
(1011) 002/ 01
.M

1 DR
CA · 9212&

68000, 68010
and 68020 Primer
Stan Ke/ ly-Bootle and Bob Fowler

Howard W. Sams & Co., Inc.
A Subsidiary of Macmillan, Inc.

4300 West 62nd Street, Indianapolis, Indiana 46268 U.S.A.

© 1985 by The Waite Group, Inc.

FIRSTEDffiON
SECOND PRINTING-1987

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or transmitted by any means,
electronic, mechanical, photocopying, recording, or otherwise, without written permission from the publisher. No patent
liability is assumed with respect to the use of the information contained herein. While every precaution has been taken in
the preparation of this book, the publisher assumes no responsibility for errors or omissions. Neither is any liability assumed
for damages resulting from the use of the information contained herein.

The Waite Group has made every attempt to supply trademark information about company names, products, and services
mentioned in this book. The trademarks indicated below were derived from various sources. The Waite Group cannot attest
to the accuracy of this information.

8080, 8088/8086 and Intel are trademarks of Intel Corporation.
AM-100 is a registered trademark of Alpha Microsystems, Inc.
Apple is a trademark of Apple Computer, Inc.
EXORciser, EXORmacs, EXORset, VERSAmodules, and VMEmodules are registered trademarks of Motorola, Inc.
IBM and IBM PC are trademarks of International Business Machines, Inc.
Lotus, 1-2-3, and Symphony are trademarks of Lotus Development Corporation.
Macintosh is a trademark licensed to Apple Computer, Inc.
MBASIC is a registered trademark of Microsoft Corporation.
Radio Shack is a registered trademark of Radio Shack.
WordStar is a registered trademark of MicroPro International Corporation.
Z80 is a registered trademark of Zilog, Inc.

International Standard Book Number: 067-22405-4
Library of Congress Catalog Card Number: 85-61636

Typography by Walker Graphics
Printed in the United States of America

To my childers everywhere:

Edmund Paul, Michele Rose,

Carol Ann, David Russell

and rather late, alas,

Anna Clare

-Stan Kelly-Bootle

To Guruprem Singh Khalsa,

whose encouragement, inspiration,

and vision over the years have helped

to prepare me for this task

-8.F.

Acknowledgments

We were tempted for a while to break with tradition, and claim that this book
was entirely our own work, conceived, written and produced with no outside
help whatsoever! Honesty and chivalry, though, combined with threats from
certain quarters, finally convinced us that we should pay our respects in the
customary manner.

First, we must thank Motorola's MOS Integrated Circuit Group without
whom (as they say) our primer would undoubtedly be devoted to a less inter
esting and rewarding family of chips. In particular, we are grateful to James J.
Farrell III, Technical Communications Manager, and Margaret Dickie at Motorola
Inc., Austin, Texas for their courteous help with permissions, pictures and diagrams.

Our debt to writers on the M68000 and 16/32 bit micros in general is
enormous and must here be condensed to a simple, nonexhaustive enumeration:
Stritter, Treddenick, Scanlon, Starnes, Kane, Hawkins, Leventhal, Alexandridis,
Waite, Morgan.

Editorially, we received encouragement from James Rounds of Howard W.
Sams & Co., helpful advice from Dr. Roger C. Gledhill of International Micro
Technologies, Inc., and much-needed cajolery from Mitch Waite and Jerry Volpe
of The Waite Group.

On the production side, we would like to thank Lynella Cordell and her
staff at The Waite Group, who together with Marla Rabinowitz and Walter Lynam
resolved the many typographical and stylistic problems created by our keystrokes.

Our program examples were derived from work on the Alpha Microsystems
Am-100/L TM using their M68 Assembler. The authors wish to thank Alpha
Microsystems and the San Francisco Chapter of AMUS (Alphamicro Users'
Society) for their technical assistance. We also benefited from many informal
discussions with Dr. Michael Godfrey of ICL, London and Bob Toxen of Stratus
Computer, Inc., Boston. Nevertheless, we accept full responsibility for any resid
ual bugs and welcome your polite corrections.

Stan Kelly-Bootle proclaims his everlasting devotion to his wife Iwonka and
step-daughter Natasha Leof for their love and support throughout the project.

iv

Contents

Introduction viii

1 Basic Microprocessor Concepts 1
Microprocessors 1
Binary Arithmetic 6
BCD - Binary Coded Decimal 10
Octal and Hexadecimal 13
Boolean Algebra 14
Microcomputers - the Three Components 20
Inside the MPU 25
Memories Are Made of This 29
Software - General Overview 36

2 The M68000 Family 40
Introduction 40
The M68000 Success Story 44
Timing 46
Why 16-Bit? 49

3 M68000 Program·mer's Models 55
Levels of Programming 55
M68000 Instruction Set - Brief Introduction 61
Memory Model 62
Register Model 68
M68000 Basic Register Model 71

v

vi Contents

Register Arithmetic 79
Address Registers 83
System Byte 84

4 M68000 Instruction Set - First Steps
Instructions 91
Addressing Modes 106
Absolute Addressing Modes 116
Address Register Indirect Memory Addressing Mode
Address Register Indirect with Post-Increment: (An)+
Address Register Indirect with Pre-Decrement: -(An)

124
128

133

91

5 M68000 Instruction Set - Advanced Topics 135
Preserving Register Values - Why and How 135
Stacks 138
Address Register Indirect with Offset 147
Address Register Indirect with Offset and Index 149
Index Mode - Applications 150
Multiplication 151
Division 153
Relative Modes - Motivation 158
Relative Addressing - Program Counter Addressing with Offset 159
Relative Addressing - Program Counter with Offset and Index 163
Addressing Modes - Grand Summary 165

6 Miscellaneous M68000 Instructions 172
Bit Manipulation 172
Logical Operations 173
Shift and Rotate Instructions 187
Rotates 200
Bit Testing and Setting 204
Compare with the CMP Family of Instructions 214
Miscellaneous Math 222
Multi-Precision Math 225
Binary Coded Decimal 229
Miscellaneous Data Handling 233
Link/Unlk - Preamble 237

Contents vii

7 The MC68010 252
Virtual Memory 253
Virtual Machine 256
Vector Base Register 258
The MOVEC and MOVES Instructions 261
The SFC and DFC Registers and Address Spaces 262
Loop Mode 264
The MC68012 265

8 The MC68020 266
Instruction Cache 266
New Addressing Modes 274
Trace Bits TO and Tl 278
Coprocessor Support 280
The Master Bit 285
New Instructions on the MC68020 288

A M68000 Instructions - Number of Operands 295

B M68000 Addressing Mode Types 297

C M68000 Instructions/Legal Modes 300

D M68000 Instruction Summary 303
68000 Addressing Modes 303
Addressing Mode Orthogonality and Legality 307
The 68000 Instruction Summary Table - Preliminaries 310

E M68000 Resources 329

F ASCII Table 345
Index 349

Introduction

This primer is intended for the growing number of programmers and hobbyists,
both novice and experienced, who want to understand the powerful instruction
set of the Motorola M68000 family of 16/32-bit microprocessors. The instruction
set represents the language built into the chip, and ultimately, all programs
written for the M68000, whether in ADA, BASIC, C language, assembly lan
guage, or whatever, need to be translated "down" to this level.

With 8-bit micros it was tricky but possible to hand code at the machine
level without assemblers. With 16-bit instruction words (up to seven of them per
instruction) hand coding is strictly for masochists too tight to buy an assembler.
So the M68000 instruction set will usually be studied in the context of an
assembler.

The authors' attempts to master M68000 assemblers revealed a monstrous,
horrifying gap in the literature. There was no patient elementary introduction
even to those basic instructions and addressing modes that are common to all
M68000 models. More understandably, there were no popular expositions of
the exciting extensions available on the MC68010 virtual machine chip and the
full-32-bit mainframe-micro MC68020. This primer is our selfless attempt to fill
both gaps.

You can view the book as a painless "first pass" for all those who wish to
gain fluency in any of the many fine M68000 assemblers and cross-assemblers
now available (see Appendix E).

Assembly language documentation can be pretty daunting unless you
already understand how the op codes work, and many of the manuals are less
than clear on which addressing modes are legal with which instruction. Beyond
that you face the hurdles of directives, macros, conditionals, libraries, linkers,
overlays, monitor calls, and so on - all of which can vary from assembler to
assembler.

Yet the rewards are great. Quite apart from the obvious advantages -
speed and compactness (notice how often advertisements for software boast,

viii

Introduction ix

"Written in tight, fast assembly language!"), we know of no greater joy in
computing than successfully running one's own first sizeable chunk of assembled
code. There is a feeling of, "Wow, we did it - the 68000 and me!"

Our book should also be useful for those wanting to experiment with the
various M68000 educational single board kits and systems.

We have purposely avoided a detaile(i exploration of the M68000 micro
electronics and IC technology. Our bird's eye view of the M68000 hardware is
a simple "black-box" approach, but sufficient, we hope, to reveal the subtle
interplay of hardware and software as realized by the Motorola design team. If
you want to delve deeper (and in the field of computers there is no bottom layer
beyond possible delving) this book will help you tackle the vast technical liter
ature on M68000 architecture and timing, support chips, 1/0, coprocessors and
systems integration.

Success breeds success - a maxim which is compounded in the micro
computer industry. All semiconductor prices fall dramatically as fabrication vol
ume and yield increase, so successful chips like the M68000, especially the
economy MC68008 version, are inevitably finding their way into the low-cost
entry-level personal and home computer market. The basic MC68000, now
available for around $50 each in small quantities, can already be found playing
diverse roles in graphics workstations and multiuser business systems - not
only on the main CPU (central processing unit) board, but also powering
intelligent device drivers and 1/0 (input/output) preprocessors. Even the more
expensive MC68010 is found lurking inside peripherals, such as the Apple laser
printer.

The MC68020 chip, currently selling for $500 in small quantities, seems
certain to fall in price to the MC68000 level over the next few years. The impact
on personal and office computing will be staggering!

The Apple Macintosh has already given us a glimpse of what can be done
with the power of a basic 16/32-bit MC68000. The user-friendliness we associate
with crisp, bit-mapped screens, icons, windows, and mouse-controlled pulldown
menus puts heavy demands on CPU and memory.

The MC68020's extra speed (16.67 MHz, with fast RAM to match), lower
power consumption (1.5 watts), built-in coprocessor interface for economical
multiprocessing and number-crunching support, and increased memory ad
dressing space (over 4 billion bytes) -will allow bigger and friendlier operating
systems, more complex color graphics (including animation), and less unnatural
high-level query languages providing easier access to large databases.

An added bonus will be the ability to offer several operating systems on
the same machine, solving many of the present compatibility quirks (''what runs
on what?") and ending once and for all those tiresome medieval disputes such
as "UNIX versus AMOS" or "CP/M versus PC-DOS." Our book will prepare
you for this revolution!

x Introduction

All members of the M68000 family share the same basic instruction set,
with each enhanced model building up from the previous simpler model. This
concept of upwards compatibility at the object code level provides vital insur
ance for all software developers, both the individual "hacker" and the major
software houses. For as fast as hardware prices shrink, the cost of programming
escalates. The M68000 was designed with ease of programming and debugging
in mind, and further, with the assurance that whatever advances might occur in
IC techniques, programs will run without change on all future models. We will
all undoubtedly have new things to learn as the revolution unrolls apace, but
readers should be happy to know that little in this book will have to be unlearned.

PREREQUISITES

Exactly how much prior knowledge should be assumed is a problem faced by
all computer book authors. We have veered in the direction of assuming less
rather than more exposure to computer basics, and we rely on your own
judgment to skip any familiar material.

Chapter 1, for example, is a quick summary of some essential micropro
cessor concepts that you are invited to bypass at your own discretion.

Our strategy was conditioned by the fact that a new generation of program
mers, the class of '85, is entering the field with little or no prior exposure to the
previous (dying?) generation of 8-bit micros. If you have done any assembly
language programming on the Intel TM 8080 TM, Zilog 280 TM or Motorola M6800,
for instance, many of the M68000 op codes will be old friends (at least func
tionally), and you will be able to concentrate on the subtleties introduced by the
richer set of addressing modes. But for those new to the world of op codes, we
have tried to explain both the function and the motivation for each instruction,
with lots of simple examples. We have carefully chosen the order in which the
instructions are introduced, grouping together those which share some funda
mental property.

There are four appendices (A - D) that list the op codes and addressing
modes in different ways, plus a pullout reference card.

BOOK PLAN

After the optional basic concepts in Chapter 1 (we dismissed the corny notion
of calling this Chapter 0), Chapter 2 gives some historical and design perspec
tives and lists the features distinguishing the five M68000 models currently
available. Chapter 3 explains the chip from a software perspective (memory
organization and register disposition). The instructions and addressing modes

Introduction xi

are then progressively described with examples, starting with the most common
and useful in Chapter 4, accelerating gently to more advanced op codes in
Chapter 5. Chapter 6 deals with the remaining instructions. Chapter 7 explains
the VM concept in relation to the MC68010. Finally, Chapter 8 discusses the
many enhancements found in the new full-32-bit MC68020.

M68000 RESOURCES

I~ as we hope, you are encouraged to explore the M68000 scene in more depth,
we have listed some sources for hardware and software in Appendix E. Be
warned that no such list can claim to be complete or entirely accurate by the
time you come to read it. Prices and telephone numbers are especially volatile.

As you can see, the M68000 has been implemented in an incredibly wide
variety of microcomputer systems, ranging from the under-$500 home com
puters, through the sophisticated $1,500-$3,000 personal computer bracket
(highlighted by the ubiquitous Apple® Macintosh TM), on through the professional
$5,000 + UNIX™ workstations (from over 20 different manufacturers at our last
count) - the IBM® 9000 laboratory system, multiuser business systems from
AlphaMicro, Stride, Cromemco - the list grows daily.

From $200 to $200,000, they all use MOVE.z Dm,Dn! When you reach
Chapter 4, you'll know why.

1

Basic Microprocessor
Concepts

Inasmuch as the completed device will be a general-purpose computing
machine it should contain certain main organs relating to arithmetic,
memory storage, control, and connection with the human operator.

- A. W. Burkes, H. H. Goldstine, and
J. von Neumann, Preliminary Discussion
of the Logical Design of an Electronic
Computing Instrument (1946)

This chapter presents a number of useful basic ideas that you will need to better
understand the M68000 family. Primers, by definition, cannot assume too much
prior knowledge, so we will warn you, up front, that we plan to cover such
fundamentals as bits, bytes, binary arithmetic, and busses which are essential
for later chapters.

MICROPROCESSORS

On first hearing the word microprocessor one immediately senses that we are
talking of something small, and it is indeed a physically small computing com
ponent on a silicon chip (micro is a common prefix in science standing for a
millionth part, as in microsecond).

The MPU (MicroProcessing Unit) is just one element, or resource, in a
computer system. Figures 1-1 and 1-2 show typical computer systems. The
MPU chip, when mounted on a circuit board with other essential supporting
chips, is often referred to as a microcomputer or an MPS (MicroProcessing
System) or a CPU (Central Processing Unit).

1

2 68000, 68010, and 68020 Primer

Disk Drive
(input/output)

Boards

Computer

LJg
Keyboard (input)

Fig. 1-1 Typical Small Computer System

Mouse (input)

The MPU is often called the brains of the system, the resource with pro
grammable intelligence that coordinates all the other dumb elements connected
to it. MPUs have logical and arithmetical abilities, and they make decisions and
exert control in many ways. You will see, however, that all this occurs in a
predetermined way, set up by programs (sequences of precise instructions).

MPUs are no longer the most expensive component in the system, and
several MPUs may be found in the one system (which is then labeled a multi
processor system). Quite often there is one master MPU with several slave
MPUs assigned to particular duties; sometimes each MPU is an independent
source of intelligence that can be called on to process any job.

PROCESSING WHAT?

But what and why are you processing? Cuisinarts process food, and sewage
plants process sewage, but microprocessors process data and (with the help of
many attached gadgets and carefully detailed programs) they produce information.

Basic Microprocessor Concepts 3

Printer #1

aa

Printer #2

Disk Drive #2 Mouse

Fig. 1-2 Typical Multiuser System

If this sounds abstract and intangible, well, in a sense, it is. The computer
is a very general-purpose, blind manipulator of symbols - it is you, the user,
who gives meaning and purpose to its processes.

Throughout the following discussions, we will use the word data as a
singular, collective noun.

Information and Data

Information, in everyday usage, is a strange something that reduces uncertainty.
In the 1940s Claude E. Shannon of Bell Labs refined this vague idea into a
whole new branch of mathematics, known as information theory. He showed

4 68000, 68010, and 68020 Primer

Power

off Lamp

===========~--·-0_"--------~ Two State ~
Switch

"I'm away"

Two State
Indicator

"I'm home"

Fig. 1-3 Light Switch as a Bit

that in many situations the amount of information in a message can be measured
and expressed as a number of binary digits or bits. Milk is traded in pints, but
you order information by the bit.

BITS IN ACTION

The miracle of computing rests ultimately on this concept - one of the simplest
in the whole of mathematics. A bit is the basic unit of information, capable of
resolving a single yes or no uncertainty. A bit can therefore represent just one
of two values, usually given the symbols "O" and "1 ", but that can be interpreted
in many ways: on and off, black and white, true and false, yes and no, but note
that the bit is incapable of indicating any shades in between, like gray or maybe
or perhaps.

It turns out that many physical devices, such as the familiar household
electric switch, have this same on-or-off property and can therefore be used to
store one bit of information.

Devices like switches which have a limited number of states are called
discrete devices, as opposed to devices like rotary volume controls which can
vary continuously through an infinite number of states.

In Figure 1-3, the state of the switch is indicated by the state of the lamp,
on or off.

Basic Microprocessor Concepts 5

The information you could signal from your window using this simple one
bit device might be "Yes, I am here" or "No, I'm out of town." Ah-ha, but
which is which? "Lamp-on" could signal your absence, perhaps. The message
of the lamp requires a prearranged code between you and the intended receiver
of the message. There are only two possibilities:

Code A

Lamp on = at home
Lamp off = away

CodeB

Lamp on = away
Lamp off = at home

The main point is that the bit as a bearer of information is meaningless
without some prior coding agreement between sender (encoder) and receiver
(decoder).

Shannon defined the bit as the amount of information that would make
something twice as definite! Two equally likely outcomes share a probability of
1/2 (a 50/50 chance of each), so one bit will completely resolve this amount of
uncertainty, but no more. For more useful information storage you need to
increase the number of bits, and at the same time devise methods for rapidly
storing, accessing, changing, sending, and decoding the iJ'!formation.

Each bit you add to your store doubles the amount of information. For
example, with two lamps in your window, you can devise a code to represent
four distinct messages:

Lamp2 Lampl Message

off off Leave no milk today
off on Leave one pint
on off Leave two pints
on on Leave three pints

Once again you must ensure that the decoder (milkperson, in this case) knows
the code, and especially, which lamp is which. If the lamps are not marked or
distinguishable in some way, you can see that only three possible messages can
be encoded. So, in order to extract the maximum benefit from our 2 bits, they
must be ordered in a prearranged manner. With this proviso, there is a simple
rule relating the number of bits to the number of possible encoded messages:

1 bit can encode 2 (21) messages
2 bits can encode 2 x 2 = 4 (22) messages
3 bits can encode 2 x 2 x 2 = 8 (23) messages .
N bits can encode 2 x 2 x ... x 2 (2°) messages

6 68000, 68010, and 68020 Primer

For this reason, powers of 2 play a fundamental role in information theory and
computing.

The case of N = 10 is also important, since 2 10 = 1,024, which is widely
abbreviated to K (as in kilo). So when you read of a 32K memory, this means
32 x 1,024 = 32,768 rather than 32,000.

The messages you encode can be anything you like - instructions, sym
bols, numbers, names, or perhaps even nothing at all (a perfectly valid message
might be ''ignore this message''). Some combinations of bits may be specially
earmarked as errors. Often there are more bit patterns available than messages
to be decoded. This redundancy can be exploited to detect and possibly correct
transmission or storage errors.

BINARY ARITHMETIC

There is a natural way of relating these bits to familiar decimal numbers - we
call it binary arithmetic because it uses powers of 2 with the two symbols 0
and 1, rather than powers of 10 with the ten symbols 0 through 9. Nearly all
computer calculations are performed internally in binary arithmetic, even if the
final results are needed in decimal form. Our two-lamp code for ordering milk
has already given a hint of how this works. Given the following code:

Lamp on= 1
Lamp 2 = 2

Lamp off= 0
Lamp 1 = 1

these would be the results:

Lamp2

0
0
1
1

The decoding rule is:

Lampl

0
1
0
1

pints = (2 x Lamp 2) + (1xLamp1)

of pints

0
1
2
3

Basic Microprocessor Concepts 7

With three lamps we can extend our order to 7 pints as follows:

Lamp3 Lamp2 Lampl of pints

0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7

Lamp 3 now carries the value 4 = (2 x 2) and we decode as follows:

pints = (4 x lamp 3) + (2 x lamp 2) + (1xlamp1)

You can already recognize the similarities between our usual decimal no
tation and this binary system. Treating the lamps as column positions, each
column represents a power of 2. When you write, say, 2379 in decimal, you
are using a shorthand for

2 thousands 3 hundreds 7 tens 9 units

2 x (10 x 10 x 10) plus 3 x (10 x 10) plus 7 x 10 plus 9 x 1 = 2379

where each column represents a power of 10. The units column may not look
like a power of 10, but in fact it represents 10° which equals 1.

In the same way, the binary number 1101, is evaluated as:

1 eight 1 four 0 twos 1 unit

1 x (2 x 2 x 2) plus 1 x (2 x 2) plus 0 x 2 plus 1 x 1 = 13

We can therefore establish a straightforward correspondence between bit
patterns, binary numbers, and decimal numbers. This is just one of many
encoding schemes and must be agreed upon in advance as in any scheme for
sending information.

To stress the role of the bit let's look again at our 3-lamp signals to the
milkperson. Initially, the number of pints needed is uncertain to the extent that
it lies anywhere in the range 0 through 7 (8 possibilities). Lamp 1 reduces this
uncertainty as follows:

Lamp 1 on = number of pints must be 1, 3, 5 or 7
Lamp 1 off = number of pints must be 0, 2, 4 or 6

8 68000, 68010, and 68020 Primer

The uncertainty is now down to four possibilies, so it has effectively been halved.
Lamp 2 and Lamp 3 each independently halve the uncertainty:

Lamp 2 on = number of pints must be 2, 3, 6 or 7
Lamp 2 off = number of pints must be 0, 1, 4 or 5
Lamp 3 on = number of pints must be 4, 5, 6 or 7
Lamp 3 off = number of pints must be 0, 1, 2 or 3

All three bits (lamps) in parallel completely remove the uncertainty- just
one of the eight possible messages is indicated.

The modern computer uses exactly these principles in sending and decod
ing messages and data. The switches and lamps are replaced by large numbers
of high-speed two-state electronic devices such as transistors built into silicon
chips.

SUMMARY OF BITS AND MESSAGES

With an ordered group of N bits you can encode up to 2N distinct messages. A
common encoding system relates these to the 2N binary numbers running from
0 through 2N - 1. Since binary numbers can be easily stored electronically in
the form of on-off switches (or gates), computers perform all their basic arith
metical and logical operations in binary.

Special Groups of Bits

Groups of 4, 8, 16, and 32 bits are so commonly encountered that they have
their own names:

• A nibble = 4 bits, which can store 16 messages

• A byte = 8 bits, which can store 256 messages

• A word = 16 bits, which can store 65,536 messages

• A longword = 32 bits, which can store 4,294,967,296 messages!

These names and their associated "ranges", will crop up repeatedly because,
for excellent reasons to be explained, the M68000 is designed to operate on
these groups of bits.

Notice in Figure 1-4 how the bits are numbered from right to left, starting
with bit 0, called the LSB (least significant bit). The highest, leftmost bit is called
the MSB (most significant bit); because of a commonly used method of encoding
negative numbers, the MSB is also called the sign bit (more on this later).

Basic Microprocessor Concepts 9

Sign
Byte

Bit = 1 bit
Range= 0-1

~
0

Nibble = 4 bits
Range= 0-15

3 0

Byte = 8 bits
Range = 0-255

7 0
upper lower
nibble nibble

Word = 16 bits
Sign Range = 0-65,535
Byte

Sign
Byte

Longword = 32 bits
Range = O - 4,294,967,295

31

MSB
upper word

(Most significant byte)

15
upper byte lower byte

lower word

0

0
LSB

(Least significant byte)

Fig. 1-4 Groups of Bits: Nibble, Byte, Word, Longword

10 68000, 68010, and 68020 Primer

BCD - BINARY CODED DECIMAL

One important use of the 4-bit nibble is to encode the 10 decimal digits 0
through 9. Three bits will only encode 0 through 7, so four bits is the minimum.
The resulting code, known as BCD (binary coded decimal), has five unassigned
combinations. They, and the binary codes for decimals 0 through eleven, are
shown here:

BCD Decimal

0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 unused
1011 unused
1100 unused
1101 unused
1110 unused
1111 unused
(0001)(0000) 10
(0001)(0001) 11

This coding scheme is rather inefficient, space-wise. Compare, for example,
the two ways of expressing the decimal 2379:

2379 decimal = 100101001011 binary (12 bits)

2379 decimal = (0010)(0011)(0111)(1001) BCD (16 bits)

The main application of BCD is in financial calculations where some of the
accuracy problems you can get with binary-decimal conversion are unacceptable.

ASCII CHARACTER CODE

The byte's claim to fame is that 256 is a useful number for encoding a set of
characters, such as those on a typewriter keyboard. The upper- and lower-case

Basic Microprocessor Concepts 11

Table 1-1 Decimal Interpretation of 4-Bit Binary

7 's Complement 2's Complement Unsigned
Binary Mode Mode Mode

0111 7 7 7
0110 6 6 6
0101 5 5 5
0100 4 4 4
0011 3 3 3
0010 2 2 2
0001 1 1 1
0000 0 0 0
1111 -0 -1 15
1110 -1 -2 14
1101 -2 -3 13
1100 -3 -4 12
1011 -4 -5 11
1010 -5 -6 10
1001 -6 -7 9
1000 -7 -8 8

letters plus the usual crop of punctuation symbols and controls (carriage return,
backspace, etc.) take up only 128 combinations (encodable in 7 bits) but since
the 8-bit byte offers 256, we have lots of spares for graphics. There is a standard
called ASCII (American Standard Code for Information Interchange) which
assigns a symbol for each 8-bit pattern. Apart from a few variants for foreign
scripts, ASCII is pretty constant around the world.

HOME ON THE RANGE

The byte can only store numbers in the unsigned range 0 through 255, so for
most mathematical operations we need more than 8 bits. The situation is even
worse because in order to handle negative numbers, we must steal a bit to
indicate the sign (0 for plus and 1 for minus).

Under what is known as 2's complement notation (see Table 1-1) a nibble
can store a number in the range -8 through + 7 (still a total of 16 distinct
numbers) and a byte can store a number in the range -128 through + 127
(note that we are still encoding a total of 256 distinct numbers).

12 68000, 68010, and 68020 Primer

The bits in a byte are numbered 0 through 7 from right to left (so remember
the first bit on the right is bit 0). In 2's complement form bit 7 (the leftmost) is
designated the sign-bit.

The 16-bit word offers a range of 0 through 65,535 unsigned (that is,
positive numbers), but if we use the sign-bit trick for negative values we can
store signed (2's complement) numbers from-32,768 to +32,767.

Before the arrival of 32-bit micros, the above 16-bit data range was a
restriction needing extra programming if your sums led to larger numbers. Also
since 16 bits were often used to encode addresses in memory (more on this
later) this resulted in a more tricky restriction on memory capacity to 65,536
different addresses (again, there were tricks in hardware and software to over
come this).

You can now guess why there is so much excitement over the arrival of 32-
bit microprocessors. A 32-bit longword can store unsigned numbers in the
range 0 through 4,294, 967,295, and signed numbers in the range
-2,147,483,648 through +2,147,483,647. And when you are not doing big
sums, the longword can store two smaller 16-bit numbers, or four ASCII
characters, or eight BCDs.

BINARY SUMS

Working with binary numbers has its good and bad aspects. On the bright side,
the rules are fewer than with decimal numbers:

1 + 0 = 1
1+1=10

1 x 0 = 0
1 x 1 = 1

1 - 1 = 0
10 - 1 = 1

The hard part is that binary numbers are not compact; the human eye and
brain suffer from reading and remembering 100101001011 compared with its
decimal equivalent, 2379.

Let's add two binary numbers together manually, so you can see the rules
in action:

10111 = decimal 16+0+4+2+ 1 = 23
+ 11101 = decimal 16+8+4+0+ 1 = 29

110100 = decimal32+16+0+4+0+0 = 52 (check)

(We proceed from the right: 1 + 1 = 10, so write 0 and carry 1, and so on.)

Basic Microprocessor Concepts 13

OCTAL AND HEXADECIMAL

We should mention here two other number notations you will encounter, both
of which are easily derived from binary notation but which offer more com-
pactness and ease of use. ·

The octal system uses the base 8, so that only the numbers 0 through 7
are employed, and each column represents a power of 8. Here are a few
examples:

Binary

111
1000

100000
111111

Octal

7
10
40
77

Decimal

7
8

32
63

Conversion from binary to octal is very simple. The trick is to partition the
binary expression into groups of 3 starting from the right. Then evaluate each
group of 3 bits into decimal.

111111 = (111)(111) = (7)(7) = octal 77

100101001011 = (100)(101)(001)(011) = (4)(5)(1)(3) = octal 4513 .
The hexadecimal (short name hex) system uses a base of 16, so we need

16 distinct symbols to express numbers in hex. Our usual symbols 0 through
9 are okay for the first ten, then we borrow the letters A= 10, B = 11, C = 12,
D= 13, E= 14, F= 15. Here are some examples:

Binary Octal Decimal Hex
111 7 7 7

1000 10 8 8
1010 12 10 A
1111 17 15 F

100000 40 32 20
111111 77 63 3F

Once you get used to it, hex is probably the most convenient notation for
16/32-bit computer work. Each hex symbol represents a nibble, two of them
make a byte, and so on. Binary-to-hex conversion can be done "at sight" using
a similar trick to the binary-octal method just described. Divide the binary
number into fields of 4, from the right:

111111 = (0011)(1111) = (3)(F) = hex 3F

14 68000, 68010, and 68020 Primer

An even easier method, if you venture into serious machine-level program
ming, is to buy an electronic hand calculator with instant binary, octal, decimal,
and hex conversion.

Bases higher than 16 have been tried, but what you gain in compactness,
you lose in legibility. The mathematician and computer pioneer, Alan M. Turing
(1912-1954), was fond of the base 32. This requires, of course, 32 distinct
symbols, namely 0 through 9 and the 22 letters A through V, for example.
Whence: 1111111111 = 1777 (base 8) = 1023 (base 10) = 3FF (base 16)
= W (base 32). Turing's notation was even trickier since he was tied to the
arbitrary 32 characters on his five-channel teleprinter (an early printer, operated
from five-track paper tape).

SUMMARY OF NUMBER SYSTEMS

Numbers can be expressed using bases other than the familiar base of 10
(decimal system). Binary (base 2), octal (base 8), and hexadecimal (base 16)
arise naturally in computer mathematics.

The neat thing about binary numbers is that simple and fast electronic
circuits can be built that automatically perform the basic arithmetical operations
(add, subtract, multiply and divide) -witness, for example, the aforementioned
pocket calculator. The step from on/off switches to arithmetic requires a brief
detour into logical operators and Boolean algebra.

BOOLEAN ALGEBRA

George Boole (1815-64) was the first to develop mathematical rules for logical
operations, now known as Boolean algebra.

Logic deals with a particular binary situation since it labels propositions
true or false. Boole therefore assigned the numeric symbols 1 for true and 0 for
false, and then studied the rules for combining these using the logical operators
NOT, AND and OR in place of the familiar arithmetical operators.

As in everyday "logic," if the propositions A and B are both true, we say
that the single proposition (A AND B) is true. If either or both A and Bare false,
then we say (A AND B) is false. Similarly, if A is true, we say that (NOT A) is
false. We commonly use the symbols

A =AND
v =OR
- =NOT

Basic Microprocessor Concepts 15

Replacing true and false with 1and0, the rules tum out to be similar to binary
arithmetic with "A = multiply" and "v = add" but there are some subtle
differences:

Logic Boolean Binary

false OR false = false 0 v 0 = 0 0+0=0
true OR false =true 1v0 = 1 1+0=1
false OR true =true 0 v 1=1 0 + 1 = 1
false AND false = false 0 /\ 0 = 0 0 x 0 = 0
true AND true =true 1/\1 = 1 1 x 1 = 1
true AND false = false 1A0=0 1 x 0 = 0
false AND true = false 0Al=0 0 x 1 = 0

So far, so goodf But the rules diverge with:

Logic

true OR true = true
NOT(true) = false
NOT(false) = true

Boolean

lAl=l
-1 = 0
-0 = 1

COMPOUND LOGICAL OPERATORS

Binary

1 + 1 = 10
l's complement of 1 = 0
l's complement of 0 = 1

Various compound logical operators can be defined in terms of AND, OR, and
NOT. For instance NOT and AND can be combined to give NANO. The tables
below (known as truth tables, since they never lie), show the compounds you'll
meet in computer schematics and programming situations:

AND NAND (Not AND)

A B AAB A B -(AAB)
0 0 ~ 0 0 0 ~ 1
0 1 ~ 0 0 1 ~ 1
1 0 ~ 0 1 0 ~ 1
1 1 ~ 1 1 1 ~ 0

OR NOR(NotOR) EOR (Exclusive OR)

A B AvB A B -(AvB) A B (AvB)A-(AAB)
0 0 ~ 0 0 0 ~ 1 0 0 ~ 0
0 1 ~ 1 0 1 ~ 0 0 1 ~ 1
1 0 ~ 1 1 0 ~ 0 1 0 ~ 1
1 1 ~ 1 1 1 ~ 0 1 1 ~ 0

I

\

16 68000, 68010, and 68020 Primer

The exclusive OR gives true when either input (but not both) is true. In
normal speech we do not always distinguish between these two meanings of
OR. So everyday "logic" is not always precise enough for "reasoning" with a
computer.

PROGRAMMER'S LOGIC

The precision of Boolean algebra is a vital part of the programmer's life, since
we are often interested in getting the system to test the outcome of a routine
(true or false) and then perform different programs according to the result. An
example familiar to all those who have ever tackled a tax form might be:

If you are male, married, over 40, earning less than $10,000, or female,
single, under 50 earning more than $6,000 complete line 3. Otherwise
skip to line 12.

In Boolean terms this requires evaluating an expression like:

(-F x M x A>40 x SAL<l0,000) + (F x -M x A<50 x SAL>6000)

where each individual term, called a Boolean variable or expression, is set to 1
for true and 0 for false. The answer obtained by mechanically following the
rules will be 1 for true (so complete line 3) or 0 for false (skip to line 12). Note
that if you are male, then F ("being a female") is false = 0, while-F ("not
being a female") is true = 1, and so on.

LOGIC GATES

Electronically, it is possible to build devices called gates that combine signals
according to the rules of Boolean algebra. Figure 1-5 illustrates how these are
shown in circuit diagrams. In modern micros, these gates are transistors embed
ded in the silicon. The MC68000, some say by coincidence, has about 68,000
such gates. (The earlier M6800 had about 6,800 transistors, so there may be
some logic to Motorola's numbering scheme.) The "1" and "O" can represent
any two distinct electrical states, for example "O'' may mean a + 5 volt signal
and "1" may be 0 volts. The NOT function is called an inverter since it inverts
0 to 1 and 1 to 0. Gates are the basic building blocks of computers. They can
be interconnected in complex patterns to perform a variety of functions, such
as decoding and binary arithmetic. IC (integrated circuit) chips are available in
tens of thousands of variations offering every conceivable combination of logic
for the circuit designer. And if your volume is high enough, a special purpose
chip may save you wiring together off-the-shelf chips.

Input

A

8

A

8

Basic Microprocessor Concepts 17

Output

NOT
(Inverter)

AND

OR

c NANO

c NOR

c EOR

Fig. 1-5 Logic Gates

Truth Table

A B
0 J)_
0 1
1 0
1 1

A B
0 0
0 1
1 0
1 1

A B
0 0
0 1
1 0
1 1

A B
0 0
0 1
1 0
1 1

A B
0 0
0 1
1 0
1 1

c
0
0
0
1

c
0
1
1
1

c
1
1
1
0

c
1
0
0
0

c
0
1
1
0

Av 8

-(A" 8)

-(Av 8)

(Av 8)
"-(A" 8)

18 68000, 68010, and 68020 Primer

INPUT OUTPUT

A B s c
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

S = Sum = (A V B) " ""(A " B) = A E9 B (EOR)

C = Carry = A " B

AvB

e-.... -!tol-....... --.....

s --

Fig. 1-6 Binary Adder

FROM GATES TO SUMS

I

. A 11 B C

Let's see how Boolean Algebra helps to design circuits which bridge the gap
between logic and arithmetic. In Agure 1-6 we show a table for a simple binary
A + B adder, where A and B can equal 0 or 1. The ou\puts are S =sum and
C =carry. S and C also take the values 0 and 1, following our rules for binary
addition. We note that Sis the EOR (Exclusive OR) of A,B, while C is AAB.
The circuit in Agure 1-6 is obtained by replacing the Boolean symbols with
their silicon equivalents - 2 AND-gates, 1 OR-gate and 1 inverter. What is even
more remarkable is that with IC technology many thousands of such circuits
can be integrated into a tiny mass-produced chip.

Basic Microprocessor Concepts 19

Flip

input at O

Flop!

LJL R
input at 1

Fig. 1-7 Basic Flip-Flop

The half-adder circuit in Figure 1-6 just adds two bits together, but it is not
difficult to cascade similar circuits in series to give full binary addition of 8 or
16 bits depending on the chip's architecture. A full-adder needs three inputs,
since it must take in the previous "carry" bit - but the principle is as shown
in Figure 1-6.

FLIP-FLOPS

Before we leave the topic of basic computer circuitry, we want to show you a
clever combination of gates which indicates how data can be stored electroni
cally. The flip-flop consists of two NOR-gates wired as shown in Figure 1-7.
Momentarily pulsing the S (Set) and R (Reset) inputs in different ways causes

20 68000, 68010, and 68020 Primer

the two output lines to flip-flop between 0/1 and 110 states. These states are
remembered long after the input pulses have disappeared, so we have the basis
for storing 1 bit per flip-flop, and the means of reading or writing its value. As
with the binary adder, flip-flops can be wired together in wondrous ways to
provide fast on-chip storage units known as registers.

SUMMARY OF GATES AND BINARY SUMS

We have seen, in very general terms, that the basic logical operators, AND, OR,
and NOT, and their compounds NANO, NOR, and EOR, all have silicon ana
logues called gates. These gates can be interconnected to perform more complex
functions, including binary addition and register storage.

To coordinate these networks of gates, we need another ingredient - time.

CLOCKS

The frozen-frame l's and O's shown as inputs A, B, S, and R in Figures 1-6
and 1-7 actually arrive as a stream of high-speed electrical pulses synchronized
by a system clock. This quartz-controlled clock (which may be part of the MPU
chip or a separate chip) sets the pace for a host of MPU activities. Generally
speaking, the faster the clock, the faster the computer. A typical MC68000 clock
would run at 8 MHz (8 million cycles per second) giving a cycle time of 125
nanoseconds (a nanosecond is a billionth of a second- l/l,000,000,000 sec.
This is the time it takes light to travel approximately 1 foot).

MICROCOMPUTERS - THE THREE
COMPONENTS

We can now take a look at the overall organization of a typical microcomputer
system, so we can identify the main elements prior to discussing each in detail.
We will find that a microcomputer can be viewed as "three black boxes on a
bus".

SYSTEM BUS

Figure 1-8 shows the system bus, a sort of wiring freeway, through which the
major components, labeled MPU, memory, and 1/0 communicate with each
other.

Basic Microprocessor Concepts 21

Memory

keyboard CRT

111111111111111111111· disk

lllllllllllllllllllt1· modem

Fig. 1-8 Microcomputer System Bus

en
~ -CD
3
m
c
0

The box marked memory, subdivided into RAM and ROM, represents the main
immediate storage for data and programs. Each piece of memory is assigned a
unique address allowing fast, random access by the MPU. ROM is read only
memory, whereas RAM (Random Access Memory) can be read from or written
to.

1/0 - Input/Output

The single black box marked 1/0 (input/output) covers a multitude of devices
- disk units, user terminals, printers, modems and so on - each with its own
particular interfacing hardware circuits (known as 110 controllers) supported by
dedicated software such as terminal drivers. I/O is the area of most direct visibility
and concern to the average user. In the midst of our microelectronic delving we
must not lose sight of the average usei; keying in data and printing pie charts.

The system bus carries three kinds of signal traffic: data, address and
control. In some computers these three sets of signals are electrically indepen
dent (separate wires). We call these multibus systems, since one can identify a
data bus, an address bus, and a control bus. Cheapei; slower systems may have

22 68000, 68010, and 68020 Primer

a single bus that is shared among the three, using a technique known as
multiplexing.

Microcomputer Operation

In a read cycle, (Figure 1-9) the MPU seeks data (numbers or instructions) from
memory or 110 by sending appropriate request signals down the control bus. If
the bus is busy doing something else, the MPU may have to stand by for a few
cycles (we call this a wait state).

If and when the bus is free, the MPU places an address on the address
bus. This address is decoded by circuits in the memory or 110 interface and, if
all goes well, the data found at the requested address is moved from memory
or 110 to the data bus. The control bus then signals to the MPU that the data is
available on the data bus. Once the data is transferred to the MPU's data buffer,
the control bus signals that the system bus is free. In a moment you'll see how
the MPU handles the incoming data.

The width of the data bus (measured in bits) dictates how much data can
be fetched during each read cycle - so the wider the better. You'll see that the
size of the data bus plays a vital role in determining the flexibility, performance,
and the cost of an MPU. The cost element stems from the fact that each bit of
the data bus needs a corresponding pin on the MPU chip and associated
pathways within the chip.

When people talk about 8-, 16-, and 32-bit computers without further
qualification, they should be referring to the width of the MPU's data path. But
note that some salespersons have been known to lie. Remember Gerswhin's
law : "It ain't necessarily so!"

We really need four sizes to honestly characterize an MPU: data width,
ALU (Arithmetic/Logic Unit) width, register width, and address width, but life
is so short. Who wants to buy an 8/16/32/20-bit micro? (That's the MC68008,
by the way.)

The width of the address bus determines the total number of distinct
memory (including 110) addresses that can be accessed and hence affects the
maximum memory size. As with data width, the wider the better; but also the
more expensive. Here we can make use of our earlier messages-per-bit theory.
Most of the 8-bit MPUs have a 16-bit address bus that, as we've seen, allows
a maximum of 64K memory addresses (each of which normally accesses an
8-bit byte), since 216 = 65,536 = 64K.

Although there are many clever ways of fitting more than 64K of memory
on a 16-bit address bus, they all add overhead in time or cost. The M68000
family has address widths in the range of 20 to 32 bits, giving memory addressing
spaces from 1 Mbyte to 4 Gbytes.

The write cycle (Figure 1-10) allows the MPU to send data to memory or
110. The MPU signals its intentions (request to write) on the control bus, and

I

Basic Microprocessor Concepts 23

2

Memory

RAM

'

Data Bus

Control Bus

en
'< en -(1)

3
CD
c::
en

Step 1: Read Request
Step 2: Send Address

Address Bus

Data Bus

en
'< en -(1)

3

'. Control Bus
tawA!,
I f tJ

CD
c::
en

Memory

RAM

MPU

Fig. 1-9 Read Cycle

Step 3: Receive Data
Step 4: Signal OK

24 68000, 680 7 o, and 68020 Primer

Memory

MPU

RAM

Address Bus en
'<
fl) -(I)
3
CD
c
fl)

Step 1: Write Request

en
'<
fl) -(I)
3

' Control Bus

CD
c
fl)

Memory

RAM

~

MPU

fig. 1-1 O Write Cycle

Step 2: Send Address
Step 3: Send Data
Step 4: Signal OK

Basic Microprocessor Concepts 25

when the coast is clear, it places the data on the data bus, and the destination
address on the address bus. The MPU can then carry out its next instruction.

Recall that the data being moved around is represented by fast bursts or
pulses (O's and l's) synchronized by the system clock. When we talk of read
and write cycles, these are definite periods of time related to the speed of the
system clock.

SUMMARY OF SYSTEM BUS

The system bus links the main units of the computer, providing an electrical
path between MPU, memory and 1/0. It carries three types of signals: data,
address and control.

Now that you have an overall picture of how the MPU interacts with the
system bus, you can look inside the MPU and see how it works. Although MPUs
have evolved into myriad designs, there is a useful "generic" architecture that
serves to describe them all.

INSIDE THE MPV

The first thing to notice in Figure 1-11 is that the microprocessor has three main
connections to the "outside world," namely the paths to the data, address, and
control busses. Note that it also has an internal bus (there can be several of
these) connecting various functional units of the MPU. Within the MPU, in fact,
control and data signals move along the internal bus, synchronized by the system
clock - not unlike the picture we drew of the traffic on the system's bus.

Corresponding to the user programs of the computer system, the internal
operation of the MPU is guided by microprograms stored in special ROM within
the chip. (This is true of the M68000 and many other MPUs; other MPUs
employ hard-wired control logic.)

Let's run through a typical sequence of events.

1. Instruction Fetch: The program counter (PC) is a special register that holds
the memory address of the next instruction. Placing this address on the
address bus and calling a read cycle will fetch this instruction over the data
bus and load it into the instruction register (IR), via the internal bus. Instruc
tions, briefly, are words (or groups of words) that represent the steps of the
program stored consecutively in memory. Each instruction is encoded to
perform a particular operation, such as ADD or MOVE, on one or more
specified operands. For an ADD instruction, for instance, the operands would
be the two numbers to be added. A MOVE instruction would specify the
operand to be moved (the source) and the place it is to be moved to (the

26 68000, 68010, and 68020 Primer

CCR Flags
Timing &
Control

Address
Buffer

Fig. 1-11 Microprocessor Schematic

destination) . Once the instruction has been fetched, the program counter is
incremented so that it "points" to the next instruction in memory.

2. Instruction Decoding: The instruction word passes from the IR to the instruc
tion decoder, which "decides" from the incoming bit-patterns what operation
is needed. Typically, the instruction also contains addressing information for
the operands, that is, which register or memory location holds the data to
be operated on.

3. Data Fetch: Determining where the operands are often involves some arith
metic to calculate the operand addresses from the information included in
the instruction. For some multiword instructions there may have to be another

Basic Microprocessor Concepts 27

instruction fetch, as in step 1 above. It may now take one or more read
cycles to bring in the operands from memory, or to transfer them from
registers. The operands will be routed along the internal bus(ses) to tempo
rary registers.

4. Execute Cycle: The microprocessor is now, hopefully, ready to execute the
instruction. The MPU ''knows'' what to do, where, and to whom. More often
than not execution will involve the ALU (Arithmetic/Logic Unit). The answer
will be routed via the internal bus to a register, or to the data bus buffer en
route to memory. In the latter case, a write cycle will be initiated using the
destination address specified in the instruction. The ALU also sets a flag
register (also known as a condition code register) according to certain
conditions arising from the operations (result negative, result zero, overflow
and so on).

Having completed steps 1 through 4, the MPU is all set to do the same for
the next instruction - since you saw that the PC (Program Counter) has already
been increased, and therefore has the address for this next instruction. Remem
ber that instructions are normally stored in successive memory locations.

Among the many deviations possible from the simple sequence listed above,
a common one involves branching. In branching, some program condition
arises that calls for the execution of an instruction out of normal sequence.
Branching is achieved by setting·a new address in the PC.

Other deviations can arise from errors, exceptions, and interrupts from other
jobs. These will be covered in later chapters, since the M68000 has some unique
features for handling errors and exceptions.

A rather amazing fact is the sheer speed with which our four basic steps
take place. MPU speed is rated in MIPS (million instructions per second) - of
course, not all instructions take the same time, so MIPS can be misleading. A
single instruction can take from 4 to over 200 basic machine cycles. The
MC68020, to give you an idea, runs at a sustained rate of 2 to 3 MIPS, with
occasional bursts of 8 MIPS.

PREFETCH AND PIPELINING

If you look at our four steps - fetch instruction, decode, fetch data, execute -
you can imagine a tremendous amount of bus activity, both on the main system
bus and on the MPU internal bus. In the never-ending fight to squeeze more
performance from a system, the designers obviously attempt to speed up each
aspect of the cycle, especially by reducing the possibility of delay (wait states)
arising from bus contention or a slow memory access time. But when that has
reached practical limits there still remains the possibility of gaining speed by

28 68000, 68010, and 68020 Primer

overlapping operations - achieving what is known as concurrency. It turns
out that several of the steps 1 through 4 can be overlapped - performed
simultaneously. A typical prefetch strategy involves having three instructions
passing through the MPU at any one time - one being executed, one being
decoded, and one being fetched. In pipelining a greater number of instructions
may be passing through. These steps often require different system resources,
provided the chip has the necessary buffers and pathways. If, as will happen
from time to time, there is a clash or contention, one of the steps will be held
up. In Chapter 8 you will see how the instruction cache on the MC68020 further
improves performance by holding a set of instructions at the ready in fast on
chip registers. In many programming situations the same loop is iterated many
times; the instruction cache can reduce the fetch time considerably.

Let's review in more detail some of the main boxes in Figure 1-11, and
then see how memory is organized.

ARITHMETIC/LOGIC UNIT

An area of the MPU designed specifically for arithmetic and logical operations
is called an arithmetic/logic unit (ALU). Advanced MPUs like the M68000 have
several independent ALUs. The width of the ALU, 16 bits for the MC68000,
for example, tells you how many bits can be added together in parallel, at one
time. Larger numbers, of course, can be handled by taking extra clock cycles.

You saw earlier how gates could be combined to perform binary addition.
It is not too difficult to extend these to perform the other basic arithmetical
operations.

Subtraction is equivalent to adding a complement (easily obtained with
inverters); multiplication is repeated addition (although it is sometimes performed
from preset tables); and division is repeated subtraction and testing for zero.

Hardware division, incidentally, is one of the many mainframe features now
appearing as standard on the 16/32-bit micros. The alternative on most of the
8-bit micros, dividing by software, is tedious and much slower. Similarly, the
M68000 offers hardware BCD (Binary Coded Decimal) arithmetic as well as a
useful repertoire of shifts, rotates, and extended arithmetic. The latter involves
several clever multi-precision aids for doing sums across several registers for
increased accuracy.

MATH COPROCESSORS AND THE MC68881

For heavy number crunching using floating-point format, Motorola introduced
the MC68881 math coprocessor, which is fully compatible with the M68000

Basic Microprocessor Concepts 29

range (indeed the MC68881 is a chip in the same range of complexity as the
MC68000).

Coprocessing differs from multiprocessing in the way that the work load is
shared. Any suitably interfaced MPU in the system, on decoding an instruction
calling for floating point, will pass that instruction over to the MC68881 - so
coprocessors actually share the same instruction stream. Multiprocessors nor
mally do their own thing from independent programs, although they can and
do interact by sharing data and passing signals (known sometimes, rather
pleasantly, as semaphores) via memory.

Simply stated, you can look on the ALU as the calculating center of the
chip, capable of seeking help from a math coprocessor.

Inputs to the ALU are numbers from temporary registers (or buffers) via
the internal data bus together with control signals, (instructions indicating the
calculation or logical operation required). Output from the ALU, the results of
the calculation plus various control and routing signals, flow back to other parts
of the MPU via buffers and the internal bus. An important source for ALU data
input, as well as a destination for ALU data output is a special area of on-chip
fast memory, organized into fixed length registers. Unlike the temporary registers
and buffers, these are accessible to the programmer.

REGISTERS

Registers play a major role in giving an MPU its personality and programmability,
and they come in all shapes, sizes, and flavors. The basic MC68000 has 1 7
general-purpose registers, each 32 bits wide. In Chapter 3 we will cover this
aspect in depth, since the instruction set and the way the registers are organized
are intimately related.

MEMORIES ARE MADE OF THIS

The normal fast immediate memory for modem computers is the RAM (Random
Access Memory) chip. RAM Chips come in various sizes and are plugged into
memory boards to give a total capacity per board from 16 K-bytes up to 2
M-bytes. A system may well have more than one memory board within it. The
physical arrangement of memory is usually of no concern to the programmer,
who is interested only in the logical addressing scheme.

You should remember, in passing, that a growing number of peripherals
will have local RAM and/or ROM, outside the main MPU addressing space.
Typical examples are buffers for printers, keyboards, and CRT displays.

30 68000, 68010, and 68020 Primer

Addresses

~
o-

65,535 - Byte 65,535

Contents
of memory

Fig. 1-12 Addressing 64 K-Byte Memory

ADDRESSING MEMORY

As you saw in the read/write cycles, the main characteristic of RAM is that the
MPU can read and write data from and to RAM. To determine which of the
many byte locations it needs to access, each byte (or group of bytes) is given
an address. A 64K-byte memory can be thought of as 65,536 mailboxes,
numbered 0 thru 65,535. Inside each mailbox is a byte (8 bits) holding data
(256 possible characters, remember).

WHAT ARE WE READING?

If the computer were to read from byte address 1 (see Rgure 1-12), it would
fetch the byte 10110110. What would this mean? Well, almost anything! Out
of context the byte has no specific meaning. If the computer were expecting a
number it could be either

10110110 = decimal 182 (unsigned)

or

10110110 = decimal-74 (signed 2's complement)

If the byte were part of a 7-bit ASCII string, the leftmost bit could be a parity
bit with the remaining 7 bits giving the numeric character "6". Or it might be a
full 8-bit ASCII graphics character or "private" control code.

Basic Microprocessor Concepts 31

If the MPU were reading a program, the byte would be interpreted as part
of an instruction. The words and bytes that make up instructions have their own
peculiar coding schemes built into the MPU. You saw that the instruction decoder
has to interpret this code before the MPU can execute it. In Chapter 4, you will
see how the M68000 instruction set is encoded into groups of 16-bit words.
Recall that each 16-bit word offers up to 65,536 messages, so we have the basis
for a very rich and varied set of different operations.

Since the bytes we read from memory can mean so many different things,
you may be wondering how the MPU distinguishes all these possible interpre
tations. The answer lies in the program itself. And the reason that program bugs
can produce such bizarre results is because the MPU will blindly interpret each
byte as requested. So if you inadvertently ask the system to execute rather than
print an ASCII character, it is likely to do strange things.

IMPORTANCE OF MEMORY SIZE AND SPEED

Memory size and speed play a vital role in every aspect of computing. At the
simplest user level the amount of memory can dictate both the types of job you
can run and the speed with which they are performed. A RAM or ROM that is
not matched to the speed of the MPU can, as we've seen, induce wait states in
the MPU. Too little memory can often bring the system to a halt with a sneering
''insufficient memory'' message on your screen. Some programs need to be
completely resident in RAM before they can run at all. Other programs are
arranged to run with just portions of the code in RAM and are smart enough
to pull in overlays from a disk. Overlays overwrite sections of code in RAM
once they have served their purpose. Very large programs can theoretically be
made to run in very small memories, but the overhead caused by constant
swapping can create some ennui for the user.

MEMORY MANAGEMENT

Our simple picture of memory sitting on an address bus deliberately evades
many complex problems concerning the interactions between the MPU(s), sys
tem and user programs, and memory access. These are particularly severe when
the system allows multitasking, that is, the "simultaneous" running of several
jobs, or different parts of the same job. Clearly, care must be taken to prevent
one task from intruding on the memory allocated to another task.

In particular, the operating system (OS) which is overseeing all user tasks,
is itself running tasks, (including the task of scheduling tasks) and its system
memory space must be secure from accidental or deliberate intrusion. Users

32 68000, 68010, and 68020 Primer

may bithely kill each other's jobs, but if the OS goes, we all go. What makes
the system memory sacrosanct is not only the programs resident there (OS,
compilers, utilities), but also vital system data, such as tables for handling
interrupts and exceptions, and an area known as the system stack which holds
transient information concerning the status of interrupted jobs.

Even a single-user, single-MPU system nowadays frequently offers many
levels of concurrency. The speed of the modern MPU, compared with the speed
of most VO devices, allows it to service many requests in sequence, so quickly
that each job is convinced it has the MPU's undivided attention.

There is considerable diversity in the methods used to partition memory
safely and economically, and much debate on the merits of various approaches.
The initial problem is that of mapping physical to logical memory. By this we
mean relating the physical memory addresses as "seen" by the address decod
ers, with the logical addresses presented to the MPU by the programmer.

Some MPUs, like the Intel 8088/8086, have the solution to this problem
designed into the silicon, while others (like the M68000) leave all the options
open to the system designer.

SEGMENTED MEMORY

The Intel approach is called memory segmentation, as opposed to the Motorola
linear memory philosophy. In a segmented memory, the programmer looks at
several exclusive, fixed memory spaces (or segments), typically 64 K-bytes each.
As shown in Figure 1-13, the logical addresses he or she uses are offsets,
modified by the MPU to obtain the physical addresses. The modification is
achieved by adding values (called segment identifiers) held in segmentation
registers, and this can be done in such a way that the user's programs and data
are kept apart, safe from other users. The advantages are the security and speed
that arise from the use of short 16-bit addresses. The disadvantage is the
overhead involved in checking and adding the segment identifiers.

LINEAR MEMORY AND THE MMU (MEMORY
MANAGEMENT UNIT)

In the linear approach the programmer looks on memory as one long continuous
addressing space from zero to the maximum possible address, addressed by
means of a single number. With the 20- to 32-bit address widths available on
the M68000, this represents a generous chunk (from 1 M-byte to 4 G-bytes) to
play with. Within this maximum, jobs can be allocated the optimum memory
size needed. Security must be ''supplied" externally, as it were, but the M68000
is designed to facilitate this. Several specialized chips, such as the MC68451

Basic Microprocessor Concepts 33

Logical Addresses Segmentation Registers
physical
address

... P.ro•g•o•tt•se•tlllll!••@ I Prag Segment ID,_ •

__ D_a_ta_O_f_fs_e_t _ji @I Data Segment ID • ~
16-bit 16-bit

phys ical i,.-,.....,.....r-r...,.....,......,...-r-'?...,.

Segmented Memory

Linear Memory

M68000 FC
(Function Control)

Logical Addresses

Supervisor Prag

Supervisor Data

User 1 Prag

Logical Address

20 - 32 bits

address

User 1 Data MC68451

20 - 32 bits

Linear Memory with MMU

max

{anywhere)

max ...__ _____ _,,

max ...__ _____ _

Fig. 1-13 Segmented and Linear Memories

34 68000, 68010, and 68020 Primer

(available from Motorola) perform something resembling segmentation. These
chips are called Memory Management Units, or MMUs. In Figure 1-13, we
indicate how MMUs accomplish their purpose. The FC (Function Control) pins
on the M68000 automatically signal the processor state, namely whether the
M68000 is in supervisor or usermode, and whether the address is data or
program. From these values and the actual logical addresses, the MMU derives
the physical addresses. The MMU can also provide write-protection to selected
areas of memory, and allocate separate address space for OMA (Direct Memory
Access) operations.

MASS MEMORY

One characteristic of RAM plays a big role in computer design - volatility.
With most RAM, you lose your data when you switch off the power. So a more
permanent memory is needed, and this is provided by various types of backing
storage or mass memory, in the form of hard and soft disks, tapes, and
cartridges.

Programs are usually marketed on permanent media such as floppy disks,
but need to be read into RAM before they can be run. During a typical run
there will be many 1/0 transactions - data being output to disk, and data and
programs read in from disk. Overall performance is much influenced by the
amount of RAM available - the more RAM, the fewer disk accesses.

VIRTUAL MEMORY (VM)

It often happens that the available RAM is far less than the addressing range.
In fact, until memory prices fall much lower, it is highly unlikely that you'll see
many MC68020s with a full complement of 4 G-bytes of RAM! A technique
called virtual memory (VM) pioneered by Ferranti Ltd., Manchester, England,
in the 1950s (and reinvented by IBM in the 1970s), allows data to be accessed
from disk as though it were in RAM.

Referring to Figure 1-14, suppose you have a 1 M-byte addressing space
(20 bits), a 128 K-byte RAM and an 872 K-byte disk. With VM you could use
your full 20-bit address as though all your data were in RAM. On decoding the
address, the VM system would calculate (by table lookup perhaps) its equivalent
page number. A page is a convenient chunk of memory, say 1 K-byte. If that
page is currently in RAM (case Y, in Figure 1-14), it will be fetched in the normal
way. If the page is not in RAM (case X), we say that a page fault has occurred,
and this causes the system to load the page from disk to RAM, swapping out
an unwanted page if necessary.

Basic Microprocessor Concepts 35

Address Space RAM

0

x
y M

Fig. 1-14 Virtual Memory

Chapters 7 and 8 will discuss virtual memory in more detail, as implemented
on the MC68010 and MC68020.

RAM DISK

The opposite to VM is the RAM disk. If your program is written to access files
from a disk, and you have plenty of RAM to spare, it is possible to increase
performance by loading your files into RAM. The RAM disk software then fools
the program into treating RAM like a disk. The starting memory address of each
file record can be calculated - provided, naturally, that the disk formatting
rules are known.

36 68000, 680 7 0, and 68020 Primer

DIRECT MEMORY ACCESS - DMA

There is a widely used technique called Direct Memory Access (OMA) which
allows direct data transfer between RAM and disk with little or no involvement
by the MPU. If you look back to Figure 1-8, you can see that since VO and
memory are both tied to the system bus, there is already a physical pathway
available for OMA The actual mechanics are beyond our immediate scope here,
but OMA is achieved by having special hardware (intelligent chips called OMACs
- OMA controllers) that grab addresses from the MPU and then set up read/
write cycles with no further reference to the MPU (thus freeing the MPU for
more useful tasks).

Let's take time out for some general comments and recaps on the all
important topic of software.

SOFTWARE- GENERAL OVERVIEW

Software is needed to goad the inert hardware into action. Software consists of
programs (sometimes referred to simply as code), carefully constructed lists of
instructions written in one of the many programming languages available -
Basic, C, assembly language, and many others - guiding the hardware step
by step to perform specific tasks.

We have already seen that programs need to be loaded into memory before
they can run but there are many potential hurdles before we can reach that
happy state.

COMPATIBILITY

An essential concept throughout the industry is compatibility - the idea of
hardware and software elements throughout the system working together in
harmony. We will reserve the word system for an organized matching set of
devices and programs.

Hardware and software exist today in a dazzling profusion of shapes,
flavors, and sizes, and creating a system from diverse components, even when
you buy from a single manufacturer, is no trivial matter.

Portability in hardware simply means that the thing has a handle and
weighs less than 100 pounds; software portability is a less tangible concept. A
program written to run on many different systems is clearly more marketable,
although sometimes you lose efficiency by aiming at portability.

A group of related programs is often called a package. Well-known pack
ages such as WordStar® and Lotus TM 1-2-3 TM offer one specialized application

Basic Microprocessor Concepts 37

(word processing and spreadsheets, respectively). A more recent fashion is the
integrated software package such as Symphony TM which provides both word
processing and spreadsheets. Financial data from the spreadsheet can be trans
ferred automatically to the WP program in order to produce neatly typed reports.

If you want your computer to run your payroll, you'll need to load a payroll
package that specifically and in minute detail tells the computer how and when
to calculate each element of tax deduction, where to find the various tables, and
so on. The hardware has no preconceived notions regarding your wages and is
blissfully unaware of the IRS. When we talk about the computer as a general
purpose machine, we mean that it can do anything - as long as we have the
appropriate compatible software.

APPLICATIONS SOFTWARE

The payroll programs mentioned above belong to what we call applications
software. Applications software is aimed at solving particular user problems.

SYSTEMS SOFTWARE AND THE OS

The computer also needs systems software to handle a variety of basic support
functions required by every applications program, such as resource allocation,
controlling peripherals, and so on. These support programs, known as utilities,
are often lumped together under the title OS (Operating System), pronounced
"Oh-ess." Without the OS, each applications program would have to know the
exact hardware configuration and include all these tiresome details. In the early
days of computing, in fact, there were no operating systems, and the programmer
just had to code everything. The OS frees the programmer from many house
keeping chores. Furthermore, each OS provides its standard way of commu
nicating with the computer and isolates the programmer from many machine
specific features.

The successful operating systems such as CP/M, PC-DOS and UNIX are
available on many different computers, so a program written for a UNIX-based
computer, say, stands a fair chance of running, with little or no tweaking, on
any system which supports UNIX. This success is self-reinforcing, in the sense
that a widely used OS attracts a plenitude of software, while the computer
buyer's choice of OS is greatly influenced by the availability of packages.

As you might guess, rivalry between supporters of different OSs reaches
heights of religious fervor. MPUs like the M68000 family are opening up new
vistas in computing which will help dampen these passions by offering economic
multi-OS systems, capable of running programs from all sources.

38 68000, 68010, and 68020 Primer

SUMMARY - OPERATING SYSTEMS

The operating system is simply a complex set of programs that must reside in
the system to provide a uniform set of vital controls and functions for the user's
applications software.

Once an OS has been ported from system A to system B, programs written
for system A become portable, and will run on system B (fingers crossed).

So hardware needs software, and applications software needs systems
software. Of course, software without the hardware to run it on is also a pitiful
sight. Computing is but a mental construct until the two get together.

FIRMWARE

We should mention briefly that programs, including the OS itself, are often
supplied fixed in ROM (Read Only Memory). Variants exist called PROMs
(Programmable ROMs) and EPROMs (Erasable PROMs) that allow factory
changes to the ROM program. These programs, falling as it were between hard
and soft, constitute the firmware. Unlike the software we have been discussing,
firmware arrives fully loaded and ready to go.

Firmware, of course, is written and checked most carefully before being
permanently attached to the system. A good example of firmware is the BASIC
interpreter provided with the IBM PC™.

COUNTING THE COSTS

Spectacular advances in mass production continue to reduce hardware costs.
It has been observed that if car makers had achieved the same price reductions
as computer makers over the last 30 years, the price of a new Rolls Royce would
now be $100! Unfortunately, software has turned out to be an unexpectedly
tricky occupation, resisting similar efforts at mass production. Programming is
labor-intensive, demands rare creative talents, and commands increasingly higher
salaries.

Software costs have become the dominant factor in computer projects large
and small. On our car-cost analogy, the $100 Rolls Royce would, alas, require
a $100,000 a year chauffeur plus gas at $50 per gallon!

The phrase software engineering is often used to describe the efforts being
made to apply production methods such as project management and quality
control in the mainly cerebral field of programming.

Correcting the imbalance between hardware and software costs is the major
challenge facing the computer industry today.

Basic Microprocessor Concepts 39

The M68000 family was designed "by programmers, for programmers"
and represents a serious attempt to address this challenge.

CONCLUSION

Thus concludes our gallop through some of the basic concepts. Many of them
will be amplified and, we trust, clarified in the chapters that follow.

2

The M68000 Family

This chapter offers a little historical background for the Motorola M68000 family
of microprocessors, just to place them in the context of today's restless market
place. We also delineate the various members of the family, and show you what
they look like (see Figure 2-1). We suggest that you reread this chapter after
Chapters 3 and 4. Some of the M68000 design features discussed here will
become more meaningful after you have seen the instructions in action.

INTRODUCTION

The first 16/32-bit MC68000 (see Figure 2-2), introduced by Motorola in 1979,
represented a quantum leap forward in microprocessor power and flexibility.
Since then, Motorola has develOped, as promised, a family of compatible MPUs
(MicroProcessor Units) and support chips - ranging in price and performance
from the "economy" MC68008, via the MC68000, MC68010, and MC68012
up to the latest 32/32-bit MC68020. The MC68000 had already attracted the
title of "supermicro", leaving us short of suitable superlatives to describe the
MC68020. Adding number-crunching power to the family is the MC68881
FPCP (floating-point coprocessor).

We hope to reveal some of the design features of the Motorola M68000
microprocessor family and to indicate the main areas where radical decisions
were made to create this breakthrough in performance, programmability, and
future family growth.

The microprocessor chip is mankind's most intricate invention with VLSI
(Very Large-Scale Integration) densities now approaching theoretical upper

40

The M68000 Family 41

Courtesy of Motorola, Inc.

Fig. 2-1 The M68000 Family

limits. There are many VLSI technologies offering different densities and power
requirements. They are referred to by acronyms including the letters MOS (Metal
Oxide Semiconductors). The MC68020, for example, using the 2-micron HCMOS
(High-density Complementary Metal Oxide Semiconductor) process, packs
200,000 transistors on 3/8" square of silicon (see Figure 2-3) .

A detailed study of the vast field of chip design and microelectronic circuitry
is, of course, outside the scope of this primer.

Our aim, therefore, is to give you some feel for the highlights of this
remarkable family, stressing those elements which relate to the central theme of
our book, the M68000 instruction set.

We will follow Motorola's official designations by referring to the family as
M68000, reserving the MC prefix for a particular member of the family. So the
MC68000 is a specific MPU chip in the M68000 family.

Figure 2-4 gives a schematic overview of how the family members and
support chips might be interconnected. In practice, you would seldom meet

42 68000, 680 7 0, and 68020 Primer

MC68000 56,000 TRANSISTORS
2C6 ll 2t1 MllS

Courtesy of Motorola, Inc.

Fig. 2-2 The MC68000 Microprocessing Unit

The M68000 Family 43

Courtesy of Motorola, Inc.

Fig. 2-3 MC68020

such a comprehensive all-Motorola configuration. In fact, mainly through Mo
torola's own efforts, a standard bus known as the VME bus has received ISO
and IEEE approval; its growing acceptance means that devices from many
manufacturers can interface with the M68000 - and conversely Motorola's
VME-based support chips can be found on many non-Motorola systems. Figure
2-5 shows a typical MC68000 single board computer (from Educational Micro
computer Systems, Irvine, California) complete with 20 K-bytes RAM, 16 K
bytes EPROM and various 1/0 support chips).

44 68000, 680 10, and 68020 Primer

M68000 FAMILY

MATH BUS DISK
PROCESSING ARBITRATION STORAGE CONTROLLERS

MC6881
FPCP

MEMORY
MANAGEMENT

MC68452
BAM

MC68440
DDMA

MC68450
DMAC

OMA

MC68454
IMDC

MC68230
Pl!T

MC68901
MFP

M6800
PERIPHERAL

GENERAL
PURPOSE

1/0

MC68120
IPC

MC68652
MPCC

MC68653
PGC

MC68661
EPCI

MC68681
DU ART

MC68562
DUSCC

MC68564
SIO

DATA COMM

Fig. 2-4 M68000 Family and Supporting Chips

THE M68000 SUCCESS STORY

Nowadays, it takes a lot more than excellent price-performance hardware to
gain success in the microcomputer marketplace. Computer manufacturers and
independent software suppliers also need basic software support upon which to

The M68000 Family 45

Courtesy of EMS (Educational Microcomputer Systems), Irvine, California. See Appendix E for details.

Fig. 2-5 MC68000-Based Single Board Computer

build up complete end-user systems and applications software. To this end
Motorola has provided state-of-the-art software development tools, such as the
EXORmacs TM , EXORset TM, and EXORciser TM, as well as modular systems com
ponents such as the VMEmodules TM and the VERSAmodules TM .

These are supported by a host of Motorola-developed operating systems,
like the System V/68 UNIX-derived OS, conversion and debugging aids, assem
blers, and compilers.

Motorola was also prompt in establishing cross-licensing agreements with
major chip manufacturers in the USA, Japan, and Europe (see Appendix E).
You can now buy the M68000 from several manufacturers. Without such "sec
ond-sourcing" vendors can feel vulnerable, and it can prove difficult, if not
impossible, to penetrate the military and industrial markets, both domestic and
overseas.

The fruits of these efforts can be seen in the countless M68000 implemen
tations now available. Appendix E lists many of the manufacturers who have

46 68000, 68010, and 68020 Primer

adopted these chips. They range from the giants of the industry such as IBM,
Apple, Honeywell, NCR, ICL, and Hewlett-Packard, thru the mass-merchandiz
ers like Sinclair and Commodore, to the smaller, specialized firms such as Alpha
Micro, Charles Rivers, Alcyon and SBE. It is probably no exaggeration to say
that the M68000 is currently the best known if not the most widely used
microprocessor family worldwide.

THE DESIGN PROBLEM

VLSI (Very Large Scale Integration) chips like the MC68000 have such a lengthy
and expensive design-to-manufacture cycle that, like the proverbial airplane,
they can easily become obsolete before they take off. There are two ways around
this potential disaster - first, you use the finest possible crystal ball and try to
predict how the market will look two or three years from now. Second, you try
to reduce the gestation period by automating the design and testing process.
As Oscar Wilde once said, predictions are dangerous things, especially when
they involve the future.

Nevertheless, a whole subindustry of microelectronic market-watching and
trend-plotting does the best it can in a most volatile situation, not only to assess
the types of products needed but also the many associated imponderables such
as optimum price/performance, market share, demand patterns, and the like.
The recurrent fluctuations of over-stocking and shortages, layoffs, and recruit
ments in the semiconductor industry underline the fact that planning in this area
is far from being an exact science.

TIMING

A major ingredient in the success of the MC68000 was undoubtedly timing.
Even by the mid-seventies the Motorola crystal ball predicted that the existing
8-bit micros would soon run out of steam - their very success, in fact, was
attracting more sophisticated applications. Both commercial and scientific users
were demanding faster processing of larger, more complex databases, formerly
the preserve of the mainframe and minicomputer systems. The advances in low
cost mass-memory (hard- and soft-disk units) and RAM (Random Access Mem
ory) added to this pressure in many ways. More elaborate operating systems
and languages were needed to exploit the larger data banks, and these in tum
prompted the call for more powerful instruction sets and addressing modes.

The M68000 Family 47

A NEW MARKET

The growing personal computer market was calling for more friendly user inter
faces. Although the lively grass-roots hobbyist was happy to hack away with
primitive interfaces, the home and office user was asking "What will it do for
me?'" and "Why are these things so difficult to use?"

An inescapable fact of life is that insulating the user from the harsh realities
of bits, bytes, and bugs incurs an enormous software overhead. To offset the
inefficiency of user-friendliness you need more sheer processing power and larger
memory-addressing space, just as an automobile's automatic gearbox requires
a more powerful engine if you want to maintain the comparable performance
of a stick shift.

To support the professional systems software engineers in their search for
amicable user interfaces, more powerful instruction sets with more flexible ad
dressing modes were called for.

THE MACSS PROJECT

This was the situation facing Motorola when it initiated the MACSS (Motorola's
Advanced Computer System on Silicon) project in the mid 1970s. The design
challenge was a familiar one in the computer industry - how to reconcile two
fundamentally conflicting goals: pushing ahead into a new generation while
preserving compatibility with current software and peripherals.

Invocations to the Roman god Janus, reputedly blessed with hindsight and
foresight, are no longer in favor. In the hurly-burly of the real world the MACSS
team settled for gritty compromises between technical and marketing consid
erations, making literally thousands of trade-off decisions, some backed by hard
facts, others based on fallible intuition.

An existing user base represents a substantial hardware and software
investment that cannot lightly be ignored, yet at the same time it can inhibit the
full exploitation of advances in silicon technology, computer architectures, and
the black arts of programming.

Solid state innovations have continued to bedazzle us since the transistor
first emerged from Bell Labs in the late 1940s. At any point in time there are
hundreds of promising IC (Integrated Circuit) breakthroughs progressing (hope
fully) through the following stages: theoretical predictions from the solid-state
physicists; mathematical models and simulations; small-scale R & D tests; pilot
schemes to establish fabrication and quality control methods; and studies to
determine the economic feasibility of large-scale production. Crucial to com
pleting this cycle is predicting market demand and product life. No other industry

48 68000, 68010, and 68020 Primer

faces the same delicate equations relating start-up costs, production volumes
and yields, and unit cost.

THE LEGACY

The diversity of MPU designs launched between the pioneering Intel 4004 (1969
through 1971) and the MACSS project (1976 through 1979) reveals the variety
of responses possible. The evolving story has been one of "leap-frogging"
between the major contenders: Intel, Motorola, and Zilog.

By 1979 the Intel 8080/8085, the Zilog 280, and the Motorola MC6800
were the dominant microprocessors, all 8-bit and not dissimilar in overall archi
tecture and performance. In taking advantage of higher-density IC techniques,
such as the HMOS (high density metal oxide) process, all three were moving
toward 16-bit designs. Intel and Zilog favored maintaining object code compat
ibility with their vast existing 8-bit installed base, repeating their earlier design
philosophy that had seen, for example, the Intel sequence of 8008 to 8080 to
8080A to 8085, each one a faster sibling of the previous model. When the Intel
8088/8086 16-bit micros emerged, they bore obvious signs of this tradition.

BREAK WITH THE PAST

The MACSS team made the big decision to break away from the past and to
create, from scratch as it were, the best possible 16-bit design. The sole conces
sion to the 8-bit MC6800 customer base was the provision of timing circuits to
handle the slower synchronous MC6800 peripherals. Although M68000 soft
ware would have to be developed from zero, at least there would be a wide
range of 1/0 devices and support chips already in situ.

This break with the past was a gamble in many ways, but it addressed the
reality that the 8-bit micro had evolved in a rather ad hoc fashion, during a
period when the programmer's needs took second place to the hardware de
signer's requirements. When the first Intel 4-bit 4004 spawned the 8008 in the
early 1970s, the latter inherited many of the features of a calculator or CRT
control chip. This is not a criticism, of course, of those noble pioneers. Janus
himself could not have predicted the explosion of microprocessor applications
that occurred during the following decade.

During this period, once a particular instruction set had been established,
and a large body of software had developed around it, subsequent improvements
in MPU design had been dominated by program compatibility considerations
- the understandable desire to provide a machine that could be put to work
immediately.

The M68000 Family 49

Table 2-1 The M68000 Family of Microprocessors

Model MC68008 MC68000 MC68010 MC68012 MC68020

Technology HMOS HMOS HMOS HMOS HCMOS

Pins 64 DIP 64 DIP 64 DIP/68 QP 84 GA 114 SPG

Clock speeds 4-12.SMhz 4-12.SMhz 4-12.SMhz 4-12.SMhz 16.67Mhz

Number of 17 17 20 20 23
registers

Instruction 1 to 5 1 to 5 1 to 5 1 to 5 1 to 7
length (16-bit
words)

Register width 32 32 32 32 32

ALU width 16 16 16 16 32

Data bus 8 16 16 16 8/16/32
width dynamic

Address bus 20 24 24 31 32
width

Addressing 1Mb 16Mb 16Mb 2Gb 4Gb
range

The lesson was clear. The new Motorola 16-bit design had to be expandable
so that future enhancements preserved softwa~e compatibility without restricting
the hardware. So far, the MACSS team has been proved correct.

WHY 16-BIT?

As we saw in Chapter 1, the numbers used in describing a micro can be
misleading. As shown in Table 2-1, even within a closely knit family the vital
statistics vary widely.

All the parameters listed are cunningly interrelated, and they have their
particular significance for the overall price/performance of the chip. But, asked
to single one out, the programmer would probably opt for the length of the
instruction word. This dictates the richness and power of the instruction set -

50 68000, 68010, and 68020 Primer

7

/I'
2 Registers

0 = Register A 4 Addressln~ Modes
1 = Register 8 00 = ln:'med1ate

01 =Direct
10 =Indexed
11 =Extended

Fig. 2-6 8-Bit Instructions

0

I
25 = 32 op-codes

and these have the most far-reaching consequences from the programmer's
viewpoint.

The data bus width, for example, determines the number of read/write
cycles needed to access data. But if you cycle fast enough, who cares if the data
bus is 1or1000 bits wide? Well, Engineering cares, and so does Sales ("How
can we market a 1-bit machine?"), but the programmer will be happy provided
the registers are reasonably wide and plentiful.

The address bus width, as we've seen, determines the maximum physical
addressing space, and we certainly want to end the tyranny of 16-bit addressing
and 64K bytes. Various memory management schemes can solve this problem.

The importance of the instruction word size is clear if we look at a typical
8-bit op code, as shown in Rgure 2-6. Although, at first glance, it provides 256
distinct codes, once you assign bits for address mode encoding (telling the op
code which register or memory location to act on), you are soon down to 32
distinct operation codes. The contention here is among the number and type of
registers, the number of addressing modes, and the number of op codes. Eight
bits is just far too restrictive.

Motorola's jump to a 16-bit instruction word changes the picture dramati
cally, but naturally calls for more complex circuitry.

CHIP REAL ESTATE

Designers talk about chip real estate, and this is exactly how feature decisions
must be made. For a given IC technology (NMOS, HMOS and so on), offering

The M68000 Family 51

a given component density, and a given chip surface area, you establish an
upper limit to the number of logic gates. This, in tum sets a limit to the feature
sizes and functions you can build on the plot, and to those functions that will
have to be performed by separate support chips.

NUMBER OF PINS

The selected functions obviously have to communicate to the outside world, so
careful thought had to be given to the physical design, or packaging of the chip.
J,µst as the 8-bit designs cast a shadow over progress, the number of pins on
existing microchips was another hurdle. The standard 40-pin arrangement had
the merit of low cost in manufacture and testing - and there were lots of 40-
pin sockets out there pining for a chip - but you could only feed in and out a
limited number of bus lines for data, addressing, and control. Often designers
were forced to multiplex or share signal paths, which is basically self-defeating.
The MACSS approach for the MC68000 was a 64-pin DIP (Dual Inline Pack
age) that allowed more freedom in choosing bus widths, and avoided multi
plexing data and address paths. The pinouts are shown in Figure 2-7.

Coming back to instruction size, sixteen silicon paths have to be established
between buffers and instruction decoders. The 65,536 different instructions that
can be encoded in 16 bits have to be allocated - no trivial task compared with
the 8-bit situation where the op codes and register encoding almost write
themselves.

REGISTER ALLOCATION - TYPE AND NUMBER

You now have enough instruction space to implement a symmetrical set of
orders, that is, to have op codes that work uniformly with a large number of
general-purpose registers. With 8 bits you can only increase the number of
registers by having them dedicated or special purpose. For example, if ADD
works only with register A, there is no need to encode register A in the ADD
instruction. We will see that symmetrical registers are programmer-friendly, in
keeping with M68000 philosophy.

A key decision was made to implement 32-bit registers throughout, even
in devices like the program counter and stack pointer where 24 bits would have
served the immediate purpose.

Motorola made a reasonable compromise in the number of registers and
register types. By electing to have 16 basic programmable registers, 8 for general

52 68000, 68010, and 68020 Primer

PIN ASSIGNMENT

04 1. 64 05
03 2 63 06
02 3 62 07
01 4 61 08
DO 5 60 09
AS 6 59 010

UDS 7 58 011
LOS 8 57 012
R/W 9 56 012

DTACK 10 55 014
BG 11 54 015

BGACK 12 53 GND
BR 13 52 A23

vcc 14 51 A22
CLK 15 50 · A21
GND 16 49 vcc

HALT 17 48 A20
RESET 18 47 A19

VMA 19 46 A18
E 20 45 A17

VPA 21 44 A16
BERR 22 43 A15

IPL2 23 42 A14
IPL1 24 41 A13
IPLO 25 40 A12
FC2 26 39 A11
FC1 27 38 A10
FCO 28 37 A9

A1 29 36 AS
A2 30 35 A7
A3 31 34 A6
A4 32 33 AS

Fig. 2-7 MC68000 Pinouts

data operations and 8 for general addressing operations, 3 bits for register
encoding were needed in some instructions (where the type was implied by the
op code), and 4 bits for the more general instructions which could work with
any register. When you consider that the MC6800 had only 2 general registers
plus 1 index register, you can appreciate the good news.

The M68000 Family 53

DATA TYPES

The 16-bit instruction word also allows bits to be assigned to selecting the size
of the operand. Although the registers are 32-bit and the data bus is 16 bits
wide (on the MC68000), Motorola wanted to offer the programmer a simple,
uniform way of handling data in units of 8-bit bytes, 16-bit words and 32-bit
long words. Two bits were assigned for this in most instructions which allow all
three basic data types. At the assembly language level, it needs only a single
data-size code (B, W, or L) to select the operand data type.

ADDRESSING MODES

Likewise, the number and power of the addressing modes could be increased
from just 4 on the MC6800 to 14 or more on the M68000. The importance of
this will emerge in Chapters 4 through 8.

· The M68000 also has additional on-chip ALUs and special instructions to
speed up the addressing mode calculations.

IMPLEMENTATION

The final design decision, having listed all the goodies-number and size of
registers, size of addressing .space, instruction op codes, and addressing modes
- is how to implement this in silicon. There are two main choices in arranging
the complex paths and logical steps needed to put the chip on the road.

RANDOM LOGIC

The traditional method, called random logic design required that you mapped
everything in perfect detail, then devised particular networks of discrete logical
elements to achieve your grand design. This. leads to a compact economical
chip with no "wasted" real estate. However, as VLSI microchips increased in
complexity, it became more and more difficult to implement. Random logic is
simply too inflexible. The alternative, which in fact was invented by Maurice
Wilkes in the early EDSAC days (Cambridge, 1949-57), is called microcoding.
In those pre-micro days the name was not as confusing as it is now.

MICROCODING

Motorola adopted microcoding for the bulk of the M68000 implementation. In
microcoding, you really have something like an MPU within the MPU. Each

54 68000, 68010, and 68020 Primer

instruction is broken down into subinstructions or microinstructions, just as an
external (or macro) program can be reduced to procedures and subroutines.

For example, if you write down all the internal MPU steps involved in
moving data between registers, then list all the steps involved in adding two
registers together, you will find that they have many microroutines in common.
These make up the microprogram which is stored in onchip microROM (Read
Only Memory).

For each instruction a microsequencer routes the data and control signals
according to this microprogram. The advantage is enormous flexibility in design,
testing, and fine-tuning, albeit at the expense of silicon real estate. Microcode
can be simulated and tested off-line before embarking on costly chip fabrication.

CONCLUSION

Below the microcode level, the M68000 employs nanocode - and so on, ad
infinitum. This threatens to take us into levels beyond this chapter's modest
aims - so having whetted your programmer's appetite with some of the design
decisions behind the M68000, let's proceed to the final product. In Chapter 3
we describe the features accessible by the programmer.

3

M68000 Programmer's
Models

Thy gift, thy tables are within my brain,
Full charactered with lasting memory ...

- Shakespeare, Sonnet CXI/

In Chapter 1 we covered some of the basic concepts common to all microcom
puters, and in Chapter 2 we looked at some of the design decisions and tradeoffs
facing Motorola as they moved on from the 8-bit 6800 to create a new range
of 16-bit and 32-bit microprocessors, the M68000 family. You saw that Moto
rola's prime aim was programmer friendliness - so let's look at the M68000
family from the programmer's point of view.

First, though, we must identify more precisely how programming languages
are classified, the different roles they play and how they call for different levels
of processor know-how from the programmer.

LEVELS Of PROGRAMMING

'fhe term programming covers a wide range of activities requiring many different
skills and perspectives. As you saw in Chapter 1 all programs sooner or later
are reduced to a stream of instructions summoned from the processor's memory
(RAM or ROM) and translated into specific actions, such as the accessing and
manipulation of data from other specified areas of memory.

55

56 68000, 68010, and 68020 Primer

Programmers, and the programs they write, come in all shapes and sizes.
They can be programming to earn their daily bread or to save the Free World
or just for the sheer fun of it. The amount of detail they need to know about
the inner workings of the processor, such as how it accesses programs and data
from memory, varies enormously depending on the levels of the programming
languages they use. Figure 3-1 illustrates some of the major categories of
software, to give you an idea of what we mean by programming level.

HIGH-LEVEL LANGUAGES

With high-level languages such as BASIC, FORTRAN, or Pascal, the program
mer writes source code which the machine cannot directly run without some
intermediate transformations. The programmer is essentially isolated from both
the processor and the detailed organization of its supporting memory systems.

The high level programmer can concentrate on solving his or her applica
tions problems in the chosen programming language, leaving a compiler or
interpreter to translate the source code into the machine language instructions
which the chip itself ''understands.'' These machine language instructions are
highly inscrutable sequences of O's and l's, whereas a high-level source program
uses readable "English-type" sentences that offer a more natural and general
way of expressing your problem.

The output from a compiler is a compiled, "ready-to-run" machine lan
guage version of the source program, known as the object, executable, or run
program or module, to indicate that the processor can directly execute or run
the instructions without further translation. As you can see in Figure 3-1, the
object code modules created by the compiler are usually stored on disks or
other mass storage devices, from which they can be loaded into memory when
needed. Interpreters work slightly differently in that the run version is usually
executed immediately as each line of the program source code is translated.
This technical difference is not relevant to our present discussion, so we will use
the word compiler to include interpreters as well.

MID-LEVEL LANGUAGES

A mid-level programming language like FORTH or C still needs compiling, but
it offers the programmer more control over the processor than, say, BASIC or
Pascal.

M68000 Programmer's Models 57

MEMORY

HIGH

i I "Can you let me have a dozen?" Natural Languages

t
LOW

Set all levels to O
Increase stock by 12
Bill's subroutine comes here

10 STOCK = STOCK + 12
20 GOSUB BILL

main()
{
int S:O
s = s +12

ADD.W #12,S
JSR BILL

1010011011011101
0111010110110110
1000100011110001

Design Languages
Informal Programs

High-Level Languages
BASIC, ADA, APL, Algol ...

Sea-level Languages
CPL, C ...

Assemblers

Machine Code

Microcode
Nanocode

Fig. 3-1 Programming Language Level

58 68000, 68010, and 68020 Primer

LOW-LEVEL LANGUAGES

An assembly language program offers precise control. over the way the pro
cessor will carry out your instructions. At this level we are really writing the
processor's built-in machine instructions in a simple, one-for-one symbolic,
mnemonic version using easily remembered words such as ADD, MOVE, and
SUB. (Appendix C has an alphabetical reference list of these - how they all
work is the subject of our next three chapters). For now, all you need to know
is that they provide a legible version of the processor's machine code. Instead
of having to write 0010101100110000 or some such binary mix for each
instruction, assemblers allow you to program with more meaningful and readable
symbols. But note that, unlike the higher-level languages, each line of assembly
corresponds to one machine language instruction. When you write a line in
BASIC, for instance, the compiler may well generate fifty or a hundred or even
more machine language instructions. With assembly level programs, instead of
having a fairly complex compiler between you and the chip, you use a simpler,
faster assembler to translate the mnemonic symbols into machine code. Assem
blers, then, are rather like simple compilers - they convert from one program
ming level to the one below. They are simpler than compilers because the jump
down in level is much smaller.

At the assembly language level you clearly need to know a good deal about
how the processor finds and handles each instruction. But the rewards are great.
As we'll soon see, assembly language programs are extremely compact, efficient,
and superfast - and not that difficult!

MICROCODE AND NANOCODE LEVEL

Even below the machine-language level there are microcode instructions per
manently built into the chip which translate the machine-level code, and below
that, the M68000 has nanocode instructions to translate the microcode! We
pointed out in Chapter 2 that these esoteric levels are outside the normal
programmer's scope, but insofar as they provide tremendous flexibility during
the chip design and testing stages, we, the end users, directly benefit. Each
language level has its advantages and disadvantages for the programmer.

COMPARISONS OF LANGUAGE LEVELS

One of the reasons for the success of high- and mid-level languages is that the
same program can be written and run on different configurations of the same

M68000 Programmer's Models 59

processor, or even on an entirely different processor. All you need in the latter
case is a version of the compiler appropriate to the particular target chip. For
example, a program written in Microsoft® MBASIC TM can be run on Apple,
Radio Shack™, IBM and hundreds of other systems based on many different
microprocessor chips with endless variations in memory size and structure. Of
course, this happy state of affairs is the result of Microsoft's efforts to provide
different versions of the MBASIC compiler and interpreter for a wide range of
machines.

Software that can run with little or no change on different systems is said
to be portable, and in view of constantly escalating programming costs this is
a highly desirable property. However, as someone once neatly put it, there are
no free lunches; there is a price to pay for portability. Similarly, there is a price
to pay for the higher programming productivity that high-level languages pro
vide. That price is paid in reduced speed and efficiency, and in increased size
of the programs themselves.

Speed, Size and Efficiency

As you move down the hierarchy of language levels, towards assemblers and
machine language, your programs become less portable and more chip-specific.
On the other hand, the lower levels allow you more direct control of the chip's
resources, and you can take advantage of particular features of the chip in ways
not available to the high-level language programmer. In a nutshell, the lower
levels are harder to program in, and are less portable, but they are more compact
and run much faster. On typical test programs, known as benchmarks, an
assembly language version of a BASIC program might run 10,000 times faster
and take only 1 percent of the system's memory. Many factors, of course, affect
overall computer performance, and it is pointless to speed up just one stage in
the computing sequence unless the other elements in the system can keep pace.

Compilers themselves are, in fact, programs, and the programmers who
write them for specific processors have to know in great detail how the processor
functions at the machine-language level. Their constant aim is optimization, to
reduce the overhead involved in translating from high to low level, and to
produce the most efficient-to-run code. For this reason many compilers are
written in assembly language. Another common method is to write compilers
in C language, translate them down to assembly language format, and then
massage them at that level to obtain the best possible executable version. The
same techniques are applied in many other software development areas, espe
cially for operating systems, utilities, and the whole field of what we call systems
software. Such programs, which are used to support all users and are often
permanently stored in ROM, must clearly be as compact and efficient as possible.

60 68000, 68010, and 68020 Primer

A sound general rule is that frequently used programs repay the effort
needed to write them at the lowest convenient level, and this usually means the
assembly language level. Today most high-level languages offer some way for
the programmer to switch or chain to commonly needed routines written in
assembly language. You might call this the classical "best of both worlds"
situation. For this reason, most programmers today are well-advised to seek
fluency in several high-level languages and at least one assembly language. Like
driving a car, it soon becomes easy to switch from a Ford to a GM - the
controls are in different places, but the underlying principles are the same.
Continuing with this analogy, assembly language is like slipping behind the
wheel of a Ferrari! There are lots of new techniques to master before you gain
the maximum performance potential, but gradually they all fall into place and
whoosh! - you are driving in style.

PROGRAM LEVEL SECURITY

It is worth mentioning briefly (because it may help to clarify some aspects of
language level) that software publishers tend to guard their source code with
great intensity against piracy and illegal access. In most cases the public can
buy and use only the run version of a program, and even this, of course, is
protected against unauthorized use and copying in a variety of ways, ranging
from severe written warnings to sophisticated encrypted chips! There are several
well-known packages where the run version is available for $500, but the source
code would cost $5 million. The key to this is that the source code more readily
reveals the strategy of the program and allows the unscrupulous to exploit the
efforts of the programmer.

Source code can be printed, read, modified, and recompiled (or reassem
bled), then resold with some degree of impunity, whereas the run version is
useful only for running. Now Homo sapiens, being the cunning species it is, will
always seek ways around such situations. Some people patiently and manually
trace through all the binary O's and l's of a run module to uncover its hidden
secrets; others misuse special programs called decompilers and disassemblers
to automate this conversion from run to source code. We stress the word
"misuse" because decompilers and disassemblers are quite legitimate tools in
the right hands. Even bright programmers occasionally lose their own source
code (traditionally, one blames the computer) and decompiling your own stuff
is no crime. The big snag is that the full majestic structure of the source code is
seldom recoverable by decompiling, and deciphering a disassembled program
(remember you are still very close to machine language) is a hard way to make
a dishonest living.

M68000 Programmer's Models 61

LANGUAGE LEVELS SUMMARY

Our language level discussion can be summed up in the following way:

Higher level = Easier to program and update,
more portable, larger, slower

Lower level = Harder to program and update,
less portable, smaller, faster

In order to exploit the speed and power of machine language, you must
learn more about the processor's instructions and how the processor finds them
in memory. Then you can look at the many essential devices (called registers)
built into the chip which give the programmer direct control over the processor's
operation.

M68000 INSTRUCTION SET- BRIEF
INTRODUCTION

You have seen that the microprocessor, when it is running or executing a
program, fetches from memory, then obeys, a sequence of machine language
instructions represented by strings of binary O's and l's. These instructions pack
a great deal of information that the processor must decode in its instruction
decoder before it knows where to get its data, what to do with it, and where to
put the results. After all that, it needs to know where to get the next instruction.

As in sending and receiving Morse Code, for example, certain conventions
must be observed at both ends for sensible communication to occur. An obvious
convention is needed for the processor to know how many O's and l's must be
looked at before it starts decoding. In the M68000 these rules are simple:

Instructions are groups of 16-bit words.

A simple instruction may need just one word.

More complex instructions may require additional extension words, up
to a maximum of seven in total.

The first word in the instruction tells the processor whether to look for
extension words or not.

So the processor fetches and decodes an instruction from memory 16 bits
at a time, until it "knows" what to do. Depending on the particular instruction,

62 68000, 68010, and 68020 Primer

Table 3-1 M68000 Family: Bus Sizes

Register Data Bus Address Bus ALU
Mode/ Width Width Width Width

MC68000 32 16 24 16
MC68008 32 8 20 or 22 16
MC68010 32 16 24 16
MC68012 32 16 30 16
MC68020 32 8/16/32 32 32

the processor will carry out certain tasks. If the instruction says "MOVE data
from one place in memory to another," for example, it will also contain infor
mation on what is to be moved and to where.

To understand how these instructions and the data they refer to are located
in memory, you must take a closer look at the way the M68000 memory is
organized. You are not concerned here with the nuts and bolts of memory
boards or memory chips or whether it is RAM or ROM. What you need is a
conceptual model of memory as seen by the programmer. The M68000 memory
is a model in simplicity - just a huge set of numbered boxes, each holding
8-bit bytes. The number on the box is called the byte address.

MEMORY MODEL

M68000 memory, from the programmer's standpoint, is a simple succession of
byte addresses ranging from 0, 1, 2, 3 up to the maximum address allowed. At
each byte address you will find 8 bits of data sitting in memory waiting for
action. This straight sequence of consecutive addresses forms what we call a
linear address space, to contrast it with othet; more complex addressing schemes
in which memory is segmented, such as the Intel 8086/8088 approach (see
Chapter 1.)

The maximum legal address is set by the width of the address bus which
in turn depends on which chip in the M68000 family you are using. Members
of the M68000 family differ in the number of physical address lines wired out
to the address bus (see Table 3-1).

Determining your maximum legal address is a simple exercise in binary
arithmetic. Each bit you add to an address bus line doubles the number of

Byte
Address 1

(Hex) t
0 -=--1 __ __

2 1----=-3 ___

4 1-------s __ _
s __ 1 __ _

a __
91----A __ _

Bi-----,

FFFF ••. FF ~
7 0

Byte

M68000 Programmer's Models 63

Word
Address l

(Hex) T
0 t--=~-=--+-'=-i..:. _

2 i-------------
4 1-----'--+-----=--
6 i------------
8 i----=--+-----=--
A i---......... --.....-.-
C i----=--+---=--
E i------------

High Address r-t----.1_
Low Byte

Low Address
High Byte .---'----t----1-

N+2i--........._ __ _

N+4i--......... ---.-+-_ _
N+6i--........._ __ _

••• FFFC FFFC FFFD
... FFFE FFFE FFFF

15 8 7 0

Word

Fig. 3-2a M68000 Memory Model (Part One)

memory bytes you can legally address. A one-line address bus could access
only two addresses, namely address 0 and address 1. A two-line address bus
would double this to four possible byte addresses, namely 0, 1, 2, and 3.

The full 32-bit address bus of the MC68020 allows a linear memory space
of 232 = 4 gigabytes = 4,294,967,296 bytes. So, byte addresses on the

64 68000, 68010, and 68020 Primer

Longword
Address 1

(Hex) t
0 I--""'""'"'..-..,-..,..,_..,....,...___!'"-__ -:""!'":--:~-~

4 1---........;....,.,..,.;:-...,---__,;--..._-:""!"'":~~-=-"-~
8 1---~~~~----i=----:""!"'":~~-=--~
c 1---...,....,..-,;-;.....;..---;.---.,..,..,..~~...,..,,..-~

1 0 1---_;.;.~;....;..;;--!---...;..;..;;.;.,;;....;..;;;;.._-i~~

High Address
Low Word r--r-----:----+----

Low Address
High Word

N ~"""'""";..,..,..,.--,~...,....----;,__..........,,.,..,...__,..,,..,......,,....-~
N +4 1---~--=~~--;1--__,~~~'---t~
N+8 ~--~---"---1----~--~

L!V\.f\~~

~~~· 
... FF F B """"""'F=FF=a-: FFF9 
... FFFC FFFC · FFFD 

i FFFA : FFFB 
i FFFE : FFFF 

31 24 23 16 15 8 7 0 

Longword 

Fig. 3-2b M68000 Memory Model (Part Two) 

Max Legal 
Address 

MC68020 can run from 0 to 4,294,967,295. This upper limit is worth remem
bering. It will crop up many times as the maximum unsigned number you can 
store in a 32-bit device. You may find it easier to remember in binary: 

11111111111111111111111111111111 (count them) 



M68000 Programmer's Models 65 

or in hexadecimal: 

$FFFFFFFF (note that the"$" means hex, not money) 

THE IMPORTANCE OF EXTRA-LARGE 
ADDRESS I NG SPACES 

Memory prices have been falling dramatically over the years, but it may be some 
time before 4 gigabytes of physical RAM become an affordable feature for the 
average user! However, VM (Virtual Memory) techniques, originally developed 
on the Ferranti ATLAS in the late 1950s, are now available on the latest 
supermicros. VM allows you to access mass storage data using memory ad
dresses beyond the range of the actual RAM .installed, so you don't need lots 
of RAM to justify a large addressing space. Systems programmers are constantly 
thinking up new ways of making one thing look like another, an art known as 
emulation. The RAM-disk, for example, allows you to access RAM as though 
it were a disk, while VM lets you access disks as though they were RAM! The 
ultimate in emulation is the virtual machine, a technique that allows one 
microprocessor to look and behave like another (even like one that you haven't 
yet built). As we'll see in Chapters 7 and 8, the MC68010 and the MC68020 
have many special features that encourage the use of virtual machine techniques. 

The MC68000 has 24 of the 32 address bits wired out, giving it an address 
space of 224 = 16 megabytes = 16, 777,216 = $1000000 bytes. 

The "budget-scaled" MC68008 has only 20 of the 32 internal address bits 
connected for external use, providing an address space of "only" 220 = 1 
megabyte= 1,046,576 = $100000bytes. How quickly times change! It seems 
like only yesterday we were swooning over microprocessors that supported 64K 
bytes! 

THIS SPACE RESERVED - FOR SYSTEM USE ONLY 

Having established our wide open linear address space, let us immediately grab 
addresses 0 through 1024 for essential M68000 business known as system 
memory and system data. These hold important tables for interrupts, reboots, 
etc. and should not be altered by the average user. Some of these sacrosanct 
areas have to be in ROM so that they are preserved when you power down the 
system, but they still take up addressing space just like any other memory 
allocation. 

There will almost certainly be other areas of memory assigned permanently 
to other vital systems functions, and therefore not available for user-only pro
grams or data. As most systems and user programs grow more ''friendly'', they 



66 68000, 68010, and 68020 Primer 

increase in complexity and size. Hence the large M68000 address space is a 
real blessing. There are, for example, many microprocessors boasting 128K 
bytes of memory, but by the time the essential systems programs are loaded, 
the user may.be left with SOK or so. 

ACCESSING MEMORY 

You still have lots of logical address space remaining and we assume you have 
some boards of RAM to physically relate to some or all of your available 
addresses. How do you get data and instructions from physical memory? You 
need to look at the M68000 data bus, the electrical two-way path between 
memory and processor. 

DATA BUS 

Table 3-1 reminds us of another important and relevant fact about each M68000 
family member - the data bus width. This dictates how much data can be 
transferred during each memory read or write cycle. A narrow data bus will 
require more read or write cycles to transfer a given amount of data. 

Note first that the data bus lines are completely independent of the other 
bus lines. Many MPUs economize on silicon and pinouts by multiplexing or 
time-sharing data and address lines, and maybe other lines too. A dedicated 
data bus means that on each memory read or write cycle, all the bits on the 
data bus can be transferred in parallel without waiting for other line activity to 
finish. 

Now since different members of our happy M68000 family have different 
data bus widths (ranging from 8 to 32), you may wonder how the same memory 
accessing instructions can apply to all of them. Here is how. Each instruction, 
regardless of data bus width, includes a data size letter code, L, W, or B. The 
MPU interprets this, and will transfer a 32-bit longword (L), a 16-bit word (W), 
or an 8-bit byte (B) to or from memory. Each 68000 takes the appropriate 
action for you. The actual number of read/write cycles is transparent to the 
programmer - a longword operation will take 4 cycles (4 x 8-bit fetches) on 
the MC68008, 2 cycles on the MC68000, and just 1 cycle on the MC68020. 
Clearly the MC68020 is faster, but the point we are making (yet again) is the 
high degree of instruction-level compatibility between the members of the M68000 
family. 

The basic MC68000 reads 16 bits at a time which is quite neat since we 
already know that instructions are encoded into 16-bit words or multiples 



M68000 Programmer's Models 67 

thereof. But if you just want a byte from memory this will still take .1 cycle, the 
same as reading 2 bytes. 

Because of the M68000's data size instructions we can look at its memory 
as though it were divided into either bytes at byte addresses, or words at word 
addresses, or longwords at longword addresses. Rgures 3-2a arid 3-2b show 
how we do this. 

Here are the rules: 

1. Byte addresses can be even or odd. Byte addresses increase by 1 as you 
go up. 

2. Word addresses are even. Word addresses increase by 2 as you go up. 

3. Longword addresses are also even. Longword addresses increase by 4 as 
you go up. 

4. When you access a word at address N (where N is any even number), it will 
contain the byte of address N in its upper byte and the byte of address (N 
+ 1) in its lower byte. Read this rule again. It says that when you look at a 
word in memory, its most significant byte is at the lower byte address and its 
least significant byte is at the higher byte address. Now embroider the 
following on a sampler and hang it over your bed: 

Low address/high byte, high address/low byte 

5. When you access a longword at address N (where N is any even number), 
it will contain the word of address N in its upper word and the word of 
address N + 2 in its lower word. As in rule 4, we have an inversion to watch 
out for. Of the two words found in any longword the most significant word is 
at the lower word address and the least significant word is at the higher word 
address. So recite the following mantra: 

Low address/high word, high address/low word 

6. If you try to access memory by longword or word using an odd-numbered 
address, you will get a bus error message. (The MC68020 is more forgiving, 
but this is still a wise rule to follow.) 

If the M68000 is the first microprocessor you have ever studied this closely, 
you may not be puzzled by Motorola's byte/word/longword addressing conven
tions. Others will immediately notice that Rules 4 and 5 are exactly opposite to 
most other chips. It's like driving on the wrong side of the road in Europe- it's 
not a deep ethical question of right or wrong, but you do have to know the 
rules. When we come to registers in the next sections, you will see that the 
M68000 addressing rules are consistent and sensible. 



68 68000, 68010, and 68020 Primer 

Let's sum up what we have learned so far on M68000 memory addressing 
and organization. 

MEMORY MODEL SUMMARY 

• A large linear addressing space. No restrictions on program size (up to 
maximum space). 

• MC68008 can address 1 Mbyte. MC68000/68010/68012 address 16 
Mbytes. MC68020 can address 4 Gbytes. 

• Byte (8-bit), word (16-bit), or longword (32-bit) addressing is controlled 
by data size code in instruction. 

• Word and longword addresses are even. 

• Program instructions are stored as words. Data can be stored as bytes, 
words, or longwords. 

• Word at address N has its most significant byte at address N and its 
least significant byte at address N + 1. 

• Longword at address N has its most significant word at address N and 
its least significant word at address N + 2. 

• Longword at address N contains the 4 bytes at addresses N, N + 1, 
N + 2, and N + 3. 

REGISTER MODEL 

Now that you have a general picture of how the M68000 addresses external 
RAM and ROM, you can venture into the chip itself and look at the internal 
devices, called registers, which allow the programmer to directly or indirectly 
control every facet of the M68000's operation. 

The programming "beef' of the M68000 is its powerful yet simple instruc
tion set Each of the 60 or so basic instructions in the set, such as ADD or 
MOVE, performs a specific program step by manipulating or interacting with 
the contents of on-chip registers and off-chip memory, so our programmer's 
model must include the registers and the memory addressing modes available 
to the programmer before you can make sense of the instruction set. 

To some extent you face a "double-egg-and-chicken" situation since the 
registers, the addressing modes, and the instructions are all closely intertwined 
and mutually dependent. Some of the M68000 register features can appear 
rather arbitrary until you reach a related instruction in Chapters 4 through 6 that 
suddenly reveals the full beauty and symmetry of the M68000. We urge you to 



M68000 Programmer's Models 69 

hang in there while we build up a picture of what registers are, and the many 
roles they play. 

WHAT IS A REGISTER? 

As a first approximation, you can look at a register as a small piece of very fast 
RAM built into the chip - fast because the data held in a register can be 
accessed and updated directly by the processor without any time-consuming 
memory-fetch cycles. Registers even have numerical addresses like RAM, but 
these are for internal reference within the machine language instruction; the 
assembly language programmer always uses symbolic addresses such as DI, 
PC, or A6. The big difference between RAM and registers is that registers have 
various built-in functions and are connected directly to control units on the chip 
in order to provide these functions. From the programmer's stance, registers are 
bits of ''smart'' ultrafast RAM. 

REGISTER TYPES AND FUNCTIONS 

As you saw in Chapter 2, a major chip-design question is how many on-chip 
registers to supply, and how many different functions they should each provide. 
The following essential register functions are always needed in some form or 
other: 

Passive work areas for holding intermediate results The simplest, but 
nonetheless important function of registers is to hold intermediate results during 
a program. The key fact here is that the data held in on-chip registers can be 
accessed and processed very quickly using short economical instructions. And 
the more registers you have, and the wider they are, the more data (both numbers 
and addresses) you can hold at the ready, without wasting time switching data 
to and from external memory. 

However fast your RAM is, machine cycles are used in calculating ad
dresses, then accessing, retrieving, and storing the data in memory. To attain 
the highest possible throughput we always try to keep the engine stoked with 
fuel-data from the registers. A simple analogy exists with desk adding machines 
- if you have only one register; you often have to write down and reenter 
intermediate subtotals, whereas judicious rolling of subtotals with a multiple 
register machine avoids this chore. 

Arithmetic and logical operations Registers, traditionally known as accu
mulators, are linked to the ALU (Arithmetic/Logic Unit) to receive the results 



70 68000, 68010, and 68020 Primer 

of an ALU operation. The early microprocessors usually offered only one such 
accumulating register, forcing the programmer to shuffle data about before and 
after performing an arithmetical operation. 

With general purpose data registers, as provided on the M68000, arith
metic can be performed directly without this coding overhead. 

Addressing operations Address registers supply the processor with memory 
addresses for fetching and saving data. Before an instruction can access or save 
data in memory it must obviously determine the target memory address; in the 
most common case this address is obtained from an address register, but there 
are other more complex modes where the address is calculated from two or 
more registers. 

Different microchips use widely different memory addressing schemes, and 
this is reflected in the diversity of special purpose registers used for the funda
mental task of providing the effective address for the data needed by an 
instruction. With the Intel 8086/8088, for example, as we explained in Chapter 
1, special registers exist for the sole purpose of providing base, segment, and 
index values from which the effective address is formed. We'll see that the 
M68000's nonsegmented addressing structure simplifies the situation consid
erably; there is just one type of general-purpose address register (although you 
get seven of them) and any register (including the data registers) can be used 
as an index register. 

Program sequencing The PC (Program Counter) is a special addressing 
register dedicated to keeping track of the memory address of the current instruc
tion, so that the processor knows where to go next during a program run. 

Stack pointers Theoretically, a stack pointer is simply an address register used 
to access a dedicated area of memory known as a stack. Stacks, as you'll see 
in Chapter 5, play an important role as places for saving data while the MPU 
breaks off to do something else. Most MPUs have one or more registers dedicated 
to the job of keeping track of stack addresses. 

Processor status Registers known variously as the SR (Status Register), the 
PSW (Processor State Word), or the CCR (Condition Code Register) are needed 
to report on various important states or conditions that can arise after each 
program step. 

Typically the processor will flag events, such as whether the result of a sum 
is zero or negative, by setting 1 's or O's in certain bit positions of the SR. 
Instructions allow the programmer to test these bits in the SR, and alter the 
course of the program accordingly. 



M68000 Programmer's Models 71 

Other bits in the SR indicate interrupt priority levels. These are used to 
control the types of jobs which will be allowed to temporarily suspend the 
currently active program. Such suspensions are naturally called interrupts. When 
an interrupt is requested by, say, an 1/0 unit, the MPU must decide the relative 
urgency of what it is doing, compared with what the 1/0 unit wants to do. Such 
decisions are made on the basis of numeric priority levels stored in the SR. 

After this quick review of register types and functions, we are ready to 
examine the M68000 basic register model. 

M68000 BASIC REGISTER MODEL 

figure 3-3 shows the basic register model that applies to all members of the 
M68000 range. As you move up-market from the MC68008 through the MC68000 
to the MC68010 and MC68020, you'll find enhancements to this model, but 
there is nothing to unlearn. For the programmer, the M68000 models are upward 
compatible - which is probably the most friendly thing you can ever find in a 
range of microprocessors. 

Although the IC technology, pinouts, shapes and sizes, speeds, and mem
ory addressing ranges of the chips in the family may be different, the M68000 
family is object code upward compatible. Programs written for a vintage 1979 
MC68000 will run without change on the latest 1985 MC68020. 

We'll quickly run through the five types of register in our basic model, and 
then explain each type in detail. 

1. 32-bit data registers: There are eight of these, named D0-07. 

2. 32-bit address registers: There are seven of these, named AO-A6. 

3. 32-bit stack pointers: There are two of these, the USP (User Stack Pointer) 
and the SSP (Supervisor Stack Pointer). Since only one of these registers 
can be active at any point in time, they are both referred to as A 7 - but 
remember that there are two distinct stack pointers maintaining two distinct 
stacks (naturally called the user stack and the supervisor stack), and they 
retain their own pointer values in spite of sharing the same register designation. 

4. 32-bit program counter: There is just one program counter, called the PC. It 
is rather like an address register, but it specializes in keeping track of the 
address of the instruction being obeyed. The number of active bits in the 
PC will depend on the model, that is, 24 for the MC68000, 32 for the 
MC68020. 



72 68000, 680 70, and 68020 Primer 

31 16 15 8 7 0 

DO 
1--~~~~-+-~~+-~-W11•D1 
1------__.,.. __ __.,.. __ ~02 
1--~~~~+-~--+~~.,,.03 
1--~~~~,.__~----;.~~.,.D4 

1--~~~~+-~--+~~_,_DS 
..._~~~~+-~--+~~~06 

07 

31 16 15 0 

AO 
..._~~~~+-~~~~_..A1 

..._~~~~+-~~~~_..A2 

..._~~~~,.__~~~~~A3 

1--------------;,_.A4 
.__~~~~,.__~~~~---AS 
..._~~~~+-~~~~_..A6 

31 

USP (User Stack Pointer) 

SSP (Supervisor 

15 System byte 8 7 CCR O 

~ : i i ! i2!1 !o ! ! ! : : i ! 

Data 
registers 

32-bit 

Address 
registers 

32-bit 

Program counter 
32-bit 

Status register 
16-bit 

Fig. 3-3 Basic Register Model 



M68000 Programmer's Models 73 

5. 16-bit status register. There is just one, called the SR. The lower byte (bits 
0-7) is called the CCR (condition code register); the upper byte (bits 8-15) 
is called the system byte. The CCR has 5 flags which are set to 1 or cleared 
to 0 to signal various conditions arising from each operation: 

C = Carry flag 
V = Overflow flag 
Z = Zero flag 
N = Negative flag 
X = Extend flag 

The system byte has a flag or flags to indicate which of two states the 
processor is in (either the privileged supervisor state or the unprivileged 
user state); it is this flag that determines which of the two stack pointers, SSP 
or USP, is active. The system byte also contains a 3-bit interrupt mask (i0-i2) 
to signal the interrupt priority level (0-7), and a flag (T) to indicate that the 
processor is in trace mode (a mode allowing the MPU to single-step through 
the program). 

DATA AND ADDRESS REGISTERS 

The data and address registers are the work horses of the M68000, and most 
instructions involve them in one way or another. As the names imply, the data 
registers, D0-07, are used for general data manipulation, while the address 
registers, AO-A 7, hold the addresses needed to access or update items in 
memory. 

Typically, an instruction would use an address register to fetch a number 
from memory and place it in a data register; you then do your sums by referencing 
the data register, and finally, use the address register to direct the answer back 
to memory. 

The different functions of data and address registers are reflected in the 
way they are wired, and in the rules governing which instructions you can use. 

The only arithmetic you ever want to do on addresses is adding and 
subtracting in order to index or point to a given location - it is very seldom 
necessary to multiply or divide addresses. Also, addresses are always 16- or 
32-bit numbers, so it makes no sense to design address registers to handle bit 
or byte operations. 

The instruction set reflects this by having instructions that work only with 
data registers or only with address registers, or that perhaps work slightly differ
ently with each. These apparent exceptions soon become quite natural and 
sensible throughout the M68000. 



74 68000, 68010, and 68020 Primer 

The data registers are designed to handle all the usual arithmetic and logical 
operations, and since they are 32 bits wide, they can hold addresses and act as 
index registers too. 

REGISTER SYMMETRY 

All the data registers behave the same, and all the address registers behave the 
same, so compared with many other microprocessors, there are fewer personality 
quirks to remember. 

If you compare the M68000 with its closest rivals, you'll see that Motorola 
offers a very clean, symmetrical set of registers and a uniform 32-bits for data 
and addresses. An instruction set that has this kind of uniformity is said to be 
orthogonal, and although it may increase the complexity of the MPU, it makes 
programming much easier. 

Let's look at the data registers in greater detail. We will look at the basic 
subdivisions of the 32 bits and how they are handled by the MPU. 

DATA REGISTERS 

The eight 32-bit data registers, DO-D7, all look like the sample shown in Figure 
3-4. The bits are numbered from 0 on the right, the LSB (least significant bit) 
position, up to 31, the MSB (most significant bit). You need to remember that 
we start numbering with bit number 0 on the right up to bit number 31 at the 
extreme left. You'll get most peculiar results if you ever get this wrong. Bit 
number 1 is the second bit from the right. 

The 32 bits can be used in almost any combination (you could access just 
bits 5, 19, and 28, say, if you felt so inclined); however, the instruction set is 
specially geared for fast manipulation of the three most common subdivisions, 
namely: 

The 32-bit longword - one per data register 
The 16-bit word - two per data register 
The 8-bit byte - four per data register 

Less frequently, we may be involved in the further subdivision of eight 4-
bit nibbles but we'll defer this aspect until we meet BCD (Binary Coded Decimal) 
operations in Chapter 6. 

Figure 3-4 shows the names applied to these subdivisions. We talk about 
the upper and lower words in a longword, and the upper and lower bytes in a 
word. 



31 
MSB 

23 
MSB 

Upper Byte = 8 bits 

r1T1Tml 
31 24 

MSB LSB 

16 
LSB 

16 
LSB 

M68000 Programmer's Models 75 

15 
MSB 

Upper Byte = 8 bits 

0 
LSB 

~111111 I 
15 8 
MSB LSB 

Lower Byte = 8 bits 

Sign~ 
Byte lli.lll.l.lJ' 

7 0 

MSB LSB 

Fig. 3-4 Data Register 



76 68000, 68010, and 68020 Primer 

01 
4 E F 1 5 A 8 F 

31 16 15 0 
Before 

Destination 

02 

Before Longword MOVE from 01 to 02 

01 

After 

02 

After Longword MOVE from 01 to 02 

Fig. 3-5 Longword Operation: MOVE.L 

In the section on memory you met the idea of byte, word, and longword 
addressing. Not surprisingly, you have the same choices when you do operations 
with a data register. 

REGISTER SIZE-CODES 

Most instructions operate in three modes, namely longword, word, and byte 
mode, indicated by the letters L, W, or B in the instruction. These dictate which 
part of the register is affected: the whole longword, the lower word, or the lower 
byte. 



M68000 Programmer's Models 77 

Source 

01 

31 16 15 0 
Before 

Destination 

02 

Before Word MOVE from 01 to 02 

01 

After 

02 

After Word MOVE from 01 to 02 

Fig. 3-6 Word Operation: MOVE.W 

Let's see how this works, using the MOVE instruction to move data from 
one data register to another. We always describe moves as follows: from the 
source data register to the destination data register. 

The format of the MOVE instruction is: 

MOVE .<size-code> <source>,<destination> 

Our examples will use: 

MOVE . L 01 , 02 
MOVE .W 01 ,02 
MOVE . B 01 , 02 



78 68000, 68010, and 68020 Primer 

Source 

01 

31 16 15 0 
Before 

Destination 

02 

Before Byte MOVE from 01 to 02 

01 

After 

02 

After Byte MOVE from 01 to 02 

Fig. 3-7 Byte Operation: MOVE.B 

Let's assume that before the moves, 01 contains the decimal number 
1,324,440,20 = $4EF15A8F ($=hex) and 02 contains 186,894,140 = 
$0B23C73C. 

In Figure 3-5 the instruction MOVE.L 01,02 moves the longword in 01 
to 02. Not unexpectedly, 02 ends up with $4EF15A8F. All 32 bits have been 
transferred. The source register is unchanged. 

In Figure 3-6 we have changed the size-code to MOVE. W. This time only 
the lower word of 02 is affected; it picks up the lower word of 01. The upper 
word of 02 is unchanged. 

Finally, in Figure 3-7, we look at a move from 01 to 02 in byte mode. 
Only the lower byte (bits 0 - 7) of 01 is transferred to the lower byte of 02. 
The three upper bytes of 02 are unchanged. 



M68000 Programmer's Models 79 

Being able to operate on parts of a register without altering its other parts 
proves to be useful in many programming situations. On some computers, the 
byte move shown in Figure 3-7 might require three or more steps, possibly using 
a third register as you shuffle the data around. 

REGISTER ARITHMETIC 

Since data registers are mainly used for doing sums, you need to look at the 
arithmetic of 32-bit registers. You will see that, as with MOVEs, you can perform 
8, 16, or 32-bit calculations. Also, just like MOVEs, byte and word sums do not 
disturb the upper parts of the register. The choice of data size will determine the 
numeric range of the numbers you can handle. 

DATA SIZE-CODE AND NUMERIC RANGE 

As we explained in Chapter 1, each bit the designer can add to a register doubles 
its range and, therefore, its numerical accuracy. So, wider registers mean more 
accuracy - hence the excitement when 8-bit registers replaced 4-bitters, and 
when 16-bit registers replaced the 8-bitters. The endless search for accuracy is 
reflected in the 80-bit registers available on the Motorola MC68881 and similar 
number-crunching coprocessors. As you will see, there are many programming 
tricks available for combining registers to get what we call multi-precision results, 
but the ideal is to have the hardware do this for you. 

As we saw in Chapter 1, the unsigned range of a 32-bit register is 0 through 
+4,294,967,295 while the 2's complement mode allows signed numbers in 
the range of-2,147,483,648 through +2,147,483,647. 

SEEKING A SIGN 

In the 2's complement notation (see Table 1-1 in Chapter 1), we find that the 
above negative numbers have a 1 in bit position 31 (the leftmost bit), while the 
positive numbers, including zero itself, have a 0 in bit position 31. This bit is 
therefore called the sign-bit. 

Similarly, with 16- and 8-bit operations on 2's complement numbers, the 
sign-bit in positions 15 and 7, respectively, indicates the sign of the number in 
a word or a byte. 

The important rule for signed numbers is: 

Sign-bit = 0 for positive numbers (including zero) 

Sign-bit = 1 for negative numbers 



80 68000, 68010, and 68020 Primer 

Register 
31 0 

~10•j •••••••••I 0 to +2,147,483,647 positive 

Longword p 
~I -

-2,147,483,648 to -1 negative 

Sign bit 
15 0 

lo j p o to +32,767 positive 

_Word Al•••w~ -32,768 to -1 negative 

~I 1 l"o 
Sign bit ~ lQl____P' O to + 127 positive 

~yte~ ~ -128 to -1 negative 
Sign bit ~ 

Signed numbers 

A3l1•••••••0~0.,_Lss 
1 I ,, o to 4,294,967,295 

Jr 15 o.__LSB 
MSB A--110 

MSB~--1 ---"' 7 0 .__LSB 
Oto 65,535 

MSB~ Oto 255 

Unsigned numbers 

Fig. 3-8 Range of Signed and Unsigned Numbers 

For unsigned numbers, of course, this bit represents a normal binary value 
(231, 2 15, or 27). Unsigned numbers have no sign-bit; they use all the available 
bits to give us the maximum positive range. In Figure 3-8 we show the ranges 
available for each data-size, L, W, and B. 

Now, if you peep into any data register you will see a row of 32 bits - O's 
and l's in profusion. The M68000 attaches no intrinsic meaning to these bits; 
they could be signed or unsigned numbers or nonnumerical characters. What
ever legal operation you program on this register will be obeyed without question. 
If you use an instruction such as ADD, to add 1, say, to the register, then the 
MPU will treat the bits in the register as numbers. But does the MPU know 



M68000 Programmer's Models 81 

whether the register represents a signed or unsigned number? The answer is 
no! ADD happens to be an operation that works equally well on signed and 
unsigned numbers, provided that the answer stays within the ranges we have 
listed in Figure 3-8. 

Since the ranges are different for signed and unsigned numbers, the M68000 
gives us two distinct warning signals via the CCR (condition code register) flags. 
The V (overflow) flag = 1 warns if the signed range is exceeded. The C (carry) 
flag = 1 warns if the unsigned range is exceeded. You'll see shortly how this is 
done. The important thing to note here is that the MPU does not know or care 
whether you, the programmer, are using signed or unsigned numbers. The V 
and C flags simply report a condition arising from your instructions. It is entirely 
up to the programmer to heed or ignore these warnings. 

If you are using signed numbers, the C flag warning IS irrelevant, but the 
V flag warning is crucial. If you are using unsigned numbers, the V flag warning 
is irrelevant, but the C flag warning is crucial. (An exception to this can arise 
during unsigned division. We will cover this in Chapter 5.) 

Both the V and C flag warnings are based on the ranges appropriate to 
the data-size of your instruction. Adding in the byte mode, for example, would 
flag unsigned numbers exceeding 255, or signed numbers outside the range -
128to+127. 

Let's probe this situation. First, a closer look at the carry flag. 

CARRY 

Unsigned registers are rather like automobile odometers; after a certain mileage 
they flip back to 0, you lose the vital 1 (meaning 100,000 miles) and you are 
suddenly the proud owner of a low-mileage car (or register). With a 32-bit 
register you can get this result by adding 1 to 4,294,967,295. The correct 
answer to this sum is: 

4,294,967,296 = 232 = 1oooobooo900000000000000000000000 

Alas, this needs 33 bits, so our register, doing the best it can, reports only 
the lower 32 O's. The register gives a 0 result, which is on the low side, by 
4,294,967,296! 

Unlike the automobile's odometer, happily, the most significant 1 at the left 
is not lost. Rather, it is carried to a bit position in the CCR - yes, the C for 
carry flag . 

. You can test this bit. If it is 0, you know there was no carry; if it is 1, you 
can take action to correct your result. In our example we would need to make 
sure that 232 rather than 0 is returned as the answer. (We shall see in Chapter 
6 that there are special extended arithmetic instructions for achieving this). 



82 68000, 68010, and 68020 Primer 

In many ways the carry bit acts as an extension to your data register when 
doing unsigned sums, giving you, effectively, 33-bit arithmetic. 

However, there is only one CCR, and therefore the one carry bit serves all 
eight data registers. If you fail to check for carry immediately after the crucial 
addition there is a danger that the next operation could change the carry bit, 
resulting in another 4,294,967,296 mistake. The mysterious X (extend) flag is 
provided to help you handle this situation. The X flag is normally set the same 
as the C flag, but many instructions that clear the C flag leave the X flag 
undisturbed. For the moment, you can consider the X flag as a sort of C flag 
memory. Upon detecting a carry, you may have to move stuff around prior to 
correcting the situation. If the C flag gets lost, you still have the X flag available. 

If you are working with word instructions, you'll get a carry when the lower 
word flips past its maximum unsigned limit of 65,535; likewise byte instructions 
set the carry flag when the lower byte exceeds 255. This, again, is all very 
uniform and programmer-friendly. The data-size code does a lot for you. 

The carry flag also indicates another kind of danger in unsigned arithmetic. 
If you subtract two unsigned numbers and the answer is negative (for example 
1 - 2 = -1), the result cannot be held correctly in an unsigned register. In this 
case the carry bit indicates that a borrow has occurred at the top end of the 
difference operation. So the programmer can test the carry flag after subtractions 
and take evasive action. 

The standard unsigned multiplication on the M68000 does not require 
tests on the carry flag. In this case, multiplying two 16-bit unsigned values gives 
you a perfect 32-bit result and always clears the carry flag. You cannot exceed 
the limit. 

CARRY AND EXTEND - SUMMARY 

Summing up, there is a C (carry) flag or bit in the CCR byte of the status 
register which warns us that our unsigned sums have gone over the 32-, 16-, 
or 8-bit unsigned limit. Both the C and X (extend) flags are set to 1 whenever 
a carry or borrow occurs. The X flag is preserved for later use, even if the C 
flag is cleared. The programmer can test the carry flag and take corrective 
measures. 

OVERFLOW 

The V (overflow) flag or bit warns you of errors in signed arithmetic. Let's look 
at a simple example of signed arithmetic to help us understand overflow. We'll 



M68000 Programmer's Models 83 

use just 4 bits, but the principle extends readily to 8, 16, and 32. If we add 1 
and -1, like this: 

Decimal Binary 

-1 = 1111 (2's complement) 
+1 = 0001 

--
SUM 0 = 10000 

We have a good-looking answer in bits 0-3, so we ignore the carry in bit 4. This 
explains our rule that the C flag is irrelevant in signed arithmetic. In 2's comple
ment addition you simply discard the carry. 

Now try adding 6 + 7: 

SUM 

+6 
+7 

+13 

= 0110 
0111 

1101 ??? = - 3 (2's complement) 

Here we get the wrong answer, and yet there was no carry. Why is the 2's 
complement sum wrong? The reason is that + 13 is outside the signed range of 
4 bits (-8 through + 7). 

Similarly, when we add two 32-bit signed integers the carry flag does not 
warn us if the limits have been exceeded. To guard against results violating the 
signed range of -2,147,483,648 through +2,147,483,647, the M68000 has 
to be a lot more devious. It has to watch the sign-bits of the two integers as well 
as the carries from bit 30 to bit 31. The details of this are not important, provided 
you understand the end result: if the V flag is set to 1 by your signed arithmetic, 
then the answer is wrong-you have exceeded the legal limits for 2's comple
ment mode. 

Our diversion into register ranges, sign-bits, carry, and overflow has set the 
scene not only for the CCR, but also for our next type of register - the address 
register. 

ADDRESS REGISTERS 

The seven 32-bit address registers, referred to as AO-A6, can each physically 
store the same range of data as a data register. So what's the difference? The 
difference lies in the permissible subdivisions of the 32 bits. 

Byte mode is never allowed in address register operations. 



84 68000, 68010, and 68020 Primer 

Address registers are designed to handle either 32-bit long addresses or 
16-bit short addresses, so you are restricted to longword and word modes when 
you operate on AO through A6 (and A7 too). 

Although M68000 addressing is based on 32 bits, the short 16-bit format, 
which allows you to address the top and bottom 32K bytes of physical memory, 
is used whenever feasible to save bus cycles. The M68000 has a neat feature for 
handllng short addresses, called sign-bit extension. Let's see how it works. 

The longword mode on address registers works exactly the same as for 
data registers; all 32 bits are involved just as we saw in Figure 3-4. Look at the 
first move in Figure 3-9. We have 01 set up as before, but this time we are 
moving in Longword mode to AO rather than 02. The end result is the same 
- AO picks up all 32 bits from 01. 

Word-moves to address registers work differently, and the difference is 
important. In the second part of Figure 3. 9 we show the effect of a word move 
from Dl to AO. This time the whole of the destination register (AO) is affected, 
not just the lower word. The lower word of AO picks up the lower word of 01 
in the usual way, but the upper word of AO undergoes sign-bit extension. 

The sign bit involved is the sign bit (bit 15) of the lower word of 01, which 
happens to be 0. This 0 is replicated in bits 16 through 31 of AO. The net result 
is that AO, taken as a whole, reflects the value and sign of the source word, 
namely the lower word of D 1. The lower word of 01 happened to be positive 
(sign bit 0), so AO was forced to be positive by setting bit 31 to 0. 

Figure 3-10 shows what happens if Ol's lower word is negative, with the 
sign bit (bit 15) equal to 1. A longword move from 01 to AO works as usual, 
but the word move sets 1 's into the upper word of AO. The sign-bit extension 
has preserved the sign of the register AO. 

ADDRESS REGISTERS SUMMARY 

The address registers are for full 32-bit addresses, but the short 16-bit form 
saves space and time in many situations. The sign-bit extensions preserve 
arithmetical integrity without bothering the programmer. 

You now come to the all important SR (status register) which you saw has 
two bytes of important data, one for the system and one for the user. 

SYSTEM BYTE 

The upper byte of the SR is the system byte. The name of this byte derives 
from the fact that it is a protected area holding global data about the entire 



M68000 Programmer's Models 85 

4EF15A8 
31 

Destination 
16 15 

0 B 2 3 C 7 3 

4 E F 1 5 A 8 

Oi101 

0 

.................................................. .... i ....... ................................... .. 

4 E F 1 5 A 8 
I 

Lower word transferred 

0000 5A8 
31 16 15 0 

01 

AO 

01 

Before 
Longword 

MOVE 
D1+AO 

A1W: 
Longword 

MOVE 
AO 01+ AO 

01 

AO 

After 
Word 
MOVE 

D1+AO 

Fig. 3-9 Sign Bit Extension in Word Address: 
Sign Bit = 0 



86 68000, 68010, and 68020 Primer 

0011 1010 0001 1000 i 101 0101 1111 0110 ................................................... .-............................................ . 
3 A 1 8 D 5 F 

31 

Destination 

16 15 0 

2 0 8 1 4 9 F 

3 A 1 8 D 5 F 

1i101 ................................................................................................... 
3 A 1 8 D 5 F 

I 
Lower word transferred 

1111 1111 1111 1111 .................................................................................................... 
F F F F D 5 F 

31 16 15 0 

01 

AO 

01 

Before 
Longword 

MOVE 
01+ AO 

A.tlH 
Longword 

MOVE 
AO 01 +AO 

01 

AO 

After 
Word 

MOVE 
01+ AO 

Fig. 3-10 Sign Bit Extension in Word Address: 
Sign Bit = 1 



M68000 Programmer's Models 87 

User Byte 
System Byte Condition Code Register 

I I 

Trace 
Mode 

* * To SS M 
14 13 12 11 

Ii 

I 2 I 1 lo 

,10 9 

I 
8 I 7 

Interrupt Mask 
(levels 0·7) 

6 

I 

x N z v c 
5 4 3 2 0 

*MC68020 only 
M = Master/Interrupt State 
T0 = Trace enable 

Fig. 3-11 Status Register: System/User Byte 

system. It can be read by all users, but can only be written (changed) when the 
machine is in a privileged supervisor state. 

As shown in Figure 3-11, five bits of the system byte are allocated as follows 
(bits 12 and 14 are used only on the MC68020; they are explained in Chapter 
8): 

Bits 8-10 = Interrupt mask (IO, 11, 12) 

Bit 15 = T (trace mode flag) 

Bit 13 = SS (supervisor state flag) 

INTERRUPT MASK 

These three bits allow the system to set up 8 priority levels (0 through 7) that 
determine which interrupts will be accepted or serviced by the M68000. The 
name mask gives a useful insight into this concept, since certain level interrupts 
are masked or disallowed by these 3 bits. 

External devices can request an interrupt of priority level 1 through 7 (7 
being the highest priority) by sending a 3-bit signal to the MPU. When the MPU 
has completed its current operation, it will compare the requested level against 
the current mask level. Only if the incoming request level is higher than the 
mask setting will the interrupt request be serviced. Otherwise the request is 
ignored. If the mask is set to level 0, then obviously all interrupt requests are 
serviced. A mask set at 7 means, "Don't interrupt!" 



88 68000, 68010, and 68020 Primer 

TRACE MODE 

Setting a 1 in the T (trace mode) flag will switch the M68000 to a special single
step state, called the trace mode. In this mode the MPU will complete just one 
program step and then switch to a user-supplied debugging routine. An excellent 
example is the FIX program available on the MC68000-based AlphaMicro AM-
100™. Using FIX you can display your program, execute it step-by-step, set 
breakpoints, and examine the contents of each register at any time. 

SS FLAG - USER AND SUPERVISOR MODES 

The M68000 operates in one of two exclusive modes (or states): user mode or 
supervisor mode. It is easy to tell which mode is in force - you just test the 
SS (supervisor state) flag in the status register. If SS = 1 you are operating in 
supervisor mode. If SS = 0 you are operating in user mode. 

A program running in supervisor mode has access to all resources in the 
system, including special areas of memory, the supervisor stack and the system 
byte, by means of privileged instructions. A program in user mode will generate 
error conditions if it encroaches on these systems resources. 

In a typical working system, the mode will be regularly switched between 
supervisor and user states. Roughly speaking, normal applications software is 
run in user mode, while the OS and other systems software will run in the 
privileged supervisor mode. 

You will see in Chapter 6 that many different events trigger these state 
changes. These events can be deliberately programmed or they may arise from 
unexpected exceptions known as traps. 

This two-state approach is Motorola's solution to the problem of system 
integrity which we discussed in Chapter 1. Or, rather, it offers the systems 
designer methods of increasing systems security. In particular, it helps protect 
the OS memory areas from accidental or deliberate incursion by user programs. 

The state is not only indicated in the SS flag of the system byte, it is also 
broadcast to all external devices via the 3 FC (Function Control) pins to the 
control bus. Referring back to Figure 1-13, you saw how a memory management 
unit could use these signals to segment memory into system and user areas. 

SUPERVISOR MODE SUMMARY 

The supervisor mode has access to all the user mode resources but additionally 
enjoys some extra privileges and resources needed by the operating system for 
added efficiency and security. Normal user programs run in user mode, but 
interrupts, traps, and exceptions are processed in supervisor mode. 



M68000 Programmer's Models 89 

STACK POINTERS 

A stack is simply a portion of memory with a pointer address, allowing you to 
push data in, and pull data out, on a LIFO (Last In First Out) basis. In Chapter 
5 we will show in detail how stacks are easily handled on the M68000 using 
MOVE instructions with built-in stack pointer increments and decrements. 

Stacks are commonly used to save all kinds of parameters and status words 
while you jump off to do other things, such as subroutines, which in tum jump 
off, and so on, in what is called nesting. Even if you have plenty of registers for 
saving and recalling data during the nesting, the stack is more convenient for 
the programmer, since the sequence of pulling (recalling) automatically reverses 
the sequence of pushing (saving). 

Some care is needed to avoid confusion in the 68000 terminology for stack 
pointers. You are free to set up your own private stacks using any convenient 
address register as a stack pointer. However, such private stacks are entirely your 
responsibility. 

The M68000, on the other hand, maintains two systems stacks, the user 
systems stack (active only in user mode) and the supervisor system stack (active 
only in supervisor mode). Some M68000 instructions make implicit use of the 
systems stacks, others allow the programmer to reference them with the mne
monic SP, or systems pointer. SP is, in fact, another name for A7. Because the 
two systems stacks are never active simultaneously, they can both be referenced 
with SP ( = A7). Remember, though, that the meaning of SP is determined by 
the M68000 mode at execution time. 

CONDITION CODE REGISTER 

The single 8-bit CCR (condition code register) forms the lower user byte (bits 
0-7) of the SR (status register). 

The lower 5 bits of the CCR, as we've seen, are used to signal various 
conditions following arithmetical or logical operations. The top 3 bits of the CCR 
are not currently used. 

The five condition flags (sometimes called status flags) are designated as: 

Bit 7 6 5 4 3 2 1 0 
CCR flag x N z v c 

Where: x = eXtend 
N =Negative 
z =Zero 
v = oVerflow 
c = Carry 



90 68000, 68010, and 68020 Primer 

We discussed the X, V, and C flags in depth in the data register section 
above. The remaining flags are extremely simple. The Z flag is set to 1 if the 
result of the last instruction was zero, otherwise the Z flag is cleared to 0. A 
nonzero answer gives Z=O. A zero answer gives Z= 1. The N flag is set with 
the value of the MSB (most significant bit), also known as the sign bit So, for 
signed arithmetic we have: N = 1 for negative answers; N = 0 for positive/zero 
answers. 

CONCLUSION 

In this chapter we have set the scene for a more detailed look at the M68000 
instructions. In Chapter 4, you will look at the most commonly used op codes 
and see, with program examples, just how they work and when to use them. 



4 

M68000 Instruction Set
First Steps 

Bloody instructions, which being taught, return to plague the inventor. 

- Shakespeare, Macbeth I, vii 

Chapter 4 will explain what an instruction is, and introduce you to some of the 
simpler, more commonly used M68000 instructions. The program examples we 
offer as illustrations are not meant to be complete, practical programs, all ready 
to be entered and run, although we have tried to make them interesting and 
rooted in the real world. 

INSTRUCTIONS 

As far as the M68000 is concerned an instruction is a set of 16-bit words sitting 
in memory and a program is a sequence of such instructions which will hopefully 
guide the system through some useful work. 

To the untrained human eye machine-level instructions form a bewildering 
sequence of O's and 1 's, but as they are read in and decoded by the chip, these 
instructions are obeyed according to very precise rules - and this is what is 
called running a program. 

In this chapter we will be dissecting each M68000 instruction to see how 
it works and why it is used. The functional side of the instructions will be 
illustrated with before-and-after diagrams. Where and when to .use them is the 
creative art we call machine-language programming, and we can only hint at 
the infinite number of possibilities by showing you isolated program examples. 

91 



92 68000, 68010, and 68020 Primer 

There is no substitute for practical hands-on experience -Appendix E (M68000 
Resources) is designed to help you acquire the hardware, software, and further 
documentation needed for this. 

If we were purely binary creatures we could refer to machine instructions 
as "0111001000000001" (which actually tells the M68000 to move the num
ber 1 to data register 1) or "0101111010010010" (which would add 7 to a 
number in memory) and so on. Alas, life is too short and humans are just not 
built to communicate like this. Dropping a 1 or misplacing a 0 can have a 
disastrous impact on the meaning of the instruction. Worse still, some instructions 
have one or more extension words and may take up to 80 bits to spell out. 
Imagine learning Morse with over 150 million different codes! 

The obvious way out is to have recognizable English symbols for each 
instruction - and, in fact, this is exactly how an assembly language programmer 
thinks, writes, and talks about each instruction. The symbols you use are called 
mnemonics since they help you to remember the function of each instruction. 

In the two examples just mentioned, 0111001000000001 is written 

MOVEQ #1,Dl 

and 0101111010010010 is written 

ADDQ. L #7, (A2) 

The English versions may still look bizarre to you but you have to admit that 
they are better than all those O's and l's! As you proceed, the full beauty and 
precision of the instructions will become clear - what they can achieve and 
how they are combined to produce working programs is, after all, the reason 
for learning their secrets. 

Keep in mind, though, that the M68000 itself never "sees" these mnemonic 
symbols. They are simply an aid to human learning and programming. As we 
saw in Chapter 3, our symbolic instructions have to be translated or assembled 
into binary machine code before they can run. The actual binary patterns of 
each instruction are shown in Appendix D. Feel free to memorize them if you 
wish, but we still think that a good assembler is the answer. 

INSTRUCTION FORMATS 

Each symbolic instruction is rather like a sentence in English. As well as getting 
to know the meaning of each word, you also have to know the correct grammar 
or syntax so that you avoid illegal or nonsensical combinations. For example, 
''bites dog man'' contains three perfectly understandable words, but the overall 



M68000 Instruction Set - First Steps 93 

meaning is somewhat obscure to say the least. And just as English usage varies 
as you travel around, you will find different M68000 implementations using 
slightly different names and formats for the same instruction. Luckily there is a 
natural standard, and not surprisingly, it was invented and promoted by Motorola 
- so we will use it throughout. If you spot any deviations on your own machine 
you know who to blame. 

Since our object is to teach the basic workings of the M68000 instruction 
set, we will avoid most of the technicalities of assembly by adopting the following 
plain "vanilla" version of the Motorola syntax. 

INSTRUCTION SYNTAX 

- There are three different instruction layouts in the M68000: 

- 1. No operand: op code stands alone 
- 2. One operand: op code followed by operand 

3. Two operands: op code followed by source operand and destination operand 

The op code is a mnemonic such as JMP, MOVE, ADD, SUB which tells 
you what the instruction will do. The M68000 has about 60 basic op codes, 
and many of these can have up to 500 variations! Even experienced 68000 
programmers do not carry all these combinations around in their heads. Rather, 
they understand the governing principles and consult the reference sheets when 
in doubt on a particular instruction. For this reason we have constructed some 
useful appendices cross-referencing the op codes in various ways to help you. 

The operands are registers or memory locations which tell you what the 
op code acts on. Continuing our analogy with English, you can consider the op 
code as the verb, and the operands as the direct or indirect objects in a sentence. 

To get a feel for these three instruction formats let's look at some examples, 
without delving too deeply into how they work. 

No Operand 

RTS 

One Operand 

ASL.W (AO) 

The op code is ReTum from Subroutine. No operand is 
needed for the RTS instruction. 

The op code is Arithmetic Shift Left. Word. The single 
operand (AO) tells the M68000 where to find the data to 
be shifted, namely the word at the memory address 
stored in address register AO. 



94 68000, 68010, and 68020 Primer 

Two Operands 

MOVE.B D3,D4 The op code is MOVE.Byte, which needs two operands, 
namely the source operand, data register 3, and the 
destination operand, data register 4. Our example says 
move the lower byte of D3 to the lower byte of D4, that 
is, from source, to destination. 

Since most of the instructions are of the two-operand type, let's examine 
this layout in more detail (see Figure 4-1). However simple or complex our two 
operands may be, you will always find a comma separating them. The source 
operand always comes first; this is where the instruction gets its initial data from. 
The destination comes after the comma, and indicates where the result of the 
operation is to be found. 

Source operands are not changed by an instruction. 
Destination operands are changed. 

So, MOVE.B D3,D4 leaves the contents of D3 undisturbed and replaces the D4 
byte with the D3 byte. Later on we'll show you particular examples of MOVE 
and its many variations. 

Here is another example of a very popular two-operand instruction called 
ADD. 

ADD.L D6, D7 ADD.Longword says: add the 32 bits of source, D6, to 
the 32 bits of destination, D7, and place the sum in the 
destination, D7. Here again we see the destination 
operand receiving the result of the instruction's op code. 

DATA SIZE CODES- L, W, AND 8 

In the above examples you will see that some op codes have a letter attached 
to them. We call this the data size code because it dictates how many bits of 
the source and destination operand are involved in the instruction. The rules 
are very simple and apply whether the operands are values in registers or in 
memory: 

L means Longword - operate on all 32 bits. 

W means Word- operate on lower 16 bits. 

B means Byte - operate on lower 8 bits. 

Most instructions work with any of the three data sizes, so we will often use a 
shorthand notation, for example, ADD.z, where the z can represent L, W, or B. 



M68000 Instruction Set - First Steps 95 

03' 04 ..... 
What to do ____ J I Destination 

data register 4 
Source Size code lb'te -

From 
03 

source 

To 
04 

destination 

03 
unchanged 

04 
lower byte 

only changed 

...._ __ data register 3 

31 16 15 

not involved --41•P• Lower• 
J;Wte 

not involved 

.... ....__ not involved --41•P 

........... _ not involved--41.P 

} 
Before 
MOVE 

} 
After 
MOVE 

Fig. 4-1 Two Operand Instruction: MOVE.B 03,04 

You already know enough to write a real program, so we've created a 
hypothetical situation to test your mettle. 



96 68000, 680 7 0, and 68020 Primer 

Given: 

1. Total hours worked YTO, January through February, stored in register 01. 
2. Hours worked in March stored in register 02. 

Sample Case: 

Hours YTO = 320 in 01 

Hours March = 138 in 02 
New Hours YTO = 458 place in 03 

Solution: Program 4-1 

MOVE.L 01,03 
ADO.L 02,03 

03 now contains the sum (02 + 01) = 458. Dl and 02 are unchanged. 

DATA SIZE AND THE RANGE OF THE RESULTS 

The ADD instruction gives a straightforward binary addition, and it is up to you 
to decide whether you interpret the results as signed or unsigned. In this tiny 
program we are dealing with small positive numbers well within the range of a 
32-bit register, so the question is academic. 

It is worth noting here that the M68000 usually has more work to do when 
performing a 32-bit (.L) operation compared with a 16-bit (.W) operation. 
Similarly, W instructions usually require more internal processor steps than their 
8-bit (.B) variants. If someone asks, "How fast is the M68000 ADD instruction?" 
- all we can give is a range of values (worst and best cases) for L, W, and B 
variants. Even these will depend on the chip model and its clock speed (typically 
ranging from 8 MHz to 16. 7 MHz - giving a basic clock cycle ranging from 
125 nsec to 60 nsec) . No, we are not evading the question! ADD effectively 
takes from 0 (yes, zero) to 30 clock cycles depending on ''where, when, and 
what" is being added. The effective zero miracle is, briefly, due to the way the 
MC68020 overlaps instructions. 

In any case, there is no simple formula to relate the timing of L, W, and B 
operations. For example, W instructions seldom take twice as long as their B 
versions - however, common sense dictates that when there is a choice of data 
size, you pick the smallest which will handle the data range for the job at hand. 

Indeed, in the above example you could have saved a few clock cycles by 
using MOVE.Wand ADD.W since you know your numbers are all within the 
range of a 16-bit operation (signed or unsigned). MOVE.Band ADD.B, however, 



M68000 Instruction Set - First Steps 97 

would not work since our data values exceed 255 (11111111), the unsigned 
limit for a byte. The most common situation in practice is to work in signed (2's 
complement) numbers - so the above program, for example, would allow a 
negative value in D2 to adjust the hours YTD (ADD a negative to SUBtract). 

As you develop your payroll program you will be watching out for the range 
and sign of various data values, so you can use the appropriate data size letter. 
You will also see how to use the CCR (condition code register) to check the 
accuracy of your arithmetic. 

COMMENTS 

A useful convention offered in all levels of programming is the ability to add 
titles, dates, revision numbers, comments, remarks, notes, and reminders in a 
program text intended for human consumption only. Such comments are ignored 
by assemblers and compilers but can prove remarkably useful when you (or 
your colleagues) come to read your program listing months later and wonder 
. "What's going on here?" or "Why did I do that?" 

Adding succinct comments is a good habit, especially in low-level languages 
where the actual intent behind each line may not be immediately obvious. 
Motorola commenting conventions are simple. They allow both separate com
ment lines and "in-line" comments as follows: 

* anywhere signals a whole line of comment 

so that the assembler ignores all characters following the * (asterisk) until the 
next line of source code is read. Alternatively, you can comment anywhere to 
the right of a program line: 

<OP CODE> <operand(s)> In-line comments here 

provided you have at least one space (or tab) between operands and comment. 
Let's develop good habits by adding a few comments to our first program 

example. 

*Program 4-1 with comments 

* Update YTD 4 rev 1 SKB 

MOVE.L 
ADD.L 

Dl,D3 
D2,D3 

Old YTD now in 03 (32 bits) 
Add March hours to old YTD 

* 03 now has updated hours YTD 



98 68000, 68010, and 68020 Primer 

CCR - CONDITION CODE REGISTER 

In Chapter 3 you saw how the flags in the CCR monitored various processor 
conditions, warning you of possible errors. It is important to know how each op 
code affects the five CCR flags, so we'll use the following notation: 

CCR flag x N z v c 
MOVE * * 0 0 
ADD =C * * * * 

Where: means unchanged 
0 means always cleared to 0 
1 means always set to 1 

* means either cleared or set depending on the 
result of the instruction 

u means undefined, that is, the flag will not tell you 
anything useful 

=C means set or cleared the same as the C flag 

Figure 4-2 shows how the registers and CCR change during Program 4-1. 
Let's embellish our program by testing the CCR. This will require several new 
instructions for branching and a construct known as label to mark the place in 
the program where you want to branch to. 

* Program 4-2: Testing the CCR 

* Update YTD 4 rev 2 SKB 

MOVE.L 
ADD.L 

01,03 
02,03 

* 03 now has updated hours YTD 

Old YTD now in 03 (32 bits) 
Add March hours to old YTD 

BVS ERROR.I Branch if overflow Set to label ERROR.I 
BEQ IDLE Branch if EQual zero to label IDLE 
<rest of program> 

* * * 
BRA OVER BRanch Always to OVER 

ERROR.1 <take action: 03 overflow> We have detected overflow 

* * * 



M68000 Instruction Set - First Steps 99 

Source Destination 31 0 

' + 01 320 '} © MOVE.L 01, 03 before • care-----1 
Size code 

1------don 't .b,ongword 03 

CCR before 

'} 1~1~ l=I ~1 ~1 01 320 
after 

' 
CCR after ci 320 

1~ I~ I~ I ~1 ~1 = 01 

Source Destination 
31 0 

02 138 '} before 
@ AOO.L 

• t 
02, 03 

+ 
Size code 
Longword 

CCR before 

1~1~1~1~1~1 
CCR after 

03 320 I 

'} 
I 

02 138 

I 03 ._I _4_5_8 ___ 

L_.= 02 + 03 

Fig. 4-2 Update Hrs YTD 

BRA OVER BRanch Always to OVER 

after 

IDLE <take action: hours YTD = O> 03=0 Possible error? 

* * * 
OVER <wind up program> 



100 68000, 68010, and 68020 Primer 

BRANCHES AND LABELS 

As promised, our revised program introduces two new, closely related concepts, 
branching and labels. Unless otherwise informed the processor will advance 
sequentially from one instruction to the next, something like this: 

1. Look at the address in the PC (program counter). 

2. Fetch the first word of this instruction from memory address = PC. 

3. Decode this instruction-word and, if necessary, fetch any additional (or ex-
tension) words to decode the complete instruction. 

4. Carry out the steps needed to complete the current instruction. 

5. Increment the value of PC so it points to the next instruction. 

6. Repeat cycle from step 1 above. 

This steady linear sequence of instruction-fetch-obey (see Figure 4-3) can 
be varied either unconditionally or conditionally by the use of branching instruc
tions and labels. 

UNCONDITIONAL BRANCHING - BRA LABEL 

The BRA (BRanch Always) instruction is an unconditional branch - and it has 
the dramatic effect of changing step 5 in the normal sequence listed above. 
What happens is that the PC, rather than increment to the next instruction 
memory address, receives a brand new address depending on the label used, 
and program control is switched to the line in the program with that label. So 
BRA OVER in our example causes the program to skip to the line labeled 
OVER - and from there you are back into your normal sequence of steps 1 
through 5, at least until you hit another branch. 

Let's see how the normal sequence is changed when the BRA instruction 
is encountered: 

1. Look at the address in the PC (program counter). 

2. Fetch the first word of this instruction from memory address = PC. 

3. Decode this instruction word and, if necessary, fetch any additional (or 
extension) words to decode the complete instruction. 

4. If instruction is BRA OVER, step 3 will have obtained a signed number, called 
the branch displacement, which depends on the location of the label OVER 
in the program. 

5. ADD this branch displacement to the value of PC and place the SUM back 
in PC. PC now points to the instruction labeled OVER. 

6. Processor is now ready to proceed with step 1 above, where it will fetch, 
decode, and obey the instruction labeled OVER. 



M68000 Instruction Set - First Steps 101 

Program counter 

Address= N 

PC+2~ 
PC+2~ 

fetch (N) 

Ext word 1-1 

........ ~~~fe~tc~h~(~N~+~6)~~...f 
PC+2 1 N+S Instruction 

Decode (N+6) 

fetch (N+8) 

Pe+2_I __ N+_s~~ .... ~~~ 

PC+2 l ___ N_+_10-~ 
Decode N+8 
fetch N+10 

Instruction 

Ext word 3-1 

Instruction 4 

Fig. 4-3 PC and Instruction Sequence 

II) 
II) 

"1:1 Q) 

N-2- ~ ~ 
N c: 

N+2} ii 
(\') iii 

c: 
N+4 ·-

N+6- 1 word 
instruction 

N+S } 1? 5 
~ l~ 

C\I ::I 

N+lO ~ 
.!: 

N+12 

Notice that steps 1 through 3 are always the same, but that IF a BRA 
instruction is decoded at step 3, the PC, rather than incrementing to the next 
line of your program, will be adjusted to pick up the line labeled OVER (see 
Figure 4-4). You need not, at this stage, worry too much about precisely how 
the branch displacement is calculated in order to achieve the correct PC value 
for OVER. The main points to appreciate are: 

• Branching involves a break in the normal "get the next instruction" 
sequence by an adjustment to the address in PC. 



102 68000, 68010, and 68020 Primer 

Word address 

Pel N. 

fetch (N) 

Decode (N) 

Pel N. 

fetch (N+2) 

Pel N+d -

fetch (N+d) 

Fig. 4-4 PC and Branch Instruction Sequence 

• Labels are essentially instruction addresses translated by the system 
so that the new PC address equals (PC + branch displacement) takes 
you to the instruction at the labeled line. 

• Since the branch displacement is a signed value (plus or minus) , note 
that you can branch forward or backward in a program. If the label is 
located later in our program, beyond the BRA line, then the displace
ment will be positive, increasing PC so that you branch forward. If the 
label comes before the BRA line, the displacement is negative, you 
decrease PC and branch backwards. 

Readers with a knowledge of BASIC will recognize the similarities between 
BRA and GOTO. A big difference is the use of alphal5etic mnemonic labels 
rather than the line numbers used in most BASICs. Behind the scenes, as we 
have hinted, the label OVER acts very much like a line number. When the above 
program is assembled, loaded, and executed, the label OVER is translated into 
the memory address of that particular instruction, and it is this address which is 
eventually placed in the PC when the BRA OVER instruction is decoded. How 
this is achieved will be covered in greater detail when we discuss absolute and 
relative addressing. 



M68000 Instruction Set - First Steps 103 

The programmer is free to use any reasonable set of characters as a label, 
but naturally one must avoid duplication of label names within the same pro
gram. Also, the correct syntax must be followed - labels must be placed on 
the extreme left of the line, and spaces or tabs are needed between label and 
op code. 

Branching unconditionally is not much fun. Let's see how and why we 
branch conditionally, so we can fully understand Program 4-2. 

CONDITIONAL BRANCHING 

A set of 14 branch instructions of the general form 

Bee <label> 

allows you to branch only if the condition code (cc) is met. The two letters, cc, 
are mnemonics for the particular CCR flag conditions that the M68000 can test 
before deciding whether to branch or not. If the condition is not met the next 
instruction is fetched and decoded. If the condition is satisfied, the M68000 
branches to the labeled line using the mechanism we outlined for BRA. 

So, Bee <label> can be read as: 

If cc true, do a BRA <label>. 

If cc false, do the next instruction. 

Understanding Bee is roughly 1503 of the way to 
M68000 ftuency. 

What sort of cc conditions can we test using Bee? Program 4-2 shows two 
simple cc cases in which the test is made on single flags in the CCR. BVS has 
cc= VS so look at the V flag. Is it Set= 1 or not? BEQ has cc= EQ so look at 
the Z flag. Is result EQual to zero or not? That is, is Z = 1 or not? BVS ERROR.1 
says: Branch (to line labeled ERROR.1) only if oVerflow flag is Set= 1. If adding 
02 to 03 results in overflow the answer in 03 is wrong, and you must do 
something about it. So, you test the V flag with BVS. If V = 0, all is well (so far) 
and you ignore the branch. If V = 1, you have overflow, and you have had the 
courage and foresight to guard against this with a BVS. 

The program section beginning with the line labeled ERROR.1 would have 
to deal with the fact that overflow had occurred and the result in 03 is arith
metically wrong for signed numbers. In our example it would mean that the 



104 68000, 68010, and 68020 Primer 

hours YTD had exceeded the range-2,147,483,648 through +2,147,483,647 
and this would seem to indicate either errors in the initial data or a bug in the 
program. BVS tests can therefore be useful error traps when developing and 
debugging a program, but when handling large or potentially large (near the 
limit) numbers, BVS provides an essential check against error. 

BEQ IDLE says: Branch (to line labeled IDLE) only if result is EQual to 
ZERO, that is, only if the Z flag is set ( = 1). The cc= EQ mnemonic here is a 
little unobvious (why didn't they call it BZS for Branch Zero Set?), but we'll use 
it anyway. What this program is testing for is whether D3 = hours YTD is zero 
or not. If D3 is nonzero, you carry on with the rest of the program. If D3 is zero 
you want to do something different, so you branch to the line labeled IDLE. You 
choose a suggestive mnemonic, as always, to increase the legibility of your 
program. The BEQ is commonly used to bypass unnecessary parts of a pro
gram. A very common example would be "Never print an invoice for $0.00!" 
In our example, the branch to IDLE if hours YTD is zero does not necessarily 
indicate an error (although it may require special scrutiny) but in a complete 
payroll program it may simply mean that you can safely bypass further wage/ 
tax calculations if the employee has not worked. 

Bee AND THE CCR 

Bee tests the CCR but does not change the CCR flags - so you can make 
successive Bee tests, such as BVS followed by BEQ, as shown in Program 4-3. 
If BVS does not branch, you immediately test for zero with BEQ. 

This point highlights the importance of knowing how each instruction affects 
the CCR. Let's see a common piece of careless coding which can spell hours 
of frustration. Suppose that after Program 4-2 has been up and running suc
cessfully for some years, we decide to add an innocent line (such amendments 
are known as one-line patches) as in Program 4-2A: 

* Program 4-2A: Incorrect change to Program 4-2 

* Update YTD--4 rev 3--Save 03 in 04 for later use 

MOVE.L 
ADO.L 
MOVE.L 

01,03 
02,03 
D3,D4 

Old YTD now in 03 (32 bits) 
Add March hours to old YTD 
++ one-line patch 

* 03 and 04 both have updated hours YTD 



M68000 Instruction Set - First Steps 105 

BVS ERROR.l Branch to ERROR.l if Overflow??? 
<rest of program as in 4-2> 

* * * 
ERROR.1 <take action: D3 overflow> We have detected overflow??? 

* * * 

We have inserted a MOVE.L between the ADD and the BVS, as indicated 
by the + + comment. Can you spot the mistake? Yes, the V flag is cleared by 
the MOVE and the BVS test is now meaningless. We will never branch to 
ERROR.1 even if ADD sets the V flag. 

Bee - THE FULL STORY 

You have now seen two of the 14 Bee branches. The other 12 Bee instructions 
test a variety of CCR flag conditions, both single flags and combinations of 
flags. We postpone discussion of the multiple flag tests until we cover CMP 
(CoMPare) in Chapter 6. Here are the single flag Bee's which all work like BVS 
and BEQ. 

BVC- Branch if oVerflow flag Clear (V = 0). 

BVC and BVS are therefore complementary tests; if one is true, the other must 
be false. 

BNE - Branch if Not Equal to zero, that is, if Z = 0. 

BNE and BEQ are also complementary tests - again, if one is true, the other 
must be false. 

BCC- Branch if Carry flag Clear (C = 0) 

BCS - Branch if Carry flag Set ( C = 1) 

Here once more, BCC and BCS are complementary tests. By the way, be careful 
not to confuse CC (Carry Clear) with cc (any condition code). 

BPL - Branch if Plus (positive), that is, if N = 0 

BMI - Branch if Minus (negative), that is, if N = 1 

You guessed it. BPL and BMI are complementary tests. 
This choice of cc's (and remember, there are more complex ones to follow) 

allows considerable flexibility in testing results and taking the appropriate action 
by branching to a labeled program line. They come, as you can see, in pairs of 
opposites, which may seem wasteful at first sight. For example: 

BPL ANS_PLUS 
<program M> 

* * * 

Do program P if answer +ve 
Do program M if answer -ve 



106 68000, 68010, and 68020 Primer 

ANS_PLUS <program P> 

* * * 

can also be written as: 

BMI ANS_MIN 
<program P> 

* * * 

Do program M if answer -ve 
Do program P if answer +ve 

ANS_MIN <program M> 

* * * 

Both programs achieve the same result, so you could survive with just BPL or 
with just BMI. In practice, however, it turns out that the choice is useful - you 
can often produce more legible programs by picking the natural Bee for each 
situation, for example, by branching if the abnormal condition prevails. 

BRANCHING SUMMARY 

• BRA LABEL causes unconditional branch to label. 

• Bee LABEL branches to label only if cc condition is true. If cc is false, 
obeys next instruction. 

Now that you have seen a few simple instructions working with data register 
operands, you can look at other types of operands that are specified by various 
combinations of registers and/or memory addresses, known as addressing modes. 

ADDRESSING MODES 

You can imagine an instruction saying ''OK, I know I'm supposed to ADD or 
MOVE or whatever, but you have to tell me where to get the source and 
destination operands." This is done by expressing each operand in a certain 
format, laced, as it were, with sufficient information to direct the instruction to 
the correct operand data. These operand formats are called addressing modes 
- and they fall into two main groups, register direct modes and memory 
modes. As you'll see, each of these groups can be broken down further into 
smaller groups of addressing modes. Also, you'll find that most instructions allow 
a choice of modes for both source and destination operand, in many combinations. 



M68000 Instruction Set - First Steps 107 

Having stated earlier that understanding Bee is 1503 of M68000 fluency, 
we can now add that the remaining 1503 of M68000 fluency comes with 
mastering the addressing modes! 

REGISTER DIRECT MODES 

In our programs, so far, the initial data was available from data registers, Dl 
and 02, and the result of the program, Dl + 02, was then stored back in a 
data register, 03. All our operands, therefore, both source and destination, were 
expressed directly in a simple format called register direct addressing mode. 
This mode has two variants: 

Address Mode 

Data Register Direct 
Address Register Direct 

Symbol 

On 
An 

What Is the Operand? 

The value in On 
The value in An 

where On is any data register (DO through 07) and An is any address register 
(AO through A7). To reduce verbiage we will often refer to these direct modes 
as the On mode or the An mode. 

You saw in Chapter 3 how the address registers are used to hold 16- or 
32-bit addresses, and for this reason the An mode has some special rules 
prohibiting Byte operations and certain purely "data" operations. Apart from 
these differences, which will be detailed later, the On and An modes are broadly 
similar. 

So, the two direct modes are used when the source operands are values 
(data or addresses) actually available in registers. When the direct mode is the 
destination, you are telling the processor which register is to receive the result 
of the instruction. 

The next section deals with operands in memory. 

MEMORY ADDRESSING MODES 

In most practical situations the initial data input for a program is loaded into 
user memory (RAM) via some external device such as a disk or keyboard. The 
results of the programs' various calculations are then stored in user RAM, and 
thence back to some output device such as a disk, printer, or CRT. To achieve 
this you need memory addressing modes, which "tell" the op code where to 
locate its source and destination operands in memory. The MC68000 has 10 



108 68000, 68010, and 68020 Primer 

and the MC68020 has 16 distinct memory addressing modes as listed in 
Appendix B. 

MEMORY ADDRESSING AND THE EFFECTIVE 
ADDRESS 

The memory addressing mode formats range from extremely simple ("Here is 
the memory address of the operand") to very complex ("To get the memory 
address of the operand you will need to add two numbers to form an address, 
go to that address in memory where you will find another address, add a number 
to it, and that's the address of your operand!") Luckily, the beginner can gently 
build up from the simple modes. The complex example was intended to stress 
the fundamental fact about memory addressing modes: 

A memory addressing mode allows the instruction to 
calculate the <ea> or effective address of an operand. 

Any operand sitting in memory is uniquely identified and located by its 
<ea>, effective address. For each addressing mode, the processor has a specific 
<ea> calculation to perform before it can fetch the source operand from 
memory address <ea>, and similarly, before a destination operand can be 
written to memory, its <ea> must be calculated. These calculations (and 
associated fetches, if any) can take from 0 to 24 clock cycles. The importance 
attached to these <ea> calculations is typified by Motorola's inclusion of two 
additional ALUs that can perform the <ea> arithmetic while the main ALU is 
handling the normal data arithmetic. 

How does the M68000 know which <ea> calculation to perform? Without 
digressing too far, we can simply say that each instruction word, at the machine
code level, has bits assigned that uniquely encode each possible addressing 
mode for the source and destination operands. When the instruction word is 
decoded, the M68000 knows both the operation required and how to derive 
the operand <ea>s. 

We saw in Chapter 2 that one advantage in moving from 8-bit to 16-bit 
processors was that a 16-bit instruction word allows a richer instruction set, and 
with this comes the possibility of more complex addressing modes. 

WHY SO MANY ADDRESSING MODES? 

This abundance in addressing modes, formerly available only on mainframes 
and minis, is a major key to the success of the M68000. The novice may 



M68000 Instruction Set - First Steps 109 

consider it paradoxical, but the apparent complexity of the addressing modes 
actually simplifies the programming of the M68000's huge addressable memory 
for today's wide and growing range of sophisticated multiuser operating systems, 
language compilers, relational databases, and bit-mapped graphics applications. 
All of these require the rapid manipulation of complex data structures in memory, 
such as linked lists, "trees" that grow in all directions, multidimensional arrays 
and tables, stacks, and queues. Much of this manipulation, especially in com
mercial as opposed to scientific applications, involves address rather than data 
calculations. 

To locate complex memory operands on the earlier 8-bit micros with few 
addressing modes, the programmer had to write specific, often tedious, code to 
compute the <ea>. The more advanced addressing modes available on the 
M68000 dramatically reduce this effort. In effect the programmer can pass the 
onus of <ea> arithmetic to the chip's fast internal ALUs. 

In essence the M68000 addressing modes (and the modem assemblers 
that exploit them) provide a sort of high-level language for accessing complex 
data structures in large amounts of RAM. 

As you'll see, each addressing mode is designed to solve a particular 
memory-access and data-manipulation problem. Our first example is probably 
the simplest addressing mode, called immediate, which is used only for source 
operands. 

IMMEDIATE ADDRESSING MODE 

In many situations we want to use fixed numeric constants - that is to say, 
numbers that are predetermined and not the result of some calculation. Sup
pose, for example, that in Program 4-2 we want to keep a count of the number 
of idle employees- all those with zero hours YTD. Let us assign data register 
04 to keep this count. Each time you branch to the label IDLE you will increment 
(add 1 to) 04. At the end of the payroll you can print out the number in 04. 
Program 4-3 shows the new program (with the additions highlighted). 

* Program 4-3: Count Idle Employees 

* Update YTD 4 rev 3 SKB 

MOVE.L 
ADO.L 
CLR.W 

Dl,03 
02,03 
D4 

* 03 now has updated hours YTD 

Old YTD now in 03 (32 bits) 
Add March hours to old YTD 
Set lower 16 bits D4 to o 



110 68000, 68010, and 68020 Primer 

BVS ERROR.1 Branch if overflow Set 
BEQ IDLE Branch if EQual Zero 
<rest of program> 

* * * 
BRA OVER BRanch Always to OVER 

ERROR.1 <take action: D3 overflow> We have detected overflow 

* * * 
BRA OVER BRanch Always to OVER 

IDLE ADOQ.W #1,04 Increment 04 = idle count 

* * * 
OVER<wind up program> 

<print value in 04> 

NOTES ON PROGRAM 4-3 

There are two new op codes in the revised program, CLR (CLeaR) and ADDQ 
(ADD Quick). CLR is a simple but useful one-operand instruction with the 
following syntax: 

CLR.z <operand> 

which clears some or all of the operand to 0, depending on the data size letter 
z. CLR.L will clear all 32 bits. CLR.W will clear just the lower 16 bits. The 
upper 16 bits are unchanged. CLR.B will clear just the lower 8 bits. The upper 
24 bits are unchanged. 

In this example, we have chosen to use just the lower 16 bits of D4 as the 
"counter of the idle", leaving you free, if you wish, to use the upper 16 bits for 
something else. For a small payroll (less than 255 employees) you might consider 
using only a byte of D4 (unsigned) - the data size code z gives great flexibility 
in register utilization. You CLR.W D4 to make sure that your 16-bit counter is 
''zeroed'' before you start counting. Remember that CLR.W does not affect the 
upper 16-bit word of D4. It is a surprisingly common oversight to forget to CLR 
counters. 

CLR changes the CCR in a reasonably predictable way: 

CCR flag x N z v c 

CLR 0 1 0 0 

since the operand is now 0 (Z = 1 ), non-negative (N = 0), and there is no overflow 
or carry (V = 0, C = 0). The X flag is unchanged, as we saw in the MOVE 
instruction earlier. 



M68000 Instruction Set - First Steps 111 

Like ADD, ADDQ is a two-operand instruction. The general format is: 

ADDQ.z #<data>,<destination operand> 

where <data> is a number between 1 and 8. This means ADD the number in 
<data> to the destination (L, W, or B, depending on the size code) and place 
the sum in the destination. The Q in ADDQ stands for the Quick form of the 
ADD op code. The immediate source data, written always with the # (pound 
sign) symbol, is simply added to the destination. In our case, 

ADDQ.W #1,D4 

increases the lower word of D4 by 1. 
The reason it is quick is that the processor does not have far to look for the 

source data. In fact, the source data is stored as 3 unsigned bits in the ADDQ 
instruction word itself - and this explains why ADDQ can only add small 
unsigned constants in the range # 1 to #8. 

Here is a quick check to see if you are paying attention. How can you store 
the numbers 1 to 8 in 3 bits? Surely 3 bits can only store the numbers 0 to 7? 
Well, the M68000 performs a trick! It will be instructive to explore this trick 
because it gives us a chance to peep "inside" a simple instruction word and 
see its bit pattern. The ADDQ instruction word looks like this: 

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0101ddd0 z z mmm r r r 

Where: ddd - Bits 9-11 specify the #<data> 
zz - Bits 6-7 specify the data size code 
mmm - Bits 3-5 specify the destination mode 
rrr - Bits 0-2 specify the destination register 

Bits 8 and 12-15 identify the instruction as ADDQ 

The mode and register codes (mmm and rrr) are the bits we mentioned 
earlier that tell the M68000 which <ea> calculations are needed - in this case 
mmm and rrr are encoded for the destination operand <ea>. Their format is 
not of immediate concern, apart from noting that 6 of the 16 bits in an instruction 
word are commonly assigned for this purpose. Complete instruction bit patterns 
are listed in Appendix D. 



112 68000, 68010, and 68020 Primer 

The data size code is simple: 00 = Byte, 01 = Word, 10 = Longword 
(leaving data size 11 unused, a useful spare for the future). Now for the trick 
- how to code # 1 to #8 in 3 bits: 

#1 Sets ddd = 001 
#2 = 010 
#3 = 011 
#4 = 100 
#5 = 101 
#6 = 110 
#7 = 111 
#8 = 000 

So, the instruction decoder translates ddd = 000 not as #0 (which would 
be a waste of time and effort) but as #8. This small digression will prove helpful 
in giving you an early feel for what we mean by decoding an instruction. In the 
more complex multiword instructions you shall meet, it will become necessary 
to know how different forms of data (including addresses) are stored in instruc
tion words and their extensions. 

We hope, also, that this inside view of an instruction gains your respect for 
the people who wrote your assembler! Remember that the assembler program 
has to convert 

ADDQ #<data>,<destination> 

from your source code into the bit patterns shown above (as well as performing 
many other chores). 

ADDQ AND THE CCR 

ADDQ changes the CCR just like a normal ADD: 

CCR flag 

ADDQ 

x 
=C 

N z 

* * 

v c 

* * 
so you get all the usual warnings about the result of your arithmetic. But what 
if you need to add larger constants than 0 through 8? Read on. 



M68000 Instruction Set - First Steps 113 

ADDI - ADD IMMEDIATE 

If you need to ADD larger constants than #8, there is the ADDI instruction, 
which we introduce now because it is very similar to ADDQ. It looks like this: 

ADDI.z #<data>,<destination operand> 

ADDI allows you to add up to 32 bits of immediate data to a longword, up to 
16 bits of immediate data to a word, or up to 8 bits of immediate data to a 
byte destination. For example: 

ADDI.L #$FFFFF,DO 

would increase DO by $FFFFF = 11111111111111111111, but 

ADDI.W #$FFFFF,DO 

would increase the lower word of DO by only $FFFF = 1111111111111111 
and 

ADDI.B #$FFFFF,DO 

would increase the lower byte of DO by only $FF = 11111111. 
ADDQ is about twice as fast as ADDI because ADDI needs one or two 

extension words to store its larger-sized immediate #<data>. ADDQ's 3-bit 
#<data> can be squeezed into the ADDQ instruction word, but ADDI. W and 
ADDI.B need one extension word, while ADDI.L needs two extension words. 
Let's see how. 

ADDI INSTRUCTION CODING 

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Wordl 0 0 0 0 0 1 1 0 z z mm m r r r 
Word 2 W #<data> 16 bits or B #<data> 8 bits 
Word 3 L #<data> has extra 16 bits here = total 32 bits 

These extension words, words 2 and 3, remember, are in memory and need to 
be fetched just like any other memory operand. However, they do have an 
advantage - their address in memory follows immediately after the instruction 
word. Now you know that the PC (program counter) contains the address of 
the instruction word, and that the PC increases by two byte addresses after 
decoding. So, as soon as the ADDI is decoded the PC automatically holds the 



114 68000, 68010, and 68020 Primer 

address of the longword, word or byte of immediate #<data>. With the 
immediate addressing mode there are no extra processor cycles or calculations 
needed to obtain the effective address of the memory operand. The source data 
is immediately available as part of the normal instruction fetch, decode sequence. 

We have used immediate mode so far only with ADDQ and ADDI, but it 
is available as the source operand for many other op codes. 

IMMEDIATE MODE - GENERAL APPLICATIONS 

A simple example is: 

MOVE.z #<data>,<destination operand> 

This simply MOVEs the immediate data (L, W, or B) to the destination. The 
#<data> is stored in extension words just like the ADDI instruction. There is 
no MOVEI instruction, as such; you just use MOVE with the immediate source 
format. 

Note that the following instructions are functionally equivalent: 

CLR.z D1 
MOVE.z #0,Dl 

since they both move O's to the L, W, or B parts of Dl. Can you guess which 
is faster? Clue: CLR.z needs no extension words. 

Another popular use of immediate mode is: 

MOVEQ.L #<data>,Dn 

which is a quick data move restricted to longword and data registers only. 
MOVEQ allows us to move 8 bits of signed immediate data, so we will often 
use the notation: 

MOVEQ.L #<d8>,Dn 

to remind you. Notice that in order to do a correct L move with only 8 bits of 
source, the M68000 must first sign-extend the #<d8> to 32 bits. 

The #<d8> bits are stored in the instruction word itself, so MOVEQ is a 
superfast way of moving signed numbers in the range -128 to + 127 to all 32 
bits of Dn. 

Here is a typical application: 

* Program 4-4: Counting Cycles 



LOOP 

M68000 Instruction Set - First Steps 115 

MOVEQ.L #52,DO 
<program> 

* * 
SUBQ.L 
BNE 

* 
#1,DO 
LOOP 

<rest of program> 

Set counter DO = +52 
Do something 

Decrement counter by 1 
Is counter O? If NO 
repeat loop. If YES 
exit loop. 

Suppose you want to perform the same program sequence a fixed number of 
times, in our case 52 times. Since 52 is less than 127 you can use MOVEQ to 
set up your counter in DO. Each time you perform the <program> within the 
loop you SUBtract 1 from DO and test the CCR using the BNE (Branch Not 
Equal to zero). If DO is nonzero you branch back to the label LOOP and repeat 
<program>. After exactly 52 loops DO will reach 0, and the BNE will not 
branch. You therefore exit the loop and carry on with <rest of program>. The 
SUBQ.L is a new but obvious instruction: 

SUBQ.z #<data>,<destination operand> 

which works just like ADDQ, except that you subtract the immediate source 
data (unsigned values 1 - 8) from the destination, then place the difference in 
the destination. The z data size code has the usual effect on the operation -
SUBQ.L will subtract from all 32 bits, SUBQ.W from the lower word only, and 
SUBQ.B from the lower byte only of the destination operand. There are more 
general forms of SUB corresponding to ADD and ADDI: 

SUB.z 
SUBI. z 

<source operand>,<destination operand> 
#<data>,<destination operand> 

All the SUB variants alter the CCR as for the ADD variants: 

CCR flag x N z v c 

SUB =C * * * * 

so you can check for zero, negative, and overflow in the usual way. The C 
(Carry) flag really indicates borrow rather than carry, but the function of the 
flag is the same. Has the unsigned arithmetic gone wrong? For example: 

MOVEQ.L #O,D6 
SUBQ. L #1, D6 



116 68000, 68010, and 68020 Primer 

would leave the CCR as follows: 

CCR flag x 
1 

N 
1 

z 
0 

v 
0 

c 
1 

since 06 now holds $FFFFFFFF = -1 (signed) which is correct (no overflow) 
but incorrect for unsigned arithmetic (C = X = 1). 

IMMEDIATE ADDRESSING MODE - SUMMARY 

Immediate mode is neat and fast for fixed source values. There are op code 
variants for Quick #<data> small enough to fit inside the instruction; and there 
are Immediate versions for larger values of #<data> which need one or two 
extension words following the instruction (at memory addresses PC+ 2 and 
PC+4). 

We next look at addressing modes that allow you to access data anywhere 
in memory, not just in the instruction word or extension. 

ABSOLUTE ADDRESSING MODES 

Of course, immediate addressing mode is limited to those situations where the 
source operand values are fixed and known at the time you write the instruction. 

In most cases, however, operands are variables located in memory (via a 
keyboard input or a disk file access). The simplest situation arises when you 
happen to know the actual physical memory address, also referred to as the 
absolute address, of the data you want to manipulate. Let us rework Program 
4-1 assuming that your initial values are in memory, rather than in data registers. 
As in Chapter 3 , you use $ for hexadecimal numbers. 

PRACTICAL APPLICATION 

Problem: Calculate the new total hours worked YTD (January through March) 
using absolute memory operands. Put the updated total in the longword at address 
$6008. 

Given: 

1. Total hours YTD (January through February) stored in the longword at address 
$6000. 



M68000 Instruction Set - First Steps 117 

2. Hours worked in March stored in the longword at address $6004. 

Sample Case: 

Hours YTD = 320 at address $6000 
Hours March = 138 at address $6004 
New hours YTD = 458 at address $6008 

Solution: Program 4-5 

MOVE.L $6000,03 D3 =hrs YTD 
ADD.L $6004,03 D3 =hrs YTD +Hrs March 
MOVE.L 03,$6008 Save 03 in memory at address 

$6008 
*Address $6008 now holds the sum ($6000) + ($6004) = 458. ml 

Note the use of brackets to indicate the value stored at a given address. 
Thus at address $6000 we have the value ($6000) = 320. In the next section 
we will elaborate on this notation and explain in detail how addresses can access 
longwords, words, or bytes in memory. 

Absolute addressing mode simply means using the actual address as source 
or destination - it must not be confused with immediate mode. Compare the 

·following: 

MOVE .L #$6000 , 03 

and 

MOVE .L $6000 ,03 

The little symbol # for immediate data makes a dramatic difference. The first 
line says: replace the contents of 03 with the number $6000. The second line 
says: replace the contents of 03 with the number found in memory at address 
$6000. 

ABSOLUTE ADDRESS - SHORT AND LONG 
VERSIONS 

The absolute address you supply in your source or destination operand can be 
stored in one or two extension words following the instruction word, known as 
the short and long versions of the absolute addressing mode. In the long version 
your absolute address is a full 32-bit number stored in two 16-bit extension 



118 68000, 68010, and 68020 Primer 

words, and therefore allows access to the entire address space of the M68000. 
The price paid for this is that the processor needs to fetch two extension words 
from memory and then combine them into one 32-bit address before it can 
access your operand. To save time when you do not want to access the full 
address space, the short 16-bit mode can be used. In this mode the processor 
sign bit extends the single extension word to form a 32-bit address - and this 
is much faster than fetching a second word from memory. The short mode gives 
you access to addresses in the ranges $000000 through $007FFF (the lower 
32K of memory) and $FF8000 through $FFFFFF (the top 32K of memory), 
depending on whether the sign bit is 0 or 1. (When we talk about the sign bit 
of an address, of course, we are not implying that we can have negative 
addresses - all absolute addresses are positive numbers. The sign bit here 
means bit number 15 in the word address, which happens to be 1 for addresses 
greater than $7FFF.) 

Assemblers differ widely in the way they handle the short and long versions. 
Some will automatically create the optimum mode for you (our $6000, for 
example, would be assembled as short), while others require a letter code L 
(long) or W (short- that is, one extension word) after the address. 

LABELS AS ABSOLUTE ADDRESSES 

So far we have used labels with branching instructions, and we explained briefly 
that when your program has been assembled and loaded each label symbol is 
effectively translated into the unique address of the instruction you want to 
branch to. From a novice programmer's point of view it is sufficient to think of 
labels simply as addresses, and as such they can be used as mnemonics not 
only for branching but as absolute address operands. The obvious advantage 
is legibility and ease of programming. To see this, let's dress up Program 4-5 
as follows: 

* Program 4-5A: Use of Labels as Absolute Addresses 
* Data as in program 4-5 with following labels 
* HRSYTD = address $6000 holding 320 hours 
* HRSMAR = address $6004 holding 138 hours 
* NEWHRS = address $6008 = destination for sum 

MOVE.L 
ADD.L 
MOVE.L 

HRSYTD,D3 
HRSMAR,D3 
D3,NEWHRS 

D3 = (HRSYTD) 
03 = (HRSYTD) + (HRSMAR) 
Save D3 in memory at address 
NEWHRS 



M68000 Instruction Set - First Steps 119 

* Address NEWHRS = $6008, now holds the sum ($6000) + ($6004) = 458. 
* Note, again, the use of brackets to indicate the contents of an 
* address. HRSYTD=$6000 but (HRSYTD)=320. · 

There is no doubt that version 4-SA is more immediately understandable 
than version 4-5 (dare we say, a little nearer to BASIC), and this helps the 
writing, modifying, and debugging of code. It is no exaggeration to say that you 
will hardly ever see lines like: 

MOVE.L $6000,03 

other than in classroom exercises. Of course you have to tell the system what 
the labels HRSYTD, HRSMAR, and NEWHRS mean, and for this you need 
some help from the assembler. Once you have "assigned" addresses to these 
labels, you can program in terms of HRSYTD and so on, rather than taxing 
your human memory with meaningless hexadecimal numbers. The allocation 
of addresses to data fields is almost as simple as labeling instruction lines for a 
branch. 

ASSEMBLER DIRECTIVES 

To tell the assembler what you have in mind, you need a few assembler 
directives, sometimes known as pseudo-op codes because, at first sight, they 
look like M68000 instructions. Directives, however, merely direct and control the 
assembly process, and unlike "real" instructions they do not generate machine
language code. Modem assemblers have hundreds of different directives with 
many nonstandard variations, most of which are outside the scope of this primer. 

Fortunately, you need only three or four directives to make sense of the 
addressing modes, and we'll present them briefly using standard Motorola 
"vanilla" syntax. Once we have covered these, we will be able to fill out Program 
4-SA so that HRSYTD actually represents the address we have in mind. 

ORG - THE ABSOLUTE ORIGIN DIRECTIVE 

The following line 

ORG <address> Load program at <address> 

simply tells the assembler/loader that you want the next program lines to be 
assembled and eventually loaded starting at the specified absolute address. For 



120 68000, 68010, and 68020 Primer 

your immediate purposes you will need just one ORG directive at the very start 
of a program: 

ORG $6000 Program starts at address $6000 

Thereafter, each line of source will be translated into machine instructions, some 
taking one word, some five, with each being allocated appropriate word ad
dresses as the assembler increments its location counter - a simple counter 
that "starts" at $6000 and increments one or five or whatever the instruction 
takes. When it meets a label, presto, we know (or rather the assembler knows) 
the label address. You saw earlier how branch labels work, now you can look at 
data labels, and the two directives used to define them. 

DATA AREAS IN MEMORY USING OS AND DC 

There are two basic directives, OS and DC, that allow you to allocate labels to 
data areas in memory: 

LABEL DS.z <number> Define Storage 

LABEL DC.z <data> Define Constant 

OS just reserves the <number> of memory locations (z = L, W, or B) at 
address = label, whereas DC will allocate whatever memory is needed (starting 
from address = label) and store the <data> you list in the right-hand column. 

DATA STORAGE - EXAMPLES 

NEWHRS DS.L 1 Define storage= 1 longword at NEWHRS 

simply reserves 1 "empty" longword for data storage at memory location 
NEWHRS, which is exactly what we need for program 4.SA. The following 
lines would achieve exactly the same result: 

NEWHRS DS.W 2 Define storage= 2 words at NEWHRS 

NEWHRS DS.B 4 Define storage= 4 bytes at NEWHRS 



M68000 Instruction Set - First Steps 121 

The words buffer or data buffer are often used to describe areas of memory 
assigned with a OS for future holding of information. You will often find, for 
example, the line: 

DSKBUF DS.B 512 Allocate disk buffer 512 bytes 

or a similar line, to define a general area into which a whole disk block can be 
loaded and then scrutinized. 

You can, in fact, use OS to reserve any number of longwords, words, or 
bytes, provided you are careful to avoid odd-numbered addresses for longwords 
or words. For example: 

LABELl 
LABEL2 

DS.B 
DS.L 

5 
2 

Allocate 5 bytes starting at labell 
Whoops! If labell is even then label2 is Odd 
address! Cannot reserve 2 longwords starting at 
odd address. 

The lesson here is that as the assembler reserves the memory space re
quested, its location counter is incremented past the assigned area, so the address 
it assigns to a subsequent label is incremented accordingly. Hence it would try 
to give label2 the value {labell + 5 bytes} which may or may not be legal. A 
DS.B at label2 would be fine (byte addresses can be odd or even), but a DS.L 
or OS. W could invoke an address error. 

Assuming you have not broken the odd/even rules, the absolute address 
assigned to a OS label will naturally depend on two factors: ORG - the starting 
address of the program, and the location of the label within the program. 

Before we illustrate this with a program, let's look at the other data labeling 
directive, DC, in more detail. 

DATA CONSTANT - EXAMPLES 

Data Constant (DC) syntax is slightly different, but the difference is of galactic 
importance: 

HRSYTD DC.L 320 Define constant = 320 at HRSYTD 

does not allocate 320 longwords of memory. 
The 320 represents a single field of <data> and you will end up with one 

longword (because of the DC.L) containing the binary equivalent of decimal 
320 at whatever address the assembler assigns to HRSYTD. You can use DC 
to store any amount of data. Lists of related data items stored consecutively are 



122 68000, 68010, and 68020 Primer 

often called tables, just like the log and trig tables at the end of old-fashioned 
textbooks. 

TABLE DC.B $10,$2A,$F4,$09 Set up 4 byte constants at TABLE 

* Byte address TABLE now contains $10 
* Byte address TABLE+l now contains $2A 
* Byte address TABLE+2 now contains $F4 
* Byte address TABLE+3 now contains $09 

The general format is: 

LABEL DC.z <data>,<data>, .... 

DC.z allocates sufficient area to hold the <data>,<data>, ... you have listed, 
thereby overwriting any previous data at label. The <data> can be expressed 
in many useful ways - binary, decimal, hex, or ASCII. 

It is worth stressing again, at this point, that ORG, DS, and DC are pseodo
ops, not M68000 instructions. They are not translated into machine-level in
struction words like MOVE or ADD. They do, however, affect the location of the 
program, the way you write your program, and the values you would find if you 
looked inside the instruction extension words after assembly and loading. 

Moreover, pseudo-ops and directives have been an essential ingredient of 
I 

assemblers for many years, and this exerts considerable influence on all micro-
processor designers when they come to decide the type and format of the chip's 
instruction set. 

DATA LABELS IN ACTION 

We now update Program 4-5 once more to show our directives at work: 

* Program 4-5B: Data Labels with DS, DC 
* Program 4-5A revised 
* HRSYTD = address $6000 holding 320 hours 
* HRSMAR = address $6004 holding 138 hours 
* NEWHRS = address $6008 = destination for sum 

ORG $6000 Start at absolute $6000 

* Set up data areas 
* First label HRSYTD will be = address $6000 
* After storing 32 bits there, next label, HRSMAR, will be = 
* $6004, and so on. 



HRSYTD DC.L 
HRSMAR DC.L 
NEWHRS DS.L 

320 
138 
1 

* Rest of program as in 4-5A 

MOVE.L 
ADD.L 
MOVE.L 

HRSYTD,D3 
HRSMAR,D3 
D3,NEWHRS 

M68000 Instruction Set - First Steps 123 

Store 320 at HRSYTD 
Store 138 at HR.SMAR 
Reserve 1 longword at 
NEWHRS 

D3 = (HRSYTD) = ($6000) 
D3 = (HR.SYTD) + (HR.SMAR) 
Save D3 in memory at address 

NEWHRS = $6008 

* Address NEWHRS = $6008, now holds the sum ($6000) + ($6004) = 458. 

In the above example we have used ORG to grab an area of memory, 
starting at absolute address $6000, which holds not only our data but our 
program too. The first MOVE.L instruction would be located at address {$6008 
+ 4 bytes} = $6008 just after NEWHRS. 

It is perfectly possible, and often preferable, to separate your data and 
program in memory. The simplest way to achieve this is to use a second ORG 
<address> directive to define the start of the program. Here is Program 4-SC 
with one line added to show this. 

* Program 4-5C: Separate Data and Program Areas 
* Program 4-5B revised. Data as in 4-5B 
* HRSYTD = address $6000 holding 320 hours 
* HR.SMAR = address $6004 holding 138 hours 
* NEWHRS = address $6008 = destination for sum 

ORG $6000 DATA starts at absolute $6000 

* Set up data areas 
* First label HRSYTD will be = address $6000 
* After storing 32 bits there, next label, HR.SMAR, will be = 
* $6004, and so on. 

HRSYTD DC.L 320 Store 320 at HRSYTD 
HR.SMAR DC.L 138 Store 138 at HR.SMAR 
NEWHRS DS.L 1 Reserve 1 longword at 

NEWHRS 

ORG $8000 PROGRAM starts at 
absolute $8000 



124 68000, 68010, and 68020 Primer 

* First instruction will be at $8000 
* Program and results same as 4-58 

MOVE.L 
ADO.L 
MOVE.L 

HRSYTD,03 
HRSMAR,03 
03,NEWHRS 

03 = (HRSYTD) = ($6000) 
03 = (HRSYTD) + (HRSMAR) 
Save 03 in memory at address 

NEWHRS = $6008 

* Address NEWHRS = $6008, now holds the sum ($6000) + ($6004) = 458. 

The program still works in its new location because when it references 
HRSYTD and the other labels, it still picks up the data from the memory 
addresses defined by ORG $6000 and our DC and OS data labels. HRSYTD 
is defined as $6000 wherever we locate our program. 

One immediate advantage of separate data and program areas is the 
possibility of several users with different programs sharing a common data table 
in a mutually agreed-upon portion of memory. In real installations you will find 
endless variations on this theme of data and program location. The point here 
is that you have considerable flexibility regarding where you put things. 

ABSOLUTE ADDRESS - SUMMARY 

Data in memory can be accessed (read) or stored (written) using absolute 
addresses as source or destination operands. The absolute address can be 
written explicitly as $6000 or $FFFFFF, or by means of a suitably defined 
symbolic label. 

Absolute addressing, even with labels, is not flexible enough for most 
applications. A more versatile way to access operands in memory is via the 
address registers, as shown in the next section. 

ADDRESS REGISTER INDIRECT MEMORY 
ADDRESSING MODE 

The main function of address registers, as you might guess from their name, is 
to provide addresses for operands in memory. A useful concept in this connection 
is the idea of a pointer. If address register A3, for example, contains the value 
$3000, we say that A3 points to memory location $3000. 

To distinguish the pointer A3 from the operand in memory being pointed 
to, we use the following standard Motorola syntax: A3 is the pointer and (A3) 
is the operand at address A3. The brackets in (A3) represent what we call 
indirection. A3 is address register direct but (A3) is address register indirect. 



M68000 Instruction Set - First Steps 125 

In the "Memory Model" section of Chapter 3 you saw that the M68000 
uses byte, word, and longword addresses - so what does A3 really point at? 
If A3 contains an odd-numbered address such as $3001 , there is no ambiguity 
- A3 must point at the byte at $3001, but if A3 is even, like $3000, it is 
pointing at three possible memory values. If we go and look at this location we 
might conceivably find the following values: 

The byte at byte address A3 = $3000 is (A3) = $E2 

The word at word address A3 = $3000 is (A3) = $E278 

The longword at longword address A3 = $3000 is (A3) = $E278B01C 

The actual values shown are less important than how they are related. So before 
:we can answer the question, "What is (A3)?" we have to know the data size 
involved - is it L, W, or B. For example: 

MOVE.L (A3) ,07 moves $E278B01C to 07 
MOVE.W (A3) ,07 moves $E278 to lower word of 07 
MOVE.B (A3) ,07 moves $E2 to lower byte of 07 

You can see that the source operand (A3) behaves very much like a data register 
- the L, W, or B size code selects which parts of the operand are involved. The 
important differences are: L and W operations on memory need even addresses. 
B operations on memory can use odd or even addresses. Remember the Low 
Address-High Byte, High Address-Low Byte rule (see Chapter 3). 

Let us revamp Program 4-5 using address register indirect mode in place 
of absolute address mode. 

PRACTICAL APPLICATION 

Problem: Calculate the new total hours worked YTD (January through March) 
using indirect memory operands. Put the updated total in the longword at address 
$6008. 

Given: 

1. Total hours YTD (January through February) stored in the longword at address 
$6000 . . 

2. Hours worked in March stored in the longword at address $6004 



126 68000, 68010, and 68020 Primer 

Solution: Program 4-6 

* Set addresses in address registers 

MOVEA.L 
MOVEA. L 
MOVEA.L 

* Do calculation 

MOVE.L 
ADD.L 
MOVE.L 

#$6000 ,Al 
#$6004 , A2 
#$6008 , A3 

(Al ) ,03 
(A2) ,03 
03 , (A3) 

Al has address of YTD 
A2 has address of hrs March 
A3 has address for new YTD 

03 = hrs YTD 
03 = hrs YTD + hrs March 
Put 03 in memory at address 

A3 = $6008 

* (A3) now contains the sum (A2) + (Al) = 458. 
* (Al ) and (A2 ) are unchanged. 

MOVEA - MOVE ADDRESS 

Program 4-6 introduces a new op code, MOVEA (MOVE Address), which is a 
version of MOVE used when the destination is an address register. The general 
format is: 

MOVEA.L <source>, An 

or 

MOVEA .W <source>, An 

M68000 addresses are essentially 32-bit values (even if your MC6800X 
uses only 20 bits or 24 bits for addressing), so MOVEA.B is not allowed. Even 
MOVEA.W turns out to be a 32-bit move, because 16-bit addresses are always 
sign-bit extended to 32 bits, as explained in Chapter 3. Also MOVEA, like all 
operations on address registers does not affect the CCR, because you are not 
concerned with overflow, carry, negatives, zeroes, or positives when you manip
ulate addresses. 

You use MOVEA here with immediate source data to set up your three 
address registers. Once you have the proper addresses in Al, A2, and A3, the 
program uses (Al) and (A2) as source operands and (A3) as a destination 
operand. 



M68000 Instruction Set - First Steps 127 

RESTRICTIONS ON ADD 

You may wonder why we used D3 in the above program. Why not save a line 
(and a register) by having 

MOVE. L (Al), (A3) 
ADD. L (A2), (A3) 

OK 
ILLEGAL 

The first line is legal: it would move the contents of address $6000 to memory 
address $6008. The second line, however, is illegal because: ADD must have 
at least one data register and SUB must have at least one data register. The 
M68000 does not allow ADD or SUB on two memory operands. So you can 

ADD.z 
SUB.z 

ADD.Z 
SUB.Z 

ADD.z 
SUB.z 

ADD.z 
SUB.z 

But you cannot 

ADD.z 
SUB.z 

ADD.z 
SUB.z 

Dn,Dm 
Dn,Dm 

An,Dm 
An,Dm 

Dn, (Am) 
Dn, (Am) 

(Am) ,Dn 
(Am) ,Dn 

(Am)' (An) 
(Am)' (An) 

Dn,Am is 
Dn,Am is 

OK 
OK 

OK for Z = L, W only 
OK for Z = L, W only 

OK 
OK 

OK 
OK 

WRONG 
WRONG 

WRONG 
WRONG 

The above rules forbid ADD and SUB with An as a destination - so how 
can you increase or decrease an address in an address register? There is a way; 
it's called ADDA (ADD Address). Let's tackle Program 4-6 in a different way, to 
show how ADDA works: 

* Program 4-6A: Alternative Solution to 4-6 Using ADDA 

* Set addresses in address registers 

MOVEA.W #$6000,AO 
MOVEA.W AO,Al 

AO has address of YTD 
Al also has address of YTD 



128 68000, 68010, and 68020 Primer 

ADDA. W #4, AO 
MOVEA.W AO,A2 
ADDA.W #4,AO 
MOVEA.W AO,A3 

* Do calculation--same as 4-6 

MOVE.L 
ADD.L 
MOVE.L 

(All ,D3 
(A2) ,D3 

D3, (A3) 

AO = $6000 + 4 = $6004 
A2 has address of hrs Mar 
AO = $6004 + 4 = $6008 
A3 has address for new YTD 

D3 = Hrs YTD 
D3 = Hrs YTD + Hrs Mar 
Put D3 in memory at address 

$6008 = A3 

So, to ADD something to an address register, we use ADDA (ADD Address), 
just as we use MOVEA to move something to an address register. The general 
format is: 

ADDA.L 
ADDA.W 

<source>, An 
<source>, An 

To subtract something from An we have: 

SUBA.L 
SUBA.W 

<source>, An 
<source>, An 

Note again the fundamental fact of M68000 life - no byte operations 
allowed on An. Also, as with MOVEA, there are no CCR changes when we 
manipulate addresses in An. 

The key to Program 4-6A is the way ADDA is used on the pointer AO. By 
adding 4 to an even-valued address register you make it point to the next 
longword in memory. Similarly, adding 2 or 1 to a pointer "moves" it to point 
to the next word or byte. Frequently you find that the data you are manipulating 
are stored in memory in sequences or tables - so ADDA and SUBA are useful 
in "setting" address register pointers to scan tables of data in either direction. 
This type of operation is so common that the M68000 provides two special 
variants of the (An) addressing mode to simplify the scanning of consecutive 
addresses. The new modes automatically increase or decrease the pointer An. 
We look first at the address register indirect with post-increment mode. 

ADDRESS REGISTER INDIRECT WITH 
POST-INCREMENT: (An)+ 

The address register indirect with post-increment mode, written (An)+, is best 
explained with an example. 



M68000 Instruction Set - First Steps 129 

* Program 4-6B: Alternative Solution to 4-6 Using (An)+ 
* Set address of first value in table 

MOVEA.W #$6000,Al Al has address of hrs YTD 
i.e. Al points to hrs YTD 

* Do calculation 

MOVE.L (Al)+, D3 Set 03 = ($6000) = hrs YTD 
then add 4 to Al 

ADD.L (Al)+, D3 Add ($6004) to D3 
then add 4 to Al 

MOVE.L D3, (Al) Put D3 in memory at address 
Al = $6008 

Rather than using three address registers for the operands, this solution 
uses just Al - and the post-increment advances Al to the next longword after 
each operation. The automatic increment of Al saves using ADDA #4,Al, but 
better still, it saves worry about the size of the increment. 

(Al)+ will increment Al by either 4, 2, or 1, depending on the data size 
code used in the op code. For example: 

MOVE.W (A2) +, D5 Set word D5 = word (A2) 
then ADD 2 to A2 

will conclude with A2 pointing to the next word (A2 + 2), and 

MOVE.B (A2)+,D5 Set byte D5 = byte (A2) 
then ADD 1 to A2 

ends up with A2 pointing to the next byte (A2+1). 

TEMPUS FUGIT - A TIME-OUT TO LOOK AT TIMINGS 

Since we've now shown you so many different ways to perform the same simple 
hours YTD addition, it might prove useful to compare them briefly from a timing 
standpoint. In our simple context we are not going to quibble over a few 
microseconds here and there, but from the broader, practical perspective it is 
important to gain an insight as to what we are asking the MC68000 to do. 
(Note that in the following table, the 8-bit data bus of the MC68008 would need 
more cycles while the 32-bit data bus of the MC68020 would need fewer.) 

Program 4.1 Register Direct: 
Get data from registers-very fast-no memory access 
needed. Store answer in register-very fast. But how did 



130 68000, 68010, and 68020 Primer 

Program 4.5 
( + variants) 

Program 4.6 

the data get into the registers? And how will we print the 
answer? Sooner or later we will need memory accesses. 

Absolute Addressing: 

Get address of data from extension word(s)-takes 1or2 
memory reads. Then get data-takes 1 or 2 memory reads. 
Get address to store answer-takes 1or2 memory reads. 
Store longword answer-takes 2 memory writes. 

Indirect Addressing: 

Set up 3 address registers with immediate data-takes 3 to 
6 memory reads. Get addresses from An-very fast Then 
get data-takes 1or2 memory reads. Store answer-takes 
2 memory writes. 

Program 4. 6A Indirect Addressing Using ADDA: 

Set up 1 address register with immediate data-takes 1 to 
2 memory reads. ADDA immediate data twice-takes 2 
memory reads. Get addresses from An-very fast Then get 
data-takes 1or2 memory reads. Store answer-takes 2 
memory writes. 

Program 4.6B Indirect Addressing with Post-Increment: 

Set up 1 address register with immediate data-takes 1 to 
2 memory reads. Get addresses from (An) +-fast Then 
get data-takes 1or2 memory reads. Store answer-takes 
2 memory writes. 

So far, then, indirect with post-increment seems to offer the best overall 
method - providing you can arrange your data in suitable sequential memory 
locations. A typical situation where data naturally occupies successive addresses 
is in word processing where you have to handle long strings or sequences of 
ASCII characters, each needing a byte of memory. The M68000 is often criti
cized for lacking explicit string handling instructions. Our next program refutes 
this criticism. 

STRING MANIPULATION USING (An)+ 

Here is a powerful example of (An)+ in action. The problem will be familiar to 
all readers who have ever moved or copied a block of text while word processing. 



M68000 Instruction Set - First Steps 131 

* Program 4-7: Copy a String of Characters from One Memory 
* Location to Another 
* Al points to first ASCII character of a block of text in 
* memory. 
*Assume that the last character in a string is ASCII NULL (0). 
* We want to copy the block of text excluding the final NULL to 
* another part of memory starting at address A2. Any old data at 
* A2 can be overwritten. 
* A2 is larger than <Al + length of string>! 
* If the string at Al is empty (that is, starts with NULL) don't 
* bother to move it! 

LOOP TST.B 

BEQ 
MOVE.B 

BRA 

(Al) 

FINI 
(Al)+, (A2)+ 

LOOP 

FINI <rest of program> 

Have we reached a NULL? 
Test byte at address Al = O? 
If yes exit to FINI 
Move byte at Al to byte at A2 
Then increase Al and A2 by 1 to 
point to next byte in memory 
Back to LOOP to test next 
byte. 

* WARNING-remember that Al and A2 have changed unless first (All 
* was NULL. 

You can see how (Al)+ as byte source and (A2) + as byte destination 
neatly advance each pointer (the "sending" pointer Al and the "receiving" 
pointer A2) through each character of the string. Without a test for the end of 
the string, MOVE.B (Al)+ ,(A2) + would continue right through all available 
memory, with strange results! So the simple little TST.B introduced above has 
saved wiping out all the data in RAM. 

TST.z operand 

tests the z = L, W, or B of the operand and sets the N and Z flags in the CCR 
depending on whether the operand is negative or zero. The N flag happens to 
be irrelevant in this particular example. So, 

TST.B (Al) 

"asks" the question: Is the Byte in memory at address Al = O? If yes the Z 
flag is set= l; if no the Z flag is cleared to 0. The M68000 has no knowledge 



132 68000, 68010, and 68020 Primer 

or interest in ASCII codes as such - it is entirely our problem how we interpret 
the 8 bits in each byte of our string. 

Our TST.B works on the assumption that the string ends with an ASCII 
NULL character which equals binary 00000000 (sometimes called blank and 
not to be confused with ASCII "space" which equals 00100000 or with ASCII 
"zero" which equals 00110000). All of which is to remind the beginner that 
NULL is an ASCII character like the rest and takes up a byte of your precious 
memory. It just happens to look like a 0 to the TST.B instruction. 

The BEQ after TST.B checks the CCR and branches to FINI only if the Z 
flag is 1, that is, only if the byte (Al) is NULL. · 

Notice that we TST.B right at the beginning of the loop. If the first (Al) 
byte of our string were NULL we would branch to FINI right away without 
moving anything. Zen programmers enjoy pondering the question whether an 
empty string, that is, one which starts (and therefore also ends) with a NULL is 
worth copying. You should certainly distinguish between an empty string and 
no string at all. Program 4-7 will just ignore an empty string - since we branch 
out before copying NULL. It is not difficult to rewrite 4-7 so that the NULL in 
(Al) would copy to (A2). In many walks of life such nitpicking would be 
condemned as outlandishly metaphysical, but in computer programming, alas, 
such details can be vital. A good reason for not copying NULL to (A2) might 
be that you want to append more text at the end of the copy string or, for the 
sake of a longer, more impressive word, to concatenate it with something. If 
you insist on an exact copy of a non-empty string including the final NULL, 
here is Program 4-8: 

* Program 4-8: Copy a String of Characters from One Memory 
* Location to Another 

* Al points to first ASCII character of a block of text in 
* memory. 
*Assume that the last character in a string is ASCII NULL (0). 
* We want to copy the block of text including the final NULL to 
* another part of memory starting at address A2. Any old data at 
* A2 can be overwritten. 
* A2 is greater than <Al + length of string>. 
* If the string at Al is empty (that is starts with NULL) don't 
* bother to move it! 

LOOP 

TST.B 
BEQ 

MOVE.B 

(Al) 
FINI 

(Al)+, (A2)+ 

Is first byte NULL? 
If yes exit to FINI 
because string is empty. 
Move byte at Al to byte at A2 
then increase Al and A2 by 1 to 
point to next byte in memory 



BNE LOOP 

M68000 Instruction Set - First Steps 133 

If byte moved is not NULL(=O) 
there's more to copy. 

FINI <rest of program> 

* Remember that Al and A2 may change. 

(An)+ MODE SUMMARY 

The (An)+ mode as ~ither source or destination or both, is the most efficient 
way of manipulating successive low-to-high memory locations. You set An to 
point at the starting location, and having chosen the data size of the operation 
(L, W, or B) you can trust the M68000 to increment the pointer correctly. 

We promised you two ways of scanning consecutive addresses, so having 
seen (An)+ going forward through memory, we present the converse mode, 
-(An), for accessing memory backwards. 

ADDRESS REGISTER INDIRECT WITH 
PRE-DECREMENT: -(An) 

Closely related to the (An)+ mode is the Address Register Indirect Pre-Decre
ment Mode, written -(An). The pointer An is reduced or decremented by 4, 2, 
or 1 before the operation takes place. As with (An) + the change in pointer 
value is determined by the data size code used in the instruction. A simple 
example: 

* A5 contains $8008 when we start 
CLR.L -(A5) would reduce A5 by 4, then clear longword ($8004) 

but 

CLR.W -(A5) would reduce A5 by 2, then clear word ($8006) 

and 

CLR.B -(A5) would reduce A5. by 1, ·then clear byte ($8007) 

Using -(An) you can scan data tables from end to beginning (which is 
sometimes quicker), providing you remember to set the address register pointer 
pointing just beyond the end of the table to allow for the pre-decrement. (An)+ 
and -(An) work nicely together, when you think about it! (An) + leaves your 
pointer in the correct position, after a forward scan, one place beyond the end 



134 68000, 68010, and 68020 Primer 

- ready for a reverse scan using -(An). This idea is used in word processors, 
such as WordStar, that allow a forward or backward search of your document 
for a matching string. 

-(An) MODE - SUMMARY 

The -(An) mode as either source or destination or both, is the most efficient 
way of manipulating successive high-to-low memory locations. You set An to 
point just beyond the higher location, and after you have chosen the data size 
of the operation (L, W, or B), the M68000 will decrement the pointer correctly 
before each operation. 

CONCLUSION 

We conclude this chapter with a brief overview of the addressing modes we 
have covered. In Chapter 5, we will discuss more advanced uses of these modes, 
and introduce fresh modes and instructions. 

Mode Description: 

On 
An 
(An) 
(An)+ 
-(An) 
Immed 
Abs.W 

Abs.L 

Data register direct } 
Add . t d' t Jointly called register direct ress regis er irec 
Address register indirect 
Address register indirect with post-increment 
Address register indirect with pre-decrement 
Immediate data operarid-also written as #(data) 
Absolute short address (16-bit, sign-extended)-also written 
xxx{.W} or label 
Absolute long address (32-bit)-also written xxx{.L} or label 



5 

M68000 Instruction Set
Advanced Topics 

In this chapter we build upon the basic instructions and modes covered in 
Chapter 4. Our first topic deals with what is generally described as housekeeping 
- a word used to describe a wide variety of situations faced by the programmer: 
keeping track of where things are in memory, saving and restoring register values, 
and so on. This subject provides a real and practical reason for many of the 
M68000 instructions and features. 

PRESERVING REGISTER VALUES -
WHY AND HOW 

With the (An), (An)+ and -(An) modes you face a problem that crops up in 
many disguises, especially as your programs get longer and you start ''using 
up" your registers. Although the M68000 is more generous than most in pro
viding 16 versatile registers, you can easily reach a position in a program when 
they are all "assigned". In other words, you may be holding 8 important 
intermediate results in DO through 07, and each of the normal address registers 
AO through A6 may hold pointers you don't want to lose. 

Suppose you now embark on a string copy using 

MOVE.B (A3)+, (AO)+ 

135 



136 68000, 68010, and 68020 Primer 

for example. Obviously, as you saw in Chapter 4, you "lose" the initial values 
of A3 and AO, since they end up pointing at an address that depends on the 
length of the string - which is often unpredictable. Obviously you can "save" 
A3 and AO by writing their values to memory before the string copy, then 
"restoring" them afterwards, as in: 

* Program 5-1 

* We want to copy string (A3) -> (AO) without losing pointer 
* values in A3 and AO. 

MOVE.L A3,$4004 Save A3 
MOVE.L A0,$4000 Save AO 

<Copy string (A3) -> (AO)> 
MOVEA.L $4000,AO Restore AO 
MOVEA.L $4004,A3 Restore A3 

The same "trick" can be used to save and restore On values. It certainly 
achieves the desired goal, but there are obvious snags. First, it can become 
messy and error prone in a complex program (where did I put A3 and 07 ... ?). 
Second, there is a risk that a saved value might be inadvertently overwritten 
during some convoluted branching. Third, if you are sometimes saving bytes, 
sometimes saving words, and sometimes saving longwords, you have to pay 
attention to the odd/even address restrictions. 

The M68000 provides two methods to simplify the saving and restoring of 
register values: the MOVEM instruction and the user stack. 

MOVEM - MOVE MULTIPLE REGISTERS 

MOVEM is a special version of MOVE offering a fast and economical way of 
saving any number of register values into consecutive memory locations, and 
then restoring them later as needed. 

To save registers in memory the format is: 

MOVEM.Z <register list>,<destination> 

To restore registers from memory the format is: 

MOVEM.Z <source>,<register list> 

Note that Z can equal L or W only, so MOVEM. B is illegal. 



M68000 Instruction Set- Advanced Topics 137 

The <register list> can specify up to 16 different registers (DO through D7, 
AO through A7) for saving or restoring, while the destination and source specify 
the starting memory location. MOVEM. L transfers all 32 bits, while MOVEM. W 
transfers only the lower word with some judicious sign-bit extensions when you 
restore. Program 5-1 could be written: 

* Program 5-lA MOVEM: Saving/Restoring Multiple Registers 
* at Absolute Addresses 

* We want to move a string without losing pointer values AO, A3. 

MOVEM.L AO/A3,$4000 

MOVEM.L $4000,AO/A3 

Save AO and A3 at $4000 
and $4004 
<Copy string (A3) -> (AO)> 
Restore AO and A3 from 
$4000 and $4004 

Note how the <register list> is set up with a slash(/) between each register. To 
save consecutive registers you can list them as: 

MOVEM.L DO-D5/A4-A6,$6000 

which would save 9 registers, the 6 data registers DO through D5 and the 3 
address registers A4 through A6. The 9 register values would be stored in 9 
longwords at memory locations $6000 through $6020. You would restore them 
all with: 

MOVEM.L $6000,DO-D5/A4-A6 

You have been saving your registers at absolute memory locations, but you 
can also save them by specifying a pointer (always providing you have a spare 
An) using the -(An) pre-decrement mode, in which case you must restore by 
using the (An)+ post-increment mode in the source operand. Again, you will 
notice how these two modes complement each other. Program 5-18 shows this 
variant: 

* Program 5-lB MOVEM--Saving/Restoring Multiple Registers 
*Using Address Indirects -(An) and (An)+ 

* We want to move a string without losing pointer values AO, A3. 
* A5 points to the last used address in our saving area in 
* memory. 
* Assume A5 = $4008. 



138 68000, 68010, and 68020 Primer 

MOVEM.L AO/A3,-(A5) 

* Reduce A5 by 4. Save A3 first at $4004. Reduce A5 again by 4. 
* Then save AO at $4000. A5 now = $4000. 
* Note that MOVEM conveniently reverses the saving order for you! 

<copy string (A3) -> (AO)> 

MOVEM.L (A5)+,AO/A3 

* Restore AO first from $4000. Increment A5 by 4 then restore A3 
* from $4004. Increment A5 by 4. A5 is again = $4008. 

The MOVEM with -(An) and (An) + is very flexible. As you will see in the 
next section, it is very similar to the stack concept. 

STACKS 

The stack solution to saving and restoring registers requires a brief preamble on 
stack jargon and mystique. 

As shown in Figures 5-1 and 5-2, the address register A 7 is designated as 
the USP (User Stack Pointer) and its job is to point to a special area of memory 
called the user stack. This stack "grows" downwards from a stack base address, 
from high to low memory as you save data, and "shrinks" upwards, back 
towards the stack base, from low to high memory as you restore. 

It helps to stand on your head during this paragraph. Which recalls the 
famous box that arrived from Dublin, Ireland, with the following inscription: 
"This box must always be kept upside-down. To avoid any confusion the bottom 
has been marked 'Top."' 

The preferred term for saving is pushing data on the stack; you restore by 
pulling or popping data from the stack. Stacks are LIFO (Last In First Out) 
devices because when you pull off a stack you restore the most recently saved 
data. In contrast, a queue is a FIFO (First In First Out) device. 

There is never any doubt about where you are saving stuff on the user 
stack. A 7 always points to the last item saved, which is also the first candidate 
to be restored. 

The sequence for pushing 01, say, on the stack is: 

MOVE.L Dl, - (A7) Save Dl on stack 

* Pre-decrement of A7 (by 4 because of the L) means moving the 
* stack pointer down in memory. (Down is the direction of stack 
* growth.) 



M68000 Instruction Set - Advanced Topics 139 

USP A7.._ __ ~A-dd-res-=s-=~N.__ ___ ~.....,.. ---.. .... 
01l ___ A_9_2_4__.I ______ _ 

31 1615 

Before 

Push 01 word on user stack 
.. MOVE.W 01 ,-(SP) 
Decrement SP by 2 before MOVE. W 

USP A7 _____ AJJ_d_res __ s_m_N_~----

01 I A924 I 
31 1615 

A1teJ: 
Push 01 word 

9 7 0 A 

9 7 0 A 

Fig. 5-1 User Stack Operation: Pushing 

* Then save Dl at the new address in A7. Stack pointer therefore 
* points at item just saved. 

Pulling Dl from the stack involves: 

MOVE.L (A7)+,Dl Restore Dl from stack 

* Previous Dl value is stored at A7, so move (A7) to Dl, then 
* post-increment A7 by 4 to shrink the stack. A7 now points at 
* the data (if any) that was pushed before Dl. 



140 68000, 68010, and 68020 Primer 

USP A7i.....~~A~d~d~re~ss~=......;..;N~-2;;.___. 

01 I 5F23 I OA24 
31 1615 

Before 
Pull 01 word from STACK 

.. MOVE.W (SP)+, 01 
increment SP by 2 after MOVE. W 

01 I 5F23 
31 

Att.e..c 
Pull 01 word 

1615 

Base of 
stack 

FB01 ~ 
0 

Base of 
stack 

9 7 0 A 

7 0 A 

Fig. 5-2 User Stack Operation: Pulling 

Standard syntax allows you to use the mnemonic SP (Stack Pointer) in place 
of A7: 

MOVE .L 
MOVE . L 

MOVEM AND THE STACK 

Dl, -(SP) 
(SP)+, Dl 

Save Dl on stack 
Restore Dl from stack 

You can use MOVEM to save multiple registers on a stack: 

MOVEM .L DO-D3 /AO-A6,-(SP) 



M68000 Instruction Set-Advanced Topics 141 

will push 11 register values and 

MOVEM.L (SP)+,DO-D3/AO-A6 

will pop them all back. 
MOVEM, howevei; saves only registers (L or W), whereas with MOVE you 

can also push memory data on the stack, including bytes. 

PUSHING BYTES ON THE STACK 

When you push a byte on the stack with, for example: 

MOVE.B D2,-(SP) Save lower byte of D2 on 
stack 

the M68000 has a nice built-in trick to spare you the embarrassment of hitting 
odd-numbered memory boundaries if you subsequently wanted to push a word 
or longword. Figure 5-3 shows how this trick works. 

Normally, the MOVE.B pre-decrements and post-increments An by 1, but 
with SP ( = A7) the processor adjusts the pointer by 2 to preserve even
numbered addresses. All stack data, then, is aligned on word boundaries. When 
you push a byte, in fact, it goes into the upper half of the stack word, and the 
lower half is "wasted." 

Having seen the stack invoked explicitly by MOVEs and SPs in the program, 
you will next see a situation where the M68000 makes use of the st~ under 
its own steam, as it were, without a specific MOVE being required. First you 
need to understand the general concept of a subroutine. 

SUBROUTINE - BRIEF DEFINITION 

A subroutine is a specially constructed piece of program which can be called 
into operation from anywhere in the main program, and having performed its 
duty, will return control back to the place in the program that called it. Subrou
tines have identifying labels and calling a subroutine is rather like branching. 
Unlike the Bee, which just branches you elsewhere, calling a subroutine requires 
a mechanism for remembering the line that called it, so that when the subroutine 
has concluded, the system knows where to resume. 

Subroutines are vital in reducing the amount of code you need to write 
and debug. Almost any sequence of instructions that you find used several times 
in a program can be usefully made into one subroutine, and then called as 
often as you like from any line in your program. Let's see how subroutines are 



142 68000, 68010, and 68020 Primer 

SP A7 

02 F01 A I 5A23 ~ 
31 1615 0 

Before Push Base of 
stack 

MOVE.B 02,-(SP) 

SP A7 

02 

High part of 
word gets byte 

..-------llll!llK$2000 i------+----f' 
_____ .... 2 .... 0 .... 0 .... o_?P_ $20o2.,.__A_2 ___ 9_3 __ 

I F01 A I 5A23 p 
31 1615 0 

After Push 

Fig. 5-3 Byte Operations on Stack 

called, and how the stack is invoked automatically by the M68000 to ensure 
that the return address is saved. 

BSR - BRANCH SUBROUTINE 

Subroutines are called with a BSR instruction. The format for BSR is the same 
as Bee: 

BSR <label> Branch to SubRoutine at 
<label> 



M68000 Instruction Set - Advanced Topics 143 

At the line <label> we would find our subroutine, coded just like any other 
piece of program, but always concluded with an RTS, Re Tum from Subroutine. 
Here, step by step, is the sequence of operations BSR triggers: 

1. Calculates the address of the next instruction and pushes this address on the 
user stack. 

2. Branches (unconditionally like BRA) to the instruction labeled <label> by 
setting the PC to the <label> address. 

3. The subroutine instructions at <label> are then obeyed sequentially until 
the RTS is encountered. 

4. The PC is then loaded by pulling from the stack the address we saved there 
in step 1 above. In effect the processor internally performs a MOVE.L 
(A7)+,PC. 

5. The processor takes its next instruction from the address in PC, so control 
passes back to the instruction following the BSR instruction. 

The BSR, <label>, and RTS trio have combined to perform the neat trick 
we referred to, namely calling a subroutine. The chosen label should be, as 
usual, mnemonic, since we will usually talk about calling the "label" subroutine. 
A subroutine saves programming effort and reduces the length of a program, 
thereby conserving memory. 

Neither BSR nor RTS affect the CCR condition flags directly, although the 
instructions in the subroutine itself will almost certainly change and make use 
of the CCR. Let's see BSR in action: 

* Program 5-2 Calling a Subroutine Called ACCUM 

* Program to add some numbers that are in memory 
* Dl will be used as an accumulator. 
* Subroutine ACCUM adds DO to Dl. 

START CLR.L Dl Clear accumulator Dl 
* * * Do other things 

MAIN MOVE.L (Al),DO Set DO from memory address Al 
BSR ACCUM Call ACCUM subroutine 
MOVE.L (A2),DO Set DO from address A2 
BSR ACCUM Call ACCUM again 
<print grand total in Dl> 
<conclude> 

* * * * Subroutine section starts here. 

ACCUM ADD.L 
RTS 

DO,Dl This is a one line subroutine 
called ACCUM 



144 68000, 68010, and 68020 Primer 

* ACCUM input = longword DO which is unchanged 
output = longword Dl = Dl + DO 

<possibly more subroutines follow here> 

* * * 

Usually, of course, subroutines are longer and more useful than this ex
ample. However, it does illustrate the basic principles of subroutine calling. 

Subroutines - Input and Output Parameters 

You usually set up particular values using MOVE just prior to the BSR. Each 
subroutine will have its own set of required inputs or parameters. ACCUM has 
just one input, the value of DO, and one output, the total in 01. To maximize 
the usefulness of subroutines, these parameters and how they are affected should 
be well commented and documented. Subroutines are often designed as general 
purpose programs or utilities. Once they are thoroughly tested they can be 
added to a library of subroutines accessible to everyone using the system. Many 
assemblers allow such library files to be scanned during assembly; any subrou
tines referenced in the main program can be automatically copied into your 
program. The motivation is "never reinvent a perfectly good wheel." Once you 
understand the function of a particular subroutine you learn to treat it almost 
like a single instruction without being bogged down by the inner details. 

Subroutine Side Effects on Registers 

A well-designed subroutine for general use must guard against unwanted side 
effects. A complex subroutine may make use of many registers and, unless steps 
are taken, their orignal values could be lost to the calling program. The user 
stack turns out to be an excellent place to save and restore such values, in spite 
of the fact that BSR and RTS both use the stack to save and restore the 
subroutine return address (steps 1 and 4 above). The stack LIFO philosophy 
handles any number of pushes and pulls - provided your pulls and pushes are 
sequenced correctly. Here's a program using the user stack during a subroutine: 

* Program 5-3 Subroutine CLRMEM 

* AO points to an area of memory which we want to CLeaR. 
* DO contains the number of words to be cleared. 
* Subroutine CLRMEM must not alter AO and DO. 

MAIN <do things> 
BSR CLRMEM Push return address 

then call CLRMEM 



M68000 Instruction Set - Advanced Topics 145 

<back here after subroutine> AO and DO unchanged 
* * * Stack back to original 

state 
* Subroutines start here 
CLRMEN MOVE.L DO,-(SP) 

MOVE.L AO,-(SP) 
MLOOP CLR.W (AO)+ 

SUBQ.L #1,DO 
BNE MLOOP 
MOVE.L 
MOVE.L 
RTS 

(SP)+,AO 
(SP)+,DO 

Push DO to save 
Push AO to save 
Clear (AO), inc AO by 2 
Decrement counter 
If counter O exit MLOOP 
Pull AO to restore 
Pull DO to restore 
Pull return address 

<more subroutines here possibly> 

* * * 

The pulls from the stack (implicit and explicit) reverse the sequence of the 
pushes, leaving the stack in the state it was in before the BSR. 

Subroutine Side Effects on the CCR 

It is almost certain that the flags in the CCR will change during a subroutine 
and this could be a nuisance to the mainstream program. Quite often you will 
test a result and call one of three different subroutines depending on a result of 
zero, positive, or negative. When you return you may want to test again using 
the original CCR flags. 

CONTEXT 

Also, as you've seen, you may want to call the same subroutine under many 
different conditions, and a subroutine that changes the context of the main 
calling program reduces our flexibility and leads to errors that can prove difficult 
to diagnose. 

Many other user and systems events can temporarily interrupt your program 
to do other things - so the general concept of ''preserving the context'' is 
fundamental to all modem computer operations. 

Context simply means a list of all. those registers and processor states 
(including the current PC) which we need to save somewhere so that when the 
time comes to resume our program (after a subroutine or interrupt or whatever) 
the entire status quo of our job can be restored. A very high proportion of all 
software bugs can be traced to the side effects of poor context handling. The 
M68000 instruction set, therefore, has many instructions (MOVEM is one good 
example) to simplify this problem. Depending on the situation, the saving of the 



146 68000, 68010, and 68020 Primer 

context may either be the programmer's responsibility or it may be a task 
assigned to the operating system or the hardware. 

Later we will see how the M68000 maintains an independent supervisor 
stack using the SSP (Supervisor Stack Pointer) accessible only in supervisor 
mode. The latter is a privileged mode intended to protect vital systems contexts 
held in the supervisor stack. 

SAVING THE CCR 

For user-supplied subroutines you can use the user stack to save the CCR flags 
rather as you did to preserve normal register values. Pushing the CCR on the 
user stack, however, differs between the MC68000 and the MC68010/68020 
(for reasons we'll discuss in Chapter 7). The MC68000 has to use: 

MOVE.W SR,-(SP) Push SR on stack 

So, although you need to save only the CCR, you are forced to save both bytes 
of the Status Register (the upper system byte as well as the CCR). 

The MC68010/20 allows the simpler: 

MOVE.W CCR,-(SP) Push CCR on stack 

which just saves the CCR byte on the stack (the other byte moved is all zeroes). 
You can restore the CCR on all models with 

MOVE.W (SP)+,CCR Pull CCR from stack 

In all Chapter 5 examples we'll use the MC68000 version (MOVE from SR). 

RTR - RETURN AND RESTORE CCR 

A simpler way to restore the CCR is to use a special version of RTS called RTR 
(Re Tum from subroutine and Restore condition codes). RTR at the end of your 
subroutine will first pull the CCR from the stack, then perform an RTS. Using 
RTR when you have not earlier pushed the CCR is a dreadful mistake - your 
stack will be "out of synch" with weird results all round. 

NESTING SUBROUTINES 

Once you grasp the basic LIFO mechanism of the user stack, you will readily 
see that subroutines can themselves call subsubroutines and so on - a concept 



M68000 Instruction Set - Advanced Topics 147 

known as nesting. You just trust the stack to pull what was last pushed! The 
maximum depth of nesting allowed will depend on your particular OS and 
memory disposition - many systems do not allocate a fixed amount of memory 
for the stack; rather, the stack is allowed to "grow down" in free user memory 
until it "hits" occupied territory. 

It is now time to introduce some more addressing modes. Excluding special 
modes on the MC68020 only, we have four more addressing modes to reveal 
in this chapter. They are all variants of the address register indirect. 

ADDRESS REGISTER INDIRECT WITH OFFSET 

This mode is written d16(An) where d16 represents the 16-bit offset (sometimes 
called the displacement) in bytes, which is added to the pointer value of An 
before the operand is fetched from memory. Unlike the-(An) and (An) + modes, 
however, the value of An is unchanged by dl6(An). 

The offset can be any signed 16-bit number in the range -32, 768 through 
+ 32, 767 and we use the notation dl6 to remind you of this limitation. 

So dl6(An) allows you to access memory within 32K bytes (above or 
below) of the pointer address, An. Its main use is to operate on data in a table 
where An points to the starting address (or base) of the table. 

It is helpful to express the d16(An) mode in terms of an <ea> (effective 
address) calculation, namely: <ea> = d16 + An. This formula tells you how 
the processor determines the actual operand address. The d16 offset is, in fact, 
stored as one extension word, just as you saw earlier in the case of immediate 
data. The <ea> calculation time can range from 0 in the simple direct modes 
to as many as 17 clock cycles for a complex indirect mode. Let's look at the 
dl6(An) mode in action. 

Offset Mode. - Applications 

In Figure 5-4, A2 = $6000 points to a table of data consisting of 20 longwords, 
($6000), ($6004), ($6008), ($600C), etc. To load 03 from the 4th table entry, 
we need 

MOVE.L 12(A2),D3 

since the source effective address = A2 + (3 longwords) = $3000 + 12 bytes 
= $300C. After the move A2 still = $3000. If we wanted to reverse the second 
and third entries in our table, one way would be as follows: 

* Program 5-4 Swap Table Entries 



148 68000, 68010, and 68020 Primer 

CCR. 
word N+1 

W sign bit 

' T 
0 0 0 0 6 0 0 0 

31 2423 1615 87 0 

I 219 Is IE jo Is Is IF ~ 03 
+

12 

I I I I I I I I - PC 
31 2423 1615 8 7 0 

Before 
MOVE.L 12(A2), 03 

4 3 2 1 0 

CCR X NZ V C 
- 1 0 0 no ---~.........,,_.._-..-

change ~ 
neg non- cleared 

wordN 

word N+1 
zero 

I 0 I 0 I oT~r:ro lo lo ~ A2 
. 

31 2423 1615 87 0 $6000 

I Aj 2j4l9 la lo l113 ~ 03 

I I I I I I I I -PC 
31 2423 1615 8 7 0 

A!!§_[ 

MOVE.L 12(A2), D3 

Fig. 5-4 MOVE.L 12(A2),D3 



M68000 Instruction Set - Advanced Topics 149 

* Illustrate use of d16(An) mode in source and destination. 
* A2 points to base of table of longword entries. 
* Switch the 2nd and 3rd entries. 

MOVE.L 4(A2),DO 
MOVE.L 8(A2),4(A2) 
MOVE.L D0,8(A2) 

Save 2nd table entry 
Move 3rd to 2nd 
Move 2nd to 3rd 

Three points to note when using this mode are: 

1. For Land W operations the sum (d16 + An) must be even. For B operations 
the sum can be odd or even. 

2. -l(An) should not be confused with -(An). For example, if A2 = $2001, 
MOVE.B -l(A2),D3 and MOVE.B -(A2),D3 both move byte ($2000) to 
lower byte of 03, but the -l(A2) move leaves A2 still = $2001. The 
pre-decrement-(A2) reduces A2 to $2000. 

3. This mode often appears as TAG(An), for example, in real-life programs, . 
where TAG is a symbolic (preferably mnemonic) offset which, as you saw 
with labels, gets equated to a numerical offset during assembly. 

There are many situations where we need the flexibility of a variable offset 
to supplement the fixed offset of the dl6(An) mode. Our next addressing mode 
supplies the solution. 

ADDRESS REGISTER INDIRECT WITH OFFSET 
AND INDEX 

This extension of the dl6(An) mode allows an extra variable offset, known as 
an index, to be added from a register. For brevity we will call it the index mode. 
It is written as d8(An,Xi.Z) where d8 is a fixed offset in bytes (8-bit signed 
number) giving a range of-128 through + 127; An holds the base address as 
in the d16(An) mode; Xi is any register (DO - 07, AO - A7), known here as 
the index register, and Z is a size code, L or W. 

The effective address, <ea> is built up from three separate elements: 
<ea> = An + d8 + Xi.Z. In other words, the processor adds the offset d8 
bytes, then gets the number from Xi.Z and adds that number of bytes as an 
additional offset to An. The contribution to this total from the index register, Xi, 
is either the full 32 bits for Xi.L, or just the lower 16 bits for Xi. W. The speed 
of the <ea> calculation is the same for L and W indexing. 

As with the d16(An) mode, the actual value of An is unchanged. Also, we 
must watch that the <ea> we obtain is even for L and W operations. 



150 68000, 68010, and 68020 Primer 

We often abbreviate the index mode to d(An,Xi). If the fixed d offset is 0, 
this mode gives us a simple indexing mode as found in many 8- and 16-bit 
processors. 

INDEX MODE- APPLICATIONS 

The main application of the d(An,Xi) mode is accessing complex multidimen
sional arrays and tables of data in memory. With two offsets, for example, you 
can set An pointing to the base of a spreadsheet. If you set the offset d to the 
line number and move the column number to the index register Xi, d(An,Xi) is 
the effective address of the data-cell in the target box, the intersection of row d 
and column Xi. 

Although the fixed offset d8 offers only -128 to + 127 displacements, the 
addition of an index register is ample compensation. Xi. L can give you a range 
of 2 gigabytes on either side of the An pointer. 

Using the data in Program 5-4, let's see the index mode in action, first with 
d8 = 0 to show simple indexing. 

* Program 5-5 Swap Table Entries Using Index Mode 

* Initial data as for Program 5-4 
* Illustrate use of d8(An,Xi.Z) mode in source and destination. 
* A2 points to base of table of longword entries. 
* Switch the 2nd and 3rd entries. 

MOVEQ.L 
MOVE.L 
MOVEA .W 
MOVE.L 
MOVE.L 

#4 ,Dl 
0 (A2, 01. W) , DO 
#8,AO 
O(A2,AO.W) ,O(A2, Dl .W) 
DO ,O(A2 , AO.W) 

* Note that A2 is unchanged. 

Set Index Reg Dl = 4 
Save 2nd table entry 
Set index reg AO = 8 
Move 3rd to 2nd 
Move 2nd to 3rd 

In Program 5-5 we have used both Dl and AO as index registers just to 
remind you that any register can be used to index. The data registers are, in 
fact, more popular than address registers for indexing, simply because you can 
do more arithmetic on them. When you are scanning or searching a table using 
the d(An,Xi) mode, you often want to add, subtract, multiply, and even divide 
the offset sitting in Xi. 

In Program 5-5, the table consisted of longwords, so we had to remember 
to adjust the index offset by multiples of 4 bytes. For tables of words the offsets 



M68000 Instruction Set - Advanced Topics 151 

would have to be multiples of 2 bytes. Naturally you can ask the M68000 to 
do these calculations for you. To obtain multiples, let us go forth and multiply! 

MULTIPLICATION 

There are two basic multiply instructions which use the same format: 

MULS 
MULU 

<source>, On 
<source>,Dn 

MULtiply Signed 
MULtiply Unsigned 

They both multiply two 16-bit Words to give a 32-bit result. No data size code 
is needed since W is always implied. The source can be any addressing mode 
except An (Address Register Direct). What happens is this: 

(word from source) times (lower word of destination On) = (32-bit result 
. in On) 

Just like ADD and SUB, the source is unchanged but the destination factor is 
overwritten by the answer. Unlike ADD and SUB, however, multiply needs 
separate versions: MULS for signed and MULU for unsigned operations. With 
ADD and SUB, you will recall, the V (oVerflow) and C (Carry) flags were set 
to warn you of erroneous signed or unsigned results. Multiply is different. 

The inviolate laws of binary arithmetic tell us that whether you multiply 2 
signed or 2 unsigned 16-bit numbers, the answer always fits in 32 bits without 
overflow or carry! Multiplying a signed number by an unsigned number is not 
a fruitful exercise and the M68000 assumes you know in advance the type of 

·numbers you intend to multiply. You must therefore choose between MULS and 
MULU to get a sensible answer. Both MULS and MULU set the CCR thus: 

Flag 
MULS/MULU 

x N 

* 
z 
* 

v 
0 

c 
0 

(To remind you of our notation: X unchanged; N set to sign-bit 31; Z set to 1 
if result O; V and C flags always cleared to 0.) MULS, of course, will correctly 
handle the sign of the result, for example, (-6) x (-2) = + 12 and (-6) x (+2) 
= -12 so the N flag literally means "positive or negative." MULU is multiplying 
without regard to sign, so the N flag is simply telling you if there is a 0 or 1 in 
the most significant bit (position 31) of On after the multiplication. 

We illustrate MULS with a simple (but essential) payroll example. 

* Program 5-6 Payroll: Hours x Rate = Pay 



152 68000, 68010, and 68020 Primer 

* As in Program 4-1 D2 word contains hours worked in March = 138. 
* D4 word holds the hourly rate in cents = 699. 
* Calculate March gross salary and if positive save it in memory 
* at longword absolute address $A200. Preserve the values in D2 
* and D4. 

MOVE.W D4, - (SP) Save D4 word on stack 
MULS D2,D4 D4 now = D2 x D4 

= Hrs x Rate = Gross 
(D2 unchanged,D4 changed) 

BMI DEBIT If result negative branch 
to label DEBIT 
(Branch if Minus) 

BEQ NOPAY If result zero branch to 
label NOPAY 

MOVE.L D4,$A200 Save Gross in memory 
MOVE.W (SP)+,D4 Restore D4 from stack 
<carry on--normal payroll> 

* * * 
BRA OVER Skip to end 

DEBIT MOVE.W (SP)+, D4 Restore D4 from stack 
<check negative gross> (see note 2 below) 

* * * 
BRA OVER Skip to end 

NOPAY MOVE.W (SP)+,D4 Restore D4 from stack 
<check zero gross> (see note 2 below) 

* * * 
OVER <conclude program> 

* Gross pay for March = 96462 cents is stored at $A200. 
* D2 unchanged and D4 restored. 

1. We used MULS rather than MULU because in most financial applications 
we would be allowing for negative amounts (refunds, adjustments, etc). 
MULS permits us to use BMI (Branch Minus) meaningfully, since BMI tests 
the N flag. 

2. We must remember to keep the stack "tidy." Since we pushed 04, we must 
pull it sooner or later. We could not pull it before our tests BMI and BEQ, 
since MOVE alters the N and Z flags. 

3. We have a typical use of BRA (Unconditional Branch) to bypass irrelevant 
sections of a program. Without the first BRA OVER, for example, the main 
program would "run on" into the DEBIT section - a common source of 
program misfortune. 



M68000 Instruction Set - Advanced Topics 153 

DIVISION 

Just like multiply, there are two divide instructions: 

DIVS 
DIVU 

<source>,Dn 
<source>,Dn 

DIVide Signed 
DIVide Unsigned 

Both divide the 32-bit destination Dn (dividend) by the 16-bit word source 
(divisor), to give a 16-bit quotient in the lower Dn word and a 16-bit remainder 
in the upper Dn word. The source can be any addressing mode except An, so 
we can divide a data register by another data register or by a word in memory. 
As we have found in other arithmetic operations, the source (divisor) is un
changed but the destination (dividend) is "lost" - overwritten by the results. 
Divide, then, performs as follows: 

(Destination Dn = 32-bit dividend) divided by (16-bit word source 
divisor) 

gives (upper Dn word = remainder),(lower Dn word 
quick example: 

quotient). Here is a 

* Program 5-7 Payroll: Average Daily Earnings Using DIVS 
* Using the data in Program 5-6: D4 holds March gross pay = 
* 96462 cents. Calculate the average daily earnings and store in 
* 2nd word of a table with base pointer A2. Save the remainder in 
* the 6th word of this table. Preserve value in D4. 

MOVE.L D4,D7 Save D4 in D7 
DIVS #31,D4 Divide D4 by 31 (immediate) 

Lower D4 = quotient 
Upper D4 = remainder 

MOVE.W D4,2(A2) Save quotient in table 
SWAP D4 Reverse words in D4 

Remainder now lower word of D4 
Quotient now upper word of D4 

MOVE.W D4, 10 (A2) Save remainder in table 
MOVE.L D7,D4 Restore D4 from D7 

* 2(A2) now holds 3111 and 10(A2) holds 21. 
* 96462/31 = 3111 and 21 over. 

SWAP Dn is a simple but useful instruction which reverses the upper and 
lower half words of a data register only. Notice that in the Program 5-7, you 
cannot immediately use MOVE to save the remainder, since MOVE. W moves 
the lower word and MOVE.L moves the whole word. Later, you'll see more 



154 68000, 68010, and 68020 Primer 

exotic ways of manipulating portions of a register, using shifts and rotates - but 
here you see the motivation for such operations: the need to "isolate" and 
access part of a register. 

We used DIVS for the same reason we used MULS in Program 5-6. DIVS 
gives the correct signed answer, for example, (-24)/(-2) = + 12 and (24)/(-2) 
= -12, and so on. The N and Z flags in the CCR reflect the state of the quotient, 
because the remainder takes the same sign as the dividend (unless the remainder 
is 0). For example, 

(25)/(-2) = (-12) with remainder + 1 

(-25)/( +2) = (-12) with remainder-1 

(-25)/( +25) = (-1) with remainder +O 

Unlike MULS, though, DIVS and DIVU can run into two snags. The first 
snag is "Divide by O". If your program doesn't test and take avoiding action, 
then the M68000 will TRAP this error (to avoid the horrors of an infinitely long 
calculation). TRAPs belong to a class of exceptions (some of which you can 
control, others of which are controlled by the system) that put the M68000 into 
the supervisor mode (which we mentioned in Chapter 3). In this privileged 
mode the operating system can take appropriate action. 

Briefly, TRAPs, such as the "TRAP on zero divide'', guide the processor 
to a table in system memory (addresses $000 - $3FF) called the exception 
vector table, where it finds the address of a routine for handling the exception. 
The M68000 therefore has tremendous flexibility in coping with conditions that 
on less thoughtful chips would result in crashes, chaos, or both. 

The second snag is this: DIVS and DIVU can give rise to overflow, when 
the dividend is so large in relation to the divisor that the quotient exceeds the 
16-bit capacity (signed = -32, 767 to + 32, 768 or unsigned 65,536). To protect 
you, then, DIVS and DIVU both set the V flag in the CCR if overflow occurs. 

If your numbers are likely to stray into these ranges you can use BVS 
(Branch if oVerflow Set) immediately after the division, just as we did earlier to 
test an ADD. 

Alternatively, there is a special TRAP instruction called TRAPV (TRAP on 
oVerflow) which, like the trap on zero divide (except that TRAPV is voluntary), 
takes the system into the exception vector table to select the chosen remedy. 

DIVS and DIVU change the CCR thus: 

Flag x N z 

DIVS/DIVU * * 
which is the same as MULS/MULU except for the V flag. 

v 

* 

c 
Q. 



M68000 Instruction Set - Advanced Topics 155 

In Program 5-7 we used immediate mode source, #31 , as our divisor
the number of days in March. A more practical program would allow for other 
months in the year! For example, we could set up a small table holding the days 
in each month. Such a table would be useful in many financial applications -
calculating elapsed days between dates for interest charges, and so on. The 
index mode is tailor-made for accessing such tables. Our next example also 
shows how you can do arithmetic on the index register to simplify the location 
of a table entry. 

next. 

* Program 5-8 Average Daily Earnings for Any Month 

* Month number M (Jan=l , Feb=2 , etc) is in lower word DO. 
* D4 holds gross pay in cents for that month . 
* AO points to base of table MDAYS in memory holding 12 words. 
* (AO) = 31 ; 2(AO) = 28; 4(A0) = 31; 6(AO) = 30 
* 8(A0) = 31 ; 10(AO) = 30; ......... . . ; 12(AO) = 31 
* Hence number of days in month Mis in word {2 x <M-1>} (AO). 
* We ignore leap years for the moment. 
* Calculate average daily earnings to 1 decimal place and put 
* result in word D6 . 
* Save register values of DO ,D4 . 
* We use <> as brackets to avoid confusion with indirect address 
* brackets () . 

MOVEM.L 
SUBQ.W 
MULU 
MULS 
DIVS 
MOVE .W 

MOVEM.L 

DO /D4 , - (SP) 
#1 , DO 
#2 , DO 
#100,D4 
O(AO, DO .W) ,D4 
D4 , D6 

(SP)+, DO /D4 

Stack 'em 
Word DO = M - 1 
DO = 2 x <M - 1> 
Multiply gross by 100 
Divide D4 by days in month M 
Ignore upper word D4 = remainder 
lower word D6 = average x 100 
Unstack 'em 

* For the familiar month of March, M = 3, so DO index register 
* contains 2 x <3 -1> = 4. Source oper and divisor for DIVS is 
* therefore word at address O +AO+ 4 = 4(A0), that is , 3rd 
* entry in MDAYS table which = 31. D6 now contains our average x 
* 100. We can round this off to 1 place later . 

An alternative method of multiplication is to use shifts, which we discuss 



156 68000, 68010, and 68020 Primer 

lo 1 1 ol =a 
• 

x 2? ASL by 1 gives I 1 1 O 0 I = 12 multiply by 2 OK 

• x 4? ASL by 2 gives I 1 O 0 O I = 8 wrong - overflow error 

11 O 1 ij = -6 (2's complement) 

• + 2? LSR by 1 gives I O 1 O 1 I = 5 wrong (no warning) 

• + 2? ASA by 1 gives I 1 1 0 1 I = -3 divides by 2 OK 

• x 2? ASL by 2 gives I O 1 O O I = +4 wrong - overflow error 
(-12 is beyond range of 4-bit signed numbers) 

Fig. 5-5 Shifting to Multiply and Divide 

ASL - ARITHMETIC SHIFT LEFT 

We used MULU in the first multiplication because we are dealing with small 
known positive integers (and it is slightly faster than MULS). In fact, there is a 
much quicker W'iJJ:J to multiply by 2, 4, 8, or any small power of 2. We can use 

ASL.z #<d3>,Dn 

which does an arithmetic shift left on Dn. The number of places shifted is 
determined by the 3-bit number in <d3>, giving a shift count in the range of 
1 to 8. The z determines which portion of Dn is shifted, L, W, or B. Agure 5-5 
shows how ASL can be used to multiply by 2. 

Each shift left of the bit pattern in the L, W, or B of Dn is equivalent to 
doubling the value of that part of Dn. So, an ASL of 1 can double just the lower 
byte or word of Dn without affecting the rest of Dn. Zeroes are "pushed" into 
Dn from the right as the shift takes place, and bits get "pushed" out at the other 
end. 



M68000 Instruction Set - Advanced Topics 15 7 

In Program 5-8 we can replace: 

· MULU 

with any of these: 

ASL.L 
ASL.W 
ASL.B 

#2,DO 

#1,DO 
#1,DO 
#1,DO 

Longword DO = {word DO x 2} 

Longword DO = {longword DO x 2} 
Word DO = {word DO x 2} 
Byte DO = {byte DO x 2} 

All the ASLs above work the same as MULU in our example since the 
maximum value in DO is 22, well within the signed capacity of DO's lower byte. 
For larger numbers, of course, you would need to decide the safest size code to 
use. Unlike MULS/MULU, ASL can cause overflow - and the CCR should be 
tested if there is any danger of exceeding the L, W, or B range of On. 

ASL is about three to five times faster than the equivalent MULS or MULU. 
If you need to shift more than 8 positions or shift a variable number of 

positions, you can use the format 

ASL.z Dm,Dn Shift Dn Left, Om times (max 63) 

where the lower 6 bits of the source data register Om contains the shift count. 
Finally, you can ASL a memory operand, but the shift count is restricted 

to 1: 

ASL.z <memory operand> Single left shift memory operand. 

In Chapter 6 we will expand on the whole subject of shifts and rotates, so 
for now we briefly mention an obvious variant on ASL - ASR, which lets you 
shift Right. 

ASR-ARITHMETIC SHIFT RIGHT 

As shown in Figure 5-5, shifting a register to the right is the same as dividing 
by a power of 2. To preserve the sign of the number you are shifting, ASR 
"pushes" the sign-bit into the left-hand side as the register is shifted to the right. 

ASR formats are the same as ASL formats: 

ASR.z #<d3>,Dn Shift Dn Right, <d3> times 
ASR.z Dm,Dn Shift Dn Right, Dn times (max 63) 
ASR.z <memory operand> Single right shift memory operand 



158 68000, 68010, and 68020 Primer 

INDEX MODE SUMMARY 

The index mode allows us to set pointers to structured data in memory. Positive 
or negative offsets to a base address held in An can be calculated in many ways 
using arithmetical operations on any register, designated as the index register, 
Xi, in the d(An,Xi) mode. 

We now conclude our examination of the basic M68000 addressing modes 
by looking at the two relative modes. 

RELATIVE MODES - MOTIVATION 

In previous examples we have often made use of data located at absolute 
memory addresses, for example, "hours YTD is stored at address $6000 or 
HRSYTD' '. In real-world applications programming we seldom know in advance 
the absolute address of anything - programs or data. In fact, we often take 
special pains to ensure that our programs will work wherever they are loaded 
in memory. 

Such programs are said to be relocatable or position independent. Indeed, 
some operating systems (such as the Alpha Micro AMOS running on its MC68000-
based AMlOOL) require that all programs be relocatable. Other operating sys
tems may place restrictions or require special loading software for nonrelocatable 
code. 

In a relocatable program most memory references must be made relative 
to addresses within the program itself, which are not known in advance. Obvious 
exceptions to this rule are memory references to fixed locations such as memory
mapped 110 locations and systems areas like the exception vector tables. 

When a program is loaded in memory and running, of course, the instruc
tions must have enough information to enable the processor to calculate the 
effective address of each operand, so it can locate, fetch, and update correctly. 

THE ROLE OF THE PROGRAM COUNTER 

The key to all this is PC, the Program Counter, which we have already seen as 
a rather special address register holding the absolute address of the current 
instruction. Wherever our program ends up in memory, we can regard the 
succession of addresses in the PC rather like the arrows you see on public signs 
that say, "You are Here!" 

So, if we have a way of referring to memory operands, not in absolute 
address terms, but relatively as, say, "420 bytes beyond (or behind) the current 



M68000 Instruction Set - Advanced Topics 159 

PC, grab the YTD hours for March," we can boldly relocate such instructions 
without restriction. 

The two relative addressing modes, PC Offset and PC Index, give us this 
ability. They make use of PC in the same way as the dl6(An) Offset and 
d8(An,Xi.Z) index modes make use of An. 

RELATIVE ADDRESSING-PROGRAM 
COUNTER ADDRESSING WITH OFFSET 

This mode is written symbolically as d16(PC), which looks just like the dl6(An) 
mode with PC playing the role of An. You'll recall that dl6 is a signed 16-bit 
offset or displacement, held in an extension word, and offering a range of plus/ 
minus 32K bytes. 

The effective address is calculated by adding d16 to the address held in 
PC: <ea> = dl6 + PC, allowing access to source memory addresses within 
32K bytes on either side of the current PC value. The offset is stored as a single 
extension word following the instruction and, strictly speaking, it is the address 
of this extension word which represents the value of PC when the <ea> is 
calculated. This is hardly surprising if you remember that the processor has to 
fetch the dl6 word from memory, so PC has advanced beyond the instruction 
itself. 

Although the d16(PC) mode, so far, looks like the dl6(An) mode, there is 
one fundamental exception. 

Relative modes can only be used as source operands. 

Any combination of op code/operand in whkh d16(PC) is an alterable desti
nation operand is illegal. The reason is simply to discourage you from modifying 
or writing over your own program. We will elaborate on this later. 

Relative mode operands cannot be altered. 

The dl6(An) mode can be used as source or destination, but the dl6(PC) 
mode is source only. · 

It may seem at this point that the d16(PC) mode could prove irksome in 
practice - how on earth can we supply values for dl6? How many bytes 
beyond or behind my current instruction is my target operand's <ea>? The 
answer is that by using label operands we can delegate the chore of displacement 
calculation to the assembler. This trick is somewhat similar to the one we saw 
in action with Bee <label> in Chapter 4. 



160 68000, 68010, and 68020 Primer 

LABELS AS RELATIVE OPERANDS 

We saw in Chapter 4 that the ORG directive forces the assembler to assign 
absolute addresses to label operands. 

There is another assembler directive called RORG (relative origin). In a 
RORG section of a program, the assembler automatically translates the label 
operand into dl6(PC) addressing mode. It then calculates the relative offset 
(plus or minus) in bytes between the current instruction and the label address 
and sets this value into the dl6 extension word. 

At this stage the assembler does not know what value the PC will hold 
when the instruction is eventually decoded during a run. All the assembler needs 
to determine is the relative offset, the "distance" in bytes between any instruction 
using a label and the label itself. 

Most assemblers are multipass, that is, they scan the source code several 
times, allowing them to establish the relative positions of all labels, and then 
compute and store the correct dl6 offsets. 

Let's look at a typical situation. We introduce the JMP (JuMP) instruction, 
which is simply a more versatile version of the unconditional branch instruction 
BRA. There is also a JSR (Jump SubRoutine) corresponding to BSR (Branch 
SubRoutine). In normal computer jargon jumping and branching are identical 
concepts. In M68000 parlance, however, there is a technical distinction. JMP 
and JSR can accept a wider class of destination operands than BRA and BSR, 
as we'll see when we cover <control effective addresses> at the end of this 

l 

section. 

RORG Following program is Relative 

* * * Do something 
JMP LOOP JUMP to LOOP 

* * * 600 bytes worth of instructions 
LOOP <do more> 

* * * 

The two words of the assembled JMP instruction would look like this: 

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
m m m r r r 

JMP 0100111011111010 

dl6 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 = +598 



M68000 Instruction Set - Advanced Topics 161 

Bits 6 through 15 encode the JMP instruction, while bits 0 through 5 encode 
the d16(PC) addressing mode. The extension word holds the calculated offset 
to the instruction labeled LOOP. This offset is positive because we are jumping 
forward. 

When this instruction is decoded during execution, the processor, following 
the rigid rules of dl6(PC) mode, fetches the extension word and calculates the 
effective address of the operand as follows: <ea> = PC + 598 bytes. The PC 
currently holds the address of the extension word, so, <ea> = address of JMP 
+ 600 bytes, which is the address of the LOOP line. The JMP instruction then 
places the calculated <ea> into the PC. The processor therefore takes its next 
instruction from the memory address of LOOP. In other words, we have jumped 
to LOOP. 

The assembler automatically calculates: offset d16 = "<label> - PC" 
bytes, while the processor calculates: <ea> = PC + offset dl6, with a real, 
known address in PC to obtain the effective address of <label>. 

Labels in an ORG section equal absolute address mode. Labels in a RORG 
section equal PC relative with offset address mode. 

You will seldom code dl6(PC) directly, but each time you use a label in a 
RORG section of a program, you now know that you are invoking PC relative 
addressing with offset. 

In addition to the use of labels with branch and jump, labels can be used 
' as source operands in many ways. RORG allows the DC (Define Constant) and 

DS (Define Storage) directives with PC relative labels. The data areas are 
relocatable because of the PC relative mode. For example: 

RORG 

TABLE DC.W $34A2,$00B7 

sets up 2 words of data at an address TABLE that can be accessed as a source 
operand no matter where the program is in memory. 

MOVE.W TABLE,Dl 

will move $34A2 to the lower word of Dl. To achieve this the assembler sets 
up a dl6 offset in an extension word to the MOVE instruction and the source 
operand is encoded as dl6(PC) mode. When the instruction is decoded and 
executed the offset + PC gives the correct effective address for the data stored 
at TABLE. 

We can now look at yet another method of accessing memory using the 
important LEA (Load Effective Address) and PEA (Push Effective Address) 
instructions. 



162 68000, 68010, and 68020 Primer 

LEA is a two-operand instruction with the following format: 

LEA <source>, An 

LEA calculates the effective address of the source operand and places this 
address in the register An. All 32 bits of An are affected, even if the chip uses 
fewer address bits. 

PEA is a one-operand instruction: PEA <source> performs the LEA cal
culation and pushes the effective address on to the user or supervisor stack 
(whichever is active). PEA is equivalent in effect to: 

LEA <source>,An 
MOVE.L An,-(SP) 

(although no intermediate An is involved). 
We can illustrate one use for LEA with labeled data areas: 

* Program 5-9 Use of LEA 

* Calculate the average (arithmetic mean) of two numbers in TABLE 

RORG 

TABLE DC.W $34A2,$00B6 Define 2-word data area at 
address TABLE 

CLR.L Dl Clear accumulator register 
LEA TABLE,A3 Load <ea> of TABLE in A3 
MOVE.W (A3)+,Dl Dl = 1st word. Inc A3 by 2 
ADD.W (A3), Dl Add 2nd word to Dl 
ASR.W #1,Dl Divide sum by 2 

* Answer is in Dl lower word = <$34A2 + $00B6>/2 = $1AAC 

Using LEA can often save time. If a complex operand needs to be accessed 
several times during a program, it pays to use LEA first to get the operand's 
<ea> into an address register. For example, suppose we have done some heavy 
calculations to establish values for An and Xi prior to using d8(An,Xi) mode to 
access a complex array. Each time we use d8(An,Xi) as an operand we force 
the processor to calculate the <ea> (taking from 8 to 14 clock cycles). But if 
we use 

LEA d8(An,Xi),Am Load Am with <ea> = d8+An+Xi 

we have Am as a pointer for all subsequent processing. 



M68000 Instruction Set - Advanced Topics 163 

Alternatively, if we were about to call a subroutine which needed our 
d8(An,Xi) operand, we could 

PEA d8 (An, Xi) Push d8+An+Xi on stack 

before the BSR or JSR. The stack would then hold 

at address SP 
at address SP+4 

Return address for subroutine (2 words) 
<ea> from the PEA (2 w<;>rds) 

During the subroutine we can "recover" this <ea> using 

MOVEA.L 4(SP),Am Load Am from SP+4 

Conceptually, LEA is the converse of the () indirection brackets. 

An points to data (An). 

The <ea> of (An) is An. 

LEA (An),Am sets Am equal to An. 

Next we look briefly at the remaining relative mode, PC relative with offset 
and index. 

RELATIVE ADDRESSING-PROGRAM 
COUNTER WITH OFFSET AND INDEX 

We will call this PC index mode for short. This mode is written as d8(PC,Xi.Z) 
from which you can correctly deduce that it follows the format and rules for the 
normal index d8(An,Xi.Z) mode, replacing An with PC. The operand effective 
address is calculated as 

<ea>= d8 +PC+ Xi.Z 

where d8 is a signed 8-bit offset (-128to+127 bytes), and Xi.Z is any register 
selected as the index register. The data size code Z can be L or W, and this 
dictates whether 32 or 16 bits (sign-extended to 32) of Xi (signed) are used as 
the additional indexing offset to PC. The d8 offset and codes specifying the 
register Xi and size Z are all located in a single extension word. 

To simplify our formats we sometimes write this mode as d(PC,Xi). We 
repeat the warning we gave for PC offset d16(PC): 

Relative modes can only be used as source operands. 



164 68000, 68010, and 68020 Primer 

Any combination of op code/operand in which d(PC,Xi) is an alterable desti
nation operand is illegal. 

From our discussion of relocatable code, it will be clear that PC index mode 
allows us to set up and access labeled tables and arrays. Let's revamp Program 
5-9 to show a very simple use of PC index with our TABLE data. 

* Program 5-10 Version of 5-9 Using PC Index Mode 

* Calculate the average (arithmetic mean) of two numbers in TABLE 

RORG 

CLR.L Dl 
MOVEQ. L #0, DO 
MOVE. W TABLE(PC,DO. W) ,Dl 
ADDQ. W #2, DO 
ADD. W TABLE (PC, DO. W), D1 
ASR. W #1,Dl 
<conclude program> 

Clear accumulator register 
Set index reg DO to o 
D1 = 1st word in TABLE 
.Inc index DO by 2 bytes 
Add 2nd word to Dl 
Divide sum by 2 

* Define a data area at relative address TABLE 

TABLE DC.W $34A2,$00B6,$56F9,$11CC 
<continue table ad lib> 

* Answer is in Dl lower word = <$34A2 + $0086>/2 = $1AAC 

As with our earlier RORG/label example~. the assembler establishes the 
offset value from PC to TABLE. This offset, though, is limited to a d8 signed 
value, so Program 5-9 works only if TABLE starts within -128 or + 127 bytes 
of our MOVE and ADD instructions. The TABLE, though, can be as long as we 
need - so with this in mind we have repositioned the TABLE data compared 
with Program 5-9. We use DO as an index register, allowing us to pull out any 
entry in TABLE. 

Before the instruction 

ADD.W TABLE(PC,DO.W),Dl 

DO has been set to 2, so the <ea> calculation for the source operand is 

<ea> = PC + d8 + DO 
= PC + <TABLE - PC>+ 2 
= TABLE + 2 



M68000 Instruction Set - Advanced Topics 165 

What we add therefore is the second word in the TABLE. 

RELATIVE MODE - SOURCE ONLY RESTRICTION 

As we have stated twice, relative mode is illegal as a destination operand. This 
was a deliberate design decision by Motorola to reduce the risk of a program 
(especially a relocatable one) inadvertently writing over itself. For example, 

MOVE.W D0,8(PC) (illegal) 

if allowed, would replace the instruction (or a part of it) that lies 4 words (8 
bytes) ahead, with whatever is held in DO's lower word. There is a high probability 
of chaos when the instruction decoder reaches this word and blindly attempts 
to obey it. Of course, you could be extremely clever and deliberately set DO's 
bit-pattern to correspond with a valid instruction! Self-modifying programs do 
have a role to play, but the M68000 forces you to take special action, as it were, 
to make sure you know what you are doing. 

One side effect of this restriction is that great care is needed when using 
labels: 

MOVE.W DO,TABLE 
MOVE.W DO,TABLE 

Legal for ORG sections 
Illegal for RORG sections 

Although these two instructions look the same, their addressing modes differ. 
TABLE in ORG is an absolute address, and therefore valid as a destination. 
TABLE in RORG is a relative mode - dl6(PC) and invalid as a destination. 

One of the ways to beat the RORG restriction is: 

LEA TABLE, Al 
MOVE. W DO, (Al) 

<ea> of TABLE to Al 
Move DO word .to TABLE 

ADDRESSING MODES - GRAND SUMMARY 

We have now visited all 12 of the basic M68000 addressing modes (the MC68020 
has 6 more which we cover in Chapter 8). We have, of necessity, glossed over 
many of the subtleties in order to give you a general picture. 

In describing some of the instructions, we have occasionally indicated that 
the source and/or destination operands are restricted to certain addressing 
modes. These various limitations can appear quite arbitrary and confusing, even 
to experienced programmers. Much of the existing M68000 technical literature 



166 68000, 68010, and 68020 Primer 

compounds this feeling by using inconsistent and conflicting terms for classes of 
addressing modes. 

In Appendix B, part of which we reproduce below, we have attempted a 
logical classification of the addressing modes that will, hopefully, clarify when 
and why certain modes are valid. Appendix C lists all the op codes with their 
permissible source and destination modes. 

M68000 ADDRESSING MODE TYPES 

Each addressing mode can belong to some or all of the following nine overlap
ping groups. 

<ea> = Any effective address 
<rea> Register effective address 
<dea> = Data effective address 
<mea> = Memory effective address 
<cea> = Control effective address 
<aea> Alterable effective address (data or memory) 
<adea> = Alterable data effective address 
<amea> = Alterable memory effective address 
<acea> = Alterable control effective address 

An * in the table below indicates the groups for each mode (and the modes 
for each group). 

Mode ea rea dea mea cea aea adea amea acea 

On * * * * * 
An * * * 
(An) * * * * * * * * 
(An)+ * * * * * * 
-(An) * * * * * * 
d(An) * * * * * * * * 
d(An,Xi) * * * * * * * * 
Abs.W * * * * * * * * 
Abs.L * * * * * * * * 
d(PC) * * * * 
d(PC,Xi) * * * * 
lmmed * * * 
bd(An,Xi) * * * * * * * * 68020 
bd(PC,Xi) * * * * 68020 



M68000 Instruction Set - Advanced Topics 167 

Mode ea rea dea mea cea aea adea amea acea 

[bd,An],Xi,od * * * * * * * * 68020 
[bd,An,Xi],od * * * * * * * * 68020 
[bd,PC],Xi,od * * * * 68020 
[bd,PC,Xi],od * * * * 68020 

The MC68020 modes are a sneak preview of Chapter 8. 

Mode Description: 

On 
An 

(An) 

(An)+ 
-(An) 

d16(An) 

d8(An,Xi.Z) 

Abs.W 
Abs.L 

dl6(PC) 

d8(PC,Xi.Z) 

Immed 

Data register direct } . . . 
Add . t d" t Jointly called register direct ress regis er irec 

Address register indirect 

Address register indirect with post-increment 
Address register indirect with pre-decrement 

Address regi$ter indirect with offset-also written as d(An) 

Address register indirect with offset and index-also written 
as d(An,Xi) 

Absolute short address-also written as xxx. W or label 
Absolute long address-also written as xxx. L or label 

Program counter with offset (relative mode)-also written as 
d(PC) or label 

Program counter with offset and index (relative mode)-also 
written as d(PC,Xi) or label (PC,Xi) 

Immediate data operand-also written as #<data> 

MC68020 Only (see Chapter 8 for detailed explanation): 

bd(An,Xi.Z*s) Address register indirect with base displacement and 
index (similar to d(An,Xi) but bd can be dl6 or d32) 

bd(PC,Xi.Z*s) Program counter with base displacement and index 
(similar to d(PC,Xi) but bd can be dl6 or d32) 

[bd,An],Xi.Z*s,od Memory indirect post-indexed 

[bd,An,Xi.Z*s],od Memory indirect pre-indexed 

[bd,PC],Xi.Z*s,od PC memory indirect post-indexed 

[bd,PC,Xi,Z*s],od PC Memory indirect pre-indexed 



168 68000, 68010, and 68020 Primer 

Abbreviations: 

Dn Any data register, DO - D7 
An Any address register, AO - A 7 
Xi Any Dn or An used as an index register 
z Data size code (L, W, or B) 
Z Data size code (L or W) 
s Scale factor (1, 2, 4 or 8) 
PC Program Counter (20, 24, or 32 bits) 
SR Status Register 
SP Stack Pointer 
CCR Condition Code Register 
d A 2's complement or sign-extended offset (displacement); dl6~ d8, 

d3, etc. indicates the number of bits 
bd A 2's complement base displacement (16 or 32 bits) 
od A 2's complement outer displacement (16 or 32 bits) 
xxx Any valid absolute address 

MODE GROUPS - DEFINITIONS 

Let's pick out a few modes/groups to indicate why they are associated as shown. 

<dea> data effective address: Includes all modes except An. As we saw, 
An allows only restricted arithmetic; it is not classified as a true data 
operand. 

<mea> memory effective address: Excludes just the two direct register 
modes in <rea>, Dn and An, that are nonmemory operands. 

<adea> alterable data-effective addresses: All those <dea>s which can 
be valid destinations, subject to change by an instruction. Clearly im
mediate data cannot be an alterable destination, so immediate mode is 
a <dea> but not an <adea>. Similarly, we have seen that the two 
relative modes are not alterable. Finally, An is not <adea> because it is 
not <dea>. 

<amea> alterable memory effective addresses: All those <mea>s which 
can be destinations subject to change. 
<aea> alterable effective addresses: Simply a combination of <adea> 
and <amea> together with An. 

<cea> control effective address: A subset of <mea> representing just 
those memory addresses to which control can be passed, for example 
by JMP (JuMP) or JSR (Jump SubRoutine). 



M68000 Instruction Set - Advanced Topics 169 

INSTRUCTION FORMATS USING MODE GROUPS 

These mode groupings allow you to specify the permissible op code/operand 
combinations concisely and precisely. Here are some examples using instructions 
that we have already seen (see Appendix C for a complete listing): 

MOVE.z 

Source 
Destination 

MOVEA.Z 

Source 
Destination 

ADD.z 
ADD.z 

Either 

Source 
Destination 

Or 

Source 
Destination 

ADDI.z 

Source 
Destination 

ADDQ.z 

Source 
Destination 

<ea>,<adea> 

<ea> 
<adea> 

<ea>, An 

<ea> 
An 

<ea>,Dn 
Dn,<amea> 

<amea> 

All addressing modes are legal. 
Only alterable data effective address modes 
legal. Excludes An, all relative and immediate 
modes. 

All addressing modes are legal. 
Only address register direct legal. 

All modes 
Dn only. 

Dn. 
Only alterable memory effective address 
modes legal. Excludes Dn, An, all relative 
and immediate modes. 

#<data>,<adea> 

#<data> 
<adea> 

Immediate mode only. 
Only alterable data effective address modes 
legal. Excludes An, all relative and immediate 
modes. 

#<data>,<aea> 

#<data> 
<aea> 

Immediate mode only. 
Only alterable effective address modes legal. 
z = L, W only for An. Excludes all relative 
and immediate modes. 



170 68000, 68010, and 68020 Primer 

MULS <dea>,Dn 

Source 

Destination 

BRA LABEL 

Source 
Destination 

JMP <cea> 

Source 
Destination 

<<lea> 

Dn 

none 
LABEL 

None 
<cea> 

Data effective address modes legal; all modes 
except An. 
Only data register direct legal. 

Relative modes d(PC) and d(PC,Xi) only. 

Control effective address modes legal. 
Excludes Dn,An, (An) +,-(An) and 
immediate mode. 

The above schema can be extended to cover all but a handful of instruc
tions, like MOVEM, that have unusual operands. 

IMPLICIT OPERANDS 

To complete the picture we note that some instructions make use of miscella
neous systems registers without specific mention in the operand field. Examples 
we have already seen are: 

Instruction Implicit Operand(s) 

BRA Branch always PC 
JMP Jump always PC 

Bee Branch conditionally PC 
BSR Branch subroutine PC,SP 

JSR Jump subroutine PC,SP 

RTS Return from subroutine PC,SP 
RTR Return sub/restore PC,SP,CCR 

MOVE to CCR CCR 
MOVE from SR SR 



M68000 Instruction Set - Advanced Topics 171 

CONCLUSION 

There you have it, and we trust your basic understanding of the M68000 
instruction set has been enriched. In the next chapter, we will cover several 
miscellaneous groups of instructions before we proceed to discuss the MC68010 
and MC68020. 



6 

Miscellaneous M68000 
Instructions 

In this chapter we look at some miscellaneous M68000 instructions grouped by 
function. We will use the mode groups listed in Chapter 5 and Appendix B to 
simplify our discussion of legal operand addressing modes. 

NOP - NO OPERATION 

The NOP is a one-word instruction which advances the PC to the next instruc
tion. No CCR flags are changed and there are no complicated rules for the 
source and destination operands, because there are no such operands. However, 
it is definitely a useful instruction to know about if you are developing assembly 
language programs, especially if your editing/debugging facilities are primitive. 
It is often useful to reserve space in your program (each NOP = 1 word) for 
subsequent insertions; similarly .you can delete instructions by replacing them 
with NOPs. The machine-level (object) code for NOP is $4E71, and on some 
systems you can delete by slotting $4E71 directly into your object code without 
reassembling. 

BIT MANIPULATION 

Our first major group of miscellaneous instructions allows you to handle bits 
and groups of bits within registers, special ·registers, and memory. 

172 



Miscellaneous M68000 Instructions 173 

Table 6-1 Summary of Logical Instructions 

Opcode 

AND.L/W/B 
OR.L/W/B 

NOT.L/W/B 

EOR.L/W/B 

ANDl{.B} 
ORl{.B} 
EORl{.B} 

ANDl{.W} 
ORl{.W} 
EORl{.W} 

Operand 

<dea>,Dn or Dn,<amea> 

<ad ea> 

Dn, <adea> [NO MEM SRCJ 

#xxx,CCR 

#xxx,SR (PRIVILEGED) 

<dea> = data addressing modes = ALL except An 
<amea> = memory alterable addressing modes = (An), (An)+, - (An) 

d(An), d(An,Xi), Abs.W, Abs.L 
<adea> = data alterable addressing modes = <amea> + On 

{z} means data size IMPLIED 

CCR Changes 

X_ N* Z* VO CO 

X_N* Z* VO CO 

X_N* Z* VO CO 

X* N* Z* V* C* 

X* N* Z* V* C* 

CCR symbols: _means unchanged,* means changed according to CCR rules, 0 means always set 
to 0 

As we have already seen, most instructions have L, W, and B variants for 
manipulating selected parts of the operands. There are many occasions when 
we need to isolate other portions of the operand; perhaps we need to access 
the top or middle bytes of a Long word. Also, it is often useful to set up our 
own private status or condition registers - for example, in a payroll program 
you might find an "employee status byte" with the 8 bits representing: sex (1 
bit), marital status (2 bits), and so on. The operating system, too, often com
municates to the programmer by setting or clearing flags in designated locations. 

Many of the M68000 bit-handling instructions are therefore aimed at sim
plifying the task of testing, setting, and clearing bits that have a logical rather 
than an arithmetical significance. So, first let us review the basic logical operators. 

LOGICAL OPERATIONS 

The M68000 provides four basic logical instructions: NOT, AND, OR, and EOR 
which we summarize in Table 6-1. They are used in many situations, such as 
setting and changing flag bits, and for· masking or extracting data fields in 



174 68000, 68010, and 68020 Primer 

registers or memory. We shall first recap what each basic instruction does, then 
we shall show them in action. 

NOT 

Logical NOT means reversing each bit, from 0 to 1 and from 1 to 0, throughout 
the designated operand. Mathematically, this is the same as forming the l's 
complement of the operand, so "NOT 01011010" -> 10100101. NOT re
quires just one operand, which serves as source and destination. The format is: 

NOT.z <adea> 

where <adea> stands for any alterable data-effective address, that is, any 
address mode except An, d(PC), d(PC,Xi), and Immediate. As usual, the z data 
size code dictates whether 32, 16, or 8 bits of the operand are NOTted. 

For example, 

NOT.B Dl 

in Figure 6-1 reverses the lower byte of D 1 without affecting the upper 3 bytes. 
The CCR changes just like a MOVE as shown in Table 6-1. 

AND 

AND requires a source and a destination operand. The basis for a logical AND 
is the following truth table. 

Source 
Destination 
AND 

0 
0 
0 

0 
1 
0 

1 
0 
0 

1 
1 
1 ~ New destination 

In other words, AND operates bit by bit, checking the bit values in the 
source and destination, and forming a new bit in the destination according to 
the rules above. Unless both source and destination have l's in the same position, 
the AND sets a 0 in that position. There are two legal formats: 

AND.z <dea>,Dn 
AND.z Dn,<amea> 



I BEFORE 

_ NOT.B 01 

Miscellaneous M68000 Instructions 175 

I 43210 

CCR~~!!~ 

#ii• W<WdN••••I 
word N+2111••1111 

L sign-bit in W sign-bit B sign-bit 

~I 2 I 3 I B (~ I 1 l~00l~01l 01 
111111•1111 
111111••1 
111••1111 
11111•1111 
111••1111 
111••1111 
•111•1111 
•11••,, 

31 1615 0 

111111111 

I I I I I I lpc 
~ ~ 0 

I NO~~~E~1 I 4 3 2 1 0 ~·N·· 
cc~~l~ --"MJ ~ - 0 0 0 0 word N •11•111 

unchanged dN 2•11•111 non-neg non- always war + 
zero cleared •11•11~ 

~,__u_n~ch-an-ge~d..-~0~11~11~01~0 •••Ill 
A 2 3 8 5 7 7 A 01 •11•111 

31 1615 0 ····1 
111111111 11111 
l1 I l I I I I I !pc 1111, 

Fig. 6-1 NOT.B Dl 



176 68000, 68010, and 68020 Primer 

where <<lea> means any data effective address, that is, any addressing mode 
except An, and <amea> means any alterable memory effective address (that 
is, any <adea> except On). 

Note that either the source or destination must be a data register. Both 
source and destination can also be data registers. 

Figures 6-2 and 6-3 shows two examples of AND. AND changes the CCR 
just like a MOVE, as shown in Table 6-1. 

OR 

Logical OR is the inclusive OR. Apart from using the OR truth table shown 
below, OR works just like AND, using two operands and the same addressing 
modes and data sizes, and it sets the CCR exactly like AND or MOVE. 

Source 
Destination 
OR 

0 
0 
0 

0 
1 
1 

1 
0 
1 

1 
1 
1 ~ New destination 

Here you notice that OR sets a 1 if either or both source and destination bits 
are 1 - hence the term inclusive OR. 

The legal OR formats, just like AND, are: 

OR.z <dea>,Dn 
OR.z Dn,<amea> 

Figures 6-4 and 6-5 show OR in action with different operands. 

EOR 

EOR is the exclusive OR, as shown in the EOR truth table: 

Source 
Destination 
EOR 

0 
0 
0 

0 
1 
1 

1 
0 
1 

1 
1 
0 ~ New destination 

The key difference between OR and EOR is the 0 in the last column. EOR looks 
for either but not both when it sets the destination bits. Its claim to fame, as 
we'll see, is that it can be used to reverse selected bits in a field without disturbing 



Miscellaneous M68000 Instructions 177 

1000 1111 0000 0011 

9 E 2 3 8 F 0 3 

AFTER 

AND.W (A3), 05 4 3 2 1 o ~e N-~ N+1 1 

CCR X N Z V ~ ....,..~....,..~ 
- 1 0 0 0 word N 1111•111 

unchanged 1111•11 always word N+2 ~ 
cleared 1111•11~ 

I,......' 1-1-t-htng-id .::t=.....--+--+-l....-:.i'IA3 1111~ 
31 1615 0 1111•111 
~nchanged -+ 1000 

9lEl 213 8 
0010 0000 0000 

2 0 0 05 

Fig. 6-2 AND.W (A3),D5 

1111•111 
1111•111 
1111, 



178 68000, 68010, and 68020 Primer 

BEFORE 

AND.L D6,(A2)+ 
4 3 2 1 0 

CCRITT~~i1 
L sign-bit 

SOURCE W sign-bit B sign-bit 
;~ ..... ~..-~~ ~--~ 

2 B C 0 1 5 A 3 os 
31 1615 0 

DESTINATION 

..... 
0 0 0 0 1 0 0 0 A2 

•••• -N••••I 
word N+2•11•1111 

•11•111 

rt 

·-··~ 

•••• 1 
•11••,, 

Fig. 6-3 AND.L D6,(A2) + 



BEFORE 

OR.8 4(PC), 03 

Miscellaneous M68000 Instructions 179 

···~ 
43210 wordN····I 

Lsign-bit Ws:~:@mmt1 wordN+

211111 
DESTINATION J ~sign-bit •11•111 

1010 0111 •11•111 
.._A___.._B___._C____._D_.....__E__.__F__..__A__.__7_0 D 3 $200 llJ!ii 
31 1615 

$202 

I I I I I I I I I 
0 0 0 2 0 

31 23 0 

AFTER 

Fig. 6-4 OR.B 4(PC),D3 



180 68000, 68010, and 68020 Primer 

BEFORE 

OR.W 02, ·{A6) 4 3 2 1 0 

CCR~!~~~ 
L sign-bit 

W · bit B s· n bit L SOURCE sign- lg -
J. ~ r-
0010 1001 0111 1010 

1 3 9 B 2 9 7 A 
31 1615 

I I 
31 23 

02 

Iii• ..,rdN••••I wordN+2•111•1111 
•111••1 
•111••1 
•111••'1 

Fig. 6-5 OR.W 02, - (A6) 



Miscellaneous M68000 Instructions 181 

the other bits - unlike NOT, which reverses every bit Unlike AND and OR, 
EOR allows only one legal format: 

EOR.z Dn,<adea> 

You cannot have a memory address mode for EOR source. 

EOR changes the CCR exactly like AND, OR, and MOVE, as shown in 
Figure 6-6. 

LOGICAL INSTRUCTIONS - IMMEDIATE MODE 
VARIATIONS 

With the exception of NOT, the logical instructions have Immediate source mode 
formats, ANDI, ORI, and EORI that all follow the same format: 

ANDI. z 
ORI.z #<data>,<adea> 
EORI. z 

The size of #<data> should be d32, dl6, or d8 depending on the size 
code z used (L, W, or B). The instruction takes on one or two extension words 
to store the immediate data. 

The use of immediate source mode with AND is very common. To mask 
or isolate a destination operand, you create a #<mask> with l's in the "se
lected" bit positions, and O's in the "discarded" bit positions. Since #3 = 
00000011, the AND.Bin Figure 6-7 clears all but the lower 2 bits in D2. 

With EORI. W, the #<mask> is chosen so that l's select the bit positions 
for reversal, while O's leave the corresponding destination positions unchanged. 
In Figure 6-8 the bits in the lower byte of memory at (Al) are all reversed by 
the "FF" while the upper byte is unchanged. 

CHANGING THE CCR 

A special format for the immediate logical instructions allows you to change any 
or all of the flags in the CCR byte: 

ANDI.B 
ORI.B #<dB>, CCR 
EORI.B 



182 68000, 68010, and 68020 Primer 

BEFORE 
EOR.W DO, 4(A2, D5.L) 

4 3 2 1 0 

ccRrE[~'-f~ 
L sign-bit 

L SOURCE W sign-bit B sign-bit 
J. ~ ~· 

0011 0101 1111 1111 

9 8 7 6 3 5 F F 

00 00 1 000 
31 23 

AFTER 

EOR.W DO, 4(A2, 05.L) 

,,.~ 

wordN····I 
word N+21111•111 

1111•111 
1111•111 
----~ 

11;~· 
wordN····I 

word N+11111•111 unchange ~ non-neg non-zero cleared ••••• 
l'.--s .... ,a .... l-7 u-is-ta-gid-s..-1 F ... I F~.,DO 11111111•.11111 
31 1615 0 

Ir 0 I 0 I 0 i~ht;atd 0 I 0 I 0 ~1 A2 
-.-..--unchanged -~-I o Io I o Io 11 I o I o Io I os 
~ 23 0 

· ·• 11 ·11111111~ 

••••I ____ ,, 
Fig. 6-6 EOR.W D0,4(A2,D5.l) 



Miscellaneous M68000 Instructions 183 

BEFORE 

ANOl.B #3,02 
4 3 2 1 0 

L sign-bit 
ccR(J~g~~ 

LoESTINATION ~sign-bit l sign-bit 

1001 1111 

3 9 2 0 5 6 9 F 
31 1615 0 

I I I I I I I I I 
31 23 

AFTER 

ANOl.B #3,02 

unchanged· 

3 9 2 Jo} s 
31 1615 

0 

~ 0000 0011 

6 0 3 
0 

02 

,,.. 
-N••••I 

word N+2 •11•111 
•11•111 
•ll•llJJ 

$1000 

••••I •11•11,, 

,, •• wordN••••I wordN+2····1 
11111 

02 $100o•ll•lllJJ 

$1002 

Fig. 6-7 ANDl.B #3,02 



184 68000, 68010, and 68020 Primer 

BEFORE 

EORl.W #$00FF,(A1) 
4 3 2 1 0 

L sign-bit CCR~5~q.1 j_ -- - - - -
INDIRECT Wsi n-bit . . 
DESTINATION~ g ~s1gn-b1t 

0 0 0 0 8 0 0 0 A1 

31 1615 0 

I I I I I I I I I 
I I I 0 I 0 I F I 0 I 0 I 0 IPc 
31 23 0 

AFTER 

EORl.W #$00FF,(A1) 

#II~ wornN····I 
word N+2 •ll•llll'J 

Fig. 6-8 EORl.W #$00FF,(A1) 



Miscellaneous M68000 Instructions 185 

Note that the destination is simply written as CCR, and that only z = Byte 
operations are allowed. The Bis optional, but we'll use it to remind you what's 
going on. To use this format you need to recall that: 

Bit 0 = C flag 
Bit 1 = V flag 
Bit 2 = Z flag 
Bit 3 = N flag 
Bit 4 = X flag 
Bits 5-7 not used 

A common application is to clear the X flag without disturbing the other 
CCR flags. We use: 

ANDI.B #$EF,CCR 

since $EF = 11101111. This is mandatory before embarking on calculations 
involving extended arithmetic, for reasons we'll explain later in this chapter in 
the section on multi-precision mathematics. It is instructive to compare the ANDI
to-CCR method of changing the CCR with the MOVE-to-CCR method. 

MOVE.W #$EF,CCR Only a byte is moved in spite 
of the W data size 

would certainly clear the X flag, but the other flags would be set to 1. 

CHANGING THE SR (STATUS REGISTER) 

In the supervisor mode only, you can change both bytes of the SR, the upper 
system byte, and the CCR ( = lower user byte). For this we use the formats: 

ANDI.W 
ORI. W 
EORI. W 

#<d16>,SR Privileged instructions 
(Supervisor mode only) 

The system byte contains the ST (State and Trace) flags as well as the 3-bit 
interrupt mask - hence the need for privilege protection! (MOVE-to-SR is 
similarly privileged.) We cover this subject in detail later, in the section "More 
on Privilege." 



186 68000, 680 7 0, and 68020 Primer 

LOGICAL OPERATIONS - SUMMARY 

By proper choice of the source mask operand, selected bits or flags in the 
destination can be altered. The rules are: 

NOT Every bit reversed (NOTted) in destination 

AND 0 in source-Clears (to 0) selected bit in destination 
1 in source-Selected bit unchanged in destination 

OR 0 in source-Selected bit unchanged in destination 
1 in source-Sets (to 1) selected bit in destination 

EOR 0 in source-Selected bit unchanged in destination 
1 in source-Selected bit reversed (NOTted) in destination 

PRACTICAL APPLICATION 

Problem: Clear the 8th bit (bit position 7) of each byte in a string of ASCII 
characters in memory. 

Background: In some systems the 7-bit ASCII character set (see Appendix F) 
is extended by using the eighth bit (bit position 7) for nonstandard control func
tions. On other occasions the eighth bit may be used as a parity bit (see Program 
6-2 for example). This eighth bit is sometimes a nuisance and must be suppressed. 

Given: A non-empty ASCII string starting at the memory address stored in A6, 
that is to say, the first byte of the string is byte (A6). The end of the string is 
signaled by a null byte $00. 

Solution: Program 6-1 

LOOP ANDI. B #$7F , (A6 ) + 

TST.B (A6 ) 

BNE.S LOOP 
<rest of program> 

Immediate source is 
"01111111" 
A6 is post-incremented 
to "next byte" 
Is next byte null? 
No -- so loop 
Yes -- we've reached 
end of string. 



Miscellaneous M68000 Instructions 187 

Program Notes: We are using $7F as a #<mask> - it has l's in all the bit 
positions (0 through 6) we do not wish to disturb, and a 0 in the bit position we 
want to suppress. The underpinning logic is: 

1 AND x = x 
OANDx = 0 

. (x unchanged) 
(x cleared) 

Notice the power of the (A6) + addressing mode when usea in conjunction 
with the null byte string terminator. The latter is a widely used technique when 
dealing with variable length objects such as strings. The single ANDI.B line clears 
the 8th bit in the byte at address A6 and then increments A6 by 1 for the next 
byte address. TST. B simply tests this next byte (without incrementing) - and 
BNE says Branch Not Equal to zero. We therefore keep looping through the string 
until the final null byte is reached. 

SHIFT AND ROTATE INSTRUCTIONS 

There are eight shift and rotate instructions that let you move the bit patterns in 
data registers or memory to the left or right. By setting the shift count, which 
determines the number of shifts, you can effectively relocate bits within bytes, 
bytes within words, and words within longwords. Shifts also have an arithmetical 
function . 

We saw in Chapter 4 that in simple binary arithmetic, shifting a bit pattern 
once to the left is equivalent to multiplying by 2, while shifting once to the right 
is the same as dividing by 2. So one obvious use of shifting instructions is as 
an easy and fast way of multiplying and dividing by powers of 2. 

However, before we rush around shifting bit patterns left and right, we must 
know if they represent signed or unsigned numbers. Recall that in signed 2's 
complement numbers the most significant bit is a sign bit. If we lose this while 
shifting our answer may be wrong. Because of this problem the M68000 offers 
two types of shift: logical shift and arithmetic shift. These differ in the way they 
handle the sign bit. Let's look at logical shifts first, since these are the easiest to 
grasp. 

LOGICAL SHIFT INSTRUCTIONS 

A logical shift is mainly used on unsigned numbers. It moves the bit patterns in 
a data register or memory a certain number of positions to the left (LSL) or 
right (LSR) by pushing in O's from one end or the other. As you push in a 0, 
you can imagine the other bits in the register being displaced, nudging each 



188 68000, 68010, and 68020 Primer 

other along, with one poor bit falling out at the other end! Figures 6-9 and 6-
10 show two typical word logical shifts. 

The number of shifts performed, known as the shift count, is specified 
here by an immediate source operand, indicated as always with the # symbol. 
So in our examples, the contents of the lower word of 01 get 3 left shifts and 2 
right shifts. Immediate shift counts are allowed in the range # 1 to #8. This 
obviously means that the immediate shift count maximum is #8. 

To shift more than 8 times, you need the format 

LSL.z Dm,Dn 

or 

LSR.z Dm,Dn 

where the source data register Om holds the shift count. With this format you 
can shift from 1 to 64 times, left or right Only the bottom 6 bits (bits 0 through 
5) of Om are used to determine the shift count (which explains the limit of 64 
for shift counts using this format). The correct technical term for this, which will 
save us much verbiage later, is: data register source shift count = Om modulo 
64 (often abbreviated to Om mod 64). For example, if 

Om = 3 or 67 or 131, then shift count = Om mod 64 = 3 

or if 

Om = 63 or 127or191, then shift count= Om mod 64 = 63 

The rule is: keep dividing Om by 64 until the remainder is less than 64. Most 
clocks run on an (hours mod 12) basis, so the concept is everpresent. 

Using Om as the shift count allows greater flexibility than using the im
mediate data shift count - for example, the shift count can be varied dynam
ically during a program. Immediate data shifts are for small fixed shifts. If the 
shift count ever happens to be 0, by accident or design, note that no shift occurs, 
but the CCR is affected (see list below). 

The data size code z specifies how many bits of the destination register will 
be affected by the shift. In our LSL.W example, the lower 16 bits (word) of 01 
were shifted. Had we used L or B the shifting would have included all 32 bits 
or would have been confined to the lower 8 bits of 01. 

LOGICAL SHIFTS AND THE CCR 

What happens to the bits that get pushed out of the register as we shift? As 
Figures 6-9 and 6-10 showed, they move after each shift into both the C (Carry) 



Miscellaneous M68000 Instructions 189 

C operand o ~e N-~~ 

LSL~~E~~ 01 v~x LSL ~Nli"'iiif'liililll 
4 3 2 1 0 wordN+2•11•111 

Lsgn-bH CCRITI'S'-' ••••• 
DESTINATION sign-b~B sign-bit •••111 

1010 0010 00010101 O's in •11•111 
5 2 9 8 A 2 1 5 01 •11•111 

31 1615 0 ••••1111 
111111111 11111 
I I lpc ••••,, 
~ ~ 0 

AFTER 

Fig. 6-9 LSL.W #3,01 



190 68000, 68010, and 68020 Primer 

BEFORE 

LSR.W #2, 01 
0-+ o~;~nd @1 V=O ,, •• 

i&I \WO! N ••••• 

4 3 2 1 0 wordN+2•11••1 
CCR~~S~~ •••llJJ 

L sign-bit • 11 •• ~ DESTINATION sign-b~e sign-bit I 
O's in-+1010 0010 00010101 •11••1 

5 2 9 8 A 2 1 5 01 ····1 
31 1615 0 11111 
111111111 •.11.•.1111, 
I I lpc 
~ ~ 0 

~unchanged -+ 0010 1000 1000 0101 

sJ2J 9Ja 2 8 8 5 

Fig. 6-10 LSR.W #2,01 



Miscellaneous M68000 Instructions 191 

and X (eXtend) flags of the CCR (Condition Code Register). If you look at the 
C or X flag after the shift instruction is completed, it tells you the value, 0 or 1, 
of the last bit that was pushed out. The N (Negative) and Z (Zero) flags tell you 
whether the bits left in Dl after the shift represent a negative or zero value. 
Remember that if we are dealing with unsigned operands, the N flag is simply 
reporting the state of the most significant bit, rather than the sign of the operand. 
The V (oVerflow) flag is always cleared to 0. The following list sums up the 
CCR changes. 

X flag: Set to the value of the last bit shifted out of destination word. 
Unaffected if the shift count is 0, that is, if no actual shift is performed. 

N flag: Set to 1 if Dn is negative after shift, otherwise cleared to 0. 

Z flag: Set to 1 if Dn is zero after shift. 

V flag: Always cleared to 0. 

C flag: Set same as X flag, but cleared to 0 if the shift count is 0, that 
is, no actual shift performed. 

LOGICAL SHIFT FOR MEMORY OPERANDS 

Logical shifts of bit patterns in memory are restricted in two ways. Only words 
in memory can be shifted, and the shift count must be 1. 

The format for memory operand shifting is: 

LSL.W <amea> 
LSR.W <amea> 

where <amea> is any alterable memory effective address mode. 
The shift count is always 1, so it is not explicitly listed as a source operand. 
The CCR changes just like a register logical shift: 

X flag: Set to the value of the last bit shifted out of destination word. 

N flag: Set to 1 if memory word is negative after shift, that is, if bit 
position 15 is 1 - otherwise cleared to 0. 

Z flag: Set to 1 if memory word is zero after shift. 

V flag: Always cleared to 0. 

C flag: Set same as X flag (because shift count is never 0). 

In Figure 6-11 we shift the word at (A6) one to the left. Note the changes 
in the CCR. 



192 68000, 68010, and 68020 Primer 

BEFORE 

LSL.W (A6) 
4 3 2 1 0 

CCR f-t~~~C] L sign-bit j_ IN DI A ECT W sign-bit - B-si~n=~-
DESTINATION ~ ~ 

0 0 0 0 3 8 2 4 A6 

31 1615 0 

I I I I I I I I I 

AFTER 

LSL.W (A6) 

Fig. 6-11 LSL. W (A6) 

•••• 1 
1111•111 
1111•111 
1111•111 
1111•11,, 



M iscellaneous M68000 Instructions 193 

PRACTICAL APPLICATION 

Problem: Gheck the pan1y of an 8-bit ASCII character. Count the l's in the 
ASCII code and set D3 byte = 0 if ~ven parity; set D3 byte = 1 if odd parity 
(error condition). 

Background: The standard 7-bit (bits 0-6) ASCII set shown in Appendix F 
assigns characters to each of the 128 7-bit combinations $00 thru $7E As a check 
on the accuracy of transmission, an 8th parity bit (bit 7) is sometimes added to 
~ach code. The rule is: 

If the number of l's in the 7~bit code is odd, set bit 7 = 1 

If the number of l's in the 7-bit code is even, clear bit 'l = 0 

Hence all valid 8-bit ASCII codes will have an even number of l's- and we call 
this an even parity check. As each character is received we can check to see if a 
bit has been dropped (or added) during the transmission. There are more elaborate 
checking methods available, but the even-odd parity check is adequate for many 
situations. Its chief advantage is that any odd number of bit corruptions will change 
a valid ASCII code into an invalid and therefore detectable code. The worst kind 
of errors are those that leave no immediate trace. For example, the 7-bit ASCII 
code for numeral 5 is $35. If the 1 in bit 0 gets "lostp we will receive $34, which 
is the numeral 4. This type of error may not be detected until you come to balance 
your checkbook. The 8-bit even parity ASCII code would immediately pick up 
this error: 

0110101 = $35 = "5" 0110100 = $34 = "4" 
Dropping bit 0 from "5" gives 0110100 = $34 = "4"-

00110101 = $35 = "5" 10110100 = $84 = "4" 
Dropping bit 0 from "5" gives 00110100 = $34 = INVALID 

Given: An 8-bit ASCII character in lower Byte of Dl. 

Cases: 

7-bitASCU 

8-bitASCII 
(wrong parity) 

Dl byte = $A2 = 10100010 will give D3 = 1 (3 l's in Dl = odd) 

Dl byte = $47 = 01000111 will give D3 = 0 (4 l's in Dl = even) 

Solution: Program 6-2 

SHIFT 
CLR. B 
TST.B 
BEQ.S 

D3 
D1 
OVER 

set D3 byte = O 
Is Dl byte all O's? 
If yes we have finished 



194 68000, 68010, and 68020 Primer 

LSL.B #1,Dl 

BCC.S SHIFT 

EORI. B #1 , 03 

BRA.S SHIFT 
OVER TST.B D3 

BNE ERROR 
<rest of program. 

* * * 

If no we do one logfCal 
shift left of the byte in Dl 
did a 1 get pushed out? 
If no then carry is clear 
and we branch to SHIFT 
If yes we have to alter D3 ° 

Reverse bit O in D3 
ie if D3=0 set D3=1 

if D3=1 set D3=0 9 
Branch again to SHIFT 
Is 03=0? 
If no branch to ERROR 

Parity OK> 

BRA NEXT_JOB Go to other things 
ERROR <take appropriate action for parity error> 

ii< * * 
Program Notes: Some of the branch instructions have the optional .S modifier; 
which selects the short 8-bit displacement When making short branches {-128 to 
+ 127 bytes) this option saves an extension \OOrd in the assembled instruction. 

ARITHMETIC SHIFT INSTRUCTIONS 

Figure 6-12 illustrates the arithmetic shift. As you can see arithmetic shifts are 
very similar to the logical shifts of the previous section. In fact, they use the 
same source and destination formats and they shift destination bit patterns to 
left or right according to the given data size and shift count. (ASL equals 
Arithmetic Shift Left and ASR equals Arithmetic Shift Right.) The difference is 
that when signed numbers are shifted arithmetically, the processor protects you 
against changes in the sign bit that might lead to erroneous results. For example, 
if you want to divide - 4 by 2 using a right shift, the logical shift right is wrong! 
Here's why: 

In 2's complement - 4 = 11111100 (in byte format) 

Logical shift right - 4 = 01111110 = + 126 

Correct arithmetic shift right should be -2 = 11111110 

The situation gets worse if you try to divide - 4 by 4 using a logical shift right 
with a shift count of 2. 

The problem is that when LSR pushes a 0 in at the left (most significant) 
position of any negative number, it not only alters the sign bit (from 1 to 0), it 
also moves the previous sign bit down to bit position 6 - and the resulting 



Miscellaneous M68000 Instructions 195 

BEFORE vd~~~t c op=~~d 0 ...... 

ASL.L #3,01 changes X 1111••JJ 
J 1 3 2 1 t wordN I 

....-----CCRfil~~il ~N+211111 
~ign-bit W sign-bit~ ~ B sign-bit 11••111 

L.ff0101 0010 10011000 1010 0010 0001 0101 +-O's in 11111•1111 
5 2 9 8 A 2 1 5 01 ····1 

31 1615 0 11111 
111111111 ••• 111.•1, 
I j IPc 
~ ~ 0 

AFTER 

ASL.L #3,01 ~e N.r.J.!e!:lJ 
4 3 2 1 0 ~~..,..,..~-

1001 0100 1100 

9 4 c 
31 

X N V~ •••11• CCR O 1 O 1 O word N 

laJ~tbit ovefflow word N+2 •11•111 
neg non- last bit •11••• zero out 

0101 0001 OOQ_Q 

5 1 0 
1615 

1010 

A 
100C 

8 •11••~ 
01 •11••1 

0 ····1 ..... I 1 ...... 1 .... 1 ...... 1 ..... I ...-ii l~I 11111 
l1 l !PC 1111, 

Fig. 6-12 ASL.L #3,01 



196 68000, 68010, and 68020 Primer 

answer doesn't make sense, as far as signed arithmetic is concerned. LSR works 
fine with positive signed numbers, but clearly it would be nice to have a shift 
right (divide by 2) that works correctly with all signed numbers. 

The ASR achieves this by pushing either a 0 or a 1 depending on the sign 
of the number to be shifted. Let's take our "-4 divided by 2" example again: 

In 2's complement - 4 = 11111100 (in byte format) 

Arithmetic shift right - 4 = 11111110 = - 2 which is correct 

Because - 4 has a sign bit of 1, ASR pushes in a 1 from the left, preserving the 
sign of the dividend. 

Similarly, multiplication by 2 using a left shift can sometimes go wrong with 
signed numbers: 

In 2's complement + 72 = 01001000 (in byte format) 

Shift left + 72 = 10010000 = -112 signed or + 144 unsigned 

Here the answer is correct in unsigned arithmetic but wrong in signed arithmetic. 
The problem is not with the shift itself, but with the fact that + 144 exceeds the 
signed capacity of an 8-bit byte (-126 to + 127). We have to live with this fact. 
As we saw in the ADD instruction, the best we can do is to watch the V 
(oVerflow) flag in the CCR - this is our warning against signed arithmetic 
errors. You may recall that LSL always clears the V flag in the CCR. So LSL is 
dangerous if you want to shift signed numbers. The solution is to use ASL when 
shifting signed numbers - because ASL sets the V flag. ASL pushes in O's 
from the right, just like LSL, but if a sign bit change is detected at any stage in 
the shift, the V flag is set to 1. If no sign bit change occurs, the V flag is cleared 
to 0. Note that in a multiple left shift the sign bit may change several times, and 
may actually end up with the same value it had initially. Nevertheless, V will be 
set to 1 and will remain at 1 throughout the shift. As with all signed arithmetic 
the obligation falls to the programmer to check the V flag - a V = 1 spells 
danger. 

Let's summarize the differences between arithmetic and logical shifts: 

ARITHMETIC AND LOGICAL SHIFTS - DIFFERENCES 

LSR shifts right by pushing in O's from the left. 

ASR shifts right by replicating the sign bit from the left. 

LSL and ASL both shift left by pushing in O's from the right but LSL 
clears the V (oVerflow) flag in the CCR. 

ASL sets the V flag to 1 if any change of sign occurs during the shift. 

Now let's summarize the similarities between arithmetic and logical shifts. 



Miscellaneous M68000 Instructions 197 

ARITHMETIC AND LOGICAL SHIFTS - SIMILARITIES 

Arithmetic and logical shifts share the same operand addressing modes: 

ASL . z #<d3> ,Dn Immediate shift count from 1-8 
ASL.z Dm,Dn Shift count Dm mod 64 
ASL .W <amea> Memory shift count = 1 

ASR.z #<d3>,Dn 
ASR.z Dm,Dn 
ASR. W <amea> 

Logical and arithmetic shifts both push out bits at either end into the C and X 
flags, and they both set the N and Z flags in the same way. Figure 6-12, a few 
pages back, and Figure 6-13 show two typical arithmetic shifts. 

ARITHMETIC SHIFTS AND THE CCR 

Summing up the CCR changes: 

X flag: Set to the value of the last bit shifted out of destination. Unaffected 
if the shift count is 0, that is, if no actual shift performed. 

N flag: Set to 1 if destination is negative after shift - otherwise cleared 
to 0. 

Z flag: Set to 1 if destination is zero after shift. 

V flag: Set to 1 if any change occurs to the sign bit at any stage of the 
shift. 

C flag: Set same as X flag, but cleared to 0 if the shift count is 0, that 
is, no actual shift performed. 

PRACTICAL APPLICATION 

Problem: Calculate the arithmetic mean of two signed numbers, DO and Dl , 
to the neaMSt whole numbet; and place the answer in lower word of 03. Signal 
an error if signed range is exceeded. 

Background: The arithmetic mean, sometimes known as the average, is found 
by adding the two numbers together and dividing by 2. The mean is exactly 
halfway between the two numbers. A very common application is found in binary 
searches of a sorted file. We locate a target record by splitting the file into two 
equal parts. Comparing our target with the middle record tells us which half of 



198 68000, 68010, and 68020 Primer 

BEFORE 

ASR L #2 01 . 
' 

.... ~rg 
sign~41R) 

~ 3 2 11 

CCR~~ 
~ L sign-bit in W Jign-bit ~sign-bit 

001010011000 1010 0010 0001 0101 

., •• wordN••••I 
word N+211111 

D 2 9 8 A 
31 1615 

2 1 5 

•11•111 
bltsout ····1 

001 11111 
..... I l~l,.....1~1 ..... 1...,1 .... 1~1 1.1111.1.1 
I I lpc ,. 
~31_,__._~---'-__...__,__....._....._~o 

1111 0100 1010 0110 0010 1000 1000 0101 

F 4 A 6 2 8 8 5 01 
31 1615 0 

I I I I I I I I I 
L-.1 __..__--LI __,_---'-___.__---"--__.___Ip c 
~ ~ 0 

Fig. 6-13 ASR.L #2,01 



Miscellaneous M68000 Instructions 199 

the file contains the target. We then split that half of the file in two, and so on 
until we "home" in on the desired record. At each stage of the binary search we 
need to calculate the mean of two record numbers in order to locate the midway 
record. 

Given: Two 16-bit signed numbers in DO and Dl. 

Cases: 

DO= 2979 = $0BA3 Dl = 4261 = $10A5 

DO + Dl = 7240 = $1C48 (no overflow) 

D3 = 112 x 7240 = 3620 = $0E24 

DO= -3 = $FFFD Dl = -5 = $FFFB 

DO + Dl = -8 = $FFF8 {no overflow) 

D3 = 112 x -8 = -4 = $FFFC 

DO= 43981 = $ABCD Dl = 26341 = $66E5 

DO + Dl = 70322 = $11282 {overflow error) 

Solution: Program 6-3 

MOVE.W 
ADD.W 
BVS 
ASR.W 

DO,D3 
Dl,D3 
ERROR 
#1,D3 

<rest of program> 

* * * 

DO word now in D3 word 
D3 word = DO + Dl 
Branch to ERROR if V flag set 
Divide D3 word by 2 
Ignore any remainder 
D3 now has mean of DO,Dl 
(nearest whole number) 
with correct sign. 

BRA NEXT_JOB Go on to other things 
ERROR <signal an error> 

<take appropriate action> 

* * * 
END 

Program Notes: If DO + Dl is even, the mean formed in D3 is exact but if DO 
+ Dl is odd, the mean in D3 will be 0.5 too low. Our simplified problem called 
for the nearest whole number, so we have ignored any remainder when dividing 
by 2. There is an easy way to distinguish these two cases. When you ASR an 
even number the bit pushed out is a 0, but when you ASR an odd number the 
bit pushed out is a 1. Since the bit is pushed out into the C and X flags of the 
CCR, we can easily test the C flag with a BCS or BCC and take appropriate 
action. 



200 68000, 68010, and 68020 Primer 

Opcode 

ASL.L/W/B 
ASR.L/W/B 

ASL.W 
ASR.W 

LSL.L/W/B 
LSR.L/W/B 

LSL.W 
LSR.W 

Table 6-2 Summary of Shift Instructions 

Operand 

Dm,Dn or #<d3> ,Dn 

<am ea> 

Dm,Dn or #<d3> ,Dn 

<am ea> 

<amea> = alterable memory addressing modes = (An), (An)+, -(An) 
d(An), d(An,Xi), Abs.W, Abs.L 

#<d3> = 3 bits immediate data = Shift Count range 1 - 8 

CCR Changes 

X* N* Z* V* C* 

X* N* Z* V* C* 

X* N* Z* VO C* 

X* N* Z* VO C* 

CCR symbols: _means unchanged, *means changed according to CCR rules, O means always set 
to 0 

Table 6-2 gives a concise summary of all the shift instructions and how the 
CCR is affected. 

ROTATES 

Rotating the bits in a register is very much like logical shifting as described 
above, except that the displaced bits that get pushed out at either end are 
entered back into the register at the other end. As the word "rotate" suggests, 
you can imagine the register bit patterns moving clockwise (rotate left) or 
counterclockwise (rotate right). As with shifts you can specify the number of 
times the bits are rotated, using either immediate data or a data register to set 
the shift count. The rotate instruction formats for source/destination are identical 
to those for shifting. The big difference is what happens to the displaced bits as 
they rotate. Table 6-3 summarizes the four Rotate variants. 

ROR - ROtate Right 

ROL - ROtate Left 



Miscellaneous M68000 Instructions 201 

Opcode 

ROL.L/W/B 
ROR.L.JW/B 

ROL.W 
ROR.W 

ROXL.L/W/B 
ROXR.L.JW/B 

ROXL.W 
ROXR.W 

Table 6-3 Summary of Rotate Instructions 

Operand 

Dm,Dn or #<d3> ,On 

<am ea> 

Dm,Dn or #<d3>,Dn 

<am ea> 

<amea> = memory alterable addressing modes = (An), (An)+ ,-(An) 
d(An), d(An,Xi), Abs.W, Abs.L 

#<d3> = 3 bits immediate date = Shift Count range 1 - 8 

CCR Changes 

X_ N* Z* VO C* 

X_ N* Z* VO C* 

X* N* Z* VO C* 

X* N* Z* VO C* 

CCR symbols: _means unchanged, *means changed according to CCR rules, 0 means always set 
too 

ROXR - ROtate with eXtend Right 

ROXL - ROtate with eXtend Left 

They all accept the three formats we gave for shifts, which are: 

ROR.z Dm,Dn Rotate Dn{.z} Right (Dm mod 64) times 
ROR.z #<d3>,Dn Rotate Dn{.z} Right d3 times (1 - 8) 
ROR.z <amea> Rotate memory{.z} Right once only 

figure 6-14 illustrates how the displaced bits always pass into the C flag 
of the CCR. In the ROR/ROL variants, the displaced bits also move directly into 
the other end of the register, and the X flag is unchanged. 

In the ROXR/ROXL variants, the displaced bit moves into both the C and 
X flags. The previous X flag bit gets pushed back into the register. The X flag 
is, as usual, playing the role of an additional register bit, so: 

ROXR/ROXL. L rotates 33 bits (longword plus X) 

ROXR/ROXL. W rotates 17 bits (word plus X) 

ROXR/ROXL.B rotates 9 bits (byte plus X) 

All rotates, like logical shifts, clear the V flag - so you get no warning of 
signed arithmetical errors. 



202 68000, 68010, and 68020 Primer 

____ o_p_e_r_a_n_d ____ 4 

~...--0-p-era_n_d -·· I .(£] 
V=C/J 

,... ...... O•p•e•ra .. n•d .... ~~ 

C ___ o_p_er_a_nd ___ I ce3 
Fig. 6-14 Rotates: General Diagrams 

ROL 
ROtate Left 

ROR 
ROtate Right 

ROXL 
ROtate Left 
with EXtend 

ROXR 
Rotate Right 
with EXtend 

Here is an application to further illuminate the nature of rotates. 

* Program 6-4 Add the 4 Signed Bytes in a Longword 

* DO contains 4 bytes each representing signed numbers: 
* Byte 1 = bits 0-7 (lower-lower byte) 
* Byte 2 =bits 8-15 (upper-lower byte) 
* Byte 3 = bits 16-23 (lower-upper byte) 
* Byte 4 = bits 24-31 (upper-upper byte) 
* Place the sum of these 4 numbers in Dl. 
* Use D3 as temp (scratch) register. 
* Preserve value of DO and D3. 

MOVE.L 
CLR.L 
CLR.L 
MOVE.B 
ROR.L 

D3,-(SP) 
D3 
Dl 
DO,Dl 
#8,DO 

Save scratch register D3 
Clear longword D3 
Clear longword Dl 
Byte 1 to Dl 
Byte 2 to lower-lower byte position 
(Byte 3 to upper-lower byte of DO) 



Miscellaneous M68000 Instructions 203 

(Byte 4 to lower-upper byte of DO) 
(Byte 1 to upper-upper byte of DO) 

MOVE.B DO,D3 Byte 2 to D3 
ADD.W D3,Dl Add byte 2 to byte 1 = Dl 
ROR.L #8,DO Byte 3 to lower-lower byte position 

(Byte 4 to upper-lower byte of DO) 
(Byte 1 to lower-upper byte of DO) 
(Byte 2 to upper-upper byte of DO) 

MOVE.B DO,D3 Byte 3 to D3 
ADD.W D3,Dl Add byte 3 to Dl 
ROR.L #8,DO Byte 4 to lower-lower byte position 

(Byte 1 to upper-lower byte of DO) 
(Byte 2 to lower-upper byte of DO) 
(Byte 3 to upper-upper byte of DO) 

MOVE.B DO,D3 Byte 4 to D3 
ADD.W D3,Dl Add byte 4 to word Dl 
ROR.L #8,DO Byte 1 to lower-lower byte position 

(Byte 2 to upper-lower byte of DO) 
(Byte 3 to lower-upper byte of DO) 
(Byte 4 to upper-upper byte of DO) 

MOVE.L (SP)+,D3 Restore D3 from stack 

* DO, after a total of 32 rotates, has original value restored. 
* Dl contains sum of bytes 1-4. 

We used 03 and ADD.W to avoid the dangers of overflow. Summing four 
signed bytes cannot exceed the 16-bit signed range but can exceed the 8-bit 
signed range - so we cannot use 

ADD.B DO,Dl 

immediately after the ROR unless we check for overflow. 
There are, of course, many different ways of "isolating" the bytes or words 

in a longword. SWAP, for example, is often used in conjunction with a rotate. 
(We'll see more of SWAP later in this chapter.) Let's revamp Program 6-4 using 
SWAP to add just bytes 1, 3, and 4. 

* Program 6-5 Add Bytes 1, 3, and 4 of a Longword 

* DO contains 4 bytes each representing signed numbers. 
*Byte 1 =bits 0-7 (lower-lower byte). 
*Byte 2 =bits 8-15 (upper-lower byte). 
*Byte 3 =bits 16-23 (lower-upper byte). 
*Byte 4 =bits 24-31 (upper-upper byte). 



204 68000, 68010, and 68020 Primer 

* Place the sum of bytes 1, 3, and 4 numbers in Dl. 
* Use D3 as temp (scratch) register. 
* Preserve value of DO and D3. 

MOVEM.L DO/D3,-(SP) Stack 'em 
CLR.L D3 Clear long word D3 
CLR.L Dl Clear long word Dl 
MOVE.B DO,Dl Byte 1 to Dl 
SWAP DO Reverse words of DO 

Byte 3 is now lower-lower byte DO 
Byte 4 is upper-lower byte DO 
(Byte 2 is upper-upper byte DO) 
(Byte 1 is lower-upper byte DO) 

MOVE.B DO,D3 Byte 3 to D3 
ADD.W D3,Dl Add Byte 3 to Byte 1 = Dl 
ROR.L #8,DO Byte 4 to lower-lower byte position 

(Byte 1 to upper-lower byte of DO) 
(Byte 2 to lower-upper byte of DO) 
(Byte 3 to upper-upper byte of DO) 

MOVE.B DO,D3 Byte 4 to D3 
ADD.W D3,Dl Add Byte 4 to Dl 
MOVEM.L (SP)+,DO/D3 Restore DO,D3 from stack 

* Dl contains sum of bytes 1, 3, and 4. 

BIT TESTING AND SETTING 

In Chapter 4 we met the TST.z instruction, which tested the whole operand (L, 
W, or B) for zero and set the CCR flags accordingly. In the next group of 
instructions we refine this idea to include testing of individual bits in a variety of 
situations. 

BTST - TEST A BIT 

BTST allows you to test any bit in a data register, or any bit in a byte of memory. 
The result of the test, just as with TST, is reflected in the Z flag of the CCR: 

Tested bit = 0 sets Z flag to 1 

Tested bit = 1 clears Z flag to 0 

The other flags in the CCR are unchanged. 



Miscellaneous M68000 Instructions 205 

TST, as we saw in Chapter 4, tests a whole byte, word, or longword for 
zero, whereas BTST tests only a single bit. BTST has the following formats: 

BTST.L 
BTST.L 
BTST.B 
BTST.B 

Om, On 
#<d5>,0n 
Om,<mea> 
#<d3>,<mea> 

Test the (Om mod 32)th bit of On 
Test the (d5)th bit of On 
Test the (Om mod 8)th bit of <mea> byte 
Test the (d3)th bit of <mea> byte 

<d5> represents a 5-bit number, 0-31. <d3> is a 3-bit number, 0-7. 
Note that <mea> here excludes immediate mode as a valid destination. 

Since the destination is not altered by BTST, relative mode destinations are 
allowed. 

The source operand, indicating the position of the bit to be tested, can 
either be a number in a data register or an immediate constant. Remember that 
bit position 0 is the first, least significant bit in all cases. 

The actual range limits for bit position are obviously ( 0-31 ) for registers 
and (0-7) for memory bytes, and this is reflected in the formats. If you try to 
test a bit position outside these ranges, the processor will simply reduce modulo 
32 or modulo 8 as we have indicated above. 

Since only memory bytes can be tested with BTST, it may sometimes be 
necessary to move from memory to a On for more elaborate tests. 

The data size codes are implied by the format, and therefore optional for 
most assemblers. We prefer to use them in order to clarify our intent. 

Here are two simple examples of using BTST. 

* Program 6-6 Testing for Odd or Even Using BTST 

* 03 contains an unsigned number. If it is even, leave it alone. 
* If it is odd, add 1 to make it even. 

BTST.L 
BEQ 
ADOQ.L 
BCS 

#O,D3 
EVEN 
#1,03 
ERROR 

EVEN <rest of program> 

* * * 

Is bit o of 03 = o? 
If Yes 03 is even - so branch 
If No 03 is odd - so add 1 

03 too big for 32-bit 
unsigned. Carry detected. 

ERROR <deal with range error> 

Program 6-6 relies on the elementary fact that the least significant bit of an 
even binary number is 0. Making odd numbers even is a useful trick for adjusting 
M68000 addresses to the nearest word boundary. 



206 68000, 68010, and 68020 Primer 

* Program 6-7 Test Employee Status Using BTST 

* AO points to employee record in memory. Word 1 of record has 
* employee ID. Lower byte of word 2 is employee status byte: 
* Bit o = o for male; 1 for female 
* Bit 1 = o for FT (full time); 1 for PT (part time) 
* Bit 2 = O for HO (head office) staff; 1 for branch staff 
* Increase 06 counter by 1 if employee is female/FT/HO 
* When we enter this program segment, 06 contains subtotal of 
* such employees. 

BTST.B #0,2(AO) Test sex bit 
BEQ IGNORE Bypass male i.e. if bit 0 = 0 
BTST.B #1,2(AO) Test FT/PT 
BNE IGNORE Bypass PT i.e. if bit 1 = 1 
BTST.B #2,2(A0) Test HO/Branch 
BNE IGNORE Bypass Branch i.e. if bit 2 = 1 
ADDQ.L #1,06 Add 1 for target employee 

IGNORE <rest of program> 
* This would form part of a general program for counting the 
* number of employees in each category. 

Here we are testing the byte in memory at address AO+ 2, hence the 
destination operand is 2(AO). For repeated tests of 2(AO), we would probably 
find it quicker to move 2(AO) to a data register since we would save on <ea> 
calculations and memory fetches. 

TEST AND CHANGE A BIT 

Three variants of BTST are: 

BCLR - Test a bit and clear 

BSET - Test a bit and set 

BCHG - Test a bit and change 

They not only test the specified bit and set the Z flag just like BTST, but they 
then proceed to unconditionally modify the tested bit as indicated by the mnemonic. 

The formats differ slightly from BTST insofar as only alterable memory 
operands are allowed-which is natural when you consider that BCLR/BSET/ 
BCHG actually alter the destination: 

BCLR.L 
BCLR.L 

Dm,Dn 
#<d6>,Dn 

Test the (Dm mod 32)th bit of Dn 
Test the (d6 mod 32)th bit of Dn 



BCLR.B Dm,<amea> 
BCLR.B #<d3>,<amea> 

Miscellaneous M68000 Instructions 207 

Test the (Dm mod B)th bit of <amea> byte 
Test the (d3)th bit of <amea> byte 

Having adjusted the Z flag, BCLR clears the specified destination bit to 0. 

BSET.L Dm,Dn 
BSET.L #<d6>,Dn 
BSET.B Dm,<amea> 
BSET.B #<d3>,<amea> 

Test the (Dm mod 32)th bit of Dn 
Test the (d6 mod 32)th bit of Dn 
Test the (Dm mod B)th bit of <amea> byte 
Test the (d3)th bit of <amea> byte 

Having adjusted the Z flag, BSET sets the specified destination bit to 1. 

BCHG.L Dm,Dn 
BCHG.L #<d6>,Dn 
BCHG.B Dm,<amea> 
BCHG.B #<d3>,<amea> 

Test the (Dm mod 32)th bit of Dn 
Test the (d6 mod 32)th bit of Dn 
Test the (Dm mod B)th bit of <amea> byte 
Test the (d3)th bit of <amea> byte 

Having adjusted the Z flag, BCHG reverses the specified destination bit, 1--+0 
or o~t. 

The three bit test and set instructions are commonly used simply to reset 
selected bits, ignoring the test aspect altogether. 

Using the data for Program 6-7, let us transfer someone to head office by 
changing the employee status byte. 

* Program 6-8 Change Employee Status Using BCLR 

* AO points to employee record in memory. Word 1 of record has 
* employee ID. Lower byte of word 2 is employee status byte: 
* Bit 0 = o for male; 1 for female 
*Bit 1 = O for FT (full time); 1 for PT (part time) 
* Bit 2 = 0 for HO staff; 1 for branch staff 
* Demote employee to head office by clearing bit 2 

BCLR.B #2,2(A0) Bit 2 of byte 2(A0) ->0 
BEQ WHOOPS Employee was HO already 
<rest of program> 

* * * 
WHOOPS <check our records> 

* BCLR tests bit 2 before clearing it. BEQ will branch if bit 2 
* was already o -- revealing a possible error in our employee 
* selection or records. 



208 68000, 68010, and 68020 Primer 

BCHG is useful for controlling activity during loops, acting as a flip-flop or 
switch. For example: 

* Program 6-SA Alternating Jobs Using BSET and BCHG 

LOOP 
BSET.L 
BCHG.L 
BEQ 
<do jobl> 

#O,D2 
#O,D2 
JOBO 

BRA LOOP 
JOBO <do jobO> 

BRA LOOP 

Start with bit 0 of D2 = 1 
Flip 0->1 or 1->0 
Do j obO on even numbered loops 
Do jobl on odd numbered loops 

* Each time we reach LOOP we test bit 0 of 02 and set or clear 
* the z flag. We next flip bit O from O to 1, or 1 to o. Then we test 
* the z flag and do either jobO or jobl. The jobs therefore 
* alternate as we loop. To avoid endless looping we assume that 
* one or another job contains some test for loop exit. 

Sec - SET ON CONDITION 

Sec is a set of single-operand, byte-only instructions, all using the format 

Scc{.B} <adea> 

The byte at <adea> is set to $FF (all l's) if condition cc is true, and set to $00 
(all O's) if condition cc is false. Since the destination is altered by Sec, only 
<adea> modes are permitted. 

Sec has 16 variations corresponding to the condition mnemonics given by 
the letters cc. Each condition is based on the state of the CCR flags at the time 
the test is made. We have already seen some of these in Chapter 4 under the 
section on Bee (Branch on Condition). Table 6-4 shows the complete list of the 
cc codes as used with Sec, Bee and DBcc (which we will learn more about 
later). 

The essential function of Sec is to store the result of a CCR test, so you 
can use the result later in the program after the original CCR has been subject 
to change. We have seen that most instructions alter the CCR in some way or 
other. This can be a nuisance if you want to delay a conditional action. 

HOW THE cc's WORK 

The various cc conditions range from simple one-flag CCR conditions to complex 
Boolean expressions based on several flags. 



Miscellaneous M68000 Instructions 209 

Table 6-4 Conditon Codes for Bee, DBcc and Sec 

cc Relevant 
Mnemonic Condition Boolean Formula Number Mode 

cc Carry Clear -c unsigned 
cs Carry Set c unsigned 
EQ Equal to z all 
F False 0 all * 
GE Greater or equal (NAV) + (-NA-V) signed 
GT Greater than (NAVA-Z) + (-NA-VA-Z) signed 
HI Higher than -CA-Z unsigned 
LE Less or equal Z + (NA-V) + (-NAV) signed 
LS Lower or same c+z unsigned 
LT less than (NA-V) + (-NAV) signed 
Ml Minus N signed 
NE Not equal -z all 
PL Plus -N signed 
T True 1 all * 
vc Overflow Clear -v signed 
vs Overflow Set v signed 

Legend: - = logical NOT, + = logical OR, 11 = logical AND,* F and 
T not used with Bee 

The single flag conditions have already been explained under Bee. These 
8 basic conditions rely on the state of just one of the N, Z, V, or C flags. These 
flags can be considered to be Boolean variables taking the value 1 for true and 
0 for false. They can be combined as shown to represent more complex con
ditions. Table 6-4 shows the logical calculations performed by the M68000 to 
determine true or false to the typical questions we pose regarding the relations 
between numbers - greater, less, equal, and so on. 

A TYPICAL MULTI-FLAG cc DISSECTED 

Take, for example, the condition HI (Higher [than]), listed in our table as an 
unsigned mode condition. If you want to compare two unsigned numbers in 
DO and Dl, you can write 

SUB.L DO,Dl 



210 68000, 68010, and 68020 Primer 

This subtracts DO from Dl, sets the CCR flags, and replaces Dl by the difference 
between Dl and DO. Or, as we'll detail later, you can write 

CMP.L 00,Dl 

which performs the subtraction and sets the CCR flags, but does not alter Dl. 
To answer the question "ls unsigned Dl higher than unsigned DO?" we 

need to look at the C and Z flags after a SUB or CMP If Z = 1 then we have 
a zero difference, so Dl = DO, hence HI is false. Likewise, if C = 1 we must 
have had a borrow, meaning that Dl is lower than DO, so HI is again false. 
Hence the HI condition is true only if (C = 0 and Z = 0) and this explains our 
Boolean formula: HI = -C/\-Z which we read as NOT-C and NOT-Z. 

The effect of 

SHI 05 Set 05 if Higher 

for example, is: 

If (C = 0 AND Z = 0) place $FF in lower byte of D5. 

Otherwise place $00 in lower byte of D5. 

D5 lower byte therefore remembers the result of the HI test, and can be consulted 
later. Similarly, 

BHI <label> Branch if Higher 

says branch to <label> only if (C=O AND Z=O). 
The processor performs such tests blindly regardless of what your previous 

program steps have done. It is up to you, in fact, to provide meaning to the 
condition HI by a previous SUB or CMP step using the two unsigned numbers 
you wish to compare. 

Each of the other compound conditions can be analyzed in the same way, 
looking at the various flags following a SUB or CMP operation on the two 
numbers being compared. 

SIGNED AND UNSIGNED cc's 

It should be clear that questions like "greater than?" or "less than?" can only 
be resolved when you know which number mode is involved: signed or un
signed. Is "10000000" greater than "00000111"? The answer is yes for un
signed, but no for signed numbers. 



Miscellaneous M68000 Instructions 211 

On the other hand the questions "equal?" and "zero?" can be answered 
regardless of number mode. The final column of Table 6-4 indicates which 
conditions apply to which mode. Note that Motorola has chosen "higher/lower/ 
same" for unsigned comparisons, and "greater/less" for signed comparisons. 

You can try out the Boolean formulas by subtracting various signed and 
unsigned numbers and noting the CCR flags, (C = 0, N = 1, etc.). Then substi
tute the flag values, 0 or 1, in each Boolean formula, by applying the following 
rules: 

0+0=0 
1+0=1 
01\0=0 
l/\0=0 
l/\l=l 
-0=1 
-1=0 

-(A + B) = (-A" -B) 

-(A" B) = (-A + -B) 

False OR false = false 
True OR false = true 
False AND false = false 
True AND false = false 
True AND true = true 
NOT false = true 
NOT true = false 

NOT (A OR B) = (NOT-A AND 
NOT-B) 
NOT (A AND B) = (NOT-A OR 
NOT-B) 

Each cc condition will reduce to 0 (false) or 1 (true), and Sec will record this 
fact in any chosen register or memory location. 

The rules expressed so concisely in Boolean algebra merit close study. 
They are worth whole chapters on the meaning of carry and overflow. Once 
you have convinced yourself that all of the rules work, you can relax and leave 
the M68000 to do the Boolean evaluations for you. It's rather good at this. 

ST AND SF 

Two of the cc's, T and F, are actually unconditional. 

ST <adea> Always sets <adea> to $FF (true) 
SF <adea> Always sets <adea> to $00 (false) 

Note that we do not use Tor F with Bee. BRA is used for BT (Branch Always), 
while BF (Never Branch) is a structured programmer's slogan rather than an 
instruction. 



212 68000, 68010, and 68020 Primer 

TAS - INDIVISIBLE TEST AND SET OPERAND 

Our final instruction in the bit manipulation group is TAS (Test And Set operand) 
which hides a subtle trick beneath its simple exterior: 

TAS { . B} <adea> 

This line first tests the byte at <adea> and then sets the Z and N flags in the 
CCR (Z= 1 if byte is zero, N = 1 if sign bit 7 is 1). Finally, TAS unconditionally 
sets the destination sign bit 7 to 1 - forcing the byte to be negative. 

The unusual trick built into this instruction is that the TAS operation is 
indivisible - meaning that a special read-modify-write memory cycle is em
ployed, which cannot be interrupted, and no other program, processor, or device 
in the system can access the operand until TAS is finished. Even the normal bus 
error routines are modified to keep TAS indivisible. Why all this trickery just to 
test and set a byte? 

The reason is the need to provide control and synchronization in various 
delicate situations that can occur in today's complex M68000-based multitask
ing and multiprocessing systems. The general idea is that a resource, which can 
be almost anything - from a disk file or bank of memory to an 110 device, or 
even an entire microprocessor - can be shared by different user jobs. Both 
hardware and software methods are used to regulate this sharing. Va.nous flags, 
semaphores, and priority and queuing algorithms are employed to control who 
gets what and when and for how long. Typically, the program grabbing a resource 
flags it as "in use" by setting an agreed value in an assigned status bit or byte. 
The resource is eventually relinquished by clearing the status flag so that other 
jobs are free to access it. 

Suppose, for example, that we have assigned a byte at address $1000, 
which signals to all user programs as follows: 

($1000) = $00 means employee file free to be updated 

($1000) nonzero means employee file in use - keep off 

Such a byte might be given a fancy name such as employee file access status 
byte. We have suggested an absolute address so that there is a fixed place where 
any user program can test the file status. 

Without TAS, our program might proceed as follows. 

* Program 6-9 File Locking without TAS 

WAIT TST.B 
BNE.S 

$1000 
WAIT 

Is file free? 
No -- keep trying 



Miscellaneous M68000 Instructions 213 

ST $1000 

*ST is equivalent to MOVE.B #$FF,$1000 

<process file> 
CLR.B $1000 

<rest of program> 

"Grab" file by putting $FF 
in byte ($1000) 
This warns others that 
file is busy 

Relinquish file by 
clearing ($1000) to $00 

This seems fine, but what if an interrupt occurs just before the ST $1000 
instruction? The interrupting program or process may well do a TST.B $1000 
and, finding the file free, set ($1000) to busy, then proceed to update the file. 
When our program resumes at ST $1000, we also attempt to modify the file, 
unaware of the file status change - with possibly dire consequences. 

Let's see how TAS helps. 

* Program 6-10 File Locking with TAS 

WAIT TAS $1000 

BNE WAIT 

<process file> 

CLR.B $1000 

<rest of program> 

Test ($1000) and adjust 
the CCR. Then set ($1000) 
negative = $80 
File is busy elsewhere so 
try again 
File was free, but we have 
grabbed it. It is flagged 
busy to others. 
Relinquish file 
by setting status byte = $00 

The CLR.B is vital. Without it, jobs can cycle endlessly waiting to access the file 
- and the sooner you can CLR.B, the better. The TAS solution, unlike the 
TST/ST approach, ensures that the sequence of testing and setting the status 
flag cannot be interrupted. It is important to note that the BNE WAIT line is 
effectively testing the status byte as it was before TAS set it to $80. Any interrupts 
or exceptions occurring after TAS but before the BNE would not affect the BNE 
test, since the CCR is always saved and restored (as part of the interrupted 
program's context). 

In real-world time-sharing applications, the simple file-locking procedure 
outlined above would naturally be more sophisticated, including such concepts 
as read-only files, public-restricted files, file-locking by record, and so on. Since 



214 68000, 68010, and 68020 Primer 

TAS sets just bit 7 (the sign-bit) of the operand (status byte) to signal "busy", 
the other six bits of the byte can be used to signal other properties of the shared 
resource. If so, the BNE (Branch Not Equal zero) after TAS can be replaced by 
BMI (Branch Minus), which tests the N flag. 

COMPARE WITH THE CMP FAMILY OF 
INSTRUCTIONS 

The next group of instructions allows you to compare the source and destination 
operands. 

The key notion in the CMP instructions is that the processor goes through 
the motions of SUB (that is, subtract source from destination) but does not alter 
the destination. Recall that SUB replaces the destination with the calculated 
difference. All that CMP does, in fact, is to change the CCR flags (N, Z, V, and 
C) as though it had performed a SUB. After CMP, or its variants, you can use 
any of the conditional instructions which depend on the cc conditions shown in 
Table 6-4. 

There are two points to remember concerning cc and CMP. First, we are 
always testing "destination <condition> source", where <condition> says, for 
example, higher than, less than, etc. It is not uncommon for programmers to 
get this the wrong way round, because instructions are written: source,destination. 

There are four CMP formats, used according to the type of operands being 
compared: 

CMP.z <ea>,Dn Compare anything with value in z of Dn 
CMPA.Z <ea>,An Compare any Lor W source with An 
CMPI.z #<data>,<adea> Compare immediate data with destination 
CMPM.z (Am)+, (An)+ Compare successive memory addresses 

CCR changes as does SUB, except CMP does not change the X flag. 
Here are some examples: 

* Program 6-11 Compare Unsigned Longwords 

CMP.L 
BEQ 

BHI 

03,04 
SAME 

D4HI 

Compare 03 and 04 longwords 
Branch to SAME if 03 = 04 
From here on we know 03,04 
are unequal 
Branch to D4HI if 04 unsigned 
is higher than 03 unsigned 
From here on we know 04 is not 
higher 



Miscellaneous M68000 Instructions 215 

BCS 03HI Branch to 03HI if 04 unsigned 
is lower than 03 

<we should never reach here!> 
<see comments below> 

SAME <03=04 case processed here> 

* * * 
04HI <04 higher case processed here> 

* * * 
03HI <03 higher case processed here> 

* * * 
* The BLS branch would test "lower/same"; BNE would test 
* "unequal" -- so there are plenty of overlapping choices after a 
* CMP on unsigned numbers. In the above sequence of conditional 
* branches, we actually cover all possible relations between 03 
* and 04. Often you can avoid a conditional branch because 
* previous branches have excluded all but one remaining 
* possibility. In the above, BCS could be replaced with BRA. 
* Recall that the C flag after CMP or SUB means "borrow" rather 
* than "carry" -- so BCS tests source higher than destination. 

* Program 6-12 Compare Immediate: Signed Bytes 

CMPI.B #-1,$4000 Is signed byte at address $4000 
greater/less/equal to -1? 

BLE FROZEN Branch if less or equal 
<process here if ($4000) byte greater than -1> 

* * * 
FROZEN <process here if ($4000) byte less than or equal to -1> 

* * * 
* Signed comparisons use BEQ/BGE/BGT/BLE. See Table 6-4 
* CMPI source #<data> will be stored in one or two extension 
* words depending on size data code. 

* Program 6-13 Compare Two ASCII Strings in Memory 

* ASCII string 1 has pointer Al; ASCII String 2 has pointer A2. 
* Both strings terminate with an ASCII NUL ($00) 
* Byte 06 is set to $00 if mismatch, $FF if strings identical 
* Word 07 counts number of matched characters 

ST 
CLR.W 

06 
07 

Set $FF in indicator byte 06 
Clear matched character count 



216 68000, 68010, and 68020 Primer 

LOOP 

MISMAT 

CMPM.B 
BNE 
TST.B 
BEQ 
ADOQ.W 
BRA 
CLR.B 

(Al)+, (A2) + 
MISMAT 
-l(Al) 
ENDOK 
#1,07 
LOOP 
06 

ENDOK <rest of program> 

Compare bytes/inc pointer 
Bytes differ 
NUL reached? 
Yes -- both bytes NUL 
Increase match count 
On to next characters 
Set $00 in indicator byte 06 

* The bytes we are comparing are simply tested for NE (Not 
*Equal), so we are not concerned with signed/unsigned 
* interpretations. If we were interested in lexicographic 
*sequencing, e.g. Is string 1 ahead of string 2 in the dictionary?, 
* we could test with BHI or BLS (unsigned) and set some 
* indication in 06 when a mismatch occurs. 
* Note the TST.B -l(Al) which tests the byte just compared. 
*Since (Al)+ has incremented the pointer Al by 1 (byte), we use 
* an offset of -1 with a d(Al) operand. -l(Al) is not to be 
*confused with -(Al). The latter would move our pointer back 
* with bizarre results. 

CMPA - COMPARE ADDRESS 

The CMPA variant of CMP, like the SUBA variant of SUB, is used only when 
the destination is an address register. However, there is a subtle but important 
difference between CMPA and SUBA. SUBA, as with all purely arithmetic 
operations on An's, does not affect the CCR - but CMPA would not make any 
sense unless the CCR reflected the various N, Z, V, and C changes. Without 
these we would be unable to test the cc conditions, such as, are these two 
addresses greater/equal/less? So CMPA breaks the rules and sets up the CCR 
for us. 

CMPA does not allow a byte data size code, and when you do a CMPA. W 
comparison, the word source is sign-bit extended to 32 bits before the subtraction 
is performed. In spite of this, remember that addresses are essentially positive 
unsigned values and, as we will see in the next example, we normally use the 
unsigned cc tests after CMPA. 

CMPA is most useful when we need to check if an address pointer is within 
bounds. We have seen several examples of An being incremented/decremented 
in various ways, using (An)+, -(An), ADDA, SUBA, and stack operations. In 
many cases we must guard against An pointing over or below certain memory 
limits. A simple example follows. 



Miscellaneous M68000 Instructions 217 

* Program 6-14 CMPA: Private User Stack Limit Check 

* We have established a small private stack with stack pointer 
* A2. AO points to the base of this stack. Al points to the 
* limit of the stack. The stack grows down in memory from AO to 
* Al as we push on it. Provide simple checks that A2 does not 
* exceed the stack limits. Normally AO >= A2 >= Al. 

MOVE.W Dl,-(A2) typical PUSH 
CMPA.L Al,A2 Is stack full? 
BEQ FULL Yes, just -- so branch 
BCS ERROR_2 "Below" stack base error 
<stack OK -- continue> 
MOVE.L (A2) +, 07 typical PULL 
CMPA.L A2,AO Reached stack base? 
BCS ERROR_2 ''Below" stack base error 
<stack OK -- continue> 

FULL <warning stack full> 
* * * 

ERROR_l <recover last save and adjust stack> 

* * * 
ERROR_2 <check last restore and adjust stack> 

* The first CMPA does {A2 - Al} so Z is set (BEQ) only if A2=Al, 
* meaning that the stack is exactly full. C is set (=borrow) only 
* if Al is higher than A2, meaning that stack pointer is beyond 
* limit. BEQ test alone is inadequate since pushing can 
* decrement A2 by 2 or 4. 
*The second CMPA does {AO - A2}, so BCS means that A2 is 
* higher than AO, hence we have somehow managed to pull more than 
* we pushed! Getting "below" the stack base indicates a 
* programming error, whereas getting "above" the stack limit 
* simply means over-usage. 

Closely associated with CMP and conditional branching is a composite 
instruction called DBcc, which gives the M68000 yet another edge over the 
competition. Let's see why. 

DBcc - TEST cc, DECREMENT, AND BRANCH 

The format is: 

DBcc Dn,<label> Test cc, decrement Dn, conditionally 
branch to <loop> 



218 68000, 68010, and 68020 Primer 

There are three elements to define in OBcc. The first is the cc condition 
code. The cc part is the familiar condition code, as used in Sec, and listed in 
Table 6-4. Thus we find OBEQ, OBHI, etc. The second is the On loop counter. 
On here represents the lower 16-bit word of On, and we call this the loop 
execution counter, or just loop counter, for short. The third element is the 
<label>. This defines the start of the loop we want to execute. As in the long 
version of the Bee, <label> ends up as a 16-bit PC-relative displacement stored 
in an extension word. However, OBcc displacements allow only backward branches 
from OBcc to <label>, a maximum of $7FFE (32,766) bytes. The <label> 
must come before the OBcc. 

DBcc SEQUENCE OF EVENTS 

The sequence of events is as follows: 

If condition cc is true, do not branch but carry on with the next instruction. 

If condition cc is false, decrement word On by 1; that is, On ~ On - 1. 
Now test On. If On = -1 go on to next instruction. If On not = -1 
branch to <label>. 

As the implications start firming up and making sense, OBcc becomes an 
extremely useful composite instruction. A large percentage of assembly language 
programming effort is the tedious job of establishing loop controls, either by 
counting or by condition testing or both. OBcc reduces the tedium by combining 
all the normal looping requirements into one powerful instruction. 

DBcc IN ACTION 

Let's see the simplest count only version of OBcc using OBF (that is to say, 
where cc = F or always false. 

* Program 6-15 DBF: Simple Count Only Loop 

*Perform jobA exactly 24,765 times then rest! 

MOVE.W #24764,DO Set DO to {loop count - 1} 
MORE <jobA program here ... > 

DBF DO,MORE Branch to MORE until DO = -1 
<rest> 

* The first time we meet DBF, condition is false (by definition) 
*so we decrement DO to 24,763 and loop (because DO does not yet 



Miscellaneous M68000 Instructions 219 

*equal -1). If you keep count of this process, you'll discover that 
*the jobA is performed exactly 24,765 times before DO hits -1. 
* At this point we stop looping and "drop through" to the next 
* line marked <rest>. 
* Since jobA is performed once when we first enter the loop, and 
* since we count until DO is -1 we must remember to set loop 
* counter = one less than number of loops needed. 

Using DBF effectively removes the condition testing aspect of DBcc, leaving 
us with the counting element. Even so, if you compare this example to the 
normal non-DBcc counting loop, you will see considerable saving of program
ming effort. 

DBT (with cc = always true) actually exists, but if you follow the sequence 
given above, you will see that 

DBT Dn,<label> 

immediately drops through to the next instruction. So, DBT in effect does 
nothing. It is mentioned only to check your grasp of the logic behind DBcc. If 
you are in any doubt, reread the DBcc sequence of events. 

When we have a "proper" cc condition, like PL (Plus) or CC (Carry Clear), 
the DBcc becomes the equivalent of the DO - UNTIL <condition cc is true> 
construct, much prized in structured programming languages. Within this DO
UNTIL-condition-loop we have a further test: DO - UNTIL <Dn loop counter 
= -1 >, which allows us to set a limit to the number of loop iterations. The 
next two programs should clarify this. 

* Program 6-16 DBMI: Find First Negative Entry in Table 

* A2 points to the base of a table of 100 signed words. 
* Scan the table and place the first negative nonzero entry in 
* lower word of D4. Record its table position (1 - 100) in D5. 
* If no negatives found set D5 to -1 and 04 word = 0. 

CLR.W D4 Clear D4 word 
MOVE.W #99,05 Set DB counter to {100-1} 

SCAN TST.W (A2)+ Is (A2) word negative? 
DBMI D5,SCAN SCAN until (A2) -ve 

or until 100 entries 
tested 

TST.W 05 Is 05 negative (= -1)? 
BMI NOFIND If yes -- all entries +ve 

so branch to NOFIND with 
05 = -1. 



220 68000, 68010, and 68020 Primer 

NOFIND 

MOVE.W 

SUBQ.W 
NEG.W 

-2(A2),D4 

#100,D5 
D5 

<rest of program> 

Save first -ve entry 
in D4 
D5 = D5 - 100 
D5 = -D5 = {100 - counter} 
D5 now= table position 

* TST.W sets Zand N flags according to value of word (A2). 
* CMPI.W #0, (A2)+ would do the same, but takes a few cycles more. 
* Each non-negative number we read (MI = false) will decrement 
* D5 and test for D5 = -1 which signals end of table and NOFIND. 
* The first negative number (MI = true) (if any) takes us out of 
*the loop to TST.W D5. D5 will only be -ve (-1) if whole table 
* was scanned unsuccessfully. If D5 is in the range O - 99, we 
* can calculate the table position of the find from {100 - D5}. 
*NEG.Wis a common trick to get {a - Dn} by negating {Dn - a}. 
*Note the -2(A2) to get at the previous word, since (A2)+. has 
* already advanced A2 to the next word. 

You can use this type of DBcc loop to pick out all kinds of numbers from 
a table. For example: 

SCAN CMPI. W 
DBLE 

* * 

#3000, (A2)+ 
D5,SCAN 

* 
Loop ends if (A2)<=3000 

would locate the first (if any) entry less than or equal to 3000. 
Vciriable length tables or strings can be looped in many ways. You have 

already met the idea of having a unique terminator such as NUL at the end, so 
you test for this within the loop. Another common idea is to have the length 
recorded in a header field at the start of the table or field. As entries or deletions 
are made, you update the header. Let's revamp Program 6-16 to illustrate this 
and a few other tricks. 

* Program 6-17 DBEQ: Find Last Zero Entry in Variable Length Table 

* A2 points to the base of a table. The first word in the table 
* holds the number of signed words which follow. 
* Scan the table and locate the last zero entry. 
* Record its table position in D5. 
* If no zeroes found set D5 to -1. 
* If the table is empty, set D5 = 0 and DO byte = $FF 
* If table not empty set DO byte = o 



SCAN 

NOFIND 

EMPTY 

Miscellaneous M68000 Instructions 221 

MO:vE.W 

SEQ 

BEQ 
MOVE.W 
ASL.W 
ADDA.W 

SUBQ.W 
TST.W 
DBEQ 

TST.W 
BM! 

ADDQ.W 

(A2)+,D5 

DO 

EMPTY 
D5,D4 
#1,D4 
D4,A2 

#1,D5 
-(A2) 
D5,SCAN 

D5 
NOFIND 

#1,D5 

<rest of program> 

* * * 

D5 = number of entries 
A2 now ~ first entry 
DO byte set to "remember" 
if table empty or not 
Table is bare! D5 = O! 
D4 = number entries also 
D4 x 2 = bytes in table 
A2 now ~ beyond last 
entry 
Set DB counter = {D5 - 1} 
Is (A2) word zero? 
SCAN until (A2) = 0 
or until 100 entries 
tested 
Is D5 negative (= -1)? 
If yes - NO entries = O 
so branch to NOFIND with 
D5 = -1. 
05 = 05 + 1 
D5 now= table position 

<bypass - no entries in table> 

* SEQ DO tests the CCR after MOVE to D5. If D5 = 0 (EQ is TRUE) 
*we set DO byte to l's ($FF). If D5 <> 0, SEQ clears DO. Later 
* in the program, long after A2, D5 and CCR may have changed, we 
* can refer to DO which "remembers" the SEQ result. 
* Note the use of -(A2) to scan a table from the end. We 
* were careful to advance the pointer A2 to 1 word beyond the 
* last entry before entering the SCAN loop. We had to double the 
* number of words in the table to get the correct byte offset to 
* A2. As in Program 6-16 we set the loop counter D5 to one less 
* than the maximum number of iterations needed. 

DBcc - GENERAL COMMENTS 

We can only give you a brief glimpse at the rich possibilities of the DBcc family 
of instructions, so we conclude with a few general comments. 

• The value remaining in the loop counter Dn when we exit the DBcc 
loop is useful, as shown in the last two programs. It tells us when and 
why the loop terminated. 



222 68000, 68010, and 68020 Primer 

• You can often use the loop counter On within the loop as an index 
register that is automatically decrementing for you. 

• Sometimes you may want to branch directly to the DBcc line, rather 
than enter the loop from the top as we have done in our two examples. 
For example: 

MOVE.W #<counter>,Dn Set loop counter 
BRA TEST Branch to DBcc line 

* * * 
LOOP <loop program> 

* * * 
TEST DBcc Dn,LOOP 

This is perfectly valid, provided you watch the initial value for #<counter>. 
It is easy to get the wrong number of iterations. In fact, in the above example 
#<counter> needs to be set to the exact number of loops needed, rather 
than {loops - l}. 

• With care, you can modify On during a loop, thereby curtailing (de
crease On) or prolonging (increase On) the loop. 

• The MC68010 has a special loop mode for DBcc that alters these
quence of testing/decrementing without affecting the overall function. 
Howevet; the execution speed of small loops is increased by holding 
the DBcc instruction and its displacement in a two-word pre-fetch 
queue, thus reducing the number of memory accesses. 

MISCELLANEOUS MATH 

We have seen the four basic M68000 mathematical operators, ADD, SUB, 
MULU/MULS, and DIVU/DIVS, and some of their simple variants (like ADDQ, 
ADDI, ADDA, etc.). We now look at the remaining instructions which perform 
various arithmetical functions. 

NEG-NEGATE 

We used NEG in an earlier example without too much explanation. In fact, 

NEG.z <adea> Negate destination operand 



Miscellaneous M68000 Instructions 223 

simply replaces the destination <adea> with its 2's complement negative, 
namely {O - <adea>}, using z = L, W, or B to stipulate which part of the 
operand is involved. The destination must be <alterable data effective address>, 
which, as you now must realize, excludes An, d(PC), d(PC,Xi) and Immediate. 

If DO contains $12345678, then 

NEG.L DO gives DO = $EDCBA988 (32 bits negated) 
NEG. W DO gives DO = $1234A988 (lower 16 bits negated, rest 
unchanged) 
NEG.B DO gives DO = $12345688 (lower 8 bits negated, rest unchanged) 

An excellent reason for keeping NEG in mind is that you cannot write 

SUBI.z Dn,#<data> 

to calculate {#<data> - Dn}. But 

SUBI.z 
NEG.z 

#<data>,Dn 
Dn 

achieves the same end legally. 

ILLEGAL 

Dn = Dn - #<data> 
Dn = -Dn 

Note also, that you sometimes want {Dm -Dn} without altering the value 
of Dm. SUB.z Dn,Dm gets you {Dm - Dn} but you lose Dm. So why not do 
SUB.z Dm,Dn followed by NEG.z Dn? 

Another use for NEG is after a Sec to convert TRUE = $FF to TRUE = 

1, which is sometimes more convenient: 

Sec <adea> 

NEG.B <adea> 

Set byte <adea> to $FF if true 
Set byte <adea> to $00 if false 
Set byte to 1 if true 
Byte remains O if false 

NEG changes the CCR, predictably, just like SUB - although the flags 
are less informative: 

X Set equal to C 
N Set if result is negative 
Z Set if result is zero 
V Set if overflow 
C Set if a borrow generated (always the case unless operand is zero) 



224 68000, 68010, and 68020 Primer 

EXT - SIGN EXTEND 

On many occasions we have observed that the M68000 automatically sign-bit 
extends a register or displacement from 16 to 32 bits, for example. The EXT 
instruction allows the programmer to perform this trick on a data register in two 
different ways: 

EXT.W Dn 

EXT.L Dn 

Sign-bit extend from byte to word of Dn 
i.e. copy bit 7 of Dn into bits 8 through 15 

Sign-bit extend from word to longword of Dn 
i.e. copy bit 15 of Dn into bits 16 through 31 

If DO = $12348765, then after 

EXT.W 
EXT.L 

DO 
DO 

DO = $12340065 
DO = $FFFF8765 

since bit 7 = 0 and bit 15 = 1. 
EXT is useful in preserving signs when you change data sizes during a 

program. It is sometimes easy to forget that if you have a negative number in, 
say, DO byte, and then write: 

MOVE.B DO,Dl 

only the lower byte of Dl is "negative." Later in the program you might have 
one of the following: 

ADD.W Dl,D3 
ADD.L Dl,D3 

which \.\IOUld give incorrect results. The use of EXT solves this: 

MOVE.B DO,Dl 
EXT.W D1 Dl word now signed correctly 
ADD.W Dl,D3 

or 

MOVE.B DO,Dl 
EXT.W D1 Dl word signed like Dl byte 



Miscellaneous M68000 Instructions 225 

EXT.L D1 Dl longword signed correctly 
ADD.L Dl,03 

EXT changes the CCR like a MOVE: 

X Unchanged 
N Set if result negative 
Z Set if result zero 
V Always cleared to 0 
C Always cleared to 0 

MULTI-PRECISION MATH 

In this section we will be using the word extend in an entirely different sense -
not as in sign-extend - but as a way of gaining an extra significant 9th, 17th, 
or 33rd bit to extend the accuracy of our sums. 

THE ROLE OF THE X FLAG 

So far, we have only hinted at what the X flag in the CCR is meant to do, and 
why it sometimes changes like the C flag, and sometimes remains unaltered. 
We have seen the X flag acting as an "extra" bit beyond the usual MSB (Most 
Significant Bit) of a register. In the ROXL (ROtate Left with eXtend), for example, 
we saw bytes rotating in a 9-bit field via the X flag, words rotating in a 17-bit 
field, and longwords rotating in a 33-bit field. We need some new instructions 
to explain the mysterious X flag. 

EXTENDED ARITHMETIC INSTRUCTIONS 

We now introduce three extended instructions, ADDX, SUBX, and NEGX, 
which use the X flag numerically, allowing carries and borrows from previous 
calculations to be incorporated in multiregister arithmetic. 

ADDX.z Dm,Dn Add {Dm + Dn + X flag}. Put SUM in Dn 
ADDX.z -(Am),-(An) Add {source+ destination+ X flag} 

Put SUM in destination 



226 68000, 68010, and 68020 Primer 

SUBX.z Dm,Dn {Dn - Dm - X flag} replaces Dn 
SUBX.z -(Am),-(An) {destination - source - X flag} 

replaces destination 

NEGX <adea> {O - <adea> - X flag} replaces <adea> 

In the examples that follow it should be remembered that in all cases when 
we get carry or borrow during arithmetical operations, the X and C flags both 
get set to 1. The M68000 rules for CCR changes are carefully arranged so that 
certain instructions, such as MOVE, clear the C flag but keep the X flag un
changed. The X flag, as it were, "remembers" a carry or borrow until we are 
ready to use ADDX or SUBX, which may be several lines later. Let's add two 
64-bit unsigned numbers together to illustrate these points. When we deal with 
numbers over 32 bits on the M68000, we are talking multi-precision math. 

* Program 6-18 ADDX: Adding 64-bit unsigned numbers 

* Each 64-bit unsigned number takes 2 data registers. 
*Number A= {DO}{Dl} and Number B = {D2}{D3} 
* DO is most significant 32 bits of A, and so on. 
* The sum A+ B to be placed in {D4}{D5} 
*CCR to reflect value of the 64-bit result e.g. C=X=l if 64-bit 
* carry; Z=l if 64-bit result is O etc. 

MOVE.L Dl,D5 
MOVE.L DO,D4 
ADD.L D3,D5 
<any moves here: 
ADDX.L D2,D4 

05 = Dl + 03; carry = X 
X unchanged, C cleared> 

04 = DO + 02 + X 
where X is previous carry from 05 
ADDX will create a new X 

* A+ B now in {D4}{D5}. CCR will reflect any carry from D4. 
* But what will the z flag represent? What if 04=0 but 05<>0? 
* The next section will answer this question. 

EXTENDED ARITHMETIC AND THE CCR 

In the following discussion, when we refer to ADDX we include SUBX and 
NEGX too - the CCR quirks are identical. 

In the last program example, the final ADDX behaves very much like a 
normal ADD with the previous X (1or0) thrown in. An X carry of 1 actually 
represents 232 (bit 33). The resulting sum in D4 happens to represent the "top" 
half of a 64-bit result, because we planned it that way. The processor is, of 



Miscellaneous M68000 Instructions 227 

course, unaware of our interpretation and ADDX.L will change the CCR on the 
basis of the 32-bit addition {DO + D2 + X}. If there is carry from this we will 
find it in both the C and X flags (the previous Xis lost but we have no further 
use for it). The new X may be useful - its value is 264 - and maybe we want 
to create an 80-bit, 96-bit, or even 128-bit sum from this and other 64-bit 
results. If so, we are free to engage in a variety of MOVEs and SWAPs knowing 
that X is safe. Again, this underlines the importance of knowing how the CCR 
flags change with each instruction. 

So ADDX sets X = C like ADD. To cope with multi-precision signed 
numbers, ADDX also sets N and V like ADD. 

THE Z FLAG QUIRK 

But for the Z (Zero) flag we need a subtle twist. A nonzero result from ADDX 
will CLEAR Z, as normal, but a zero result from ADDX leaves Z unchanged, 
which is abnormal. Since there is always a reason for a Motorola quirk, let's look 
for it. 

Going back to the last program example, suppose that the final ADDX.L 
D2,D4 gave a zero result- which is quite possible. (DO and D2 can both be 
zero, and Dl + D3 need not produce a carry.) Under normal ADD conditions, 
D4 = 0 would set Z = 1, leading us to believe that our 64-bit sum, A + B, 
was zero. Clearly, we cannot decide whether A + B is zero simply by looking 
at the top 32 bits of our 64-bit answer. So, ADDX is designed to clear Z if the 
sum is nonzero, and leave Z alone if the sum is zero. In our example, then, if 
D4 were zero, the Z flag would reflect the sum formed in D5, the lower 32 bits. 
Z = 1 would correctly imply that the entire 64-bit result was zero. Z = 0 would 
mean that either D4 or D5 or both were nonzero. 

Now you know why. One important consequence of this quirk is that you 
should make sure that Z = 1 (bit 2 of CCR) and X = 0 (bit 4 of CCR) before 
embarking on a multi-precision calculation involving successive ADDX's. Since 
4 = 00000100, a neat way to do this is 

MOVE.W #4,CCR 

We now show SUBX in action, subtracting 64-bit numbers. 

* Program 6-19 SUBX: Subtracting 64-bit Unsigned Numbers 

* Initial data as in Program 6-18 
* Each 64-bit unsigned number takes 2 data registers. 
* Number A= {DO}{Dl} and Number B = {D2}{D3}. 
* DO is most-significant 32 bits of A, and so on. 



228 68000, 68010, and 68020 Primer 

* The difference A - B to be placed in {D4}{D5}. 
*CCR to reflect value of the 64-bit result e.g. C=X=l if 64-bit 
* borrow; Z=l if 64-bit result is O etc. 

MOVE.L Dl,D5 
MOVE.L DO,D4 
SUB.L D3,D5 05 = Dl - D3; borrow= x 
<any moves here leave X unchanged> 
SUBX.L D2,D4 04 = DO - 02 - X 

where X is previous borrow from D5 

* A - B now in {D4}{D5}. CCR will reflect any borrow from D4. 
* z flag reflects value of {D4}{D5} not just {D4}. 
* Note that the borrowed X is subtracted. 

MULTI-PRECISION MULTIPLICATION 

Our normal MC68000 MULU/MULS allow us to multiply two 16-bit values to 
give a 32-bit answer. The MC68020 offers L versions, which provide 32-bit x 
32-bit = 64-bit products with one instruction. (Division, too, has been ex
tended.) The MC68881 math coprocessor takes us way beyond this with 80-
bit floating-point operations. On the "lesser" M68000 models you have to 
program these extensions, but with ADDX and SUBX it is not too difficult We 
will briefly outline the steps needed to multiply two longwords, A and B, to get 
a 64-bit product Suppose A = (wordl)(word2) and B = (word3)(word4). We 
first need four 16 x 16 = 32-bit products using MULU or MULS. 

1. (word2) x (word4) = 32-bit (prodll) (prodl2) 
2. (wordl) x (word4) = (prod21) (prod22) 
3. (word2) x (word3) = (prod31) (prod32) 
4. (wordl) x (word3) = (prod41) (prod42) 

where each (prod) is 16-bit So far, we have no carries to worry about! 
As in second grade, you can imagine these (prods) set out ready to be 

added column by column from right to left: 

(prodll) (prodl2) 
(prod21) (prod22) + 
(prod31) (prod32) + 

(prod41) (prod42) + 

(sum 4) (sum 3) (sum 2) (sum 1) 



Miscellaneous M68000 Instructions 229 

where each sum is 16 bits: 

sum 1 = prodl2 
sum 2 = prodll + prod22 + prod32 with CARRY Xl 
sum 3 = prod21 + prod31 + prod42 + Xl with CARRY X2 
sum 4 = prod41 + X2 with CARRY X3 

With judicious use of ADDX, SWAP, and ASL, you finally get the product in 
two longwords. 

EXTENDED MATH WITH MEMORY OPERANDS 

So far, we have not used the 

ADDX.z -(Am),-(An) 

format, and you may have wondered why this strange option is offered. A glance 
at our multi-precision multiplication example above may offer a clue. If the 
various 16-bit or 32-bit components are stored suitably in memory, it turns out 
that a great deal of register shuffling can be avoided by ADDXing directly in 
memory while the pre-decrement automatically steps the address pointer through 
your list of operands. 

BINARY CODED DECIMAL 

The M68000 supports a data type known as BCD (Binary Coded Decimal). 
For certain jobs, especially financial calculations with large numbers, the vagaries 
of binary-decimal conversion inherent in the normal binary data types can be 
a problem, even with high-precision floating-point facilities. The BCD solution 
is at the expense of memory and speed, but it keeps and manipulates all 
numbers in exact decimal format, using a whole nibble (4 bits) to encode one 
decimal digit. Since 4 bits can encode unsigned numbers 0 through 15, and 
we need to encode only 0 through 9, you can already see the inherent inefficiency 
in BCD (see Chapter 1). 

We handle BCDs with instructions rather similar in format to the ADDX, 
SUBX, and NEGX of the previous section. 

ABCD.B Dm,Dn Add {Dm byte+ Dn byte + x flag}. Put SUM in Dn 
ABCD.B -(Am),-(An) Add {source byte+ destination byte+ X flag} 

Put SUM in destination 



230 68000, 68010, and 68020 Primer 

SBCO.B Om,On 
SBCD.B -(Am),-(An) 

NBCD.B <adea> 

{On byte - Om byte - X flag} replaces On 
{destination - source - X flag} 

replaces destination 

{O - <adea> - X flag} replaces <adea> 

The first point to note is that all BCD operations are on bytes, which means 
we can add, subtract, or negate two decimal numbers with a single instruction. 
Most assemblers will default to a data size code B, but we will use it as a 
reminder. The BCD numbers we want to handle are usually packed 4 per word 
or 8 per longword. Longer sequences are best considered as strings of bytes, 
and this explains the -(Am),-(An) operand option, already seen with ADDX/ 
SUBX. Suppose we want to store the decimal number 564 728 in memory with 
pointer AO. This 3-byte (6-nibble) BCD string would look like this: 

BCD String A = 564728 

Byte Address 

AO 
AO+l 
A0+2 

Byte Stored 

(0101) (0110) 
(0100) (0111) 
(0010) (1000) 

Decimal Equivalent 

( 5) ( 6) Most significant 
(4) (7) 
(2) (8) Least significant 

Note the sequence of nibble within byte and byte within string. The lesser 
significant digits are higher in memory, so if we set our pointer just beyond the 
end of this string (at AO + 3), the pre-decrement format of ABCD will automat
ically sum with decimal carry in the correct arithmetical sequence, adding 28, 
then 47, then 56 to another designated destination BCD string. 

BCD OPERATIONS AND THE CCR 

Since the X carry is added as with ADDX, our previous discussion and caveats 
regarding the CCR apply - in particular the Z flag quirk (clear Z if result 
nonzero but leave Z unchanged if result is zero) is in force. The X carry is 1 or 
0, but remember the 1 is a decimal carry representing 100 being carried over 
from the lower BCD byte (the range of which is 00 through 99). It is especially 
important to clear X and set Z = 1 before any BCD work. 

Some differences in CCR handling between ADDX and ABCD arise from 
the fact that BCD bytes are essentially unsigned, at least they are not 2's 
complement format, so the N and V flags are of no value and remain undefined 
during all BCD operations. 



Miscellaneous M68000 Instructions 231 

BCD CCR SUMMARY 

X Set equal to C 
N Undefined 
Z Cleared if result is nonzero else unchanged 
V Undefined 
C Set if a decimal carry/borrow 

ADDING BCD STRINGS IN MEMORY 

Let's set up another BCD string called String B, and then write a program to 
add our earlier String A to B: 

BCD String 8 = 390112 

Byte Address 

Al 
Al+l 
A1+2 

Byte Stored 

(0011) (1001) 
(0000) (0001) 
(0001) (0010) 

Decimal Equivalent 

(3) (9) Most significant 
(0) (1) 
(1) (2) Least significant 

* Program 6-20 ABCD: Adding BCD Strings in Memory 

* AO and Al point to top (MSD) of 3-byte BCD strings A and B 
* Add A to B, place BCD sum in string B. Signal any carry 
* 11 error. 11 i. e. if sum exceeds 999999. 

MOVE.W 
MOVEQ.W 
ADDQ.W 
ADDQ.W 

LOOP ABCD.B 
DBF 
BCS 

#4,CCR 
#2,DO 
#3,AO 
#3,Al 
-(AO),-(Al) 
DO, LOOP 
ERROR 

Set X=O and Z=l before all BCD ops 
Set DBcc counter for 3 iterations 
Set A pointer beyond end of string 
Set B pointer beyond end of string 
Add {A byte + X} to B byte 
Loop three times 
Branch if carry 

<rest of program> 

* * * 
ERROR <take appropriate action> 
* String B would now contain 954840: 

* Al 
* Al+l 
* A1+2 

(1001) (0101) 
(0100) (1000) 
(0100) (0000) 

(9) (5) Most significant 
(4) (8) 

(4) (0) Least significant 



232 68000, 68010, and 68020 Primer 

* The CCR would have X = C = 0, Z = 0. AO and Al would be restored 
* to their original vaiues. 

NEGATIVE BCD NUMBERS 

The NBCD instruction simplifies the handling of negative BCD values, but since 
we have no N flag, the X and C flags must be watched with care to get your 
sums right NBCD normally forms the lO's complement of the byte operand {O 
- <adea> }, but if there is an X = 1 from the previous operation, that X = 1 is 
also subtracted, {0- <adea> - 1} to give the 9's complement. 

This allows a BCD string to be negated (sign-reversed) correctly, as the 
next example shows. 

* Program 6-21 NBCD: Negate a BCD String in Memory 

* With the same data as Program 6-20, 
*negative (lO's complement). 

replace string A with its 

* BCD string A = 564728: 
* AO (0101) (0110) (5) (6) Most significant 

(4) (7) * AO+l (0100) (0111) 
* A0+2 (0010) (1000) (2) (8) Least significant 

MOVE.W 
MOVEQ.W 
ADDQ.W 

LOOP NBCD.B 
DBF 

* * 

#4,CCR 
#2,DO 
#3,AO 
-(AO) 
DO, LOOP 

* 

Set X=O and Z=l before all BCD ops 
Set DBcc counter for 3 iterations 
Set A pointer beyond end of string 
{O - BCD byte - X} to -(AO) 
Loop three times 

* String A now contains 435272 the lO's complement of 564728 
* AO (0100) (0011) (4) (3) Most significant 
* AO+l (0101) (0010) (5) (2) 
* A0+2 (0111) (0010) (7) (2) Least significant 

* The CCR would have X = C = 1, Z = 0. AO would be restored 
* to its original value. 

X = 0 before the lowest byte is negated, so we get {O - 28} = 72 with 
borrow, then Xis set to 1. Therefore the next negate gives {0- 47 - 1} = 52 
with X = 1, and so on. I~ later in the program, you look at string A, all you see 
is 435272. Is this plus or minus? Unless you have taken precautions, 435272 
looks just as positive as the 564 728 which we negated. Well, there are many 
solutions, but they have to be programmed- they are not built-in for you. One 



Miscellaneous M68000 Instructions 233 

method is to append a sign byte to each BCD string, possibly using the ASCII 
plus and minus symbols, and always store the absolute value in the BCD string. 

As a final example to underline the mechanics of BCD, lets subtract 2 BCD 
bytes that are assumed to be positive and are held in data registers. 

* Program 6-22 SBCD: Subtracting BCD Numbers 

* Given two +ve BCD bytes in DO and Dl, calculate DO - Dl. 
* If positive set Dl =DO - Dl with (Al) byte = ASCII "+" 
* If negative set D1 = D1 - DO with (Al) byte = ASCII 11 - 11 

MOVE.W #4,CCR 
SBCD.B Dl,DO 
BCS NEG 
MOVE.B #$2B, (Al) 
BRA REST 

NEG ANDI.B #$EF,CCR 
NBCD.B DO 
MOVE. B #$2D, (Al) 

REST <rest of program> 

* * * 

Set Z=l, X=O 
Put BCD {DO - Dl} in DO 
If C=l branch to NEG 
Set ASCII "+" in (Al) 

Set X=O (rest of CCR unchanged) 
Negate BCD in DO byte 
Set ASCII 11 - 11 in (Al) 

To get the absolute value of a negative BCD byte DO, we must clear X 
before the NBCD. For example, suppose Dl = (0000)(0010) and DO = 
(0000)(0001), that is, Dl = 2, DO= 1, and DO - Dl = - 1. Then BCD {DO -
Dl} = (1001)(1001) with X= 1. NBCD with X= 1 would give DO = {0-99 
- l} = 0 wrong. NBCD with X = 0 would give DO = {O - 99} = 1 correct 

MISCELLANEOUS DATA HANDLING 

There are five instructions under this heading, ranging from very simple to rather 
abstruse: 

SWAP{. W} Dn Swap register halves 

EXG{.L} Rm,Rn Exchange registers 

MOVEP.Z Dm,d(An) Move peripheral data -- output 
MOVEP.Z d(An) ,Dm Move peripheral data -- input 

LINK An,#<. -block_size> Link & allocate stack 
UNLK An Unlink & deallocate 

In these instructions, Z = L or W. 



234 68000, 68010, and 68020 Primer 

SWAP REGISTER HALVES 

SWAP On simply reverses the upper and lower words of any data register - so 
that bits 0 through 15 move to bits 16 through 31 and vice versa. 

Example of SWAP 

Suppose we have DO = $ABCDEF12 and we need to MOVE just the upper 
word $ABCD to 06. We would first use: 

SWAP DO DO upper = $EF12. DO lower = $ABCD 

giving us DO = $EF12ABCD. Now we can use: 

MOVE.W D6 D6 word = $ABCD 

Anally, we may wish to restore DO with another SWAP: 

SWAP DO DO upper = $ABCD. DO lower = $EF12 

In effect SWAP acts like a 16-bit rotate (left or right) - but SWAP is much 
faster. Also, SWAP and rotate (ROR/ROL) have slightly different CCR rules. The 
CCR changes for SWAP are exactly the same as for MOVE: 

X Unchanged (hence useful during multi-precision jobs) 
N Set to 1 if new bit 31 = 1, cleared to 0 otherwise 
Z Set to 1 if new long word is zero, cleared otherwise (So, in 

truth, Z doesn't change. But you may still want to test for 
zero.) 

V Always cleared to 0 
C Always cleared to 0 

ROR/ROL differ in setting the C flag as the bits are rotated. 

EXG - EXCHANGE REGISTERS 

EXG{.L} Rm,Rn works with any mix of data and address registers (any of the 
following, for example): 

EXG{.L} Dm,Dn 
EXG{.L} Dm,An 
EXG{.L} Am,An 

Contents of Dm moved to Dn and vice versa 
Same as EXG An,Dm 



Miscellaneous M68000 Instructions 235 

The L is optional, since EXG implies long\OOrd. (All 32 bits are always exchanged.) 
All forms are useful, insofar as they are equivalent to the following three 

MOVEs: 

MOVE.L Rm,Rx 
MOVE.L Rn,Rm 
MOVE.L Rx,Rn 

without your having to use a third register Rx as a go-between. 

MOVEP - MOVE PERIPHERAL DATA 

MOVEP is a specialized version of MOVE introduced to simplify interfacing with 
the previous generation of 8-bit devices (which are still, of course, being used). 

Although Motorola blazed many new trails with the M68000 family, they 
made the sensible decision to incorporate features that would maintain com
patibility with peripherals and 1/0 support chips designed for 8-bit processors, 
especially their own M6800 family. 

We have already mentioned the fact that the M68000 can interface with 
both high-speed 16-bit asynchronous devices as well as slower, usually 8-bit, 
synchronous peripherals. 

The MOVEP instruction is aimed at easing the programming effort in 
transferring 8-bit bytes in ''bursts'' between data registers and 1/0 devices. The 
M68000 uses memory-mapped 110 which, for our present purposes, simply 
means that you can address peripheral ports as if they were memory addresses. · 
In place of the special 1/0 instructions you find with some systems, the M68000 
can perform I/O with MOVE and the appropriate memory operands (with, of 
course, a little help from the many friendly device controllers that interface disks, 
printers, terminals, and so on). 

Because 8-bit peripherals are best attached either to the high eight lines or 
to the low eight lines of the M68000 16-bit system data bus, their control 
registers "occupy" alternate byte addresses in the M68000 memory address 
space, consecutive odd byte addresses or consecutive even byte addresses. 

In sending data and control to such peripheral registers, therefore, the 
normal MOVE would require rather peculiar address changes. The (An) + and 
-(An) modes, for instance, work fine for contiguous memory transfers, but a 
typical 1/0 transfer may require the following: DO contains 
(byte4)(byte3)(byte2)(bytel). To output DO to 8-bit port address AO would 
need: 

MOVE byte4 to address AO 

MOVE byte3 to address AO+ 2 



236 68000, 68010, and 68020 Primer 

MOVE byte2 to address AO+ 4 
MOVE bytel to address AO+ 6 

(Note the sequence - high bytes in low addresses.) Without MOVEP, this 
could be achieved in many ways, all quite tedious, for example: 

MOVE.B DO, 6 (AO) 
ROR.L #8,DO Rotate byte2 to lower byte 

position 
MOVE.B DO, 4 (AO) 
ROR.L #8,DO Rotate byte3 to lower byte 

position 
MOVE.B D0,2(A0) 
ROR.L #8,DO Rotate byte4 to lower byte 

position 
MOVE.B DO, (AO) 

The MOVEP gives a one-line solution: 

MOVEP.L DO,O(AO) Output DO to (AO) ... (A0+6) 

MOVEP achieves this by applying its own built-in rules for post-incre
menting addresses. MOVEP moves bytes starting from the top of DO, then post
incrementing by 2. 

If we look at the MOVEP formats for output, 

MOVEP.L Dm,d(An) 

MOVEP.W Dm,d(An) 

Move 4 bytes from Dm to alternating I/O byte 
addresses starting at d(An) 

As above but move 2 bytes 

we see that L or W dictates the number of bytes, and that the destination must 
be address register indirect with offset, which is used to specify the starting 
address for the transfer. 

Motorola had an excellent reason for choosing d(An) as the operand. 
Typically, an area of memory will be designated for 1/0 addressing. An address 
register would be set to point to the base of this area, and symbolic (mnemonic) 
offsets would be assigned in the assembly source to distinguish the peripheral 
register addresses within the 1/0 memory map. For example, you may find: 

MOVEP.W D3,PIAD(A5) 



Miscellaneous M68000 Instructions 237 

where AS is pointing to the 1/0 memory base, and PIAD is the offset from AS 
for the address assigned to a Motorola 6821 PIA (Peripheral Interface Adapter). 
In large systems, such mnemonic tags are indispensable. 

Figure 6-lS shows the various possible sequences of data-byte to byte
addresses. The precise details are not as important as the general understanding 
that by choice of Lor W with odd or even starting address d(An), the one 
MOVEP can quickly transfer bytes to load the correct upper or lower 8 bits of 
the data bus. 

The reverse procedure provides input from peripherals to any data register: 

MOVEP.Z d(An) ,Dm Load Dm with 2 or 4 bytes from 
alternating 1/0 byte addresses starting d(An) 

Input with MOVEP works exactly like output but in the· opposite direction -
from alternating 1/0 byte addresses to the chosen data register. This symmetry 
in the coding formats for input and output is yet another M68000 programmer
befriending feature. 

Finally, note that MOVEP does not affect the CCR flags, which is quite 
sensible if you think about it. You are simply sending or receiving a series of 
bytes, and there are no reasonable criteria for changing the CCR. 

MOVEP - SUMMARY 

MOVEP simplifies the transfer of data to and from byte-oriented 1/0 devices by 
automatically incrementing the operand addresses by 2 for each byte transferred. 
This allows the 16-bit data bus to be assigned to two separate 8-bit 1/0 ports. 

The final, and most complex, instructions in this group of miscellaneous 
data movement operations, LINK/UNLK (Link/Unlink), require a little preamble. 

LINK/UNLK- PREAMBLE 

LINK/UNLK requires a thorough understanding of the stack, so we will recap 
the salient features of the stack concept. 

In Chapter S we saw how the stack could be used for saving data and 
contexts during programs and subroutine calls. In particular, we saw that the 
stack holds the return address needed to guide a subroutine back to the place 
it was called from. The success of the stack as a preserver of data lies in the 
LIFO (Last In First Out) mechanism - so that as you push data on, and pull 



238 68000, 68010, and 68020 Primer 

Longword MOVEP even address 

... --..... r 2N 
i---.......,f-----r 

2N+2 -------hi low 
2N+4 ______ _,,.. 

2N+6 

Longword MOVEP odd address 
2N+l 

Word MOVEP even address 

Register 

-- I j ~·---~·P 2Ni--...;;;...;.-+----~ 
I I 2N+2 
hi low 

Word MOVEP odd address 
2N+l 

hi low 

Fig. 6-15 MOVEP.Z Dm,d(An) and MOVEP.Z d(An),Dm 



Miscellaneous M68000 Instructions 239 

data from the stack, the stack is kept tidy without your having to worry unduly 
about memory addresses. The one address pointer, namely SP = A7, keeps 
track of where you are. SP always points to the last word saved on the stack. 

There are many situations, howevei; where subroutines generate temporary 
or intermediate data, then call further sub-subroutines, and so on. When you 
get to several levels of what we call nested subroutines it can become a pro
grammer's nightmare keeping track of each subroutine's temporary data loca
tions. The natural place to hold each subroutine's data is on the stack itself, 
provided we can access and manipulate such areas without disturbing our 
normal stack processes. In particular, we must never lose a subroutine's return 
address. 

So fai; we have simply pushed and pulled items to and from the top of the 
stack with MOVE.z Dn,-(SP) and MOVE.z (SP)+ ,On but there is no law against 
your delving into other parts of the stack if you want to. You can treat the stack 
just like any other portion of memory using the stack pointer, SP ( =A7), just as 
you would any other address pointer. You are completely free to use SP ( = A 7) 
with displacements and indexes in order to access and change stack data, as 
long as you observe two rules: 

1. Never alter the subroutine's return address (which was pushed on the stack 
automatically by your BSR (Branch SubRoutine) or JSR (Jump SubRoutine). 

2. Make sure that when the RTS (ReTurn from Subroutine) comes along, the 
value in SP is back to its correct value - because RTS will try to pull the 
return address from the top of the stack. If SP is not pointing at the right 
part of the stack, RTS will not recover the subroutine's return address, and 
chaos will reign. 

The idea behind LINK/UNLK is to help the programmer in allocating data areas 
on the stack for any sequence of nested subroutines without violating these rules 
- well, at least, they reduce the risk. 

We'll take you through the LINK/UNLK sequences. It will probably take 
several· passes before all is clear. 

THE STACK AS A DATA AREA - USING LINK AND 
UNLK 

The LINK and UNLK instructions allow you to allocate and deallocate temporary 
data areas, known as frames, during nested subroutines without losing any 
earlier items saved on the stack, such as register values, CCR flags, and return 
addresses. The LINK/UNLK mechanism also helps you keep track of all previous 
frames set up by earlier subroutines. 



240 68000, 68010, and 68020 Primer 

WHAT IS A FRAMB 

A frame is nothing more nor less than a portion of memory in a stack, assigned 
to any subroutine that needs working memory space. The maximum size of 
each frame is 32K bytes - but the total number of frames you assign is limited 
only by your pocketbook (how much RAM you have). Each subroutine that 
uses a LINK instruction will acquire its own unique frame. This frame remains 
on the stack until UNLK clears it. If, say, you have four nested subroutines, each 
using LINK, you would have four separate frames of data in your stack when 
the fourth subroutine is running. When a subroutine is completed it relinquishes 
or deallocates its frame before returning control to the previous subroutine. 

LINK - Allocates a frame on the stack. 

UNLK- Deallocates (removes) the frame from the stack. 

The basic idea is that an address register (other than SP = A7) is assigned 
the job of FP (Frame Pointer). During a subroutine, you can manipulate the 
frame data using FP with any of the available address modes. The rest of the 
stack is undisturbed (as long as you keep within the frame). Look upon the FP 
as an address pointer to frame data located within a stack. 

With this background, let's see how LINK is set up. The general format for 
LINK is: 

LINK An,#<-block_size> 

where An, the designated FP (Frame Pointer), can be any address register 
except A7 (because A7 is your Stack Pointer). Once you designate an An as 
FP, you must use that chosen An for all subsequent LINK/UNLK operations. 
We will see that the address stored in An is changed as we move from one 
subroutine to another, so that it always gives us the correct FP for the active 
subroutine's frame. 

The size of the frame in bytes is indicated by #<- block_size>. The 
negative sign in <- block_size> is needed because our stacks grow downwards 
in memory. Block_size is a 16-bit signed number (one extension word in the 
LINK instruction), so the maximum frame allowed is 32K bytes. Block_size 
must be an even number of bytes. 

To achieve all that we have indicated, LINK performs the following three 
functions. We'll run them by you quickly, then elaborate the why's and wherefore's. 

1. Save An on stack with a MOVE.L An,-(SP). The previous FP=An is now 
safe on the stack. 



Miscellaneous M68000 Instructions 241 

2. Save new value of SP in An with a MOVEA.L A7,An. Note A7 = SP. 
An is now our new, current FP. 

3. Reset SP to {SP minus block_size}. This increases the stack size by 
<block_ size> bytes. Our new frame of block_size bytes occupies memory 
addresses from An = FP to SP. 

Let us go through LINK step by step, referring to Figures 6-16, 6-17, and 
6-18. 

Suppose we are executing subroutine A, and A5 holds the FP value for 
Subroutine A's frame. The contents of A's frame are not of immediate interest, 
except to note that the stack has grown (SP reducing) since A was first called. 

Next, suppose that subroutine A reaches a BSR, which calls subroutine B. 
As you know, this immediately pushes B's return address on the stack. 

B is now about to execute, and we may first want to save the CCR and 
some other registers on the stack. If so, we can push them on the stack in the 
usual way, and they will be safe there until B returns control back to A 

Assuming B needs S12 bytes of working memory (tables, buffers, etc), the 
next instruction in B would be: 

LINK A5,#-512 Link via A5 with 512 bytes 

This one line, in effect, performs these three operations: 

MOVE.L A5,-(SP) Save subroutine A's FP on stack 

(We push current FP = AS on the stack because AS changes during LINK and 
we will need to restore it later when we UNLK.) 

MOVEA.L {A7=SP}, A5 A5 is now subroutine B's FP 

(After step 1, SP is left pointing at A's FP on the stack. This part of the stack 
will become the start of B's frame, so we save SP in AS as B's FP.) 

ADDQ.L #-512,SP 

(Adding minus S12 to SP is the same as increasing the stack by S12 bytes. 
Between B's FP and the new SP we have allocated S12 bytes for use by B. 
Any subsequent pushes/pulls during subroutine B will take place on the enlarged 
stack beyond this allocated data area. We can use AS = B's FP to reference 
any part of the Sl2-byte frame without altering SP; likewise we can push/pull 
the stack using SP without altering B's frame.) 



242 68000, 68010, and 68020 Primer 

ourjng Subroutine A 

(USP) A7 Address of top of A's stack 

A's stack area 

AS A's Frame Pointer 

Subroutine A Now Calls Subroutine B 

Return address 

A's stack area 
AS A's Frame Pointer 

Subroutine B Now Poes LINK AS. #·512 

Step 1 of LINK 
(3 steps) 

Push AS on stack 

USP : A7 A's top - 8 = B's FP 

AS A's Frame Pointer 

Fig. 6-16 LINK and UNLK (Part 1) 



Miscellaneous M68000 Instructions 243 

Step 2 of LINK AS. #·S12 

Save SP in AS 

USP A7 B's Frame Pointer 

AS B's Frame Pointer 

Step 3 of LINK AS. #·512 

Decrement SP by 512 

USP A7 

AS B's Frame Pointer 

A's Frame Pointer points to 
previous Frame Pointer 

Stack 
unchanged 

Stack 

Return address for B 
Top of A's stack 

A's stack area 

B's stack area 
= 512 bytes 

A's Frame Pointer 
Return address for B 

To of A's stack 

A's stack area 

Subroutine B now proceeds using allocated stack area - SP changes (don't care) 
Eventually Subroutine B does UNLK AS (2 Steps) 

Step 1 of UNLK AS 

Restore SP from AS 

(USP} A7 B's Frame Pointer 

AS B's Frame Pointer 

Fig. 6-17 LINK AND UNLK (Part 2) 



244 68000, 68010, and 68020 Primer 

Step 2 of UNLK AS 

Restore AS f ram stack 
(MOVE.L (SP) + , AS) 

(USP) A7 B's Frame Pointer+ 4 

AS A's Frame Pointer 

Now Subroutine B ooes BIS Back to Subroutine A 

Pull return address for B from stack _.. PC 

PC Return address for 8 

SP Top of A's stack 
A's stack area 

AS A's Frame Pointer 

A Subroutine resumes with stack restored exactly. 

Fig. 6-18 LINK and UNLK (Part 3) 

We can now envisage subroutine B doing its own thing, using its 512-byte 
frame on the stack. Just before Bis ready to RTS or RTR (assuming we had 
saved the CCR) back to subroutine A, we need: 

UNLK A5 Unlink via A5 

which deallocates B's frame and restores the stack automatically by performing 
the following two steps: 

MOVEA.L A5, {A7=SP} Restore stack pointer 



Miscellaneous M68000 Instructions 245 

(This reverses step 2 of LINK by restoring B's FP into the stack pointer. SP now 
points to where we saved A's FP in Step 1 of LINK.) 

MOVE.L (SP)+,A5 Restore A's FP into A5 

(Here we pull A's FP from the stack and put it back in A5. This reverses step 1 
of LINK.) 

If we had saved the CCR on the stack, an RTR now will restore the CCR 
and return us to subroutine A If we had not saved the CCR, an RTS will return 
us to subroutine A 

In either case we are back into A with exactly the same stack disposition 
as when we left it for B. The stack and frame pointers are restored and B's data 
area has disappeared. 

In tum A will unlink and return. The nested subroutines will eventually be 
completed to bring us back to the main program. By this time all our temporary 
frames will have been deallocated and A5 is now free of the FP chore. 

LINK/UNLK - SUMMARY 

We have spent some time explaining LINK/UNLK because it reveals several 
important aspects of contemporary software. The choice of the name LINK, for 
example, is worth pondering. 

The first item in a frame is always a longword containing the address of the 
previous frame. So our frame pointer is actually pointing at another, earlier frame 
pointer. This idea of pointers pointing to pointers is not as difficult as it may 
sound. It is the basis of what we call linked lists, from which comes the name 
of the instruction LINK. 

MORE ON PRIVILEGE 

What is privilege? In the broadest sense, privilege can be established at any 
level in a computer system, ranging from padlocks on the terminals, to password
protected programs or files, and on to global privileges by which an operating 
system can guard against accidental or deliberate misuse by one user that can 
crash the system. The M68000 offers some unique hardware/software combi
nations that offer systems designers and programmers some assistance in this 
difficult area. 

We conclude Chapter 6 with a roundup of the so-called privileged instruc
tions, some of which we have already seen briefly. 

Many of the privileged operations perform familiar tasks like MOVE and 
ANDI, and there is no mystery as to what they do, but because they change 



246 68000, 68010, and 68020 Primer 

(or might change) vital system parameters or contexts, they are allowed only 
when the M68000 is in the supervisor state. Attempting to use a privileged 
instruction in the user state causes a TRAP, and we will see shortly how TRAPs 
are handled. 

The state of the processor is indicated by the S flag (bit 13) in the status 
register: If Sis set to 1, the M68000 is in supervisor state (also called system 
mode or privileged mode). If Sis cleared to 0, the processor is in user state (or 
mode). In other words, the M68000 must be in one or the other state; there is 
no in-between. As the names imply, individual user programs normally run in 
user mode, while operating systems run in supervisor mode. Sitting at your 
terminal, you may be unaware of the fact, but the S flag is constantly switching 
between 0 and 1 as control passes to and from your job, other users' jobs, and 
the OS. A notable exception, by the WCltJ, is the Apple Macintosh, which operates 
in supervisor mode at all times. 

The two states not only affect which instructions are legal, they also dictate 
whether certain registers can be accessed. Also, the M68000 indicates its state 
(S = 0 or S = 1) via signals on the FC (Function Control) pins, allowing other 
devices such as memory management chips, coprocessors, and so on, to detect 
and react to this state. A typical application here is to allow systems designers 
to control which segments of memory are assigned to user and system areas. 

USER AND SUPERVISOR STACKS 

One important consequence of the "either S = 0 or S = 1" situation is that the 
same register symbol, A7, can be used for two distinct physical registers without 
any ambiguity. You may be confused, but the chip knows! In supervisor mode, 
A7 = SSP (Supervisor Stack Pointer). In user mode, A7 = USP (User Stack 
Pointer). 

The M68000 therefore maintains two distinct stack pointers and two distinct 
"A7-stacks", which are often called systems stacks (supervisor system stack and 
user system stack) to avoid confusion with the multitude of "private" user stacks 
that can be set up using AO through A6 as stack pointers. 

Now the user-programmer, in user mode, is free to access, manipulate, and 
even completely mutilate his or her user system stack using A7 (or the assembly 
mnemonic, SP) as an operand. The harm, if any, is confined to that user's job. 
But access to the supervisor stack is privileged, and this affords a certain measure 
of security, not absolute security, but protection against careless coding. As we'll 
see, the supervisor stack is constantly saving and restoring contexts for the entire 
system, so any unplanned interference with A 7 = SSP can be globally catastrophic. 

On the other hand, the OS often needs to access A7 =USP (for example, 
it will want to save your USP when switching jobs). If we are in supervisor mode 



Miscellaneous M68000 Instructions 247 

we can't do this using A7, because A7 now means SSP. This catch-22 is avoided 
by the following privileged instructions. 

MOVE.L 
MOVE.L 

USP,An 
An,USP 

Privileged: Move User Stack Pointer to An 
Privileged: Move An to User Stack Pointer 

In user mode, the above instructions would cause a trap. Having grabbed 
your stack pointer, the OS is at liberty to do what it likes to your stack data. The 
MOVE.L An, USP then allows the OS to restore your stack pointer if and when 
it feels the urge. 

STACKS AND PRIVILEGE-SUMMARY 

Summing up the privilege aspects of the two systems stacks: In user mode, 
there is unrestricted access using A 7 or SP to the user stack, but the supervisor 
stack cannot be accessed. In supervisor mode, there is unrestricted access using 
MOVE with USP to the user stack, and unrestricted access using A 7 or SSP to 
the supervisor stack. 

PRIVILEGE AND THE SR (STATUS REGISTER) 

The lower byte of the 16-bit SR is our much discussed CCR (Condition Code 
Register), which is freely accessible to all. You can test, move, and modify the 
CCR flags in both user and supervisor modes. The upper byte of the SR, the 
system byte, is an entirely different story. In user mode, the system byte is READ 
ONLY -with MOVE from SR. (However the MC68010/20 allow only MOVE 
from CCR - see Chapter 8.) In supervisor mode, the system byte is READ 
and WRITE - with MOVE from SR and MOVE to SR. We can also alter the 
SR with ANDI/ORI/EORI. 

The system byte flags are: 

Bits 8-10 
Bit 13 
Bit 15 

Three-bit IM (Interrupt Mask) 
S flag (Supervisor state= 1; User state= 0) 
T flag (Trace mode on= 1; Trace mode off=O) 

so the user cannot directly alter these flags with a MOVE to. What you can do 
in either mode is MOVE from SR with 

MOVE{.W} SR,<adea> Non-privileged -- read status word 

allowing you to test any or all of the IM, S, T, or CCR flags. (Note the MC68010/ 
20 exceptions referred to above.) 



248 68000, 68010, and 68020 Primer 

When the M68000 is initially switched on (or reset), it starts up in super
visor mode. This is quite natural and desirable since some kind of OS or booting 
firmware is going to initialize the system prior to user access. 

Getting from supervisor to user mode presents no problem, since in su
pervisor mode the OS can clear the S flag at any time with 

MOVE.W #0,SR Privileged Clear S flag 
(and all other flags in SR) 

or, if we do not want to clear all the SR, we can use one of the following. 

EORI #$2000,SR 

ANDI #$DFFF,SR 

Similarly, you can use 

ORI #<mask>, SR 

to set selected SR flags. 

Privileged Clear S flag 
(other flags unchanged) 

Privileged Clear s flag 
(other flags unchanged) 

Privileged 

You may wonder, then, how we ever pass from user mode to supervisor 
mode if the S flag cannot be "MOVEd to" in user mode. The answer lies in the 
M68000 concept of exception processing. An exception encountered while in 
user mode will switch the processor to supervisor mode, setting S = 1 and, 
depending on the exception, will save or attempt to save the processor context 
in a variety of ways. 

EXCEPTIONS 

In M68000 parlance, exceptions cover a wide variety of events, some of which 
are beyond the scope of this chapter. The following events met in user mode 
will initiate exception processing: 

TRAPs from detected errors 

Deliberate TRAP instructions 

Privilege violations 

Interrupts - internal or external 

Bus errors 

Reset 



Miscellaneous M68000 Instructions 249 

Each of these switch the processor to supervisor mode, where the exception is 
processed. Let's look at the first two exception types to get a feel for exception 
processing and how control is eventually returned to the user. 

Error TRAPS 

We saw in the DIVU/DIVS instruction that divide by zero was automatically 
detected, leading to a special TRAP. Very briefly, this is what happens in the 
trap on zero divide: 

1. Switch to supervisor mode (S = 1) 

2. Save job context on system stack 

3. Go to Vector #5 in exception vector table 

4. Get address of exception handling program 

5. Run this program which ends with RTE (ReTurn from Exception) 

6. Restore job context and switch to user mode (S = 0) 

7. Resume user job 

CHK-TRAP if Bound Exceeded 

A similar type of error TRAP can be programmed to detect if values obtained 
during a calculation fall outside designated bounds: 

CHK <dea>,Dn TRAP if Dn negative or greater than <dea> 

If On is within stated limits, the next instruction is taken. If On is outside the 
limits, exception processing is triggered, just like TRAP on divide by zero, but 
this time we go to Vector #6 to pick up our handling program address. 

TRAPV - TRAP on Overflow 

TRAPV will generate a trap to Vector # 7 if overflow is detected. 

General TRAPs 

TRAP #<vector> TRAP to #<vector> 

This is a deliberate TRAP- so there is a way for the user-programmer to 
get into supervisor mode. In fact, TRAP #<vector> turns out to be a powerful 
systems programming tool for enlarging the instruction repertoire. 

Table 6-5 shows the complete Exception Vector Assignment Table, from 
which you can see that there are 255 unique vectors available for exception 



250 68000, 68010, and 68020 Primer 

Table 6-5 Exception Vector Assignments 

Vector 
Number(s) 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
121 

131 
14 
15 
16-231 

24 
25 
26 
27 
28 
29 
30 
31 
32-47 

48-631 

64~255 

Dec 

0 
4 
8 
12 
16 
20 
24 
28 
32 
36 
40 
44 
48 
52 
56 
60 
64 
95 
96 
100 
104 
108 
112 
116 
120 
124 
128 
191 
192 
255 
256 
1023 

Address 
Hex 

0000 
004 
008 
ooc 
010 
014 
018 
01C 
020 
024 
028 
02C 
030 
034 
038 
03C 
040 
05F 
060 
064 
068 
06C 
070 
074 
078 
07C 
080 
OBF 
oco 
OFF 
100 
3FF 

Space 

SP 
SP 
SD 
SD 
SD 
SD 
SD 
SD 
SD 
SD 
SD 
SD 
SD 
SD 
SD 
SD 
SD 

SD 
SD 
SD 
SD 
SD 
SD 
SD 
SD 
SD 

SD 

SD 

Assignment 

Reset: Initial SSP2 

Reset: Initial PC2 

Bus Error 
Address Error 
Illegal Instruction 
Zero Divide 
CHK Instruction 
TRAPV Instruction 
Privilege Violation 
Trace 
Line 1010 Emulator 
Line 1111 Emulator 
(Unassigned, Reserved) 
(Unassigned, Reserved) 
Format Error5 

Uninitialized Interrupt Vector 
(Unassigned, Reserved) 

Spurious interrupt3 
Level 1 Interrupt Autovector 
Level 2 Interrupt Autovector 
Level 3 Interrupt Autovector 
Level 4 Interrupt Autovector 
Level 5 Interrupt Autovector 
Level 6 Interrupt Autovector 
Level 7 Interrupt Autovector 
TRAP Instruction Vectors4 

(Unassigned, Reserved) 

User Interrupt Vectors 

1. Vector numbers 12, 13, 16 through 23, and 48 through 63 are reserved for future enhancements 
by Motorola. No user peripheral devices should be assigned these numbers. 

2. Reset vector (0) requires four words, unlike the other vectors which only require two words, 
and is located in the supervisor program space. 

3. The spurious interrupt vector is taken when there is a bus error indication during interrupt 
processing. Refer to Paragraph 4.4.2. 

4. TRAP #n uses vector number 32 + n. 



Miscellaneous M68000 Instructions 251 

5. MC68010 only. See Return from Exception Section. This vector is unassigned, reserved on the 
MC68000, and MC68008. 

routines. Some of these are fixed vectors, like CHK and TRAP\!, others are 
reserved for present or future systems routines, like interrupt handling. The 
remaining vectors can be designated for TRAP #<vector> user applications. 

As a simple example, an assembler might be written that converts, say, 
COSH into the machine language equivalent of TRAP #32. At address $80 
(corresponding to vector #32) is the address of the COSH routine (whatever that 
may be). Such non-M68000 instructions are sometimes known as monitor, or 
service, calls. They are available to all users, and can be made to look just like 
M68000 instructions, complete with operands, which can be passed to the 
invoked routine via registers or the stack. 

CONCLUSION 

At this point you have seen all the basic M68000 instructions and address modes 
in action. Our examples were kept simple to isolate the "mechanics" of each 
group of instructions and operands. At the same time, we tried to reveal some 
of the underlying design motivations, the why that makes sense of the how. At 
least you now have the essential vocabulary of ''the microchip of the 1980s'', 
and we hope you are tempted and prepared to tackle the more cryptic texts 
which tend to accompany the commercially available M68000 assemblers. May 
the MOVE be with you! Before you rush away to raise havoc with your machines, 
we invite you to read our final two chapters on the MC68010 and MC68020. 



7 

TheMC68010 

The preceding chapters have focused specifically on the MC68000, the first 
chip in Motorola's 68000 family of micro-processors. This chapter discusses the 
next member of the 68000 family, the MC68010. Throughout this chapter, it is 
assumed that you are already familiar with the MC68000, that is, that you have 
read Chapters 1 through 6. Since the features added to the MC68010 are of a 
more advanced nature, the material in this chapter is more concentrated than 
the material in other chapters. 

The keyword for the MC68010 is emulation, or "simulation of things that 
are not really there." Most of the features added to the MC68010 were for 
support of emulation. In typical emulations, nonexistent hardware is emulated 
by software. For example, some printers have been manufactured which have 
no formfeed capability. For these printers, it is common to emulate formfeeds 
in software by keeping track of the number of lines currently printed on a page, 
then printing enough additional linefeeds to make up a total of 66 lines. One 
of the most powerful applications of emulation is in virtual memory systems, 
wherein programs may directly access address locations far beyond the actual 
range of the available hardware memory. Virtual memory alone would have 
guaranteed the MC68010 a place in history. But the MC68010 does more. 

The MC68010 is also capable of emulating whole operating systems and 
nonexistent (user-defined) 68000 instructions. These are commonly known as 
virtual machine capabilities. Such features simplify the development of new 
operating systems, which is by nature a very difficult but necessary task. The 
virtual machine also enables Motorola to check out (emulate) the behavior of 
future members of the 68000 processor family long before the chips are actually 
available, and even before the design of the new chip is finished on paper. This 

252 



The MC68010 253 

can be done in software on the MC68010 (or later 68000 processors). After 
the new 68000 processor is available, emulation performs yet another valuable 
function. MC68010 users who cannot upgrade their computers to a later 68000 
processor can emulate in software many of the features of the later processor. 

It is easy to see why Motorola implemented emulation capabilities early in 
the 68000 family history. From that point on, the MC68010 reduced the 
research costs of all further 68000 processors. 

In this chapter we will talk about virtual memory and virtual machine 
capabilities, and the specific features that were added to the MC68010 to 
support them. Following that is a discussion of the different address spaces, and 
their role in the security features of virtual memory hardware. At the end of the 
chapter we will discuss loop mode, which speeds up the execution of certain 
small program loops; finally, we will discuss the MC68012 processot; a close 
relative to the MC68010. 

VIRTUAL MEMORY 

In any computer, there is a certain amount of real hardware memory available. 
In most computers, users are limited to using only this hardware memory. 
Previously, only mainframe computers and some minicomputers used software 
tricks to make it appear that there was, ''virtually more memory available than 
there was hardware'', hence the term virtual memory. In the friendliest type of 
virtual memory environment, the user accesses memory without any restrictions, 
and never knows (nor needs to be bothered by) how little hardware memory is 
actually available. 

Does this not sound like a programmer's heaven? How is this possible, you 
ask, and what is the catch? Your suspicions are indeed well-founded; there are 
some important drawbacks. 

At any given time, the hardware memory contains only part of the virtual 
memory being referenced. The remainder of the virtual memory is actually 
stored somewhere else, usually on a disk. For example, consider a simple virtual 
memory system which only has 192K of hardware memory, but allows programs 
to address up to 384K of virtual memory. In this system, memory is divided 
into segments (or "pages") of 64K each. Hence, no more than 3 pages of 
memory will be in hardware memory at any time, even though 6 pages appear 
to be available to any program. Page 1 is the operating system, and must always 
be in hardware memory. Pages 2 through 6 make up a large user program 
which is currently running, and which resides on the disk in its entirety. Figure 
7-1 compares the arrangement of memory on disk, in hardware memory, and 
as it appears to the virtual memory user. The virtual memory configuration is a 
fantasy: it doesn't exist anywhere, except as a set of pointers to the disk and the 



254 68000, 68010, and 68020 Primer 

Disk Memory Page2 Page3 Page4 Pages Pages 

Virtual Memory Page 1 (OS) Page2 Page3 Page4 Pages Pages 

Hardware Memory Page 1 (OS) Page2 

Beginning Memory Configuration 

Disk Memory Page2 Page 3 Page 4 Page S Page S 

Virtual Memory Page 1 (OS) Page 2 Page 3 Page 4 Page S Page S 

Hardware Memory Page 1 (OS) Page 2 • 

Second Memory Configuration 

Disk Memory Page2 Page 3 Page 4 Page S . Page S 

Virtual Memory Page 1 (OS) Page 2 Page 3 Page 4 Page S Page S 

Hardware Memory Page 1 (OS) Page 2 • 

Third Memory Configuratjon 

Fig. 7-1 68000 Virtual Memory Configurations 

hardware memory. When the user program starts executing, memory is arranged 
as shown in the beginning configuration in Agure 7-1. 

The virtual memory system has loaded in only the first page of the user 
program at this time (page 2). Now suppose that the user program asks for 
some data that is stored in page 4 of the program. As far as the user program 
is concerned, nothing is known about the virtual memory system; the program 
simply addresses a location within page 4, but the virtual memory system 
automatically detects that page 4 is not currently in hardware memory, and 
fetches it from the disk. Thus, memory is now arranged as in the second memory 
configuration in Agure 7-1. 



The MC68010 255 

Whenever the user program references data within page 4, the virtual 
memory system converts these address references into the corresponding true 
hardware addresses. Note that page 4 is actually residing in the third page of 
hardware memory; the user program will ask for addresses within page 4, but 
will end up getting addresses within the third page of hardware memory. 

Now suppose that the program asks for some data within page 5. Since 
there is no unoccupied hardware memory left, either page 1, 2, or 4 must be 
dumped in order to make room for page 5. The best use of resources is to 
replace (or "swap") page 4 with page 5. If page 4 was changed while it was in 
hardware memory, it must first be written back to disk in its new form. In any 
case, page 5 then replaces page 4, and memory is now arranged as in the third 
memory configuration shown in figure 7-1. 

The decision about which page to swap out and the size of each page, is 
a function of many things. For now, let us just say that if you have some good 
ideas in this area your programming future will be a rosy one. Since disk accesses 
are at least 100 times slower than memory accesses, we see that the tradeoff in 
virtual memory is having more memory available, but at a slower execution 
speed. Furthermore, totally unrestricted and poorly planned use of virtual mem
ory can result in situations where excessive disk/memory swapping goes on. For 
example, suppose that the program above went into a loop where page 4 and 
page 5 were accessed alternately 1000 times. This would cause 1000 disk 
swaps to read the same two pieces of data - a truly wasteful situation. So 
remembet; virtual memory should be used with caution. 

In order to efficiently implement virtual memory, it is necessary to detect 
or "trap" illegal memory references and do translation of addresses from virtual 
address into hardware address, all via external hardware, usually a memory 
management unit Without this capability, the CPU would be hopelessly bogged 
down checking every memory reference in every single instruction. 

When an illegal memory reference is made in a system without virtual 
memory, it is not initially detected by the 68000. With no loss of time, the 68000 
passes on the request to the bus, which dutifully passes it on to the memory 
("call for Mr Hex FFFFFFFO!"), which is not a real hardware memory location. 
The bus detects this, and notifies the 68000. The 68000 generates a bus error 
exception in the middle of the current instruction within the user program, saves 
(on the system stack) information about the instruction in progress when the 
bus error occurred, and then goes to the OS's standard bus error processing 
routine. Usually, the bus error is reported, and the user program is aborted. 

How is virtual memory implemented? Imagine that some instruction such 
as MOVE asks for a memory location (the virtual memory location) that is well 
beyond the real hardware memory limit. How is it possible for this fact to be 
quickly detected and remedied? In a system with virtual memory, a hardware 
memory management unit is generally present between the 68000 and the bus. 
This unit intercepts each memory request, translates the virtual address into a 



256 68000, 68010, and 68020 Primer 

possibly different hardware memory address, then fetches data from this location 
and returns it to the 68000. It appears to the programmer and the 68000 
processor that the data was actually fetched from the virtual memory location. 
The memory management unit maintains a table of what virtual memory pages 
are currently in hardware memory, and where they are located in hardware 
memory. If the virtual address is currently not available in hardware memory, 
the memory management unit generates a bus error, which suspends the current 
instruction in the middle of its execution. The instruction in progress is sus
pended, information is stored on the system stack, and the operating system's 
bus error routine is activated. The bus error routine examines the information 
that was saved on the system stack. If it was due to a virtual memory access, 
then the appropriate disk/memory swap is done. Afterward, an RTE instruction 
returns to the user program, and finishes the user instruction that was in progress. 

Why is virtual memory possible on the MC68010 but not on the MC68000? 
Unlike the MC68010, the information pushed on the system stack by the 
MC68000 during the middle of the instruction that generated the bus error 
exception is not sufficient for the RTE instruction to finish that instruction. It is 
only sufficient to enable software diagnosis of what happened, so that an 
informative error message can be sent to the user when his or her program is 
aborted. 

VIRTUAL MACHINE 

The MC68010 not only supports virtual memory, but the more general concept 
of a virtual machine. In virtual memory, actual disk room emulates imaginary 
hardware memory. Other software and hardware emulations can be effected in 
similiar ways. 

For example, the concept of disk buffer caching is the exact opposite of 
virtual memory; the user appears to be writing to disk, but is actually writing to 
memory. In a caching system, everything read and written to the disk is also 
redundantly stored in hardware memory for future use. Later on, if the same 
disk data is again requested, it is fetched from the memory cache rather than 
from the disk. Since memory fetches are several orders of magnitude faster than 
disk accesses, the benefits should be obvious. 

Another classic example of hardware emulation is a printer spooler. In some 
spooling systems, the user is convinced that his program is sending data directly 
to the printer, when actually it is going to a temporary file on disk, or to mag 
tape. The disk file may actually be printed immediately, hours later, or never. 
This is of particular importance on machines with one printer and many users, 
since only one user can be allowed on the printer at a time, but it would be 
unreasonable to make everyone else wait for the current user to finish his 
printing. 



The MC68010 257 

Even more sophisticated is the ability of an Operating System (OS) to 
emulate another OS. What is an OS? It is the most important program run on 
any given computer. It is there when the computer is turned on, remains there 
until the computer is powered down, and controls the execution of every other 
program run on the computer. It is sometimes refered to as the monitor. In 
many personal computers, the OS is stored in Read Only Memory (ROM), to 
protect it from accidental destruction. 

How is the OS program originally created? It can be done from scratch, 
but only with a great degree of difficulty. A more feasible method is to use a 
pre-existing OS (call it OS-1) to oversee the development and execution of the 
new OS (call it OS-2), until OS-2 has been debugged to a point where it can 
survive on its own. During this development phase, OS-1 is actually in control 
of the computer, and subexecutes (emulates) OS-2. When any special circum
stances arise, control passes back to OS-1, which decides what to do, and 
decides afterwards whether or not to return to OS-2. This emulation requires a 
bit of trickery. The typical OS is, by profession, an omnipotent creature. It is the 
constant and sole controller of an entire computer system. In order to properly 
emulate an OS that will eventually be on its own, OS-1 must trick OS-2 into 
thinking that it too is omnipotent. On the MC68010, this is achieved by running 
the emulated OS-2 in user mode, at a lower privilege than the controlling OS-
1, which is in system, or supervisor, mode. As long as the emulated OS-2 
executes simple instructions, it is doing nothing more than is allowed to the 
average user, and life is simple. As soon as OS-2 encounters any special con
ditions (for example, if hardware interrupts are received from external hardware, 
or if errors occur due to bugs in OS-2), a 68000 exception is generated, the 
controlling OS-1 emulates the request (often via a software routine), and returns 
control to OS-2. One virtual resource that the emulated OS-2 must have access 
to is the system bit. OS-2 must be able to set it, test it, and execute all of the 
privileged 68000 instructions that require it be set. OS-2 must be able to do all 
of these successfully, and do them while actually remaining in user mode. The 
trick is no different than the other virtual methods described above. Any of these 
actions generates a 68000 exception, the controlling OS-1 carries out the re
quest, and returns control to OS-2. 

On the MC68000, the OS-2 can determine that it is not the controlling OS 
by doing a MOVE SR,Dn and then testing the system bit. This works because 
MOVE from SR is not a privileged instruction on the MC68000. Because of 
this and other loopholes, the MC68000 cannot fully support emulation. 

On the MC68010, this loophole is closed by making MOVE from SR 
privileged. When executed from user mode, MOVE from SR generates an 
exception, the controlling OS-1 takes over, and then has the option to copy a 
counterfeit SR (with the system bit off) into On, and return. The emulated OS-
2 has no way of detecting that this is actually what happened. The (unprivileged) 



258 68000, 68010, and 68020 Primer 

MOVE from CCR instruction was added to the MC68010 so that the condition 
codes could still be accessed without generating an exception. 

Another loophole preventing the MC68000 from fully supporting emulation 
is the fact that the information pushed on the stack during an exception is not 
sufficient to complete the instruction, but only to diagnose what happened. This 
was mentioned in the preceding section on virtual memory. 

What is to prevent the emulated OS-2, omnipotent as it (thinks it) is, from 
doing its own emulation of a third OS-3 while it is still in the emulated environ
ment? The answer is nothing at all. If this were not so, the original emulation 
would not be a true emulation. Furthermore, there could be a long chain of 
emulated OS-n's, each thinking it is on top, and totally incapable of determining 
whether or not it really is. 

The most sophisticated emulation is the emulation of a CPU by another 
CPU. This allows software for a new CPU (for example, the MC68020) to be 
developed and debugged on a pre-existing CPU (for example, the MC68010), 
while the new CPU is still under hardware development This CPU emulation 
is possible within the 68000 processor family because its instructions sets have 
been designed to be upward compatible. Thus, any instruction from any 68000 
processor will execute the same on all later 68000 processors; on earlier 68000 
processors, the instruction either executes the same, or is an illegal instruction 
and generates an illegal instruction exception. Thus, to emulate an MC68020 
instruction in an MC68010 operating system, it is only necessary to modify the 
illegal instruction routine in the OS to check for this particular instruction, and, 
if detected, emulate the instruction in software before returning. 

If emulation is so versatile, why aren't more CPUs and OSs emulated in 
day-to-day use? The simple answer is efficiency. The emulated (software) CPU 
may run many times slower than the true (hardware) CPU, due to the overhead 
of exception processing and the use of whole routines to emulate single instructions. 

This finishes our discussion of the major emulation features of the MC68010. 
The next three sections examine the new registers and instructions that are used 
to support emulation and virtual memory hardware. 

VECTOR BASE REGISTER 
The MC68010 has a Vector Base Register (VBR), used during emulation. It is 
not present on the MC68000. It is used to support transitions between a normal 
operating system environment and an emulation environment In order to ap
preCiate its significance, we will need a little background. 

When an exception is generated on the MC68000, several events take 
place. Depending on the kind of exception, certain special registers are modified, 
certain information is pushed onto one or more stacks, and, last of all, a branch 
is made to one of 255 possible exception routines. All we are concerned with 



The MC68010 259 

here is that final branch. For example, division by zero causes a branch to 
exception routine number 5. The addresses of these 255 routines are found in 
the first 256 longwords in memory (the first of the 256 longwords is not an 
address, but is the stack pointer at power-up time). Rigorously, the address of 
exception routine number n is found in the longword at memory location 4n. 
For example, the address of the divide-by-zero routine is at hex memory location 
$14 ( = 4 x 5). In conventional 68000 terminology, n is called the exception 
vector number, 4n is called the exception vector offset, the address at longword 
4n is called the exception vector, and the table of 255 longword addresses is 
called the exception vector table. 

Now imagine that the normal OS is overseeing the emulation of another 
OS. Based on discussions earlier in this chapter, it is easy to see that, during 
emulation, exceptions will be treated radically different than during normal 
operation, since they will be heavily concerned with making sure that the 
emulated OS is kept in the dark about what is really happening. An alternate 
set of exception routines will be active, having different addresses from the 
normal set of routines. There are various ways to switch between two sets of 
exception routines, some of which do not require any new registers, but the 
simplest is to use the vector base register. 

In the MC68010, exceptions end with a branch to the address contained 
at memory location 4n + VBR, where VBR represents the number currently 
stored in the vector base register. Note that, if VBR is zero, this is the same as 
the MC68000 exception branch. Indeed, during power-up, VBR is set to zero. 
Thus, an OS for the MC68000 will run exactly the same on the MC68010. 

When an OS sets up an emulation environment, it loads a set of alternate 
exception routines and sets up an alternate vector table (not located at memory 
location zero). Thereafter, to enable the alternate exception routines, it is only 
necessary to move the location of the alternate vector table into VBR. This is 
done with a single MOVEC instruction. To go back to normal operation, it is 
only necessary to set VBR back to zero. The overhead for switching between 
sets of exception routines is thus reduced to its bare minimum, namely, one 
MOVEC instruction. This quick switch not only saves time and program steps, 
but also avoids a potential problem; if an interrupt occurred in the middle of a 
lengthy vector table changeover, how could we guarantee that the correct inter
rupt routine is used? 

The following sample program changes the value of VBR to hex $00100000. 

MOVE.L 
MOVEC 

#$100000,DO 
DO, VBR 

Set up new VBR value 
Change vector base register 

The MOVEC command is discussed in the following section. 
Rgure 7-2 shows typical memory allocations for a regular operating system 

and an emulated operating system. Steps 1 to 3 follow what happens during a 



260 68000, 68010, and 68020 Primer 

Memory 
Address 

VBR 

VBR 

00000000 

00000400 

00100000 

00100400 

Contents of 
Location 

00000000 I Used during regular operation steps (1 ), (2), (3) 

00100000 I Used during emulation operation steps (4), (5), (6) 

Regular 
Exception 
Vector 
Table 

Regular 
Operating 
System 
and 
Regular 
Exception 
Routines 
#001-255 

Regular 
User 
Program 

Emulation 
Exception 
Vector 
Table 

Emulated 
Operating 
System 
and 
Emulation 
Exception 
Routines 
#001-255 

Emulation 
User 
Program 

(2) Look up address Vector at hex location 00000014 
= 4 x 5 (Vector Number for Divide by Zero) + VBR 
Vector is address of Divide by Zero routine (3) 

(3) Divide by Zero routine 

(1) Divide by Zero encountered here 
Generating exception Vector Number 5 
VBR is hex 00000000 

(5) Look up address Vector at hex location 00100014 
= 4 x 5 (Vector Number for Divide by Zero) + VBR 
Vector is address of Divide by Zero routine (6) 

(6) Divide by Zero routine 

( 4) Divide by Zero encountered here 
Generating exception Vector Number 5 
VBR is hex 00100000 

Fig. 7-2 Use of the VBR During an Emulation 



The MC68010 261 

Table 7-1 Control Register Move Commands 

Control Hex MOVEC MOVE Privilege 
Register Code Instruction Instruction Status 

To SR 68000 Privileged 
From SR 68000 Not privileged 
From SR 68010 Privileged 
To CCR 68000 Not privileged 
From CCR 68010 Not privileged 
USP 800 68010 68000 Privileged 
VBR 801 68010 Privileged 
SFC 000 68010 Privileged 
DFC 001 68010 Privileged 
MSP 803 68020 Privileged 
ISP 804 68020 Privileged 
CACR 002 68020 Privileged 
CAAR 802 68020 Privileged 

divide-by-zero exception under a regular operating situation. Steps 4 to 6 follow 
what happens during a divide-by-zero exception under an operating system 
emulation environment Switching back and forth between the two sets of 
exceptions is accomplished by simply changing the vector base register. 

THE MOVEC AND MOVES INSTRUCTIONS 

MOVEC is a privileged instruction on the MC68010 which moves data to and 
from "control registers". An easy rule of thumb is that MOVEC performs all the 
moves that MOVE doesn't perform. The only exception to this rule is register 
USP, which can be moved using either MOVE or MOVEC. If Motorola had it to 
do all over again, it would probably have MOVEC also perform the functions of 
the other special MOVE instructions, namely, MOVE USP, MOVE SR, and MOVE 
CCR. This would have made for a more homogeneous instruction set. 

The chief uses of MOVEC on the MC68010 are to change the values of 
the vector base register (discussed above) and the function code registers, SFC 
and DFC (discussed below). 

Table 7-1 summarizes all of the 68000 instructions that move control 
registers. For each type of control register, the table indicates whether the register 
can be moved using MOVE or MOVEC, and the first processor on which each 
instruction is implemented. A blank entry indicates that the instruction is not 



262 68000, 68010, and 68020 Primer 

available on any existing 68000 processor. The hex code column gives the 3-
digit hex code used to represent each control register in the MOVEC instruction. 
MC68020 instructions have been included in the table for completeness. 

THE SFC AND DFC REGISTERS AND 
ADDRESS SPACES 

The Source and Destination Function Code (SFC and DFC) registers are 3-bit 
registers which designate different "address spaces". Only 68000 programmers 
involved in the deepest system work will probably ever have to deal with these 
registers. They are involved in the support of memory management and system 
security. In a system that protects certain parts of memory, the SFC and DFC 
are used within supervisor mode to access memory that is normally inaccessible. 
In order to fully explain how the function code registers operate, it is necessary 
to look at the actual 68000 hardware. 

Up to 32 of the pins coming out of a 68000 processor are address lines. 
When data is read from or written to memory, these lines carry the 32-bit 
address of the affected memory location. Three more pins are used as function 
code lines. The function code tells what kind of memory is being accessed, for 
example, whether it is program memory or data memory, or whether it is user 
memory or system memory. At the same time, the function code indicates a 
memory bank or "address space" to look in. Technically speaking, it is possible 
to specify up to 8 different address spaces, each having a 32-bit address range, 
and each conceivably corresponding to different hardware memory. Initially, this 
sounds equivalent to a 35-bit address range. In actuality, however, only 4 full 
32-bit address spaces are used by the 68000 and, in typical hardware imple
mentations, these 4 address spaces are made to address the same 32-bit address 
range of hardware memory. Hence, expectant programmers dreaming of more 
than 32 bits of addressing should beware. 

Table 7-2 lists the 8 function codes and their currently assigned address 
spaces. 

If the 68000 is currently in user mode (that is, the system, or supervisoi; 
bit is 0), and an instruction is being fetched from memory, then a function code 
of 001 goes out the function code lines. When an instruction fetches data from 
memory during user mode, a 010 goes out the function code lines. When the 
same two operations occur in supervisor mode, a 101 or 110 goes out the 
function code lines. 

The fifth and last function code is the CPU space function code. This 
special code appears during four types of communications with external hard
ware devices, namely, during interrupts, breakpoints (BKPT instruction), access 



Function 
Code Bits 

000 
001 
010 
011 
100 
101 
110 
111 

The MC68010 263 

Table 7-2 Address Space Function Codes 

Address 
Space 

Unavailable - reserved for future Motorola use 
User Data Space 
User Program Space 
Reserved for user definition 
Reserved for future Motorola use 
Supervisor Data Space [includes Exception Vectors 2 to 255) 
Supervisor Program Space [includes Exception Vectors 0 and 1 I 
CPU Space [in MC68000, only used for Interrupt Acknowledge) 

level control (the MC68020 instructions CALLM and RTM), and coprocessor 
communications (the MC68020 coprocessor instructions). The CPU space is 
special in that it does not address memory. Instead, the 32 address lines are 
used to pass various parameters. 

When the 68000 reads or writes to memory, a 32-bit address is sent out, 
along with one of the first four function codes. Hardware outside of the 68000 
decides what to do about the request. In the simplest situation, the external 
hardware simply ignores the function code, uses the 32-bit address, and looks 
up the location in hardware memory. In a more sophisticated situation, four 
different sets of hardware memory can exist, one for each of the first four function 
codes. In such a case, it is possible for an operating system, an OS data table, 
a user program, and a user data table to all reside at the same numerical 
address. Each can be accessed with the same address, but with a different 
function code. 

The function code can also be used to implement system security. This 
can be done 1via an external memory management device, whose duty is to 
make sure that users are not allowed to access certain parts of memory. For 
instance, an OS might wish to allow users to run programs that are in the 
supervisor space (function code 110), but not allow them to look at the programs 
themselves (function code 101). If the address spaces for these two function 
codes actually correspond to different hardware memory, then the user can 
never actually access the program as data. The program is thus invisible and 
secure from examination. If these two address spaces actually correspond to 
the same hardware memory, then the user can access the program as data, and 
it is necessary to enlist the aid of the external memory management device in 
order to prevent the user from examining the program. 



264 68000, 68010, and 68020 Primer 

Say that you are on one of those wonderful systems where there are indeed 
four different sets of memory. Assume that you wish to access the contents of 
address 123456 in all four memory address spaces. The data memory address 
spaces are easy to get to, but the program memory address spaces are inac
cessible. Inaccessible, that is, unless you use MOVEC and MOVES. The follow
ing example shows how to access one of the four memories, the user program 
space. 

MOVE.L 
MOVEC 
MOVES.L 

#2,DO 
DO,SFC 
123456,Dl 

User program space function code = 2 
Move into source function code 
Get word 123456 from user program 
space 

Note: Changing SFC or DFC only affects the execution of the MOVES instruc
tion. It does not have any effect on the execution of other instructions. 

The ability to distinguish different address spaces enables the MC68010 to 
indicate to external hardware when it is accessing system programs, system 
data, user programs, and user data. It is thus possible to selectively protect one 
or more of these address spaces from user access via external memory man
agement hardware, without bogging down the 68000 CPU with time-consuming 
checks. With proper hardware, each address space can be made to correspond 
to different hardware memory. Typical implementations, however, use only one 
set of hardware memory. Using the SFC and DFC registers, the MOVEC instruc
tion, and the MOVES instruction within (privileged) supervisor mode, it is 
possible for the OS to access all four of these address spaces. 

LOOP MODE 

The MC68010 automatically detects when certain 3-word instruction loops have 
repeated more than one time, and then goes into loop mode. In this mode, the 
instructions are not repeatedly fetched from memory, as would occur during 
normal operation, but are locked into the CPU pre-fetch queue and decode 
register, and not fetched again. If the loop is interrupted by any exceptions, loop 
mode will resume after returning and going through two more loop repetitions. 
Thus, simple loops such as the movement of a block of bytes, the summation 
of a list of numbers, and the shifting of a group of numbers, can be executed 
at speeds comparable to the speed of a single (for example, block move) 
instruction. 

The allowable loops consist of certain 1-word instructions followed by a 
DBcc instruction. The 1-word instructions allowed are summarized in Table 7-
3 where lea represents loop effective address modes (An), -(An), or (An)+ and 
rea represents Dn or An. 



The MC68010 265 

Table 7-3 MC68010 Loopable Instructions 

Instructions Operands 

MOVE lea, lea or rea,lea 
ADD SUB lea,rea or Dn,lea 
CMP lea,rea or (Ax)+ ,(Ay)+ 
AND OR lea,Dn or Dn,lea 
EOR Dn,lea 
ABCD ADDX SBCD SUBX -(Ax), -(Ay) 
CLR NEG NEGX NOT lea 
TST NBCD lea 
ASL ASR LSL LSR lea 
ROL ROR ROXL ROXR lea 

THEMC68012 

The only difference between the MC68010 and the MC68012 is that the 
MC68012 can address up to either 1024MB or 2048MB of RAM (a 30-bit or 
31-bit address), compared to 16MB on the MC68010 (a 24-bit address). For 
all practical purposes, the programmer may consider them identical. 

Why did Motorola make the MC68012? If an application requires more 
than 24 bits of addressing, it might seem appropriate to simply use an MC68020, 
which allows a full 32-bit address. Howevet; there are two good reasons why 
an MC68012 can be preferable: money and materials. The MC68020 will be 
priced significantly higher for a while, due to the development cost of its many 
new features. Also, the MC68020 has a different pin configuration, and will not 
fit into the sockets that fit all of the preceding members of the 68000 family. 
Thus, it is possible to produce hardware using the MC68010, and later upgrade 
them to a 30-bit address by simply replacing the MC68010 with an MC68012. 
Upgrading to an MC68020 would require a new socket. 

CONCLUSION 

Starting with the MC68010, any 68000 processor can emulate all of the 
instructions of any other 68000 processor. Except for the loop mode feature, all 
of the features that were added to the MC68010 were solely to support these 
emulation capabilities. Fully supported emulation can also be used to carry out 
other very powerful emulation functions, such as virtual memory and virtual 
machines. 



8 

TheMC68020 

In this chapter we discuss the additional features of the MC68020, as compared 
with the MC68010. This chapter assumes that you are familiar with the 68000 
family in general, and that you have read Chapter 7 on the MC68010. 

The new features of the MC68020 cover much territory. Additional features 
include a full 32-bit addressing path, an instruction cache to speed up 68000 
instruction execution, 7 instructions to support coprocessors such as Motorola's 
MC68881 floating point coprocessor, 6 new addressing modes to support more 
versatile addressing, and a master system bit to support environments with 
multiple operating systems. 

In addition, a variety of miscellaneous instructions have been either ex
tended or added, including 8 instructions to manipulate bit fields, several new 
divide-and-multiply formats, and extended displacements on branch instructions. 

Anally, the MC68020 has a dynamic bus sizing interface, which enables 
the processor to communicate with 8-, 16-, or 32-bit devices, making 8-, 16-, 
or 32-bit data transfers, and to do them in any combination at any time. Thus, 
all data alignment restrictions have been eliminated, except that instructions 
must still lie on even-byte boundaries. 

The processor has 120 pins, which are arranged in a square pattern on 
the bottom, rather than the edges, of the chip. Hence, upgrading a system from 
an older 68000 processor to a MC68020 requires a new socket. 

INSTRUCT/ON CACHE 

The instruction caching system of the MC68020 is a mechanism that speeds 
up the execution time of programs with small loops. It is an MC68020 feature 

266 



The MC68020 267 

that will benefit all of its users. It can be easily enabled or disabled, requires no 
change in how programs are written, and introduces no overhead in the normal 
processing of the MC68020 in exchange for its advantages. 

CACHING IN THE 68000 FAMILY 

Motorola has used analysis of past programming experiences to guide the design 
of the 68000 family. The MC68020 on-chip cache is another application of this 
philosophy. Studies of assembly programs show that most of their overall exe
cution time is spent inside of fairly small-sized loops. Without any kind of 
instruction cache system, each time a loop executes, its instructions must be 
fetched from memory. If a small loop executes more than once, the same 
instructions are repeatedly fetched. This is how the MC68000 and most other 
processors function. 

The MC68010 introduced a medium-scale version of caching, called loop 
mode. Loop mode only caches 3 instruction words, and only occurs when the 
last 2 words are a DBcc instruction. See Chapter 7 for further details on loop 
mode. 

The MC68020 introduced a full-scale version of caching. Previously exe
cuted instructions are stored within the MC68020 processor, in a 64-longword 
cache (a 256-byte internal memory area). The first time a program loop exe
cutes, no benefits are realized from the cache; each instruction is fetched from 
memory, just a~ in the MC68010. Starting with the second time through the 
loop, however, the cache system detects that the instructions are already within 
the cache, and does not tie up the external bus fetching them again. The net 
result is faster execution time. 

HOW CACHE WORKS 

We now detail how the cache functions. First, however, some preparation is 
necessary. You should review the discussion about the function codes in Chapter 
7. In that discussion, you saw how 68000 memory references involve a total of 
35 bits. A 3-bit function code tells which "address space" to look in, and a 32-
bit address gives the hardware memory address within that address space. The 
5 address spaces used by the 68000 and their use in the cache system are 
outlined in Table 8-1. 

Note that instruction fetches only occur with binary function codes 010 or 
110. We can represent either of these binary function codes in general by flO. 
Accesses made to the other three address spaces are not instruction fetches, 
and are thus not cached. Whenever an instruction word is fetched on the 



268 68000, 68010, and 68020 Primer 

Function 
Code 

001 
010 
101 
110 
111 

Table 8-1 Caching of Address Spaces 

Address Space 

User Data Space 
User Program Space 
Supervisor Data Space 
Supervisor Program Space 
CPU Address Space 

Cache Capability 

Not cached 
Cachable 
Not cached 
Cachable 
Does not access memory 

MC68020, the entire even-word-boundary longword containing that word is 
fetched. Hence, the last two bits in the address of the longword fetched are 
always zero. Thus, we may figuratively view the 35 bits in the memory fetch 
parameters as: 

Function Code 
(3 bits) 

f 1 0 

Hardware Memory Address 
(32 bits) 

tttttttt tttttttt tttttttt iiiiiiOO 

The 24 t-bits are called the cache tag, and the 6 i-bits are called the cache 
index. It is the 6-bit cache index that determines which of 64 positions the 
instruction longword will occupy in the cache. If two instruction longwords have 
the same cache index, then only one of them can be in the cache at any given 
time. Thus, any two longwords located exactly 256 (or 256n) bytes apart in 
memory will not be able to coexist within the cache. Note that this allocation 
method satisfies two basic criteria: it is simple (that is, fast) to carry out by the 
processor, and it guarantees that any contiguous segment of up to 64 longwords 
in memory will fit into the cache at the same time. 

In the instruction cache, 5 quantities are maintained for each instruction 
longword, as follows: 

Cache index 
Cache tag 

Cache FC2 

Valid bit 
Cache data 

= Address[7:2] = 6 bits of the longword address 
= Address[31:8] = The upper 24 bits of the longword address 

= The leftmost bit of the function code ( 1 for supervisor pro-
gram space, 0 for user program space) 

= 1 if cache data is valid, 0 if not valid 
= The contents of memory location address if valid bit is 1 

(undefined if the valid bit is 0) 



Index 

00 

04-F4 

F4 
F8 
FC 

The MC68020 269 

Table 8-2a Initial Program Instructions 

Address Hex 

001000F4 aaaa 
001000F6 bbbb 
001000F8 cc cc 
001000FA dddd 
OOlOOOFC eeee 
001000FE ffff 
00100100 gggg 
00100102 hhhh 

Table 8-2b Contents of Instruction Cache at Start of 
Program 

Valid FC2 Tag 

0 

0 

0 
0 
0 

Data 

The cache index is a number from 0 to 63, and defines which of the 64 
cache positions to look up. The other four quantities are stored at that position 
in the cache. 

CACHE EXAMPLE 

When the MC68020 first powers up, all of the valid bits are cleared to zero. 
Table 8-2a shows a sample program at startup, and Table 8-2b shows the initial 
state of the instruction cache. Note that the actual instructions stored at the 
locations shown in Table 8-2a are represented figuratively by the hex numbers 
"aaaa" through "hhhh". 



270 68000, 68010, and 68020 Primer 

Index 

00 

04-F4 

F4 
FB 
FC 

Table 8-3a Program Instructions After Six Instructions 
Have Been Executed 

Address Hex 

001000F4 aaaa 
001000F6 bbbb 
001000F8 cc cc 
001000FA dddd 
001000FC eeee 
001000FE ff ff 
00100100 gggg 
00100102 hhhh 

Table 8-3b Contents of Instruction Cache After Six 
Program Instructions Have Been Executed 

Valid FC2 Tag 

0 001001 

0 

0 001000 
0 001000 
0 001000 

Data 

gggghhhh 

aaaabbbb 
ccccdddd 
eeeeffff 

The first instructions executed by the MC68020 are all cache "misses", 
that is, they are not in the cache, and have to be fetched from external memory. 
For each cache miss, the appropriate cache tag, cache FC2, and cache data are 
stored in the cache, and the valid bit is set to 1 to indicate that valid data is now 
present at that cache position. 

In Table 8-3a the instructions at hex locations 001000F6 through 00100100 
have been executed, as indicated by boldface type. Table 8-3b shows that the 
instruction cache has also been suitably updated, that is, the valid bits for all 
affected cache positions have been set to 1, and the appropriate cache FC2, 
cache tag, and cache data values have been stored. Note that the cache picked 
up the entire longword at hex location 001000F4, even though only the lower 
order word was needed. This is because the cache only reads longwords on 



The MC68020 271 

longword boundaries. Similiarly, the cache picked up the entire longword at hex 
location 00100100, even though only the higher order word was needed. Note 
also that when the last two hex digits of the program address went from FE to 
00, the cache index wrapped around from the end of the cache to the beginning. 

If a cached instruction is executed again while it is still in the cache, a hit 
is made. When a hit occurs, the instruction is fetched directly from the cache, 
and no external bus cycles are required. For example, in Figure 8-2, if the 
instruction represented by hex digits "gggg" happens to be a branch to instruc
tion "aaaa" at hex location 001000F4, then a hit will occur because instruction 
"aaaa" is already stored in the cache. Note that instruction "aaaa" was never 
actually executed, but was previously fetched along with instruction "bbbb" 
because these two instructions are part of the same longword. Rigorously speak
ing, a cache hit occurs whenever the cache index, cache tag, and cache FC2 for 
an instruction fetch matches a cache entry from a previous "miss". 

CACHE REGISTERS 

In support of the cache system, two new control registers have been added to 
the MC68020, namely, the CAche Control Register (CACR) and the CAche 
Address Register (CAAR). Both are 32-bit registers, although only 4 bits of the 
CACR and 6 bits of the CAAR are currently used. In addition, the MOVEC 
instruction has been revised to allow access to these registers. 

The CACR contains four bits that allow the user some control over the 
cache. Except for these four operations, the cache is automatic and inaccessible. 
The four bits are: 

1 bit - Enable cache (E) 
2 bit - Freeze cache (F) 
4 bit - Clear Cache Entry (CE); uses CAAR 
8 bit - Clear cache ( C) 

If the E bit is 0, no caching occurs; all instructions will be fetched from 
external memory. If the E bit is 1, caching occurs. On power-up, the E bit is 0, 
so it must be set before caching can begin. This can be done via the following 
instructions: 

MOVE.L #1,DO 
MOVEC DO,CACR 

Set up an E bit 
Move into CACR 

If the F bit is 0, caching goes on as described above. If it is 1, then the 
cache becomes read only; hits are processed as before, but misses do not create 



272 68000, 68010, and 68020 Primer 

new cache entries. This could be of use during emulations when the programmer 
wishes the emulation routine not to change the cache. It can also be used in 
certain cases to get better cache results. One such case is discussed below under 
"Cache Limitations". The F bit can be set as follows: 

MOVE.L 
MOVEC 

Or, alternately, 

MOVEC 
ORI 
MOVEC 

#3,DO 
DO,CACR 

CACR,DO 
#2,DO 
DO,CACR 

Set up an F bit and an E bit 
Move into CACR 

Read current CACR 
Set F bit, don't change other bits 
Write new CACR 

If the C bit is read, it will always be found to be zero. If the C bit is set, 
however, it causes the entire cache to be cleared. The C bit can be set as follows: 

MOVE.L #5,DO 
MOVEC DO,CACR 

Set up a C bit and an E bit 
Move into CACR 

The CE bit is similiar to the C bit, except that it only clears one cache entry. 
If the CE bit is read, it will always be zero. If the CE bit is set, the cache entry 
designated by CMR is cleared. This entry is given by the cache index (bits 
[7:2]) of CAAR. 

CACHE LIMITATIONS 

The cache system is simple in execution, and is modestly sized. Hence, there 
are situations where the programmer should be aware of the limitations of the 
cache. Keep in mind that in all the situations described below an active cache 
is always as fast or faster than an inactive cache. Thus, enabling the cache can 
only improve execution speed. 

Rrst, the instruction cache may fail to improve the execution of large 
program loops. The cache is limited to 256 bytes. If a loop is greater than 256 
bytes and is executed many times, the cache will not have enough room to store 
all of the instructions. Some instructions will have to be repeatedly refetched to 
replace others. 

Second, routines used in both user and supervisor modes may be ref etched, 
even if they are already in the instruction cache. The cache considers user and 
supervisor memory accesses to be distinct. In a typical hardware situation (as 
explained in Chapter 7) all four address spaces actually end up referencing the 
same hardware memory. In another environment, there could be four entirely 



The MC68020 273 

separate address banks. Because this is all determined outside of the MC68020 
chip, the MC68020 itself has no way of knowing what is actually happening. 
Therefore, it has to assume the worst case, namely, that supervisor and user 
instruction (program) references are accessing distinct memory banks. 

If an instruction is accessed while in supervisor mode (function code 110), 
then immediately accessed again while in user mode (function code 010) the 
MC68020 has no way of knowing if supervisor instruction addresses and user 
instruction addresses are actually in separate hardware memory, and the MC68020 
is forced to refetch the instruction. 

Third, data accesses are not cached. For example, say that the following 
instructions are executed: 

MOVE. L #3, (AO) 
MOVE. L (Al), (A2) 

Both MOVE instructions, including the immediate field, are cached. The 
memory data areas, however, are not cached. Thus, if these instructions are 
executed again, the data area (AO) will be refetched. There are good reasons 
for not caching data areas. One reason is that to do so would require the cache 
to allow for four address spaces, versus two. Another reason is that since data 
areas are subject to be changed, proper caching of data areas would require 
caching of both inputs and outputs. 

Fourth, the cache may have to be cleared at certain critical times. For 
example, if a program is loaded into memory, and if the previous contents of 
that area of memory are still in the cache, then the cache has to be cleared (or 
at least disabled). Otherwise, false hits will occur, leading to disastrous results. 

Fifth, two or more very short program loops may be unimproved by caching. 
Consider an uncommon but possible situation where part A of a program resides 
at hex memory locations xxxxxx.00 through xxxxxx7F, and part B of it resides 
at yyyyyyOO through yyyyyy7F. Note that each segment occupies 32 longwords, 
that is, half of the cache, but both will unfortunately be stored in the same half 
of the cache, due to the way that the cache stores and addresses its data. If it 
turns out that A and B alternate back and forth, then the cache will never make 
a single hit because each segment keeps replacing the previous segment in the 
cache. At this point, the freeze bit comes to the rescue. If the F bit in the CACR 
is set to 1 after one execution of A, then part B will not make any hits, but part 
A always will. Is not half a cache better than none? 

Sixth, if a self-modifying program is cached, wrong results may occur. Self
modifying programs are totally at odds with the 68000 design philosophy, so 
this particular problem should come as no surprise. If a 68000 instruction is 
cached, then modified, it is left unchanged in cache memory. In the event of a 
subsequent hit, the old version of the instruction (in cache memory) will be used 



274 68000, 68010, and 68020 Primer 

in place of the new one (in external memory). The problem here is that the user 
is treating his or her program as data output, and the cache is not designed to 
cache data or output. 

For example, the following program finds the first condition code that tests 
positive in the comparison of DO and 01. It modifies itself, and then loops 
through the modified instruction. 

LOOP CMP.L DO,Dl These two registers stay the 
same 

TEST BHI FINISH This is changed to LS,CC,CS,etc 
LEA TEST, AO Pick up address of test 

instruction 
ADD.W #$100, (AO) Change the 4-bit condition code 

above 
BR LOOP Do another compare & test 

FINISH MOVE.W (AO) ,02 Pick up the Bee instruction 
ASR #$8,02 Isolate the condition code 

I 

AND #$F,D2 Mask off all but the last 4 
bits 

If caching is active, the Bee instructions will all execute as BHI. If caching 
is not active, all is okay. The best solution is to avoid self-modifying programs. 
The wisest solution to the above problem is to substitute code that checks each 
of the 16 condition codes in 16 separate instructions. A few extra words of 
program will avoid a very sticky problem. The next best solution is to disable 
caching and lock out all other users during the self-modifying routine. After the 
routine is done, the code should be returned to its original state, the cache 
enabled, and the other users unlocked. 

NEW ADDRESSING MODES 

The MC68020 introduces several additional addressing modes that allow for 
more displacements, larger displacements, a scaling factor, and an additional 
level of indirection. The beginning programmer will probably encounter few (if 
any) situations where these new addressing modes are useful. He may conclude 
that they simply save an extra instruction here and there. As more complex 
programming situations arise, however, the programmer will find increasing 
usefulness in these new (and more complex) addressing modes. It is hoped that 
the examples described in this section will help this process along. 

The new MC68020 addressing modes consist of six variants to two of the 
12 basic 68000 addressing modes. Three variants are variants of mode 110, 
whose original form is called address register indirect with index and 8-bit 



The MC68020 275 

displacement; the other three variants are variants to mode 110 011, whose 
original form is called program counter indirect with index and 8-bit displace
ment. These two sets of variants are implemented in a parallel fashion. Because 
of this parallelism, we need only to discuss one of the two sets in detail; the 
other set follows by simple analogy. 

Because of the complexity of these addressing modes, two points should 
be clarified before proceeding. 

First, the new addressing modes add together several numbers, including 
signed, unsigned, 32-bit, 16-bit, and 8-bit numbers. Throughout this section it 
is assumed that whenever numbers are added together in address calculations 
all 8-bit and 16-bit numbers are first sign-extended to 32-bits, then added. This 
applies to all fields: immediate fields, shortened register values, and memory 
references. 

Second, assemblers on various computers may use slightly different syn
taxes to represent the 68000 addressing modes. This is especially true of the 
variants discussed below, since so many parameters and operations are involved. 
These syntactical differences, however, should be obvious and easily translatable. 

In the next five sections, we describe the original form of one addressing 
mode on the MC68000, the "address register indirect with index and 8-bit 
displacement" mode, and its three variants available on the MC68020. For the 
original addressing form and its variants, we give sample effective addresses, all 
built around the use of an ASCII-to-EBCDIC conversion table. As the variants 
become more complex, so do the examples. 

ADDRESS REGISTER AND MEMORY 
INDIRECT WITH INDEX 

This addressing mode has bit pattern 110 rrr, where mis the 3-bit number of 
an address register (AO to A7). The title address register and memory indirect 
with index applies to all five forms of this addressing mode available on the 
MC68020, including the original MC68000 form and three MC68020 variants. 

As previously mentioned, the original form of this addressing mode, avail
able on all 68000 processors, is called address register indirect with index and 
8-bit displacement. It is represented by (d8,An,Rn.SIZE), where: 

d8 is any 8-bit signed displacement (values from -128 to + 127) 

An is any address register 

Rn is any address or data register 
SIZE is either W (for word) or L (for longword) 

The effective address is equal to the sum of d8, An, and Rn.SIZE. Note 
that d8 and Rn.SIZE are both sign-extended before being added to An. 



276 68000, 68010, and 68020 Primer 

A useful example of this original form is given by (0,AO,DO. W). If AO 
contains the base of an ASCII-to-EBCDIC conversion table, and if DO contains 
an ASCII byte, then (0,AO,DO.W) is the effective address of the corresponding 
EBCDIC byte. 

SCALE FACTOR 

The MC68020 allows the inclusion of a scale factor in the effective address, 
represented by (d8,An,Rn.SIZE*SCALE), where SCALE has the value 1, 2, 4, 
or8. 

Evaluation is similiar to the evaluation of the original form. The effective 
address is equal to the sum of d8, An, and Rn.SIZE*SCALE. Note that d8 and 
Rn.SIZE*SCALE are both sign extended before being added to An. 

An example using the scale factor is given by (0,AO,DO.W*2). As in the 
example given above for the original form, AO contains the base of an ASCII
to-EBCDIC conversion table. This time, however, the conversion table contains 
two bytes per entry; the first byte indicates if the ASCII byte can be converted 
to EBCDIC, and the second byte gives the actual EBCDIC byte. Thus, if DO 
contains an ASCII byte, then (0,AO,DO.W*2) is the effective address of the 
conversion indicator, and ( 1,AO,DO. W*2) is the effective address of the EBCDIC 
byte. 

In the original MC68000 form and in this MC68020 scaled form, d8 can 
have a zero value, but d8, An, and Rn must all be present. This is in contrast 
to the three variants described below, where all registers and displacements are 
optional. 

ADDRESSING MODE VARIANT #1 

This variant is called address register indirect with index and base displacement, 
and is represented by (bd,An,Rn.SIZE*SCALE), where bd is a base displace
ment of 0, 16, or 32 bits. 

All three of the parameters bd,An,Rn are optional. This optional usage is 
convenient whenever any of these registers is not needed, and a dummy (zero
value) register is not immediately available for calculating the effective address. 

Evaluation of variant # 1 is similar to the evaluation of the original form. If 
any of the three parameters are not present, they are evaluated as zero. The 
effective address is evaluated as the sum of bd, An, and Rn.SIZE*SCALE. 
Rn.SIZE*SCALE is sign-extended. 

An example using this form is given by (displacel,AO,DO.W*2). This time, 
let AO be the base of a general data area, which contains several tables, one of 
which is our familiar ASCII-to-EBCDIC conversion table. If displacel is the 



The MC68020 277 

displacement of our conversion table from the base of the general data area, 
and DO contains an ASCII byte, then (displacel,AO,DO.W*2) and 
(displacel + 1,AO,DO.W*2) are the effective addresses of the conversion indi
cator and the EBCDIC byte (explained above in the example for the scale 
factor). 

Note that a data indirect addressing mode, represented by (On), can be 
generated using variant # 1. This is accomplished by opting not to use bd and 
An, and using a data register for Rn. 

ADDRESSING MODE VARIANT #2 

This variant is called memory indirect post-indexed, and is represented by 
([bd,An],Rn.SIZE*SCALE,od), where od is an outer displacement of 0, 16, or 
32 bits. 

Evaluation of variant #2 is similiar to the evaluation of variant #1, except 
that one extra level of indirection occurs midway in the effective address calcu
lation. All four of the parameters bd,An,Rn,od are optional. Any parameters not 
present are evaluated as zero. The effective address is evaluated by first taking 
the sum of bd and An, then fetching the contents of the longword at this memory 
address, and finally taking the sum of this memory longword, Rn.SIZE*SCALE, 
and od. 

An example using this form is given by ([displacel,AO],DO.W*2). This 
time, suppose that the data tables are not in one place, but are scattered all 
over. The starting address of each table is known, however, and all these 
addresses are gathered together into a master address table, whose base is given 
by AO. The quantity displacel is now a displacement in this master address 
table, pointing to a number which in tum points to our conversion table. The 
expression [displacel,AO] itself represents the base of our conversion table, and 
([displacel,AO],DO.W*2) is the effective address of the two-byte entry for the 
conversion of an ASCII byte in DO to EBCDIC. 

ADDRESSING MODE VARIANT #3 

This variant is called memory indirect pre-indexed, and is represented by 
([bd,An,Rn.SIZE*SCALE],od). 

Evaluation of variant #3 is similiar to the evaluation of variant #2, except 
that the extra level of indirection occurs at a different point in the effective 
address calculation. All four of the parameters bd,An,Rn,od are optional. Any 
parameters not present are evaluated as zero. The effective address is evaluated 
by first taking the sum of bd, An, and Rn.SIZE*SCALE, then fetching the 



278 68000, 68010, and 68020 Primer 

contents of the longword at this memory address, and finally taking the sum of 
this memory longword and od. 

Note that variant #2 and variant #3 differ only in whether the index is 
added before (variant #3) or after (variant #2) the memory reference is made. 

PROGRAM COUNTER AND MEMORY 
INDIRECT WITH INDEX 

This addressing mode has bit pattern 111 011. The title program counter and 
memory indirect with index applies to all five forms of this addressing mode 
available on the MC68020, including the original MC68000 form and three 
MC68020 variants. 

The entire preceding discussion regarding the address and memory indi
rect with index addressing mode and its three MC68020 variants, applies anal
ogously to the program-counter-and-memory-indirect-with-index addressing mode. 
The only difference between these two sets of addressing modes is that the 
program counter (PC) is used in place of an address register (An). Thus, 
wherever "address register" appears in the preceding discussions, substitute the 
words "program counter", wherever "An" appears, substitute "PC", and wher
ever ''memory indirect'' appears, substitute ''PC memory indirect''. 

Note that in each of the effective address examples presented earlier, the 
ASCII-to-EBCDIC conversion table can be located anywhere in memory. If the 
table is located within the program itself, however, then the ''program counter 
and memory indirect with index'' addressing modes should be used, because 
they do not require the use of an address register (An). 

For example, consider the effective address example presented above for 
variant # 1. In the original example, the ASCII-to-EBCDIC conversion table 
could be located anywhere in memory. If the table is actually located within the 
program itself, then it is better to use the PC-relative addressing mode 
(label,PC,DO.W*2), rather than addressing mode (displacel,AO,DO.W*2). Us
ing the latter mode, AO is unnecessarily tied up, and has to be pre-loaded with 
data area base address via an ''LEA label,AO'' instruction. 

Tables 8-4 and 8-5 summarize the new addressing modes, and their effec
tive address syntaxes. 

TRACE BITS TO AND T1 

The trace bits allow the monitoring of one program by another program. For 
example, it is possible for a master program P-1 to monitor a slave program P-
2 on an instruction-by-instruction basis. This is done using the trace bit Tl, 



Format 

Original 
Original 
Variant #1 
Variant #2 
Variant #3 

Format 

Original 
Original 
Variant #1 
Variant #2 
Variant #3 

The MC68020 279 

Table 8-4 Address Register and Memory Indirect with 
Index: Mode 110 rrr 

CPU Effective Address Syntax 

68000 (d8,An,Rn.SIZE) 
68020 (d8,An, Rn.SIZE*SCALE) 
68020 (bd,An, Rn.SIZE*SCALE) 
68020 ([bd,An], Rn.SIZE*SCALE,od) 
68020 ([bd,An,Rn.SIZE*SCALE],od) 

Parameters 

Required 
Required 
Optional 
Optional 
Optional 

Table 8-5 Program Counter and Memory Indirect with 
Index: Mode 111 011 

CPU Effective Address Syntax Parameters 

68000 (d8,PC,Rn.SIZE) Required 
68020 (d8, PC, Rn .SIZE*SCALE) Required 
68020 (bd,PC,Rn.SIZE*SCALE) Optional 
68020 ( [bd, PC], Rn.SIZE*SCALE,od) Optional 
68020 ([bd, PC, Rn.SIZE*SCALE] ,od) Optional 

which is bit 15 in the status register. When this bit is set to 1, a trace exception 
occurs at the end of each instruction. Thus, P-1 must set the Tl bit using the 
privileged instruction and begin executing the P-2 program. After each instruc
tion of the P-2 program, a trace exception is generated by the 68000. Control 
is returned to P-1, P-1 analyzes what happened, then does an RTE. The whole 
process repeats until P-1 decides to stop. 

Tracing allows for the creation of programs which must be able to monitor 
the results of individual instructions. Such programs include assembler debug
ging utilities, and programs to analyze how often each instruction gets executed. 

When the other trace bit TO (bit 14 in the status register) is set to 1, a trace 
exception occurs only when a change in program flow occurs, such as after a 
BRA or JMP instruction. 

In the MC68000, trace bit TO is not used, and is always zero; furthermore, 
trace bit Tl is the only trace bit, and is called the T bit. The function of the trace 
bits is thus upward compatible, that is, MC68000 programs using the trace 
function will run correctly on the MC68020. The exception is: if some adven-



280 68000, 68010, and 68020 Primer 

Table 8-6 Trace Bits 

T1 TO Trace Function 

0 0 No trace 
0 1 Trace on Flow Change (Bcc,JMP, DBcc) 
1 0 Trace on each instruction 
1 1 [Reserved by Motorola] 

turous programmer has been fiddling with the TO bit on the MC68000, then 
such programs may fail to execute correctly on the MC68020. 

COPROCESSOR SUPPORT 

The MC68020 has 7 additional instructions which support communications 
between the MC68020 and coprocessors. Coprocessors are processors that 
satisfy certain hardware interface requirements established by Motorola. One of 
the main requirements is that the coprocessor must have certain interface reg
isters that are necessary for communications with the host processor. 

A complete discussion of coprocessors would include details of the functions 
of each 68000 coprocessor instruction, a description of Motorola's hardware 
interface requirements, and the specific functions of each available coprocessor. 
In this section we will limit our discussion to an overview of the 68000 copro
cessor instructions, and how the 68000 actually communicates with the copro
cessor hardware. The goal of this section is to clarify, from the 68000 programmer's 
point of view at least, how instructions and data get from the 68000 to the 
coprocessor. We will also consider what happens when a coprocessor is not yet 
physically present in a computer system, and is being emulated in software until 
some future installation date. 

If the immediately following paragraphs are confusing, you should review 
the section on function codes in Chapter 7. 

COPROCESSOR HARDWARE COMMUNICATION 

First, we look at what is happening on the hardware level. In order to properly 
communicate with the MC68020 coprocessor instructions, a coprocessor is 
required to have a standard set of 13 interface registers (control register, com
mand register, condition register, etc.) totaling 32 bytes in all. We will be using 
one of these registers, the coprocessor command register, in succeeding exam-



The MC68020 281 

pies. It is always located at address position 10 (decimal) within the 32 bytes. 
When the 68000 chip actually communicates with a coprocessor, it either reads 
from or writes to one or more of the coprocessor registers. In order to do this, 
the 3 function code lines of the 68000 send out bits 111, indicating a special 
CPU space access; the 32 address lines of the 68000 send out 32 bits in the 
following format: 

xxxx xxxx xxxx 0010 CCCX xxxx xxxr rm 

and the 32 data lines of the 68000 may send out 32 bits of data. 
When the function code is 111, the 32 bits on the address line are not 

interpreted as a full 32-bit address (as with the other four function codes), but 
are broken down into smaller bit fields of information used to determine the 
final location of the special CPU space 1/0. Thus, the 0010 bits above indicate 
that this is a coprocessor communication (as opposed to some other kind of 
CPU space transfer), ccc is the coprocessor code (0 to 7) that indicates which 
coprocessor is being accessed, and rrm is the coprocessor register address (0 
to 31 decimal). The bit fields represented by x are not currently used. 

The coprocessor codes are currently allocated as follows: 

000 
001 
010-101 
110-111 

MC68851 paged memory management unit 
MC68881 floating point coprocessor 
[Reserved for Motorola] 
[Reserved for users] 

As part of the coprocessor interface, it is necessary for either the coprocessor 
or some intermediary hardware to detect when the above signals have been 
sent out from the 68000, to recognize them as coprocessor communications, 
and to respond accordingly. 

If the 68000 is trying to write to the coprocessor, then the proper response 
for the coprocessor is to take the data being sent to it (via the 32 data lines from 
the 68000), and store it in coprocessor ccc at register location rrm. If the 68000 
is trying to read from the coprocessor, then coprocessor ccc should send the 
contents of register location rrm to the 68000 over the data lines. 

That covers the hardware end of the coprocessor interface. Next we will 
see how the programmer actually sends out the function codes and address bits 
which access the desired coprocessor. 

COPROCESSOR SOFTWARE COMMUNICATION 

How does the average programmer communicate with the coprocessor? In 
general, you will use an assembler that supports your coprocessor. You will 



282 68000, 68010, and 68020 Primer 

include various coprocessor instructions in your programs to communicate with 
the coprocessor, as explained in the documentation for your coprocessor. And 
finally, the assembler will create object code with the correct parameters for that 
coprocessor. Note that the same kind of communication with different copro
cessors will result in different object code, due to different coprocessor ID codes, 
and different coprocessor command languages. 

For example, suppose that a hypothetical coprocessor exists, called the 
MC99999, which monitors power consumption by polling hundreds of meters. 
The MC68020 communicates once to the MC99999 to get it started, and the 
coprocessor then spends several seconds or minutes doing the actual polling, 
thus relieving the 68000 of this burdensome task. The MC99999 leaves the 
numerical results of the polling in memory, and informs the MC68020 when it 
is done. 

One of the MC68020 coprocessor instructions, the cpGEN instruction, 
sends a GENeral 16-bit command to the command register of a coprocessor. 
Suppose that the MC99999 has a coprocessor code of 2, that the receipt of a 
single 16-bit POLL instruction in its command register causes the MC99999 to 
begin its poll cycle, and that, in MC99999 language, a POLL instruction is hex 
$1234. A hypothetical assembler which supports the MC99999 would accept 
this instruction: 

cpGEN METER,POLL 

Our hypothetical assembler would associate the symbol "METER" with 
the MC99999's coprocessor code (namely, 2), and would assemble the POLL 
command into its proper MC99999 bit pattern (hex $1234). A cpGEN instruc
tion assembles into two words that are generally represented as follows: 

1 1 1 1 c c c 0 0 0 x x x x x x 
I i 

where Ccc is the coprocessor code, Xxxxxx is an optional effective address (not 
used by the MC99999), and the second word is the actual instruction sent to 
the coprocessor. Thus, our particular cpGEN instruction assembles as: 

1 1 1 
0 0 0 

1 0 
1 0 

1 0 
0 1 

0 0 
0 0 

0 0 
0 1 

0 0 
1 0 

0 0 0 
1 0 0 

Now that we have looked at how the coprocessor interface functions, both 
in hardware and in software, let's look at what happens when one or more parts 
of that interface are missing. 



The MC68020 283 

EMULATION OF THE MC68020 COPROCESSOR 
INSTRUCTIONS 

Is the MC68020 itself indispensable for coprocessor communications? No. It is 
simply easier, faster, and uses fewer registers than the MC68010. 

The MC99999 cpGEN instruction discussed in the previous section is 
equivalent to the following MC68010 instructions: 

MOVE.L #7,DO 
MOVEC DO,DFC 

MOVE.L #$0002400A,AO 

MOVE.L #$1234,Dl 
MOVES Dl, (AO) 

CPU space function code 
Move to destination function code 
register 

Set up bits for ccc=2, rrrrr=lO 
(decimal) 

Set up data to move 
Move Dl to coprocessor 2 register 

10 (dee) 

Note that the MC68020 accomplishes all this in only one instruction, and 
without using registers DO,Dl,AO. 

Since all of the above instructions exist on the MC68010, the coprocessor 
software instructions can be emulated on the MC68010. Since the MOVES and 
MOVEC instructions do not exist on the MC68000, however, the coprocessor 
software instructions can not be emulated on the MC68000. We will now discuss 
the coprocessor capabilities available to the MC68000 and MC68010. 

COPROCESSORS ON THE MC68010 

If an MC99999 is connected to an MC68010, it is necessary to emulate the 
MC68020 software coprocessor instructions using MC68010 instructions. 

A more elegant solution, however, would be as follows. Include the copro
cessor instructions (for example, cpGEN) in the MC68010 program, even 
though these instructions are not part of the MC68010 instruction set. Change 
the MC68010 assembler so that it assembles the coprocessor instructions into 
the same bit patterns as the MC68020 assembler, or use an MC68020 assem
bler. finally, change the unimplemented 1111 instruction exception routine to 
check for these bit patterns and emulate them in software. 

Later on, if the computer is upgraded to an MC68020, the coprocessor 
interface will function fully, without any changes in the software. 

COPROCESSORS ON THE MC68000 

Unfortunately, the MC68000 is not capable of communicating with coprocessors 
at all, because it lacks not only the MC68020 coprocessor instructions, but also 



284 68000, 68010, and 68020 Primer 

the MC68010 instructions, MOVEC and MOVES. The best the MC68000 can 
do is emulate the MC99999 hardware in software. 

Software emulation of coprocessor hardware is not always possible. For a 
coprocessor with specialized hardware functions like the MC99999, emulation 
may be impossible. For some coprocessors, emulation can be accomplished 
using another piece of hardware. And for some coprocessors, such as the 
MC68881 floating point coprocessor, software emulation is completely possible. 
Indeed, there are probably many 68000 systems right now that are running 
MC68881 software emulations. 

The advantages of emulating hardware features in software are manifold. 
Rrst, it allows the MC99999 manufacturer to model the chip's behavior in 
software, before having to invest in actual hardware development. Second, it 
allows the manufacturer to implement the MC99999 in software at customer 
sites before the MC99999 is actually available. The emulation will probably be 
several times slower than the actual MC99999, but in the computer world, a 
slow routine is better than no routine at all. 

Third, when the MC99999 or MC68881 is finally available, it only has to 
be plugged in, along with an MC68010 or MC68020, and the coprocessor 
interface will function with no software changes necessary. 

MISSING COPROCESSORS ON THE MC68020 

If there is no actual MC99999 present, and the MC68020 attempts to com
municate with it, the MC68020 will be notified of this fact after one bus cycle, 
and will execute an unimplemented 1111 instruction exception. All this occurs 
automatically. 

The unimplemented 1111 instruction exception routine is free to either 
report that the MC99999 is missing, or to emulate the MC99999 hardware in 
software and then return. As discussed in the previous section, if the MC99999 
is emulated in software, and the MC99999 is later plugged into the computer, 
then no software changes are necessary. 

NONSTANDARD COPROCESSOR HARDWARE 

What happens in the situation where an MC68020 is connected to a coprocessor 
having a nonstandard coprocessor interface? The MC68020 coprocessor in
structions will not be able to communicate correctly with the coprocessor, and 
hence cannot be used. They must be replaced by routines which explicitly use 
MOVEC, MOVES, and MOVE to communicate to the proper addresses within 
the coprocessor. These routines will be similar, but not identical to the MC68010 
routines which emulate the MC68020 coprocessor instructions. 



The MC68020 285 

Table 8-7 Summary of Coprocessor Commands 

Mnemonic 

cpGEN 
cpScc 
cpDBcc 
cpTRAPcc 
cpBcc 
cpSAVE 
cpRESTORE 

Description of Operation 

Sends a general instruction to the coprocessor 
Like Sec, but uses coprocessor condition codes 
Like DBcc, but uses coprocessor condition codes 
Like TRAPcc, but uses coprocessor condition codes 
Like Bee, but uses coprocessor condition codes 
Saves status of coprocessor [privileged] 
Restore status of coprocessor [privileged] 

SUMMARY OF MC68020 COPROCESSOR COMMANDS 

The seven coprocessor instructions on the MC68020 all have the following bit 
patterns for the primary instruction word: 

111 lCcclnsXxxxxx 

where Ccc is the 3-bit coprocessor code, Ins indicates the instruction, and 
Xxxxxx is dependent upon the instruction. Note that the first four bits of each 
instruction are 1111. As with other 68000 instructions, some of the coprocessor 
instructions are followed by additional words which are displacements, data, or 
condition codes. 

THE MASTER BIT 

The Master (M) bit is used to support environments where multiple operating 
systems (privileged jobs) are running concurrently. The M bit distinguishes the 
master operating system from all the others. It should be noted that, except for 
deep operating systems programming, the average 68000 programmer will 
probably never have to be concerned with the M bit. 

USER AND SUPERVISOR MODES 

The M bit is an extension of the S bit, and the S bit is the basic mechanism 
used by the 68000 to control privileged operations. In order to clarify the function 



286 68000, 68010, and 68020 Primer 

of the S bit and M bit, we first explain the primary motivation for having both 
of them. 

Certain processor functions are considered so important that they are 
accessible only to privileged users, or privileged programs (for example, an 
operating system). In the 68000, these functions include 

• An irrevocable abort of all current processing (RESET,STOP) 

• Errors of all kinds (bus error; address error; instruction error; zero divisor, 
coprocessor error) 

• User traps 
• External hardware interrupts 

The 68000 simplifies the concept of privilege to the simplest possible 
mechanism, namely, at any given time the 68000 is either in a privileged 
(supervisor) mode, or in an unprivileged (user) mode. Whenever any of the 
conditions listed above occurs, control is yanked away from the current program 
(whether supervisor or user), the privileged (Supervisor) mode is entered, and 
one of several special routine decides what to do about what just happened. In 
some of these routines, the decision of how to proceed will critically depend on 
whether the original program was in the supervisor or user mode. 

Once the privilege mechanism has been set up in this way, two more 
privileged functions suddenly surface, namely: 

• Changing between supervisor and user mode 

• Querying the current mode (MC68010) 

Requesting the supervisor mode is a privileged function, and requires a 
privileged routine to decide whether or not to grant it Even querying the current 
mode ("Am I now in supervisor mode?") is a privileged function. This privilege 
is necessary in order to allow for situations where the main operating system 
emulates another operating system. The emulated operating system actually 
runs in user mode, but thinks it is in supervisor mode. It must be kept in user 
mode so that the main operating system can intercept any queries that the 
emulated system may make regarding his mode and set up a counterfeit re
sponse to keep him fooled. 

There are only two privilege levels inherent in the 68000 privilege system, 
but more can be artificially implemented in software. Simply keep everyone at 
user mode (that is, with no actual privileges), and assign each one a privilege 
level (for example, 0 to 255). Anytime someone executes a privileged function, 
control will be taken away and the controlling routine will check the assigned 
privilege level and will emulate what should actually be allowed. 



IMPLEMENTATION OF USER, SUPERVISOR, AND 
MASTER MODES 

The MC68020 287 

In the MC68000, bit 13 in the status register is called the S bit, or supervisor 
bit. It is used to indicate whether the processor is currently in user mode (S bit 
0) or supervisor mode (S bit 1). Certain instructions are considered privileged, 
and are only allowed when the processor is in supervisor mode. These instruc
tions are: instructions that change the S bit, instructions that read the S bit 
(MC68010), and the MOVE USP, MOVEC, MOVES, RESET, STOP, and RTE 
instructions. 

If a privileged operation is attempted in user mode, a privilege violation 
exception is generated. All other exceptions occur in the same way, whether they 
occurred while in user mode or supervisor mode. 

There are two stacks, each having their own stack pointer. The User Stack 
Pointer (USP) is in effect during user mode, and the Supervisor Stack Pointer 
(SSP) is in effect during supervisor mode. The stack pointer currently in use is 
always referenced by A 7, whether it is USP or SSP. When any exception occurs, 
a block of information (called a stack frame) is pushed onto the supervisor 
stack, the supervisor mode is set, and the exception routine is entered. When 
the routine is done, the stack frame is cleared from the supervisor stack, and 
control usually returns to the place where the exception occurred (unless it is 
irrecoverable). 

In the MC68020, a second bit is assigned for use, in conjunction with the 
S bit. It is bit 12 in the status register, and is called the M bit, or master bit. In 
user mode (S=O), things run just like on the MC68000. In supervisor mode 
(S=l), however, two possible submodes are possible. When the master bit is 
clear (M=O), the interrupt mode is in effect, and A7 references the Interrupt 
Stack Pointer (ISP), which points to the interrupt stack. When the master bit is 
set (M= 1), the master mode is in effect, and A7 references the Master Stack 
Pointer (MSP), which points to the master stack. The stack pointer currently in 
use is always referenced by A 7, whether it is USP, ISP, or MSP. 

When the M bit is cleared to 0, all of the mode and stack changes happen 
just like on the MC68000, with the understanding that the supervisor stack 
being used is always the interrupt stack. When M is set to 1, however, the 
treatment of exceptions changes in two ways. Arst, exceptions now create stack 
frames on the master stack, instead of the interrupt stack. Second, during an 
external hardware interrupt exception, the usual stack frame is created on the 
master stack, but then the same stack frame is also created on the interrupt 
stack, and the master bit is cleared, causing a change to the interrupt mode. 

Thus, a user who is normally in master mode operates off of the master 
stack, but during the processing of external hardware interrupt exceptions, the 
user operates off of the interrupt stack, just as with other jobs. 



288 68000, 68010, and 68020 Primer 

Each exception processing usually ends with an RTE instruction, which 
returns to the previous mode and stack. In the case of the double stack frame 
situation described above, RTE clears both stack frames, and returns through 
both modes. 

NEW INSTRUCTIONS ON THE MC68020 

Several categories of changes were made to the MC68020 instruction set. Many 
old instructions were extended in their operations, and many new instructions 
were added. The final section in this chapter covers all instructions that are either 
new or extended on the MC68020. 

BRANCH INSTRUCTIONS SUPPORT 32-BIT 
DISPLACEMENTS 

The Bee, BRA, and BSR instructions now support 32-bit displacements. The 
original single-word instruction formats contain an 8-bit op code and an 8-bit 
displacement. If the 8-bit displacement is zero, then the following word is used 
as a 16-bit displacement. 

In the MC68020, if the 8-bit displacement is 255 (decimal), then the 
folloWing two words are used as a 32-bit displacement. The assembly program
mer generally does not need to know these particulars. The assembler auto
matically decides the best format to use. 

LINK INSTRUCTION SUPPORTS 32-BIT 
DISPLACEMENTS 

The LINK instruction originally allowed only a 16-bit displacement, but now 
supports both 16-bit and 32-bit displacements. 

EXTEND BYTE TO LONGWORD 

The EXTB.L instruction sign extends a byte to a longword in a. data register. 
The original MC68000 instructions are EXT. W, which sign-extends a byte to a 
word, and EXT.L, which sign-extends a word to a longword. On older 68000 
processors, it is necessary to do both an EXT.Wand EXT.Lin order to get the 
equivalent of one EXTB.L instruction. 



The MC68020 289 

CHK SUPPORTS LONGWORD UPPER BOUNDS 

The MC68000 CHK instruction checks a data register against a word upper 
bound. The MC68020 CHK instruction checks a data register against either a 
word or longword upper bound. There is no apparent change in the instruction 
syntax, but the assembler will allow bounds greater than 16 bits, and will 
automatically decide which format is best to assemble. 

CHK2 (NEW INSTRUCTION) 

This is a further generalization of the CHK instruction. A new CHK2 (check 
two bounds) instruction allows either a data or address register to be checked 
against a lower and upper bound, both of which are byte, word, or longword. 
All combinations of the above are allowed. The syntax is CHK2 <cea> ,Rn 
where ea is the location of the lower bound, and the upper bound must imme
diately follow the lower bound in memory, either 1, 2, or 4 bytes away, 
depending on the operand length. 

CMP2 (NEW INSTRUCTION) 

A new CMP2 (compare two bounds) instruction operates just ·like the CHK2 
instruction, except that, instead of a trap occurring on an out-of-bounds condi
tion, the condition codes are set, leaving the user to subsequently branch as 
desired. The syntax is CMP2 <cea> ,Rn and the condition codes are set as 
follows: 

N Undefined 
Z Set if Rn is equal to either bound, cleared otherwise 
V Undefined 
C Set if Rn is out of bounds, cleared otherwise 
X Not affected 

CAS AND CAS2 (NEW INSTRUCTIONS) 

CAS and CAS2 are compare and swap instructions, and both guard against 
multiuser accesses to the same areas. They can be viewed as extensions of the 
original MC68000 TAS instruction. In a multiuser environment the simplest 
method of guarding against the problem of simultaneous updates to the same 
data is to set up a flag somewhere that (by mutual agreement) can only be set 
(or "owned") by one user at a time. The TAS instruction allows the user to test 



290 68000, 68010, and 68020 Primer 

if a flag is set and if it isn't, sets it. Most important, TAS guarantees that no one 
else will have access to this flag during the entire read-modify-write process. 

Thus, TAS satisfies the minimum requirements for implementing multiuser 
safeguards. The user is then free to execute the update routine, because he or 
she knows that no one else will gain access until he or she clears the flag. The 
other jobs must cooperate by not executing the update routine until they have 
possession of this flag. In addition the lucky possessor of the flag should coop
erate by keeping the flag set for as short a time as possible. If this is done, then 
whenever a program fails to get ownership of the flag via a TAS, it can safely 
loop forever until it finally gets the flag, because the understanding is that this 
will not take very long. 

Even in a single-user environment, TAS is needed because there are still 
multiusers in the form of external interrupts, all of which can occur at any time 
and at varying frequencies. The ability to temporarily lock out certain resources 
becomes critical in order to process these requests. 

CAS goes one step further than TAS, and CAS2 goes two steps further. 
They have the following instruction formats: 

CAS Dc,Du,ea 
CAS2 Dcl:Dc2,Dul:Du2, (Rill): (Rn2) 

CAS compares De and ea; if they are the same, then Du replaces ea. In 
the simplest application, ea is a counter that is subject to be incremented by 
more than one user. The procedure is to read ea into De (the old or compare 
value), create the new value in Du (the new or update value), then execute the 
CAS instruction. If it fails, simply try again. Caution: If the De counter undergoes 
constant and rapid updating, then it is probably safer to use TAS; otherwise, 
several users may get hopelessly locked up retrying their updates. 

CAS2 is similiar to CAS, except that it does two comparisons. If either 
compare fails, the update is not made. Note that whereas CAS allows any 
alterable memory-effective address mode, CAS2 only allows (address or data) 
register indirect modes. The caution above regarding the use of CAS also applies 
here. 

DIV AND MUL SUPPORT NEW FORMATS 

Several additional multiply and dMde formats have been added to the MC68020. 
All formats use one or two data registers and one data-effective address as 
source operands, and leave the results in one or more data registers. Following 
are all of the formats available on the MC68020, including the previous formats. 



The MC68020 291 

Table 8-8 Divide and Multiply Formats 

Instruction Operation of Instruction Processor 

DIVU.W dea,Dn Dn(32) I dea(l 6) = Dn(16r: 16q) 68000 
DIVU.L dea,Dq Dq(32) I dea(32) = Dq(32) 68020 
DIVU.L dea,Dr:Dq Dr:Dq(64) ·I dea(32) = Dr(32) , Dq(32) 68020 
DIVUL.L dea,Dr:Dq Dq(32) I dea(32) = Dr(32) , Dq(32) 68020 
DIVS.W dea,Dn Dn(32) I dea(l 6) = Dn(16r: 16q) 68000 
DIVS.L dea,Dq Dq(32) I dea(32) = Dq(32) 68020 
DIVS.L dea,Dr:Dq Dr:Dq(64) I dea(32) = Dr(32) , Dq(32) 68020 
DIVSL.L dea,Dr:Dq Dq(32) I dea(32) = Dr(32) , Dq(32) 68020 
MULU.W dea,Dn dea(l 6) x Dn(l 6) = Dn(32) 68000 
MULU.L dea,DI dea(32) x 01(32) = 01(32) 68020 
MULU.L dea,Dh:DI dea(32) x 01(32) = Dh:Dl(64) 68020 
MULS.W dea,Dn dea(l 6) x Dn(l 6) = Dn(32) 68000 
MULS.L dea,DI dea(32) x 01(32) = 01(32) 68020 
MULS.L dea,Dh:DI dea(32) x DI (32) = Dh:Dl(64) 68020 

The various subscripts used with the data registers are n for any register, r for a 
remainder, q for a quotient, h for a high order longword, and 1 for a low order 
longword. The numbers 16, 32, and 64 indicate word, longword, and quadword 
respectively. 

PACK AND UNPK (NEW INSTRUCTIONS) 

PACK simplifies the conversion of ASCII and EBCDIC numbers to BCD, and 
UNPK simplifies the conversion from BCD back to ASCII and EBCDIC. In a 
likely situation, a sequence of ASCII or EBCDIC digits is obtained from an input 
device (for example, a terminal, tape, or disk file); they are converted to internal 
BCD format using the PACK instruction; and BCD computations are done on 
them using the ABCD, SBCD, and NBCD instructions. Afterwards, they are 
converted back to ASCII or EBCDIC using the UNPK instruction; finally, they 
are sent to an output device. The formats available are: 

PACK-(Ax),-(Ay),#adjustment 

PACK Dx,Dy,#adjustment 

UNPK-(Ax),-(Ay),#adjustment 

UNPK Dx,Dy,#adjustment 



292 68000, 68010, and 68020 Primer 

PACK takes a word from the source operand, adds the adjustment word to 
it, then writes the second and fourth hex digits (bits [11:8] and [3:0]) of the 
result to the destination byte. For ASCII conversions, the adjustment is --3030 
(hex) = CFDO (hex). For EBCDIC conversions, the adjustment is -FOFO (hex) 
= OFlO (hex). A string of digits of any length can be converted using a two
instruction loop consisting of a pre-decrement PACK command and a DBcc 
command. Thus, a string of digits of any length can be converted as follows: 

MOVE.L #<size-1>,DO set up digit count 

MOVEA.L #<packend>,AO ending of packed digits 

MOVEA.L #<Unpackend>,Al ending of unpacked 
digits 

LOOP PACK -(AO),-(Al),#$CFDO convert from ASCII 

DBF DO, LOOP stop when count is -1 

UNPK takes a byte from the source operand, creates a word from it whose 
second and fourth hex digits are the two hex digits from the source byte and 
whose first and third hex digits are zero, adds the adjustment to it, then writes 
the word to the destination address. For ASCII conversions, the adjustment is 
+ 3030 (hex). For EBCDIC conversions, the adjustment is + FOFO (hex). 

TST AND CMPI SUPPORT ALL ADDRESSING MODES 

On the MC68000, TST (TeST) and CMPI (CoMPare Immediate) only allow 
alterable data effective addresses (adea). On the MC68020, TST.B and CMPl.B 
remain restricted to adea, but TST.W, CMPl.W, TST.L, and CMPl.L may 
operate on any effective address. The net effect of this change is to include the 
PC addressing modes, and the address register direct mode. 

TRAPcc (NEW INSTRUCTION) 

TRAPcc is a new instruction on the MC68020 which generates a trap if a given 
condition code is true. All 16 conditions are allowed, including the "always 
trap" (TRAPT) and "never trap" (TRAPF) cases. Optionally, a word or longword 
may follow the TRAPcc instruction; it is not used by the processor, but is available 
to the user's trap routine. Forms available are as follows: 

TRAP cc 
TRAPcc.W #d16 
TRAPcc.L #d32 



The MC68020 293 

Table 8-9 Summary of Bit Field Instructions 

Mnemonic 

BFEXTS 
BFEXTU 
BFFFO 
BFINS 
BFCLR 

BFSET 

BFCHG 
BFTST 

Operands 

ea { offset:width}, On 
ea { offset:width}, On 
ea { offset:width}, On 
DN,ea{offset:width} 
ea { offset:width} 

ea { offset:width} 

ea { offset:width} 
ea { offset:width} 

COPROCESSOR INSTRUCTIONS (NEW) 

Description of Operation 

Extract signed bit field (extend) 
Extract unsigned bit field (zero fill) 
Find first one bit in bit field 
Insert (low order) bits into field 
Test BF, set CCR, then clear all bits 
to zeros 
Test BF, set CCR, then set all bits to 
ones 
Test bit field, then complement 
Test bit field 

See the section on coprocessors, elsewhere in this chapter. 

MOVEC SUPPORTS NEW CONTROL REGISTERS 

MOVEC now reads and writes to the cache registers CAAR and CACR. See 
Chapter 7 for details on the MOVEC instruction. 

BIT FIELD INSTRUCTIONS (NEW) 

There are eight bit-manipulation instructions on the MC68020. In each, the 
main operand is a bit field of 1 to 32 bits. This bit field is referenced off of either 
a data register or a byte in memory, either of whose leftmost (highest order) bits 
is considered bit number zero. The actual bit field is designated by a bit offset 
from bit number zero, and the bit width (1to32). If a second operand is present, 
it is a data register. 

In Table 8-9: 

• ea is an effective address. 
• Offset is the bit offset, either an immediate value of 0 to 31 or a data 

register value from -2,147,483,647 to +2,147,483,648. 

• Width is the bit field width, either an immediate value of 0 to 31, or a 
data register value from 0 to 31 (taken modulo 32). Zero represents a 
value of 32. 

• Dn is a data register. 



294 68000, 68010, and 68020 Primer 

Below are examples of bit field instructions: 

BFEXTU DO {8: 15}, Dl 
BFCLR !AO) {2: 5} 

BFFFO !AO) {DO: 32}, D1 

CONCLUSION 

move 2nd byte of DO to Dl 
clear middle 4 bits of memory 
byte (AO) 

find first 1 bit starting at 
DO-th bit of memory byte (AO); 
search 32 bits. 

Whereas the MC68010 concentrated on one critical function (emulation), the 
MC68020 introduced a variety of new features. Compared to the MC68010, 
the MC68020 has 256 times as much address range, ·faster execution due to 
the on-board cache, and faster communication with co-processors. Six addi
tional addressing modes, enhanced instructions, and new instructions save 
programming time, program room, and execution time. Branch instructions 
were revised to allow for full 32-bit branches. Multiply and divide now fully 
support 64-bit products and dividends. Finally, the new bit field operations 
significantly increase the speed and power of instructions that change individual 
bits; this aids in the updating of disk directory bitmaps, and is critically important 
in the handling of real-time graphics displays. 



A 

M68000 Instructions
Number of Operands 

No Operand: 

NOP 
ILLEGAL 
RESET* 
RTE* /RTR/RTS 
TRAPV 

Single Operand: 

ASUASR
Bcc/BRA/BSR 
CLR 
EXT 
JMP/JSR 
NBCD 
NEG/NEGX 
NOT 
PEA 
RTD 
Sec 
STOP* 
SWAP 
TAS 
TRAP 
TST 
UNLK 

295 



296 68000, 68010, and 68020 Primer 

Two Operands: 

ABCD 
ADD/ADDA/ADDl/ADDQ/ADDX 
AND/ ANDI/ ANDI-CCR/ ANDI-SR* 
ASL/ASR-
BCHG/BCLR/BSET/BTST 
CHK 
CMP/CMPA/CMPI/CMPM 
DBcc 
DIVS/DIVU 
EOR/EORI/EORI-CCR/EORI-SR* 
EXG 
LEA 
LINK 
LSL/LSR-

MOVE/MOVE-from-CCR/MOVE-to-CCR/MOVE-to-SR*/MOVE-from-SR** 
MOVE-USP*/MOVEA/MOVEC**/MOVEM/MOVEP/MOVEQ/MOVES** 

MULS/MULU 
OR/ORI/ORI-CCR/ORI-SR* 
ROL/ROR/ROXL/ROXR-
SBCD 
SUB/SUBA/SUBI/SUBQ/SUBX 

Legend: - = can have one or tlNO operands 
* = privileged MC68000 

** = privileged MC68010 



B 

M68000 Addressing Mode 
Types 

<ea> = Any Effective Address 
<rea> = Register Effective Address 
<dea> = Data Effective Address 
<mea> = Memory Effective Address 
<cea> = Control Effective Address 
<aea> = Alterable Effective Address (data or memory) 
<adea> = Alterable Data Effective Address 
<amea> = Alterable Memory Effective Address 
<acea> = Alterable Control Effective Address 

Mode ea rea dea mea cea aea a de a amea ace a 

On * * * * * 
An * * * 
(An) * * * * * * * * 
(An)+ * * * * * * 
-(An) * * * * * * 
d(An) * * * * * * * * 
d(An,Xi) * * * * * * * * 
Abs.W * * * * * * * * 
Abs.L * * * * * * * * 
d(PC) * * * * 
d(PC,Xi) * * * * 

297 



298 68000, 68010, and 68020 Primer 

Mode ea rea dea mea cea aea adea amea acea 

Im med * * * 
bd(An,Xi) * * * * * * * * 68020 
bd(PC,Xi) * * * * 68020 
[bd,An],Xi,od * * * * * * * * 68020 
[bd,An,Xi],od * * * * * * * * 68020 
[bd,PC],Xi,od * * * * 68020 
[bd,PC,Xi],od * * * * 68020 

Addressing Mode Description 

Common to All M68000 Family: 

Dn 
An 

(An) 
(An)+ 
-(An) 

dl6(An) 

d8(An,Xi.Z) 

Abs.W 
Abs.L 

dl6(PC) 

d8(PC,Xi.Z) 

Im med 

Data register direct } . . . 
Add . t di ct Jointly called register direct ress regis er re 

Address register indirect 
Address register indirect with postincrement 
Address register indirect with predecrement 

Address register indirect with offset-also written as d(An) or 
<label> (An) 
Address register indirect with offset and index-also written as 
d(An,Xi) or <label>(An,Xi) 

Absolute short address-also written as xxx. W or <label> 
Absolute long address-also written as xxx.L or <label> 

Program counter with offset (relative mode)- also written as 
d(PC) or <label>(PC) or <label> 
Program counter with offset and index (relative mode)-also 
written as d(PC,Xi) or <label>(PC,Xi) or <label>(Xi) 

Immediate data operand-also written as #<data> 

MC68020 Variations and Additions: 

bd(An,Xi.Z*s) Address register indirect with base displacement and 
index [similar to d(An,Xi) but bd can be dl6 or d32] 

bd(PC,Xi.Z*s) Program counter with base displacement and index 
[similar to d(PC,Xi) but bd can be dl6 or d32] 

[bd,An],Xi.Z*s,od Memory indirect post-indexed 

[bd,An,Xi.Z*s],od Memory indirect pre-indexed 



M68000 Addressing Mode Types 299 

[bd,PC],Xi.Z*s,od PC memory indirect post-indexed 

[bd,PC,Xi.Z*s],od PC memory indirect pre-indexed 

(NOTE: Some books use "displacement" in place of "offset") 

<label> Is a user-supplied symbol indicating the location of an 
instruction or data field. Some instructions treat 
<label> as a d8 or dl6 relative offset; others, 
depending on assembler directives available to the 
programmer, are treated as Abs.L, Abs.W or d(PC) 
modes. 

Abbreviations: 

On Any data register, DO - 07 
An Any address register, AO - A7 
Xi Any On or An used as an index register 
z Data size code (L, W or B) 
Z Data size code (L or W) 
s Scale factor (1, 2, 4 or 8) 
PC Program counter (20, 24 or 32 bits) 
d A 2's complement or sign-extended offset, or displacement (d16, d8, 

d3 etc indicates the number of bits) 
bd A 2's complement base displacement (16 or 32 bits) 
od A 2's complement outer displacement (16 or 32 bits) 
xxx Any valid absolute address 



c 
M68000 Instructions/Legal 

Modes 

(See Appendix B for register and mode definitions.) 

Mnemonic Function Legal Modes Data Size( s) 
or Attribute 

ABCD Add Decimal Dm,Dn or B 
-(Am),-(An) 

ADD AddBinary <ea>,Dnor L,W,B 
Dn,<amea> 

ADDA Add Address <ea>,An L,W 
ADDI Add Immediate #<data>, <adea> L,W,B 
ADDQ Add Quick #<d3>, <aea> L,W,{B} 
ADDX Add Extended Dm,Dn or L,W.B 

-(Am),-(An) 
AND AND Logical <dea>,Dn or L,W,B 

Dn,<amea> 
ANDI AND Immediate #<data>, <adea> L,W,B 
ANDl->CCR AND Immediate CCR #<d8>,CCR B 
ANDl->SR* AND Immediate SR #<dl6>,SR w 
ASUASR Arithmetic Shift Dm,Dnor L,W,B (Dm mod 64) 

#<d3>,Dn 
ASUASR Arithmetic Shift <amea> W (shift count= 1) 
Bee Branch Condition <label> 16 bit disp. 
Bec.S Branch Cond. Short <label> 8 bit disp. 
BCHG Bit Test/Change Dm,Dn or L(Dmmod32) 

#<d5>,Dn 
BCHG Om, <amea> or B(Dmmod8) 

#<d3>, <amea> 

300 



M68000 Instructions/Legal Modes 301 

Mnemonic Function Legal Modes Data Size(s) 
or Attribute 

BCLR Bit Test/Clear sameasBCHG 
BRA Branch Always <label> 8 or 16 bit <lisp. 
BSET Bit Test/Set sameas BCHG 
BSR Branch Subroutine same as BRA 
BTST Bit Test Dm,Dn or L (Om mod 32) 

#<d5>,Dn 
BTST Dm,<mea> or B (Om mod8) 

#<d3>,<mea> 
CHK Check Reg Bounds <dea>,Dn w 
CLR Clear Operand <adea> L,W,B 
CMP Compare <ea>,Dn L,W,{B} 
CMPA Compare Address <ea>,An L,W 
CMPI Compare Immediate #<data>, <adea> L,W,B 
CMPM Compare Memory (Am)+ ,(An)+ L,W,B 
DBcc Dec. Branch Cond. Dm,<label> 16 bit <lisp. 
DIVS/DIVU Divide Sign/Unsign. <dea>,Dn w 
EOR Exclusive OR Dn,<adea> L,W,B 
EORI Exclusive OR lmmed. #<data>, <adea> L,W,B 
EORl->CCR EORI Cond. Codes #<d8>,CCR B 
EORl->SR* EORI Status Reg. #<dl6>,SR w 
EXG Exchange Registers Rm, Rn L 
EXT Extend sign On L,W 
ILLEGAL illegal no operand 
JMP/JSR Jump/JMP Subroutine <cea> unsized 
LEA Load Effective Add <cea>,An L 
LINK Link/Allocate An,#<d16> unsized 
LSL/LSR Logical Shift same as ASUASR 
MOVE Move data <ea>, <adea> L,W,{B} 
MOVE<-CCR Move from CCR CCR,<adea> W (lower B only) 
MOVE->CCR Move to CCR <dea>,CCR W (lower B only) 
MOVE<-SR Move from SR SR,<adea> w 
MOVE<-SR' A* SR,<adea> W (* for 68010 only) 
MOVE-> SR* Move to SR <dea>,SR W (* all models) 
MOVE-USP* Move USP USP,An or An,USP L 
MOVEA Move Address <ea>,An L,W 
MOVECA* Move Contrl. Reg Rc,Rn or Rn,Rc L 
MOVEM Move Multi Reg. <reg.list>, <acea> + L,W ( + plus -(An)) 

<cea> +,<reg.list> L,W ( + plus +(An)) 
MOVEP Move Periph. Data Dn,d(An) or L,W 

d(An),Dn 
MOVEQ Move Quick #<d8>,Dn L (sign ext 32) 
MOVES. A* Move Address Space Rn,DFC<amea> or L,W,B 

SFC<amea>,Rn 
MULS/MULU Multiply Sign/Unsign <dea>,Dn w 
NBCD Negate Decimal <adea> B 
NEG/NEGX Negate/Negate Ext. <adea> L,W.B 
NOP No operation no operand unsized 



302 68000, 68010, and 68020 Primer 

Mnemonic Function Legal Modes 

NOT Logical Complement <adea> 
OR Inclusive OR Logical same as AND 
ORI Inclusive OR Immed. same as ANDI 
ORI->CCR ORI Cond. Codes same as ANDl->CCR 
ORl->SR* ORI Status Reg. same as ANDI->SR 
PEA Push Effective Addi: <cea> 
RESET* Reset External Dev. no operand 
ROIJROR Rotate Left/Right same as ASUASR 
ROXUROXR Rotate with Extend same as ASUASR 
Rm·· Return/Deallocate #<d16> 
RTE* Return from Exception no operand 
RTE •• * no operand 
RTR Return Restore CCR no operand 
RTS Return from Subroutine no operand 
SBCD Subtract Decimal sameasABCD 
Sec Set Conditionally <adea> 
STOP* Load SR/Stop #<dl6> 
SUB Subtract Binary same as ADD 
SUBA Subtract Address same as ADDA 
SUBI Subtract Immediate same as ADDI 
SUBQ Subtract Quick sameasADDQ 
SUBX Subtract with Extend sameasADDX 
SWAP Swap Register Halves On 
TAS Test and Set operand <adea> 
TRAP Trap #<d4> 
TRAPV Trap on Overflow no operand 
TST Test operand <adea> 
UNLK Unlink An 

{B} reminds you that Byte data size not allowed for An operands. 
#<data> = up to 32 bits of immediate data. 
#<dn> = n bits of immediate data. 
* = M68000 privileged instruction. 
** = MC68010 privileged instruction. 

= MC68010 only. 
Re = control register (SFC,DFC,USP or VBR). 

Data Size(s) 
or Attribute 

L,W,B 

L 
unsized 

unsized (sign ext 32) 
unsized 
unsized 
unsized 
unsized 

B 
unsized 

w 
B 
unsized 
unsized 
L,W,B 
unsized 



D 

M68000 Instruction 
Summary 

This appendix is a reference for all of the instructions implemented thus far in 
the 68000 processor family, that is, all of the instructions on the MC68000, the 
MC68010, and the MC68020. Included are the instruction bit patterns, ad
dressing mode bit patterns, and allowable addressing modes for each instruction. 
This appendix does not describe the actual execution of these instructions; that 
material constitutes the first 8 chapters of this primer. We will be looking at the 
68000 instruction set in very general terms, and will hopefully impart to you 
some tips that will help you to memorize the complete instruction set. 

68000 ADDRESSING MODES 

The 68000 processor family uses a rich set of addressing modes. There are 12 
basic addressing modes, and some additional implied addressing modes for 
certain instructions. The MC68020 further enlarges the functions of two of the 
basic addressing modes, giving it a total of 18 variations on the basic 12 
addressing modes. See Chapter 8 for further details on these addressing mode 
variations. 

Table D-1 contains information on these 18 addressing modes. The first 
column contains the full name/description of each addressing mode. Note that 
some of these descriptions are somewhat long. 

The "CPU" column indicates which members of the 68000 family have 
this addressing mode available; a blank refers to all 68000 processors, a "20" 
refers to the MC68020 only. 

303 



304 68000, 68010, and 68020 Primer 

The "Mod Reg" column contains the actual 6-bit codes for each address 
mode. Actual binary register numbers are represented by "m", which can be 
"000" to "111". 

The next four columns define four categories of addressing modes. These 
categories are very helpful for summarizing the legal addressing modes of each 
68000 instruction. 

Register 
(REA) 

Data 
(DEA) 

Memory 
(MEA) 

Control 
(CEA) 

Alterable 
(AxEA) 

These addressing modes refer to registers. This includes address 
register direct and data register direct. 

These addressing modes refer to data operands. This includes 
all modes except address register direct. Many 68000 instruc
tions that operate on data are prevented from altering the ad
dress registers. This is part of the 68000 philosophy that the 
benefits obtained from preventing erroneous operations to the 
address registers (which can waste lots of development time), 
far outweigh the extra programming steps necessary to do le
gitimate operations to the address registers. 

These addressing modes refer to memory operands. This in
cludes all modes except the two register direct modes. Two 
instructions are restricted to MEA because they are truly mem
ory based operations, namely, TAS and MOVES. OR, AND, 
ADD, and the 4 shift instructions also impose the MEA restriction 
on some of their instruction formats, in order to avoid duplication 
of functions. For example, ADD DO,Dl is allowed in the format 
ADD ea,Dl, but not allowed in the format ADD DO,ea (to avoid 
duplication). Thus, the format ADD DO,ea only allows MEA as 
destination, whereas the format ADD ea,Dl allows any EA as 
source. 

These addressing modes refer to memory locations, without 
specifying if they are byte, word, or longword in size. This applies 
to the destinations of jump commands (Jxx), and to indefinite
sized destinations (LEA,PEA,MOVEM,BFxxxx). 

These refer to operands which may be changed. This excludes 
the PC relative and immediate modes. Motorola is inferring that 
programs may not alter themselves. In actuality, 68000 pro
grams can change themselves, but an extra instruction (usually 
an LEA) must be used to do this. This is part of the 68000 
philosophy that the benefits obtained from preventing erroneous 
program self-changes (which can waste lots of development 
time), far outweigh the extra programming steps necessary to 



Table D-1 Effective Addressing Modes 

Address Mode Name CPU Mod Reg Register Data Memory Control Alterable Assembler Extension 
(RJ (DJ (MJ (CJ (AJ Syntax Words 

Data register direct 000 rrr x x - - x Dn 0 
Address register direct 001 rrr x - - - x An 0 
Address register indirect 010 rrr - x x x x (An) 0 
Address register indirect 011 rrr - x x - x (An)+ 0 
with postincrement 
Address register indirect 100 i'tr - x x - x -(An) 0 
with predecrement 
Address register indirect 101 rrr - x x x x (dl6,An) 1 
with displacement 
Address register indirect 110 rrr - x x x x (d8,An,Rn) 1 

. with index and 8-bit 
displacement 3: 
Address register indirect 20 110 x x x x (bd,An,Rn) 1-3 °' rrr - OJ 

0 
with index and base 0 

0 
displacement :; 
Memory indirect 20 110 rrr x x x x ([bd,An],Rn,od) 1-5 "' - q 

post-indexed c: n 
Memory indirect 20 110 rrr - x x x x ([bd,An,Rn),od) 1-5 g. 

;:) 

pre-indexed V\ 

Absolute short 111 000 x x x x addr .W 1 
c: - 3 

Absolute long 111 001 - x x x x addr.L 2 3 
~ 

Program counter indirect 111 010 - x x x - (dl6,PC) 1 
.., 

'<: 

with displacement 
w 
Q 
~ 

\ 



I 
w 

Address Mode Name CPU Mod Reg Register Data Memory Control Alterable Assembler Extension = Q'I 
(R) (D) (M) (CJ (A) Syntax Words 

O'I 

Program counter indirect 111 011 x x x (d8,PC,Rn) 1 00 - - 0 

with index and 8-bit 
0 
.:::> 

displacement O'I 
00 

Program counter indirect 20 111 011 - x x x - (bd,PC,Rn) 1-3 0 -with index and base .:::> 
displacement ~ 

:::i 

PC memory indirect 20 111 011 x x x ([bd,PCJ,Rn,od) 1-5 0... - - O'I 
post-indexed 00 

0 
PC memory indirect 20 111 011 x x x ([bd,PC,Rn],od) 1-5 N - - 0 

pre-indexed ~ 
Immediate 111 100 - x x - - #n 1-2 §" 
[Reserved by Motorola] ? 111 101 

11) ., 
[Reserved by Motorola] ? 111 110 
[Reserved by Motorola] ? 111 111 



M68000 Instruction Summary 307 

do legitimate changes. If you plan to make many self-references 
within a program, simply do a "LEA labell,An" at the very 
beginning, then do all self-references using "label2-labell(An)". 

By combining the above categories, other categories can be created, namely, 
the alterable data, alterable memory, and alterable control categories. For ex
ample, alterable data addresses are those addresses which are both alterable 
addresses and data addresses. 

The "Assembler Syntax" column contains a figurative representation of 
the actual characters used to code each address mode in a 68000 program. 
The actual assembler you use on a particular computer may have slightly 
different syntax. The symbol An represents any register from AO to A 7, Dn 
represents DO through D7, Rn represents An or Dn. d8 represents any unsigned 
number 0 to 255 or any signed number-128 to + 127, dl6 represents unsigned 
0 to 65536 or signed -32768 to +32767, d32 represents unsigned 0 to 
4294967295 or signed -2147483648 to + 2147483647. #n represents d8, 
dl6, or d32 in byte, word, or longword instructions respectively. 

ADDRESSING MODE ORTHOGONALITY AND 
LEGALITY 

An important design feature of the 68000 instruction set is the orthogonality 
between its instructions and addressing modes. Complete addressing orthogo
nality would mean that every instruction is able to use every addressing mode 
in all of its operands (source, destination, counter; etc.), thereby promoting 
convenience and flexibility in assembly programming. Few processors, however, 
have been designed with complete orthogonality because there are disadvan
tages. High orthogonality often comes at the expense of instruction set power; 
typically, many unimportant instruction/addressing combinations occupy bit 
patterns that could be better used by more powerful instructions. The 68000 
instruction set is a state of the art optimization, both highly orthogonal and very 
powerful. 

Each 68000 instruction consists of an operator and 0 or more operands. 
For example, some instructions with various numbers of operands are 

RTN 
BR 
OR.W 
CAS2.W 

LABEL 
D0,4(AO) 
DO:Dl,D2:D3,4(AO) 

0 operands 
1 operand 
2 operands 
5 operands 



308 68000, 68010, and 68020 Primer 

In most instructions, each operand is either allowed to be only one of the 
12 addressing modes, or is allowed to be any of the 12 addressing modes which 
is "legal". An important goal for all 68000 programmers is to fully understand 
Motorola's criteria for "legal" addressing modes. These criteria are consistently 
applied throughout the 68000 instruction set Without an understanding of these 
criteria, the 68000 instruction set will appear to lack much of its actual orthog
onality. Armed with such understanding, complete memorization of the 68000 
instruction set is possible. 

An example should clarify all of this. The OR instruction given above is 
one of a group of OR instructions, all having the general form 

OR.size Dn,<destination> 

and the 16-bit patterns represented by 

lOOOSdrlSzDestin 

Explanations of the abbreviations Sdr, Sz, and Destin are not necessary 
for this discussion, but may be found below. There are two operands in this 
instruction. The second operand must always be data register direct mode, but 
the first may be any ''legal'' addressing mode. In this group of OR instructions, 
fully 5 of the 12 addressing modes are illegal. Furthermore, the 5 illegal modes 
violate three general rules of legality. The illegal modes, with their associated 
rule violations are: 

1. PC relative or immediate: These may never be altered. 

2. An: Data operations are not usually allowed to An. 

3. Dn: This duplicates the function of another group of instructions. 

Rule 1 is rigorously true for all 68000 instructions which alter the destination 
operand. Rule 2 is mostly true, but a few necessary operations are allowed to 
An, namely, MOVE, ADD, SUB, ADDQ, and SUBQ. Some assemblers allow 
you to use these "loophole" instructions without complaint Some, however, 
require you to substitute MOVEA, ADDA, and SUBA for MOVE, ADD, and 
SUB when the destination is an address register. The net result is the same, but 
inadvertent program errors are reduced. To understand Rule 3, we need to 
know that there is a second group of OR instructions, all having the form: 

OR.size <source>,Dn 



and the 16-bit patterns represented by 

lOOODdrOSzSource 

M68000 Instruction Summary 309 

If both of these OR groups allowed for the case 

OR.size Dnl,Dn2 

then there would be more orthogonality in the instruction set, but less power, 
because fewer bit patterns would be available for other instructions. Indeed, 
some of the bit patterns made available by Rule 3, above, are used to code the 
NBCD instruction. As a programmer, you need not worry about Rule 3, because 
any 68000 assembler will automatically assemble an OR.size Dnl,Dn2 instruc
tion as the correct bit pattern. If you are coding an assembler (or dis-assembler), 
however, Rule 3 is of critical importance. 

The above example will hopefully make more palatable the following rig
orous list of rules (and their exceptions) governing 68000 illegal addressing 
modes: 

1. PC relative modes or immediate mode are illegal destinations if altered. This 
is the reason for the "alterable" address modes category (AEA). Note that 
"test" instructions do not alter their destinations, even though they "simu
late'' a subtraction from the destination. Exceptions: TST and CMPI with 
these address modes are illegal, even though they do not alter their desti
nations. On the MC68020, TST.W, TST.L, CMPI.W, and CMPI.L are legal 
in all modes, but TST.B and CMPI.B are not. 

2. Duplicate functions are handled by only one of the instructions. For example, 
in all shift instructions, "op #1,Dn" is legal while "op On" isn't. Exceptions: 
CMP #c,Dn and CMPI #c,Dn are equivalent in function, but are assembled 
as different instructions (both with 2 words). The same is true for the corre
sponding cases involving ADD/ADDI, SUB/SUBI, AND/ANDI, and OR/ORI. 
Note: if 1 < = c < = 8, then ADDQ #c,Dn and SUBQ #c,Dn are also 
possible, and are a third equivalent to the ADDI ADDI and SUB/SUBI cases 
considered above, but take one less word. Hence, ADDQ and SUBQ are 
not considered to be duplicated (or triplicated) functions. 

3. Many data operations are not allowed with An (address registers). This is 
the reason for the "data" address categories. The following sub-rules cover 
all cases, and are in cumulative order, that is, later rules override earlier rules 
in the sequence. 



310 68000, 68010, and 68020 Primer 

a. An never participates in any byte operations. 

b. An does not interact with special data registers. Exception: the MOVES 
command may move any special register to or from any data or address 
register. 

c. An may participate in straight moves. Thus, EXG, and MOVE are OK. 
MOVE.Bis excluded by Rule 3a. Note that An may be moved from/to 
special address registers (USP, for example) but not from/to special data 
registers (CCR,SR), by Rule 3b. 

d An may be tested (not permanently changed). Thus, CMP (except CMP.B), 
CMPA, and TST (except TST.B) are OK. 

e. An is allowed a few addition and subtraction calculations, namely ADD 
Anl,Dn2 and SUB Anl,Dn2 (except byte size); ADDA, SUBA, ADDQ, 
SUBQ (except byte size). The following are not allowed: ADD Dn 1,An2 
and SUB Dnl,An2. Note that ADDI #c,An and SUBI #c,An are excluded 
by Rule 2. 

4. LEA, PEA, MOVEM, Jxx, and BFxxxx use only control address operands. 
Exceptions: MOVEM also allows (An) + as source and -(An) as destination; 
BFxxxx also allows Dn as a bit field operand. 

5. Completely pointless calculations are illegal. Exception: BTST #a,#b should 
be replaced by ANDI or ORI to CCR. 

THE 68000 INSTRUCTION SUMMARY TABLE 
- PRELIMINARIES 

Table D-2 summarizes the instruction sets of all five CPU processors in the 
68000 family, namely, the MC68008, MC68000, MC68010, MC68012, and 
MC68020. The MC68008 and MC68000 instruction sets are identical, as are 
the MC68010 and MC68012 instruction sets. Hence, in the table, we only need 
to distinguish MC68000, MC68010, and MC68020 instructions. In addition, 
strict upward compatibility has been designed into the 68000 CPU family. That 
is, any instruction that is legal on any CPU in the 68000 family is also a legal 
instruction on all later CPUs. Thus, MC68000 instructions execute the same 
on all five processors, MC68010 instructions execute the same on the MC68010, 
MC68012, and the MC68020, and MC68020 instructions execute only on the 
MC68020. 

By design, Table D-2 is compact, uses lots of abbreviations, and does not 
include exhaustive details of how each instruction functions. For details and 
examples of each instruction, see Chapter 4. The following sections explain the 
symbols used in each column of Table D-2. 



M68000 Instruction Summary 311 

INSTRUCTION COLUMN 

The first column in Table D-2 gives the standard Motorola mnemonic for each 
instruction. Other assemblers may use minor variants of these mnemonics. The 
following abbreviations are used: 

Code Represen~ 

.s .B, .W, .L for byte, word, and longword instructions, respectively 

.s2 .Wand .L for word and longword instructions, respectively 

.s3 [blank], .W, and .L for none, word, and longword operands 
(TRAPcc and cpTRAPcc only) 

cc A condition code (CC,CS,EQ,GE,GT,HI,LE,LS,LT,MI, 
NE,PL,VC,VS) 

CPU.COLUMN 

This column indicates whether an instruction is a MC68000 instruction (blank), 
MC68010 instruction ("10"), or MC68020 instruction ("20"). See the notes 
above about upward compatibility in the 68000 family. 

SYNTAX COLUMN 

This column gives the general syntax of the instruction as it appears in actual 
programs. In cases where a source and destination operand appear, the source 
operand is first. Thus, if ever in doubt, remember that 68000 instructions "ADD 
first operand to second operand'', ''SUBtract first from second'', ''MULtiply first 
into second", "DIVide first into second". 

For a few instructions, two syntaxes are given. In these instructions, there 
is always a D bit or a Q bit in the instruction code map (explained below). The 
first syntax corresponds to a Dor Q bit of 0, and the second corresponds to a 
D or Q bit of 1. 

Abbreviations used in the syntax column are: 

Code 

Dn,Dnl,Dn2 
An,Anl,An2 
Rn,Rnl,Rn2 
PC 
SR 
CCR 

Represen~ 

Any data register (DO to 07) 
Any address register (AO to A 7) 
Any An or On 
Program counter (longword) 
Status register (word) 
Condition code register (byte) 



312 68000, 68010, and 68020 Primer 

SSP 
USP 
SP 
Re 
d3 

d4 
d5 
d8 

dl6 

d32 

#n 

Dc,Dcl,Dc2 
Du,Dul,Du2 
reglist 
label 

Supervisor stack pointer (longword) 
User stack pointer (longword) 
Active stack pointer (longword, synonymous with A7) 
Arn; control register (USP,MSP,ISP,VBR,SFC,DFC, CACR, CAAR) 
An unsigned 3-bit number from 0 to 7 (except for the BKPT 
instruction, 0 represents a value of 8) 
An unsigned 4-bit number from 0 to 15 (a trap vector) 
An unsigned 5-bit number from 0 to 31 (a bit position number) 
An unsigned 8-bit number 0 to 255, or signed 8-bit number 
-128 to + 127 
An unsigned 16-bit number 0 to 65536, or 16-bit signed num
ber -32768 to + 32767 
An unsigned 32-bit number 0 to 429496 7295, or 32-bit signed 
number -2147483648 to + 2147483647 
#d8 for byte instructions, #dl6 for word instructions, and #d32 
for longword instructions ea,eal,ea2 an effective address (see 
Table D-1 for the 12 modes). In most instructions, not all of the 
12 modes are legal; the SRC and DAT columns in Table D-2 
indicate which modes are legal (see explanation of SRC and 
DAT columns below). 
Any Dn, used for comparisons. 
Any Dn, used for updates. 
A list of 0 to 16 registers (all An or Dn), separated by commas. 
Source code: a label found elsewhere in the program. Object 
code: a d8, d16, or d32 offset from the current position. 

Any expression contained within braces ( eg, { #n}) is optional; it may either 
be present or omitted (left blank). Any commas, parentheses, colons, or hyphens 
correspond to actual program code. 

INSTRUCTION CODE MAP COLUMN 

This column contains bit-by-bit descriptions of the assembled instructions. Each 
bit is given as a 0 bit, a 1 bit, or as part of a bit "field". Each bit field begins 
with a capital letter, and may be 1 to 32 bits in length. The bit fields used are 
described below. 

Sz 

s 

A 2-bit size indicator (00 =byte, 01 =word, 
10 =longword). 
A 1-bit size indicator (O=word, 1 =longword). Excep
tion: CHK reverses the bit (see note a to Table D-2). 



Siz 

Q 

Source 

Destin 
Tin des 

Sar 
Dar 
Sdr,Ddr 
Sdar,Ddar 

D 

Fefadr 

Tefadr 

Fdr 

Tdr 

Far 

Tar 

Fdar 

Tdar 

Udr 
Cdr 

M68000 Instruction Summary 313 

A 3-bit operand size indicator (010 =word, 
011 =longword, 100 =none). 
A 1-bit size indicator for MULx and DIVx (0 =longword, 
1 =quadword). 
A full 6-bit source effective address. 12 possible address 
modes can be encoded in these 6 bits. See Table D-1 
for a summary of all 12 modes. 
A 6-bit destination effective address (see Table D-1). 
Same as Destin, except the first and last 3 bits are 
swapped. Occurs only in the MOVE instruction. 
A 3-bit source address register. 
A 3-bit destination address register. 
3-bit data registers (source, destination). 
4-bit data or address registers (source, destination). An 
address register is indicated by a 0 bit, followed by the 
3-bit address register number. A data register is indicated 
by a 1 bit, followed by the 3-bit data register number. 
A 1-bit direction indicator, which determines whether 
various fields are source or destination. In general, when 
an instruction contains a D bit all "from" fields are 
source, and "to" fields are destination. When the D bit 
is 1, all "from" fields are destinations, and all "to" fields 
are sources. All fields affected by the D bit are included 
in the next eight entries. 
A 6-bit "from" effective address. It is source when D bit 
is 0, destination when D bit is 1. 
A 6-bit "to" effective address. It is destination if D bit is 
0, source if D bit is 1. 
A 3-bit "from" data register. It is source when D bit is 
0, destination when D bit is 1. 
A 3-bit "to" data register. It is destination when D bit is 
0, source when D bit is 1. 
A 3-bit "from" address register. It is source when D bit 
is 0, destination when D bit is 1. 
A 3-bit "to" address register. It is destination when D 
bit is 0, source when D bit is 1. 
A 4-bit "from" data or address register. It is source when 
D bit is 0, destination when D bit is 1. 
A 4-bit "to" data or address register. It is destination 
when D bit is 0, source when D bit is 1. 
A 3-bit update data register (for CAS,CAS2). 
A 3-bit compare data register (for CAS,CAS2). 



314 68000, 68010, and 68020 Primer 

Hdr 

Imm 
Immediat 
Displace 

Cnt 
Argcount 
Bitno 

Vee 
Vect 
Registerlistmask 

T 

R 
Bitoff 

Bitwid 

Coprocessorcommd 
Cpi 
Cpcond 
Controlregis 

Cond 

A 3-bit high order word data register (for MULx and 
DNx). 
Immediate data field (3-bit). 
Immediate data field (8-bit, 16-bit, 32- bit). 
Immediate address displacement field (8- bit, 16-bit, 32-
bit). 
A 3-bit shift count. 
8-bit argument byte count (for CALLM). 
A 5-bit or 3-bit bit position number (for 
BTST,BCHG,BCLR,BSET). 
A 3-bit vector (for BKPT). 
A 4-bit vector (for TRAP). 
A 16-bit field selecting 0 to 16 registers (for MOVEM). 
The order is DO at bit 0 through A7 at bit 15, except for 
pre-decrement address mode, when it is reversed. 
A 1-bit sign indicator for MULx and DNx (0 =unsigned, 
1 =signed). 
A 1-bit rotation direction indicator (0 =right, 0 =left). 
A 6-bit field specifying a bit offset, either 0 n n n n n, 
indicating a 5-bit immediate value, or 1 0 0 n n n, 
indicating data register Dn. 
A 6-bit field specifying a bit width (same format as 
Bitoff). 
A 16-bit co-processor instruction. 
A 3-bit co-processor id code. 
A 6-bit co-processor condition code. 
A 12-bit control register code. Codes defined are: 

0000 0000 0000 = SFC (68010) 
0000 0000 0001 = DFC (68010) 
0000 0000 0010 = CACR (68020) 
1000 0000 0000 = USP (68010) 
1000 0000 0001 = VBR (68010) 
1000 0000 0010 = CAAR (68020) 
1000 0000 0011 = MSP (68020) 
1000 0000 0100 = ISP (68020) 

A 4-bit condition code. Codes defined are: 

0000 =True 
0010 =High 
0100 = Carry Clear 
0110 = Not Equal 

0001 =False 
0011 =Low/Same 
0101 = Carry Set 
0111 =Equal 



M68000 Instruction Summary 315 

1000 = Overflow Clear 
1010 =Plus 
1100 = Greater/Equal 
1110 = Greater Than 

1001 = Overflow Set 
1011 =Minus 
1101 = Less Than 
1111 = Less/Equal 

Each 68000 instruction is 1 to 11 words in length, and consists of 1 to 3 
words for the basic instruction followed by 0 to 10 address extension words. 
Table D-1 lists only the basic instruction words. Any 16-bit word patterns 
surrounded by parentheses are optional, e.g., whenever an immediate field can 
have 16 or 32 bits, the second 16 bits will always be shown surrounded by 
parentheses. For each of the 12 addressing modes, the address extension word(s) 
always have the same format. Table D-1 lists the number of address extension 
words possible for each addressing mode. Because of their regularity, address 
extension words are not included in Table D-2. 

SRC AND DST COLUMNS 

The SRC and DST columns summarize the legal addressing modes for source 
and destination operands in a few symbols. The symbols are consistent, concise, 
and conducive to memorization. 

If only one of the 12 basic addressing modes is legal in an operand, it is 
represented by one of the following symbols: On, An, (An), (An)+, -(An), 
d(An), SP, (SP)+, -(SP), I, where all of the symbols should be self-explanatory, 
except for I, which represents an immediate field. 

A "Q" code indicates that the operand is a 3-bit immediate value. 
If several addressing modes are legal in an operand, then they are repre

sented by one of the following category codes: EA, REA, DEA, MEA, CEA, 
AEA, ADEA, AMEA, ACEA These categories are explained earlier in this 
appendix. EA represents all addressing modes. 

Special registers are represented by the symbols CCR, SR, PC, USP, which 
should also be self-explanatory. A "er" symbol represents any of the control 
registers USP, MSP, ISP, VBR, SFC, DFC, CACR, CMR. 

A few cases require additional notation: 

(On) Represents data indirect addressing 
& Used to join groups, for example "CEA&Dn" means "any control 

address or Data Direct addressing" 
Used to subtract parts of one group from another, for example, 
"DEA-I" means any DEA except immediate mode addresses 
Used to indicate two operands: "Dn,An" means one On operand 
and one An operand; "Dn,Dn" means two On operands 



316 68000, 68010, and 68020 Primer 

Observant assembler programmers may notice that in operands where only 
one addresssing mode is allowed, that addressing mode's code often matches 
the last 6 bits in the instruction. For example, the SWAP command implicitly 
uses only data register direct addressing, which corresponds to a 6-bit code of 
OOOm The last 6 bits of SWAP are, indeed, these same 6 bits. But, beware, 
this agreement occurs only about half of the time. 

CONDITION CODES COLUMN 

This column indicates which condition codes are affected by each instruction. 
Symbols used are 

0 
1 
* 
u 

PRIVCOLUMN 

Code is unchanged by instruction 
Code is set to 0 
Code is set to 1 
Code is changed 
Code is left with undefined value 

This column indicates which instructions are privileged. Privileged instructions 
may only be executed when the system bit is set to 1. Otherwise, an exception 
is generated. 

NOTES COLUMN 

Letters in this column refer to footnotes at the end of the table. 



Table D-2 68000 Instruction Summary 

Condition 
Instruction CPU Syntax Instruction Code Map SRC DST Codes Priv Notes 

F E D C B A 9 8 7 6 5 4 3 2 1 0 XNZVC 

ORl.s #n,ea OOOOOOOOSzDestin I ADEA -**00 
I m m e d i a t x x x x x x x x 

(X X X X X X X X X X X X X X X X) 

ORI.B #n,CCR 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 I CCR ***** 
(to CCR) O O O O O O O O I m m e d i a t 

ORI.W #n,SR 0000000001111100 I SR ***** x 
(to SR) I m m e d i a t x x x x x x x x 

CMP2.s 20 ea,Rn O O O O 0 S z O 1 1 S o u r c e CEA REA -U*U* 
D d a r 0 O O 0 O O 0 O O O O O ~ 

°' CHK2.s 20 ea,Rn O O O O 0 S z 0 1 1 S o u r c e CEA REA -U*U* o:i 
0 

D d a r 1 O O O O O O O O O O O 0 
0 

BTST Dn,ea O O O O S d r 1 O O D e s t i n Dn 
s-

DEA --*-- "' q-
c: 

BCHG Dn,ea O O O o S d r 1 O 1 D e s t i n Dn ADEA --*-- Q. 
a· 

BCLR Dn,ea O O O O S d r 1 1 O D e s t i n Dn ADEA 
:::i 

--*-- Vi c: 
BSET Dn,ea O O O O S d r 1 1 1 D e s t i n Dn ADEA --*-- 3 

3 
MOVEP.s2 d16(Anl),Dn2 O O O O T d r 1 D S O O 1 F a r d(An) Dn 

~ ----- ..... 
'< 

Dnl,dl6(An2) D i s p 1 a c e x x x x x x x x Dn d(An) 
IN ... 
....... 



w 
Condition 

..... = Instruction CPU Syntax Instruction Code Map SRC DST Codes Priu Notes 

°' ANDI.s #n,ea OOOOOOlOSzDestin I ADEA -**00 
c:o 
0 
0 

I m m e d i a t x x x x x x x x ,o 
(X X X X X X X X X X X X X X X X) °' c:o 

0 
ANDl.B #d8,CCR 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 I CCR ***** ..... 

? 
(to CCR) O O O O O O O O I m m e d i a t llJ 

:::i 

ANDl.W #dl6,SR 0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 0 I SR ***** x Q.. 

°' (to SR) I m m e d i a t x x x x x x x x c:o 
0 
N 

SUBI.s #n,ea OOOOOlOOSzDestin I ADEA ***** 0 
-0 

I m m e d i a t x x x x x x x x .... 
§" 

(X X X X X X X X X X X X X X X X) C'!) .... 

ADDl.s #n,ea OOOOOllOSzDestin I ADEA ***** 
I m m e d i a t x x x x x x x x 

(X X X X X X X X X X X X X X X X) 

RTM 20 Rn O O O O o 1 1 O 1 1 o o S d a r REA ***** 

CALLM 20 #d8,ea o o o O o 1 1 o 1 1 s o u r c e CEA 
O O O O o o o o A r g c o u n t 

CAS.s 20 Dc,Du,ea O O O 0 1 S z O 1 1 D e s t i n Dn AMEA -**** 
O O O O O O O U d r O O O C d r 

CAS2.s 20 Dcl:Dc2,Dul:Du2,(Rnl:Rn2) o o o o 1 s z o 1 1 1 1 1 1 o o Dn (An) & (Dn) -**** [ml 
D d a r o o o U d r o o o c d r 
D d a r O O O U d r O O O C d r 



BTST #cl5,ea OOOOlOOOOODestin l DEA-I --*--
0 0 0 0 0 0 0 0 0 0 0 B i t n o 

BCHG #d5,ea 0000100001Destin I ADEA --*--
0 0 0 0 0 0 0 0 0 0 0 B i t n o 

BCLR #cl5,ea 0000100010Destin I ADEA --*--
0 0 0 0 0 0 0 0 0 0 0 B i t n o 

BSET #cl5,ea 0000100011oestin I ADEA --*--
0 0 0 0 0 0 0 0 0 0 0 B i t n o 

EORI.s #n,ea OOOOlOlOSzDestin I ADEA -**00 
Immediatxxxxxxxx 

(X X X X X X X X X X X X X X X X) 

EORI.B #d8,CCR 0 0 0 0 1 0 1 0 0 0 1 1 1 1 0 0 I CCR ***** 
(to CCR) O O O O O O O O I m m e d i a t 

EORI.W #dl6,SR 0000101001111100 I SR ***** x .. s:: (to SR) Immediatxxxxxxxx °' Co 
0 

CMPI.s [e] #n,ea OOOOllOOSzDestin I ADEA -**** 0 
0 

I m m e d i a t x x x x x x x x s 
(X X X X X X X X X X X X X X X X) 

.,, 
~ c: 

MOVES.s 10 ea,Rn O O O O 1 1 1 O S z F e f a d r AMEA [q] REA 
("\ 

----- x g. 
Rn,ea TdarDOOOOOOOOOOO REA AMEA[q] :J 

Vi 

MOVE.B eal,ea2 0 0 0 1 T i n d e s S o u r c e DEA ADEA 
c: 

-**00 3 
3 

MOVEA.L ea,An O O 1 o D a r o o 1 S o u r c e EA An ----- II) ., 
'<: 

MOVE.L eal,ea2 O 0 1 O T i n d e s S o u r c e EA ADEA -**00 

MOVEA.W ea,An O O 1 1 D a r 0 o 1 S o u r c e EA An 
~ 

----- ..... 
~ 



w 
Condition ~ = Instruction CPU Syntax Instruction Code Map SRC DST Codes Priv Notes 

0\ 

MOVE.W eal,ea2 O O 1 1 T i n d e s S o u r c e EA ADEA -**00 Co 
0 
0 

NEGX.s ea o 1 o o o o o o s z D e s t i n ADEA ***** ? 
0\ 

MOVE.W SR, ea o 1 o o o o o o 1 1 D e s t i n CCR ADEA 
Co 

----- [p] 0 -
(from SR) 

,o 
Q) 
::i 

CHK.s2 [e] ea,Dn O 1 O O D d r 1 S O S o u r c e DEA Dn -*UUU [a] Q.. 

0\ 
Co 

LEA ea,An O 1 O 0 D a r 1 1 1 S o u r c e CEA An ----- 0 
N 
0 

CLR.s ea O 1 O O O O 1 O S z D e s t i n ADEA -0100 i:::J ..... 

MOVE.w· 10 CCR, ea o 1 o o o o 1 o 1 1 D e s t i n CCR ADEA [i] 
§" 

----- (I) ..... 
(from CCR) 

NEG.s ea O 1 o o O 1 o o S z D e s t i n ADEA ***** 

MOVE.W ea, CCR o 1 o o o 1 o o 1 1 s o u r c e DEA CCR ----- [i] 
(to CCR) 

NOT.s ea O 1 0 0 O 1 1 O S z D e s t i n ADEA -**00 

MOVE.W ea, CR 0100011011source DEA CCR ----- x 
(to SR) 

NBCD ea o 1 o o 1 o o o o o D e s t i n ADEA *U*U* 

LINK.L 20 An,#d32 o o 1 o 1 o o o o o o o 1 D a r I An, Pc 
D i s p 1 a c e x x x x x x x x 
xxxxxxxxxxxxxxxx 



SWAP Dn 0 1 0 0 1 0 0 0 0 1 0 0 0 D d r Dn -**00 

BKPT 10 #d3 O 1 O 0 1 o o o o 1 O o 1 V e c ----- [g) 

PEA ea O 1 O O 1 o o o o 1 S o u r c e CEA -(SP) 

EXT.s2 Dn 0 1 0 0 1 0 0 0 1 S 0 0 0 D d r Dn -**00 

EXTB.L 20 Dn 0 1 0 0 1 0 0 1 1 1 0 0 0 D d r Dn -**00 

MOVEM.s2 reglist,ea 0 100 1D0 0 1 ST e fad r allREA />CEA &-(An) -----
ea,reglist R e g i s t e r 1 i s t m a s k CEA & (An)+ all REA 

TST.s ea O 1 O O 1 o 1 o s z D e s t i n ADEA -**00 [e) 
TST.WfrST.L 20 ea EA 

TAS ea o 1 o o 1 o 1 o 1 1 D e s t i n ADEA -**00 

ILLEGAL 0 1 0 0 1 0 1 0 1 1 1 1 1 1 0 0 ----- [b) 

MULS.UMUW.L 20 ea,Dn O 1 O O 1 1 0 o o O S o u r c e DEA Dn,Dn -***O 
20 ea,Dnl:Dn2 0 D d r T Q 0 0 0 0 0 0 0 H d r s:: 

°' DIVS.UDIVU.L 20 ea,Dn O 1 o O 1 1 o o o 1 S o u r c e DEA Dn,Dn -***O [v) Oo 
0 

20 ea,Dnl:Dn2 0 D d r T Q 0 0 0 0 0 0 0 H d r 0 
0 

DIVSLUDIVUL.L 20 ea,Dnl:Dn2 :; 
"' q 

TRAP #d4 o 1 o o 1 1 1 O o 1 O O V e c t ttl [t) ----- c: n ..... -· LINKW An,#dl6 010011100101ooar I An,Pc 0 ----- ::i 
Vi 

UNLK An o 1 o o 1 1 1 o o 1 o 1 1 D a r An,(SP) + SP,An c: ----- 3 
MOVE An,USP o 1 o 0 1 1 1 o o 1 1 o D s a r An USP x 3 ----- s:u .... 
(USP) USP,An USP An x '<: 

RESET 0 1 0 0 1 1 1 0 0 1 1 1 0 0 0 0 ----- x ~ 
N ..... 



(,i,l 

Condition N 
N 

Instruction CPU Syntax Instruction Code Map SRC DST Codes Priv Notes 

°" NOP 0 1 0 0 1 1 1 0 0 1 1 1 0 0 0 1 Oo ----- 0 
0 

STOP 0 1 0 0 1 1 1 0 0 1 1 1 0 0 1 0 SR ***** x ,o 

°" Oo 
RTE 0 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 (SP)+ SR,PC ***** x [s) 0 -
RTD 10 o 1 o o 1 1 1 o o 1 1 1 o 1 o o (SP)+ [r] PC 

.? 
----- Ill 

::J 

RTS 0 1 0 0 1 1 1 0 0 1 1 1 0 1 0 1 (SP)+ PC 
Q.. -----
°" Oo 

TRAPV 0 1 0 0 1 1 1 0 0 1 1 1 0 1 1 0 (rj [t] ----- 0 
N 
0 

RTR o 1 o o 1 1 1 o o 1 1 1 o 1 1 1 (SP) + CCR, PC ***** '"'l:J .... 

MOVEC 10 Rc,Rn 0 1 0 0 1 1 1 0 0 1 1 1 1 0 1 D CT REA x [h) 
§" 

----- <!) .... 
Rn,Rc T d a r C o n t r o 1 r e g i s 

JSR ea 0 1 0 o 1 1 1 0 1 0 D e s t i n CEA PC 

JMP ea 0 1 0 0 1 1 1 0 1 1 D e s t i n CEA PC 

ADDQ.s #d3,ea O 1 O 1 I m m 0 S z D e s t i n Q AfA[k) ***** [c) 

Sec ea O 1 0 1 C o n d 1 1 D e s t i n ADEA 

DBcc Dn,label O 1 O 1 C o n d 1 1 O O 1 D d r Dn,I PC ----- [d) 
D i s p 1 a c e x x x x x x x x 

TRAPcc.s3 20 {#n} o 1 O 1 c o n d 1 1 1 1 1 s i z ~) [t) ----- [b) [d] 
(X X X X X X X X X X X X X X X X) 

(X X X X X X X X X X X X X X X X) 

SUBQ.s #d3,ea O 1 O 1 I m m 1 S z D e s t i n Q AfA[k) ***** 



Bee [f] label OllOCondDisplace I PC ----- [e] 
(D i s p 1 a c e x x x x x x x x) 
(X X X X X X X X X X X X X X X X) 

BRA [f] label OllOOOOODisplace I PC ----- [e] 
(D i s p 1 a c e x x x x x x x x) 
(X X X X X X X X X X X X X X X X) 

BSR [f] label OllOOOOlDisplace I PC ----- [e] 
(D i s p 1 a c e x x x x x x x x) 
(X X X X X X X X X X X X X X X X) 

MOVEQ(.L) #d8,Dn O 1 1 1 D d r O I m m e d i a t Q On -**00 

OR.s ea,Dn 1 0 0 0 T d r D S z F e f a d r DEA On -**00 
Dn,ea On AMEA 

DIVU. W/DIVS.W ea,Dn 1 0 0 0 D d r T 1 1 S o u r c e DEA On -***O [v] 

SBCD Dnl,Dn2 1 0 0 O D d r 1 O 0 0 0 0 S d r On On *U*U* s:: 
SBCD -(Anl),-(An2) 1 O O O D a r 1 O O O O 1 S a r -(An) -(An) °" *U*U* C):) 

0 

1 O O O D d r 1 O 1 O O O S d r On 
0 

PACK 20 Dnl,Dn2,#dl6 On ----- 0 

Adj ustmentxxxxxx :;-
"' q 

PACK 20 -(Anl},-(An2), #dl6 1 O O O D a r 1 O 1 0 O 1 S a r -(An) -(An) c: ----- l"'l 

Adj ustmentxxxxxx §'· 
::i 

UNPK 20 Dnl,Dn2,#dl6 1 O O O D d r 1 1 O O O O S d r On On 
\.r) 
c: 

Adjustmentxxxxxx 3 
3 
Ill 

UNPK 20 -(Anl),-(An2), #dl6 1 O O O D a r 1 1 O O o 1 S a r -(An) -{An) ... ----- '<::: 

Adj ustmentxxxxxx 
CN 
~ 
CN 



w 
Condition N 

.l:o 
Instruction CPU Syntax Instruction Code Map SRC DST Codes Priv Notes 

°' SUB.s ea,Dn 1 O O 1 T d r D S z F e f a d r EA [k] Dn ***** 
O:l 
0 

Dn,ea Dn AMEA 0 
,o 

SUBAs2 ea, An °' 1 O O 1 D a r S 1 1 S o u r c e EA An ----- O:l 
0 -SUBX.s Dnl,Dn2 1 O O 1 D d r 1 S z O O O S d r Dn Dn ***** ? 
Ill 

SUBX.s -(Anl),-(An2) 1 O O 1 D a r 1 S z O O 1 S a r -(An) -(An) ***** ::i a.. 
°' User-defined 1 0 1 0 ............ [w] O:l 
0 
N 

CMP.s ea,Dn 1 O 1 1 D d r O S z S o u r c e EA [k] Dn -**** 0 
""tl ..... 

CMPA.s2 ea,An 1 O 1 1 D a r S 1 1 S o u r c e EA An -**** §' 
t'll ..... 

EOR.s Dn,ea 1 0 1 1 S d r 1 S z D e s t i n Dn ADEA -**00 

CMPM.s (Anl)+,(An2)+ 1 0 1 1 D a r 1 S z 0 0 1 S a r (An)+ (An)+ -**** 

AND.s ea,Dn 1 1 O O T d r D S z F e f a d r DEA Dn -**00 
Dn,ea Dn AMEA 

MULU. W/MULS. W ea,Dn 1 1 0 0 D d r T 1 1 S o u r c e DEA Dn -***O 

ABCD (.B) Dnl,Dn2 1 1 0 0 D d r 1 0 0 O O O S d r Dn Dn *U*U* 

ABCD (.B) -(Anl),-(An2) 1 1 O 0 D a r 1 O 0 O O 1 S a r -(An) -(An) *U*U* 

EXG(.L) Dnl,Dn2 1 1 O O S d r 1 O 1 O O O S d r D~Dn 
(Dn) 

EXG(.L) Anl,An2 1 1 O O S a r 1 O 1 O O 1 S a r An,An 
(An) 



EXG(.L) Dnl,An2 llOOSdrllOOOlSar Dn,An 
(Dn,An) 

ADD.s ea,Dn 1 1 o 1 T d r D s z F e f a d r EA [k) Dn ***** 
Dn,ea Dn AMEA 

ADDA.s2 ea, An 1 1 O 1 D a r S 1 1 S o u r c e EA An 

ADDX.s Dnl,Dn2 1 1 0 1 D d r 1 S z 0 O O S d r Dn Dn ***** 

ADDX.s -(Anl),-(An2) 1 1 0 1 D a r 1 S z O O 1 S a r -(An) -(An) ***** 

ASR.s/ASL.s #d3,Dn 1 1 1 O C n t R S z O O O D d r Q Dn ***** 

ASR.s/ASL.s Dnl,Dn2 1 1 1 O S d r R S z 1 O O D d r Dn Dn ***** 

LSR.s/LSL.s #d3,Dn 1 1 1 O C n t R S z O O 1 D d r Q Dn ***O* 

LSR.s/LSL.s Dnl,Dn2 1 1 1 O S d r R S z 1 O 1 D d r Dn Dn ***O* 

ROXR.s/ROXL.s #d3,Dn 1 1 1 O C n t R S z O 1 O D d r Q Dn ***O* 

ROXR.s/ROXL.s Dnl,Dn2 1 1 1 O S d r R S z 1 1 O D d r Dn Dn ***O* s:: 
°" O:l 

ROR.s/ROL.s #d3,Dn 1 1 1 0 C n t R S z 0 1 1 D d r Q Dn 
0 

-**O* 0 
0 

ROR.s/ROL.s Dnl,Dn2 1 1 1 0 S d r R S z 1 1 1 D d r Dn Dn -**O* 5" 
VI ...... .., 

ASR/ASL (.W) 1 1 1 O O O O R 1 1 D e s t i n AMEA ***** c: ea (") 

g. 
LSR/LSL (.W) ea 1 1 1 O O O 1 R 1 1 D e s t i n AMEA ***O* :J 

Vi 

ROXR/ROXL (. W) 1 1 1 O o 1 O R 1 1 D e s t i n AMEA c: ea ***O* 3 
3 

ROR/ROL (.W) ea 1 1 1 o o 1 1 R 1 1 D e s t i n AMEA -**O* Ill .., 
'< 

BFrST 20 ea {offset:width} 1 1 1 o 1 o o o 1 1 D e s t i n CEA&Dn -**00 
0 0 0 0 B i t o f f B i t w i d w 

~ 
(,/"I 



~ 

Condition t..J 

"' Instruction CPU Syntax Instruction Code Map SRC DST Codes Priu Notes 
O'\ 

BFEXTU 20 ea {offsetwidth},Dn 1 1 1 O 1 O O 1 1 1 S o u r c e CEA&On On -**00 O:l 
0 

0 D d r B i t o f f B i t w i d 0 
~ 

BFCHG 20 ea {offsetwidth} 1 1 1 O 1 O 1 O 1 1 D e s t i n />CEA&On 
O'\ 

-**00 O:l 
0 

0 0 0 0 B i t o f f B i t w i d -~ 
BFEXTS 20 ea {offsetwidth},Dn 1 1 1 O 1 O 1 1 1 1 Sour c e CEA&On On -**00 Ill 

::i 

0 D d r B i t o f f B i t w i d Cl.. 
O'\ 
O:l 

BFCLR 20 ea {offsetwidth} 1 1 1 0 1 1 0 0 1 1 D e s t i n />CEA&On -**00 0 
N 

0 0 0 0 B i t o f f B i t w i d 0 

4=' 
BFFFO 20 ea {offsetwidth},Dn 1 1 1 O 1 1 O 1 1 1 S our c e CEA&On On -**00 §. 

0 D d r B i t o f f B i t w i d 
t'I) .... 

BFSET 20 ea {offsetwidth} 1 1 1 O 1 1 1 O 1 1 D e s t i n />CEA&Dn -**00 
0 0 0 0 B i t o f f B i t w i d 

BFINS 20 Dn,ea {offsetwidth} 1 1 1 O 1 1 1 1 1 1 D e s t i n On />CEA&Dn -**00 
0 S d r B i t o f f B i t w i d 

cpGEN 20 [cp parameters] 1 1 1 1 C p i o 0 o D e s t i n ----- [n) 
C o p r o c e s s o r c o m m d 

cpScc(.B) 20 ea 1 1 1 1 C p i O O 1 D e s t i n ADEA 
O O O O O O O O O O C pc o n d 

cpOBcc(.W) 20 On, label 1111Cpi001001Ddr Dn,I PC 
O O O O O O O O O O C p c o n d 
Displacexxxxxxxx 



cp TRAPcc.s3 20 {#n} 1 1 1 1 c p i 0 0 1 1 1 1 s i z 
O O O O 0 0 0 0 O O C p c o n d 

(X X X X X X X X X X X X X X X X) 

(X X X X X X X X X X X X X X X X) 

cpBcc.s2 20 Dn,label llllCpiOlSCpcond I PC 
D i s p 1 a c e x x x x x x x x 

(X X X X X X X X X X X X X X X X) 

cpSAVE 20 ea 1 1 1 1 C p i 1 O O D e s t i n ACEA &-(An) ----- x 
cpRESTORE 20 ea 1 1 1 1 C p i 1 O 1 S o u r c e CEA&(An)+ ----- x 

[a] The S bit field in CHK is reversed from other instructions (O= longword, 1 =word). This is because the longword format is an MC68020 feature (not 
originally designed). 

[bl ILLEGAL is the only instruction pattern guaranteed to always be an illegal instruction. All other patterns are reserved for future expansion by Motorola. 
TRAPF has no effect in an MC68020 program (like a NOP), but in a MC68010 program will cause an illegal instruction exception. Hence, Motorola 
recommends putting a TRAPF instruction at the beginning of any MC68020 program that is not backwards compatible with the MC68010. If the program is 
ever run on the MC68010, it will not cause serious trouble. 

[c] An immediate value of O is interpreted as 8 in ADDQ, SUBQ, and the shift instructions. 

[d] Condition codes 0000 (T) and 0001 (F) are not available in Bee and cpBcc. Note that BRA has a bit pattern corresponding to "BRT'', and BSR has a bit 
pattern corresponding to "BRF". DBcc, cpDBcc, Sec, cpScc, and TRAPcc allow all condition codes. 

[e] Certain instructions have extended functions in the MC68020. Bee, BRA, BSR allow 32-bit displacements; CHK allows 32-bit extensions (CHK.W legal 
on MC68000, CHK.L legal on MC68020); CMPI, TST support PC relative addressing modes. 

[fl Bee, BRA, BSR allow 8-bit, 16-bit, and 32-bit displacements as follows: 
MC68000-lf the 8-bit displacement is 0, then a 16-bit displacement follows. 
MC68020-lf the 8-bit displacement is hex FF, then a 32-bit displacement follows. 

[g] BKPT has evolved as follows: 
MC68000-Not implemented. 
MC68010-Generates a breakpoint bus cycle with address space bits 111 and 32-bit address 0. 
MC68020-Generates a breakpoint bus cycle with the breakpoint vector on address lines A2, A3, A4, and zero on addressed lines AO, A 1; a response 

is also generated, either a 16-bit instruction, or an illegal instruction exception. 

[h] MOVEC supports more control registers on the MC68020 (see list). For a list of the control registers, see the explanation of the instruction code map 
columns preceding Table D-2. 

$.: 
°' O::l 
a 
a a 
s-
V> 
Ci" c: 
n g. 
:::i 
V) 
c: 
3 
3 
llJ ..., 
'< 

w 
N 

" 



[i] MOVE from CCR and MOVE to CCR are technically word operations. Both require word (even) addresses, but only move the CCR byte. In addition, MOVE 
from CCR clears the upper byte of the destination. 

[kl Address registers are illegal in byte operations. 

[m] Note that CAS2 allows data indirect addressing, that is, (Dn). 

[n] cpGEN: the legal addressing modes and condition code changes are dependent on the coprocessor. 

[p) MOVE from SR is not privileged in MC68000, but is in MC6801 O/MC68020. This is necessary in order for the MC68010 to support system emulations. If 
an emulating operating system is actually running in user state, it must not be aware that is not in supervisor mode. By trapping any MOVE from SR instructions, 
this can be accomplished. 

[q] MOVES moves across different address spaces, so its addressing modes are correspondingly limited. 

[r) Displacement also added to SP (RTD instruction). 

[s) RTE properly returns from any exception. RTE pops 4 to 44 words from the SSP or ISP, restores the PC and SR, and (when appropriate) restores other 
internal processing registers. Note: bus and address errors on the MC68000/MC68008 generate a stack format which does not fit into the general RTE return 
scheme. In these cases, 4 words must be popped from the stack before doing an RTE. 

[t) TRAP, TRAPcc, TRAPV generate exceptions, and affect several registers. 

[v) The division commands formats are: 

DIVx.W ea,Dn DN(long) 
DIVx.L ea,Dn Dn(long) 
DIVx.L ea,Dnl :Dn2 Dnl :Dn2(quad) 
DIVxL.L ea,Dnl :Dn2 Dnl(long) 

I ea(word) 
I ea(long) 
I ea(long) 
I ea(long) 

- Dn(word quot , word rem) 
- Dn(long quot) 
- Dnl(long rem), Dn2(1ong quot) 
- Dnl(long rem), Dn2(1ong quot) 

[w) Instructions starting with bits 1010 are reserved for user definition. They generate interrupts, and are variously called emulate, user-defined, illegal, and 
undefined instructions. On the MC68000 and MC68010, instructions starting with bits 1111 generate interrupts similar to the 1010 instructions, but on the 
MC68020 they are used for the co-processor instructions. 

~ 
N 
= 
O'I 
Oo 
0 

~ 
O'I 
Oo 
0 -~ 
Ill 
:J 
Cl. 
O'I 
Oo 

~ 
0 

~ 
3· 
C'1) 
..... 



f 

M68000 Resources 

The following symbols to the right of a listing indicate the categories of items 
available from a supplier (note that many of the systems mentioned in this list 
are now becoming available in 68020 versions): 

Allen Systems 

K 
SBC 
Sys 
s 
x 
u 
Chip 

2151 Fairfax Road 
Columbus, OH 43221 
(614) 488-7122 

Kits 
Single board computers 
Complete systems 
Software 
Cross compilers 
Unix (or Unix-related) 
Second source manufacturer 

K/SBC/X 

FX-688 SBC inc MC68008/6551 USART@ $350 inc 8K EPROM/2K RAM 
Cross assemblers for Apple II/John B. Allen 

Alpha Microsystems 
PO Box 18347 
Irvine, CA 92714 

Sys/SIU 

AM-lOOUAM-1000/ Work Stations and Multiuser Systems MC68000 under 
AMOS, PC-DOS and UNIMOS. $5,000 to $100,000+ 

329 



330 68000, 68010, and 68020 Primer 

Alycon Corporation 
8716 Production Avenue 
San Diego, CA 92121 

S/Sys/SBC/U 

(714) 578-0860 

REGULUS OS (Unix+ )/A68KPM SBC with LSI-11 bus compatiblity 
256K basic model @ $2900; APX extended proc @ $29, 900 
110 processor @ $2,345 

Apple Computers 
20525 Mariani Avenue 
Cupertino, CA 95014 

Macintosh/Big Mac/XL/Lisa 
Laser printer uses lOMHz MC68010 + 1 Mb RAM + .5 Mb ROM 

Arete Systems Corp. 
San Jose, CA 
(408) 263-9711 

Dual 68000/Unix engine: Model 1124/under Unix V or RM/COS 

Atari 
1196 Borregas Ave. 
Sunnyvale, CA 94086 

Sys/S 

Sys/S/U 

Sys/S 

MC68000-based 520ST personal computer @ $800. Built-in color, sound, 
512K RAM, 8 MHZ CPU. Runs TOSTM, GEM™ (Digital Research Inc.). 

AT&T Sys/SIU 
PO Box 967 
Madison Square Station 
New York, NY 10159 

PC7300 uses 68010/512K-1 floppy/lOMb hard/built by Convergent Technol
ogy/built in 1200 baud modem@ $4,000-7,000 

Boston Systems Office 
469 Moody Street 
Waltham, MA 02154 
(617) 894-0760 

Software development for most micros/DEC//UMDS-10 OS/UMDS-30 

S/U/X 



M68000 Resources 331 

CCA Uniworks SIU 
Four Cambridge Center 
Cambridge, MA 02142 
(617) 492-8860 

CCA EMACS = Full screen text editor under UNIX 
Elisp = extension language 

Charles River Data Systems, Inc. 
983 Concord Street 
Framingham, MA 01701 
(617) 655-1800 

Universe 68/05 32bit versabus/12.5 mh/MC68000 i/o proc 
Universe 2203 VME/UNOS = realtime ext of UNIX V 

Chromatics 
2558 Mountain Industrial Boulevard 
Tucker, GA 30084 

CGC 7900 Color Graphics Computer/under IDRIS OS 

Codata Systems, Inc. 
(CONTEL CODATA) 
285 N. Wolfe Road 
Sunnyvale, CA 94086 

Sys/S/U 

Sys/S 

Sys/SIU 

UniSoft UniPlus+ /CTS-300/lntel Multibus/MERLIN OS/ Model 3300 =multi
user 84Mb @ $13,500/ 33 Mb @ $9,6001 12Mb @ $7,600/ 

Commodore International 
1200 Wilson Drive 
Westchester, PA 19380 
(215) 431-9100 

AMIGA MC68000-based business/home computer@ $1295 
Built-in Graphics/Sound/Amiga DOS 

Compupro, Inc. 
3506 Breakwater Court 
Hayward, CA 94545 

Wide range of CP/M-68K single/multi-user systems 

Sys/S 

Sys/S 



332 68000, 68010, and 68020 Primer 

Control Systems, Inc. 
1317 Central Avenue 
Kansas City, KS 66102 

UCSD 2.0 Pascal compiler/interpreter for M68000 

Convergent Technologies 
Data Systems Division 
3055 Patrick Henry Drive 
Santa Clara, CA 95050 
(408) 980-0850 

$20,000 16-user MegaFrame with 68010 lOMHz 
MiniFrame starter at $5,000 
Unix VI cobol;fortran-77;basic;pascal;C 
See also AT&T PC7300 

Cromemco, Inc. 
280 Bernardo Avenue 
PO Box 7400 
Mountain View, CA 94039 
(415) 969-4710 

UNIX V/ System 100 with 4 Mb up to System 300 with 16 Mb 

CYPHER 
Motel Computers, Ltd. 
17 4 Betty Ann Drive 
Willowdale, Ontario 
M2N 1X6, Canada 
(416) 221-2340 

MC68000/Z80 SBC, kit or assembled/under CP/M88 

Digital Research, Inc. 
PO Box ORI 
Monterey, CA 93941 

CP/M 68K = version of CP/M for M68000 

DUAL Systems Corporation 
720 Channing Way 
Berkeley, CA 94 710 
(415) 549-3854 

s 

Sys/S/U 

Sys/S/U 

SBCIKIS 

SIU 

Sys/S/U 



M68000 Resources 333 

Instrumentation/process control 
Model 83/80 UNIX// 68KS-7;68KS-8 UNIX V7 
UniSoft UniPlus+ on S-100 

Educational Microcomputer Systems 
PO Box 16115 
Irvine, CA 92713 
(714) 854-8545 

M68000 macro cros ass for IBM PC @ $199 
SBC @ $695 16K EPROM/20K RAM/2xRS-232C/debug monitor 

EFCIS 
(Thomson-CSF & French Atomic 
Energy Commission) 
45 ave de I' Europe 
78140 Velizy-Villacoublay 
France 

M68000 second source 

Emulogic, Inc. 
362 University Avenue 
Westwood, MA 02090 

ECL-3211 OS/ assm/basic/C/fortran/pascal 

Enertec, Inc. 
19 Jenkins Avenue 
Lansdale, PA 19446 
(215) 362-0966 

Micro concurrent Pascal for M68000/interpreter-kemel 3.2K 

farbware 
1329 Gregory 
Wilmette, IL 60091 
(312) 251-5310 

SBC/K/X/S 

Chip 

XIS 

s 

SIX 

Xassmblr A68K/linker L68K/ + LIB68K for CP/M and PC-DOS @ $200- 250 
C source @ $700 

Forward Technology 
2175 Martin Avenue 
Santa Clara, CA 95050 
(408) 988-2378 

Sys/SIU 



334 68000, 68010, and 68020 Primer 

Ff-68X has Xeni:x/lOMhz Multibus Grafics cntlr 

Genrad/Futuredata 
5730 Buckingham Parkway 
Culver City, CA 90230 

Pascal cross compiler 

Hemenway Associates, Inc. 
101 Tremont Street, Suite 208 
Boston, MA 02108 

Floating Point package/Pascal compiler 

SIX 

s 

Heurikon Corporation 
3201 Latham Drive 
Madison, WI 53713 
(800) 356-9602 

SBCIU/S 

(608) 271-8700 

Minibox = UniSoft UniPlus+/ HK68 = SBC with DR CP/M 68K 
PolyForth/Regulus/6-slot Multibus 

Hewlett-Packard Sys/SIU 
1944 7 Pruneridge Avenue 
Cupertino, CA 95014 

HP 9826A/HP 9000/200/ HP-UX OS 
Portable UNIX on HP Integral PC @ $4990 inc HP-UX,PAM,HP Windows 

Hitachi America Ltd 
1800 Bering Drive 
San Jose, CA 95112 

Licensed second source M6800/68000 
CMOS version expected soon/= HD68000 available in normal 64pin 
DIP PLUS new flat-pack for low-power/low-space portables 

Honeywell, Inc. 
Billerica, MA 
(617) 671-2744 

M68000-based Unisoft UniPlus+ port 
Workstation = MicroSystem NX@ $8,895-9,500 

Chip 

Sys/SIU 



M68000 Resources 335 

IBC Sys/S/U 
Integrated Business Computers 
21621 Nordhoff Street 
Chatsworth, CA 91311 
(818) 882-9007 

IBC Ensign = UniSoft UniPlus+ port/32 station multi-user/8Mb 

IBM 
Instruments Division 
Orchard Park 
PO Box332 
Danbury, CT 06810 

Sys/S 

Model 9000 @ $5,695 basic = 128K RAM/128K ROMNERSABUS compatible 
IEEE-488 interface/ Optional 4x5mb or 4x10mb hard disk 

ICL, Ltd. 
Putney Bridge House 
London, England 

Version of Sinclair QL/MC68008 with telephone/modem 

Sys/S 

Inner Access Corporation 
517K Marine View 
Belmont CA 94002 

Sys/K/SBC/S 

(415) 591-8295 

MultiUser-16@ $9,995 OEM = 8 user/500K/40 Mb/Mirage OS/S-100 
MC68000 processor board@ $695/MC68010 version@ $795 
Matching 1/0 board @ $695 

Interleaf, Inc. Sys/S 

Tech Publishing System TPS-2000 on MC68010 @ $37,500 + 

Intermetrics, Inc. S/X/U 
733 Concord Avenue 
Cambridge, MA 02138 
(617) 661-0072 

Cross asm/pascal/c - for all M68000s 
Runs on VAXNMS/UNIX also Apollo/Sun 



336 68000, 68010, and 68020 Primer 

IPI Sys/SBC/S 
Industrial Programming, Inc. 
100 Jericho Quadrangle 
Jericho, NY 11753 

MTOS-68K//assm/C/pascaV/8K single-user 
MTOS-68KF - ROM for Omnibyte/Microbar MC68000 SBC 

Lattice, Inc. 

Lattice C compiler for all M68000s 

Lexidata Corporation 
755 Middlesex Turnpike 
Bilerica, MA 

Graphics system 8000/UniSoft UniPlus+ port 

Manx Software Systems 
POBox55 
Shrewsbury, NJ 07701 
(800) 221-0440 

C compilers/cross compilers all M68000-based UNIX systems 

Mark Williams Company 
1430 West Wrightwood Road 
Chicago, IL 60614 
(312) 472-6659 

Unix compatible multi-user, multi-tasking COHERENT OS (trn) 
C-compilers cross/native for M68000/PDP-11/Z8000/8086 

MDB Systems, Inc. 
1995 N Batavia Street 
PO Box5508 
Orange, CA 92667-0508 
(714) 998-6900 

Micro/32 runs under Regulus OS 

Meta com co 
Monterey, CA 

LISP 68000 for creating expert systems 

S/U 

Sys/S/U 

S/X/U 

S/X/U 

Sys/SIU 

s 



MicroDaSys, Inc. 
1541 S. Manhattan Place 
Los Angeles, CA 90019 
(213) 731-1475 

M68000 Resources 337 

Sys/S/U 

68K Miniframe runs XENIX /uses MC6809 MMU. Plans for VEND{ (VM version) 

Microfocus, Inc. 
2465 E. Bayshore Road 
Suite 400 
Palo Alto, CA 94303 
(415) 856-4161 

Animator Visual Programming/ COBOL debugging aids 

Microsoft 
10800 NE 8th Street 
Bellewe, WA 98004 
(20()) 426-9400 

Sys/S 

S/U/X 

XENI}{ = version of UNIX v7/assm/basidC/fortran 77/Cobol-74 for M68000 
and 8086/8088 

Microware Systems Corporation 
1866 NW 114th Street 
Des Moines, IA 50322 
(515) 224-1929 

SIU 

OS-9 = UNl}{-like OS; runs on most M6809/68000s from ROM-based control 
systems up to medium-scale time-sharing systems. 16K ROMable written in 
M68000 assm. C/pascal/basidcobol 

Morrow Designs, Inc. 
600 McCormick Street 
San Leandro, CA 

Sys/S/U 

TRICEP = $2,500 per user/4-8 users/UniSoft UniPlus+ port/UNIX v/ 
512K+4CRTs+ 16Mb disk@ $10,495// with 32Mb disk@ $12,495 

Mostek Corporation 
1215 West Crosby Road 
Carrollton, TX 75006 

Licensed second source 

Chip 



338 68000, 68010, and 68020 Primer 

Motorola Microsystems 
3102 North 56th Street 
Phoenix, AZ 85018 

VERSAdos/structured Macro assm/pascaVfortran-77 
Wide range of Software Development aids 

Motorola Semiconductor Products, Inc. 
Literature Department 
PO Box20924 
Phoenix, AZ 85036 

Books/tech lit 

Sys/K/S 

Motorola Semiconductors, Inc. 
3501 Ed Bluestein Boulevard 
Austin, TX 78721 

Chip/S/X/K/U 

(512) 440-2122 

EXORcisor- MEX68KDM Design module-MACSbug 8K monitor 
VERSAbusNMM-Versamodule monoboard micro 
VME bus/subset of versabus 

Multi Solutions, Inc. 
123 Franklin Comer Road, Suite 207 
Lawrenceville, NJ 08648 
(609) 896-4100 

SIX 

Sl OS on M68000 for DataMedia 932/IBM 9000/ NCR Tower/Compupro 68K/ 
Dual CPU/ IBC Ensign/ Stride/ SORO 68/ Pertee 3200/ FORCE 
Wide range of Cross assemblers/compilers for M68000 and most micros 

Network Research Corporation 
1101 Colorado Avenue 
Santa Monica, CA 90401 
(213) 394-9508 

LAN software-interconnects M68000/DEC-VAXen/IBM-PC; more 

OASYS Inc. 
60 Aberdeen Ave. 
Cambridge, MA 02138 
(617) 491-4180 

Cross development tools/C and macro assemblers 

s 

SIX 



M68000 Resources 339 

Omnibyte Corporation SBC/K 
245 W. Roosevelt Road 
West Chicago, IL 60185 

Multibus OB68Kl SBC 

Oregon Software SIX 
6915 S.W. Macadam Avenue 
Portland, OR 97021 
1(800) 874-8501 
(503) 226-7760 

Pascal-2 native/cross all M68000-based UNIX systems 

Perkin-Elmer 
Oceanport, NJ 

Wide range single/multi-user systems (UniSoft UniPlus+ port) 

Pertee Computer Corporation 
Irvine, CA 
(714) 660-0488 

Model 3220 multiprod5 stations/53 Mb@ $14,000 

Phase One 
Suite 830, 7700 Edgewater Drive 
Oakland, CA 94621 
(415) 562-8085 

OASIS OS on Intel 8086/8 and M68000/ 32-users 

Sys/SIU 

Sys/SIU 

Sys/S 

Phase Zero, Ltd. SIX 
2509 N. Campbell Ave. 
Suite 130 
Tucson, AZ. 85719 

ASSEM68K Apple 11111 + (32K) to MC68000 cross assm. @ $95 
MINOS 1.0 OS for Apple II( +IE) and dtack grounded 68000AP board gives 
direct m/c language control of MC68000 

PIXEL Computers, Inc. 
260 Fordham Road 
Wilmington, MA 01887 

Pixel 80110 MHz M68000 with UniSoft UniPlus+ port 

Sys/SIU 



340 68000, 68010, and 68020 Primer 

Plexus Sys/SIU 

Model P/35 and wide range UNIX workstations 

Pyramid 
PO Box 7295 
Mountain View, CA 94039 

Wide range multiuser business/scientific systems 

Radio Shack Computers 
A Division of Tandy Corporation 
300 One Tandy Center 
Fort Worth, TX 76102 

Model TRS-16 Professional & Business PC 

RDS 
Relational Database Systems, Inc. 
2471 East Bayshore Road, Suite 600 
Palo Alto, CA 94303 

INFORMAX/File-it!/C-ISAM on most M68000-based UNIX systems 

Relational Technology, Inc. 
2855 Telegraph Avenue 
Berkeley, CA 94705 
(415) 845-1700 

Sys/S 

Sys/S/U 

SIU 

s 

INGRES - Relational Database Management for M68000-based UNIX systems 

RELMS 
Relational Memory Systems, Inc. 
1650-B Berryessa Road 
San Jose, CA 95133 
(408) 729-3011 

ICEBOX/SPICE software development systems 
Wide range of Assemblers/Cross Assemblers for Intellec and iPDS 

Rockwell International 
Electronic Devices Division 
PO Box 3669, RC55 
Anaheim, CA 92803 

Licensed second source 

/XIS 

Chip 



M68000 Resources 341 

Ryan McFarland Corporation S 
609 Deep Valley Drive 
Rolling Hills Estates, CA 9027 4 
(213) 541-4828 

RMCOBOL compiler for M68000-based UNIX systems 

SBE, Inc. 
4 700 San Pablo Avenue 
Emeryville, CA 94608 
(415) 652-1805 

Sys/SBC/S/X 

SBE350/300/250 multiuser systems run Regulus OS (see Alycon)/LEX68 
Wide range of M68000-based SBCs and software 
PROBUG for M68K10 or M68K12 or M68CPU (tm) 
IEEE796 multibus SBC's/lMb on board RAM 

Signetics/Phillips 
811 East Arques Avenue 
Sunnyvale, CA 94086 

Licensed second source 

Silicon Graphics 
Mountain View, CA 

Graphics Workstation - M68000-based UNIX 

Sinclair Electronics 
Cambridge, England 

QL (Quantum Leap) MC68008 home computer under $1,000 

Smoke Signal 
Westlake Village, CA 
(818) 889-9340 

Chip 

Sys/S/U 

Sys/S 

Sys/SIU 

UNIX desktop family = VAR/68K (MC68008 + Regulus os) $7,900- 25,000 

Southwind Software, Inc. 
4520 E. 4 7th St. So. 
Wichita, KS 67210 
(316) 788-5537 

IPT (Integrated Productivity Tools) for NCR Tower, 1632 and Plexus P/35 

s 



342 68000, 68010, and 68020 Primer 

SRITEK, Inc. 
10230 Brecksville Road 
Cleveland, OH 44141 
(216) 526-9433 

K/SBC/S/U 

MC68000 Versabus/microcard to run XENIX on IBM XT @ $1995-$2995 
including software 

Stride Micro 
(formerly Sage Computers) 
4905 Energy Way 
Reno, NV 89502 
(702) 322-6868 

Stride 400 series/ multi-user/multi-OS/VMEbus@ $2,900-$60,000 

Sun Microsystems, Inc. 
2550 Garcia Avenue 
Mountain View, CA 94043 
(415) 960-1300 

Model 2/250 UNIX Workstation under $10,000 (lOMHz 68010) 

Sys/S/U 

Sys/S/U 

Range of multiuser VM systems eg Model 2/120 = lMb, Model 2/170 = 2 
Mb 
Graphics/10 Mb per sec Ethernet 

Swift Computers, Ltd. 
England 

Mirage OS for M68000-based multiuser systems 

Symbiont Systems, Inc. 
PO Box44652 
Lafayette, LA 70504-4652 
(318) 984-6545 

Series 70/400 = multiuser 12MHz M68000 under MIRAGE OS 

System Kontakt 
6 Preston Court 
Bedford, MA 11730 

Cross assm/pascal compiler- M68000 and DEC PDP-11 

s 

Sys/S 

SIX 



M68000 Resources 343 

Technical Systems Consultants, Inc. SIX 
1200 Kent Avenue 
West Lafayette, IN 4 7906 

UniFLEX/macro and cross assm/basic/C/pascal 

Tecmar, Inc. 

M68000-based hard disc - links to Apple ImageWriter and modem 
Daisy chains on AppleTalk LAN 

TeleSoft 
10639 Roselle Street 
San Diego, CA 92121 

Pascal/ ADA software developm~nt tools for M68000 

Texas Instruments, Inc. 
PO Box 402430 
Dallas, TX 75240 
1(800) 527-3500 

The Nu Machine = MC68010 lOMHz UNIX 
32 bit data/address 37.5 Mb per sec bandwith NuBus 
with Multibus converter/ under Motorola System V/68 OS 

UniPress Software, Inc. 
2025 Lincoln Highway 
Edison, NJ 08817 
(201) 985-8000 

K/S 

SIX 

Sys/S/K/U 

S/X/U 

EMACS/MINIMACS full screen/multi-window editors for M68000 systems. AM
STERDAM compiler kit = C; Pascal compilers/cross compilers for M68000 and 
Intel 8086/8 running under UNIX 

UNISOFT Systems 
739 Allston Way 
Berkeley, CA 94 710 
(415) 644-1230 

UNIX porting for over 90 microcomputers from 60 manufacturers 
UniSoft UniPlus + available on most M68000-based systems 
ASM68 assemblers and cross assemblers for VAXen, etc. 
IP/TCP networking/record and file locking 

S/X/U 



344 68000, 68010, and 68020 Primer 

Victory Computer Systems, Inc. 
1610 Berryessa Road 
San Jose, CA 95133 
(408) 295-7370 

SBC/S/U 

UniSoft UniPlus+ NME bus SBC has M68000 + 256K dual-ported RAM! 
OS=VRTX 

Whitesmiths, Ltd. 
PO Box 1132 
Ansonia Station 
New York, NY 10023 

C/pascal compilers for M68000-based UNIX and versados systems 

Wicat Systems 
Orem, UT 

S/X/U 

Sys/S/U 

UNIX workstations/multiuser systems under UniSoft UniPlus+ /MCS OS/150WS 

Xidak, Inc. 
530 Oak Grove Ave., Suite 101 
Menlo Park, CA 94025 
(415) 324-8745 

S/X 

MAINSAIL = applications software development language for M68000-based 
UNIX systems (and others) 



F 

ASCII Table -
Numerical Conversions 

I 0:.~ I ":.~ I OCT Binary ASCII 
x. X2 

0 00 00 0000000 NUL 
I 01 01 0000001 SOH 
2 02 02 000 0010 STX 
3 03 03 000 0011 ETX 
4 04 04 0000100 EOT 
5 05 05 000 0101 ENQ 
6 06 06 000 0110 ACK 
7 07 07 000 0111 BEL 
8 08 10 000 1000 BS 
9 09 11 000 1001 HT 

10 OA 12 000 1010 LF 
11 OB 13 000 1011 VT 
12 oc 14 000 1100 FF 
13 OD 15 000 1101 CR 
14 OE 16 0001110 so 
15 OF 17 0001111 SI 
16 10 20 001 0000 OLE 
17 11 21 001 0001 DCI 
18 12 22 001 0010 DC2 
19 13 23 001 0011 DC3 

345 



346 68000, 68010, and 68020 Primer 

I DEC I HEX OCT Binary ASCII 
x. X2 X10 X1• 

20 14 24 001 0100 DC4 
21 IS 2S 001 0101 NAK 
22 16 26 001 0110 SYN 
23 17 27 001 Oil I ETB 
24 18 30 001 1000 CAN 
2S 19 31 001 1001 EM 
26 IA 32 001 1010 SUB 
27 18 33 001 IOI I ESC 
28 IC 34 001 1100 FS 
29 ID 3S 001 1101 GS 
30 IE 36 001 1110 RS 
31 IF 37 001 1111 us 
32 20 40 0100000 SP 
33 21 41 010 0001 
34 22 42 0100010 " 
3S 23 43 010 0011 # 
36 24 44 010 0100 $ 
37 2S 4S 010 0101 % 
38 26 46 010 0110 & 
39 27 47 010 Olli 
40 28 so 010 1000 ( 
41 29 SI 010 1001 ) 
42 2A S2 010 1010 • 
43 28 S3 010 1011 + 
44 2C S4 010 1100 
4S 20 SS 010 1101 
46 2E S6 0101110 
47 2F S1 010 1111 I 
48 30 60 011 0000 0 
49 31 61 011 0001 I 
so 32 62 011 0010 2 
SI 33 63 Oil 0011 3 
S2 34 64 011 0100 4 
S3 3S 6S 011 0101 s 
S4 36 66 Oil 0110 6 
SS 37 67 011 Oil I 7 
S6 38 70 011 1000 8 
S1 39 71 011 1001 9 
S8 3A 72 011 1010 
S9 38 73 Oil 1011 
60 3C 74 Oil llOO < 
61 30 1S Oil llOI = 



ASCII Table - Numerical Conversions 347 

I DEC I HEX OCT Binary I ASCII 
x, X2 X10 X1, 

62 3E 76 011 1110 > 
63 3F 77 0111111 ? 
64 40 100 1000000 @ 

65 41 101 100 0001 A 
66 42 102 100 0010 B 
67 43 103 100 0011 c 
68 44 104 1000100 D 
69 45 105 1000101 E 
70 46 106 100 0110 F 
71 47 107 100 0111 G 
72 48 110 100 1000 H 
73 49 111 100 1001 I 
74 4A 112 100 1010 J 
75 4B 113 100 1011 K 
76 4C 114 100 1100 L 
77 40 115 100 1101 M 
78 4E 116 1001110 N 
79 4F 117 1001111 0 
80 so 120 101 0000 p 
81 51 121 101 0001 Q 
82 52 122 101 0010 R 
83 53 123 101 0011 s 
84 53 124 101 0100 T 
85 55 125 101 0101 u 
86 56 126 101 0110 v 
87 57 127 101 0111 w 
88 58 130 101 1000 x 
89 59 131 101 1001 y 

90 5A 132 1011010 z 
91 5B 133 101 1011 [ 
92 5C 134 101 1100 ' 93 50 135 101 1101 ] 
94 5E 136 101 1110 /\ 

95 5F 137 1011111 
96 60 140 110 0000 
97 61 141 110 0001 a 
98 62 142 110 0010 b 
99 63 143 1100011 c 

100 64 144 110 0100 d 
101 65 145 110 0101 e 
102 66 146 1100110 f 
103 67 147 110 0111 g 



348 68000, 68010, and 68020 Primer 

I DEC I HEX OCT Binary ASCII 
x. X2 X10 X,, 

104 68 150 110 1000 h 
105 69 151 110 1001 
106 6A 152 110 1010 j 
107 6B 153 110 1011 k 
108 6C 154 110 1100 I 
109 60 155 110 1101 m 
110 6E 156 110 1110 n 
111 6F 157 1101111 0 

112 70 160 111 0000 p 
113 71 161 111 0001 q 
114 72 162 111 0010 r 
115 73 163 111 0011 s 
116 74 164 Ill 0100 t 

117 75 165 111 0101 u 
118 76 166 111 0110 v 
119 77 167 1110111 w 
120 78 170 Ill 1000 x 
121 79 171 1111001 y 
122 7A 172 Ill 1010 z 
123 78 173 111 1011 { 
124 7C 174 1111100 I 

I 

125 7D 175 1111101 } 
126 7E 176 1111110 
127 7F 177 1111111 DEL 



Index 

ABCD, 229, 291 
Absolute address 

Jong, 117 
short, 117 

ACEA, 166 
ADD, 94, 98, 127-128 
ADDA, 127 
Adder, 18 
ADDI, 113 
ADDQ, 110-112 
Address, 30 

byte, 30 
linear, 62 
width, 22 

Addressing mode(s), 53, 106-109 
68020 variants, 274-280 
absolute, 116-119 
address register and memory indirect with 

index, 275-279 
address register direct, 107 
address register indirect, 124-126 
address register indirect post-increment, 

128 
address register indirect pre-decrement, 

133 
address register indirect with offset, 14 7 
address register indirect with offset and 

index, 149 
classification, 166 
data register direct, 107 
immediate, 109-116 
memory, 107 
memory indirect post-indexed, 277 

349 

memory indirect pre-indexed, 277 
program counter addressing with offset, 

159 
program counter and memory indirect with 

index, 278-279 
program counter with offset and index, 163 
register direct, 107 
relative, 158 

ADDX, 225 
ADEA, 166, 168 
AEA, 166, 168 
ALU, see Arithmetic/logic unit 
AMEA, 166, 168 
AND, 14, 173-176 
ANDI, 181, 183 
Applications software, 37 
Arithmetic/logic unit (ALU), 22, 28 
ASCII, 10, 186, 193, 215, 276, 291; see 

also, Appendix F 
ASL, 156, 194 
ASR, 157, 194 
Assembler, 58 
Assembly language, 58 

Base displacement, 276 
Bee, 103,209,288 
BCD, see Binary coded decimal 
BCHG, 206-208 
BCLR, 206-208 
BCS, 105 
BEQ, 98, 103 
BF, see Bit field 
BFCHG, 293 



350 Index 

BFCLR,293 
BFEXTS,293 
BFEXTU,293 
BFFFO, 293 
BFFINS, 293 
BFSET, 293 
BFTST,293 
Binary arithmetic, 6-8 
Binary coded decimal (BCD), 10, 229-233, 

291 
Binary digits, 4-6 
Binary search, 197, 199 
Bit field (BF), 293 
Bits, 4-6 
BMI, 105, 152 
BNE, 105 
Boole, George, 14 
Boolean algebra, 14-16 
BPL, 105 
BRA, 98, 288 
Branch displacement, 100 
Branching, 27, 98-106 
BSET, 206-208 
BSR, 142,239,288 
BTST,204 
Buffer, 121 
Bus 

address, 21 
contention, 27 
control, 21 
data, 21, 66 
sizes, 62 
system, 20 
VME, 43 

BVS, 98, 103 
Byte, 8-9, 74 

CMR, see Cache address register 
Cache, 266-274 

address register (CMR), 271 
control register (CACR), 271 
data, 268 
limitations, 272-274 
tag, 268 

CACR, see Cache control register 
CALLM, 263 
Carry, 81-83 
CAS, 289-290 
CAS2, 289-290 
CCR, see Condition code register 
CEA, 166, 168 
Central processing unit (CPU), 1 

address space, 268 
space function code, 262 

CHK, 249, 289 
CHK2, 289 
CLR, 109-110 
CMP, 210, 214 
CMP2, 289 
CMPA, 214, 216-217 
CMPI, 214, 292 
CMPM, 214, 216 
Code, 36 
Comments, 97 
Compatibility, 36 
Compiler, 56 
Concurrency, 28 
Condition code register (CCR), 27, 70, 73, 

81, 89-90, 98 
Context, 145-146 
Coprocessor, 28 

code,282 
command languages, 282 
command register, 282 
commands, 285 
emulation, 283 
hardware communication, 280-281 
nonstandard, 284 
on the MC68000, 283 
on the MC68010, 283 
software communication, 281 
support,280 

cpBcc, 285 
cpDBcc, 285 
cpGEN, 282, 285 
cpRESTORE, 285 
cpSAVE, 285 
cpScc, 285 
cp TRAPcc, 285 
CPU, see Central processing unit 

Data 
size codes, 94 
size-code, 79 
size letter, 66 
structures, 109 
fetch, 26 

DBcc, 209, 217-222 
DC, see Define constant 
DEA, 166, 168 
Decimal, 7 
Decompilers, 60 
Define constant (DC), 120-122, 161 
Define storage (DS), 120-122, 161 
Destination function code register (DFC), 

262 
DFC, see Destination function code register 
DIP, see Dual inline package 



Directives 
DC, 120-122 
OS, 120-122 
ORG, 119-122 

Direct memory access (OMA), 34, 36 
Disassemblers, 60 
Division, 153-155 
DNS, 153, 291 
DNSL, 291 
DNU, 153,291 
DNUL,291 
DMA, see Direct memory access 
DMAC, 36 
DS, see Define storage 
Dual inline package (DIP), 51 
Dynamic bus sizing, 266 

EA, see Effective address 
EBCDIC, 276, 291 
EDSAC,53 
Effective address (EA), 70, 108, 147, 166 
Emulation, 65, 252 
EOR, 15, 176, 182 
EORI, 181, 184 
Exception vector table, 249-250, 259 
Exceptions, 248 
Execute cycle, 27 
EXG, 233-235 
EXT,224,288 
EXTB.L, 288 

FC, see Function control 
FIFO, see first in first out 
firmware, 38 
first in first out (FIFO), 138 
Hag, 70 

C, 81-83, 89 
carry, 73 
CCR, 81, 89 
extend, 73 
N, 89 
negative, 73 
overflow, 73 
SS,88 
v, 81-83, 89 
X,82,89 
Z,89 
zero, 73 

Hip-flop, 19 
Floating-point coprocessor (FPCP), 40 
FP, see Frame pointer 
FPCP, see Floating-point coprocessor 
Frame pointer (FP), 240 
Frames, 239-245 

Function code, 262-264 
Function control (FC), 34, 88 

Gates, 16-18 

Index 351 

HCMOS, see High-density complementary 
metal oxide semiconductor 

Hexadecimal, 13 
High-density complementary metal oxide 

semiconductor (HCMOS), 41 
Housekeeping, 135 

1/0, see Input/Output 
Index, 73 
Indivisible, 212 
Information theory, 3 
Input/Output (1/0), 21 
Instruction(s), 91-93 
decoder, 61 
decoding, 26 
fetch, 25 
formats, 92-94 
MC68020 additions, 288-294 
MC68020 extensions, 288-294 
syntax, 93 
unimplemented, 283 

Interrupt 
mask, 87 
priority levels, 71,87 

Inverter, 16 

JMP, 160-161 
JSR, 160, 239 

K,6 

Label, 98-106, 118 
Language(s) 

assembly, 58 
machine, 56 
high-level, 56 

Last in first out (LIFO), 89, 138 
LEA, 161 
Least significant bit (LSB), 8, 74 
LIFO, see Last in first out 
LINK, 233, 237-245, 288 
Logical operators, 14-16 
Longword, 8-9, 74 
Loop counter, 218, 222 
Loop mode, 264-265 
LSB, see Least significant bit 
LSL, 187-194 
LSR, 187-194 



352 Index 

M6800, 235 
Machine language, 56 
MACSS, see Motorola's advanced computer . 

system on silicon 
Mass memory, 34 
Master bit, 285 
MC6800, 48, 53 
MC68008,22,40,49, 62, 71 
MC68012,40,49,62,265 
MC68851, 281 
MC68881,40,266,281 
MEA, 166, 168 
Memory, 21 

linear, 32-23 
model, 62-66 
segmentation, 32-23 
size, 31 
speed, 31 

Memory management unit (MMU), 34 
Memory-mapped VO, 235 
Metal oxide semiconductors (MOS), 41 
Microcode, 53, 58 
Microprocessing unit (MPU), 1-2 
Microprogram, 25, 54 
Microsequencei; 54 
Million instructions per second (MIPS), 27 
MIPS, see Million instructions per second 
MMU, see Memory management unit 
Mnemonic, 58 
Mode(s) 

l's complement, 11 
2's complement, 11, 79 
addressing, see Addressing mode(s) 
master, 287 
supervisor, 34, 88, 285, 287 
trace, 73, 88 
unsigned, 11 
user, 34, 88, 285, 287 

Monitor calls, 251 
MOS, see Metal oxide semiconductors 
Most significant bit (MSB), 8, 74 
Motorola's advanced computer system on 

silicon (MACSS), 47-49 
MOVE, 98 

from CCR, 24 7 
from SR, 247 
to SR, 247 

MOVE.B, 78, 94 
MOVE.L, 76 
MOVE.W, 77 
MOVEA, 126 
MOVEC,259,261,271,283,293 
MOVEM, 136-138 

MOVEP, 233, 235-237 
MOVEQ, 114 
MOVES, 261, 283 
MPU, see Microprocessing unit 
MSB, see Most significant bit 
MULS, 151 
Multi-precision, 225-229 
Multiplexing, 22 
Multiplication, 151-152 

multi-precision, 228 
Multiprocessing, 29 
Multitasking, 31 
MULU, 151 

NANO, 15 
Nanocode, 54, 58 
Nanosecond, 20 
NBCD, 230, 232, 291 
NEG, 222-223 
NEGX, 226 
Nesting, 89, 146 
Nibble, 8-9 
NOP, 172 
NOT, 14, 173-174 

Octal, 13 
Op code, 93 
Operand, 93 

destination, 94 
source, 94 

Operating system (OS), 31, 37-38 
OR, 14, 176, 179 
ORG, 119, 160 
ORI, 181 
OS, see Operating system 
Outer displacement, 277 
Overflow, 82-83 
Overlays, 31 

PACK, 291 
Package, 36 
Page(s), 34, 253 

fault, 34 
Parity, 193 
PC, see Program counter 
PEA, 161 
Pinouts, 51-52 
Pins, number of, 51 
Pipelining, 28 
Portability, 36 
Prefetch, 28 
Privilege, 88, 245-248, 261 
Processor state word (PSW), 70 



Program(s) 
position independent, 158 
relocatable, 158 
security, 60 
self-modifying, 165 

Program counter (PC), 25, 70-71, 100, 158 
Programming 

levels, 55-61 
structured, 211, 219 

Pseudo-op codes, 119 
PSW, see Processor state word 

RAM, see Random access memory 
Random access memory (RAM), 21, 29 

disk, 35 
volatility, 34 

Random logic, 53 
Range, 96 
REA, 166 
Read cycle, 22 
Read-modify-write, 212 
Register(s), 29 

ACR, 271 
address, 70-75, 83-84 
arithmetic, 79 
CAAR, 271 
cache, 271 
data, 70-75 
destination, 77 
DFC, 262 
index, 149 
model, 68-75 
number, 51 
range, 11-12, 79-81 
segmentation, 32 
SFC, 262 
size-codes, 76 
source, 77 
status, 84, 87 
symmetry, 74 
type, 51 
width, 22 

RESET, 286 
Resource, 212 
ROL, 200 
ROM, 21 
ROR, 200 
RORG, 160-161 
Rotates, 200-204 
ROXL, 201 
ROXR, 201 
RTE,249,256 
RTM,263 

RTR, 146 
RTS, 143,239 

.S modifier, 194 
SBCD, 230, 233, 291 
SCALE, 276 
Sec, 208-211 
Semaphores,29,212 
Service calls, 251 

Index 353 

SFC, see Source function code register 
Shift count, 188 
Shifts 

arithmetic, 156-157, 194-197 
logical, 187-194 

Sign-bit, 12, 79 
extension, 84-86 

Software engineering, 38 
Source function code register (SFC), 262 
SP, see Stack pointer 
SR, see Status register 
SSP, see Supervisor stack pointer 
Stack(s), 70, 89; 138-141 

popping, 138 
pulling, 138 
pushing, 138 
user, 246 

Stack pointer (SP), 70-71, 89, 140 
supervisor, 146 
user, 73 

Status register (SR), 70, 73, 84, 185, 247 
STOP, 286 
String manipulation, 130 
SUB, 115 
SUBA, 128, 216 
SUBI, 115 
SUBQ, 115 
Subroutine, 141-145 
SUBX, 226 
Supervisor data space, 263, 268 
Supervisor program space, 263, 268 
Supervisor stack pointer (SSP), 146 
SWAP, 153, 203, 233 
Swapping, 31, 255 
System(s) 

byte, 84 
clock, 20 
pointer, 89 
software, 37 
stacks, 89 

TAS, 212-214, 28Q 
Trace bits, 278-280 

I 



\ 

354 Index 

Tracing, 278-280 
TRAP, 246, 249 

overflow, 154 
zero divide, 154 

TRAPcc, 292 
Traps, 88 
TRAP\!, 154, 249 
TST, 131, 292 
Turing, Alan M., 14 

UNLK, 233, 237-245 
UNPK,291 
User data space, 263, 268 
User program space, 263, 268 

User stack pointer, 73 
USP, see User stack pointer 

VBR, see Vector base register 
Vector base register (VBR), 258-261 
Very large-scale integration (VLSI), 40-41 
Virtual machine, 252, 256-258 
Virtual memory (VM), 34-35, 253-256 
VLSI, see Very large-scale integration 
VM, see Virtual memory 

Vllilkes, Maurice, 53 
Word, 8-9, 74 
Write cycle, 22 



MORE 
FROM 
SAMS 

D Macintosh™ Programming 
Techniques - Microsoft® BASIC 2.0 
An intermediate/advanced level book on programming 
techniques in Microsoft BASIC. Allows programmers to 
access the utilities in Macintosh's ROM tool kit. 
Contains many sample programs with emphasis on 
graphics on the .Macintosh, file access, creating and 
using windows, and learning to create custom pull
down menus. David C. Willen. 
ISBN Q.672-22411-9 ......................... $Z!.95 

D Al Tech.niques and Languages 
A hands-on introduction to the hottest topic in 
microcomputers-artificial intelligence. Summarizes 
three languages commonly used for Al programming: 
Logo, Lisp, and Prolog. Several programs are written in 
easy-to-learn Logo for the Macintosh. Many of these Al 
programs appear in an appendix in Lisp form for other 
systems. Prolog-the most common world-wide Al 
language-is also explained. Logo listings are 
annotated according to the purpose of the code and 
the relationship of the Al concepts being discussed. 
Dan Shafer. 
ISBN Q.672-22447-X ......................... $24.95 

D C Programming Techniques for the 
Macintosh 
This intermediate level programming book provides a 
thorough understanding of the C programming 
language as it is uniquely designed for the Macintosh. 
Allows you to access over 500 ROM tool kit routines, 
and shows you how to use the routines to develop a 
programming application in C. Eyes and Medneiks. 
ISBN Q.672-22461-5 ......................... $18.95 

D MacPascal Programming Techniques 
An excellent book for beginning and Intermediate 
Pascal programmers. Guides you in using the 
innovative Pascal language developed by Think 
Technologies for the Macintosh.. Discusses in detail 
how to access the ROM tool kit, and how to create 
applications and programs in Pascal. 
Cassidy and Steinberg. 
ISBN Q.672-22440-2 ....................... · .. $15.95 

D Macintosh User's Guide 
The introductory section of this complete user's guide 
contains a comparison with 5 other best-selling micros. 
What follows is an extremely well-written, well· 
illustrated, and attractively presented explanation of 
fundamental and advanced applications of the 
Macintosh. You'll want it right next to your Mac. 
Gordon McComb. 
ISBN Q.672-22328-7 ......................... $16.95 

D Inside the Amiga™ 
This excellent guide for Commodore's new 
6800().based machine emphasizes both the internal 
architecture and programming capabilities of this state
of-the-art graphics computer. Many of the programming 
features are highlighted with C examples. 
The Waite Group. 
ISBN Q.672-22468-2 ......................... $19.95 

D Microcomputer Projects with the 68000 
A comprehensive guide to the construction of a 
6800().based microcomputer and detailed description of 
Motorola® 's new chip. Learn about the chip's speed 
and ability to address large amounts of memory, 
assembly language programming, Tiny C, as well as 
interfacing applications. William Barden. 
ISBN Q.672-22458-5 ......................... $21.95 

D 16-Bit Microprocessors 
You'll look far and wide to find the comparison 
information on the six 16-bit CPUs contained in this 
book. Full textual coverage and benchmark 
comparisons are presented for the 8086, Z8000 family, 
LSI 11, 9900, 68000, and the NS16000 family. 
Titus, Titus, Baldwin, Hubin and Scanlon. 
ISBN Q.672-21805-4 ......................... $15.95 

D Printer Connections Bible 
At last! A book that teaches non-technical people how 
to connect a computer to a printer. Covers major 
computer/printer combinations, supplies detailed 
diagrams of required cables, DIP-switching settings, etc. 
The book is graphically oriented with diagrams 
illustrating numerous printer/computer combinations. 
House and Marble. 
ISBN Q.672-22406-2 ......................... $16.95 

D Modem Connections Bible 
Put what where? This comprehensive volume 
describes modems and how they work. Detailed 
diagrams explain how to hook up major brands of 
microcomputers. Find out what happens with the 
RS-232C interface. A must for microcomputer users 
and technicians. Curtis and Majhor. 
ISBN Q.672-22446-X ......................... $16.95 

D Computer Dictionary (4th Edition) 
Contains over 12,000 entries with 1,000 new terms, 
most of which pertain to robotics, artificial intelligence, 
and factory automation. Includes definitions, acronyms, 
abbreviations, and extensive cross-referencing. A must 
for teachers, scientists, computer personnel, engineers, 
students, and people in business. Charles J. Sippi. 
ISBN Q.672-22205-X ......................... $24.95 

I 



D The 68000: Principles and Programming 
.The Motorola 68000 is the first 16-bit microprocessor to 
have a 32-bit internal architecture. Increasing interest in 
16-bit chips makes an understanding of this CPU 
essential for microcomputer professionals and 
hobbyists alike. Subjects covered include Motorola's 
cross-macro assembler, 68000 instruction set, pinouts, 
and interfacing. An excellent treatment of an important 
subject. Leo J. Scanlon. 
ISBN Q..672-21853-4 ......................... $16.95 

D Mastering Serial Communications 
This intermediate/advanced book is written for 
technicians and programmers interested in 
asynchronous serial communications. Part One 
explains the history and technical details of 
asynchronous communications, while Part Two 
addresses the specifics of the technical programmer 
with an emphasis on popular UARTs and pseudo
assembly language. Joe Campbell. 
ISBN Q..672-22450-X ......................... $21.95 

D .6801, 68701, and 6803 Microcomputer 
Programming and Interfacing 
This book will provide you with a detailed presentation 
of the 6801 single-chip microcomputer and its various 
versions, the 68701 and 6803. 110 configurations, 
operating modes, ROM (EPROM) timer, serial 
communications interface, and digital-to-analog 
converters are discussed. Review questions and 
answers are provided at the end of each chapter. 
Includes three appendices for easy reference. 
Andrew C. Staugaard, Jr. 
ISBN Q..672-21726-0 ......................... $14.95 

D The Local Area Network Book 
Defines and discusses localized computer networks as 
a versatile means of communication. You'll learn how 
networks developed and what local networks can do; 
what's necessary in components, techniques, 
standards, and protocols; how some LAN products 
work and how real LANs operate; and how to plan a 
network from scratch. E. G. Brooner. 
ISBN Q..672-22254-X .......................... $7.95 

Look for these Sams Books at your local bookstore. 

To order direct, call 800-428-SAMS or fill out the form below . ............................................................................................................................................................................................................................................................................................................................................................................ 

\ 

Please send me the books whose titles and numbers I have listed below. 

Enclosed is a check or money order for$ ____ _ 
(plus $2.00 postage and handling). · 

Charge my: D VISA D MasterCard 

Account No. Expiration Date ____ _ 

Name (please print), _____________ _ 

Address---------------

City------------------
State/Zip _______________ _ 

Signature. _______________ _ 
(required for credit card purchases) 

Mail to: Howard W. Sams & Co., Inc. 

DC026 

Dept. DM 
4300 West 62nd Street 
Indianapolis, IN 46268 



CALLM Call Module lt<dB>. <cea> unsized Moc.ule ::itate -> ::itack trame 
< cea > -> Module State 

Returns: 
.. 

RID Return/Deallocate #<d16> disp sign ext 32 (SP) + ---> PC; SP + disp ---> SP 
RTR Return/Restore CCR no operand unsized (SP) + ---> CCR; (SP) + -> PC 
RTS .. Return from Subroutine no operand unsized (SP)+---> PC 
RTM Return from Module Rn unsized Stack Frame ---> Module State 

Module Data ---> (Rn) 

() FLIP THIS END UP TO CONTINUE () 



Privileged: 
ANDI-SR* 
EORl--+SR* 

MOVE-SR** 
MOVE-SR* 
MOVE-USP* 
MOVEC" "* 
MOVES""* 
om-SR* 
RESET* 
RTE* 

AND Immediate SR 
EORI Status Reg. 

FROM SR 
Move TO SR 
Move USP 
Move Control Reg 
Move Address Space 
ORI Status Reg. 
Reset External Dev. 
Return from Exception 

SYSTEMS CONTROL OPERATIONS 

#<dl6>,SR 
#<d16>,SR 

SR,<adea> 
<dea>,SR 
USP,An or An, USP 
Rc,Rn or Rn,Rc 
Rn,DFC<amea> or SFC<amea>,Rn 
#<dl6>,SR 
no operand 
no operand 

w 
w 

W (** for 68010 only) 
W (* all models) 
L 
L 
L,W,B 
w 
unsized 
unsized 

IF S = 1 Srce A SR --+ SR ELSE TRAP 
IF S = 1 Srce <exclusive OR> SR -+ SR 
ELSE TRAP 

S = 1 SR - Dest ELSE TRAP 
IF S = 1 Srce--+ SR ELSE TRAP 
IF S = 1 Srce --+ Dest ELSE TRAP 
IF S = 1 Srce --+ Dest ELSE TRAP 
IF S = 1 Srce --+ Dest ELSE TRAP 
IF S = 1 Srce <OR> SR--+ SR ELSE TRAP 
IF S = 1 assert RESET line ELSE TRAP 
IFS= 1 (SP)+ -+SR; (SP)+-> PC 



ROIJROR Rotate Left/Right Dm,Dn or #<d3>,Dn L,W,B (Dm mode 64) Dest rotated <count> times ___,, Dest 
ROIJROR Rotate Left/Right <amea> W (shift count= 1) Dest rotated once ___,, Dest 

ROXL/ROXR Rotate with Extend Dm,Dn or #<d3>,Dn L,W,B (Dm mod 64) Dest rotated <count> times ___,, Dest 
ROXL/ROXR Rotate with Extend <amea> W (shift count= 1) Dest rotated once ___,, Dest 

BIT MANIPULATION 

BCHG Bit Test/Change Dm,Dn or #<d5>,Dn L (Dm mod32) -Dest[bit] ___,, Z flag 
-Dest[bit] ___,, Dest[bit] 

BCHG Dm, <amea> or #<d3>, <amea> B (Dmmod8) same 

BCLR Bit Test/Clear Dm,Dn or #<d5>,Dn L (Dm mod32) -Dest[bit] ___,, Z flag;O ___,, Dest[bit] 
BCLR Dm,<amea> or #<d3>,<amea> B (Dmmod8) same 

BSET Bit Test/Set Dm,Dn or #<d5>,~n L (Dm mod32) -Dest[bit] ___,, Z flag;l ___,, Dest[bit] 
BSET Dm, <amea> or #<d3>, <amea> B (Dmmod8) same 

BTST Bit Test Dm,Dn or #<d5>,Dn L (Dm mod32) -Dest[bit] ___,, Z flag 
Dm,<mea> or #<d3>,<mea> B (Dm mod8) same 

BINARY CODED DECIMAL OPERATIONS 

ABCD Add Decimal Dm,Dn or - (Am), - (An) B Src(lO) + Dest(lO) + X --+ Dest(lO) 

NBCD Negate Decimal <adea> B 0 - Dest(lO) - X --+ Dest(lO) 

SBCD Subtract Decimal Dm,Dn or - (Am), - (An) B Src(lO) - Dest(lO) - X --+ Dest(lO) .. 
PACK Pack BCD - (Am), - (An),#<d16> unsized Src[0:4],[8:11] + #<d16> --+ Dest.B 

Dm,Dn,#<dl6> .. 
UNPK Unpack BCD - (Am), - (An),#<dl6> unsized SrceB. --+ Dest.W[0:4],[8:11] + dl6 

Dm,Dn,#<dl6> 

PROGRAM CONTROL OPERATIONS 

Conditional: 

Bee Branch cc Condition <label> 16 bit <lisp IF cc true PC + disp ___,, PC 
Bcc.S Branch cc (Short) <label> 8 bit disp same 

DBcc Dec. Branch Cond. Dm,<label> 16 bit disp IF cc false THEN Dm - 1 ___,, Dm 
IF Dm <> -1 THEN PC + disp ___,, PC 
ELSE PC + 2 ___,, PC (next instruction) 

Sec Set Conditionally <adea> B IF cc true $FF ___,, Dest 
ELSE $00 ___,, Dest 

Unconditional: 

BRA Branch Always <label> 8 or 16 bit disp PC + disp ___,, PC 
BSR Branch Subroutine <label> 8 or 16 bit disp PC ___,, - (SP); PC + disp ___,, PC 

JMP Jump Always <cea> unsized Dest___,, PC 
JSR Jump Subroutine <cea> unsized PC ___,, - (SP); Dest___,, PC 



J:.L.:::>r::. J['\/"\r 

RTE"* { 68010 variation} no operand unsized IF S = 1 (SP)+ --> SR; {SP)+ --> PC 
IF {SP)+ = long then full restore 
ELSE TRAP 

STOP* Load SR/Stop #<d16> unsized IF S=l d16....,. SR; PC+ 4--+ PC; 
pause until exception event. 
ELSE TRAP 

TRAP Generators: 
CHK Check Reg Bounds <dea>,Dn w IF Dn < 0 or Dn >Dest THEN TRAP 
CHK2AA Illegal <cea>,Rn L,W,B 
IUEGAL Illegal no operand unsized PC -+ - (SSP); SR -+ - {SSP); 

Exception Vector #4 -+ PC 
TRAP Trap #<d4> unsized PC -+ - {SSP); SR -+ - {SSP); 

Vector #d4-+ PC 
TRAPV A A 

Trap on Overflow no operand unsized IF V = 1 THEN TRAP 
TRAP cc Trap on cc #<d32> W,L IF cc THEN TRAP 

Condition Code Register: 
ANDI-> CCR AND Immediate CCR #<d8>,CCR B d8 I\ CCR --> CCR 
EORl....,.CCR EORI Cond. Codes #<d8>,CCR B d8 <exclusive OR> CCR--> CCR 
MOVE-CCR Move FROM CCR CCR,<adea> W {lower B only) CCR-+ Dest 
MOVE-> CCR Move TO CCR <dea>,CCR W {lower B only) Srce....,. CCR 
MOVE+-SR** FROM SR SR,<adea> w SR-.> Dest 
ORI-> CCR ORI Cond. Code #<d8>,CCR B d8 <OR> CCR--> CCR 

MISCELLANEOUS 

NOP AA No operation no operand unsized PC+2-+PC 
BKPT Breakpoint #<d3> unsized 



CMPA Compare Address <ea>,An L,W Dest - Src; set CCR 
CMPI Compare Immediate #<data>, <adea> L,W,B Dest - data; set CCR 
CMPM Compare Memory (Am)+ ,(An)+ L,W,B Dest - Src; set CCR 
DIVSIDIVU Divide Sign/Unsign. <dea>,Dn w Dest 32/Src 16 -+ Dest 16r: 16q 
DIVS.LI 
DIVU.L •• <dea>,Dq L Dest 32/Src 32 -+ Dest 32q 
DIVS.LI 
DIVU.L •• <dea>,Dr:Dq L Dest 64/Src 32 -+ Dest 32r:32q 
DIVSL.LI 
DIVUL.L •• <dea>,Dr:Dq L Dest 32/Src 32 -+ Dest 32r:32q 
EXT .. Extend sign Dn L,W Dn,W or L/sign-ext-+ Dn.L or W 
EXTB Extend sign Dn L Dn.B/sign-ext -+ Dn.L 
MULS.MULU Multiply Sign/Unsign <dea>,Dn w Src 16 x Dest 16-+ Dest 32 
MULS.LI 
MULU.L •• <dea>,DI L Src 32 x Dest 32 -+ Dest 32 
MULS.LI •• 
MULU.L <dea>,Dl:Dh L Src 32 x Dest 32 -+ Dest 32:32 
NEG Negate <adea> L,W.B 0 - Dest -+ Dest 
NEGX Negate Ext. <adea> L,W.B 0 - Dest - X -+ Dest 
SUB Subtract Binary <ea> ,Dn or Dn, <amea> L,W,B Dest - Src -+ Dest 
SUBA Subtract Address <ea>,An L,W Dest - Src - Dest 
SUBI Subtract Immediate #<data>, <adea> L,W,B Dest - data -+ Dest 
SUBQ Subtract Quick #<d3>, <aea> L,W,{B} Dest - d3 -+ Dest 
SUBX Subtract with Extend Dm,Dn or - (Am), - (An) L,W,B Dest - Src - X -+ Dest 
TAS Test and Set operand <adea> B • Test Dest -+ CCR; 1 -+ Dest[bit 7] 
CAS •• Compare & Swap Dc,Du,<amea> L,W,B IF Dest = De Du-+ Dest ELSE Dest-+ De 
CAs2·· Compare & Swap 2 Dcl:Dc2,Dul:Du2, (Rnl):(Rn2) L,W,B IF (Rnl) =Del & (Rn2) = Dc2 Dul-+(Rnl) 

and Du2-+(Rn2) ELSE (Rnl)-+Dcl and 
(Rn2)-+Dc2 

TST Test operand <adea> L,W,B Test Dest -+ CCR 

LOGICAL OPERATIONS 

AND AND Logical <dea>,Dn or Dn, <amea> L,W,B Src A Dest --> Dest 
ANDI AND Immediate #<data>, <adea> L,W,B data A Dest --> Dest 
EOR Exclusive OR Dn,<adea> L,W,B Src <exclusive OR> Dest--> Dest 
EORI Exclusive OR lmmed. #<data>,<adea> L,W,B data <exclusive OR> Dest --> Dest 
NOT Logical Complement <adea> L,W,B -Dest-> Dest 
OR Inclusive OR Logical <dea>,Dn or Dn, <amea> L,W,B Src <OR> Dest--> Dest 
ORI Inclusive OR Immed. #<data>, <adea> L,W,B data <OR> Dest--> Dest 

SHIFTS AND ROTATES 

ASL/ASH Arithmetic Shift Dm,Dn or #<d3>,Dn L,W,B (Dm mod 64) Dest Arith shift <count> ...... Dest 
ASL/ASH Arithmetic Shift <amea> W (shift count= 1) Dest Arith shift by 1 --> Dest 
LSIJLSR Logical Shift Dm,Dn or #<d3>,Dn L,W,B (Dm mod 64) Dest Logic shift <count> --> Dest 
LSIJLSR Logical Shift <amea> W (shift count= 1) Dest Logic shift by 1 --> Dest 



Sams/Waite Prime rs 

68000, 68010 
and 68020 Primer 

Reference Card 

Stan Kelly-Bootle 

Bob Fowler 

Howard W. Sams & Co., Inc. 
A Subsidiary of Macmillan, Inc. 

4300 West 62nd Street, Indianapolis, Indiana 46268 U.S.A. 



Mnemonic 

EXG 
LEA 
LINK 
MOVE 
MOVEA 
MOVEM 

MOVEP 
MOVEQ 
PEA 
SWAP 
UNLK 

ADD 
ADDA 
ADDI 
ADDQ 
ADDX 
CLR 
CMP 

Key to symbols: 

{B} 
#<data> 
#<dn> 

Re 
Dh:Dl 
Dr:Dq 
De: Du 
USP 
SP 
SSP 

Description 
Exchange Registers 

Load Effective Add 

Link/Allocate 

Move data 
Move Address 
Move Multi Reg. 

Move Periph. Data 
Move Quick 

Push Effective Addr. 

Swap Register Halves 

Unlink 

Add Binary 
Add Address 
Add Immediate 
Add Quick 
Add Extended 

Clear Operand 

Compare 

M68000 Instructions 

Byte data size not allowed for An operands 
Up to 32 bits of Immediate data 
n bits of Immediate data 
Privileged Instruction 
MC68010/20 Privileged Instruction all models 
Privileged Instruction MC68010/20/30 only 
Control Register (SFC,DFC,USP or VBR) 
High/low pair of Data Registers 
Remainder/quotient pair of Data Registers 
Compare/update pair of Data Registers 
User Stack Pointer, A7 
Stack Pointer (A7) 
Supervisor Stack Pointer (A 7') 

DATA MOVEMENT 

Srce 
Dest 
<> 
A 

-> -
[m:n] 

Legal Modes Data Size( s) 
Rm,Rn L 

<cea>,An L 

An,#<d16> unsized 

<ea>,<adea> L,W,{B} 
<ea>,An L,W 
<reg.list>, <acea> + L,W (+plus - (An)) 
<cea> +,<reg.list> L,W ( + plus + (An)) 
Dn,d(An) or d(An),Dn L,W 
#<d8>,Dn L (sign ext 32) 

<cea> L 

Dn w 
An unsized 

INTEGER ARITHMETIC 

<ea>,Dn or Dn, <amea> L,W,{B} 
<ea>,An L,W 
#<data>, <adea> L,W,B 
#<d3>,<aea> L,W,{B} 
Dm,Dn or - (Am), - (An) L,W.B 

<adea> L,W,B 

<ea>,Dn L,W,{B} 

Source operand 
Destination Operand 
Not equal 
Logical AND 
Logical NOT 
Replaces 
Interchanges with 

Range of bits 

Function 
Rm-Rn 

<ea>-> An 

An -> - (SP); SP-> An; SP + dl6-> SP 

Src-> Dest 
Src-> Dest 
Reg. list -> Dest 
Src-> Reg.list 
Src-> Dest 
d8-> Dest 

<ea> -> - (SP) 

Dn[31:16] - Dn[15:0] 
An -> SP; (SP)+ -> An 

Src + Dest -> Dest 
Src + Dest -> Dest 
data + Dest -> Dest 
d3 + Dest -> Dest 
Src + Dest + X -> Dest 

0-> Dest 

Dest - Src; set CC:R 



M68000 Addressing Mode Legends 

<ea> = Any Effective Address 
<rea> = Register Effective Address 
<dea> = Data Effective Address 
<mea> Memory Effective Address 
<cea> Control Effective Address 
<aea> Alterable Effective Address (data or memory) 
<adea> Alterable Data Effective Address 
<amea> = Alterable Memory Effective Address 
<acea> = Alterable Control Effective Address 

Mode 
, 
ea rea dea mea cea aea a de a amea ace a 

Dn * * * * * 
An * * * 
(An) * * * * * * * * 
(An)+ * * * * * * 
-(An) * * * * * * 
d(An) * * * * * * * * 
d(An,Xi) * * * * * * * * 
Abs.W * * * * * * * * 
Abs.L * * * * * * * * 
d(PC) * * * * 
d(PC,Xi) * * * * 
Im med * * * 
bd(An,Xi) * * * * * * * * 68020 
bd(PC,Xi) * * * * 68020 
[bd,An],)G,od * * * * * * * * 68020 
[bd,An,Xi],od * * * * * * * * 68020 
[bd,PC],Xi,od * * * * 68020 
[bd,PC,Xi],od * * * * 68020 



HOWARD W. SAMS &. COMPANY 

Advanced C Primer + + 
Stephen Prata, The Waite Grout> 
Programmers, students, managers, and hackers 
will learn to master the C programming 
language. Anyone who knows the basics of C 
will learn practical C tips never before published. 
ISBN: 0-672-22486-0, $23.95 

C Primer Plus, Revised Edition 
Waite, Prata, and Martin, The Waite (}raup 

The perfect tutorial for beginning C programmers 
and students, this book includes key additions 
about the C language and object-oriented 
programming using C + + . 
ISBN: 0-672-22582-4, $23. 95 

Microsoft® C on the IBM® PC 
Robert La/ore, The Waite (}raup 
A tutorial for the beginning programmer with 
enough information to write useful and 
marketable programs for the IBM PC family, 
featuring hands-on interaction with the C 
compiler and the PC. 
ISBN: 0-672-22515-8, $24.95 

Inside XENIX® 
Christopher L. Morgan, The Waite (}raup 

Through easily-read-and-understood XENIX 
references and tutorials, chis comprehensive text 
examines in detail its unique internal structure 
including its shells and utilities. 
ISBN: 0-672-22445-3, $21.95 

Advanced UNIX® -A Programmer's 
Guide 
Stephen Prata, The Waite (}raup 

An advanced guidebook beyond the basics of 
UNIX and with details of the system's key 
components and various programming 
mechanisms. It shows how to use simple and 
complex commands, including the Bourne Shell, 
shell scripts, loops, and system calls. 

_ISBN_:_ 0-672-22403-8, $2L95 

Tricks of the UNIX® Masters 
Russell G. Sage, The Waite (}raup 
This book contains the shoncuts, tips, tricks, 
and secrets programmers want, using a 
"cookbook" approach ranging from 110 functions 
and file operations to potting UNIX to a 
different computer. 
ISBN: 0-672-22449-6, $22.95 

UNIX® Primer Plus 
Waite, Martin, and Prata, The Waite (}raup 

Learn about the amazing UNIX operating system 
as this book presents UNIX in a clear, simple, 
and easy-co-understand style. It is fully illustrated 
and includes two summacy cards for quick 
reference. 
ISBN: 0-672-22028-8, $19.95 

UNIX® System V Primer, Revised Edition 
Waite, Martin, and Prata, The Waite (}raup 
This edition provides a comprehensive overview 
and introduction to the UNIX System V 
operating system for the beginner, including a 
new chapter on the extended electronic mail 
program and the use of the new shell layer 
manager. 
ISBN: 0-672-22570-0, $22.95 

UNIX® Communications 
Bryan Costales, The Waite (}raup 

This book will clarify the complexities of the 
UNIX communication facilities. It gathers the 
knowledge and techniques needed to use, 
administer, and program UNIX-co-UNIX 
communication and UNIX mail. 
ISBN: 0-672-22511-5, $26.95 

UNIX® System V Bible 
Prata and Martin, The Waite Graup 
This is a comprehensive reference for 
programmers working with the UNIX operating 
system documentation, covering intermediate to 
advanced level programming for professionals 
who have prior experience programming in C or 
using UNIX. 
ISBN: 0-672:22562-X, $24:95 

UNIX® Papers 
Edited by The Waite Graup 
Collection of learning tutorials, issue papers, and 
case histories chat provide insightful information 
on the UNIX operating system and UNIX 
business market, revealing the more hidden and 
obscure truths about UNIX. 
ISBN: 0-672-22578-6, $26.95 

Discovering MS-DOS® 
Kate O'Day, The Waite (}raup 
This comprehensive study of MS-DOS 
commands begins with information about 
operating systems then shows how to produce 
letters and documents; create, name, and 
manipulate files; use the keyboard and function 
keys to perform jobs faster; and direct, son, and 
find data quickly. 
ISBN: 0-672-22407-0, $15.95 

MS-DOS® Bible 
Steven Simrin, The Waite (}raup 

This book helps intermediate users explore this 
operating system's capabilities from system start· 
up to creating, editing, and managing files, 
handling data, and customizing the keyboard. It 
includes detailed coverage of the tree-structured 
directories and DOS filters. 
ISBN: 0-67'2-22408-9, $18.95 

MS-DOS® Developer's Guide 
Angenneyer and Jaeger, The Waite (}raup 
This is ·a guide for ptogrammers with a working 
knowledge of 8088 ALC, who wane to learn 
tricks for getting their software running in the 
MS-DOS environment. Included are assembly 
coding tips, explanations, MS-DOS versions, 
and higher-level language debuggers and aids. 
ISBN: 0-672-22409-7, $24.95 

Understanding MS-DOS® 
O'Day and Angenneyer, The Waite (}raup 

This introduction to the use and operation of the 
MS-DOS operating system includes fundamentals 
and advanced features of the operating system. 
ISBN: 0-672-27067'.6_, ~16. 95 

HOWARD W. SAMS &. COMPANY 

Product Number Quantity Price 

Subtotal 

All states please add sales tax 

Standard shipping & handling 
WC 336 

Total 

Total 

$2.50 

Title/Company _________________ _ 

Address---------------------

Stace/ZiP--------------------

Signature (required) _______________ _ 

0 Check 0 Money Order 0 MC 0 VISA 0 AE 
Account # Exp. Dace 

I I I I I I I I I I I I I I I II I I I I 
To order by phone call 800-428-SAMS. 
Offer good in U.S.A. only. Prices and availabilicy subject co change without 
notice. Full payment must accompany your order. 



Tricks of the MS-DOS® Masters 
AngermeyeT, JaegeT, Fahringer, and ShafeT, The 
Waite CJToup 
This reference provides the personal user with 
advanced tips and tricks about the operating 
system, including advanced tips on using popular 
software packages such as dBASE Ill®, Lotus 
1·2·3®, and WordStar®. 
ISBN: 0-672-22525-5, $24.95 

Soul of CP/M®: How to Use the Hidden 
Power of Your CP/M System 
Waite and Laf<we, The Waite CJToup 
Recommended for those who have read the 
CPIM Primer or who are otherwise familiar with 
CP/M's outer layer utilities. It teaches how to 
use and modify CP/M's internal features, 
including how to modify BIOS and use CP/M 
system calls in your own programs. 
ISBN: 0-672-22030-X, $19.95 

CP/M® Bible: The Authoritative 
Reference Guide to CP/M 
Waite and AngermeyeT, The Waite CJToup 
Already a classic, this highly detailed manual 
puts CP/M's commands and syntax at your 
fingertips. Instant one-stop access to all CP/M 
keywords, commands, utilities, and conventions 
are found in this easy-to-use format. 
ISBN: 0-672-22015-6, $19.95 

CP/M® Primer, Second Edition 
Waite and Murtha, The Waite CJToup 
This companion to the CP/M Bible is widely used 
by novices and advanced programmers. It 
includes the details of CP/M terminology, 
operation, capabilities, and internal structure, 
plus a convenient tear-out reference card with 
CP/M commands. 
ISBN: 0-672-22170-5, $16.95 

Desktop Publishing Bible 
The Waite cpoup 
A collection of essays by experts in their subject 
areas, these are the nuts and bolts of desktop 
publishing. Concentrating primarily on the 
technical aspects of the hardware and software, 
this book will be useful to anyone planning to 
buy a personal publishing system. 
ISBN: 0-672-22524-7, $22.95 

PC LAN Primer 
Kleeman, AndeTson, AngermeyeT, FisheT, 
McCoy, The Waite CJToup 
PC LAN Primer explores the Token Ring -
IBM's grand strategy to tie together !BM micros, 
minis, and mainframes with Local Area 
Networks providing the communication feature. 
ISBN: 0-672-22448-8, $22. 95 

68000, 68010, 68020 Primer 
Kelly-Bootle and Fowler, The Waite CJToup 
Beginning with an introduction to the 68000 
chips, this book is written to introduce novice or 
experienced programmers to the instruction set 
and addressing modes common to the 68000 
family. 
ISBN: 0-672-22405-4, $21.95 

Pascal Primer 
Waite and Fax, The Waite CJToup 
This primer will swiftly guide you through Pascal 
program structure, procedures, variables, 
decmon-making statements, and numeric 
functions. 
ISBN: 0-672-21793-7, $17.95 

Printer Connections Bible 
MaTble and House, The Waite CJToup 
This book contains all the information necessary 
to make the proper connections to get a printer 
printing. It focuses on the hardware side of 
connecting, particularly the main interface -
the cable itself. 
ISBN: 0-672-22406-2, $16.95 

Modem Connections Bible 
Curtis and Majluw, The Waite CJToup 
This book describes modems, how they work, 
and how to hook ten well-known modems to 
nine name-brand microcomputers. It also features 
a "Jump Table" and an overview of 
communications software, the RS-232c interface, 
and a section on troubleshooting. 
ISBN: 0-672-22446-1, $16.95 

Inside the Amiga T• With C 
John T. BeTry, The Waite CJToup 
This book is written for the experienced 
computer user who wants to put the powerful 
programming features of the Amiga to work 
using the C language. 
ISBN: 0-672-22468-2, $22.95 

Artificial Intelligence Programming on 
the Macintosh™ 
Dan Shafer, The Waite CJToup 
Those with a basic understanding of computers 
and programming will be fascinated by the 
possibilities of music generation, robotics, and 
problem-solving available on microcomputers, 
and this book will show you how. 
ISBN: 0-672-22447-X, $24.95 

BASIC Programming Primer, Second 
Edition 
Waite and PaTdee, The Waite CJToup 
A cornerstone of the Sams/Waite Primer series, 
this classic text contains a complete explanation 
of the fundamentals of the language, program 
control, and organization. 
ISBN: 0-672-22014·8, $17.95 

The Official Book for the Commodore 
128® Personal Computer 
Waite, La{OTe, and Volpe, The Waite GToup 

This book examines Commodore's powerful 
computer with its three different operating 
modes, details how to create graphics and 
animation, and how to use the 64 mode to run 
thousands of existing Commodore 64 programs. 
ISBN: 0-672-22456-9, $12.95 

These and other Sams books are 
available from your local 
bookstore, computer store, or 
electronics distributor. If there are 
books you are interested in that 
are unavailable in your area, order 
directly from Sams by calling toll
free 800-428-SAMS (in Alaska, 
Hawaii, or Indiana, call 
317-298-5699). 

PLACE 

STAMP 

HERE 

Howard W. Sams & Company 
Department OM 
P.O. Box 7092 
Indianapolis, IN 46206 



S~Nd.-----------------
Vbe lt/IHL <:;'~ 

68000, 68010, 
68020 Primer 
They're powerful. They're found in some of the most popular computers on the market 
today. They're the Motorola M68000 family of 16/ 32-bit microprocessors. And this is the 
book that'll tell you all about them. 

You'll acquire an understanding of 

• Microprocessor chips and how to untilize the 68000 processor to its fullest 

• Assembly language documentation and how to use various instructions and registers 

You'll learn to 

• Program in Assembly Language and gain a proficiency in assemblers and cross
assemblers 

• Know which addressing modes are legal with which instructions 

• Use microprocessor chips properly in multiuser systems 

Everything you need to know about the powerful family of M68000 microprocessor chips 
is here! Actual programming examples are presented throughout the book. And, there's 
a handy instruction card that you can tear out and keep near your computer for 
reference. Read this and learn how to get the most from your computer. 

Stan Kelly-Bootle has been computing since the pioneering of EDSAC I in the 
1950s. Born in Liverpool , he holds the world's first Post-Graduate Diploma in 
Numerica Analysis and Automatic Computing (now· known as Computer Science) 
from Cambridge University. Mr. Kelly-Bootle is Contributing Editor for UNIX Rev iew, 
Chairman of the bibl ical Specia l ist Group of the Association for Literary and 
Linguistic Computing, and author of various computer books. An avid musician , he 
has also written and recorded. seven LPs. 

Bob Fowler holds a B.S. in Mathematics and currently works as an independent 
software consultant. As a confirmed user-advocate in the Alpha Micro User' s Society 
(AMUS) since 1977, he has published dozens of technical articles in the society's na
tional and local newsletters. Mr. Fowler has experience with computers made by 
IBM®, Digital Equipment Corporation , Hewlett-Packard, and Alpha Micro Systems. 

Howard W. Sams & Co., Inc. 
A Subsidiary of Macmillan, Inc. 
4300 West 62nd Street, Indianapolis, IN 46268' USA 0 81262 22405 2 

TB317 


