the book; it must be
understood completely before continuing.

The third chapter, The 68000 Instruction Set, describes every 68000 op
code (short for operation code) and related operands. The op codes are
arranged by frequency of use. As a reference, Appendix B contains timing
information and complete formats. Appendix Bis an alphabetical listing.
Appendix C contains effects on condition codes for each 68000
instruction.

The fourth chapter, Sample Programs, contains a series of simple
subprograms so that you can see concrete examples of how 68000
assembler is put t9gether into workable programs. This chapter shows
how to compare two strings, how to optimize assembler, how to convert
from hexadecimal to decimal, how to write a key stroke handler, how to do
simple arithmetic operations.

The fifth chapter, Overview of the 68000 Hardware, describes how the
68000 looks to a programmer. Here such questions as why instructions

must start on an even byte and what a bus line does are answered. This
information is helpful to the programmer who wants to better understand
the idiosyncrasies of the 68000 microprocessor.

The sixth chapter, Macintosh Tuols, describes the assembler, linker,
and resource compiler in detail. Here you will learn the steps necessary to
create working Macintosh programs once you have assembled a program.

The seventh chapter, The Mac Environment, describes how windows,
menus, and dialog boxes are handled, what events are, Update and Activate
events, resource files, memory and jump tables.

The eighth chapter, Macintosh ROM Calls, explains how Macintosh
ROM calls are made via traps. How to make a ROM call in assembler is
illustrated. Heaps and handles are discussed, sample QuickDraw ROM
calls are described.

The ninth chapter, SimpleCalc, has a complete sample program and
an explanation of its internals. SimpleCalc is a simple integer spreadsheet
program written in MDS assembler. Many of the procedures you will need
to program a Macintosh application are shown in this example.

The tenth chapter, Some Advanced Subroutines Not in SimpleCalc,
shows sample assembler code to make TuolBox calls for such functions as
using the Memory Manager, creating variable text in a dialog box, cursor
handling, dragging selections with the mouse, changing menu items,
printing, and using the SANE floating point package.

Contents

Chapter 1 Introduction to Assembly Language 1

Who Will Find 'Ibis Book Helpful 1
Assembler Used in 'Ibis Book 1
Why Should You Use Assembly Language? 1
Relationship of Higher Level Languages to Assembler 2
How to Program in 88000 on a Mac 7
The Editor 8
The Assembler 9
Getting Closer to the Hardware 12
Addresses 12
Internals of the 88000 Microprocessor 13
Condition Code Pbrtion of Status Register 19
Machine Language 21

_Chapter 2 'Ihe Addressing Modes oi the 68000 23

Inherent Mode 23
1. Immediate Mode 25
2. Data Register Direct Mode 28
3. Address Register Direct Mode 28
4. Absolute Short Mode 27
5. Absolute Long Mode 29
8. Addressing Register Indirect Mode 30

Chapter 3

Chapter 4

Chapter 5

Chapter 6

7. Register Indirect with Displacement Mode 30
8. Register Indirect with Index and Displacement Mode 33
9. lbstincrement Register Indirect Mode 35

10. Predecrement Register Indirect Mode 36
11. Program Counter Relative with Displacement Mode 37
12. Program Counter Relative with Index and Displacement

Mode 40
The Effective Address 41

1he 68000 Instruction Set

Most Frequently Used Instructions
Compare Instructions
Effective Address (LEA, PEA)
The Remaining Data Movement Operations
The Rest of the Program Control Operations
Arithmetic Operations in the 68000
Other Miscellaneous Arithmetic Operations
Logical (Bitwise) Operations
Bit Manipulation Operations
Shift and Rotate Operations
System Control Operations

Sample Programs

A Programmers Overview of the 68000 Hardware

Detailed Look at Architecture
How Does It Do All Of That?

Macintosh 'lbols

The Mac and Lisa Assemblers
Alignment

· Segmentation
Special Syntax
Assembly Control
Conditional Assembly

45
59
61
63
70
74
80
81
85
87
92

103

121

123
129

131

131
136
137
140
143
147

Chapter'7

Chapter 8

Chapter 9

Chapter 10

Appendix A

Macros
1be Linker
1be Resource Compiler
1be Debugger
1be EXEC File

1he Macintosh Environment

1he Macintosh ROM Calls

Calling the 'lbolbox
Calling the QuickDraw Graphics Package

SimpleCalc-ASampleApplication

How to Use SimpleCalc
Description of the. Code for SimpleCalc

Some Advanced Subroutines Not in SimpleCalc

Using the Memory Manager
\8.riable Text in a Dialog Box
Setting the Cursor
Changing the Cursor Shape with its RJsition on the Screen
Marking a Selection on the Screen by Making It Blink
Dragging Selections with the Mouse
Marking, Disabling and Changing Menu Items
Drawing Text in Gray; as the Menu Manager Does
Coding for the Undo Command
Double Precision Division
Using the Print Package
Using the SANE Numeric Package

1he Binary and Hexadecimal Numbering Systems

What the Data in Memory Looks Like

148
149
155
166
173

175

193

193
203

217

217
220

263
.285
.288
270
272
273
275
277
278
280
281
284

293

297

Appendix B Instruction Format & Cycle 1iming 301

Appendix C Condition Codes 3.29

Appendix D Error Messages 333

Appendix E Using the Lisa \\Orkshop 341

The Lisa Exec File, SimpleCalc Exec 341
The Dummy Pascal Program, SimplePAS 34.2
Lisa \ersion of the SimpleCalc, SimpleCalc ASM 343
Lisa Version of the SimpleCalcR File 345

Appendix F Samples of 'frap Calls into the ROM 351

Rules for Parameters in Pascal Definitions 351
1be Most Common Pascal 'fypes Used as Parameters 351
The Structure of Common Record 'fypes 353
Some Common Calls Expanded 354
Most Common QuickDraw Data Definitions 372

Appendix G SimpleCalc Program Code 375

Assembler File, SimpleCalc.ASM 375
R.Maker File, SimpleCalc.R 387
Linker File, SimpleCalc.LINK 391
Exec File, SimpleCalc.Job 391

Index 393

CHAPTER

~[!]----
Introduction to
Asselllbly Language

Who Will Find This Book Helpful

This book is for people who have had some experience with programming
in Assembler, BASIC, Pascal, C, or some other higher level language.
Experienced Assembler programmers will find interesting tips and exam
ples that can quickly get them going in the world of Macintosh assembly
language programming.

Assembler Used in This Book

Although assemblers differ, even when they're for the same chip, once you
know one assembler you are 80% of the way to knowing the next assembler
you encounter. The assembler we will be using throughout this book is the
one sold by Apple Computer for the Macintosh computer-the 68000 Mac
Development System (or MDS).

Why Should You Use Assembly Language?

Higher level language programs often have certain functions they must
perform that require great processing speed, more compact code, or
interaction with portions of the Macintosh otherwise inaccessible. Often,
portions of these programs are written in assembler and called by the
higher level language to perform such functions. For example, routines to
sort data are usually written in assembler-whenever a sort is needed the
higher level program calls the sort routine written in assembler.

Disk access routines and data bases are often written in assembler as
well. So are word processors and games programs. Game programs which

1

2 Programming the 68000

run as fast and do as much as the computer can possibly handle make for
good competition-they are therefore nearly always written in assembler.
Higher level language compilers, interpreters, and programming tools in
general are often written completely in assembler since they must be as
fast and compact as possible. Finally, programs involving either graphics or
music must often be written in assembler, at least in part, in order to have
enough speed to create useful effects.

Relationship of Higher Level Languages to Assembler

Many people who use higher level languages are not aware of the true
relationship between the language they use and the computer. There is a
lot that goes on between the BASIC or Pascal (or perhaps C or Forth)
program and the actual hardware of the 68000.

The Macintosh (or any computer) only understands what is called
machine language, an encoding of instructions to the 68000 computer
chip to tell it what to do. Interpreters (programs that allow you to run
BASIC or some kinds of Pascall read each character then figure out what
has to be done. (For example, when an interpreter finds "I" then "F" then a
space it realizes that this is an IF statement, and it goes to the machine
language routine that was written to handle the IF statement). So although
the user of an interpreter often doesn't realize it, the computer doesn't
really understand BASIC or Pascal, it only understands 68000 machine
language. When you use an interpreter you are actually using a sophisti
cated 68000 machine language program that someone wrote. So an
interpreter is a program that reads a user's program and can do whatever
is necessary to make the user's program work the way that it needs.

A compiler (often used together with something called a linker) is
another way of making higher level programs work. Compilers are more
difficult to use than interpreters, in general, since rather than just running
the program you must compile, then link, then resource compile. When
using a compiler you edit the program using an editor or word processor.
As soon as the program is the way you want it, you compile it by running a
program called a compiler and telling it which text file you want the
compiler to use.

· Then the compiler reads through the entire text file from beginning to
end and translates the program into machine ,language (in our case, 68000
machine language). Some compilers generate the input to a linker program
rather than generating a program that you can run immediately. In that
case you must run the linker program before you have a program that you
can use. Compilers often take a minute or two to compile a program of a
few thousand lines.

3 Introduction to Assembly Language

In other words, when using an interpreter your program stays in text
file format and is run as a text file. When using a compiler your program is.

BASIC
In the following code, the BASIC is represented by lines starting
with a semicolon. Each line of BASIC is followed by its equivalent
assembly language; one line of BASIC translates into many lines of
assembler. Notice that there is no code generated for a REMarlc line.

; IF lteml < 11 THEtl 810 ' Wait for OK
cmpi.w lt$OOOB,ITEM.$<A5)
bge P$068
jmp L$0810

P$068
REM Screen print the dialog box

; IF I teml = 11 THEtl LCOPY t.l I llDOt.I
cmpi.w lt$000B,ITEM.$(A5)
bne P$071
n$p P$072
move.I $020o+lfn$ptr(A5),file$num<A5)
moveq •$02,DO
jsr pr$btl

P$072
P$071
· OPEtl "Mai I List" FOR APPEtlO AS
'jsr Ii t$str
OC.B 'Mai I List'
OC.B 0
.align 2
move.w 0$0010,file$mode(A5)
move.w •$0001,file$num<A5)
move.w •$0080,01
move. I <A7>+,00
jsr open$fi le

; FOR 11=2 TO 6
move.w •$0002,-<A7>
move.w •$0006,-<A7>
move.w •$0001,-(A7>
cir. I 02

P$075 lea l.$<A5>,A1
jsr r$4int
bra P$076

P$077

Figure 1-1 Assembly Language Equivalents for Lines
of Short BASIC/Pascal Programs

-

4 Programming the 68000

PASCAL
The Pascal is represented by lines starting with a semicolon and is
followed by its equivalent assembly language. Only part of this
Pascal procedure is shown, enough so that you can see how Pascal
code also generates multiple lines of assembler.

-

;PROCEDURE DrawBrick(ptt, pt2: Point3D>;
;(draws a 30 brick with shaded faces.
; only shades correctly in one direction.
; }
;URR tempRgn: RgnHandle;

xdef drawbrick
drawbrick

I ink A6,•-28
movem.I A4/D7,-<SP)

;BEG I ti
movea.I 12<A6>,A4
move. I <A4>,-12(A6>
move.I 4<A4>,-S<A6>
move.I 8(A4>,-4(A6>
movea. I 8(A6>,A4
move.I <A4>,-24<A6>
move.I 4<A4>,-20(A6>
move.I 8(A4>,-16(A6>

;tempRgn := tiewRgn;
cir. I -<SP>
dc.w $A8D8
move.I <SP>+,07

;OpenRgn;
move. I D7,-28<A6>
dc.w $A8DA

;MoveTo3D<pt1.X, ptt.Y, ptt.Z>; (front face, y=yt }
move.I -12<A6>,-<SP>
move.I -8<A6>,-<SP>
move.I -4<A6>,-<SP>
jsr.w moveto3d

;LineTo3D<pt1.X, ptt.Y, pt2.Z>;
move. I -12<A6>,-<SP>
move. I -8(A6>,-<SP>
move. I -16(A6>,-<SP>
jsr.w I ineto3d

(more code to procedure follows, but is not shown here}

Figure 1-1 Assembly Language Equivalents for Lines
of Short BASIC/Pascal Programs (continued)

5 Introduction to Assembly Language

translated by a relatively slow process into a machine language program
which is then run. Once a program has been compiled it may be run as
many times as you want without recompiling; an interpreted program
must be re-interpreted each time it is run.

Compilers are used by professional programmers and people who
need programs that run faster than an interpreter would allow. Games

INTERPRETER

SOURCE CODE

20 PRINT •HELLO•
30 END

INTERPRETER
RUNS CODE

INTERPRETER IS AUN AS AN
APPLICATION;

SOURCE CODE IS READ
BY THE INTERPRETER.

COMPILER

SOURCE CODE

20 PRINT •HELLO•

30 END

souAJE CODE

COMPILER

COMPILES CODE
CREATING .REL FILE

.REL LINKER

LINKS TOGETHER

A SERIES OF .REL FILES

RESOURCE
.OBJ ~~COMPILER

INCLUDES .OBJ FILE

WITH OTHER RESOURCES

.RSRC _!
APPLICATION

t
THIS IS AN APPLICATION

IN ITS OWN RIGHT

Figure 1-2 Interpreter versus Compiler (Pascal code reprinted courtesy
afTML Systems)

6 · Programming the 68000

programmers and many graphics programmers can't use compilers since
they generate machine code that is too big and slow-the machine code
generated by a compiler is nowhere near as "tight" as that written by an
assembly language programmer. People who really need to push their
computer to the limit use assembler.

The advantages of an assembler include those of a compiler: the ability
to create an application which you can start by double clicking (with its
own icon), greater speed than an interpreter, ease of manufacture, privacy
of source code, and greater ease of use for the application. Assembler
programs also include the capacity for greater speed and flexibility.
Unfortunately, it usually takes longer to program the same function in
assembler than in a compiled language.

Before going on, let's clarify some terms. Code is just a file containing a
computer program. The source code is a program written in a higher level
language such as BASIC, Pascal, or even assembler. The object code is the
output of a compiler or assemblei: E}(ecutable code is a file that is ready to
run on the Macintosh-you can double click in its icon (or the icon of a file
that it has created) and it will run. Oftentimes you must run the object
code through a linker before you have an executable module. On the
Macintosh you usually have a resource compiler phase following the linker
phase (more on resources and resource compilers later). The "$" symbol in
front of a number means the number is in hexadecimal, a "%" preceding a
number means it's binaiy.

So the phases you run through in compiling a Macintosh program are:
edit your source program, compile the program, link it, and resource
compile it. Test it on the Macintosh and cycle back to editing, compiling,
linking, and resource compiling until you have a working program. When
using an assembler you will usually edit, assemble, link, and resource
compile.

A linker takes a whole series of programs that you have assembled and
merges them all together into one big program. This way, if you have a
system that would take two and a half hours to assemble as one big mass
(yes, there are such systems) you would instead break the system down
into twenty small programs that each take only a minute or two to compile
and link them all together with the linker. Since the linker only takes a
minute or two itself, you have reduced the time for making change and
testing again from two or three hours to making the same change and
testing in three or four minutes.

In programming, as in other disciplines, it really pays to be able to
break a large task into smaller, simpler tasks that each work independently.
That way you can break a large task into smaller tasks that you can do
yourself or you can work on with other people as part of a team. Each
member of the team can develop a small, self-contained part of the large
system. A linker is very helpful in such a breakdown of tasks.

7 Introduction to Assembly Language

When you learn assembly on the Macintosh you will be using a linker,
since the output of the assembler that you will be using generates a linker
file. These files are often called "rel" files, short for relative files. This is
because the linker generates programs that can be relocated in memory.

How to Program in 68000 on a Mac

In order to program in 68000 you have to know how to use an assembler.
We will describe the 68000 development system assembler/debugger
package (also called MDS, short for Mac Development System) from Apple
Computer for the Macintosh. Since many developers also use the Llsa
(Macintosh XL) system to develop programs for the Macintosh using the
Pascal Workshop's assembler and the Software Supplement, we will also
describe these packages. The detailed description of this development
system will come in Chapter 6, Macintosh Tuols, which comes after the
basics of 68000 assembler have been learned.

We might mention at this point that although the assembler can be
run with one microfloppy disk drive, it works best with two disk drives. Of
course, if you can afford it, a hard disk is very helpful in any professional
system. Also, 512K or more of RAM memory in your Macintosh is also
essential to using the 68000 Mac Development system.

The MDS actually consists of a whole series of "tools" (software
programs) that you can use to create assembly language programs that use
the full power of the Macintosh. When you are programming in assembler
not only do you need an assembler program to tum your assembly
language text file into machine language that can actually be executed, but
you need a debugger program that can be used to find what is going wrong
when your program doesn't work. Usually other programs such as linkers
which can link together separate assembler programs into one big
assembler program are necessary also. On the Macintosh, however, one
other program which is unique to the Macintosh environment is also
necessary-a resource compiler. We will describe the resource compiler
later, after we describe the assembler.

An assembler has to have all editor so you can text edit your program
before sending it into the assembler for translation into machine language.
The editor that comes with the Macintosh assembler is relatively easy to
use. It is made for programming in assembler with its indentations and
large programs. There is a menu that allows you to instantly go to any
other part of the MDS, such as the EXEC files which execute canned series
of commands. Using EXEC files, you don't have to repeatedly type in the
same sequences of commands to assemble and link a program for
example.

If you have ever compiled a Basic or Pascal program you are probably
familiar with the compiler (assembler) and the linker. You have probably

1be Editor

8 Programming the 68000

never used the resource compiler since that is a concept unique to the
Macintosh. We'll introduce the editor and enough about the assembler to
get you started; detailed descriptions of the linker, resource compiler, and
EXEC files will be presented in Chapter 6.

If you have worked with MacWrite you are well on the way to understand
ing the editor that comes with the Macintosh assembler. In fact, if you
want, you could edit your programs with Mac\i\Tite, tum them into text
files by saving them under the "text only" option, and then use them in the
assembler without ever having to use the Macintosh assembler editor. We
will assume that you have used Mac\i\Tite and understand already the
concepts of cutting, copying, pasting, and opening files-we will therefore
only describe the differences between the assembler editor and MacWrite.
You enter the editor just the way you do any Macintosh program, by
double clicking in the EDIT icon.

The editor supplied with the assembler is geared to fast writing and
printing of assembler programs, and eliminates some of the fancier
features of Mac\i\Tite. Also, MOS is what is called an "integrated" system
this means that you can easily and quickly switch from any one part, such
as the editor, to any other part, such as the assembler, quickly and easily. In
an integrated system the files created by any one part can be used by the
other parts of the system.

Discuss:l•s~d Comparison.s
,,))~~· ,;~~~'.,:':>

M~nu opf{@~~~bow some of the. i:liffutences. between Mac~·afid
the assetll,bltU,i'.edito~ In the File. meiil'.l of the assembler editoi'tliere
are twO · Dp~ll commands-the first pPen command uses a ~ii.Jog
box to select a text file to open. There is an Align command m the
Edit menu which allows you to line up the starting columns of a
whole series Of text lines to that of the first text line. Also, you can shift
a whole series of selected lines right or left one space by ~elepting
Move rugqt and Move Left from this silffie Edit mer:iu or by \18" .·· .tile
co~ci key: .. ~ptions X for th(3se q(;)pllp.ands. The Sh~ . .l~
option ·on. die· Format menu allO'ws 1 ,You to see all tli:e:~1 ·<· . · ·

characters 'Yhich control such things as tabbing, spa~i:arid ·
carriage rettim.

The Assembler

9 Introduction to Assembly Language

The assembler editor provides these special tabbing and alignment
operations because the text file which is used as input to an assembler
must follow certain rules. When writing in assembler you must have the
labels in column 1, the op codes in column 10 or so (depending on how
long your labels are-the opcodes must not be in column 1, though), the
operands lined up in another column, and finally the comments lined up
around column 30 or 40.

The assembler editor's main difference from MacWrite is the Transfer
menu which allows you to exit the edit program and go to the assembler
(ASM), linker (LINK), executive function (EXEC), and resource compiler
(RMAKER). The usual sequence of events is: edit, assemble, link, resource
compile (assemble, link, and resource compile are often run under control
of an EXEC file), and run the program using debug.

,. s File Edit Search Format Font Size

§0 MDS l:SimpleCalR

Fi ngerCa I c - A Si mp I i f i ed SpreadShee t Examp I
of Pterodactyl Software

RSM MOS 1 :Simple Cale.RSM
LINK

EHec
0 ther f i I es needed are

SimoleCelc .R
Simple Cale.Job
SimoleCelc.Li nk

Resource sourc M

Exec f i I e . . RMRKER
Linkage I 1st f 1~---------...,,..,,

--------------------------------- INCLUDE --------------------------------
nc I ude Mac Traps . D
nc I ude Too I Equ . D
nc I ude Qui ckEqu .D
nc I ude SysEqu . D

; Inc I ude Equates And Traps Fi I es

Clipboard

Figure 1-3 Assembler Editor's Transfer Menu

.,

Nearly all assemblers that you use have certain areas or fields where they
expect information to be placed. If a word is typed in the first column on
most assemblers, it is considered to be a label. This label is then used in
JMP (JuMP) instructions-like GITTO in BASIC/Pascal-or JSR (Jump Sub
Routine)-instructions like GOSUB in BASIC or a Procedure in Pascal. For
example:

10 Programming the 68000

;label opcode data
JSR MyLabel
JMP Nextlbl

MyLabel MOVE.L AO.DO
RTS
etc.

In the fourth line of the above example, MyLabel is the label used by
the JSR statement two lines above it. An equivalent program in BASIC
wouldn't have a label-you would GOSUB a line number instead. However,
some of the more advanced BASICs are now using labels similar to the
lower level assembly language. In Pascal, you would just give the name of
the procedure, MyLabel, in another place in the program-the procedure
would be performed and control would return to the next statement after
the procedure.

The label is just there for convenience of the assembly language
programmer. No actual code for the label is generated in machine language
at the point where the label is placed in the program. As you can see, the
label is optional-some lines have no label. Besides .this, you can also have
a label on a line by itself with no opcode or data on the same line. In fact,
this is often the way you want to use labels since this way of implanting
labels makes them not only easier to see but independent of the code. If
you later decide you want the label to be three lines further down, you just
move the line with the label rather than doing any editing within a line.

The next field is the opcode field (i.e., operating code). As you kno\v
from the discussion of machine language, this field is turned into two
bytes of binary code that tells the computer what to do next. Part of the
information in those two bytes tells the machine the format to expect in
the data that follows (if there is any data).

Some typical opcodes are:

CMP-CoMPare two fields
JSR-Jump to SubRoutine (like GOSUB in BASIC)
JMP-JuMP (like Garo in a higher level language)
ADD-ADD two numbers
RTS-ReTurn from Subroutine (like RETURN in BASIC)
MOVE-MOVE the first field's data to the second field
SUB-SUBtract the first number from the second number
BNE-Branch Not Equal (example: if a prior CMP doesn't come out
equal, GOTO ...)
ASL-Arithmetic Shift Left (shift all the bits left by a count)
MULU-MULtiply Unsigned (multiply two 2-byte numbers giving a
4-byte number)
. Sometimes the opcode field will end in a ".B" or ".W" or ".L". These

opcode suffixes tell the 68000 that it will have to operate on either a byte, a

11 Introduction to Assembly Language

word (two bytes), or a long word (four bytes). So MOVE.B AO,DO will move
the rightmost (low order) byte of AO to the rightmost byte of DO, MOVE.W
AO,DO will move the rightmost two bytes of address register AO to the
rightmost two bytes of data register DO, and, lastly, MOVE.L AO,DO will move
the whole of register AO (all four bytes) to register DO.

The third field is the data field. This field contains whatever informa
tion the op code needs in the correct form. Sometimes the opcode needs
no data-then there is no data following the opcode. Oftentimes the data
will be a pair of registers. The most often used instruction a 68000
programmer invokes is the MOVE instruction. The MOVE instruction
contains the source of the data in the leftmost part of the operand, a
comma, and the destination to the right. So MOVE AO,Al will move data
from address register zero to address register one.

Sometimes there is a semicolon after the data which indicates the
start of a comment: This is like REM in BASIC or"(*" "*)"placed at the start
and end of a comment in Pascal. The rest of the line following the semi
colon is ignored by the assembler. In assembly language it is imperative
that you comment nearly every line. You can get away without comments
in a higher level language, and still be able to follow the code, much more
easily than in assembler. Using meaningful names as labels and variable
names also helps document your program.

Now you see how the code and labels work. But there is more to
assembler than code-there is also data. Often you will want to create
space for variables. Assembler isn't like BASIC or Pascal where you declare
a variable and it magically exists. Sometimes you need to create a table of
constant values which are needed by your program. Data is handled
differently in assembler than in a higher level language.

The primary ways of creating data are with the DS (define storage) and
DC (define constant) commands. If you want to create a variable in
assembler you use the DS command. For detailed description of these and
other assembler directives, see Chapter 6, Macintosh Tuols.

Besides assembly language's unique way of handling variables there
are other assembler features that you usually don't find in higher level
languages. There is the ability to include other text files containing code
and data definitions in your program (some languages such as Pascal and
COBOL do give you this capacity-BASIC often doesn't). You can also use
sophisticated text editing commands called macros inside your assembler
program. When you combine these macros with the ability to include or
delete certain code with conditional assembly commands you can
customize your programs so that when you change one or more switches,
different versions of your program are automatically created. A switch is a
data area with a label that can be set either zero or non-zero. Most often,
you can set a switch so that one version of your program is created for
debugging and a different versiOn is created for production (i.e., for users of
your program).

12 Programming the 68000

Getting Closer to the Hardware

Addresses

When you are programming in assembler you are closer to the actual
circuitl)' of the computer than you are with any other language. Before
actually getting into assembler there are some things about the computer
that you must know.

When you program in a higher level language there are various data
types such as strings, integers, real numbers, etc. In general, you only need
to know the decimal system. However, down at the hardware level the
binal)' system is used. You need to know not only binary but the
hexadecimal mode of counting before you can do anything in assembly
language. If you don't know binaIY and hexadecimal, see Appendix A at
this time; throughout this book we will assume you know how to count in
binal)' and hexadecimal.

Evel)' single byte of memol)' in the computer, whether RAM or ROM, has an
address. Addresses are just numbers, really. You can look at a given address
by giving a number inside an assembler instruction or by typing it into a
debugging program. Let's say you want to look at memol)' address number
$OOOOF3C2 or memol)' address $00010C32. It is through this address that

MEMORY

ADDRESSES

000010C8

000010C9

000010CA

000010CB

I
· 1
I

.......

.....

I
I
I

_l

F3

02

A4

B9

DATA (BYTES)

IN EACH ADDRESS

A 128K MACINTOSH HAS 128X1024 LOCATIONS (BYTES}

IN MEMORY - THIS IS A SMALL SAMPLE OF THE DATA
HELD IN MEMORY.

Figure 1-4 Picture of Addresses

13 Introduction to Assembly Language

you may read what is in that byte of memory or insert a new value there. In
higher level languages memory is taken care of automatically-you rarely
need to consider actual addresses when programming. In assembly
language you are constantly thinking in terms of actual locations in
memory, particularly when debugging.

When using the 68000, you will notice that nearly all addresses are
four byte addresses (8 hex digits) although the highest byte is unused.
Therefore you may have a maximum of 256 times 256 times 256 or 16
million bytes of memory in a 68000 machine.

Internals of the 68000 Microprocessor f
Within most microcomputer central processing units are special memory
locations called registers. There are three main types of registers in the
68000: data, address, and status. When you use these special memory
locations your program code taki:is up less space and goes faster. This is
because these memory locations are within the 68000 microprocessor
chip.

In the 68000 chip there are not only registers which contain data, as in
the 6502 microprocessor chip, but also registers which contain addresses.
If you want to write code which deals with one memory location the first
time through the code but a different memory location the next then you
must use these address registers.

Each register in the 68000 contains four bytes. There are eight registers
for data, designated DO, Dt, D2, ... ,D6,D7 (the D stands for Data, obviously)
and eight registers for addresses, labeled AO, Al, ... , A5, A6, A7.

'fypically, you load the data registers with up to 8 different variables
that are used the most in your program at that time. You fill the address
registers with up to 7 different starting points for blocks of data that can
periodically change their location in memory or starting points of code
that could be different each time the program is run.

The last address register, A7, is special-it holds the address of a stack.
A stack is a series of bytes of data that are organized as though they have
been "stacked" one on top of the other. The two most common operations
are where you place a new element on the stack, called pushing on the
stack, or take an element off the stack, called popping the stack. The A7 or
seventh address register points to the top element on the stack. 'fypically,
it is also referred to as "SP," short for Stack Pointer, in assembler programs.

On the 68000 the stack grows downward and the stack therefore
extends upward in memory from the place the stack pointer points. So the
element on the stack with the lowest addresss is on the top of the stack.
When you place a new element on the stack, the A7 register is decreased
by the number of bytes you place on the stack. That way, it points to the
first byte of the new element that you have placed on the stack. When you

14 Programming the 68000

DO
01
02
03
04
05
06
07

AO
Al
A2.
A3
A4
AS
A6

A7

A 7 is also the

Stack Pointer (SP)

T T
I I

T T

I I

T T

T T

I I

T T

T T

T T

T T
T T
I I

T T
I I

T T

I

Byte
I

Word (2 bytes)

Long (4 bytes)

Figure 1-5 Data and Address Registers

I

I

take an element off the stack, the stack pointer is increased by the number
of bytes you have taken off the stack.

There is one minor technicality about the stack we might mention
now. If you place only one byte on the stack, the stack pointer is decreased

lo Introduction to Assembly Language

by two and the byte is placed where the stack pointer is now pointing.
When you take one byte off the stack the reverse happens-the byte is
pulled off the stack and the stack pointer is increased by two. This is
because the stack pointer must always point to an even address (we will
explain later in Chapter 5, Hardware). This is the only exception to the rule
of the stack pointer increasing by the number of bytes pulled off the stack
or decreasing by the number of bytes pushed on the stack.

MEMORY

ADDRESS

1005E

1005D

1005C

10058

1005A

10059

A7~10058
STACK POINTER

I
T

_L

T
....L

r
F5

A7

23

01

BOTTOM OF STACK

NOTE: FIRST WORD ON STACI<: 0123

NEXT WORD (DEEPER) ON STACI< :A7F5

Figure 1·6 Picture of Stack with A7 Register

} next word

} next ward

} first word

Stacks are used to keep track of hierarchies of operations or data.
Here's a human analogy. Suppose a busy programmer is dealing with one
person on a problem when another person with a different problem
suddenly comes into his cubicle. The newcomer has a more urgent
problem that must be solved right away. The programmer memorizes
where he is in the first problem (pushes data on the stack) and deals with
the second problem. Once that problem is resolved, he returns to the first
problem where it was interrupted. Recalling where he left off on the prior

16 Programming the 68000

problem, the programmer "pops the data off the stack:' This means that he
begins working with the problem just as it was when he left off. From his
memory (stack) he recalls all the significant details that he memorized
earlier.

With the Macintosh, the stack that A7 points to is used for subroutine
calls-the equivalent in 68000 assembler of a GOSUB in BASIC or a
Procedure in a block-structured language like Pascal or C, or a mental
bookmark for our problem-solving programmer. The stack is used to save
the address of the current instruction in the program when the 68000
leaves off to start a subroutine. That way when you encounter the
instruction that says "return from the subroutine" you pull the address off
the stack and start the program again from the retrieved address of the
next instruction.

This brings up another area of memory within the 68000 CPU-the
Program Counter. The Program Counter keeps track of where you are in
the current machine language program. Inside this 4-byte area is kept the
address of the next instruction to be executed. It is updated automatically
as each instruction is executed so that it always points at the next
instruction.

When a JSR (Jump to SubRoutine instruction) is executed, the address
of the next location in memory is pushed onto the stack pointed to by
register A7. When a RTS (ReTurn from Subroutine instruction) is peI'
formed, that address is popped off the stack and placed in the program
counter. Then the next instruction that is executed is the one following the
original JSR that called this subroutine. This is the same way that BASIC or
Pascal interpreters/compilers work. They just don't tell you about the stack.

The stack is also used to pass data to subroutines and. for interrupts.
Interrupts are an advanced topic which we will discuss in Chapter 3, 68000
Instruction Set, and Chapter 5, Hardware. To whet your appetite, intel'
rupts occur when something outside the computer affects one of the
inputs to the computer (such as' an operator at the keyboard). An interrupt
allows a machine language program to stop, remember what it was doing
when it stopped, call another machine language program that was written
to handle, for example, a keypress, and then return to what it was doing
after handling the interrupt. Interrupts use the stack to keep track of what
was happening inside the original interrupted program when it was
stopped (the information is pushed on the stack). When the interrupt
program is done, then the information, like a bookmark you place in a book
when you are interrupted in your reading, is popped from the stack and
the original program goes on its merry way. Obviously, part of the
information that is pushed on the stack is the program counter telling
where the original program was when it was interrupted.

17 Introduction to Assembly Language

JUST AFTER
MAINLINE CALLED

A7 OODOA57E

JUST AFTER
ADDRTN CALLED

A7 l DDDDA57A

JUST AFTER
ATS IN ADDRTN
PERFO RMED

A7 I DOODA57E

JUST AFTER
ATS IN MAINLINE
PERFORMED

A7 I DDOOA582

L

I

A57E

A582

A57E

A57A __.. -

I PROGRAM COUNTER MOVE.W
#2.B(A5)

I 4 BYTE ADDRESS OF
ROOTINE MiICH

CALLED MAINLINE

PROGRAM COUNTER MOVE.W
C(A5).DO

ii AFTER JSR THllT
CALLED MAINLINE

ii RTS
(AFTER JSR llDDRTN)

PROGRAM COUNTER ATS AT END OF MAINLINE

it AFTER JSR THAT .. CALLED MAINLINE

PROGRAM COUNTER +CODE AFTER JSR TO MAINLINE

.. .__I ---

Figure 1-7 JSR-RTS Effect on Stack

Sum

Amt1

Amt2

18 Programming the 68000

Discussions and Comparisons

Here is an example of some assembler code that does a subroutine to
add two numbers and return. For comparison, we first show equiv
alent code in BASIC and Pascal.

BASIC code:

10 AMT1 =2: AMT2=3
20 GOSUB 40
30 END
40 SUM=AMT1 +AMT2
50 RETURN

Pascal code:

Prag ram Testit;
var Sum, Amt1, Amt2: ihte.ger;
Procedure AddRtn; (*thi~. is the. subroutine*)
begin
Sum:=Amt1 + Amt2

end;
begin (* mainline *)

Amt1 :=2;
Amt2 :=3;
AddRtn (* this is the "subroutine" call *)

end;

Here is the equivalent ·code in .68000 Assembler:

The semicolon indicates the start of a comment and the ".ds" means
Define Storage. For example, ".ds 2" means set aside 2 bytes of storage.

.ds 2

.ds 2

.ds 2

;Here is the equivalent code
;set aside 2 bytes of storage for the

· ;variable sum
;set ~side 2 bytes of storage for the
;variable Amt1
;~etaside 2 bytes of storage. for the
;variable Amt2

MAINLINE
MOVE.W
MOVE.W
JSR

#2,Amt1 (AS)
#3,Amt2(A5)
ADDRTN

;move the constant 2 to Amt1
;move tl)e constant 3 t1> Amt2
;Jump to SubRoutine called
;ADDRTN (just like a GOSUB)

19 Introduction to Assembly Language

;push address of following
;instruction on stack when do above
~JSR

Subroutine (just like a

Amt1 (A5), DO ;move what is in the 2 bytes of Amt1
;to DO
;(.W stands for word = 2 bytes)

Amt2(A5),QO. ;add what is in Amt2 to DO
;(2 rightmost bytes of Data Register)

OO;Sum{AS,) ;move what is in the 2 bytes of DO to
;Sum
;ReTur11 from Subroutine (pop stack

· ;and use address)

~his assembler program.1 ~N~lNE, illustrates a subrovtine calling
~o,~r sub~ut~e. "Xe c~~~ll;tl)at 1\-IAil\JLINE is a sµbroutirie itself

•·. since the fourth line af MAINLINE is an RTS (ReThm from Sub-
:l'f)utl6~).·'Jl1st•be~9~ ~NE was. entered, the·. program wh.ich

· · calledi~:~dP.l~~~d.."?Pon the stack (as the top element) the address
of.the . .. ms~ptjrinit wanted to execute. . ·. •·•·· ···.,·.·

. < i;t tw~ lines move the numberstwo and three into .the .
places inllle~O;~ th~t AOpRTNis ('!Xpeqth1gthem. Then AOD~~is
called wjtha>JSR;the addr('!SS of the R.tWfqUowing the line.JSR
AODRTl'\T ~s placecl upon .•. tile . stack, Now the stack has two .. return
addresses pn it, the place wh.ere ~AII1JJ .. INE . lllllst return and tl;le
place where AI)DRTN must return. The.acI:µilion is• perforllled in
AI)I)R~ ·Ile 'i':cl:c:ll'ess ~yere AODRTNomst return is pulled offth('j.
stack · · ·. ed in the program counter, the RTS at the end of. ·
~Ntf~~ ~~t{<>rl)iec:l and the address where MAINLINE in~l?f

. •· retµrn i~ ~~IJ..~~e~··pffthe stack and placed in the program coumei;,
TI:i,is sf1~ ;ll~ ~!'l~·~~d.. subroutine calls. handle the stack. ·

Condition Code Portion of Status Register

Another important memory location internal to the 68000 chip is the status
register. This register consists of a series of one-bit flags that record the
results of operations performed by prior machine language instructions.
The condition code portion of the status register is used to communicate
between two or more 68000 instructions to create the same effect as one
statement in a higher level language. The flags in the copdition code
portion of the 68000 status register are: Negative (N), Zero (.Z), Overflow (0),

20 Programming the 68000

Carry (C), and Extend (E). For example, the zero flag in the status register
can be used to combine the compare instruction (CMP) with a branch not
equal instruction (BNE) to create the same effect as "IF A <> B THEN
GOTO ... " in a higher level language.

In general, a binary one in a flag means "true" while a binary zero
means false. When the resUltof a compare instruction is equal, the zero bit
is set to 1; when the result of a compare instruction is unequal, the zero bit
is set to 0. A flag is said to be "on" if it is 1, and "off' if it is zero. So "true," 1,
and "on" are used interchangeably when talking about flag settings; "false,"
O, or "off' are used interchangeably for the opposite setting.

A compare instruction subtracts one operand from the other. If the
result of the subtraction is zero then the instruction sets the zero flag to 1
saying "it is true that the result of this last operation was zero:' If the result
was not zero (the two numbers compared are unequal) the compare
instruction sets the zero flag to 0.

-----lli!lll
1
..., _____ n_i_s_c_u_s_s_io __ n_s_an ___ d_c __ o_in __ p_a_r_is_o __ n_s ____________________ __

In higher level languages you would write something like the
following:

MOVE B(A5),DO
CMP A(A5),DO
BNE LINE40

BASIC .code:

10 IF A<> B THEN 40

Pascal code:

if a= b then
begin
end
else
line40; {"'. if a <> b then the prQced~re JinMO Is performed *)

There is no one statement in assemblerthat causes the prograni
to go somewhere else if a condition is true. Instead the above coa~J,p
assembler would consist of two statements: ,. · ·· ·

:.:· ::".:···;::>·.'/:,:'}H''+t:L:+,;::~ >'',"

"'·"::·,;,"i>.,,,~yl<i:;,,' ' ' ""'" ,,

;compare what Is in. memory address A to what is ir· [rl~rn.ory .. ad~r;e,~~!BC<
;and branch to the label LINE40 if the zero flag is off .(It is a .ze.rof ·

In this case the compare instruction siniply sets the zel:().fl~
either on or off based on whether the result of subtracting A frQffl,.~~, .
equal to zero. Then the BNE instruction takes action-it branctl~if ·
based on whether the zero flag is off. This branch instruction resets
the progl'am counter to the address ofLINE40--,.BA,~IC Pl'C)gr~~~
call it a GOTO. · '''· · ·

21 Introduction to Assembly Language

Machine Language

The 68000 microprocessor only really understands something called
machine language. Machine language is pure binary code in the com
puter's memory. The 68000 reads through this binary machine code
sequentially in memory and performs the actions that are indicated.

Let us look at the rather hectic but repetitious lifestyle of a 68000
Central Processing Unit. The 68000 first looks at the place where its
program counter is pointing. There it sees 2 bytes of binary. These bytes are
called an op code (short for "operation code"). For example, a CMP or BNE.

After reading an op code, the 68000 usually goes to the next place in
memory (it adds two to the program counter). If the op code says, "expect
data there" then the machine reads the data. If the op code says, "I have no
data following me" then the 68000 gets ready to read another op code and
do what it says.

This is all the 68000 Central Processing Unit chip does all day. It reads
an op code, looks for the data (if there), and performs an action. Then the
program counter is bumped past the data and it reads another op code,
and so on. Sometimes a JMP (JuMP instruction) changes the program
counter and it reads the next op code from a place in memory that is not
sequential. Of course the 68000 does these operations millions of times a
second.

Sometimes the 68000 CPU encounters an instruction which is not in
its repertoire. This definitely is a change of pace for the 68000. The 68000
creates its own interruption of the flow of the program and goes to a place
where the Apple computer people have a program that displays a window
with a picture of a bomb and an ID = 02 (The IDs are a code telling the
cause of the blowup-they are low integers). If you look up what an ID of2
means it says, "bus error" but really it usually means that the 68000 was
asked to perform something it does not kno~ how to read.

Although you need to know hexadecimal and binary in order to
understand the data in memory; you will rarely need to know the format of
op codes and operands in 68000 machine language. You can see them as
represented in assembler mnemonics, however, when you look at any
debugger's disassembly listing of machine code (more on disassemblers
later in the section on debuggers in Chapter 6-disassembly is only one
function of a debugger). A disassembly is where machine code in memory
is turned into the assembler mnemonics such as "CMP:'

Somewhere back in the birth pangs of the 68000 chip some computer
programmer sat down and wrote an assembler. An assembler program
reads a text file with such codes as "CMP A(A5),DO" and turns it into a
binary file with op codes and encoded data following it. Branches to labels
are turned into the op code for the branch and an offset from the current
location to that of the label.

22 Programming the 68000

Between assemblers and disassemblers you will probably never need
to know machine language. You will only have to know assembler
language. Each line of assembler usually corresponds to one op code (this
is represented by the "mnemonic" such as CMP) and the data that may
follow that op code (in the above example, "A(A5J,DO").

It is much easier to remember the three letters CMP mean compare
than the binary value 1011 010 001 001 011, which means CMP.W (with data
expected in the form A3,D2). The first 4 bits of this two-byte op code signals
that this is a CMP instruction; the next 3 bits, which represent the number
2 in binary. specify that the register to receive the value is data register DZ.
Then come 3 bits which signal that 2 bytes (a word) are to be compared.
The 3 bits which follow indicate that the pattern of the data that is the
source for the compare is an address register, and the final 3 bits say that it
is address register 3 (A3).

Discussions and Comparisons

Binary code:

1011 010 001 001 011

Assembler code:

CMP.W A3 02
Meaning: compare 2 bytes of A3 to 02

As you can imagine, almost any competent.programmer woulJI·
much rather type· CMP.W A3,D2 then 1011 0100 o:i.oo 1011 or .(in,·
hexadecimal) B44B. ·

------1~~1-----su_mm ___ ary __________________ _.... __ _..........,_,_..._
The next chapter;. 68000. Addressing Modes;. mtroducl:!s · ym.l to ·.•

the syntax of 68000 assembler. Once yo\l read Chapters 2 anci 3 (6800P
Instruction Set) you will know the complete syntax qf~~OQQ ~S~filrrl.~f;x.·
language. . . · · · . ·· ·

Inherent Mode

CHAPTER

~[!]----
The Addressing Modes
of the 68000

0 ne of the real differences of assembler language from higher level
language is the assortment of ways that you can access data. There are 12
ways of accessing data in the 68000, called "addressing modes:' Most of the
real power of assembler comes from understanding all the addressing
modes. Therefore, to keep from getting lost, you really must understand
these modes before going on to another chapter. We will go through these
addressing modes in order from simplest to the most complex. But first
let's look at an addressing mode that doesn't address any data at all.

Inherent mode is a pretentious way of saying there is no data to address.
Inherent mode does not count as a true addressing mode. An RfS, which
means ReTum from Subroutine, stands by itself and has no operand; i.e., it
is in "inherent mode:' RfS automatically knows where to return since that
location is always on the top four bytes of the stack. It should be inherently
obvious that RTE (ReTum from Exception) and IITR (ReTurn and Restore
condition codes) both use inherent mode. Most inherent mode operations
pull data from a known place (such as the stack) or go to a place based on a
known pointer (usually a place in memoi:y agreed in advance.) Some
inherent mode operations such as NOP (NO OPeration) don't need any
data since they take up space and time and do nothing.

23

ADD1

24 Programming the 68000

JSR ADD1
JMP ENOIT

ADD #1,DO
RTS

Here's an eXaillple Where 811,JI'S.inherent mode op code is used:

;Hk11 a· GOSue. Qt, ~~· · . re fn Pasta,, ..:lo. the ,subroutine at ADD1
;Jumptoanot-~i; ~.:~:'i<t,.tht,:Chunk of code
;the AOD1 . $U • . . .

·add .f foe
;return tro¥ ... ". ~···!l~elllke~BEllJRN. i'n ·BASIC)

'<,,,:'-,:;;>;,

In the above example JSR ADDl jumps to the location ADDl an~!,!tS
the location of JMP ENDIT on the stack. The routine adds 1 'to register DO
and then pulls the location after the JSR ADDl (i.e. the location of JMP
ENDIT) off the stack and returns there. Then it takes the JuMP to ENDIT
and continues on its way. HI'S is an inherent mode operation-it knows
exactly what to do and needs nothing further on the same line (in contrast
to the other op codes in this short program segment.)

·11 ~;;·i::':if:

' Examp•e · · .. ·. 5 ::. t___:-----------··~,'·~·''""""~.)•-;.·.,,-. "">t .. ~.,-·.-:.:•" \' -.-.. -"''/'""'·""'· ------·· .:~~·-f".-·
Here's aii~Jit~ Wl,lere ·~~·NOP code is us~d:

MOVE #20,DO
NOP

· • ;cycl11 ~round .109p. :zo •. ·tiPte$.
· ;do nottiing fort ·· · · ue

;do nothingfof·~:·· . . .·'Ile
;count doWn .. ·:ti:orn· ze·~ •· NOP

SUB #1,DO
IN·E TIMELOOP ;§o lonq· ~s ttt,·io~~;:l~l zerp:, J~mp to timeloop

NOPs are often used in loops to literally waste time. For example,
timing loops such as the one above are used to slow down the beats of an
oscillator thus making a musical tone deeper or to slow down the
response to the mouse so that a person has time to respond. NOPs act like
politicians at banquets taking up time prior to the meal with speeches that
lack content; they don't need any operand to supply them with substance.

25 The Addressing Modes of the 68000

JSR HELP
JMP EXIT

HELP MOVE #10,00
RTS

The KI'S instruction
knows that it must go to
the bottom of the stack
(pointed to by register
A7) to get the address of
the place it must return

00003CA4 A7 = Stack Pointer .__ __ T"""" __ _,

in order to complete the
subroutine. After the
KI'S, the Program
Counter contains the
location of the JMP EXIT
instruction (which

___ Addr __ of....,.lltP_E_xi_T......_. 00003CA4 (bottom of stack)

follows the subroutine
call at JSR HELP.)

Figure 2-1 Inherent Addressing Mode

1. Immediate Mode

With immediate mode the data is immediately available for the operation.
Usually you see immediate mode data with a"#" symbol in front of it. For
example: .

/MOVE #1,DO

/." " This moves the constant, 1, into register DO. The source operand, 1, is
m unmediate mode. ,Another way of thinking of immediate mode is that the
data immediately follows the op code as part of the program itself.
Immediate data is constant data. The above statement would be like saying
DO = 1 in a higher level language.

Immediate mode is always in the source of an operand, never in the
destination, since you can't operate on a constant.

Addr of llOVE Program Counter

MOVE #$10,00
!love the value that illllediately
fOllOllS the llOYE opc04e inside
the proar• itself to register oo.

Program code
MOVE opcode

0010 --1--replaces____...j register DO

Figure 2-2 Immediate Addressing Mode

26 Programming the 68000

2. Data Register Direct Mode

As you remember, the data registers are called DO,~ ... , D7. The secret to
coding fast, tight code on the 68000 is to keep the most often used data in
these registers. Data in these registers is not only the easiest to access, it is
also the fastest.

Data register direct mode means simply that you name the source or
destination operand to be a data register. The most common form is
something like the following:

MOVE.L 00,07

Here both source and destination are in data register direct mode.
This instruction moves all 32 bits of DO to D7. In the example for immediate
mode where we had MOVE #1,DO the destination was in data register
direct mode.

MOVE 02,DD
Move the value in register 02

to register DO.

register 02 f-replaces--+I register DO

Figure 2·3 Data Register Direct Mode

3. Address Register Direct Mode

Address register direct mode is the same action as data register direct
mode except that the address registers AO through A7 are used. By placing
an address into a register you can create a pointer to some data in a table.
For example, suppose you ki).ow a table has two byte long elements, an
index of an element of the table is in the DO register, and the table's start is
in the AO register. You want the address of a particular element from the
table to be in the Al register. Here is the code to do it:

MOVE.L 00,01 ;use 01 as a temporary work register
ASL.L #1,01 ;multiply 01 by 2 by shifting left one position (bit)

;ASL means Arithmetic Shift Left, #1 means one bit
MOVE.L AO,A1 ;now the table's start location is in A1
AOO.L 01 ,A1 ;finally, the location of the required element is in A1

The first line has both source and destination as data register direct.
The second line has the source as immediate and the destination as data
register direct. The third line is an example of both source and destination
being address register direct mode. Finally, the fourth line has the source
as data register direct and the destination as address register direct.

27 The Addressing Modes of the 68000

When you think about it, you usually just think "MOVE register D1 to
register Al:' It is only when you encounter an assembler error that you look
up the tables of permissible source and destinations to find that the
appropriate mode is impossible (in Appendix B in this book). For example,
you must MOVEA rather than MOVE anytime the destination is an address.
So line three could read MOVEA.L AO,Al. However, all 68000 assemblers
automatically substitute MOVEA for MOVE if the destination is an address
register. That is why we placed that technically incorrect statement in line
two-it will work in your assembler.

MOVE A2,00

Move the value in register A2
to register DO.

register A2. ~replaces-----+! register DO

Figure 2-4 Address Register Direct Mode

4. Absolute Short Mode

This mode uses the two bytes of immediate data following the instruction's
opcode as an address. it can only be used for a fixed address in memory.
You may not use this mode of addressing very often since the Macintosh
often reallocates memory during processing, putting absolute addresses
off target. The advantage of using absolute short mode is that it takes less
time to access data and less coding space than using absolute long
addressing since only 2 byte rather than 4 bytes addresses are used.

Form: <constant> (where constant is less than 32K or greater than 16
Meg minus 32K)

But the 68000 has 4-byte, not 2-byte, addresses you say? Well, this gets
a mite tricky. If thi:i address is between $0 and $7FFF (the address is in the
first 32K of absolute memory) then the address is just where you specify it
in the first 32K of memory. However, if the address is between $8000 and
$FFFF the address will be in the last 32K at the top of the 16 Megabyte
address range of the 68000. Tuchnically, the 2 bytes are said to be "sign
extended:' There aren't too many computers that come with 16 Megabytes
as standard-it may be a while before they upgrade the Macintosh to 16
Megabytes!

Since the Macintosh pages most application program memory in and
out, you usually will not be using absolute addressing at all, much less
memory in the first 32K. By "paging in and out" we mean that portions of
both the program and data are constantly being moved in memory and
even erased from memory to be re-read from the disk when they are
needed. When a part of the program or data is read from the disk that is

28 Programming the 68000

called "paging in" and when part of the program or data is (optionally)
changed on the disk and then erased from memory that is called "paging
out:' This process must be kept in mind constantly by programmers
accustomed to smaller microcomputers where programs and data could
stay in fixed locations in memory-hardly anything should be fixed in
memory on the Macintosh.

Example:

MYRTN equ $1234 N ;the subroutine MYRTN is located at $1234, a location below $7FFF
JSR MYRTN ;where MYRTN is in the first 32K

In this example, MYRTN is a subroutine fixed in memory at address
$1234. The "equ," short for equate, defines MYRTN as a constant, $1234.
When JSR MYRTN is encountered by the assembler, it generates a Jump to
SubRoutine at location $1234 using short addressing since the address is
less than 32K.

Another example:

LOWMEM equ $4567 ;a location below 7FFF
MOVE DO,LOWMEM ;move data register DO to a place in the first 7FFF of memory

In this case, LOWMEM is used to find data rather than code. The data
in DO is moved to a location in low memory; the destination LOWMEM uses
short addressing mode.

HYVAL .EQU $1234
MOVE. Ill 11YVAL, 02 Program Counter

MOVE opoode

1234

Address 1234 in memory

$5678

.__ __ 1H1HH ____ $56_1e _ _.I Register D2

Note: 2 high bytes of register remain unchanged

Figure 2-5 Absolute Short Addressing Mode

29 The Addressing Modes of the 68000

5. Absolute Long Mode

· More often used than absolute short mode, absolute long mode addresses
memory with full 4 byte locations. Again, using absolute addressing of
memory is very unusual on the Macintosh since all memory is dynamic -
it is in constant movement. You usually put the starting address of your
data's location into an address register and then find a particular portion
of data as an offset from that. More on this later.

Form: <constant> (where constant does not fall in the short address
ing range)

11VVAL • EQU $00011234
!«>VE. L ltYVAL. AS Program Counter

MOVE opcode

00011234

Address 00011234 in memory

$00013A7C

..._ _____ so_oo_13A_1c__.I Register A5

Figure 2-6 Absolute Long Addressing Mode

30 Programming the 68000

6. Addressing Register Indirect Mode

Addressing register indirect mode is the first of many indirect addressing
modes. Indirect addressing means that rather than getting information
from a constant place in memory, you calculate where your data is, put the
result in an address register, and operate on the data at that location.

Indirect addressing is the first real difference from the usual way of
dealing with variables in higher level languages. Only C and some versions
of Pascal that use pointers provide ways of accessing data similar to this
mode.

Indirect addressing is represented by parentheses. Parentheses say
"use the address inside us to get to the location you want:'

Form: (An)

Let's review some code we looked at before to calculate an address:

MOVE.L 00,01
ASL.L #1,01
MOVE.L AO,A1
AOO.L 01 ,A1

;use 01 as a temporary work register
;multiply 01 by 2 by shifting left one position
;now the table's start location is in A 1
;finally, the location of the required element is in A1

and let's add another statement to actually retrieve the data at that
location:

MOVE (A1},02 ;now the required element is in register 02

This statement takes the two bytes pointed at by Al and places them
in register DZ. The reason MOVE operates on two bytes is that the default is
move a word (two bytes). Therefore the above statement is equivalent to:

MOVE.W (A1),02 ;now the required element is in register 02

fypical uses of indirect addressing are for setting pointers to data,
subscripting, linking together chunks of data, tables of subroutines
(roughly equivalent to the ON ... GOSUB or ON ... GOTO in BASIC or the CASE
statements of Pascal or C .) All of these uses involve calculating addresses
because the absolute address you will use is not known when the program
is first written.

7. Register Indirect with Displacement Mode

The register indirect with displacement mode of addressing is just like
register indirect only with a slight twist: you may add or subtract a
constant from the calculated address. This constant is called the displace
ment. The most typical use is in a series of fixed-length records with each
field in the record having a fixed offset from the start. The address register
in this case usually points to the start of the record.

emplynum
emplynam
title
salary
sickleav
sickrec
empleng

31 The Addressing Modes of the 68000

MOVE.B (A 1),DO

$0001AC3F Register A1

contents Of address $111C3f register DO

llOte: only loll-order ~ of DO repleceG

Figure 2-7 Address Register Indirect Mode

Form: displacerhent(An)
Calculate the start of the record in memory and place the result into

an address register. Then, use the fixed offset from the start of the record
for the displacement. It is usually best to use labels rather than numbers
for the offsets so that the program is easier to read. The offset can be in the
range plus or minus 32K. That is, a 2-byte two's complement number that
is sign-extended.

Here is an example of an employee record with seven fields of different
lengths:

;the following definitions tell how far each field is from the start of the
;record

equ O . ;the employee number (labels must be 8 or less bytes ...)
equ 4 ;the employee's name (up to 40 characters allowed)
equ 44 · ;the job title of the employee (up to 16 characters allowed)
equ 60 ;what the salary is in cents/month (4 byte hex number)
equ 64 ;count of number of sick leave sub records ·(how many illnesses)
equ 66 ;start of sick leave records, 2 bytes ·per record (up to 7 records)
equ 80 ;length of record

This record consists of bytes O through 3 being the employee number,
bytes 4 through 43 being the employee name, bytes 44 through 59 being
the title of the employee, bytes 60 through 63 being the salary of the
employee in cents, and bytes 64 and 65 being the count of the number of
sick leaves taken by the employee. Bytes 66 and 67 are the zeroth time the
employee took sick leave, bytes 68 and 69 are for the first time, bytes 70 and
71 are for the second, etc. (In assembler you often don't start with the first
entry but with the "zeroth" entry for convenience of indexing.)

Assume that there is a series of these records. Let's say we wanted to
look at the employee number, employee name, and salary for an employee
whose number is in register DO. Assume the start of the series of records is
in address register AO. The code would look like this:

FINDEMPL

MOVELOOP

MOVER

3.2 Programming the 68000

MOVE.W #empleng, D1
MULU DO,D1

MOVE.L AO,A1
ADD.L D1 ,A1

MOVE.L emplynum(A 1 }, D2

LEA emplynam(A 1),A2

MOVE.L salary(A 1), D3

;code to find the DOth employee

;start address of DOth record= start of
;all records + DO * length of record
;move employee length to D1
;multiply employee index in DO by length
;in D1
;put start of table into A 1
;now A1 holds the start address for the
;DOth record
;D2 receives the employee number (Long =
;4 bytes)
;now A2 has the address of the employee
;name
;now the salary in cents is in D3 ·

The LEA (Load Effective Address) instruction calculates the address
that the source field is pointing to and puts that address into the
destination address register. Think about that for a second. The LEA
instruction doesn't affect the data that is at the location-it is used to find
the address of that data.

The address of the employee name has been moved to A2. Usually the
above code would be preparation for coding a loop to move the employee
name to the receiving area. The loop to move the employee name to an
area pointed to by A3 would be:

MOVE #title-emplynam, D2 ;move the length of employee name
;to D2

MOVE.B (A2), (A3)

;move the byte pointed to by A2 to the
;place pointed by A3

ADDO #1,A2 ;add 1 to register A2
ADDO #1,A3 ;add 1 to register A3
SUBO #1,D2 ;subtract 1 from D2
BNE MOVER ;branch if D2 is not zero

The MOVER subroutine shows how to move the employee name,
pointed by A2, to another location, pointed by A3. One byte at a time is
moved by the MOVE.B instruction from the current location of A2 to the
current location of A3; the address in A2 is incremented to point to the
next byte of the string to move and A3 is incremented to point to the next
location where the byte is to be moved. By using different addressing
modes along with the DBRA instruction, both of which you will learn later,
you can reduce this loop to two instructions!

33 The Addressing Modes of the 68000

OFF1 .EQU $23

MOVE.B OFFl(AS),02

l

llellOIY location $1AC3f

•$23 lFF1)

i
llellOIY location $1AC62

$0001AC3F R egister AS

•

SE3 I--replaces-..j $'lfffffl SE3

contents of address $1AC62 register D2

llote: only lw-order byte of D2 replaced

Figure .2-8 Address Register Indirect with Displacement Mode

8. Register Indirect with Index and Displacement Mode

FIN DEM PL

Now that you understand register indirect with displacement let's throw in
one more variable, an index.
Form: displacement(An,Dn) or displacement(An,Am)

The address used in the sum of the address register, the data or
address (index) register, and the displacement. Since the displacement is
one byte it can only range from -128 to +127. Therefore you cannot use·
this mode on record segments that are longer than 128 bytes.

'fypically; this mode is used for an array of records. The example
which we used above for register indirect with displacement could have
been done using this mode as follows:

MOVE.W #empleng,D1
MULU DO,D1

MOVE.L AO,A1
MOVE.L emplynum(A1 ,D1),D2
LEA emplynam(A 1, D1),A2

MOVE.L salary(A 1, 01), D3

;code to find the DOth employee

;start address of DOth record = start of
;all records + DO * length of a record
;move employee length to D1
;multiply employee index in DO by length
;in D1
;put start of table into A 1
;D2 receives the employee number
;now A2 has the address of the employee
;name
;now the salary in cents is in D3

MOVELOOP

MOVER

34 Programming the 68000

The last three lines of FINDEMPL show examples of the register
indirect with index:. and displacement mode as it is used to index into a
multi-record table. The first line adds the location· of the start of the table,
Al, to the offset of the pertinent record within that table, Ill, and to that is
added the offset of the employee number within the record. The other two
lines are parallel in construction.

Notice that the statement ADD Dl,Al from the example in the Register
Indirect with Displacement mode section has been removed since the
addition is automatically done by this addressing mode. Carefully com
pare this series of code with the series of code for the register indirect with
displacement mode. We could have changed the code to move the
employee name so that it reads as follows:

MOVE

MOVE.B

SUBQ
BNE

#title-emplynam, 02

-1(A2,02), -1(A3,02)

#1,02
MOVER

;move the length of employee name to
;02
;so the BNE works use -1
;move the byte pointed to by A2 indexed
;by 02 to the place pointed to by A3
;indexed
;subtract 1 from 02
;branch if 02 is not zero

This code would move the data starting with the last byte of the
employee name and going forward through the name to the first byte. The
index for the bytes goes from 40 down to 1 but we really want the index to
go from 39 to 0. Therefore we use a displacement of -1 to compensate.

Sometimes you want ·to have a mode that consists of an address
register indexed by a data register with no displacement. There is no such
mode. Fortunately, all you have to do is use a zero displacement with this
mode:

O(An,Om) where n,m are numbers between O and 7

Be careful, the index defaults to a word length. If you have a value
outside the range +I - 32K inside Dm then you must enter

displacement(An,Dm.L)

to make sure that all 4 bytes of Dm are added into the final value.
Rarely will you have an index that is an address register. About the

only time to do this is when you have run out of data registers and you
have a spare address register. Even then, it probably isn't a good idea. We
mention this possibility for completeness since the 68000 allows you to do
this.

35 The Addressing Modes of the 68000

OFF1 .EQU $23
MOVE.L #$10,00
MOVE.B OFF1(A5,0

[
0).02

F ftl!llOry location $1AC2

+$10:(00)

11e110ry location $1AC3 F

<a f "'
2 MllOry location $1AC6

$0001AC2F J Re gister A5

,
I __ so_oo_o_oo_1_0 _ _,I Register oo

$E3 ~ replaces_, StHfftt SE3 I Register 02

contents of address $1AC62

Note: only 1-rder byte of 02 replaced

Figure 2-9 Address Register Indirect with Index
and Displacement Mode

9. R>stincrement Register Indirect Mode

Postincrement register indirect mode is exactly like the address register
indirect mode except the address register is updated to point to the next
element after the operation is done. The main use of this mode is when
you have a sequence of data in memory and you need to operate on each
element in sequence. This mode lets you avoid using extra add or
increment instructions which are necessary in some other assembly
languages to get to the next element.

If the instruction is a byte instruction, the address register is updated
by adding one after the instruction is done. If the instruction is a word
instruction, the address register is updated by adding two after the
instruction is done. The address register is updated by four after a long
instruction.
Form: (An) + where the " + " following is a mnemonic for post increment

Doing our MOVELOOP once again in yet another way:

MOVELOOP MOVE

MOVER MOVE.B

SUBQ
BNE,

#title-emplynam, 02

(A2)+,(A3)+

#1,02
MOVER

;move the length of employee name to
;02
;move what is at A2 to A3 and add
;when done
;subtract 1 from 02
;branch if 02 is not zero

36 Programming the 68000

This loop moves a byte at a time from the address pointed by A2 to the
location pointed by A3. The complete MOVELOOP subroutine moves the
employee name, pointed at by A2, to an area pointed at by A3. Since
MOVE.B is a byte instruction, one is added to A2 and one is added to A3
immediately after the MOVE.B instruction is performed. Caution: One
consequence of doing the loop this way is that the registers A2 and A3 have
their original values destroyed.

MOVE.B (A1)+.DO
.---------.

S0001AC3F Register 111
.__ _ _,, ___ llOte: lf1lr COllPletion A1 cantlins S1Aee

SSE replaces_, StfftHf SSE

CCIMllllts of address S1AC3F regisur DO

llOte: OlllY lOll-Order byte Of DO rlPllCICI

Figure 2-10 Address Register Indirect with Postincrement Mode

10. Predecrement Register Indirect Mode

The predecrement register indirect mode is the complement of the
postincrement register indirect mode. Where postincrement adds to an
address register after the instruction is executed, predecrement subtracts
from the address register before the instruction is executed. Outside of this
difference, all the other rules are the same.

The amount decrem{;P:lted is one for a byte instruction, two for a word
instruction, and four for a long instruction. Instead of having a plus after
the address register in parenthesis there is a minus before them.

Form: -(An)

Once again, we could have done our loop to move the employee name
as follows:

MOVELOOP MOVE.L #title-emplynam,02 ;move the length of employee name to
;02

AOO.L 02,A2
AOO.L 02,A3

MOVER MOVE. B - (A2), - (A3)

SUBQ #1,02
BNE MOVER

;point at the end of the source string
;point at the end of the destination string
;move what is at A2 to A3 after
;subtracting 1
;subtract 1 from 02
;branch if· 02 is not zero

37 The Addressing Modes of the 68000

However, this way of moving bytes would be rare unless you were
moving overlapping fields to the right. Usually you would use the post
increment mode.

Pushing onto the stack is usually done with the predecrement mode
using A7, the stack pointer. Pulling things off of the stack is usually done
with the postincrement mode. For example, if you wanted to push 4 bytes
onto the stack:

MOVE.L MYVAR, -(A7)

or if you wanted to pull 4 bytes off the stack:

MOVE.L (A7)+ ,MYVAR

As you might have gathered, the stack's end location is pointed to by
A7 and the stack goes from high memory to low memory. It is a good idea
to draw a picture of the stack and watch what each of these instructions
does:

STACK

A7 I.__ ___ ---··__MYV __ AR _ ___, AFTEA.MOVE.L MYVAR. -(SP}

(MYVAR pushed on stack)

STACK

A7 L(___ lj----t_..~-------! AFTER MOVE.L (SP}+.MYVAR

' ' ' : MYVAR : (MYVAR pulled off stack)
..................... ,, ... , ... ,,

Figure 2·11 Picture of Stack Being Pushed, Popped

11. Program Counter Relative with Displacement Mode

The 68000 assembler is built so code can be moved anywhere in memory
and the addressing of code and data still works. The program counter
relative with displacement mode of addressing was included in the
instruction set to help accomplish this. The idea is that your data can be

38 Programming the 68000

MOVE.L -(Al),DD

~~ .___ _____ _ $0001AC4C $0001AC50 Register Al

before
after Note: A1 Changed fr• $1AC4C to $1ACSO before action

$4f223C5E

contents of address $1ACSO

Figure .2-1.2 Address Register Indirect with Predecrement Mode

part of the program. When the program is moved to a new memory
location, the references to your data are also changed.

Form: displacement (PC)
or simply
<label>
in assembler, where <label> refers to a location inside the program.

This mode really says "the data is n bytes backward/forward from
where I am now," where then bytes is the displacement, the backward/
forward is the sign of the displacement, and the "where I am now" is the
program counter of the data (not the op code). The program counter is
used as if it were an address register for indirection. Obviously if the code
is moved elsewhere, the program counter will reflect the new location and
the data will still be the same displacement relative to where the program
counter is then.

[

points to here
in code

-4(PC) PC+

code before move

when code moved
the location within

the code Is st Ill
correct

L.
New PC+

[

points to here
in code

-4(PC)

code after' relocation

Figure .2-13 Program Counter Relative Still Operates When Code Is
Moved to New Location

The important point is that all of this is transparent to you since the
assembler figures out that the data is part of your code and generates this
mode automatically. Let's say you have the following chunk of code:

39 The Addressing Modes of the 68000

MYVAR DC 10 ;reserve 10 bytes of storage
YOURVAR DC 4 ;reserve 4 bytes of storage \

;program segment

PROGSEG MOVE MYVAR,DO J
;this will generate MOVE -16(PC), DO since MYVAR is 16 bytes back of the
;present loc.

MOVE THISVAR,D1
;this generates MOVE + 4(PC), D1 since TH ISVAR is 4 bytes forward in the code

RTS
THISVAR DS 2

As you can see, you simply code your variables as if they were normal
absolute-style addresses and the assembler notices that they are part of
the code and turns them into Program Counter ("PC" for short) relative
addressing.

Since the Macintosh can move your program anywhere in memory at
just about any time, this is the main form of addressing you would use for
constants. The other form of addressing that you would use, which is even
more independent, is using data on the stack.

You can think of this mode as a special form of register indirect with
displacement since we just use PC instead of An. However, in practice, this
mode is used for constants in the program while the register indirect with
displacement mode is usually used for external data structures.

Ollllll1A37 HYVAL • BY $E3 $7E
llllDlllAJ9 HOVE. W HVVAL, 02 ---.----

$00001A39 Program Counter

Address $1A37 in 11e110ry

$E37E

--·'~'"l
..._ ____ _. replaces

Note: the assel!bler translates "YVAL into t
[PC - addr(llYVAL)J(PC). or -4(PC) where PC I
is the Proar111 Counter. when it sees nYVAL '----SHHH--H--$E-3_7_E~ Register 02
is Cleta inside the proara. .

HOVE opcode

-4

Nota: 2 high bytas of registar r1111111in unchangad

Figure .2-14 Program Counter Relative with Displacement Mode

40 Programming the 68000

12. Program Counter Relative with Index and Displacement Mode

CALC2ND

PUTDATA

Program counter relative with inde;<. and displacement mode is a special
case of register indirect with index and displacement.
Form: displacement(PC,Dn) or displacement(PC,An)
although it is usually written as:
label(Dn) or label(An)
when you are in your assembler.

This form is exactly like program counter relative with displacement,
only an address or data register is added in as well. You would use this
mode of addressing if you had a constant table imbedded in your program.
Then, the index register would give the offset from the start of the table to
the start of the record you wanted. The displacement would give the offset
within the record of that field.

Let's use the employee record from above as an example:

emplynum equ 0 ;the employee number (labels must be 8 or less bytes ...)
emplynam equ 4 ;the employee's name (up to 40 characters allowed)
title equ 44 ;the job title of the employee (up to 16 characters allowed)
salary equ 60 ;what the salary is in cents/month (4 byte hex number)
sickleav equ 64 ;count of number of sick leave sub records (how many illnesses)
sick rec equ 66 ;start of sick leave records, 2 bytes per record (up to 7 records)
empleng equ 80 ;length .of record

emptable deb. b empleng * 20 ;reserve enough room for 20 records
;inside the program

empnm
empttl

MOVE
MULU

LEA
MOVE.L

MOVE

LEA
LEA

de 'John Jones'
de 'janitor '

#empleng, DO
#2,DO

emptable + emplynum (DO),AO
#011750,emplynum, (AO)

#39,D1

emplynam(DO),AO
empnm,A1

;insert data for the second employee

;multiply 2 times employee record length
;(80)

;use DO to index to the second employee
;record
;count of characters in employee name
;- 1
;get address of employee name in table
;get address of 'John Jones'

41 The Addressing Modes of the 68000

EMPNLOOP MOVE.B. (A1)+ ,(AO)+
DBRA 01 ,EMPNLOOP

;move a byte and add to addresses
;keep looping and decrementing 01 until
;01 < 0
;the above loop shows how a whole
;string can be moved in 2 instructions
;DBRA means Decrement and BRAnch
;more on this later
;and so forth for the rest of the table ...

The above program shows how this addressing mode is used. The
empfoyee number and employee name, which is inside the program itself,
are addressed by adding the offset of emplynum, PC, and DO (which
contains the offset from the start of emptable to the second record). This
mode has its most typical use when you have a short table interspersed
with code.

'.!l:~t
eq~~~~
qJ,CJde;~,t

'k'!:::)'.~ ·~~
dJsapp.ears aftei~.
recOrd a~as. ·. '. ·

'lbe Effective Address

-~};~~~Jt>*·:.. .. ·' ... ·/··' .'·_,;··,:·:<
' ,!Y~':naf/Jst conunon use cif<;'.(

;:$11i~· ·m···~~· :~~.r lets slide thl'ough · ··•
... . . ·'~~t ,a record by using .

• umt ~e.ponstant, then•this
:.~~t~,~.•added,.JntO yc)ur
~<YQ.q: 8,re using. register

Jt; m~, ·@& ·ntode. 11iis problem
.. !rstand ttiediffurentways t~ef µp. ...

;.,O?-
~w'· • j ·,,.,·,~

-,;;.; •. : ~~'~'~ c ·\0C:' ·~·· -'~

We've completed our discussion of addressing modes, but we should
explain about the effective address since understanding this concept is
necessary before you can learn more about 68000 assembler. The effective
address is the actual physical address that an addressing mode accesses.
You may think of this address as the location where "effects" take place if it
helps you to remember this. Sometimes, this address is the physical
address that the data is coming from as well as the physical address that
the data is going to.

Let's say you wanted the effective address for $56(AO). If AO contains
$00001200, the effective address of $56(AO) is $00001200 plus $56 or

42 Programming the 68000

000014137 MYVAL , BY $E3 $7E SEO
llllllD1A39 t10VE. B HYVAL (01), 02 $00001A39 Progr11111 Counter

"-----~__so_oo_o_oo_o_1 _ _.I Register 01

Address $1A38 in -ry

$7E

- 4 + 01 + PC = 1 - 4 • 1A38 = 1A38 ~ MOVE opcode_ ____ -1Address $1A39 in -1
-----1 -4 rep1res

Note: the asseRbler uanslates ftYVAL(D1) into !
[PC - addr(llYVAL)](PC,01), or -4(PC,D1) where PC is the

1 1 PrOGilll Counter of the llYVAL(D1) operand. llhen it sees KYVAL $tHt1HH $7E Regi· Ster 02
is a label inside the progI811.__ ________ __,

Note: 3 high bytes of register remain unchanged

Figure .2-15 Program Counter Relative with Index & Displacement
Mode

$00001256. You can use the LEA instruction to calculate an effective
address and place the result of the calculation in an address register.
Please note that all the other statements in 68000 deal with the data at the
effective address while the LEA instruction moves the value af the effective
address itself to the destination. If you had entered MOVE.L $56(AO),A1 and
location $1256 through $1259 held $0001B3AC then Al would contain
$0001B3AC while, in contrast, LEA $56(AO),A1 places $1256 into Al. If you
understand this distinction it will help you immeasurably in understand
ing 68000 assembler.

Example

Here is another example. If A3 holds $00050000 and D1 holds
$230 then the effective address of -l(A3,Dl) is $00050000 plus 230
plus -1 so the effective address is $0005022F. The instruction LEA
-1(A3,Dl),A4 would result in A4 holding $5022F.
It might interest you to know that there is also a PEA instruction

which pushes the 4-byte effective address onto the stack. Using the above
example:

PEA -1(A3,D1)

would push $0005022F onto the stack and update the stack pointer
accordingly.

43 The Addressing Modes of the 68000

~~------s_u_ID __ ID __ a_r_y __ __

We've now introduced you to the important addressing modes
used when programming the 68000 in assembly language. Although
these names may seem complicated, their functions allow you to
access data in many different ways. Some addressing modes you'll
use more than others, but you'll want to be familiar with all of them
so that you fully understand what your programming options are.
Next, let's take a look at the 68000 instruction set, the real building
blocks of assembly language.

CHAPTER

~[!]----
The 68000
Instruction Set

In this chapter we describe the 68000 instruction set in detail. The
instruction set represents the building blocks from which all assembly
language programs are made. It is assumed throughout this chapter that
you understand the addressing modes well. If you are unsure, go back to
Chapter 2 and review them.

Fortunately, to start programming you really only need to know a few
of the instructions intimately. The instructions are listed in this chapter in
the order of their importance as determined by frequency of use. If you
learn the first 25 instructions we mention here you are in a position to
write adequate code-in fact 98% of the code you write will use only those
first 25 instructions.

It is a good idea to learn all the op codes in the next section, Most
Frequently Used Instructions, and at least have a nodding acquaintance
with the rest of the instructions in this chapter. You can skim the System
Control Operations, going over them just enough to understand when to
use them and where to find them when you need them.

Most Frequently Used Instructions

You will use the following instructions whenever you code in 68000
assembler. You must understand completely what each of them does. The
instructions are ordered according to frequency of use and, hence, the
importance of each command. The most important op codes come first.

MOVE

MOVE is probably the most often used instruction in 68000 assembler. This
one powerful instruction can get data from any place and move it any

45

46 Programming the 68000

place else. Data can be located in an area in memory, a data or address
register, the condition codes (part of the status register), the stack, the
status register, or the user stack pointer.

You can move one, two, or four bytes at a time by appending a ".B,"
".W," or" .L'' to a MOVE. That is, MOVE.B means move a byte, MOVE.W means
move a word (2 bytes), and MOVE.L means move a long word (4 bytes). All
addressing modes can be used to specify the source of the data, and all
except for address register direct, program counter relative, program
counter indexed, and immediate mode are allowed in specifying the
destination of a MOVE instruction. You can use address register direct in
the destination if you do a MOVEA. Fortunately, the assembler is smart
enough to look at the destination and change a MOVE to a MOVEA
automatically.

Some examples of MOVE follow:

MOVE AO.DO

Since no appendix is put on the opcode, ".W" or a 2-byte move is
assumed. Please be careful-many bugs are caused when you mean to
move all 4 bytes of an address or data register but forget to append the ".L''
and hence only 2 bytes get moved!

MOVE.L DO,D1

Move all four bytes of data register DO to data register Dl.

MOVE.B (AO)+ ,(A1)+

This construct is often used when a series of bytes (often a string) are
being moved from one area of memory to another. 1\vo pointers, registers
AO and Al, are used to point into the source and destination string
respectively. One byte is moved and then the two pointers are each
updated to point to the next character in the string. This construct is most
often used with a DBcc. Here cc stands for Condition Code; for example EQ
is equal (DBEQ), GT is greater than (DBGT).) This construct is also often
usdd with a Decrement and Branch instruction to form a loop as follows:

LOOP MOVE.B (AO)+ ,(A1)+
DBEQ DO.LOOP

;move a byte from where AO points to where A 1 points
;keep looping for DO bytes or until a zero byte is hit

This LOOP movesEO plus one1 bytes from the location pointed by AO
to the location pointed by Al.

MOVE.L D3,-(A7)
MOVE.L (A7)+,D3

;this would push the 4 bytes of 03 on the stack
;and this would pop them off the stack and place
;them back in D3

These two instructions show how to use MOVE to push or pop data
from the stack.

4 7 The 68000 Instruction Set

MOVE.W #$2A4E,(AO)+ .

MOVE.L DO,A2
BEQ LABEL

MOVE.L DO,A2
TST.L DO
BEQ LABEL

This would place the two bytes 2A and 4E into the location pointed by
AO and the byte after that. Wheq this instruction is done AO would point to
the byte right after the 4E above.

The condition codes are set by the MOVE instruction. We used this
fact implicitly in the loop code above. Unfortunately, the MOVEA instruc
tion does not set the condition codes. So the following sequence will not
work the way you expect:

;BEQ stands for Branch on EQual, in other words branch if Zero Condition
;Code is set

Whether the branch to label is taken is completely independent of
whether DO contains zero! This is because the MOVE.L is translated to
MOVEA.L and the condition codes are not set. For future reference, the
following will do what you want:

Since you will rarely use the MOVE to set condition codes, ~tatus
register, or user stack pointer, we will simply give the syntax here without
examples:

MOVE to condition codes:

MOVE source.CCR ;source is any addressing mode except An

MOVE to status register:

MOVE source.SR ;source is any addressing mode except An

MOVE from status register:

MOVE SR,dest. ; dest is any addressing mode except An, immediate, or
program counter relative since these addressing modes may not be
modified.

MOVE to/from the user stack pointer:

MOVE USP.An, or MOVEAn,USP ;the user stack pointer must go to or
come from an address register.

On the Macintosh the system stack pointer is the one used, the user
stack pointer is not used for anything! So USP has no effect. Do not use USP
with the Macintosh assembler.

MOVEA we already know. This is where the destination is an address
register. The source may be a word, ".W," or a long, ".L," but not a byte, ".B:'

48 Programming the 68000

So MOVEA.W or MOVEA.L are legal but MOVEA.B is illegal. If the word form
is used the word is extended to 4 bytes before it is moved-the high two
bytes of the destination are always clobbered. (Definition of "clobber"; to
inadvertantly overlap a portion of memory or a register, sometimes creating
a bug thereby.)

There is a MOVEP instruction that is used for data going to a port
using memory mapped 110 to an 8-bit device. Since there are some 8-bit
devices in the Macintosh, some system code may use these instructions
you will rarely have to. The form of a MOVEP is:

MOVEP Dm,d(An)
MOVEP d(Am),Dn

The four bytes in the data register are transferred to alternate bytes in
memory with the high order byte being transferred first. This way all the
bytes go out on either the high or low order. bytes of the memory mapped
data bus depending on whether the address is even or odd-high if even,
low if odd.

t,:~ple:

MOVEP DO,O(A2)

wnereDO holds $C80~F74E<tlld A2 holds $000t3F44. 'Ihen $.C8 would
be move~to ~ddres~ $13F14, $09 would be moved to $13F46, $F7
W!!Juld b~ moved to'~3F,jg, and finally $4E woul9, be l'JlOVed tp
$13F4A. .

An associated instruction is the MOVEM instruction. Although this
instruction looks like a MOVE instruction, and it is used to move data, you
will mainly use this instruction in one very specific circumstance. MOVEM
is usually used to save the "environment" of a higher level routine while
calling a lower level routine. The environment preserved is a list of
registers.

Here is a typical situation that you will encounter when you are
programming in assembler. You are about to write a subroutine. Every
register is in use by the routines which will call this subroutine (or perhaps
you have no idea which registers will be in use by the calling routines
any register you use could upset the higher level routines). You must
therefore save off every register you plan to use upon entry to the routine
and restore them when you leave. If your subroutine is large you could find
yourself coding five or ten statements to push registers on the stack
coming in and five or ten going out which pop registers off the stack. This

myroutin

49 The 68000 Instruction Set

is clumsy. Even clumsier is reading each subroutine to see which registers
it uses (and having your program go wrong when you miss one) or using
only some of the registers available to you.

The answer to this probelm is the MOVEM instruction. When you
write a subroutine you can push all the data and address registers you are
using on the stack, and then restore them when you leave. By using this
procedure you can use any register you want (making your subroutine
more efficient) and yet not worry whether you will clobber what is in a
register which another routine at a higher level is using.

The MOVEM instruction lists all the registers you want moved sepa
rated by slashes ('/'). To save a range of registers, such as DO through D4,
you would indicate the starting and ending registers with a dash ('-') in
between-for DO through D4 this would be DO-D4.

Let's say you wanted to use address registers AO ,Al, and A2 and data
registers D2 and D3. You would place the following instructions at the start
and end of the code for a subroutine:

MOVEM.L AO-A2/D2/D3, -(A7) ;push the contents of the registers on the stack
;don't forget to make it movem.L or only 2
;bytes of the addresses will be saved!

(more code) ;lots of useful code
MOVEM. L(A7) + ,AO-A2/D2/D3

;restore all the registers from the stack
RTS

Picture of MOVEM.L (SP)+ ,AO-A2/02/03
and MOVEM.L AD-A2/02/03,-{SP)

since the order of movement to the stack is DD-D7.AO-A7
and the order of movement from the stack is the reverse.

STACK STACK

from Register gushed on stack

02 __., 02 -. 02
03 ---+ 03 03

AO AO AD
A1 _.. A1 Al

A7
A2

....... A2 -- A2
......,-

pulled off stack

Figure 3-1 Move Multiple

.m..Br.g·
__., 02 ~ .. 03
__., AO ~

--- A1

~ A2
A7

MOVEQ
MOVEQ
MOVEQ

50 Programming the 68000

Finally, there is a special hi-speed move if you want to move a constant
value that is between 0 and $FF (0 and 255 in decimal) to a data register
the MOVEQ instruction. Again, the assembler is smart enough to change
your MOVE to MOVEQ in appropriate circumstances. Although only the
bottom 8 bits are actually contained in the instruction, all 32 bits are
changed (so this instruction is always long). The number is sign extended.
Here are some examples of MOVEQ.

#1,03
#'A',DO
#$FE,D2

;00000001 is moved to data register 03
;00000041 is moved to data register DO ('A' in ASCII is $41)
;FFFFFFFE is moved to 02 (sign extension since $FE is negative)

Usually you would not use MOVEQ #0,Dn since there is an instruc
tion, the CLR.L Dn instruction, which clears a register to zero. MOVEQ
#O,DO and CLR.L DO do the same thing, therefore.

Once you understand the addressing modes and understand the
MOVE instruction you are free to move data wherever you want inside your
Macintosh.

Branch Instructions (Bee)
There are fourteen different branch instructions in 68000 assembler. By
combining a TST (ThST) or CMP (CoMPare) instruction, which sets the
condition codes, with a branch you can do the equivalent of an IF
instruction in a higher level language.

The branches operate based on a combination of the carry flag, the
zero flag, the negative flag, and the overflow flag. Before you can under
stand the branch instructions you must understand these four flags. These
flags are generated as follows by other instructions:

Set means the bit flag is 1, cleared means the bit flag is 0.

N (negative): If the result has the highest bit set (1) then the negative flag
is set-if the result has the highest bit cleared (0) then the negative flag is
cleared. Any negative number results in a two's complement number with
the high bit set, hence the reason for calling this flag the negative flag.

T\.vo examples of MOVE instructions setting the negative flag:

MOVEQ #$83,DO

Since #$83 has the high bit on, the negative flag is set. Note that with
sign extension, $FFFFFF83 is moved to DO.

MOVE.L #-1,03

Since -1 is the same as $FFFFFFFF in two's complement form, the
negative flag is set after this instruction.

51 The 68000 Instruction Set

Z (zero): If the result is zero this flag is set-cleared if not zero. This flag
is often tested after a subtraction of one number from another. If the result
is zero the two numbers are equal, otherwise the two numbers are
unequal.

Example:

CMP.W #$23,DO

CMP.W subtracts $0023 from the low 2 bytes in DO and sets the
condition codes accordingly. If DO contains $0023 then the zero flag is set
since the result of the subtraction is zero. If DO contains something else,
then the zero flag is cleared. SUB.W #$23,DO where SUB is the subtract op
code would set the zero flag in exactly the same way.

C (carry): If you remember your addition and subtraction exercises in
school you will understand this flag. A carry is generated in decimal
addition when a column sums to more than nine, and a borrow is
necessary if the number subtracted is greater than the number from which
you are subtracting in the same column. With the computer, if a carry is
generated when two numbers are added together or a borrow is necessary
when two numbers are subtracted, the carry flag is set. If no carry or
borrow occurs, this flag is _cleared. The only difference is that here the
addition and subtraction is in hexadecimal and the carry is from byte to
byte, word to word, or long word to long word. The carry is only used in
unsigned arithmetic since a carry resulting from ·the addition of two
signed riumbers -isan error (see the overflow flag described later). The
carry flag is mostly used for decision making on the 68000; the extend flag
(described later) is used for arithmetic carry. For this reason, the carry flag
is somewhat of a misnomer on the 68000.

Example:

ADD.B #$23,05

With this line of code any number greater than $DC in the low byte of
D5 will create a carry. Conceptually, the addition of a number greater than
$DC to $23 results in a number greater than or equal to $100-i.e., a 1 is
carried to the next byte. The carry is out of the byte in an ADD.B, out of the
word in an ADD.W, and out of the register (4 bytes) in an ADD.L.

The carry flag is also used by the compare instructions to signal a
carry in the subtraction done by those instructions.

X (eXtend): In the 68000 there is also a special carry flag called the
eXtend or X flag. The extend flag is always set the same way the carry flag is
set-however, sometimes the carry flag is modified in circumstances such
as MOVE and CMP when the extend flag is not modified. Since the extend
flag is only used in arithmetic operations we describe it in more detail in

52 Programming the 68000

that section. As mentioned before, in arithmetic on the 6SOOO the extend
flag is used for canying, not .the carry flag.

V (overflow): This is the hardest to understand of the flags. This occurs
when there is an arithmetic overflow. This means that you have gotten an
answer that doesn't make sense in terms of signed arithmetic or that data
is lost in a division. When you have an overflow the arithmetic result is too
large for the receiving field and therefore information is lost and the data is
misrepresented.

Example:

AOO.B #$80,00

Suppose DO is also $80. $80 is the same as decimal -128. When you
add -128 to -128 in normal arithmetic the result is - 256; in hexadecimal
when you add $80 to $80 the result is $100 which means zero with a carry
of one. Therefore, in this case the result is zero, not - 256! The overflow flag
is set to indicate that you can't represent the answer in one byte.

AOD.B #$41,00

Suppose DO holds $50. In decimal this would be like adding 65 and 80,
the result is 145. However, in this case the result is $91 which is -111! The
overflow flag is set to indicate that the answer we expected, 145, can't be
represented in one byte which can only represent values between -128
and +127.

Another way of expressing overflow is to see that in signed arithmetic
the sign comes out "wrong:' In the first example we added two negative
numbers and came out with a positive number. In the second example we
added two positive numbers and came out with a negative number. We
have overflowed the ability to represent this number within the confines of
a signed number having the same number of bytes as the two signed input
numbers.

Division operations also can result in overflow resulting in the
overflow flag being set. In this case the overflow is more straight forward,
the result of dividing a 2-byte number into a 4-byte number cannot be held
in two bytes.

With this understanding of the flags you can now go forward to
understanding how branches work.

1) BCC-Brancl:~ on Carry Clear. If the carry flag is clear, this branch is
taken. There are two places where this instruction is typically used. One is
in an addition/subtraction of many digits-the other is after a CoMPare
instruction (CMP). In a multidigit addition this instruction would be used
to skip an addition of one to the next digit representing a carry. After a CMP
instruction this branch is taken if the destination (the second operand) is

53 The 68000 Instruction Set

greater than or equal to the source (the first operand)·when both operands
are seen as unsigned numbers.

For those interested in grisly details, let's look at an example. Suppose
you subtract $20 from DO resulting in a borrow if $20 is greater than Do-a
borrow is represented by carry set in 68000 assembler. So if DO is greater
than or equal to $20, there is no borrow and the carry is clear.

CMP.B #$20,DO ;set the flags as if you had subtracted $20 from DO.
BCC LABEL1

If DO contains $20 through $FF, the BCC LABELt branch is taken and
you will be at LABELl in the code next. If DO is $0 through $1F, you will be
positioned at the next instruction after the BCC instead.

2) BCS-Brancb on Carry Set. This is the reverse of BCC; if the carry
flag is set the branch is taken. Since the carry set indicates a carry in
addition (or a borrow in subtraction) this instruction is sometimes used for
arithmetic operations. The more usual situation is that you are comparing
two operands using the compare op code (CMP) and you want the second
operand to be less than the first operand when both are viewed as
unsigned numbers.

Example:

CMP.W $1234,05

BCS LABEL1

;compare $1234 to the low-order
;(rightmost) 2 bytes of 05
;if this word in 05 is<$1234 then
;branch to LABEL 1.

3) BBQ-Branch on Equal to Zero. This instruction means branch if
the zero flag is set. However, many think of it as branch if the preceding

54 Programming the 68000

operation resulted in a zero. After a compare instruction (CMP) this means
that the result of subtracting the two numbers was zero. Hence, branch if
these two operands are equal.

CMP.L
BEQ

DO,D1
DOEQUD1

;"compare" all 4 bytes of DO and D1
;branch if DO is exactly equal to D1

LOOPDELP CMPM.B (AO)+ ,(A1)+ ;compare a byte from where AO is
;pointing to where A 1
;is pointing-bump both pointers by 1
;afterwards.

BEQ LOOPDELP ;if the bytes you just compared were the
;same, keep on trucking (branch back to
;LOOPDELP).

The above chunk of code will compare two strings and exit when they
reach a point where one is not equal to the other.

4) BNE-Branch Not Equal. This instruction means if the zero flag is
cleared, this branch is taken. When the zero flag is cleared, the result of a
prior operation was not equal to zero. 'fypically used in loops such as the
following.

LOOPY MOVE.B (A2)+,(AO)+ ;move a byte from address A2 to
;address AO
;bump both pointers after the move.

BNE LOOPY ;if the byte moved was not a zero,
;branch back to
;LOOPY (the MOVE command sets the
;zero flag).

This code is used to move a string. The string is terminated by a byte of
zero.

5) BUI-Branch on High. If the cany flag is clear and the zero flag is
clear, the branch is taken. This instruction is a compounding of branch on
cany clear and branch not equal. In other words, when both operands are
viewed as unsigned numbers, the second operand is strictly greater than
the first operand (by strictly greater again we mean that equal doesn't
count).

MOVE.W #-4,DO

LOOPER ADD.W #4,DO

;move-4 ($FFFC) to the low 2 bytes of
;register DO
;add 1 to the low 2 bytes of DO

EXIT

55 The 68000 Instruction Set

MOVE.L 1 O(AO,DO. W),5(A3,DO. W) ;move 4 bytes from location AO+ 10
;indexed by DO
;to location A3 + 5 also indexed by DO

CMP.W #40,DO ;set the flags as though you had

BHI

BRA

etc.

;subtracted $40 from DO
EXIT ;if DO > $40 then branch to EXIT in

;code
LOOPER ;if DO < = $40 gets here and then

;always branches back to LOOPER
;a label to exit the routine

In the above code BHI EXIT checks to see if the loop needs to be exited
when DO becomes strictly greater than $40. The condition codes which
determine this are set by the CMP.W which precede the BHI EXIT
instruction.

6) BLS-Branch on Less or Same. With this instruction if the carry is
set or the zero is set, this branch is taken. Put more simply, if the second
operand is less than or the same as the first operand when viewed as an
unsigned number, take the branch. This instruction is the opposite of BHI.

We could co<ie the above example better by using BLS:

CLR.W DO ;move zero to the low 2 bytes of register -
;DO

LOOPER MOVE.L 10(AO,DO.W),5(A3,DO.W) ;move 4 bytes from location AO+ 10
;indexed by DO
;to location A3 + 5 also indexed by DO

ADD.W. #4,DO ;add 4 to the low 2 bytes of DO
CMP.W #$40,DO ;set the flags as though

;you had subtracted $40 from DO
BLS LOOPER ;if DO < = $40 then

;branches back to LOOPER
EXIT etc. ;a label used when the routine exits

In this simplified routine, the BLS to LOOPER keeps taking place while
DO < = $40. When Do > $40 the branch is not taken back to LOOPER and
the routine exits by continuing to the next statement, labeled EXIT.

,.-:- '

HGT-Branch Greater Than. This instruction branches if the second
(erand is greater than the first operand, where both operands are viewed

as signed numbers. Remember that when using unsigned numbers, the 2-
byte nu~bers run from $0 to $FFFF (65535 in decimal) while in signed
numbers they run from $8000 (-32768) through $FFFF (-1) and thence

56 Programming the 68000

through $0000 (0) and then up to $7FFF (+ 32767). When using the BGT
therefore $FFFF is less than $0000 which in tum is less than $12A6. In
contrast BHI performs the same function, but for unsigned numbers.

A typical use of BGT would be to compare two numbers in a floating
point routine:

MOVE.B

MOVE.B

EXPONCMP CMP.B
BGT

EXPON1 (AS), DO

EXPON2(A5), D1

DO,D1
XPN2GRTR

;move 2 signed exponents to DO and D1,
; respectively
;each exponent takes up one byte (-128
;thru + 127)
;compare the exponents
;if exponent 2 is bigger, then branch to
;XPN2GRTR

8) BGE-Branch Greater 1han or Equal. Same as BGT but the branch
is also taken if the two values are equal.

9) BLT-Branch Less 1han. If the second operand is less than the first
operand when both are viewed as signed numbers then this branch is
taken. See BGT above.

10) BLE-Branch Less 1han or Equal. If the second operand is less
than or equal to the first operand when both are seen as unsigned
numbers, the branch is taken.

11) BMI-Branch on Minus. This branch is taken if the condition code
for negative is set. 'fypically, the condition code of negative is set by a MOVE
or a TST instruction.

TST.W DO
BMi DONEG ;go to a routine to handle negative

;numbers
;drops through to here to handle a
;positive number

12) BPL-Branch on Plus. If the number is greater than or equal to zero
when viewed as a signed number, the negative flag is cleared; this branch is
taken. The opposite of BMI. Below is an example of a function that turns a
4-byte number in DO into its absolute value:

ISPOS

TST.L
BPL
NEG.L

DO
ISPOS
DO

;see if DO contains a positive number
;continue if it is already positive
;DO is turned into its two's complement
;(made positive)
;continue, now DO contains the absolute
;value of what was there

57 The 68000 Instruction Set

The TST.L instruction tests the full four bytes of register DO and sets
the condition codes. If the negative condition code is cleared (meaning DO
is a positive number) then the BPL ISPOS branch is taken.

13) BVS-Branch if the overflow Flag is Set. If overflow has occurred
in an arithmetic operation (see the start of this section on branching
where the overflow flag is described) then take this branch.

14) BVC-Branch on overflow Clear. Branch if the overflow flag is clear.
If an overflow in an arithmetic operation has not occurred, take this
branch.

This completes the section on branching. The following table de
scribes the exact combination of condition codes under which each
branch is taken-it is included for reference only. We leave it as an exercise
for you to verify that these combinations of condition code settings really
result in the behavior you would expect.

Branch Instruction-Condition under Which Branch Is Tuken

BCC-cany clear
BCS-cany set
BEQ-zero set
BNE-zero clear
BVS-overflow set
BVC-overflow clear
B:RI-negative set
BPL---negative clear
BLS-cany set or zero set
BHI-cany clear and zero clear
BLT-negative set and overflow clear or negative clear and overflow set
BGE-negative set and overflow set or negative clear and overflow clear
HGT-negative set and overflow set and zero clear or negative clear and
overflow clear and zero clear
BLE-zero set or negative set and overflow clear or negative clear and
overflow set

Decrement and Branch (DBcc)

Tu simplify the coding of loops, the staple of computer programmers, the
decrement and branch instruction is included in 68000 assembler. This
loop works very much like a FOR-NEXT loop in BASIC, a FOR loop in Pascal
or C, or a DO loop in FORTRAN. However, unlike these loops in higher level
languages as normally used, the decrement and branch instruction starts
at a number greater than zero and keeps counting down and looping until
it either goes negative or has a certain condition met. In this way it would
be roughly similar to the following Pascal code:

58 Programming the 68000

DO : =constant;
repeat

(* assorted code *)
if not condition then
DO := DO - 1;
until (DO = $FFFF) or (condition);

The form of the instruction is:

DBcc Dn,<la~el> ;cc is any of the usual condition codes for
branching

In the above code, condition can be any of the conditions which were
described in the branch instructions. For example, DBEQ is decrement
and branch until equal, and DBLE is decrement and branch until less than
or equal. In addition there are two other conditions, False and 'frue.
Usually you don't say DBF (Decrement and Branch on False) but instead
use DBRA which is read decrement and branch. This last instruction keeps
branching until the Dn register goes to -1 ($FFFF). These instructions are
always .W or word. For this reason you can only have a loop that goes up to
32768 times around. Fortunately, this is sufficient most of the time. The
following code searches through a string until it finds a space:

CLR.W
MOVE.B

BEQ
SUBQ.W

· FINDSPAC CMP.B
DBEQ

BEQ

STRGZERO

SPCFOUND SUB.L

DO
(AO)+ ,DO

STRGZERO
#1,DO

#' ',(AO)+
DO,FINDSPAC

SPCFOUND

#1,AO

;make DO's low word equal zero
;move the first byte of string (length) to
;DO
;if length of string is zero, skip
;subtract 1 from DO so will correctly
;count and exit after processing last byte
;of string
;AO points to the next byte in the string
;keep looping until the string exhausted
;when DO = -1 or until a space is
;discovered
;if the equal flag is set a space has been
;found
;string empty, continue
;if execution of the code gets here then
;no space in string or string empty
;code to handle this case
;now AO points to the byte with the
;space
;code to handle this case

Another example which moves 13 bytes of the string pointed to by AO
to the string pointed to by Al follows:

59 The 68000 Instruction Set

MOVE.W #12,01

MOVER MOVE.B (AO)+ ,(A1)+

OBRA 01 ,MOVER

;one less than 13 since OBRA stops at
;-1, not 0
;move a byte and point at the next byte
;in source and destination strings
;keep looping until 01 is -1 (at which
;point 13 bytes moved)

Compare Instructions

We have already seen many instances of the CMP instruction in the
examples of branching in the previous section. This is because CMP and
branching go hand in hand.

CMP subtracts the source operand (the first operand) from the
destination operand (the second operand) and sets the condition codes
accordingly. The source operand can be any of the usual addressing
modes, the destination operand must be a data register; Dn. The destina
tion operand is not affected by the subtraction-in this way it is different
from the subtract operation, SUB, which does alter the destination. Here is
how each of the flags are set:

The Negative flag is set if the result is negative, otherwise it is cleared
(>=OJ.

The Zero flag is set if the result is zero and cleared ifthe result is non
zero.

The Carry flag is set if a borrow is generated and cleared if there is no
borrow generated. A borrow is generated if the first operand is greater than
the second number when both are viewed as unsigned numbers.

The Overflow flag is set if an overflow is generated and cleared if none
is generated.

The eXtend flag is not affected.
One of the most common sequences in 68000 assembler is the

following:

CMP.B #'+',(AO)
BNE NOTAPLUS

;compare to see if a byte is a plus symbol
;branch if it is not a plus

After a CMP, Branch Not Equal (BNE) is taken if the source and
destination are different. Actually, the instruction generated above would
be a CMPI or CoMPare Immediate. CMPI is used if the source operand is
qnmediate data (signified by a'#' symbol) and the destination operand is
any of the normal addressing modes. CMPA is another compare instruc
tion used when the destination operand is an address register rather than
a data register; but it is otherwise similar to the CMP instruction. CMPA
cannot be used when you want to compare a byte-CMPA.B is an illegal
instruction. Fortunately, 68000 assemblers automatically change a CMP

60 Programming the 68000

into a CMPI or CMPA when these are appropriate so just type CMP in these
cases. The condition codes are set the same by these three CMP
instructions.

There is one more compare instruction, CMPM. CMPM stands for
CoMPare Memory. The form of CMPM is:

CMPM (An)+ ,(Am)+

It can operate on bytes, words, or long words. This compare instruc
tion is used to compare two long series of bytes; it is often used with a
DBcc instruction.

For example, to compare two strings to find whether they are equal
the following subroutine could be used:

;the strings are pointed to by A2 and A4,
;each string has a length byte at the
;start of the string

STRGCMPR CLR.W DO ;set the low order word of DO to zero
MOVE.B (A2)+ ,DO ;move the length byte of the first string

;to DO
;and move A2 to point to the first string
;byte

CMP.B (A4)+,DO ;compare the lengths of the two strings
;and move A4 to point to the first string
;byte

BNE EXIT ;if lengths different, exit with zero flag
;cleared

BRA COMPSTR2 ;let DBNE subtract 1 at start to turn
;length to index
;if lengths are both zero, then strings
;are equal

COMPSTRG CMPM.B (A2)+,(A4)+ ;compare the two strings pointed to by
;A2 and A4

COMPSTR2 DBNE DO,COMPSTRG ;keep branching until a point of
;difference found
;or either string is exhausted.
;if strings same, then zero flag set upon
;coming here,
;if strings different, DBNE stopped
;looping when Not Equal (zero flag clear)

EXIT RTS ;exit with the zero flag indicating
;same/different

Upon return from this subroutine the zero flag could be checked; if it
is set the two string were equal, if cleared the two strings were unequal.

61 The 68000 Instruction Set

Assuming the lengths are equal, the point of difference between the two
strings is one byte back of where A2 and A4 are pointing into their
respective strings.

You might carefully study the above routine before going on. This is a
complete function using as building blocks the various statements we have
been describing such as CMP, MOVE, Bee, and DBee. String compare
routines are very common in assembly language programming.

Effective Address (LEA, PEA)

In the chapter on addressing modes we saw many examples of LEA, Load
Effective Address, and PEA, Push Effective Address. We also learned how to
calculate the effective address. The form of LEA is:

LEA <ea>,An

where <ea> is any of the following types of addressing modes:

(An), d(An), d(An,Dn or An), Abs, d(PC), d(PC,Dn or An)

Notice that these are the modes of addressing that point to specific
places in memory, oftentimes indirectly. The place that these addressing
modes point to is loaded into the destination operand An, an address
register. The LEA and PEA only deal with long words since addresses are
all 4 bytes.

The LEA instruction makes it very easy for the programmer to get an
address. You address the location in which you are interested and then say
"get me the address, machine!". Since so much of the programming in
68000 assembler is with data that is being relocated, these LEA and PEA
instructions allow you to pin down where the data actually is located in
physical memory.

If you want to get tricky, the LEA instruction can be used as a quick
way to add together the values in an address register, a data register, and a
constant using one instruction. This is sometimes the most straightfor
ward way to do such an addition. As an example LEA -1(A3,D2),AO would

. add the contents of A3 to the contents of DZ and then add -1 (our
constant displacement) with the result going into AO.

Assembly language doesn't have subscripts and arrays like higher level
languages. Instead you can use the indexed indirect with displacement
addressing mode to form 2-dimensional arrays. You could then find the
location of a particular element in the array by using the LEA instruction.

Suppose you have an array with 2-byte integers, 10 rows by 20
columns, and you want to find the value at (3,7). Let's say AO points to the
start of the array. The following code will find the location of (3,7) and then
subtract 1 from this element using the LEA address. (Notice the use of a
multiplication opcode, MULU, that multiplies unsigned numbers.)

length

FIND3.7

62 Programming the 68000

AD=(3-1)=2[ADDRESS Of (0,0) IS 00005f4A

2X20=40

, 2 3 4 5 6 7 8 g , 0 1 , , 2 , 3 , 4 , 5 16 17 18 1 g 20

0 1 2 3 4 5 6 7 8 g 10 11 12 13 14 15 16 17

2

3
Address

5F78

10

20 21 22 23 24 25 -
40 41 42 43 44 45 46

l£.

01 = 6

index = 2 • 20 + 6 = 46 == 2E
+ address in AO - 5F4A

5F78

So LEA D(A0.01).Al

- -

is 5F4A + 2E or 5F78 which is placed in Al
so A 1 has the address of the (3, 7) element
of the array pointed to by AO.

- - - - - - - -

Figure 3-2 Picture of Effective Address CalculatioR _
for Element (3,7) in an Array

EQU 20

-
18

-

MOVE.L #2,DO
MOVE.L #6,D1
MOVE.L #length, D2
MULU DO,D2

;DO and D1 contain the x and y coordinates (each -1)

;move the length of a row to D2
;now D2 has the offset of the start of row 3

19

31

;MULU means MULtiply Unsigned (D2 is multiplied by DO
;and the result placed in D2)

ADD.L D1 ,D2
LEA O(AO,D2),A1
SUB.W #1,(A1)

;now D2 has the offset of the start of element (3, 7)
;now A1 has the address of this element
;subtract 1 from this element

63 The 68000 Instruction Set

The PEA, or Push Effective Address instruction, is used most fre
quently to pass the location of structures to subroutines via the users'
stack. The address of an array could be passed on the stack using a PEA, as
an example. When you are using the Macintosh ROM routines they require
the address of the variables to be passed on the stack. Here is an example
of a call to the floating point package using PEA (the floating point package
processes decimal numbers and has square root, exponents, etc. These are
just like the functions on a pocket calculator.):

PEA EXTFLOAT(A5)
FSQRTX

Now lets look at each of these two lines in detail:

PEA EXTFLOAT(A5)

Here EXTFLOAT is an extended floating point number after the PEA
instruction, A7 is 4 less-now A7 points to the address of EXTFLOAT(A5)
which has been pushed on the stack.

FSQRTX

This is a macro. A macro gets turned by the assembler into many lines
of code (in this case three lines). FSQRTX expects the 4-byte address of an
extended number to be on the stack-the address points to a 10-byte long
extended precision floating point number..\tVhen the routine has done its
work, the square root of what was originally in EXTFLOAT(A5) is now placed
there.

PEA is functionally equivalent to the following:

LEA EXTFLOAT(AS)>AO ;load the effective address of EXTFLOAT off AS into AO
MOVE.L AO,-(A7) ;and push all 4 bytes of AO on the stack

Of course, in the above code, AO is destroyed by this maneuver. Also
twice as many lines of code are used.

'Ibe Remaining Data Movement Operations

\l\.e have already looked at the MOVE, MOVEM, MOVEQ, LEA and PEA
instructions. Some less frequently used, but still useful instructions, are
the EXG, SWAP, LINK, and UNLK instructions.

BXG Instruction
The EXG instruction can be used to exchange the data in two registers-all
4 bytes are alw.ws exchanged. The two registers can be either both data
registers, both address registers, or a data and an address register. In the
third case, where there is an exchange of information between a data and
an address register, the data register must be in the source operand (the

64 Programming the 68000

first operand) and the address register must be in the destination operand
(the second operand). Let's look at an example of each of the three kinds of
exchanges.

In this example data in data registers are exchanged:

MOVE.L #1234,DO
MOVE.L #5678,D1
EXG DO, D1 ;notice that EXG D1 ,DO would have the same effect

;now DO contains 5678 and D1 contains 1234

In this example data in the address registers are exchanged:

LABEL1 DC.W $12D3
LABEL2 DC. W $A5F8

LEA LABEL 1,A4
LEA LABEL2,A3
EXG A3,A4

;now A3 points to LABEL1 and A4 points to LABEL2

Finally, in this example the contents of a data register and an address
register are exchanged:

EXG DO,A4 ;remember, EXG A4,DO would be illegal

'fypically, you use EXG when you want to operate on a value in a
particular register in a mode that is illegal for that register (for example,
operate·on the last byte of an address). You exchange the register with
another register that allows you to correctly perform the operation you
desire and then exchange the data b(ick into the original register.

Another, more general, reason to use EXG is if a subroutine or function
requires a particular register to have data in it when the data, at that time,
is in a different register. You would use EXG before and after calling the
function.

In the following example DATACHG uses data in DO and changes it
however, the data you want to operate upon is in D3. You also know that
DATACHG does not effect register D3.

EXG DO,D3 ;put the data in D3 into DO, and vice

JSR DATACHG
EXG DO,D3

SWAP Instruction

;versa
;the data that was in D3 is now changed
;reverse the data back
;(now D3 has been changed and DO is
;the same as before)

The SWAP instruction operates only on a data register. The high two bytes
of the register are exchanged with the low two bytes of the register.

60 The 68000 Instruction Set

Example:

MOVE.L #$12A59D4C,DO
SWAP DO

;DO has $12A59D4C in it
;now DO has $9D4C12A5 in it

fypically, you use the SWAP instruction when you are dealing with
two 2-byte words-often, two integers. You SWAP, manipulate the first
integer (which was in the high two bytes), SWAP, and manipulate the
second of the two integers (which was in the low two bytes).

LINK and UNLK

These two instructions go together. If you know a structured language, like
Pascal, PUI, or C, you will find it easier to understand what the LINK and
UNLK instructions do. LINK and UNLK (UNLinK) allow you to set up
variables for a subroutine (called a PROCEDURE in Pascal) on the stack and
then to throw them away when the subroutine is finished.

LINK sets up the variables, and UNLK throws them away, undoing the
work that LI~ has done. The forin of LINK is:

LINJ.(7fu,#<displacement> where <displacement> is a constant
number of bytes (invariably negative, for reasons we will describe later).

You use LINK to set aside space on the stack for local variables. For
example, here's a line of code that sets aside 20 bytes on the stack:

LINK A3,#-20 ;set aside 20 bytes on the stack

A local variable is one that is only used inside the subroutine; nothing
outside the subroutine needs know about it. In general, LINK is used for
scratch space on the stack that is used by a subroutine.

\Vhen a LINK is perform~d, three things are done:

1. The original contents of the register you name are pushed on the stack.
In other words, the original contents are saved there so that they can be
restored when you leave the subroutine.

2. The stack pointer (which is now pointing to the contents of the register·
you just pushed) is put into the register you named. Thus you can use
the register to address your new data space. Notice that you will have to
use negative displacements to address your data since it is aITayed
below where your register is pointing.

3. The displacement you specify is added to the stack pointer. Since the
stack goes downward, you want to add a negative number so that space
is created on the stack.

The UNLK instruction undoes what the LINK instruction does:

1. It restores the stack pointer from the register you name. Now the stack
pointer has undone the displacement you added to it and is pointing at
the old value of the register.

66 Programming the 68000

2. It pops the old value of the register you name off the stack. Now the
stack pointer is pointing at the place it was prior to the LINK.

The form of UNLK is:

UNLK An

For example, UNLK A3 restores the original stack pointer and value of
A3 that was changed using the LINK A3, # - 20 instruction above.

LONGVAR OS -6

SHORTYAR OS -2

BIGRTN JSR ARTN

RET ATS

ARTN LINK A5.#-6

•.. assorted code using

longvar(AS). shortvar(A5)

UNLK A5

ATS

Stack after JSR ARTN

Ill RET .. ~~--iJ A7 J

UNLK A5 Aotlon Stack after LINK A5,#-6 .--------------------..
When an UNLK is performed

AS is moved to A7. the stack pointer.
so It is pointing to "old AS" on the stack

then "old AS" is restored to AS and
ET the stack pointer is bumped 4 to point to Ill R

(In code: MOVE.L A5.A7; MOVE.L (A7)+.A5)

oldA7---

A5
-2(A5)

-6(A5}

A5 I 111 RET

old AS
~

shortvar

longvar

Figure 3-3 LINK/UNLK Code

~ J.A7 before LINK] ~

~
1-6

• newA7 J

67 The 68000 Instruction Set

Now the register is back to where it was before you entered the
subroutine and the stack pointer is also restored.

Let's look at some sample code to see the LINK and UNLK instructions
in action. This is a subroutine that concatenates STRINGl to the end of
STRING2, and places the result in STRING2. It assumes that the length of
the strings are !!!.Jhe first byte and that neiffier string is longer than 80
bytes (and the total is < = 80 bytes).

CONCATEN PEA STRING1 (A5) ;push the address of a string on the
;stack

STRG1
STRG2
TOT LEN
ERRCODE

CON CAT

PEA STRING2(A5)

JSR CONCAT

RTS

EQU 8
EQU 4
EQU -2
EQU -4

MOVE.L A7,A2

LINK A6,#-4
MOVE.L STRG1(A2),AO
MOVE.L. STRG2(A2),A1
CLR. W TOTLEN(A6)

MOVE.B (AO),TOTLEN(A6)

MOVE.B (A1), DO
ADD.B DO,TOTLEN(A6)

BCS ERROR

CMP.B #80,TOTLEN(A6)

;push the address of another string on
;the stack
;jump to a subroutine to concatenate the
;two strings
;now the concatenated string is in
;STRING2(A5), zero flag clear if error,
;set if OK
;return to the higher level routine
;subroutine CONCAT that concatenates the
;two strings
;assumes the addresses of the strings
;are on the stack
;destroys registers AO-A2
;relative location of string1 above A2
;relative location of string2 above A2
;length of the concatenated string
;error if concatenated length > 80 is
;-1, else O
;save the location of the addresses of the
;strings
;reserve 4 bytes on the stack
;get the address of string1 into AO
;get the address of string2 into A1
;zero out the total length variable on the
;stack
;move the length of string1 to the total
;length
;ADD requires a data register
;and add the length of string2 to the
;total length
;if overflowed 255 ($FF) then obviously
;> 80
;compare total length to 80

ERROR

NOERR

68 Programming the 68000

BHI ERROR

JSR ADDSTRG
MOVE.W #O,ERRCODE(A6)

MOVE.B TOTLEN(A6),A1
BRA NOERR

;if > 80 then error
;here a routine, ADDSTRG, assuming that
;strings have been pointed to by AO,A1,
;concatenates them.

;if execution gets here,
;the lengths were ok so no error

MOVE.W #-1,ERRCODE(A6) ;if execution gets here,

TST.W
ERRCODE(A6)
UNLK A6
RTS

;the lengths added to more than 80

;sets the zero flag based on error
;restore A6, stack

ADDSTRG CLR.W DO
;and return from subroutine
;ADDSTRG subroutine

@10
@20

MOVEM.L DO/A1/A2 .. -(A?)
MOVE.B (A1)+ ,DO
LEA O(A1 ,DO),A1
MOVE.B (AO)+ ,DO
BRA @20
MOVE.B (AO)+ ,(A1)+
DBRA D0,@10
MOVEM.L {A?)+ ,DO/A1/A2
RTS

You don't have to understand everything that is happening in the
above routine. Notice, however, how the LINK and UNLK statements work,
how space for TOTLEN and ERRCODE is created on the stack, how
TOTLEN and ERRCODE are addressed, and how UNLK clears the space
created for these two variables off the stack.

By using A6 (or some other address register) as your LINK variable you
could create a whole series of subroutines which call other subroutines.
All the subroutines would use the same address register to access their
temporary variables. Each time you entered a subroutine the address
register would be used to point to your temporary variables, each time you
retumed1the address register would be restored as it was before calling the
subroutines. Meanwhile, each time you entered a subroutine, another
layer of variables would be put onto the stack and each time you exited this
layer would be removed from the stack. If you were three layers deep in
subroutines you would have three layers of variables on the stack.

LINK and UNLK are very careful instructions if you want to avoid
permanently setting aside space for variables that are only used for
temporary results in a subroutine. However, if you needed to look at those
variables in either a higher or even a lower subroutine, you would not use

69 The 68000 Instruction Set

this method of creating space for variables. You would have to pass the
address of variables in the higher subroutine to lower subroutines if they
wanted to use those variables, either through PEA on the stack or through
a global variable set aside for the purpose. You could never use the
variables set aside by LINK in a higher level routine since the stack space is
freed by the UNLK command and could be clobbered at any time by an
interrupt (for example). By using offsets, which are unstable with any
change in code, you can access the LINK variables in a higher routine;
although you may see this in code generated by a compiler, you should not
do this in your own assembler code.

; Mainline
LKl .VARl equ -4 ;longlnt on stack Snapshot of Stack after LINK A5,#LK2.VAR2

LKl .VAR2 equ -8 ;longlnt on stack

MAINLINE

LINK A5,#LK1.VAR2 ---i_
JSR SU8RTN

RET1 UNLK A5

RTS
; SubRtn
; sub routines variables

LK2.VAR1 equ -2 ;Integer on stack
LK2.VAR2 equ -4 ;Integer an stack

SUBRTN
LINK A5,#LK2.VAR2

,.,.,.,,.ted co<le that uses tha
;temporary variables LK2.VAR

AET2 UNLK A5
ATS

A5-

A7-

old A5 #1

LK1.VAR1

LK1.VAR2

lllRET1

old A5 #2

LK2.VAR1

LK2.VAR2

mot 11gyenqe hr ""

~mfmnml

oldA7 1 -A5

1-8 (for variables)

(this now points to
- oldA5#1)

! oldA7 2 - A5

-4 (flll" variables)

Stage 1 thru stage 4 of UNLK proom are Illustrated below:

When the UNLK at RET2 is performed. A7 (the stack pointer) Is restored
to what Is In A5. stage 1. (so It Is now pointing to the second "old A5")

which Is then popp<d off the stack and placed In A5. stage 2. Now A5 holds
the old A7 just after pushing the first "old A5" on the stack. Then
the ATS after AET2 Is performed and the address of AET1 (lllAET1)

Is pulled off the stack and the program counter set there.
The stack pointer (A7) is then replaced from Pi!J so it is now Pointing to the

first old A5 on the stack. stage 3. Finally, the lll"iglnal "old A5" Is pulled off the
stack and the pristine quality of the stack and A5 on entry to MAINLINE

stage 1

old A5 #1

LK1.VAR1

LK1.VAR2

lllAETl

oldA5 #2

Is restored. stage 4.

stage 2

A5 - oldA5#1

LK1.VAR1

LK1.VAR2

lllAET1 A7 _.__ _ __.

A7 ----+ AS now contains •old AS #2•

A7 now contains what was In A5 w!\lch pointl to •otd AS #1*

stage 3

,,JJ
stage 4

,,~D
A5 contains "old A5 # 1 •

Figure 3-4 Nested LINK/UNLK

70 Programming the 68000

The Rest of the Program Control Operations

ALABEL ...
RTS

Program control instructions allow you to change your location within
the program. In assembler, this means that they change the program
counter so it points to a place other than the next instruction. We have
already seen niany of these instructions. The branch instructions, Bee and
BRA, are program control instructions-so is DBcc. We have already seen
JSR and RTS many times. The remaining instructions are Sec, Set byte
Conditionally, BSR, Branch SubRoutine, JMP, JuMP, and RTR, ReTum and
Restore condition codes.

Let's take a closer look at the JSR-RTS pair. If you GOSUB a subroutine
and RETURN in BASIC or call a Procedure in Pascal, you magically return
to the next statement after the GOSUB or the Procedure. You have to
understand how a subroutine works before you can properly do assembler
programs.

The JSR instruction pushes the program counter of the instruction
following itself onto the stack. Then it resets the program counter to the
address in the operand. Usually, this address is a program label. When you
have a whole series of subroutines you want to access, you may use a form
of indirect addressing.

The form most often used is:

;a label somewhere in the code
;if called here from the JSR below, the address on the stack is pulled
;and placed into the program counter.

JSR ALABEL
NEXTPLAC ...

;the address of NEXTPLAC is pushed onto the stack

Here is another common form for a series of subroutines, which
operates like a CASE statement in a block structured language. In this
example, if you call CASE with DO holding the number of the subroutine
you want it selects the subroutine and executes it:

CASE1 LEA TABLE,AO ;get address of TABLE into AO
MULU #4,DO ;DO now holds number of subroutine times 4 (a JMP is 4 bytes)
JSR -4(AO,DO) ;jump to one of three subroutines based on DO (D0=1,2, or 3)

;the above code jumps to the code at TABLE+4*D0-4
;(ie TABLE if 1, TABLE+ 4 if 2, etc)

RTS
SUB1 (subroutine code for SUB1)

RTS
SUB2 (subroutine code for SUB2)

RTS

71 The 68000 Instruction Set

SUB3 (subroutine code for SUB3)
RTS

TABLE JMP SUB1
JMP SUB2
JMP SUB3

; a "jump table"
;comes here if DO holds 1
;comes here if DO holds 2
;comes here if DO holds 3

An example of how to code a three way branch using a more complex
JSR is illustrated above. You calculate the position of the jump to the
appropriate subroutine, then JSR to the location of the jump. The jump
goes to the appropriate subroutine and executes it. That subroutine
returns to the RTS which ends the CASE subroutine. There are more
elegant ways of coding this using PC relative mode which are covered in
Chapter 4, sample Programs.

An RTS, ReTurn from Subroutine, pops the address off the stack and
places it into the program counter. If you have data passed on the stack
that you want to pull off, you would pull off the return address using the
MOVE instruction instead of using an RTS so you could pull the data off
the stack while in the subroutine.

You will see the following code in 68000 assembler fairly often:

JSR MYRTN

MYRTN MOVE.L (A7)+ ,AO ;pull return address off stack
MOVE.L (A7)+ ,D1 ;pull some data off the stack which was below the return addr.

JMP (AO) ;jump to return address (acts like an RTS)

An understanding of the stack is crucial to understanding 68000
assembler (or any assembler for that matter). Let's draw pictures of the
stack when the following code is executed:

In the following code, we've numbered the lines to make references to
them easier.

0 JSR HIGHRTN
1 AFTHIGH ...

2 HIGHRTN MOVE.L DO,A1 ;busy work
3 JSR LOWRTN ;call a sub-subroutine
4 AFTLOW MOVE.L D1 ,A2 ;busy work
5 RTS ;return from higher level subroutine
6 LOWRTN MOVE.L A0,02 ;busy work
7 RTS ;return from lower level routine

Let us step through the program above and take "snapshots" of the
stack at each point. In line 1 above the address after JSR HIGHRTN (@

7.2 Programming the 68000

means "address of') is pushed onto the stack. The stack now looks like this
with the address of AFTHIGH on the stack:

stack after I ine O executed stack after line 3 executed

A7+4 A7+8
IPAFTHIGH l!PAFTHIGH

A7 A7+0 A7+4
l!PAFTLOW

A7-.,.•• A7+0
Figure 3-5 The Effect of the Above Code on Stack

In line 3 the address after JSR LOWRTN is pushed on the stack; the
stack has the address of AFTLOW highest on the stack and the address of
AFTHIGH next on the stack.

In line 7 the address of AFTLOW is pulled off the stack and placed in
the program counter-the stack looks the same as after line 1 had just
been executed. In line 5 the address of AFTHIGH is pulled off the stack and
placed in the program counter.

Go over the above sequence of code and stack diagrams until you
really understand how a subroutine works. It is very important. As an
exercise, try diagramming a subroutine that in tum calls two other
subroutines in sequence; then try a three level deep subroutine call. When
you have one subroutine inside another they are called "nested"
subroutines.

What is the difference between branch and jump? Branch takes your
current address and adds an amount (which may be negative) to find your
new address. If the code is placed anywhere in memory, a branch will still
work. A branch is relative to where the program counter is pointing. A
jump, by contrast, goes to a specific address in memory. If the code is
moved somewhere else in memory the jump will no longer go to the right
place, it will go where the address was when the code was created, not
where it is now. A jump refers to a specific location in memory.

73 The 68000 Instruction Set

In the same way that a jump, JMP, is related to a branch, BRA, a jump
subroutine, JSR, is related to a branch subroutine, BSR. JSR will only work
on absolute addresses, BSR will work on relative addresses. The return
address pushed on the stack is the same, so RTS is used for both.

In general, you use BSR to use a subroutine within the same segment
of code and use JSR to access a subroutine in a fixed location. On the
Macintosh you would only use JSR on a computed address. In general,
since code can be relocated at any instant on a Macintosh, you should use
BRA and BSR rather than JMP and JSR.

code relocated

:--, , , , ,
' ' -- '

~THERE .
' ' ' ' ' ' .

JMPT HERE~
.
' ,,.,,,,,",.'''''

' . .
' ,,,,,,,,,,~

THERE
...

JMP THERE

When originally coded, THERE was a certain location. Unfortunately,
the code has since been relocated by the Macintosh memory manager
so there is no THERE there! (Instead you code with relative interseg
ment branches or JMPs through the memory manager jump table.)

Figure 3·6 Why You Can't Have Absolute JuMPs in Macintosh Code

Let's complete the program control instructions by looking into RTR
and Sec. An RTR first pulls the condition codes off the stack, then does a
normal RTS. So an RTR is an RTS plus. You, the programmer, must push the
condition codes on the stack so they are there when the RTR expects them
to be. To do this you use the following code:

MOVE SR, - (A7)

which moves a word of data from the status register to the stack. This is
usually done immediately upon entering the subroutine. Note that the RTR
only restores the condition codes which are 5 bits of the status register,
however, the whole word. of the status register is pulled from the stack.

A subroutine that uses the following:

MYSUB MOVE SR, - (A7)

RTR

7 4 Programming the 68000

returns with the exact same condition codes that you had before calling
the subroutine.

'fypically the code that uses this type of subroutine would look like
this:

CLR.W AVALUE(A5) ;set AVALUE(A5) to zero
AVA TST. W AVALUE(A5)
BSR MYSUB

;see if AVALUE(A5) is zero (sets zero flag in condition codes)
;branch to above subroutine which preserves condition codes
;branch to AVA and loop until AVALUE is not zero BEQ AVA

In the above example, it is assumed that AVALUE(A5) is used as a flag
and set non-zero by MYSUB when it is one cycle away from completing.
Usually you do not need the condition codes to be the same as when the
subroutine was entered, so you can use RTS to save time and space.

Finally, let's look at the Sec instruction. This instruction sets a byte to
all binary ones if the condition is true ($FF) or all zeros if the condition is
false ($00). You can think of this instruction as the set-a-flag-based-on-a
condition instruction.

For example, the following code:

TST.B MARRIED(AS)
SEQ FLAG(A5)

sets FLAG(A5) to $FF if MARRIED(A5) is zero and FLAG(A5) to zero if
MARRIED(A5) is not zero.

The equivalent code in Pascal would be:

if married = 0 then flag : = true else flag false;

or in BASIC:

10 IF MARRIED = 0 THEN FLAG = 1 ELSE FLAG = 0

where 1 signifies true and O signifies false. The Sec instruction assumes
you adopt a convention of $FF is true and $00 is false inside a byte.

Arithmetic Operations in the 68000

You can do both binary and decimal arithmetic using the 68000 chip.
Binary arithmetic is limited to byte, word, or long arithmetic (in other
words very short, short or long integers). Unlike the binary arithmetic, the
decimal arithmetic is limited to a single byte at a time. Each byte of the
decimal arithmetic operand contains two decimal digits. In decimal mode
therefore you can add two digits at a time with carry. As with all arithmetic
operations, the carry is contained in both the extend bit flag and the carry
bit flag when it is generated.

If you want floating point calculations (like a calculator with decimal
point and exponent) you will have to use Apple's Standard Apple Numeric

75 The 68000 Instruction Set

Environment, whose acronym is SANE. SANE is a package of subroutines
that perform all the functions of a calculator, some functions include: the
ability to operate on 4-byte, 8-byte, and 10-byte floating point numbers;
addition, subtraction, multiplication, division, square root, exponentiation,
and trigonometric functions. How to use SANE is described in Chapter 10,
Advanced Subroutines Not in SimpleCalc.

The Extend Flag
The extend bit is a flag in the condition codes. When it is set it is always the
same as the carry flag since the carry flag is always set at the same time.
Sometimes the carry flag is set and the extend flag is not, however. For
example, when you do a compare (CMP) the extend flag is not set. The
extend flag is set by add, subtract, negate, and some shift instructions.

The extend bit is set by a carry in an add instruction or a borrow in a
subtract instruction-the same as the carry flag. Many other processors
have only a carry flag and no extend flag. This results in the carry being
disrupted by a comparison or MOVE type instruction. Oftentimes you
want to do MOVEs in between additions or subtractions, especially when
you add one long number to another and place the result in a third
location. Sometimes you want to do a CMP and branch to end the loop by
doing an add. Because the carry information is also in a separate extend bit
you can MOVE or CMP in the middle of a multi-byte add or subtract
without having it disrupt the arithmetic operation when the MOVE or
CMP overlays the carry bit.

Addition
There are a series of additions which one can perform: ADD, or ADD
binary, ADDI, ADD Immediate, ADDQ for ADD Quick, ADDA for ADD
Address, ADDX for ADD extended, ABCD for add decimal with extend
(mnemonically, Add Binary Coded Decimal). Although, each is appropriate
in certain circumstances, all add the source to the destination and place
the result in the destination.

ADD, ADDI, and ADDQ are the most commonly used addition
instructions. ADD adds two numbers together. The numbers can be a byte
long, a word long (2 bytes), or long word (4 bytes). Both the carry bit and the
extend bit are set when there is a carry out of the addition. Either the
source or the destination operand must be a data register. The source
operand can be any of the addressing modes if the destination is a data
register. The destination operand cannot be an address, PC relative, or
immediate if the source is an address register.

Here are two examples of ADD instructions that use word and byte
sizes and various addressing modes:

ADD.W myvalue(A3,DO),D4
ADD.B (AO)+ ,02

76 Programming the 68000

ADDI is used when you have immediate data in the source to add to
the appropriate addressing mode in the destination. Only addressing
modes which reference data that can be changed are allowed in the
destination. Hence immediate, both PC relative modes, and address mode
(see ADDA) are not allowed.

Examples:

AOO.B #$2E,(AO)+
AOOl.L #$A327E9A4,02

ADDQ can be viewed as a special hi-speed form of ADDI. ADDQ can
have address mode, An, as a destination also, but only word and long
length. If address mode is the destination, the conditio.n codes are not
affected-specifically there is no cany or zero flag set. If you remember,
MOVEQ can be any value that can fit in one byte-0 to 255 ($00 - $FF)-but
ADDQ can only be used for values between 1 and 8. ADDQ is usually used
as an increment instruction.

Examples:

AOOQ.L #1,01 ;increment 01
AOOQ.B #2,(A3)+ ;add 2 to the byte A3 points to, then add 1 to A3

ADDA is just like ADD only the destination is an address register.
However, as with all 68000 instructions that have address registers as
destinations the only lengths allowed are word and long and the condition
codes are not affected. Invariably, you will want the long length but the
default is word. This can create a very subtle bug in your code which will
only appear when you cross a 32K boundary! So don't forget to put ADDAL
when you are using this instruction. All assemblers tum ADD to ADDA if
the destination is an address register.

Example:

AOOA.L #12,A3 ;add 12 to address register 3

ADDX means add extended. This adds the source. to the destination,
just like ADD, but then also adds 1 if the extend flag is set, and puts the
result into the destination. In other words, ADDX is used to add up
numbers that are larger than 4 bytes long by adding up a 1-, 2-, or 4-byte
"chunk" at a time and canying the result into the next "chunk". This is just
like adding a pair of multi-digit numbers together in normal decimal with
cany.

Here is a sample program to add two 8-byte long numbers together.
The numbers are in memory. The first number is pointed to by AO, the
second number is pointed to by Al, the result is to go where A2 points. The
fourth line illustrates ADDX.

MOVE.L (A1),(A2)+
MOVE.L 4(A1),(A2)+

77 The 68000 Instruction Set

#4,AO
(AO),DO
DO, - (A2)

ADDQ.L
MOVE.L
ADD.L
ADDX.L - (AO), - (A2) ;add the second 4 bytes (with carry if it exists)

The last type of add involves binary coded decimal. Here, ABCD ,is not
just the first four letters of the alphabet but it also stands for Add Binary
Coded Decimal. Before describing this instruction we will take a detour
and describe binary coded decimal.

Binary Coded Decimal
Binary coded decimal means that each decimal number is placed into
hexadecimal one nybble at a time-hence there are two decimal numbers
in each byte since there are two nybbles in each byte. In other words, you
can read the. decimal-Illlllllmrs~Q!_.f~..!!!Jl-~adecimaJ .prjn!_ out of
memory. For example, 1234 in j.ecimal becomes 12 in the firyt b)l!e and 34
in.a.sec.ondhyte.of-hexadec1mal. Tlie number 789 becdilrnsl)7 in one byte
and 89 in the succeeding byte.

In normal binary addition carry occurs when you exceed 255 or $FF.
In BCD the carry occurs when you exceed 99!

For example:

73 + 82 = 55 with a carry in BCD.

The add opcode, ABCD only works on one byte at a time. All three
numbers in the above addition each fit in one byte. If you wanted to add
two 10-digit numbers (each taking up 5 bytes) you would do it this way:

137 4025609 or
- + 2193517832

3567543441

13 74 02 56 09
21 93 51 78 32
34+C 67 53+C 34 41

where + C means add the carry generated from the preceding pair of
digits.

Getting back to the ABCD instruction, we note that there are two
forms the operands can take:

ABCD Dn,Dm
ABCD - (An), - (Am)

For example:

ABCD DO,D2
ABCD -(A3),-(A1)

You can add a byte of BCD in the rightmost byte of Dn to the rightmost
byte of Dm with the result winding up in the rightmost byte of Dm. If the
result exceeds 99 a carry and an extend bit is generated.

78 Programming the 68000

The zero flag in ABCD is not set if the result is zero (however, it is
cleared if the result is non-zero). If you are interested in knowing whether
the result of a multi-byte decimal addition is zero, the zero flag must be set
before starting. That way if any pair of digits is non-zero they will clear this
flag and if no pair of digits clear it then the whole multi-digit number must
be zero.

Now let's code something that will perform the 10-digit add that you
saw above. This code has the first 10-digit number pointed to by AO, the
second by Al; the result overlays the second operand.

TENDGADD ADDQ.L #5,AO
ADDQ.L #5,A1
MOVEQ.W #4,DO
MOVE #$04,CCR

TENDLOOP ABCD -(AO),-(A1)
DBRA DO,TENDLOOP
RTS

;point at the last byte + 1 of the source 10-digit number
;point at the last byte + 1 of the destination 10-digit number
;use DO to count in the DBRA below (5 times through loop)
;clear the carry and extend flags, set the zero flag
;add a BCD byte from where AO points to where A 1 points
;decrement DO and branch until DO is -1 ($FFFF)
;return from subroutine, AO & A1 now point to start of
;respective numbers; the zero flag reflects a zero result.

TENDLOOP starts with AO and Al pointing to the last byte plus one of
the decimal numbers to be added. Then the ABCD instruction subtracts
one from AO and A1 and does a decimal add of the bytes to which it is now
pointing with the result replacing the latter byte.

Subtraction
The SUB, or SUBtract binary; SUBI SUBtract Immediate, SUBQ, SUBtract
Quick, SUBA, SUBtract Address, SUBX, SUBtract eXtended, and SBCD,
SUBtract decimal with extend instructions (Subtract Binary Coded Deci
mal) handles the operands exactly like the equivalent add instructions.
The carry and extend flags are set whenever a borrow is necessary just as
they are set in add when a carry is generated.

Multiplication
There are two forms of multiply: MULS, Signed MULtiply, and MULU, or
Unsigned MULtiply. In both cases the source operand can be anything
except an address register, the destination must be a data register.

Forms: MULS source,Dn
MULU source,Dn

These two instructions take the low 2 bytes of the source and multiply
them by the low 2 bytes of the destination data register and put the 4-byte
result into the destination data register. The high 2 bytes of the destination
data register are ignored.

The MULS, multiply signed, instruction treats the two mutipliers as
signed numbers and comes out with a signed result. The MULU treats the

79 The 68000 Instruction Set

two multipliers and the result as unsigned. Therefore if both multipliers
are between 0 and 32767 ($7FFF) the result is the same when using either
MULS or MULU.

If DO holds - 2 ($FFFE) and D1 holds 10 ($000A) then the results of the
following instructions are:

MULS 00,01
MULU 00,01

Division

;after this 01 holds $FFFFFFEC (- 20)
;after this 01 holds $0009FFEC (655340)
;or 10 ($000A) times 65534 ($FFFE)

The division instructions are similar to the multiplication instructions.
There are two forms just like multiply: DNS, divide signed; DNU, divide
unsigned.

Both divide the 4-byte destination data register contents by the low 2
bytes of the source operand. The 2-byte quotient goes into the low 2 bytes
of the destination register and a 2-byte remainder goes into the high 2
bytes of the destination data register. The sign of the remainder is the same
as the dividend (unless the remainder is zero, obviously).

Division by zero causes a trap: on the Macintosh this results in a bomb
screen with ID = 04. The ID number in the lower righthand comer of the
bomb screen indicates what sort of fatal error; 04 means division by zero.

Overflow means that the quotient can't contain the result. A signed
divide (DNS DO,Dl) with DO containing $7FFF (32767), D1 containing
$3FFFFFFF (1073741823), for example, should result in a quotient of $8001
(32769). Unfortunately, you can't have any positive number larger than
32767 as a signed number within a 2-byte result. Thus the quotient in $8001
results in an overflow and the overflow flag is set. An overflow with signed
or unsigned numbers usually happens when you have a small divisor and
a large dividend:

For example $20000000 divided by $0001 results in an overflow
because $20000000 can't be held in 2 bytes (4 hex digits).

Let's look at some examples of these two types of divide that are
typically used. Let's look at DNU or divide unsigned first. If AO points to
the number $1E07 (7687) in memory and D2 contains $1A2D24A6 then:

OIVU (A0),02

The above results in D2 containing $6079~ where $0079 in the
high two bytes of D2 is the remainder and $DF2B in the low two bytes of D2
is the quotient. If you want to get at the remainder you would use the SWAP
instruction we mentioned in the data movement instructions to get the
remainder into the low-order word.

Now let's set up an example for DNS, or divide signed. Suppose A3
contains the address $0001124A, D2 contains $00000002, MYOFF is a

80 Programming the 68000

constant equal to 4, location in memory $00011250 (the effective address of
MYOFF(A3,D2)) contains $3A and location $00011251 contains $04 (that is,
the word pointed to contains $3A04 or 14852 in decimal form). Finally, D5
contains the dividend of $ED0732AO (- 318295392).

DIVS MYOFF(A3,D2),D5 ;the result is $F77CAC49 in D5

Now that all that has been said the result is $AC49 (- 21431} and
remainder of $F77C (- 2180) which are in the low 2 bytes of D5 and the
high two bytes, respectively.

Other Miscellaneous Arithmetic Operations

You have just reviewed the 4 major arithmetic operations: add, subtract,
multiply, and divide. In binary arithmetic there are other operations which
are necessary such as EXT, EXTund, CLR, to CLeaR out an operand, NEG
and NEGX, which NEGate an operand, and TST, to TuST an operand and
set the condition codes appropriately. All of these miscellaneous opera
tions work on a single operand. Since TAS, Tust And Set, which would
normally be associated with this group of instructions, is usually used for
system work, we will discuss it in the System Control section to come later
in this chapter.

EXT-sign extend
Often in arithmetic you are given a number that is byte sized which has to
be used in arithmetic on words or you are given a word which you would
like to be a long operand. EXT gives you the ability to make a 1-byte into a
2-byte form (.W) or a 2-byte into a 4-byte form (.L).

To make this conversion, the upper byte(s) of the smaller size number
must be filled with binary ones if the number is negative and binary zeros
if the number is positive. Put another way, the high bit is replicated
throughout the upper byte(s). EXT has an operand which is a data register.

Example:

D2 contains $2307E2D3
EXT.W D2

EXT.L D1

EXT.L D4

EXT.W DO

;now the result is $2307FFD3
D1 contains $4A7CA20A
;now the result is $FFFFA20A
D4 contains $A45320E8
;D4 now contains $000020E8
.;DO contains $A45320E8
;DO has $A453FFE8

Once you've completed the conversion you can now perform arith
metic combining a 1-byte number with a 2-byte number or a 2-byte

81 The 68000 Instruction Set

number with a 4-byte number. If you want to arithmetically combine a 1-
byte number with a 4-byte number you must perform a word and then a
long extend to tum the 1-byte number into a 4-byte number prior to the
arithmetic operation.

CLR--clear
CLR CLeaRs a byte, word, or long to zeros. The operand can be any of the
usual addressing modes except PC relative or immediate. As usual,
address registers can be only word or long.

Example:

CLR. L (A2) + ;zeros the 4 bytes that A2 points at, adds 4 to A2 afterward
operates the same as MOVE. L #0, (A2) + only faster and in less space

NEG, NEGX:-negate
With the NEG and NEGX instructions the operand is subtracted from zero
and the result of this replaces what was in the operand. The addressing
modes (address register. direct, PC relative, and immediate) are not
allowed. The negative of the number replaces the number. NEG just
subtracts the number from zero while NEGX also subtracts one if the
extend bit is set. NEGX is used where you want to negate a number that
stretches over more than 4 bytes. For example, if DO holds $13450002, the
instruction NEG.W DO changes the contents of DO to $1345FFFE. If D1
holds $3F7010A4 and the extend bit is set, the instruction NEGX.L D1
results in 0-$3F7010A4--1 or $C08FEF5B in D1.

TST-test
TST or TuST looks at a value in memory or a register using the usual
addressing modes (address registers, PC relative, and immediate are not
allowed, of course) and compare that value to zero. No data is changed, but
condition codes are changed, just as with CMP. You can test data that is a
byte, word, and long lengths. You usually use TST on a value in a register,
on the stack, or in memory that you are using as a flag, and, based on
whether it is zero or negative, the program takes certain actions. Invariably
TST is followed by some form of conditional branch. For example, if AO
points to the value $0345, the instruction TST.W (AO) results in the N(eg),
Z(ero), oVerflow, and C(arry) flags being cleared, but the eXtend bit flag is
not changed.

Logical (Bitwise) Operations

The 68000 processor supports four logical operations: AND, OR, EOR, and
NOT. Since these operations are very useful we will go into some detail in

8.2 Programming the 68000

describing them. These "bitwise" operations work on every bit in an
operand or between pairs of bits in two different operands. Essentially
each bit is seen as a "truth" value--1 means "true" and O means "false:' The
meaning of AND, OR, EOR, and NITT can be understood from seeing how
true or false statement pairs act when they are connected by these
conjunctions.

AND

Suppose we had two statements such as ''1 + 1 makes 2" which is true and
"the moon is made of green cheese" which is false. Then we join the two
statements with an AND so:

1 + 1 makes 2 AND the moon is made of green cheese.

This statement is false. So a true statement AND a false statement
make a false statement. Ift represents a true statement and O represents a
false statement we could say "t AND O = o:• Actually we could notice that
the result of two statements with an AND between them is only true if both
statements are true. Let us summarize how AND works:.

0 AND 0
0 AND 1
1 AND 0
1 AND 1

O (a false statement AND a false statement results in a false statement)
O (a false statement AND a true statement results in a 'false statement)
o (a true statement AND a false statement results in a false statement)
1 (a true statement AND a true statement results in a true statement)

Now we are coming closer to understanding what the instruction
AND.W DO,Dt means. The AND operation worlcs on each pair of)lits in two
operands using the four equations above to arrive at a remtlting bit.

So if DO holds %101101~~1).!011 (the"%" symbol means that a binary
number follows just as"$" means a hexadecimal number follows) in its last
2 bytes and D1 holds % 001011,0110110010. then the result of ANDing these
two together is:

1011010101111011
AND 0010110110110010

0010010100110010

The rule is simple--if a column has two ones in it the result is one,
otherwise the result is zero. This is the same rule as we saw above in the
four equations about truth values.

You may be wondering, "well, so what? \Vb.at is this useful for?" It turns
out to be very useful when you want to isolate a part of a register or one bit.
Then you have one of the two operands be a pattern of ts (which are bits
you are interested in) and Os (which are bits you are not interested in). For
example, if you are only interested in whether the second bit of a spot in
memory is zero you would AND it with a pattern that had all zeros except
for a 1 in the place of the second bit. Such a pattern is called a mask. This is

83 The 68000 Instruction Set

because just as a mask only allows certain parts of your face to be seen and
masks off the rest so a bit pattern together with an AND instruction can
mask off bits you aren't interested in. After you did the AND you would
BEQ. The branch would be taken if the flag was zero and not taken if the
flag was one.

-----11~11---•; .• ·~~.x_a_lll __ p.le .. .----------------------------------
:~:;•~:/ IF ill. h~ta! % 0010~110, ~d we are int~rested in the second bit
···from the right, a one, we use Oo to hold % 00000100 as a mask for the

second bit trOm the right. The instruction AND.B DO,Dl results in
?'~oOOOOOlOOor~ non-zero result in Dl. You.can follow this with BEQ

FALSE torb'Vanch if bit two is false.

J

binary number o 1 1 O 1 0 0 1

AND number "masJ~
result 0 0 0 0 0 0 1

Figure 3-7 Mask as Sieve

OR
AND is an instruction used to tum selected bits off-to mask out bits. In
contrast, OR is used to turn selected bits on and leave the other bits alone.

The truth equations for OR are as follows:
If either statement in a pair are true then the resulting statement with

an OR in it is true. Only if both statements are false fs an OJI false.

o OR o o (a false statement OR a false statement results in a false statement)
O OR 1 1 (a false statement OR a true statement results in a true statement)
1 OR O 1 (a true statement OR a false statement results in a true statement)
1 OR 1 1 (a true statement OR a true statement results in a true statement)

84 Programming the 68000

An example of O OR 1 = 1 is: "The moon is made of green cheese OR 1

+ 1 is 2" is a true statement.
Let's look at the same example as above, only with the OR statement. If

D1 holds % 00101010 and we are interested in the second bit from the right,
we use DO to hold % OOOOQ100 to make sure the second bit from the right is
on. Then the instruction OR.B DO,D1 results in %00101110 in D1.

OR is usually used to tum on individual bits which are being used as
flags. '

EOR

Similar to OR is EOR, Exclusive OR. Exclusive OR is true if one or the other
of the two statements are true but is false if both statements are true.

0 EOR 0
0 EOR 1
1 EOR 0
1 EOR 1

O (a false statement EOR a false statement results in a false statement)
1 (a false statement EO~ a true statement results in a true statement)
1 (a true statement EOR a false statement results in a true statement)
O (a true statement 'EOR a true statement results in a false statement)

Notice that only the last equation is different from OR. EOR is used to
"flip bits "-to tum a 1 bit to a O bit or vice versa for selected bits. Those bits
you wish to flip should have a 1 in the mask; those you wish to leave alone
should have a zero in them. Oftentimes you will want to flip all the bits in a
byte, word, or long-this is called the one's complement. Then simply EOR
with $FFFFFFFF ($F is hexadecimal for all ones).

1b flip the bits on the lowest and third lowest bits, use the mask
% 00000101 . as follows. If D3 contains % 10011011 in its rightmost byte,
performing an EOR with mask %00000101 results in D3 having %10011110.

The EOR instruction would look as follows:

EOR.B #%101,03 ;now 03 has %10011110 in its rightmost byte

Notice how the lowest bit which had a 1 in it now has a zero and the
third lowest bit which had a zero now has a one. All other bits are the
same. EOR is used to change true to false and false to true--this is also
called "flipping the bits:•

NOT
The last of the bitwise operands is NOT. NOT operates on only one
operand. It flips all of its bits. Like EOR with $FFFFFFFF it too creates a
one's complement. For example, if AO points to an area in memory that has
%01110011 in it, the instruction NOT.B (AO) changes this area in memory to
%10001100.

A final helpful hint on working with bitwise operands. In actual
practice you don't use constants down in the code. You equate the various
masks you are going to use with names. Then when you want to mask off
the braces flag which is in the fourth bit you code the following:

85 The 68000 Instruction Set

BRACES equ $08 ;%00001000, a bit flag for use by this program to signal braces
.. . ; " ... " means assorted other code
ANO.B #BRACES,04 ;mask off the braces bit flag which is in 04
BNE BRACHERE ;branch if braces

This makes for much more readable code. Also you have less chance
of making a mistake on setting up your mask.

Bit Manipulation Operations

In 68000 assembler you are given some powerful instructions which allow
you to deal with individual bits. Since bits are often used for flags,. the
usual purpose of these instructions is to do some fancy bit twiddling on
your flags. The instructions are: BTST for Bit ThST, BSET for Bit test and
SET, BCLR for Bit test and CLeaR, and BCHG for Bit test and CHanGe.

BTST

BTST, Bit ThST, tests a bit and sets the zero flag on if the bit is zero and
clears it if that bit is a one. There are two forms:

BTST Dn,destination
BTST #<constant> ,destination

The destination may be any addressing mode except an address
register or immediate data.

The bit number is specified in the source operand. Zero represents
the rightmost (lowest order) bit, 1 represents the bit to the left of that (next
to lowest bit), etc.

decimal:
hex:

bits:

128 64 32 16 8 4 2
80 40 20 10 8 4 2

7 6 5 4 3 2

I I I I I I I I
high nybble low nybble

byte
Figure 3-8 Bits in a Byte

1
0

I

86 Programming the 68000

If the destination is a data register any of the bits may be specified
using a number from 0 (rightmost bit) through 31 (leftmost bit). If a number
greater than 31 is used, the instruction uses the remainder after division by
32, called modulo 32, as the bit number. For example, 42 mod 32 = 10 since
the remainder of 42 divided by 32 is 10 ("mod" is short for "modulo"). Don't
use numbers to represent bits outside the range O through 31.

If the destination is not a data register, but is a place in memory, then
o~ one byte is used. The bit number then must be between O and 7 where
O is the rightmost bit, etc. If the number is larger than 7, modulo 8
arithmetic is used.

This example shows what happens when 32 bits of data in a bYte are
tested (we've numbered the bits from 0 on the right to 31 on the left):

3322 2222 2222 1111 111 t 1100 0000 0000
1098 7654 3210 9876 5432 1098 7654 3210

01 contains %0000 0011 0001 0000 1111 0001 10Q.1 001 O or $0310F192

The 5th and 13th bits are underlined.

BTST #5,01 ;looking above we see bit 5 is a zero, so the zero flag is set

BEQ BITCLR ;since the bit is zero, this branch is taken
This shows how you can test a single bit and branch based on its

value.

BTST D0,01 ;DO has a 13 in it.
;since bit 13 has a one in it, the zero flag is cleared
;note: BTST D0,01 would have done exactly the same thing

BEQ BITCLR ;this branch is not taken

Here we index to the bit to test using a register.

MOVE.L 01 I (AO)
BTST #12, (AO)

BTST #4, (AO)
BNE BITSET

;move what is in 01 to the location at address AO
;the remainder after division by 8 is 4, so this will test
;the fourth bit of the byte immediately at AO. This byte is
;the leftmost byte of 01 (00000011) and the fourth bit is a zero
;this will have the same effect as BTST #12 (AO)
;this branch is not taken

This shows how bit testing a value in memory operates.

BSET
Bit Set is just like Bit Test only BSET sets the bit after testing it. Outside of
that it is exactly the same in the way it numbers the bits, in having two
forms, and in looking at 32 bits in a destination data register and only 8 bits
in a memory location. There is one other difference, PC relative is not
allowed.

87 The 68000 Instruction Set

Forms:

BSET Dn,destination
BSET #<constant> ,destination

For example if (AO) contains %00010000 (bit 3 has a zero), the
instruction BSET #3, (AO) sets the zero flag and (AO) becomes %00011000
(bit 3 is-now one).

BCLR

Bit Clear is just like Bit Set only BCLR clears the bit after testing it rather
than setting it. Outside of that it is exactly the same .

.....
Forms:

BCLR Dn,destination
BCLR #<constant> ,destination

For example if (AO) contains % 10011oYo (bit 1 has a one), the instruction
BSET #1, (AO) clears the zero flag and (AO) becomes %10011000(bit1 is now
zero).

BCHG

Bit CHanGe, BCHG, changes the bit, after testing it, to its opposite (0
becomes 1, 1 becomes 0). Outside of that it is exactly the same as Bit CLeaR
in the way it handles operands.

Forms:

BCHG Dn,destination
BCHG #<constant> ,destination

For example, if D3 contains % 0110 11011010 1010 11100001 01011011 (bit
12 has a zero), and DO has a $0000000C in it, the instruction BCHG DO,D3
sets the zero flag and now D3 becomes % 0110 1101 1010 1010
1111000101011011 (bit 12 is now one).

Shift and Rotate Operations

There are many times when you want to move the bits within a register or
within memory. Briefly, shifl moves the bits either to the left or the right,
with those bits that go off the end going first into the cany/extend flags
and then into obliVion. Rotate operations cycle those bits that are "lost," off
either the right or the left end, back around so they come in through the
opposite end of the register or data area.

The shift instructions are ASL for Arithmetic Shift Left, ASR for
Arithmetic Shift Right, LSL for Logical Shift Left, LSR for Logical Shift Right.

88 Programming the 68000

The rotate instructions are ROL for ROtate Left, ROR for ROtate Right, ROXL
for ROtate with eXtend Left, and ROXR for ROtate with eXtend Right.

ASL, ASH

ASL stands for Arithmetic Shift Left and ASR stands for Arithmetic Shift
Right. Why the word "arithmetic"? Because these operations are used to
divide or multiply by a power of 2. If you shift a number right by 1 bit it is
equivalent to dividing by 2, if you shift right by 2 bits it is equivalent to
dividing by 4, while if you shift right by, say, 5 bits it is equivalent to
dividing by 32. If you shift left by 5 bits, it is equivalent to mulitiplying by
32. So you might think of ASL and ASR as the "multiply/divide by power of 2
operations:'

Shifting left using ASL involves no particular complications. The bit
that is pushed off the left end, .with each shift goes into the carry andJ
extend bits. Therefore only the last bit shifted will appear in the carry~
you can't use the carry bit to test for overflow in shifts of more than Tbit for
this reason. Each time a shift to the left is made the empty space created to
the right is filled with a zero. The ASL instruction has 3 forms.

ASL:

---operand •
ASA:

Figure 3-9 ASUASR

Forms:

ASL Dn,Dm
ASL #<constant> ,Dn
ASL operand ;where operand is any addressing mode except Dn,An,PC

;relative or immediate

;'

' I

89 The 68000 Instruction Set

If the first form is used, the shift can be anywhere from 1 to 63 bits;
larger numbers are treated as modulo 64. If the second form is used only
shifts of 1 to 8 bits are allowed. If the third form is used, the shift is
automatically one bit and only byte and word length can be used.

Example:

If DO contains $3F4COAOB or %0011. 1111- 0100 1100 0000 1010 0000 1011
then ASL #3,DO results in the carry 'and extend flags being set and
%1111' 10.10 0110 0000 0101 0000 0101 1000 or $FA605058 being in DO

By aligning the source and destination the above operation is easier to
see:

\ . I \ J • ,) • • •
%00111111010011000000101000001011 <=shift left 3 bits, underlined drop off
% 11111010011000000101000001011000 3 bits of zero inserted on right

Since we have shifted left by three bits, this is equivalent to multiply
ing by 23 or 8. This results in an overflow into the carry and extend bits. If
you multiplied $3F4COAOB times 8 you would get $1FA605058.

ASR, arithmetic shift right, is similar to ASL. The last bit shifted out of
the righthand side goes into the carry and extend fl~s, and it uses the
same three forms. The main difference is that the bits are shifted right
rather than left. A further difference is that rather than filling with zeros,
the fill bit is whatever was in the leftmost bit before the shift was
commenced. In this way the sign of the original number is preserved.
Therefore if you want a quick divide by 16 (or any power of 2) in which the
sign is preserved, this is the way to do it.

Example:

If D1 contains $0000000C or 12 in decimal
and DO contains $9F4E3A52 or % 1001 1111 0100 1110 0011 1010 0101 0010
then ASR D1, DO results in the carry and extend flags being set and
%1111 1111 1111 1001 1111 0100 1110 0011 or $FFF9F4E3 being in DO
since the highest bit in DO before we started was 1.

Let's align the source and destination for the above operation:

%1001111101001110001110100101no10 source
%111111111111100111110100~1100011 destination shifted right 12 bits

In the above shift the bold 1 bit on the left side of the source means
that all the bits inserted into the destination on the left will be ones. The
underlined bits of the source are lost off the right end. (You may hear the
colorful programming phrase "into the bit bucket"; for reference, it means
the same as "lost" does here.)

The overflow flag, V, is set if the most significant bit, the sign bit, is
changed at any time during the shift operation. Therefore it can be used to

90 Programming the 68000

tell if the result is arithmetically valid (obviously the sign should never
change during a shift). The negative flag is set if the result is negative and
cleared otherwise.

LSL,LSR

LSL, Logical Shift Left, and LSR, Logical Shift Right, are nearly identical to
ASL and ASR. The only difference between LSL and ASL is that in LSL the
overflow flag is always cleared. The only difference between LSR and ASR
is that the fill bit is always zero in LSR. Therefore LSR should not be used
where you want to divide a signed number by a power of 2. It should be
used where you want to divide an unsigned number by a power of 2.

4 Operand---

LSL:

LSR:

Figure 3·10 LSI.A.SR

ROL,ROR

ROL stands for ROtate Left and ROR stands for ROtate Right. In similar
fashion to the prior statements, LSL and LSR, the bits are shifted but the
bits that fall off the end are recycled back in the other way. If you have a 5-
bit rotate left, the leftmost 5 bits will become the rightmost 5 bits and the
remaining bits will be shifted 5 left. If you do a 7 bit rotate right, the 7
rightmost bits will become the 7 leftmost bits and all the other bits will be
shifted right by seven bits. The cal'I)' bit will be the same as the last bit
rotated.

Watch a 5 bit rotate right in action operating on a single byte:

Suppose D2 contains %11011010 in the rightmost byte; then ROL.B
#5,D2 operates as follows:

\

91 The 68000 Instruction Set

start point: %1l0il010
after 1 rotate: % 10i10101
after 2 rotate: %01101011
after 3 rotate: % 11010110
after 4 rotate: %10101101
final result: %01011011 carry contains a 1 (set)

Note that the five leftmost bits were llilll; these are now the five
rightmost bits. The three rightmost bits mo are now the three leftmost bits.

ROL:

@ I _,..-4;::::0-p-e-ra-nd:.:.:.---~---~
ROR: Y---operand--•~

Figure 3-11 ROUROR

ROXL,ROXR

ROXL stands for ROtate with eXtend Left and ROXR stands for ROtate with
extend Right. When ROL or ROR are used, the bits that fall off the end are
immediately sent back into the data. In contrast, when you ROXL or ROXR,
the bit that is shifted out is sent to the extend (and carry) bit. The extend
bit, in tum, is sent back into the data. So the rotate takes place through the
extend bit. There is always one bit out in limbo in the extend bit.

Let's examine how a 5-bit rotate right with extend works:

Suppose D2 contains %11illlll0 in the rightmost byte then ROXL.B
#5,D2 operates as follows (assume the extend bit is set to Oat the start):

start point: %11011010 (0 in extend bit at start, 1 in extend bit at end)
after 1 rotate: %10110100 (1 in extend bit at start, 1 in extend bit at end).
after 2 rotate: %01101001 (1 in extend bit at start, O in extend bit at end)
after 3 rotate: %11010110 (0 in extend bit at start, 1 in extend bit at end)
after 4 rotate: % 10101101 (1 in extend bit at start, 1 in extend bit at end)
final result: %01011011 (1 in extend bit left after fourth rotate)

Outside of this rotating through the extend bit, ROXL and ROXR are
exactly the same in form as ROL and ROR. These instructions are the same
three forms with the same limits on the number of bits moved.

92 Programming the 68000

ROXL:

4 Operand---

ROXR:

---operand ..

Figure 3-1.2 ROXUROXR

Forms:

ROXL Dn,Dm
ROXL #<constant>,Dn
ROXL operand ;any operand except Dn, An, PC relative, and immediate

and, of course, their complementary forms for rotate right:

ROXR Dn,Dm
ROXR #<constant>,Dn
ROXR operand ;any operand except Dn, An, PC relative, and immediate

System Control Operations

The 68000 chip has built-in means of dealing with exceptional situations
such as: an overflow in a math operation (TRAPV), a subscript out of
bounds (CHK), or a certain nybble ($A is most usual on the Macintosh) in
the first position of an instruction. Most of these exceptions are handled
automatically by the Macintosh system, or should never be used.

A table of addresses for routines is contained in memory to deal with
each special case. Whenever the situation in question occurs, the proces
sor finds the appropriate address from the table and performs the routine
at that address. When any of these exceptional situations occurs, there is a
standard procedure the 68000 performs. The program counter and status
register are pushed onto the stack, the appropriate routine address is
found, and execution continues at that address. You will see the word

93 The 68000 Instruction Set

Vector Address
Number(s) in Hex

0 0
1 4
2 8
3 c
4 10

5 14
6 18
7 1C
8 20
g 24

Interrupt Name

Reset: Initial SSP
Reset: Initial PC
Bus Error (ID•02)
Address Error (ID=03)

Illegal Instruction (ID=04)

Zero Divide_(_ID•Oll
CHK Instruction (ID=06)
TRAPV Instruction (ID=07)
Privilege Violation (ID=08)
Trace (ID•09)

10 28 Line 1010 Emulator ($A Mac ROM traps)

11 2C Line 1011 Emulator
12 30 (Unassigned, Reserved)
13 34 (Unassigned, Reserved)
14 38 (Unassigned, Reserved)
15 3C (Uninitialized Interrupt Vector)

16-23 40-5F (Unassigned, Reserved)
24 60 Spurious Interrupt (bus error during interrupt)
25 64 Level 1 Interrupt Autovector
26 68 Level 2 Interrupt Autovector
27 6C Level 3 Interrupt Autovector
28 70 Level 4 Interrupt Autovector

29 74 Level 5 lnterrim_t Autovector
30 78 Level 6 Interrupt Autovector
31 7C Level 7 Interrupt Autovector

32-37 80-BF TRAP Instruction Vectors (32+trap #) (see Note)
48-63 CD-FF _(_unass!g_ned. Aeserve<l}_
64-255 100-3FF User Interrupt Vectors

"(Unassigned, Reserved)" means that if you use these interrupts some
day Motorola will use them in a new chip and you will have to recode
your application while angiy users breathe down your neck.

Note: li'ap $E (breakpoints) is TRAP #14 or interrupt 46.

When you see a "bomb" alert box and an ID = nn the number, nn, will
usually come from the above list of interrupts. ID = 25 means out of
memory or, sometimes, resource ID not found.

Figure 3-13 lnteITUpt Vectors Tuble

94 Programming the 68000

"vector" useci to describe these addresses; it is said that the 68000 "vectors"
to the appropriate address.

The $A (also called the 1010 emulator mode) exception is the only one
used with real frequency on the Mac. Each exception has a number-this
number is most frequently seen in the "bomb" alert box where an "ID="
number is given.

You will very rarely find yourself having to know about system control
instructions unless you plan to do systems programming work on a 68000
machine. You will rarely need to know about these on the Macintosh.
Perhaps the only one of these instructions that is used frequently is the
CHK instruction, which is used to check for array subscript being out of
bounds in various compilers.

These operations fall into three classes: trap generating, status register,
and privileged.

'Irap Generating Instructions
Only three trap generating instructions exist. CHK, which checks a register
against bounds, THAI>, which generates a trap, and TRAPY, which traps on
overflow.

CHK If you look at the output of many compilers you will find this
instruction just before a subscripted variable is accessed when the range
checking option is set. Its form is:

CHK source,Dn

It only works on a word (subscripts must be in the range O through
+ 32767). 'fypically the compiler sets the value as an immediate value if the
arrays are static, meaning the dimensions can't change, or as a place in
memory if the arrays are dynamic, meaning the dimensions can change.

CHK generates an exception processing sequence when triggered.
The program counter and status register are pushed on the stack and the
vector (address) set aside for the CHK instruction is the next place the
program goes. Put in the more usual way, "the CHK vector is loaded into
the program counter." We include the more usual way of saying this so that
you won't be surprised when you encounter it in the literature.

Example: An array can only have a subscript that runs between 1 and
500.

SUBQ. W #1, DO ;the subscript is in DO, subtract 1 so lower bound is zero
CHK #499,DO ;see if the subscript index is between O and 499

;note: 0-499 is equivalent to 1-500 after you subtract 1
;now use as an index into the array ...

TRAP This instruction is never used on the Macintosh. To indicate a
TRAP, the Macintosh uses an instruction that starts with an $A instead.

95 The 68000 Instruction Set

This is the 1010 emulator mode of the 68000 chip. For completeness we will
describe the TRAP instruction. It uses the following form with a value from
Oto 15:

TRAP #<0-15> ;TRAP followed by an immediate value between 0 and 15

TRAP performs the usual exception processing; first the program
counter and then the status register is pushed on the stack, then one of 16
vectors (addresses) is used to determine where to execute the next
instruction. In some 68000 machines this mechanism is used to imple
ment 16 different subroutines. See Figure 3-13, the Diagram of Vector Thble
for the 68000, and the discussion of traps for entry into the ROM for more
information.

Example:

TRAP #floatadd ;do a floating point add on some 68000 machine ...

TRAPV This instruction is never used on the Macintosh, either. If a
TRAPV instruction is encountered and the overflow flag is set, you would
vector to an address that is associated with the TRAPV instruction after
pushing the program counter and status register. Obviously, the makers of
the 68000 chip meant this to be used whenever there was a place where
you had performed an arithmetic operation that would result in an
incorrect result due to an overflow. Usually you print a message talking
about an overflow in the last arithmetic process you performed (such as a
picture of a bomb) and abort the whole process. The routine you would
"vector" to would perform that function.

Form: TRAPV
Example:

AOO.B 00,01 ;this will generate an overflow if the sign were wrong
;assuming both original numbers and the result are seen as
;signed.

TRAPV ;an overflow is horrible! Abort everything and take
;appropriate action. If no overflow, go to next instruction

TAS The Tust And Set ('D\S) instruction is rarely used on the Macintosh.
Later on, the hardware chapter will mention that this instruction can be
used in conjunction with Direct Memory Access (DMA). Direct memory
access means that you can get data out of memory while bypassing the
68000 completely; this procedure is usually used for interfaces with
external devices such as hard disk drives that need high speed. Another
use of this instruction is for synchronizing multiple processors; there is
only one processor on the Macintosh.

TAS allows you to test a byte in memory (a flag usually) and set the
zero and negative flags in the condition codes accordingly. The high bit of

96 Programming the 68000

the byte in memmy is turned into a "1" to signal that this byte has already
been tested. Since this instruction cannot be divided and since the
Macintosh XL depends on dividing instructions for its virtual memory
scheme this instruction should not be used in any program that will ever
be used on the Macintosh XL.

Status Register Instructions

The Status Register contains the Condition Codes in its rightmost five
bits-the status register is two bytes long. The status register is used to
record the state of the system in general. The Condition Codes are used to
communicate between instructions in your assembler programs. In these
instructions CCR stands for Condition Code Register and SR stands for
Status Register.

There are five status register instructions, none of which you will use
that frequently. You might skim this section, however, so you can sound
profound at the next hacker's party. The instructions are ANDI to CCR, ORI
to CCR, EORI to CCR, MOVE to CCR, and MOVE from SR. Before describing
these instructions, let's look at the form of the status register in more detail.

system

1 aooo 1400012000 ~ 0001 aoo ~oo 120011 oo I ao1

15 14 13 12 11 10 9 8 7

Trace
Mode

(when set, interrupt
generated by each
instruction;
for use in debuggers)

Supervisor state

• 0-7
for 8 levels

of

(if on. in supervisor mode;
if off, in user mode;

interrupt
(Interrupt

Mask)

always on for Macintosh)

user
I I I I

40 20 10 8
6 5 4 3 D

extend

negative overflow

• Condition
Codes

Figure 3-14 Status Register Flags

I

With the high bit as bit 15 and the low bit as bit O the status register
contains:

97 The 68000 Instruction Set

Bit 15: 'frace Mode flag. 'frace mode allows you to single step through a
program. Each instruction is followed by an exception processing for a
trace. This mode allows you to keep tracing even when an interrupt
occurs.

Bit 13: Supervisor State. The Macintosh is always in supervisor mode
so all instructions are permitted. In some machines there are certain
instructions reserved for the "supervisor" program that lowly "user"
programs (the normal state) can't do. This state is made for multitasking or
multiuser machines.

Bit 10, 9, 8: Interrupt mask. There are eight levels of interrupt. This
allows some interrupts to have higher priority than other interrupts.

Bit 4: X or extend flag
Bit 3: N or Negative flag
Bit 2: Z or Zero flag
Bit 1: V or oVerflow flag
Bit 0: C or Carry flag
The remaining bits are unused.
The difference between moving the Status Register contents and

moving the Condition Codes' contents is subtle. 1\vo bytes are set aside for
the Condition Codes just like the Status Register. The difference is that
when you move the Condition Codes only the right five bits are used and
the rest of the two bytes are ignored. When you move the Status Register all
two bytes are moved and updated.

Since the User can only modify the Condition Codes, nothing that
modifies the other parts of the status register can be done except in
Supervisor Mode. On the Macintosh, which is always in Supervisor Mode,
this is academic. The instructions that must be done in Supervisor Mode
are called, appropriately, Privileged instructions.

ANDI to CCR In the ANDI to CCR instruction, the immediate data
supplied in the source operand is ANDed with the Condition Codes (the
low five bits of the Status Register). It is used to tum off Condition Code
flags. If you are unsure about ANDI, see the section on the AND
instruction.

Form: ANDI #<source constant>,CCR

As you would expect with an AND, X (eXtend) is cleared if bit 4 of the
immediate operand is zero but is left unchanged if bit 4 is a one. The same
rules apply for bit 3 (N or Negative), bit 2 (Z or Zero), bit 1 (V or overflow), or
bit O (C or Carry).

Example:

ANDI #%11110,CCR ;clear the carry flag, leave other flags same

98 Programming the 68000

This example has a zero in bit zero, the carry flag, which means the
cany flag will be cleared while the ones in the other bits means the other
flags will remain as they were.

ORI to CCR ORI to CCR lets the immediate data supplied in the source
operand be ORed with the Condition Codes (the low five bits of the Status
Register). It is used to tum on Condition Code flags. If you are unsure
about ORI, see the section on the OR instruction.

Form: ORI #<source constant>,CCR

As you would expect with an OR, X (eXtend) is set if bit 4 of the
immediate operand is one but is left unchanged if bit 4 is a zero. The same
rules apply for bit 3 (N or Negative), bit 2 (Z or Zero), bit 1 (V or oVerflow), or
bit O (C or Cany).

Example:

ORI #%00100,CCR ;set the Zero flag, leave the other flags the same

Better coding would be:

ZERO.ON EQU %00100
ORI #ZERO.ON,CCR ;it is much clearer what is happening here

EORI to CCR With EORI to CCR, the immediate data supplied in the
source operand is EORed with the Condition Codes (the low five bits of the
Status Register). It is used to flip Condition Code flags to their opposite. If
you are unsure about EORI, see the section on the EOR instruction.

Form: EORI #<source constant>,CCR

As you would expect with an EOR, X (eXtend) is changed to its
opposite if bit 4 of the immediate operand is one but is left unchanged if bit
4 is a zero. The same rules apply for bit 3 (N or Negative), bit 2 (Z or Zero),
bit 1 (V or overflow), or bit 0 (C or Cany).

Example:

EORI #%00100,CCR ;change the.zero flag to its opposite (0 -> 1, 1 ->0),
;leave the other flags the same

Better coding would be:

ZERO.ON EQU %00100
EORI #ZERO.ON.CCR ;flip the zero flag to its opposite

MOVE to CCR Use MOVE to CCR to move the data in the source operand
into the Condition Codes (the low five bits of the Status Register). The data
size is always word, of which only the rightmost five bits are used. Only An,
an address register, is not allowed as the source.

99 The 68000 Instruction Set

Form: MOVE <source>,CCR

Suppose the data at the address pointed to by A2 contains $0003
(rightmost 2 bits are on).

Example:

MOVE (A2),CCR ;and Carry bit (bit 0) being set, every other bit cleared
MOVE (A2),CCR ;this would result in the overflow (bit 1)

;and Carry bit (bit 0) being set, every other bit cleared

MOVE from SR MOVE from SR moves the data in the Status Register (two
bytes or a word, as previously described) into the destination location.
Address register, immediate, or PC relative addressing modes are not
allowed as the destination (for obvious reasons).

Form: MOVE SR, <destination>

Suppose that the Status Register contains $2005 (Supervisor state,
Zero and Cany flags on, everything else off).

Example:

MOVE SR, 03 ;now the low word of 03 contains $2005

Privileged Instructions
Privileged instructions can only be done in Supervisory mode. Although
the Macintosh is always in Supervisory Mode (other 68000 computers, or
even future Macintoshes, may not be) you will find yourself using these
instructions only in rare circumstances.

ANDI, ORI, EORI and MOVE to SR The instructions ANDI to SR, ORI to
SR, EORI to SR, and MOVE to SR are similar to the instructions which were
described above for Condition Codes. The only difference is that the entire
two bytes of the Status Register is updated rather than just the rightmost 5
bits which contain the condition codes. These instructions follow the form
of those given in the previous sections so we will only repeat the forms and
give an example of each.

Form: ANDI #<source constant> ,SR
Example:

ANDI #$FFFE,SR ;turn off the Carry flag (bit 0)

Form: ORI #<source constant> ,SR
Example:

ORI #$2000,SR ;turn on Supervisory Mode (bit 13)

100 Programming the 68000

Form: EORI #<source constant>,SR
Example:

EORI #$2000,SR ;change User state to Supervisory state, and vice versa turn

Form: MOVE <source>,SR
Example:

MOVE #$201 F,SR
;turn supervisory state and all condition codes on, turn
;the interrupt priority level to one and trace mode off.

The remainder of the privileged instructions are MOVE USP for MOVE User
Stack Pointer, RESET for RESET external devices, RfE for ReTum from
Exception, and SIDP for SIDP program execution.

MOVE USP Only a systems program would ever use the user's stack
pointer. On the Macintosh you never want to do this because the system
uses the System stack pointer (remember there are two A7 registers, a user
register and a system register). Hence the user stack pointer is never used
on the Macintosh. \i\oe· suppose you could use this location as an extra
register if you were sure that the operating system never has or would ever
use it. Since :tew can predict what Macintosh systems programmer's will
do, it is inadvisable to use these instructions. We include this instruction
for the sake of completeness.

Form: MOVE USP, An
MOVEAn, USP

RESET The reset line is asserted causing all external devices to be reset
as at system startup. The effect of using RESET is the same as if you
pressed the reset button on the Mac's programmer's switch.

RTE RTE stands for Return from Exception. The status register and
program counter are pulled from the System stack. These values replace
the current program counter and status register. This instruction is used
like an RTS only at the end of an exception routine rather than a
subroutine.

Form: RfE

S10P Stop means don't process any machine language instructions
while waiting for an interrupt, trace, or reset exception to happen. The
constant following S'IUP replaces the Status Register so that the state of the
machine can be assured. The program counter points to· the instruction
following the S'IUP instruction so you can resume operation from that
location in the code.

101 The 68000 Instruction Set

Form: S1DP #<constant>
Example:

STOP #$2000 ;wait after making sure you are in Supervisor Mode by setting
;the Supervisor Mode flag (bit 13)

Unimplemented Instructions
When using the Macintosh you will find that you often encounter a pair of
bytes that start with an $A in the high order nybble in a stream of
instructions. The disassembler will list these bytes as a trap. Actually it is a
signal for an unimplemented instruction.

The 68000 processor uses unimplemented instructions to create new
commands. Any instruction that starts with an $A is sent to the address of
a procedure that figures where the indicated system routine is located by
way of an interrupt trap address. These instructions are called 1010
emulator mode. All the calls to the Macintosh ROM take place through the
1010 emulator mode.

~~--~--s_u_m __ m __ a_r_y--
The next chapter will use the instructions you have learned in this
chapter to create small assembler programs. Be sure you understand
all the more commonly used instructions before going on. If you
want a quick summary of which op codes can be paired with which
operand(s), see the table of op code, operands, and timings in
Appendix B.

Memorizing op codes is only the start of doing assembler
programming. The real learning begins when you read through
programs written by other assembler programmers so you can feel
how the op codes tie together. The learning continues when you
write your first programs, of whatever size, using the knowledge of
the 68000 op codes gained in this chapter.

CHAPTER

~C!J----
Salllple Prograllls

In this chapter you will be introduced to actual program segments that
are typical representations of 68000 programming. Once you have studied
these program segments you will have a better understanding of how the
various 68000 instructions learned in the prior chapter fit together. If the
68000 instruction formats are like English sentences (and the 68000 op
codes like verbs) then this chapter will be dealing with whole paragraphs.
To continue the analogy, we could say the program SimpleCalc, which you
will see later and from which some of these examples are drawn, would be
like writing an essay.

Let's start off with an in-depth look at a segment you have already
seen; read through the following code and confirm for yourself how the
routine works.

;, --------'---__;,-'-'---'-..,...... ------'---_,.:.-----....... --.........:.-
; ,string qomparison subroutine

•.j• ----......... ------......... --..................... ,, ,,...,.,,,...,.....,....,.....,......_....,,.,.,,.,,,,,, .• i-"'. _,......,.......,..,..,,

.·., ""'

i Purpose: to compare 2 strings r~tuming match/no match ~Qndition

:: J~.~~ ; (,· ~:< <" • • /.~·~lo
<;,Register Usage:.

Input - A2
A4 .

Output. -zere t}~g

address J>l lir,st of .two strinii~ to C~IDP~re
adli;r,ess Qf ,~'8o,QQr;td, .Qf1 two s.tr;f~gs t. · pate;
11.::.iero ,11a!J~;fr:ue ~MJll.:striil~~~af:e.e ·
(If J3EO.{rtU!lWJr;ig ro.U.!ine takliijtnen ·.S.t . gs.

.. .. , , . if+~~~ro f · l~eJhe!l stri,n~ i.m~qua[; . .
.'~1·> Aeg!~t~rs : U~~~ :. CC,: ,~f~~··f .. ro ,~~ti: .Js'.,.•ijn~n~wn ,,;;~~}~•i.·i .; · ·•

103

ST.RGCMPR

COMPSTRG

COMPSTR2

.EXIT

104 Programming the 68000

MOVEM.L A2/A4/DO,-(SP)
CLR.W DO
MOVE.B (A2)+ ,DO

CMP.B (A4)+ ,DO

BNE EXIT

BRA COMPSTR2

CMPM.B (A2)+ ,(A4)+

DBNE DO, COMPSTRG

MOVEM.L
RTS

(SP)+, A2/A4/DO

;save A2, A4, DO on stack
;set the low order word of D1 to zero
;move the length byte of the first
;string to DO & move A2 to point to
;the first string byte
;compare. tbe lengtbs of the two
;strifigs and move · A4 to point to the
;first string byte of the second string
;if lengths different, exit with
;zero flag
;cleared
;let DBNE subtract one at start to turn
;length to index. If lengths are both
;zero, then strings are equal
;compare the two strings byte for
;byte
;keep branching until a point of
;difference found or strings are
;exhausted.
;if strings are same, then the zero flag
;is set upon coming here,
;if strings different, DBNE stopped
;looping when Not Equal (zero flag
;clear)
;restore A2, A4, DO from stac.k
;exit with the zero flag indicating ·same
;or different strings

Although these are basically the same 68000 instructions that you saw
used in Chapter 3 to do a string compare, there are differences. Better
documentation appears at the start of this subroutine. You only need to
look at the documentation at the front of this subroutine to see the
routine's purpose, what registers are used, and what input you must have.
Although the usual rule for commenting assembler is each line has a
comment, this subroutine has more than its share. Once it's programmed,
debugged, and documented, you no longer have to read through the
instructions to see what the routine does. The routine is now a "black box"
that magically does what you want; you don't have to think about it. Also,
there are now MOVEMs at the start and end of the routine so that the only
register affected is the Condition Codes (CC) register since the MOVEMs
restore all registers used to their condition when you entered the
subroutine. MOVEMs help to make this routine a black box since you don't
have to worry about registers being changed by the subroutine.

105 Sample Programs

Tuke three or four pairs of strings (empty strings, equal strings,
unequal strings of same and different lengths) and step through the above
procedures. By trying out this code, called "playing computer," you can get
familiar with 68000 assembler in the speediest fashion. The easiest way to
see how the code works is to take a sheet of paper and mark off an area for
registers used (DO, A2, etc.) and to pen in their values as you analyze the
function of the codes. You can then cross out and replace data in them
each time they change. For those who have a blackboard and eraser, this
may prove to be even better for "playing computer."

How could we improve this code? If we notice that the length byte is
just another byte that has to be the same between the two strings we could
code the main portion as follows:

STRGCMPR MOVEM.L
CLR.W

A2/ A4/DO- (SP)
DO

;save A2, A4,DO on stack

MOVE.B (A2),DO

;set the low order word of DO to zero
;since DBNE operates on a word
;move the length byte of the first
;string to DO
;note that the length byte includes itself
;so it is not decremented

COMPSTRG CMPM.B (A2)+ ,(A4)+
;as is usual upon executing a DBNE loop
;compare the two strings byte for byte
;keep branching until a point of
;difference found or strings are
;exhausted

EXIT

DBNE DO,COMPSTRG

MOVEM. L (SP)+ ,A2/ A4/DO
RTS

;if strings are same, then the zero flag
;is set upon coming here,
;if strings different, DBNE stopped
;looping when Not Equal (zero flag clear)
;restore A2, A4, DO from stack
;exit with the zero flag indicating same
;or different strings

Compare the new routine with the main section of the old one. It is by
such observations that assembler code is reduced. In the new routine the
core of a string compare is done in four instructions (with three instruc
tions for good housekeeping)! You can, of course, go too far when reducing
code and stray into a devious "trickiness," the disease of the assembly
language programmer. Out of courtesy to yourself and others you should
document your tricks especially well. If you don't go far enough in
compacting code, however, your code will be cumbersome and run slow.
As in all things in life, balance is important.

Another typical problem that you encounter in assembler is turning a
2- or 4-byte hexadecimal number in memory into a decimal number. When

106 Programming the 68000

you try to solve this problem you discover there are two ways of turning
hexadecimal to decimal: divide the binary number repeatedly by ten
resulting in decimal digits or multiply a decimal number repeatedly by
two while looking at bits in the binary number.

Using the dividing by 10 method, you can use a table of the hex
equivalents oft, 10, 100, 1000, etc., then divide (via repeated subtraction) by
each power of 10 starting with the highest possible power of ten; if you have
a 2-byte hexadecimal number you can use the 68000 divide instruction.
The 68000 divide instruction method is used in the SimpleCalc program
described later in this book. Unfortunately, the 68000 divide instruction
will not work with 4-byte hexadecimal numbers since the quotient which
results when dividing by 10 will usually overflow the 2 bytes alotted for it.

Using the other method, you do repeated multiplications by two of a
decimal number in an accumulator. You create consecutive powers of two

in the accumulator by adding the number to itself in decimal; the
accumulator is initialized to one. Then shift the hex number in the register
right by one bit at a time so you can look at the bit indicating whether a
one, two, four, eight, and so forth are in the number. If the bit that rolls off
the right end of the register is 1 you add the current value in the power of 2
accumulator to a separate subtotal accumulator; if the bit is zero you loop
back. You repeat for as many bits as there are in the hexadecimal number.
At the end of the process, the subtotal accumulator holds the decimal
equivalent of the hex number. This works best on a processor with fast
decimal addition. Let's look closer at this method of conversion.

The following routine will be coded for speed, not compactness of
code since it will likely be used many times during the running of the
surrounding program and the average Macintosh has sufficient memory.
Therefore we will code the five add decimal instructions, ABCDs, as
straight line code rather than a loop. This routine will average about 6
milliseconds to convert a 32-bit hexadecimal number and 3 milliseconds
for a 16-bit number.

. . .

M. a.A byte· ~~xadeci1nar.01Jtr'ber to .. Binary·coded .. · Dectma1.i,;

s 1 ttj~ hex~~~~itnal nµ111ber~~ be.p~nverte~1•

contain the BPD number thatis the equivalent

107 Sample Programs

-------------variables ____________ _

TEMPACC EQU -6

FINALACC EQU -12

;offset of temporary accumulator on
~stack
~ctffset of final accumulator on stack

______________ code,--------------
HEX2BCD MOVEM.L DO/A1 -A2, -(SP)

LINK A0,#-12

MOVEQ
MOVE.l
MOVE.l

MOVEQ
MOVE.l

MOVE.L
CMPl.l
BLS
MOVE.L

#O,D1
01, Fl NA LACC(AO)
D1 ,FINALACC+4(AOJ

#1,D2
D2,TEMPACC+2(AO)

#15,D2
#$FFFF,DO
HEXBLOOP
#31,D2

HEXBLOOP ASR.l #1,DO
HEXBX2

HEXBX2

sec

LEA
LEA
ANDI
ABCD
ABCD
ABCD
ABCD
ABCD
LEA
MOVE.l
ABCD
ABCD
ABCD

TEMPACC+ 6(AO),A1
FINALACC + 6(AO),A2
#$EF,CCR
-(A1),-(A2)
-(A1),-(A2)
-(A1), -(A2)
-(A1),-(A2)
- (A 1), - (A2)
TEMPACC+ 6(AO),A2
A2,A1
- (A1), - (A2)
-(A1),-(A2)
-(A1),-(A2)

;save DO,A1 ,A2 on the stack
;get 12 bytes from the stack
;th.ese 12<bytes on the stack will hold
;theJinalBCD result and the
;temp .. accumulator
;clear both accumulators
;high };bytes ... otFINALACC
;low wonFTEMPACC, high word
;FJ~A~~c ··.

;low four bytes of TEMPACC
;now 6 tiytes of flNALACC = 0, 6
;bytes of TEMPACC = 1
;loop counter - 1 (16x thru loop)
;see if anything in high word
;if not, branch
;loop counter - 1 (32x thru loop)

;righ.~most bit = > C, X flags
;just multiply by 2
;now you add the temp accumulator
;into the final accumulator
;this code will be executed, on
;average, . 50% of the time
;add temp accum to final accum
;point past end of BCD numbers
;clear extend bit
;faster .than a loop (straight line)
;add wittl extend

;add temp accum to itself
;doublipg . it
:!.a§:t.er than a loop (straight line)

ABCD
ABCO
DBRA

108 Programming the 68000

-(A1),.-(M)
-(A1),.,.. (A2)
02,HEX~LOOP ;loop until 0;2 · = - t

MOVEQ
MOVE.W
MrlYE.L

#0,01····.·.

Fl.N.
FiNA

.AJJ.~> ,~~~s
, Blff,,

,, '~ '~{2;;~· ',~\!,-'.J/~~_{
',", ::'": .,

(~~l

As with the string compare program, you are invited to work through
this subroutine by putting a few hex values into it and seeing how they are
transformed into BCD. Try the hex number $5, for example; this is binary
%101. When the first rotate is performed the one bit comes off, the
temporary accumulator is one; this gets added to the result accumulator
which was initially zero. The temporary accumulator is doubled to two.
The next time through the loop a zero bit is rotated off; the temporary
accumulator is doubled to four. The third time through the loop another
one comes off and the four in the temporary accumulator is added in to
the result accumulator making the value there five. All the rest of the times
through the loop the bit rotated off the end is zero. So the result
accumulator exits with a BCD five. You should go through this example
and actually see what is in each byte on the stack and in each register after
every instruction. If you are more ambitious try a two- or three-digit hex
number next.

This code seems satisfactory. All of the time is taken up in the ABCDs.
There is a way of making an ABCD faster, however; you can use the data
register, rather than the memory form, of ABCD. This would triple the
speed of the ABCDs by reducing the required cycles from 18 cycles down
to 6. We would need 10 data registers to do this (five for the temporary
accumulator, five for the subtotal accumulator), there are only 8 in the
system. That seems to kill the idea. It would take as long to move data in
and out of temporary memory storage as we would save by doing the
ABCDs in data registers.

However, SWAP instructions can flip two words in a data register and
take only four cycles. This makes it possible to speed up the routine
considerably. We can put the temporary accumulator in the low five words
of five data registers and the final accumulator in the high five words of
those same five data registers, but offset so that byte one of the temporary
accumulator is matched with byte 2 of the final accumulator. We must do
this so that we don't SWAP out the byte of the temporary accumulator

109 Sample Programs

when we SWAP in the byte of the final accumulator! Each doubling now
runs three times faster and even adding the temporary accumulator to the
final accumulator takes place in 1%sth of the time (8 cycles for double SWAP
plus 6 cycles for the ABCD versus 18 cycles with the old ABCD). The new
code looks like this:

; Convert hexadecimal to BCD

; Purpose: to convert a 4 byte hexadecimal number to Binary Coded Decimal

; Inputs: DO contains the hexadecimal number to be converted

; Outputs: D1, D2 contain the BCD number that is the equivalent

; Registers Used: CC is undefined at exit

code
HEX2BCD MOVEM.L DO/D3-D6, - (SP) ;save registers on the stack

;these 12 bytes on the stack will hold
;the final BCD result and the
;temp accumulator

MOVEQ #O,D1 ;initialize temp and final accum.
MOVEQ #O,D2
MOVEQ #O,D3
MOVEQ #1,D4
MOVEQ #O,D5

;now 6 bytes of FINALACC = 0, 6
;bytes of TEMPACC = 1

MOVE.L #15,D6 ;loop counter - 1 (16x thru loop)
CMPl.L #$FFFF,DO ;see if anything in high word
BLS HEXBLOOP ;if not, branch
MOVE.L #31,D6 ;loop counter - 1 (32x thru loop)

HEXBLOOP ASR.L #1,DO ;rightmost bit => C, X flags
BCC HEXBX2 ;just multiply by 2

;now you add the temp accumulator
;into the final accumulator
;this code will be executed, on
;average, 50% of the time

ANDI #$EF,CCR ;clear extend bit

110 Programming the 68000

SWAP 05 ;final accum is in the high words,
ABCD D4,D5 ;one accumulator offset from temp

;accum.
SWAP 05
SWAP 04
ABCD D3,D4
SWAP 04
SWAP 03
ABCD D2,D3
SWAP 03
SWAP 02
ABCD 01 ,D2
SWAP 02
SWAP 01
ABCD D5,D1
SWAP 01

HEXBX2 ABCD D4,D4 ;double the temporary accumulator
ABCD D3,D3
ABCD D2,D2
ABCD 01 ,D1
ABCD D5,D5
DBRA 06, HEXBLOOP ;loop until D2 = -1

;move final accumulator into D1 and
;D2 in proper locations

SWAP 01 ;move final result to low bytes of Dn
SWAP 02 ;but D3 is already in proper place
CLR.W 03 ;so don't swap 03, but zero low byte
CLR.W 04 ;clear temp accum in 04
SWAP 04
SWAP 05

MOVEQ #$FF,D6
AND.L D6,D1 ;blank out high 3 bytes of 01
AND.L D6,D2 ;same for D2
ROR.L #8,02 ;move low byte of D2 to high byte
OR.L D3,D2 ;and put into D2
ASL.L #8,04 ;move final byte to second byte

;position
OR.W D4,D2 ;put D4 byte into D2
MOVE.B D5,D2 ;put 05 byte into 02

MOVEM.L (SP)+ I DO/D3-D6 ;restore DO thru 06 from the stack
RTS

HEX2BCD

111 Sample Programs

In this code the ABCD - (A1),....:.. (A2) of the prior example have been
replaced with ABCD Dn,Dn which results in much faster code. The temp
accumulator is in the low bytes of each data register, the subtotal
accumulator is in the third byte of each data register. Th transfer the
subtotal accumulator to the low bytes of the data register we use the SWAP
command.

The new code will take about two milliseconds to do a 32-bit
convert-this is faster by a factor of three. Slightly more code is used to
achieve this effect but it's worth it in terms of speed. This example and the
string compare example show how it is often very worthwhile to consider
the design of a piece of code carefully before actually executing it.

But it turns out there is a way that is faster and more compact yet. That
way is to shift the bits out to the left rather than the right. The bit that is
shifted out is added into an accumulator as a carry just before the
accumulator is doubled. This method only uses one, rather than two
accumulators! You may have seen this method when you calculate the
value of a decimal number by taking a digit from the left of the number and
adding it to an accumulator then multiplying this accumulator by ten.

This hexadecimal to binary procedure is the same procedure, only in
binary rather than decimal. You calculate the value of a binary number by
taking a digit from the left of the number and adding it to an accumulator
then multiplying this accumulator by two. In the following code the main
loop is one ASL, which takes the digit from the left, followed by a series of
ABCDs, which multiplies the accumulator by two.

Convert hexadecimal to BCD

Purpose: to convert a 4 byte hexadecimal number to Binary Coded Decimal

Inputs: DO contains the hexadecimal number to be converted

Outputs: D1, D2 contain the BCD number that is the equivalent

Registers Used: CC is undefined at exit

~~~~~~~~~~~~~code~~~~~~~~~~~~~ 

MOVEM.L 
MOVEQ 
MOVEQ 
MOVEQ 
MOVEQ 

DO/D3-D6, - (SP) 
#O,D1 
#O,D2 
#O,D3 
#O,D4 

;save registers on the stack 
;initialize temp and final accum. 



HEXBLOOP 

112 Programming the 68000 

MOVEQ #O,D5 
;now 6 bytes of FINALACC = 0, 6 bytes 
;of TEMPACC = 1 

MOVE.L #31,D6 ;loop counter - 1 (32x thru loop) 
CMPl.L #$FFFF,DO ;see if anything in high word 
BHI HEXBLOOP ;if is, branch 
MOVE.L #15,D6 ;loop counter - 1 (16x thru loop) 
SWAP DO ;move low to high word since bits out 

;left side 

ASL.L #1,DO ;leftmost bit = > C, X flags 
ABCD D5,D5 ;double the accumulator 
ABCD D4,D4 ;adding in 1 if the leftmost bit was 1 
ABCD D3,D3 ;prior to the ASL. L 
ABCD D2,D2 
ABCD D1 ,D1 
DBRA D6,HEXBLOOP ;loop until D6 = -1 

;move final accumulator into D1 and D2 
;in proper locations 

SWAP D3 ;put byte in low byte of high word 
ROR.L #8,D2 ;move low byte of D2 to fourth byte of D2 
OR.L D3,D2 ;and put D3 byte into third byte of D2 
ASL.L #8,D4 ;move D4 byte to second byte position 
OR.W D4,D2 ;put D4 byte into D2 
OR.B D5,D2 ;put D5 byte into first byte of D2 

MOVEM.L (SP)+, DO/D3-D6 ;restore DO, D3 thru D6 from the stack 
RTS 

Try working through this method with a couple of small binary 
numbers. This third method results in faster and more compact code than 
any of the other methods; this code takes about one millisecond for a 32-
bit conversion. The reason we give three different methods of achieving the 
same result is so that you can see how important thinking through the 
design of a program can be. The third method is simple, elegant, fast, and 
compact since it has the best design. By comparison the first design looks 
very clumsy. These three programs also give you a sense of how to think 
when programming in assembler. 

The next series of code segments are adapted from the program 
SimpleCalc, a spreadsheet program that is restricted to integer values. 
SimpleCalc will be described in complete detail later, in Chapter 9. 



113 Sample Programs 

The routine DoEvent and its subroutine MouseDown represent two 
different ways of creating a multiway branch in assembler. A multiway 
branch is like a case statement in Pascal or C; in BASIC an ON ... GOTO 
statement is equivalent. 

Do:Everft~~ -- .. 1, •1 : .. " .. ·L.'." .. :'"''"\~,':-.f·~·} 1 .· :;,.,. . 

. .. • ~MO\ii~ \ · ~ha~iQO: : : · . . • : :~ ' · .. 
:CMBI::: ··#rnlSUlDWt)~~~·;~o··. ·· 
o.BEO· ,, ,~"M;,~S$0lJWQ < .. ; "··' ~"~~ ·~ 

. ~:' :e~~=~~r1~';~~~t/< 
CM'P:t. :· · #a\lfo~eyE;vt,Qf>· :.J> 

.· BEo:rrr.::Keycy'.QW.0. ::::io···~w··•1~·····. 
CtvtBt :,#iJ.(!~~tEVt;·DQ· .. , 
•BEQf: . ·Upbate. . ... i 
. GMBl> .. #aottvatej\tt/DO' · • ·~ea 1: 1:~kiati~at~~ =' r\., ; '.'· .. 
CMJn . Jt:abortEvt.DQ: .·· · ..• · 

·. BE&. : ,;;;:ijt(ft' •:::··::. '· .. ·: :.: •.. 
Nµt1Ev~nt . : , •. , :;kt ;r 

. tMOVE ' .• 1)'6:,rc.QQft:•:, 
fl.JS.; • > 

"' '"'• '"· • • :" ,., l :.(>)/~,:4·~',·j,~~~~,:; , --;:. i-,,.~ %/~ ,__ 7 

M ·. seDo n ··.· .··· ·:· · ~;'~" •. ;.•.yc'•t.'.1)it: ..• ;;t' 
. o~: •. ·.~·~.~·~ .. ·~;.~.f~ef. ?•,·• .. ·~>.~:;~·· F · 

fillO'tE;t.:W~re, . ..., (~~) < 

PEA EvtWind . . 
-'Y,_, - · ~; i ~;·fln7d\'f,frf'iJQW<,,; 

·Mave' "(S;P~A:fb:C); . . . . .· 
ASk.•w·· 0 . #n:>o • . n 

.. · M0~~·' ;Ntlnd~w:rabl~(ll;&J,lli• • 
... ·JMP''•'>:'wiMQwil\fJ.l!JflJ'Q}.=i/······ 

~~tt.~~~~!?~t~~.;~JV~~~•.6·.;,N: •.. 
: .; ~)!!!7J~I~~~~;~~:f .' .... · . 

DC,:W NullE\~ent~Window'fah!, ;I~ 'D!IS~ .• : 
oc~w 1n:Menu~Wtndow1"a11ae· :· ./ ;tn + •.·••• •• 

.. ·oc. w. sys~ltl~ve.nt:-Wlnd°'wratifa.···fs·s 
nc:·w · ·gont&nt~w1ndbV(tali1~ · · 

· 'ire:i · • n~j~~·W'fndowTa:bJe .• 
. ,.gf)l.~··: · 'Nuf1EiV.ant~WJn: ' .. ·· 
;·~-Ov:tt\li ~1 ~U:~9~~~i~WJf1!" 



114 Programming the 68000 

In DoEvent, ''What" holds an integer which describes an "event!' The 
computer operator has just pressed a key or the mouse and the program 
must respond to it. ''What" will be used to decide which way to branch. 
Since a CMPI instruction can't use a PC-relative address (which is what 
"\'Vhat" is) we move "\'Vhat" to data register zero. 

After moving ''What" to DO there are a series of compare immediate 
instructions followed by branches on equal. These pairs of instructions say 
(using the first pairs as an example), "Is it an mButDwnEvt? If so go to the 
MouseDown routine. If not, is it a keyDwnEvt? If so go to KeyDown to 
handle it:' If the subroutine DoEvent doesn't find any event worth a 
response, it "falls through" to the NullEvent label and returns to the loop 
that called it. 

The Mousedown subroutine has a different way of branching to 
various routines which will handle the various types of mouse events. You 
can use this mode of branching when there is a function which returns 
consecutive integers starting at zero or one. This routine contains the first 
system macro you have seen in this book, _Find Wmdow. For now, a 
system macro generates an $A-style trap (see unimplemented instructions 
at the end of Chapter 3, the 68000 Instruction Set Chapter) which operates 
just like any other subroutine. 

-Find Wmdow is passed information on the stack telling it where the 
mouse pointer was (on the screen) when the event occurred and in which 
window the event occurred. The two lines of code, MOVE.L \'Vhere,-(SP) 
and PEA EvtWmd, push these values on the stack. _Find Wmdow then 
magically returns with a word on the stack which encodes in which 
window and in which part . of that window the event occurred. We say 
magically because -Find Wmdow is a subroutine in the ToolBox ROM 
and we don't need to know how it performs its function; it's another "black 
box:' 

The MOVE (SP) +,DO i.1'\struction that follows this _Find Wmdow 
routine pulls the information encoding which window the mouse pointer 
is located off the stack and places it in register DO. The ASL instruction that 
follows shifts the data left by one bit effectively doubling the number in DO. 
This is necessary since each entry in the table that follows has· two bytes 
per entry. These two instructions need study since they take values out of 
the table and jump to the appropriate place based on which part of the 
window was clicked into by the mouse: 

M.OVE WindowTable(DO),DO ; Get offset from table 
JMP WindowTable(DO) ; Call subroutine 

The two lines of code above taken from MouseDown subroutine 
involve PC relative addressing with displacement. You can tell since the 
register in parentheses is a data register and not an address register. The 
calculation of what gets moved to DO in the first line of code can be figured 
out as follows: 



115 Sample Programs 

This previous MOVE line from the example above is equivalent to 

MOVE Windowtable- * + 2(PC,DO),DO 

where "*" means the current program counter at the start of this 
instruction relative to the start of this module (the assembler figures this 
out). So "Windowtable - *" means the assembler calculates how far from 
the start of this instruction to the start of Windowtable. To this value we 
add the program counter (PC) at this point in the code which means that 
the instruction is now pointing to the start of Windowtable in memory (the 
+ 2 is added since the PC is pointing two bytes after the start of the 
instruction). Tu the start of Windowtable in memory, we add DO which 
contains the offset within the table of the data. So now the effective address 
of the left hand side of the MOVE is pointing at the data in the table we 
want. "Now move the data in the table to DO," says the MOVE instruction. 

You can also think of Windowtable(DO) as "add DO to the location of 
Windowtable when the program is run:' So the above MOVE statement 
becomes "add the offset of the data we want to the address of Windowtable 
to get the location of the data in which we are interested; MOVE that data 
to Do:• 

The JMP Windowtable(DO) instruction takes the location of the start of 
Windowtable in memory (Wmdowtable - * + 2 + PC) and to this adds the 
data we pulled from the table which is the relative offset of the routine 
from the start of Windowtable (DC.W <routine>-Windowtable). The net 
result of this is the jump instruction is pointing to the routine in memory. 
Jump there! Now wasn't that simple! (Ifit wasn't simple-you might read the 
code until you feel familiar with how the code performs.) 

The next routine is also from SimpleCalc. This part of the program 
handles a key stroke entered by the user. There are also four routines to 
add, subtract, multiply, and divide which are involved with Keystroke and 
which are interesting by themselves. 

Keystroke ;User pressed a key 
MOVE.L Message,D2;Get character record 

;Vector to operation or put digit in cell value 
# '0',02 
NotDigit ;~ot .a digit 
# '~',D2 . 
DigiKey. 

OperVect 
Bad Key 

;Check.table for operation 
;Check operation table for key 
;Ignore keystroke if not in table 



116 Programming the 68000 

JMP 
Bad Key 

RTS 

(AO) 

;Save address of operation. Store operation 
;in program. Then perform it. 
;go to address of operation 

;Not in table so ignore key 

The character typed at the keyboard is inside "Message" as the low 
byte; this byte is next moved to DZ. This character is tested by CMPis 
(CoMPare Immediates) to see if it falls between O and 9. If the character is 
not numeric it falls through or branches to NotDigit. If it is numeric the 
program branches to DigiKey, short for "digit keyed." 

In the NotDigit routine the first line does a Branch SubRoutine (BSR) 
to OperVect which runs through a list of operations and returns the 
address of the routine which will perform that operation. The zero flag 
tells whether an operation was found. 

The following code takes the character typed at the keyboard and 
returns the location of the routine which will handle that character. 

OperVect 
;Return vector to 

INPUT 
OUTPUT 

operation from table 
D2 = Character to match 
D2 = Character matched 

Z flag - > character not found 

LEA Opertable,AO 
OpVecLoop 

CMP.B (AO),D2 
BNE NextEntry 

MOVE.W 2(AO),DO 
LEA Opertable(DO),AO 

RTS 
NextEntry 

TST.L 
BNE 
RTS 

(AO)+ 
OpVecLoop 

;Compare key stroke to table 

;Found It 
;Vector to operation 
;Actually LER 
;Optable- *(PC,DO) 
;Return NZ 

;Check for end of table & 
;advance pointer 

;Not found. Return Z flag set 



117 Sample Programs 

OperTab~e 

4 bytes per entry 

DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 

byte 1 = ascii value of key 
byte 2 not used 
bytes 3&4 offset 

'+' 
AddOper-OperTable 
' ' -
SubOper-OperTable 
'*' 
MulOper-OprTable 
'/' 
DivOper-OperTable . . 
= 

EqOper-OperTable 
$0300 [Enter] key 
Enter-OperTable 
$0800 [Backspace] 
Clear-OperTable 

key 

DC $1BOO [Clear] on 10-key pad 
DC Clear-OperTable 
DC.L 0 End of table 

Oper\.ect looks through the OperTable to see if the operation is there. 
The OperTable is a series of 4-byte entries: the first byte has the ASCII value 
of the operation which is compared to the key stroke entered. The second 
byte is unused. The third and fourth bytes have the offset to the routine 
that performs the operation in the same format as we have seen before in 
WindowTable. 

OpVecLoop starts with LEA OperTable,AO which moves the address of 
OperTuble at the time the program is run into AO. CMP.B (AO),D2 compares 
the key stroke in D2 to the byte pointed to by AO, which points to the first 
byte of an entry in OperTable. 

If DZ and AO are unequal a branch to NextEntry is performed. In 
NextEntry the entire OperTable entry is TeSTed for zero which indicates 
the end of the table and AO is simultaneously bumped to the next entry in 
the table. If the address in AO is not the last entl)\ the program loops back 
via BNE OpVecLoop to the start of the loop. If this is the last entry then the 
zero flag is set and RTS brings the program back to the routine that called 
OperVect; the zero flag tells that routine no match was found. 



118 Programming the 68000 

If the CMP.B (AO),D2 compares equal then we have found a match for 
the key stroke in the table. We move the word that is offset by 2 from the 
start of the entiy to DO (MOVE.W 2(AO),DO); this is the offset to the 
subroutine which will perform the operation. We then do an LEA 
Opertable(DO),AO which we recognize as a PC relative with displacement 
since the register in parenthesis is a data register. This statement means 
take the address of Oper'Tuble at the time the program is run-add it to DO 
which contains the offset from Oper'Thble to the routine in question. This 
results in the address of the routine called at the time the program is run 
and moves it to AO. Since the last instruction that changed the zero flag 
was a MOVE.W of a non-zero value the RTS which exits the subroutine has 
the zero flag cleared signalling that an entiy was found, exiting the 
Oper\ect subroutine. 

Upon return from the subroutine the zero flag is checked by BEQ 
BadKey which branches to BadKey if the zero flag is set. BadKey simply 
returns from the KeyStroke subroutine with an RTS and so does nothing 
with the keystroke. If the keystroke represents an operation recognized by 
Oper\ect then the BEQ BadKey is not taken; instead JMP (AO) jumps the 
program to the selected subroutine using the address in AO . 

. OigitKey 
; Digit typed In 02. 

MOVEQ #SOF,00 
ANO.L 00,02 
MOVEQ #10,01 
MULS (A3)Jl1 
BPL OigiAdd 
NEG.L 02 

OigiAdd 
ADO .. L 02,01 

· MOVE 01 ,(A3) 

LSR.L 00,01 
AOOQ.W #1,01 
BEQ OigiOK 
SUBQ.W #01 
BEQ OigiOK 

CLR.W (A3) 
OigiOK 

RTS 

Add it onto. ;~nd of number in (A3) 

; Clear upper nibble & junk 
; number base 
; Current value times 1 O 
; Is the cell number negative? 
; then i~~!ement is negative too 

; plus·. ke~. stroke 
; Save. var!ie · .· · · 
; · noW.·t6e~l(·;fpr:'o·verf low 
: blts';t5:•:tlfrobgh 30 roust be. the<same 
: shift ctowif.'.15 · .. bits · · 

;OK positive number 

; OK negative number 
; overflow; clear to zero and start over 



119 Sample Programs 

Digikey uses the algorithm we mentioned earlier when talking about 
mulitiplying an accumulator by ten before adding the next leftmost digit. 
Since digits will be entered from left to right this is the algorithm that must 
be used. First, we use a mask and move it to DO to clear the high nybble of a 
byte. When we AND.L this mask with DZ, which contains the digit entered, 
we have the binary value of the digit. Then we multiply the current value, 
addressed by A3, by ten and place the result in Ill. If the number is 
negative, then we must add a negative digit so we NEG.L DZ. Finally we add 
the digit into the accumulator in Ill. Then we move the accumulator, Ill, 
back to the current value, addressed by A3. 

Next the program checks for overflow, which occurs when the number 
can't be contained in two bytes. We shift all the bits in Ill, the accumulator, 
right 15 bits and replicate the high bit as we shift (DO contains $OF) so the 
highest bit of the number is now in the lowest bit and any overflow bits are 
now in the next to lowest bit and up. If the number was negative, all the bits 
should be one bits if there was no overflow. When we add one the result 
should be zero. If the number was a positive number all the bits should be 
zero if there was no overflow. When we subtract one to counteract the one 
we just added, the result should be all zeros. If it is, we branch to DigiOK, 
and return from the subprogram; the number didn't overflow the register. 
If there is overflow, we clear the number, in (A3), to zero and return from 
the subprogram. 

Four sample operations: add (AddOper), subtract (SubOper), multiply 
(MulOper), and divide (DivOper) are included in this chapter so that you 
can see how these operations actually look in some sample code. 

AddOper 
Add the selected cell into the accumulator 

MOVE.W (A3),DO 
ADD.W DO,(A6) 
RTS 

SubOper 
Subtract the selected cell from the accumulator 

MOVE. W (A3), DO 
SUB.W DO,(A6) 
RTS 

MulOper 
Multiply the accumulator by the selected cell 

MOVE.W (A3),DO 
MULS (A6),DO 
MOVE.W DO,(A6) 
RTS 



120 Programming the 68000 

DivOper 
Divide the accumulator by the selected cell 

MOVE.W (A6),D1 
EXT.L D1 
MOVE.W (A3),DO 
BEQ DivErr 
DIVS DO,D1 
MOVE.W D1 ,(A6) 
RTS 

DivErr 
SWAP D1 
EORl.W #$7FFF,D1 
MOVE. W D1, (A6) 
RTS 

; Divide by zero 
; Return largest magnitude possible 

The four operations take place using the selected cell, pointed to by 
A3, and an accumulator, pointed to by A6. The code is straightforward 
enough for add, subtract, and multiply that you should be able to examine 
them yourself to see what they do. Let's take a closer look at the division 
routine, however. 

DivOper moves the accumulator value to m. It then extends the word 
in m into a long word. MOVE.W (A3),DO moves the selected cell value to DO. 
If the selected cell is zero, that's an error; a BEQ DivEIT catches that error. If 
the selected cell is not zero we do the division. DIVS DO,m divides DO, the 
selected cell value, into m, the accumulator value, and places the result in 
m. This result is then moved back to the accumulator itself with MOVE.W 
m,(A6). 

~~-----S-um __ m_ary __________________________________ __ 

This completes the ~pies, cllapter. You've now qad a chance to . 
examine the·w0rkings of ~igai rQQtines as you·Drlght program theni 
in 68000 assembly language. ~enibly language mutines are most 
often made up of lll8Ily;sm,aU intricate .steps, and we hope the 
examples have given ;YQ'g ~ cll~ce fo think thrOugh s~ral ml!tines 
before you begin:· co11s~~~llo~ own.' The n~ Chapter ori the 
68000 hardware 9escrit>e~' wlfat jiou, . as a. programmer, .pf!ed 'to 
understand about the <::en,~;Processing Unit of the Macintosh. 



CHAPTER 

~[!]------
A Prograllllllers 
Overvieur of the 68000 
Hardurare 

A computer may appear quite different to a programmer than a 
hardware engineer. Figure 5-1, the Programmer's Block Diagram, shows the 
68000 chip from a programmer's point of view. From a hardware perspec
tive, we would be concerned with the physical size of data pathways, the 
electrical polarity of signals and the actual sequence of events. The 
programmer sees the data structures, logical meaning of signals and the 
logical sequence of events. We are going to examine the 68000 from the 
programmer's point of view. 

As you remember from Chapter 1, there are 16 general purpose 
registers in the 68000. Eight of these are Data registers, called DO through 
D7. The other eight are address registers, named AO through A7. The A7 
register is also the Stack Pointer. It behaves differently than the other 
Address registers. Both Address and Data registers are 32 bits wide. 
Although they can hold the same information, they cannot be used 
interchangeably. The dotted lines in Figure 5-1 divide the registers into 
addressable units. The Data registers can be addressed as 8, 16 or 32 bits. 
The address registers can only be addressed as 16 or 32 bits. 

All data going into or out of the CPU passes through one data path. 
This path varies in width depending on the instruction. Different forms of 
each instruction require a data path that is 8, 16 or 32 bits wide. During a 
two-address instruction, such as a MOVE, this one data path is used twice. 

The address bus tells where data is coming from or going to. The 
68000 provides an address every time data passes over the data path. The 
address will select either a location in memory or a physical device. It 
doesn't make any difference to the 68000 whether hardware or memory is 
at the address. The connections to external devices, such as the printer, 

121 



1.2.2 Programming the 68000 

long 

Word 

Byte 
I I 

31 16 15 8 1 0 

DO 
01 
02 
03 
04 
05 
06 
07 

31 16 15 e 1 0 

AO 
Al 
A2 
A3 
A4 
AS 
A6 

Stack Pointer 
A7 

Alternate Stack Pointer 
A7 

Program Counter 
PC 

Status Register 

SA 

System User 

Figure 5-1 Programmer's Block Diagram 

Data 
Bus 

Address 
Bus 



123 A Programmer's Overview of the 68000 

have memory addresses in the Macintosh. Reading or writing to that 
address actually causes the data to go out or come in over the connecting 
cable. This method of communicating with peripheral devices is called 
memory-mapped 1/0. 

Besides the Data and Address registers, there are two other important 
registers. The Program Counter points to each memory word of the 
program during execution. The Status register holds the state of interrupts, 
tracing and the arithmetic Condition Codes, such as Zero, Minus and 
Overflow. The Operating System can use the Alternate Stack pointer to keep 
its own stack in a separate location from the application stack. The 
Alternate Stack pointer (al~o called the User Stack Pointer or USP) won't be 
important to us. 

Detailed Look at Architecture 

Now let's take a closer look at the hardware which implements the 
programmer's world. Remember that we are still taking a software view
point, so don't try to design hardware based on this discussion. Figure 5-2 
shows the electrical connections of the 68000. 

Data Bus 
The sixteen line data bus forms the data path. All data going into or out of · 
the 68000 passes over the Data Bus. As mentioned before, the data path 
may be up to 32 bits wide. The Data Bus has to be used twice to transfer a 
long word (4 byte). The entire bus is used once to transfer a 16-bit (2-byte) 
word. Only one half of the bus is used for a byte-sized operation. 

The data bus is divided into upper and lower halves. Each byte of 
memory is connected to only one half. Data going to a byte with an even 
numbered address travels over the upper half of the data bus. Data going to 
an odd location travels over the lower half. The address of an even, uppel" 
half byte, is one less than the address of the corresponding location on the 
lower half. When an entire word is addressed, both halves are used 
simultaneously. 

During a sixteen-bit transfer, the lower half of the data bus transfers 
the least significant byte (LSB) of a word. This means bits valued from one 
to 127. The lines of the lower half are marked DO to D7 in Figure 5-2. These 
numbers correspond to the power of two that each line represents. The 
upper half transfers bits valued from 28 through 2'5 during a 16-bit data 
transfer. 

These lines are marked, quite logically, D8 to D15 in the figure. This 
convention makes it easy for hardware engineers to remember which bit 
each line represents. 



1.24 Programming the 68000 

UPPER DATA BUS 

e LOWER DATA BUS 

I ADDRESS BUS 

!OJ 
... 

«ll INTERRUPT 

«ll LL 
~ 

1..1.. 
~ 
1..1.. 

i: 
~ 

PROCESSOR STATUS 

L.._ 
~ 

_.. 
.. UOS-Upper 

=t- LOS-Lower 

08-015 J 
OD-07 

A1-A23 

=t- RIW-Read or 

Data Strobe 
Data Strobe 

Write 
Strobe 
Strobe 

_. AS - Address 
DTACK-Data 

Aolc now ledge 

16 BIT 
DATA BUS 

BUS 
CONTROL 

] IPLO-IPL3 INTERRUPT 

BR-B•Re 
+ BG-Bus Grant 

BGACK 

qunt ) 
-Bm Request 

Acknowledge 

BErr-e.. Err 

DMA
DIRECTED 
MEMORY 
ACCESS 

~ Restit-Progra 
=t- Halt-Single S 

Dr ) 
mmer's Su. CONTROL 
tap 

+ E-Slow Clock 
Memory Address l 6800 
erlpheral Address j INTERFACE 

=t- VMA-Valld 
VPA-Valld P 

Figure 5·2 Programmer's View of 68000 Electrical Connections 

The upper half of the data bus transfers the high-order bits during a 
word-length operation. This is why the signals are named 08 to 015. This 
half of the data bus is the only path to the even-numbered addresses. So 
during an eight-bit transfer to an even memory location, the upper half 
caITi.es the only byte of data. Assume for an example, that the word $1234 is 
being stored at location $100. The byte $12 goes over the upper half to 
address $000100, while $34 goes over the lower half to $000101. But if we 
store just the byte $12 to address $100 then the lower half is not used at all, 
and again the upper half caITi.es $12 to the even-numbered location. 



125 A Programmer's Overview of the 68000 

Address Bus 
The signal lines labeled Al through A23 in the figure are the address bus. 
The address bus selects the source or destination location of data moving 
over the data bus. Since the 68000 can address 16 megabytes(224) why are 
there only 23 address lines? The reason is the address bus addresses 16-bit 
words of memory, rather than bytes.~ When single bytes are addressed, the 
proper word is selected by the address bus, and the upper or lower byte of 
the data bus is used. Notice that the address lines are numbered from Al 
instead of AO. Llke the data bus lines, each address bus line is numbered to 
correspond to the bit it carries. The ''1" bit, meaning even or odd, would be 
AO. 

Bus Control Lines 
The bus control lines coordinate the 68000 signals with the external 
memory and hardware. These signals indicate what data is on the buses, 
when the data is available, and what it should be used for. Two of the lines, 
called UDS (Upper Data Strobe) and LDS (Lower Data Strobe), are important 
to understand the way the 68000 addresses memory. 

The Upper Data Strobe and Lower Data Strobe lines enable the upper 
and lower halves of the data bus respectively. These signals are marked 
UDS and LDS in the Pinout Figure 5-2 and in the Memory Selection circuit 
diagram in Figure 5-3. When LDS is on, it means that data is going to travel 
over the lower half of the bus. As mentioned above, and ~ visible in Figure 
5-3, this means an odd memory location will be selected. Conversely; when 
UDS is true, data will travel over the upper half to an even memory 
location. The 68000 can address two bytes at the same time, by using both 



126 Programming the 68000 

LOS 

RIW 

(8 UDS 

EVEN ODO 

I ADDRESSES ADDRESSES 
Chip Write Write Chip 
Enable Enable Enable Enable 

UPPER RAM LOWER RAM 

ID 
Data Address Address Data 

ID ~ ~-015 J 0 0 ·--o 

ID 
~ Al-1123 

~ 00-07 

M Delay 
/1-s Needed 

i.._ DTACK 
~ 

Figure 5-3 Memoiy Selection 

LDS and UDS, provided that both bytes are in the same word. Th access a 
word, we always use the even address, the address of the MSB. 

The Read/Write line (RJW) indicates whether the address is for input or 
output. In the Memoiy Selection circuit, we can see this line is used to tell 
the RAMs whether they should read or write. 

The Address Strobe line (AS) becomes true when the address bus is 
valid. The AS line approximates the OR function of LDS and UDS. Though 



12 7 A Programmer's Overview of the 68000 

the timing is a little different to help hardware designers account for 
circuit delays, we can think of AS as turning on whenever the LDS or the 
UDS is active. 

The Data Acknowledge input (DTACK) tells the 68000 that the memory 
or hardware is through with the data. By delaying DTACK for a few clock 
cycles, slow peripherals can slow down the 68000 to their own pace, while 
fast devices can go full speed ahead. 

Interrupt Requests 
The 3 interrupt lines (IPLO, IPLl, and IPL2) can make the 68000 vector to an 
interrupt routine. There can be seven different priorities of interrupt. Each 
of the seven encodes its value on IPLO through IPL2. Priority zero means 
there is no interrupt occurring. The 68000 will execute the interrupt if its 
priority is greater than a certain number, called the Interrupt Mask, in the 
Status Register. The highest level, priority seven, is always executed. The 
Programmer's Switch on th& Macintosh and the 10-Key Minus on the Lisa 
generate a Level 7 interrupt. If you press the Interrupt on the Programmer's 
Switch you will probably see a System Error ID= 13. If you have the "Inside 
Macintosh" manual from Apple, you can look up the meaning of the error. 
The meaning is "Spurious Interrupt:' 

DMAlines 
The Direct Memory Access lines (DMA) let the hardware read and write 
data directly from memory. The Disk controller uses them to access 
memory faster than it could by going through the 68000. Since the goal of 
DMA is to bypass the CPU, it is usually transparent to the application 
programmer. We won't talk about DMA in this book. But if you are curious 
about it you should see the TAS instruction in Chapter 3, The 68000 
Instruction Set. 

Control 
rhe control lines handle special situations, such as starting or restarting . 
the processor. You often see the effect of these signals when you are testing 
your program, although the end user of your code should not. The control 
lines indicate programming errors and can restart the program after it 
crashes. 

The Bus Error, BErr line, says something is wrong with the location 
selected by the address bus. The hardware uses this line to indicate 
trouble, instead of the DTACK line used when the memory cycle is 
complete. A bus error means you have gone into locations you should not 
be using. 

The Halt line stops the processor. It can be used to single-step the 
processor if it is connected to the right hardware. The halt line cannot be 
used to single-step the 68000 in Macintosh, however, because it is 
connected directly to the Reset line, which is discussed next. 



1.28 Programming the 68000 

The Reset line restarts the system. It is connected to the peripherals 
as well as the 68000. The Reset connection is a type of two-way signal, 
called "Open Drain:' The RESET instruction from the 68000 activates the 
Reset line to reset the peripherals. But a signal on the Reset line which the 
68000 did not generate causes the 68000 to restart, as well as resetting any 
peripherals connected to the line. Once reset, the 68000 begins executing 
the boot code all over again. It starts from the boot address at memory 
location zero, which it used when the system was first turned on. The 
Programmer's Switch on the Macintosh can activate the Reset line. You can 
do the same thing by turning the power off and on. 

State Lines 
The three state lines indicate the type of memory cycle going on. They are 
not important to application programming on the Macintosh. But an 
explanation of these signals provides some extra insight to the 68000. 

The FCO and FC1 state lines indicate whether the address on the 
address bus applies to program code or data. When the 68000 is fetching 
the words of an instruction to execute, the FC1 line is on. Whenever the 
68000 is reading or writing data, the FCO line is on. Both lines are on while 
an interrupt i~ being acknowledged. 

The hardware could use these signals to keep the program code 
separate from the data space. A common organization of memory requires 
them to be separate. The Macintosh does not do this, however. For good or 
bad the application can have code and data intermixed in memory! 

When the operating system code is executing, the 68000 can be placed 
in Supervisory mode. Then the code can use the privileged instructions, to 
control interrupts and peripheral devices. The privileged instructions are 
described in Chapter 3 (The 68000 Instruction Set). Reserving these 
instructions for the operating system keeps the application code from 
affecting things it should not be allowed to change. But what if the system 
designer needs to keep the application from accessing certain memory 
locations? To do this, the designer needs a hardware signal that the 68000 
is in Supervisory mode. The FC2 line provides this signal. When the 68000 
is in Supervisory mode, FC2 is true whenever memory is accessed. 

Those are the functions of the State lines. But remember we said they 
were not important to us? The FCO and FC1 signals are not important 
because the Macintosh allows intermixing data and code. The FC2 signal is 
not used because the Macintosh is always in Supervisory mode! That is 
why the Alternate Stack Pointer is unimportant. And why, as we shall see, 
an incorrect assembly language program can wipe out the entire Operat
ing System. 

6800 Interface lines 
The 6800 Interface lines are of little concern to the application program
mer of the Macintosh, but they are used by the ToolBox ROM routines. 



129 A Programmer's Overview of the 68000 

These lines let the 68000 be used with older, 8-bit, peripheral chips, that 
were designed originally for use with a 6800 processor. Most of the 8-bit 
devices are also slower than the 68000 so a special clock line, designated E, 
is part of the 6800 Interface. The clock signal on the_ E line is Yio the speed of 
the 68000 clock! 

Many 16-bit systems will use some 8-bit devices. The Macintosh is no 
exception. The 6522 Versatile Interface Adapter and the 8530 Serial 
Communications Controller in the Macintosh are both 8-bit devices. The 
examples in this book always go through the TuolBox routines in the ROM 
to access these devices. But System Programmers who have to write 
routines to interface 8-bit chips have a special instruction at their disposal! 
The MOVEP instruction, described in CJ:iapter 3 (The 68000 Instruction Set) 
helps them assemble the 8-bit data into 16-bit memory words. 

How Does It Do All of That? 

Now we have a general overview of the 68000 hardware. A brieflook at the 
number and complexity of the instructions makes one wonder. How can so 
many parts be interconnected to perform so many different tasks? The 
answer does not show up on our Programmer's Block Diagram because it 
is not within the programmer's control. The control circuitry of the 68000 
is implemented with micro-code. 

The micro-code implements each 68000 instruction. The control 
circuitry which executes the micro-code is like a tiny, primitive CPU within 
the 68000. Executing a 68000 instruction causes a short program to run in 
the control circuitry. Running this program has the actual effect of the 
68000 mstruction. Micro-code is written in an assembly language of its 
own. The language is unique to the 6~000, as in every other type of micro
coded processor. Micro-code instructions control the CPU at the very 
lowest level. They open and close gates or switches within the CPU to 
connect the different parts in different arrangements. It is here that 
hardware and software are one. Since you cannot program the micro-code 
built into the 68000 in- the Macintosh, we won't say anything more about it 
in this book. 

Summary 

Now that you have ciJJi~futed this chapter you'. 
understanding of 68000>a5,se~bler instructions and th~ .. <. _· .•• 

the Macintosh. The next·c~pter introduces you to tlii:S'~osh 
Tuols: the assemblers, linkers, and resource compilers. ••.·o · ··· · · · · 



CHAPTER 

~~----
Macintosh Tuols 

This chapter explains the various tools available to the assembly 
language programmer on the Macintosh. Here we describe the assembler 
in fine detail: how to set aside data areas, segment your programs, and use 
the powerful macros and conditional assembly which makes assembly 
language unique. The resource compiler will also be described in detail, 
each one of the 12 types of resources allowed by the 68000 Macintosh 
development system will be shown and examples given of each. Finally, 
EXEC files will be examined so the series of steps necessary in a cycle of 
assemble/debug/assemble/debug is made quicker and easier. 

Keep in mind that this is not meant to be a comprehensive description 
of the 68000 development system but rather a supplement that ties in 
concepts developed elsewhere in this book with a typical development 
system. The documentation that comes with the development system tells 
how the system works-here we try to tell why the system has certain 
features, how these features connect with other features, and why those 
features were included in the system. In other words, we try to make the 
system comprehensible to every assembly language programmer. 

The Mac and Lisa Assemblers 

This section describes how to handle data and memory with two different 
Assemblers. It includes dividing your large programs into smaller sections 
called segments. Some parts of the discussion are written twice-once for 
each assembler. If you are using only the Lisa Workshop, or only the 
Macintosh 68000 Development System you may want to skip the instruc
tions for the other system. If so, just look ahead to the appropriate section 
heading. 

131 



13.2 Programming the 68000 

You can create data space in two places in memory when you are 
coding in assembly language. You can define constant data right in the 
code of your program, or you can allocate space from the Global Data Area. 
The Global Data Area is a place in memory that is accessed off the A5 
register; data that is shared "globally" between segments and programs is 
accessed here. \i\lhen data appears in your code, do not modify it. It will 
not be very convenient to access. The data may even revert unexpectedly to 
its initial value if your program uses segmentation! 

Macintosh Assembler Data Directives 
You can create data within your program by using the "DC" (Define 
Constant) instructions. 

DC instructions: 

[laben DC.B value [,value] .. . 
[laben DC.W value [,value] .. . 
[laben D c value [,value] ... 
[labe~ DC. L value [,value] ... 

The DC creates constants at the current location in the code. Multiple 
values are separated by commas. The DC.W instruction creates one or 
several words. Each word is a two-byte integer with the value defined in 
the instruction. The DC.B and DC.L instructions are similar, but they 
create one- and foul'-byte values respectively. If you use "DC" without a 
length suffix, it is taken to mean "DC.W:' You can use strings in the DC 
commands by putting characters between single quotes: 

DC 'String in DC.W instruction' 

Here is another example of DC: 

Mylabel DC.W $10E,20 

This would create four bytes of data inside the program as follows: 
$010E0014 

DCB (Define Constant Byte) instructions: 

[labe~ DCB . B length, value 
[laben DCB. W length, value 
[labe~ DCB length, value 
[laben DCB. L length, value 

The "DCB" instruction creates areas in your code, filled with constant 
values. The "length" is the number of bytes, words or long words to create 
and fill. The "value" is an expression for the number of proper length, that 
is used to fill the area. If just "DCB" is used, the instruction defaults to 



133 Macintosh Tuols 

"DCB.w:• Since we do not recommend that you modify data mixed in with 
the code, you may not use the "DCB" instruction very often. 

DS (Define Storage) directives: 

[labe~ D S. B length 
[labe~ D S. W length 
[labe~ OS length 
[labe~ D S. L length 

You can create data space within the Global Data Area by using the 
"DS" directives. The "length" refers to the number of bytes, words or long 
words of space allocated. If no suffix is used, DS.W is assumed. You access 
space created by a DS instruction relative to address register A5. The label 
will evaluate as the distance from A5 to the space assigned to that variable. 
\Vhen your program starts up, AS will be set to point to the Global Data 
Area. The label on the DS instruction becomes the offset for a Register 
Indirect with Displacement addressing mode. Although this offset may be 
a negative number, successive DS instructions allocate successive ad
dresses in the code. In the example below, the word SHORT and the first 
two-bytes of the long word, LONG, are set to 0: 

SHORT 
LONG 
CLR.L 

DS.W 1 
DS.L 1 
SHORT(A5) 

; two-bytes in Global Area 
; four-bytes in Global Area 
; clear SHORT and part of LONG 

The Global Pointer, A5, is used by calls to the TuolBox. It is also used 
for the Jump Thble that communicates between segments. Even if you do 
not use the DS instructions, leave A5 intact! 

\Vhen you use DS, DC and DCB commands, the data may be 
automatically aligned. If the command is word or long-word sized, the first 
byte of the data will be on an even address, a word boundary. An extra zero 
byte will be added before the data if the address was an odd location. The 
label of the command will always point to the first data word. If you use 
multiple strings in a DC.W, and some of them have an odd total length, the 
assembler will insert zeroes between your strings to make each one start 
on a word boundary! Byte-width commands do no alignment. They only 
create the actual length you declare. 

String literals can be used in LEA and PEA instructions. They are 
designed to duplicate the Pascal format. This is a byte of length, followed 
by the data. The length byte is always on a word boundary. The string data 
will be placed at the end.ofthe code. Normally, a string literal will create a 
structure suitable for passing to the Pascal-like interfaces of the ToolBox. 
This instruction, 

PEA '123' 

is equivalent to these three instructions: 



134 Programming the 68000 

PEA String 

String DC.B 
DC.B 

3 
$31,$32,$33 

;3 bytes of data 
;ASCII for "123" 

Be sure you don't confuse the Pascal literal strings with immediate 
mode integers expressed as characters in quotes. Thus, 

MOVE.L # 'ABCD',DO 

is exactly the same as: 

MOVE.L #$41424344,DO 

If you write, 

LEA 'ABCD',AO 
MOVE.L (AO),DO 

you will not get the same effect at all. The latter instructions will leave DO 
containing $03414243 instead of the desired string, and will leave a copy of 
the string at the end of the code. 

A string in a DC instruction does not normally generate a Pascal string 
structure. The default form of strings in DC instructions is simply the ASCII 
values of the characters in the string. You can, however, change the string 
format for both types of string. You use the STRING_FORMAT directive to 
do this. 

STRING_FURMAT directive: 

STRING_FORMAT value 

This sets the format for literal strings and strings in DC commands. 
The "value" determines the effect. The literal string formats can be set to 
end the string with a zero byte and not to have any length byte. The DC 
instructions can be set to generate the Pascal type of string. The three 
formats for a string look like this: 

Pascal DC.B $03,$41,$42,$43 ;String or literal "ABC" with length byte 
ASCII DC.B $41,$42,$43 ;String "ABC" in simple ASCII 
CString DC.B $41,$42,$43,$00 ;Literal "ABC" ends with a zero 

The "value" determines the formats for both types of string according 
to the table below: 

VALUE LITERAL STRINGS 

0 
1 
z 
3 

Ends with zero byte 
Starts with length byte 
Ends with zero byte 
Starts wtih length byte 

DC STRINGS 

ASCII only 
ASCII only 
Starts with length byte 
Starts with length byte 



135 Macintosh Tuols 

EQU instruction: 

label EQU value 

The EQU instruction creates a label equal to a certain constant or to a 
certain address in the code. The ''value" is an expression for this address or 
number. 

SET instruction: 

label SET value 

The SET instruction sets the value of a label to a constant or an 
address. The ''value" is an expression for this address or number. Unlike 
the EQU instruction, SET can be used on the same label more than once. 
All code assembled between two SET instructions for the same label, uses 
the value the preceding instruction assigned. 

Lisa Assembler Data Directives 
.BYI'E instruction: 

[label] . BYTE value[, value] ... 

The .BITE instruction creates bytes of data in your code. Each value 
must be an integer between -128 and 255, inclusive. The negative values 
are in two's-complement format. Therefore, minus one creates $FF. Nega
tive 128 is the same as positive 128. You can use any number of values on a 
line but separate them by commas . 

• WORD instruction: 

[label] .WORD value[,value] ... 

The .WORD instruction creates two-byte words of data in your code. A 
value must be an integer between - 32768 and 65535. The negative values 
are in two's-complement format. You can use any number ofvalues·on a 
line but separate them by commas. The .WORD instruction must begin on 
a word boundary (an even-numbered address). Every value will occupy 
two bytes of memory, so the instruction always ends on a word boundary. 
The odd-numbered address will contain the LSB. The label is the even
numbered address of the MSB . 

• LONG instruction: 

[labe~ . LONG value[, value] ... 

The .LONG instruction creates fou~byte long words of data in your 
code. A value can be any integer. The assembler does arithmetic with long
word values. You can use any number of values on a line. Separate them by 
commas. The LONG instruction may begin on any word boundary (and 



Alignment 

136 Programming the 68000 

even-numbered address). Every value will occupy four bytes of memory, so 
the instruction always ends on a word boundary. The "label" is the address 
of the most significant byte. This is the lowest numbered address used by 
the instruction . 

.ASCII instruction: 

(label] .ASCII string 

The ASCII instruction creates a string of data characters in your code. 
The string must be delimited by single or double quotes. A double quote 
may appear within a string delimited by single quotes and vice versa. The 
characters are expressed as one byte ASCII values. The following ASCII 
instruction, 

String .ASCII "ABC's" 

is the same as this .BYTE instruction: 

String .BYTE $41,$42,$43,$27,$73 
; characters above = A B C ' s 

.BLOCK instruction: 

(label] . BLOCK length, value 

The .BLOCK instruction creates areas in your code, filled with 
constant values. The length is the number of bytes to create and fill. The 
value is an expression for a number between -128 and 255 inclusive that is 
used to fill the area. Since we do not recommend that you modify data that 
is mixed in with the code, you may not use the ".BLOCK" instruction very 
often . 

• EQU instruction: 

label . E Q U value 

The .EQU instruction creates a label equal to a certain constant or to a 
certain address in the code. The value is an expression for this address or 
number. 

In 68000 Assembly language, instructions always have to start on word 
boundaries. Data handled as 2-byte words or 4-byte long words must also 
align with a even-address boundary. Both the assembler for the Macintosh 
and the assembler for the Lisa provide the same directive to help you 
realign after defining byte-wide data. 



Segmentation 

137 Macintosh Tuols 

.ALIGN directive: 

.ALIGN boundary 

You can adjust the address counter to a word boundary with the 
ALIGN directive. The next instruction will start on an address evenly 
divisible by the boundary. For example, 

.ALIGN 2 

means the next instruction starts on an even-address word boundary. If 
you use, 

.ALIGN 4 

the next address will be divisible by four. A typical use of this instruction is 
after data is placed within the program if the data could terminate on an 
odd boundary. 

Long programs can be divided into segments. You can assemble one 
segment at a time,· then connect them all with the Link.er. If you are linking 
Pascal with Assembly language, you have at least two segments: one for 
Pascal code and the other for Assembly language. Tu connect code 
between the segments, you need to use special directives. These directives 
define entry points which can be called from a segment other than the 
segment the called routine is in. 

Macintosh Assembler Segment Directives 
XDEF directive: 

XDEF label[ ,label] ... 

Use the XDEF directive to define an entry point for another segment, 
created by another assembly. A label must be an address which is defined 
in the current segment. The other segment will then be able to call that 
address, if it contains a matching XREF directive. The XREF directive is 
described below. You can put as many labels as you want in one XDEF 
directive separating them with commas. Any number of XDEF directives 
are allowed in the segment. You can put in a few extra XDEF directives to 
define variables for debugging. The Debugger can display addresses 
symbolically if they are external entry points. 

XREF directive: 

XREF label[,labe~ ... 



138 Programming the 68000 

Use the XREF directive to access an entty point in another segment. A 
label must be an address which is defined in a matching XDEF directive in 
one other segment. You can put as many labels as you want in each XREF 
directive, separating them with commas. The XREF directives will usually 
appear before any executable code in the procedure. 

The XREF directive can access an entry point in another segment, but 
you have to be very careful how you use the label. As you will see below in 
the Special Syntax section, entries to other segments point into a jump 
table instead of going directly to the targeted routine. In general, you 
should only use the label created by an XREF directive in JSR, JMP, LEA, or 
PEA instructions and not do any arithmetic on the label or on the address 
the instruction produces. 

End directive: 

END 

The END directive comes at the very end of your assembly. It ends the 
program or the segment if you have multiple assemblies. Anything that 
appears after the END directive is ignored. 

Lisa Assembler Segment Directives 

The Lisa Assembler was designed to create subroutines to be called from 
Pascal. This means the only possible structure for a program is one or 
more Pascal functions or procedures. The only differences between a 
procedure and a function occur in the Pascal code that calls your 
assembly language program. In Appendix E, the Lisa Wlrkshop, there is an 
example of a dummy Pascal program calling an assembly language 
routine. You will have to modify the programs in this book to match this • structure before you can assemble them. The example uses one procedure 
to interfu.ce to Pascal. Data definitions are contained in each procedure or 
function. A label defined in one procedure will be undefined if you try to 
use it in another. Groups of procedures can be further divided into 
segments. Hawever, every procedure and function must be entirely in one 
segment. 'lb call addresses in another procedure, in the same or a different 
segment, you have to use the REF and DEF directives described below . 

.PROC directive: 

.PROC label 

A new procedure starts with the .PROC directive. The label is used by 
Pascal and other assembly language routines to access the code which 
follows. It addresses the first word generated after the .PROC directive. 
Assembly language routines in other procedures must include an .REF 
directive in order to use the label. 



139 Macintosh Tuols 

Pascal automatically has access to the label when the two programs 
are linked. The procedure physically ends when another .PROC, a .FUNC 
or an .END directive is encountered. Your code should logically end with 
an RTS instruction, then control will return to the Pascal program . 

• FUNC directive: 

.FUNC label 

A new function starts with the .FUNC directive. This directive is the 
same as the .PROC directive except for the way Pascal handles it. To use a 
.FUNC directive you must declare your external code (your Assembly 
language routine), as a FUNCTION in Pascal. The Pascal code will create 
space on the stack underneath your return address for the value of the 
function. If you are using a dummy Pascal program, you don't need to pass 
any actual value back. Just end your code with an RTS to return to Pascal, 
and the value of the function will be undefined . 

• SEG directive: 

.SEG 'string' 

The .SEG directive divides your program into segments (a segment is a 
"chunk" of program that you can clear out of memory to free up space-
then bring it in again from the disk when you need it). The string is a name 
for the segment. It should be in single quotes. The .SEG directive does not 
take effect until the next .PROC or .FUNC is reached. This guarantees that a 
procedure does not get split into more than one segment. The name must 
not be more than eight bytes long. The initial segment is called the "blank 
segment" because its name corresponds to eight blanks. The names are 
not too important (although it is nice to provide names descriptive of the 
segment). The Linker will show them to you, and they can be used by 
certain utilities to juggle the segments . 

• DEF directive: 

. DEF label[ ,/abe~ ... 

Use the .DEF directive to define an entry point into a procedure. A 
label must be an address which is defined in the procedure. Another 
procedure, containing a matching .REF directive, will then be able to 
access that address. The .REF directive is described below. You can put as 
many labels as you want in one .DEF directive, separating them by 
commas. Any number of .DEF directives are allowed in the procedure. 
Usually they come before any executable code. They do not have to wait 
until the address is defined, but it must be defined within the procedure. 
You do not need a .DEF for the label defined by a .PROC or .FUNC directive. 



Special Syntax 

140 Programming the 68000 

.REF directive: 

. REF label[ .laben ... 

Use the .REF directive to access an entry point in another procedure. 
A label must be an address which is defined in a matching .DEF directive 
in one other procedure. You can have as many labels as you want in each 
.REF directive, separating them with commas. The .REF directives will 
usually appear before any executable code in the procedure. A .REF for a 
label must appear before the label is used. 

The .REF directive may access an entry point in the same segment or 
in a different segment. If the code is in a different segment, you have to be 
very careful how you use the label. As you will see below in the Special 
Syntax section, entries to other segments point into a jump table, instead 
of going directly to the targeted routine. In general, you should only use 
the label for JSR, JMP, LEA, or PEA instructions and not do any arithmetic 
on the label nor on the address that the instruction produces . 

• END directive: 

.END 

The .END directive comes at the very end of your program. Con
sequently, it ends the last segment as well as your program and anything 
that appears after the .END directive is ignored. 

There is some special syntax you use when you code for the Macintosh 
that is not common to all 68000 machines. This syntax was incorporated 
into both the Macintosh and Lisa Assemblers to help you take advantage of 
some of the Macintosh Operating System's features. Some kinds of instruc
tions will be translated into others when assembled. Some addressing 
modes are translated to different modes. There is even one addressing 
mode you can use that does not seem to exist in the 68000 at all. 

All program addresses on the Macintosh have to be PC-relative. The 
Segment Loader can load application code into any available space. It can 
only do that if the code is completely relocatable. You may not be aware of 
th PC-relative addressing when you are coding because the Assembler 
makes the exact addressing mode transparent to you. This is a real 
convenience. But it can be a source of confusion if you do not realize what 
is going on. For example, the 68000 does not allow PC-relative address 
mode for destination addresses. But Absolute mode is always allowed. So 
you might be surprised if you try to assemble the following instructions: 



141 Macintosh Tuols 

MOVE DO.destination 

Destination DC O 

You will get an addressing mode error, even though the instructions, 
as written, are legal. The Assembler has attempted to translate the 
reference to destination into a PC-Relative mode. The syntax it rejected is 
actually this. 

MOVE DO,Offset(PC) 

where the PC-relative destination is in fact not a valid addressing mode. 
Although we don't recommend that you modify data in code space, we 
will show you how to do it. Load the effective address into an address 
register and then store the data using address indirect mode: 

LEA Offset.AO 
MOVE.W DO.(AO) 

Sometimes you want to put a table of addresses into your code. This is 
good when you need the equivalent of ON n GOTO in BASIC or a CASE 
statement in Pascal. You have already seen how to access a data table using 
the program counter relative with index and displacement addressing 
mode (in Section 12 of Addressing Modes of the 68000, Chapter 2). But how 
can your table contain program addresses as data, when the code is going 
to be relocated? The only way to store the addresses is by relative offset. 
You have to save the distance from a known point in the program to the 
subroutine you want to call. Then, to reach your subroutine, you load the 
offset into a register and use a PC-relative jump. The Macintosh Assemblers 
are smart enough to calculate the offsets for you. Your table may look 
something like this: 

CaseTable DC Rout1-CaseTable 
DC Rout2-CaseTable 
DC Rout3-CaseTable 
DC Rout4-CaseTable 

This table is made of words whose values are the distance in the code, 
between the start of the table and the four subroutines. Although the 
Assembler maintains all of these addresses as PC-relative offsets, it knows 
that the difference between two addresses will be a constant value. It can 
algebraically reduce an expression of the difference between PC-relative 
addresses. 

Routn - Case Table = (OffsetN +PC) - (TableOffset+ PC) 

to an expression of the difference between their offsets, or: 

Routn - Case Table = OffsetN - TableOffset 



142 Programming the 68000 

Tu access our table, calculate the index and then jump, using the 
program counter relative with index and displacement addressing mode. 
The instructions will look something like this: 

MOVEQ 
ADD 
MOVE 
JMP 

#3,DO 
DO.DO 
CaseTable(DO), DO 
CaseTable(DO) 

;Go to Subroutine 3 
;Double index. Each entry is two bytes wide 
;Load "Rout3-CaseTable" into DO 

The very simple-looking expression in the code above, 

Case Table( DO) 

actually assembles to: 

Case Table-* -2(PC,DO) 

The latter address expression is in the PC-relative With Index and 
Displacement addressing mode, as described earlier. Tu use that mode 
directly, you have to calculate an offset between the Program Counter and 
the destination. Before performing the address calculation, the hardware 
will advance the Program Counter to the address of the extension word, 
the second word of the instruction. The expression takes that extra word 
into account, by subtracting two from the difference between the current 
location and CaseTu.ble. The first expression, 

CaseTable(DO) 

makes it much simpler to use this addressing mode. The effective address 
is just DO bytes beyond CaseTu.ble. 

All of the calls between segments go through the Jump Tu.ble. This 
table is created automatically by the XDEF and XREF (or .DEF and .REF) 
commands you use to communicate between segments. Calls to addresses 
in other segments are also automatically converted to calls through the 
Jump Tu.ble. 

The Jump Tu.ble is located in the Global Data Area. This area is always 
accessed by the address register, AS. When you call an entry point in 
another segment, you actually JSR to the jump table. The Jump Tu.ble will 
usually hold a JMP instruction to the desired entry point. We say usually 
because the table is set up to load the segment containing the entry point 
if that segment is not in memory. In Chapter 7, The Macintosh Environ
ment, you will learn more about how this mechanism works. 

A JSR into the jump table must take the form of: 

JSR Offset(A5) 

The assemblers let you code the call as though it were a destination in 
the same segment. So when you write, 



143 Macintosh Tuols 

XREF OtherSeg 

JSR OtherSeg 

the code generated is something like this: 

JumpTable JMP 

Tab Entry JMP OtherSeg 

LEA JumpTable,A5 

JSR TabEntry-JumpTable(A5) 

; Use ".REF" with Lisa 
; Assembler 
; Call routine in another 
; segment 

; Start of jump table 

Our entry in table 

Before our program starts 

= JSR OtherSeg 

When you use these translations you cannot use Bee instructions to 
reach addresses in other segments. These instructions have only one 
addressing mode, which is PC-relative. In addition, the Macintosh As
sembler translates all BRAL and BSR.L instructions .into JMP and JSR 
instructions. It does this whether it needs to or not. 

Assembly Control 

Certain kinds of directives do not generate any code themselves, but affect 
the way the rest of the code is interpreted. They allow you to put parts of 
your code in different files, not assemble some lines of your program 
during some assemblies, and even define your own instructions. Both 
assemblers have these features, but they differ slightly in syntax. 

Macintosh Assembler Control Directives 
INCLUDE directive: 

INCLUDE filename 

If you want to use code in another source file in your program, use an 
include directive. When the assembler encounters the include directive, it 
starts taking source code from the other file. When it reaches the end of 
that second file, called the include file, it returns to the first or main file. 
The effect is the same as if you had copied the entire include file into your 
program in the same place where you put the include directive. 

The filename is the name of the include file. If the include file is on a 
different volume (each disk is called a "volume") than the main source, you 
can add a volume name to the filename. The include file can be one of 

. three types of file. You can use an ordinary text file you create with the 
Editor for an include file. This type of file can contain both code and 



144 Programming the 68000 

symbol definitions. If you just need the symbols from a prior assembly, you 
can use a symbol file created by a .DUMP directive. This directive is 
explained below. A special utility, PackSyms, creates a condensed form of a 
symbol file to use as an include file. This packed type of include file 
usually has the suffix ".D" and is used for the ToolBox definitions. Your 
INCLUDE directives can take any of these forms: 

INCLUDE Kludge ;More code is in the Kludge.Asm file 
INCLUDE Widget:Kludge ;Include Kludge.Asm on the Widget disk 
INCLUDE QuickEqu.D ;Include the QuickDraw definitions 

An include file can itself contain INCLUDE statements. The newly 
included file can include other files too. This can go on until five levels of 
include file are nested. An include file cannot even indirectly include itself . 

. DUMP directive: 

[label] . DU M P filename 

The .DUMP directive creates a symbol table file to use as an include 
file. You should place .DUMP at the end of a program, after all of the 
symbols have been defined. When you assemble the program and the 
Assembler reaches the .DUMP directive, it will write out all the labels in the 
symbol table to the file. The new symbol table file can be used as a source 
file for the next assembly. It is a standard text file, so you can also modify it 
with the Editor. The filename can be the same as the source file without 
the "Asm" suffix. When the assembler creates the symbol table file it will 
add ".Sym" as a suffix to filename. 

After creating a symbol table file with the .DUMP directive, you can 
compress it with the PackSyms utility. This program creates a more 
compact form of the symbol table file. You can use the condensed symbol 
table file for greater speed in an assembly, but you can't modify it with the 
Editor. A condensed symbol-table-file name should end with ".D" for a 
suffix. The definitions for using the TuolBox are supplied as condensed 
symbol files. Tu make a listing of such a file, include the ".D" file in a 
dummy program with the INCLUDE directive. Then use the .DUMP 
directive to create a new; uncondensed, symbol table file: 

;This program makes a listing of the QuickDraw 
;equates 

.INCLUDE QuickEqu.D ;Assemble the QuickDraw symbols 

.DUMP QuickEqu ;Write the symbols out to QuickEqu.Asm 
END 



145 Macintosh Tools 

Conditional Assembly 

[labe~ IF condition 

[ELSE] 

ENDIF 

If you want to assemble the same source file with slight differences to 
create applications, you can use conditional assembly. The condition is 
evaluated by the Assembler. If it is true, the following section of code is 
assembled. If the condition is false, the section is ignored. An ELSE clause 
is optional in the conditional assembly structure. If ELSE is used, the code 
following it is assembled only if the condition is false. The ENDIF marks 
the end of the section or sections of code affected by the conditional 
assembly. Everything after the ENDIF is assembled as normal. 

Conditions can be either single expressions or comparisons between 
expressions. If a single expression evaluates to a non-zero value, the 
condition is true. If the comparison is correct, the condition is true. You 
can use any of the relational operators you use in Pascal for the com
parison. These are: 

equal 
> greater than 
< less than 
> = greater than or equal 
< = less than or equal 
<> not equal 

The expressions must be constant values, rather than relocatable, PC
relative labels. You can use strings in the comparison, but they can only be 
tested for equality or inequality. Some examples of conditional assembly 
demonstrate various types of condition: 

Five EQU 5 
Three EQU 3 
Start EQU * 

IF Five 
PEA "Always" 
ENDIF 

IF Five > Three 
PEA "Always" 
ENDIF 

;True since Five is not equal to zero 
;assembled 

;True since Five is greater than Three 



146 Programming the 68000 

IF Five = Three 
PEA "Never" 
ELSE 
PEA "Always" 
ENDIF 

Stop IF Start = Stop 
PEA "Illegal" 
ENDIF 

;False since Five is not equal to Three 
;not assembled 

;assembled 

;Illegal since labels are PC-relative 

Several levels of conditional assembly can be nested. The inner levels 
are not evaluated if they are in a section of code which is not being 
assembled because the condition of an outer level was false. You will 
probably find conditional assembly very useful when you are debugging a 
program. You can add code to debug your program under an IF clause that 
tests a predefined variable, say "DEBUG:' When you equate DEBUG to zero 
you can assemble the final version without the test code. Set DEBUG to 
anything else and assemble a test version with all of the debug code in 
place. 

Lisa Assembler Control Directives 

.INCLUDE directive: 

.INCLUDE filename 

If you want to use code in another source file in your program, use an 
INCLUDE directive. When the assembler encounters the INCLUDE direc
tive, it starts taking source code from the other file. When it reaches the 
end of that second file, called the include file, it returns to the first or main 
file. The effect is the same as if you had copied the entire file into your 
program in the same place where you put the INCLUDE directive. 

The filename is the name of the include file. The include file is an 
ordinary text file you create with the Editor. If you don't use ".TEXT" in the 
filename, the Assembler will add that suffix for you. An "INCLUDE" 
directive looks like this: 

.INCLUDE Kludge ; More code is in the Kludge.Text file 

An include file cannot contain INCLUDE statements; include files 
cannot be nested. 



14 7 Macintosh Tools 

Conditional Assembly 

[labe~ . IF condition 

[.ELSE] 

.ENDC 

If you want to assemble the same source file with slight differences to 
create different applications, you can use conditional assembly. The 
condition is evaluated by the Assembler. If it is true, the following section of 
code is assembled. If the condition is false, the section is ignored.An .ELSE 
clause is optional in the conditional assembly structure. If .ELSE is used, 
the code following it is assembled only if the condition is false. The .ENDC 
marks the end of the section or sections of code affected by the conditional 
assembly. Everything after the .ENDC is assembled as normal. 

Conditions can be single expressions or tests for equality or ine
quality. If a single expression evaluates to a non-zero value the condition is 
true. If the comparison is correct, the condition is true. The expressions 
must be constant values, rather than relocatable, PC-relative labels. You can 
use strings or numbers in the comparison. Some examples of conditional 
assembly demonstrate various types of condition: 

Five .EQU 5 
Three .EQU 3 
Start .Equ * 

.IF Five 
PEA "Always" 
.ENDC 

.IF Five <> Three 
PEA "Always" 
.ENDC 

. IF Five = Three 
PEA "Never" 
.ELSE 
PEA "Always" 
.ENDC 

Stop . IF Start 
PEA "Illegal" 
.ENDC 

;True since Five is not equal to zero 
;assembled 

;True since Five is not equal to Three 

;False since Five is not equal to Three 
;not assembled 

;assembled 

Stop ;Illegal since labels are PC-relative 



Macros 

148 Programming the 68000 

Several levels of conditional assembly can be nested. The inner levels 
are not evaluated if they are in a section of code which is not being 
assembled because the condition of an outer level was false. You will 
probably find conditional assembly very useful when you are debugging a 
program. You can add code to debug your program under an .IF clause 
that tests a predefined variable, say "DEBUG:' When you equate DEBUG to 
zero you can assemble the final version without the test code. Set DEBUG 
to anything else and assemble a test version with all of the debug code in 
place. 

.MACRO Directive 

.MACRO identifier 
code 

.ENOM 

Macros make it easy to put groups of instructions or data structures 
you use frequently into your code. You define a macro to have a certain 
equivalent. Then, whenever you use that macro in your program, it is the 
same as if you had typed in the whole sequence of instructions defined as 
the macro. 

Macros can have parameters. When you define the macro, you use 
special symbols for the parameters. Then when the macro is used in the 
code, you provide actual parameters, separated by commas. The actual 
parameters are substituted for the special symbols as the macro is 
expanded. The assemblers do this by substituting the text string of the 
parameter for the symbol. The symbols for the parameters are %1,%2,%3 
and so forth. They correspond to the first, second, third parameter and so 
on. 

The identifier for a macro can be any valid label. Use this label for the 
operator when you use the macro. The code can be any sequence of 
instructions or data definitions. Parameters may be in the code by using 
the special symbols, such as %1. Here is an example of a macro. It is 
defined, used, and then the equivalent code it produces is shown below: 

. MACRO Load Both ;This is the macro definition 
CLR.L 01 
MOVE.W %1,01 
CLR.L 02 
MOVE.W %2,02 
.ENOM 



1he Linker 

149 Macintosh Tuols 

Load Both #5, Var(A6);Here the macro is used 

;This is the code it generated 
CLR.L 01 
MOVE.W #5,01 
CLR.L 02 
MOVE.W Var(A6),02 

As a novice assembly language programmer you probably first came upon 
a linker when you discovered that you can't just assemble a program and 
then run it. No, instead you must assemble your program creating a ".rel" 
type file and this is then input to something called a linker which then 
creates something which you can finally, actually run. Why do they make 
life complicated for assembly language programmers? 

Perhaps you are in that phase right now. Actually, a linker is a very 
useful tool. Linkers were invented for one main reason-a linker allows an 
assembly language programmer to write a series of small programs and 
link them all together into one big program. 

If you only write small programs you will not link your programs 
together although you will still have to link up with systems routines. But 
when you start to write large programs that run over 30 or 40 pages of code 
or you work together with another person who is also writing part of the 
program you will suddenly appreciate the need for a linker to link your 
programs togethe~ 

Suppose you had no linker but had broken your program up into five 
smaller programs. You are in one program and you suddenly need data 
from another program. Whoops! You see the problem-you have no 
reference to where that data is in your program. So you must either have all 
the data references for all the programs in every program, which makes the 
process of assembling take forever; or you must create a special subset of 
the data references which will be used by more than one program and 
include that subset in all the programs. Supp9se you take the latter course. 

How do you use a routine from one program from inside another 
program? On the Macintosh, this is a real problem. For one thing, 
programs can move around in memory, even be sent out to the disk, if they 
are in different segments. Ok, let's assume you put everything in one 
·segment-a real limitation. Still, where is the routine you are interested in? 
Let us assume that right now it is 234 bytes from the start of the program it 
is located in, for example. What if you place the address of the start of the 
routine in an address register and give an offset of 234 and go there? 
Suppose the code changes and the routine is moved further up in the 



150 Programming the 68000 

program? You'd have to go to every program that uses this routine and 
change its offset. 

A better way is to have a jump table (we haven't come to the best way 
yet, to have a linker, but be patient!). A jump table looks like this: 

MODULE1 
ADDROUTINE JMP ADDRTN 

SUBROUTINE JMP 
MULROUTINE JMP 

etc. 

SUBRTN 
MULRTN 

;JUMP is short for JuMP, like GO TO in 
;higher level languages 

In a jump table there is one entry for each routine that is called from 
outside the program. In the start of all the other programs there is a piece 
of code that looks like this (usually in an file that is included using the 
INCLUDE statement of the assembler): 

ADDROUTINE EQU 
SUBROUTINE EQU 
MULROUTINE EQU 

etc. 

MODULE1 + 0 
MODULE1 + 4 
MODULE1 + 8 

;there are 4 bytes to a jump instruction 

Now you simply JSR MULROUTINE (JSR means Jump SubRoutine, like 
GOSUB in BASIC) which lands you 8 bytes into the program at a JMP to the 
real location of the routine. The program itself changes that JMP each time 
it is reassembled so everything works. The only penalty is an extra JMP 
instruction is executed for each intermodule call (call from one separately 
assembled routine to another). 

You could use the jump tables and get by without a linker, but it would 
be a lot of work. How would you do the same thing with a linker? With a 
linker you simply write commands to the assembly which tell the linker 
that there are certain names which will be sent to other modules or picked 
up from other modules (so they won't be defined in this program's text). 
Those names which will be sent to other modules (data and labels into the 
code, usually) are collected into a table by the assembler. The command 
for allowing other modules to use names from inside this program is 
XDEF, extemal definition. In other words, this definition is going to be used 
external to this program. 

Example: 

XDEF ADDROUTINE 
XDEF SUBROUTINE 

When a name is going to be pulled in from another module, the 
assembler has to fill the location in the code with something and create a 
reference to that place in the code so when the linker is run it can patch in 
the correct value. In other words, now when the assemhler is run it creates 



151 Macintosh Tools 

JUMP TABLE ... BRTN 

r-+' JMP BRTN ~ 
...... 

Seg Al 

ATS ~ Seg A2. 

JMP XRTN .. XRTN 
Seg P3 

...... 
_., 

u .. YRTN 
JMP YRTN ... JSR BRTN 

--
JMP ZRTNI- ATS 

... Seg A4 ATS 

JMP ARTNI- ...... ZATN 

ATS _.. ... ARTN 

ATS 

All subroutine calls to another segment are through the jump table. 
Note that for the IITS to work, the original calling subroutine must 
be locked in memory. ZIITN, ARTN, BRTN, etc. are subroutines. 

Figure 6-1 JuMP Table and Segments in Memory 

code with little "holes" in it because it has no idea what value it should use. 
The command that tells the assembler to create such a hole is XREF, 
external reference. 

Example: 

XREF ADDROUTINE 
XREF SUBROUTINE 

in the code: 

JSR ADDROUTINE 
JMP SUBROUTINE 

;we will create a hole here 
;and a hole here since we don't know the location 

This is why the output of the assembler is called a ".rel" file, short for 
relocatable. Once you have a bunch of these .rel files you send them all into 
the linker and it goes through each program finding all the XDEF tables. 
Now it knows where everything really is. Then it goes through each 



152 Programming the 68000 

module and patches in all the holes created by the XREFs inside the code. 
Once the linker is done all of the code has real addresses in it. 

Actually; some linkers cheat. They create a jump table in each module 
and then patch in the. jump table locations into the code-this saves them 
a few steps. In fact, the Macintosh linker creates just such a jump table. If 
you look at the way the Macintosh Memory Manager works you will see 
that a jump table is the only way that the linker could work. 

Now that you understand how a linker works you can see what an 
Undeclared External Reference means (the most common error when 
linking a program). There has to be an XDEF in some module correspond
ing to every XREF in another module. Otherwise, how would the linker 
know where to go? In general, you should eliminate all undeclared 
external references before running a program. 

The linker on the Macintosh can be used to link together modules 
which were produced by the assembler. Since you can use the Macintosh 
assembler to create not only code but resource files, you must use the 
linker to tell the system which type of information it is dealing with. In 
general, though, it is much easier to use RMaker to create resource files 
rather than creating them using the assembler and linker. In fact, the 
easiest way to hook up an assembler program with resource data is to 
create your resource data in a completely separate file and then use 
_QpenResFile inside your assembler program in initialization so that 
your program is aware of that separate resource file. 

A linker file in the 68000 Macintosh Development System consists of a 
series of commands interspersed with the names of the modules that need 
to be linked together. Files are assumed to end in ''.Rel" -if you list a 
filename without ".Rel" as a suffix, that suffix is appended. So, for example 
both 

myfile.Rel 

and 

myfile 

in a linker file will make the linker look for "myfile.Rel" on the disk to be 
linked. 

Actually; there are many things you can do with the linker besides 
joining modules. You can place various modules into different segments. 
The"<" symbol in a linker file means "start a new segment:' Say you had a 
linker file that looked like this: 

Myfirstprog 
< 
Mysecondprog 

Myfirstprog.Rel would be in one segment and Mysecondprog.Rel 
would be in another segment. Only one of these segments would have to 



153 Macintosh Tools 

be in memory at any one time (the one in which the code was actually 
being executed). When you went from one segment to another it would 
always be through the jump table. The jump table on the Macintosh is 
actually a very smart jump table-if the segment isn't in memory it is 
brought into memory before the jump to the segment is executed. 

JUMP table 
at 32 bytes above AS 

·~{ 
·-[ 

ea 
Sllllllt ..... AS_.. 

_fOgram segment 1 variables 

.H' SEG1 
-.... 

varl(AS) ~ varl 

r+ var2 
_t .... r 

program segment 2 
Jl1P SEG2 ..... -- var2(AS) -I I--' 

program segment 3 
lffstt If rtll 

ASAT 

fn01p1 If I varl(AS) I sq (Z "111) 

i-• intnct tlat CINI IClOSllC -.. -(SEG3) I I •ti slldt 
0 lftll) 

Ltl&f tr" 
(I llftlS) 

Each segment is pointed to by an 8-byte entry in the jump table which 
is maintained by the segment loader. The entry is simply a jump plus 
segment number if the entry is in memory; if not in memory, the entry 
consists of a call to a routine to bring the segment in from disk. Sort of 
ingenious really. 

Figure 6-2 JuMP Table and Segments (Advanced) 

Any Macintosh program c;:onsists of code, resources (other than code), 
and data. Code is the concatenation of the various .Rel files created by the 
assembler. Resources are all the various entities that a Macintosh applica
tion calls upon-menus, dialog boxes, windows, fonts, text strings used in 
titles, etc. Finally, data are information in disk files that are not part of the 
specially formatted data of resource files. 

Actually, all files on a Macintosh have two "forks" or parts. One fork 
contains the code, menu descriptions, dialog description, etc.-this is the 



154 Programming the 68000 

resource fork. The other fork is the data fork-here is all the random data 
stored just the way you are used to it on other computers as one big block 
of hexadecimal. Often one of these forks is empty since a file that has a 
resource fork is either a program or data used by a program (usually 
constant) while a data furk is modifiable data used by a program; programs 

· and modifiable data files are usually in separate files. 

MYFILE 

L ~ 
RESOURCE DATA 

FORK FORK 

MENU..129 3F7E02 ... 
PICT,173 A STRING 
DLOG, 128 I 

T I 
I I 

·~ ·~ 

PBOGRAM 

LOADRESOURCE 

OPENFILE 
FSAEAD 

Figure 6-3 Forks 



155 Macintosh Tuols 

The linker puts all the code first into the resource fork, followed by all 
the resources, and then puts all the data into the data fork. A linker file 
uses the commands "/resource" and "/data" to signify the start of the 
respective resource (not code) and data fork information. 

A typical linker file would be 

·mycode 
/resources 
resfile 
/data 
datafile 

where mycode and resfile are put into the resource fork and datafile is put 
into the data fork. 

There are other things the linker does, such as allow you to jump to a 
point other than the start of the first module to kick off that application 
(use an"!" followed by a symbol defined in one of the modules with an 
XDEF), or shunt the output of the linker to a certain file (with the /output 
command). Read about these in the 68000. MDS assembler manual. 

The linker is also used for other things besides generating linked code. 
Sometimes you would put XDEFs into an assembler file to generate a linker 
cross reference even though you never expect them to have an XREF that 
will coITespond. This is because the debugger uses the linker symbol 
table-if you have no XDEF there is no symbol placed into the linker 
symbol table for the debugger. 

Summing up, primarily a linker glues together a whole bunch of 
smaller ".ref' modules created by the assembler into one big ".obj" or 
object module that can actually be used by the computer. In most systems, 
that is all there is to it. However, on a Macintosh you can't actually run your 
program until you learn more about Resources and the Resource 
Compiler. 

The Resource Compiler 

The Resource Compiler is really just what it sounds like. It is a compiler 
(like a BASIC compiler or a Pascal Compiler) and it works on resources. 
The rest of this section will be used in describing just what the Macintosh 
means by the word "resource:' 

Everything that is part of an application running on the Macintosh is a 
resource. 'fypical resources are menus, windows, dialog boxes, an object 
module (the program you just laboriously coded, assembled, and linked), 
and text (for messages that your program prints). Some of these resources 
are "templates" that describe the resource rather than the resource itself. 
For example, the resource file contains a description or "template" for a 
window, not the window itself. You can create the window by calling a 



'1 

156 Programming the 68000 

routine which uses the template made by the resource compiler as a 
description of what the window is to look like. 

In general, all the text and eveiy object you see on the screen such as 
windows, menus, and dialog boxes should be completely described in a 
resource file rather than inside the assembler program. Then, when you 
want to change a program, all you need to do is change the resource file 
and recompile it using the resource compiler. Or you can use the resource 
editor to change resources. The important point for programmers is that 
you do not need to change your program or even give out the source code 
to allow for changes in the text. The original reason for doing things this 
way was to make it veiy easy to create foreign language versions of the 
program. Obviously, the translator only has to translate eveiy piece of text 
within the resource file into the native tongue and instantly you have a 
foreign version of the program. 

Here is a typical resource which involves two menus, one window, 
and a program: 

* Resource File comments are preceded by an asterisk (*) at the start of the line 
* or by ";;" in the middle of a line. 
* The first line in a resource file is the name of the output of the compiler 
Drawing 
APPLDRAW 
INCLUDE Drawing. obj ;;include the program linked together as Drawing.obj 
Type MENU 

,300 
File ; ; a file menu 

Open/O ;; Open with Propeller 0 
Close 
Quit/Q 

,302 
Edit 

Cut/X 
Copy/C 
Paste/V 

Type WIND 

resource ID 
Drawing Window label at top of window 
30 10 310 460 
Visible NoGoAway 
0 
0 
Type STR# 

,1 

box window will come up in 
whether window is visible, whether box in upper left corner 
ProclD (the resource ID of the PROC that defines this window) 
RefCon (a reference constant that is varied by the program) 

.. resource ID 



157 Macintosh Tuols 

3 ; ; number of strings following 
This drawing program allows you to 
use many different styles of pen, 
ink, and pad. 

,2 
1 
No Disk in the Drive!! 

Although both the Macintosh Development System and the Lisa 
(Macintosh XL) have resource compilers which are vei:y similar, there are 
differences between the two systems. 

As you can see by looking at the above file the first three lines contain 
some comments preceded by asterisks. On the next line, "Drawing" is the 
name of the program created as an application. APPLDRAW is the type 
(APPL) and creator bytes (DRAW). 

Then come a series of various "type"s of menu, window, and string 
definitions. First comes a '"fype MENU" line. This means that all the 
entities until the next type statement are menu definitions. Each defini
tion is preceded by a comma followed by a number (for example: ,300). 

There are two menus, a File menu and an Edit menu. The first line of a 
menu definition describes the name of the menu that will appear on the 
menu bar. So the first menu will be called "File," the second menu will be 
called "Edit:' The first menu will have three lines: Open (with command 
key "O" on the same line), Close, and Quit (with command key "Q" on the 
same line). The second menu will also have three lines: Cut (with 
command key "X"), Copy (with command key "C"), and Paste (with 
command key "V"). 

In your code you need to initialize the menus with a standard call to 
the menu manager (technically it is a trap, but the trap works just like a 
subroutine). For your information, it would look like this in your assembler 
code: 

_lnitMenus 

Then you would call routines that would get a handle on each menu 
through routines that use the number in the resource file; 300 would refer 
to the first menu and 302 to the second menu in the above example. You 
would see something like the following inside your assembler program: 

FileMenu equ 300 
EditMenu equ 302 

then something like this later on: 

MOVE.W #FileMenu,D4 ;the MakeMenu routine expects 04 to hold the Menu ID 
JSR MakeMenu ;this routine calls two ROM routines _GetRMenu 

;and _lnsertMenu to create the menu 



158 Programming the 68000 

,. S File Edit 

string to 
place 

Q [Kit 

Timer Dialog 

default 
message 

D married 

( Press Me! ) 

use mony different styles of pen. 
ink. ond pod. 

3C[ Drawing Window 

3CU 

This drawing program ollows you to 
use mony different styles of pen. 
ink. ond pod. 

Figure 6-4 Screen Dumps of File and Edit Menus 

... 

... 

This is tiow your program "connects" with resource file entries, 
through the resource ID numbers (the ones with the comma, such as ,300) 
and sometimes through the type (as in type STR#) besides . There are 
various ROM calls, they start with underscores as in _GetRMenu, that 



159 Macintosh Tools 

require the resource ID number to find the resource. For an actual 
example of a resource file and the code for MakeMenu, see the example 
program FingerCalc later in the book. 

The WIND type defines a window. Windows involve more definition 
than a menu. You have to tell what the title of the window will be, list four 
integers to define the top, left, bottom, and right coordinates of the window 
on the screen (the upper left comer of the screen is defined as 0,0). 

The next line states whether the window is visible or invisible. If 
invisible, the window is there but it won't show on the screen-"visible" is 
the usual status since you usually want a window to be visible. NoGoAway 
means that there is no little "go away" box in the upper left comer of the 
window-GoAway means that the box will be in the upper left corner. 

The next line is the ProcID (the resource ID of the type PROC 
procedure that will define this window) and the line that follows that is the 
RefCon (the reference value). In most cases the ProcID will be zero which 
means let the system routines that already exist handle this window. 
Usually the RefCon is changed under program control so this value in the 
definition is only an initial value. 

/I 1 = in the menu bar I 
.. s File Edit Uiew Special 

., 

D D 

Figure 6-5 Parts of a Window 

Finally, the STR# defines a series of strings. Each definition contains a 
count of the number of strings followed by the indicated number of strings 
of varying length. Then you simply use the GetlndString trap inside your 
program to access these strings after pushing a pointer to the string space 



Type CNTL 

160 Programming the 68000 

where the string will be returned, the resource ID, and the index of the 
string within that resource ID onto the stack. 

There are actually twelve different types of resources that the Macin
tosh assembler's resource compiler recognizes. Alphabetically these are: 
ALRT, BNDL, CNTL, DITL, DLOG, FREF, GNRL, MENU, PROC, STR, STR#, 
and WIND. 

We have already seen how MENU, STR#, and WIND are used. The 
other commonly used resources are CNTL, to create controls (such as 
control bars on the edges of windows), DLOG, to create dialogue boxes, 
DITL, for the list of parts of that dialogue box, GNRL, for creating Pascal
style records consisting of mixes of integers and strings, and STR, which 
creates individual strings. The remaining resource types are used less 
often. 

CNTL creates a control template. It is similar in format to WIND. The 
format is: 

,310 
vertical scroll 

;; resource ID 
;; title 

-1 299 279 315 
Visible 

;; top left bottom right (relative to window it is in) 
;; whether control can be seen when first comes up 

0 
0 
0 1 0 

Type DLOG 
,130 

.. Proc ID (the resource ID of the PROC that handles this control) 
;; RefCon (four bytes of your own info which is part of the control) 
;; minimum, maximum, initial value of this control 

'fype CNTL creates a control bar, usually when it is associated with a 
window; or perhaps some form of your own control such as a clock. Most 
of the time you will use the CNTL to create a control bar. 

The control is handled by the Control Manager routines in the ROM. 
You would create the control as part of your program by using _GetNew
Control. Since there is a whole series of procedures associated with 
controls, for further details you should read Inside Macintosh or Macintosh 
Revealed (Vol. 2) by Stephen Chemicoff, published by Hayden Book 
Company. 

DLOG creates a dialogue box. The format is similar to that of a 
window: 

Timer Dialog 
.. resource ID 

message 
50 50 250 350 
Visible NoGoAway 
0 
0 
131 

top, left, bottom, right of DLOG window from upper left of screen 
same as window 
PROC ID (same as window) 
RefCon (user defined value, same as window) 
resource ID of item list (type DITL) 



161 Macintosh Tuols 

The only real difference between a DLOG and a WIND type is the last 
value points to a DITL or dialog item list. In this example we would expect 
to see a type DITL in the resource file before the DWG with a resource ID 
of ,131. 

A dialog item list, type DITL, defines the position and type of the 
various controls, check boxes, and buttons inside the dialog box. 

Type DITL 
I 131 ;; resource ID (referred to by some type DLOG) 

;; number of items in list 5 

staticText disabled ;; text on screen (user can't modify it, create event) 
20 10 150 100 ;; top left bottom right rectangle which text is placed within 
string to place ;; string to be placed inside rectangle 

editText ;; user can enter text using editing in ROMs 
20 150 150 250 ;; top left bottom right rectangle which text is placed within 
default message ;; initial text that the window comes up with 

radioButton 
170 20 200 60 
Exit 

checkBox 
170 80 200 120 
married 

;; radio button dialog item (control item, see control manager) 
;; top left bottom right of rectangle enclosing button 
;; message in button 

;; a box that lights up when user clicks mouse inside it 
;; top left bottom right of checkbox 
;; item text to check off 

button ;; the text is surrounded by a square which is a button 
180 250 210 350 ;; top left bottom right of button square 
Press me! ;; text within button 

The above five items are defined for a dialog item list. Obviously you 
may have as many buttons, checkboxes, and such as you wish. The 
placement of the enclosing rectangle is relative to the top, left comer of the 
dialog box. 

An item is assumed enabled unless you say otherwise. When an item 
is disabled nothing you do within the enclosing rectangle will have any 
effect. On the other hand, if you click within the rectangle of a dialog item 
that is enabled, or enter text into an edit'Thxt item, there is an effect. If 
anything other than an edit'Thxt item is clicked, the number of the item that 
was clicked is returned to the program. 

'fype ALRT is very similar to DLOG-ALRT is the template for an alert 
box. ALRT contains the following: 

TYPE ALRT 
, 145 ;; resource ID 

20 30 250 400 ;; top left bottom right of alert box relative to screen 



162 Programming the 68000 

135 
?FFF 

·· resource ID of a type DITL item list 
· · stages word in hexadecimal 

An alert has "stages" which correspond to the number of times that 
the alert has been called. It is possible to make an alert box do one thing 
the first time it is called and a different thing the second time it is called. 
The first three stages correspond to the first three times the dialog 
occurs-the fourth corresponds to every occurrence of the dialog after the 
third. Each stage has a default button, an indicator of whether the alert box 
is drawn (it may just beep and not do anything, for example), and which of 
four sounds, numbered zero through three, to produce. The default for the 
meaning of the sound numbers is that they correspond to the number of 
consecutive beeps in a row that the Macintosh sends out. Obviously, if 
there are zero beeps no sound issues forth. You can modify the sounds 
with _ErrorSound. 

Here is how the stages word encodes the above information: 
Each nybble is one of the four stages in an alert . The low-order four 

bits are stage one, the high-order four bits are stage four. Within each stage 
the high-order bit is the item number minus one of the default button
normally a zero bit means OK and a one bit means Cancel. The next bit is 1 

if the alert box is to be drawn and O if it is not to be drawn. The last two bits 
range from O through 3, which are the sound numbers. 

Drawing Window 

a€Q 

This drawing program allows you to 
use many different styles of pen, 
ink, and pad. 

Figure 6-6 Screen Dump of Timer Dialog Box 

.., 



163 Macintosh Tuols 

So, the 7FFF in the example above means that for the first three times, 
draw the dialog box while issuing three beeps and let the default button be 
Cancel. After the third time, still issue three beeps and draw the box but let 
the default button be OK. 

An ALRT is really just a special form of dialog. You must have 
-1nitDialogs in the initialization of your program and call the function 
_Alert to invoke the alert. _StopAlert, _NoteAlert, and _cautionAlert 
are like _Alert only they place the stop, note, or caution icons in the 
rectangle (10,20,42,52) inside the alert. _CouldAlert and _FreeAlert 
might be of interest to you if you want to make the alert template 
unpurgeable now and later make it purgeable. ("Purgeable" means that it 
can be paged out of memory, "unpurgeable" means that it can't be thrown 
away-it must stay in memory.) 

Tu see assembler routines that would create a dialog or an alert box 
see Chapter 10, with supplemental sample routines, or look in the 
S1rnpleCalc example program. 

'fype STR is similar to STR#. The only difference is that with type STR 
only one string is allowed per resource ID. Of course, you can extend a 
string over a series of lines by using the " + + " convention of the RMaker 
program. 

TYPE STR ·· 'STR', space required 
, 10 ·· resource ID 

A short string ·· the string 
,20(36 ·· resource ID (attributes 32 (purgeable) + 04 (preload)) 

A long string + +;; a long string 
that is continued + + 
over three lines using the double plus convention. 

The way to get one of these strings into your program is with 
_GetString which asks for the resource ID number and a pointer to the 
string space where the string is to be loaded. 

The PROC type creates a resource that contains code. 

TYPE PROC 
,138 ;; resource ID 

MyProcedure ; ; filename of a file that has a first segment of type CODE 
; ; with resource ID of 1 

The PROC form is simple, but using it successfully is a bit more 
complicated. You must have a .OBJ type file created with a single segment 
by the linker. Then the PROC type looks for the first code segment; this 
means a resource of type CODE with resource ID ofl-ifyou only have one 
code segment this means the entire file. The PROC strips the first four 
bytes off, since these are the header bytes used by the segment loader, and 
saves it off inside your application. 



164 Programming the 68000 

Example: 

TYPE DRVR PROC ;; by using the '=' convention, you can create new types 
;; which behave just like the old type, in this case PROC 
;; resource ID '150 

HexCalculator ;; a hex calculator program 

Now, this program could be used from the Apple window which 
contains the desk accessories. 

'fype GNRL is used to create a resource file consisting of a mixture of 
strings, integers, long integers, hexadecimal, and other resources. This 
type is a grabbag of data. You define each portion of the resource using one 
character type designators preceded by a period. 

DESIGNA10RS 

.P Pascal string (one byte length followed by string of characters) 

.S string without length byte 

.I decimal integer 

.L decimal long integer 

.H hexadecimal 

.R read resource from a file. This is followed by: filename type ID 

An example of GNRL: 

TYPE GNRL 
,258 

.I 
12 ;; each entry is stored as two bytes of hex in the resource file 
234 
17 
.P 
This is a string of length 29 
.L 
123456 ;; this will be stored as four hex bytes 

The GNRL resource number 258 would look like this in hexadecimal 
(spaces added for clarity): 

OOOC OOEA 0011 10 54686973206973206120737472696E67206F66206C656E677468203239 
0001E240 

With .R you can include previously created resources in your 
application. 

Example of .R: 

TYPE FONZ = GNRL 
,293 

.R 



160 Macintosh Tuols 

System FONT 268 ;; the system font with ID 268 is brought in as type FONZ 
;; into your application 

TYPE BNDL 
,1 
CALC 0 
ICN# 

You can use the resource editor and the font mover to find which 
fonts have which resource ID numbers. In general, you would use the 
resource editor to find other resources that you would like to include 
inside your application. 

BNDL and FREF are used to make icons for your application. BNDL 
stands for BuNDLe and FREF stands for File REFerence. Tugether with 
ICN#, which is an icon list, you can associate an icon with your program 
and another icon with its data files; the icons you create will show up 
under the finder on the desktop. When the data file is double clicked, it 
will start the program. 

The form of BNDL is: 

resource ID 
bundle owner (CALC is the signature of SimpleCaLC) 
resource type 

0 128 1 129 local ID O = > ICN# no. 128 (icon for program), 
local ID 1 = > ICN# no. 129 (icon for data) 
resource type FREF 

0 128 1 129 local ID O => FREF no. 128, local ID 1 => FREF no. 129 

TYPE FREF 
, 128 

APPL 0 

,129 
DATA 1 

,130 

The form of FREF is: 

;; resource ID . 
;; file type, local ID of icon (APPL stands for APPLication, a program) 

;; resource ID 
;; file type, local ID of icon (DATA means it is a simple calc created 
;; file) 
;; resource ID (no BNDL for this in above example) 

TSTR 2 testf ile ;; file type, local ID of icon, filename (filename optional) 

If you used the above bundle and file reference and also included two 
icons (ICN#s) your assembler application would have its own icon (icon 
number 128) and the files it created would have their own icon (icon 
number 129). When the program creates data files, it must set the type to 
DATA, and the creator to CALC. There must be two icons in each Icon list: 
one is the data for the icon and the other is the mask for the icon. You must 
have: 

TYPE CALC = GNRL 
,0 



CLR.L -(SP) 

166 Programming the 68000 

in the resource file for the finder (the " = " convention is described in the 
next paragraph). Any information may be in this item, but traditionally a 
string describing your program is placed there. Now you can have files that 
autostart your application in true Macintosh fashion. 

NOTE 
CALC is the signature of SimpleCalc 
DATA is FREF 129 

If you want to create new types with your own four character names 
you would simply use the '=' convention as shown by this example: 

TYPE MYRE = GNRL ;;create a new type called MYRE 
, 1 
.H 
23AFOC 

Tu get a handle to these three bytes of hexadecimal you would include 
the following in your program: 

MOVE. L 'MYRE', - (SP) 
MOVE.W #1, -(SP) 
_GetResource 

;clear four bytes on the stack for the handle to be returned 
;push the type 'MYRE' onto the stack 
;push to the data 0001 onto the stack 
;call the procedure that loads a handle to the resource into memory 

The Debugger 

After completion, a handle to the procedure would be returned on the 
stack. In other words, this new resource has itR own resource IDs and the 
resource name can be used in your program just like any other resource 
name. 

In general, the resource compiler for the Lisa looks similar. There are 
minor differences-the names of dialog items are different, for instance, 
and there is a different way of including code. Further, there are more 
resource types allowed by the Lisa compiler. 

A debugger allows you to pull bugs out of your programs. Since you have 
done some programming you know by now that a "bug" is a teeny mistake 
that somehow has crept into the program causing it to do unexpected 
things. Computers will do exactly what they are told-unfortunately for 
the programmer it will do e}(.actly what it is told, not always what you think 
it should do. 

For some reason, many beginning programmers don't see any need to 
use "tools," such as debuggers. After you have spent hours trying to debug 
a program that you could have d~bugged in minutes with a good 
programming tool, you begin to see the value in the tools. 



167 Macintosh Tools 

We have seen four people in a small company, with adequate tools, do 
more work than 20 programmers with no adequate tools in a large 
corporation. If you want to get a complex assembly language program up 
and running in a reasonable time you will have to learn how to use a 
debugger. In fact, even for small programs you will need tools such as 
debuggers to create a working program. Once you learn how to use one 
you will never want to work without it. 

Fortunately, the assembly language development system from Apple 
has a debugger. Actually, there are a confusing series of debuggers; one for 
each different type of development system. The smallest debugger is for a 
128K Mac (MacsBug). There is a better debugger for the 512K Mac (MaxBug) 
and there is a similar debugger for the MacWorks environment on the 
Macintosh XL (a.k.a. Lisa) called LisaBug. 

Each of these different brands of debugger has different abilities. 
Obviously, the larger the memory available the more powerful the debug
ger that can be used. Some of the debuggers require two Macintoshes or a 
Macintosh and a Lisa in order to operate at all. In this way you use one 
computer to "monitor" the other computer-very little memory in the 
computer being monitored is used. This can be important when you have 
a program that fills all of the memory. Most of the debugger is in the 
computer that is doing the monitoring. Only enough of the debugger to 
interrupt instructions and send information about the state of the ma
chine being monitored is left there. The two machines are connected by a 
cable-the information about the machine being monitored is sent along 
the cable one way and commands to set interrupts or feed back certain 
information is sent the other way. There are two debuggers called 
TurmBugA and ThrmBugB that work this way . 

.l)is(Ju~,sions,',,',~d Oo~lJPi1'isop.~ 
">_, ,~·-,: (~· · · .:· ·" - ·, · · - : :~-;~'::t:'.T'.e~:~'si~,~-;~~;-~~;:;.:::::.:~:~-,;;~~:'.+;~;:ut.,;;~~- 0/>: 

,.::, :~>-/ 
:;'·<:-<''-"'' 

:-~<,:.:., : :- .... : .. : - ~-- -_: '-':·~~--~'.}:;< ·;::\'';· ·,: ·f_~;:~~'. %~~~~--_-?~::-~~-;. t{"~;:-~'.L~--:/ .. ·_ -<.· :· __ -~_: ~--Y:·:,. -__ -->. , -~:-~:-_;·) ::::~::\{_,:,<~>, > :·_~--._-- ::---~-~-,;~-~Ci{'l_::~::_~- :'.:::.~'.:::·"-i . 

S,pe~ift~~y, th~ five,. ~fSip~. ~.tl'J,f,l.· Ma~s,Jlug df,l})µgg~rs.~:· .. ·.• .• · > 
.Ma, · g.fo1(~"~2~~\t~'i!~,,~;~P!~y;~.eigl#Iinf,l~}!,(tij~.!?g. · <Of .. 

s.c. • .. , <ll1seii~$f<l., · ".~;··£i?'f •. :·~x.:.· /\ ... u .•. '. .. , •:,,:··· 
MBicbug for a 51.2K Ma~,.~es ~~:-Un~ ~pl~y aii{l~li<)ws 

.,ratl,l~tl;i~~~~f,l~. .. :,.#f)~,.: . ·•·. ·..... , 
Tu~f1gl\l'lf}~iJ81$;.···· .·.· ....•. 11~·~~oruse1.Je~e11 
or a i\liacintosli arid •(li·ill:i~\t ove~1ffie.modeJ:Il port/? 
for use over the printe~l'JOrt (u;;f,ls 12K). ·•·. .... · . • ;, ... 
Lisan~[$·for.use?nM~$~~1.<s•91l~tJsCi1 ~f!,I~tJike ~~\!S 
9nly de.1.Ju~~rthat wi.lf•mrkit);fu~·Mac~~·eri\rironro .• ·,:· 

-'.'-':_-_·__ ' ' -· -- _--<-~-- '<,: .'>-_-»_1:'-; ,"_--. __ :-·i-".<t: ;_ ··'<.-- --,;_·-_·-_\:-~:--> ~-,-. '0.:. ''""' 



168 Programming the 68000 

There is also a MacDB debugger. Like the TurmBugA and TurmBugB 
debuggers this debugger requires two machines to operate. One of the 
machines can be a Lisa using MacWorks-the other way to operate this 
debugger is with two Macintoshes. The debuggers that go from one 
machine to another should not be used with machines hooked into 
Applenet. 

The MacDB debugger is much more powerful than the MacsBug 
series of debuggers. You can use multiple windows, menus, symbolic 
debugging and other tools. A description of symbolic debugging comes 
later. 

To get one of the debuggers up on your Macintosh, rename it 
"MacsBug" and restart the system. The welcome screen will now have the 
message "MacsBug installed" on it. Press the interrupt button on the 
programmer switch (the rear button) or press the "-" key on the numeric 
keypad if you have a Macintosh XL and are using MacWorks. If you put a 
line into your assembler program with _Debugger on it a break into the 
debugger will occur when that instruction in the program is performed. 

The most important reason for having a debugger is for the dynamic 
situation in which you are running a program and in thousandths of a 
second something goes drastically wrong and the entire screen dissolves 
into a mass of swirling patterns. 

What you have to do is run the program at normal speed right up to 
the point prior to the problem, stop it immediately, then go through the 
program one instruction at a time. At each instruction you verify that the 
program is doing what you think it should. 

This implies that you both know what the program should be doing 
and what it is doing. You can look at all the registers since they are shown 
with each step. You can further check what is happening in memory since 
you have the DM command (explained later). So you know what is 
happening. Therefore the important point is to be aware of what should be 
happening. 

To debug a program speedily takes both intuition and detective work. 
Your main clue consists in watching the program run and looking to see 
the last thing that worked correctly just before things went wrong. If the 
problem happens intermittently was there something that nearly always 
happens just before things go crazy? If there was, then single step through 
that part of your code. 

Tu get started debugging you should know how to do the following: 

1. list out programs in memory, 

2. list data in memory as hexadecimal, strings of characters, etc., 

3. set breakpoints, 

4. single step, and 

5. view and change registers, the stack, etc. 



169 Macintosh Tuols 

With these five functions you are ready to debug programs. Now we 
will describe how you can use these functions to debug a program. 

The ability of a debugger to tum the raw hexadecimal in memory into 
a program listing helps you immeasureably in finding the answers to 
questions such as "Where is the code in memory that I have just 
assembled?" and "Where am I now in executing the code?". This ability is 
called "disassembling:' 

If assembling is the ability to tum code as text into hexadecimal op 
codes/data then disassembling reverses the process and turns hex
adecimal op codes and data back into text. Some disassemblers within 
debuggers can look into the linker files and find the original names of 
various areas in memory and thus can tum the disassembly into a listing 
using the original names you used in the linkage file. Such debuggers are 
called "symbolic debuggers" since they are aware of the original symbolic 
names of things. In the MacsBug debugger, the PX command toggles 
symbols on or off. (Thggling means that if something is on it is turned off 
and if off it is turned on when you use the command-it works just like a 
toggle switch.) Only the MacDB series of debuggers gives symbolic 
debugging for assembly language; the MacsBug series gives symbolic 
debugging only for Pascal and even then only when the ($D +) option is 
used. 

The command to disassemble in the various Apple debuggers is "IL 
(address) (number)" where (address) is the location in memory and 
(number) is the number of lines. The parentheses are a convention; they 
mean "optional:' So the way to disassemble a particular location in 
memory (say $20F5) would be "IL 20F5:' Since PC stands for the program 
counter (where the computer is currently executing code) the most usual 
command is "IL PC" which shows the present place code is executing as 
well as the next few instructions. If you want to know what commands 
were just executed (or probably were, you may have JuMPed here!) you 
would type "IL PC-10" which would start listing out code starting $10 bytes 
back from your current program location. If the number of lines is omitted, 
a screenful of lines will be shown. 

Be careful with disassemblers. If you start in the middle of an 
instruction it will take them a while to "synch up" -the first few 
instructions may be meaningless. Start disassembly 20 or 30 bytes in front 
of the area you think the code may be to get a true picture of the code at 
that location. If you have a symbolic debugger and have a label in the 
assembly (in this case "mylabel") then you simply type: 

IL mylabel 

The debugger will automatically disassemble when it is single step
ping through a program. Each "step" it takes is one instruction, that 
instruction is disassembled. 



170 Programming the 68000 

In reality, code is only one of many forms of data that is in memory. 
Other data are integers, stored as two bytes, long integers, in four bytes, 
string data, stored as ASCII codes (for example,$20 is a space) often with a 
leading length byte, floating point numbers, etc. A good debugger can tell 
you what is in memory without any need to look up ASCII code. 

A good debugger knows about each different format that data can take 
and gives back an appropriate display of that data. It takes much 
programmer time to look up each ASCII code to figure out what a string 
contains, for example. The MacDB debugger allows you to format the 
display of data in the window while the MacsBug and MaxJ3ug debuggers 
do not. 

The "DM (Address) (Number)" command allows you to Display Mem
ory as both hexadecimal and the ASCII equivalents; each line shows 16 
bytes. You will very often use an address consisting of a register. 

You can actually have addresses that use symbolic numbers such as 
RAO which means register AO or RD3 which means register D3. When you 
write: 

OM RA1 

it means "show the memory pointed to by register Al." If you write: 

OM 1004 32 

the program would display 32 bytes (two lines of display) starting at 
memory location hex 1004. 

Besides register AO through register A7 (RAO-RA7) and register DO 
through register D7 (RDO-RD7) there is the program counter (PC) which we 
have already seen. There is also ":· which is the last address referenced by 
one of the comands. 

You can also add or subtract any of these amounts together. For 
example: 

OM RAO+ 7 

which would show the data at seven bytes beyond the address in register 
AO. 

You may place a breakpoint (a stopping point where you fall into the 
debugger) in your program with the _Debugger macro or, if you are fleet 
of finger, hit the rear programmer's switch just before things are about to 
go bad. The first step in debugging, therefore, is to get a consistent 
sequence which causes the blowup. 

There is another way to set a breakpoint, the BR command. Its form is: 

BR address (count) 

This sets a breakpoint at the address you have given it. The count is 
used to bypass the breakpoint a series of times without stopping. If you set 



171 Macintosh Tuols 

the count to 3 then the first two times the breakpoint is encountered the 
program will not stop, but the program will stop on the third encounter. 
The count is optional; it is used when you have a loop which is fine until 
the 354th (or some other large number) time. You do not want to step 
through this loop needlessly hundreds of times when you know the 
problem always occurs after a specific large number of loops. 

There are only eight breakpoints allowed at a given time. 
You may clear up a breakpoint with the CL command: 

CL (address) 

If the optional address is omitted, all breakpoints are cleared. 
Once you have stopped at a breakpoint there are a number of things 

you can do. You can start single stepping. Simply type in the trace 
command: 

T 

and one single instruction in your program will be performed. If you hit 
return another instruction will be executed. To keep stepping through the 
program just keep hitting the Return key. Traps are treated as single 
instructions (which means you don't see what is happening inside the 
trap handling routine). They are identified as "IDOLBOX" $A,x.xx: in the 
code. All the registers are displayed with each step in the state they are 
before the disassembled command is executed. 

If you want to go a number of steps without having to type return 
many times there is the "S" command: 

S (number) 

If you want to go for 100 steps you would type: 

s 100 

If you want to go fast up to a certain point, use the "GT" or Go Till 
Command. This goes full speed up to the location you have specified (a 
temporary breakpoint is set there, it is automatically cleared when it is 
encountered). 

GT address 

Sometimes you want to stop single stepping and revert to full speed 
operation. Then simply type "G" for Go. If you want to start executing at a 
specific address, specify that as follows: 

G address 

Most of the time when you use the G command you will simply want 
to go full speed to get out of the program or go to the next breakpoint. 

The ST or Step Till command allows you to step through code without 
setting breakpoints. Since a breakpoint can't be set in ROM this is the 



172 Programming the 68000 

equivalent of the Go Till (GT) command to use when you want to step 
through a ROM. Its format is: 

ST address 

An example is ST 1F70 which would step until 1F70 and then stop. 
Sometimes when you are executing the program you will want certain 

registers to be particular values in order to test some condition. Tu change 
a register simply type: 

Dn expression 

to change a data register. 

Example: 

02 100AF 

would set register D2 to hex OOOlOOAF. The same procedure and format 
apply to address registers: 

An expression 

or to the program counter: 

PC expression 

or status register: 

SR expression 

Examples of these commands are: 

AO FE70 
PC RA0+4 
SR 0 

The PC command above would add four to the contents of address 
register AO (which probably points to a location in the program in this 
instance) and sets the program counter to that value. After the above 
commands, address register AO would be set to $FE70 and the status 
register would be zeroed out. 

Tu change a value in memory the Set Memory (SM) command is 
provided. Its form is: 

SM address expression (expression) (expression) . .. 

The series of expressions are translated into hexadecimal and placed 
sequentially in memory starting at Address. String expressions are placed 
into memory for their length, although any string over four characters is 
truncated to four characters. The width of each hex or decimal number is 



The EXEC File 

173 Macintosh Tools 

the minimum number of bytes that can express the value (four bytes is the 
maximum). 

Examples: 

SM 1002 &258 102F 'AB' 10 'CDEFG' 

would result in: 

1002: 01 02 10 2F 41 42 10 43 44 45 46 

being in memory at location hex 1002 (1002: means "starting at memory 
location 1002 the data is ... "). Since decimal 258 is equivalent to hex 0102 
this number takes up two bytes, hex 102F is just placed directly in memory, 
the ASCII for "A" is 41 and for "B" is 42, the value of hex 10 takes up one byte, 
and then the first four characters of the string "CDEFG" are placed in 
memory and the "G" is ignored. 

There are other abilities incorporated in the MacsBug version of the 
debugger. There are commands that allow you to search through memory 
(F), convert data to hex, signed hex, signed decimal, and text (CV), and to 
monitor the Tuolbox (ROM) calls and the heap (the various Ne. and H.x 
commands). These heap commands are useful for finding what went 
wrong when various resources or files have incorrect pointers. Since most 
of the really difficult bugs involve the heap and handles that point 
nowhere, this is most important. 

The most powerful debugger for the Macintosh is the MacDB series of 
debuggers. We haven't gone into these debuggers in great detail since the 
majority of our readers will have only one Macintosh. However, if you have 
the luxury of owning two Macintoshes or a Macintosh and a Lisa 
(Macintosh XL) then you will find the MacDB debugger mucQ. more useful 
and powerful. 

The EXEC files on the Macintosh allow you to program a series of "jobs" for 
the machine to do. These jobs run through an assembly and link. Within 
an EXEC file you don't have to type in the full names of all the files to be 
assembled and linked. You simply run the execute file and everything is 
automatic. 

The ability to use EXEC files is not only a time saver but avoids many 
typing mistakes made when you repetitively type in the same series of 
commands. An EXEC file looks like this: 

Asm 
Link 

Mysasm. Files 
Mysasm. Link 

Exec 
Exec 

Edit 
Edit 



17 4 Programming the 68000 

This would assemble the files in Mysam.Files and link them up using 
the commands and modules specified in Mysasm.Link. In case of diffi
culty, this file exits to the editor. 

~to--...... :0:-· ...... ....,..ary_•_·.·• ...... __ ....,.. ______ ....,.. __________ .. _.~_. ----

·1fhiscont'.l~rj,~~ the )ilapi;ntosh Tuols chapter. By~8:4in~ thifl chapter 
. ,~~ ha~~< · ~(! ~1'\~' cacies of tlie .~~ · ·sa as-
·~··· ·~1tlblers1 ....... ·. ... 'Cal~~~: > · howtolink.Progn dhow 

t9 use ~so~e files..1'J).e next chapter desc~s the Mat:intosh 
.~~yirol1IJlentn from thl;h;point of of an ;;~sembly l~age 



CHAPTER 

~[?]----
The Macintosh 
Environ01ent 

The unique Macintosh environment was designed to be easy on the 
operator. Consequently, the Macintosh presents a unique environment to 
the programmer as well. You may think that operator simplicity will 
translate into difficulties for the programmer, but this is not true about the 
Macintosh. The special environment is very well supported in the Macin
tosh ToolBox. Programming it is just a matter of calling the ROM routines. 
The ToolBox is divided into the various managers, such as the Window 
Manager which handles windows and the Menu Manager which controls 
menus. These managers call each other. Tu understand how the TuolBox 
calls work, we have to pay close attention to the environment created for 
the operator. 

The Macintosh is easy for the operator to use. Graphics mixed with 
text gives a pleasing appearance. Almost infinite combinations of text fonts, 
faces and type sizes, make the screen resemble a magazine page more 
than a traditional computer screen. Icons and windows make code and 
data seem like tangible objects, safe and reliable. Finally the fast response 
to menus and controls makes the operator feel in control. 

A good Macintosh program stays in one "mode." The operator always 
knows what to expect, and always has tlie-sariie freedoms. Windows can 
always be moved, menu items selected and so forth. These functions 
should be available both while the operator is actually entering data and 
during computation. By contrast, a traditional program switches fre
quently between input and processing modes. When the cursor isn't there, 
there is little the operator can do. Even when input is allowed, there may 
be no way to start a new process or quit the program directly. The 
traditional program may not return to a menu until it completes the 
current process. This can cause real frustration for the operator, but the 

175 



176 Programming the 68000 

Macintosh presents the menus at all times, giving the operator a real sense 
of freedom. 

An event loop is usually the center of a Macintosh program. "Events" 
are actions by the operator or the system which require the response of 
the program. The event loop receives a notice of each event and acts 
accordingly. Operator actions are handled first. Then, when there are no 
events, the loop calls routines to handle computations and update the 
display. Computation must be performed in small sections, between 
checks for recent events. This lets the program respond quickly and 
uniformly to operator actions. 

The graphics package in the ToolBox ROM is called Quick.Draw. Simple 
calls to Quick.Draw handle both geometric drawing and text display. All 
Quick.Draw drawing occurs in what are called "ports:' A port contains all 
the information for drawing in a certain environment. Usually that 
environment is a window displayed on the screen, but sometimes a 
printer or other peripheral will use a port which is not displayed. The 
actual image the port displays is a memory area called the "bit map" of the 
port. 

All graphics and text are drawn into the bit map of a Quick.Draw port. 
There can be many ports, set up at different places on the screen. You can 
also set up a port in off-screen RAM to draw data for printing or copying to 
the screen later on. Each port has its own data. The data contains such 
information as text font, pen location and pattern for the port. It also 
includes a coordinate system, which defines the top left comer, or "origin" 
of coordinates in the port. Everything that influences drawing is saved in 
the port data, so drawing actions in different ports can never interfere with 
each other. 

The desk top is the background below all of the windows on the 
screen. Like a window, the desk top is a port. The desk coordinate system is 
called the Global coordinate system. The ToolBox uses Global coordinates 
to define points on the desk top such as where the mouse was clicked, or 
where a new window should be placed. Whenever you make calls to the 
ROM for actions outside of a window, you use the Global coordinates. 

The "content area" of a window is a Quick.Draw port. There an 
application can draw the information it needs to display in the window. 
The coordinate system of the content area is called the Local coordinates. 
By drawing the same image but changing the origin of the Local coordi
nates, you can make a document scroll as though it were moving behind 
the window frame. 

The Window Record is the same as the Port data with more informa
tion added to the end. Pascal programmers must struggle with the 
differences between the two data types, but they are interchangeable in 
Assembly language. The records are usually handled by pointers. For 
example, when you need a pointer to a Grafport to pass to Quick.Draw, you 
can just pass the pointer to the Window Record the Grafport is in. 



177 The Macintosh Environment 

System task 

GetNextEvent 

Routine 
for 

Button 

for 
Update 

Routine 
for 

Activate 

Figure 7-1 Event Loop 



178 Programming the 68000 

The window may be active or inactive. The active window is where the 
operator can enter data. This is usually the top window. The programmer 
should highlight the active window in some fashion, so the operator is 
sure when the window activates. Highlighting usually includes inverting or 
darkening any selected items, and, if scroll bars are used, displaying them 
only on the active window. 

,. • File Edit Uiew Special 
., 

l!U Cole 
12 it~ms 242K in disk 

~ D D D D 
Cale Cale.Job Cale .ASM Cale .Link Cale .R 

D D D 
CALC.REL Cale.MAP Cale.RSRC 

Figure 7-2 ActiveiDeactive Windows 



179 The Macintosh Environment 

By now you may have realized that a Macintosh application often 
draws into odd-shaped regions. When you de-highlight an inactive win
dow; you have to confine your drawing to the area of the window that 
actually shows on the screen. Since that region could be under any 
number of other windows it could be a very strange shape indeed. 

Of course Macintosh applications don 't have to redraw the top 
windows just to make some change to windows underneath like some 
window-package products have to do . QuickDraw makes it easy to keep 
from drawing outside the window. A port has a Visible Region, the "VisRgn" 
data, set up by the Window Manager. The application draws all of its data, 
but only the bits within the Visible Region actually go onto the screen. 

,. s File Edit Uiew Special 
., 

Cale 
228K ;n d;sk 172K aya;Jable 

Dealer System 
9 ;tems 340K ;n d;sk 59K aYaHable 

11 ;tems 

~ ~ 
90K ay a;lab le 

Font Mover 
Seattle ~ 

~ 0 -Empty Folde 

Fonts 

0 
Empty Folder Disk Copy System Folder 

Sy 

••• 
J1 

Figure 7-3 Overlapping Windows and Regions 



180 Programming the 68000 

-D Dealer System 
9 ;tems 340K ;n d;sk 59K :;oya;J;1ble 

~ ~ ~ 
Fonts Font Mover 

Seattle 

D ~ D 
Empty Folder Disk Copy System Folder 

w 
Figure 7-3A Update Region for "Dealer System" 

11 ;tems 90K :ov:;o;J:;oble 

a 
Empty Folde 

a 
Sys~em Foldet---....... .--------.."""em""'o,.., . .--------.-.,a"'c""'. ~--~-

Figure 7-38 Update Region for "90K" 

Cole 
11 ;tems 228K ;n disk 172K :ov:oilable 

J LL 

Sy 

Figure 7-3C Update Region for "Cale" 

Of course the graphic display of a Macintosh application may require 
a lot of fine-tuning. When computer screens had only text in precise rows 
and columns, you could design your screens on a sheet of graph paper. But 
you will probably find it easier to assemble and run the Macintosh 



181 The Macintosh Environment 

program you are working on to get a look at the screen, than to try to create 
it with paper and pencil. Th make it easy to adjust the graphics and text 
displays, the Macintosh lets you keep the parameters in a special 
"resource" file. The source of the resource file is written in a simple 
language of its own. A special compiler, RMaker, quickly compiles the 
source into a form your program can use. \iVhen you want to vary the sizes 
of windows, or change text strmgs, keep them in the resource file. Then 
you only have to run the resource compiler to make adjustments, instead 
of assembling and linking the whole program. If you want your program to 
be used in foreign countries, put all of your messages in the resource file. 
Then, as we mentioned before when talking about the resource compiler, 
someone else can easily translate the messages into a foreign language. 
And that person won't have to have any access to your program source 
code! 

An important goal of the system is a fast and consistent operator 
environment. Event-driven programs can achieve this most easily. \iVhen 
the operator clicks the mouse or types a character it generates an 
interrupt. The Event Manager services the interrupt, but instead of taking 
specific action, it just records the event and puts the record futo the Event 
Queue. 

A queue is a line-up of items to be worked on. It differs from a stack 
Qecause the items are serviced in the order they are received. This means 
that new items are added to one end of the queue. Items to be processed 
are taken off the other end of the queue. This type of aITangement is called 
"First In First Out," or FIFO. 

newest 
event 

newer 
event 

Keyboard 
Event 

oldest 
event 

, ........ 

Figure 7-4 Event Queue 

Both the application and the TuolBox can post events, as well as the 
Event Manager itself. This allows the application to send notes to itselt and 
lets the Wmdow Manager signal the application when a window needs to 
be updated. 

Making your program event-driven is really very easy. First you write 
the event loop which detects each kind of event. It calls routines to handle 
each one. Many types of events can be ignored in most programs. \iVhen 



18.2 Programming the 68000 

the event loop finds no events, it calls the process routines to do any 
computations. The only restrictions on the process routines are that they 
return relatively quickly to allow new events to be seen, and that they save 
their program state with data rather than by return addresses. 

The user will cause several types of events, which you should be able 
to handle. These are a menu-selection event, a content-selection event, a 
window-control event and a keystroke. Some of these can be caused in 
more than one way. A menu item, for example, can be selected with either 
the mouse or a command key. The Window Manager can post two other 
types of event, an activate/deactivate event or an update event. You respond 
to these events by redrawing all or part of a window. 

Menu-selection events are started when the mouse clicks in the menu 
bar, or the user presses a key with the command key held down. The Menu 
Manager will handle pulling down the menu and returning the result. If 
you have a mouse-down event in the menu bar you just call the Menu 
Manager routine, _MenuSelect. Then the Menu Manager will display the 
menus and highlight the items as the user moves the mouse up and down. 
Finally, when the user releases the button, the Menu Manager restores the 
screen and returns the ID of the menu and the item number that was 
chosen. When a Command key combination is detected, just pass the key 
stroke to _MenuKey. The Menu Manager will find the corresponding 
item and return the menu ID and item number. 

How you respond to the menu selection depends on the application, 
of course. But certain menus are standard and should appear in a 
standard order. The Apple menu displays the "About" box and activates the 
desk accessories; it should be the first menu. The special Menu Manager 
call, --AddResMenu, will put all the desk accessories into the Apple menu 
for you. The About box describes your program and shows the copyright 
message. The File menu is second. It controls opening and closing files or 
ending the application. The Edit menu is the third standard menu. It 
contains the Copy and Paste commands. These should be given in the 
standard order with the standard Command key equivalents so the Desk 
Accessories can use them properly. 

A content-selection event will start when the user pushes the mouse 
button inside the content area of a window. If that window is not the active 
window; you will first have to select it, by calling the Window Manager 
routine -8electWindow. In fact, that may be all you do in this case; 
highlight the window with the first click which you then throw away. With 
the window active, you have to highlight the chosen item. You may have to 
do some interpretation of the event, if your application supports double
clicks or drags. A drag is when the mouse goes down in one spot and up in 
another. The event record has both the time and place of a mouse-down or 
a mouse-up event to make it easy to decipher these actions. 



183 The Macintosh Environment 

Wmdow-control events start when the mouse is clicked in a control 
area of a window. If the mouse goes down in the top bar of the window, just 
call the Wmdow Manager to drag the window around the desk top until 
the mouse is released. If your window has a Grow Icon, and the user 
selects it, the Wmdow Manager can drag the lower right comer around the 
desk top for you. The Control Manager handles scroll bars and buttons for 
you in a similar way. Your only responsibility is to redraw the document. In 
fact the TuolBox will even identify which type of action a mouse click 
requires for you. All you have to do is call the proper routine based on the 
result! 

A simple keystroke may be the hardest type of event to handle. 
However; if you are using the Thxt Editor; it can be the easiest. Either way, 
the character has to be drawn on the screen, and saved in an input buffer. 
You will probably need to handle Backspace and Clear as well. The ASCII 
value of the key is passed in Message field of the Event Record. This is a 
four-byte field that has different uses for different event types. The lowest 
byte has the ASCII value of a keystroke. The third byte has a scan code, 
which corresponds to the physical location of that key. This is important 
since keyboards for different languages may have the same letters in 
different positions. The two-byte Modifier field of the Event Record bit
maps which shift keys were down when the key was pressed. The shift 
keys include the Command, Option, Shift and Caps Lock keys. Another bit 
tells whether the Mouse was up or down. Generally if the Command key is 
down, treat the event as a menu selection rather than a key stroke. 

The Wmdow Manager may post two different kinds of events. \Vb.en 
windows are moved around, it will post Update events. These signal you to 
redraw a particular window. The Wmdow Manager creates Update events 
when windows are below a window which has been changed in size or 
moved. \Vb.en the active window is changing, the Window Manager will 
post Activate and De-Activate events. These two event types respectively 
signal your application that a window is becoming the active window or is 
no longer the active window. Under normal circumstances, the Window 
Manager will move the active window to the top. if it is not already there. 
When you detect an Activate event, you should expect Update events to 
follow. 

When you receive an Activate or Deactivate event, you have to figure 
out which kind it is, and which window it is for. This information is passed 
in the Message and Modifier fields of the Event Record. The Message field 
will be the Window Pointer of the affected window. The lowest bit of the 
Modifier field will be set for an Activate event. Activate and Deactivate 
events always come in pairs. First a window is deactivated, then the new 
active window will be set. \Vb.en you have multiple windows you will need 
to keep track of the data for each one. A special, four-byte field in the 



184 Programming the 68000 

Window Record called "RefCon," can be used for a pointer to the window 
data. When you create a window and its matching data, store a pointer to 
the data in the RefCon field of the Window Record. Now when you have an 
Activate event, get the pointer from RefCon and use it for the current data 
to work on. Don't forget to show the user that the window is active by 
highlighting it. 

An Update event is a signal to redraw a window. You have to be able to 
redraw any window at any time. This means you cannot draw items on the 
screen without a complete record of what goes where. As in the Activate 
event type, the Message field of Update events contains the Window 
Pointer. If you have more than one window, you can use this pointer to find 
the RefCon of the Window Record that points to the data to regenerate the 
window display. But even if you have only one window, you should check 
to make sure the Update event is for that window. It could possibly be for a 
desk accessory which does not need to draw itself. 

When you redraw the window in response to an Update event, there is 
a good chance that all of the window does not need to be regenerated. A 
window may have been covering only a small comer of your window, arid 
has now moved away. Or, if you have a Grow Box, a small area may have 
been added to the right or bottom of the visible portion of the document. 

The ToolBox provides a special trick to make updating easy. The 
Wmdow Manager keeps track of the region that needs to be redrawn. This 
region is known as the update region. When it is time to update the display, 
the Window Manager will substitute the update region for the normal 
VisRgn, the visible region of the window. Now, when the Update event 
appears, you just draw the whole document. Only that part which needs 
to be updated will actually go to the screen, since QuickDraw only draws 
within the visible region. After the update, the Window Manager will clear 
the update region and restore the original VisRgn. 

The Update and Activate events that the TuolBox posts are caused 
indirectly by your application's own activity. When you call the Window 
Manager to select a window (which means to make it to the top, active 
window), you can expect that some Activate and Update events will 
probably follow. Passing a mouse click to a desk accessory might also cause 
a Deactivate event if the desk accessory becomes selected. 

The Event Manager helps you implement the one-mode environment 
we describe at the beginning of this chapter, but sometimes you do need a 
more specialized environment. You may need answers to some specific 
questions before you can execute a function that the operator has selected, 
for example. For these situations you can use dialog boxes. 

A dialog box is a special kind of window. It is designed to pose a 
question and return some sort of reply. But you can also use a dialog box to 
simply display some information and ignore the response. The About box, 
which shows the copyright message for a typical program, is usually a 



185 The Macintosh Environment 

,. Ii File Edit Uiew Special 

• 

S\j 

Cale 
2281C ;n d;st 

8 Dealer System 
340IC ;n d;st 

• Empty Fold• 

~ 
Seattle ~ 

Font Mover 

~ 
Fonts 

0 0 

• Empty Fold•r Disk Copy 

If the window is clicked then th• following •v•nts are g•n•r at•d : 
8 Activat• on th• "Ca le " window 

I
D•activat• on th• "Dealer Syst•m" window 
Update on the "Ca le" window 
Update on the "Dealer Sy stem" window 
Update on th• 90K window 

[[I() 
mm 

Figure 7-5 Update/Activate Events for a Series of Windows 

., 

• 

dialog box used this way. Dialog boxes are easy to use because the Dialog 
Manager handles all of the details for you. You don't even have to draw the 
box! 

You can declare the items to be displayed in a dialog box in the 
resource file. To display the dialog, you just call the Dialog Manager with 
the ID of the dialog resource. The Dialog Manager will draw the box and 
display the items inside, following the list in the resource file. The item list 
can include text, buttons, controls, icons and even fields that the operator 
can edit. If you want to wait for a reply from the operator, you call 
-ModalDialog. Now the operator can only choose items from the dialog 
box. Clicking the mouse outside the box just causes a beep sound. When a 
valid choice is made, -ModalDialog returns with an integer, the item 
number of the selection. The item number is set by the order the items are 
declared in the resource file . A value of one is passed if the operator 
presses the Return key. This is the default item. You should always make 
the safest choice be the first item, but you can place it anywhere in the box 
that seems logical. 

If you don't call -ModalDialog, the dialog box is like a window but 
with some important differences. The Dialog Manager can tell you which 
item in which dialog box the operator is working on. For each event you 
call -1sDialogEvent to see if it belongs to a dialog. You call _DialogSelect 
if it does, or handle the event for your window if it does not belong to a 



186 Programming the 68000 

dialog. The _DialogSeleci procedure will take whatever adion is neces
sary to maintain the dialog. If the operator selects something, _Dialog
Select returns the item number. It will even update or activate the dialog 
box if necessary. You never have to redraw the dialog box the way you have 
to update a window. 

A special kind of modal dialog is even easier to use. An alert box is 
created, processed and disposed of by a single call to the Dialog Manager. 
As the name implies, you should use this kind of dialog to warn the 
operator about something important. To call an alert you can use the 
__Alert function. This will return the item number of the item selected in 
the alert dialog box. Three other calls do the same thing, but each adds an 
impressive icon to the dialog box automatically. The _NoteAlert function 
is just like __Alert, except a small picture of a face with a cartoon style 
balloon containing an asterisk shows up in the dialog. The icon is in the 
upper left comer, and covers a square about 50 pixels on a side. The 
-8topAlert and _CautionAlert functions are the same, except they have 
an exclamation point and a question mark respectively. You may even have 
sounds accompany an alert dialog. You specify a sound for each "stage" of 
the alert. The first stage and sound are used the first time the alert is 
called. If it is called twice in a row it goes to stage two. This continues up 
to the highest stage, stage number four. Calling any other alert sets the 
stage counter back to zero. The next time you use this alert, you'll hear the 
first stage sound. 

The Dialog Manager provides another service, too. It will report a 
system error. You will probably get used to seeing the "Bomb" message 
indicating a system error while you are debugging your program. The error 
numbers, shown in the "ID=" field, are listed in Appendix D. After the 
error dialog, you can arrange to have control pass back to a special "Restart 
Procedure" that you have coded. This gives some chance to correct the 
error or at least salvage the data in an otherwise fatal situation. To do this, 
when you initialize the. Dialog Manager, pass the address of your restart 
procedure. But if you don't want to bother with all this, pass zero instead. 

Aside from calling dialogs and alerts, you should keep the screen as 
nearly consistent as possible. Still your program will probably have to have 
some "modality." Some menu items will not be appropriate at all times. 
Certain actions with the mouse may not always be possible. You should 
indicate these changes to the operator in a standard fashion. Usually, you 
will put all possible items into the menus. When certain items are not 
appropriate, you can disable them with the _Disableltem call. When they 
are allowed again, use -Enableltem to tum them back on. The editing 
states can be handled by changing the mouse cursor. Calls to -1nitCursor 
tum the cursor into an arrow. You can change the cursor to predefined 
shapes by calling -8etCursor. An I-Beam for editing text, a plus for editing 
grahics, a watch for delays, and more cursors are available. If you want to 



187 The Macintosh Environment 

design your own cursor you can do it in the resource file. An example in 
Appendix F ('fraps) shows how to do this. 

We have already described fhe resource file. Many of the ToolBox calls 
can take their parameters from the resource file. They do this by calling 
the Resource Manager. But your program can also call the Resource 
Manager directly. The most important thing you may need to do, is to open 
a resource file. 

There are usually several resource files open, when your applicaton is 
running. The System resource file is opened first. Your application code 
itself is a resource file. The _QpenResfile call opens additional files for 
your application. When it looks for a resource, the Resource Manager 
always starts from the most recently opened file. This means you can 
supercede definitions in the System resource file if you want to. 

We mentioned that the application code is in a resource file. In fact, 
every Macintosh file has both a data and a resource "fork." This amounts to 
two files for every catalog entry; one for the data and one for the resource. 
The code of an application is in the resource fork of a file. The resources 
used by that code can be in the same file, or in a different file. The 
Resource Compiler on the Lisa accepts the type "CODE:' You can declare a 
linked object with this type, and the compiler will build one file 
containing both application and resource data. In Appendix E, Using The 
Lisa Workshop, we show how to do this. 

Each resource in the resource file belongs to a four-character type. For 
example, dialogs are type "DLOG" and windows are type "WIND:' You can 
even make up your own types for storing specialized data for your 
application. Each specific resource has an ID integer. This number only 
needs to be unique among other resources of the same type. The exact 
syntax of the Resource Compiler language was described in Chapter 6, 
Macintosh Tools. An example of a working resource source appears in the 
next chapter. 

You should follow a few standards in creating your resource file to be 
compatible with the System code of the Macintosh. Tu avoid conflicting 
with the System Resource File unintentionally, you should make all of your 
ID numbers greater than 256, with one exception. The standard Apple 
menu should always be ID number one. The edit menu can be any ID 
greater than 256, but the contents should be compatible with the desk 
accessories so they can use it also. The desk accessories may support up 
to five actions, Cut, Copy, Paste, Clear and Undo. These should be arranged 
in your edit menu in the standard order. Some of the. commands have 
standard Command-key equivalents. Figure 7-6 shows the Standard Edit 
Menu. The way it looks on the screen is shown to the left. The resource file 
entries are shown in the center column. The suggested command keys 
appear in the resource entries, separated by "!" (a slash). The right column 
of numbers shows the values passed to the Desk Accessories with the 



188 Programming the 68000 

., 

~ 
M•cP•int 

[Q 
Vll-4 Overlapping Window Regions CJ 

S~stem Folder 

D 
~ 

Vlll-6 Ouickl>r•w /Pens 
ll • 

Clipboard Fil• 

Figure 7-6 Edit Menu 

_SystemEdit call. If you use the Standard Edit Menu, you must subtract 
one from the item number before calling _SystemEdit. If you create a 
different menu, try to keep it similar; and calculate the values for 
_SystemEdit as necessary. 

Memory management is particularly flexible on the Macintosh System 
calls to the Memory Manager will give you large blocks of RAM, which can 
be either relocatable or in fixed locations. The same system keeps track of 
space allocated by calls to the Dialog or Window Managers. If you want to 
allocate your own memory space, there are several ways to do it. You can 
allocate space in your program, allocate space from the Global Variable 
area, or simply take space from the stack area. None of these mechanisms 
will interfere with the memory manager itself. 

The Memory Manager can recover space used by inactive code to 
create new blocks or to expand old ones. But you don't have to worry about 
part of your program disappearing without warning. The only application 
code that will be purged from memory are segments that you have marked 
purgeable with the _UnLoadSegment call . These must be separate 
segments you have created with the Linker on the Macintosh, or with the 
.SEG statement in the Lisa Assembler. You cannot have any return 
addresses or pointers into unloaded segments, but you can enter the 
segment at any time. 

All of the calls between ·segments go through the Jump Table. This was 
explained in Chapter 6 (Macintosh Tools). If the segment is not in memory, 



189 The Macintosh Environment 

the Jump Thble does not contain a JMP to the entry point. Instead, it sends 
the call first to the Segment Loader, and then to its destination in the 
segment. The Segment Loader will call the Resource Manager to read the 
code into memory. Then the Segment Loader will change all the entry 
points for that segment to the proper JMP instructions, before branching 
to the destination routine. If you have marked a segment as purgeable with 
the _UnLoadSegment call, the memory manager may reclaim the space. 
Then it will change the Jump Thble entry back to the trap instruction 
which calls the Segment Loader the next time the entry is accessed. 

JUMP table 
32 b b AS 

B bytes 

at ~es a ove 
A5 Area 

[ segment number AS-----+ 
_fDgram segment 1 variables 

JMP SEGl ... 
varl(A5) ~'[ [ segment number 

r+ var2 

JMP SEG2 
:ogram segment 2 . 

-.... var2(A5) -+--' 
program segment 3 offset of rtn 

from begin of ., varl(A5) I seg (2 bytes) 

instruct that ~ 0 INI Ill~ S II< moves seg num 
(SEG3) I I onto stack 

(4 bytes) 

B bytes 

8 bytes 

LoadSeg trap 
(2 bytes) 

Each segment is pointed to by an 8-byte enay in the jump table which 
is maintained by the segment loader. The entry is simply a jump plus 
segment number if the enay is in memory; if not in memory, the enay 
consists of a call to a routine to bring the segment in from disk. Sort of 
ingenious really. 

Figure 7-7 Jump Thble and Segments in Memory 

You can allocate memory within your program by using the "DC" 
directives as described in Chapter 6 (Macintosh Tuols). This is especially 
good for defining constants. You can also use it for variable areas which 



190 Programming the 68000 

need to be initialized to a constant value, but we do not recommend this. 
The 68000 was designed with Pascal in mind. Pascal implementations 
usually separate the code and data areas of memory quite distinctly; the 
instruction set of the 68000 was not geared to modifying the program 
space. Although you can keep variables in the code space on the 
Macintosh, they will be more difficult to access. What is worse, if you use 
segmentation in your program, the variables may mysteriously revert to 
their initial values if the segment is paged out and reloaded. 

If you don't allocate variables from code space, how do you do it? The 
most versatile way is to take space from the stack. You can set an address 
register to point to your block and address your variables as constant 
offsets from that register. The LINK and UNLK of the 68000 were especially 
designed for allocating memory this way. But notice that when you use the 
LINK instruction, the constant should be a negative number, and your 
offsets will have negative values. You might want to review the LINK and 
UNLK instructions in Chapter 3 (68000 Instruction Set) before going on. 
Pascal uses LINK and UNLK to allocate space for local variables. Pascal 
always uses address register A6 for these instructions. Let's use a typical 
Pascal procedure, such as this do-nothing procedure we'll call NADA: 

PROCEDURE NADA; 
VAR X, Y : INTEGER; 
BEGIN 

X := Y; 
END 

The NADA procedure will compile to a structure such as this: 

NADA LINK #-4,A6 Allocate four bytes from the stack 
MOVE -2(A6), -4(A6) ; Assign Y. to X, both local variables 
UNLK A6 ; Return stack space. 
RTS 

You can use this mechanism repeatedly, only taking up the memory 
space for which code is actually in use. This sits well with the Memory 
Manager also. The memory space allocated by the Memory Manager is 
taken from the Application Heap. If you refer to Figure 7-8, you will notice 
that the Application Heap builds up toward the stack pointer, while the 
stack builds downward. This allows the stack and heap to grow into the 
same free space, by nibbling away at it from both ends. The TholKit even 
checks to be sure your stack does not collide with the heap. It does this 
during every vertical retrace interrupt, which happens sixty times per 
second. 

You can also allocate memory during assembly. If you use the "DS" 
directives in the Macintosh Assembler, described in Chapter 6 (Macintosh 
Thols) global memory space will be allocated relative to register A5 when 



191 The Macintosh Environment 

Memory locations for 

12.DK fillK 1~XL Memory Areas 

$00 $00 $00 ........ 

$100 $100 $100 ........ 
Trap Vectors 

$400 $400 $400 ........ 
System Globals 

$800 $800 $800 ........ 
Dispatch Table 

SBOO $BOO $800 ........ 
System Globals 

$4EOO $CBOO $CBOO ........ 
System Heap 

Application Heap 

~-r-r-r--
free space 

~-l_t._t. __ 
Stack 

$1A700 $7A700 ........ 

$CEF86+ 
Application Globals 

$1FC7F $7FC7F $F8000+ 
used by system on XL 

Main Screen Buffer 
$1FDDD $7FDDD none ........ 

Main Sound Buffer 
$1FFE3 $7FFE3 $FFFFB+ 

· $1 FFFF $7FFFF $FFFFF + 
used by system 

Note 1: There is no sound buffer in a Macintosh XL. 
Note 2: There is no gap between Application Globals and the Mac 
Screen Buffer on a Macintosh, but there is gap on the Macintosh XL 
(used by system). 

Figure 7-8 Memory Map 

your program starts. You can achieve the same effect in the Lisa Workshop 
Assembler by defining global variables in your Pascal dummy program. 

\!Vh.ether you use global variables or not, you should never alter A5. 
This register is used by the TuolKit for system variables as well as for the 
Jump Tu.ble. Since you cannot use A5 anyway, the "DS" directives give you 
RAM space for your variables without dedicating an extra address register. 

There is one more way of allocating memory. \!Vh.en you use a literal 
string in an instruction in the Macintosh Assembler such as, 

PEA "Where did it go?" 



192 Programming the 68000 

you may wonder where the ASCII went. The Assembler converted the 
string to a Pascal form and placed it at the end of the code. The PEA 
instruction above is equivalent to: 

PEA LengthByte 

LengthByte DC.B 18 

Since this structure is equivalent to· just defining strings yourself with 
the "DC" or "ASCII" directives, it should be used with the same restrictions 
put on data defined in code space. 

Tu use the TuolBox you need lots of definitions. The appropriate 
include files have to be in every program. These contain macro definitions 
for the traps as well as data definitions. If you are using the Lisa \i\brkshop, 
you have a lot of RAM space, and must have a hard disk. A Macintosh 
Assembler environment may be a little more limited, so a special type of 
file, a dump file, helps the Assembler shuffle through all of this informa-
tion much faster. · 

Now fliaiwe ~ taken a b'ef ~k at ~~£~aclntosh ~Viroinne11t, 
we.a:re ready to sprt delving~ig)oJ:he TuOJ'.Q<;lx. In Chap~P 8 you will_. 

· · · to · · · 'I9() · · cl • ·· · · _.-.·~ 0t!•{. 



CHAPTER 

§~----
The Macintosh ROM 
Calls 

The key to programming on the Macintosh is learning how to call the 
subroutines provided for you in the ROM and Operating System. At first, 
you may have thought the Macintosh environment would be difficult to 
create. But in the last chapter you saw that is simply a matter of calling the 
routines already written for you. Now you will examine the structure of 
those calls. You will study how parameters are passed and how the 
routines are accessed. Along the way you will learn about QuickDraw and 
learn some of the more common ROM calls. After seeing these examples, 
you will be able to figure out how to use most other Macintosh system 
calls in the Appendices or Apple documentation. 

Calling the Tuolbox 

The Toolbox calls were designed to interface to Pascal. Since all param
eters are passed on the stack in Pascal, the Toolbox type of interface is 
called the stack-based interface. Some of the calls are like. Pascal pro
cedures which return no result. Other calls are like Pascal fu~ctlons whlcb . 
can ~tum only one value. We are going to discuss the parameters for some 
of the. cails. AppendiX F, the Trap Appendix, shows a few of the more 
common calls in Assembly language. The rest of the calls are shown only 
in their Pascal form. After you have a little experience, you will be able to 
use the call in Assembly language by translating the Pascal form. 

Pascal procedures and functions use the stack for passing parameters 
and returning results. After the required data is pushed onto the stack, a 
JSR calls the routine, placing the return address on top of the stack. The 
ROM calls use the same data structure, but they don't use a JSR to reach 
the subroutine. Instead, a special instruction called a "Trap" transfers 

193 



194 Programming the 68000 

control to the subroutine. A special macro has been defined for each trap. 
This is usually the name of the Pascal call preceded by an underscore. The 
routine called "InitCursor" in Pascal, for example, has a macro called 
"-1nitCursor" in assembly language. The trap macro works just like a JSR 
from the point of view of the application. Just write "-1nitCursor" (for 
example) to call the ROM routine with the return address on the stack. 

You don't-have to know exactly how the traps work to use them. The 
Toolbox makes them function just like JSR subroutine calls. Although you 
don't have to understand the traps to use the macros, we think a brief 
outline will help you get a better grasp on Tuolbox calls. If you feel you 
don't need to worry about this, you can skip the next three paragraphs. 

The trap calls do not use the "TRAP" instructions, Instead, they use a 
special op code which is unimplemented in the 68000 instruction set. 
When this op code is encountered, the 68000 vectors to a special handler, 
the same way it_ does for a "TRAP" or "CHK" instruction. The unimple
mented op code is a hex ten in the first four bits of the instruction word. 
Thus, a trap can be any instruction of the form: 

$Axxx. 

where "x" means any hex value. The last three nibbles are used to specify 
the trap being called. This allows 16 to the third power, or 4096 possible 
traps. The "TRAP" type instructions can only accommodate 16 different 
calls, one for each instruction and matching vector. 

The unimplemented instruction vector leads to a routine called the 
Trap Dispatcher. The job of this routine is to decode the trap call and jump 
to it, just as though the application code had used a JSR to the subroutine. 
As you remember from Chapter 3, 68000 Instructions, the vector operation 
leaves the address of the instruction and the status register contents on 
the stack. The Trap Dispatcher uses the instruction address from the stack 
to get the original instruction word. The upper four bits are always $A of 
course, but the lower bits contain the trap number, telling which routine 
needs to be called. The Trap Dispatcher uses the trap number to look up 
the address of the routine in a special table, the Dispatch Tuble. Finally; the 
Trap Dispatcher sets up the stack to look as if a JSR has just been executed. 
A return address on top of the stack points to the address just after the 
trap instruction in the user code, then it jumps to the address it found in 
the Dispatch table. This completes the interface just as though it had been 
done by a JSR. 

The Dispatch Tuble contains the addresses of the trap routines. These 
routines are normally in ROM, and their addresses don't change, but 
Apple had the forethought to send all of the routines through a table 
anyway. Now, when any changes have to be made to the ROMs, the chips 
don't need to be replaced. Instead, a new software release can load the 
patches into RAM and change the table to point to the improved code, 
instead of the old ROM routine. 



195 The Macintosh ROM Calls 

A Tuolbox procedure is called with the parameters on the stack. You 
push all the parameters in the order in which they appear in the 
procedure declaration. Then you execute the trap to call the procedure. 
When the call returns, all of the parameters will be gone. The stack is left 
as it was before the call. If the procedure does not have any parameters, 
use just the trap macro. This procedure, InitCursor, does not have any 
parameters. Here is the Pascal form: 

procedure lnitCursor; 

Tu call InitCursor from assembly language, use: 

_lnitCursor 

Routines that have parameters described as "INTEGER" in Pascal, 
need a two-byte, twos-complement integer on the stack. The Pascal type 
"WNGINT" is a long integer. It requires a four-byte integer. Other types of 
parameters need different data on the stack. The data and size for each 
type of parameter is shown in Appendix F, Trap Appendix. We will explain 
the most common ones later on in this chapter. For now; we can call a 
Pascal procedure such as, 

procedure HiliteMenu (menuD: INTEGER); 

In Assembly language: 

MenulD DC.W 302 

MOVE.W MenulD,-(SP) ;ID of menu, an integer 
_HiliteMenu 

A Toolbox function is also called with the parameters on the stack, but 
first you have to make room for the result. A Pascal function definition 
specifies the type of the result the same way as the type of a parameter. All 
you have to do to make space for the result, is clear the same space on the 
stack that a parameter of the same type would occupy. When you have 
loaded the result space and parameters, just use the trap macro to call the 
function. When the call returns, the parameters and return address will 
have been removed. The result will remain on the stack, just where you 
created space for it. You can either pop the result into its destination, or 
leave it on the stack if it will be the parameter of a future call. A routine to 
read the Macintosh clock, in ticks or intervals of Yso second is a function in 
Pascal: 

function TickCount: Longint 

Use this code to load the number of ticks since power-on into DO: 

CLR.L - (SP) ;Make space for long integer result 
_TickCount ;Call the TickCount function 
MOVE.L (SP)+ ,DO ;Result to DO 



196 Programming the 68000 

Pascal only allows a function to have one two-byte or four-byte result. 
You will always be clearing two or four bytes on the stack for a function 
result. Many routines return a longer structure but cannot be defined as 
functions. Instead they are defined as procedures with the results 
returned in variables. A few routines return two values packed into a four
byte result. Pascal has difficulty separating the values, but in Assembly 
language you can actually pop one integer at a time from the stack. 

The Operating System calls are usually different from the Toolbox 
calls. The parameters are passed in registers or in memory, instead of 
being passed on the stack. This type of interface is called the register based 
interface. If a single data value is passed, it is placed in DO before the trap. If 
an address value is needed, it is passed in AO. Longer data structures are 
first set up in memory. Then the trap is called with a pointer in AO. The 
pointer should be the address of the first word of the data structure. For 
example, the Operating System call to drain the Event Queue is defined in 
Pascal as: 

procedure FlushEvents (eventMask,stopMask: INTEGER); 

Since this is an Operating System call, the data is passed in DO, like 
this: 

MOVE.W #StopMask,DO ;Events to stop scan 
SWAP DO 
MOVE. W #EventMask, DO ;Events to remove 
_Flush Events 

Both kinds of call preserve the same registers. The scratch registers 
are registers DO, m, D2, AO and Al. The data registers numbered D3 and 
above, and the address registers numbered A2 and .above will not be 
altered by the call. The lowei;, registers may be changed, or used to pass 
parameters. You can keep your data in the higher numbered registers, and 
know it will be the same while you call the Toolbox or Operating System. 

The register A5 has special uses throughout the system. This register 
points to the Global Data Space. You should never change A5 because 
QuickDraw, the Segment Loader, and many other routines require data 
from the Global Data Space. The Macintosh Assembler will allocate 
variables there if you use the DS instruction. If you are using the Lisa 
Assembler, you can create global variables in Pascal, and access them from 
A5 in assembly language. 

The length and structure of parameters to pass on the stack is 
sometimes difficult to figure out. A table in Appendix F, Trap Appendix, 
shows each type of parameter. Some general rules make it easy to 
remember what to pass in most cases. If the Pascal parameter is defined 
with a VAR, use a four-byte pointer to the data. It could be modified by the 



197 The Macintosh ROM Calls 

call. If the data is longer than four bytes, use a pointer. It won't be modified 
by the call if the Pascal definition does not describe the parameter as a 
VAR. Pass a two-byte value for a Pascal "INTEGER:' Pass a four-byte value for 
a Pascal long integer, "LONGINT:' Always pass four bytes for an address or a 
pointer. These rules describe most cases, but there are some special cases. 

Some calls may accept a pointer but do not require it. In Pascal, you 
may pass NIL if you are not using a pointer. The equivalent of the empty 
pointer, NIL in Pascal, is a four-byte zero. When you initialize the Dialog 
Manager, you pass a pointer to a restart procedure to take care of system 
errors. If you don't want to bother with a restart procedure, you pass NIL 
instead. The Pascal definition is, 

procedure lnitDialogs (restart:ProcPtr); 

where a ProcPtr is a pointer to a procedure, in other words, a code 
address. If you have a restart procedure named "Restart" call the Init
Dialogs procedure like this: 

Restart 

PEA Restart ;Pointer to Restart subroutine 
_lnitDialogs ;Initialize Dialog Manager 

RTS 

;This is the restart procedure. It 
;has no parameters. 

If you do not have a restart procedure, and usually you don't need to 
have one, you can pass NIL in the call like this: 

CLR.L - (SP) 
_lnitDialogs 

;NIL pointer for restart procedure 
;Initial Dialog Manager 

Pascal programmers sometimes have to go through complex machi
nations to defeat the language's type enforcement. There are several 
different types of pointer defined for the Tuolbox in Pascal. Usually, the 
symbol for any type of pointer will end in " ... PTR" to give you a clue that it 
is a pointer. All pointers are the same in Assembly language, a four-byte 
address. But in Pascal, a particular pointer type can only point to one kind 
of record. A four-byte integer, a "LONGINT" in Pascal, is also not inter
changeable with a pointer. The Pascal functions, "ORD4" and "POINTER" 
convert between the two types. These functions have no effect on the data 
so you need no equivalent in Assembly language. 

1\vo other Pascal functions which have no effect on the data, are the 
"CHR" and the "ORD" functions. These two convert between characters 



198 Programming the 68000 

and integers. A character is represented by its ASCII value as a two-byte 
integer. This means the data is in the lower byte instead of the upper byte. 
The DrawChar procedure draws one character on the screen. It is defined 
in Pascal as: 

procedure DrawChar{ch:CHAR); 

If we want to put a zero on the screen, which is the ASCII character 
$30, we can use this: 

MOVE. W #$30, - (SP) ;Put $0030 which is a 'O' on the 
;stack 

_orawChar ;Draw the character 

Thie or false values are called Boolean variables in Pascal. Although 
only one bit is required to represent them, the interface passes an entire 
word. The true or false value is in bit zero of the high-order byte. The two 
possible values are: 

$0100 means TRUE 
$0000 means FALSE 

We recommend that you always pass Boolean parameters with these 
values. But since only one bit is significant, you should check that bit only, 
without counting on the other bits in the word being set to zero. Tu test a 
Boolean parameter returned on the stack: 

BTST #0,(SP)+ 
BNE TRUE 
BEQ FALSE 

;Check result 
;Function returned True 
;Function returned False 

One of the most useful Tuolbox variable types is the handle. A handle 
is simply a pointer to a pointer. This may seem like a needless complica
tion at first, but it helps you off-load much of the work of space allocation 
to the System. Handles are always four bytes long. Those four bytes contain 
the address of another four bytes. This second four bytes contain the 
address of the data. The reason why handles are so useful though, is that 
you hardly ever have to unravel them this way. Instead, the Tuolbox will 
allocate memory space for a structure such as a menu, and pass a handle 
back to your application. When you call the Menu Manager again, you just 
pass the handle and the Manager can reference the data. 

How do handles help the Memory Manager allocate memory? The key 
to this mystery is that allocating memory is not as big a problem as 
recovering space for reuse. An application starts with one large block of 
memory it can use, which is called the heap. When the program is 



199 The Macintosh ROM Calls 

running, smaller blocks of memory are constantly being created from the 
heap and returned. They are not necessarily returned in the order they are 
created. Scattered blocks throughout the heap will remain till the end of . 
the program. This kind of activity tends to break usable space into smaller 
and smaller pieces. Eventually, a new block of modest size cannot be 
created, because the heap is divided into small sections. The blocks that 
divide the heap occupy little space in themselves, but they divide the heap 
so that a larger block cannot be created in one piece. This situation is 
called a "fragmented" heap. An illustration of a fragmented heap is in 
Figure 8-1. 

HEAP 

Pointers ___ ... 
scattered 
blocks of 
memory 

fragmenting 
heap 

Figure 8-1 Heaps and Pointers (Fragmented) 

If the data blocks in the fragmented heap can be moved, the heap can 
be repaired. All we have to do to make a fragmented heap usable, is shift all 
of the blocks as far as possible toward one end of the heap. This process is 
called compacting the heap. Figure 8-2 shows the heap after compacting. 

A fragmented heap is easy to repair by compacting it. But the Memory 
Manager cannot compact the heap if it has been passing out pointers to 



200 Programming the 68000 

HEAP 

.----1---Pointers ___ ... compacted 
blocks of 
memory 
on heap 

Figure 8-.2 Heaps and Pointers Compressed 

the blocks. The application program has saved the pointers which the 
Memory Manager provided. If the blocks move, all is lost. Instead, the 
Memory Manager puts all the pointers in a small reserved area. It tells the 
application where a particular pointer is by passing a pointer to that 
pointeIJ a handle. Now when the Memory Manager has to move the blocks, 
it just changes the pointers to point to the new data locations. The blocks 
with handles are shown in Figure 8-3. 

These blocks are called relocatable, because the Memory Manager can 
move them to make space. All you have to do is always access them 
through the handles. If you ever need to dereference a handle, the code to 
do it is simple. This example resolves the handle to a byte, and puts the 
byte into DO. 

MOVE .L 
MOVE.L 
MOVE.B 

Handle(A5) ,AO 
(AO),AO 
(AO),DO 

;Get handle from storage 
;Get pointer 
;Get byte 



201 The Macintosh ROM Calls 

HEAP 

---Handles===l::=:i 

Usually the 
handles are 
interspersed 

in the segments 
of the program, 
the pointers are 

in a location 
known to the 

memory manager 
(the heap's bottom). 

Figure 8-3 Heaps and Handles (Handles Pointing to Pointers ... )* 

Some calls use a complex structure defined as a "RECORD" in Pascal. 
To use a record as a parameter, you have to create a similar structure in 
memory and place your values in the proper fields. If the record parameter 
is identified as a VAR, values may be returned to you in some fields of the 
record as well. You pass a pointer to the record as the actual parameter for 
the call, unless the record is no more than four bytes long and not a VAR. 

The fields of one variable are stored in memory sequentially, in the 
order in which they are declared in the record. The space taken by each 
field depends on its type. The size of a field is generally the same as the 
size of the data you would pass for a parameter of the same type. A Pascal 
record type containing two integers may be defined like this in Pascal: 

Twolnts = 

Val One 
Val Two 

END; 

RECORD 
INTEGER; 
INTEGER 



202 Programming the 68000 

To create a variable of this type, you just define space for two integers: 

VRValOne 
VRValTwo 
Val Record 

DS.W 
DS.W 
EQU 

1 
1 
VRValOne 

;Space for Valone integer 
;Space for ValTwo integer 
;Address record by first field 

Once you know the length of each field, you can create and use record 
parameters for any type of Pascal call. 

As we said above, the size of a field is usually the same as the size of a 
parameter of the same type. There is one important exception to this rule; 
two sequential Boolean fields can occupy one word. Remember that we 
pass a Boolean value in the upper byte of a stack word. A Boolean is really 
only one byte, containing a one or a zero. The lower byte of the stack word 
is, in fact, just fill. The stack stays aligned on a word boundary, whether we 
move a byte or a word onto it. Likewise, most of the fields in memory have 
to be aligned to word boundaries, so an extra byte of fill will usually be 
added after a Boolean. It is only when two one-byte fields appear in a row 
that the extra byte of fill can be omitted. Here we have a record that 
contains a Boolean between two integers: 

Fill= RECORD 
Val One 
LongBool : 
ValTwo 

END; 

INTEGER; 
BOOLEAN; 
INTEGER 

The equivalent Assembly language definition uses two-bytes for the 
Boolean: 

FValOne DS.W FValOne ;Space for ValOne integer 
FLongBool DS.B 1 ;Boolean value 

DS.B 1 ;Fill to maintain alignment! 
FValTwo DS.W 1 ;Space for ValTwo integer 
Fill Rec EQU FValOne ;Address record by first field 

But if there are two Booleans together; like this, 

NoFill = RECORD 
Valone : INTEGER; 
BoolOne : BOOLEAN; 
BoolTwo : BOOLEAN; 
ValTwo : INTEGER 

END; 

the equivalent definition squeezes both Booleans together: 

NFValOne DS. W 
NFBoolOne DS. B 
NFBoolTwo DS.B 

;Space for Valone integer 
;First Boolean value 
;Second Boolean value 



203 The Macintosh ROM Calls 

NFValTwo 
NFillRec 

DS.W 
EQU NFValOne 

;Space for ValTwo integer 
;Address record by first field 

The key to remember is word boundary alignment. One-byte Booleans 
don't need to be aligned, but most other fields do. 

The fields of most records are defined for you in the include files. The 
fields are defined as offsets from the start of the record. You can use these 
labels in expressions to address the fields. Just add the offsets to the 
address of the start of the record. When you have an address register 
pointing to the record, you can use the offset in an indexed addressing 
mode. If the 1\volnts record as defined above, were a part of the Tuolbox 
there would probably be offset definitions for both fields such as these: 

Val One EQU 

Val Two EQU 

0 

2 

;Two I nts Structure 

;Valone : INTEGER 
;ValTwo : INTEGER 

You can make it easier to keep track of the fields with these labels. Put 
the name of the variable together with the offset label to make your own 
name for the field, as we have been doing above: 

VRValOne 
VRValTwo 
Val Record 

DS.W 
DS.W 
EQU 

1 
1 
VRValOne 

;Space for Valone integer 
;Space for ValTwo integer 
;Address record by first field 

Now you can address the fields symbolically in two ways. For 
example, you can clear and test the second integer like this: 

CLR.W 

LEA 
TST.W 

VRValTwo(A5) 

Va1Record(A5),AO 
ValTwo(AO) 

;Set ValTwo of the record to zero 

;Point to a record 
;Check ValTwo of that record 

This is as simple as a higher level language, only more efficient! 

Calling the QuickDraw Graphics Package 

The QuickDraw drawing environment is an unusually powerful graphics 
package. We cannot describe all of the capabilities of QuickDraw in this 
book. We are going to show you some of the most useful features however. 
When you are ready to do even more, you can refer to Macintosh Revealed 
(Vol. 1), by Stephen Chemicoff, published by Hayden Book Company. 

A pixel is a dot described by one bit. If the bit is one, the dot is black. If 
the bit is zero, the dot is white. When you erase an area of the screen, you 
make it white. As you draw text and graphics, the pixels change from zero 
to one, as you add black lines and letters. 



204 Programming the 68000 

A bit image is a section of memory used to store pixels. QuickDraw 
drawing commands, change the bits of the words in the bit image. The 
Macintosh screen is the most common bit image, but QuickDraw can 
operate on any section of RAM. The pixels use all the bits of a memory 
word. They are arranged to make the horizontal scanning circuitry simple. 
Figure 8-4 shows how pixels are arranged in a bit image. You may never 
need this information, because QuickDraw takes care of all of the bit 
manipulation for you. 

Pixels. Binary Hex Decimal 

%11111111 - $FF-255 
%10000001 - $81 -129 
%10000001 ... $81 -129 
%10000001 - $81 •129 

coordinates %10010001 - $91 -145 go between the 
%10000001 - $81 -129 pixels 
%10000001 - $81 •129 
%10000001 - $81 -129 
%10000001 - $81 -129 
%11111111 - SFF-255 

As you can see, there is a one-to-one correspondence between pixels 
on the screen and bits inside a word of memory. It only becomes 
obscure in hexadecimal and even more obscure in decimal. 

Figure 8-4 QuickDraw Bit Image 

Coordinates are vertical and horizontal mathematical lines. They are 
described by two-byte integers, running from - 32768 to 32767. Although 
there are horizontal and vertical coordinates for each pixel, the coordi
nates go between the pixels, rather than through them. This makes 
QuickDraw unusual. In most graphics packages, the coordinates go 
through the pixels, like beads on a string. In QuickDraw, the coordinates 
separate the pixels, like the lines between squares on a checkerboard. The 
QuickDraw system is much easier, once you are familiar with it, because 
you don't have to make special efforts to include the end points of a line 
you are drawing. Figure 8-5 shows how the coordinates divide the pixels. 

The QuickDraw vertical coordinate system is opposite to the standard 
Cartesian coordinates. The vertical coordinates get larger going down on 



205 The Macintosh ROM Calls 

This drawing shows a 3 x 5 pen drawing along a diagonal downward 
and to the right. The area in represents the pen and the area in 

represents the area affected by the diagonal line. 

Figure 8-5 QuickDraw and Pen 

the Macintosh. The upper left comer of the image will have the lowest 
coordinate values. The lower right comer will always have the highest 
coordinate values. This makes sense when drawing text, because we like to 
think of the top of the screen as the first line rather than the last line. 

A point is the intersection of a horizontal and a vertical coordinate. 
This is not the same as a pixel. Instead, a point is the place where four 
pixels touch. This can be seen in Figure 8-5. A point is described by two 
integers, the vertical coordinate followed by the horizontal coordinate. 
Here we define a point close to the X-Axis: 

HighPoint DC.W 5 
DC.W 20 

;vertical coordinate equals 5 
;horizontal coordinate coordinate 
;equals 20 

A rectangle is formed by two horizontal and two vertical coordinates. 
The coordinates surround the pixels contained in the rectangle. The 
rectangle is described by these four coordinates in a specific order: top, 
left, bottom, right. You can also think of this as two, diagonal, comer points 
to describe the rectangle, the top, left point and the bottom, right point. 
Here we define a tall, narrow rectangle close to the X-Axis: 



.206 Programming the 68000 

ThinRect DC.W 5 
DC.W 40 
DC.W 50 
DC.W 45 

;top coordinate equals 5 
;left coordinate equals 40 
;bottom coordinate equals 50 
;right coordinate 45 

An imaginary drawing implement, the QuickDraw Pen, controls how 
drawing takes place. The pen has many characteristics you can control. It 
is rectangular, and you can change its height and width. It has a location, a 
point in the bit image. When you draw, the bits of the pen are combined 
with the bits underneath according to a rule or pen mode. You can set the 
pen mode to be "AND," "OR," etc. depending on how you want the new 
drawing to combine with the image already there. Finally it has a pattern, 
which is the shading such as black, gray or white, with which the new 
image is drawn. Setting these characteristics gives you great variety in the 
drawings you can make. ~ will discuss each of them later on in this 
chapter. 

There are three kinds of drawing in QuickDraw. You can draw using 
text, lines or rectangles. Tuxt drawing puts solid letters on the screen at the 
current pen location. Line drawing usually starts from the pen location 
and moves diagonally to a new location. Rectangular drawing creates 
different kinds of figures within a rectangle. All of the QuickDraw com
mands relate to drawing in one of these three fashions. 

Tuxt draWing always starts at the current pen location. Each character 
is created to the right of the pen. Then the pen is moved to the left by the 
width of the character. Tuxt drawing does not use any pattern. The text is 
always solid black or white. The pen mode is not used, but a special text 
mode can be set which has the same effect. (Pen mode is discussed later 
on in this chapter.) You can draw single characters, Pascal strings, or blocks 
of text from a larger structure. 
~ have already seen how to use DrawChar to put a single character 

on the screen. Th draw a Pascal type of string, you use the DrawString 
procedure. In Pascal this procedure is defined as: 

procedure DrawString(s:Str255); 

Don't worry about the type definition, "Str255:' This is just a string 
with a maximum size of 255 bytes. We only have to pass a pointer to any 
Pascal-type string to use the call: 

PEA "Literal String" ;Push pointer on stack 
_Drawstring ;Draw the string 

If the data is not formatted as a Pascal string, there is a more 
generalized procedure, Draw'Tuxt. It is defined this way in Pascal: 

procedure DrawText(textBuf: QDPtr;FirstByte, ByteCount : INTEGER); 

The type definition, "QDPtr," is as you might expect, a pointer. The 



207 The Macintosh ROM Calls 

"FirstByte" is the number of characters to skip before drawing the number 
in "ByteCount" characters. This call prints "YES" on the screen: 

PEA Text 
MOVE #7, -(SP) 
MOVE #3; - (SP) 
_DrawText 

;Pointer to start of data 
;Start at the eighth byte 
;Draw three characters 
;Draw the characters 

Text DC.B "NoNoNo YES No" 

If you want to know the width of text without actually drawing it, there 
are three similar routines to measure text. It is important to always get the 
width of the text this way; because the width of characters depends on the 
font and size, as you shall see below. The text width calls are three 
functions which correspond to the text drawing procedures: 

this: 

function CharWidth (ch: CHAR): INTEGER; 
function StringWidth (S: Str255): INTEGER; 
function TextWidth (textBuf: Ptr; firstByte,byteCount: INTEGER):INTEGER; 

To put the width of a letter "A" into DO, you can call CharWidth like 

CLR.W -(SP) 
MOVEQ #' A",DO 
MOVE.W DO, -(SP) 
_CharWidth 
MOVE.W (SP)+ ,DO 

;Space for integer result 
;Character "A" 
;Parameter to stack 
;Call CharWidth function 
;Character width to D) 

Line drawing depends greatly on the pen characteristics. The line is 
created using the pen mode and pattern. You can imagine that the drawing 
area already contains the pen pattern, but it is covered with another 
surface. As the pen moves, it scrapes off the top layer, leaving the pattern 
exposed. The width of the line is set by the dimension of the pen. You can 
think of the pen as a block that hangs below and to the right of the pen 
location during line drawing. As the pen moves along a coordinate line, the 
pixels below or to the right for the height or width of the pen are affected. If 
the pen moves along a diagonal, the affected area is more difficult to 
describe, but the analogy still holds. The upper left comer of a rectangle 
the height and width of the pen, is dragged along the path. Figure 8-5 
illustrates the QuickDraw Pen making a diagonal line. 

are: 
There are four commands most useful in line drawing. In Pascal they 

procedure MoveTo(h,v : INTEGER); 
procedure LineTo(h,v : INTEGER); 
procedure Move (dh,dv : INTEGER); 
procedure Line (dh,dv : INTEGER); 



208 Programming the 68000 

The Line routines actually draw a line. The Move routines just move 
the pen to the new location. The pixels along the way are not affected. The 
MoveTo and LineTu routines use absolute coordinates. The other two give a 
distance to move on each axis from the current pen location. Here is how 
you might move the pen to the point (5,3): 

MOVE.W #5,-(SP) 
MOVE.W #3,-(SP) 
_MQVETO 

;X axis coordinate 
;Y axis coordinate 
;Move pen without drawing 

Since the horizontal coordinate is put on the stack first, it is at a 
higher address than the vertical coordinate once the coordinates are on 
the stack. You can achieve the same structure by simply moving a point 
onto the stack. Recall that a point is two integers, vertical followed by 
horizontal. So to draw a line to a given point you could use: 

MOVE.L Spot(A5).-(SP) 
_Line To 
Spot DS 4 

;Load X & Y of spot 
;Draw line 
;Storage for point 

Rectangular drawing is the most powerful. You can draw rectangles, of 
course. They may be solid or open-line frames. You also use rectangular 
drawing to make circles, ellipses, and rounded comer boxes. There are 
commands (described below) for rectangular drawing that use the pen 
characteristics, and other commands that let you use different modes and 
patterns. 

Rectangular drawing only affects pixels within the target rectangle. 
For example, the __FrameRect call draws a square-cornered box entirely 
within the given rectangle. The pen during rectangular drawing does not 
just hang by the top left comer. Instead, it moves to create the largest 
possible figure of the proper type that will fit completely inside the 
rectangle. The result of a FrameRect call is shown in Figure 8-6. 

Notice how the border of the input rectangle has been traced by a pen 
that always stayed inside of the rectangle. Here is the Pascal definition for 
FrameRect, and how we might use the call in Assembly language: 

;procedure FrameRect (r: Rect); (Outline the rectangle "r") 
PEA Box ;Always pass a pointer to a rectangle 
_FrameRect 

Box ;Constant rectangle 
DC 5 ;top coordinate 
DC 100 ;left coordinate 
DC 50 ;bottom coordinate 
DC 200 ;right coordinate 



209 · The Macintosh ROM Calls 

,. s File Edit QuickDraw 
., 

Drawing Window 

Figure 8-6 FrameRect Call 

When you use rectangular drawing to draw circles, you specify a 
square rectangle. QuickDraw will then fit a circle within that square. The 
width of the cirde will depend on the width and height of the pen. The 
circle will include pixels next to the coordinates at its tangent points, but 
nothing will be drawn outside of the rectangle. To draw an ellipse, you use 
the same calls as for drawing circles, but the rectangle does not have to be 
square. The -FrameOval call outlines an ellipse within a rectangle. The 
result of a call to _FrameOval is shown in Figure 8-7. The syntax of this 
call is identical to FrameRect, which draws rectangle~ . 

Partial circles or ellipses are called arcs . To draw an arc you specify 
the rectangle that would make the complete circle . You also pass an angle 
where the arc should start and one for how far it should go. The angles are 
given in degrees. Vertical is zero degrees. Moving clockwise increases the 
angle. An angle can also be specified as a negative value. This is measured 
counterclockwise from the vertical. When you specify a negative angle for 
the distance, the arc is drawn counterclockwise from the start angle. If you 
use a positive angle for the distance, the arc is drawn clockwise from the 
start angle. 

If the rectangle is square, the angles correspond to actual measure
ments like those you would make with a protractor. But if the rectangle is 
not square, the angles are scaled by its dimensions. The forty-five degree 
angle is always in the upper right comer. Ninety degrees is always 



210 Programming the 68000 

Figure 8-7 FrameOval 

perpendicular to the right edge of the rectangle. The effect is that of 
drawing the angles on a circle within a square, and then tilting the plane 
until the square and circle look like the desired ellipse and rectangle. 

One more class of shape can be created with rectangular drawing. The 
rounded-corner boxes are made by the RoundRect commands. These 
rounded rectangles are ordinary boxes, with ellipses in the comers. 
QuickDraw makes them by drawing 90 degrees of the oval in each comer. 
Then it connects them with edges reduced in length by the height or 
width of the ovals. Rounded-rectangle calls need two additional param-

. eters to describe the comer ovals, the width and height of the four ellipses. 
Figure 8-8 shows the result of a call to _FrameRoundRect. 

The syntax of this call in Pascal and Assembly language is given below: 

procedure FrameRoundRect(r: Rect; ovWd,ovHt :INTEGER); 

Box 

PEA Box ;Always pass a pointer to a rectangle 
MOVE wide, -(SP) ;Width of corner rectangle 
MOVE high , -(SP) ;Height of corner rectangle 
_frameRoun dRect 

DC 
DC 
DC 

40 
100 
120 

;Constant rectangle 
;top coordinate 
;left coordinate 
;bottom coordinate 



.211 The Macintosh ROM Calls 

DC 
High DC 
Wide DC 

Figure 8-8 FrameRoundRect 

200 
20 
15 

;right coordinate 
;corner height 
;corner width 

You can make solid shapes as well as outlines with rectangular 
drawing. The various calls for creating solid shapes are shown in Appendix 
F (Trap Appendix). You should have no trouble calling them from Assembly 
language, because the parameters are the same as calls we have already 
discussed. There are several calls for each shape. Happily, Apple made the 
first word of the name consistently describe what each call does. 

All trap names that begin with "Paint ... " are calls that fill in a solid 
shape, using the pen pattern and mode. PaintRect will draw a black 
rectangle, if the pen is in the normal state. PaintOval can likewise be used 
to draw a solid circle or ellipse. The size of the pen does not matter for 
these, or any solid drawing calls, as long as neither the pen height nor 
width is zero. 

All trap names that begin with "Erase ... " are calls that normally clear 
a solid shape to white. This means all pixels within the shape are set to 
zero. We say "normally" because the commands actually fill the shape with 
a special pattern defined as the background pattern for the port. This is 
normally the white pattern of all zeroes, but it can be changed with a 
procedure: 

procedure Back Pat (pat; Pattern); 



21.2 Programming the 68000 

EraseRect, for example, will initially make a white rectangle on the 
screen. But if you set the background pattern to Gray, then EraseRect will 
create a solid gray block instead. 

The trap names beginning with "Invert ... " are calls that change every 
pixel in the solid shape. All white pixels become black. All black pixels 
become white. The effect is the same, regardless of pen pattern, mode or 
background pattern. A call to IJ;wertRect, with a rectangle drawn around a 
string of text, will make the text change to white on black. This is how the 
Menu Manager highlights the operator's selections. A second call with the 
same parameters reverses the effect of the first, restoring the menu item to 
black on white. 

The trap names beginning with "Fill ... " are calls that work like the 
Paint traps. Instead of using the pen pattern and mode however, the Fill 
traps use the pattern you specify as a parameter to fill the solid shape. The 
FillRect call is defined in Pascal as: 

procedure FillRect (r:Rect; pat; Pattern); 

Tu use this call, you could create a pattern in memory and pass a 
pointer to it. The structure of a pattern is shown in Appendix F (Trap 
Appendix). An easier way is to use one of the standard patterns initialized 
by QuickDraw. We will show you how to do this later on this chapter. 

The pen characteristics vary the way these drawing traps work. You 
can set the pen characteristics with a few simple calls. A similar group of 
calls set the characteristics for drawing text. You can set the size, mode 
and pattern of the pen. For text drawing, you can set the font, face, as well 
as the size, and mode. We are going to explain what each of these terms 
means and give some example calls. 

The pen size is the height and width of the pen. There is one call with 
two parameters to set the pen size: 

; procedure PenSize(width,height):INTEGER); 
MOVE.W #width,-(SP) 
MOVE.W #height, -(SP) 
_PEN SIZE 

You can also think of the pen shape as a point. That point defines the / 
lower right comer of the pen when the upper left comer is at (0,0). 

A drawing mode is the logical operation that puts the new drawing 
into the current bit image. The mode controls how the new drawing covers 
up or blends in with the old. The new drawing, or source data, is 
combined with the contents of the destination, the bit image. The result is 
placed back into the destination. If the logical operation is "OR" for 
example, the black parts of the new figure will be drawn over the old. The 
old drawing will show through any blank spots in the new figure. The "OR" 
mode is just like a pen and ink. With different modes you can figuratively 



213 The Macintosh ROM Calls 

draw with an eraser, using the "BiC" or bit clear mode, or paste text over 
the drawings with the "Copy" mode. 

You set the pen mode by passing an integer with a _FenMode call. 
This mode is used for line and rectangular drawing. A separate mode for 
drawing text is set by passing an integer with a _TuxtMode call. The 
integer values for the same modes are different for the two types of call. 
The Pattern transfer modes for the _llenModes call are the Source 
transfer modes for _ThxtMode plus eight. The values for the modes are 
shown in Appendix F (Trap Appendix). Since the "OR" mode for text, SrcOr, 
has a value of one, we can set the text mode to "OR" like this: 

MOVE. W #1, - (SP) 
_TextMode 

A Quickdraw pattern is a small design, eight bits wide by eight bits tall. 
As you draw, this square is repeated across the screen. You can use the five 
patterns QuickDraw defines, or make your own. The pattern data is just 
eight bytes starting on a word boundary. Each byte represents one 
horizontal line of the pattern. A pattern of wide and narrow diagonal 
strips, as shown in Figure 8-9, can be defined like this: 

.ALIGN 2 
Stripes DC.B $27 ;Binary 00100111 

DC.B $4E 01001110 
DC.B $9C 10011100 
DC.B $39 00111001 
DC.B. $72 01110010 
DC.B. $E4 11100100 
DC.B $C9 11001001 
DC.B $93 10010011 

Tu set the pen to this pattern, use the _llenPat procedure like this: 

procedure PenPat (pat: Pattern); 
PEA Stripes 
_Pen Pat 

When the pen draws, it copies the pattern into the bit map according 
to the current drawing mode. It always aligns the pattern according to the 
coordinates rather than where you start drawing. This way solid shapes 
drawn separately blend together well where they touch. 

If you don't want to define your own patterns, you can use the 
patterns QuickDraw defines for you. These are created when you call 
-1nitGraf to initialize QuickDraw. A pointer passed to -1nitGraf tells 
QuickDrawwhere to keep its variables. The Finder has an area reserved for 
this, if you just pass a pointer to - 4(A5).To access the patterns, you get a 
pointer to the QuickDraw Globals from a global location that stays put. 



.214 Programming the 68000 

I 
8 pixels across 

I 

B pixels down 

Figure 8-9 Pattern Picture 

Then you use a predefined offset to access the pattern. This sounds 
complicated in words, but the code is very simple. To initialize QuickDraw, 
use: 

PEA -4(A5) 
_lnitGraf 

;System QD port 
;Initialize Quickdraw 

Then, to set the pen pattern to Gray, use: 

MOVE.L 
PEA 
_PEN PAT 

G rafGlobals(A5 ),AO 
Gray(AO) 

;Pointer to QD globals 
;Standard pattern 

There are five standard patterns, white, black and three shades of gray. 
The offsets for these patterns are defined in the include file QDEqu. They 
are: 

Black EQU -16 
White EQU -8 
Gray EQU -24 
LtGray EQU -32 
DkGray EQU -40 

The offset values are also listed in Appendix F ('frap Appendix). The 
·shade each pattern represents is self-explanatory. You can use these offsets 
in the same way we used "Gray" above. 

Tuxt drawing has its own characteristics. There is a text mode, font, 
size and typeface. We have already talked about setting the text mode in 
the discussion of the PenMode call. The text font is the form of the 
characters. A set of drawings, one for each character, make up a font. The 



215 The Macintosh ROM Calls 

text face is the way the basic font can be modified. Any font can be turned 
into italics by slanting the characters, or made bold or darker by widening 
them. The text size is also a modification to a standard font. By changing 
the text font, size and face, you can create displays on the Macintosh which 
are as attractive as a printed page. 

Although it is possible to define your own fonts, it is much easier to 
use a standard font provided from the System Disk by the Font Manager. 
Each font is identified by an integer. To make them easier to remember, the 
fonts also have the name of a city. The font the System uses for things like 
the menus can be selected as font #O. The default application font is font 
#1. These two are not actual fonts, but rather tell the Font Manager to 
return one of the two default font numbers set up by the Finder. You pass 
the font number as an integer to TextFont to change the font. For example, 
the call to set the font called Venice (font #5): 

MOVE.W #5,-(SP) 
_Text Font 

Some fonts are proportionally spaced, while others have fixed spac
ing. Proportional spacing means the width of a character depends on its 
shape. A capital letter "W" can take more space than a lower case "i" in a 
proportional font. Fixed spaced fonts make all letters the same width, like 
a typewriter. 

Any text size can be achieved by scaling a standard font. Some sizes 
look much better than others, however. The Font Manager has access to 
several different sizes of many fonts, already scaled by a human artist. If 
the Font Manager does not have the current font in the size you request, 
another size of the same font is scaled up or down. The pre-defined sizes 
look much better than the intermediate sizes the computer calculates on 
its own. The size of a font is the number of printer's points. One point is 
1172 inch. An integer passed to _ThxtSize sets the text size. The integer 
must either be zero or a number between 6 and 127. Passing zero lets the 
Font Manager use the default size. To set the font size to 12 points, use: 

MOVE. W #12, - (SP) 
_TextSize 

The text face can be plain or different combinations of styles, such as 
italic and boldface. The different styles are given by powers of two, so that 
you can combine them into one style word. The style numbers given below 
are also repeated in Appendix F (Trap Appendix): 

Bold 
Italic 
Underline 
Outline 
Shadow 

EQU 
EQU 
EQU 
EQU 
EQU 

$01 
$02 
$04 
$08 
$10 



216 Programming the 68000 

Condense 
Extend 

EQU 
EQU 

$20 
$40 

The procedure for setting the text face is, 

procedure TextFace (face: Style); 

where "Style" is an integer. To set italic text with underline use: 

MOVE. W #6, - (SP) ;Underline +italic = 4+ 2 = 6 
_TextFace 

Of course if you want to go back to plain text, just pass _TuxtFace a 
zero. 

---*~---s_u_m_m_a_ry ________ .,.... _____ .,.... _____ ... 
In this chapter we discussed c~llin~ the 1bolb9~><,!-0."1 Opera~ / 
System. We.had··~·· summary ofsome of.the bast~.collimand~ in· .• 
QuickDraw. Now we are ready to go on to Cliapt~r !;J./SimpleCafo,.·.· 
where we will see how an actual Macintosh application is put 
together. 



CHAPTER 

~~----
SilllpleCalc-
A Salllple Application 

How to Use SimpleCalc 

SimpleCalc is a simplified spread sheet. Although it is fun to play with, it 
can't be used to keep the books of a multi-national corporation. But since 
we wrote it especially as an example, you can use it as a model when you 
start on your own best-selling software. 

,. s Edit File 
., 

0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 

0 

Figure 9-1 SimpleCalc Screen 

217 



218 . Programming the 68000 

SimpleCalc only uses integers; there are no legends, no decimal 
points. In fact the only values you can key into the 127 cells are digits. 
SimpleCalc does arithmetic~ You can even program cells to update 
themselves by stored formulae. All these computations use an algebraic 
system known as Reverse Polish notation. 

Reverse Polish notation is used in some calculators. In Polish notation 
operations are performed in the exact order in which they appear in the 
expression. When you see a plus sign you add. When you see a multiplica
tion sign you multiply. When several signs are combined in an expression, 
you perform the first operation first, regardless of the type of operation. 
Reverse Polish notation is "reversed" because the operands appear before 
the operators in an expression. The expression, 

4[E]8+3/ 

(where [E) = Enter) 

means to take four and eight and add them. Then divide the result by the 
number three. This is the same as the standard algebraic expression, 
(4+8)/3. Reverse Polish notation is easy for a program to evaluate._In fact 
compilers and interpreters usually turn expressions into a Polish form 
using a stack algorithm when. they evaluate them. 

Using SimpeCalc is easy. Double-click the icon to start the program. 
Then just click the mouse in any cell to select that cell. Now you can type a 
value into the cell or use it in an operation. Use the "Enter" key like the [E] 
in the Reverse Polish expression above. That will put the value of the 
selected cell in the Accumulator. You will actually see it go in. The 
accumulator is always displayed in the cell on the lower right. 

Use the plus and minus signs to add and subtract. The asterisk(*) is 
for multiplication. The slash (/) is for division. Pressing the minus key 
means the selected cell will be subtracted from the accumulator. Similarly, 
the "!" key will divide the accumulator by the selected cell, with the result 
going into the accumulator. When you have the desired result in the 
accumulator, click the cell you want it to go into and press the "= " key. Tu 
evaluate the expression, (4 + 8)/3, and place the result in cell X, you can use 
this sequence: · 

Select a cell, type "4[EJ8+3/=" 

Programming a cell is just as easy. You should always start the 
program by clearing the Accumulator. Use the Clear key on the 10-key pad, 
or use the Backspace key on the main keyboard. This will set the 
accumulator and the current selected cell to zero, as well as clearing out 
the program stored in the accumulator. Now perform calculations as you 
did before. The clicks to select cells and the operator keys you press will be 
saved in a 28-byte record behind the accumulator. When you finish the 
expression, select the cell you wish to program with that expression. Then 



219 SimpleCalc-A Sample Application 

choose Program from the Edit Menu, or just press "Command-P." The 
program will be copied from the accumulator area to the program storage 
area behind the selected cell. Any " = " operators won't be stored in the 
program, so the calculation won't have any side effects. 

Tu indicate the Backspace or Clear key, we use the notation, "[CJ:' For 
"Command-P," we use "[PJ:' As you remember we use "[E]" for the "Enter" 
key. This sequence programs cell X to be the sum of cells Y and Z: 

Select a cell (X), type "[CJ", 
select a second cell (Y), type "[E]," 
select a third cell (Z), type "+ ", 
go back to the first cell (X) and type "[P]'. 

When you set a cell to a constant value, it clears out its program. You 
do this whenever you use the Equals key, the Clear key, or type a digit into 
a cell. You can also set a cell to a constant using the Edit Menu. The Cut, 
Copy and Paste commands work with an invisible Clipboard. The Invert 
command changes the sign of the cell and makes the cell a constant. It is 
the only way to enter negative numbers directly, because the minus key 
will just subtract the cell from the accumulator. 

The programmed cells are continuously updated, but only while 
there are no events waiting in the event queue. Each time the Event Queue 
is polled and found to be empty, one cell is recalculated and redrawn if its 
value is 'changed. The pext time the Event Queue is polled the next cell 
may be redrawn, until the whole spreadsheet has been updated. This 
process goes on even when the window is inactive and a desk accessory is 
being used. By making cells serve as input to their own calculations, you 
can make counters, oscillators, and compute converging values. 

One type of converging calculation is the square root function. We can 
calculate the square root of X by this algorithm.: 

y = 1 
REPEAT Y = ((XIV)+ Y)/2 

In Reverse Polish notation the second line would be 

2[E]Z=X[E]Y/Y +ZIV= 

This works because if you divide a number by what you think is its 
square root, the result should also be the square root. If the first guess was 
too small, the result of the division will be larger than the root, and vice 
versa. By averaging these two values and repeating, Y gets closer and closer 
to the actual square root. 

When we implement this algorithm in SimpleCalc, we can omit the 
first step. Setting Y to one is only necessary to avoid division by zero. Our 
program returns a large but finite value on division by zero, so Y does not 
have to be initialized. Assuming that the value of X has already been 
entered, the second line becomes: 



220 Programming the 68000 

select a cell , type "2", select a second cell(Y), type " [C] " , 
select a third cell(X),type "[E]" , 
go back to the second cell (Y), type "/+ " , then go back 
to the first cell selected, type "/", 
finally go to the second cell (Y) and type "[P]" . 

Here we have used the first cell selected to hold a constant value, two. 
Once it is started, the calculation will continue updating the second cell 
until a stable value is reached. Then you can change the third cell and 
watch a new value be calculated. What do you think will happen if the 
third cell is set to a negative number? Try it. Did you find the result in the 
second cell never stops changing? 

I" • File Edit Uiew Special 
., 

Spread Sheets 
15 items 247K in disk 

[lJ IJ [[] IJ 
SimpleCalc .Asm SimpleCalc .R SimpleCalc .Job SimpleCalc .Link 

0001 0001 0001 0001 

10110 10110 10110 10110 

01011 01011 01011 01011 

MacTraps.D OuickEqu .D SysEqu]) ToolEqu .D 

rm 0001 
10110 
01011 

SimpleCalc SimpleCalc .Rel 

@ii) ~ ~ ~ 

Figure 9-2 SimpleCalc Icons 

Description of the Code for SimpleCalc 

There are three major sections to SimpleCalc, the Main Program, the User 
Interface and the Spreadsheet functions. The Main Program and the User 
Interface are similar to most Macintosh programs. Most of our discussion 
centers on these two sections . The functions of these sections are common 
to all Macintosh programs. Whether you are writing a word processor or a 
program to simulate an accordian, many aspects of the user interface will 



221 SimpleCalc-A Sample Application 

remain the same. The Spread Sheet Functions have many entry points, but 
they are grouped together so you can modify them easily, or even replace 
the section entirely with your own code. This kind of organization is easy 
to create in Assembly language, but almost impossible to achieve in Pascal. 

Our Main Program itself has three parts: the initialization, a main loop 
and the termination. The functions of the first and last are obvious. The 
main loop just calls the three main tasks, checking for events, displaying 
the total, and calculating programmed cells. 

The User Interface contains most of the code you could transport to 
another application. It., detects events, interprets them, manages the 
window and the Apple menu functions. 

The Spreadsheet Functions section is unique to SimpleCalc. This 
section includes editing the cell values, drawing the spreadsheet, and 
calculating the programmed cells. 

Look at the code in the accompaning figures as we go through the 
listing and describe each routine. As we do this you should notice not only 
the code, but the documentation in the program. Documentation is even 
more important in Assembly language than it is in BASIC or Pascal. 
Fortunately, comments are easy to type with the Assembler: everything on 
a line after a semicolon is considered to be a comment. The semicolon 
";", is much easier to insert than the pinky-pulling, curly braces "{}"or the 
"(**)"syntax demanded by Pascal. Inserting many more comments is so 
much easier. Some Assembly language programmers put a comment on 
each line. Some put a paragraph at the head of each routine. Some people 
do both. The more you can say about your program, the easier it will be to 
debug. It will also be easier for other programmers to understand, or for 
you to understand it yourself, many months later. 

Conventions 
The documentation in sinipleCalc uses some conventions which we 
should explain. The Pascal symbol for a pointer, an upward arrow, ( • ), is 
used to symbolize an address or pointer. The result of a function is shown 
with a left arrow made of a minus and a greatel'-than sign, " - >".The trap 
macro of each Toolbox call shows the parameters passed on the stack 
using those two symbols where necessary. Some programmers prefer to 
reproduce the Pascal procedure definition before each call. This is also a 
good method of describing the data on the stack. Register usage is only 
documented when it is different from the initial description. 

'Ihe Main Program 
SimpleCalc begins with a few lines of documentation which list the other 
files needed to create the application. The resource source file, Sim
pleCalc.R, must be compiled with RMaker. The linking file, SimpleCalc.L, 
tells the Macintosh Linker to put the only segment, SimpleCalc.Rel, into 



.2.2.2 Programming the 68000 

the final object file. The exec file, SimpleCalcJob, runs first the Assembler 
to create SimpleCalc.Rel, and then the Linker to create the final applica
tion. If you are using the Lisa W:>rkshop, the exec file has to be a little bit 
different. You will also need to modify a few statements that come later. You 
can look in Appendix E, Using the Lisa W:>rkshop, for more information. 

'· ;· f • 

·-----------------------------------------.-;.;..--------------~~----....---------·' ' . ~ .. ' 

s imp I eCa I c - A s imp I i f i ed Spreadsheet EXamp I e by Har lantf'karr i son 
and Ed Rosenzweig · · 

Other files needed are 
SimpleCalc.R 
SimpleCalc.Job 
.~impleCalc.Link 

Resource sourc.@:r: ,; .• 
~xec .fl le .•· ;· •> ..• 

·. · Linkage Ii~\ !;{~re< ; 

.<»''-:;,= .. 

The include file comes next. The files included in SimpleCalc contain 
traps and data definitions for calling the Tuolbox. They are in the 
compressed format as explained in Chapter 2, Addressing Modes of the 
68000. If you are working with a Lisa the "include" statements will be 
different. 

;------------------------------- INCLUDE.----:------------:"°""'"'~~----.,. 
Include MacTraps.D. lnclucle equates and tn::rp~;JJles 
Incl Ude ToolEqu.D •· ;,;r.. · · , ..•. ,," 

:~~:,~:· ~~~~~:~:D.. ;'}~~5J;/ :.; ·:;F ~.:~t1,:· 
.-:··~~z$·: ~,? 

Data storage is defined under the next three headings and under the 
last heading at the end of the program. Local data will be accessed from 
A6. Global data will be accessed from AS. Program data will be PC-relative. 

The register usage is only documentation, but it is just as important to 
clarify as the offsets we will use to access memory. You will probably want 
to refer back to this section often while we go through the code. 



223 SimpleCalc-A Sample Application 

~--<' 

.. . .~. 

; ~-------;.,....._-----.--- LOCAL .DATA·_..._ __________ .,...;. ______ __...~ ........ 
Dat.QSize EQU <: 4110 Space needed for variables 
C~h\~; . EQU .. <Ci4j02 Cl ipb~~ for editing eel Is 
Lt.~U EQU,i'. ·.· .. · .. 104 Di;c;i chosen 
Flpp1eRahd EQ\:J · :i,r:;.44oe; HQncl . .. . . .. App I e menu 
Acctell EQU 127 ; Cel I :i'iumber of accumulator 
; Stored spl"elJEI sheet program format 

,:J ·>30 bytes fCl,I; each cel I . . 
S}'t"~;i;{'~~.blt m ·;select a ·ce;p,.,Otherwis;:•\1f;'Hhmetic operation 

·~i~~Jllearo 7( . ' f prog~~l6;~·~;11i.r.' ; '~ ' ~t··to start at program i 
P~ast EQU . 29 . ; ~irmum entries.. Last byte m. 
; F:IJ:19 bi ts st~d in Flag register, 05. 
FrontFlag EQU 2 ; Bit.$et If our window selectecl'; 
~ EQU .·.· .· ..... 1 ; .·~~ cel I bil. = · overflow J;~Sfl 

. ~~~f·fei~ EQU. /.:,;,,p .·. , .. ; .. , ; ~x:i' \~rogram bi~ .. = carry i,n ~,·· 
"-.;~t·~~~--,_ ' ~· .-~~--~--~.~~~~~··:,9L0Bftk:.' :~~-----~~~~·~-~---~--~f 
~allle DS 16 > . . . ; > .. accessory's?!'iame 
MindOWStorage . DS.B Wi.t\c!Oi»Size ; S~t"Cige for window •.•..... ; ..;...;. _______ _....____ ___ .., _______ REGI STER1~J.JSAGE ---------------"".'_.;._:.._ 

83 
R4 
R5 
A6 

.S•l ~·ted CCI!! I I •·· ... \;: • > 

o•. ····•• Jng cat~uit#~~ Glo .. f Oariables'' · 

In It i·~~··i~t ion 
Mel'lti::<I '' •. 
Met11t!T' 

uar,fclble Base/ Ficz~tator 

The memory usage in SimpleCalc is intentionally not optimal. We 
designed this program as an example. We tried to define data in all 
possible ways to give you examples to create your own programs. We are 
sure you can think of better ways to assign the variables in SimpleCalc. In 
particular, you may not want to use any PC-relative data defined in the last 
section for variables. As you will see, it is hard to modify these locations. 
And as pointed out in Chapter 6, it cannot be used with segmented code. 



.224 Programming the 68000 

; ---------------------------- Data Storage -------------------------

CurrentEvent 
What 
Message 
When 
Where 
WhereU 
l.lhereH 
Modify 

EvtWind 

Menu 
Menultem 

l.lindowPointer 

DragLimit 

Cel IRect 
TxtPnt 

END 

Event record 
DC 0 Type of event 
DC.L 0 Info about event 
DC.L 0 Tick when it happened 

Mouse location when it happened 
DC 0 Uertical coordinate 
DC 0 Horizontal coordinate 
DC 0 Control keys down when it happened 

DC.L 0 Window with event 

DC 0 Menu that item is in 
DC 0 Menu item selected 

DC.L 0 Pointer to spread sheet window 

Boundary rectangle for dragging window 
DC 30 top 
DC 5 left 
DC 350 bottom 
DC 500 right 

DCB.W 4,0 Rectangle enclosing selected cell 
DC.L 0 Point in eel I where text starts 

The Main Program is only 15 lines long. It initializes, runs the 
application and then terminates to return to the Finder. The LINk 
instruction sets up the local data space, just as a Pascal application would. 
Unlike a Pascal application, we follow the LINK with an LEA instruction. 
This LEA makes AG point to the lowest address of the data space instead of 
the highest address, so we can use positive offsets to reach our variables. 
Pascal programs use negative offsets, and you can too, but we thought that 
keeping the address calculations in positive numbers makes the program 
easier to understand. Once set-up, the data space is initialized by a call to 
InitMain. This subroutine will be explained soon, when we get to that 
code. Then the program falls into the main loop where it stays until it is 
ended. 



225 SimpleCalc-A Sample Application 

; --------------,_ ........ _ .... _____________ .MA 1 lti PROGRAM ----------------.... ----------..:. __ 

LINK 
LEA 
BSR 

MainLoop 
BSR 
BSR 
BCS 
BUC 
BSR 
BRA 

MainExit 
LEA 
UNLK 
RTS 

A6,•-DataSize 
... oataSize(A6>,A6 
lnitMain 

Calculate 
GetEvent 
MainExit 
MainLoop 
DrawSelect 
MainLoop 

DataSize(A6>,A6 
A6 

Main Loop 

Make space .for spread sheet 
Address memory from lowend 
lni ti al ize 

Calculate values 

Carry Set is signal to quit 
Overflow is signal to redraw 

Point to lop of memory 
'· Return memory to stack space 

The l\fainLoop calls Calculate to compute the values of programmed cells. 
Then it calls GetEvent to look for any operator activity. These routines are 
designed to keep the program operatol'-responsive. Calculate only com
putes one cell for each call. But GetEvent handles all events in the queue. 
This minimizes the time between operator actions and their results. 
GetEvent returns results to the main loop in the Condition Codes. This is 
the fastest way to communicate between subroutines, but it is also the 
hardest to keep track of. Here the Carry Flag (Carry Set) means to exit the 
program. The Overflow Flag means the selected cell or the accumulator 
have been changed and must be drawn again by the DrawSelect sub
routine before continuing with the loop. The main loop keeps cycling in 
this way; until the operator wants to stop using SimpleCalc. Then the Carry 
Flag will be set, and the loop will fall through to the termination. 

Termination 
When the operator chooses "Quit" from the menu, MainExit ends the 
program. This example returns the data space by instructions that mirror 
its creation. The LEA instruction moves A6 back to the end of the data 
space. The UNLK instruction restores both A6 and the stack pointer. 
Finally an RTS returns control to the finder. If your program is more 
complicated than SimpleCalc, you may have more things to do in the 
termination. An editor, for example, will ask the operator if he wants to save 
any open documents before quitting. 



226 Programming the 68000 

Initialization 
The initialization, InitMain, is a subroutine called only once. It could have 
been included as part of the Main Program. Separating the two makes the 
Main Program more clear. First InitLoop fills the data space with zeros. 
This routine is entered at the DBRA labeled InitChk with the count in DO, 
because DBRA will cycle until DO is minus one. Branching to the 
decrement-branch instruction this way is the best practice when the 
count might possibly be zero. Next, InitMain initializes the Toolbox 
Managers. 

·--------------------------------' 

lnitMain 
Clear data area 

MOUE .L A6,AO 
MOUE.W •DataSize,DO 
BRA lnitChk 

lnitLoop 
CLR.B <AO)+ 

lnitChk 
DBRA DO, lnitLoop 

; Initialize Managers 
PEA -4(A5> 
_lnitGraf 
_lnitFonts 
_TElni t 
_lni U.lindows 
CLR.L -<SP> 
_lnitDialogs 
_lnitMenus 

;Open the Resource Fi le 
CLR -(SP) 
PEA 'SimpleCalc. Rsrc' 
_openResF i I e 
MOUE (SP)+,DO 

;Set Up Apple Menu 
MOUEQ •1,D4 
JSR Make Menu 
MOUE.L D5,AppleHand(A6> 

;Set Up Fi le Menu 
MOUE.W •303,D4 
JSR MakeMenu 

INITIALIZE ------------------------------

Main initialization 

Point to start of area 
Byte count to clear 
DBRA counts to -1 

Clear one byte of memory 

Repeat DataSize times 

System QD port 
lnit Quickdraw, A Grafport 
lnit Font Manager 
lnit Text Editor 
lnit Window Manager 
No restart procedure 
lnit Dialog Manager 
lnit Menu Manager 

Clear space for reference number result 
CUo I ume: l Resource Name · 
Fi le-name string -> Reference Number 
Get rid of the Ref Num 

Resource ID 1 

Save Apple menu handle 

Resource ID 303 



227 SimpleCalc-A Sample Application 

;Set Up Editf1ef'ly 
MOUEU . .f •0302, 04 
JSR · · ... ·. MakeMel;'iu 

iAddDesk Acc~~~ries'TbAppJeMenu 
MOUE. L .... ~ppl ... eHand<A6).1-<SP>; Ariel.~i~enu hand I e · 
MOUE. L •·· ·• #:·' DRUR' , -<SP) Flco~ory resource type 
..AddRestt~nt.i. M~l'lyH(:lhdJe,Type 

;Draw the completed Menu Bar 
..DrawMenuBar 

; Initialize the Window 
CLR. L ..,.<SF» Make space for the window-pointer resu I t 
MOUE ·•31j)t,-<SP) Resowrce ID #301 
PEA l·HndowStorage<A5> Push adclress for window-data storage 
MOUE£ •-1, "-<SP) Put w i l"ldovr on top of any other w i ndows 
...GetHewW i ndow ID/' Stil)f'ag~, " window. above -> " wi l'idow 
L.EA ·.· . ·· .. ··• W i ndp~Pp•il'"t~er, AO/ . . · ...... ·· 
MOIJE .. L. ~$P)t1 <AO> · A S(:!v~ •th~1·.•11,1inclow pointer in memory. 
BSR ..•..... s~JW.il'"tcfow.. . . ) l't9~~ it;.tne top window 

Empty event qu~ue of o Id keystrok~~ (1t'lcf 1119.4~e o I i cks 
CLR. L DO Ho type of event stops f I ush 
MOUE.W •$FFFF,OO Flush ony lype of event 
...FlushEvents Stop/Event in DO 
_lnitCursor lnitJofize the cursor into .an arrow 

Clear registers 
CLR.L 06 
CLR.L [)7 

HOA!;!cumulator program 
stor!JApdate from ce I I o 
Clear flags CLR.L D5 

CLR.L . 04 
Draw spl"eady~· 

; Se ct oel I O 
in window ondJ!ixi ain 

Inside ; p' l of zeros BRA 

Every program may not use all of the Managers, but you can initialize 
them anyway. It is important to initialize them in a certain order because 
some of the managers depend on others. For example, the Dialog Manager 
needs the Tuxt Edit Manager which needs the Font Manager. The Quick
Draw Manager needs space to create the GrafGlobals data. InitMain passes 
a standard area reserved by the Finder at - 4(A5). The Dialog Manager 
could accept a restart procedure, but SimpleCalc does not need one; we 



MakeMenu 
; I nsta I I Menu 

228 Programming the 68000 

pass NIL instead. Finally initialize the Menu Manager, but don't draw the 
menus yet. 

Next open the resource file . We are using a separate resource file in 
this example to show how to open one. If you make the code and resource 
data into one resource file, then you won't have to open the resource file 
separately. The name of the file, "SimpleCalc.Rsrc/' is the parameter for the 
"_OpenResFile" call. We could also include a volume name in the 
parameter. If the disk were named "Spreadsheets" the parameter would be 
"Spreadsheets :SimpleCalc.Rsrc:' 

Once the resource file is open we can set up the menus. The menus 
are defined in the resource file. Although you can create menus by 
defining the data in your code, the resource file is the easiest and most 
flexible way to do it. The menus are set up in the standard order: Apple 
menu, File menu and Edit menu. Let's look down a few lines to the 
MakeMenu subroutine. 

The MakeMenu subroutine gets a handle for the menu data in the 
Resource File, by calling _GetRMenu with the ID number of the menu. 
Then it adds the menu to the Menu List with -1nsertMenu. The second 
parameter of -1nsertMenu tells where in the Menu List you want the new 
menu inserted. We just pass a zero to add the new menu to the end of the 
list. You can pass the ID number of a menu you have already created, if you 

. want to add the new menu to the left of the existing one. MakeMenu 
returns with the menu handle in DS. If you ever need to modify a menu 
after it is created, you have to have the handle. Let's look back a few lines 
and see what happens to the Apple Menu. 

Input D4 = Menu ID 
Output D5 = Menu Handle 

04 = Menu ID 
CLR.L -<SP) 
MOVE D4,-<SP) 
....GetRMenu 
MOVE.L <SP>,D5 
CLR.l.i -<SP) 
_lnsertMenu 
ATS 

Clear space for menu handle 
Resource ID input in D4 
MenulD -> MenuHandle 
Return in D5 & leave on stack 
Put menu after al I others 
MenuHandle,BeforelD 



229 SimpleCalc-A Sample Application 

The Apple Menu selects the program description dialog, the About 
Box, and activates the desk accessories. The "About ... " item is in the 
Resource File, but the names of the desk accessories have to be added to 
the Apple Menu. After calling MakeMenu for the Apple Menu, we save the 
handle. A few lines later we add the desk accessories with __.AddResMenu. 
This Toolbox call adds the text of items from all open resource files to the 
end of a menu. You pass a menu handle and a resource type to 
__.AddResMenu. For the desk accessories, the type is "DRVR:' The type is 
passed as four bytes, not as a Pascal string which would start with a length 
byte. The __.AddResMenu call puts all of the desk accessories available into 
the Apple Menu. This means you can call any accessory from the program 
which is available on your system, even desk accessories which were not 
available at the time the program was written! 

Finally, after the menus are all set up, we call _DrawMenuBar. This 
call displays the menu titles at the top of the screen. Now we can go on to 
set up the window. 

Like the menus, the window is defined in the Resource File. We 
initialize the window with a call to the _GetNewWindow function. First 
we make a four-byte space on the stack for the window-pointer result of the 
function. Next we pass the resource ID, 301. The next parameter is a 
pointer to a storage area for the window data. We have defined an area for 
it, but you can also pass NIL if you want the system to allocate the space. 
The last parameter is negative one. This means our new window will be 
created on top of all the others. A zero puts the new window at the bottom 
of the pile. Tu put it in between two windows, you pass the ID of the last 
window on top of the new one. After calling _GetNewWindow, we save 
the window pointer. We have to use an LEA to address the WmdowPointer 
field because we defined it in program space. Finally we make our window 
the active one with the SelWindow subroutine, which is explained later. 
Now our screen is starting to shape up. Both the menu bar and the empty 
window are displayed. 

Before proceeding, we empty the event queue. This is not absolutely 
necessary; but it is a good idea. The operator may have tried to make 
something. happen-by blindly clicking the mouse, for instance-while 
waiting for the program to load. The -FlushEvents routines is a very 
general call. It is a good example of an Operating System call, where the 
parameters are passed in registers. Since the parameter is not an address 
it is passed in DO to __FlushEvents. The lower part of the long word is a 
bit-mask of the types of events to remove from the queue. The upper part 
of the word is a mask for an event type that will stop the flushing. Since the 
upper part is zero and the lower part is $FFFF our call will remove all 
types of events from the entire queue. 

The next few lines complete the initialization. First we call -1nitCur
sor to set .the cursor to an arrow. Then we clear the data registers we are 



230 Programming the 68000 

going to use. Finally we jump to the Drawinside routine in the Spread
sheet functions section to present the initial spreadsheet. That completes 
the initialization. Now lets go on to the User Interface. 

The User Interface 
The heart of the User Interface is the event loop which begins with 
GetEvent. This routines processes all of the events. It keeps going round 
and round until there are no more events left. Handling all available events 
at once this way minimizes keyboard response time. GetEvent begins with 
a call to _systemThsk. This call allows desk accessories to function 
during the idle loop. Next we check for available events with _Get 
NextEvent. A mask like the one we used for Flush events chooses the events 
to accept. Minus one on the stack here means to take any kind of event. 
The function returns a Boolean value, true or false. Notice that the result is 
stored in bit 8 of the word, not bit 0. We check the bit with a BTST 
instruction because the lower byte may contain garbage. 

;--------------------------- USER INTERFACE -----------------------.,.--

Ge.tEvent 
...System Task 
CLR .•·· ,.-fSP) 

. MOOS. .. · .•.•. •-1 1-(SP > 
PEA · · Curi"entEvent 
.-GetNextEvent 
BTST •o, (.sp )+ 

BEQ Nul I Event 
BSR DoEvent 
BRA GetEvent 

DoEvent 
. MOUE l.lhat,DO 

CMPI . •mButDwnEvt,DO 

~~~~;.) ek~~p~~~~t, DO 
BEQ ·• KeyDown
CMPl •aufoKeyEvt, DO
BEQ · · KeyDown
CMP I ttUPdatEvt, DO
BEQ UpDate
CMPI •activateEvt,DO
BEQ Activate .

Get next event
Update desk accessorjes

1 Cleat; space for result
~ ...• MasK•.~q accept a I I ev~nts

Pointer .•to• event . record
Mask, ." event record -> TRUE i f any events
Eventteturned?
No.elJerit. Return to main program
Respond to event
Check for more events in queue

Process event
. Type of event
mouse.buttor. down is event

k~y ci6wn is event.~

auto-repeated key is e'-'ent 5

up®tedisplay is event 6

activate/deactive is event S

.231 SimpleCalc-A Sample Application

The event loop will exit through NullEvent to the main program, if
there is no event. But as long as events keep coming, it calls the DoEvent
routine to process them. The events are described by their hardware
types. The Event Manager reports that the mouse button was clicked or a
key was pressed. It is up to the application to determine if the mouse click
should move the window or the keystroke should actually signal a menu
item selection. DoEvent will decode and execute each event type.

There are fifteen possible event types. We only handle the most
important types in SimpleCalc. The meaning of some event types is
obvious from the name. An Update event means we have to redraw a
window. An Activate event means a new window is becoming the top, or
active window. An AutoKey event means a key was held down to repeat the
keystroke continuously. This is treated the same way as the initial
keystroke in most programs. Bµt certain kinds of programs, such as an
accordian simulation, would ignore an auto-key event. Instead the accol'
dian program would look for a key-up event to terminate the sound, an
event which other programs ignore.

The NullEvent entry point is the exit from the event loop. We fall
through to NullEvent if there is some kind of event we can't identify.
GetEvent branches here when there are no events left at all. NullEvent
returns to the main loop with Condition Codes set to request certain
actions. It uses the move-to-CCR instruction to set the Condition Codes
from the flags in D5. The move-to-CCR instruction is explained in Chapter
3, 68000 Instruction Set.

The various event types are decoded when they occur in the section
called "Event 'fypes:' An Activate event, indicating a new top window,
comes first. As a precaution we check to see if the event applies to our
window by calling the WindChk subroutine. The subroutine, a few lines
below, shows how to get the window pointer from the message field of the
event record. This would be very important in an application with more
than one window. WindChk also selects the port to make sure we draw in
the right window. Returning to Activate, we see that it handles two
different cas~s. If bit zero of the event modifier field is set, the event is the
signal to activate the new window. But if bit zero is clear the event is a de
activate, a signal that the old active window should be de-selected.

.23.2 Programming the 68000

SimpleCalc highlights its window when it is active by drawing a black box
around the accumulator and the selected cell. The FrontWindow flag is set
in D5 so we can draw this box if necessary whenever we update the cells.

·~------~-----~---------- EUENT TYPES --------------------.,;._ ____ _ I

Activate
BSA
BNE
BTST
BEQ
BSET
BRA

.Deactive
BCLR
BRA

UindChk
Nul IEvent
SO,t1odify+1
Deactive
#f'rontFlag,05
DrawSelect

•FrontFlag,05
DrawSelect

Is it our window?
No. Ignore event
Activate or Deactivate event flag
Activate if $01 set, else DeActivate
Remember window is active
Highi ight selected eel I

Remem.ber ~indow is inactive
Un Highlight selected eel I

An Update event means a window needs to be redrawn. Again we first
check to make sure it is our window. A program with multiple windows
would call a routine to select the proper one. 1\.vo Tuolbox calls, -1Je
ginUpdate and -EndUpdate, bracket the subroutine call to draw the
spreadsheet. The call to -1JeginUpdate exchanges the VisRgn, the part of
the port that shows on the screen, with a special update region. This
update region shows just the part of the window that has been recently
uncovered. Then we draw the whole document, but only the QuickDraw
calls that fall within the new VisRgn are actually executed. The call to
_EndUpdate puts everything back to normal, with the newly exposed
area freshly drawn.

Update · Our UIS i b I e ReG i oN changed
BSA UindChk Is it our window?
BNE. Null Event ; No. Ignore event . . .• · ... ••.
MO"'E.L Uil"!dowPointer,-<SP) ; Poi.nter to window be.ing UP$1c;i;t.ed
...Begil"IUpDate Start draw.ing in Update Regi~ ~:·;·:.i•> <
BSA Orawlnside ; Only part needing update actual 11:1:,~tlwn
MOUE.L i.tindowPointer,-<SP) ; Pointer to window whose update· i's.:firiished
-EndUpdate ; Return to normal mode drawfng
ATS

KeyDown
MOUE
BTST
BNE
BRA

CommandKey

233 SimpleCalc-A Sample Application

A KeyDown event can have one of two different meanings. If the
Command key was held down during the keystroke it means the event is
really a menu item. If the command key was up it means data is being
entered. The Modifier word in the event record maps the state of the
control keys, the Command, Shift, Option and Caps Lock keys. If the
Command key is down we go to CommandKey subroutine to process the
keystroke. If not, we call the Spreadsheet Function part to handle the data.
CommandKey turns a keystroke into a Menu Event. The Menu Manager
keeps track of the keyboard equivalents for the menu items. The value of
the key is in the Message field of the event record. The call to the
_MenuKey function returns a menu ID and item number of the selected
event. Pascal programs see these two numbers as one four-byte integer on
the stack. Our MenuCommand subroutine will accept the two values on
the stack as input, and perform the proper function.

Modi fy,DO
•S,DO
CommandKey
Keystroke

User pressed a key
Modifier word maps shift keys
If the Command key is down
it is a menu event

Spread-Sheet data

CLR.L -<SP)
Command key event. Short-cut menu choice
Get space for menu choice

MOUE Message+2,-<SP)
.J1enuKey
BRA MenuCommand

; Put message byte on.stack
; Identify K~y. ASCII -> MenulO,Menultem
; Menu Ip.<$! Item now on stack

Mouse down events are the most complicated. \Vhere the mouse went
down determines the meaning of the event. Fortunately the Wmdow
Manager identifies the area a point is in. A call to -FindWindow returns
both a code for the type of area on the desk top the point is in, and, if it is
in a window, the window pointer of the top window that contains the
point. The Window Manager has a list of window pointers in the order of
their appearance on desk top. It checks from top to bottom for a window
containing the point. The Window Manager uses this same list to generate
Activate and Update events too. The parameters for -FindWindow may
seem a little clumsy. The area-type code is passed on the stack, but the
window pointer is returned in a memory location. You pass a pointer to
that memory location as an input parameter, and the window pointer, if
returned, will be placed there. This interface comes about because Pascal
only allows a function to return one two- or four-byte result.

234 Programming the 68000

14f nqlowTabJe

'>'oc.i.:.t. ·Hui IEvent-Windj)wTal;lle ·; 11"1 :D~~ J • :

· 001~;:;' :11"1~~n1:H.!in.dC3:~Table ; ~; . ; ;.!J';l·t1enu Bari ·
D.0~·~:. ;;~:~~~te!ftEve~t-::14i.ndowT~~f' .···· ·;.·~~~·~ell\ .. Wlt'ldow
.0~1:~ .. • 1 /~j).p.:t~nt-l41ndC?111Tabl.E! ·:•,J .. J,l·~t:~~tent·
. Oc;'u•·;'· ~ir-(.;g!:!~indowTable . C.) .. •.; 'ltiJ •• :Orag
OOtlil'•:,~ ·: ;~y:1:1Event,-1'1ltidowT (;lbJ~ • .. ··; ftii·1.,Gtiow

<n~.~ir:.t~~·1:fEvent~wi~®wi:r.ibh~ · ~.·1·:'.:1~·~ Away
..

We use a table to arrive at a specific routine for each type of mouse
down event. The table stores each address in a relative form. The offset
between Window'Illble itself and the desired routine is stored in each
entiy of Window'Tuble. This syntax is legal with either assembler, because
the difference between two addresses is a constant. The assembler cannot
possibly put an absolute, foUP-byte address into the relocatable code,
because the code can wind up anywhere in memoiy. But, the result of
subtracting one address from another can be stored. To find an address
from the table, we first double the index, using ASL.W, because each entiy
occupies two bytes. We use the double index as an offset to load the table
entiy. Finally we use the table entiy as an offset to jump to the address.
The instructions which use the offset,

MOVE WindowTable(DO), DO
JMP WindowTable(DO)

were explained in Chapter 4, Sample Programs. In Chapter 2, The
Addressing Modes of the 68000, we learned that this syntax is actually a
form of Program Counter relative with index and displacement. These two
instructions could also be written as:

MOVE Windowtable- * + 2(PC,DQ),DO
JMP Windowtable- * + 2(PC,DO)

ln"enu

235 SimpleCalc-A Sample Application

The subroutines called through the window table appear next. Each
represents the consequence of a mouse down event in a particular area of
the screen. Some mouse clicks are ignored. For example, the program
ignores clicks on any part of the desk top window, which shows at the
edges of the active SimpleCalc window. Clicking in a grow-box is not
possible, since our window does not have one. Clicking in a go-away box
normally means to close or switch documents in a multiple window
environment. Since we have only one window, the go-away box could have
been used to exit the program. We did not implement that because it
would be too easy for the operator to make a mistake and end up back in
the Finder.

A mouse click in the menu bar means the start of a pull-down type of
menu selection. The InMenu routine calls _MenuSelect with the starting
point of the mouse operation. The Menu Manager now takes over. It will
display the menu, track the mouse and highlight items, and retain control
until the operator selects an item or releases the mouse outside of a menu.
The _MenuSelect call will return with the same values that _MenuKey
leaves on the stack. If the operator does not complete a selection, zero is
returned for the menu ID.

CLR.L •<SP) Get space for menu choice
Mouse at time of event MOVE.L Mhere,-<SP>

J1enuSelect
BRA trenwCommand

; Click Point -> MenuJD,Menul tem
; Menu choice now on stack

A click in a system window is intended for a desk accessory. The
SystemEvent routine passes the event and the window it is in to -8ys
temClick. Then the desk accessory takes care of its own mouse click. If the
click activates the accessory's window, activate and update events may be
loaded into the event queue.

- '

SystemEvent
PEA CurrentEvent
MOUE.L EvtWind,-CSP>
..SystemC I i ck
RTS

Action for desk accessory
, Pointer to event record

Load window pointer onto stack
System takes care of own click

236 Programming the 68000

A click in the content region is meant for our application. The Content
routine calls the Spreadsheet function, SelCell, to select a cell. But if the
window is not active, we use the first click to activate the window. This
means you can click anywhere on an obscured window to bring it to the
front without having to worry about the normal consequences of clicking
in that particular spot.

EvUHnd,AO
t.lindowPoJnter,AO
Nul I Event.
•FrontFl~~ 1 D5
Sell.lindc;iip;•'·

· .SelCell< · .,

The Drag routine is called when the operator is moving the window.
Here again the TuolKit does most of the work. The start point and window
pointers are parameters to _])ragWindow. The rectangle, DragLimit, is
the range of motion permitted. We don't want to let the window slide
completely away.

MOUE.L.Ev.tWl.rt~ 1 ~<SP)
MOYE .. L ·. Wh~re> .. (sp)
PEA OragLill'!i'l
..DragW i ndow · ·
RTS

Let user mo!.le
I.Ii ndow po ir1tet" . .· ...
Current mouse to~tlon
Boundary.r~~t.angla ·
.. I.Ii ndow, Starl point, BGUtJl~·,·i!'~t

• . . '.,. . - . . '.-:.: :>. -'.". ~c

Three subroutines for windows and ports appear next. The Windchk
subroutine makes sure an event is for our window, as already explained.
The SelWindow and SelPort subroutines select the window and the port
respectively. These two actions are very different things. The selected
window becomes the active, top window. Calling -8electWindow will
cause Activate events. The selected port is the port we are drawing into. It
can be any window or the desk top, regardless of its position. In an

WindChk
MOIJE.L
CMP.L
BNE
BSA
CMP

@10 ATS

SelWindow

237 SimpleCalc-A Sample Application

application with more than one window, these three subroutines would be
more elaborate. Instead of working on one window, they would pick out
the proper window and port to use.

Message, AO
WindowPointer,AO
@10
Se I Port
00,DO

Find event window
Is it our window?
If not ignore it
Select our port
Return Z set

MOIJE.L WindowPointer,-<SP>
...SelectWindow

Window Pointer
Put the window in front

Se I Port
MOIJE.L WindowPointer,-<SP>
...SetPort Set the drawing port to the window
ATS

The next section handles all of the menu selections. Each menu has
its own routine. This section could be table driven instead, but as an
example, it shows more variety the way the section is coded. The entry
point is MenuCommand. Its input is a menu resource ID and an item
number on the stack. The ChooseMenu subroutine selects the function to
execute. The Toolbox call, __HiLiteMenu, turns off the menu bar highlight
ing when the function has been performed.

238 Programming the 68000

;--------------------------- MENU EUENTS -------------~-------------

Menucommand

..
'

Choose selections from Menu Bar
Input <SP) = Menu ID

2·<SP> = Menu Item

LEA Menu,AO
MOUE.L (SP>+, <AO.>
BSR Choose Menu
CLR -<SP>
JULiteMenu
RTS

Point to menu variable
Save menu cmd i tem

Menu O mearis>~nbighl ight
menubigtlltghttJa(f now

ChooseMenu Find menu & fteiti
, · Menu r.esource. ID

Is it d\enu.1'?
MOUE.W Menu,DO
CMPI •1,DO
BEQ AppleCmd

CMP I #302, DO
BEQ Fi leCmd

CMPI •303,DO
BEQ Edi tCmd
RTS

; App I e ll)el"iY ~ommand
, ,' ' -,,,

Is H. mem~ 302?
Fi I e menu <commC11'.1d

Is it menu 303?
Edit menu ~ommand
No i tem · se 1.ected ·

ChooseMenu does a simple compare and branch to the handler for
each menu. The compare is by Menu ID; not the order of the menu in the
bar. Selections from the three menus are handled by FileCmd, EditCmd
and AppleCmd.

239 SimpleCalc-A Sample Application

Fi leCmd
Quit

BSET •QuitFlag,D5
ATS

EditCmd
CLR.L -<SP>
MOUE Menultem,DO
ADDQ •1,DO
CMPI •6,DO
BCC @10
MOUE DO, <SP>

@10 ..SysEdit
BTST •O, <SP)+
BNE Nu 11 Event
MOUE Menultem,DO
CMPI •2,DO
BEQ Copy
BCS Cut
CMPI •4,DO
BEQ ClearCmd
BCS Paste
CMPI •7,DO
BEQ Program
BRA Invert

AppleCmd

MOUE
CMP
BEQ

Menultem,DO
•1,DO
About

..

Only item is quit
Exit to finder
Set quit bit in flag register

Could be for SimpleCalc or desk accessory
Space for TRUE/FALSE result & item
Action for system to try
Adjust to desk accessory standard ord.er
Make NEGATE= 0 for UNDO

Edi t commands 2 .. 5
Menu Item-> TRUE if accessory used event
Check result. If system.used the menu

item event we are all done

Item 2?
Item 1?

Item 4?
Item 3?

Item 7?
Must be item 5

Check item number
Item 1?
Yes. Do About ...

Desk accesory. The name in the menu j s .~he same as the program f i I e name

MOVE.L AppleHand(A6>,-<SP> ; Apple-.Menu handle
MOVE . i..i DO, -<SP > Number' of chosen i tem
PEA DeskName(A5> Pointer to place for name
...Getltem Get string for item
CLR -<SP) Space for reference number
PEA DeskName<A5> Open desk ace
...OpenDeskAc:c: Name ":">, Reference nl.lmber
MOVE <SP)+, DO ; Discard resu It
BRA SelPort ; Restore our graph port

240 Programming the 68000

.About Display "about" box
CLR.L -<SP) Clear space for dialog pointer
MOVE •301,-<SP) Dialog resource ID 301
CLR.L -<SP) Let Dialog Mgr provide storage area
MOVE.L •-1,-<SP) ; Place Dialog box above al I other windows
...GetNewDialog DialoglD, A Storage, A Window above->Dialog pointer
CLR. L -<SP) No f i I ter procedure
PEA I temH i t<A6) A Area for Item Hit
.J1oda1Dialog filter procedure, A item chosen
..DisposDialog Dialog pointer sti 11 on stack
CMP I . W •2:. I temH i t<A6) End program i f button 2 chosen
BEQ Quit
RTS

The File menu has only one command, SQ the FileCmd label is the
same as Quit, which ends the program. Quit just sets a bit in D5.
Remember D5 will be moved into the CCR after we run out of events, then
the top routine will see the flag and end the program.

The Edit menu is shared with the desk accessories. Before EditCmd
uses the selection it checks to see if a desk accessory can accept it. The
-8ysEdit function will handle the item if it can. The item number must be
adjusted to the standard item number values before calling _SysEdit. If
the SimpleCalc window is on top, the Edit menu item won't be taken by a
desk accessory. Then EditCmd will compare the item number to find the
proper subroutine.

The AppleCmd routine processes selections from the Apple Menu.
The first item is the program description dialog, the "About ... " box. If the
item number is one, we branch to About, which will be discussed later. All
other items are desk accessories. The _Getltem call returns the text of a
menu item in DeskName. This string is the name of a desk accessory, since
only desk accessory names were put into the Apple Menu by the call to
__AddResMenu above. The desk accessory is started by a call to _Qpen
DeskAcc, which has the same parameters as a call to open a data or
resource file. The reference number returned by _QpenDeskAcc could be
used to close, that is terminate, the desk accessory, but we just discard it
here. When the accessory is activated, it draws its window. The call to
SelPort makes sure the SimpleCalc window is selected again, before
continuing.

The About routine puts up a dialog box. We start by calling _Get
NewDialog to create the dialog box. This· call has the same parameters as
_GetNewWindow, already explained. A dialog box is in fact, just a special

241 SimpleCalc-A Sample Application

kind of window. Calling _ModalDialog restricts the operator to dealing
only with the dialog box next. It will return an item selected by the
operator. As an example, we give a choice to continue or end the program.
N~rmally an About box just shows the information and does not offer any
options. The filter procedure parameter allows screening the events before
they are handled by _ModalDialog. We don't use it here, but in another
program, such as accordian simulation, you could use the filter procedure
to force a beginner to play only harmonious notes. The ItemHit area
contains the item number of the chosen item after _ModalDialog returns.
The Return key is the same thing as item one. Item number two causes a
branch to end the program, so the operator can just press Return to leave
the box. Then the call to _DisposDialog erases the dialog box and returns
the memory the Dialog Manager allocated.

Now we are done with the User Interface. The code we have just
discussed has features required of any good Macintosh application. You
should understand this part of the program well, because you can apply it
to any Macintosh program you write. The Spreadsheet function section is
not as universal. All subroutines there are called by the User Interface.
They are specific to a spreadsheet application. They consist of editing,
drawing and updating the cell display.

Spreadsheet functions

SelCell is called when the operator clicks the mouse to select a cell. First
we convert the global-coordinate point to local coordinates which are
relative to the upper comer of the document. The _GlobalToLocal
procedure uses the same point, passed by a pointer, for input and output.
We call DrawCell to draw the currently selected cell without a frame. Then
CalcNum computes the new selected cell, returning a number from zero
to 127 in D2. We store a command to select the cell in the stored program
with ProgSel. Finally we call DrawSelect to draw the newly selected cell.

, -----;-----~;----T"·-----... --... SPREAO,$tt~f ··rUticr;for.ts -----------------------------
Cel I User clicked to select a eel I

PEA Where
...GlobalTolocal
BSR Drawee I I

, .fld)u?r ~(). t~e9t ion to window coordinates
; ?91~~·· int for input and output

Un.1-0 ent selection
BSR CalcNulTl
MOUE.WD2;04
BSR ProgSel
BRA DrawSelect

Which ce .. o select
Saye the selected cell
R~c()rd th~.~tlon

, q\A~!ine .~~1~1:.;:<:t~r~ly

Programming the 68000

The Keystroke subroutine begins when the operator types a key. The
key could be a digit for the selected cell value, or an editing operation.
Since both digits and operations change the value of the cell or of the
accumulator, we set the Redfaw flag right away. When the operator types a
digit, Keystroke passes it to the DigiKey routine to· set a cell value. An
operation key, such as a plus sign, is decoded by the NotDigit routine.

· Kia~s'~ ... ~ke · ;. us. er pr.es.···. ·.s.eet.:.'icr ki .. ·. ~y· .
.• x;~ ~ • • 'e$E'.T :·: •Ftear(;nu,D5 ; · Re~raw ~:1;~te;(¢~!1

MOVE~ ;1.. J:1~$Sctge ,:02 . ; Get ChaPa~t~: "'i:l¢Gll".d i

1 Ve~tQr· to Qperation or put digit i'n c:ehl v.afqe ·
CMPl.B ••o• ,D2
BCS' NQtDigit ; No\ a dJgil:
.CHPI .B #'9' ,02
BLS. Di~iK~y

The message field of the Event Record has the ASCII value of the
keystroke in its lowest byte. This is all we use in SimpleCalc, as will usually
be the case. The next higher byte of the Message field contains a key-cap
code. You can use that byte for an accordian simulation, because it
identifies an actual location on the keyboard, regardless of language. A
French keyboard, for example, may have the "A" and "Z" where you are
used to seeing the "Q" and "w:• The ASCII values returned are the same, no
matter where the key is found on the particular keyboard in use. The key
code identifies the location of the key, regardless of the letter which
corresponds to that location.

NotDigit is called when the operator types a key other than "O"
through "9". The routine tries to match the keystroke to an operation. The
call to the OperVect subroutine returns the address of an arithmetic
routine or sets the Zero flag if none is found. The vector address is pushed
onto the stack so that it will be executed at the end of the next call. That
call, to ProgOper, saves the operation in the Accumulator program.

243 SimpleCalc-A Sample Application

N~,tp.)9ll •·
~heck ~·or operation

·· · · BSR · pet"Vect
BEQ . ·. Bac!Key

Save dl:ldr,s:$Qf operation.
PEA <AO>
BRA PrQgOper

{ 9lileck · opet!'ati on table•. for key
; : Jgnore keystroke i f not in tab I e

Store operation in program. Then perform it.
; Push address on stack
; Save operation in acc1.1mulator program

DigiKey is called with one of the characters "O" through "9" in register
DZ. This digit will be tacked onto the end of the value in the currently
selected cell. We get a decimal value for the character by subtracting $30,
the ASCII value of zero. After multiplying the current value by ten, we
increase its magnitude by the new digit. This means we add the new digit
to a positive number, but subtract it from a negative number by inverting it
first. If the result can't be expressed in 16 bits, we have an overflow.
SimpleCalc clears the number to zero. You could also refuse the digit and
sound an alarm.

~- :; (-:\r',

DigiKey
'Dlgtt:t

. M09
AND
1'100
MUL$j'7
BPL\
.NEG~k

DigiAdd
. ADD.I;. D2,Dt

11.0!,IE > DJ, (A3 >
, now ~~~k>fol"'overflow
bits~~thro~J::t 30 m1.1st be

,L~~· L QQ11•:p 1
ADDQ.;l.j .. #f,D 1
~~tf.·· .. · .. · .•... · ... plglOK
SUBQ.lf •11D1
BEQ DigiOK

, ~lel:lr upper nibble& junk
n!Amber base

; Current value times 10
ls the ce 11 number negative?
then increment is negative too

, plus key stroke
Save value

the.\ same
:_-;:,~ U'.Sh-i· :ft· down 15 bi ts

OK negative number

OK positive number

Programming the 68000

; overflow. clear to zero and stl::!rt owr·· ·
CLR.t.I <A3> .

DigiOK l'fe!!I ~etl volue in rpJ:'lg~
; fa 11 tflrough to Ce I I Const

. ,
.Ce I.I.Const ·. astr

OL.:R.B
Ats

Digil<ey falls through to the CellConst routine. It is called whenever a
cell has been assigned a new, constant value. CellConst clears out the
program for the cell, so the value won't change automatically. It sets the
Redraw bit in D5 because the cell must be drawn again with its new value.
This routine will be called later on by the edit routines, which also assign
constants rather than programmed values to a cell .

#Fledraw;o~
Prg<A3)''

The OperVect subroutine looks up the address of a routine to perform
an operation. It returns the address in AO. The Zero flag is set if the
character is not found in the table. The most important part of this
subroutine is the structure of the table. Let's look ahead to OperThble, the
table of operations and addresses. Each entry is four bytes long. The first
byte is the operation code of the actual ASCII keystroke value we are going
to match. The second byte is not used in order to maintain word
alignment. The next two bytes indicate an address in a relative form, like
that we saw in the window table. The OperVect routine scans this table
until it finds a match. Then the vector address is calculated the same way
as for the window table. The Zero flag is set before exiting if the TST.L finds
the four-byte zero that ends the table. When a match is found, moving the
offset to DO sets clear the Zero flag. Remember that an LEA, the next
instruction, does not affect the Condition Codes.

.245 SirnpleCalc- A Sample Application

OperUect
Return vector

INPUT
OUTPUT

to operation from table
D2 = Character to match
AO = Uector address
D2 = Character matched

Z flag -> character not found

LEA Opertable,AO
OpUecLoop

CMP .B <AO>,D2
BNE Nex tEn try

Found It
MOUE .W 2<AO>,DO
LEA Opertable<DO>,AO
ATS

NextEntry

Compare key stroke to table

; Uector to operation
; Actually LEA Optable-*<PC,DO)
; Return NZ

Check for end of table & advance pointer
TST .L <AO>+
BNE OpUecLoop
ATS

OperTable
4 bytes per entry

byte 1 = asci i value of key
byte 2 not used
bytes 3&4 offset

DC '+ '
DC AddOper-OperTable
DC
DC SubOper-OperTable
DC '* '
DC MulOper-OperTable
DC , I .
DC DivOper-OperTable
DC '= I

DC EqOper-OperTable
DC $0300
DC Enter-OperTable
DC $0800
DC ClearCmd-OperTable
DC $1800
DC ClearCmd-OperTable
DC.L 0

Not found. Return Z flag set

CEnterl key

CBackSpacel key

CClearl on 10-key pad

End of table

246 Programming the 68000

The arithmetic operations are addition, subtraction, multiplication
and division. They are all similar, because they calculate with the selected
cell and the accumulator. The result always goes into the accumulator. The
next four routines, AddOper, SubOper, MulOper and DivOper, implement
the arithmetic functions. They do all of the calculations in temporary
registers. None of them check for overflow, but the division routine has to
check for division by zero. The 68000 will vector to a trap if we try to divide
by zero. The DivErr routine returns the highest number of the appropriate
sign if division by zero is attempted. This works out rather well for
converging algorithms, such as the square root formula.

AddOper
Add the selected eel I into the ac~ij~~rat&r

MOUE.W <A3>,DO
ADD.W DO, <A6)
ATS

SubOper
Subtract the selected cell from the accumulator

MOUE.W <A3>,DO
SUB.W DO, <A6)
ATS

MulOper
Multiply the accumulator by the selected cell

MOUE.W <A3>,DO
MULS <A6>,DO
MOUE.W DO,<A6)
ATS

DivOper
Divide the accumu I ator by the s.el ected eel I

MOUE.W (A6),01
EXT.L 01
MOUE.W <A3>,00
BEQ OivErr
OIUS 00,01
MOUE.W 01, <A6)
ATS

247 SimpleCalc-A Sample Application

DivErr Divide by zero
SWAP D1 Return largest magnitude possible
EOR I JJ •$7FFF I D 1
MOUE.1-l D1,<A6)
RTS

The Enter operation just sets the accumulator to the value of the
selected cell. The EQQper routine, called by the equal-sign key, sets the
selected cell to the value of the accumulator. We also clear the cell program
and take the equal-sign operator out of the accumulator program. Later on,
when the stored program is assigned to a cell, we don't want the program
execution to have any side effects on the cell selected now.

Enter
Set the accumulator

MOUE.1-l <A3>,<A6)
RTS

to the value in the selected cell
; Set value

EQOper

Cut

Set the selected eel I to the value of the accumulator
Clear the program in the eel I
delete the "="from the accumulator program

CLR Prg<A3)
MOUE.1-l <A6>,<A3)
SUBQ.1-l •1,D6 ; Delete the = operator
RTS

User can select these Edit Menu items

MOUE.1-l <A3),Clip<A6>
CLR.1-l <A3)
BRA Cel IConst

CUT I X
Cl ipBoard = Cel I
Cel I = 0

Copy ; COPY I C
MOUE.1-l (A3),CI ip(A6)
RTS

; CI i pBoard = Ce I I

248 Programming the 68000

;<PASTE l U Pg~~~ ·····•· < MQl,IE .. W Cl ip<A6), <A~> ; Ce I I 9 Cli1bB!:>~i1:I
BRA Ce 11 Const

ClearCmd
CLR
CLR
CLR
BSA
BR.A

Invert···
MEG
BRA

Program

<A3>
<A6)
06
ProgSel
Cel !Const

<A3>
Cel !Const

CLEAR or Clear key
Cell = 0
accumulator =O
Clear accumulator.e,(:juation
i:tccum~latof'.' ~~i.lg~i·!:IO = select

; PROGRAM I P
Copy the accumulator program into the selected eel I

LEA Prg<A3>,A1 Po.int . to cejl . prqgrain . area
LEA Prg(A6),AO Point to ac¢umulqtor program ar~a

~o. ~nt o. f vgtJc!.!!!!;I;~~ ... •.·$.·······.· · · · · MOUE 06,00
Cop1;1P4qqp

<.9 CA9>+, <AO+
.DO ,CopyPLoop
-<A1 >

,.,, '' ',_,' ·,· ,,,;,;;::·,·,>'"('~

·.M~ve'::bo+f .. py:~~~!>>
Program enqs IJl'i;th· ... ·

The Edit items can be selected by menu or keystroke. All the Edit
items except Program exit through the CellConst routine because they
assign constant values to the selected cell. Cut, Copy, and Paste work with
the value stored in the ClipBoard variable. The equations in the comment
fields indicate the action. A more elaborate program would display the
Clip Board in a separate window. The Negate item just inverts the cell's
value. It also functions as Undo for desk accessories.

One Edit item, Clear, can be called from the keyboard without using
the Command key. This arrangement is normally against the Macintosh
useP-interface guidelines. However, if you have a ten-key pad, the Clear key
will set the cell to zero, by calling the Clear routine. The Backspace key
performs the same function if you don't have the ten-key pad. The Clear
routine sets the accumulator and selected cell to zero. Then it restarts the
accumulator program by setting it to one command which selects the
current cell.

249 SimpleCalc-A Sample Application

The Program routine is unique. This is the only way that a program is
assigned to a cell. The routine uses a simple block move to copy the
program from the accumulator into the selected cell. The last byte is set to
zero to mark the end of the cell program.

Drawing Routines
The Drawing Routines come next. They draw the spreadsheet within the
window. A subroutine draws one cell. It gets called 128 times to create the
complete spreadsheet. The coordinates for the cell being drawn are set up
by subroutines which appear later in the program.

; .z:~-~'
''\~

' .. ~.~ffJ'1. :,_·. ~

;-------:----:".'-~:::--:-..;;...:.:.,~-~[IR~JHG ROUJINES --------.----.. ~----------

. ·,;tlflinu~ sign ·
:1;;·.1Qll'l!ll:!i 05i i gn
'~;·:Qraw· tile··:..

Qet value 1;1gain
anf ~~e h pos I Hye

DrawCell is the subroutine to draw one cell. The cell value is pointed
to by A3. The coordinates must be already set up by the CalcCellRect
subroutine. DrawCell erases the current contents of the cell and puts up a
light gray border by calling FrameCell. If the cell is marked later on, the
}?lack border will cover up the gray border already there. Next, DrawCell
puts the digits into the cell. It calls -MoveTu with the pen iocation which
CalcCellRect put into Txtpnt. There it draws a minus sign if necessary,

DrawlJalue

250 Programming the 68000

leaving the pen at the start of the number. It loads the value and, if the
number is not positive, draws the minus sign and then makes the number
positive. Notice that it reloads the number into DO after calling _r>raw
Char because DO is likely to be altered.

Next the number is converted to digits . It is done by the same
algorithm you probably have used to convert numbers by hand to bases
other than 10. It can be summarized by these three steps:

1. Divide the number by the base.

2. Write remainder to left of last digit.

3. Repeat from step 1, using the quotient for the number.

DrawValue implements this algorithm to convert to base ten from
binary, because the 68000 can divide in binaiy but not in base ten. People
usually find it easier to divide in base 10 than in any other base. DrawValue
does one thing a little bit differently. Instead· of writing the results from
right to left, it saves each digit on the stack. Then when it is all done, it can
write the digits in the proper order, by popping them from the stack as it
draws characters from left to right.

DllJU •10,DO
SWAP DO

Draw in base 10
Get remainder

ORI .B #'O' ,DO
MOlJE.W DO,-<SP>
SWAP DO

Make digit a character by oring in zero
Save digit to draw
Restore quotient

EXT.L DO Leading digits?
BEQ DrawDigit No more digits. Draw them al I now

Calculate next higher digit BSR DrawlJalue
DrawDigit

...DRAWCHAR Draw a byte from stack
RTS Return to draw next byte or exit

Let's go through DrawValue step by step. We start with a 32-bit integer
for the divide instruction, DMJ. The unsigned divide leaves the quotient in
the lower word of DO and the remainder in the upper word. SWAP and
ORI.B make the remainder into a printable character. The digit is saved on
the stack for a future call to _DrawChar. Notice that character parameters
on the stack are in the lower byte of the word. SWAP restores the quotient .
Now here is the tricky part. EXT.L expands the quotient to a 32-bit integer,
but it also sets the Condition Codes. If the quotient is zero, then there are

2ol SimpleCalc-A Sample Application

no more digits to the left of the current digit. BEQ goes to DrawDigit to
draw the last character and return. But if the quotient is not zero we do a
BSR back to the start of DrawValue. This will draw the characters to the left.
Then the RfS after _Drawchar will return to the instruction after the
BSR-which is DrawDigit itself. So the various digits will be stacked up by
repeated passes through BSR DrawValue. Then after the last digit, repeated
loops of DrawDigit will print them all out.

MarkCel I

252 Programming the 68000

Just before leaving DrawValue, there is one more change we can make.
Would you like the spreadsheet to work in octal? Changing just one
constant in DrawValue will do that, since it is a recursive algorithm. Just
change the #10 in the divide instruction to #8 and presto, the values are
drawn in octal. Make the same change to the MULS in Digikey to input in
octal. If you make these values a variable, you have a decimal to octal
converter.

MarkCell and FrameCell do basically the same thing. FrameCell draws
a thin gray border, whereas MarkCell draws a thick black border. MarkCell
defers to FrameCell if the SimpleCalc window is not selected. Thus the
window is highlighted by the black border around the selected cell and
accumulator.

Draw Selected eel I border
BTST •FrontFlag,DS

Dark so we know it is selected
Is our window active?

BEQ FrameCel I
_FENNOAMAL
MOUE.L •$00030003,-(SP)
_FENSIZE
PEA Ce 11 Aect
...FAAMEAECT

@10 ATS

FrameCel I

No . Don't highlight
Normal Width,Mode,Black Color

; Width,Height=3

pointer to separating rectangle
; Draws box INSIDE Cel IAect

Out I ine eel I with I ight border
_FENNOAMAL ; Normal Width,Mode,Black Color
MOUE.L GAAFGLOBALS<AS>,AO ; Pointer to QD globals
PEA GAAY<AO) Standard pattern
_FEN PAT
PEA Ce 11 Aect pointer to separating rectangle

Draws box INSIDE Cel IAect ...FAAMEAECT
ATS

To understand how these routines work, recall how QuickDraw
coordinates define the screen. The coordinates are thin lines between the
pixels. The drawing of rectangles takes place inside a box formed by the
coordinates. The rectangle, CellRect, is a box around the cell . The wails of
this box are common to the .walls of the surrounding cells. FrameCell and
MarkCell call _FrameRect to draw this box. That makes the gray lines
between two cells two pixels thick.

253 SimpleCalc-A Sample Application

We give examples of several other QuickDraw calls in these sub
routines. The _I>enNormal call sets the default pen. This is a solid black
pattern, one pixel wide by one pixel high. _pensize is used to set height
and width to any value chosen, for MarkCell we choose three by three. You
must have a pattern to set the pen to with the -PenPat. Some standard
patterns are available from QuickDraw. Do you remember the parameter
we passed to -1nitGraf during initialization? Well, QuickDraw set up the
default patterns in some of the space provided by that pointer. The
variable, GrafGlobals, holds a pointer to the QuickDraw global area. The
patterns, such as Gray, are at an offset into that area. The constants we
used for GrafGlobals and Gray are defined in the QuickEqu.D include file.

Drawlnside draws the entire spreadsheet. It uses_.repeated calls to
DrawCell to draw each one. When all done, it falls through to DrawSelect to
mark the selected cell and accumulator if the window is active.

DrawSelect draws just the selected cell and the accumulator. It clears
the update flag in D5 which is the signal for the MainProgram to call
DrawSelect. Then it sets up and draws first the accumulator and then the
selected cell. This leaves the rectangle and data pointer of the selected cell
set up, which is the normal state, when it finishes.

254 Programming the 68000

· DrawSe I ee:t ·
Draw the se I ec ted ce U

BCLR •Redraw,D5
, Redraw accumulator

MOVEQ #AccCe I I , D2
BSA Ca I cCe I I Rec t
BSA Drawee I I
BSA MarkCe I I

Redraw Selected cell
MOOE ·o4,D2
BSA Ca I cCe I I Rec:t
.BSA Drawee I I
BRA Markee I I

and Acc. Exit with pointers set/up for selectea eel 1··
; Clear update needed flag

Ce 11 num ·of •.acc:Umu I a tor

Mark accumulator

Selected eel I

High I ight C!!'IJ

Spreadsheet Updating

The next section is called Spreadsheet Updating. It has only one entry
point, Calculate, which computes the value from the program for one cell.
1b execute the saved program, it uses the same subroutines called when
the user recorded the program. First it has to save the current state of
things, because the user may be in the middle of editing a different cell.
The registers are saved on the stack. The accumulator is saved too, by
loading into the DO register before the MOVE multiple instruction. When
complete, Calculate will restore the registers and accumulator .

. ______________ .,;._________ SPREAD SHEET . UPDATING .:_ ____________ "'."--"'."--~""o'~--..,..•· ...
' ' ~- _::'',:,:<,: 'f?':_,,,, ~'::t<

Calculate
MOVE <A6>,DO
MOVEM.L DO/D6/A3/A4,-<A7)
ADDQ. B # t,D7
BPL CalcNext
CLR D7

CalcNext
MOVE.W D7,D2
BSA CalcPntr

; Save .accumt.1Jator
; Save registers

Next eel I to updata

Start with cell 0

Point to cell data

.255 SimpleCalc-A Sample Application

BEQ CalcExit No need to calc accumulator
Any proc,;iram ? TST.B Prg<A3>

BEQ CalcExit
MOUE .L A3,A4 Pointer to update eel I

Start of program
Start with clear ace

CLR 06
CLR.1.1 <A6)

CalcLoop

Calculate finds the next cell to work on by adding 1. If the byte goes
negative, at 128, it starts over from cell zero. The CalcPntr subroutine
addresses the data, but also returns a zero flag if it is the accumulator.
There is no need to recalculate the accumulator, so we exit in that case. We
also exit if there is no program, which means the first byte is the ending
zero. If there is a program we use A4 to point to it. We zero the
accumulator, because the programs start to record after a clear command.
The next section, CalcLoop, executes each program byte.

CalcLoop performs one saved instruction with each cycle . It keeps
repeating until it finds the zero byte that ends the program. There are only
two types of program byte: an arithmetic command or a command to
select a cell . The BCLR instruction distinguishes them. Remember that it
not only clears a bit, but checks its current state at the same time! If the bit
was already clear, we go on to execute the operation. If not, we call
CalcPntr to change the selection. CalcLoop goes round and round until
the little program is finished.

MOUE.B Prg<A4,06),02 Get Code byte
BEQ CalcOone
ADDQ •1,06
BCLR •7,02
BEQ CalcCheck

Point to next byte
Is it Select or arithmetic?

select eel I for input to calculator
BSR CalcPntr
BRA CalcLoop

256 Programming the 68000

CalcCheck has to execute all of the arithmetic instructions. A call to
the same Oper\.ect routine which handled the original keystroke does this
readily. After the command, CalcCheck normally returns to CalcLoop for
the next program byte. But if the command is not found in the table, we hit
a STOP instruction. This is not ordinarily possible, of course. The opera
tions were put into the program after they had already been found in the
table and executed. The instruction is here to demonstrate STOP as a
debugging tool. 1b use a STOP instruction, the data value should have the
$2000 bit set. This value goes into the Status Register setting the Supervisor
State bit. If the $2000 bit is zero, the Supervisor State is reset, causing an
immediate error .

. CQA~hE!c~ > ·~·~' . . . · ..
r ~lf·nd ope~t ion . i tr tab I e

. MOUE.B 02,DO

· ".:.~1·:· :~ .:·;;;·;g~T~~* . :1?l ·
; Het in ta~le. lmp(>ssible n

~find
·.. STOP #$2000 ~opl""iviJ~ge viqlgtion

' .. :·;'"·'' :";:i{'y C(;lf.li:Opel""
:·.·~~(~'Y JSR . :~;•;(AO) ; E~ecute ~~l""at1J~·

~·· BRR · . •· Ca I cloop

When we reach CalcDone, the entire program for the cell has been
executed. To minimize redrawing, we check to see if the value of the cell
has changed. If it has changed and the cell is the selected one, we just set
the Redraw flag to draw it later. Th update another cell, we temporarily
make it the selected cell and call DrawCell. The CalcExit routine just
restores the registers and accumulator and returns. Remember that we
saved the accumulator in DO.

257 SimpleCalc-A Sample Application

. . · CaJcDone . . · : •·
··end of ·prog. assign value. RedrC!lii c:e .11 . i f il changed ·

Gel result · ·· MOVE . <A6>,DO
CMP .M <A4>,DO Compare to old value

No.chal'lge BEQ CalcExit
MOVE;,~ DO, <A4) ·. •

mew va lllie. .redraw cell
Bss.ign'new value

C(llculating selected eel~:~ CMP 07,04
BNE CalcUpdate
BSET #ReDraw,05 , Set flag to do later
BRA calcExit

CcilcUpdate.
.. MOVE

BSA
BSA
MOVE
BSA

CalcExit

07,02
calcCel IRect
OrawCel I
04,02
Ca l.cCe 1.1 Rect

Redraw the .re ca I cu I ated ce II

Selected ce 11

MOIJEM.L <A7>+,D0/06/A3/A4 ; Restore saved registers
MOVE DO, (A6) ; Restore accumu I a tor
RTS

The Spreadsheet Subroutines provide services for the previous rou
tines. These-subroutines find the cell a point is in, calculate the dimen
sions for a cell and store data in the cell program.

The CalcNum routine tells which cell a point is in. Tu convert a point
to a cell number we first calculate the column the horizontal coordinate is
in. There are 56 pixels in each cell, so we divide the coordinate by 56. Then
calculate the row by dividing the vertical coordinate by the height of each
cell, 16 pixels. We use an LSR instruction to divide by 16 because it is faster
than the divide instruction. Eight times the row number plus the column
number gives the cell number. We use an ASL instruction instead of MULU
here because it, like LSR, is faster than the corresponding arithmetic
instruction.

258 Programming the 68000

;------------------------ SPREAD SHEET SUBROUTINES ---------------------------

CalcNum
Calculate the eel I number that contains a point
Input Where = point in local coordinates
Output D2 = ce 11 number

CLR.L DO
MOVE.W WhereH,DO
DIVU •56,DO
MOVE.W WhereV,D2
LSR.W •4,D2
ASL.W •3,D2
ADD.W D0,02

Horiz pixels/eel I

16 Vert pixels/cell
8 eel Is Horiz per line
Cel I number = S * y + x

ATS

The CalcCellRect routine calculates the box that encloses a cell. It also
figures the pen location to start drawing the numbers inside the box. At
the end, it falls through to CalcPntr which loads A3 with the pointer to the
cell's data. Calculating the rectangle is similar to CalcNum in reverse.
Dividing the cell number by eight rows per column gives the row number
as the quotient and the column number as the remainder. The equations
for the box dimensions are simple:

Top
Left
Bottom
Right

= cell height * row number
= cell width * column number
= Top + cell height
= Left + cell width

These values are set using the offset constants defined in QuickEqu.D.
When the point and rectangle are complete, CalcCellRect goes on to the
next routine.

.259

CalcCe I IRect
Ca I cu I ate a ce I I
Input D2
Output D2

A3
TxtPnt
Cel IRect

MOUE.W D2,D1
EXT .L 01
DIUU •8,D1
MOUE.L D1,DO

SimpleCalc-A Sample Application

Rectangle from a eel I number
= ce I I number
= ce I I number
= pointer to eel I data
=first text pixel of cell
=rectangle separating cell

Divide always 32 bits
8 colu~ns per row

SWAP DO Remainder in upper word
LEA Cel IRect,AO Point to eel I rectangle
LEA TxtPnt,A1 Point to start of text
MULU •56,DO 56 pixels per column
MOUE DO, left<AO) Left separator
ADDQ •4,DO Margin before text
MOUE .W DO,h<A1) First text location
ADD.W •52,DO Advance to next column
MOUE.W DO,right<AO) Right separator
ASL.W •4,D1 16 pixels per row
MOUE.W 01,top<AO) Top separator
ADD.W •12,D1 Ascent of text + top margin
MOUE .W 01,v<A1) First text location
ADDQ •4,D1 Advance to next row
MOUE.W 01,bottom<AO) ; Bottom separator

Fal I through to calculate eel I data pointer

The CalcPntr subroutine sets up a pointer to the cell data. The
calculation is simple. An offset of 32 bytes for each cell is figured from AG.
The exclusive-or instruction adjusts the accumulator location to cell 127,
in the bottom corner of the screen. You could also use a subtraction in this
case. But the EOR will work for any value of AccCell, the cell-numb~r
constant of the accumulator.

260 Programming the 68000

CalcPntr
Calculate the pointer to a eel I value
Input D2 = eel I number
Output D2 = eel I number

A3 = pointer to eel I data
Z flag -> eel I number is accumulator

MOUEQ •AccCel l,DO Make accumulator= eel I number 127
EOA.W D2,DO Cale relative location
ASL •5, DO 32 bytes I ce I I
LEA O<A6,DO.W>,A3 Does not affect Condition codes
ATS

The ProgSel subroutine stores a command to select a cell in the
program. It just turns on the $80 bit in the cell number, indicating a
selection command instead of an operation, and continues with ProgOper
to actually store the byte. The ProgOper subroutine is also called to store
an operation command. Actually it just stores the byte in DZ into the
program area, then ProgOper advances the program counter, unless the
storage area is full .

ProgSel ; Store selection operation in program
; Put selected eel I, D4, into program with $80 flag

MOUE D4,D2
BSET •7,D2

; Fal I thru to ProgOper to put byte into program

ProgOper ; Store ar i thme t i c operation in program
Put byte in D2 into accumulator program

MOUE.B D2,Prg(A6,D6.W) ; Store byte in program I ist
CMPI .B •ProgLast,D6 More program space?
BEQ ProgOUF
ADDQ. B • 1, D6 Advance program poi n ter
ATS

ProgOUF Program too big
ATS

.261 SimpleCalc-A Sample Application

~ __ ___ s_u_ID __ ID_a_ry __ __

Now we have gone completely through the sample program. You may
want to go back and review parts of the code you are not sure about.
We think this example will help you to write your own programs. In
Chapter 10, Advanced Routines, we will show a few more routines
that may be useful. Happy coding!

CHAPTER

~1101-------
Sollle Advanced
Subroutines Not in
SilllpleCalc

In the last chapter we took a look at the sample program, SimpleCalc.
Although the sample program has many useful calls in it, there are still
many things you may want to do which have not been covered yet. In this
chapter we are going to go over several useful subroutines. Once you
understand the sample program, it will be very easy for you to adapt and
add these subroutines to programs you create yourself. Some more
important Toolbox calls are shown in these examples. After you have
mastered them, you can try using the other traps in Appendix F, based on
what you already know about similar calls. But even Appendix F does not
begin to exhaust the power of the Macintosh! For an even deeper summary,
you may consult Macintosh Revealed, by Stephen Chemicoff, and the
encyclopedic technical manual, Inside Macintosh, available from Apple
Computer Inc.

Using the Memory Manager

The Memory Manager always allocates the space for code and system data.
You can get the best performance from your program by calling the
Memory Manager to allocate the application data space as well. Some
system calls optionally let you provide your own space for system data
when you can do it more efficiently. If you just pass NIL in those cases, the
Memory Manager will take over. You can request both fixed and relocatable
blocks of memory. The two types have different calls and uses.

When you request a non-relocatable block, the Memory Manager
returns a pointer to the first word of your data space. The area is reserved

263

264 Programming the 68000

at the bottom of the heap. It will never move and will be available until you
dispose of it. Non-relocatable blocks are the easiest to use, but repeated
calls to create and dispose can split the available heap into small
fragments. The relocatable blocks are designed to avoid this.

A relocatable block is always addressed by its handle. The handle is a
pointer to a master pointer. The master pointer in tum, contains the
current location of the block. When the Memmy Manager has to move a
relocatable block, it puts the new address in the master pointer location.
This way, the handle is always valid even though the block may be moving
around. When you want to be sure the block stays put, a special call to
"lock" the handle prevents the Memory Manager from moving it until it is
unlocked.

MOVE.L #1000,DO
_NewPtr
MOVE.L AO, BlockPtr
TST.W DO
BNE Error

MOVE.L BlockPtr,AO
MOVE.L #2000,DO
_setPtrSize
TST.W DO
BNE Error

MOVE.L BlockPtr,AO

MOVE.L # 'Data',(A4)

;Using a non-relocatable block
;Create a new, 1000-byte, non-relocatable
;block
;Size in bytes
;Create a fixed block
;Save pointer returned in AO
;Enough space for new block?
;DO contains error code or 0
;Expand the non-relocatable block to
;2000 bytes
;Get pointer to existing block
;New size in bytes
;Expand the block
;Enough room to grow?
;DO contains error code or 0
;Store some data in the block
;Get a pointer to the first word of the
;block

;Put four characters into the start of the
;block

;Return the non-relocatable block
MOVE.L BlockPtr,AO ;Get handle to old block
_DisposePtr ;Return block space

MOVE.L #1000,DO

_NewHandle ,CLEAR

;Using a relocatable block

;Create a new, 1000-byte, relocatable
;block

;Size in bytes
;Create block and fill it with zeros

265 Some Advanced Subroutines Not in SimpleCALC

BlockPtr
BlockHand

MOVE.L
TST.W
BNE

AO,BlockHand ;Save handle to new block
DO ;Any error creating block?
Error ;DO contains error code or 0

MOVE.L BlockHand,AO
MOVE.L #2000,DO
_SetHandleSize
TST.W DO
BNE Error

MOVE.L
MOVE.L
_HLock

MOVE.L

MOVE.L
_Hunlock

BlockHand ,AO
(AO),A4

'Data',(A4)

BlockHand ,AO

;Expand the relocatable block to 2000
;bytes

;Get handle to existing block
;Size in bytes
;Expand the block
;Was there enough room?
;DO contains error code or O

;Lock and modify the relocatable block
;Get handle to existing block
;Get a pointer to the data
;Keep the block from moving

;Modify the block. You can make any
;kind of system call here
;Put some data into block
;Unlock the block when you are done
;Get handle to locked block
;Unlock the block

;Return the relocatable block
MOVE. L BlockHand ,AO ;Get handle to old block
_. DisposHandle ;Return block space

DS.L
DS.L

;Data area
;Four-byte pointer to start of block
;Handle to relocatable block

Variable Text in a Dialog Box

The dialog boxes we have used so far have all used constant text, hard
coded into the resource file. Often you will want to put different messages
into the same geometric box, or provide some data in the box which you
can't know until the program is running. Here we will show two ways to
vary the text in a dialog box.

CLR.L -(SP)

;Using variable text in a dialog box
;Create the dialog
;Clear space for the dialog pointer

;Pass the ID number of the dialog box,
;#283

266 Programming the 68000

MOVE #283, - (SP)

CLR.L -(SP)

MOVE.L #-1,-(SP)
_GetNewDialog

MOVE.L (SP)+, DiaPtr(A5)

;Pass NIL to let the Dialog Manager
;provide the storage area

;Place this dialog box above all other
;windows

;Start the dialog
;Save the dialog pointer for future calls
;with this dialog box

PEA
PEA
PEA
PEA

;Set the parameter strings
'You can set four variable strings to use'

_Pa ram Text
BSR

CLR.L
CLR.L
PEA
PEA
_ParamText

'in Static Text items in a dialog box.'
'Refer to the strings as 0th rough 3'
'in the Resource File'

@1 O ;Wait for operator to see
;Change two of the parameter strings.
;The other two stay the same

- (SP) ;String· O won't be changed
- (SP) ;String· 1 won't be changed
'You can change some of the strings'
'and leave others as they are.'

BSR @10 ;Wait for operator to see
;Changing a text item directly

MOVE.L DiaPtr(A5), -(SP)
MOVE.W #2, -(SP)

PEA Item Type
PEA ltemHand(A5)
PEA Item Box
_GetDltem

;Get a handle to a dialog item. All we need is
;the handle, but a call to
;_GetDltem returns the item type and the
;enclosing rectangle as well
;Load the dialog pointer
;Second item in list
;A code number for the type of this item
;will be returned in ltemType

;Item handle will be returned
; Item rectangle will be returned
;Get info for the item

;Set the text of item number two
MOVE.L ltemHand(A5), -(SP) ;Item handle
PEA 'Or you can change the text directly'
_SetlText ;Set dialog item text

@10

Item Hit

Item Type
Item Box

DiaPtr
Item Hand

267 Some Advanced Subroutines Not in SimpleCALC

BSR @10

MOVE. L DiaPtr(A5), - (SP)
_DisposDialog
RTS

CLR.L
PEA
MOVE.L

_DrawDialog
_Modal Dialog

RTS

DC.W

DC.W

DC.W
DC.W
DC.W
DC.W

DS.L
DS.L

-(SP)
Item Hit
DiaPtr(A5), - (A7)

8

36
30
80
330

;All done. Close up and go home

;Update the dialog and wait for the
;operator to press [Return]
;No filter procedure
; ·Area for item hit
;Redraw the box if necessary and wait
;for operator action

;filter procedure, •item chosen
;ltemHit now contains the item chosen.
;Pressing [Return] is the
;same as selecting item number one

;Data areas
; Item chosen.
;Item parameters. These items are set by
;_GetDltem. They are defined
;with the values for item two already in
;them as an example.
;Type of changed item.
; Rectangle enclosing text item
;top
;left
;bottom
;right

;Handle and pointer

;Storage for dialog pointer
;Storage for item handle

The resource for the dialog should look like this:

Type DLOG
,283
*Outside corners of the box, relative to the desk top
100 62 200 450
Visible NoGoAway
1

268 Programming the 68000

Setting the Cursor

0
*Item list is number 283
283

*Item list for the dialog
Type DITI
,283
*Number of items in list
2
*First item says "Note:" followed by parameters zero and one
StatText Disabled
20 30 52 330

Note: ·o ·1
*Second item starts as parameters two and three, but will be changed
StatText Disabled
52 30 84 330

'2'3

One friendly invention in the Macintosh is the pictorial cursor. The cursor
on the Macintosh is an image that moves with the mouse. A blinking
vertical line where text may be entered is called a caret. The cursor symbol
can tell the operator what is going on in the machine. Less advanced
machines sometimes use the height and blink rate of the caret to designate
the current mode. But with the QuickDraw cursor images, the Macintosh
can provide a picture for every occasion.

A Macintosh cursor is actually two small patterns. One bit pattern,
called the image, shows lhe detail of the picture. The second bit pattern is
the cursor mask. It blocks out the image underneath the cursor. Both bit
patterns together make each cursor pixel appear black, white, clear or
inverting. Tu draw the cursor, the Toolbox first does a bit-clear operation
using the mask. Then it draws the image pattern in Exclusive-Or mode.
The resulting cursor can have holes where the underlying image shows
through, and inverted areas where the drawing below changes. color, as
well as detail on the cursor itself in black or white.

The center of the cursor is called the hot spot. The cursor is always
drawn with the hot spot at the mouse location. The hot spot is defined
relative to the top left comer of the cursor. If the cursor is an arrow
pointing North by Northwest, the hot spot should be at the upper left
comer, since the operator will see it pointing to the upperleft. But if the
cursor is a finger pointing to the right, the hotspot should be at the tip of
the finger.

Several handy cursors are already built in. They come in the System
Resource file as standards. They have certain standard use conventions

.269 Some Advanced Subroutines Not in SimpleCALC

which you can follow to make your programs easy to learn. If you need
even more variety, you can define your own cursor in a resource file. This
example shows how to load and use one of the standard cursors. Figure
10-1 shows a cursor along with its image and mask. The format for a cursor
in memory is shown in Appendix F (Trap). In that Appendix you can also
see how to put a cursor into your own Resource File.

16 pixels across

I I

16 pixels down

The cursor pattern is the • filled boxes.

The mask pattern Is a combination of the • f i I led boxes
and the iiiii filled boxes.

iBeamCursor EQU
crossCursor EQU

1
2

Figure 10-1 Cursor Image and Mask

;Set the cursor

;resource IDs for standard cursors

;These are predefined in SysEqu. D

;for selecting text
;for selecting graphics

270 Programming the 68000

plusCursor EQU 3 ;for drawing graphics
watchCursor EQU 4 ;for indicating a long delay

CursData DS.B 68 ;Storage for cursor data

FirstWatch ;Enter here to load the cursor data when
;you use
;the watch cursor for the first time

CLR.L -(SP)
;Use the ID for the watch cursor defined
;in the System Resource file

_GetCursor ;Get handle to cursor
MOVE.L (SP)+ ,AO
MOVE.L (AO),AO ;Get pointer to cursor
LEA CursData(A5),A1 ;Point to storage
MOVEQ #16,DO ;Copy 68 bytes

@10 MOVE.L (AO)+ ,(A1)+ ;Move four bytes at a time
DBRA 00,@10

SecondWatch
;Set the cursor. Enter here to set the
;cursor after CursData is loaded

PEA CursData(A5) ;Pointer to data we stored
_setCursor ;Change the cursor
RTS

Changing the Cursor Shape with Its A>sition on tfye Screen

The previous example showed the basics of setting the cursor. Many
applications use a cursor within the document, which is not appropriate
for selecting menu items or scrolling the window. This example shows you
how to change the cursor back to an arrow for use on the desk top when
the mouse is moved off the document. When the mouse comes back into
the content area of the window, the special cursor is set again. To achieve
this effect, we add a small routine to the main loop which handles events.
When there are no events to process, we adjust the cursor to the proper
shape.

CursData OS. B 68

;Adjust the cursor.
;Make it change to an arrow when not in
;the document
;Make it a cross-hair cursor when in the
;window

;Storage for cursor data

lnitMain

@10

GetEvent

No Event

In Doc

NotlnDoc

.271 Some Advanced Subroutines Not in SimpleCALC

;This is the main initialization called once
;at the start of the program
;Get the System Cross-hair cursor to use
;for graphic selection

CLR.L-(SP)
MOVE.W
_GetCursor
MOVE.L
MOVE.L

#crossCursor, - (SP)

LEA
MOVEQ
MOVE.L
DBRA

(SP)+ ,AO
(AO),AO
CursData(A5),A 1
#16,DO
(AO)+ , (A 1) +
00,@10

_GetNextEvent
BTST #0,(SP)+
BEQ No Event

_System Task
PEA Where(A5)
_GetMouse
CLR.W -(SP)
MOVE.L Where(A5), - (SP)
MOVE.L WindowPointer
PEA portRect(AO)
_PtlnRect
BTST #0,(SP)+
BNE In Doc
BEQ NotlnDoc

PEA CursData(A5)
_SetCursor
RTS

_lnitCursor
RTS

;Get Handle to cursor

;Get pointer to cursor
;Point to storage
;Copy 68 bytes
;Move 4 bytes at a time

;Continue with other initialization

;Start event loop
;Check for any activity

;No new event. Update cursor
;Handle new event

;Call System task when idle

;Find mouse location
;True/False result
;Mouse point
;AO
;Pointer to port rect
;point, ·rect - > True/False
;Mouse in window?
;Yes. Set crosshair
;On desk. Set arrow

;Set cross-hair cursor while inside the
;window
;Pointer to data we stored
;Change the cursor
;Back to main loop

;Set arrow cursor while on the desk top

;Back to main loop

272 Programming the 68000

Marking a Selection on the Screen by Making It Blink

ldleBlink

@10

@20

the Box

GetEvent

When an item is selected for editing, you should inform the operator by
drawing it distinctively. A selected item can be made to blink, be redrawn
in gray, or both. In this example we show how to make an item blink. Like
adjusting the cursor, this is done by inserting a routine in the event loop.

The continuous clock, available by a call to _TickCount, provides a
convenient timer with a period of about one second. If your application
has a caret you can use the same routine to make the caret blink. A more
elaborate routine could adjust the blink time to the system variable,
CaretTime. This four-byte integer is stored in parameter RAM so it remains
even when the machine is restarted.

CLR.L -(SP)
_TickCount
MOVE.L (SP)+,DO
LSR #6,DO
BCS @10
BSET #On0ff,D7
BEQ @20
RTS
BCLR #On0ff,D7
BNE @20
RTS

MOVE #patXor, - (SP)
_Pen Mode
PEA the Box
_FrameRect
PEA the Box
_PaintOval
_PenNormal
RTS

DC 50,50,250,250

_GetNextEvent
BTST #0,(SP)+

;Make a drawing item blink every 112
;second

;Divide by 64

;Cursor should be on
;Draw it to display
;already on exit
;Cursor should be off
;Draw again to erase it
;al ready off exit

;Draw your structure. Here it is a Box
;around a circle
;Set XOR mode, number 1 O

;Open square

;Solid circle
;Restore pen

;Start event loop
;Check for any activity

No Event

273 Some Advanced Subroutines Not in SimpleCALC

BEQ No Event

BSR ldleBlink
_System Task

RTS

;No new event. Update cursor
;Handle new event

;Make selection blink
;Let the System blink any desk
;accessories
;Any other processing

Dragging Selections with the Mouse

Select

Null Event

Drag Item

Some applications let the operator move a selected item. Tu be most in
keeping with the Macintosh style, the item should move smoothly
following the mouse. The routine remembers the mouse location when it
first starts. Then, as the mouse is moved, it applies the same relative
motion to the location of the selected item. This lets the operator press the
button anywhere on the selected item without the item jumping to align
itself with the mouse. The subroutine should be called from the main loop.
We saw how to do this in earlier examples. The item has to be drawn the
first time by a call to the Select routine below, before you can start to move
it with the Dragltem routine.

;Initialize the item that is going to be
;moved

MOVE.L #$00AC0100 I DO ;Start item in middle of screen
MOVE.L DO, ltemloc(A5) ;Store the item location
MOVE.L DO, -(SP) ;Item location onto stack
_Move To
BSR Drawl tern ;Draw the original image
RTS

;Enter here periodically if an item is
;selected to see if the
;mouse button is down

CLR.W -(SP)
_Button .
BTST #0,(SP)+ ; Is operator holding the button?

274 Programming the 68000

BNE @10 ;Yes. Track mouse with selection

;Button up. Return to main loop
RTS

;Button went down. Start to drag the
;selected item. You may want
;to add code here to check that the
;mouse is close enough to it.

;Get the starting location
@10 PEA OldMouse(AS)

_GetMouse

;Drag item with the mouse
@20 PEA NewMouse(AS)

_GetMouse

;If mouse hasn't moved don't draw again
MOVE.L NewMouse(AS),DO
CMP.L OldMouse(AS),DO
BEQ @30

;Mouse moved. Draw in new location.
;Erase in old location.

MOVE.L ltemloc(AS), - (SP) ;Old location onto stack

;Compute new location. Item Item +
;New Mouse - Old Mouse
;Calculate vertical

MOVE.W NewMouse(AS),DO
SUB.W OldMouse(AS), DO
ADD.W DO, ltemloc(AS)

;Calculate horizontal
MOVE.W NewMouse+ 2(A5), DO
SUB.W Old Mouse+ 2(A5), DO
ADD.W DO, ltemloc + 2(A5)

;NewMouse location will be the next
;OldMouse location

MOVE.L NewMouse(A5),0ldMouse(A5)

;Draw new version before erasing old so
;item can't disappear

MOVE.L ltemloc(AS), - (SP) ;New location onto stack
_Move To
BSR Draw Item ;Draw new image
_Move To

275 Some Advanced Subroutines Not in SimpleCALC

BSR Draw Item ;Erase old image

;Repeat if button still down
@30 CLR.W -(SP)

_Button
BTST #0,(SP)+
BNE @20 ;Still down. Repeat

;All done. Go back to main loop
RTS

;Draw your structure. Here it is the
;letter "A"

Drawltem MOVE #srcXor, - (SP) ;Set XOR text mode, number 2
_TextMode
MOVEQ # 'A',DO ;Make a CHAR to draw
MOVE.W DO, -(SP)
_DrawChar ;Draw or erase letter "A"
RTS

;Data area
NewMouse DS.W 2 ;Current mouse location
Old Mouse DS.W 2 ; Previous mouse location
ltemloc DS.w 2 ;Item location

Marking, Disabling, and Changing Menu Items

Many of the options in your program can only be available at certain times.
You can keep the operator informed about the conditions and available
options by varying the menu items. The Menu Manager lets you put
checks or other marks in front of menu items. You can also change the text
of an item to indicate what is available. For example, an item may read
"Show Clock:' When that item is selected, a clock may appear on the
screen. Now you can either put a check mark beside "Show Clock," in
which case a second click would take away the clock and check mark, or
else you can change the item to read "Hide Clock" while the clock is visible.
A third scheme maintains two menu items, "Show Clock" and "Hide Clock:'
When the clock is visible you disable "Show Clock," causing it to display in
gray and be unselectable. When the clock is hidden again, you enable
"Show Clock" again and disable "Hide Clock:' All three methods accom
plish the same goal, to show the operator what is available and prevent
improper selection.

This example shows how to manipulate menu items all three ways.
Individual items are disabled. An entire menu is disabled and enabled as
well. As you will see, the menu is disabled independently from the

276 Programming the 68000

individual items. When the entire menu is turned back on, some items
remain disabled, as they were before the whole menu was inhibited. The
example also shows how to change the text and mark menu items. You can
mark an item with any character just by passing the character's ASCII
value. The system font has some special characters intended for menu
item marks. They are defined in the TholEqu include file and also listed
below.

commandMark EQU
checkMark EOU
diamondMark EQU
apple Mark EQU
no Mark EQU

$11
$12
$13
$14
0

CLR.L -(SP)
MOVE.W #301, -(SP)
_GetMHandle
MOVE.L (SP)+ ,MenuHand(A5)

MOVE.L MenuHand(A5), - (SP)
MOVE. W #1, - (SP)
MOVE.W #AppleMark,-(SP)
_SetltmMark

MOVE.L MenuHand(A5), -(SP)
MOVE.W #2,-(SP) •
_Disable Item

MOVE.L MenuHand(A5),-(SP)
MOVE.W #3,-(SP)
_Enable Item

MOVE.L MenuHand(A5), - (SP)
CLR.W -(SP)
_Disableltem

MOVE.L MenuHand(AS), - (SP)
CLR.W -(SP)
_Enable Item

;These chars are pre-defined in ToolEqu. D

;Command "cloverleaf"
;Check mark
;Diamond
;Desk accessory menu title
;Use for removing any mark

;Get menu handle to use in all routines
;Space for handle
;Menu ID from resource file

;Menu handle

;Mark the first menu item with an apple
;character
;Menu handle
;First menu item

;Make your mark

;Disable the second menu item
;Menu handle
;Second item in list

;Enable the third menu item
;Menu handle
;Third item of menu

;Disable the entire menu
;Menu handle
;Zero means entire menu

;Re-enable the menu again. Item two
;stays disabled
;Menu handle
;Entire menu

277 Some Advanced Subroutines Not in SimpleCALC

MOVE.L
MOVE.W
PEA
_Setltem

MenuHand(A5), - (SP)
#4,-(SP)
'New Item Four'

;Change the text of item four
;Menu handle
;Fo.urth menu item
;Text to display

Drawing Text in Gra~ as the Menu Manager Does

On occasion you may want to draw text in a shade other than black. This is
usually only legible with large font sizes. The Menu Manager uses gray text
to indicate items that are not selectable. Here the difficulty in reading
actually helps to enforce the idea that the gray items cannot be chosen.
The Quick.Draw package does not provide any direct way of making gray
text. But if you would like to know how to do it you can study the example
here.

The method for drawing gray is simple. A gray mask is first XOR'ed
over the area where the characters are to go. Then the text is drawn in Bit
Clear mode. This erases the mask wherever the letters are solid. Finally the
gray mask is XOR'ed over the area again. The two exclusive-or operations
cancel each other, leaving the text in gray.

_Pen Normal
PEA TextBox
_FRAM ERECT
MOVE.W #patXor, -(SP)
_Pen Mode

MOVE.W
_TextMode
MOVE.L
PEA
_PEN PAT
MOVE.W
_Text Size

PEA
_PaintRect

#srcBiC, - (SP)

GRAFGLOBALS(A5),AO
GRAY(AO)

#48,-(SP)

Text Box

MOVE.L TextStart, -(SP)
_Move To
PEA 'GRAY'
_Drawstring
PEA TextBox
_PaintRect
_Pen Normal
RTS

;Draw text in gray
;Normal Width, Mode, Black Color
;pointer to surrounding rectangle
;Frame box in black for visibility
;XOR pen mode, number 10

;Bit Clear text mode, number 3

;Pointer to QD globals
;Standard gray pattern

;Gray characters look better large

;Draw gray mask

;Clear text bits

;Erase excess mask

;Normal Width,Mode,Black Color

278 Programming the 68000

TextStart DC 150
200
100
150
180
350

DC
TextBox DC

DC
DC
DC

Coding for the Undo Command

UndoCmd

CutCmd
CopyCmd
PasteCmd
ClearCmd

Clip

Save
SelectPtr
SaveCmd
SaveSelect

Standard edit operations are Cut, Copy, Paste, Clear and Undo. The last
operation, Undo, should reverse whatever operation was done before. It is
usually adequate to make only the most recent operation reversible. In a
good Macintosh application the operator can see the effect of a mistake
immediately, and select Undo before doing anything else. Repeated calls to
Undo can alternately reverse the operation and then perform it again, in
case selecting Undo was a mistake. This example shows how to maintain
data about one previous operation in order to reverse it.

EQU

EQU
EQU
EQU
EQU

DS.L

DS.L
DS.L
DS.W
DS.L

3
4
5
6

;The Standard Edit items, Cut, Copy,
;Paste, Clear and UnDo
;Your menu should use this order to be
;compatible with the Desk Accessories

;UNDO/Z

;CUT IX
;COPY /C
;PASTE/V
;CLEAR

;Data Areas. Initialize these to 0 when
;program starts
;Clipboard area
;The size depends on the type of data
;the program uses

;Undo recovery area
;This should be the same size as the
;clipboard

;Pointer to selected item
;Last menu item to undo
;Selected item to undo

;Enter with Menu item in edit menu
;in DO

279 Some Advanced Subroutines Not in SimpleCALC

DoCmd MOVE.L Select Ttr(AS),AO ;Point to selected item
CMPI #UnDoCmd,DO ;Check for Undo First
BEQ Undo
MOVE.L AO,SaveSelect(AS) ;Remember what was selected to undo it
MOVE.W DO,SaveCmd(AS) ;Remember what was done to undo it
CMPI #CutCmd,DO
BEQ Cut
CMPI #CopyCmd,DO
BEQ Copy
CMPI #PasteCmd, DO
BEQ Paste
CMPI #ClearCmd,DO
BEQ Clear

• ;Item not on list. Impossible!
STOP #$2000 ;No privilege violation

;Operator can select these Edit Menu
;items

Cut ;CUT I X
MOVE.L Clip(AS),Save(AS) ;Save= ClipBoard
MOVE.L (AO),Clip(AS) ;Clip Board= Selection
ClR.L (AO) ;Selection= O
RTS

Copy ;COPY/C
MOVE.L Clip(A5),Save(A5) ;Save= ClipBoard
MOVE.L (AO),Clip(AS) ;ClipBoard =Selection
RTS

Paste ;PASTE/V
MOVE.L (AO),Save(AS) ;Save= Selection
MOVE.L Clip(AS),(AO) ;Selection= Clip Board
RTS

Clear ;CLEAR/Z
MOVE.L (AO),Save(AS) ;Save= Selection
CLR.L (AO) ;Selection= O
RTS.

Undo ;UNDO
MOVE.W SaveCmd(AS),DO ;Remember what was done last & Undo it
MOVE.L SaveSelect(AS), AO ;Remember to which item it was done
MOVE.L AO, Select(AS) ;Restore old selection
BCHG #15,DO
MOVE.W DO,SaveCmd(AS) ;Mark savedcommand as undone
BPL DoCmd ;Undoing an Undo? Just do it again!

.280 Programming the 68000

BCLR #15,DO
CMPI #CutCmd,DO
BEQ Un Cut
CMPI #CopyCmd, DO
BEQ Un Copy
CMPI #PasteCmd,DO
BEQ Un Paste
CMPI #ClearCmd, DO
BEQ Un Clear

;There could be nothing to undo right
;after initialization

CLR.W SaveCmd(A5)
RTS

uncut
MOVE.L Clip(A5), (AO) ;Selection= ClipBoard
MOVE.L Save(A5),Clip(A5) ;ClipBoard =Save
RTS

Un Copy
MOVE.L Save(A5), Clip(A5) ;ClipBoard =Save
RTS

Un Paste
MOVE.L Save(A6), (AO) ;Selection= Save
RTS

Un Clear
MOVE.L Save(A6), (AO) ;Selection= Save
RTS

Double Precision Division

A 68000 processor can add and subtract up to 32 bits at a time.
Multiplication and division are limited to 16-bit input and output respec
tively. A special carry flag is provided for adding and subtracting large
numbers by stages, using the ADDX and SUBX instructions, as described in
Chapter 3, the 68000 Instruction Set. Multiplication is fairly straightfor
ward, but division which yields an answer greater than 16 bits is a little
more tricky, so it is presented here.

This example calculates the time elapsed since the Macintosh was
turned on. The Macintosh maintains the time in units called "ticks" which
are 1/60 second. This routine divides the current time in ticks by 60 to
obtain the number of seconds. Then it divides the latter figure by 60 again
to arrive at the number of minutes plus the number of seconds as a
remainder. The result of the first division will be more than two bytes long
after about 18 hours. ·

Divide

281 Some Advanced Subroutines Not in SimpleCALC

CLR.L -(SP)
_TickCount

MOVEQ
BSR

MOVE.L
BSR
RTS

MOVE.L
CLR.L
MOVE.W
DIVU
MOVE.L
SWAP
MOVE.W
DIVU
MOVE.W
SWAP
JMP

#60,D2
Divide

DO,-(SP)
Divide

(SP)+ ,AO
DO
(SP)+,DO
D2,DO
DO,D1
DO
(SP)+ ,D1
D2,D1
D1 ,DO
D1
(AO)

;Get time since power-up in minutes and
;seconds
;Return minutes in DO and seconds in D1

;Get tick count. 60 ticks/second

;Divide by 60 to get total seconds
;Divisor= 60

;Divide again get minutes and seconds

;All done

;Divide the 32 bit integer on the stack by
;the 16 bits in D2
;Return a four-byte quotient in DO and a
;two-byte remainder in D1

;Division always uses 4 bytes
;Get upper word
;Divide upper word
;Save remainder for next division
;Save quotient for upper result
;Get lower word
;Divide upper remainder and lower word
;Result into DO. L
;Remainder into D1. W

Using the Print Package

The Macintosh provides a very advanced printer driver. Other small
computers may have a few BIOS calls that perform the equivalent of a
BASIC "PRINT" statement, but the Macintosh Print Manager comes com
plete, with graphics, spooling and application-program independence of
the printer, paper size, and type.

Before you start to print, you call two dialogs provided by the system.
One dialog, called the Style dialog, gets all the information about the
printer and paper. In the print-record field, it saves the operator's answers
along with data specific to the printer. You should call this dialog before
printing the first time. The Job dialog lets the operator choose the number
of copies, select the pages to be printed, and choose the print quality

28.2 Programming the 68000

where this is an option, as it is on the Image\t\Titer printer. If you use the
Job dialog, you should call it every time a document is printed.

When the print record has been conipleted, you open a special
graphic port for the printer. Then you simply draw the data you want to go
on the paper, just as though you are drawing to the screen! If the operator
selected spool printing, the data will go to a disk file. For a draft printing
operation, the data goes directly to the printer. When you are all done, you
close the printer port and further drawing goes back to the top window. If
you have a spool file, you can call the Print Manager to pMnt it, or just leave
the data on the disk. The operator can print it later from the finder.

This example shows how to print multiple pages of text and graphics.
The operator can choose to spool or draft the output. If the document is
spooled, the routine detects it and prints the spool file immediately. This is
only a small sample of what you can do with the Print Manager. If you
would like to learn more about the Print Manager, you can find it in
Macintosh Revealed, or Inside Macintosh.

;Printing Text and Graphics
;Set up the printer manager

LINK #-iPrintSize,A6 ;Make space for the print record
LEA -iPrintSize(A6),A6 ;Point to start of record
LINK #O,A6 ;Make a handle to print record
MOVE.L A4,-(SP) ;Save register A4
CLR.L -(SP)
PEA (SP)
_Get Port ;Save the port
JSR PrOpen

;Put up a style dialog to learn the type
;of the printer and paper

MOVE.L A6,-(SP) ;Print record handle
JSR PrintDefault ;Initialize record
CLR.W -(SP) ;Result
MOVE.L A6,-(SP)
J~R PrStlDialog ;Handle-> Result
BTST #0,(SP)+ ;Did operator click Cancel?
BEQ @86

;Put up a job dialog to learn page range,
;quality and number of copies

CLR.W -(SP) ;Result
MOVE.L A6,-(SP)
JSR PrJobDialog ;Handle-> Result
BTST #0,(SP)+ ;Did operator click Cancel?
BEQ @86

;Start a document to print into
CLR.L -(SP) ;Printing Port Result

283 Some Advanced Subroutines Not in SimpleCALC

MOVE.L A6,-(SP) ;Handle
CLR.L -(SP) ;System allocates port space
CLR.L -(SP) ;System allocates print buffer space
JSR PrOpenDoc ;Handle, ·port, ·print buffer->· port
MOVE.L (SP)+ ,AU ;Pointer to printing port

;Print on the first page
BSR @10 ;Begin the first page
MOVE.L #$00200020, -(SP) ;Coordinates 32,32
_Move To ;Move pen
PEA 'This is page 1' ;Text to print
_Drawstring ;Goes into printer port bit map

;Add more drawing commands here!
NOP

BSR @20 ;End the first page
;Print on second page

BSR @10 ;Begin the second page
MOVE.L #$00200020, -(SP) ;Coordinates 32,32
_Move To ;Move pen
MOVE.L #$00800080, -(SP) ;Coordinates 128, 128
_Line To ;Goes into printer port bit map

;Add more drawing commands here!
NOP

BSR @20 ;End the second page
;End of the document

MOVE.L A4,-(SP) ; ·port
JSR PrCloseDoc ; ·port

;Print spool file if doing spool printing.
;If draft printing just exit now

MOVE.L (A6),A4 ;Get pointer to print record
LEA PrJob(A4),A4 ;Point to job sub-record
LEA bjDocLoop(A4),A4 ;Point to printing method
MOVE.B (A4),DO ;Get printing method code
CMPl.B #bSpoolLoop, DO ;Spool printing if 1
BNE @86 ;Draft printing. Already done

;Open and print spool file
LINK #-iPrStatSize,A4 ;Make space for status record
LEA -PrStatSize(A4),A4 ;Point to start of record
MOVE.L A6,-(SP) ;Handle to print record
CLR.L -(SP) ;System allocates NEW printing port
CLR.L -(SP) ;System allocates file buffer
CLR.L -(SP) ;System allocates printer buffer
MOVE.L A4,-(SP) ; ·status record

284

JSR

LEA
UNLK
BRA

@10 MOVE.L
CLR.L -(SP)
JSR
RTS

@20 MOVE.L
JSR
RTS

@86 JSR
_set Port
MOVE.L

UNLK
LEA
UNLK
RTS

Programming the 68000

PrPicFile

i PrStatSize(A4),A4
A4
@86

A4,-(SP)

PrOpenPage

A4,-(SP)
PrClosePage

PrClose

(SP)+ ,A4

A6
iPrintSize(A6),A6
A6

;handle, ·port, 'file buf, ·print buf, ·status
;Restore the stack and regsiter A4

;All done
;Begin a page of the document
; ·port
;No scaling rectangle. Print normal size
; ·port, ·scale rect.

;End a page of the document
; ·port
;·port.

;All done printing. Return to the main
;program
;Close the print driver

;Restore A4
;Restore the stack and register A6

Using the SANE Numeric Package

Apple Computer Inc. has a standard floating point package for all their
machines. Called the St~dard Apple Numeric Environment, or SANE, the
package provides consistent floating-point arithmetic on all Apple ma
chines, running in the most popular languages. The SANE package is
based on a standard from the IEEE, the Institute of Electrical and
Electronics Engineers.

The package handles numbers in six different precisions. Three of
these types, single precision, double precision, and extended precision,
are floating point numbers of different lengths. They contain 32, 64 and 80
bits respectively. The fourth type, dubbed "comp," is an eight-byte integer,
useful for accounting purposes. The other two types are two-byte and
foul'-byte integers. All arithmetic is performed in extended precision. The
results are only stored in the other types. The examples below show how
to perform calculations and convert between the various types.

The SANE routines require SANEMacs.txt to be included in the
assembly-this package holds the macro definitions for the SANE opera
tions. These macros expand to two instructions. The first instruction
pushes a constant "opcode" onto the stack. The opcode tells SANE which

.285 Some Advanced Subroutines Not in SirnpleCALC

operation to perlorm. The second instruction is another macro, JSRFP,
which in tum expands to a trap which calls SANE.

Converting Numeric to String
The SANE package itself will not convert a number directly to a string
representation. The numeric formats required by high-level languages vary
so much that it would be nearly impossible for one routine to support all
of them. Instead, SANE converts between binary numbers and an exponen
tial, decimal form, called a "decimal record:' Then the higher-level lan
guage converts between the decimal record and the actual string
representation required.

A decimal record contains a sign, an exponent and a mantissa, the
significant digits. The decimal record below represents the number pi. lhe
sign is one byte. It is either zero for positive or one for negative. The
exponent is a two-byte binary integer. It contains the power of ten. lhe
mantissa is presented as a Pascal string. lhe first byte is the length. lhe
decimal digits follow, in ASCII, with no decimal point, commas or other
formatting. You can think of the mantissa as one large integer. Multiply that
integer by ten to the power of the exponent to get the final number.

DecStr
;This decimal record contains pi
;Sign byte. 1 =negative. 0 =positive

DC.B 0
;Fill

DC.B 0
;Exponent

DC.W -6
;Number of decimal digits

DC.B 7
;Decimal digits

DC.B '3141593'

;not used

This routine will convert the decimal record above to an extended
precision number:

DecimalToExtended
;This routine converts a decimal record to an extended precision number
;Input: DecStr= decimal record
;Output: Accumulator= extended precision number
;Push the address of the input decimal record

PEA DecStr ; 'dee rec
;Push address of output extended precision number

PEA Accumulator ; 'extended
Convert the decimal record to a number

FDEC2X

SingleToString

286 Programming the 68000

Here Accumulator is a 10-byte field which holds the result. When
making decimal records for conversion, you have to be sure that the first
digit is not a zero. When SANE finds a leading zero in the decimal record, it
evaluates the decimal record as zero.

Tu convert a binruy representation to a decimal record efficiently,
SANE has to know how many digits of the result will actually be used.
When you call the conversion routine you pass a format record. This
record tells whether the result will be in a fixed-point or floating-point
format, and how many digits of accuracy are needed. For a fixed-point
format, the number of digits to the right of the decimal point is given. For a
floating-point format, the total number of digits is passed. The format
record is not needed to convert from a decimal record to a binary
representation, because the number of digits is contained in the decimal
record. Here is a format record specifying 7 digits of accuracy for a floating
point number.

;Description of format for conversion
Form Rec
;conversion style. 0= floating point, 1 =fixed point

DC.B 0
DC.B O ;not used

;number of significant digits
DC. W 7 ;7 significant digits

This routine converts a foul'-byte, single precision number for output.
Only the mantissa is converted to a string. The exponent is returned, in
binary, in register Ill. The exponent will be zero using the data in this
example. If you use this routine to display a number in a window, you will
probably want to show the exponent as a superscript. Tu display the
number, first draw the mantissa on the screen. Then draw "X 10," move the
pen up and draw the exponent. You can convert the exponent with the
"Integer to String" routine, Draw\hlue, shown in Chapter 9. The routine
below returns a pointer to the mantissa in AO, as well as the exponent in
Ill. The mantissa string lies on top of the input decimal record. Trailing
zeros have been removed. In case the input number is zero, the routine
forces the exponent to zero, because the exponent returned by SANE is
undefined in that case.

;This routine converts a single precision number to ASCII string
;for display.
;Input: Single= four-byte single precision number
;Output: (AO) =normalized mantissa in string form

01 =exponent in binary

287 Some Advanced Subroutines Not in SimpleCALC

;push address of format description
PEA Form Rec ; Aformrec = 19 digits

;push address of input single precision
;number

PEA Single ; Asingle
;push the address of the output decimal
;record

PEA DecStr ; Adee rec
;Convert the number to a decimal record

FS2DEC
;Set the sign

LEA DecStr,AO
MOVEQ # '+',D2 ;assume positive sign

;Check the sign byte of the result.
;O= positive. 1 =negative

TST.B (AO)
BEQ @10
MOVEQ # '-',D2 ;negative sign

@10 MOVE.L (AO)+ ,D1 ;get exponent
;get length

MOVE.B (AO),DO ;count
;adjust the exponent for the number of
;significant digits

ADD DO,D1
SUBQ #1,D1

;strip trailing zeroes
@20 CMPl.B #$30,0(AO, DO)

BNE @30
sued #1,DO ;subtract ·one from length
BNE @20

;SANE returned zero for a result. The
;exponent may be undefined

MOVEQ #1,DO ;use one digit of zero
CLR D1

;insert the decimal point
@30 MOVE.B 1 (AO),AO

MOVE.B # '.',1(AO) ;adjust start for sign and decimal ·point
MOVE.B D2,-(AO)
ADDO #2,DO

;place count into string

Single

DecStr

288 Programming the 68000

MOVE.B DO,-(AO) ;length
;all done. Return AO and D1

RTS
;Data areas
;Description of format for conversion
;Form Rec
;conversion style. O =floating point,
;1 =fixed point

DC.B 0
DC.B 0 ;not used

;number of significant digits
DC.W 7 ;7 significant digits

;Single precision number
DC.L $40490FDB ;3.141593

;Decimal ·record

DC.B 0 ;Sign byte. 1 = negative. 0= positive
DC.B 0 ;Fill
DC.W -6 ;Exponent
DC.B 7 ;Number of decimal digits
DC.B '3141593' ;Decimal digits

Converting Between SANE 'fypes

The SANE package provides routines to convert between each of the
numeric types and the extended type. Tu convert between two types you
must first convert to extended. Tu perform calculations you may need to
convert some of the numbers to extended precision first.

Converting from the extended type to a less precise type may require
rounding the result. SANE lets you control the method of rounding. The
rounding mode is set by the SANE "environment word:' Bits 14 and 13 in
this word tell how to round a number when it is necessary. The other bits
have meanings too, so be careful not to change them. The environment
word is described fully in the SANE chapter of Inside Macintosh. The
rounding modes are shown below, along with the results of rounding
some numbers to integers. "Round-to-nearest" is the default. It gives the
greatest accuracy in calculations.

Rounding mode Environment Rounded values of
word value 1.6 1.2 -1.2 -1.6

Round to nearest 0 2 1 -1 -2
Round toward zero $6000 1 1 -1 -1
Round upward $2000 2 2 -1 -1
Round downward $4000 1 1 -2 -2

.289 Some Advanced Subroutines Not in SimpleCALC

The routine below converts a double precision number to extended
precision, single precision and an integer. All of the SANE conversion
routines use address pointers for operands. Even the two-byte integer is
passed as a pointer. The environment word is set once. It applies to all of
the conversions which take place until it is set again.

ConvertNumbers
;This routine converts a double precision number to three types,

;Input:
;Output:

an integer, an extended and a single precision number.
Double =double precision number
Single =single precision number
Integer =two-byte integer
Extended =extended precision number

LEA Envword ,A4
PEA (A4)
FGetEnv

MOVE.W
ANDl.W
MOVE.W

(A4),DO
#$AFFF,DO
DO,(A4)

PEA (A4)
FSetEnv

PEA
PEA
FD2X

PEA
PEA
FX2D

Double, - (SP)
Accumulator

Accumulator
Double, - (SP)

PEA Accumulator

PEA
FX2S

Single, - (SP)

PEA Accumulator

;Get the current environment word

;Change the rounding mode to "round to ·
;nearest"

;Clear current mode

;Set the new environment word

;Convert a double precision number to an
;extended number

;call SANE routine to convert
;Convert the extended number back
;to double precision

;call SANE routine to convert
;Convert extended to single precision

;Push the address of the single precision
;number on the stack

;call SANE routine to convert
;Round an extended precision number to
;an integer

;Push the address of the integer on the
;stack

290 Programming the 68000

PEA Integer, - (SP)
FX21 ;call SANE routine to convert

;Data areas
Single DS.B 4
Integer DS.B 2
Double DS.B 8
Accumulator DS.B 10
Envword

Equation

DS.B 4

Using the SANE Floating A>int Package for Arithmetic
The SANE package does all arithmetic in extended precision. You can,
however, call binary operations with one parameter of lesser precision.
Conversion is automatic. In this example we use one location for an
extended precision number as a kind of accumulator. Single, double and
extended precision numbers are combined with the accumulator to arrive
at a final result. You can use the routines shown above to convert to a string
for display or to a lesser precision. The equation evaluated in this example
is:

Accumulator = (Single1 *Extended+ Double)/Single2

where Single, Double and Extended represent numbers of the implied
precision and Accumulator is an extended precision number.

;This routine evaluates the equation:

;Input:

;Output:

Accumulator= (Single1 *Extended+ Double)/Single2

Single1 and Single2 = single precision numbers
Double = double precision number
Extended = extended precision number
Accumulator = extended precision number

PEA
PEA
FX2X

PEA
PEA
MULS

PEA
PEA

Extended
Accumulator

Single1
Accumulator

Double
Accumulator

;Move an 80-bit number called Extended
;into Accumulator

;Moves a 1 O byte block
;Multiply Accumulator by a single
;precision number

;Add Double to Accumulator

291 Some Advanced Subroutines Not in SimpleCALC

Accumulator
Extended
Double
Single1
Single2

ADDO

PEA Single2
PEA Accumulator
DIVS

RTS

DS.B
DS.B
DS.B
DS.B
DS.B

10
10
8
4
4

;Divide Accumulator by a single precision
;number

;Exit with the result in the Accumulator

;Data definitions

These routines are just a sample of what you can accomplish with the
Macintosh. Using the sample program, SimpleCalc, as a skeleton, and what
you already know; you can create powerful programs in the friendly style
of the Macintosh. Now ·is the time for you to start programming on your
own. We hope you have enjoyed our book. Good luck and happy
programming!

APPENDIX A

~~----
The Binary and
HexadeciIDal
NuIDbering Syste01s

Why couldn't the people who make hardware use the decimal
system? \Nhy do I have to learn binary and hexadecimal? Well, it turns out
that when computers were first being created there were some abortive
attempts to create ten way switches. It is much easier to deal with two way
switches than ten way switches. Electricity with its positive and negative
charges and magnetism with its two poles, north and south, are inherently
binary. The universe down at the electromagnetic level is inherently
dualistic, not "decimalistic:' Thtmifore, any hardware based on this
dualism is much easier to tum into a workable model than hardware
based on any other number base.

Disk Drives store data as a series of magnetic fluxes pointed one of two
ways. Computer memory stores data as a series of either charged or.
uncharged cells. Logic and arithmetic are formed by a series of two way
switches. Data is communicated by pulses of electricity that are in one of
two states. On the Macintosh screen every dot is either black or white.
\Nhen a mqdem is used the data is transmitted down the phone line as one
of two tones. Everything in today's computers is done in pairs.

The binary numbering system is a mathematical way of representing
data based on pairs. In our normal way of counting we use ten digits-the
numbers from 0 through 9. In the binary system we only use two digits
the numbers 0 and 1. Maybe you will find it amazing that any number,
even very large numbers, can be turned into a string of zeroes and ones.

Actually, it is not that surprising. The way it is done exactly parallels
the way in which you normally work with the decimal system. All you have
to do is break out of your normal way of thinking in the decimal system
and generalize a bit.

Let us analyze what happens when you work in decimal. In the
decimal system the first place is the units place, the next place is the tens

293

.294 Programming the 68000

place, the next is the hundreds place, etc. Or, to put it another way, the first
is the units place, the next is the tens place, the next is the ten times ten
place, the next is the ten times ten times ten place, etc.

When you count you start in the units place and count from 0 through
9 (one less than ten, our number base), then you bump the place to the left
by one, and repeat counting from 0 through 9, then bump the place to the
left again. Eventually you get to where the tens place itself reaches 9 so this
time you bump the next place to the left, the hundreds (ten times ten)
place. Perhaps you have never examined what you were doing in such
excruciating detail before.

Now everywhere in the above two paragraphs where we used the
number ten let us use the number two and you will be counting in binary!
In the binary system the first place is the units place, the next place is the
twos place, the next is the fours place, etc. Or, to put it another way, the
first is the units place, the next is the twos plac-e, the next is the two times
two place, the next is the two times two times two place (or eights place),
etc. l

When you count in binary you start in the units place and coilnt from
O through 1 (one less than two, our number base), then you bump the place
to the left by one, and repeat counting from 0 through 1, then bump the
place to the left again. Eventually (and this happens a lot faster in binary)
you get to where the twos place itself reaches 1 so this time you bump the
next place to the left, the fours (2x2) place.

Getting to one in binary is like getting to nine in decimal. When you
add one you have to bump the place to the left and tum this place to zero.

Think about the four paragraphs you have just read. Now look at the
example of counting in binary below:
O is zero.
1 is one (after this we must bump the next place, just like getting to 9 in
decimal!).
10 is two (one in the two~ place, zero in the units place).
11 is three (one in the two's place, one in the units place, 2 +1 = 3). This is
like getting to 99 in decimal-get ready to bump the next place to the left
and tum both these places to zero.
100 is four (one in the four's place).
101 is five (orie in the four's place plus one in the one's place 4 + 1 = 5).
110 is six (one in the four's place plus one in the two's place 4 + 2 = 6).
111 is seven (one in the four, two, and units place 4 + 2 + 1 = 7). Get ready
to tum all three places to zero and add one to the place to the left. This is
just like 999 in decimal.
1000 is eight (one in the eight's place).

By now we hope you have the idea. If you want to test your mettle, try
counting to 16 in binary.

295 The Binary and Hexadecimal Numbering Systems

Binaiy is the system that the actual computer hardware works in.
Each binaiy digit is called a bit. So the binaiy number 1000 (8 in decimal)
has 4 bits while the number 11 (3 in decimal) uses 2 bits . So if you wanted
to have a piece of hardware that could store numbers between O and 7 you
could use 3 on-off switches. 'When the switch is on that would be a 1, when
off that would be a 0. Then all the switches on would represent a 7 (111)
while all the switches off would represent a zero (000) -if only the middle
switch were on that would be a 2 (010). Usually these "switches" are small
microscopic transistors or capacitors that store charges inside a memoiy
chip.

So if somebody asks you why do computers count in binaiy while we
count in decimal just point to your hands and say, "we have ten fingers,
computers only have two!"

HUMANS COMPUTERS

TEN FINGERS TWO FINGERS
ON

'1J

~~
OFF +

Switch Magnetic Polea

+-

~ +

Charge
Electrlcal

Pol ea

MODEM TONES

2600 Hz

1200 Hz

Figure A-1 Tun Fingers versus TWo Fingers

296 Programming the 68000

The Hexadecimal Numbering System

When dealing with binary numbers of any real size, there is a problem.
What is the difference between 01101010001110 and 01101010011110? It
turns out that there is another numbering system called hexadecimal (or
"hex" for short) with a base of 16. This is easy to remember since "hex"
means six and "decimal" means 10 so hexadecimal is base 6 + 10 or 16.
This numbering system is easier for people to use and at the same time it
is very simple to translate into binary.

In the decimal system the digits are O through 9 (1 less than the base).
In the hexadecimal system the digits run from 0 through a digit that
represents 15 (1 less than 16). Since there are no digits for 10 through 15,
people use the first letters of the alphabet. So you should know that A is a
digit oflO, Bis a digit of11, C is a digit of12, ... and Fis a digit of15. Here is
how we would count from 0 to 32 in hexadecimal.

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, lA, lB,
lC, lD, lE, lF, 20.

In hexadecimal the first digit is the units digit, as usual. The next digit is
the 16s digit (so 20 in hexadecimal is 2 times 16 or 32). The digit after that is
the 16 times 16 or 256 digit. The digit after that is the 4096 digit (16 times 16
times 16). In other words, the same rules that apply to both the decimal
and binary system apply here.

It turns out that each hexadecimal digit is equivalent to 4 binary digits
(or bits). With a little practice you can convert a hex number to a binary
number in your head. Here is the complete conversion table:

0 = 0000
1 = 0001
2 = 0010
3 = 0011

4 = 0100
5 = 0101
6 = 0110
7 = 0111

8 = 1000
9 = 1001
A= 1010
B = 1011

Figure A-2 Hex to Binary Tu.ble

Example: Use the table above to convert A3 to binary.

1) Change the A to 1010 and

2) change 3 to 0011. Then

c = 1100
D = 1101
E = 1110
F = 1111

3) string the two numbers together making 10100011 (which equals A3).

The number 2F3C would be 0010, 1111, 0011, and 1100 strung together.
So 2F3C would equal 0010111100111100.

297 The Binaiy and Hexadecimal Numbering Systems

Nearly everything we do in 68000 assembly language, the assembly
language of the Macintosh, will be done with hexadecimal notation.
Oftentimes, people place a dollar sign in front of a number to tell you that
it's hexadecimal. So in the assembler $3F would mean the hexadecimal
number 3F. You may come across the notation 3FH. This also means "the
hexadecimal number 3F:'

What the Data in Memory Looks Like

Data is arranged in memory 8 bits at a time. Each set of 8 bits is called a
byte. Since four bits is equivalent to one hexadecimal digit, two hex digits
make up one byte. Some people call half a byte a nybble (sometimes
spelled "nibble"). Obviously, a nybble is just 4 bits or 1 hex digit.

One byte can hold a number from 0 through 255, or 256 possible
values. Since there are only 26 upper case letters, 26 lower case letters·, 10
digits, and a few assorted special characters such as "?" or"/" we can assign
each one of these letters, numbers, etc. a value from O to 255 and have
plenty of numbers left over.

A typical series of bytes will look like this:

10011010, 00010110, 10101110 in binary or

9A, 16, AE in hexadecimal.

So to be more specific, characters are arranged in memory as bytes. So
every time you type a letter into your word procesor you should know that
each letter, number, and even space that you see on the screen is
represented inside the computer as a single byte.

For example, the words "Hello there!" would look like this inside the
computer:

H e o t h e r e (each letter here)

11111 111111
48 65 6C 6C 6F 20 74 68 65 72 65 21 (becomes this inside the computer)

Figure A-3 Letter/ASCII Conversion

When you see advertisements saying that a computer has 128K of
memory you should know that means that it has 1024 times 128 bytes of
memory. Oftentimes the advertisements will tell the reader that means
there are 128 thousand "characters" of memory in the machine.

.298 Programming the 68000

Fortunately, the way in which characters are encoded in a given byte
are not arbitrary-there are standards. The primary standard is that of the
American National Standards Institute, abbreviated as the ANSI standard.
All microcomputers use the ANSI standard, with some modifications.

Other objects besides characters are represented by bytes of memory.
If you have worked with integers in a higher level language you will notice
that the integers usually go from -32,768 to +32,767. This is because
integers are almost universally represented as 2 bytes of data-2 bytes of
data comprise 64 times 1024 possible values (for a total of 65536 possible
values). Or, put another way, there are 256 possible values for each byte so
two bytes represent 256 times 256 possible values, which is 65536.

How are negative integers represented? It turns out that there is a very
elegant way to represent numbers so that negative numbers can be
represented by the larger numbers within the range of possible numbers.
This is called two's complement notation. When you add such a negative
number to another negative number or to a positive number the result
comes out correct. By using this little trick, computers never need to have a
subtraction circuit, only an addition circuit.

Let's say you had a number that was positive which you wanted to
make negative, using two's complement notation. You would "flip the'bits"
which means changing all bits that are 1 to 0 and all bits that are Oto 1.
Then you would add 1 to the number and ignore the carry.

Look at how you would tum ten to negative ten. Ten is OOOA in
hexadecimal. In binary this would be:

0000000000001010
1111111111110101 which.becomes when you flip the bits

+1
1111111111110110 = FFF6 which is negative ten in two's complement

notation.

Another way of finding the two's complement is to subtract from one.
greater than the maximum number you can represent within the number
of bytes you are using.

10000
- A
FFF6 = the two's complement of A

Now; suppose you wanted to make the following addition in decimal:

15
-10

5

299 The Binaiy and Hexadecimal Numbering Systems

In hexadecimal this becomes:

OOOF
+ FFF6 you add a minus 10 (in two's complement form) rather than

0005 subtracting 10 I

Note that the carry of1 is ignored and everything works out just the way we
would expect.

Now for another example:

In decimal:

35
-44
-9

In hexadecimal:

0 0 2 3 (this is the hexadecimal equivalent of decimal 35)
F FD4 (add a 2's complement 44 which is equivalent to subtracting 44)

FF!'.' 7 which is the two's complement of 9, hence this number is - 9.

Please take some time to go over these examples in detail before going on.
1iy out some of your own examples as well.

Although they will never tell you this in grade school, this same trick
works in decimal. For example, to add 123 to -17 do the following:

123
+983 = 1000 - 17
1106 = 106 if you ignore the carry into the thousands digit

Another way of turning 17 into 983 is to subtract each digit from 9 (the so
called 9's complement) and then add 1 to the result. This works because
another way of saying 1000 minus a number is 1 plus 999 minus a number
or 999 minus a number plus 1. By using this method you would never need
to subtract in decimal again (except when subtracting single digits from 9).
For those of you who hated subtraction in grade school, you now have a
way out. Again, try a few more examples using a calculator in decimal.
After you are done, think about the hexadecimal version of this way of
subtracting once again. It is vital that you understand hexadecimal and
binary arithmetic before going on to learning assembly language.

Getting back to integers represented as two bytes in higher level
language let us see what happens when two integers are added in BASIC
or Pascal, say:

X=3-1

300 Programming the 68000

Internal to the machine the 3 is turned into 0003 and the -1 becomes
FFFF in two's complement. Adding 0003 to FFFF and ignoring the carry the
result is 0002. Then the two bytes of 00 and 02 are moved into X. When the
user wants to see what is in X the BASIC or Pascal does a fast translation
from hex to decimal and informs the user that there is 2 in X. Part of the
fascination of learning assembly language is that you start to understand
what is really happening deep inside the machine.

APPENDIX

~~----
Instruction Format &
Cycle1iming

This appendix contains a table of every possible format of operands
which a given 68000 instruction can use. The instructions are aITanged in
alphabetical order.

For each instruction, this table shows the number of cycles that an
instruction with a given set of operands will take to perform an operation
on a byte (.B suffix, 1 byte), word (.W suffix, 2 bytes), or long word (.L suffix, 4
bytes). A byte or word instruction takes the same number of cycles; this is
in the first series of columns. Long words usually take more cycles than
bytes or words; long word timings are in the second series of columns.

For a byte/word or long the number of reads and writes are given.
Each read or write takes 4 cycles of time.

Dm or Dn mean data registers DO through D7. Example: D4.
Am or An mean address registers AO through A7. Example: A2.
Dn/An means either a data register or an address register may be used.
Examples: A3,D7.
#Imm is immediate data. Example: #24

Here are some examples from the table. An ADD Dm,d(An,Dn!An)
means that the possible formats for an ADD include:

ADD.B 03, 10(A2,D4)
ADD.L D0,7(A5,A2)
ADD.W D4,-3(AO,DO)

There are hundreds of possible combinations for this one format
alone. This format will take 18 cycles for the byte and word form (three
reads and one write) and 26 cycles for the long form (four reads and two
writes).

301

302 Programming the 68000

Tu know how long an instruction will take multiply the number of
cycles by the time per cycle. On the Macintosh, a cycle is Ys of a
microsecond (160 nanoseconds), approximately. So 18 cycles takes about 3
microseconds; 26 cycles takes about 4% microseconds.

D.yte/ R WI Long R w I
Word e r I e r I

a i I a i I
Cycle d t I Cycle d t I

Instruction Time e I Time e I

ABCD Om.On 06 0

ABCD -(Am). -(An) 18 3 0

ADD om.on 04 0 08 0

ADD Am.on 04 0 08 0

ADD (Am).Dn 08 2 0 14 3 0

ADD (Am)+,Dn 08 2 0 14 3 0

ADD -(Am).Dn 10 2 0 16 3 0

ADD d(Am).Dn 12 3 0 18 4 0

ADD d(Am,Dn/ An) .on 14 3 0 20 4 0

ADD Abs.W.Dn 12 3 0 18 4 0

ADD Abs.L.Dn 16 4 0 22 5 0

ADD d(PC).Dn 12 3 0 18 4 0

ADD d(PC,Dn/ An).Dn 14 3 0 20 4 0

ADD •1mm.Dn 08 2 0 14 3 0

ADD Dm.(An) 12 2 20 3 2

ADD Dm,(An)+ 12 2 20 3 2

ADD Dm,-(An) 14 2 22 3 2

ADD Dm,d(An) 16 3 24 4 2

ADD Dm.(An.Dn/ An) 18 3 26 4 2

ADD Dm,Abs.W 16 3 24 4 2

ADD Dm.Abs.L 18 4 28 5 2

ADDA Om.An 08 0 08 0

303 Instruction Format &. Cycle Timing

Qyte/ R WI Long R w I
Word e r I e r I

a i I a i I
Cycle d t I Cycle d t I

Instruction Time e I Time e I

ADDA Am.An 08 0 08 0

ADDA (Am),An 12 2 0 14 3 0

ADDA (Am)+,An 12 2 0 14 3 0

ADDA -(Am).An 14 2 0 16 3 0

ADDA d(Am),An 16 3 0 18 4 0

ADDA d(Am,Dn/ An).An 18 3 0 20 4 0

ADDA Abs.W,An 14 3 0 18 4 0

ADDA Abs.L,An 20 4 0 22 5 0

ADDA d(PC),An 14 3 0 18 4 0

ADDA d(PC ,Dn/ An) ,An 18 3 0 20 4 0

ADDA •1mm,An 12 2 0 14 3 0

ADDI •1mm,Dn 08 2 0 16 3 0

ADDI •1mm.(An) 16 3 28 5 2

ADDI •1mm.(An)+ 16 3 28 5 2

ADDI •1mm,-(An) 18 3 30 5 2

ADDI •1mm,d(An) 20 4 32 6 2

ADDI • 1 mm,d(An,Dn/ An) 22 4 34 6 2

ADDI •1mm,Abs.W 20 4 32 6 2

ADDQ •1mm,Dn 04 0 08 0

ADDQ •Imm.An 08 0 08 0

ADDQ •1mm,(An) 12 2 20 3 2

ADDQ •1mm,(An)+ 12 2 20 3 2

ADDQ • 1 mm. -(An) 14 2 22 3 2

ADDQ •1mm,d(An) 16 3 24 4 2

ADDQ • 1 mm,d(An,Dn/ An) 18 3 26 4 2

ADDQ •1mm,Abs.W 16 3 24 4 2

I

304 Programming the 68000

ft.gte/ R WI Long R w I
Word e r I e r I

a i I a i I
Cycle d t I Cycle d t I

Instruction Time e I Time e I

ADDQ •1mm.Abs.L 20 4 28 5 2

ADDX Dm.Dn 04 0 08 0

ADDX -(Am). -(An) 18 3 30 5 2

AND Dm.Dn 04 0 08 0

AND (Am).Dn 08 2 0 14 3 0

AND (Am)+.Dn 08 2 0 14 3 0

AND -(Am).Dn 10 2 0 16 3 0

AND d(Am).Dn 12 3 0 18 4 0

AND d(Am.Dn/ An) .on 14 3 0 20 4 0

AND Abs.W.Dn 12 3 0 18 4 0

AND Abs.L.Dn 16 4 0 22 5 0

AND d(PC),Dn 12 3 0 18 4 0

AND d(PC .on/ An) .on 14 3 0 20 4 0

AND •1mm.Dn 08 2 0 14 3 0

AND Dm.(An) 12 2 20 3 2

AND Dm.(An)+ 12 2 20 3 2

AND Dm.-(An) 14 2 22 3 2

AND Dm.d(An) 16 3 24 4 2

AND Dm,d(Am.Dn/ An) 18 3 26 4 2

AND Dm.Abs.W 16 3 24 4 2

AND Dm.Abs.L 20 4 28 5 2

ANDI •1mm.Dn 08 2 0 16 3 0

ANDI •1mm.(An) 16 3 28 5 2

ANDI •1mm.(An)+ 16 3 28 5 2

ANDI •1mm.-(An) 18 3 30 5 2

ANDI •1mm.d(An) 20 4 32 6 2

\/.

305 Instruction Format & Cycle Timing

)!yte/ R WI Long R w I
Word e r I e r I

6 i I 6 i I
Cycle d t I Cycle d t I

I nstruet ion Time e I Time e I

ANDI •1mm.d(An.Dn/ An) 22 4 34 6 2

ANDI •1mm.Abs.W 20 4 32 6 2

ANDI •1mm.Abs.L 24 5 36 1 2

ANDI •Imm.CCR 20 3 0

ANDI •1mm.SR 20 3 0

ASL Dm.Dn 6+2n n 0 8+2n n o
ASL •1mm.Dn 6+2n n 0 8+2n n o
ASL (An) 12 2

ASL (An)+ 12 2

ASL -(An) 14 2

ASL d(An) 16 3

ASL d(Am.Dn/ An) 18 3

ASL Abs.W 16 3

ASL Abs.L 20 4

ASR Dm.Dn 6+2n n 0 8+2n n o
ASR •1mm.Dn 6+2n n 0 8+2n n o
ASR (An) 12 2

ASR (An)+ 12 2

ASR -(An) 14 2

ASR d(An) 16 3

ASR d(Am.Dn/ An) 18 3

ASR Abs.W 16 3

ASR Abs.L 20 4

Bee byte Bee word

Bee Lobel(broneh not token)08 0 12 2 0

Bee Lobel(broneh token) 10 2 0 10 2 0

306 Programming the 68000

D.yte/ R WI Long R w I
Word e r I e r I

a i I a i I
cycle d t I Cycle d t I

Instruction Tim~ e I Time e I

BCHG Dm.Dn 06 0

BCHG Dm,(An) 12 2

BCHG Dm.(An)+ 12 2

BCHG Dm,-(An) 14 2

BCHG Dm,d(An) 16 3

BCHG Dm,d(An,Dn/ An) 16 3

BCHG Dm,Abs.W 16 3

BCHG Dm,Abs.L 20 4

BCHG •1mm,Dn 12 2 0

BCHG •1mm.(An) 16 3

BCHG •1mm.(An)+ 16 3

BCHG •1mm.-(An) 16 3

BCHG •1mm.d(An) 20 4

BCHG •I mm,d(An,Dn/ An) 22 4

BCHG •1mm.Abs.W 20 4

BCHG •1mm.Abs.L 24 5

BCLR Dm,Dn 10 0

BCLR Dm,(An) 12 2

BCLR Dm,(An)+ 14 2

BCLR Dm.-(An) 14 2

BCLR Dm,d(An) 16 3

BCLR Dm,d(An,Dn/ An) 16 3

BCLR Dm.Abs.W 16 3

BCLR Dm,Abs.L 20 4

BCLR •1mm.Dn 14 2 0

BCLR •1mm.(An) 16 3

307 Instruction Format & Cycle Timing

ft_yte/ R WI Long R w I
Word e r I e r I

a i I a i I
Cycle d t I Cycle d t I

Instruction Time e I Time e I

BCLR •tmm,(An)+ 16 3

BCLR •1mm,-(An) 18 3

BCLR •1mm,d(An) 20 4

BCLR • 1 mm,d(An,Dn/ An) 22 4

BCLR •tmm,Abs.W 20 4

BCLR •1mm,Abs.L 24 5

BRA Lobel 10 2 0

BSET Dm,Dn 08 0

BSET Dm,(An) 12 2

BSET Dm,(An)+ 12 2

BSET Dm,-(An) 14 2

BSET Dm,d(An) 16 3

BSET Dm,d(Am,Dn/ An) 18 3

BSET Dm,Abs.W 16 3

BSET Dm,Abs.L 20 4

BSET •1mm,Dn 12 2 0

BSET •1mm.(An) 16 3

BSET •1mm,(An)+ 16 3

BSET •1mm,-(An) 18 3

BSET •1mm,d(An) 20 4

BSET • 1 mm,d(Am,Dn/ An) 22 4

BSET •1mm,Abs.W 20 4

BSET •1mm,Abs.L 24 5

BSR Lobel 18 2 2

BTST Dm,Dn 06 0

BTST Dm,(An) 08 2 0

308 Programming the 68000

D,yte/ R WI Long R w I
Word e r I e r I

a i I a i I
Cycle d t I Cycle d t I

Instruction Time e I Time e I

BTST Dm,(An)+ 06 2 0

BTST Dm,-(An) 10 2 0

BTST Dm,d(An) 12 3 0

BTST Dm,d(An,Dn/ An) 14 3 0

BTST Dm,Abs.W 12 3 0

BTST Dm,Abs.L 16 4 0

BTST Dm,d(PC) 12 3 0

BTST Dm,d(PC,Dn/ An) 14 3 0

BTST •1mm,Dn 10 2 0

BTST •1mm,(An) 12 3 0

BTST •1mm,(An)+ 12 3 0

BTST •1mm,-(An) 14 3 0

BTST •1mm,d(An) 16 4 0

BTST • 1 mm,d(Am,Dn/ An) 16 4 0

BTST •1mm,Abs.W 16 4 0

BTST •1mm,Abs.L 20 5 0

BTST •1mm,d(PC) 16 4 0

BTST • 1 mm,d(PC ,On/ An) 18 4 0

CHK not token C!::!K token

CHK Dm,Dn 08 0 40 5 3

CHK (Am),Dn 12 2 0 44 6 3

CHK (Am)+,Dn 12 2 0 44 6 3

CHK -(Am).Dn 14 2 0 46 6 3

CHK d(Am).Dn 16 3 0 46 7 3

CHK d(Am,Dn/ An) ,Dn 16 3 0 50 7 3

CHK Abs.W,Dn 16 3 0 50 7 3

309 Instruction Format & Cycle Timing

J;lyte/ R WI Long R w I
Word e r I e r I

a i I a i I
Cycle d t I Cycle d t I

Instruction Time e I Time e I

CHK Abs.L.Dn 20 4 0 52 8 3

CHK d(PC),Dn 16 3 0 50 1 3

CHK d(PC.Dn/ An).Dn 18 3 0 50 1 3

CHK •1mm.Dn 12 2 0 44 6 3

CLR Dn 04 0 06 0

CLR (An) 12 2 20 3 2

CLR (An)+ 12 2 20 3 2

CLR -(An) 14 2 24 3 2

CLR d(An) 16 3 26 4 2

CLR d(An,Dn/ An) 18 3 28 4 2

CLR Abs.W 16 3 26 4 2

CLR Abs.L 20 4 28 5 2

CMP Dm.Dn 04 0 06 0

CMP Am.Dn 04 0 06 0

CMP (Am).Dn 08 2 0 14 3 0

CMP (Am)+,Dn 08 2 0 14 3 0

CMP -(Am),Dn 10 2 0 16 3 0

CMP d(Am).Dn 12 3 0 18 4 0

CMP d(Am.Dn/ An) ,Dn 14 3 0 20 4 0

CMP Abs.W.Dn 12 3 0 18 4 0

CMP Abs.L.Dn 16 4 0 22 5 0

CMP d(PC),Dn 12 3 0 18 4 0

CMP d(PC ,Dn/ An) ,Dn 14 3 0 20 4 0

CMP •1mm.Dn 08 2 0 14 3 0

CMPA Dm.An 06 0 06 0

310 Programming the 68000

Jiyte/ R WI Long R w I
Word e r I e r I

a i I a i I
Cycle d t I Cycle d t I

Instruction Time e I Time e I

CMPA Am.An 06 0 06 0

CMPA (Am),An 10 2 0 14 3 0

CMPA (Am)+,An 10 2 0 14 3 0

CMPA -(Am).An 12 2 0 16 3 0

CMPA d(Am),An 14 3 0 18 4 0

CMPA d(Am.Dn/ An) ,An 16 3 0 20 4 0

CMPA Abs.W,An 14 3 0 18 4 0

CMPA Abs.L,An 18 4 0 22 5 0

CMPA d(PC),An 14 3 0 18 4 0

CMPA d(PC,Dn/ An),An 16 3 0 20 4 0

CMPA •Imm.An 10 2 0 14 3 0

CMPI •1mm,Dn 08 2 0 14 3 0

CMPI •1mm,(An) 12 3 0 20 5 0

CMPI •1mm.(An)+ 12 3 0 20 5 0

CMPI •1mm.-(An) 14 3 0 22 5 0

CMPI •1mm,d(An) 16 4 0 24 6 0

CMPI • 1 mm,d(An.Dn/ An) 18 4 0 26 6 0

CMPI •1mm,Abs.W 16 4 0 24 6 0

CMPI •1mm.Abs.L 20 5 0 28 7 0

CMPM (Am)+ ,(An)+ 12 3 0 20 5 0

DB cc On.Label 12 2 O (cc true. branch not)

DB cc On.Label 14 3 O (cc false. branch not)

DB cc on.Label 10 2 O (cc false. branch)

DIVS Dm,Dn 158 0 (DIVS, DIVU are max

DIVS (Am),Dn 162 2 o values)

DIVS (Am)+,Dn 162 2 0

311 Instruction Format & Cycle Timing

I AYl!l R WI IJmg R WI
I)lg[d e r I e r I
I II i I II f I
I Cycle d t I Cycle d t I

Instruction I Ii me e I Time e I
DIVS -(Am).Dn 164 2 0

DIVS d(Am).Dn 166 3 0

DIVS d(Am.Dn/ An).Dn 168 3 0

DIVS Abs.W.Dn 166 3 0

~IVS Abs.L.Dn 170 4 0

DIVS d(PC).Dn 166 3 0

DIVS d(PC .on/ An) .on 168 3 0

DIVS •1mm.Dn 162 2 0

DIVU om.on 140 0

DIVU (Am).Dn 144 2 0

DIVU (Am)+.Dn 144 2 0

DIVU -(Am).Dn 146 2 0

DIYU d(Am).Dn 148 3 0

DIVU d(Am.Dn/ An) .Dn 150 3 0

DIVU Abs.W.Dn 148 3 0

DIVU Abs.L.Dn 152 4 0

DIVU d(PC).Dn 148 3 0

DIVU d(PC.Dn/ An).Dn 150 3 0

DIVU •1mm.Dn 144 2 0

EOR Dm.Dn 04 0 08 0

EOR Dm.(An) 12 2 20 3 2

EOR Dm.(An)+ 12 2 20 3 2

EOR Dm.-(An) 14 2 22 3 2

EOR Dm.d(An) 18 3 24 4 2

EOR Dm.d(An.Dn/ An) 20 3 26 4 2

EOR Dm.Abs.W 18 3 24 4 2

31.2 Programming the 68000

llYlll R WI b!ng R WI
lU.al e r I e r I

a i I a 1 I
Cycle d t I Cycle d t I

Instruction !img e I Ii me e I

EOR Dm.Abs.L 20 4 28 5 2

EORI •1mm.Dn 08 2 0 16 3 0

EORI •1mm.(An) 16 3 28 5 2

EORI •1mm.(An)+ 16 3 28 5 2

EORI •1mm,:.-(An) IB 3 30 5 2

EOR! •1mm.d(An) 20 4 32 6 2

EORI •1mm.d(An.Dn/ An) 22 4 34 6 2

EOR! •!mm.Abs.W 20 4 32 6 2

EOR! •1mm.Abs.L 24 5 36 7 2

EORI •!mm.CCR 20 3 0

EORI •!mm.SR 20 3 0

EXG DA.Dn/An 06 0

EXT Dn 04 0

ILLEGAL 34 4 3

JMP (An) OB 2 0

JMP d(An) 10 2 0

JMP d(An.Dn/ An) 14 2 0

JMP Abs.W 10 2 0

JMP Abs.L 12 3 0

JMP d(PC) 10 2 0

JMP d(PC,Dn/ An) 14 3 0

JSR (An) 16 2 2

JSR d(An) IB 2 2

JSR d(An.Dn/ An) 22 2 2

JSR Abs.W IB 2 2

JSR Abs.L 20 3 2

313 Instruction Format &. Cycle Timing

,ltyte/ R WI Long R w I
Word e r I e r I

a i I a i I
Cycle d t I Cycle d t I

Instruction Time e I Time e I

JSR d(PC) 18 2 2

JSR d(PC,On/ An) 22 2 2

LEA (An) 04 0

LEA d(An) 08 2 0

LEA d(An.on/ An) 12 2 0

LEA Abs.W 08 2 0

LEA Abs.L 12 3 0

LEA d(PC) 08 2 0

LEA d(PC.On/ An) 12 2 0

UNK An. •displace 18 2 2

LSL om.on 6+2n n 0 8+2n n O

LSL •Imm.On 12 2

LSL (An) 12 2

LSL (An)+ 12 2

LSL -(An) 14 2

LSL d(An) 16 3

LSL d(An.On/ An) 18 3

LSL Abs.W 16 3

LSL Abs.L 20 4

LSR om.on 6+2n n 0 8+2n n O

LSR •1mm.on 12 2

LSR (An) 12 2

LSR (An)+ 12 2

LSR -(An) 14 2

LSR d(An) 16 3

LSR d(An.On/ An) 18 3

314 Programming the 68000

.llyte/ R WI Long R WI
Word e r I e r I

a i I a i I
Cycle d t I Cycle d t I

Instruction Time e I Time e I

LSR Abs.W 16 3

LSR Abs.L 20 4

MOVE Dm,Dn 04 0 04 0

MOVE Dm,(An) 08 12 2

MOVE Dm,(An)+ 08 12 2

MOVE Dm,-(An) OB 14 2

MOVE Dm,d(An) 12 2 16 2 2

MOVE Dm,d(An,Dn/ An) 14 2 1B 2 2

MOVE Dm,Abs.W 12 2 16 2 2

MOVE Dm,Abs.L 16 3 20 3 2

MOVE Am,Dn 04 0 04 0

MOVE Am,(An) OB 12 2

MOVE Am,(An)+ OB 12 2

MOVE Am,-(An) OB .1 14 2

MOVE Am,d(An) 12 2 16 2 2

MOYE Am,d(An,Dn/ An) 14 2 1 1B 2 2

MOVE Am,Abs.W 12 2 16 2 2

MOYE Am,Abs.L 16 3 20 3 2

MOYE (Am).Dn 08 2 0 12 3 0

MOYE (Am).(An) 12 2 20 3 2

MOVE (Am).(An)+ 12 2 20 3. 2

MOYE (Am),-(An) 12 2 1 20 3 2

MOVE (Am),d(An) 16 3 24 4 2

MOYE (Am) ,d(An,Dn/ An) 1B 3 26 4 2

MOYE (Am),Abs.W 16 3 24 4 2

MOYE (Am).Abs.L 20 4 2B 5 2

315 Instruction Fonnat & Cycle Timing

D.yte/ R WI Long R WI
Word e r I e r I

a i I a i I
Cycle d t I Cycle d t I

Instruction Time e I Time e I
MOVE (Am)+,Dn 08 2 0 12 3 0

MOVE (Am)+,(An) 12 2 20 3 2

MOVE (Am)+ ,(An)+ 12 2 20 3 2

MOVE (Am)+. -(An) 12 2 20 3 2

MOVE (Am)+ ,d(An) 16 3 24 4 2

MOVE (Am)+ ,d(An.Dn/ An) 18 3 26 4 2

MOVE (Am)+ ,Abs. W 16 3 24 4 2

MOVE (Am)+ ,Abs.L 20 4 28 5 2

MOVE -(Am),Dn 10 2 0 14 3 0

MOVE -(Am).(An) 14 2 22 3 2

MOVE -(Am),(An)+ 14 2 22 3 2

MOVE -(Am). -(An) 14 2 22 3 2

MOVE -(Am),d(An) 18 3 26 4 2

MOVE -(Am) ,d(An.Dn/ An) 20 3 28 4 2

MOVE -(Am) ,Abs. W 18 3 1 26 4 2

MOVE -(Am).Abs.L 22 4 30 5 2

MOVE d(Am).Dn 12 3 0 16 4 0

MOVE d(Am).(An) 16 3 1 24 4 2

MOVE d(Am),(An)+ 16 3 24 4 2

MOVE d(Am). -(An) 16 3 24 4 2

MOVE d(Am),d(An) 20 4 28 5 2

MOVE d(Am).d(An.Dn/ An) 22 4 30 5 2

MOVE d(Am).Abs.W 20 4 1 28 5 2

MOVE d(Am) ,Abs.L 24 5 32 6 2

MOVE d(Am.Dn/ An).Dn 14 3 0 18 4 0

MOVE d(Am,Dn/ An).(An) 18 3 26 4 2

316 Programming the 68000

,!lyte/ R WI Long R w I
Word e r I e r I

a i I a i I
Cycle d t I Cycle d t I

Instruction Time e I Time e I

MOVE d(Am.Dn/ An),(An)+ 18 3 26 4 2

MOVE d(Am,Dn/ An). -(An) 18 3 26 4 2

MOVE d(Am.Dn/ An) ,d(An) 22 4 30 5 2

MOVE d(Am.Dn/ An) ,d(An.Dn/ An)

24 4 32 5 2

MOVE d(Am.Dn/ An) .Abs. W 22 4 30 5 2

MOVE d(Am,Dn/ An).Abs.L 26 5 34 6 2

MOVE Abs.W,Dn 12 3 0 16 4 0

MOVE Abs.W.(An) 16 3 24 4 2

MOVE Abs. W .(An)+ 16 3 24 4 2

MOVE Abs. W. -(An) 16 3 24 4 2

MOVE Abs. W ,d(An) 20 4 28 5 2

MOVE Abs. W ,d(An.Dn/ An) 22 4 30 5 2

MOVE Abs. W ,Abs. W 20 4 28 5 2

MOVE Abs.W ,Abs.L 24 5 32 6 2

MOVE Abs.L,Dn 16 4 0 20 5 0

MOVE Abs.L.(An) 20 4 28 5 2

MOVE Abs.L.(An)+ 20 4 28 5 2

MOVE Abs.L. -(An) 20 4 28 5 2

MOVE Abs.L,d(An) 24 5 32 6 2

MOVE Abs.L,d(An.Dn/ An) 26 5 34 6 2

MOVE Abs.L.Abs. W 24 5 32 6 2

MOVE Abs.L.Abs.L 28 6 36 7 2

MOVE d(PC),Dn 12 3 0 16 4 0

MOVE d(PC).(An) 16 3 24 4 2

MOVE d(PC),(An)+ 16 3 24 4 2

317 Instruction Format & Cycle Timing

Dyle/ R WI JJmg R WI
Word e r I e r I

6 i I 6 i I
Cycle d t I Cycle d t I

Instruction Time e I Time e I

MOVE d(PC). -(An) 16 3 24 4 2

MOVE d(PC),d(An) 20 4 28 5 2

MOVE d(PC),d(An,Dn/ An) 22 4 1 30 5 2

MOVE d(PC),Abs.W 20 4 28 5 2

MOVE d(PC),Abs.L 24 5 32 6 2

MOVE d(PC .on/ An) .on 14 3 0 18 4 0

MOVE d(PC,Dn/ An).(An) 18 3 26 4 2

MOVE d(PC.Dn/ An).(An)+ 18 3 26 4 2

MOVE d(PC.Dn/ An). -(An) 18 3 26 4 2

MOVE d(PC,On/ An).d(An) 22 4 30 5 2

MOVE d(PC,Dn/ An),d(An.Dn/ An)

24 4 32 5 2

MOVE d(PC,On/ An).Abs.W 22 4 30 5 2

MOVE d(PC,On/ An).Abs.L 26 5 34 6 2

MOVE •Imm.on 08 2 0 12 3 0

MOVE •1mm.(An) 12 2 20 3 2

MOVE •1mm.(An)+ 12 2 1 20 3 2

MOVE •1mm.-(An) 12 2 20 3 2

MOVE •1mm.d(An) 16 3 24 4 2

MOVE •I mm.d(An.Dn/ An) 18 3 26 4 2

MOVE •1mm.Abs.W 16 3 24 4 2

MOVE •1mm.Abs.L 20 4 28 5 2

MOVE On.CCR 12 2 0

MOVE (An).CCR 16 3 0

MOVE. (An)+,CCR 16 3 0

MOVE -(An).CCR 18 3 0

318 Programming the 68000

ftyte/ R WI Long R w I
Word e r I e r I

a i I a i I
Cycle d t I Cycle d t I

Instruction Time e I Time e I

MOVE d(An),CCR 20 4 0

MOVE d(An,Dn/ An) ,CCR 22 4 0

MOVE Abs.W,CCR 20 4 0

MOVE Abs.L,CCR 24 5 0

MOVE •1mm,CCR 16 3 0

MOVE Dn~SR 12 2 0

MOVE (An),SR 16 3 0

MOVE (An)+,SR 16 3 0

MOVE -(An),SR 16 3 0

MOVE d(An),SR 20 4 0

MOVE d(An,Dn/ An) ,SR 22 4 0

MOVE Abs.W,SR 20 4 0

MOVE Abs.L,SR 24 5 0

MOVE d(PC),SR 20 4 0

MOVE d(PC,Dn/ An),SR 22 4 0

MOVE •1mm,SR 16 3 0

MOVE SR,Dn 06 0

MOVE SR,(An) 12 2

MOVE SR,(An)+ 12 2

MOVE SR,-(An) 14 2

MOVE SR,d(An) 16 3

MOVE SR,d(An,Dn/ An) 16 3

MOVE SR,Abs.W 16 3

MOVE SR,Abs.L 20 4

MOVE USP,An 04 0

MOVE An,USP 04 0

319 Instruction Format & Cycle Timing

D,yte/ R WI Long R w I
Word e r I e r I

a i I a i I
Cycle d t I Cycle d t I

Instruction Time e I Time e I

MOVEA on.An 04 0

MOVEA Am.An 04 0

MOVEA (Am).An 08 2 0

MOVEA (Am)+ ,An 08 2 0

MOVEA -(Am),An 10 2 0

MOVEA d(Am).An 12 3 0

MOVE A d(Am,Dn/ An) ,An 14 3 0

MO VEA Abs. w .An 12 3 0

MOVEA Abs.L,An 16 4 0

MOVEA d(PC),An 12 3 0

MOVEA d(PC,Dn/An),An 14 3 0

MOVEA •Imm.An 08 2 0

MOVEM Reglist,(An) 8+5n 2 n 8+10n 2 2n

MOVEM Reglist.-(An) 8+5n 2 n 8+10n 2 2n

MOVEM Reglist,d(An) 12+5n 2 n 12+10n 2 2n

MOVEM Regl i st,d(An,Dn/ An) 14+5n 2 n 14+10n 2 2n

MOVEM Reglist,Abs.W 12+5n 2 n 12+10n 2 2n

MOVEM Reglist.Abs.L 16+5n 2 n 16+10n 2 2n

MOVEM (An) ,Regl i st 12+4n 3+n o 12+8n 3+2n0

MOVEM (An)+ ,Reglist 12+4n 3+n o 12+8n 3+2n0

MOVEM d(An) ,Regl i st 16+4n 4+n O 16+8n 4+2n0

MOVEM Abs.W.Reglist 16+4n 4+n O 16+8n 4+2n0

MOVEM Abs.L.Reglist 20+4n 5+n O 20+8n 5+2n0

MOVEM d(PC) ,Regli st 16+4n 4+n O 16+8n 4+2n0

MOVEM d(PC ,Dn/ An) ,Regl i st 18+4n 4+n o 18+8n 4+2n0

MOVEP Dm,d(An) 16 2 2 24 2 4

320 Programming the 68000

.llyte/ R WI Long R w I
Word e r I e r I

a i I a i I
Cycle d t I Cycle d t I

Instruction Time e I Time e I

MOYEP d(Am) .Dn 16 4 0 24 6 0

MOYEQ •1mm.Dn 04 0

MULS Dm.Dn 70 0 (MULS. MULU are max

MULS (An).Dn 74 2 o ¥Blues)

MULS (An)+.Dn 74 2 0

MULS -(An).Dn 76 2 0

MULS d(An).Dn 78 3 0

MULS d(An.Dn/ An) .Dn 80 3 0

MULS Abs.W.Dn 78 3 0

MULS Abs.L.Dn 80 3 0

MULS d(PC),Dn 78 3 0

MULS d(PC .Dn/ An) .Dn 80 3 0

MULS •1mm.Dn 74 2 0

MULU Dm,Dn 10· 0

MULU (An).Dn 74 2 0

MULU (An)+.Dn 74 2 0

MULU -(An).Dn 76 2 0

MULU d(An).Dn 78 3 0

MULU d(An,Dn/ An) .Dn 80 3 0

MULU Abs.W.Dn 78 3 0

MULU Abs.L.Dn 82 4 0

MULU d(PC),Dn 78 3 0

MULU d(PC .Dn/ An) .on 80 3 0

MULU •1mm.Dn 74 2 0

NBCD Dm 06 0

NBCD (An) 12 2

321 Instruction Format &. Cycle Timing

flyte/ R WI Long R WI
Word e r I e r I

ll i I ll i I
Cycle d t I Cycle d t I

Instruction Time e I Time e I

NDCO (An)+ 12 2

NDCO -(An) 14 2

NDCO d(An) 16 3

NDCO d(An,On/ An) 18 3

NDCO Abs.W 16 3

NDCO Abs.L 20 4

NEG On 04 0 06 0

NEG (An) 12 2 20 3 2

NEG (An)+ 12 2 20 3 2

NEG -(An) 14 2 22 3 2

NEG d(An) 16 3 24 4 2

NEG d(An,On/ An) 18 3 26 4 2

NEG Abs.W 16 3 24 4 2

NEG Abs.L 20 4 28 5 2

NEGX On 04 0 06 0

NEGX (An) 12 2 20 3 2

NEGX (An)+ 12 2 20 3 2

NEGX -(An) 14 2 22 3 2

NEGX d(An) 16 3 24 4 2

NEGX d(An,On/ An) 18 3 26 4 2

NEGX Abs.W 16 3 24 4 2

NEGX Abs.L 20 4 28 5 2

NOP 04. 0

NOT On 04 0 06 0

NOT (An) 12 2 20 3 2

NOT (An)+ 12 2 20 3 2

322 Programming the 68000

,!tyte/ R WI Long R w I
Word e r I e r I

a i I a i I
Cycle d t I Cycle d t I

Instruction Time e I Time e I

NOT -(An) 14 2 1 22 3 2

NOT d(An) 16 3 24 4 2

NOT d(An,Dn/ An) 16 3 26 4 2

NOT Abs.W 16 .3 24 4 2

NOT Abs.L 20 4 26 5 2

OR Dm,Dn 04 0 06 0

OR (An),Dn 06 2 0 14 3 0

OR (An)+,Dn 06 2 0 14 3 0

OR -(An),Dn 10 2 0 16 3 0

OR d(An),Dn 12 3 0 16 4 0

OR d(An,Dn/ An) ,Dn 14 3 0 20 4 0

OR Abs.W,Dn 12 3 0 16 4 0

OR Abs.L,Dn 16 4 0 22 5 0

OR d(PC),Dn 12 3 0 16 4 0

OR d(PC,Dn/ An),Dn 14 3 0 20 4 0

OR Dm,(An) 12 2 20 3

OR Dm,(An)+ 12 2 20 3

OR Dm,-(An) 14 2 22 3

OR Dm,d(An) 16 3 24 4

OR Dm,d(Am,Dn/ An) 16 3 26 4

OR Dm,Abs.W 16 3 24 4

OR Dm,Abs.L 20 4 26 5

ORI •1mm,Dn 06 2 0 16 3 0

ORI •1mm,(An) 16 3 26 5 2

ORI •1mm,(An)+ 16 3 26 5 2

ORI •1mm,-(An) 14 2 22 3

323 Instruction Format &. Cycle Timing

.H,yte/ R WI Long R w I
Word e r I e r I

a i I a i I
Cycle d t I Cycle d t I

Instruction Time e I Time e I

ORI •1mm,d(An) 20 4 32 6 2

ORI • 1 mm,d(Am,Dn/ An) 22 4 34 6 2

ORI •1mm,Abs.W 20 4 32 6 2

ORI •1mm,Abs.L 24 5 36 7 2

ORI •1mm,CCR 20 3 0

ORI •1mm,SR 20 3 0

PEA (An) 12 2

PEA d(An) 16 2 2

PEA d(Am,Dn/ An) 20 2 2

PEA Abs.W 16 2 2

PEA Abs.L 20 3 2

PEA d(PC) 16 2 2

PEA d(PC,Dn/ An) 20 2 2

RESET 132 0

ROL Dm,Dn 6+2n 0 8+2n 0

ROL -"lmm,Dn 6+2n 0 8+2n 0

ROL (An) 12 2 16 3

ROL (An)+ 12 2 16 3

ROL -(An) 14 2 18 3

ROL d(An) 16 3 20 4

ROL d(An,Dn/ An) 18 3 22 4

ROL Abs.W 16 3 20 4

ROL Abs.L 20 4 24 5

ROR Dm,Dn 6+2n 0 8+2n 0

ROR •1mm,Dn 6+2n 0 8+2n 0

ROR (An) 12 2 16 3

324 Programming the 68000

f;!.yte/ R WI Long R w I
Word e r I e r I

a i I a i I
Cycle d t I Cycle d t I

Instruction Time e I Time e I

ROR (An)+ 12 2 16 3

ROR -(An) 14 2 18 3

ROR d(An) 16 2 20 4

ROR d(An.Dn/ An) 18 3 22 4

ROR Abs.W 16 3 20 4

ROR Abs.L 20 4 24 5

ROXL Dm.Dn 6+2n 0 8+2n 0

ROXL •1mm.Dn 6+2n 0 8+2n 0

ROXL (An) 12 2 16 3

ROXL (An)+ 12 2 16 3

ROXL -(An) 14 2 18 3

ROXL d(An) 16 2 20 4

ROXL d(An.Dn/ An) 18 3 22 4

ROXL Abs.W 16 3 20 4

ROXL Abs.L 20 4 24 5

ROXR Dm.Dn 6+2n 0 8+2n 0

ROXR •1mm.Dn 6+2n 0 8+2n 0

ROXR (An) 12 2 16 3

ROXR (An)+ 12 2 16 3

ROXR -(An) 14 2 18 3

ROXR d(An) 16 2 20 4

ROXR d(An.Dn/ An) 18 3 22 4

ROXR Abs.W 16 3 20 4

ROXR Abs.L 20 4 24 5

RTE 20 5 0

RTR 20 5 0

320 Instruction Format &. Cycle Timing

D,yte/ R WI Long R w I
Word e r I e r I

a i I a i I
Cycle d t I Cycle d t I

Instruction Time e I Time e I

RTS 16 4 0

SBCD Dm,Dn 06 0

SBCD -(Am), -(An) 18 3

Sec Folse Sec True

Sec Dn 4 0 6 0

Sec (An) 12 2

Sec (An)+ 12 2

Sec -(An) 14 2

Sec d(An) 16 3

Sec d(An,Dn/ An) 18 3

Sec Abs.W 16 3

Sec Abs.L 20 4

STOP 04 0 0

SUB Dm,Dn 04 0 08 0

SUB Am,Dn 04 0 08 0

SUB (Am),Dn 08 2 0 14 3 0

SUB (Am)+,Dn 08 2 0 14 3 0

SUB -(Am),Dn 10 2 0 16 3 0

SUB d(Am),Dn 12 3 0 18 4 0

SUB d(Am,Dn/ An) ,Dn 14 3 0 20 4 0

SUB Abs.W,Dn 12 3 0 18 4 0

SUB Abs.L,Dn 16 4 0 22 5 0

SUB d(PC),Dn 12 3 0 18 4 0

SUB d(PC,Dn/ An),Dn 14 3 0 20 4 0

SUB •1mm,Dn 08 2 0 14 3 0

SUB Dm,(An) 12 2 20 3 2

326 Programming the 68000

f!.yte/ R WI Long R w I
Word e r I e r I

a i I a i I
Cycle d t I Cycle d t I

Instruction Time e I Time e I

SUB Dm.(An)+ 12 2 20 3 2

SUB Dm,-(An) 14 2 22 3 2

SUB Dm,d(An) 16 3 24 4 2

SUB Dm,d(An,Dn/ An) 16 3 26 4 2

SUB Dm,Abs.W 16 3 24 4 2

SUB Dm,Abs.L 20 4 26 5 2

SUBA Dm,An 06 0 06 0

SUBA (Am),An 12 2 0 14 3 0

SUBA (Am)+,An 12 2 0 14 3 0

SUBA -(Am),An 14 2 0 16 3 0

SUBA d(Am),An 16 3 0 16 4 0

SUBA d(Am,Dn/ An),An 16 3 0 20 4 0

SUBA Abs.W,An 16 3 0 16 4 0

SUBA Abs.L,An 20 4 0 22 5 0

SUBA d(PC),An 16 3 0 16 4 0

SUBA d(PC,Dn/ An),An 16 3 0 20 4 0

SUBA •Imm.An 12 2 0 14 3 0

SUBI •1mm,Dn 06 2 0 16 3 0

SUBI •1mm,(An) 16 3 26 5 2

SUBI •1mm,(An)+ 16 3 26 5 2

SUBI •1mm,-(An) 16 3 30 5 2

SUBI •1mm,d(An) 20 4 32 6 2

SUBI • 1 mm,d(An,Dn/ An) 22 4 34 6 2

SUBI •1mm,Abs.W 20 4 32 6 2

SUBI •1mm,Abs.L 24 5 36 7 2

SUBQ •1mm,Dn 04 0 06 0

327 Instruction Format & Cycle Timing

Dyte/ R WI Long R w I
Word e r I e r I

8 i I 8 i I
Cycle d t I Cycle d t I

Instruction Time e I Time e I

SUBQ -Imm.An 08 0 08 0

SUBQ -1mm,(An) 12 2 20 3 2

SUBQ -1mm,(An)+ 12 2 20 3 2

SUBQ -1mm.-(An) 14 2 22 3 2

SUBQ -1mm,d(An) 16 3 24 4 2

SUBQ -1 mm,d(An.Dn/ An) 18 3 26 4 2

SUBQ -1mm,Abs.W 16 3 24 4 2

SUBQ -1mm,Abs.L 20 4 28 5 2

SUBX Dm,Dn 04 0 08 0

SUBX -(Am) .-(An) 18 3 30 5 2

SWAP Dn 04 0

TAS Dn 04 0

TAS (An) 14 2

TAS (An)+ 14 2

TAS -(An) 16 2

TAS d(An) 18 3

TAS d(An,Dn/ An) 20 3

TAS Abs.W 18 3

TAS Abs.L 22 4

TRAP 34 4 3

TRAPV taken TRAPV not taken

TRAPV 34 5 3 04 0

TST Dn 04 0 04 0

TST (An) 08 2 0 12 3 0

TST (An)+ 08 2 0 12 3 0

TST -(An) 10 2 0 14 3 0

328 Programming the 68000

Ityte/ R WI Long R w I
Word e r I e r I

a i I a i I
Cycle d t I Cycle d t I

Instruction Time e I Time e I

TST d(An) 12 3 0 16 4 0

TST d(An,Dn/ An) 14 3 0 16 4 0

TST Abs.W 12 3 0 16 4 0

TST Abs.L 16 4 0 20 5 0

UNLK 12 3 0

APPENDIX

§@]-----
Condition Codes

This appendix describes how each instruction affects the 5 condition
code bits. These are abbreviated X for the extend flag, N for the negative
flag, Z for the zero flag, V for the overflow flag, and C for the carry flag. X is
the fifth or $10 bit, N is the fourth or $08 bit, Z is the third or $04 bit, V is the
second or $02 bit, and C is the first or $01 bit of the condition codes.

Key
UNDEF = undefined (may be anything after this instruction)
NOCHG = unchanged by operation
NONCHG = no condition code changed by this operation
NORM = flag changed based on result the way you would expect as
follows:

X = same as carry
N = if the result is negative (highest bit on) then this bit is set; if

the result is not negative, this bit is cleared
Z = if the result is zero then this bit is set; if there is a non-zero

result it is cleared
V = if an overflow occurs, this bit is set; it is cleared if no overflow

occurs
C = if a carry (or borrow) is generated, this bit is set; it is cleared if

no carry (or borrow) occurs (for ABCD and NBCD this will be a decimal
carry)
CLEARED = bit always cleared by operation
SET = bit always set by operation
• = see description below

3.29

330 Programming the 68000

Co Code x N z v

ABCD NORM UNDEF * UNDEF
* = if result non-zero, Z is cleared. No change if = 0.

ADD NORM NORM NORM NORM
ADDA
ADDI
ADDQ
ADDX

NORM
NORM
NORM

NON CHG
NORM
NORM
NORM

NORM
NORM

NORM
NORM
NORM

* = if result non-zero, Z is cleared. No change if = 0.

c

NORM

NORM

NORM
NORM
NORM

AND NOCHG NORM NORM CLEARED CLEARED
ANDI NOCHG NORM NORM CLEARED CLEARED
ANDI CCR cleared if appropriate bit of immediate operand is zero; no change if

immediate operand bit is one.
ANDI SR cleared if appropriate bit of immediate operand is zero; no change if

immediate operand bit is one.
ASL * NORM NORM ** ***

* = same as last bit shifted out. No change if shift count is zero.
** = set if most significant bit changed at any time in this operation and
cleared if no change in most significant bit
*** = same as last bit shifted out of operand. Cleared for a shift count of
zero.

ASR
Bee
BCHG

same as ASL

NOCHG
NONCHG
NOCHG * NOCHG

* = set if bit tested is zero; cleared if bit not zero.
BCLR same as BCHG
BRA NONCHG
BSET same as BCHG
BSR NONCHG
BTST
CHK

same as BCHG
NOCHG * UNDEF UNDEF

* = set if Dn<O. clear if Dn >operand. UNDEF otherwise

NOCHG

UNDEF

CLR NOCHG CLEARED SET CLEARED CLEARED
CMP NORM NORM NORM
CMPA NOCHG NORM NORM
CMPI NOCHG NORM NORM
CMPM NOCHG NORM NORM
DB cc
DIVS

NONCHG
NOCHG * **

* = if quotient is negative, set; cleared if not.
undefined if overflow.
** = if quotient is zero, set; cleared if not.
undefined if overlow.

NORM
NORM
NORM
NORM

*** = set if division overflows. cleared if no overflow.

NORM
NORM
NORM
NORM

CLEARED

331 Condition Codes

Co Code x N z v c

DIVU same as DIVS
EOR NOCHG NORM NORM

NORM
CLEARED CLEARED,

EORI
EORI CCR

NOCHG NORM CLEARED CLEARED
changed if corresponding bit of immediate operand is a one, No
change if corresponding bit is zero.

EORI SR
EXG
EXT
ILLEGAL
JMP
JSR
LEA
LINK
LSL
LSR

same as EORI CCR.

NOCHG
NONCHG
NORM
NONCHG
NONCHG
NONCHG
NONCHG
NONCHG

NORM CLEARED CLEARED

same as ASL except that V is always cleared.
same as LSL

MOVE NOCHG NORM NORM CLEARED CLEARED
MOVE CCR corresponding bits set the same as the source operand
MOVE TO SR

corresponding bits set the same as the source operand
MOVE FROM SR NONCHG
MOVE USP NONCHG
MOVEA NONCHG
MOVEM NONCHG
MOVEP NONCHG
MOVEQ NOCHG NORM NORM CLEARED
MULS NOCHG NORM NORM CLEARED
MULU NOCHG NORM NORM CLEARED
NBCD NORM UNDEF * UNDEF

* = cleared if result non-zero. No change if result zero
NEG NORM NORM NORM NORM

* = cleared if zero result; set if non-zero result.
NEGX NORM NORM * NORM

* = cleared if result non-zero. No change if result zero.
** = set if borrow. cleared if no borrow.

NOP NONCHG
NOT NOCHG NORM NORM CLEARED
OR NOCHG NORM NORM CLEARED
ORI NOCHG NORM NORM CLEARED
ORI CCR set if corresponding bit is one. No change if bit zero.
ORI SR set if corresponding bit is one. No change if bit zero.
PEA NONCHG
RESET NONCHG

CLEARED
CLEARED
CLEARED
NORM

*

**

CLEARED
CLEARED
CLEARED

332 Programming the 68000

Co Code x N z v c

ROL NOCHG NORM NORM CLEARED *
* = set according to last bit shifted out. Cleared if shift count is zero.

ROR same as ROL
ROXL * NORM NORM CLEARED **

* = same as last bit shifted out of operand. No change if shift count is zero.
** = set according to last bit shifted out. Same as extend bit if shift count is
zero.

RTE
RTR
RTS
SBCD

set according to status register pulled from stack
set according to status register pulled from stack

NONCHG
NORM UNDEF * UNDEF NORM

* = if result non-zero, Z is cleared. No change if = 0.
Sec
STOP
SUB
SUBA
SUBI
SUBQ
SUBX

NONCHG
set according to immediate operand.
NORM NORM NORM NORM

NON CHG
NORM
NORM
NORM

NORM
NORM
NORM

NORM
NORM
*

NORM
NORM
NORM

NORM

NORM
NORM
NORM

* = if result non-zero, Z is cleared. No change if = o.
SWAP NOCHG NORM NORM CLEARED CLEARED
TAS
TRAP
TRAPV
TST
UNLK

NOCHG

NOCHG

NORM
NON CHG
NON CHG

·NORM
NON CHG

NORM CLEARED CLEARED

NORM CLEARED CLEARED

APPENDIX

~~----
Error Messages

This MDS assembler file, from Apple Computer, gives all the error
messages. The errors with positive numbers are what you see when there
is a "bomb" alert box; the error number is in the lower right hand comer of
the alert box as "ID= JQC" where }QC is the error number. Some errors are
mildly misleading; for example, error 25, out of memory, sometimes means
that a resource file was not found. After a while, you associate each system
error with a particular type of error in your program. Using the same
example, you will find that out of memoiy often occurs when you have a
resource file that you should have unlocked when you were done with it.

; File: sysErr.Txt (26 Apr 85) Version 1.1

; system Error Equates -- This flle defines the equates for the Macintosh

return error codes This is divided into two pieces for assembly

space and speed considerations. The wholeErrors flag is used to include

the less common equates which realizes a complete set.

; Copyright 1984, Apple Computer, Inc.

333

334 Programming the 68000

; General System Errors (VBL Mgr, Queueing, Etc.)

no Err EQU 0 ; O for success

qErr EQU -1 ; queue element not found during deletion

vTypErr EQU -2 ; invalid queue element

corErr EQU -3 ; core routine number out of range

unimpErr EQU -4 ; unimplemented core routine

; I /0 system Errors

control Err EQU -17

statusErr EQU -18

readErr EQU -19

writErr EQU -20

badUnitErr EQU -21

unitEmptyErr EQU -22

openErr EQU -23

closErr EQU -24

dRemovErr EQU -25
0

; tried to remove an open driver

dlnstErr EQU -26 ; Drvrlnstall couldn't find driver in resources

abort Err EQU -27 ; 10 call aborted by Kill 10

notOpenErr EQU -28 ; Couldn't rd/wr/ctl/sts cause driver not

opened

File System error codes:

dirFulErr EQU -33 ; Di rectory full

dskFulErr EQU -34 ; disk full

nsvErr EQU -35 ; no such volume

ioErr EQU -36 ; 1/0 error (bummers)

335 Error Messages

bdNamErr EQU -37 there may be no bad names in the final

system!

fnOpnErr EQU -38 ; File not open

eof Err EQU -39 ; End of file

posErr EQU -40 ; tried to position to before start of file (r/w)

tmfoErr EQU -42 ; too many files open

fnfErr EQU -43 ; File not found

wPrErr EQU -44 ; diskette is write protected

fLckdErr EQU -45 ; file is locked

vLckdErr EQU -46 ; volume is locked

fBsyErr EQU -47 ; File is busy (delete)

dupFNErr EQU -48 ; duplicate filename (rename)

opWrErr EQU -49 ; file already open with with write permission

paramErr EQU -50 ; error in user parameter 1 i st

rfNumErr EQU -51 ; refnum error

gfpErr EQU -52 ; get file position error

volOfflinErr EQU -53 ; volume not on line error (was Ejected)

permErr EQU -54 ; permissions error (on file open)

vo 1 On Li nErr EQU -55 ; drive volume already on-line at MountVol

nsDrvErr EQU -56 ; no such drive (tried to mount a bad drive num)

noMacDskErr EQU -57 ; not a mac diskette (sig bytes are wrong)

extFSErr EQU -58 ; volume in question belongs to an external fs

fsRnErr EQU -59 ; file system internal error:

during rename the old entry was deleted but could

not be restored ...

badMDBErr EQU -60 ; bad master directory block

wrPermErr EQU -61 ; write permissions error

336 Programming the 68000

; Disk, Serial Ports, Clock Specific Errors

firstDskErr EQU

lastDskErr EQU

noDriveErr EQU

offlinErr EQU

-B4

-64

-64 ; drive not installed

-65 ; r/w requested for an off-line drive

noNybErr EQU -66 ; couldn't find 5 nybbles in 200 tries

noAdrMkErr EQU -67 ; couldn't find valid addr mark

dataVerErr EQU -6B ; read verify compare failed

badCkSmErr EQU -69 ; addr mark checksum didn't check

badBtSlpErr EQU -70 ; bad addr mark bit slip nibbles

noDtaMkErr EQU - 71 ; couldn't find a data mark header

badDCkSum EQU -72 ; bad data mark checksum

badDBtSlp EQU -73 ; bad data mark bit slip nibbles

wrUnderRun EQU . -7 4 ; write underrun occurred

cantStepErr EQU -75 ; step handshake failed

tkOBadErr EQU - 76 ; track O detect doesn't change

initlWMErr EQU -77 ; unable to initialize IWM

twoSideErr EQU - 7B ; tried to read 2nd side on a 1-si ded drive

spdAdjErr EQU - 79 ; unable to correctly adjust disk speed

seekErr EQU -BO ; track number wrong on address mark

sectNFErr EQU -B 1 ; sector number never found on a track

clkRdErr EQU -BS ; unable to read same clock value twice

clkWrErr EQU -B6 ; time written did not verify

prWrErr

prlnitErr

EQU -B7 ; parameter ram written didn't read-verify

EQU -BB lnitUtil found the parameter ram

uninitialized

337 EITOr Messages

rcvrErr

breakRecd

EQU -69 ; sec receiver error (framing, parity, OR)

EQU -90 ; Break received (SCC)

; AppleTalk error codes

ddpSktErr EQU -91 ; error in socket number

ddpLenErr EQU -92 ; data length too big

noBri dgeErr EQU -93 ; no network bridge for non-local send

lapProtErr EQU -94 ; error in attaching/detaching protocol

excessCollsns EQU -95 ; excessive collisions on write

portlnUse EQU -97 ; driver Open error code (port is in use)

portNotCf EQU -96 ; driver Open error code (parameter RAM not

; configured for this connection)

; Storage allocator error codes

memFullErr EQU -106 ; Not enough room in heap zone

ni 1 Handl eErr EQU -109 ; Handle was NIL in HandleZone or other;

memWZErr EQU -111 ; WhichZone failed (applied to free block);

memPurErr EQU -112 ; trying to purge a locked or non-purgeable

block;

memAdrErr EQU -110 ; address was odd, or out of range;

memAZErr EQU -113 ; Address in zone check failed;

memPCErr EQU -114 ; Pointer Check failed;

memBCErr EQU -115 ; Block Check failed;

memSCErr EQU -116 ; Size Check failed;

memLockedErrEQU -117 ; trying to move a locked block (MoveHHi)

338 Programming the 68000

; Resource Manager error codes (other than 1/0 errors)

resNotFound EQU -192 ; Resource not found

resFNotFound EQU -193 ; Resource file not found

addResFailed EQU -194 ; AddResource failed

rmvResFailed EQU -196 ; RmveResource failed

; Scrap Manager error codes

noScrapErr EQU -100 ; No scrap exists error

noTypeErr EQU -102 ; No object of that type in scrap

; some mi see 11 aneous result codes

evtNotEnb EQU ; event not enabled at PostEvent

System Error A 1 ert ID definitions. These are just for reference because

one cannot intercept the calls and do anything programmatically ...

dsSysErr EQU 3276 7 ; genera 1 system error

dsBusError EQU ; bus error

dsAddressErr EQU 2 ; address error

dsl 11 lnstErr EQU 3 ; illegal instruction error

dsZeroDi vErr EQU 4 ; zero divide error

dsChkErr EQU 5 ; check trap error

dsOvFl ow Err EQU 6 ; overflow trap error

dsPrivErr EQU 7 ; privelege violation error

dsTraceErr EQU 8 ; trace mode error

dsLineAErr EQU 9 ; line 1010 trap error

339 Error Messages

dslineFErr EQU 10 ; line 1111 trap error

dsMiscErr EQU 11 ; miscellaneous hardware exception error

dsCoreErr EQU 12 ; unimplemented core routine error

dslrqErr EQU 13 ; uninstalled interrupt error

ds I OCoreErr EQU 14 ; IO Core Error

dsLoadErr EQU 15 ; Segment Loader Error

dsFPErr EQU 16 ; Floating point error

dsNoPackErr EQU 17 ; package O not present

dsNoPkl EQU 18 ; package 1 not present

dsNoPk2 EQU 19 ; package 2 not present

dsNoPk3 EQU 20 ; package 3 not present

dsNoPk4 E,QU 21 ; package 4 not present

dsNoPk5 EQU 22 ; package 5 not present

dsNoPk6 EQU 23 ; package 6 not present

dsNoPk7 EQU 24 ; package 7 not present

dsMemFullErr EQU 25 ; out of memory!

dsBadLaunch EQU 26 ; can't 1 aunch fi1 e

dsFSErr EQU 27 ; file system map has been trashed

dsStknHeap EQU 28 ; stack has moved into application heap

dsReinsert EQU 30 ; request user to reinsert off-line volume

dsNotThel EQU 31 ; not the disk I wanted

APPENDIX

~~-----
Using the Lisa
Workshop

This appendix shows how to create an assembly language program in
the Lisa Workshop. The assembly language is linked to a dummy Pascal
program. You can easily expand this example to create assembly language
procedures to augment a real Pascal program. It even shows how to define
variables that are accessible both in Assembly language and Pascal. An
exec file to run through all the steps of the process is also included.

'lbe Lisa Exec File, SimpleCalcExec

The SimpleCalcExec file will create a Macintosh program on the Lisa
WorkShop. This one file will assemble SimpleCalc, compile the small, top
Pascal program, run the Linker, run the Resource Compiler, and finally run
the MacCom program to make a Macintosh disk. You can easily change the
program names to create other applications. Tu use this exec file, you need
the short Pascal program, SimplePAS, which shows below.

$EXEC
$ {This is SimpleCalcExec, the exec file to assembly & link SimpleCalc}
$Writeln('SimpleCalcExec is now creating SimpleCalc')
A{ssemble}SimpleCalcASM {Assemble Lisa version of SimpleCalc}
{this blank line is for the listing file}
SimpleCalcA, {Output Assembler file}
P {ascal}$ M + {Compile the dummy Pascal program to Macintosh format}
SimplePAS
{this blank line is for the listing file}
SimpleCalcP {Pascal output file}
L{ink}? {Link the programs and system libraries}
+ X {Link in Macintosh format}

341

342 Programming the 68000

SimpleCalcA {Assembled object}
SimpleCalcP {Compiled Pascal object}
obj/quickDraw
obj/tooltraps
obj/ostraps
obj/prlink
obj/packtraps
obj/sanelibasm
obj/Paslib
obj/Paslibasm
obj/Paslnit
obj/RT Lib
{No more files}
{this blank line is for the listing file}
SimpleCalcL. OBJ {Linked object file}
$
R {un}RMaker.obj {Start the Resource compiler}
SimpleCalcR {Resource source file}
$
R{un}MacCom.obj {Start MacCom which writes a Macintosh disk}
FYLSimpleCalc.RSRC {Copy from file on Lisa disk}
SimpleCalc.RSRC {Copy to file on Macintosh disk}
APPL {set type to APPL}
CALC {set creator to CALC}
Y {es bundle bit}E{ject}Q {uit}
SEND EXEC

'Ihe Dummy Pascal Program, SimplePAS

This is the dummy Pascal program, SimplePas. When executed, it does
nothing but call the SimpleCalc routines in Assembly language. SimplePas
reserves global space for the assembly language procedure, SimpleCalc.
The global space allocated by Pascal is addressed with register AS, just as
though it were defined with a DS command. The dummy program defines
DeskName which will correspond to DeskName in SimpleCalcAsm. It also
reserves another 512 bytes for SimpleCalc with a Pascal array. When
SimplePAS executes, it just calls SimpleCalc.

{$X-}
program SimplePAS;

var
{DeskName variable matches assembly language}
DeskName :String[15];
{Reserve 512 bytes for Assembler Globals}
HalfK: ARRAY (1 .. 256] OF INTEGER;

343 Using the Lisa \'\brkShop

procedure SimpleCalc; external;

begin
SimpleCalc

end.

Lisa \ersion of the SimpleCalc, SimpleCalcASM

You have to modify the Macintosh Assembler version of SimpleCalcASM to
use it in the Llsa W>rkShop. These changes make SimpleCalc a procedure
called from Pascal with data areas provided by a Pascal program.

; Make these changes to the SimpleCalcASM file to assemble the
; program under the Lisa Workshop.

; Make SimpleCalc a procedure called from Pascal
.PROC SimpleCal

; Place the rest of SimpleCalc here.
; Then make the changes shown below

; Change the Include files to Lisa Workshop names :

---1 NC LU DE ---
.1 NC LU DE tlasm/Sys.Equ.Text
. INCLUDE tlasm/SysTraps. Text
.INCLUDE tlasm/QuickEqu.Text
.INCLUDE tlasm/QuickTraps.Text
.INCLUDE tlasm/ToolEqu.Text
.l~CLUDE tlasm/ToolTraps.Text

; --------------------------------------G LO BA LDATA --------------------------------------
; Assign the global data from the area reserved by Pascal

· ; System uses the first 4 bytes
FirstData EQU - 4
; Desk accessory's name
DeskName · EQU FirstData-16
; Storage for window
WindowStorage DS. B DeskName-WindowSize

344 Programming the 68000

; Use .ASCII, .BLOCK, .WORD and .LONG to define data areas
OperTable
; 4 bytes per entry

byte 1 =ASCII value of key
byte 2 not used
bytes 3&4 offset

.ASCII '+ '

. WORD AddOper- OperTable

.ASCII

. WORD SubOper-OperTable

.ASCII '* '

. WORD MulOper- OperTable

.ASCII '/ '

. WORD DivOper- OperTable

.ASCII

.WORD

.WORD

.WORD

.WORD

.WORD

.WORD

.WORD

.LONG

EqOper-OperTable
$0300 ;[Enter] key
Enter- OperTable
$0800 ;[BackSpace] key
Clear-OperTable
$1 BOO ; [Clear) on 10-key pad
Clear- OperTable
O · ; End of table

; --------------------------------------Data S to rage --------------------------------------
CurrentEvent ; Event record
What . WORD 0 ; Type of Event
Message . LONG • O ; Info about event
When .LONG O ; Tick when it happened
Where ; Mouse location when it happened
WhereV . WORD O ; Vertical coordinate
WhereH . WORD O ; Horizontal coordinate
Modify . WORD O ; Control keys down when it happened
EvtWind .LONG 0 ; Window with event
Menu . WORD O ; Menu that item is in
Menu Item . WORD O ; Menu item selected
WindPntr .LONG 0 ; Pointer to spread sheet window
Draglimit ; Boundary rectangle for draging window

. WORD ~o ; top

.WORD ? ; left

. WORD 350 ; bottom

. ~ORD 500 ; right

345 Using the Lisa W:>rkShop

CellRect
TxtPnt

.BLOCK 8,0

.LONG 0

.END

Lisa Version of the SimpleCalcR File

; Rectangle enclosing selected cell
; Point in cell where text starts

Use this version of SimpleCalcR in the Llsa \l\brkShop. The resource
compiler in the \i\brkShop has the type CODE, which puts the linked
object file into the same resource file as the resource data. This is similar
to the INCLUDE statement in the Macintosh resource file. When you use
this version, SimpleCalcASM does not have to open a separate resource
file. You can see this change in the Llsa version of SimpleCalcASM shown
above.

*
* Resource file for SimpleCalc, Lisa version
*
* Resource file to be created.
SimpleCalc. RSRC

* Menu definitions
Type MENU
* Apple Menu is always ID 1. Desk accessories are added by the program
,1
\14
About SimpleCalc ...
(-

* File Menu
,302

File
Quit

* Edit Menu. This is not the standard edit menu
,303

Edit
Cut/X
Copy/C
Paste/V
Clear
Negate/N
(
Program/P

346 Programming the 68000

* Dialog for the About box
Type DLOG

,301
* Outside corners of the box, relative to the desk top
100 100 200 400

* Type 1 window with reference number 0
Visible 1 NoGoAway 0
301

* Item list for the About box dialog
Type DITL

,301
* Number of items in list
4
* First item, the default item, is a rounded corner button
Btn Item Enabled
* Outside corners of the button relative to the edges of the dialog box
70 220 90 280

* Inside of button reads "Try it!"
Try it \21

* Second item is the "Quit" button
Btn Item Enabled
70 20 90 80
Quit

* Information to display in a rectangle
StatText Disabled
* Use as many text lines as needed in this rectangle
15 50 35 280
* Text to display with no extra spaces
Simple Cale was written for fun

* More text
StatText Disabled
35 20 55 280
by Harland Harrison & Ed Rosenzweig

* Template for the window
Type WIND

,301
* Title the window "Simple Cale"
Simple Cale
* Outside corners of the window, relative to the desk top
64 32 320 480

34 7 Using the Lisa W:>rkShop

Visible NoGoAway
0
0

* File reference
Type FREF

,128·
APPL 0

Type BNDL
,128
CALC 0
2
ICN# 1
0 128
FREF 1
0 128

Type ICN#
* Icon list for the program icon

,128
* There are two icons in the list. One to display and one for a mask
2

* This is the SimpleCalc icon. There are 32 lines of icon data
00000000
00000000
00000000
1FFFFFFC
10000004
17FFFFF4
14081014
14C997D4
152A5054
14285094
14499114
14885214
150A5214
15E99214
14081014
17FFFFF4
14081FF4
15E89834
15099834
15089834
15C89834
14289834

348 Programming the 68000

14289834
15C9D834
14081FF4
17FFFFF4
10000004
1FFFFFFC
00000000
00000000
00000000
00000000
* This is the mask for the SimpleCalc icon. There are 32 lines of data.
00000000
00000000
00000000
1FFFFFFC
1FFFFFFC
1FFFFFFC
1FFFFFFC
1FFFFFFC
1FFFFFFC
1FFFFFFC
1FFFFFFC
1FFFFFFC
1FFFFFFC
1FFFFFFC
1FFFFFFC
1FFFFFFC
1FFFFFFC
1 FFFFFFC
1FFFFFFC
1FFFFFFC
1FFFFFFC
1FFFFFFC
1FFFFFFC
1FFFFFFC
1FFFFFFC
1FFFFFFC
1FFFFFFC
1FFFFFFC
00000000
00000000
00000000
00000000

349 Using the Lisa \l\brkShop

* Signature for desktop file
Type CALC= STR
,0
SimpleCalc version 1.0, a fun spread sheet program

* Include the linked object file
Type CODE
SimpleCalcL,O

APPENDIX

§[!]----
Salllples of 'Irap Calls
into the ROM

Rules for Parameters in Pascal Definitions

1) If Pascal defines the parameter as a variable parameter using the word
"VAR," pass a pointer to the address of the data to be modified.

2) If the data is longer than four bytes, always pass a pointer to the address
of the data.

3) If the data is four bytes or less and the parameter is not a VAR, then pass.
the data itself on the stack.

4) Pass a two-byte integer for a CHAR, with the LSB holding the character
value, and the MSB set to zero.

5) Pass a two-byte integer for a BOOLEAN, with the MSB holding 1 for
"true:• Pass $0100 for "true:• Pass zero for "false:• \Nhen receiving a
Boolean value, test only the MSB. The low order byte might not be zero.

6) Pass a four-byte address for a pointer.

7) Pass a four-byte zero for NIL.

8) Pass a pointer to a subroutine for a ProcPtr, or a formal procedure.

9) Pass a pointer to the first, lowest-addressed byte of a record. Records
must start on word boundaries.

'Ibe Most Common Pascal 'fYpes Used as Parameters

INTEGER parameter

MOVE.W

351

#- 5, - (SP) ;two's complement negative 5

35.2 Programming the 68000

LONGINT parameter

MOVE.L

CHAR parameter

MOVEQ
MOVE.W

Boolean parameter

MOVE.B

CLR.W

BTST
BNE

Handle parameter

DataPntr
Data

LEA

LEA
MOVE.L
MOVE.L

DS.B
DC

ProcPtr parameter

PEA

SubRout NOP

NIL parameter

#- 8, - (SP) ;two's complement negative 8

'A',DO ;letter "A"
DO, -(SP)

#1, - (SP) ;Pass TRUE as a parameter.

- (SP) ;Pass FALSE as a parameter.

#0, (SP)+ ;Test a function result. The
TrueResult ;other bits are undefined!

Data.AO ;Load pointer to data in AO.
;Load the handle, a pointer to the
;pointer, into A 1.

DataPntr(A5),A 1
AO,(A1) ;Set up the data pointer.
A1, -(SP) ;Pass the handle parameter.

4 ;four bytes to hold address
'Pass with handle'

Sub Rout ;Push entry point of procedure

;The procedure starts here. It may
;have parameters on the stack.

CLR.L -(SP)

String[n] or Str255 parameter
PEA 'String Literal'

PEA String

.ALIGN 2

353 Samples of Trap Calls into the ROM

String DC.B
DC.B
.ALIGN

6
'String'
2

;number of ASCII characters

Point parameter

MOVE.L Where, - (SP)

Where
Where Vert
WhereHoriz

DC.W
DC.W

300
400

;Vertical coordinate= 300
;Horizontal coordinate=400

OS'JYpe parameter

MOVE. L # 'TEXT', - (SP) ;four ASCII chars without a length
;byte

'Ibe Structure of Common Record 'fypes

RECORD TYPE DESCRIPTION

QuickDraw Record Structures

Point
DS.W 1 ;~rtical coordinate
DS.W 1 ;Horizontal coordinate

Rectangle
DS.W 1 ;'lbp coordinate
DS.W 1 ;Left coordinate
DS.W 1 ;Bottom coordinate
DS.W 1 ;Right coordinate

BitMap
DS.L 1 ;Pointer to bit image
DS.W 1 ;Number of bytes/row
DS.W 4 ;Enclosing rectangle

Cursor
DS.W 16 ;Visible bits (16 by 16)
DS.W 16 ;Covered bits (16 by 16)
DS.W 2 ;Point of relative origin

Event Manager Record Structures
Event record

DS.W
DS.L
DS.L

DS.W

1
1
1

1

;'fype of event
;Information about event
;Time when it happened
;(ticks)
;Mouse point when it
;happened
;Mouse vertical

PREDEFINE OFFSETS

v
h

top, topleft
left
bottom,botright
right

baseAddr
rowBytes
bounds

data
mask
hotspot

evtNum
evtMessage

evtTicks

evtMouse

354 Programming the 68000

DS.W
DS.B
DS.B

1
1
1

;Mouse horizontal
;Control keys held down evtMeta
;Mouse down &. deactivate evtMBut

Some Common Calls Expanded

Window Manager
function FrontWindow:WindowPtr

CLR.L - (SP)
_FrontWindow
MOVE.L (SP)+ ,theWindow(A5)

;Return a pointer to the top window
;Clear space for the window pointer

;Pointer to the top window

procedure SelectWindow (theWindow:WindowPtr);

MOVE.L theWindow(A5), -(SP)
_SelectWindow

function GetNewWindow

;Set the top, active window.

(wi ndowl D: i nteger;wSto rage: Ptr; behind: WindowPtr):WindowPtr;

wStorage

CLR.L
MOVE

PEA

-(SP)
#300, -(SP)

wStorage

MOVE.L #-1,-(SP)

;Start up a new window, using window
;template 300.
;Clear space for the result
;Resource ID number of WIND
;Push the address of the window's
;storage area. You can push NIL instead
;to have the system allocate space for
;the Window Record

;Put this window over all the other
;windows. You can push zero
;instead to place this window behind all
;the others. You can use the
;pointer to another window to put the
;new window between
;that window and all of the windows
;below.

_GetNewWindow ;Get The Window
MOVE.L (SP)+ ,theWindow(A5)

DS.B WindowSize
;Storage area for the new window.
;156 bytes

355 Samples of Trap Calls into the ROM

procedure
DragWindow (theWindow:WindowPtr;startPt: Point;boundsRect: Re ct);

start Pt

boundsrect

MOVE.L
MOVE.L
PEA
_DragWindow

DS.W
DS.W

DC.W
DC.W
DC.W
DC.W

theWindow(A5), - (SP)
startPt(A5), - (SP)
boundsRect

30
5
330
508

function FindWindow

;The Mouse went down in the Drag area.
;Let the operator move the window
;around the desktop. If the window is
;moved, update events will be
;generated for all windows whose
;appearance is affected
;Point to window record area
;Point where mouse went down
;Limits on operator's motion

;Mouse location of start of drag in global
;coordinates
;vertical location
;horizontal location

;Limits of window motion in global
;coordinates
;top
;left
;bottom
;right

(thePt:Point; VAR whichWindow: WindowPtr): integer;

CLR
MOVE.L
PEA
_FindWindow

-(SP)
Where(A5), - (SP)
whichWindow(A5)

MOVE (SP)+ ,DO

;Identify the window and region that
;contain a certain point.
;Clear space for result
;Point in Global Coordinates
;Area for pointer to window

;Integer code for the region
;DO tells where the point is in the
;window as follows:
;If DO is: The point is:
;O in the Desk area and not in

any application window.
;1 in the Menu Bar area.
;2 in a System window and not in

any application window.
;3 in the Content region of an

application window.

356 Programming the 68000

~J 1 = in the menu bar I
,. s File Edit Uiew Special

.,

Figure F-1 Window Areas

Menu Manager

function GetMenu (menulD :integer) :

CLR.L -(SP)

#257, -(SP)

;4 in the Drag region of an
application window.

;5 in the Grow region of
application window.

;6 in the Go Away region
application window.

Menu Handle;
;Set up a new menu in memory.
;Clear space for MenuHandle

an

of an

;Load the ID of the menu resource, 257 .
;The Apple menu should be
;ID number 1. All the other application
;menus should have ID numbers
;greater than 256 .

MOVE .W
_GetRMenu
MOVE .L (SP)+ ,MenuHand(A5); Handle to new menu data

procedure lnsertMenu (menu:MenuHandle ;before ID : integer) ;
;Add a menu to the list of active menus,
;but don't draw the Menu Bar yet.

KeyChr

357 Samples of Trap Calls into the ROM

MOVE.L MenuHand(A5), - (SP)

MOVE.W #257,-(SP)

;Load handle to the menu date
;Put this menu to the left of menu #257
;in the Menu bar. To put it after
;all other menus, you would use a zero
;here instead.

_lnsertMenu ;Insert the menu in the Menu List.

procedure AddResMenu
(theMenu: MenuHandle; theType: ResType);

;Add all resources of a certain type to a
;menu

MOVE.L
MOVE.L

AppleHandle(A5), - (SP) ;Handle for the Apple menu
'DRVR',- (SP) ;Add the desk accessories.

_Add Res Menu

function MenuKey (KeyChr:CHAR): Long Int;

CLR.L
MOVE.W
_Menu Key
MOVE.W

BEQ
MOVE.W

DC.B

-(SP)
KeyChr(A5), - (SP)

(SP)+ ,MenulD(A5)

Null Event
(SP)+, Menultem(A5)

0, 'A'

;Identify the menu and menu item
;corresponding to a command key
;Make space for menu selection.
;Push the character.

;Get the ID of the chosen menu
;If a zero is returned for the Menu ID,
;the key does not correspond to an
;enabled menu item.
;No menu item. Exit.
;Get the chosen item.

;Key character in lower byte

function MenuSelect (MDownPt:Point):Longlnt;

CLR.L
MOVE.L
_MenuSelect

MOVE.W

-(SP)
MDownPt, - (SP)

(SP)+ ,MenulD(A5)

;The mouse has gone down in the Menu
;Bar. Track it until it
;is released. Then return the Menu and
;the item selected
;Space for menu choice
;Where mouse went down in Menu Bar

;_MenuSelect will show the menu until
;the mouse button is released.
;Get the ID of the chosen menu
;If a zero is returned for the Menu ID
;ignore the result. Either the item
;belonged to a Desk accessory or the
;operator did not release the mouse in
;an enabled menu item.

358 Programming the 68000

BEQ
MOVE.W

Null Event
(SP)+, Menultem(A5)

;No menu item. Exit
;Get the chosen item

procedure HiliteMenu (menulD: integer);

MOVE.W
_HiliteMenu

#menu ID, - (SP)

procedure Getltem
(menu: MenuHandle;item: integer; VAR

MOVE.L
MOVE.W
PEA
_Getltem

itemString DS.B

MenuHand(A5), - (SP)
Item, -(SP)
itemString

40

;Mark a menu by darkening its title in
;the Menu Bar. Only one
;menu can be highlighted at a time. Use
;zero for the menu ID to
;unhighlight the menu bar.

itemString: Str255);
;Put the text of a menu item into a
;Pascal string
;Menu handle
;Number of item
;Pointer to area for Pascal string

;Although the string must be 255 bytes
;long in Pascal, only as many
;bytes as are actually used by the name
;of the item will be clobbered.

Event Manager

procedure FlushEvents (eventMask,stopMask: integer);

MOVE.W
SWAP
MOVE.W
_Flush Events

StopMaskEQU o
EventMask EQU $FFFF

#StopMask, DO
DO
#EventMask, DO

function GetNextEvent
(eventMask: integer; VAR Event: EventRecord):Boolean;

CLR.W -(SP)

; Remove events that match eventMask
;from the Event Queue. Keep
;checking and removing events until an
;event matches stopMask.
;Event types to stop

;Event types to remove

;to remove all events in the queue use:
;No event can stop it
;Remove all events

;Take the next event from the queue
;Space for true/false result
;Pass negative one to accept any type of
;event.

Event

359 Samples of 'frap Calls into the ROM

MOVE.W
PEA
_GetNextEvent
BTST
BEQ

DS.W

#-1,-(SP)
Event(A5)

#0,(SP)+
Null Event

8

Desk Manager

;Event mask
;Pointer to storage area for the event.

;Was an event returned?
;No. Return to the main program.

;Storage for event record.

function OpenDeskAcc (theAcc: Str255):integer;

CLR.W
PEA
_QpenDeskAcc
MOVE.W

-(SP)
'Clock'

(SP)+, RefNo(A5)

function SystemEdit (editCmd:integer): Boolean;

CLR.W
MOVE.W

MOVE.W
_sysEdit
BTST
BNE

BEQ

-(SP)
editCmd(A5), DO

DO, - (SP)

#0,(SP)+
TRUE

FALSE

;Start a desk accessory. The reference
;number returned could be used
;to close the desk accessory if that is
;ever necessary.
;Clear space for the reference number.
;Pass a Pascal string.

;Reference number of accessory

;Let a desk accessory try to perform an
;edit action, if any is selected.
;Return True if the action was performed.
;Return False if the command
;is for the application.
;Space for result
;Get the action to perform
;The Edit Commands passed to the
;system are as follows:
;If DO is: the command is:
;2 Cut. Delete the selected data, but

;3

;4

;5

;O

save it on the Clipboard.
Copy. Copy the selected data to the

Clipboard.
Paste. Copy the Clipboard data to

the selected area.
Clear. Delete the selected data, but

don't alter the Clipboard.
Undo. Reverse the previous Cut,

Copy or Paste.
;Load the action.

;Check the result.
;The desk accessory performed the
;action.
;The command is for the application.

DStorage

360 Programming the 68000

Dialog Manager

procedure In itDialogs (restart: ProcPtr);

CLR.L
_lnitDialogs

-(SP)

function GetNewDialog

;Initialize the Dialog Manager. The restart
;procedure will be called in
;case of a serious system error, such as
;running out of memory. If you
;do not want a restart procedure, pass
;NIL instead.
;There is no Restart subroutine.

(dialoglD: integer, dStorage: Ptr; behind: WindowPtr);DialogPtr;

CLR.L
MOVE

PEA

MOVEQ
MOVE.L
_GetNewDialog

-(SP)
#300, - (SP)

DStorage

#-1,DO
DO, - (SP)

MOVE. L (SP)+, DiaPtr(A5)

DS.B dWindLen

procedure ModalDialog
(filterProc: ProcPtr; VAR itemHit: integer);

CLR.L -(SP)

;Start a dialog box using the DLOG
;template #300.
;Space for the new dialog pointer.
;ID of DLOG in resource file
;Load a pointer to the space for the
;dialog record. Pass NIL to have the
;system allocate space for the dialog
;record.
;Storage Area
;Pass-1 to make this dialog the top
;window. You can pass the pointer
;of another window or dialog instead, to
;create the new dialog below.
;Put dialog on top of all other windows.
;Pointer of window above the dialog

;new Dialog Pointer

;Storage area for the new dialog.
;170 bytes

;Lock the Operator into a dialog box until
;he selects something or
;types a character into an Edit Field.
;Pass NIL to indicate that there is not
;filter routine. If you have a filter
;routine, pass its address instead.

Item Hit

361 Samples of Trap Calls into the ROM

PEA
_ModalDialog

DC.W

Item Hit

Resource Manager

;Pointer to a word for the chosen item

;Number of the chosen dialog item
;First item for default

function OpenResFile (fileName: str255):integer;
;Open a resource file. Resources will be
;taken from this file
;before any others.

CLR - (SP) ;Clear space for ref num result

PEA 'SimpleCalc.Rsrc'
_OpenResFile
MOVE.W (SP)+,RefNo(A5)

QuickDraw

procedure lnitGraf (globalPtr:Ptr);
PEA -4(A5)
_lnitGraf

procedure Set Port (gp:Graf Port);

MOVE.L theWindow(A5), -(SP)
_setPort

procedure SetOrigin (h,v:integer);

MOVE. W h(A5), - (SP)
MOVE.W v(A5), -(SP)
_setOrigin

procedure ClipRect (r:Rect);
PEA LimitBox
_ClipRect

;Push a pointer to the file name in a
;Pascal string. The file name
;can have a volume name and folder
;names also.

;Save the reference number

;Make theWindow the current port. A
;grafport starts the window record

;Set the top left corner of the current
;window

LimitBox

36.2 Programming the 68000

DC.W
DC.W
DC.W
DC.W

50
100
300
400

procedure PenSize(width,height: integer);

MOVE. W #1, - (SP)
MOVE. W #3, - (SP)
_PenSize

procedure PenMode(mode: integer);

MOVE. W #patCopy, - (SP)
_Pen Mode

procedure PenPat(pat: Pattern);

MOVE.L GrafGlobals(A5),AO
PEA DkGray(AO)
_Pen Pat

procedure PenNormal;

_Pen Normal

procedure BackPat (pat: Pattern);

MOVE.L GrafGlobals(A5),AO

PEA LtGray(AO)
_Back Pat

Cursor Routines

procedure lnitCursor;

_lnitCursor

;All drawing calls will only affect what is
;inside this rectangle.
;top
;left
;bottom
;right

;Set the pen shape to a rectangle, three
;pixels tall and one pixel wide.
;Pen width
;Pen height

;Set the transfer mode for graphic
;drawing to "copy" mode.
;Both black & white will cover

;Set the pen pattern for graphic drawing
;to dark gray.
;Pointer to QuickDraw globals
;Dark-gray standard pattern

;Set the pen to the default state, black,
;copy mode, and one pixel square.

;Set the background pattern to light gray.
;Get the pointer to the QuickDraw globals

;Pass a pointer to the light-gray standard
;pattern.
;Pointer to pattern

;Set the cursor to an arrow

crsr

363 Samples of 'frap Calls into the ROM

procedure HideCursor;

_HideCursor

procedure ShowCursor;

_ShowCursor

procedure SetCursor(crsr:Cursor);

PEA crsr
_setCursor

DC.W $0000
DC.W $00CO
DC.W $0320
DC.W $0C20
DC.W $1840
DC.W $60FF
DC.W $4181
DC.W $82FF
DC.W $8510
DC.W $81FO
DC.W $8110
DC.W $81FO
DC.W $8110
DC.W $81FO
DC.W $C100
DC.W $7FOO

DC.W $0000
DC.W $00CO
DC.W $03EO
DC.W $0FEO
DC.W $1FCO
DC.W $7FFF
DC.W $7FFF
DC.W $FFFF
DC.W $FFFO
DC.W $FFFO
DC.W $FFFO

;Make the cursor invisible

;Make the cursor visible

;Set the cursor to a hand pointing to the
;right.

;A cursor showing a hand pointing to the
;right.
;The first 16 words are the data
;binary 0000000000000000

0000000011000000
0000001100100000
0000110000100000
0001100001000000
0110000011111111
0100000110000001
1000001011111111
1000010100010000
1000000111110000
1000000100010000
1000000111110000
1000000100010000
1000000111110000
1100000100000000
0111111100000000

;The next 16 words are the mask
;binary 0000000000000000

0000000011000000
0000001111100000
0000111111100000
0001~11111000000

0111111111111111
0111111111111111
1111111111111111
1111111111110000
1111111111110000
1111111111110000

364 Programming the 68000

DC.W
DC.W
DC.W
DC.W
DC.W

DC.W
DC.W

$FFFO
$FFFO
$FFFO
$FFOO
$7FOO

$0007
$0015

Line Routines

procedure MoveTo (h,v: integer);

MOVE.W
MOVE.W
_Move To

#400, -(SP)
#300,-(SP)

procedure Move (dh,dv: integer);

MOVE.W
MOVE.W
_Move

#40,-(SP)
#30,-(SP)

procedure Linero {h,v: in_teger);

MOVE.W
MOVE.W
_Line To

#100,-(SP)
#200, -(SP)

procedure Line (dh,dv: integer);

MOVE.W
MOVE.W
_Line

#- 20, -(SP)
#30,-(SP)

Text Routines
procedure Text Font (font: integer);

1111111111110000·
1111111111110000
1111111111110000
1111111100000000
0111111100000000

;The last two words are the hot-spot
;point
;vertical coordinate
;horizontal coordinate

;Move the pen to the point, (400,300).
;Load horizontal coordinate
;Load vertical coordinate

;Move the pen 40 pixels right and 30
;pixels down
;Load horizontal offset
;Load vertical offset

;Draw a line from current location to the
;point, (100,200).
;Load horizontal coordinate
;Load vertical coordinate

;Draw a line left 20 and down 30
;Load horizontal offset
; Load vertical offset

MOVE.W #Cairo,-(SP) ;Font with pictures
_TextFont

procedure TextFace (face: Style);
;Set the bits in DO for bold and italic
;text.

ch

ch

365 Samples of lrap Calls into the ROM

CLR.W
BSET
BSET
MOVE.W
_TextFace

DO
#bold Bit, DO
#italicBit, DO
DO, -(SP)

;Set $01 for bold.
;Set $02 for italics.
;Bold & Italic

procedure TextMode(mode: integer);

MOVE.W #srcXor, - (SP)
_TextMode

procedure TextSize (size: integer);

;Set the mode for text drawing. Graphics
;drawing is not affected.

MOVE. W #12, - (SP) ;Character height in pixels
_TextSize

procedure DrawChar(ch:char);

MOVE.W ch,-(SP)
_DrawChar

DC.B 0, 'A'

;Draw one character on the screen.
;Push character on the stack.

;The character is in the second byte of
;the word.
;Character "A" in lower byte.

procedure Drawstring (s: Str255);
PEA 'Hello from Assembly language'
_Drawstring

function CharWidth(ch: CHAR):
CLR.W -(SP)
MOVE.W ch,-(SP)
_CharWidth

MOVE.W (SP)+,DO

DC.B 0, 'A'

integer;
;Clear space for result
;Character to measure

;Return the width of "A" in pixels in
;DO.

;Character in lower byte.

function StringWidth (s: Str255): integer;
CLR. W - (SP) ;Clear space for result
PEA 'Hello from Assembly language'
_StringWidth

;Return the width of the string in DO.
MOVE.W (SP)+ ,DO

366 Programming the 68000

Coordinate System Conversions

procedure GlobalTolocal (VAR pt:Point);

PEA pt(AS)
_GlobalTolocal

procedure LocalToGlobal (VAR pt :

;Convert the screen coordinates of a
;point to coordinates based on the
;current window.
;Pointer to input and output
;Global to local

Point);
;Convert the coordinates of a point in the
;current window to

PEA pt(AS)
_LocalToGlobal

;global coordinates .
;Pointer to input and output
;Local to global

This drawing program a11ows you to
use many different styles of pen,
ink, and pad.

Figure F-2 Global versus Local Coordinates

Rectangle Routines

procedure FrameRect (r: Rect) ;
PEA Box
_FrameRect

.,

Box

367 Samples of Trap Calls into the ROM

DC .W
DC.W
DC.W
DC.W

50
100
300
400

procedure PaintRect (r : Rect) ;
PEA r(A5)
_PaintRect

,. s File Edit QuickDrnw

;top
;left
;bottom
;right

Drawing Window

Figure F-3 Frame Rectangle

procedure EraseRect (r: Rect) ;
PEA r(A5)
_EraseRect

procedure lnvertRect (r: Rect) ;
PEA r(A5)
_lnverRect

procedure FillRect (r: Rect; pat : Pattern);
PEA r(A5)
MOVE. L GrafGlobals(A5),AO
PEA Black(AO)
_fillRect

;Pointer to QuickDraw globals
;Pointer to standard black pattern
;Solid, black rectangle

.,

368 Programming the 68000

Oval Routines

procedure FrameOval (r: Rect);
PEA r(A5)
_FrameOval

Figure F-4 ·Frame Oval

procedure PaintOval (r: Rect);
PEA r(A5)
_ · PaintOval

procedure EraseOval (r: Rect);
PEA r(A5)
_Erase Oval

procedure lnvertOval (r: Rect) ;
PEA r(A5)
_lnvertOval

procedure FillOval (r: Rect; pat: Pattern);
PEA r(A5)
MOVE.L GrafGlobals(A5),AO ;Pointer to QuickDraw globals
PEA Black(AO) ;Pointer to standard black pattern
_fillOval; Draw a solid black ellipse

369 Samples of Trap Calls into the ROM

Round Rectangle Routines

procedure FrameRoundRect (r :
PEA r(A5)
MOVE. W ovWd(A5) , - (SP)
MOVE. W ovHt(A5), - (SP)

Rect ;ovWd , ovHt: integer) ;
;Dimensions of smooth sides
;Width or corner ellipse
;Height of corner ellipse

_FrameRoundRect ;Outline a rectangle with rounded corners

Figure F-5 Frame Round Rect

procedure PaintRoundRect
PEA r(A5)
MOVE . W ovWd(A5), - (SP)
MOVE .W ovHt(A5), - (SP)
_PaintRoundRect

procedure EraseRoundRect (r:
PEA r(A5)
MOVE .W ovWd(A5) , -(SP)
MOVE.W ovHt(A5) , -(SP)
_EraseRoundRect

procedure lnvertRoundRect (r:
PEA r(A5)
MOVE .W ovWd(A5) , - (SP)
MOVE. W ovHt(A5) , - (SP)
_lnverRoundRect

(r:Rect; ovWd ,ovHt: integer);
;Dimensions of smooth sides
;Width of corner ellipse
;Height of corner ellipse

Rect ; ovWd, ovHt, ovHt : integer) ;
;Dimensions of smooth sides
;Width of corner ellipse
;Height of corner ellipse

Rect; ovWd,ovHt: integer);
;Dimensions of smooth sides
;Width of corner ellipse
;Height of corner ellipse

.,

370 Programming th e 68000

procedure FillRoundRect
(r: Re ct ; ovWd, ovHt: integer; pat:
PEA r(A5)
MOVE .W ovWd(A5),-(SP)
MOVE .W ovHt(A5), - (SP)
MOVE.L GrafGlobals(A5),AO
PEA Black(AO)
_fillRoundRect

Arc Routin es

Pattern);
;Dimensions of smooth sides
;Width of corner ellipse
;Height of corner ellipse
;Pointer to QuickDraw globals
;Pointer to standard black pattern
;Solid , black, rounded-corner rectangle

procedure FrameArc (r: Rect; startAngle ,arcAngle: integer) ;
PEA r(A5)

MOVE. W startangle(A5) , - (SP)
MOVE . W arcangle(A5) , - (SP)
_frameArc

;The angles are measured from the
;vertical . Positive angles are clockwise .
;Start angle
;Degrees moved

Figure F-6 · Frame Arc

procedure PaintArc (r ; Rect; startAngle,arcAngle: integer);
PEA r(A5)
MOVE. W startangle(A5), - (SP)

371 Samples of Trap Calls into the ROM

MOVE. W arcangle(A5), - (SP)
_PaintArc

procedure EraseArc (r: Rect; startAngle,arcAngle: integer);
PEA r(A5)
MOVE . W startangle(A5), - (SP)
MOVE.W arcangle(A5), -(SP)
_EraseArc

procedure lnvertArc (r: Rect; startAngle,arcAngle : integer);
PEA r(A5)
MOVE . W startangle(A5),- (SP)
MOVE. W arcangle(A5), - (SP)
_lnvertArc

procedure FillArc
r: Rect; startAngle,arcAngle: integer;pat:Patern) ;
PEA r(A5)
MOVE. W startangle(A5) , - (SP)
MOVE. W arcangle(A5), - (SP)
MOVE.L GrafGlobals(A5),AO
PEA Black(AO)
_FillArc

;Pointer to QuickDraw globals
;Pointer to standard black pattern

Figure F-7 Frame Oval

372 Programming the 68000

Most Common QuickDraw Data Definitions

Source Copy Modes
Use the Source copying modes for drawing text or transfering bit images.
The effect of the operation is described using "Source" and "Dest," where
Source means a data bit from the input of the call and Dest means a data
bit that is already on the screen when the call is made.

NAME

srcCopy
srcOr
srcXor
srcBic
notSrcCopy
notSrcOr
notSrcXor
notSrcBic

NUMBER OPERATION

0
1
2
3
4
5
6
7

Source
Source OR Dest
Source XOR Dest
(NITT Source) AND Dest
NITT Source
(NOT Source) OR Dest
(NITT Source) XOR Dest
Source AND Dest

Pattern Copy Modes
Use pattern copying modes for setting the pen pattern. The effect of the
operation is described using "Source" and "Dest,'' where Source means a
data bit from the input of the call and Dest means a data bit that is already
on the screen when the call is made.

NAME

patCopy
patOr
patXor
patBic
notPatCopy
notPatOr
notPatXor
notPatBic

Style Word

NUMBER OPERATION

8
9

10
11
12
13
14
15

Source
Source OR Dest
Source XOR Dest
(NITT Source) AND Dest
NOT Source
(NITT Source) OR Dest
(NITT Source) XOR Dest
Source AND Dest

Use the number given under "Value" to set the corresponding text style.
Zero means plain text. Add the values together for combinations of text
style. The symbols can be used with the BSET instruction.

373 Samples of 'frap Calls into the ROM

SYMBOL BIT NUMBER VALUE STYLE

boldBit 0 $01 bold
italicBit 1 $02 italicized
ulineBit 2 $04 underlined
outlineBit 3 $08 outlined
shadowBit 4 $10 shadowed
condenseBit 5 $20 condensed
extendBit 6 $40 expanded

Font Numbers

NAME NUMBER COMMENT

sysFont 0 Code for current system font
applFont 1 Code for current application font
NewYork 2
Geneva 3 Default application font
Monaco 4 Monos paced
Venice 5
London 6 Old English
Athens 7
SanFran 8 Kidnapper's font
Turon to 9
Cairo 11 Hieroglyphics. All pictures
LosAngel 12

Offsets to QuickDraw Global Variables

NAME OFFSET 1YPE

the Port $0 GratPtr
white $FFFFFFF8 Pattern
black $FFFFFFFO Pattern
gray $FFFFFFE8 Pattern
ltGray $FFFFFFEO Pattern
dkGray $FFFFFFD8 Pattern
arrow $FFFFFF94 Cursor
screenBits $FFFFFF86 BitMap
randSeed $FFFFFF82 long integer

374 Programming the 68000

Event 'fypes

NAME NUMBER CAUSE

nullEvt 0 null event or no events happened
mButDwnEvt 1 mouse button pushed down
mButUpEvt 2 mouse button released
keyDwnEvt 3 key pushed down
keyUpEvt 4 key released
autoKeyEvt 5 key held down to repeat
updatEvt 6 a window needs to be redrawn
disklnsertEvt 7 a disk was inserted
activateEvt 8 activate/deactive event
abortEvt 9 abort event
netWorkEvt 10 network event
ioDrvrEvt 11 a driver-defined event
applEvt 12 an application-defined event
app2Evt 13 an application-defined event
app3Evt 14 an application-defined event
app4Evt 15 an application-defined event

Bits of the Modifier l\Ord

SYMBOL BIT NUMBER VALVE MEANING

activeFlag 0 $0001 activate
change Flag 1 $0002 change to system window
btnState 7 $0080 mouse button up!
cmdKey 8 $0100 command key down
shiftKey 9 $0200 shift key down
alphaLock 10 $0400 alpha lock down
optionKey 11 $0800 option key down

APPENDIX

~@]----
SimpleCalc Progra01
Code

Assembler File, SimpleCalc.ASM

;---------------------------------~--
SimpleCalc - A Simplified SpreadSheet Example by Harland Harrison
and Ed Rosenzweig
Other files needed are

SimpleCalc.R Resource source
SimpleCalc.Job Exec file
SimpleCalc.Link Linkage I ist file

·--------------------------------- INCLUDE --------------------------------
lnclude MacTraps.D ; Include equates and traps files
Include ToolEqu.D
Include QuickEqu.D
Include SysEqu.D
·----------------------------- LOCAL DATA --------------------------------
DataS i ze EQU 4110 Space needed for var i ab I es
Clip EQU 4102 ; Clipboard for editing eel Is
I temHi t EQU 4104 ; Dialog i tern chosen
AppleHand EQU 4106 ; Handle for Apple menu
Reece I I EQU 127 ; Ce I I number of accumu I a tor

Stored spread sheet program format
30 bytes for each cell
$80 bit means select a cell. Otherwise arithmetic operation

; $00 means end of program
Prg EQU 2 Offset to start of program in eel I
ProgLast EQU 29 , Maximum entries. Last byte must be 0
; Flag bits stored in Flag register, D5
FrontF I ag EQU 2 Bit set if our window se I ected
Redraw EQU 1 Redraw ce I I bit. = overf I ow in SR
QuitFlag EQU 0 ; Exit program bit. =carry in SR
·--------------------------------GLOBAL DATA ------------------------------
DeskName DS 16 ; Desk accessory ' s name
WindowStorage DS.B WindowSize ; Storage for window
;-------------------------------- REGISTER USAGE ---------------------------

MainProgram lnitital ization
D4 Selected Cel I Menu ID
D5 Flag register Menu handle
D6 Program byte counter
D7 Cel I to draw or calculate

375

376 Programming the 68000

A3 Selected Cel I
A4 Cel I being calculated
A5 Global Uariables
A6 Uariable Base/ Accumulator

;-------------------------------- MAIN PROGRAM

LINK
LEA
BSR

MainLoop
BSR
BSR
BCS
BUC
BSR
BRA

MainExit
LEA
UNLK
RTS

A6,•-DataSize
-DataSize<A6),A6
lni tMain

Calculate
GetEvent
MainExit
MainLoop
DrawSelect
MainLoop

DataSize<A6),A6
A6

Make space for spread sheet
Address memory from low end
Initialize

Calculate values

Carry Set is signal to quit
Overflow is signal to redraw

Point to top of memory
Return memory to stack space

·-------------------------------- INITIALIZE ------------------------------

lnitMain
Clear data

MOUE.L
MOUE.W
BRA

lnitLoop

area
A6,AO
•DataSize,DO
lnitChk

CLR.B <AO)+
lni tChk

DBRA DO, In i tLoop
; Initialize Managers

PEA -4(A5)
_lnitGraf
_lnitFonts
_TElnit
_lnitlJindows
Cl:.R.L -<SP)
_lnitDialogs
_lnitMenus

;Open the Resource Fi le
CLR -<SP)
PEA 'SimpleCalc.Rsrc'
_()penResF i I e
MOUE <SP)+,DO

;Set Up Apple Menu
MOUEQ • 1, D4
JSR MakeMenu
MOUE.L D5,AppleHand(A6)

;Set Up Fi le M.enu
MOUE.W •303,D4
JSR MakeMenu

;Set Up Edit Menu
MOUE.IJ #302,D4
JSR MakeMenu

;Add Desk Accessories To Apple Menu
MOUE.L AppleHand(A6),-<SP);
MOUE.L #'DRUR',-<SP)
..JlddResMenu

;Draw the completed Menu Bar
....DrawMenuBar

Main initialization

Point to start of area
Byte count to clear
DBRA counts to -1

Clear one byte of memory

Repeat DataSize times

System QD port
lnit Quickdraw, • Grafport
lnit Font Manager
lnit Text Editor
lnit Window Manager
No restart procedure
lnit Dialog Manager
lnit Menu Manager

Clear space for reference number result
[Uolume:)Resource Name
Fi le-name string -> Reference Number
Get rid of the Ref Num

Resource I D 1

Save Apple menu handle

Resource ID 303

Resource ID 302

Apple menu handle
Accessory resource type
MenuHandle,Type

377 SimpleCalc Program Code

;Initialize the Window
CLR.L -<SP)
MOUE •301 -<SP)
PEA Wind~wStorage(A5)
MOUE.L •-1,-<SP)
....GetNewWindow
LEA WindowPointer,AO

Make space for the window-pointer result
Resource ID •301
Push address for window-data storage
Put window on top of any other windows
ID,· Storage, •window above->· window

MOUE.L <SP)+,(AO> Save the window pointer in memory
BSR SelWindow ; Make it the top window

Empty event queue of old keystrokes and mouse clicks
CLR.L DO No type of event stops flush
MOUE.W #$FFFF,DO Flush any type of event
..F.lushEvents Stop, Event in DO
_lnitCursor Initialize the cursor into an arrow

Clear registers
CLR.L D6 No Accumulator program
CLR.L D7 Start update from eel I 0
CLR.L D5 Clear flags
CLR.L D4 Select eel I 0

Draw spread sheet in window and exit lnitMain
BRA Drawlnside ; Draw sheet of zeros

MakeMenu
;Install Menu

Input D4 = Menu ID
Output D5 = Menu Handle

D4 = Menu ID
CLR.L -(SP>
MOUE D4,-<SP)

....GetRMenu
MOUE.L <SP),D5
CLR.W -(SP>
-' nser tl1enu
RTS

; Clear space for menu handle
; Resource ID input in D4

MenulD -> MenuHandle
Return in D5 & leave on stack
Put menu after all others
MenuHandle,BeforelD

;--------------------------- USER INTERFACE --------------------------

GetEvent.
...System Task
CLR -<SP>
MOUE •-1,-(SP)
PEA CurrentEvent
....GetNextEvent
BTST •O,<SP)+
BEQ Nul I Event
BSR DoEvent
BRA GetEvent

DoEvent
MOUE
CMPI
BEQ
CMPI
BEQ
CMPI
BEQ
CMPI
BEQ
CMPI
BEQ
CMPI
BEQ

Nul I Event
MOUE
RTS

What, DO
•mButDwnEvt,DO
Mouse Down
•keyDwnEvt,DO
Key Down
•autoKeyEvt,DO
KeyDown
•updatEvt,DO
UpDate
•activateEvt,DO
Activate
•9 DO
Quit

D5,CCR

Get.next event
Update desk accessories
Clear space for result
Mask to accept .all events
Pointer to event record
Mask, ·event record-> TRUE if any events
Event returned?
No event. Return to main program
Respond to event
Check for more events in queue

Process event
Type of event
mouse button down is event

key down is event 3

auto-repeated key is event 5

update display is event 6

activate/deactive is event 8

abort is event 9

no event. check quit flag & exit
Set carry if $01 set by
quit command

378 Programming the 68000

;--------------------------- EVENT TYPES -------------~------------

Activate
BSR
BNE
BTST
BEQ
BSET
BRA

Deactive
BCLR
BRA

WindChk
Nul I Event
110,Modify+1
Deactive
llFrontFlag,D5
DrawSelect

llFrontFlag,D5
DrawSelect

Is it our window?
No. Ignore event
Activate or Deactivate event flag
Activate if $01 set, else DeActivate
Remember window is active
Highlight selected cell

Remember window is inactive
Un High I ight selected eel I

Update Our VISible ReGioN changed
BSR WindChk Is it our window?
BNE Nul I Event ; No. Ignore event
MOVE.L WindowPointer,-<SP> ; Pointer to window being updated
...BeginUpDate Start drawing in Update Region
BSR Drawlnside ; Only part needing update actually drawn
MOVE.L WindowPointer,-<SP) ; Pointer to window whose update is finished
...EndUpdate Return to normal mode drawing
RTS

Key Down
MOVE
BTST
BNE
BRA

CommandKey

Modify, DO
118,DO
CommandKey
Keystroke

CLR.L -<SP>
MOVE Message+2,-<SP>
J1enuKey
BRA MenuCommand

MouseDown
CLR -<SP)
MOVE.L Where,-<SP)
PEA EvtWind
.JindWindow
MOVE <SP)+, DO
ASL.I.I 111,DO
MOVE WindowTable<DO.>,DO
JMP WindowTable(DO)

WindowTable

User pressed a key
Modifier word maps shift keys
If the Command key is down
it is a menu event

Spread-Sheet data

Command key event. Short-cut menu choice
Get space for menu choice

; Put message byte on stack
;Identify Key.ASCII -> MenulD,Menultem

Menu ID & Item now on stack

F·i nd where mouse c I i eked
Clear space for integer result
Mouse at time of GetNextEvent
Window the event was in
click point, •window-> window part code
Result= section of window
Window Part * 2 Bytes/Entry

; Get offset from table
; Cal I subroutine

DC.I.I
DC.I.I
DC.I.I
DC.I.I
DC.I.I
DC.I.I
DC.I.I

Nul IEvent-WindowTable
lnMenu-WindowTable
SystemEvent-WindowTable
Content-WindowTable
Orag-WindowTable

In Desk
In Menu Bar
System Window
In Content
In Drag

lnMenu

Nul IEvent-WindowTable
NullEvent-WindowTable

CLR.L -<SP)
MOVE.L Where,-<SP)
J1enuSelect
BRA MenuCommand

SystemEvent
PEA CurrentEvent
MOVE.L EvtWind,-<SP)
....SystemC I i ck
RTS

In Grow
In Go Away

Get space for menu choice
Mouse at time of event
Click Point-> MenulD,Menultem
Menu choice now on stack

Action for desk accessory
Pointer to event record
Load window pointer onto stack
System takes care of own click

379 SimpleCalc Program Code

Content

Drag

MOVE.L EvtWind,AO
CMP.L WindowPointer,AO
BNE l'lul I Event
BTST •FrontFlag,D5
BEQ SelWindow
BRA Se I Ce I I

MOVE.L EvtWind,-<SP)
MOVE.L Where,-<SP)
PEA DragLimit
....DragWindow
ATS

WindChk
MOVE.L Message,AO
CMP.L WindowPointer,AO
Bl'IE &110
BSR SelPort
CMP DO,DO

e!O ATS

SelWindow
MOVE.L WindowPointer,-<SP>
..SelectWindow

Se I Port
MOVE.L WindowPoinler,-<SP)
..8etPorl
RTS

Click inside a window
Event Window
Is it our Window?
l'lo. Ignore this event
Is our window top dog?
l'lo. Just select window for first click
Yes. Change cell in top window

Let user move the window
Window pointer
Current mouse location
Boundary rectangle
• Window,Start point,Bounds rect

Find event window
Is it our window?
If not ignore it
Select our port
Return Z set

Window Pointer
Put the window in front

; Set the drawing port to the window

;------~------------------- MEl'IU EVENTS ---------------------------

Menucommand
Choose selections from Menu Bar

Input <SP> = Menu ID
2<SP> =Menu Item

LEA Menu, AO
MOVE.L . <SP>+, <AO>
BSR ChooseMenu
CLR -<SP>
JliLiteMenu
ATS

ChooseMenu
MOVE.W Menu, DO
CMPI •1,DO
BEQ AppleCmd

CMPI •302,DO
BEQ Fi leCmd

CMP I •303, DO
BEQ EditCmd
ATS

Fi leCmd
Quit

BSET •QuilFlag,D5
ATS

Point lo menu variable
Save menu and item

Menu 0 means unhighlighl
menu highlighted now

Find menu & item
Menu resource ID
Is it menu 1?
Apple menu command

Is it menu 302?
File menu command

Is i t menu 303?
Edit menu command
l'lo item selected

Only item is quit
Exit tn finder
Set quit bit in flag register

380 Programming the 68000

EditCrnd Could be for SirnpleCalc or desk accessory
Space for TRUE/FALSE result & item CLR.L -<SP>

MOUE Menultern,DO
ADDQ •1,DO
CMPI •6,DO
BCC @10
MOUE DO,CSP)

Action for system to try
Adjust to desk accessory standard order
Make NEGATE = 0 for UNDO

Edit commands 2 .. 5
ll10SysEdit Menu Item-> TRUE if accessory used event

Check result. If system used the menu BTST •O,<SP)+
BNE Nu1·1Event
MOUE Menultern,DO
CMPI •2,DO
BEQ Copy
BCS Cut
CMPI •4,DO
BEQ ClearCrnd
BCS Paste
CMPI •7,DO
BEQ Program
BRA Invert

item event.we are all done

Item 2?
Item 1?

I tern 4?
Item 3?

I tern 7?
Must be i tern 5

AppleCrnd

MOUE
CMP
BEQ

Menultern,DO
•1,DO
About

Check item number
Item 1?
Yes. Do About ...

Desk accesory. The name in the menu is the same as the program file name

About

MOUE.L AppleHand<A6>,-<SP) ; Apple-Menu handle
MOUE.I.I DO,-<SP> Number of chosen item
PEA DeskName<A5) Pointer to place for name
...Getltem Get string for item
CLR -<SP> Space for reference number
PEA DeskName<A5) Open desk ace
....OpenDeskAcc" Name-> Reference number
MOUE <SP>+,DO Discard result
BRA SelPort Restore our graph port

CLR.L -<SP>
MOUE •301,-<SP>
CLR.L -<SP>
MOUE.L •-1,-<SP>
...GetNewDialog
CLR.L -<SP>
PEA lternHit<A6)
J1oda1Dialog
..DisposDialog

Display "about" box
Clear space for dialog pointer
Dialog resource ID 301
Let Dialog Mgr provide storage area

; Place Dialog box above all other windows
DialoglD, • Storage, • l.f indow above->Dialog pointer

No filter procedure
• Area for Item Hit

CMPI .l.f •2, lternHit<A6)

filter procedure, • item chosen
Dialog pointer still on stack
End 'program if button 2 chosen

BEQ Quit
ATS

;------------------------- SPREADSHEET FUNCTIONS -----------------~-~-------

SelCel I
PEA l.fhere
....GlobalToLocal
BSA Drawee I I
BSA CalcNum
MOUE.I.I D2,D4
BSA ProgSe I ·
BRA DrawSelect

User clicked to select a cell
Adjust Mouse location to window coordinates
pointer to the point for input and output
Un Highlight current selection
l.fhich cell to select
Save the selected cell
Record the action
Out I ine eel I darkly

381 SimpleCalc Program Code

Keystroke ; User pressed a key
BSET •Redraw,D5 ; Redraw selected cell when done
MOUE.L Message,D2 ; Get Character record

Vector to operation or put digit in cell value
CMPI .B •'O' ,D2
BCS NotDigit ; Not a digit
CMPI .B •'9' ,D2
BLS DigiKey

NotDigit
Check table for operation

BSR OperUect
BEQ BadKey

Save address of operation.
PEA <AO>
BRA ProgOper

BadKey
; Not in table so ignore key

RTS

DigiKey

; Check operation table for key
; Ignore keystroke if not in table

Store operation in program. Then perform it.
; Push address on stack
; Save operation in accumulator program

Digit typed in D2. Add it onto end of number in <A3)
MOUEQ •$OF,DO
AND.L DO,D2
MOUEQ •10,DI
MULS <A3>,DI
BPL DigiAdd
NEG.L D2

DigiAdd
ADD.L D2,DI
MOUE DI, <A3)

now check for overflow

Clear upper nibble & junk
number base
Current value times 10
Is the cell number negative?
then increment is negative too

plus key stroke
Save value

bits 15 through 30 must be the same
LSR.L DO,DI shift down 15 bits
ADDQ.IJ •1,D1
BEQ DigiOK OK negative number
SUBQ.IJ •1,DI
BEQ DigiOK ; OK positive number

overflow. clear to zero and start over
CLR.IJ <A3)

DigiOK
; fall through to CellConst

Cel I Const
BSET
CLR.B
RTS

OperUect

•Redraw,D5
Prg<A3)

New cell value in range

Cell set to constant value
Redraw selected cell after editing
No program for cell

·,
Return vector

INPUT
OUTPUT

to operation from table
D2 = Character to match
AO = Vector address
D2 = Character matched

Z flag -> character not found

LEA Opertable,AO
OpUecLoop

CMP.B <AO>,D2
BNE NextEntry

Found It
MOUE.I.I 2<AO>,DO
LEA Opertable<DO>,AO
RTS

Compare key stroke to table

Vector to operation
Actually LEA Optable-*<PC,DO>
Return NZ

382 Programming the 68000

NextEntry
Check for end of table & advance pointer

TST.L <AO)+
BNE OpVecLoop
ATS Not found. Return Z flag set

OperTable
4 bytes per entry

byte 1 = asci i value of key
byte 2 not used
bytes 3&4 offset

'+ .
AddOper-OperTable . '
SubOper-OperTable
'* .
MulOper-OperTable
'I .
DivOper-OperTable

EqOper-OperTable

DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC.L

$0300 !Enter! key
Enter-OperTable
$0800 IBackSpacel key
ClearCmd-OperTable
$1800 !Clear) on 10-key pad
ClearCmd-OperTable
0 End of table

AddOper
Add the selected cell into the accumulator

MOVE.J..J <A3),D0
ADD.J..J DO, <A6)
ATS

SubOper
Subtract the selected eel I from the accumulator

MOVE.J..J <A3),D0
SUB.J..J D0,(A6)
ATS

MulOper
Multiply the accumulator by the selected cell

MOVE . J..J <A3), DO
MULS <A6),D0
MOVE. J..J DO, <A6)
ATS

DivOper
Divide the accumulator by

MOVE.J..J <A6),D1

DivErr

EXT.L D1
MOVE.J..J (A3),D0
BEQ DivErr
DIVS DO,D1
MOVE.J..J D1,<A6)
ATS

SWAP D1
EORI .J..J #$7FFF,D1
MOVE.J..J D1,<A6)
ATS

the selected cell

Divide by zero
Return largest magnitude possible

383 SimpleCalc Program Code

Enter
Set the accumulator

MOUE.W <A3>,<A6>
ATS

to the value in the selected cell
; Set value

EQOper
Set the selected cell to the value of the accumulator
Clear the program in the eel I
delete the "="from the accumulator program

CLA Prg<A3)
MOUE.W <A6>,<A3)
SUBQ.W #1,D6 ; Delete the = operator
ATS

User can select these Edit Menu items

Cut

Copy

Paste

MOUE.W <A3),CI ip<A6>
CLA.W <A3)
BAA CellConst

MOUE.W <A3>,Clip<A6)
ATS

MOUE.W Cl ip<A6>,<A3)
BAA Cel I Const

ClearCmd
CLA
CLA
CLA
BSA
BAA

<A3)
<A6>
D6
ProgSel
Cel I Const

Invert
NEG
BAA

Program

<A3)
Cel I Const

Copy the accumulator program
LEA Prg<A3>,A1
LEA Prg<A6>,AO
MOUE D6,DO

CopyPLoop
MOUE.B <AO)+,<A1)+
DBAA DO,CopyPLoop
CLA.B -<AD
ATS

CUT I X
Cl ipBoard = Cel I
Cel I = 0

;COPY/C
; Cl ipBoard = Cel I

; PASTE I U
; Cel I = Cl ipBoord

CLEAR or Clear key
Cel I = 0
accumulator = 0
Clear accumulator equation
Accumulator equation = select

NEGATE I N
eel I = -eel I

; PROGRAM I P
into the selected eel I

Point to eel I program area
Point to accumulator program area
Count of valid bytes

; Move D0+1 bytes
; Program ends with 0

;--------------------------- DRAWING ROUTINES ---------------------------

,
DrawCel I

Put numbers into selected eel I. Erase existing numbers
PEA Ce I I Aect
...EAASEAECT
BSA FrameCe I I

Go to start of eel I
MOUE.L TxtPnt,-<SP)
..J10UETO

Set up to draw a value
CLA.L DO
MOUE.W <A3),D0
BPL DrawUalue

Draw gray box

X,Y of start of eel I
horiz, vertical

First integer is value

384 Programming the 68000

Precede negative number with a minus sign
MOUE.W •$2D,-<SP) minus sign
...DRAWCHAR Draw the -
CLR.L DO
MOUE (A3),D0
NEG.W DO

Get value again
and make it positive

DrawUalue
DIUU •10,DO
SWAP DO
ORI .B •·o· ,DO
MOUE.W DO,-<SP>
SWAP DO
EXT.L DO
BEQ DrawDigit
BSR DrawUalue

DrawDigit
...DRAWCHAR
RTS

MarkCel I

Oraw in base 10
Get remainder
Make digit a character by oring in zero
Save digit to draw
Restore quotient
Leading digits?
No more digits. Draw them al I now
Calculate next higher digit

Draw a byte from stack
Return to draw next byte or exit

Draw Selected eel I border Dark so we know it is selected
BTST •FrontFlag,D5 Is our window active?
BEQ FrameCel I No. Don't high I ight
_FENNORMAL ; Normal Width,Mode,Black Color
MOUE.L. •$00030003,-<SP) ; Width,Height=3
_FENSIZE
PEA Ce I I Rect
...FRAMERECT

@10 RTS

FrameCel I

; pointer to separating rectangle
; Draws box INSIDE Cel IRect

Outline eel I with I ight border
_FENNORMAL ; Normal Width,Mode,Black Color
MOUE.L GRAFGLOBALS<A5>,AO ; Pointer to QD globals
PEA GRAY<AO) Standard pattern
_FENPAT
PEA CellRect pointer to separating rectangle
...FRAMERECT Draws box INSIDE Cel IRect
RTS

Drawlnside
; Draw the entire spreadsheet

MOUE D7,-<SP)
MOUEQ •$7F,D7

lnsideloop
MOUE D7,D2
BSR CalcCel IRect
BSR Drawee I I
DBRA D7, lnsideloop

Save eel I to recalculate
Highest number cell

Draw numbers

MOUE <SP>+,D7 Restore eel I to recalculate
Draw the selected eel I and Accumulator. Restore pointers

Fall through to DrawSelect

DrawSelect
Draw the selected cell

BCLR •Redraw,D5
Redraw accumulator

MOUEQ •AccCel 1,D2
BSR CalcCel IRect
BSR Drawee I I
BSR MarkCe I I

Redraw Selected eel I
MOUE D4,D2
BSR CalcCellRect

and Acc. Exit with pointers set up for selected cell
; Clear update needed flag

Cel I num of accumulator

Mark accumulator

Selected eel I

385 SimpleCalc Program Code

BSR
BRA

DrawCel I
MarkCel I ; High I ight eel I

;------------------------ SPREAD SHEET UPDATING ---------------------------

Calculate
MOUE <A6),D0 ; Save accumulator
MOUEM.L DO/D6/A3/A4,-<A7)
ADDQ.B #1,D7

; Save registers
Next eel I to update

BPL CalcNext
CLR D7

CalcNext
MOUE.W D7,D2
BSR CalcPntr
BEQ CalcExit
TST.B Prg<A3)
BEQ CalcExit
MOlJE.L A3,A4
CLA D6
CLR.W <A6)

CalcLoop

Start with cell 0

Point to eel I data
No need to calc accumulator
Any program ?

Pointer to update eel I
Start of program
Start with clear ace

MOlJE.B Prg<A4,D6),D2 Get Code byte
BEQ CalcDone
ADDQ #1,D6 Point to next byte
BCLR #7,D2 Is it Select or arithmetic?
BEQ CalcCheck

select eel I for input to calculator
BSR CalcPntr
BRA CalcLoop

CalcCheck
Find operation in table

MOUE.B D2,DO
BSR OperlJect
BEQ CalcOper

Not in table. Impossible ! !
STOP #$2000

CalcOper
JSR
BRA

CalcDone

<AO)
CalcLoop

end of prog. assign value.
MOUE <A6),D0
CMP.W <A4),D0
BEQ CalcExit
MOUE.W DO, <A4)

new value. redraw eel I
CMP D7,D4
BNE CalcUpdate
BSET #ReDraw,DS
BRA CalcExit

CalcUpdate
MOUE
BSR
BSR
MOUE
BSR

CalcExit

D7,D2
CalcCel IRect
DrawCel I
D4,D2
CalcCel IRect

Found it

No privilege violation

Execute operation

Redraw eel I if it changed
Get result
Compare to old value
No change
Assign new value

Calculating selected eel I?

Set flag to do later

Redraw the re calculated eel I

Selected eel I

MOUEM.L <A7)+,DO/D6/A3/A4 ; Restore saved registers
MOUE D0,(A6) ; Restore accumulator
RTS

386 Programming the 68000

;------------------------ SPREAD SHEET SUBROUTINES ---------------------------

CalcNum
Calculate the cell number that contains a point
Input Where = point in local coordinates
Output D2 =cell number

CLR.L DO
MOVE.W WhereH,DO
DIVU •56,DO
MOVE.W WhereV,D2
LSR.W •4,D2
ASL.W •3,D2
ADD.W DO,D2
RTS

CalcCel IRect

Horiz pixels/cell

16 Vert pixels/eel I
8 eel Is Horiz per I ine
Cell number= 8 * y + x

Calculate a cell Rectangle from a eel I number
Input D2 = eel I number
Output D2 = eel I number

A3 = pointer to eel I data
TxtPnt .=first text pixel of eel I
CellRect =rectangle separating cell

MOVE.W D2,DI
EXT.L DI
DIVU •S,DI
MOVE.L D1,DO

Divide always 32 bits
8 columns per row

SWAP DO Remainder in upper word
LEA CellRect,AO Point to cell rectangle
LEA TxtPnt,AI Point to start of text
MULU •56,DO 56 pixels per column
MOVE DO,left<AO> Left separator
ADDQ •4,DO Margin before text
MOVE.W DO,h(AI) First text location
ADD.W •52,DO Advance to next column
MOVE.W DO,right(AO) Right separator
ASL.W •4,D1 ., 16 pixels per row
MOVE.W DI, top<AO> Top separator
ADD.M •12,DI Ascent of text + top margin
MOVE.W D1,v<A1) First text location
ADDQ •4,DI Advance to next row
MOVE.W Dl,bottom<AO> ; Bottom separator

Fall through to calculate cell data pointer

CalcPntr,
Calculate the pointer to a cell value
Input D2 = eel I number
Output D2 =cell number

A3 =pointer to cell data
Z flag -> eel I number is accumulator

MOVEQ •AccCell,DO Make accumulator= cell number 127
EOR.W D2,DO Cale relative location
ASL •5,DO 32 bytes I cell
LEA O<A6,DO.M>,A3 Does not affect Condition codes
RTS

ProgSel ; Store selection operation in program
Put selected cell, D4, into program with $80 flag

MOVE D4,D2
BSET •7,D2

Fall thru to ProgOper to put byte into program

387 SimpleCalc Program Code

ProgOper ; Store arithmetic operation in program
Put byte in D2 into accumulator program

MOUE.B D2,Prg<A6,D6.W) ; Store byte in program list
CMPl.B •Proglast,D6 More program space?
BEQ ProgOUF
ADDQ.B •1,D6 Advance program pointer
RTS

ProgOUF Program too big
RTS

---------------------------- Data Storage -------------------------

CurrentEvent
What DC 0
Message DC.L 0
When DC.L 0
Where
WhereU DC 0
WhereH DC 0
Modify DC 0

EvtWind DC.L 0

Menu DC 0
Menu Item DC 0

WindowPointer DC.L 0

DragLimit
DC 30
DC 5
DC 350
DC 500

Cel IRect DCB.W 4,0
TxtPnt DC.L 0

END

R.Maker File, SimpleCalc.R

* Resource file for SimpleCalc

*
* Compiled object file name
S1mpleCalc

*
* Type and signature
APPLCALC

*
*Linked object file name
INCLUDE SimpleCalcLinked

*

Event record
Type of event
Info about event
Tick when it happened
Mouse location when it happened
Vertical coordinate
Horizontal coordinate

Control keys down when it happened

Window with event

Menu that item is in
Menu item selected

Pointer to spread sheet window

Boundary rectangle for dragging window
top
left
bottom
right

Rectangle enclosing selected cell
Point in cell where text starts

* Vou can also create a separate resource file without code,
* by omitting all of the lines above and adding the compiled
* resource file name shown on the next comment line below.
*Si mp I eCa I c.Rsrc

388 Programming the 68000

*
*
*Signature for desktop file
Type CALC = GNRL
,0
.P
SimpleCalc version 1.0, a fun spread sheet program

Type MENU

'1
\14
About Simple Cale ...
(-

,302
File

Quit

,303
Edit

Cut/X
Copy/C
Paste/V
Clear
Negate/N
(-

Program/P

Type DLOG
,301
100 100 200 400
Visible NoGoAway
1
0
301

Type DITL
,301

4

Button
70 220 90 280
Try it \21

389 SirnpleCalc Program Code

Button
70 20 90 80
Quit

StaticText
15 50 35 280
Simple Cale was written for fun

StaticText
35 20 55 2ao
by Harland Harrison & Ed Rosenzweig

Type WIND
,301

Simple Cale
64 32 320 480
Visible NoGoAway
0
0

* File reference
Type FREF

,128
APPL 0

Type BNDL
,128
CALC 0
ICN"
0 128
FREF
0 128

Type ICN" = GNRL
* Icon list for the program icon
*There are two icons in the list. One to display and one for a mask.

'128
.H

*This is the SimpleCalc icon. There are 32 lines of icon data
00000000
00000000
00000000
1FFFFFFC
10000004

390 Programming the 68000

17FFFFF4
14081014
14C997D4
152A5054
14285094
14499114
14885214
150A5214
15E99214
14081014
17FFFFF4
14081FF4
15E89834
15099834
15089834
15C89834
14289834
14289834
15C9D834
14081FF4
17FFFFF4
10000004
1FFFFFFC
00000000
00000000
00000000
00000000
*This is the mask for the SimpleCalc icon. There are 32 lines of data.
00000000
00000000
00000000
1FFFFFFC
1FFFFFFC
1FFFFFFC
1FFFFFFC
1FFFFFFC
1FFFFFFC
1FFFFFFC
1FFFFFFC
1FFFFFFC
1FFFFFFC
1FFFFFFC
1 FFFFFFC
1FFFFFFC

391 SimpleCalc Program Code

IFFFFFFC
IFFFFFFC
1 FFFFFFC
IFFFFFFC
IFFFFFFC
IFFFFFFC
IFFFFFFC
1 FFFFFFC
1 FFFFFFC
IFFFFFFC
IFFFFFFC
1 FFFFFFC
00000000
00000000
00000000
00000000

Linker File, SimpleCalc.LINK

/Output SimpleCalclinked
SimpleCalc.Rel

; Output fi I e
; Input file

$

Exec File, SimpleCalc.Job

Asm
Link
RMaker

SimpleCalc.Asm
SimpleCalc.Link
SimpleCalc.R

Exec
Exec
Edit

Edit
Edit
Edit

Index

1010 emulation mode, 92, 94-95, 101
6522 \tlrsatile Interfuce Adapter, 129
6800 interfuce lines, 128-129
8530 Serial Communications

Controller, 129
68000 (microcompressor), 13-22,

121-129
addressing modes. See Addressing

modes, 68000
block diagram, 121, 122
electrical connections,

programmer's view, 124
machine language, 21-22
program counter (PC), 16, 123
registers, 13, 121, 123

AS, 132, 133, 190-191, 342
A6, 190
A7 (stack pointer), 13; see also

Stack
changing, debugger,172
data cf. address, 13
preserving, 48-49
status, 19-20, 96-99, 123; see also

Condition codes
status, bit analysis, 97

$A. See Tuolbox routines; 1\'ap(s)
Absolute long mode, 29
Absolute short mode, 27-28
Addition, 61-63, 75-77

sample code, 119-120
Address bus, 121, 123, 125
Addressing, memory, 12-13

words start on even numbers, 125
Addressing modes, 68000, 23-43

absolute long, 29
absolute short, 27-28
addressing register indirect, 30
address register direct, 26-27
data register direct, 26
effective address, 41-42, 61-63
immediate, 25
inherent, 23-25
postincrement register indirect,

35-36

393

predecrement register indirect,
36-37

program-counter relative, 114-115,
140-142, 223

with displacement, 37-39
with index and displacement,

40-42
register indirect

with displacement, 30-32
with index and displacement,

33-34
sign-extended bytes, 27

Addressing register indirect mode,
30 .

Address register direct mode, 26-27
Address strobe line, 126-127
Alert box, 186

bomb, 93-95
error codes, listed, 333-339

resource type, 161-163
Alignment, data, 133, 136-137,

202-203
Apple menu, 182, 187, 240

SimpleCalc, 229-230
Applications as resources, 155, 187
Arcs, 209

sample call, 370-371
Arithmetic

addition, 61-63
double precision division, 280-281
flags, 50-53
floating point, 63
instruction set, 74-81
modular, 86
sample code, 119-120
SimpleCalc, 246
:;!peed of various operators, 257

Arrays, 61
of records, 33-34

ASCII codes, 170
cf. key codes, 242

Assembler directives, 143-149
Lisa, 146-148

.IF (conditional assembly),
147-148

.INCLUDE, 146

Macintosh, 143-146
.DUMP, 144
IF (conditional assembly),

145-146
INCLUDE, 143-144

.MACRO, 148-149
See also Data directives; Segment

directives
Assembly; conditional, 11, 145-148
Assembly language, 6

advantages, 1-2, 6
conventions, 9-11

source-destination, 53

Base conversion, 105-112, 250, 252,
285-286, 296

BASIC, 1, 17
FOR-NEXT loops, 57
GOSUB .. RETURN, 9, 16, 70, 150
GOW,9
IF ... THEN, 74
ON ... GOSUB, ON ... GOW, 30, 113,

141
PRINT, 281
relation to assembler, 2
REM, 11

Binaiy coded decimal, 77-78
conversion to, sample program,

105-112
Binaiy number system, 293-300

conversion to decimal, 285-286
conversion to hexadecimal, 296

Bit(s)
flipping, 84
image, 204
manipulation, 85"92, 108, 111
mask, 82-85

Bomb alert box, 93-95
error codes, listed, 333-339

Boolean variables, 198, 202
Boot code, 128
Branching

addressing techniques, 141-143
instructions, 50-59

summary, 57

Branching (cont'd.)

cf. jumps,. 72-73
sample code, 113-115
See also Loops

Breakpoints, 170-171

394

Bus control lines, 125-127
Bus error line, 127

C (language), 1
case statement, 30, 70, 113
for loop, 57
local variables, 65
pointers, 30
relation to assembler, 2

c flag, 20, 51, 75
Circles, 209
Clipboard, 219
Clock, system, 195-196, 272, 280-281

adjusting to 8-bit devices, 128-129
Code, 6,153

relocatable, 37-38, 72-73
resource type, 163, 187
source, object, executable, 6

Comments, 11
conventions, 221

Compilers, 7, 69
cf. interpreters, 2, 5-6
See also Resource compiler

Conditional assembly, 11
Condition codes, 19-20, 46-47, 244,

250
instructions, effects of, listed,

329-332
cf. status register, moving, 97
See also Flags; Status register

Constants, allocating, 189
Control lines, 127
Controls, resource type, 160
Converging calculation, 219-220
Coordinates, QuickDraw, 204-205,

252-253, 258
common calls, expanded, 366

Cursor
changing shape, sample code,

270-271
common calls, expanded, 362-364
hot spot, 268
image and mask, 268-269, 363
initializing, 229-230
mouse, 186
setting, 268-270

sample code, 269-270

Data, 153
alignment, 133, 136-137, 202-203

Programming the 68000

Data acknowledge input, 127
Data bus, 123-124
Data directives

Lisa, 135
ASCII, 136
.BLOCK, 136
.BYTE, 135
.EQU, 136
.LONG, 135-136
.WORD, 135

Macintosh, 132-135
DC, 11, 132
DCB, 132
DS, 133, 342
EQU, 135
SET, 135
STRING_FQRMAT, 134

Data path, 121
Data register direct mode, 26
Debugger, 7, 166-173

advantages, 166-167
disassembling, 169
formatting display, 170
strings, 170
symbolic, 169
versions, 167-168, 169, 173

Debugger commands
An, 172
Ax and Hx, 173
BR, 170-171
CL, 171
CV, 173
DM, 170
Dn, 172
F, 173
G, 171
IL, 169-170
PC, 172
S, 171
SM, 172
SR, 172
ST, 171-172
T, 171

Debugging
conditional assembly, 147-148
use of STOP, 256

Decimal number system, 293-294
conversion from binary, 285-286

Decimal records, 285
Desk accessories, 187-188, 235, 240

blinking, 273
Desk Manager, common calls,

expanded, 359
Devices, 8-bit, 128-129
Dialog box, 186

events, 184-186
printing, 281

resource type, 155, 160-161, 187,
267-268, 346

SimpleCalc, 240
variable text, 265-268
See also Alert box

Dialog Manager, 186, 188
common calls, expanded, 360-361

Disassembling, 21, 169
Disk volume, 143
Dispatch Tu.hie, 194
Division, 79-80

double precision, 280-281
sample code, 119-120

DMA, 95-96
lines, 68000, 127

Dollar sign, hexadecimal, 6

Editing
making items blink, 272-273
standard operations, 278-280

Edit menu, 187
Editor, assembler, 7-9

cf. MacWrite, 8-9
Effective address, 41-42, 61-63
E flag, 20, 75
Ellipses, 209
Environment, preserving, 48-49
Errors

addressing, record areas, 41
codes, listed, 333-339
linker, 152
numbers, 93, 94
source, destination conventions,

53
Spurious Interrupt, 127

Event-driven programs, 181
Event Manager, 181

common calls, expanded, 358-359
record structures, 353-354

Event queue, 181, 219
emptying on program loading, 229

Events, 181-184 ·
keyboard, 242
menu-selection, 182
mouse, 182-184
SimpleCalc, 231-237
types, 374
window, 182

EXEC files, 173-174
Lisa \\brkshop, 341-345

Executive function (EXEC), 9

395 Index

File(s)
external code, 143-144
forks, 153-155
resource types, 165, 347
signature, 157, 165-166
syinbol table, 144

Flags
branching instructions, 50-52
and CMP instructions, 59
condition codes, 19-20
extend cf. carry, 75
impact of MOVE, 75
SimpleCalc, 225, 244
See also Condition codes; Status

register
Floating point calculations, 63, 74-75

sample code, 290-291
See also Standard Apple Numeric

Environment (SANE)
Fonts, 214-216

numbers, 373
system, 276

Forth, relation to assembler, 2
FOIITRAN, DO loops, 57

Global Data Area, 131-132, 133,
142-143

Halt line, 127
Handles, 198-199

dereferencing, 200
Heap. See Memory
Hexadecimal number system, 6, 12,

293-300
conversion

from, 105-112
to, 296

High-level languages, 1
interpreted cf. compiled, 2, 5-6
relation to assembler, 2-6
See also specific languages

Icons
resource type, 165-166, 347-349
SimpleCalc, 220

Immediate mode, 25
Inherent mode, 23-25

. Instruction set
ABCD, 75, 77-78, 108
ADD, ADDI, ADDQ. ADDA, 75-77
ADDX, 75-77, 280
AND, 82-83
ANDI, ORI, EORI, and MOVE to SR,

99-100
ANDI to CCR, 97-98

ASL, 88-90, 257
ASR, 88-90
BCC, 52-53
BCHG, 87
BCLR, 87
BCS, 53
BEQ. 47, 53-54
BGE, BLT, BLE, BMI, 56
BGT, 55-56
BHI, 54-55
BLS, 55
BNE, 20, 54
BPL, 56-57
BSET, 86-87
BSR, 70-74
BTST, 85-86, 230
BVC, 57
BVS, 57
CHK, 92, 94, 194
CLR, 81
CMP, 20, 22, 50, 59-61
CMPA, 59
CMPI, 59, 114
CMPM, 60
condition codes in, 46
DBcc group, 57-59
DBEQ. 46-47
DBRA, 32, 226
DIVS, DIVU, 79-80
DIVU, 250, 281
effects on condition codes, listed,

329-332
EOR, 84
EORI to CCR, 98
EXG, 63-64
EXT, 80-81, 250
format and cycle timing, listed,

301-328
JMP, 9, 70-74, 140, 142
JSR, 9,16,140,142,150,194
LEA, 32,42, 61-63,140, 225, 244
LINK and UNLK, 65-69, 190, 225
LSL, 90
LSR, 90, 257
MOVE, 11, 45-50, 75
MOVEA, 46-48
MOVE from SSR, 99
MOVEM, 48-49, 254
MOVEP, 48
MOVEQ. 50
MOVE to CCR, 98-99, 231
MOVE USP, 100
MSR, 257
MULU, 78-79, 257
NEG, NEGX, 81
NOP, 23-24
NOT, 84-85
OR, 83-84

ORI to CCR, 98
PEA, 61, 63, 140, 191-192
RESET, 100
ROL, ROR, 90-91
ROXL, ROXR, 91-92
RTE, 23-24, 100
RTR, 23-24, 70-74
RTS, 16, 19, 23-24, 225
samples, 9-10
Sec, 70-74
STOP, 100-101, 256
SUB, 78
SUBX, 280
suffixes, 10-11
SWAP, 64-65, 108, 250
'D\S, 95-96
TRAP, 94-95, 194
TRAPY, 92, 95
TST, 81
unimplemented, 101
USP, 47, 123

Interpreted cf. compiled languages,
2, 5-6

Interrupt(s), 16
lines, 127
mask, 97
vectors, 92-94

Jump table, 142-143, 153, 188-189

Keyboard events, 183, 242
sample code, 115-118
SimpleCalc, 233

Key codes, cf. character codes, 242

Labels, 9-10
Line drawing, 207-208

sample code, 364
Linker, 2, 6, 7, 9, 137, 139, 149-155

advantages, 6
errors, 152
jump table, 150-153

Lisa 'W>rkshop, 341-349
assembler subroutines, 138
SimpleCalc, 221-222

Literals, string, 133-134, 191
Local variables, 65-69
Logical operations, 81-85

drawing in gray; using XOR,
277-278

Logical values, use of O and 1, 20

396 Programming the 68000

Loops, 54-55, 57-59
SimpleCalc, 255
vs. straight-line programming, 106
See also Branching

Lower data strobe, 126-127

Machine language, 21-22
Macintosh Development System

(MDS), 1, 7-9
hardware requirements, 7
integration, 8
linker file, 152

Macintosh environment, 175-192
program guidelines, 175-176

Macintosh, unique features, 140-143
avoid JPM and JSR instructions, 73
avoid TRAP, TRAP\!, and TAS

instructions, 95-96
USP not used, 47

Macintosh XL, never use TAS
instruction, 96; see also Llsa
W>rkshop

Macros, 11, 63
Mac\\Tite, 8-9
Masks, 82-85
Memoi:y, 7

alignment, 202-203
allocation, 188, 189-192
changing, debugger, 172
direct access (OMA), 95-96
fragmentation and compaction,

199-200
hexadecimal characters in, 297
K, meaning of, 297
management, 198-203
-mapped 110, 123
monitoring, debugger, 173
relocatable cf. nonrelocatable

blocks, 264
SimpleCalc, 223-224

Memory Manager, 188, ZOO, 263-265
Menu(s)

Apple, 182, 187
Edit, 187
resource type, 345
selection events, 182
marking, disabling, and changing

items, sample code, 275-277
mouse-down events, 235
as resources, 155
SimpleCalc, 228-229, 237-241

Menu Manager
common calls, 356-358
drawing in gray, 277-278

Micro-code, 129
Mode, program, 175-176, 186
Mode, program, 175-176, 186

Modulo, 86
Mouse

cursor, 186
dragging selections, 273-275
events, 182-184

SimpleCalc, 233-237
sample code, 113-115

Multiplication, 78-79
sample code, 119-120

Multitasking, 97, 99-101

Negative numbers, 298
N flag, 19-20, 50

0 flag, 19-20
One's complement, 84
Operating system cf. Tuolbox calls,

196
Ovals, 368

PackSyms utility, 144
Paging in and out, 27-28, 153
Parentheses, indirect addressing, 30
Pascal, 1, 7

Case statement, 30, 70, 113, 141
comments, 11
debuggers, 169
For loop, 57
if ... then, 74
incorporting assembler routines,

Llsa W>rkshop, 138, 341-345
local variables, 65
pointers, 30, 197
procedures, 9,16, 70

definitions in Tuolbox calls, 221
records, 201-203
relation to assembler, z
strings, 285

literals, 133-134
-style records (GNRL resource

type), 160, 164-166
trap macros, 194
type constraints, 176, 197
-type string, drawing, 206-207
types used in trap calls, 351-354
windows, 176

Pen, 206
characteristics, 212-214
SirnpleCalc, 253

Peripherals
8-bit, 128-129
output to, 123, 127

Pixel, 203
Playing computer, 105
PUI, local variables, 65

Pointers, 30, 197, 221, 259
SANE, 289

Point, QuickDraw, 205
Ports, (memory-mapped 110), 123
Postincrement register indirect

mode, 35-36
Predecrement register indirect

mode, 36-37
Printing, 281-284
Privileged instructions, 97, 99-101
Program(s)

event-driven, 181
mode, 175-176, 186
structure, event loops, 176-177

Program control instructions, 70-74
branch cf. jump, 72-73

Program counter, 16, 21
and debugger, 169-170, 172

Program counter relative
addressing, 114-115, 140-142

with displacement mode, 37-39
with index and displacement

mode, 40-42
SimpleCalc, 223

QuickDraw, 176, 203-216
bit image, 204
circles, ellipses, arcs, 209

sample calls, 370-371
common calls, expanded, 361-371
coordinate system, 204-205,

252-253, 258
sample calls, 366

cursor, sample calls, 362-364
data definitions, 372-374
definition, 144
drawing in gray, 277-278
erasing, 211-212
event types, 374
fonts, 214-216, 276, 373
globals, 213-214
global variables, offsets, 373
initializing, 213-214
line drawing, 207-208

sample calls, 364
modifier word, 374
ovals, sample calls, 368
patterns, 213-214, 372
pen, 206

characteristics, 212-214
pixel, 203
points, 205
record structures, 353
rectangles, 205-206, 208-211

rounded, 210, 369-370
sample calls, 366-370
squares, 209-210

397 Index

QuickDraw (cont'd.)
SimpleCalc routines, 249-Z53
solids, Zll
text, Z06-Z07

fonts, size, face, Z14-Z16
sample calls, 364-365

types of drawing, Z06
See also Tuolbox

Read/write line, 1Z6
Records

addressing, 31-34
errors, 41

decimal, Z85
indexing, 34
Pascal-type, Tuolbox calls, Z01-Z03

Rectangles, Z05-Z06, Z08-Zll
common calls, 366-367
rounded, Z10, 369-370
squares, Z09-Z10

Recursive algorithms, Z51
Register indirect with displacement

mode, 30-3Z
Register indirect with index and

displacement mode, 33-34
Registers, preservmg, 48-49; see also

68000 (microprocessor)
Relocatable code, 37-38, 7Z-73, 188,

Z64
Reset line, 1Z8
Resource(s), 153, 155-166

editor, 156
file, SimpleCalc, ZZ8, 387-391
fork, 187
ID numbers, 158
menus, 156-157
sample file, 156-160

Mac cf. Llsa, 157
system, 187

Resource compiler, 6, 7, 9, 166, 181,
187

SimpleCalc, ZZ1-ZZZ
Llsa version, 345-349

Resource Manager, common calls,
361

Resource types, 155, 158, 160
ALRT, 161
BNDL, 165, 347
CNTL, 160
CODE, 187
DITL, 160, 187, 346
DWG, 160-161, 187, Z67-Z68
FREF, 165, 347
GNRL, 160
ICN N R, 165-166, 347-349
MENU, 345
original, defining, 166

PROC, 163-164
STR I 160, 163
WIND, 159, 187, 346

Reverse Polish notation, Z18
RMaker. See Resource compiler
ROM. See Tuolbox
Rounding, Z88

Sample code
adding two numbers, BASIC,

Pascal, assembler, 18-19
branching,zo
concatenate strings, 67-68
cursor

changing shape, Z70-Z71
setting, Z69-Z70

dialog box, variable text, Z65-Z68
double precision division, Z80-Z81
dragging selections with mouse,

Z73-Z75
hexadecimal to decimal

conversion, 105-llZ
Lisa \'\brkshop, 341-349
·~ items blirik, zn-zi[)
Memoiy Manager, Z63-Z65
menus, marking, disabling, and

changing items, Z75-Z77
Pascal routine calling assembler

program, 34Z-343
printing, Z81-Z84
SANE, Z84-Z91

floating point arithmetic, Z90-Z91
numeric to string conversion,

Z85-Z88
type conversion, Z88-Z90

string comparison, 60, 103-105
Undo command, Z78-Z80
See also SimpleCalc (sample

program)
Segment directives

Llsa, 138-140
.DEF, 139-140
.END, 140
.FUNC, 139
.PROC, 138-139
.REF, 140
.SEG, 139

Macintosh, 137-138
DC, 189-19Z
END, 138
XDEF, 137, 15.0-15Z
XREF, 137-138

Semicolon (comments), 11, ZZ1
Sign-extended notation, Z7, 31, 80-81

SimpleCalc (sample program),
Z17-Z61

accumulator, Z18-Z19
AddOper, SubOper, MulOper,

DivOper, 119-lZO
Apple menu, 240
comments, conventions in, ZZ1
converging calculations, Z19-ZZO
Desk Accessories, Z35, Z40
dialog box, Z40-Z41
DoEvent, 113
drawing routines, 249-Z53
flagusage,ZZ5,Z44
icons, ZZO
initialization, ZZ6-Z30
keyboard events, Z33
KeyStroke, 115-116
limitations, Z18
linker, ZZ1
Llsa version, 343-345

resource file, 345-349
listing, 375-391

data storage, 387
declarations, 375-376
drawing routines, 383-385
event types, 378-379
initialization, 376-377
main program, 376
menu events, 379-380
resource file, 387-391
spreadsheet functions, 380-383
spreadsheet subi:outines, 386-38'!'
spreadsheet updating, 385
user interface, 377

main program, ZZ1-ZZ5
memoiy usage, ZZ3
menus, ZZ8-ZZ9, Z37-Z41
mouse events, 113-115, Z33-Z37

tables, Z34-Z35
OperVect, 116-118
program outline, ZZO-ZZ1
QuickDraw in, Z5Z-Z53
register usage, ZZZ
resource compiler, ZZ1
resource files, ZZ8
screen, Z17
speed considerations, Z57
spreadsheet functions, 241-249

arithmetic, 246
spreadsheet updating, Z54-Z60
termination, ZZ5
user interface, Z30-241
using, Z18-Z19
WmdowTuble, 113-115
window events, Z31-Z37
See also Sample code

398 Programming the 68000

Speed considerations, 108-112
division, 257
loops vs. straight-line, 106

Square root, calculating, 219-220
Squares, 209-210
Stack, 13-17

addressing modes, 37
-based interface, Tuolbox, 193
local variables, 65-69
pointer (A7 register), 13-17, 121

user's, 100, 123
subroutines, 19, 71-72
variable allocation, 189

Standard Apple Numeric
Environment (SANE), 74-75,
284-291

pointers, 289
rounding, 288
sample code, 284-291

floating point arithmetic, 290-291
numeric to string conversion,

285-288
type conversion, 288-290

State lines, 128
Status register

bit analysis, 97
changing, debugger, 172
cl. condition codes, moving, 97
instructions, 96-99
See also Condition codes; Flags

String(s)
conversion to, sample code,

285-288
drawing, 206-207
literals, 133-134, 191
resource types, 158-159

Structured languages, 65, 70
Subroutines

addressing, 30
nested, 19, 72-73
stack considerations, 16, 71-72

Subtraction, 78
sample code, 119-120

Supervisor mode, 97, 99-101
Switch, 11
Symbol table files, 144
System control instructions, 92-101
System font, 276
System resource file, 187

Thbles
addressing techniques, 141-143
indexing, 34
Jump, 142-143, 188-189
mouse-down events, 234-235

Tuxt
common calls, 364-365
drawing, 198, 206-207

in gray, 277-278
Tuolbox

definitions, 192
handles, 198-199
initializing, 226
memoiy management, 198-203
monitoring, debugger, 173
cf. operating system calls, 196
packed include files, 144
parameter passing, 194-198
sample calls

function, 195-196
procedure, 194-195
record-based, 201-203

stack-based interface, 192
trap naming conventions,

assembler and Pascal, 194
See also QuickDraw

Tuolbox routines, 63
AddResMenu, 182, 229, 240, 357
Alert, 186
BackPat, 211-212, 362
BeginUpdate, 232
Button, 273-275
CautionAlert, 186
CharWidth, 207, 365
ClipRect, 361-362
Dialogselect, 185-186
Disableltem, 186, 276,
DisposDialog, 241, 267
DisposePtr, 264
DisposHandle, 265
DragWmdow, 236, 355
DrawChar, 198, ~50, 251, 275, 365
DrawDialog, 267
DrawString, 206, 277, 283, 365
DrawTuxt, 207
Enableltem, 186, 276
EndUpdate, 232
Erase ... , 211

EraseArc, 371
EraseOval, 368
EraseRect, 367
EraseRoundRect, 369

Fill ... , 212
FillArc, 371
FillOval, 368
FillRect, 212, 367

FindWmdow, 114, 233, 355
FlushEvents, 229, 358
FrameArc, 370
FrameOval, 368
FrameRect, 272, 277, 366-367

FrameRoundRect, 210, 369
FrontWindow, 365
GetCursor, 270, 271
GetDITum, 266
GetlndString, 159
Getltem, 240, 358
GetMHandle, 276
GetMouse, 271, 274
GetNewControl, 160
GetNewDialog, 240-241, 266, 360
GetNewW'mdow, 240, 354-355
GetNextEvent, 230, 271, 272-273,

358
GetPort, 282
GetRMenu, 158-159, 228, 356
GlobalTuLocal, 241, 366
HideCursor, 363
HiLiteMenu, 195, 237, 358
HLock, 265
HUnlock, 265
InitCursor, 186, 195, 271, 362-363
InitDialogs, 360
InitGraf, 213, 253, 361
InitMenus, 157
InsertMenu, 228, 357
InverRect, 367
InverRoundRect, 369-370
Invert ... , 212

InvertArc, 371
InvertOval, 368

IsDialogEvent, 185-186
Line, 207-208, 364
LineTu,207-208,283, 364
LocalTuGlobal, 366
MenuKey, 182, 233, 357
MenuSelect, 182, 235, 357
Moda!Dialog, 185, 241, 267, 361
Move, 207-208, 364
MoveTu, 207-208, 249, 273, 274-275,

277,283, 364
NewHandle, 264-265
NewPtr, 264
NoteAlert, 186
OpenDeskAcc, 240, 359
OpenResFile, 152, 187, 228, 361
PaintArc, 370-371
PaintOval, 272, 368
PaintRect, 277, 367
PaintRoundRect, 369
parameters, rules, 351
ParamTuxt, 266
Pascal types, 351-352
PenMode, 213, 272, 277,362
PenNormal, 253, 272, 277, 362
PenPat, 214, 253, 277, 362
PenSize, 212, 253, 362

399

Tuolbox routines (cont'd)
PtlnRect, 271
record types, 354-355
SelectWindow, 182, 354
SetCursor, 186, 270, 271, 363
SetHandleSize, 265
Setltem, 277
SetIText, 266-267
SetltmMarlc, 276
SetOrigin, 361
SetPort, 284, 361
SeWtrSize, 264
ShowCursor, 363
StopAlert, 186
String\Vidth, 207, 365
SysEclit (SystemEdit), 188, 240, 359
SystemTusk, 230, 271, 273
TuxtFace, 364-365
'IextFont,215, 364
'Illxl1dode, 213,275, 277, 365
'IllxtSize, 215, 277, 365
'IllxtWidth, 207
TickCount, 195-196, 272, 281
UnLoadSegment, 188

Index

TI'ap(s), 101, 193-194
A$ nybble, 92, 94-95, 101
debugger, 171
Dispatcher, 194
generating instructions, 94-95

'l\vo's complement, 31, 50, 195,
290-291

'fype
constraints, Pascal, 176, 197
conversion, 80-81, 105-112, 250,

252, 288-290
in trap calls, 351-354

Undo command, 278-280
Unimplemented instructions, 101
Upper data strobe, 126-127

Variables
allocating, 11, 189-192
local, 65-69

v flag, 52
\blume name, 143

Window Manager, 182, 183, 188
common calls, 354-356

Wmdows, 176, 178-181
dragging, 236
events, 183-184

SimpleCalc, 231-237
initializing, 229
records, 176
resource type, 155, 159, 187, 346
sample code, 113-115
system, 235
tables, 234-235

x flag, 51-52

z flag, 19-20, 51

JM @mo STATE UNIVERSITY
bputer and Information Science

2036 NEIL AVENUE MALL
@&LUMBQS; okio 43210 --

6310-5

H A Y B E H~.,...;.; • -!:.~/~-------

Programming the 68000
Macintosh Assembly Language

A prime resource for programmers who want to
use assembly language programs to get the most
out of the Mac. Programming the 68000 builds
on your awareness of assembly language and
experience with high-level languages like BASIC,
Pascal, or C. This book fully covers and carefully
examines the power of the Motorola 68000
microprocessor.

The authors detail the assembly language
process of coding, editing, compiling, linking, and
resource compiling, with
thorough explanations of
the 68000 instruction set
and addressing modes.
Also featured are many
example routines that
show the mechanics of
68000 code and provide a

About the Authors ...
Edwin Rosenzweig is a
graduate of the University
of California. He has ten
years' programming experience in BASIC, Pascal,
C, FORTRAN, COBOL, and 6502 and 68000 assem
bly languages. He developed a census data
program for the Macintosh, called "People in
Places," and is the publisher of "PCMacBASIC," a
Macintosh BASIC Compiler.

[JJ

first step for learning to examine and analyze
assembly language programs to create the fastest,
most efficient code possible.

The text explains the advantages of the Mac
intosh programming environment, its user inter
face toolbox, and specialized ROM calls. As an intro
duction to writing worthwhile programs, the book
shows how to code a simple electronic spreadsheet
called SimpleCalc, a medium-size Macintosh
assembly language program. The book provides

not only a conceptual
understanding of 68000
assembly language, but
also a first look at many
types of routines that serve
as the building blocks for
serious assembly language
programming as well.

Harland Harrison has ten
years' programming ex-

p/Joto. Ed Kashz perience developing busi-
ness and systems software. Among his many
programs are "Quik-Circuit, " a PCB CAD/ CAM
system for designing printed circuit boards;
"PCMacBASIC," and the "PTD 6502" debugger for
the Apple II. He is now a consultant specializing in
Macintosh applications.

Hayden Book Company
A DIVISION OF HAYDEN PUBLISHING COMPANY, INC.

HASBROUCK HEIGHTS, NEW JERSEY

ISBN 0-8104-6310-5

