

Scientific
Programming
with Macintosh Pascal

OTHER TITLES OF INTEREST FROM THE WILEY PRESS

WordStar® Without Tears (STG), Ashley & Fernandez
Pascal Applications for the Sciences (STG), Richard Crandall
Jazz® At Work, Burns & Venit
MacBASIC (STG), Fi.nkel & Brown
Macintosh™ Logo (STG), Haigh & Radford
Excel: A Power User's Guide, Hodgkins
Quick Calculus, 2nd Edition (STG), Kleppner & Ramsey
Statistics, 3rd Edition (STG), Koosis
Electronics, 2nd Edition (STG), Kybett
Macintosh™: A Concise Guide to Applications Software, Van Nouhuys

Wiley Press books can be used as premiums to promote products or
services, for training, or in mail-order catalogs. For information on
quantity discounts, please write to the Special Sales Department,
John Wiley & Sons, Inc.

Scientific
Programming
with Macintosh Pascal

Richard E. Crandall
Marianne M. Colgrove

A Wiley Press Book
John Wiley & Sons, Inc.
New York• Chichester• Brisbane• Toronto• Singapore

Publisher: Stephen Kippur
Editor: Theron Shreve
Managing Editor: Katherine Schowalter
Electronic Book Production Services: The Publisher's Network

Macintosh™ is a licensed trademark of Apple Computer Corporation.

Copyright© 1986 by John Wiley & Sons, Inc.

All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work beyond
that permitted by Section 107or108 of the 1976 United States
Copyright Act without the permission of the copyright
owner is unlawful. Requests for permission or further infor­
mation should be addressed to the Permissions Department,
John Wiley & Sons, Inc.

Library of Congress Cataloging-in-Publication Data

Crandall, Richard E., 1947-
Scientific programming with Macintosh PASCAL.

1. Macintosh (Computer)-Programming.
2. PASCAL (Computer program language)
3. Science-Data processing. I. Colgrove,
Marianne M. II. Title.
QA76.8.M3C73 1986 005.2'65 85-19083

ISBN 0-471-82176-4

Printed in the United States of America

86 87 10 9 8 7 6 5 4 3 2 1

Contents

Preface

Chapter 1

Chapter2

Chapter3

Introduction
Why Macintosh Pascal? 1
Selected Bibliography of Pascal Texts
and Reference Books 8

Programming Macintosh Devices
Description of Devices 9
The Screen 10
The Keyboard 16
TheMouse 17
The Sound Generator 18
The Printer 19
TheDisk 20
The Timers 22
Using Devices Efficiently 25

Numerical Programs
Sequences of Integers 45
Limits and Sums 51
Differential Calculus 56
Newton's Method 59
Integral Calculus 61
Complex Numbers, Vectors and Matrices 62
Linear Equations 67

vii

1

9

45

v

vi • Scientific Programming with Macintosh Pascal

Chapter4

Chapters

Chapter6

Chapter 7

Chapters

Chapter9

Appendix A

Index

Graphics and Animation
Real-valued Coordinates 98
Graphing of Functions 100
Graphic Solutions 103
Animation 104

Probability and Statistics
Random Integers 134
Random Reals 136
Probability 138
Statistics 140

Three-Dimensional Graphics
The Euler Angles 160
Three-Dimensional Graphs 162
Perspective 163

Dynamical Models
Space-Time Models 181
Parametric Space Curves 182
Animation 184

Serial 1/0 and External Devices
Basic Considerations for Serial 110 199
9600 Baud Terminal Emulator 200
Laboratory Serial Applications 201

Selected Scientific Applications
Fourier Analysis 221
Advanced Mathematical Methods 224
Classroom Programs 228
Testing of Theories 229
Deep Calculation 231

98

134

160

181

199

221

259

277

Preface
Scientific Programming with Macintosh Pascal is intended for Macintosh users

who are interested in using their machines to produce scientific results. By
results we mean not only calculations but graphics, sound, and general input/
output. To this end the book includes extensive example programs and exercises
to cover what we perceive are the most important basic aspects of scientific
programming. Where possible, we incorporate graphics and animation tech­
niques-certainly Macintosh specialties-to convey scientific principles.

Users who enjoy computer modeling will find the example programs of ·
special interest, chiefly because of the unique origin of those examples. The
programs and ideas found within grew out of experiences in the science class­
rooms of Reed College, where the use of Pascal in courses dates back to 1978. In
such settings emphasis is placed on ideas as opposed to programs, with the latter
used to support the learning and research. Accordingly, this book is not a
computer science book. It is a book of scientific ideas, and we have chosen tried
and true ideas which we know to be interesting to science students. There is no
better testing ground for examples and exercises than a class of sharp, motivated
beginning programmers. In many cases we modified older programs to take
advantage of what is best about the Macintosh, doing this in response to feedback
from teachers and students.

We are indebted to the many faculty and students who lent their fine hands
to the testing and modification of the programming ideas presented in the book.
Special acknowledgements are due to Richard Wood and Peter Shirley whose
advanced programs we have used in later chapters. Other contributors are Neil
Alexander, Zoe Mendell, Nie McPhee, Scott Gillespie, and Shep Doeleman. The
book strategy was markedly improved through discussions with Professor
Robert Reynolds who teaches some active, well-populated introductory Pascal
laboratories. We appreciate also the helpful encouragement and support from
our friends at THINK Technologies and Apple Computer. We could not have
done the project Without the inestimable clerical talents of Rebecca Kilgore.

Richard E. Crandall
Marianne M. Colgrove

Portland, Oregon
February 1986

vii

1 Introduction
THEME: This chapter provides an introduction to the philoso­
phy and format of Scientific Programming with Macintosh Pascal.
It discusses the prerequisites and reference materials recom­
mended for effective use of the book as well as the suggested
approach to learning scientific programming.

GOALS: You will be able to delve into practice programs and
exercises with an awareness of Macintosh Pascal's strengths and
weaknesses. Each chapter is summarized so those readers who
have specific programming projects in mind will be able to select
the appropriate chapters for study.

REFERENCE MATERIALS: Novice programmers and Mac­
intosh users will probably want to study an introductory Pascal
text, the Macintosh User Manual, and/or the Macintosh Pascal
User's Guide. See the end of this chapter for selected references.

Why Macintosh Pascal?
Pascal was developed by Niklaus Wirth in 1971 to fill the need for a simple-to­
learn, easily implemented programming language which could be used to teach
elementary programming concepts. Pascal, like other high-level languages, pro­
vides programmers, and those studying Pascal programming, with the tools to
communicate specific, un-ambiguous instructions to the computer. According to
Cooper & Clancy (Ohl Pascall, p. xvii), the two primary goals of Pascal were jand
are):

1. To provide a teaching language that would bring out concepts common to all
languages, while avoiding inconsistencies and unnecessary detail.

2. To define a truly standard language that would be cheap and easy to imple­
ment on any computer.

Judging by Pascal's current popularity, both in educational and research settings,
these objectives have been, for the most part, achieved.

1

2 • Scientific Programming with Macintosh Pascal

Macintosh Pascal, designed by THINK Technologies exclusively for the
Apple Macintosh, serves to enhance Pascal's fundamental ease of use and educa­
tional value. Much of the credit for this belongs to the Apple Macintosh itself: its
innovative devices, visual interface and general ease of use provide a base that is
consistent with Pascal's ideals. With the addition of Macintosh Pascal's inter­
pretive environment and strong error-checking and debugging features, the
result is an easy-to-use, high-level programming language with great educational
utility.

Macintosh Pascal should not, however, be reserved for the classroom setting
only. Its potential value as a tool for the sciences cannot be overlooked. Indeed,
many of the special features of the Macintosh and Macintosh Pascal that make it
a valuable teaching medium also make it a viable scientific tool. This book
demonstrates many scientific problems for which the speed of solution is not the
primary requirement: for example, a graphics display of a scientific model that is
to be drawn on the screen. This is especially true when factoring the time needed
to design and edit the required algorithms into a project's total development time.
After just a little experience with the self-checking Macintosh Pascal Edit win­
dow, one saves valuable time at refining and modifying the overall project. An
extreme example of these considerations is the spectacular ray-tracing demon­
stration by Peter Shirley, discussed in Chapter 9 as program Scene. Mr. Shirley
was a student of one of the authors (REC) at the time the program was written.
Though one must wait hours (literally) for the final graphics, it is a fact that
Shirley wrote the program in one or two days. When he ran the first tests, he
would simply do something else (besides programming) for the long waiting
period, coming back eventually to view the Macintosh screen. Thus the Macin­
tosh Pascal interpreter, although very slow in execution compared with com­
piled systems, did not take away an undue portion of his personal time. The
simple realization that his program was very fast in the writing lends support to
the proficiency of the Macintosh Pascal approach for many problems of science.

It is for users who can benefit from the advantages of the interpretive
environment that Scientific Programming with Macintosh Pascal was designed. The
dedicated learner who is willing to work through the sample programs and
exercises will not only emerge with a strong understanding of basic scientific
programming concepts, but should also be able to develop applications with
considerable practical utility. In addition, the serious reader should be able to
develop the problem-solving strategies that enable op.e to approach future pro­
gramming problems creatively and elegantly.

Before embarking on Scientific Programming, the reader should be familiar
with the Macintosh visual interface and basic operations such as cutting, pasting,
and text editing with mouse-oriented editors. If you have not previously used a
Macintosh, refer to the Macintosh owner's guide for details on basic techniques.
In addition, you should have a working knowledge of the fundamentals of the
Pascal language. This book is not intended to teach you Pascal, rather, it is meant
to help you expand the range of problems to which you can apply your program-

Introduction • 3

ming skills. Familiarity with the Macintosh Pascal programming environment­
using the Observe window to debug a program, for example-is desirable,
though not required. If you need additional preparation in any of the above areas,
check the selected bibliography at the end of this book for appropriate texts and
reference materials.

The best way to learn the techniques discussed in this book is to sit down at a
Macintosh and practice programming: work through the exercises at the end of
each chapter; experiment with program changes and see what happens. This is
not to say, however, that you should abandon paper and pencil in favor of long
hours in front of a computer. It can be invaluable to draft a flow chart or a simple
sketch of program logic before using the computer. In this way, frustrating bugs
can often be anticipated or avoided altogether. You will undoubtedly develop a
balance of paper and computer work time that most suits your particular needs.
A combination of these methods will promote more efficient learning and pro­
gramming than the exclusive use of either method.

In addition to working with the chapter exercises, you should devise rela­
tively large-scale projects to work on. Projects will help you develop problem­
solving strategies as they involve many levels of difficulty. Solutions for each
subproblem must fit together into a unified program. Devising your own project
also insures that it will incorporate your particular area of interest and will more
likely produce an application of personal utility. Lastly, a carefully defined
project will have a very clear outcome, making it painfully obvious when a
program doesn't run as intended. Working on such large-scale tasks will force
you to look at the 'big picture' of program strategy and concept flow. The
included exercises, on the other hand, provide detailed glimpses of specific
commands and their results. Thus, projects and exercises should be used to
complement each other.

Any programming language has limitations and, therefore, trade-offs must
be made. Any programmer, before embarking on a large scientific project,
should be aware of the strengths and weaknesses of Macintosh Pascal. As an
interpreted language, Macintosh Pascal provides reliable error-checking and
feedback. As a result, program speed is sacrificed. Another trade-off arises from
the use of specialized Mac features such as the mouse and high-resolution
QuickDraw graphics routines. These are the very capabilities that make Macin­
tosh Pascal unique; however, they can reduce the portability (to other machines
or systems) of a given program. The user should also keep in mind the memory
limitations of the 128K Macintosh: Macintosh programs are limited to approx­
imately 33K in size on a 128K machine, making it most suited for medium to small
applications. You can select 'About Macintosh Pascal' from the Apple Menu to
see what the memory situation is for any program about to be run.

Procedural libraries (listed in Appendix A) are used extensively in the book.
There are a number of reasons for this emphasis on generalized libraries. First,
such libraries help you maintain programmatical modularity and consistency.
Second, because the libraries are grouped according to general concepts (e.g.,

4 • Scientific Programming with Macintosh Pascal

graphics , mathematics, etc.) they help the programmer approach a given prob­
lem from a more conceptual, strategic perspective. Third, using common librar­
ies facilitates sharing applications with other people and makes it easier to refer
to old programs and recall their logical structure. Fourth, if several programs
share a common library, you can avoid storing the same information in several
different files and thus conserve disk space.

Though the chapters tend to proceed from relatively easy to more difficult
programming applications, each chapter is designed to be modular so you can
easily concentrate on topics that suit your particular needs. Chapter 2,
Programming the Macintosh Devices, discusses how to utilize the devices unique to
the Macintosh and, as such, provides a good introduction to more purely scientific
applications discussed in later chapters. Special attention is given to screen,
mouse-handling, timing, and sound generator routines. Chapter 3 is dedicated to
numerical analysis programs such as integer computations, differential calculus,
integral calculus and linear equations. Chapter 4 is dedicated to initial experimen­
tation with graphics problems. Chapter 5 discusses a subject ubiquitous in scien­
tific settings: probability and statistics. This area is important to all scientists who
need to process experimental data. Chapter 6 covers three-dimensional tech­
niques, with emphasis on the library l3D.lib) found in this book. Chapter 7
specializes in dynamic models-models in which quantities, often graphically
displayed, change in time. Chapter 8 provides optional treatment of the serial port
of the Macintosh. Among other things, you will see how to program a terminal
emulator which turns the Macintosh into a simple terminal for logging in by
modem or direct line at baud rates up to 9600 baud. Chapter 9 is comprised of a set
of special topics chosen to exemplify what is best about the Macintosh Pascal
approach. These have the flavor of actual real-world projects, and for the most
part, were taken from the authors' experience at Reed College in the matter of
classroom and research work.

A final word is in order concerning the Pascal libraries. Once you have
libraries on disk, there is a good way to continually paste them, or segments of
same, into your programs. The idea is to use the Macintosh Scrapbook and
Clipboard in tandem. Refer to Figures 1.1 through 1.5 for a tour of the method.

This method becomes quite easy with practice, and you may always go back at
any time and undo mistakes by selecting text and clearing. Often it is good to put
several whole libraries onto the Scrapbook, which can hold several independent
entries.

•
~D

Windows

Introduction • 5

Te Ht

Drawing

Figure 1.1 I The user has opened the 3-D graphics library (30.lib) and selected particular
procedures, including ROTATE which will rotate the 3-space view of objects,
and is about to Copy this segment to the Clipboard.

s File

begin
shift(
draw(

end;

procedure
a,

(* Rotate (x
vor

sx, sy, sz
begin

sx := x * c
sy :: X *Si

Windows

Te Ht

Scrapbook

Empty Scrapbook.

1¢1

Figure 1.2 The Scrapbook has been opened and is currently empty. The user is about to
Paste the program segment into the Scrapbook.

6 • Scientific Programming with Macintosh Pascal

Calcuhttor
Key Caps
Control Panel
Puzzle

Untitled

program OuterSpece;

begin
write('Euler engles e b c: ');
reedln(e, b, c) ;
x := 0.7;
y := -0.7;
z := 0.4;
rotete(x, y, z, e, b, c);
shift(O O)·

TeH.t

Drawing

Figure 1.3 The Scrapbook is assumed correct, and (possibly much later, even if the
Macintosh has been turned off) the user opens a new Edit window and starts
out a new program which will use the 3-0 procedures of interest.

procedure ROTATE (ver x, y, z : reel;
e, b, c: reel) ;

Te Ht

(* Rotete (x,y,z) by the three Euler engles (e,b,c) *)
Ver

program Ou sx, sy, sz, tx, ty, tz : reel;
begin

begin () ()
write('Eule sx := x * cos c - y * sin c ;

reed 1 n(e' b' a,:;;;;;;;;;s yiiiiiiii: =iiiixiiiiiiii*iiiisiiiiiiiiin(iiiiciiii)iiii+iiiiyiiiiiiii*iiiiciiiioiiiisiiii(ciiii)iiii; iil
x := 0 .7;
y := - 0 .7;
z := 0 .4;

1¢1 1¢!
1 I 1 TEXT

rotete(x, y,,._ _______ .,.....
shift(O O) ·

Figure 1.4 I The Scrapbook is again selected, and Copy is used again to get the pro­
cedures onto the Clipboard.

Introduction • 7

s File Edit Seorch Run Windows

Te Ht

Drowing

----~

---~--

progr om OuterSpece;

procedur~!rr~!~~)~r x. y. z : reel; !Iii::
(* Rotate (x,y,z) by the three Euler engl es (1 mm

vor mm
sx, sy, sz, tx, ty, tz : reel ; mm

begin mm._ _________ -1--.11

sx := x * cos(c) - y * sin(c); mm

Figure 1.5 I The user has moved the text cursor to a point underneath the program header,
selected Paste from the Edit menu, and put away the Scrapbook. Result: the
new program has the 3-D procedure ROTATE included.

Keep this rule in mind:

BOOK LIBRARY PROCEDURE NAMES APPEAR
IN ALL CAPITALS THROUGHOUT THE BOOK.

If you see a procedure spelled out in a program listing like so:

procedure CLEAR

it means that CLEAR comes from one of your book libraries. This particular
one, CLEAR, occurs often and has the effect of conveniently sizing, placing,
and clearing the Drawing window of Macintosh Pascal prior to actual draw­
ing.

8 • Scientific Programming with Macintosh Pascal

Selected Bibliography of
Pascal Texts and Reference Books
Atkinson, L. (1980). Pascal Programming, John Wiley & Sons, New York.

Baron, D.W. (1980). PASCAL-The Language and its Implementations, John Wiley &
Sons, New York.

Cooper, D., and M. Clancy (1982). Oh! Pascal!, W.W. Norton & Co., New York.

Cooper, J.W. (1981). Introduction to Pascal for Scientists, John Wiley & Sons, New
York.

Crandall, R.E. (1984). Pascal Applications for the Sciences, John Wiley & Sons, New
York.

Grogono, P. (1980). Programming in Pascal, Addison-Wesley Publishing Co., Read-
ing, Mass. ·

Jensen, K., and N. Wirth (1974). Pascal User Manual and Report, Springer-Verlag,
New York.

Moll, R. and R. Folsom (1985). Macintosh Pascal, Houghton Mifflin Company,
Boston.

Moore, J.B. (1982). PASCAL, Reston Publishing Co., Reston, VA.

Schneider, G .M., and S.C. Bruell (1981). Advanced Programming and Problem Solving
with Pascal, John Wiley & Sons, New York.

Schneider, G.M, S.W. Weingart, and D.M. Perlman (1978). An Introduction to
Programming and Problem Solving with Pascal, John Wiley & Sons, New York.

2 Programming
Macintosh
Devices
THEME: This Chapter covers the devices unique to the Macin­
tosh and their associated procedures and functions. The serial
port, being less commonly used and more technically difficult, is
dealt with in Chapter 9.

GOALS: You will learn how to use the Macintosh devices for
general scientific problems, especially where striking visual/
auditory output or convenient manual input is desired.

LIBRARIES USED: Graphics.lib (subset)

REFERENCE MATERIALS: The Macintosh Pascal Reference
Manual.

Description of Devices
The Macintosh's devices are surprisingly easy to program. The following para­
graphs describe the Mac Devices in detail:

Screen This is a large array of pixels, with Pascal's Text and Drawing windows
being set up as subsets of the whole screen. The procedures differ depending
on which window you wish to access.

Keyboard This is essentially a standard computer keyboard, and except for a
few small differences, is treated in Pascal in the conventional manner.

Mouse This is an important input device, and you can obtain its coordinate
position and button state from within your programs.

9

1 O • Scientific Programming with Macintosh Pascal

Sound Generator This device can be accessed from within Macintosh Pascal,
and there are options ranging from the simple (pure notes) to the complex
(special waveforms).

Printer This is usually the Apple Image Writer and is handled, as with various
other Pascal systems, as a "file."

Disk This is handled with conventional Pascal I/O (Input/Output) procedures.

Timers The Macintosh has internal timing hardware that allows you to access
either fast (1/60th second) counting or date and time information from within
programs.

Serial (Modem) Port This device enables you to access other systems using the
Macintosh as a terminal. This is of interest only to users who have this special
requirement, and its use is somewhat technical, so the means for serial access
are reserved for Chapter 9.

Each of these devices can be accessed literally from inside your programs, and all
you need to know from the programming point of view is the manner in which one
uses the procedures and functions. This chapter covers a subset of procedures and
functions which is intentionally incomplete, but is designed to give you examples
of almost all of the options you need for scientific programming.

To get the best results out of Macintosh you must first learn how these devices
function. The intricacies of the hardware will not be covered; however, this text
shall instead concentrate on the programming point of view. Eventually you will
begin to think of the device procedures and functions as natural and elegant
extensions of conventional Pascal.

The Screen
The screen windows called 'Text' and 'Drawing' differ as follows. The Text
window is essentially a conventional Pascal output device, with the standard
reading and writing procedures of the language accessing that window. The
Drawing window is for graphic output and involves several new, Macintosh­
specific procedures. The key procedures are summarized in the following list.
Remember that here and elsewhere, we do not cover exhaustively all possible
procedures. We have simply chosen for you a set with which you can do almost
any scientific programming project. You can refer to the Macintosh Pascal Refer­
ence Manual for complete details on all available procedures.

Text Window Output Procedures:

write(args); writes characters or numbers to the Text
window

Programming Macintosh Devices • 11

writeln(args); writes but adds a new line after the write

SetTextRect(r: rect); sets up the Text window for moving or
resizing

ShowText; activates and displays the Text window

Drawing Window Procedures:

moveto(h,v: integer);

lineto(h,v: integer);

move(dh,dv: integer);

eraserect(r: rect);

eraseoval(r: rect);

framerect(r: rect);

frameoval(r: rect);

paintrect(r: rect);

paintoval(r: rect);

invertrect(r: rect);

invertoval(r: rect);

writedraw(args);

pensize(w,h: integer);

penpat(pat: pattern);

penmode(mode: integer);

backpat(pat: pattern);

textsize(size: integer);

textface(face: style);

SetRect(var r: rect;
left, top, right,

bottom: integer);

SetDrawingRect(r: rect);

moves to a pixel coordinate but does not
draw; this is equivalent to 'lifting your
pencil'

draws straight line to the specified coordi­
nates

incremental move

erases a given rectangle

erases a given oval

draws the frame outline of a given rec­
tangle

draws the frame outline of a given oval

fills in a given rectangle

fills in a given oval

reverses the color of a given rectangle

reverses the color of a given oval

like write for the Text window, except that
font can be manipulated, and special posi­
tioning is possible

chooses new size for the drawing pen

chooses new pen pattern

chooses the 'drawing' logic

chooses a background pattern; useful for
animation where you alternately blank
and draw

chooses font size

chooses style such as bold or italic

defines a rectangle (also the contained
oval) by setting a rect variable.

sets up the Drawing window for moving
or resizing

12 • Scientific Programming with Macintosh Pascal

R • File Edit Search Run Windows
Te Ht

x sin(x) cos(x) exp(x) ln(x) IQ
0. 100000 0.099633 0.995004 1 . 105171 -2.302565
0.200000 0. 196669 0.960067 1. 221403 - 1.609436
0.300000 0.295520 0.955336 1. 349659 -1. 203973
0.400000 0.369416 0.921061 1. 491625 -0.916291
0.500000 0.479426 0.677563 1. 646721 -0. 6931 '17
0.600000 0 .564642 0.625336 1. 622119 -0.510626
0.700000 0 . 644216 0.764642 2.013753 -0.356675
0.600000 0.717356 0.696707 2.225541 -0.223144
0.900000 0.763327 0.621610 2.459603 -0.105361
1. 000000 0.641471 0.540302 2.716262 0.000000

Figure 2.1 I Write Table Output

Show Drawing; activates and displays the Drawing win- ·
dow

PtlnRect(pt: point; r: rect):
boolean;

returns a Boolean value = true if a Point is
in a Rectangle (actually a function, not a
procedure)

Program 2.1, WriteTable, shows how Text window output can be formatted when
numerical data is involved. The output of the program is shown in Figure 2.1.

Note that a statement:

writeln(x:6:12, ...);

has the effect of expanding the real number output to 6 places in a field of 12
spaces. Note also that the procedure 'erase,' which uses a modification of the
procedure 'CLEAR' in library 'graphics.lib', makes sure that the Text window
is correctly placed and sized. Though this procedure appears to be an unneces­
sary addition to the program, it is a good idea in many applications to know
precisely where the windows will be. This will prevent parts of graphs from
being hidden accidentally. A useful procedure for pasting in library segments of
this kind is:

1. Open the library (graphics.lib on your disk, for example) or type in the
correct segment into the normal Pascal Editor window.

Programming Macintosh Devices • 13

s File Edit Search Run Windows
Drawing

Reedy to invert screen

s File Edit Search Run Windows
Drawing

Figure 2.2 I Successive output from Draw Test prooram 2.2

2. Use the Edit menu to Copy the desired text to the Clipboard

3. Open the Scrapbook.

4. Use the Edit menu to Paste the desired text into the Scrapbook.

14 • Scientific Programming with Macintosh Pascal

5. In the future, open the Scrapbook and use Copy and Paste again to insert the
library or library segment into your programs.

Program 2.2, DrawTest, uses many of the above Drawing window procedures to
step you through various drawing modes.

Figure 2.2 shows two screens whose intermediate step was to invert the
drawing screen. Note that the white becomes black, the black becomes white,
and dark gray becomes light gray. In other words, every single pixel in the given
region is inverted. Figure 2.3, the final screen from DrawTest, shows the effects
of pensize and mode.

When defining rectangles, let the northwest corner of a rectangle have
coordinates denoted (NWx, NWy), with the southeast corner being (SEx, SEy). A
program sequence such as:

SetRect(r, NWx, NWy, SEx, SEy);
F ramerect(r);

will correctly draw the desired rectangle; but so will the single statement:

Framerect(NWy, NWx, SEy, SEx);

s File Edit Search Run Windows
Drawing

Figure2.3 I Final output from Draw Test program showing pensize and mode

Programming Macintosh Devices • 15

where you should observe that x,y coordinates are swapped but the rectangle's
corners are not.

It is easy to remember the difference between procedures such as backpat
and penpat. The backpat procedure chooses essentially the background color,
while penpat refers to the foreground. Thus:

backpat(white);
eraseoval(r);

will do the same thing as:

penpat(white);
paintoval(r);

Thus 'erasing' puts in background pattern while 'painting' puts in foreground
(pen) pattern. Later in this book we do animation-the visual movement of
objects on the screen; naturally, 'backpat' and related procedures will be used to
erase a previous image for a moving object.

When you get to actual scientific programming tasks, there are a few more
things to keep in mind. First, eraserect(r) will not only set the interior of the
region to background, it will also erase the frame lines. Second, text labels
written onto the screen with writedraw are the only ones affected by the pro­
cedures textsize and textface; these procedures do not affect the Text window
output. Third, it is sometimes convenient to use animation procedures of your
own. For example, you might create a procedure called 'show' and one called
'vanish' which take care of color settings. If you are just animating lines on the
normal, white screen, you can do:

procedure vanish;
begin

penpat(white);
end;

procedure show;
begin

penpat(black);
end;

Then the following calls will behave according to the indicated comments:

show;
framerect(r);
vanish;
framerect(r);

(* Rectangle appears *)

(* Rectangle disappears *)

16 • Scientific Programming with Macintosh Pascal

Care must be taken if the screen background changes during program execution.
Such eventualities require more sophisticated animation procedures which take
due note of the possible background.

The Keyboard
The Macintosh keyboard is straightforward, and its use involves four Pascal
constructs:

read(args); reads characters or numbers from keyboard.
These also are being echoed to the Text win­
dow.

readln(args); reads similarly but expects a final <Return>

eof; this Boolean = true when you hit the
<Enter> key

eoln; this Boolean = true if the next character is a
<Return>

The two procedures for reading information are the same as in conventional
Pascal. The function eof, which stands for 'end-of-file,' is a common one in
Pascal versions, but the difference for Macintosh is the <Enter> key. There are
handy tricks for pausing in a program, one of which is simply to do:

write ('Hit <Return> to continue');
readln;

and the other, which applies when there is to be just one pause, is:

write ('Hit <Enter> to start');
while not eof do;

This while loop will cycle until such time as the <Enter> key is pressed, but
then eof will be true from that point on. When you learn disk access, the function
will take the form eof(f), where f is essentially the name of the disk file in
question.

A common requirement for a programmer is to be able to read in characters
from the keyboard and put them into an array. This is one of those Pascal tasks
which can cause considerable grief, so the following is one correct way to do this.
Start with declarations such as:

var letters: packed array[t.2001 of char;
size:integer;

Programming Macintosh Devices • 17

0 Te Ht
"Echo" reads characters from !QI
the keyboard and writes them
to the Text Window

Figure 2.4 I Typical Echo output

and eventually do a loop which puts keyboard input into the array 'letters.'
Program 2.3 shows Echo, which will perform typical keyboard input operations.
Typical output is shown in Figure 2.4.

The key loop is the repeat structure in the program. It might appear to be
rather involved, but that is because of Pascal's peculiar way of handling 1/0. The
reason for the various appearances of eoln and eof is to take care of strange
situations such as hitting the <Enter> key in the middle of a line. The same loop
construct is used for disk file 110 described below, in which case booleans such as
eoln(f) and eof(f) will be used.

The Mouse
There are two entities you should understand with regard to the Mouse: one is
the screen point at which the Mouse cursor sits; the other is the boolean value of
the mouse button (is it pressed?). These are returned as an integer pair (x, y) in the
first instance, and a boolean value in the second.

The Mouse procedures and functions are as follows:

getmouse(x, y: integer); sets up values of current cursor position

button; = true if and only if button is down when
function is called

One elegant way to use the getmouse procedure is to declare:

var p: Point;

where Point is a Macintosh Pascal record two integers long. Then do:

getmouse(p.h, p.v);

The key extensions.hand .v refer to horizontal and vertical coordinates, respec­
tively. This technique is not mandatory: for example, you can always do:

getmouse(x,y);

18 • Scientific Programming with Macintosh Pascal

0 Drawing 0 Drawing

••••o•o•
• pm

Decimal Value: 10

5

'2l 121

Figure 2.5 I Typical Switches output Figure 2.6 I SlidePot output

where x and y are normal integers; but the Point record should be used for
reference to such functions as PtlnRect. These and other considerations for the
Mouse are dealt with in the demonstration programs which are described below.

Program 2.4, Switches (typical output shown in Figure 2.5), shows how to
use the Mouse to turn on and off iconic controls. The current color states of the
eight switches determine a binary and hence a decimal value, with the latter
printed on the screen. This is a good example of using erasure followed by
writedraw to update a panel display.

Program 2.5, SlidePot and the screen output in Figure 2.6 show how to move
an object with the Mouse.

The Sound Generator procedure, sysbeep, is discussed in the following
section. The key program segment here is the 'while button do' loop, which
animates the small potentiometer knob as long as you hold down the Mouse
button. Note that the function downandin, which determines whether the mouse
is both pressed and inside the knob, could also have been done using rectangles
and the function PtlnRect, as was done in the Switches program.

One of the most important uses of the Mouse in scientific programming is
the input of dynamical values, such as initial direction and velocity of a moving
object. This kind of application is covered in later chapters (for example, program
Lunacy in Chapter 5).

The Sound Generator
The Macintosh Sound Generator is easy to use if you stick to the simpler
procedures, such as those summarized in the following list.

Programming Macintosh Devices • 19

note(freq, amp, dur: integer); plays a note of given frequency, amplitude,
and duration

SetSoundVol (level: integer); sets the volume of the Macintosh Speaker

SysBeep (duration: integer); sound Macintosh beep for a given duration

There are other sound procedures, but they are not used in this book. You should
know that there is an option for arbitrary waveform synthesis, and that working
knowledge of record types is required to make use of that option.

The procedure note is a useful one. One would do:

var amplitude, duration: integer;
frequency: Longint; (* Note: this frequency varis not an integer *)

Then, after setting the variables, the simple call:

note (frequency,amplitude,duration);

will sound the desired tone. Program 2.6, Piano, shows how to compute and play
the notes of the well-tempered scale.

The pitch of middle C is assumed to be 256 Hertz. A note exactly x half-steps
(the smallest scale steps) away will have the frequency:

f = 256•2 (1x2 }

In other words, every musical scale step is an extra factor of the twelfth root of
two. Of course, such powers must be computed in Pascal with expressions such
as the one in procedure init of the program Piano. Note that the Longints for the
scale are only computed once, then later referred to as array elements. Figure 2. 7
shows the appearance of the piano.

The Printer
There are no special procedures for the printer, but it has a special name in
Macintosh Pascal. This name is 'Printer:' and it is treated like a file. Disk files are
discussed next, so for now, the procedure:

rewrite(f, 'Printer:');

is the way to set up the printer for output of text or numerical data. For the actual
printing you use:

write(f, ...);
writeln(f,. ..);

20 • Scientific Programming with Macintosh Pascal

s File Edit Search Run

Figure 2. 7 I Piano output

where f now refers to the printer because of the rewrite statement. Program 2. 7,
PrintTable, shows a version of Program 2.1, WriteTable, except that now the
results go to the printer.

The Disk
The Macintosh disk can be used in scientific applications for storage and retrieval
of data. The formats of data written to or read from the disk can be the same as
any allowed formats for the keyboard and screen. In fact, you have already seen
that other devices can be treated in certain senses like files. In all file access
programming, you use declarations such as:

var f:text;

Then the key file access procedures are:

reset(f: text); set up a new file to be read

rewrite(f: text); set up a new file to be written to

close(f: text); gracefully terminate file operations

Programming Macintosh Devices • 21

There are some interesting ways to use these procedures, as shown in Programs
2.8, 2.9, and 2.10 with accompanying output examples in Figures 2.8, 2.9, 2.10
respectively. These programs can be summarized as follows:

SelfPrint Accesses its own disk image and sends this to the printer. Note the
simultaneous use of reset and rewrite, although the files should be different
ones.

SelfAccess Accesses its own disk image and sends this to the screen.

SelfModify A more sophisticated demonstration, this program reads its own
disk image into an array, forcibly inserting a comment near the top, and
writes this back to disk-so the program literally modifies itself.

The most common scientific application of disk 1/0 will be, of course, the
manipulation of data. Exercises and examples for disk operation are found
throughout the remainder of this book.

Flgure2.8

program selfprint;
(* SENDS ITSELF TO IMAGEWRITER *)

var
f, g : text;
c : char;

begin
reset(g, 'selfprint');
rewrite(f, 'Printer:');
repeat
while (not eoln(g)) and (not eof(g)) do
begin

read(g, c);
write (f, c);

end;
if not eof(g) then
begin

rea"dln (g);
writeln (f) ;

end;
until eof(g);
close (f);
close(g);

end.

Self Print output

22 • Scientific Programming with Macintosh Pascal

a File Edit Seorch Run Windows
il Te Kt
program selfaccess;

var
f : text;
c : char;
w i ndowrect : rect;

begin
reset(f, 'selfaccess');
hi dea 11; .
setrect(windowrect, 2, 35, 512, 342);
settextrect(windowrect);
showtext;
repeat

wh i I e (not eo In(f)) and (not eof(f)) do
begin
read(f, c) ;
wr i te(c);

end;
writeln;
readln(f);

Figure 2.9 I Self Access output

The Timers
There are two timing options: you can access the date and time-of -day, or you can
do timing at a 1/60th second resolution. The Timers' procedures and functions can
be summarized as follows:

GetTime(DateTime: rec); gets date and time-of-day record

SetTime(DateTime: rec); sets system clock

TickCount; (function) returns a Longint of the number of
1/60th second ' ticks' since an (virtually)
unknown time in the past

Synch; synchronizes the screen display with the tick
clock.

The TickCount function is easy to use. You can, for example, wait for half a
second by doing:

var t:Longint;

t: = TickCount;
while TickCount-t < 30 do;

Programming Macintosh Devices • 23

* File Edit Seorch Run Windows
R Te Ht
Just read Ii ne 29
Just read I i ne 30
Just read Ii ne 31
Just read Ii ne 32
Just read ine 33
Just read ine 34
Just read ine 35
Just read ine 36
Just read ine 37
Just read ine 38
Just read ine 39
Just read ine 40
Just read ine 41
Just read ine 42
Just read ine 43
Just read ine 44
Just read ine 45
Open "sel fmodi fy" from disk to see the change

selfmodify

lprogrom selfmodify;
(*AUTOMATED COMMENT!*)
(*AUTOMATED COMMENT!*)
(* INSERTS A COMMENT INTO ITS OWN DISK IMAGE*)

vor
f : text;
symbols : pocked orroy[1 .. 2000] of char;
n, z, size, 1 i necount : integer;

Figure 2.10 I SelfModify output

;

This works because every time the while loop references TickCount, the dif­
ference (TickCount-t) has grown correspondingly.

Program 2.11, Reaction Time, uses random numbers and TickCount function
to assess the time it takes the user to move the Mouse into a small, randomly
positioned box as in Figure 2.11.

Program 2.12, Clock, and the clock appearance, Figure 2.12, shows how to
use the date and time-of-day records.

24 • Scientific Programming with Macintosh Pascal

s File Edit Search Run Windows
R Drawing
54

Figure 2.11 I Reaction Time output

s File Edit Search Run Windows

Figure 2.12 I Clock output

Drawing

I I I

'" I'

D

/
/ .-

£J

Programming Macintosh Devices • 25

Using Devices Efficiently
This chapter concentrated on Macintosh devices to give you an appreciation for
the many device options. But it is important not to get bogged down in device
play exclusively, for this can get in the way of the scientific approach. You should
1~se devices for situations such as:

1. Storage of calculated data !e.g., a large table of base-ten logarithms) on disk.

2. Graphical display of dynamic phenomena, especially for problems which
are not tractable analytically and there is a genuine need for visual assess­
ment.

3. Mouse input when you want to select among a great many alternatives
quickly !e.g., if you want to point to a section of a curve).

4. Processing of previously calculated data which has been typed in or other­
wise placed on disk. An example would be a Fourier Transform of numerical
data. Then the Text window or printer or Drawing window can be used for
output.

5. Sound generation to signify when a process is done, or when a suspicious
value has been calculated, or when a debugging statement is passed.

6. Any use of a device to aid in learning and demonstration of scientific
principles: a geiger counter that clicks using specially computed random
times, for example.

In general, use the Macintosh's devices when you really need them, which means
when more conventional output is not sufficient. To underscore this point, the
next topic, numerical analysis, is often regarded as relatively dry when compared
to bells, whistles, and visuals. However, when graphics is used along with
analysis, there is something to be gained from the combination.

Exercises

1. Write a program similar to Echo but which ensures that every letter written
to the Text window be transformed to upper-case !capitalized). There are
two ideas to use: one is that a character c is lower-case if and only if lordlc) >
96) and lordlc) < 123); the other is that upper-case characters are obtained
from lower-case by subtraction of 32 decimal from the the lower-case ord
value.

2. Modify program Switches to print out the hexadecimal value of the 8-bit
byte. This output will range from 00 through FF.

3. Modify the program SlidePot so that the slider is shaded progressivley more

26 • Scientific Programming with Macintosh Pascal

toward white !black shading at the very bottom) as it is pushed upward. The
colors available include black, dark gray, gray, light gray, white.

4. Make the program Piano put out a fuller keyboard; that is, more octaves.

5. Add a fine-tuning control of the piano using the ideas of program SlidePot so
that the entire piano can be tuned to a standard. Many telephone dial tones
hum at or near 440 A pitch.

6. Using the ideas behind programs SlidePot and Piano, construct a tone
generator which has both an amplitude slide and a frequency slide.

7. Write a program similar to SelfAccess which prints out the number of
characters in some file. Compare the number you get with the number given
at the Macintosh desktop level under Get Info file option.

8. Write a program which reads in numbers from a text file, using something
like:

readln (f ,x);

and sums over all the x, putting the numerical sum in the Text window. To
create a test file for this, just set up a new Edit window and type in pure
numbers. Then save this file as if it were a program-which it isn't. It can still
be accessed with file 1/0 statements. Later in the book this technique is used
to test data processing and signal analysis programs.

9. The program ReactionTime has the drawback that the mouse might be very
near to the next random placement of the box. This means that 'luck' is a
variable in getting short times. Modify the program so that the next test does
not occur until the mouse is taken over to some region, say the far left of the
screen, and the box shows up only in a region other than the mouse-restart
region.

10. Using the ideas behind the program Clock, create a stopwatch with a
'pushbutton' that must be ticked with the mouse to start, stop, and reset, in
that order. Use the function tickcount to get 1/60ths and hence 1/lOths­
second resolution. You will not be able to move the l/lOth-second hand in
real time, but you should be able to move it every once in a while, readjust­
ing it to the fractional seconds after a stop press.

Answers
1. Near the end of program Echo is an assignment c: = letters(n]. It is there that

you may put a function which transforms case:

c: = transform(letters[nl);

The function is written as:

function transform(d:char) :char;
begin

n:= ord(d);

Programming Macintosh Devices • 27

if (n > 96) and (n < 123) then transform: = chr(n - 32) else
transform:= d;

end

2. One way to print the hexidecimal value of a decimal number xis to assign:

h:= xdiv16;
k:= xmod16;

Note bothhandktakeon values 0, ... ,15. To printout 0, ... ,9,A,B,C,D,E,Ffor
this range, one nice trick is to use:

h: = 48 + h + 7 * (h div 10));

and the same fork. Then:

write (chr(h),chr(k));

will print out the hexadecimal.

3. The thing to change is the backpat(gray) call, with the pattern depending on
the value of variable yf.

4. This is a straightforward extension of the text program. All you need to do is
define the keys periodically. The only real work is to change the init pro­
cedure and permute function.

5. This should use techniques similar to those of SlidePot, in which you change
some frequency offset with a manual slider; and where Piano calls
note(f[i), ...)J, you want to call note(f[i) +offset, ... J.

6. The solution to this is to create another SlidePot, then keep calling the note
procedure, with frequency and amplitude being results of the two manual
sliders.

7. Every time SelfAccess reads in a character, you want a variable such as size
to be incremented by one. If the characters do not compare with the Get Info
response at Mac desktop level, this may be because you did not count
<Returns>.

8. This is straightforward. You should have a block something like:

28 • Scientific Programming with Macintosh Pascal

readln(f ,x);
sum:= sum + x;

9. The process starting with waitsome should not begin until the mouse is in
the starting region. It is a good idea to do a sysbeep when the region is
entered, so at least you will know that the random waiting time will begin to
cycle out.

10. Such a stopwatch is actually useful, especially if you don't rely too much on
animation (which hurts the resolution of the timer). The easiest implementa­
tion is to use the track stopwatch mode in which the sequence 'start-freeze­
reset-start-freeze-reset-... ' is assumed.

Programming Macintosh Devices • 29

Program 2.1

program WriteTable;
(* DEMONSTRATES Screen Output OF CALCULATIONS *)
var

n integer;
x : real;

procedure erase;
(* Activates and expands Text Window to fill screen *)

var
windowrect : rect;

begin
hideall;
setrect(windowrect, 2, 35, 512, 342);
settextrect(windowrect);
showtext;

end;

begin
erase;
writeln('
writeln;

x

for n := 1 to 10 do
begin

x :~ n I 10;

sin (x) cos(x) exp(x) ln (x) ');

writeln(x : 12 : 6, sin(x)
ln (x) : 12 : 6) ;

12 6, cos(x) 12 6, exp (x) 12 6,

end;
end.

Program 2.2

program DrawTest;
(* DEMONSTRATES A VARIETY OF GRAPHICS ROUTINES *)

var
r, textrect : rect;

procedure CLEAR
(* Activates and expands Drawing Window to fill screen *)

var
windowrect : rect;

begin
hideall;
setrect(windowrect, 2, 35, 512, 342);
setdrawingrect(windowrect);
showdrawing;

end; {continued)

30 • Scientific Programming with Macintosh Pascal

procedure message;
(* Clears away old message and prepares to write a new one *)
begin

backpat(white);
eraserect(O, 0, 30, 300);
moveto(4, 20);

end;

begin
CLEAR;
showtext;
writeln('Hit <Return> to continue');
setrect(r, 100, 90, 200, 230);
message;
writedraw('Ready to frame');
readln;
framerect (r);
showdrawing;
message;
writedraw('Ready to paint black oval');
readln;
penpat(black);
paintoval(r);
message;
writedraw('Ready to invert rect');
readln;
invertrect (r);
message;
writedraw('Ready to paint LtGray oval');
readln;
backpat(LtGray);
eraseoval (r);
message;
writedraw('Ready to invert oval');
readln;
invertoval(r);
message;
writedraw('Ready to invert screen');
readln;
invertrect(O, 0, 300, 511);
message;
writedraw('Ready to change text');
readln;
textsize(18);
textface ([bold]) ;
message;
writedraw('Ready to draw white line');
readln;
penpat(white);

Programming Macintosh Devices • 31

moveto(O, 40);
lineto(200, 250);
message;
writedraw('Ready to draw thick line');
readln;
pensize(4, 4):
moveto(O, 50);
lineto(200, 260);
message;
writedraw ('Ready to draw "xor" line') ;
readln;
penpat(black);
penmode(patXor);
moveto(O, 20);
lineto(200, 230);
message;
writedraw('Done.');

end.

Program~.3

program Echo;
(* READS KEYBOARD CHARS INTO AN ARRAY AND WRITES THEM *)
(* BACK OUT *)

var
letters
size, n
c : char;

begin
hideall;
showtext;
size := O;
repeat

packed array[l •• 200) of char;
integer;

while (not eoln) and (not eof) do
begin
size := size + l;

read (c);
letters[size] := c;

end;
if (not eof) then
begin

size := size + l;
readln;
letters[size] := chr(l3);

end;
until eof; (* Loop exits when <Enter> key is pressed *)

{continued}

32 • Scientific Programming with Macintosh Pascal

for n := 1 to size do
begin

c := letters[n];
if ord(c) <> 13 then
write (c)

else
writeln;

end;
end.

Program i!.~

program Switches;
(* DISPLAYS A 'PANEL' OF 8 'SWITCHES' WHICH REPRESENT BINARY *)
(* BITS *)

var
finger : point;
lamp : array[0 •. 7] of rect;
on : array[0 .. 7] of boolean;
total, bit, summand : integer;
change : boolean;

procedure update (r : rect;
state : boolean);

begin
if state then
backpat(white)

else
backpat (black);

eraserect(r);
framerect(r);

end;

begin
hideall;
showdrawing;
moveto(4, 80);
writedraw('Decimal Value:');
for bit := O to 7 do
begin
on[bit] := false;
setrect(lamp[bit], 10 + (7 - bit)* 15, 20, 20 + (7 - bit)* 15, 30);
update(lamp[bit], on[bit]);

end;
repeat
getmouse(finger.h, finger.v);
change := false;
for bit := 0 to 7 do

Programming Macintosh Devices • 33

begin
if PtinRect(finger, lamp[bit]) and button then
begin

change := true;
on[bit] :=not on[bit];
update(lamp[bit], on[bit]);
while button do

end;
end;

if change then
begin

summand := 1;
total := O;
for bit := 0 to 7 do
begin
if on[bit] then
total := total + summand;

summand := 2 * summand;
end;

backpat(white);
eraserect(70, 110, 90, 150);
moveto(112, 80);
writedraw(total : 1);

end;
until false;

end.

Program a.5
program SlidePot;
(* DEMONSTRATES HOW TO MOVE AN OBJECT *)
(* WITH THE MOUSE *) .

var
x, y, pot, oldpot, n

procedure drawscale;
begin

moveto(40, 10);
lineto(40, 120);

end;

integer;

function downandin (x, y, pot : integer.) : boolean;
begin
if ((button) and (x >= 30) and (x <= 50) and (y >= pot - 3) and (y <= pot +
3)) then

downandin ·= true

else {continued)

34 • Scientific Programming with Macintosh Pascal

downandin :m false;
end;

function volume (y : integer)
begin

volume := (115 - y) div 14;
end;

integer;

procedure processpot (var yf, yi : integer);
(* Animates the 'volume control' *)
begin
if (yf < 15) then
yf := 15;

if (yf > 115) then
yf := 115;

backpat(white);
eraserect(yi - 3, 30, yi + 3, 50);
draw scale;
backpat (gray);
eraserect(yf - 3, 30, yf + 3, 50);
framerect(yf - 3, 30, yf + 3, 50);
yi := yf;
backpat (white) ;
eraserect(121, 20, 160, 80);
moveto(30, 144);
writedraw(volunie(yf) : 1);

end;

begin
hideall;
showdrawing;
textsize(24);
pot : = 110;
oldpot := pot;
processpot(pot, oldpot);
repeat
getmouse(x, y);
if downandin(x, y, pot) then
begin

while button do
begin

getmouse(x, pot);
processpot(pot, oldpot);

end;
setsoundvol(volume(pot));
sysbeep(20);

end;

until false;
end.

Programming Macintosh Devices • 35

Program i!.&

program Piano;
(* SIMULATES A PIANO KEYBOARD OCTAVE *)

var
r: array[0 •• 13] of rect;
f: array[0 .. 12] of longint;
i, j : integer;
pt : point;

procedure CLEAR;
(* Activates and expands Drawing window to fill screen *)

var
windowrect : rect;

begin
hideall;
setrect(windowrect, 2, 35, 512, 342);
setdrawingrect(windowrect);
showdrawing;
backpat(ltgray);
eraserect(O, 0, 600, 600);

end;

procedure init;
var

i : integer;
begin
for i := 0 to 7 do
setrect(r[i], 50 + 50 * i, 50, 100 + 50 * i, 250);

for i := 8 to 13 do
setrect (r[i], 85 + 50 * (i - 8), 50, 115 + 50 * (i - 8), 150);

for i := 0 to 13 do
begin
if (i < 8) then
begin

backpat(white);
eraserect(r[i]);
framerect(r[i]);

end;
if ((i > 7) and (i <> 10)) then
begin

backpat(dkgray);
eraserect(r[i]);

end;
end;

for i :=
f [i] :=

end;

0 to 12 do
trunc(512 * exp(i * ln(2) I 12));

{continued)

36 • Scientific Programming with Macintosh Pascal

function permute (j integer)
var

i : integer;
begin

case j of
0 :

i := O;
1 :

i :c 2;
2 :

i : = 4;
3 :

i := 5;
4 :

i := 7;
5 :

i := 9;
6 :

i := 11;
7 :

i := 12;
8 :

i := 1;
9 :

i := 3;
11

i := 6;
12

i := 8;
13

i := 10;
end;
permute := i;

end;

procedure play (i : integer);
begin
note(f[i], 200, 10);

end;

begin
CLEAR;
init;
repeat
while not button do
getrnouse(pt.h, pt.v);

j := -1;
i := 13;
repeat

integer;

while ((j < 0) and (i >= 0)) do

Programming Macintosh Devices • 37

begin
if ((PtinRect(pt, r[i])) and (i <> 10)) then

j := i;
i := i - 1;

end;
if (j <> -1) then
begin

i :- permute(j); (*gets actual key number 0-11 *)
play(!);

end;
until not button;
until false;

end.

Program 2.7

program PrintTable;
(* DEMONSTRATES Printer Output OF CALCULATIONS*)

var
f text;
n integer;
x real;

begin
rewrite(f, 'Printer:');
writeln (f, ' x sin (x)
for n := 1 to 10 do
begin

x := n I 10;

cos (x) exp(x) ln (x) ');

writeln(f, x: 12 6, sin(x) 12 6, cos(x) 12 6,exp(x) 12 6,
ln(x) : 12 : 6);

end;
end.

Program 2.8

program SelfPrint;
(* SENDS ITSELF TO IMAGEWRITER *)

var
f, g : text;
c : char;

begin
reset (g, 'self print') ;
rewrite(f, 'Printer:');
repeat
while (not eoln(g)) and (not eof(g)) do (continued)

38 • Scientific Programming with Macintosh Pascal

begin
read(g, c);
write(f, c);

end;
if not eof(g) then
begin

readln(g);
writeln(f);

end;
until eof(g);
close(f);
close(g);

end.

Program2.9
program SelfAccess;
(* ACCESSES ITSELF AND WRITES ITSELF TO Text Window *)

var
f : text;
c : char;
windowrect

begin

rect;

reset(f, 'selfread');
hideall;
setrect(windowrect, 2, 35, 512, 342);
settextrect(windowrect);
showtext;
repeat
while (not eoln(f)) and (not eof(f)) do
begin
read(f, c);
write(c);

end;
writeln;
readln(f);

until eof(f);
close(f);

end.

Program 2.10
program SelfModify;
(* INSERTS A COMMENT INTO ITS OWN DISK IMAGE *)

var

f : text;

Programming Macintosh Devices • 39

symbols : packed array[l .• 2000] of char;
n, z, size, linecount : integer;

begin
reset(f, 'selfmodify');
showtext;
n := O;
linecount := O;
writeln ('Now reading from "selfmodify" ... ');
repeat
while (not eoln(f)) and (not eof(f)) do
begin

n := n + 1;
read(f, symbols[n]);

end;
n := n + 1;
linecount := linecount + 1;
symbols[n] := chr(13);
writeln('Just read line ', linecount 1);
readln(f);

until eof(f);
size := n;
close(f);
rewrite(f, 'selfmodify');
linecount := 0;
for n := 1 to size do
begin

z := ord(symbols[n]);
if z <> 13 then
write(f, symbols[n])

else
begin

linecount := linecount + 1;
writeln (f);
if linecount = 1 then
writeln(f, '(* AUTOMATED COMMENT

end;
end;

close(f);

*) ') ;

writeln('Open "selfmodify" from disk to see the change');
end.

Program 2.11

program ReactionTime;
(* USES 'TICKCOUNT' TO TIME USER MOUSE ACTION *)

var
t : Longint; {continued}

40 • Scientific Programming with Macintosh Pascal

x, y, xx, yy : integer;

procedure CLEAR;
(* Activates and expands Drawing Window to fill screen *)

var
windowrect : rect;

begin
hideall;
setrect(windowrect, 2, 35, 512, 342);
setdrawingrect(windowrect);
showdrawing;

end;

procedure waitsorne;
(* Waits a random amount of time *)

var
n : integer;
u : Longint;

begin
n := random mod 600;
u := tickcount;
while tickcount - u < n do

end;

procedure drawsome (var x, y : integer);
(* Draws a randomly placed square *)
begin

x := random mod 360 + 100;
y := random mod 260;
framerect(y, x, y + 10, x + 10);

end;

begin
CLEAR;
repeat
eraserect(O, 100, 300, 511);
wait some;
drawsome(x, y);
sysbeep(5);
t := tickcount;
repeat
getmouse(xx, yy);

until (xx >= x) and
eraserect(O, 0, 90,
moveto(lO, 10);
writedraw(tickcount

until false;
end.

(yy >= y) and (xx <= x + 10) and (yy <= y + 10);
90);

- t - 2 1);

Programming Macintosh Devices • 41

Program ~-1~

program Clock (output);
(* DRAWS A CLOCK WITH ANIMATED HOUR, MINUTE *)
(* AND SECOND HANDS *)

con st
pi 3.14159265359;

var
time : datetimerec;
second, minute, hour, oldsecond, oldminute, oldhour integer;

procedure CLEAR;
(* Activates and expands Drawing Window to fill screen *)

var
windowrect : rect;

begin
hideall;
setrect(windowrect, 2, 35, 512, 342);
setdrawingrect(windowrect);
showdrawing;

end;

procedure MAP (x, y : real;
var hor, ver : integer);

(* Translates real values into integer coordinates *)
begin
if abs(x) > 1.9 then

x := x I abs(x) * 1.9;
hor := 255 + trunc(x * 130);
if abs(y) > 1 then

y := y I abs(y);
ver := 138 - trunc(y * 130);

end;

procedure DRAW (x, y : real);
(* Draws a line from current position to point x, y *)

var
hl, vl : integer;

begin
MAP(x, y, hl, vl);
lineto(hl, vl);

end;

procedure SHIFT (x, y real); (continued)

42 • Scientific Programming with Macintosh Pascal

(* Moves pen to x, y without drawing *)
var
h, v : integer;

begin
MAP(x, y, h, v);
moveto(h; v);

end;

procedure CIR (x, y, r : real);
(* Draws a circle centered at x, y with radius r *)

var
h2, v2, hl, vl integer;

begin
MAP (x - r, y + r, h2, v2);
MAP (x + r, Y - r, hl, vl);
frameoval(v2, h2, vl, hl);

end;

procedure clockface;
(* Draws the clockface *)

con st
r .. 0.85;
d = 0.10471975512;

var
angle : real;
n : integer;

begin
pensize(3, 3);
penpat(gray);
CIR(O, 0, 1);
SHIFT(-0.97, -0.05);
writedraw (• 9 •) ;
SHIFT(-0.07, 0.91);
writedraw('12');
SHIFT(0.91, -0.05);
writedraw (• 3 •) ;
SHIFT(-0.03, -0.97);
writedraw (' 6') ;
penpat(black);
for n := 0 to 59 do
begin
angle := pi * (15 - n) I 30;
if n mod 5 • 0 then
pensize(3, 3)

else
pensize(l, 1);

SHIFT(0.82 * cos(angle), 0.82 * sin(angle));
D~W(0.87 * cos(angle), 0.87 * sin(angle));

end;
end;

Programming Macintosh Devices • 43

procedure hand (handtype, count
visible : boolean);

(* Animates the clock hands *)
var
angle, len : real;

begin
case handtype of

0 :
begin
pensize(l, 1);
len := 0.8;

end;
1 :
begin
pensize(2, 2);
len := O. 7;

end;
2 .:
begin
pensize(3, 3);
len := 0.5;

end;
end;
angle := pi * (15 - count) I 30;
if visible then
penpat(black)

else
penpat(white);

SHIFT(O, 0);

integer;

DRAW(len * cos(angle), len * sin(angle));
end;

procedure newface;
(* Updates clock time *)
begin

minute := time.minute;
hour := trunc(5 *time.hour+ minute I 12);

if (oldhour <> hour) then
hand(2, oldhour, false);

if (oldIDinute <> minute) then
hand(l, oldminute, false);

hand(O, oldsecond, false);
oldhour := hour;
oldminute :- minute;
oldsecond := second;
if (hour - minute) * (:ninute
hand(l, minute, false);

if (minute - hour) * (hour -
hand(2, hour, false);

- second) 0 then

second) = 0 then

{continued)

44 • Scientific Programming with Macintosh Pascal

if (minute - second) * (second - hour) • 0 then
hand(O, second, false);

hand(O, second, true);
hand(l, minute, true);
hand(2, hour, true);

end;

begin
CLEAR;
clockface;
gettime(time);
oldminute := time.minute;
oldhour := trunc(5 *time.hour+ oldrninute I 12);
oldsecond := time.second;
repeat
gettime(time);
second := time.second;
if second <> oldsecond then
newface;

until false;
end.

3 Numerical
Programs
THEME: You inspect, modify, and create various programs
whose primary function is to calculate. In this chapter the text
becomes rather technical, but the exercises contain many simple
projects.

GOALS: You will learn how to incorporate standard concepts of
numerical analysis into your Pascal programs, and how to solve
those numerical problems for which a computer is well suited.

LIBRARIES USED: Math.lib, Num.lib, Matrix.lib.

REFERENCE MATERIALS: Textbooks in the areas of numer­
ical and real analysis, calculus, differential equations, algebra,
number theory.

Sequences of Integers
The following are some simple integer sequences and some suggestions for
writing programs which compute these sequences. The sequence of factorials:

of which then-th term is denoted nl (n factorial), is a tried and true beginning
sequence in programming studies. One way to generate the sequence is to
establish two variables. Call one variable n and the other factorial. Then go
through the following steps:

Step 1 Set n: = 1 and factorial: = 1.
Step 2 Multiply factorial by n.
Step 3 Increment n by 1.
Step 4 Go back to step 2.

45

46 • Scientific Programming with Macintosh Pascal

This logic is simple but contains the seeds from which much more complicated
calculations can grow. The logic steps are a form of recursion-in that they go
back to a previous step. There is a way to generate factorials with what is called a
recursive function; that is, one that calls itself. The two methods of generating
factorials-steps 1-4 above and a recursive function-are shown in Program
3.l(a) Factorial and 3.l(b) RecFactorial. No output is shown for these programs
since it is just the familiar list of factorials: 1,2,6,24,120,

The next sequence is prime numbers. These are numbers:

2, 3, 5, 7, 11, 13, 17, ...

characterized by having exactly two divisors: themselves and 1. There are several
ways to generate prime numbers. In fact the primes are all the more interesting
because there are so many ways of generating them.

Method 1

Method2

Method3

Find out, for given integer p, whether it has any divisors greater
than 1 but not exceeding sqrt(p)-the square root of p. If there are
no such divisors, then pis prime.
Start with a block of consecutive integers and strike out all the
multiples of 2 (except 2 itself), all the multiples of 3 (except 3),
and so on. What is left is the set of primes in the original block.
This is called the Sieve of Eratosthenes.
Use a theorem from the theory of numbers to test for primality.
There are various elegant theorems of this type.

For Method 1, you will need a loop something like:

(* p is under test for primality *)
divisor: = 2;
while (p mod divisor< >0) and (divisor< p/divisor) do

if divisor= 2 then divisor: = divisor + 1 else
divisor: = divisor + 2;

Notice that the use of the sqrt function is avoided by simply testing whether:

divisor < p/divisor

since this condition becomes false when divisor reaches sqrt(p). Another imple­
mentation of Method 1 is that of recursion to the same kind of divisor checks.
These two approaches are embodied in Program 3.2(a) Primes and 3.2(b)
RecPrimes.

For Method 2, you need an array of some sort in which to store the fact of a
number being 'sieved out.' You might start with:

const max = 500; I* Look for all primes < max *)
var sieve: array [1..max] of boolean;

for n: = 1 to max do sieve[n]: = true;
divisor:= 2;
repeat

k: = 2•divisor;
while k =max do

begin
sieve[k]: = false;
k: = k + divisor;
end;

repeat
divisor: = divisor + 1;

until sieve[divisorJ;
until divisor> sqrt(max);

Numerical Programs • 47

After this segment executes, you would print out those values of divisor for
which sieve[divisor) is true. Method 2 is embodied in Program 3.3 Sieve.

For Method 3, you can use a host of primality checks. One of these is
Fermat's Theorem: if p is prime, then:

2cp-1) mod p = 1

Unfortunately, the converse is not true. There are composite (non-prime) num­
bers p having the property. In the number theory library of this book, a pro­
cedure for computing the general expression:

xYmodp

is given as function PMOD. This can be used for the Fermat test, which you must
remember is not a total test; you can only conclude that a number is not prime (is
composite) if 21P-ll mod p < > 1. The example used in this chapter for Method 3
involves Wilson's Theorem, which is a total, if relatively inefficient, test for
primality. This states that pis prime if and only if:

(p-1)! mod p = p-1

For example, if p = 7, then 6! = 6*5*4*3*2* 1 = 720, and since 721is divisible by
7, this factorial mod pis -1, so 7 is prime. This example has been chosen to
illustrate a recurring theme in computer calculations: that of continual reduc­
tion. Instead of computing:

(p-1)! = (p-1)•(p-2)•(p-3)• ... *2*1

48 • Scientific Programming with Macintosh Pascal

s File Edit Search Run Windows

Figure3.1 I Typical Wilson output

Give p :
73
prime
Give p:
35
composite
Give p :
9
composite
Give p :
2
prime

which gets very large very fast, you compute the modulus at each step, since mod
pis to be taken for the factorial. Thus, it is much better to compute in the style of
Program 3.4, Wilson,in which the ideas of recursive factorial and primality test
have been joined. Typical output is shown in Figure 3.1.

Closely related to studies of the sequence of prime numbers is the problem
of factoring integers into prime factors . As with prime generation, there are many
methods for finding factors . For a number n to be factored, two such methods
are:

Method 1

Method2

Scan through the numbers less than n, finding some p such that n
modp = 0.
Use a theorem or technique from the theory of numbers which
will yield factors of n.

The example provided in Program 3.5 refers to Method 2. The technique is called
the Pollard Rho factoring, and uses a curious integer sequence defined by:

x[1]:= 3;
x[m + 11: = x[m] •x[m] + 1 form= 1,2, . ..

This sequence first computes the greatest common divisor of x2m - xm and the
number n to be factored . When this common divisor is greater than 1 but less than
n, it is a factor . The method is somewhat difficult to understand but very fast . The
greatest common divisor algorithm (actually, Euclid's Algorithm) is embodied in

s File Edit Search Run Windows

pollard

b := r;
end;

end;
gcd := e;

end;

begin
show text;
repeat

wri te('Gi ve p:');
reedln(p);
x := 3;
y := 3;
repeat

x := (x * x + 1) mod p;
y := (y * y + 1) mod p;
y := (y * y + 1) mod p;
write(' .');

Figure 3.2 I Pollard output

I
Ill

Give p: 11111
271

Numerical Programs • 49

Te Ht

the function GCD of the Num.lib. Figure 3.2 shows a typical output in which the
number 11111 = 41 * 271 is factored .

Of course, these programs are not ideal for Macintosh Pascal, where speed
has been traded for greater ease of use. But it is valuable to be able to work with
sequences, for they underlie the ideas of calculus and differential equations
which are critical components to the modeling of physical phenomena.

Another class of integer sequences are those for which an additive recursion
relation is given, as opposed to the multiplicative one for the factorials and the
complicated, obscure one for primes. The famous Fibonacci numbers are such a
sequence (see exercises at end of chapter) . A more general case are the so-called
convergents to a continued fraction. One may expand any positive real number x
as a continued fraction:

x = a
0
+ __________ _
~+ ________ _

The way to evaluate such a construct is to stop temporarily at the term aN and
compute the numerator and denominator by successive multiplication by

so • Scientific Programming with Macintosh Pascal

denominators. For example, if you stop at a2 , you can reduce the fraction to:

- 82+ao*(a,*a2+1)
X- a,*~ +1

and so on. If there are infinitely many aK then xis the limit of the constructs, as N
goes to infmity. Call the fraction obtained by terminating at aN the number:

X _ PrNl
(NJ-~ o

qi NJ

The p[K], q[K] are called the convergents for the fraction, and x will be the limit of
x[N] as N goes to infinity. It turns out that the p[K], q[K] can be defined recur­
sively by:

P1-11= 1
ql-11 = 0
P101 =Bo
q(O) = 1

P11<1 = aK * P1K-11 + P1K-21 K = 1,2, ...
q(KJ = 8K * q(K-1) + qlK-21

There are two approaches to programming with continued fractions:

Approach 1. Given a real number x, find the elements a0 , a1, a2 , • • • of its
continued fraction.

Approach 2. Given the integer elements a0 , a1, a2 , • . • calculate a value for
the continued fraction x.

An interesting thing about these fractions is that they are very efficient in
Approach 2. This is especially true if there is a clear pattern to the integer
sequence of elements a0 , a1, •••• If so, tight programs may be written which
calculate important numbers. The programmer uses some algorithm to calculate
the Kth element aK, then uses the elements to compute the convergents PiKJ• q1KJ;
and finally estimates the number x with terms:

~
q(l<J

Program 3.6, RootOfTwo, uses Approach 2 to compute the square root of 2,
which has the infinite continued fraction expansion:

sqrt (2) = 1 + ____ 1 ___ _
2 + ____ 1 ___ _

+2+ __ 1 __ _
2 + ...

.S File Edit Seorch Run Windows

Figure 3.3 I RootOfTwo output

Numerical Programs • 51

Te Ht
1.414213180542
1.414213657379
1. 414213538f70
1. 414213538170
1.414213538170
1.414213538170
1.414213538170
1.414213538170
1.414213538170
1.414213538170
1.414213538170
1.414213538170
1.414213538170
1 . 999999931543

I
I

The program computes that part of the fraction having all the twos, then adds one
to get the correct root. Figure 3.3 shows typical output from this program.

Program 3.7, Fraction,uses Approach 1 and finds, for a given real number,
the elements of the continued fraction. It is of interest that many important
numbers have patterns in their expansions. Figure 3.4 shows the pattern for the
number 'e'. You could, in principle, use the integer sequence output from
program Fraction as input for a program of Approach 2 to recover the original
real number.

Limits and Sums
Having looked at some integer sequences, we now turn to rational sequences.
These are distinctly different from integer sequences in that they can have limits.
For example, the sequence of rationals:

g 2.._ _±_ 5 (n+1)
2 3 4 n

has the limit 1, or:

lim n-> oo
(n+1) = 1

n
1 n

e=lim 1+-
n-> oo n

52 • Scientific Programming with Macintosh Pascal

s File Edit Search Run Windows

Fraction

program Fraction;
(*COMPUTES THE INTEGER ELEMENTS C
(*FOR A GIVEN REAL NUMBER*)

var
x: reel ;
e : integer;

begin
showtext;
write('Give reel number: ');
reedln(x);
repeat

e := trunc(x);
writeln(e : 1);
x := 1 I (x - e);

until x > 10000;
end.

Figure 3.4 I Fraction output

Te Ht
Give real number:
2.7182818284
2
1

I mm

Another example is the limit of a continued fraction as you saw before, where the
ratio of convergents ~:~: approaches the limit x. Consider a famous formula
which defines the number 'e' in terms of a limit of a rational sequence:

1n
e = lim1+­

n-> oo n

You may see how this works by writing out a few cases, remembering that e =
2.718 . . . :

n

2

3

99

(n+1)
n
2

1

3

4

100

99

(N+ 1)"
n

2

2.25

2.37

2.70

s File Edit Search Run Windows

e

program e;
(*COMPUTES e FROM COMPOUND INTER

con st
n = 10000;

var
j : integer;
e: reel;

begin
showtext;
writeln('Pleese weit for ebout B mini
e := 1;
for j := 1 to n do

e := (1 + 1 I n) * e;
writeln(e : 6 : 12);

end.

Figure 3.5 I e output

Numerical Programs • 53

Te Ht
Please wait for about a
minute
2.718143463135

The task of programming this calculation-taking a sufficiently large n to get a
good estimate for e-can be done in several ways. There are at least three
methods for doing so:

Method 1

Method2

Method3

(Dangerous) Compute (n + 1)n and nn and divide the former by
the latter. This is fine in theory, but your computer might
'crash' with high powers like nn.
(Inelegant) Observe that (1:,1> = exp(n * ln (1:

1
>) and compute

the required transcendental functions. This is also fine in theory,
but if you were allowed to use recourse to the exp function itself
you might as well have computed just exp(l). One should pro­
ceed by treating the limit for what it is: the limit of a sequence of
rational numbers, and avoid the use of special functions for this
problem.
(Simple and Direct) Compute '":11 and multiply n of these
identical terms together.

The last method has the features you want for limit calculations: it is easy to state,
and no numbers involved will be especially large. A program to approximate "e"
using Method 3 is shown in Program 3.8, E, with output as Figure 3.5.

54 • Scientific Programming with Macintosh Pascal

Another type of limit calculation involves singular values of some special
function, or a function whose inverse is singular at some limit point. Typical
formulas that programs can verify are:

I
. sin(x)

1 1m -
x-> 0 x

lim arctan(x) = -
2
71" x-> oo

lim
0 X->

In (1 +x) = 1 x

Program 3.9, Limit, shows a method of calculating:

sin (x)
x

as x approaches zero. Output is shown in Figure 3.6.

s File Edit Search Run Windows

Flgure3.6 I Limit output

0.8414709848
0 .9588510772
0.9896158370
0.9973978671
0.9993490855
0.9998372475
0.9999593104
0.9999898275
0.9999974569
0.9999993642
0 .9999998411
0.9999999603
0 .9999999901
0.9999999975
0.9999999994
0 .9999999998
1 '0000000000

Numerical Programs • 55

Note that the initial xis consecutively halved until a condition such as:

x < 1e-18

is met. It is important to be careful with loop conditions; for example, if you are
not sure whether x will be negative, a proper end of loop statement would be:

until abs(x) < epsilon

where epsilon is a small positive constant. Generally speaking, the nature of
program loops depends greatly on the type of limit desired. But one thing to keep
in mind is that machine constraints, such as the smallest allowed real, are
relevant. For Macintosh Pascal, which supports the SANE Floating Point librar­
ies for its real-number calculations, the exponent range exceeds:

1e -1000to1e + 1000

and maximum output is 12 significant figures. These features are sufficient for
most scientific applications.

Closely related to limits are infinite sums. This is because an infinite sum, if
properly defined and convergent, can be though of as the limit of larger and
larger numbers of terms summed. Perhaps the simplest and most illustrative
example of a useful sum is the series for exp(x):

x2 x3
exp(x) = 1x + 2! + ~ + ...

Note that this provides an alternative definition fore as the number exp(l). As
often happens with these numerical calculations, there is more than one way that
programmers tend to proceed.

Method 1

Method2

(Wrong) For various n, compute xn and n!, divide the former by
the latter, and add all these together. This method has the same
difficulty that was mentioned before: terms can blow up.
(Right} Call the first term, 1, the 0-th term. Then multiply by ~
to get then-th term, and add up all the terms.

Method 2 is exemplified in cases like this: the term ;: is obtained from the term
x; by multiplying the latter by f . Program 3.10, Expo, shows how e can be
calculated with a series, and how this compares with exp(l), which is a floating­
point direct calculation from the SANE library. The resident function exp(l) is
computed in a manner very similar to the sum being analyzed. The output is
shown in Figure 3. 7.

56 • Scientific Programming with Macintosh Pascal

s File Edit Seorch Run Windows

Figure 3. 7 I Expo output

Give x: 3
20 .0655366641
SAHE reference:
2.71626162651

One word of caution: there are many ways of terminating approximations to
infinite sums. Criteria include: stop when the sum is sufficiently near to a known
book value, stop when the next summand is sufficiently near zero, stop when N
terms have been summed, and so on. The exercises for this chapter involve
various criteria for stopping summations.

Differential Calculus
The fundamental entity of differential calculus-the derivative-is a special kind
of limit, and observations from the last section apply. If f(x) is a function, the
derivative (when it exists) is the limit:

df = f' = lim f(x + dx) - f(x)
dx dx->O dx

Familiar derivatives are:

d(x") = n xn-1 ; n constant
dx

d(exp(ax)) = aexp(ax) ; a constant
dx

d(ln(x)) - -
dx x

d(sin(x)) = cos(x)
dx

d(cos(x)) = -sin(x)
dx

Numerical Programs • 57

s File Edit Se11rch Run Windows
~L Drnwing

I

!\
7 1 -s:: lZ

~l

..J

11;1"

Figure 3.8 I PolyPlot output

Each of these can be shown by using techniques of limit analysis. There are
two main approaches to the incorporation of differential calculus in pro­
grams.

Approach 1. Directly calculate directly the derivative of a Pascal function,
either a key function or, more commonly, a user-defined func­
tion.

Approach 2. Use differential properties of some phenomenon, and embody
these properties in program statements. This programming
usually involves what are called differential equations.

For Approach 1, an example is Program 3.11, Poly Plot, which draws a fifth-degree
polynomial on the graphics screen and also indicates the critical points (points at
which ~~ = 0). The graphics output is shown in Figure 3.8.

Approach 2 is by far the more common one for programming differential
calculus. An important case is that of dynamical modeling, in which quantities
change with respect to a time variable. The basic idea is that if you have an
acceleration that is computable for a given time t, then the program segment:

velocity: = velocity + acceleration • dt;
position: = position + velocity • dt;

58 • Scientific Programming with Macintosh Pascal

where dt is some small positive constant, echos the fundamental physics ideas
that:

__ d~(v_e_lo_ci~ty~)- = acceleration;
dt

__ d""""(p_o_si_tio_n-'-)- =velocity;
dt

If one needs also to know time t for output, the simple statement is:

t: = t + dt;

It is interesting that the laws of motion for the particular problem have not even
been referred to above. A law of motion, at least for mechanics problems, would
take a form such as:

acceleration = __ fo_r_c_e __
mass;

acceleration = f(position);

acceleration = f(time);

s File Edit Seorch Run Windows

(* 'force' is assumed already computed*)

(* f is some function *)

(* f is some function *)

Drowi §0 TeHt

Figure 3.9 I Oscillator output

initial position: 1
initial velocity: 0

Numerical Programs • 59

and it should be remembered that the calculus segment involving dt multiplica­
tions is not part of the law of motion per se.

Program 3.12, Mechanics, gives a useful skeleton upon which to build
differential equation solvers.

Program 3.13, Oscillator, shows how to solve the differential equation:

m f.!!_)f_!!_)x + 2b~+ kx = 0
\dt \dt dt

which is the equation for a damped oscillator: mass m on a spring of Hooke's
constant k, with damping coefficient b. Figure 3.9 shows the output of this
program. The graphics.lib has been used to graph real numbers onto the screen.
This technique, which amounts to mapping the region:

-1<x<1
-1 < y < 1

into a convenient square in the middle of the screen, is covered in more detail in
Chapter4.

Newtonrs Method
There is an ingenious method, due to Isaac Newton, of solving an equation by
successive applications of the derivative concept. The idea is to use a function's
own derivative to estimate the rate of change of that function, and thereby
predict other function values. Say you wish to solve the equation:

f(x) = 0

where the function f is known, but might be of a transcendental class which
prevents analytic solutions. If, in absence of known analytic solutions, you
choose an initial x[O], it is likely that:

f(x0) < > 0

Otherwise, you would have a solution. But the actual value f(x0) can be used
together with the derivative:

f,_ ~
- dx

to estimate a better x value, call it x1. The essential algebra is to define:

x = x - f(xo)
1 o f'(Xo)

60 • Scientific Programming with Macintosh Pascal

and in general, to relate the (n + 1)-st estimate to the n-th estimate by:

X =X - f(xrJ
n+1 n f'(xrJ

For reasonable choices of initial Jeo, the sequence:

converges to a solution of the equation f(x) = 0. That is to say, f(Xnl gets closer and
closer to zero as you continue to iterate the equation above for xn+i·

There are several ways to see how this works. One is to observe that if you
actually had an Xii with f(Xn) = 0 (or, since this is extremely unlikely for most
problems, just a very good guess Xii with f being very close to zero) the iteration
equation for xn+l would essentially read:

so the guess would be stable. This is not a proof that Newton's Method finds
solutions, but is suggestive: if the initial choice Xo is sufficiently shrewd, the
approximate equality Xn + 1 = Xii will get very good very rapidly as both of these
terms approach the correct answer. Many numerical analysis texts discuss the
method more rigorously.

Another way to see how Newton's Method works is to note that the iteration
formula for Xn + 1 involves computation of the tangent slope line to f(Xit), and
'shooting a tangent ray' with the slope f' (Xii) to intersect the x-axis. The new
guess is at this point of intersection.

For an example of Newton's Method, consider the following question.
Can you divide two real numbers using operations other than divide? The

answer is yes, you can, by doing Newton's Method. Clearly, it is enough to be
able to compute the reciprocal -} without recourse to division per se. Then any
quotient of reals, say f , can be written:

L=y•_!_
z z

Thus, you only need to analyze a reciprocating function. You need to solve, for a
given z, the equation:

f(x)=.!-z=O x

Now the derivative is:

f' = -1
(x•x)

Numerical Programs • 61

so that the Newton iteration is:

1 - z
Xa

=2•X0 -Z*X0 *X0

For appropriate initial guesses x0 jsee exercises at the end of this chapter) Xn will
converge to + , and from the last equation, you can see that this is done using
only multiplication and subtraction.

Program 3.14, Newton, shows how to solve fjx) = 0 for arbitrary user­
defined functions f. Note that the derivative df is computed by force, using limit
ideas. This is because the program skeleton is written without yet knowing the
user function. When you choose an f, especially a simple one, it is better to place
the analytical derivative into the function block for df. For example, if fjx) =
x•sinjx) - 1, the skeleton program Newton will work, but better accuracy is
obtained by replacing the limit calculation within the df block by the line:

df: = sin(x} + x • cos(x};

Program 3.15, Solver, finds solutions to the equation:

f(x} = x•sin(x} - 1 = O

There are an infinite number of solutions, so the one to which Newton's Method
converges depends on the initial choice Xo· Output for program Solver is shown in
Figure 3.10.

Integral Calculus
Just as differential calculus involves concepts of limits, integral calculus involves
concepts of sums jand also limits). The essential idea is that an integral:

= aJ b
f(x) dx

can be thought of jfor sufficiently smooth f) as a limit:

= lim
n->oo

n-1

.E f(x~ dx
i=O

62 • Scientific Programming with Macintosh Pascal

a File Edit Search Run Windows
Drowin~ D Te Kt

In itial estimate:
2. 78968 667 98

3 ~
2.7719619274
2 .7726361752
2.7726032734
2 .7726047039

~

Figure 3.10 I Solver output

where dx = b;a is one n-th of the x interval of integration, and the~ are spaced
along the interval according to:

Therefore integrals can be computed by correctly setting up summations and
taking a fine enough grid (small enough dx).

Program 3.16, Integral, is another skeleton program which serves to approxi­
mate integrals. No output is displayed in the book for this program, but exercises

. for this chapter involve integrals for which the program can be used.
It should be pointed out that this basic integration technique can be vastly

improved by alterations in the summation. Techniques such as quadrature,
trapezoidal approximation, and so on are covered in numerical analysis texts.
These more sophisticated methods usually improve the approximation by sum­
ming over regions which are not precisely rectangular.

Complex Numbersr Vectors
and Matrices
Pascal is well suited for multidimensional arrays in scientific programming, the
only real defect being that once an array is sized in a declaration, it cannot be re-

Numerical Programs • 63

s File Edit Search Run Windows

Te Ht
1 .000000+ i* O.Oe+O
0 .309017 + i*0.951057
-0.809017+ i*0.587785
-0.809017+ i*-0.587785
0.309017 + i*-0.951056

Figure 3.11 I UnityRoots output

sized within the program. We have put complex numbers, vectors, and matrices
into this section because the ideas are so closely related: a complex number is
something like a 2-vector, a matrix is a collection of vectors, and so on.

Options abound for how to declare and manipulate these objects. One can
set up programs so that a matrix M has its (i,j)-th element accessible as either:

M[i,j)

or

M[i)UJ

or 'record' types can be used, and so on. Complex numbers are a good example
of a time when you might want to use record types. For example, the declara­
tions:

type complex = record
re: real;
im: real;

end;
var z: complex;

allow you to access real and imaginary parts of the complex number z as z.re and
z.im, respectively. Program 3.17, Unity Roots, (corresponding output Figure 3.11)
computes the five fifth roots of unity as complex numbers. These are the values:

27rik
exp -

5
- ; k = 0 .. 4

64 • Scientific Programming with Macintosh Pascal

Note there is a procedure cexp which produces the complex exponentiation of a
complex number, using the fact that:

exp(a+bi) = exp(a) * (cos(b) + i sin(b))

For vectors and matrices, one way to proceed is to declare:

type vector = array[1..2) of real;
matrix= array[1 .. 2,1..2] of real;

var v:vector;
m:matrix;

and refer to vector components as v[i) and matrix components as m[i,j). Another
w_ay, as suggested above, is to replace the second type declaration with:

matrix = array[1 . . 21 of vector;

in which case matrix elements are accessed as m[i) m.
Program 3.18, Ray, rotates a ray on the graphics screen by using an insert

from the graphics.lib and calculates 2-space rotations according to:

v' = Mv

where vis a vector, v' is the rotated vector, and Mis a rotation matrix:

~os(a)
M=

sin(a)

-sin(a)]

cos(a)

(a = the angle of rotation)
The typical output is shown in Figure 3.12. Later, when you apply animation

techniques, such a ray can be made to rotate with past-blanking, causing rota­
tional motion to appear.

There are several ways to perform graphics rotations. One way is to use the
real-valued rotation matrix but specify integer-valued vectors. Then multiplica­
tion Mv would be truncated (in all vector components) so that v' components are
again integer valued. This speeds up the graphics. The fastest way to rotate is to
stick with integers always, avoid the matrix, and instead, use incremental rota­
tions as in Program 3.19, Spin, which uses the fact that:

X·- x - .:J_ • . - n•

x
y:=y+n;

Numerical Programs • 65

s File Edit Search Run

(0. 1): 4

Figure 3.12 I Ray output

Large N is an incremental rotation (rotation matrix generator) . The second line
reference to the var x (which has been changed already in the first line) is
intentional: it turns out that this approximation of rotations is relatively stable.
Typical output is shown in Figure 3.13, and comes out significantly faster than
does the full, real-number method of program Ray.

One of the powerful features of Pascal is the capability for multidimensional
modeling of dynamical trajectories. Such applications are covered in later chap­
ters. For the moment, we give a skeleton upon which to build models which
require ensembles (of particles, for example) to be updated in terms of velocity
and position at each time t. Program 3.20, VMechanics,shows how to incorporate
these updates in simple procedures.

The update-procedure calls near the end of the program comprise the vector
equivalent of the usual calculus of motion:

vel: = vel + acc•dt;
pos: = pos + vel•dt;

The symmetry of these relations, whether for single or multidimensional dynam­
ical variables, allows you to use just one procedure in which you update the
variable, knowing its time derivative.

66 • Scientific Programming with Macintosh Pascal

s File Edit Seorch Run

Figure 3.13 I Spin output

s File Edit Seorch Run Windows

lineorsoluer

progrom linearsolver;
(*SOLVES D Te Ht

How many unknowns ?3 Qj
const Enter coefficients in 3 rows:

dim= 11 1 2 3
type

1 -1 0 vector=
matrix= 1 3 2

vor Enter a row of 3 constants:
m : matr 1 2 9
x, c: vec 5.833 3.833-4.167
num: int

procedur
~

(*Read av l2J
vor

j : integer;

Figure 3.14 LinearSolver output

Numerical Programs • 67

Linear Equations
A set of n simultaneous linear equations inn unknowns Xl, X2, ... , Xn can be
cast in the form:

M11 X1 + M12X2 + ... + M1nXn = C1
M21 X1 + ... = C2

Mn1 X1 + ... + MnnXn = Cn

so that the coefficients matrix M is an n-by-n square matrix, and the constants
column c is an n-dimensional vector. When the determinant of Mis non-zero,
there will be precisely one simultaneous solution, thought of as a vector
Xl, ... ,Xn. The familiar Cramer's Rule allows you to solve for the unique solu­
tion. A program which solves such a system is Program 3.21, LinearSolver, with
typical output shown in Figure 3.14.

Other aspects of the matrix.lib are covered in later chapters.

Exercises

1. Write a program to generate the sequence of Fibonacci Numbers which start

0,1,1,2,3,5,8,13, ...

obeying the recurrence relation that each term is the sum of the previous
two. You should use type Longint to get maximum size.

2. Is any Fibonacci number besides 1 a perfect square? To test if a number N is a
perfect square, you can see if sqrt(N) is sufficiently near to an integer (how
near?), or you can test to see whether all primes dividing N appear to even
powers. Thus 1125 = 3*3*5*5*5 is not a perfect square because 5 appears to
an odd power (3). Here is another curious criterion for squares: n is a square
if and only if n has an odd number of divisors, e.g. n = 9 is divisible by 1, 3, 9.

3. Write a program to test the celebrated 3X + 1 Problem. This beautiful and
still mysterious problem runs like so: Take an integer n > 1. If it is odd,
multiply by 3 and add 1. If it is even, divide by two. Continue applying these
rules until you reach 1. For example, starting with n = 3, you get:

3, 16,8,4,2, 1

whereas n = 27 takes over 100 steps to reach 1! A first program should allow
you to input the initial n and perform the loop until n = 1, typing out the
intermediate numbers along the way. No one knows if there are any initial n
which do not go down to 1, yet no one can prove that all numbers will so
decay. It is known that at least all numbers up to about 1 e 12 will decay to 1.

68 • Scientific Programming with Macintosh Pascal

4. Write a program that factors input numbers N using the principle that if N +
sqr(m)isaperfectsquareq•q,thenN = q•q - m*m = (q+m)•(q-m).

5. In the Math.lib there is a function COMBO(n,m) which computes the com­
binatorial bracket:

(~) =
nl

ml (n-m) !

Write a program that displays Pascal's Triangle, which appears thus:

1
11

121
1331

14641
15101051

and has the numbers combo(n,m) listed horizontally (m = 0,. . . ,n) along the
n-th row (0-th row is the first, singleton 1). You should use the writedraw
procedure to place the numbers in the Drawing window.

6. Verify with a program that the sum of combo (n,m) over m = 0, ... ,n is an
exact power of two.

7. Find all twin prime pairs less than 10,000. A twin prime pair is a consecutive
set of odd primes, such as (3,5) or (101, 103). The program Sieve is probably
the fastest way to do this-one simply finds the consecutive pairs remaining
after the sieve is performed on the main array.

8. Write a program to find a solution x to the modular quadratic equation:

x•x = Amodp

where p is prime. An A for which a solution x can be found is called a
quadratic residue of the prime p. For various p, how many of the numbers
(0, 1, ... ,p - 1) are quadratic residues?

9. Find the elements of the continued fraction for the real number:

J!.=.ll.
(e+1)

where e = exp(1). Then use these elements to go backward and estimate the
value of e.

Numerical Programs • 69

10. Find the first few elements of the continued fraction for 7r. No one knows
what the pattern, if any, for this number might be, but it is remarkable that
just a few terms of the fraction give a surprising number of accurate decimals
for 7r. With a program, comment on the accuracy of 7r if you take just the first
4 elements a0 , a1, a2 , a3 •

11. There is a beautiful result from the theory of continued fractions: that the
elements a0 , a1, a2 , .•. eventually fall into a periodic sequence if and only if
the real positive number x to be expanded is q quadratic surd; i.e., has the
form:

_ (A + - sgrt(B))
X- C

where A, B, and Care integers. With a program, find the elements, and guess
the pattern for, the numbers:

sqrt(3)

(1 + sgrt(13))
2

(1 + sgrt(5))
2;

Try to determine on paper some inverse problems, such as what is the exact
value of the continued fraction for element sequences such as:

(ao,a,.8:1 •...) = (1,2,3,1,2,3,1,2,3,1,2,3, ...) or (5,5,5,5,5,5,5,5, ...)

12. Most of the elementary mathematical functions can be computed as certain
kinds of continued fractions. A good example is:

1 - x2
3 - x3

5 - ...

Use this fact to define your own tan, sin, and cos functions jcall them
something else so as not to clash with the Pascal keywords), and try it out by
computing some standard values such as tanj7r/4), sin(7r/2), and so on.

13. Use the observations of the last problem to compute values of exp(x), using
the fact that:

tanh(x) = (exp(x) - exp(- x))
(esp(x) + esp(- x)

70 • Scientific Programming with Macintosh Pascal

and that the continued fraction for tanh(x) is the same as for tan(x) except
that all - (minus) signs are replaced by + (plus} signs.

14. Here is an exercise in the art of computing limits. It turns out that the limit of
the expression:

e
n! * (-)"

n

(sqrt(2n))

as n goes to infinity is an interesting number. Find a numerical estimate for
this limit, square the estimate, and guess what the limit is.

15. The celebrated Riemann Zeta Function is given by:

r cs)= E n-s

Estimate 7r by two different means:

'11"2
r(2) = 6

7r4
r(4) = 9o

and report which method is more efficient by finding out how many tick­
counts pass for each method up to some guess value of abs(estimate-11"),
perhaps le - 4. It is a good idea to only compute the sqr() or sqr(sqr())
functions every so often-in fact, you do not need to compute these in
principle until the sum for the Zeta Function is performed.

16. Find the numerical limit of the operations:

The exact result can easily be obtained in your head if you observe that
sqrt(2) to the answer is equivalent to the answer.

17. Write a program to find all of the real zeros of a general quartic polynomial:

A x4 + B x3 + C x2 + D x + E = 0

Numerical Programs • 71

where the coefficients A, B, C, D, E are input at run-time. There can be, at
most, four real zeros, and various criteria exist for finding how many there
can be, how large they can be, and so on.

18. Write a program to find the period for one full cycle of the simple pendulum
motion:

and verify the theoretical result that P = 2 * 7r * sqrt + . One way to do this is
to simply print out the values of x vs. time t and note when x recurs to its
original value. Theory says that the period for this system is independent
from the initial jnon-zero) x.

19. The pendulum equation for the last exercise is not exact. The true pendulum
obeys:

d2x -n
dt2 = L * sin(x)

for which the simplification uses the near equality of x and sinjx) for small
angles x. Write a program to find the period, which now depends on the
initial x and ~: , and verify the theoretical result that for initial angle xjO) =
; , and initial rest d:i<0> = 0:

P = (absolute constant) • 2 • 11" • sqrt (~ J

The constant is greater than one and can be derived from the theory of
elliptic integrals.

20. Find the real fifth root of two using Newton's Method.

21. Using the method in the text-doing division with only multiplication and
subtraction-write a program which takes two input real numbers and, by
starting with initial guess = 1 in Newton's Method, appears to converge on
the correct ratio. Note that the magnitude of the denominator is essential: it
can only be on one side of the value unity. Can you suggest a way to get
around this?

22. Use Newton's method to find square roots of numbers z, using the formula:

f(x) = x2 - z = O

You will want to define your own Pascal function version of sqrt which will
take any reasonable input z. A good guess for initial xis 1, or + , etc.

72 • Scientific Programming with Macintosh Pascal

23. Find an approximate value for the integral:

exp(- X*X) dx

24. Write a program which animates a rotating 'wheel' with four spokes, using
the expedient of approximate integer-based rotations as in program Spin.

25. Write a program which uses Matrix.lib to solve the two simultaneous equa­
tions:

2x + 4y = 64
13x - 2y = -4

26. Using procedures for computing the dot product and magnitude of two
vectors and one vector, respectively, write a program which outputs the
angle between two input vectors, according to:

cos(theta) = (u·v)
lul lvl

27. A parallelepiped can be defined by three 3-space vectors A, B, C. The figure
fits into the 'socket' formed by these three vectors emanating from the
origin. The volume of the parallelepiped is given by:

v = I (Ax B) . c I

Write a program which incorporates dot-product and cross-product pro­
cedures to compute volumes of such figures. Test this out on a unit cube,
whose A, B, C form an orthonormal system.

Answers

1. The recursion should look like this:

c:= a+ b;
b:=a;
a:= c;

2. The only such Fibonacci is 144.

3. The recursion should look like this:

ifnmod2 = Othenn:= ndiv2elsen:= 3*n+1;

Numerical Programs • 73

4. You could choose a 'perfect square' test by defining a function:

function isperfect(n: integer): boolean;
begin

x: = sqrt(n);
if abs(x- n) < 4•1n then isperfect: =true else isperfect: =false;

end;

so that, for example, isperfectj9) will be true and isperfectjlO) false. Then
you would add the test loop:

isperfect(N + sqr(m))

If true, then the factors of N are:

round(sqrt(N)) ± m

5. This is straightforward. The drawing position for displaying combojn,m) can
be, for example:

x: = 200 - a•n + 2•a•m;
y:= 20 + b•n;

for appropriate constants a and b.

6. This is straightforward. Something like:

sum:=O;
form:= 0 ton do sum:= sum + combo(n,m);

will do. If you print out 1 ~~~~>m> you will get a real number very close to the
power of two involved.

7. After sieving, just check for each prime p whether the jp+2)-th array
element reads prime.

8. The number of quadratic residues is (P~1> for odd primes p. The number p - 1
is a quadratic residue of an odd prime p only if p mod 4 = 1.

9. The elements form just about the simplest arithmetic progression one can
imagine.

10. The first few are 3, 7 but very soon there is a relatively large element. If you
stop there, the approximation is especially efficient.

74 • Scientific Programming with Macintosh Pascal

11. The exact expansions are:

sqrt(3): 1,1,2,1,2,1,2,1,2, ...

(1 + sqrt(13))
2 : 2,3,3,3,3,3,3, ...

(1 + sqrt(5))
2 : 1,1,1,1,1,1,1,. ..

The inverse solutions are:

(4 + sgrt(37))
1,2,3,1,2,3,1,2,3, ... : 7

5,5,5,5, ... : (5 + ~qrt(29))

12. You will want to use the fact that sin and cos are related to tan by:

. tan(x) 1
sm(x) = A ; cos(x) = A
where A = ± sqrt(1 + sqr(tan(x)))

13. The relation between exp and than can be inverted to give:

(1 + tanh(x))
exp(x) = sqrt (1- tanh(x))

14. The limit is sqrtl'll'). This comes from Sterlings formula for approximating
factorials.

15. The power-four sum is more efficient by most criteria. Though the power­
four case requires about twice as many operations for each summand !two
squarings of n and a divide), the error after T terms is of order r~ , as
compared with -f- for the power-two case.

16. The value of the infinite ladder is 2. The recursion is particularly simple. In
fact, the block:

x: = sqrt(2);
repeat
x: = exp (~) • 1n (2));

until ...

will suffice.

Numerical Programs • 75

17. This is an exploratory problem. There are many approaches to this, and you
should consult a numerical analysis text for the best approaches.

18. A loop should follow the general rule for dynamic calculations. One solution
is to loop on:

v: = v - (g/L) * dt;
x:= x + v•dt;
t:= t + dt;

and print out x values versus t values. One trick for finding a precise period is
to find the times when velocity v changes sign. There are two such times per
period.

19. The period for the stated initial conditions is about 1.2 times the period for
the simplified problem.

20. To solve f(x) = xs - 2 = 0, observe that f' (xi = 5x4 so that the recursion is:

x 5-2
Xn+1 = Xn - n __

5xn4

which can be simplified to be:

x: = 1; (* or some other initial guess *)
repeat 2

x: = 4•x/S + ___,("""5•-sq_r..,..(x'"""))­

until ...

The criterion (until ...) can be abs(x5 - 21 < le-10, or some such similar
check for accuracy.

21. A program block to compute the ratio y/z without explicit division should
look like this:

readln(y,z);
x:= 1;
repeat
x:= 2•x - z•x•x;

until abs(z•x -1) < 1e-10;
writeln(Y*x);

The method works if z is greater than unity. There are various ways around
this constraint. One of them is to multiply bothy and z by the same large real
to begin with, for this does not affect the ratio.

76 • Scientific Programming with Macintosh Pascal

22. One definition would be:

function myroot(z:real):real;
varx:real;
begin

end;

x:= z/2;
repeat

x: = x/2 + z/(2*x);
until abs(z - sqr(x)) < 1e -10;
myroot:= x;

23. The exact value is sqrtl'll"). A clean approach is to do a straightforward sum of
exp! - sqrlx)) over a wide range and multiply the sum by dx.

24. Start by declaring x, y as Longin ts. Then initialize x: = 10000; y: = O; and also
xold: = x; yold: = y.

Then loop on:

x:= x + ydiv100;
y:= y - xdiv100;
animate(xold,yold,x,y);

The animate procedure is to erase the spokes defined by the line from (0,0) to
lxold,yold) and its three 'counterparts'. Then draw in the new spokes from
10,0) to lx,y). To draw the spokes, you can add the following within the
animate procedure:

penpat(white);
moveto(250,125);
lineto(250 + xold,125-yold);
moveto(250,125);
lineto(250-yold,125-xold);
moveto(250,125);
lineto(250-xold, 125 + yold);
moveto(250,125); ·
lineto(250 + yold, 125 + xold);
penpat(black);
(* do the same 8 procedures but with x,y instead *)

You ought to be able, from the symmetry of the operations, to compact this
procedure further by having yet another procedure which does the moveto;
lineto sequence.

Numerical Programs • 77

25. First set the matrix dimension to 2, set up the 2 X 2 matrix a, and set up the 2-
column c. Then the simple call:

solve(2,a,c,x);

should give the unique solution (x,y) as x[l] = 2, x[2] = 15.

26. A typical dot product can be done with a function, such as:

function dot(u,v:vector):real;
var n:integer;

temp: real;
begin

temp:=O;
for n: = 1to3 do temp:= temp + x[n)•y[n];

dot:= temp;
end;

27. There should be a procedure called cross, which sets up a vector variable D
asAXB:

procedure cross(A, B:vector; var O:vector);
begin
0(1): = A[2J•B[3) - A(3J•B(2];
0(2): = A(3J•B[1] - A[1J•B[3);
0(3):= A[1]•B[2] - A[2)•B[1);
end;

The dot product can be defined as a function as in the previous answer. Then
the volume can be obtained from:

cross(A,B,O);
volume:= sqrt(dot(O,C));

78 • Scientific Programming with Macintosh Pascal

Program 3.l(a)

program Factorial;
(* COMPUTES FACTORIALS *)

var
n : integer;
factorial : Longint;

begin
n := 1;
factorial := 1;
repeat
factorial := factorial * n;
writeln(factorial : 1);
n := n + 1;

until factorial > leS;
end.

Program 3.l(b)

program RecFactorial;
(* RECURSIVE CALCULATION OF FACTORIALS *)

var
n : integer;

function factorial (n
begin
if (n > 1) then

integer) integer;

factorial := n * factorial(n - 1);
end;

begin
repeat
readln (n);
writeln(factorial(n));

until false;
end.

Program 3.~(a)
program Primes;
(* STRAIGHTFORWARD PRIME TESTER *)

var
p, divisor integer;

Numerical Programs • 79

begin
showtext;
repeat
write('Give p: ');
readln (p);
divisor := 2;
while (p mod divisor <> 0) and (divisor < p I divisor) do
begin
if divisor = 2 then
divisor := 3

else
divisor := divisor + 2;

end;
if (p mod divisor <> 0) or (p = divisor) then
wri teln ('prime')

else
writeln('divisible by ' divisor

until eof;
end.

Program 3.2(b)

program RecPrimes
(* GENERATES PRIME NUMBERS VIA A RECURSIVE FUNCTION *)

var
p : Longint;

function f (n : integer;
p : longint) : boolean;

begin
if sqr(n) > p then

f := true
else
begin
if p mod n = 0 then

f := false
else if n > 2 then

f := f (n + 2, p)
else

f := f(n + 1, p);
end;

end;

begin
showtext;
repeat

{continued}

80 • Scientific Programming with Macintosh Pascal

write ('Give p: •);
readln(p);
if f(2, p) then
writeln ('prime')

else
writeln('composite');

until eof;
end.

Program a.a
program sieve;
(* THE SIEVE OF ERATOSTHENES *)

con st
max 500;

var
sieve: array[l •• max] of boolean;
n, k, divisor : integer;

begin
showtext;
for n := 1 to max do

sieve[n] := true; (* Start out assuming all are prime *)
divisor :- 2;
repeat

k := 2 * divisor;
while k <= max do
begin

sieve[k] := false;

k := k + divisor;
end;

repeat

(* strike all proper multiples of *)
(* divisor *)

divisor := divisor + 1;
until sieve[divisor]; (*Go find the next prime*)

until divisor> sqrt(max);
for k := 2 to max do
if sieve[k] then
writeln (k : 1);

end.

Program3.4

program wilson;
(* PRIMALITY TEST VIA WILSON'S THEOREM *)

var
p, factorial
n : integer;

begin
showtext;
repeat

Longint;

writeln ('Give p: •);
readln (p);
factorial := 1;
for n := 1 to p - 1 do
factorial := (n * factorial) mod p;

if factorial + 1 = p then
wri teln ('prime•)

else
writeln('composite');

until eof;
end.

Program3.5

program pollard;

Numerical Programs• 81

(* FACTORS LONG INTEGERS USING THE 'POLLARD RHO' METHOD *)

var
p, x, y, g : longint;

function GCD (a, b : longint)
var
r, q : longint;

begin
if b < 0 then

b := -b;
if a < 0 then

a := -a;
if a > 0 then

longint;

{continued}

82 • Scientific Programming with Macintosh Pascal

begin
b := b mod a;
r := 1;
if b =- 0 then

r := O;
while r > 0 do
begin

q := a div b;
r :• a - q * b;
a := b;
b := r;

end;
end;

GDC := a;
end;

begin
showtext;
repeat
write('Give p: ');
readln (p);
x :"" 3;
y := 3;
repeat
x := (x * x + 1)
y := (y * y + 1)
y := (y * y + 1)
write (' • ');

mod
mod
mod

g := GDC(x - y, p);
until (g > 1);
writeln(g);

until eof;
end.

Program El.&

program RootOfTwo;

p;
p;
p;

(* CONTINUED FRACTION METHOD - CALCULATES ROOT OF TWO *)

var
pPast, pPresent, pFuture, qPast, qPresent, qFuture
x : real;

begin
showtext;
pPast :- O;
qPast : ... 1;
pPresent : ... 1;
qPresent := 2;
repeat

Longint;

pFuture := 2 * pPresent + pPast;
qFuture := 2 * qPresent + qPast;
x := pFuture I qFuture + 1;
pPast := pPresent;
qPast :m qPresent;
pPresent := pFuture;
qPresent := qFuture;
writeln(x : 6 : 12);

until pFuture > le7;
writeln (sqr (x) : 6 : 12);

end.

Program3.7

program Fraction;

Numerical Programs • 83

(* COMPUTES THE INTEGER ELEMENTS OF THE CONTINUED FRACTION *)
(* FOR A GIVEN REAL NUMBER *)

var
x real;
a : integer;

begin
showtext;
write('Give real number: ');
readln(x);
repeat

a :- trunc (x);
writeln(a: 1);
x := 1 I (x - a);

until x > 10000;
end.

Program3.B

program e;
(* COMPUTES e FROM COMPOUND INTEREST FORMULA *)

con st
n "' 10000;

var
j integer;
e : real;

begin
showtext;
writeln('Please wait for about a minute'); (continued)

84 • Scientific Programming with Macintosh Pascal

e :• 1;
for j :- 1 to n do

e :• (1 + 1 I n) * e;
writeln(e : 6 : 12);

end.

Program Sl.9

program limit;
(* COMPUTES LIMIT OF sin(x)/x AS x APPROACHES ZERO *)

var
x : real;

begin
showtext;
x := 1;
repeat
writeln(sin(x) I x
x : .. x I 2;

until x < le-5;
end.

Program Sl.10

program expo;

8 10);

(* COMPUTES exp(x) FROM POWER SERIES *)

var
x, term, sum real;
n : integer;

begin
showtext;
sum :• 1;
write('Give x: ');
readln(x);
term :• 1;
sum :• O;
n := O;
repeat

sum :• sum + term;
n :m n + 1;
term := term * x I n;

until abs(x In) < le-2;
writeln(sum: 8 : 10);
writeln('SANE reference: ', exp(x)

end.
8 10);

Numerical Programs • 85

Program 3.11

program polyplot;
(* GRAPHS QUINTIC POLYNOMIAL AND ITS CRITICAL POINTS *)

con st
delta = 0.03;

var
x : real;
oldsgn : integer;

function sgn (x : real)
begin
if x < 0 then

sgn := -1
else if x > 0 then

sgn := 1
else

sgn := O;
end;

integer;

function f (x
begin

real) : real;

f : = 10 * (x - 0 • 8) * (x - 0 • 4) * (x - 0 • 1) * (x + 0 • 2) * (x + 0 • 7 5) ;
end;

function df (x : real)
con st
epsilon = le-6;

begin

real;

df := (f(x +epsilon) - f(x)) I epsilon;
end;

procedure CLEAR;
(* Activates and expands Drawing Window to fill screen *)

var
windowrect : rect;

begin
hideall;
setrect(windowrect, 2, 35, 512, 342);
setdrawingrect(windowrect);
showdrawing;

end;

procedure MAP (x, y : real;
var hor, ver : integer);

(* Returns hor,ver as pixel integers for given real coords (x,y) *)
begin

(continued}

86 • Scientific Programming with Macintosh Pascal

if abs(x) > 1.9 then
x := x I abs(x) * 1.9;

hor := 255 + trunc(x * 130);
if abs(y) > 1 then

y := y I abs(y);
ver := 138 - trunc(y * 130);

end;

procedure DRAW (x, y
(* Draws to (x,y) *)

var
hl, vl : integer;

begin
MAP(x, y, hl, vl);
lineto(hl, vl);

end;

real);

procedure SHIFT (x, y : real);
(* moves invisible to (x,y) *)

var
hl, vl : integer;

begin
MAP(x, y, hl, vl);
moveto(hl, vl);

end;

begin
CLEAR;
SHIFT(l, 0);
DRAW (-1, 0);
SHIFT(O, -1);
DRAW(O, 1);
x := -0.9;
oldsgn := sgn(df(x));
SHIFT(x, f(x));
repeat

DRAW (x, f (x)) ;
if sgn(df(x)) <> oldsgn then
begin
pensize(l, 2);
SHIFT(x - 0.2, f(x));
DRAW(x + 0.2, f(x));
SHIFT(x, f(x));
pensize(l, 1);

end;
oldsgn := sgn(df(x));
x := x + delta;

until x > 0.9;
end.

Numerical Programs • 87

Program 3.12

program mechanics;
(* SKELETON SOLVER FOR MECHANICS PROBLEMS *)

con st
dt = 0.001; (* this is your small time increment *)

var
pos, vel, ace : real;
t : real;

begin
showtext;
write('initial position: ');
readln(pos);
write('initial velocity: ');
readln(vel);
t :"" O;
repeat

t :- t + dt;
(* insert mechanics formula for 'ace' components here *)

vel :~ vel + ace * dt;
pos := pos + vel * dt;

(* do your output here as desired *)
until false; (* Or some appropriate condition *)

end.

Program 3.13

program oscillator;
(* DAMPED OSCILLATOR*)

con st
dt"" 0.03; (* this is your small time increment *)
m l;
k 100;
b l;

var
pos, vel, ace
t : real;

procedure CLEAR;

real;

(* Activates and expands Drawing Window to fill screen *)
var

windowrect : rect;

{continued)

88 • Scientific Programming with Macintosh Pascal

begin
hideall;
setrect(windowrect, 2, 35, 512, 342);
setdrawingrect(windowrect);
showdrawing;

end;

procedure MAP (x, y : real;
var hor, ver : integer);

(* Returns hor,ver as pixel integers for given real coords (x,y) *)
begin
if abs(x) > 1.9 then

x := x I abs(x) * 1.9;
hor := 255 + trunc(x * 130);
if abs(y) > 1 then

y := y I abs(y);
ver := 138 - trunc(y * 130);

end;

procedure DRAW (x, y
(* Draws to (x,y) *)

var
hl, vl : integer;

begin
MAP(x, y, hl, vl);
lineto(hl, vl);

end;

real);

procedure SHIFT (x, y : real);
(* moves invisible to (x,y) *)

var
hl, vl : integer;

begin
MAP(x, y, hl, vl);
moveto(hl, vl);

end;

begin
CLEAR;
SHIFT(-1, 1);
DRAW(-1, -1);
SHIFT(-1, 0);
DRAW (1, 0);
showtext;
write('initial position: ');
readln(pos);
write ('initial velocity: ');
readln(vel);
t :- O;
repeat

Numerical Programs • 89

ace := -k * pos I m - 2 * b * vel I m;
vel := vel + ace * dt;
pos := pos + vel * dt;
if t = 0 then
SHIFT(t - 1, pos)

else
DRAW(t - 1, pos);

t := t + dt;
until t > 2; (* Or some appropriate condition *)

end.

Program 3.14

program newton;
(* GENERAL NEWTON'S METHOD SOLUTION SEEKER *)

var
x, newx real;

function f (x : real) : real;
begin

(*Define user function here, f:- ••• *)
end;

function df (x : real)
con st
epsilon = le-6;

begin

real;

df := (f(x +epsilon} - f(x}) I epsilon;
end;

begin
showtext;
write('Initial estimate: ');
readln (newx);
repeat

x :- newx;
newx :~ x - f(x) I df(x);
writeln(newx : 8 : 10);

until abs(x - newx) < le-9;
end.

Program 3.15

program solver;
(* SOLVES TRANSCENDENTAL EQUATION x*sin(x) -1 - 0 *)

var
x, newx real; {continued}

90 • Scientific Programming with Macintosh Pascal

function f (x : real)
begin

f :- x * sin(x) - 1;
end;

function df (x : real)
con st
epsilon = le-6;

begin

real;

real;

df :- (f(x +epsilon) - f(x)) I epsilon;
end;

begin
showtext;
repeat
write('Initial estimate: ');
readln(newx);
repeat
~ :• newx;
newx :- x - f(x) I df(x);
writeln(newx : 8 : 10);

until abs(x - newx) < le-5;
until eof;

end.

Program 3.16

program integral;
(* CALCULATES GENERAL INTEGRALS *)

con st
grain = 100;

var
(* This is the number of pieces in interval *)

a, b, x, int, dx : real;
i : integer;

function f (x : real) : real;
begin

(*Define user function to be integrated, f:= ... *)
end;

begin
showtext;
write('Limits ab: ');
readl.n(a, b);
dx := (b - a) I grain;
int := O;
for i := 0 to grain - 1 do

int :=int+ f(x + i * dx);
writeln(int * dx : 8 : 10);

end.

Program 3.17

program unityroots;
(* COMPUTES THE FIVE FIFTH ROOTS OF UNITY *)

con st
pi = 3.1415926535897932;

type
complex = record

re : real;
im : real;

end;

var
z, u : complex;
n : integer;

procedure cexp (var u, z
(* u becomes exp(z) *)
begin

complex);

u.re := cos(z.im) * exp(z.re);
u.im := sin(z.im) * exp(z.re);

end;

begin
showtext;
for n := 0 to 4 do
begin
z.re : .. O;
z.im := 2 * pi * n I 5;
cexp(u, z);
writeln(u.re 3 6, •+ i*', u.im

end;
end.

Program 3.18

program ray;

3

(* SPINS A 2-VECTOR USING REAL ARITHMETIC *)

type
vector= array[l .. 2] of real;
matrix= array[l .• 2, 1 •. 2] of real;

Numerical Programs • 91

6);

{continued)

92 • Scientific Programming with Macintosh Pascal

var
v vector;
m matrix;
a real;

procedure mul vect (var v
m : matrix);

var
i, j : integer;
u : vector;

begin
for i := 1 to 2 do
begin
u[i] :- O;
for j := 1 to 2 do

vector;

u[i) :== u[i] + m[i, j] * v[j];
end;

for i := 1 to 2 do
v[i] := u[i];

end;

procedure CLEAR;
var

windowrect : rect;
begin
hideall;
setrect(windowrect, 2, 35, 512, 342);
setdrawingrect(windowrect);
showdrawing;

end;

procedure MAP (x, y : real;
var hor, ver : integer);

begin
if abs(x) > 1.9 then

x := x I abs(x) * 1.9;
hor :== 255 + trunc(x * 130);
if abs(y) > 1 then

Y := y I abs(y);
ver := 138 - trunc(y * 130);

end;

procedure DRAW (x, y
var
hl, vl : integer;

begin
MAP(x, y, hl, vl);
lineto(hl, vl);

end;

real);

Numerical Programs • 93

procedure SHIFT (x, y
var
hl, vl : integer;

begin
MAP(x, y, hl, vl);
movetc(hl, vl);

end;

begin
penmode(patxor);
CLEAR;
showtext;

real);

write('Incremental angle (0.1): ');
readln(a);
v[l] :- 1;
v[2] := O;
m[l, 1) := cos(a);
m[l, 2) :- -sin (a);.
m[2, 1) := -m[l, 2];
m[2, 2) := m[l, 1];
repeat

SHIFT(O, 0);
mulvect(v, m);
DRAW (v [1] , v [2]) ;

until false;
end.

Program 9.19

program spin;
(* SPINS A 2-VECTOR USING INTEGER ARITHMETIC *)

var
x, y : longint;

procedure CLEAR;
(* Activates and expands Drawing Window to fill screen *)

var
windowrect : rect;

begin
hideall;
setrect(windowrect, 2, 35, 512, 342);
setdrawingrect(windowrect);
showdrawing;

end;

begin
CLEAR;
pensize(2, 2);
penmode(patxor); {continued}

94 • Scientific Programming with Macintosh Pascal

x := 1500;
y := O;
repeat

x := x - y div 10;
y := y + x div 10;
moveto(250, 125);
lineto(250 + x div 10, 125 + y div 10);

until false;
end.

Program 3.~o

program vrnechanics;
(* SOLVER FOR MULTI-DIMENSIONAL MECHANICS *)

con st

dim = 2; (* this is your number of space dimensions *)
dt = 0.001; (* this is your small time increment *)

type
vector= array[l .. dim] of real;

var
pos, vel, ace
t : real;

vector;

procedure READVECT (var a
var

i : integer;
begin
for i := 1 to dim do
read(a[i]);

end;

vector);

procedure update (var a
b : vector);

vector;

var
i : integer;

begin
for i := 1 to dim do

a [i] : = a [i] + dt * b [i] ;
end;

begin
write('initial pos components: ');
READVECT(pos);
write('initial vel components: ');
READVECT(vel);
repeat

t := t + dt.;

Numerical Programs • 95

(* insert mechanics formula for 'ace' components here *)
update(vel, ace);
update(pos, vel);

(* do your output here as desired *)
until 0 = l;

end.

Program :3.21

program linearsolver;
(* SOLVES n LINEAR EQUATIONS IN n UNKNOWNS *)

con st
dim = 11;

type
(* There can be at most 10 = dim-1 unknowns *)

vector array[l .. dim] of real;
matrix= array[l .. dim, l .. dim] of real;

var
m : matrix;
x, c : vector;
num : integer;

procedure READVECT (n : integer;
var x : vector);

(* Read a vector of dimension n *)
var

j : integer;
begin
for j := 1 to n do
read(x[j]);

readln;
end;

procedure READMAT (n : integer;
var m: matrix);

(* Read an nXn matrix *)

var
i, j : integer;

begin
for i := 1 to n do
begin
for j := 1 to n do
read(m[i, j));

readln;
end;

end;

procedure WRITEVEC (n : integer;
x : vector);

(* Output the vector x of dimension n *) {continued}

96 • Scientific Programming with Macintosh Pascal

var
i, j : integer;

begin
for i :m 1 to n do
write(x(i] 6 : 3);

writeln;
end;

function DET (n : integer;
a : matrix) : real;

(* Return the deteDllinant of nXn matrix a *)
var
ii, jj, kk, 11, ff, nxt : integer;
piv, en, big, temp, term : real;

begin
ff :- 1;
for ii := 1 to n - 1 do
begin
big :- O;
for kk := ii to n do
begin
term:= abs(a(kk, ii]);
if term - big > 0 then
begin
big :- term;

11 := kk
end

end;
if ii - 11 <> 0 then
ff := -ff;

for jj := 1 to n + 1 do
begin

temp :~ a[ii, jj];
a(ii, jj] := a(ll, jj];
a(ll, jj] := temp

end;
piv := a(ii, ii];
nxt := ii + 1;
for jj := nxt to n do
begin

en := a[jj, ii] I piv;
for kk := ii to n + 1 do
a(jj, kk] := a(jj, kk] - en * a[ii, kk]

end
end;

temp := 1;
for ii := 1 to n do
temp :•temp * a(ii, ii];

DET := temp * ff
end;

procedure SOLVE (n : integer;
a matrix;
c vector;
var x : vector);

var
k integer;
d : real;

procedure swap (n, k : integer;
var a matrix;
var c : vector);

var
e : real;
j : integer;

begin
for j := 1 to n do
begin

e := c[j];
c[j] := a[j, k];
a[j, k] := e

end
end;

begin
d := DET(n, a);
for k := 1 to n do
begin

swap(n, k, a, c);
x[k] := DET(n, a) I d;
swap (n, k, a, c)

end
end;

begin
showtext;
write('How many unknowns ?');
readln (num) ;

Numerical Programs • 97

writeln('Enter coefficients in ', num: 1, ' rows: ');
READMAT(num, m);
writeln('Enter a row of ', num: 1, ' constants: ');
READVECT(num, c);
SOLVE(num, m, c, x);
WRITEVEC(num, x);

end.

Graphics and
Animation
THEME: You will learn how to draw and animate in two
dimensions. This chapter prepares you for later, more topical
chapters including a chapter on 3D graphics.

GOALS: To be able to model physical phenomena, either by
animation or by static visualization.

LIBRARIES USED: Graphics.lib
Math.lib

REFERENCE MATERIALS: Textbooks and references in the
areas of interest in your discipline that contain problems you
may want to solve with the computer.

Real-valued Coordinates
In this chapter, the Graphics.lib figures prominently. The library was created on
the basis of 'most-needed' graphics procedures. Note that Graphics.lib is useful
whenever you have to plot real numbers and may be avoided whenever you need
only integer plots. The correspondence between the library procedures and the
built-in QuickDraw procedures is summarized in the following list:

98

Built-in QuickDraw

moveto(m,n:integer);

lineto(m,n:integer);

getmouse (m,n:integer);

frameoval(m- r,n- r,m +r,n-r);

(clearing of Graphics Window)

Graphics.lib

SHIFT(x, y:real);

DRAW(x,y:real);

REALMOUSE(x,y:real);

CIR(x,y,r:real);

CLEAR;

Graphics and Animation • 99

In addition, the MAP and UNMAP procedures allow translation between integer
coordinates and real coordinates, and vice versa. The two procedures are called
as follows:

MAP(x,y,m,n); (*forces (m,n) to be the integer coordinates for given (x,y) *)

UNMAP(m,n,x,y); (*forces (x,y) to bethe real coordinates for given (m,n) *)

Program 4.1, Grid, shows how to interpret the graphics screen real coordinates.
The user may press the mouse and get real-valued coordinates in the Text
window. Notice that the convenient coordinate ranges:

-1 < x < +1
-1 <y< +1

define a central square region of the Drawing window. Figure 4.1 shows typical
behavior of the program.

It is true that any program you can write with the real-valued coordinates
could be done with integers alone. Integer graphics are faster as well. But it is
often convenient to think in terms of reals, and avoid problems, with dynamic
range for example, which occur for integers that are too positive or too negative.
The enormous range (powers of ten exceeding ± ,1000) of Macintosh Pascal reals
means you almost never have to worry about scaling and overflow problems if

s File Edit Search Run Windows
Ora win _o Te Ht

0' 162 -0' 162 ~ 0.062 -0.785
0.246 0.346 ~

~

~

,

li;Ji

Flgure4.1 I Grid output

100 • Scientific Programming with Macintosh Pascal

you do all graphs in terms of real coordinates. Keep in mind that Graphics.lib is
simply a translation library that finds the correct integers for you.

A good technique for using libraries or pieces of them is to get them onto the
Macintosh Scrapbook, and then Paste them into your source program as
described in Chapter 1.

Graphing of Functions
A good beginning for learning graphics is to plot simple functions against two
axes. Here is a simple example: choose a function of x and plot it for some interval
of interest on the x-axis. Let us try graphing the famous Bessel functions:

which can be calculated using the appropriate function from the Math.lib. These
functions arise in the theory of differential equations of the second order. They
represent, among other things, the amount of warp in an oscillating, circular
membrane je.g., a drumhead) as a function of distance from the membrane's
center. Program 4.2, Bessel, and associated output Figure 4.2 show the basic
technique of graphing a function.

Another common example of a function you may want to graph against two
axes is that of a time series-a set of values defined vs. time. Usually the horizontal
axis will be the time axis, with the vertical axis thought of as a voltage signal, a
data stream, a temperature, or any other quantity presumed to have time depen­
dence.

A simple but illuminating time series is the famous Fourier sum for a square
wave signal. If you add up sinusoidal waves with the correct weighting, you get a
square wave. One correct summation is:

S(t)=: E
j=1

jodd

sin(211"jt)
j

=!... * (sin(211" t) + sin(611" t)
11" 3

+ sin(107rt)
5 + ...

This summation is a so-called 'sum of odd harmonics.' Program 4.3, Square­
wave, combines ideas from the last chapter with the notion of real coordinate
plotting.

The typical output, Figure 4.3, shows how a square wave is approximated.
Note the 'overshoot' near the origin t = 0. This is called Gibb's phenomenon, and

et File Edit Search Run Windows
Drawing

Jnu(x)

Figure 4.2 I Bessel output

et File Edit Search Run Windows
DrawinJ

S(t) fvvJ\ (\;

\f\N\J

Figure 4.3 I Squarewave output

D
How

Graphics and Animation • 101

x

- TeHt
many harmonics ?4 ~

~ ' £21

t

ljVV

102 • Scientific Programming with Macintosh Pascal

is characteristic of certain Fourier sums. This overshoot becomes more erratic
but more confined as you take more and more summands.

Coordinate systems other than Cartesian x-y systems can easily be used. For
two-dimensional polar coordinates, use radius vector rand angle theta related to
Cartesian x,y by:

x = r • cose
y = r •sine

It is a good idea to define functions x(r,0) and y(r,0) for convenience in handling
polar coordinates. Program 4.4, Nautilus, shows a graph of the function:

r: = exp(- k•theta);

which is called a logarithmic spiral and is a pattern found in nature in such forms
as sunflowers and sea nautilus shells. Figure 4.4 shows typical output from such
a program.

Yet another class of graphs are the parametric curves which involve functions
x(s) and y(s), with the 'parameter's running over a specified range. One such
curve is called the cycloid, and is the curve traced by a point on the rim of a rolling
wheel. The parametric equations for the cycloid are:

S File Edit Search Run Windows

Drawin ~D

Pitch: 0. 25

Figure 4.4 I Nautilus output

Te Ht

x: = a • (s - sin(s));
y: = a • (1 - cos(s));

Graphics and Animation • 103

where a is the constant radius of the rolling wheel. Program 4.5, Cycloid, with
corresponding output as Figure 4.5, shows how to set up such a problem.

Later, in Chapter 6, considerations such as the above are applied at a more
difficult level to three-dimensional coordinate systems.

Graphic Solutions
Not all graphing tasks involve a known function. Indeed there are problems
which lend themselves to graphic solution- those in which some number or
function is sought as a goal of the programming task. Consider the famous
problem of Fermat: "If light leaves point A and is to arrive at point B, what is the
path of least time for the transit?"

The answer is a straight line, unless there is a shift in the speed of light due to
a change in medium somewhere between A and B. When point A is, for example,
in air and B is in glass, strange and wonderful things happen if the Fermat
Principle of Least Time is to hold. What is more, the happening actually occurs at
the glass-air interface. Program 4.6 Fermat, shows a graphic solution to the
problem.

s File Edit Search Run Windows
~L Drawing

C@O~

Q]

Figure 4.5 I Cycloid output

104 • Scientific Programming with Macintosh Pascal

s File Edit Search Run Windows
§0 Te Ht

A
Indices of re fr act ion (1 1 . 5) :
1 1 . 5
time 3.616
time 3 . 666
time 3.654

nA = 1.000

nB = 1.500

Figure 4.6 I Fermat output

B

The user literally drags, with the mouse, the interface striking point for the
double light ray, trying to minimize the total transit time. Figure 4.6 shows a
numerical solution. There are many interesting sidelights to this task (see exer­
cises at the end of this chapter).

Another example of graphic solution is that of accessing some static, charac­
teristic quantity associated with a figure. Program 4. 7, Handcalculus, with
typical output in Figure 4. 7, involves the manual determination of an error
function-the area under a Gaussian normal distribution from the origin to a
chosen point:

p(x) = exp(- X*x);

Animation
Moving objects can be displayed using the expedient of past blanking
-destroying a past image and creating the present one. There are actually two
ways to go about this, and the visual effects differ somewhat:

Method 1
Method2 I Erase the past image and then put up the next image.

Put up the next image, then erase the past one.

In either case you loop on such processes to give the effect of motion. Method 1

Graphics and Animation • 105

s File Edit Search Run Windows
Oro R Te Ht

area = 0.245 ~

;
I"'

IQ:

Figure 4.7 I Handcalculus output

suffers from the defect that there will be times when nothing is displayed, so that
animated objects appear to 'blink.' Method 2 suffers from the fact that erasure of
the past image may well erase part of the present one, leaving holes in the image.
In this book we use Method 1 exclusively, on the premise that blinking is not as
bad as distortion. However, you should be aware that by using more sophisti­
cated techniques-QuickDraw region definition, system calls for copying bit
regions, or the synch procedure for relating time of drawing to the video
retrace-you can attempt to 'smooth out' the motion. Throughout this book we
use one basic technique and assume that the desired effect should carry scientific
meaning without, perhaps, being as visually clean as possible.

The idea of a 'bouncing ball' finds its way into many textbooks, including
this one, for the bouncing ball has most of the features of interest for the serious
animator. Program 4.8, Superball, involves concepts of:

1. animation-the ball is successively blanked and redrawn in the procedure
animate.

2. dynamic calculations-the equations of ballistics, for which the following:

vy: = vy - g•dt;
(• vx is constant between walls •)
x: = x + vx•dt;
y: = y + vy•dt;
are solved numerically by the program.

106 • Scientific Programming with Macintosh Pascal

3. damping-energy is lost upon each floor bounce.

4. walls-both vx and vy reverse upon hitting appropriate barriers

5. repetition-the process starts over with a 'kick' when the ball is sufficiently
slowed.

Figure 4.8 shows the output when a particular coefficient of restitution is
input.

A more sophisticated example of animation combines mouse input with
dynamical calculation. The idea is to 'shoot' a sphere (billiard) by dragging out a
'cue' with the mouse. Program 4.9, Billiard, involves (besides animation) these
additional concepts:

1. manual initial condition input-procedure stroke lets you drag out a cue
with the mouse. Initial velocity and direction are determined by cue length
and tilt, respectively.

2. recovery at walls-the ball is replaced at a particular position when it has
passed into a wall barrier

3. using a function to return a physical parameter-in this case, the function
rail returns 0 if no rail (wall) has been struck, else the wall number (1-4) is
returned.

s File Edit Seorch Run Windows
Drawing

Figure 4.8 I Superball output

Graphics and Animation • 107

Figure 4.9 shows the typical appearance of the billiard table. Note that the
cue is made to disappear after a shot is performed. When the ball comes to rest
again, a fresh cue may be created, and so on.

In Chapter 7, we investigate more serious dynamical models using anima­
tion concepts.

Exercises

1. Write a program similar to Bessel but which lets you press the mouse to get a
printout (in the Text window) of zeros (places where the graphs cross the x­
axis) . You will want to call READMOUSE() and if (button) then write both x
and Jnu(x) to the Text window. Compare results with standard tables of
Bessel functions. How would you increase the accuracy of this graphic
method?

2. The GAMMA Function (see Math.lib) is an analytic continuation of the
factorial function. In fact:

Gamma(n + 1) = n!

Figure 4.9 I Billiard output

IJJin1lows Pause
Drawing

108 • Scientific Programming with Macintosh Pascal

for integers n, but Gamma is defined for all complex numbers having a
positive real part jso it is defined as all positive reals), and simply passes
through the integer factorial values. Write a program which graphs
GAMMA(z) for real z on the interval j0,3), plotting also the points:

(1,0!), (2,1!), (3,2!)

through which Gamma must pass. Give also, as a byproduct of your pro­
gram, a value for z at which Gamma is a minimum.

3. Graph the triangle wave obtained from the Fourier expansion:

T '(t) = ~ cos(2*11"*j•t)
n ~ O·D

j=1

This is essentially the integral of the square wave given in the text which is
easy to see since the derivative of a triangle wave is clearly a square wave
jslopes alternate between two constants).

4. Graph the function tanjx) for x in the interval jO,?r). You will have to avoid
the singularity at x = ~ .

5. Here you are asked to draw a graph of a certain logarithmic spiral, but using
a method completely different from that of program Nautilus. Instead of a
"brute-force" graphing approach in which you just calculated exp
1-k•theta), solve graphically the following, known as The Four-Bug Problem:
four bugs sit each at a corner of a square. Give them these names:

NW NE

SW SE

even though their positions will change as the experiment is run. The bugs
walk with equal and constant speeds, but each bug always heads toward
another in the following manner: NE heads toward NW, who heads toward
SW, who heads toward SE, who heads toward NE.

Graph the motion of the bugs in some convenient visual format. You will see
four copies of a certain logarithmic spiral. Keep the two interesting questions
in mind: what is k for the spiral? How far does each bug travel before
collision? The first question requires a little calculus. The second can be
done by trickery, in your head.

6. Modify the program Cycloid to graph the motion of a point not on the rim,
but rather placed somewhat inward on the wheel. The curve is called an
epicycloid.

Graphics and Animation • 109

7. Using the program Cycloid, verify numerically the following theoretical
facts about this beautiful curve:

a. The arc length of one arch is 8 times the wheel radius.
b. The area of one arch is 3 times the wheel area.
c. The speed of the moving point is precisely sinusoidal in time (assuming

the wheel rolls at a constant rotational speed).

8. Interesting sidelights abound for the Fermat's Principle demonstration of
program Fermat. The law of refraction known as Snell's Law is a celebrated
corollary of the principle. This says that in the minimum-time ray configura­
tion, the angles of incidence (each measured between the ray and a
'normal, ' or perpendicular, to the interface-that is the angle between the
ray and the y-axis) THETAa and THETAb are related to the indices of
refraction Na and Nb by:

sin(e) = Ji!L
sin(e) Na

Verify Snell's Law numerically by appropriate additions to program Fermat.

9. Here is another sidelight to the refraction problem. Recalling that the speed
of propagation in a medium is proportional to inJex , write a program in which
the ray is actually drawn with the appropriate speed, and report the time­
-not via algebra, as in the text version of Fermat-by using the tickcount
function. This is an example of an even more realistic model of the refraction
phenomenon.

10. The famous 'brachistochrone' problem connects the seemingly separate
ideas of the cycloid curve and the refraction problem. The problem is: down
what shape ramp will an object slide from A to Bin minimum time? Write a
program to draw the appropriate curve from A to B by using Isaac Newton's
ingenious method of solution: observe that, since an object having slid
through a cumulative height of h (from original point A) has a speed, along
the ramp, proportional to sqrt(h), the problem is the same as that of a light
ray bending through a medium whose index of refraction behaves as sqrt~hl •

Thus successive applications of Snell's Law (Exercise 8) should draw a good
brachistochrone, which is actually a segment of a cycloid.

11. Write a program which reports the arc length of a user-defined function f(x)
between two mouse-selected points. The integral for arc length is:

S = I sqrt (1 + sqr(~~)) dx

11 O • Scientific Programming with Macintosh Pascal

where the limits of integration are the two x-coordinates defining the arc
endpoints. Test this on the function known as a catenary-the curve in
which a chain will hang-given by:

f(x) = cosh(x) = exoCxl + exoC - xl
2

,, 12. Write a program to 'juggle' three balls. The initial configuration should be:

AB C
Left Right

in the Graphics window, with balls A, B, C initially at rest. The left and right
'hands' are just short lines drawn on the screen and need not move
!although it is fascinating to try and give them mouse control!). Then the
juggling mode known as a cascade works like this:

a. Launch ball A in a parabola that will land it on the right hand.
b. When A has just about reached the top of its trajectory, launch ball B in a

parabola destined for the left hand.
c. Just when ball C is near the top of its parabola, launch ball B in a third

parabola.
d. Continue like this, the next step being that ball A should launch when ball

Bis near its top, and so on.

This problem is not so much a ballistics exercise as an exercise in com­
binatorics; a little cleverness is required to efficiently program the alternat­
ing sequence.

13. Write a graphics program which has several points of differing masses
bouncing around within a one-dimensional interval, without damping. It is
convenient to graph each point xij] by a vertical stroke indicating its mass,
but motion should only be along the x-axis. It turns out that it is fairly easy to
assess whether or not balls have struck each other: just compute the distance
x[i) - xij) between a pair of masses and if this distance has not changed sign,
then the masses have not recently touched. The far left and far right masses
should, of course, reflect off of the 'walls' of the interval. When masses m[i]
and mij) collide, they simply trade velocities. With some work, you can
verify the Equipartition Theorem of Thermodynamics: regardless of initial
conditions (for example, one mass moving at first but no others), the mean
kinetic energy, <mass·ir(veloclty) of each object is the same: heavier objects move
more slowly on the average, assuming statistical equilibrium has been
reached. This is a beautiful project which can be extended with far more
work to higher dimensions, for which equipartition of energy still holds.

Graphics and Animation • 111

Answers

1. You can do, after the drawing, something like:

repeat
if button then

begin
readmouse(x,y);
writeln(x, j(nu,x));

end;
until false;

2. This is a straightforward graphics problem, which should use the library
procedures SHIFT and DRAW. The z for which gamma has a minimum is
between 1 and 2.

3. This is a straightforward alteration of the Squarewave program.

4. This is a straightforward graphics program. One way to avoid the singularity
is to start with a constant dx = 1~ set x = ~x ; then draw in increments of
dx. This will cause two points nearby ; to 'straddle' the singularity.

5. The idea is to set up four velocity vectors and have them point in the right
directions, but always normalizing them to have constant speed. The bugs
meet smack in the center, and each one travels a distance equal to the side of
the original square. Why? Because each velocity vector is perpendicular to
the next, so a bug 'gains' on its destination bug at the same rate it would if
the destination were not in motion.

6. The parametric equations are different:

x: = a•theta- r•sin(theta);
y: = a - r•cos(theta);

where r is the distance to the (non-peripheral) point.

7. The first two verifications use previous techniques of integration. Note that
the arc length element is:

ds = sqrt(sqr(dx) + sqr(dy));

where

dx = dtheta • a • (1-cos(theta));
dy = dtheta • a * sin(theta);

112 • Scientific Programming with Macintosh Pascal

and that speed is proportional to dt~!ta, where constant angular velocity of the
generating wheel is assumed.

8. If you have the interface striking point (x,y), then the angles can be obtained
from the rule:

tan (0) = (x-xa)
(ya-y)

tan (0) = (y-yb)

and you need the relation between sine and tangent:

sin(z) = tan(z)
sqrt(1 +sqr(tan z)

9. This should be done by setting up velocity vector (vx,vy}, which is designed
to point at the interface, ·with magnitude+· This can be done by finding
dx, Ay as (x-xa}, (y-ya) and normalizing: " ex

vx:= Ax;
vy:= lly;
norm: = sqrt(sqr(llx) + sqr(lly));

vx·- vx
· (norm•index)

vy:- (norm":lndex)

and iterating the equations of motion according to:

x:= xa;
y:= ya;
repeat
x: = x + vx•dt;
y: = y + vy•dt;
t:= t + dt;
until abs(y-ya) <epsilon;

where the loop termination condition amounts to the fact of striking the
interface. A similiar method will get the outgoing ray, but the destination is
now (xb,yb) and the index is the second index. If you keep track of tick­
counts, you will find thatthe actual minimum time (now real time, ofcourse)
is obtained for the correct refractive path.

10. The idea is to find the correct differential equations on the basis of Newton's
idea. Then the iteration is a straightforward example of numerical calculus.
Since the sine of the trajectory's angle with respect to the vertical will be
proportional to the speed (see Exercise 8), we have, for arc element ds:

dx: = K * sqrt(ya - y) • ds;
dy: = sqrt(1 - K2•(ya-y));

Graphics and Animation • 113

for some constant K and initial height ya. Then you fix a constant ds and
iterate:

x:= xa;
y:= ya;
SHIFT(x,y);
repeat
(*calculate dx,dy here as above, then:*)
x:= x + dx;
y:= y + dy;
DRAW(x,y);
untildy<O

It is of interest that for some initial and final points the solution actually
turns upward before terminating. It is best, though, to ignore the final point
for this program-it is very tough to find the solution which meets a given
endpoint, but every trajectory is the brachistochrone solution for some
endpoint.

11. The arc length for f (x) = cosh(x) from x = 0 to x = a is given exactly by:

S = sinh(a) = (exp(a) = exp(- a)
2

which should be compared to your numerical integral.

12. The ballistics problem is straightforward; you find the initial vx and vy such
that a ball will land on the other hand. The combinatorics problem is best
solved by calling the balls by 0, 1, 2 (mod 3) and launching, for ball n in the
right air position, ball (n+ 1) mod 3.

13. Two masses j and k 'contact' when the sign of the difference (xUJ-x[k) I flips,
at which point you should swap the velocities.

114 • Scientific Programming with Macintosh Pascal

Program 4.1

program grid;
(* SHOWS MEANING OF REAL-VALUED COORDINATES *)

var
x, y : real;
m : integer;

procedure CLEAR;
(* Activates and expands Drawing Window to fill screen *)

var
windowrect : rect;

begin
hideall;
setrect(windowrect, 2, 35, 512, 342);
setdrawingrect(windowrect);
showdrawing;

end;

procedure MAP (x, y : real;
var hor, ver : integer);

(* Returns hor,ver as pixel integers for given real coords (x,y) *)
begin
if abs(x) > 1.9 then

x := x I abs(x) * 1.9;
hor := 255 + trunc(x * 130);
if abs(y) > 1 then

y := y I abs(y);
ver := 138 - trunc(y * 130);

end;

procedure DRAW (x, y
(* Draws to (x,y) *)

var
hl, vl : integer;

begin
MAP(x, y, hl, vl);
lineto(hl, vl);

end;

real);

procedure SHIFT (x, y: real);
(* moves invisible to (x,y) *)

var
hl, vl : integer;

begin
MAP(x, y, hl, vl);
moveto(hl, vl);

end; {shift}

procedure UNMAP (h, v : integer;
var x, y : real);

begin
x := (h - 255) I 130;
y := (138 - v) I 130;

end;

procedure REALMOUSE (var x, y
var

m, n : integer;
begin

getmouse(m, n);
UNMAP (m, n, x, y);

end;

begin
CLEAR;
showtext;
for m := -10 to
begin

SHIFT(m I 10,
DRAW(m I 10,
SHIFT(l, m I
DRAW(-1, m I

end;
pensize(2, 2);
SHIFT(l, 0);
DRAW(-1, 0);
SHIFT(O, l);
DRAW(O, -1);
repeat

10 do

l);
-1);
10);
10);

REALMOUSE(x, y);
if (button) and (y < 1.05) then
begin

real);

writeln(x : 8 : 3, y : 8 : 3);
SHIFT(x, y);
DRAW(x, y);

end;
until false;

end.

Program 4.i!
program Bessel;
(* PLOTS FAMILY OF BESSEL FUNCTIONS *)

con st
dx 0.45;

var

Graphics and Animation • 115

{continued/

116 • Scientific Programming with Macintosh Pascal

x : real;
nu : integer;

procedure CLEAR;
(* Activates and expands Drawing Window to fill screen *)

var
windowrect : rect;

begin
hideall;
setrect(windowrect, 2, 35, 512, 342);
setdrawingrect(windowrect);
showdrawing;

end;

procedure MAP (x, y : real;
var hor, ver: integer);

(* Returns hor,ver as pixel integers for given real coords (x,y) *)
begin
if abs(x) > 1.9 then

x := x I abs(x) * 1.9;
hor := 255 + trunc(x * 130);
if abs(y) > 1 then

y := y I abs(y);
ver := 138 - trunc(y * 130);

end;

procedure DRAW (x, y
(* Draws to (x,y) *)

var
hl, vl : integer;

begin
MAP(x, y, hl, vl);
lineto(hl, vl);

end;

real);

procedure SHIFT (x, y: real);
(* moves invisible to (x,y) *)

var
hl, vl : integer;

begin
MAP(x, y, hl, vl);
moveto (hl, vl) ;

end;

function GAMMA (z ; real) ; real;
(* gamma function of z > 0 *)

con st
pi 3.141592653589793238463;

var
zz real;

begin
if (z > 1) then

GAMMA := (z - 1) * GAMMA(z - 1)
else if (z = 1) then

GAMMA := 1
else if (z > 0.5) then

GAMMA:= pi I (sin(pi * z) * GAMMA(l - z))
else
begin

Graphics and Animation • 117

zz := l I z - U.0748646 + 0.9512363 * z - 0.6998588 * z * z;
GAMMA := zz + 0.4245549 * z * z * z - 0.1010678 * z * z * z * z;

end;
end;

function J (nu, z : real) : real;
(* The Bessel function of order nu *)

var
n, d, f, sum : real;
ctr integer;

begin
if z 0 then
begin
if nu = 0 then

J := 1
else

J := 0
end

else
begin

f := 1 I GAMMA(nu + 1);
n := -(sqr(z) I 4);
d := nu + l;
sum := f;
ctr := 1;
repeat

f := f * n I (ctr* d);
d := d + l;
ctr := ctr + l;
sum := sum + f

until abs(f) < le-15;
if z > 0 then

J :.=sum* exp(nu * ln(z I 2))
else

J := (1 - 2 * (trunc(nu) mod 2)) *sum* exp(nu * ln(ab~(z I 2)))
end

end;

begin
CLEAR;
SHIF'T (1, 0) ;

{continued}

118 • Scientific Programming with Macintosh Pascal

DRAW(-1, O);
SHIFT(-1, 1);
DRAW(-1, -1);
SHIFT (-1. 4, 0. 8);
writedraw('Jnu(x) ');
SHIFT(l.1, 0.05);
wri tedraw (• x •) ;
for nu := O to 2 do
begin

x := 0;
repeat
if x < dx I 2 then

SHIFT(x I 10 - 1, J(nu, 0))
else

DRAW(x I 10 - 1, J(nu, x));
x := x + dx;

until x > 15;
end;

end.

Program~.3

program squarewave;
(* GRAPHS PARTIAL FOURIER SUM FOR SQUARE WAVE SiqNAL *)

con st
pi 3.14159265359;
dt 0.01;

var
t, sum : real;
j, n : integer;

procedure CLEAR;
(* Activates and expands Drawing Window to fill screen *)

var
windowrect : rect;

begin
hideall;
setrect(windowrect, 2, 35, 512, 342);
setdrawingrect(windowrect);
showdrawing;

end;

procedure MAP (x, y : real;
var hor, ver: integer);

(* Returns hor,ver as pixel integers for given real coords (x,y) *)
begin

Graphics and Animation • 119

if abs(x) > 1.9 then
x := x I abs(x) * 1.9;

hor := 255 + trunc(x * 130);
if abs(y) > 1 then

Y := y I abs(y);
ver := 138 - trunc(y * 130);

end;

procedure DRAW (x, y
(* Draws to (x,y) *)

var
hl, vl : integer;

begin
MAP(x, y, hl, vl);
lineto(hl, vl);

end;

real);

procedure SHIFT (x, y : real);
(* moves invisible to (x,y) *)

var
hl, vl : integer;

begin
MAP(x, y, hl, vl);
moveto(hl, vl);

end;

begin
t := 0;
CLEAR;
showtext;
write('How many harmonics ?');
readln(n);
SHIFT(l, 0);
pensize(2, 2);
DRAW (-1, 0);
SHIFT(-1, -1);
DRAW(-1, 1);
pensize(l, l);
SHIFT(-1.3, 0.7);
writedraw('S(t) ');

SHIFT(l, 0.05);
writedraw ('t');
repeat

sum := O;
for j := 1 to n do

sum := sum+ sin(2 * pi * t * (2 * j - 1)) I (2 * j - 1);
sum := sum * 4 I pi;
if t < dt I 2 then

(continued)

120 • Scientific Programming with Macintosh Pascal

SHIFT(-1 + t, sum* 0.8)
else

DRAW(-1 + t, sum* 0.8);
t := t + dt;

until t > 1. 9;
end.

Program4.4

program nautilus;
(* LOGARITHMIC SPIRAL IN POLAR COORDINATES *)

con st
dtheta 0.2;

var
r, theta, k : real;

function x (r, theta
begin

x := r * cos(theta);
end;

real)

function y (r, theta : real)
begin

y := r * sin(theta);
end;

procedure CLEAR;

real;

real;

(* Activates and expands Drawing Window to fill screen *)
var

windowrect : rect;
begin
hideall;
setrect(windowrect, 2, 35, 512, 342);
setdrawingrect(windowrect);
showdrawing;

end;

procedure MAP (x, y : real;
var hor, ver: integer);

(* Returns hor,ver as pixel integers for given real coords (x,y) *)
begin
if abs(x) > 1.9 then

x := x I abs(x) * 1.9;
hor := 255 + trunc(x * 130);
if abs(y) > 1 then

y := y I abs(y);
ver := 138 - trunc(y • 130);

end;

procedure DRAW (x, y
(* Draws to (x, y) *)

var
hl, vl : integer;

begin
MAP(x, y, hl, vl);
lineto(hl, vl);

end;

real);

procedure SHIFT (x, y : real);
(* moves invisible to (x,y) *)

var
hl, vl : integer;

begin
MAP(x, y, hl, vl);
moveto(hl, vl);

end;

begin
CLEAR;
showtext;
write('Pitch: ');
readln(k);
SHIFT(l, 0);
DRAW(-1, 0);
SHIFT(O, -1);
DRAW(O, 1);
theta :• O;
SHIFT(l, 0);
pensize(2, 2);
repeat

r :• exp(-k *theta);
DRAW(x(r, theta), y(r, theta));
theta :• theta + dtheta;

until r < 0.02;
end.

Program~.5

program cycloid;
(* PARAMETRIC GRAPH OF CYCLOID CURVE *)

con st
ds = 0.2;
a = 0.2;

var
s : real;
ctr : integer;

Graphics and Animation • 121

(continued}

122 • Scientific Programming with Macintosh Pascal

function x (s : real)
begin

x :=a* (s - sin(s));
end;

real;

function y (s : real) real;
begin

y := a * (1 - cos (s));

end;

procedure CLEAR;
(* Activates and expands Drawing Window to fill screen *)

var
windowrect : rect;

begin
hideall;
setrect(windowrect, 2, 35, 512, 342);
setdrawingrect(windowrect);
showdrawing;

end;

procedure MAP (x, y : real;
var hor, ver : integer);

(* Returns hor,ver as pixel integers for given real coords (x,y) *)
begin
if abs(x) > 1.9 then

x := x I abs(x) * 1.9;
hor := 255 + trunc(x * 130);
if abs(y) > 1 then

y := y I abs(y);
ver := 138 - trunc(y * 130);

end;

procedure DRAW (x, y
(* Draws to (x,y) *)

var
hl, vl : integer;

begin
MAP(x, y, hl, vl);
lineto (hl, vl) ;

end;

real);

procedure SHIFT (x, y : real);
(* moves invisible to (x,y) *)

var
hl, vl : integer;

begin
MAP(x, y, hl, vl);
moveto(hl, vl);

end;

Graphics and Animation • 123

procedure CIR (x, y, r : real);
var
hl, vl, h2, v2 : integer;

begin
MAP(x - r, y + r, hl, vl);
MAP(x + r, y - r, h2, v2);
frameoval(vl, hl, v2, h2);

end;

begin
CLEAR;
SHIFT(l, 0);
DRAW(-1, 0);
SHIFT(-1, 0);
s := 0;
ctr := 0;
repeat

DRAW(x(s) - 1, y(s));
if ctr mod 6 = 0 then
begin

CIR(a * s - 1, a, a);
pensize(2, 2);
CIR(x(s) - 1, y(s), 0.02);
pensize(l, 1);

end;
ctr := ctr + 1;
s := s + ds;

until x(s) > 1.75;
end.

Program~.&

program fermat;
(* FERMAT'S PRINCIPLE OF LEAST TIME - USER FINDS *)
(* VARIATIONAL LEAST-TIME PATH *)

con st
xa -1.3;
ya 0.8;
xb 1.3;
yb -0.8;

var
t, x, y, xstrike, na, nb
newchoice : boolean;

procedure CLEAR;

real;

(* Activates and expands Drawing Window to fill screen *)
var

{continued}

124 • Scientific Programming with Macintosh Pascal

windowrect
begin
hideall;

rect;

setrect(windowrect, 2, 35, 512, 342);
setdrawingrect(windowrect);
showdrawing;

end;

procedure MAP (x, y : real;
var hor, ver : integer);

(* Returns hor,ver as pixel integers for given real coords (x,y) *)
begin
if abs(x) > 1.9 then

x := x I abs(x) * 1.9;
hor := 255 + trunc(x * 130);
if abs(y) > 1 then
Y := y I abs(y);

ver := 138 - trunc(y * 130);
end;

procedure DRAW (x, y
(* Draws to (x,y) *)

var
hl, vl : integer;

begin
MAP(x, y, hl, vl);
lineto(hl, vl);

end;

real);

procedure SHIFT (x, y : real);
(* moves invisible to (x,y) *)

var
hl, vl : integer;

begin
MAP(x, y, hl, vl);
moveto (hl, vl) ;

end;

procedure CIR (x, y, r : real);
(* Draws circle of radius r centered at (x,y) *)

var
hl, h2, vl, v2 : integer;

begin
MAP(x - r, y + r, hl, vl);
MAP(x + r, y - r, h2, v2);
frameoval(vl, hl, v2, h2);

end;

procedure UNMAP (h, v integer;

var x, y : real);
begin

x := (h - 255) I 130;
y := (138 - v) I 130;

end;

procedure REALMOUSE (var x, y
var

m, n : integer;
begin

getmouse(m, n);
UNMAP (m, n, x, y);

end;

procedure newrays (var xstrike
x: real);

begin
penpat(white);
SHIFT(xa, ya);
DRAW(xstrike, 0.01);
SHIFT(xstrike, -0.01);
DRAW (xb, yb) ;
penpat(black);
SHIFT(xa, ya);
DRAW(x, 0.01);
SHIFT(x, -0.01);
DRAW(xb, yb);
xstrike := x;

end;

begin
CLEAR;
showtext;

real);

real;

writeln('Indices of refraction (1 1.5): ');
readln(na, nb);
CIR(xa, ya, 0.02);
SHIFT(xa, ya+ 0.04);
writedraw ('A');
CIR(xb, yb, 0.02);
SHIFT(xb + 0.03, yb - 0.06);
writedraw ('B');
SHIFT (-1. 4, 0);
DRAW (1. 4 , 0) ;
SHIFT(-1.4, 0.2);
writedraw ('nA = ', na
SHIFT(-1.4, -0.25);

6 3);

wri tedraw ('nB = ' , nb 6 3) ;
xstrike := (xa * yb - xb *ya) I (yb - ya);
newrays(xstrike, xstrike);

Graphics and Animation • 125

{continued}

126 • Scientific Programming with Macintosh Pascal

newchoice := true;
repeat
while button do
begin

REALMOUSE(x, y);
if (y < 1.05) then
begin
newrays(xstrike, x);
newchoice := true;

end;
end;

if newchoice then
begin

t := sqrt(sqr(xstrike - xa) + sqr(ya)) * na;
t := t + sqrt(sqr(xstrike - xb) + sqr(yb)) * nb;
writeln ('time = ', t : 6 : 3);
newchoice := false;

end;
until false;

end.

Program4.7
program handcalculus;
(* GIVES AREA FROM ORIGIN TO MOUSE UNDER A NORMAL DISTRIBUTION *)

con st
bins = 20;

var
x, y, integral : real;
keybin, n, h, v, hh, vv integer;
newintegral : boolean;

function f (x : real) real;
con st
pi = 3.14159265;
variance = 0.15;

begin
f := 1 I sqrt(2 *pi *variance) * exp(-sqr(x) I (2 *variance));

end;

procedure CLEAR;
(* Activates and expands Drawing Window ~o fill screen *)

var
windowrect : rect;

begin
hideall;
setrect(windowrect, 2, 35, 512, 342);

setdrawingrect(windowrect);
showdrawing;

end;

procedure MAP (x, y : real;
var hor, ver : integer);

Graphics and Animation • 127

(* Returns hor,ver as pixel integers for given real coords (x,y) *)
begin
if abs(x) > 1.9 then

x := x I abs(x) * 1.9;
hor := 255 + trunc(x * 130);
if abs(y) > 1 then

y := y I abs(y);
ver := 138 - trunc(y * 130);

end;

procedure DRAW (x, y
(* Draws to (x,y) *)

var
hl, vl : integer;

begin
MAP(x, y, hl, vl);
lineto(hl, vl);

end;

real);

procedure SHIFT (x, y: real);
(* moves invisible to (x,y) *)

var
hl, vl : integer;

begin
MAP(x, y, hl, vl);
moveto (hl, vl) ;

end;

procedure UNMAP (h, v : integer;
var x, y : real);

begin
x := (h - 255) I 130;
y := (138 - v) I 130;

end;

procedure REALMOUSE (var x, y
var

m, n : integer;
begin

getmouse (m, n);
UNMAP(m, n, x, y);

end;

begin
CLEAR;

real);

{continued}

128 • Scientific Programming with Macintosh Pascal

showtext;
for n := -bins to bins do
begin

x := n I bins;
if n = -bins then

SHIFT(x, f(x) - 1)
else

DRAW(x, f(x) - 1);
end;

repeat
newintegral := false;
while button do
begin

REALMOUSE (x, y) ;

keybin := round(x * bins);
if keybin >= 0 then
begin

newintegral := true;
integral : = 0;
for n := 0 to bins do
begin

MAP(n I bins, f(n I bins) - 1, h, v);
MAP((n + 1) I bins, -1, hh, vv);
if n >= keybin then
eraserect(v, h, vv, hh)

else
begin
framerect(v, h, vv, hh);
integral :=integral + f(n I bins) I bins;

end;
end;

end;
end;

if newintegral then
writeln('area = ' integral

newintegral := false;
until false;

end.

Program~.&

program superball;

6 3);

(* DEMONSTRATES ANIMATION, BALLISTICS, WALL REFLECTION, AND DAMPING *)

con st
r = 15;
dt = 0.04;
g = 9.8;

var
x, y, xold, yold, vx, vy, restitution real;

Graphics and Animation • 129

h, v : integer;

procedure CLEAR;
var
windowrect : rect;

begin
hideall;
setrect(windowrect, 2, 35, 512, 342);
setdrawingrect(windowrect);
showdrawing;

end;

procedure MAP (x, y : real;
var hor, ver : integer);

begin
if abs(x) > 1.9 then

x := x I abs(x) * 1.9;
hor := 255 + round(x * 130);
if abs(y) > 1 then

y := y I abs(y);
ver := 138 - round(y * 130);

end;

procedure animate (x, y : real;
var xold, yold : real);

var
hl, vl : integer;

begin
(*
(*

Remove next comment marks to get animation *)
MAP(xold, yold, hl, vl); *)

(* eraseoval(vl - r, hl - r, vl + r, hl + r); *)
MAP(x, y, hl, vl);
frameoval(vl - r, hl - r, vl + r, hl + r);
xold ·= x;
yold := y;

end;

begin
showtext;
write('Coefficient of restitution (0.9): ');
readln(restitution);
CLEAR;
penpat (ltgray);
MAP(-1, 1, h, v);
paintrect(v, h -
MAP(l, 1, h, v);
paintrect(v, h +
MAP(-2, -1.1, h,
paintrect(v + r,
penpat(black);
x :== -1;
y := -1;

r - 10,

r, v +
v);
h + r,

v + 285 + r, h - r);

285 + r, h + r + 10);

v + 10 + r, h + 500);

{continued}

130 • Scientific Programming with Macintosh Pascal

xold := x;
yold := y;
vx := +4;
vy := +6;
repeat
repeat
vy := vy - g * dt;
y := y + vy * dt;
x := x + vx * dt;
if abs(y) > 1 then
begin
vy := -vy * restitution;
y : = y I abs (y) ;

end;
if abs(x) > 1 then
begin

vx := -vx * restitution;
x := x I abs(x);

end;
animate(x, y, xold, yold);

until (abs(vy) < 0.005) and (y < -0.95);
vy := 6;
if (vx > 0) then
vx := 4

else
vx := -4;

until false;
end.

Program 4.9

program billiard;
(* USER USES MOUSE AS CUE TO LAUNCH SINGLE BILLIARD *)

con st
r = 10;
dt = 0.02;
friction = 0.94;
pi = 3.14159265;

var
x, y, xold, yold, xO, yO, xl, yl, dx, dy, rr
h, v, hh, vv : integer;

function rail (var x, y : real)
begin
if y < -1 + rr then
begin
rail := 1;
y := -1 + rr;

end

integer;

real;

else if x > 1 - rr then
begin

x :"" 1 - rr;
rail := 2;

end
else if y > 1 - rr then
begin
rail := 3;
y := 1 - rr;

end
else if x < -1 + rr then
begin
rail := 4;
x := -1 + rr;

end
else
rail := O;

end;

procedure CLEAR;
(* Size and clear the Drawing Window *')
var

windowrect : rect;
begin
hideall;
setrect(windowrect, 2, 35, 512, 342);
setdrawingrect(windowrect);
showdrawing;

end;

procedure MAP (x, y : real;
var hor, ver : integer);

begin
if abs(x) > 1.9 then

x := x I abs(x) * 1.9;
hor := 255 + round(x * 130);
if abs(y) > 1 then

y := y I abs(y);
ver := 138 - round(y * 130);

end;

procedure UNMAP (h, v : integer;
var x, y : real);

begin
x := (h - 255) I 130;
y := (138 - v) I 130;

end;

Graphics and Animation • 131

procedure stroke (var x, y, xold, yold : real);
{animates a mouse-stroke, returns endpoint (x, y), original}
{point (xold, yold) as reals} (continued}

132 • Scientific Programming with Macintosh Pascal

var
hl, h2, vl, v2 : integer;

begin
while not button do
begin
end;

getrnouse(hl, vl);
h2 := hl;
v2 :c vl;
while button do
begin

penpat(white);
rnoveto(hl, vl);
lineto(h2, v2);
getrnouse(h2, v2);
rnoveto(hl, vl);
penpat(black);
lineto(h2, v2);

end;
penpat(white);
rnoveto(hl, vl);
lineto(h2, v2);
penpat(black);
UNMAP(hl, vl, xold, yold);
UNMAP(h2, v2, x, y);

end;

procedure animate (x, y : real;
var xold, yold : real);

{erase 'old' ball and display new one}
var
hl, vl : integer;

begin
MAP(xold, yold, hl, vl);
eraseoval(vl - r, hl - r,
MAP (x, y, hl, vl);
paintoval(vl - r, hl - r,
xold := x;
yold : ::::;::: y;

end;

begin
CLEAR;

x := O;
y := 0;
xold := x;
yold := y;
repeat

MAP(-1, 1, h, v);
MAP(l, -1, hh, vv);
frarnerect(v, h, vv, hh);
anirnate(x, y, xold, yold);

vl + r, hl

vl + r, hl

+ r);

+ r);

stroke(xl, yl, xO, yO);
dx := -13 * (xl - xO) * dt;
dy := -13 * (yl - yO) * dt;
rr := (r + 1) I 130;
repeat
repeat
hh := rail(x, y);
case hh of

0

1, 3
begin
if dy <> 0 then

x := xold + (y - yold) * dx I dy;
dy := -dy;

end;
2' 4 :
begin
if dx <> O then

y := yold + (x - xold) * dy I dx;
dx := -dx;

end;
end;

until hh = O;
animate(x, y, xold, yold);
x := x + dx;
y := y + dy;
dx := dx * friction;
dy := dy * friction;

until abs(dx) + abs(dy) < 0.02;
until false;

end.

Graphics & Animation • 133

5 Probability
and Statistics
THEME: Statistics, especially when applied to physical data, is
a ubiquitous aspect of scientific programming and so, along with
the underlying theoretical concepts of probability, is given a
whole chapter. Various concepts ranging from random numbers
and sorting to disk file and data-array handling are covered.

GOALS: To be able to process data using basic notions of proba­
bility and statistics. You will be able to access disk files for this
purpose.

LIBRARIES USED: Stat.lib, Graphics.lib

REFERENCE MATERIALS: Any text on elementary statistics
covers the basic definitions and nomenclature.

Random Integers
Random integers can be generated from within Mac Pascal programs through use
of the built-in random function. This function returns an integer between
- 32767 and + 32767. In applications requiring random numbers, however,
some processing of these values is usually required. One of the simplest transfor­
mations of the built-in random function is to generate a random integer between 1
and N inclusive, where N is an integer. It turns out that the expression:

1 + random mod N

is integer valued and equidistributed amongst the sequence 1,2, ... ,N. This notion
is used in Program 5.1, Poker Deal, in which random integers are used to shuffle a
deck of cards.

134

Probability and Statistics • 135

Typical output is shown in Figure 5.1. The program is named Poker Deal and
not Poker because it does not really play a full game, but it does do the initial
dealing of two hands correctly. The shuffle procedure uses the following straight­
forward method of shuffling:

Step 1
Step2
Step 3

Set n = 52, meaning you start with the 52nd deck position.
Swap then-th card with a random one of the first n.
If n > 2, then decrement n and go to Step 2, else quit.

Observe that in Step 2 it is possible that then-th card swaps with itself. This is
essential since, for example, the 52nd card before a deck is shuffled can conceiv­
ably come up in the same 52nd position after the shuffle.

Another instance where the integer-valued random function can be used
with minimal processing is in making binary decisions, as in the flip of a coin. A
statement such as:

if random < O then ...

will execute ' ... ' one half of the time. Program 5.2, Random Walk, with typical
output displayed in Figure 5.2, shows how a four-valued extension of this idea
can be used to walk either north, west, east, south.

s File Edit Search Run Windows

pokerdeal

end;

begin
showtext;
showdrewi ng;
write('Hit <return> for new deal:");
for n := 1 to 52 do

x[n) := n;
repeat

shuffl e(x, ptr);
deal(t[ll, ptr);
dea 1(t[2), ptr) ;
show(t[1 L 5);
show(t[2), 100);
readln;
eraserect(O, O, 511, 300);

until false;
end.

Figure 5.1 I PokerDeal output

Te Ht
Hit <return> for new dea I :

~O Drawing

136 • Scientific Programming with Macintosh Pascal

s File Edit Search Run Windows
Drowin §0 TeHt

Path length: 6

Figure 5.2 I Randomwalk output

The exercises for this chapter contain various tasks involving random integ­
ers. There is sometimes a need for random integers which are not equidistributed
in the sense that some integers are more likely than others. To discuss such
distributions it is convenient to turn first to the problem of random real numbers.

Random Reals
An equidistributed random number is one which is equally likely to fall in any
place inside some specified interval. Since the built-in random function is
assumed to be equidistributed over a range of integers, it is possible to define a
real-valued random function as follows:

rand·= x . (random + 32768)
. 65536

The number 'rand' is equidistributed in the open interval (0,x) . The function
RAND(x) is listed in the Stat.lib. To get a random number equidistributed over
(0,1), for example, you simply call RAND(l).

It is an interesting problem to transform the RAND(x) function to a random
variable which has a specified distribution. If you desire a probability density
f(x), such that:

Probability and Statistics • 137

f(x) dx = 1

where the integral is taken over a specified range, then you can often find a
convenient transformation. For example, consider the Poisson density function:

f(x) = exp(- x)

which is closely related to the Poisson integer density POISS of the Stat.lib. This
f(x) can be thought of as the probability density of the time between successive
clicks of a geiger counter which is analyzing a radioactive sample of a certain
strength. Program 5.3, Geiger, uses the fact that:

- ln(RAND(1))

is distributed in precisely the desired manner. When this program is run, the
Macintosh sound generator 'clicks' in a geiger-counter-like fashion.

For equdistributed random variables over other ranges than (O,xl, the trans­
formation is quite simple. For example, the number:

a + RAND(b- a)

is equidistributed on the interval (a,b), and so on.
Sometimes it is not obvious how to work out a good transformation. The

library function POISS always returns an integer which can be thought of as the
number of geiger counter clicks which occurred in a given time interval. In fact,
the value returned by POISS might be zero. A little thought reveals that if sum of
terms such as:

- ln(RAND(1)) - ln(RAND(1)) - ln(RAND(1)) - ...

exceeds some specified positive limit with N summand taken, then N-1 is essen­
tially the number of clicks that occurred in a specific time interval. Thus POISS is
not hard to construct. The integer N which is returned satisfies the integer-valued
density function:

f(N) = exp(- mean) • (meanN)
N!

which is the familiar Poisson integer density. But a more commonly used density
function:

f(x) = (2*11' •var) • exp - sgr(x - mean)
(2•var)

called the Gaussian density function, is more problematic. The library function
GU ASS given in Stat.lib depends on sophisticated random variables analysis, and

138 • Scientific Programming with Macintosh Pascal

it works well in returning a Gaussian-distributed random variable. Program 5.4,
Gaussian, and associated output Figure 5.3, show how this function may be used
to simulate, via histogram display, the manner in which a Gaussian random
variable attains various values. The histogram looks essentially like a bell curve,
indicating the characteristic Gaussian shape.

Probability
Probability calculations, of which random number computations are a rudimen­
tary example, often underlie interesting and useful computer projects. One
reason for this is that the classical definition of probability, namely:

prob(Event X) = (number of occurrences of X) I (number of all occurrences)

is a simple ratio of two integers-something which a computer easily handles.
Various probability problems are discussed in the exercises at the end of this
chapter. The following are just two of the possible approaches.

Consider the integral:

1

f(x) = r dx
J (1 +sqr(x))

2

which is known to have the exact value-}. One way to estimate this integral is to
observe that the area under the curve is a certain portion of the area of a unit
square. Thus a so-called 'Monte Carlo' technique can be attempted. This is to
'drop' points randomly into the square and add up what fraction of these
actually fall under the curve. The method is slow-not converging too quick­
ly-but it is instructive and does apply well to certain scientific problems, for
example when the larger region into which points drop is difficult to analyze or
visualize. Program 5.5, MonteCarlo, shows how this approach can be pro­
grammed. Figure 5.4 shows the appearance of the drops and a report of the
number of them (called hits) which fall under the specified curve.

A second probability problem, that of Buffon's Needle, models an interesting
relation between geometry and probability. If you rule a surface with parallel
lines, separated by a distance L, and drop a needle of length L, the probability that
a line is crossed turns out to be -f Program 5.6, Buffon, shows how this model
may be programmed. Figure 5.5 shows the result of dropping many needles, and
the corresponding estimate for 11".

Probability and Statistics • 139

ti Fi le Edit Search Run Windows
Drawing

Figure 5.3 I Gaussian output

ti File Edit Search Run Windows
Oro

Drops: 1000
Hi ts : 805

Te Ht

Integral estimate : 0 . 805

Figure 5.4 MonteCarlo output

140 • Scientific Programming with Macintosh Pascal

s File Edit Search Run Windows

Figure 5.5 I Button output

Drnwin ~O

Drops: 300
Hits: 184

Te Ht

pi: 3 ' 261

A curious problem arises with Buffon's Needle: you must avoid recourse to
the definition of 7f if this experiment is to be legitimate. The program Buffon
avoids using random angles:

theta:= 2 • 7r • RAND(1)

for this reason. What is used instead is:

theta:= 100• RAND(1);

on the idea that an angle which is simply equidistributed over a wide range, then
its value mod (27r) is likewise equidistributed. Unfortunately, the program as
written still uses functions cos and sin, which use reduction mod (27r) in their
own subroutines (invisible to the Pascal programmer). See the exercises for this
chapter for a suggested way of avoiding recourse altogether.

Statistics
There is a book library, Stat.lib, which contains many functions and procedures
useful for statistical analysis . Programs are stored with global declarations:

Probability and Statistics • 141

type sample = array[t.max) of real;
var size: integer;

Then when data arrays are read in, they can be treated as type sample, with the
integer size being the actual number of data entries. The library procedure:

GETPAIRS(x,y,size);

assumes that you have declared:

var x,y: sample;

When the procedure is called, the further entry of data in a format like:

(with <Enter> key being keyboard EOF, otherwise disk files will have natural
EOF), the arrays x and y will be filled with size data. Keep in mind that when a
disk file is to be used, the procedure GETPAIRS must be modified to have, within
its own block, a statement:

readln(f ,x,y);

where f is the file descriptor for the disk file in question.
There are library functions for computing standard statistical parameters:

MEAN(x);

ERROR(x);

MAXPOINT(x);

MINPOINT(x);

BESTB(x,y);

BESTM(x,y);

I* returns the mean of the sample x *)

(* returns the standard deviation of the sample x *)

(* returns the integer position of the largest element of x *)

I* returns the integer position of the smallest element of x *)

I* best-fit (Gaussian linear regression) intercept for (x,y) *)

I* best-fit slope for (x,y) *)

Program 5.7, BestFit, shows how to perform basic statistical analyses on disk files.
Note that the procedures GETPAIRS has been modified to accept input from a

disk file rather than the keyboard (the latter being the mode assumed in the Stat.lib).
Figure 5.6 shows an edited data file, stat.data, which was typed in using the

normal Pascal Editor window and then saved on disk. Figure 5. 7 shows the statistical
parameter listing as well as a graphic representation of the best-fit straight line for the
given data pairs.

142 • Scientific Programming with Macintosh Pascal

1
2

2
4

3
7

5.1
9.2

-1.3
-2.4

Figure 5.6 I Edited data file

s File Edit Search Run Windows
Drewing

Figure 5.7 I BestFit output

mean x : 1 . 9600
mean y : 3.9600
error x : 2.3713
error y : 4.4998
intercept: 0.2798
s I ope: 1 . 8776

Probability and Statistics • 143

Exercises

1. Write a program to 'roll dice,' putting up a dice pair graphically, each die
having equidistributed distribution of 1 through 6. The standard patterns to
display are:

0 0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0 0

Since the probability of a seven is given theoretically by 3/18, it is a good idea
to verify your work by trying thousands of 'rolls' automatically, turning off
the display for this test to optimize speed.

2. Write a program that starts out with one shuffle of a deck of cards, then the
cards are sorted back into monotonic order (as in the original deck or
program PokerDeal, but do it by pure sorting) and verify that the sorting
works. A little thought shows that sorting is very much like shuffling, and
you should be able to easily modify procedure shuffle-you just swap pairs
according to which of the pairs is greater instead of swapping random pairs.

3. Modify the program Poker Deal to display both hands only when at least one
player is dealt four of a kind (e.g., four aces). How long does this take (in
numbers of hands) on the average, and how long should it take theoretically?

4. Write a program to model a binary random walk as follows (avoid graphics
and just use numbers). Start at the origin (x = 0). On the flip of a coin, step
right (x: = x + 1) for heads, left (x: = x - 1) for tails. Walk for N steps, say N =
10,000 total 'flips' of the coin, and output the final coordinate. Theory says
that the expectation of the final squared coordinate x2 is equal to N. By
automating many experiments like this, each with the same N and each
starting with x = 0, verify this prediction.

5. With a program, graph a histogram distribution of the random variable
function POISS of the stat.lib, in the style of program Gaussian. This should
look like a skewed Gaussian with a peak very near to the mean you choose in
the function call.

6. Model a physics experiment as follows: A piece of glass is to be bombarded
by silver atoms, each sticking to the glass, but arrivals are randomly equi­
distributed over the glass surface. Then the glass is to be broken into 100
pieces, and the atoms adhering to each piece counted. Run such an
'experiment,' using graphics to show the arrival of the atoms on a 10 by 10
grid. Then plot a histogram of the number of atoms falling into each piece,

144 • Scientific Programming with Macintosh Pascal

and report the mean value of the number per piece for the experiment. The
histogram and the mean should look very much like that of exercise 5, in fact
this is precisely the meaning of the integer-valued POISS function: it is the
variable number of arrivals given equidistribution over a much larger area
and therefore a calculable theoretical mean for the arrival at one piece. If N
atoms (total) adhere to the whole target, then the integer POISS(N/100) is a
valid model for the numer in one piece.

7. Calculate the number 7r by dropping points graphically into a square and
finding out how many land in the inscribed circle.

8. Assume that the temperature in Las Vegas, Nevada is a gaussian random
variable with mean- 85 degrees Fahrenheit and variance = sqr(error) = 100.
Using stat.lib procedures and the function GAUSS, write a program to find
the following for a 365-day year,

a. what day (1-365) has the greatest temperature.
b. how many days have temperature less than 75 degrees.
c. the mean value of the actual data (should be near 85).
d. the error (standard deviation) of the data (should be near 10).

9. Make a set of data points by computing the function f(x) = x2 for 100 values
of x between 0 and 2, exclusive of endpoints, and keep this in a 'sample'
array to be used by the stat.lib procedures. Then use the function MIN­
POINT to find an approximate value for x at which f is minimum.

10. Do a best-fit experiment as follows. Use the program BestFit but first write a
separate program to generate (x,y) pairs according to:

y:= x + 2•RAND(1) -1

with x running from 0 to 10 in steps of 0.1, and save these data in a disk file by
using a statement:

writeln(f ,x,y);

This is a 'noisy' set of data which, however, is fairly well correlated (y
deviates randomly from the straight line y = x). By then running program
BestFit, you should see this correlated data and get a best slope of about 1,
best intercept of about 0.

Probability and Statistics • 145

Answers

1. The numbers (1 + random mod 6) are effective die rolls. The spots are
perhaps best drawn with a long case statement, starting:

case roll of

1: begin
frameoval(...);

end;
2: begin

frameoval(...);
frameoval(...);

end;
... etc.

end;

2. For sorting, just replace the central four-statement block in procedure shuf­
fle with:

for j: = n -1 downto 1 do
begin
if xUJ x[n) then
begin
temp:= xUJ;
xUJ:= x[n);
x[n): = temp;

end;
end;

3. It should take about 200,000 hands to get four of a kind.

4. A test of whether (random mod 2) is zero tells you whether to increment or
decrement x.

5. Straightforward alteration of program Gaussian.

6. The key statements would be:

j: = 1 + random mod 100;
glassUJ: = glassUJ + 1;

to increment a random piece of target by one 'atom. '

146 • Scientific Programming with Macintosh Pascal

7. For the square define~ by (1,1); (-1,1); (-1, -1); (1, -1); a dropped point
(x,y) is in the circle if and only if sqr(x) + sqr(y) < 1. The number 11" is
calculated from the probability of such a hit, which is ; .

8. The library call should be GAUSS(85,10).

9. The function is computed in Pascal as exp(x•ln(x)).

10. Straightforward application of library functions RAND, BESTB, and
BESTM.

Program5.1

program pokerdeal;
(* DEALS TWO HANDS OF POKER *)

type
deck= array[l •. 52] of integer;
hand= array[l .. 5] of integer;
table= array[l .. 2] of hand;

var
x deck;
h : hand;
t : table;
ptr, n : integer;

procedure shuffle (var x : deck;
var ptr : integer);

var
n, j, temp : integer;

begin
for n := 52 downto 2 do
begin

j := 1 + random mod n;
temp := x [j l;
x[j] := x[n];
x[n] := temp;

end;
ptr :"' 1;

end;

procedure deal (var h : hand;
var ptr : integer);

var
n : integer;

begin
for n := 1 to 5 do
begin

h[n] := x[ptr];
ptr := ptr + l;

end;
end;

procedure show (h : hand;
y : integer);

var
n, k
c, d

integer;
char;

Probability and Statistics • 147

{continued)

148 • Scientific Programming with Macintosh Pascal

begin
for n := 1 to 5 do
begin

framerect(y, 30 * n, y + 36, 30 * p ,+ 24);
moveto(30 * n + 3, y + 12);
k := h[n] mod 13;
case k of
2, 3, 4, 5, 6, 7, 8,

c : ""' chr(k + 48);
1 :

c := 'A';
10

c := 'T';
11

c := 'J';
12

c := 'Q';
0 :

c := 'K';
end;

k := 1 + (h [n] -
case k of

1 :
d := 's';

2 :
d := IC' i

3 :
d := 'h':

4 :
d := 'd' ;

end;
writedraw(c, d);

end;
end;

begin
showtext;
showdrawing;

1)

9

div 13;

write('Hit <return> for new deal: ');
for n := 1 to 52 do
x[n] := n;

repeat
shuffle (x, ptr);
deal(t[l], ptr);
deal(t[2], ptr);
show (t [1] , 5) ;
show(t[2], 100);
readln;
eraserect(O, 0, 511, 300);

until false;
end.

Probability and Statistics • 149

Program5.i!

program randomwalk;
(* BROWNIAN MOTION ON INTEGER LATTICE *)

var
x, y, dr, n : integer;

procedure CLEAR;
(* Activates and expands Drawing Window to fill screen *)

var
windowrect : rect;

begin
hideall;
setrect(windowrect, 2, 35, 512, 342);
setdrawingrect(windowrect);
showdrawing;

end;

begin
CLEAR;
showtext;
write('Path length: ');
readln (dr);

x := 250;
y := 170;
moveto (x, y) ;

repeat
n := random;
if n < -16383 then

x := x + dr
else if n < 0 then

x := x - dr
else if n > 16383 then

y := y + dr
else if n > 0 then

y := y - dr;
if x < 0 then

x := O;
if y < 0 then

y := O;
if x > 500 then

x := 500;
if y > 330 then

y := 330;
lineto(x, y);

until false;
end. (continued)

150 • Scientific Programming with Macintosh Pascal

Program5.3

program geiger;
(* SIMULATES AUDIBLE GEIGER COUNTER OBEYING POISSON STATISTICS *)

var
x real;
n : integer;

begin
showtext;
setsoundvol(7);
repeat

x := (random + 32768) I 65536;
x := -ln(x) * 100;
for n := 1 to trunc(x) do
begin
end;

note(32000, 255, 1);
until false;

end.

Program5.4
program gaussian;
(* CREATES STATISTICAL HISTOGRAM OF GAUSSIAN RANDOM VARIABLE *)

var
freq: array[-200 .. 200] of integer;
n, a, b : integer;

function RAND (x : real) real;
(* Returns a random real in (0,x) exclusive *)
begin

RAND := x * (random + 32768) I 65536;
end;

function GAUSS (mean, error : real) : real;
(* Produces random real in Gaussian distribution *)

var
u, v, x : real;

begin
repeat
u := RAND (1);
v := RAND (1);
x := 2.0 * (v - 0.5) I u;

until sqr(x) <= -(4.0 * ln(u));

Probability and Statistics • 151

GAUSS := x * error + mean;
end;

procedure CLEAR;
(* Activates and expands Drawing Window to fill screen *)

var
windowrect : rect;

begin
hideall;
setrect(windowrect, 2, 35, 512, 342);
setdrawingrect(windowrect);
showdrawing;

end;

begin
for n := -100 to 100 do
freq[n) := O;

CLEAR;
repeat

n := trunc(9AUSS(O, 10));
if (n < -50) then

n := -50;
if (n > 50) then

n := 50;
freq[n) := freq[n) + 1;
a := 4 * n + 256;
b := 240 - 4 * freq[n];
framerect(b, a, b + 4, a+ 4);

until false;
end.

Program5.5

program MonteCarlo;
(* CALCULATES AN INTEGRAL WITH MONTE CARLO METHOD *)

con st
maxcounts 1000;
dx = 0.02;

var
x, y : real;
n, count : integer;

function f (x : real) real;
begin

f := 1 I (1 + sqr(x));
end;

{continued)

152 • Scientific Programming with Macintosh Pascal

function RAND (x : real) : real;
(* Returns a random real in (0,x) *)
begin

RAND := x * (random + 32768) I 65536;
end;

procedure CLEAR;
(* Activates and expands Drawing Window to fill screen *)

var
windowrect : rect;

begin
hideall;
setrect(windowrect, 2, 35, 512, 342);
setdrawingrect(windowrect);
showdrawing;

end;

procedure MAP (x, y : real;
var hor, ver : integer);

(* Returns hor,ver as pixel integers for given real coords (x,y) *)
begin
if abs(x) > 1.9 then

x := x I abs(x) * 1.9;
hor := 255 + trunc(x * 130);
if abs(y) > 1 then

y := y I abs(y);
ver := 138 - trunc(y * 130);

end;

procedure DRAW (x, y
(* Draws to (x,y) *)

var
hl, vl : integer;

begin
MAP(x, y, hl, vl);
lineto(hl, vl);

end;

real);

procedure SHIFT (x, y: real);
(* moves invisible to (x,y) *)

var
hl, vl : integer;

begin
MAP(x, y, hl, vl);
moveto (hl, vl);

end;

begin
CLEAR;
showtext;

Probability and Statistics • 153

SHIFT (1, -1);
DRAW(-1, -1);
DRAW(-1, 1);
SHIFT(O, -1);
DRAW (0, 0);
DRAW (-1, 0);
x := O;
pensize(2, 2);
repeat

x := x + dx;
DRAW(x - 1, f(x) - l);

until x > l;
pensize(l, l);
count :-= O;
for n := 1 to maxcounts do
begin

x := RAND(l);
y := RAND (1);
SHIFT(x - 1, y - l);
DRAW(x - 1, y - 1);
if y < f(x) then

count := count + l;
end;

writeln('Drops: ', maxcounts 1);
writeln('Hits: ', count : l);
writeln('Integral estimate: ', count/ maxcounts

end.

Programs.&

program Buffon;

6

(* MODELS BUFFON 1S NEEDLE EXPERIMENT FOR ESTIMATING *)
(* PI *)

con st
numdrops = 300;

var
L, xx, yy, dx, dy, theta : real;
m, n, p, count : integer;

function RAND (x : real) : real;
(* Returns a random real in (0,x) *)
begin

RAND := x * (random + 32768) I 65536;
end;

procedure CLEAR;

3);

(* Activates and expands Drawing Window to fill screen *)
var {continued)

154 • Scientific Programming with Macintosh Pascal

windowrect
begin
hideall;

rect;

setrect(windowrect, 2, 35, 512, 342);
setdrawingrect(windowrect);
showdrawing;

end;

procedure MAP (x, y : real;
var hor, ver: integer);

(* Returns hor,ver as pixel integers for given real coords (x,y)
begin
if abs(x) > 1.9 then

x :=- x I abs(x) * 1.9;
hor := 255 + trunc(x * 130);
if abs(y) > 1 then

y := y I abs(y);
ver := 138 - trunc(y * 130);

end;

procedure DRAW (x, y
(* Draws to (x,y) *)

var
hl, vl : integer;

begin
MAP(x, y, hl, vl);
lineto(hl, vl);

end;

real);

procedure SHIFT (x, y : real);
(* moves invisible to (x,y) *)

var
hl, vl : integer;

begin
MAP(x, y, hl, vl);
moveto(hl, vl);

end;

begin
CLEAR;
showtext;
for n := -10 to 10 do
begin

SHIFT(n I 10, -1);
DRAW(n I 10, l);

end;
L := 0.1;
for n := 1 to numdrops do
begin
xx := -1 + RAND(2);

Probability and Statistics • 155

yy := -1 + RAND(2);
theta := 100 * RAND(l);
dx :=LI 2 * cos(theta);
dy :=LI 2 * sin(theta);
SHIFT(xx - dx, yy - dy);
DRAW(xx + dx, yy + dy);
m := trunc(lO * (xx - dx));
p := trunc(lO * (xx+ dx));
if m <> p then

count := count + l;
end;

writeln('Drops: ', numdrops : 1);
writeln('Hits: ', count : l);
writeln('Estimate for pi: ', 2 * numdrops /count

end.

Program 5.7

program bestfit;

6

(* COMPUTES STATISTICAL PARAMETERS AND DRAWS BEST-FIT *)
(*STRAIGHT LINE ... USES DISK FILE OF INPUT DATA*)

type
sample= array[l .. 50] of real;

var
x, y : sample;
size : integer;
xmin, xmax, ymin, ymax, xx, yy
n integer;
f : text;

function SUMM (var v
var
ctr
sum

begin

integer;
real;

sum := 0;

sample)

for ctr := 1 to size do
sum:= sum+ v[ctr];

SUMM := sum
end;

real;

real;

function MEAN (var v : sample) : real;
(* Returns mean value of sample *)
begin

MEAN := SUMM(v) I size
end;

function PROD (var u, v
var

sample) real;

3);

(continued}

156 • Scientific Programming with Macintosh Pascal

ctr
sum

begin

integer;
real;

sum := O;
for ctr := 1 to size do

sum := sum+ u[ctr] * v[ctr];
PROD := sum

end;

function ERROR (var u : sample) : real;
(* Returns standard deviation of sample *)

var
m : real;
ctr : integer;
z : sample;

begin
m := MEAN(u);
for ctr := 1 to size do
z[ctr] := u[ctr] - m;

ERROR := sqrt(PROD(z, z) / (size - 1))
end;

function DETR (var u : sample) : real;
begin

DETR := sqr(SUMM(u)) - size * PROD(u, u)
end;

function BESTM (var x, y : sample)
(* Returns best-fit slope *)
begin

real;

BESTM := (SUMM(y) * SUMM(x) - size* PROD(x, y)) / DETR(x),
end;

function BESTB (var x, y : sample)

(* Returns best-fit intercept *)
begin

real;

BESTB := (SUMM(x) * PROD(x, y) - SUMM(y) * PROD(x, x)) / DETR(x);
end;

procedure GETPAIRS (var x, y : sample;
var size : integer);

(*Reads two sample columns of data and sets 'size' *)
begin
size := O;
repeat
size := size + l;
readln(f, x[size], y[size])

until eof(f)i
end;

Probability and Statistics • 157

function MAXPOINT (var x : sample) : integer;
(* Returns index of sample maximum *)

var
pt, ctr
m : real;

begin
m:=x(l];
pt : = l;

integer;

for ctr := 2 to size do
if x[ctr] > m then
begin
pt := ctr;
m := x[ctr]

end;
MAXPOINT := pt

end;

function MINPOINT (var x : sample) : integer;
(* Returns index of sample minimum *)

var
ctr, pt
m : real;

begin
m:=x[l];
pt : = l;

integer;

for ctr := 2 to size do
if x[ctr] < m then
begin
pt := ctr;
m := x[ctr]

end;
MINPOINT := pt

end;

procedure CLEAR;
var

windowrect : rect;
begin
hideall;
setrect(windowrect, 2, 35, 512, 342);
setdrawingrect(windowrect);
showdrawing;

end; {clear}

procedure MAP (x, y : real;
var hor, ver: integer);

(* Returns hor,ver as pixel integers for given real coords (x,y) *)
begin
if abs(x) > 1.9 then

x := x I abs(x) * 1.9;
(continued}

158 • Scientific Programming with Macintosh Pascal

hor := 255 + trunc(x * 130);
if abs(y) > 1 then

y := y I abs(y);
ver := 138 - trunc(y * 130);

end;

procedure DRAW (x, y
(* Draws to (x,y) *)

var
hl, vl : integer;

begin
MAP(x, y, hl, vl);
lineto(hl, vl);

end; {draw}

real);

procedure SHIFT (x, y : real);
(* moves invisible to (x,y) *)

var
hl, vl : integer;

begin
MAP(x, y, hl, vl);
moveto(hl, vl);

end; {shift}

begin
size := O;
CLEAR;
showtext;
reset(f, 'stat.data');
GETPAIRS(x, y, size);
close(f);
writeln('mean x: ', MEAN(x) : 4 : 4);
writeln('mean y: •, MEAN(y) : 4 : 4);
writeln('error x : ',ERROR(x) : 4 : 4);
writeln('error y: ',ERROR(y) : 4 : 4);
writeln('intercept: ', BESTB(x, y) 4 : 4);
writeln('slope: ', BESTM(x, y): 4: 4);
xmax := x[MAXPOINT(x)];
ymax := y[MAXPOINT(y)];
xmin := x[MINPOINT(x)];
ymin := y[MINPOINT(y)];
SHIFT(l, -1);
DRAW(-1, -1);
DRAW(-1, 1);
pensize(2, 2);
for n := 1 to size do
begin
xx := -1 + 2 * (x[n] - xmin) I (xmax - xmin);
yy := -1 + 2 * (y[n] - ymin) I (ymax - ymin);
SHIFT(xx, yy);
DRAW(xx, yy); (continued)

end;
pensize(l, 1);
xx := -1;

Probability and Statistics • 159

yy := (BESTM(x, y) * xmin + BESTB (x, y) - ymin) * 2 I (ymax - ymin) - 1;
SHIFT(xx, yy);
xx := 1;

yy := (BESTM(x, y) * xmax + BESTB(x, y) - ymin) * 2/ (ymax-ymin) - 1;

DRAW (xx, yy) ;

end.

6 Three­
Dimensional
Graphics
THEME: Three-dimensional graphics can be useful for model­
ing of physical phenomena. In this chapter you will learn how to
translate, rotate, and draw figures in 3-space; all in preparation
for addressing true scientific problems from your field of choice.

GOALS: To develop the ability to write programs whose output
is a two-dimensional representation of three-dimensional fig­
ures.

LIBRARIES USED: 3D.lib, Graphics.lib

REFERENCE MATERIALS: Texts in solid geometry, physics
of rotational motion, or texts from fields such as chemistry which
describe three-dimensional models.

The Euler Angles
Whereas one angle is needed to describe a 2-space orientation as we saw in
Chapter 3, three angles are needed to describe a 3-space orientation. It is easy to
visualize why this is so. Imagine a sphere with a dot at its north pole. It takes two
angles jif you prefer, latitude and longitude) to determine a place to which the
north pole will rotate. But then you may spin the sphere by some angle around

160

Three-Dimensional Graphics • 161

the new north-south axis. This is a third angle, and its inclusion exhausts all
possible rotations of the sphere, or for that matter, any object embedded in 3-
space. The Euler jpronounced 'oiler') angles are not quite these three, but are
just as general and are described as real numbers ja,b,c) with a rotation deter­
mined by the following steps:

Step 1 Rotate by angle a around the z-axis.
Step 2 Rotate by angle b around the new x-axis.
Step 3 Rotate by angle c around the new z-axis.

Note that the y-axis is not explicitly involved, but it does not need to be. For
example, you may rotate by an angle d around the y-axis by executing the Euler
set:

(a,b,c) = (2 , d, 2)

and so on. If you hold three fingers as if they were x,y,z axes and perform the
three rotations indicated, you can see how the result is an overall rotation around
the y-axis.

The rotation matrix which results from the three Euler operations is the
product of three matrices. Call R the overall rotation, which actually should be
thought of as Rja,b,c). Then a point jx,y,z) in 3-space will become the new point
jx' ,y' ,z') where:

You may plot the 2-space point jx', y' I and get the new 'view' for the original
point. It is also possible to use perspective, as discussed later in this chapter.

The key procedures in the 30.lib are as follows:

SMOVEjx,y,z,a,b,c);

SPLOTjx, y ,z,a,b,c);

SDRAWjx,y,z,a,b,c);

ROTATEjx,y,z,a,b,c);

AXESja,b,c);

I* move invisible to the rotated point jx', y' ,z' I *I

I* plot the rotated point *}

I* draw to the rotated point *)

I* rotate the three coordinates*)

I* draw the three coordinate axes *)

The procedures have been written so that only the ROTATE procedure actually
changes the coordinate values.

162 • Scientific Programming with Macintosh Pascal

s File Edit Search Run Windows
Drawing

Figure 6.1 I Terra output

Program 6.1, Terra, draws lines of latitude and longitude for a globe . The
coordinate system used involves the so-called 'spherical coordinates' (r, theta,
phi), where:

z = r • cos(theta)
x = r • sin(theta) • cos(phi)
y = r • sin(theta) • sin(phi)

Figure 6.1 shows the visual output of program Terra.

Three-Dimensional Graphs
A frequent programming problem is to plot a Monge surface, that is a surface
expressible in the form:

z = f(x,y)

The height z often corresponds to some analog quantity such as temperature,
potential, or intensity; and this is often plotted against two other axes (x and y)

Three-Dimensional Graphics • 163

s File Edit Search Run Windows
Drawin ii!D Te Ht

Figure 6.2 I Surface output

Euler angles (-1, 0.76,
0.85): -1 0.76 0.85

whose meaning is not necessarily spatial. All that you need to graph a Monge
surface is a quantity z that is determined uniquely by two other quantities.

Program 6.2, Surface, plots a bivariate Gaussian distribution against x and y.
This is a 'double humped' surface possessing two critical points. Figure 6.2
shows typical output.

In Chapter 7, some particular physical problems are discussed for which one
of the axes is time as opposed to space.

Perspective
Assume that a point (x,y,z) is given, and that it is rotated, and perhaps translated,
to a new point (x' ,y' ,z'). How do you take into account perspective, that is, how
do you expand visually for points closer to the eye? There are several ways to do
this, depending on the precise interpretation of how you see figures. Perhaps the
most straightforward approach is to perform the following calculation. Let a
number called 'warp' be defined by:

Warp. _ depth
· - (depth-1-z')

164 • Scientific Programming with Macintosh Pascal

where depth is a parameter essentially equivalent to the distance from the eye to
the origin j0,0,0). Then the adjustments:

x':= warp• x';
y':= warp• y';

will expand figures which lie closer to the eye. Program 6.3, CCL4, shows how to
sketch a model of carbon tetrachloride-a tetrahedral molecule whose five
atomic sites lie at:

(1,0,0);
(-1/2 sgrt(3) O)·

' 2 ' '

(-1/2 - sgrt(3) O)·
' 2 ' '

(O,O,sqrt(2));

for the four chlorine atoms, and:

(0 0 sgrt(2))
I I 4

for the central carbon.
Figure 6.3 shows the graphic output. Notice that the closer atoms appear

larger. This program combines techniques of sorting and three-dimensional
graphics: the largest objects are drawn last, so that the eraserect call in procedure
disk causes overlay of the closer disks.

A somewhat more sophisticated program, but a natural generalization of the
last, is Program 6.4, Lattice.

Here, a 5 x 5 x 5 atomic lattice is visualized by brute-force sorting against
warp factor: again the closer sites are drawn last. Figure 6.4 shows the typical
output.

Exercises

1. Write a program which draws the 3-space, labeled, positive coordinate axes
at a chosen Euler view. This means instead of procedure AXES of 3D .lib, you
want to have a new procedure which contains:

SMOVE(0,0,0,a,b,c); SDRAW(1,0,0,a,b,c); writedraw(' X ');

and similarly for the labels Y and Z. Test this for various input angles ja,b,c),
of which the easiest test is the input j0,0,0) -having the z-axis toward you so a
Z symbol should be right at center.

Three-Dimensional Graphics • 165

s File Edit Search Run Windows
Drawin! 0 TeHt

Figure 6.3 I CCL4 output

s File Edit Search Run Windows

Te Ht
Euler angles: 0. 1 0.2 -0 .4
Depth (3.3): 3.3

Figure6.4 I Lattice output

Drawing

Euler angles: 0 1 2
Depth (3): 2.5

166 • Scientific Programming with Macintosh Pascal

2. Write a program which shows different drafting views of a cube; namely:

front view: + x to the right, + y into screen, + z up
top view : + x right, + y up, + z out of screen
side view: +x into screen, +yup, +z toward you

Try to use three fingers on your hand, or some stick-like implements, to
determine the Euler angles for these views, using the reference (0,0,0) as the
'top view. ' The cube drawn should have some of its edges done in bold lines
(pensize(2,2) can be called for these) so that you can see how it sits. It is not
necessary, but by adroit use of the ROTATE procedure and translation of the
resulting (x,y) coordinates, you can have all the views on the screen at the
same time.

3. Write a program that draws a cone at arbitrary Euler angles (a,b,c). A cone
can be constructed by drawing rays from the point (0,0,1) to an appropriate
circle seated in the (x,y) plane.

4. Using a procedure such as perspect in program CCL4, draw with perspective
(you input the 'depth' parameter at run time) a parallelepiped (rectangular
box). The graphics should show pleasing renditions of this familiar figure
but now with the foreshortening effects that perspective brings.

5. Write a program which animates a finite-radius 'ball,' drawn with erase­
oval and frameoval with a specially varying radius, moving along a circle in
the (x,y) plane, but you initially input three Euler angles (a,b,c) so that the
motion appears elliptical in general. Use the expedient of changing the
radius of the ball according to the z-coordinate after rotation, so that as the
ball gets nearer, it 'expands,' giving a realistic display. This is another way
to use perspective-to figure out visually whether an object is coming or
going.

Answers

1. Just prior to the three procedures mentioned in the exercise, you can do a:

readln(a,b,c);

to set the angles. The best input strategy is probably this: input (0,0,0) and
note the z-axis is invisible because it points straight out. Then input (0.2,0,0)
and note the slight rotation of the x-y system, though the z-axis will still be
invisible. This is true for any set of the form (a,O ,0). Then you can input sets
such as (O,a,O), which should rotate around the x-axis. Finally, mixing angles
such as (a,b,O) or general input (a,b,c) will tend to show all three axes. It is a

Three-Dimensional Graphics • 167

good idea to work out some means of telling whether an axis points toward
you or away from you, possibly by drawing in special tick-marks on the
forward side of an axis. This cannot be done with the AXES procedure, since
the SMOVE and SDRA W procedures do not change the original real triple
jx,y,z). But the ROTATE procedure does, and you can go:

x: = 1; y: = O; zplus: = O;
ROTATE(x,y ,zplus,a,b,c);
x: = -1; y: = O; zminus: = O;
ROTATE(x,yzminus,a,b,c);

Then if z plus > z minus, the point jl,0,0) is more toward you than the point
(- 1,0,0), and so on.

2. The Euler sets which work are:

"bottom"view: (a,b,c) = (0,7r,O)
"front" view: (a,b,c) = (0, - 71',0)
"side"view: (a,b,c) = (7r/2,7r/2, -71'/2)

3. An algorithm which draws such a cone is:

for n: = Oto 100 do
begin
phi:= 2*71'/n;
x: = 0.5 * cos(phi);
y: = 0.5 * sin(phi);
SMOVE(0,0,1,a,b,c);
SDRAW(x,y,O,a,b,c);

end;

4. The box is to be defined by its corners, which should be set up as eight triples
(x[i), y[i), z[i)); i: = 1, ... ,8. Then you go through a loop such as:

for i: = 1to 8 do
begin
PERSPECT(x[i] ,y[i] ,z[i], warp,a,b,c);
MAP(x[i] ,y(i] ,m[i] ,n[il);

end;

which will set up the eight integer pairs (m(i),n[i)) to be the correct pixel
coordinates for the vertices of the parallelepiped. Then you go through a
sequence of moveto, lineto operations which involve only the integer pairs
(m[i] ,n[i]).

168 • Scientific Programming with Macintosh Pascal

5. You can model the space motion of a 'ball,' at first without animation
blanking, by:

phi:= O;
repeat

phi:= phi + dphi;
x: = 0.5 * cos(phi);
y: = 0.5 * sin(phi);
z:= O;
ROTATE(x,y,z,a,b,c);
MAP(x,y,m,n);
k: = trunc(30/(3-z)); (* perspective factor *)
FRAMEOVAL(m - k,n - k,m + k,n - k);

until false;

and then add animation by doing, prior to the frameoval, an eraseoval for the
old m, old n, and old k (computed from the old z). Then after the frameoval,
doing:

mold:= n; nold: = n; kold: = k;

Three-Dimensional Graphics • 169

Program&.1

program terra (input, output);
(* DRAWS THREE_DIMENSIONAL GLOBE WITH LINES OF LATITUDE AND
LONGITUDE *)

con st
pi = 3.14159265359;
delta = 0.2;

var
a, b, c : real;
x, y, z : real;
r, theta, phi : real;

procedure CLEAR;

{Euler angles}
{Cartesian coordinates}

{Spherical coordinates}

(* Activates and expands Drawing Window to fill screen *)
var

windowrect : rect;
begin
hideall;
setrect(windowrect, 2, 35, 512, 342);
setdrawingrect(windowrect);
showdrawing;

end;

procedure MAP (x, y : real;
var hor, ver : integer);

begin
if abs(x) > 1.9 then

x := x I abs(x) * 1.9;
hor := 255 + trunc(x * 130);
if abs(y) > 1 then

y := y I abs(y);
ver := 138 - trunc(y * 130);

end;

procedure DRAW (x, y real);
var
hl, vl : integer;

begin
MAP (x, y, hl, vl);
lineto(hl, vl);

end;

procedure SHIFT (x, y real);
var
hl, vl : integer;

begin
MAP (x, y, hl, vl); {continued}

170 • Scientific Programming with Macintosh Pascal

moveto(hl, vl);
end;

procedure PLOT (x, y
begin

SHIFT (x, y);
DRAW(x, y);

end;

real);

procedure ROTATE (var x, y, z
a, b, c: real);

real;

var
sx, sy, sz, tx, ty, tz : real;

begin
sx := x *
sy := x *
sz := z;
tx : = sx;
ty := sy
tz := sy
x := tx *
y : == tx *
z := tz;

end;

*
*

cos (c) - y * sin(c);
sin (c) + y * cos (c);

cos(b) - sz * sin(b);
sin (b) + sz * cos(b);

cos (a) - ty * sin(a);
sin (a) + ty * cos(a);

procedure SPLOT (x, y, z, a, b, c
var
u, v, w : real;

begin
u :== x;
v := y;
w := z;
ROTATE(u, v, w, a, b, c);
PLOT(u, v);

end;

procedure SDRAW (x, y, z, a, b, c
var
u, v, w : real;

begin
u := x;
v := y;
w := z;

ROTATE(u, v, w, a, b, c);
DRAW (u, v);

end;

procedure SMOVE (x, y, z, a, b, c
var
u, v, w : real;

real);

real);

real);

Three-Dimensional Graphics • 171

begin
u := x;
v := y;
w := z;
ROTATE(u, v, w, a, b, c);
SHIFT(u, v);

end;

begin
r := 1.0;
hideall;
showtext;
writeln('Euler angles (6 7 9): ');
readln(a, b, c);
CLEAR;

{plot north and south poles}
SPLOT(O, 0, r, a, b, c);
SPLOT(O, 0, -r, a, b, c);

{draw lines of latitude}
phi := pi I 12;
repeat
theta := O;

{pi/12 radians

SMOVE(r * sin(phi), O, r * c~s(phi), a, b, c);
z := r * cos(phi);
repeat
theta := theta + delta;
x := r * cos(theta) * sin(phi);
y := r * sin(theta) * sin(phi);
SDRAW(x, y, z, a, b, c);

until theta >= 2 * pi;
phi := phi + pi I 12

until phi > 11 I 12 * pi;
{draw lines of longitude}
theta : = O;
repeat

SPLOT(O, 0, r, a, b, c);
phi := O;
repeat
phi := phi + delta;
x := r * cos(theta) * sin(phi);
y := r * sin(theta) * sin(phi);
z := r * cos(phi);
SDRAW(x, y, z, a, b, c);

until phi >= 2 * pi;
theta := theta + pi I 12;

until theta > 11 I 12 * pi;
SHIFT(-1, 0);
writeln;

end. {terra}

15 degrees}

172 • Scientific Programming with Macintosh Pascal

Program&.2

program surface;
(* GRAPHS BIVARIATE GAUSSIAN SURFACE *)

con st
grid = 16;

var
x, y, a, b, c : real;
m, n : integer;

function f (x, y : real) : real;
begin

f := 0.15 * exp(-(sqr(x) + sqr(y - 0.2)) * 25) + 0.55 * exp(-(sqr(x)
+sq + 0.2)) * 25);

end;

procedure CLEAR;
var

windowrect : rect;
begin
hideall;
setrect(windowrect, 2, 35, 512, 342);
setdrawingrect(windowrect);
showdrawing;

end;

procedure MAP (x, y : real;
var hor, ver : integer);

begin
if abs(x) > 1.9 then

x := x I abs(x) * 1.9;
hor := 255 + trunc(x * 130);
if abs(y) > 1 then

y := y I abs(y);
ver := 138 - trunc(y * 130);

end;

procedure DRAW (x, y
var
hl, vl : integer;

begin
MAP(x, y, hl, vl);
lineto(hl, vl);

end;

procedure SHIFT (x, y
var
hl, vl : integer;

real);

real)

Three-Dimensional Graphics • 173

begin
MAP(x, y, hl, vl);
moveto(hl, vl);

end;

procedure ROTATE (var x, y, z real;
a, b, c : real);

var
sx, sy, sz, tx, ty, tz : real;

begin
sx := x * cos(c) - y * sin(c);
sy := x * sin(c) + y * cos(c);
sz := z;
tx := sx;
ty := sy * cos(b) - sz * sin(b);
tz := sy * sin(b) + sz * cos(b);
x := tx * cos(a) - ty * sin(a);
y := tx * sin(a) + ty * cos(a);
z := tz;

end;

procedure SDRAW (x, y, z, a, b, c
var

u, v, w : real;
begin

u := x;
v := y;
w := z;
ROTATE(u, v, w, a, b, c);
DRAW (u, v);

end;

procedure SMOVE (x, y, z, a, b, c
var
u, v, w : real;

begin
u := x;
v := y;
w := z;
ROTATE(u, v, w, a, b, c);
SHIFT (u, v);

end;

begin
CLEAR;
showtext;

real);

real);

write('Euler angles (-1 0.76 0.85): ');
readln(a, b, c);
for m := 0 to grid do
begin
for n := 0 to grid do (continued}

174 • Scientific Programming with Macintosh Pascal

begin
x : =: 0.7 * (-1 + 2 * m I grid);
y := 0.7 * (-1 + 2 * n I grid);
if n = 0 then

SMOVE(x, f(x, y), y, a, b, c)
else

SDRAW(x, f(x, y), y, a, b, c);
end;

end;
for n := 0 to grid do
begin
for m := 0 to grid do
begin

x := 0.7 * (-1 + 2
y : "' 0.7 * (-1 + 2
if m = 0 then

SMOVE(x, f(x, y),
else

* m I grid);

* n I grid);

y, a, b, c)

SDRAW(x, f(x, y), y, a, b, c);
end;

end;
end.

Program&.3

program CCL4;
(* DRAWS CARBON TETRACHLORIDE WITH PERSPECTIVE *)

con st
num 5;

var
x: array[l •. num, 1 .. 3] of real;
a, b, c, depth : real;
warp : array[l .. num] of real;
order: array[l .• num] of integer;
m, n, temp : integer;

procedure CLEAR;
var

windowrect : rect;
begin
hideall;
setrect(windowrect, 2, 35, 512, 342);
setdrawingrect(windowrect);
showdrawing;

end;

procedure MAP (x, y : real;
var hor, ver : integer);

begin
if abs(x) > 1.9 then

x : = x I abs (x) * 1 . 9;
hor := 255 + trunc(x * 130);
if abs(y) > 1 then
Y := y I abs(y);

ver := 138 - trunc(y * 130);
end;

procedure DRAW (x, y
var
hl, vl : integer;

begin
MAP(x, y, hl, vl);
lineto(hl, vl);

end; {draw}

procedure SHIFT (x, y
var
hl, vl : integer;

begin
MAP(x, y, hl, vl);
moveto(hl, vl);

end; {shift}

real);

real);

procedure disk (x, y, r: real);

Three-Dimensional Graphics • 175

(* Draws solid disk of radius r centered at (x,y) *)
var
hl, vl, h2, v2 : integer;

begin
MAP(x - r, y + r, hl, vl);
MAP (x + r, y - r, h2, v2);
eraseoval(vl, hl, v2, h2);
frameoval(vl, hl, v2, h2);

end;

procedure ROTATE (var x, y, z
a, b, c : real);

var
sx, sy, sz, tx, ty, tz : real;

begin
sx := x * cos(c) - y * sin(c);
sy := x * sin(c) + y * cos(c);
sz
tx

real;

ty cos(b) - sz * sin(b);
tz sin(b) + sz * cos(b);
x := tx * cos(a) - ty * sin(a);
y := tx * sin(a) + ty * cos(a);
z := tz;

end; (continued}

176 • Scientific Programming with Macintosh Pascal

procedure perspect (var x, y, z, warp
a, b, c, depth : real);

begin
ROTATE(x, y, z, a, b, c);
warp :=depth I (depth - 1 - z);
x := x * warp;
y := y * warp;

end;

begin
x [1, 1] := 1;
x [1, 2] := 0;
x [1, 3] := O;
x [2, 1] := -1 I 2;
x[2, 2] := sqrt (3) I 2;
x[2, 3] := O;
x[3, 1] := -1 I 2;
x[3, 2] := -sqrt (3) I 2;
x[3, 3] :=
x [4, 1] :=
x [4, 2] :=
x [4, 3] :=
x[S, 1] :=
x[S, 2] :=
x[S, 3] :=
for m := 1
begin
for n :=
begin

O;
O;
0;
sqrt (2);
0;
O;
sqrt (2) I 4;
to num do

1 to 3 do

x[m, n] := x[m, n] * 0.2;
end;

end;
CLEAR;
showtext;
write('Euler angles: ');
readln (a, b, c);
write ('Depth (3): ');
readln(depth);
for m := 1 to num do
begin

real;

perspect(x[m, 1], x[m, 2], x[m, 3], warp[m), a, b, c, depth);
order [m] : = m;

end;
for m := 1 to num - 1 do
begin
for n := m + 1 to num do
begin
if warp[order[m]] > warp[order[n]] then
begin

temp := order[m];
order[m] := order[n];

Three-Dimensional Graphics • 177

order[n] := temp;
end;

end;
end;
for n := 1 to num do
begin

m := order[n];
x[m, 1] := x[m, 1] * warp[m];
x[m, 2] := x[m, 2] * warp[m];
disk(x[m, 1], x[m, 2], 0.1 * warp[m]);
SHIFT(x[m, 1], x[m, 2]);
if m < num then
writedraw ('Cl')

else
writedraw (•c');

end;
end.

Program 6.-4

program lattice;
(* DRAWS 5X5X5 ATOMIC SITE LATTICE *)

con st
num = 125;
side = 5;

var
x: array[l .. num, 1 .. 3] of real;
a, b, c, depth : real;
warp : array[l •. num] of real;
order: array[l •. num] of integer;
m, n, p, temp, index : integer;

procedure CLEAR;
var
windowrect : rect;

begin
hideall;
setrect(windowrect, 2, 35, 512, 342);
setdrawingrect(windowrect);
showdrawing;

end;

procedure MAP (x, y : real;
var hor, ver: integer);

(* Modified library procedure *)
begin
hor := 255 + trunc(x * 130); (continued}

178 • Scientific Programming with Macintosh Pascal

ver := 138 - trunc(y * 130);
end;

procedure DRAW (x, y
var
hl, vl : integer;

begin
MAP(x, y, hl, vl);
lineto(hl, vl);

end;

procedure SHIFT (x, y
var
hl, vl : integer;

begin
MAP(x, y, hl, vl);
moveto(hl, vl);

end;

real);

real);

procedure disk (x, y, r: real);
(* Draws solid disk of radius r centered at (x,y) *)

var
hl, vl, h2, v2 : integer;

begin
MAP(x - r, y + r, hl, vl);
MAP(x + r, y - r, h2, v2);
eraseoval(vl, hl, v2, h2);
frameoval(vl, hl, v2, h2);

end;

procedure ROTATE (var x, y, z
a, b, c: real);

var
sx, sy, sz, tx, ty, tz : real;

begin
sx := x * cos (c) - y * sin(c);
sy := x * sin (c) + y * cos(c);

sz := z;
tx := sx;

real;

ty := sy * cos(b) - sz * sin (b);
tz := sy * sin(b) + sz * cos(b);
x := tx * cos (a) ty * sin(a);
y := tx * sin(a) + ty * cos(a);

z := tz;
end;

procedure perspect (var x, y, z, warp
a, b, c, depth : real);

begin
ROTATE(x, y, z, a, b, c);
warp :=depth I (depth - 1 - z);

real;

x := x * warp;
y := y * warp;

end;

begin
for m := 0 to side - 1 do
begin
for n := 0 to side - 1 do
begin
for p := 0 to side
begin

index :=
x[index,
x[index,
x[index,

end;
end;

end;

1
3]
2]
1]

+ p
:=
:=
:=

for m := 1 to num do
begin
for n := 1 to 3 do
begin

+
1
-1
-1

- 1

side
+ p;
+ 2
+ 2

do

*

*
*

x[m, n] := x[m, n] * 0.2;
end;

end;
CLEAR;
showtext;
write('Euler angles: ');
readln(a, b, c);
write('Depth (3.3): ');
readln(depth);
for m := 1 to nu~ do
begin

Three-Dimensional Graphics • 179

n + sqr(side) * m;

n I side;
m I side;

perspect(x[m, l], x[m, 2], x[m, 3], warp[m], a, b, c, depth);
order [m] : = m;

end;
for m := 1 to num - 1 do
begin
for n := m + 1 to num do
begin
if warp[order[m]] > warp[order[n]] then
begin

temp := order[m];
order[m] := order[n];
order[n] := temp;

end;
end;

end;
backpat(LtGray);
pensize(2, 2); {continued}

180 • Scientific Programming with Macintosh Pascal

for n := 1 to num do
begin

m := order[n];
x[m, 1) := x[m, 1) * warp[m]:
x[m, 2) := x[m, 2) * warp[m];
disk(x[m, 1), x[m, 2), 0.07 * warp[m));
SHIFT(x[m, 1), x[m, 2]);

end;
end.

7 Dynamical
Models
THEME: Problems of the general category of dynamical (time­
dependent) models are discussed.

GOALS: To achieve familiarity with the programming of
dynamical models, with emphasis on graphic representation of
solutions.

LIBRARIES USED: 3D.lib, Graphics.lib.

REFERENCE MATERIALS: Texts and references from your
chosen field.

Space-Time Models
In space-time models the basic idea is to assign two axes to space and time,
respectively. Of special interest are those problems from physics, biology, chem­
istry, and engineering in which some function:

f(x,t)

of space (x) and time (t) is desired. In such situations, the value off will be a third
axis. Methods from the last chapter for three-dimensional grahics apply. In
Program 7.1, Pulse, a particularly convenient set of Euler angles is given as:

c = 0.86

b = 0.75

a= -1

This produces a visually comfortable set of three axes, as in Figure 7.1, where the
axis going off to the left is time, the axis to the right is space, and the vertical axis
for this program is pulse amplitude.

181

182 • Scientific Programming with Macintosh Pascal

s File Edit Search Run Windows
Drawing

Figure 7 .1 I Pulse output

What is graphed is a Gaussian wave pulse of the form:

psi(x,t) = constant • exp(- sqr(ax- bt))

The pulse propagates along the x-axis with velocity+ . It is important to note that
you may graph in this way either a ' hard function ' as in program Pulse, or the
solution to a dynamic differential equation. For the Pulse example, the wave is a
solution to a classical wave equation for velocity + .

Parametric Space Curves
When time is thought of as a parameter, three functions such as:

x(t)

y(t)

z(t)

may be displayed as a single space curve which twists and winds its way through
3-space as the time t increases. Of course, the parameter need not bet, but often

Dynamical Models • 183

some physical quantities x,y,z are dynamical variables governed by differential
equations; and whether the parameter of differentiation is actually time or not,
the model can be thought of dynamically. In relativistic physics, for example, the
space curve parameter can be 'proper time,' which is actually an invariant
distance, or even a dimensionless parameter.

Program 7.2, StrangeAttractor, models the so-called 'Lorenz Attractor. '
This is a system of coupled differential equations:

dx/dt = - sigma • (x -y);
dy/dt = - x • (z - r) - y;
dz/dt = x • y - b • z;

where sigma, b, and rare constants.
This model describes a complex problem in the theory of fluids. Phenomena

such as chaos and attraction are exhibited by this system. The graphic output is
interesting.

Figure 7.2 shows the appearance of the space curve. What is not shown is
how the two attractors-the centers of the obvious vortices-keep being
revisitied alternately by the trajectory. This behavior is evident when you run the
program.

a File Edit Seflrch Run Windows
Drnwing

Figure 7.2 I StrangeAttraction output-space curve

184 • Scientific Programming with Macintosh Pascal

Animation
The techniques of Chapter 4 in regard to animation can be applied to general
dynamical problems. This approach is especially useful if the problem at hand
does not have a convenient analytical solution. One example is the three-body
problem of an object orbiting under the influence of both the earth and moon.
The equation of motion for the position r of the orbiting projectile is:

d2r = - GM(r-re) _ Gm(r-rm)
dt2 (Jr-rel)3 (Jr-rmJ)a

where re, rm are th~ position vectors of the earth, moon, respectively; and M, m
are the respective masses of these bodies . In Program 7.3, Lunacy, the equation
of motion is emobodied in the four statements involving the acceleration record.
Both acceleration.x and acceleration.y must be updated in such problems
because acceleration resolves into its orthogonal components.

Figure 7.3 shows the results of aiming with the programmed mouse-cue
method (see, for example, program Billiards of Chapter 4) in a way that enables
the projectile to orbit both planet and moon.

s File Edit Search Run Windows
~L Drawing

·· ················
... : = ,: : :·: :: ••• ••• •••·•· ·• •• . :········· , ···· ...

.... ..
· · · · ··

Figure 7.3 I Lunacy output-planet and moon orbit

Dynamical Models • 185

Exercises

1. Remove the lunar gravitation pull from program Lunacy and verify that the
projectile can indeed be launched into a stable, elliptical orbit around the
Earth.

2. Write a program to model the behavior of a particle in the rings of Saturn, as
follows. Such particles are in orbit around the main planet, but are perturbed
by orbiting Saturnian moons. Assume one moon, and force it to travel in a
circular orbit at radius 1, but with otherwise correct period, with Saturn at
the origin. Then solve the dynamics of a ring particle which is pulled upon by
both planet and moon. If you launch this ring particle in an orbit which
would be circular without the moon present, it will be perturbed by the
moon and the orbit will go uncircular. But the overall perturbation is a
radical function of the particle's initial radius. In fact, for a certain radius, the
period of the particle is about one half the period of the orbiting moon. At
this radius for the ring particle, a resonance occurs which causes relatively
great perturbation. This has been proposed as an explanation of the dark
Cassini Division-a black annulus which appears to separate the main ring
from a thin outer one. The division is thought to be caused by the moon
Mimas, which is placed just so that a circular orbit at Cassini's Division
would have half of Mimas' orbital period. A good program should show
radical effects at such a radius. With some patience and the understanding
that execute times will be slow, you can put many particles into the fray, and
attempt to eventually come up with an actual, visible division at whose
radius only a few particles subsist. You need a few hundred ring particles to
see this effect on the graphics screen after scores of revolutions of the moon.

3. Model a coupled oscillator system as follows. Assume three springs tied in
series, with the whole assembly affixed to two rigid walls. Two equal masses
exist at the two places where springs meet:

K l KK K

186 • Scientific Programming with Macintosh Pascal

The outer springs have equal spring constant K while the inner spring has a
different constant KK. The equations of moion for the coordinates xl and x2
are:

Write a program to solve these equations, and animate the masses on the
graphics screen. Several interesting phenomena should be evident:

a. There are two normal mode frequencies that are apparent when you
either start both masses going to the right initially, or when you start
them out of phase !moving apart, for example) initially.

b. For sufficiently small ratio ~2 , the coupling is called 'weak, ' and in
this case, beats between the normal modes will be evident. In fact, if
K: is small, then starting one mass moving initially with the other at
rest will start a fascinating process in which the originally moving mass
eventually transfers virtually all of its energy to the other mass, after
which the motion sloshes back to the original mass. This goes on forever
at a frequency given by the difference betw~en the normal mode fre­
quencies of la).

4. Write a program to model the Logistic Equation of population biology:

dN = r * N * (K - N)
dt

where:

N = population of organisms !number of living entities)

r = constant Malthusian growth rate

K = carrying capacity !population limit)

By starting with small initial values of Nat time t = 0, you can witness the
population growing exponentially as explrt) for some time, then being lim­
ited by the carrying capacity term and settling out to a constant value.

5. Make a space-time evolution plot of the celebrated double soliton:

f(x t) = 4cosh(2x - St) + cosh(4x - 64t) + 3
' (3 cosh(x - 28t) + cosh(3x - 36t)) 2

This strange animal consists of two lumps which, starting from time t = 0,
move toward each other, collide and pass through each other, then emerge

Dynamical Models • 187

intact after the collision, proceeding to surry away from each other forever
thereafter. Solitons were discovered in the late 1960's by computer analysis.
Generally, they represent solutions to nonlinear equations of motion which
do not 'fall apart' either by collision or by age.

6. The Diffusion Equation is a good example of a differential equation involv­
ing both space and time but requiring only one set of initial data. The
differential equation is:

d d2
- f(x t) = D - f(x t)
dt I dx2 I

with D denoting the Diffusion Constant for the problem. Starting with a
Gaussian initial condition:

f(x,O) = exp(- S•x•x)

corresponding to some substance localized in space (imagine a "splot" of ink
which will diffuse through a water medium, for example), make a space­
time plot of the evolution of f(x,t). It is a good idea for such problems to set up
an array for f, as with:

var f: array[- max .. max] of real;

from which the second derivative with respect to x is given by:

dd: = (fU+1J - 2•fUI + fU-1))
dx

where j is < max and > -max, and represents the spatial point x = j •dx.
Then the evolution off is determined by an equation of motion such as:

fUJ:= fUI + dd * D * dt;

and the techniques of program Pulse should give a good display. This
Gaussian initial condition will 'diffuse' as it should into shallower and
shallower Gaussians with time. If you are ambitious, you can tackle the
problem of diffusion such as this but between two reflecting walls. Then any
initial distribution of matter f(x,O) should, by rights, end up after long t as a
flat, featureless distribution as the matter settles between the walls. The key
to handling this kind of wall-boundary condition is to force the spatial
derivative :: to vanish at any wall.

7. The dynamics of a circular membrane (drumhead) are beautiful indeed. It is
a fairly involved task to solve the time dependent differential equations for a
membrane by computer, but a good alternative is to use the known solutions

188 • Scientific Programming with Macintosh Pascal

and to make 3-space surface plots of the drumhead. Let z be a zero of then-th
Bessel function Jn. Then the function defined for polar coordinates Ir, theta)
by:

f(r,theta) = Jn(z•r) * cos(n•theta)

represents a 'snapshot' of an oscillating drumhead whose fixed rim is at
radius r = 1. Write a program to make surface plots of some of these
beautiful oscillation modes. One can either track along rays of constant
theta, or along line loops of constant r, always plotting the membrane height
as f(r,theta).

Answers

1. This involves the simple removal of the moon component of acceleration; in
fact, the whole block starting 'if not crash then . . . ' should be removed.

2. The whole problem revolves around a Kepler's Law, which states that if a
body orbits at a distance r from the Saturn mass Msat, then the angular
velocity of the stable circular orbit is:

O: = sqr/ G * Msat\
\ (r*r*r) J

An angular velocity variable is to be used in the equation:

angle:= angle + n • dt;

that is, analogously to linear velocity. Once the moon is moving in this
circular orbit, the forces on the ring particle can be computed just as in
program Lunacy.

3. The normal mode frequencies are:

f1 = 2 • r • sqrtt~)
f2 = 2 * r * sqrt (K ~ KK)

4. The steady-state value of N is just the carrying capacity K .

. 5. The program Pulse may be used directly for this problem. All you have to
alter is the procedure setup, where the soliton formula should be typed in
with appropriate overall scaling so the wave fits onto the screen.

6. The diffusion solution always looks like a pulse of some kind that flattens out
in time. The problem with reflecting walls is relatively difficult. The method

Dynamical Models • 189

of images applies here. You can take the solution at a point x between the
walls (at - a and +a) to be the sum of solutions for identical sources at ± 2a,
± 3a, ±4a, ... This will ensure a zero derivative at each wall.

7. The program Surface is easily altered to plot the functions f(r,theta). All you
need is these additional facts:

x: = r * cos(theta);

y: = r * sin(theta);

the z coordinate is just f itself

190 • Scientific Programming with Macintosh Pascal

Program7.1

program pulse;
(* DRAWS SPACE-TIME PROPAGATION OF WAVE PULSE *)

con st
max = 20;
dt "' 0.06;
c 0.85
b = 0.76;
a = -1;
psiscale = 3;

type
wave array[-max •• max] of real;

var
psi : wave;
t : real;

procedure CLEAR;
var

windowrect : rect;
begin
hideall;
setrect(windowrect, 2, 35, 512, 342);
setdrawingrect(windowrect);
showdrawing;

end;

procedure MAP (x, y : real;
var hor, ver : integer);

begin
if abs(x) > 1.9 then

x := x I abs(x) * 1.9;
hor := 255 + trunc(x * 130);
if abs(y) > 1 then

y := y I abs(y);
ver := 138 - trunc(y * 130);

end;

procedure DRAW (x, y
var
hl, vl : integer;

begin
map(x, y, hl, vl);
lineto(hl, vl);

end;

procedure SHIFT (x, y

real):

real);

var
hl, vl : integer;

begin
MAP(x, y, hl, vl);
rnoveto(hl, vl);

end;

procedure ROTATE (var x,
a, b, c : real);

var
sx, sy, sz, tx, ty, tz

begin
sx := x * cos (c) - y *
sy : .. x * sin (c) + y *
sz := z;
tx := sx;

y, z real;

: real;

sin(c);
cos(c);

ty := sy * cos(b) - sz * sin (b);
tz := sy * sin(b) + sz * cos(b);

x : .. tx * cos (a) - ty * sin(a);
y := tx * sin(a) + ty * cos(a);
z := tz;

end;

procedure SDRAW (x, y, z, a, b, c
var
u, v, w : real;

begin
u := x;
v := y;
w := z;
ROTATE(u, v, w, a, b, c);
DRAW(u, v);

end;

procedure SMOVE (x, y, z, a, b, c
var
u, v, w : real;

begin
u :=
v := y;
w := z;
ROTATE(u, v, w, a, b, c);
SHIFT(u, v);

end;

procedure setup (var psi
t : real);

var
ii integer;
x : real;

begin

wave;

Dynamical Models • 191

real);

real);

(continued)

192 • Scientific Programming with Macintosh Pascal

for ii := -max to max do
begin

x := ii I max;
psi[ii] := exp(-sqr(6 * x - 4 * t + 1)) I psiscale;

end
end;

procedure ax;
begin

SMOVE(0.8, -0.3, -1, a, b, c);
SDRAW(-0.8, -0.3, -1, a, b, c);
SDRAW(-0.8, 0.3, -1, a, b, c);
SMOVE(-0.8, -0.3, -1, a, b, c);
SDRAW(-0.8, -0.3, 1, a, b, c);

end;

procedure showwave (psi
t : real);

var
ii integer;

begin
for ii := -max to max do
begin
if ii = -max then

wave;

SMOVE(-0.8, psi[ii] - 0.3, -1 + t, a, b, c)
else

SDRAW(0.8 *ii I max, psi[ii] - 0.3, -1 + t, a, b, c);
end;

end;

begin
CLEAR;
ax;
t := O;
setup(psi, t);
showwave(psi, 0);
repeat

t := t + dt;
setup(psi, t);
showwave(psi, t);

until t > 1. 6;
end.

Program7.2

program StrangeAttractor;
(* GRAPHS 'Lorenz Attractor' IN THREE SPACE *)

con st
sigma = 10;

bb = 2.7;
r = 28;
a O;
b l;
c = -1;
dt = 0.01;

var
x, y, z, t, vx, vy, vz

procedure CLEAR;
var

windowrect : rect;
begin
hideall;

real;

setrect(windowrect, 2, 35, 512, 342);
setdrawingrect(windowrect);
showdrawing;

end;

procedure MAP (x, y : real;
var hor, ver : integer);

begin
if abs(x) > 1.9 then

x := x I abs(x) * 1.9;
hor := 255 + trunc(x * 130);
if abs(y) > 1 then

y := y I abs(y);
ver := 138 - trunc(y * 130);

end;

procedure DRAW (x, y
var
hl, vl : integer;

begin
MAP(x, y, hl, vl);
lineto(hl, vl);

end;

procedure SHIFT (x, y
var
hl, vl : integer;

begin
MAP(x, y, hl, vl);
moveto(hl, vl);

end;

real);

real);

procedure ROTATE (var x, y, z
a, b, c : real);

var
sx, sy, sz, tx, ty, tz real;

real;

Dynamical Models • 193

(continued)

194 • Scientific Programming with Macintosh Pascal

begin
sx := x * cos(c) - y * sin(c);
sy := x * sin(c) + y * cos(c);
sz :== z;
tx := sx;
ty := sy * cos(b) - sz * sin(b);
tz := sy * sin(b) + sz * cos(b);
x := tx * cos(a) - ty * sin(a);
y := tx * sin(a) + ty * cos(a);
z := tz;

end;

procedure SDRAW (x, y, z, a, b, c
var
u, v, w : real;

begin
u := x;
v := y;
w :== z;
ROTATE(u, v, w, a, b, c);
DRAW(u, v);

end;

procedure SMOVE (x, y, z, a, b, c
var
u, v, w : real;

begin
u := x;
v := y;
w := z;
ROTATE(u, v, w, a, b, c);
SHIFT(u, v);

end;

procedure AXES (a, b, c : real);
begin

SMOVE(-1, O, 0, a, b, c);
SDRAW(l, 0, 0, a, b, c);
SMOVE(O, -1, 0, a, b, c);
SDRAW(O, 1, O, a, b, c);
SMOVE(O, O, -1, a, b, c);
SDRAW (0, 0 , 1, a , b, c) ;

end;

begin
CLEAR;
x := 0.01;
y := O;
z := O;
t := O;
AXES (a, b, c) ;

real);

real);

SMOVE(x, y, z, a, b, c);
repeat
vx :=-sigma* (x - y);
vy := -x * (z - r) - y;
vz := x * y - bb * z;
x := x + vx * dt;
y := y + vy * dt;
z := z + vz * dt;
SDRAW(x I 70, y I 70, z I 70, a, b, c);

until false;
end.

Program7.SI

program lunacy;

Dynamical Models • 195

(* USER LAUNCHES PROJECTILE WHICH ORBITS WITHIN EARTH-MOON SYSTEM *)

con st
K = 6. 67;
L = 1;
dt = 0.01;

var
rcubed, rr, ss, speed, an : real;
crash : boolean;
vel, accel, pos, oldpos : record

x, y : real;
end;

procedure CLEAR;
var

windowrect : rect;
begin
hideall;
setrect(windowrect, 2, 35, 512, 342);
setdrawingrect(windowrect);
showdrawing;

end;

procedure MAP (x, y : real;
var hor, ver: integer);

begin
if abs(x) > 1.9 then

x := x I abs(x) * 1.9;
hor := 255 + round(x * 130);
if abs(y) > 1 then

y := y I abs(y);
ver := 138 - round(y * 130);

end;
(continued}

196 • Scientific Programming with Macintosh Pascal

procedure UNMAP (h, v : integer;
var x, y : real);

begin
x := (h - 255) I 130;
y := (138 - v) I 130;

end;

procedure DRAW (x, y
var
hl, vl : integer;

begin
MAP(x, y, hl, vl);
lineto(hl, vl);

end;

procedure SHIFT (x, y
var
hl, vl : integer;

begin
MAP(x, y, hl, vl);
moveto(hl, vl);

end;

procedure PLOT (x, y
begin

SHIFT (x, y) ;

DRAW(x, y);
end;

real);

real);

real);

procedure disk (x, y, r : real);

var
h2, v2, hl, vl : integer;

begin
MAP(x ~ r, y + r, h2, v2);
MAP(x + r, y - r, hl, vl);
paintoval(v2, h2, vl, hl);

end;

procedure explode (x, y, r : real);
var
h2, v2, hl, vl, k : integer;

begin
MAP(x - r, y + r, h2, v2);
MAP(x + r, y - r, hl, vl);
for k :- 1 to 20 do
begin

case (k mod 3) of
2 :

penpat (gray) ;
1 :

Dynamical Models • 197

penpat(white);
0 :
penpat(black);

end;
paintoval(v2, h2, vl, hl);

end;
eraseoval(v2, h2, vl, hl);

end;

function angle (x, y, xold, yold : real) : real;
{returns the angle of the vector whose tail is at 'old'}

con st
ppi = 3.14159265359;

var
an : real;

begin
an := arctan((y - yold) I (abs(x - xold) + 0.000001));
if x < xold then
if y < yold then

an := -ppi - an
else

an := ppi - an;
angle := an;

end;

procedure stroke (var x, y, xold, yold : real);
{animates a mouse-stroke, returns endpoint (x,y), original}
{point (xold,yold) as reals}

var
hl, h2, vl, v2 : integer;

begin
while not button do
begin
end;

getmouse(hl, vl);
h2 := hl;
v2 := vl;
while button do
begin

penpat(white);
moveto(hl, vl);
lineto(h2, v2);
getmouse(h2, v2);
moveto(hl, vl);
penpat(black);
lineto(h2, v2);

end;
penpat(white);
moveto(hl, vl);
lineto(h2, v2); (continued}

198 • Scientific Programming with Macintosh Pascal

penpat (black) ;
UNMAP(hl, vl, xold, yold);
UNMAP(h2, v2, x, y);

end;

begin
CLEAR;
penpat (gray);
disk (-0. 9, 0, 0. 2) ;
disk(+0.9, 0, 0.05);
penpat(black);
stroke(oldpos.x, oldpos.y, pos.x, pos.y);
an := angle(pos.x, pos.y, oldpos.x, oldpos.y);
speed := 5 * sqrt(sqr(pos.x - oldpos.x) + sqr(pos.y - oldpos.y));
vel.x := cos(an) * speed;
vel.y := sin(an) * speed;
repeat
rr := sqrt(sqr(pos.x + 0.9) + sqr(pos.y));
rcubed := rr * sqr(rr);
accel.x := -K * (pos.x + 0.9) I rcubed;
accel.y := -K * pos.y I rcubed;
ss := sqrt(sqr(pos.x - 0.9) + sqr(pos.y));
if (rr < 0.18) or (ss < 0.048) then
crash := true;

if not crash then
begin

rcubed := ss * sqr(ss);
accel.x := accel.x - L * (pos.x - 0.9) I rcubed;
accel.y := accel.y - L * (pos.y) I rcubed;
vel.x := vel.x + accel.x * qt;
vel.y := vel.y + accel.y * dt;
pos.x := pos.x + vel.x * dt;
pos.y := pos.y + vel.y * dt;
PLOT(pos.x, pos.y);

end;
until crash;
if rr < 0.18 then
explode(-0.9, O, 0.2)

else
explode(+0.9, 0, 0.05);

end.

8 Serial 1/0 and
External
Devices
THEME: This chapter consists of optional, advanced material
involving system calls from Macintosh Pascal. It is intended for
those readers interested in serial communication to external
devices. Covered are the subjects of term~nal emulation and
laboratory Input/Output.

GOALS: To be able to emulate various types of serial terminals
with programs.

LIBRARIES USED: Graphics.lib (for the laboratory I/O meth­
ods).

REFERENCE MATERIALS: Texts and references on RS-232
serial communication, Inside Macintosh technical manual
EMM-2048a User Manual (see end of chapter).

Basic Considerations for Serial 1/0
Pascal language standards leave little room for handling serial communication.
The basic problem is that the common input statement:

read(file,c);

where file is the serial port and c is a character to be read, will dwell until a
character comes in from the outside world. There are "trick" ways around this in
most Pascal systems. One of these is euphemistically referred to as 'lazy I/O,'

199

200 • Scientific Programming with Macintosh Pascal

and involves file pointers. We do not cover lazy I/O here; instead, we use
methods of system calls from Macintosh Pascal, using a Generic(Status: integer;
Regs: record) procedure, and write new procedures which do not dwell in the
absence of a character.

To see why such machinations and special procedures are required to do
terminal emulation from Pascal, follow the essential requirements for simple
terminal design:

Step 1 If a keyboard key has been pressed, send the character out the serial
port.

Step 2 If a character comes into the serial port from outside, put it on the
screen.

The system being described is that of full duplex, meaning that either the host
(remote) computer or the user (at the terminal) can send at any time. Unfortu­
nately, both steps 1 and 2 must be able to happen simultaneously, or at least
almost at the same time. The simplest approach is to scan through the pos­
sibilities 1 and 2 perpetually. This is called polling, in that the serial port and
keyboard are alternately examined. Now you can see why:

read(f,c);

will not work. That would represent step 2, but would prevent going back
quickly to step 1 if there is no character. A program written with read statements
doing the work is therefore in danger of hanging up at some point. In the next
section we describe how this problem can be solved at the expense of a fair
amount of programming at system level.

There are ways to use simple read statements if specific hardware is to be
connected to the serial port. At the end of this chapter we give some examples of
such specific applications, but these examples will not work with arbitrary hosts
connected at the serial port.

Another consideration for terminals is that you need to decode various keys
for the popular meanings. Control keys, the ASCII <Delete> character, and so
on, should be decoded in a proper terminal emulation program. This also
requires some special Macintosh Pascal procedures.

9600 Baud Terminal Emulator
Macintosh Pascal, presenting the user as it does with an interpretive environ­
ment, is much too slow to keep up in real time with incoming characters at 9600
baud. But there are ways to ensure that no characters are lost. You can use the so­
called 'Xon/Xoff' protocol, by which <ctrl-S> and <ctrl-Q> are sent to the

Serial 1/0 and External Devices • 201

host to 'hold off further transmission' and 'continue transmission from where
you left off,' respectively. Most hosts in the computer world recognize this
protocol. The Macintosh will support this protocol, and this is necessary for
programs written even with compilers-the screen itself cannot generally keep
up with 9600 baud. Even sophisticated commercial terminal emulators for the
Macintosh go only to a few thousand baud rate, dominated, as implied, by the
scrolling speed of the screen display.

Program 8.1, Terminal, uses protocols correctly to allow 9600 baud connec­
tion to serial RS-232 hosts having the Xon/Xoff protocol. The effective baud rate
is on the order of 600 baud, but keep in mind that characters will not be lost; the
program will simply be 'behind in time,' and long listings on the terminal screen
will eventually be complete.

In the program, a necessarily long declaration block to set up the serial port
parameters is evident. The Inside Macintosh documentation describes the mean­
ing of these technical parameters, of which the baud rate is just one. There are
several important constructs in program Terminal, for example:

function fillbuf; I* receives chars, returns number
received*)

procedure handshakej); I* handles Xon/Xoff protocol to prevent
overflow*)

function getkeyj) ; I* handles keyboard mapping and returns
character *)

procedure cleanbuf I) ; I* reduces to 7-bit ASCII and handles line­
feeds *)

These and other constructs allow the main loop at the end of the program
Terminal to function in a manner consistent with the considerations of the last
section: when the receive buffer is empty, the keyboard is still scanned for typed
characters.

Figure 8.1 shows a typical log-in session in which the program Terminal was
used to gain access to a UNIX time-sharing system at 9600 baud.

Laboratory Serial Applications
The serial methods available to Macintosh Pascal programme.rs can be applied
more simply when the nature of the external hardware is precisely known. A
laboratory computer, type EMM-2048a manufactured by Metaresearch, Inc. jsee
exercises for this chapter), was connected to the Macintosh serial port. This
laboratory device obeys a certain serial protocol of which advantage is duly taken
in Programs 8.2 and 8.3, LightMeter and Thermometer, respectively. The results

202 • Scientific Programming with Macintosh Pascal

§n

login: crandal I
password:

UNIX U.7

-> mai I co lgrove

He 11 o.

IJJinthHHS Pause

Te Ht

This message comes to you from Macintosh Pascal serial port
program 'term i no I ' . I am I egged in at 9600 baud; the out put
is slow, but I am not losing any characters at al I.

~~~~ s e~~~P ~:e 0~r~~~~:r: ~g t~~d b~~~~e~a~0 ~~:~te~h~t o~0 s::~ a !h~~~t?. ·:,,ii 

Figure 8.1 Log-in session with Terminal program 

s File Edit Search Run Windows 

Figure 8.2 

Measures and displays 
rea 1-t i me Ii ght intensity with 
Serial Port, MacPascal, and 
ext erna I I ab computer 

Iconic instrumentation-photodetector 



Serial 1/0 and External Devices • 203 

s File Edit Search Run Windows 

Te Kt 

Figure 8.3 I Iconic instrumentation-temperature sensor 

of these programs appear as 'iconic instrumentation' on the Macintosh screen. 
The appearances of the iconic instrumentation screens are shown in Figures 

8.2 and 8.3. The displays show actual laboratory data-these are not simulations. 
Rather, a physical photodetector (for program Lightmeter) and a physical Kelvin 
temperature sensor (for program Thermometer the Kelvin temperature data are 
converted to Fahrenheit) were connected to the EMM-2048a. 

The essential steps performed by these programs are as follows : 

Step 1 
Step2 
Step3 

Step4 

Steps 

Step6 

Step7 

Initialize serial port in the manner of program Terminal. 
Initialize the iconic panel display. 
'Wake up ' the remote computer by using its known protocol 
(EMM-2048a User Manual). 
Interrogate , by sending characters to the serial port, and expect a 
voltage or frequency response (the EMM-2048a has analog/digital 
and voltage/frequency conversion capability) . 
Receive the return characters from the remote computer and 
decode these into numerical data. 
Graph the needle position (for Lightmeter) or the mercury level (for 
Thermometer) according to the calculated data. 
Loop back to step 4. 



204 • Scientific Programming with Macintosh Pascal 

The baud rate of 1200 baud was chosen to avoid buffering procedures such as 
those necessary for the program Terminal. With this rate, and with a known, 
small quantity of response characters coming back from the remote after each 
interrogation, Macintosh Pascal keeps up speed sufficiently for the stated labora­
tory functions. 

Exercises 

1. If you have a log-in connection to a time-sharing system, whether through 
direct lines or by telephone modem, try using the program Terminal to log 
in. Make sure the baud rate is correctly written into the initial declarations. 
You may have to change the various stop bits, parity, and so on. In that case, 
you have to get hold of the Inside Macintosh Apple documentation, to look up 
the correct values and meanings for the serial control bits in the 16-bit 
constant Fastbaud. 

2. There are a host of interesting laboratory projects which use the serial port as 
in programs Lightmeter and Thermometer in this text. These tasks are 
surprisingly easy to get going, and iconic instrumentation is a wonderful 
thing, but you need commercial hardware for these tasks. This hardware has 
been developed at Reed College, under the Apple University Consortium 
plan, and is available from: Metaresearch, Inc.; 1100 SE Woodward, Port­
land, OR 97202. 



Serial 1/0 and External Devices • 205 

ProgramB.1 

program terminal; 
(* SERIAL TERMINAL EMULATOR, FULLY BUFFERED TO 9600 BAUD *) 
(* Control characters keyboard-mapped with <Command> key *) 
(* <Enter> key is ASCII 127 <Delete> (<Rubout>) *) 
(* Effective throughput is -600 baud *) 

label 
1; 

con st 
nBytes 1024; 

maxchars = 255; 
nlines = 25; 
Ain = -6; 
AOut = -7; 

tbytes in input buffers, determines 
safety margin at high baud rate } 
max line length } 
tlines on s,c:c;een } 
refnum of serial input port A } 
refnum of serial output port A } 
Trap Number of _Read } 
Trap Number of Control 
Trap Number of _Status } 

PBRead = $A002; 
Control = $A004; 
Status = $A005; 
FastBaud = $CCOA; 

{ CCBD is 600 baud, 
9600 baud, 8 data bits, 2 stop, no parity} 

CC5E is 1200 baud, Cl7C is 300 baud } 

type 

byte = 0 .. 255; 
ptr = "byte; 

hardbuf =packed array[O .• nBytes] of char; 
phardbuf = "hardbuf; 

hd_pblk = record 
IOLink Longint; 
IOType : Integer; 
IOTrap : Integer; 
IOCmdAddr : Longint; 
IOCompletion : Longint; 
IOResult : Integer; 
IOFileName : Longint; 
IOVRefNum : Integer; 
IORefNum : Integer; 
csCode : integer; 

end; 

ctl_pblk = record 
header : hd_pblk; 
csParam : Integer; 

end; 

{ parameter block header } 
{ queue link in header } 
{ type byte for safety check 
{ FS: the Trap } 
{ FS: Address to dispatch 
{ pointer to IOCompletion routine 
{ IO result code } 
{ file name pointer } 
{ volume refnum } 
{ reference number for I/0 operation } 
{ type of call } 

parameter block for control calls } 

baud rate etc. } 

(continued} 



206 • Scientific Programming with Macintosh Pascal 

stat_pblk = record 
header : hd_pblk; 
csParam : Longint; 

end; 

buf_pblk = record 
header : hd_pblk; 
pBuf : phardbuf; 
buflen : Integer; 

end; 

read_pblk = record 
header : hd_pblk; 
dummy : longint; 
pBuf : ptr; 
reqcount : longint; 
actcount : longint 
posmode : integer; 
posoff set : longin 

end; 

var 

dummies 
i, j, t integer; 
1 : longint; 
ch : char; 
tptr : ptr; 

screen draw vars } 
finfo : fontinfo; 
linelen, lgn : integer 
scrollbox : rect; 

high level io stuff 

status calls } 

status info } 

set buffer size 

{ pointer to hardware input buffer } 
{ buffer length } 

{ read from hardware buff er } 

{ buffer to read into } 
{ tbytes requested } 
{ ibytes actually delivered 
{ read from start, middle, or end of file? } 
{ offset £~om start, } 

line height } 
area of text window 

ibuf: packed array[O •• maxchars] of char {working input buffer} 
hbuf : phardbuf; { hardware input buffer } 
ct : integer; { index into ibuf } 
hipt, !opt : integer; { high, low points for xon, xoff } 
xoffsent : boolean; 
serialPort : text; 
low level io stuff } 
ctl_block : ctl_pblk; 
stat_block : stat_pblk; 
buf_block : buf_pblk; 
read_block : read_pblk; 
regs : record 

aO : "'ctl_pblk; 
al, a2, a3, a4 : Longint; 
dO, dl, d2, d3, d4, dS, d6, d7 Longint; 

end; 



Serial 1/0 and External Devices • 207 

function getbufsize : longint; 
begin 

Regs.AO := @stat_block; 
Generic(Status, Regs); 
if Regs.DO <> 0 then 
writeln('status error: ' Regs.DO); 

getbufsize := stat_block.csParam; 
end; 

function fillbuf 
var 

L : longint; 
begin 

L := getbufsize; 

long int; 

if L > maxchars then 
L : "" maxchars; 

if L > 0 then 
begin 

read_block.reqcount := L; 
Regs.AO := @read_block; 
Generic(PBRead, Regs); 
if Regs.DO <> 0 then 
writeln('read error: ' Regs.DO); 

end; 
fillbuf := L; 

end; 

procedure handshake (force .boolean); 
var 

l : longint; 
begin 
l := getbufsize; 
if ((1 > hipt) and not xoffsent) or force then 
begin 
write(serialPort, chr(19)); 
xoffsent := true; 

end 
else if (l < !opt) and xoffsent then 
begin 
write(serialPort, chr(17)); 
xoffsent := false; 

end; 
end; 

procedure cleanbuf (var L 
var 
i, j : integer; 

begin 
for i := O to L - 1 do 
begin 

longint); 

j := ord(ibuf[i]) mod 128; (continued} 



208 • Scientific Programming with Macintosh Pascal 

if j = 10 then 
j := 32; 

ibuf [ i ] : = chr ( j ) ; 
end; 

end; 

function getkey 
var 

t : integer; 
ok : boolean; 

integer; 

theEvent : EventRecord; 
begin 

t := O; 
ok := GetNextEvent(keydownmask + autokeymask, theEvent); 
if ok then 
begin 

t := (theEvent.message div 256) mod 256; 
if t = 52 then { Enter } 

t := 127 { DEL } 
else 

t := theEvent.message mod 256; 

command key } 
if bitand(theEvent.modifiers, cmdKey) <> 0 then 
begin 
if tin [97 .. 122) then 

t := t - 96 
else if tin [91 .. 93] then 

t := t - 64; 

{ keycode } 

if bitand(theEvent.modifiers, shiftKey) <> 0 then 
if tin [1 •• 15) then 

t := t + 16; 
end; 

end; if ok 

getkey := t; 
end; getkey 

procedure putchar (t : integer); 
begin 
if t > 0 then 
write(serialPort, chr(t)); 

end; 

{ main program } 
begin 



Serial 110 and External Devices • 209 

hideall; 
{ init serial parameters } 
open(serialPort, 'modem:'); 
!opt := nbytes div 4; 
hipt := !opt * 3; 
xoffsent := false; 

{ Reset sec Channel with new baud, parity, etc. } 
with ctl_block, header do 

begin 
IOCompletion := O; 
IORefNum := AOut; 
csCode := 8; 
csParam := FastBaud; 

end; 
Regs.AO := @ctl_block; { AO pointer to Parameter Block 
Generic(Control, Regs); 
if Regs.DO <> 0 then 
writeln('Serial Port A error:' Regs.DO); {Error codes returned in DO} 

{ set new buffer 
new(hbuf); 
with buf_block, header do 

begin 
IOCompletion := O; 
IORefNum := AOut; 
csCode := 9; 
pbuf := hbuf; 
buflen := nBytes; 

end; 
Regs.AO := @buf_block; { AO pointer to Parameter Block } 
Generic(Control, Regs); 
if Regs.DO <> 0 then 
writeln ('set buffer error: ' Regs .DO); {Error codes returned in DO } 

init status block for getbuf size call } 
with stat block.header do 

begin 
IOCompletion := O; 
IORefNum := AOut; 
csCode := 2; 

end; 

init block for read calls 
with read_block, header do 
begin 

IOCompletion := O; (continued) 



210 • Scientific Programming with Macintosh Pascal 

IORefNum := Ain; 
pBuf := @ibuf; 
posmode : = 0; 
posoffset := 0; 

end; 

init terminal screen } 
textfont(4); 
textsize(9); 
getfontinfo(finfo); 
with finfo do 
linelen := ascent + descent + leading; 

setrect(scrollbox, 0, O, 500, nlines * linelen); 
offsetrect(scrollbox, 5, 50); 
settextrect(scrollbox); 
showtext; 

{ main loop 

repeat 

halt? 
if button then 
goto 1; 

get char and send to serial port } 
handshake(false); 
putchar(getkey); 

get and print a line of text } 
l := fillbuf; 
if l > 0 then 
begin 
handshake(true); 
cleanbuf(l); 
if 1 > 0 then 
write(ibuf : l); 

handshake(false); 
end; 

until false; 
close(serialPort); 

1 : 
end. 

Program B.i! 

program LightMeter; 
(* CREATES WORKING LIGHTMETER BY COMMUNICATING WITH SPECIAL*) 
(* EXTERNAL SERIAL HARDWARE (EMM-2048a Laboratory Computer) *) 



Serial 1/0 and External Devices • 211 

con st 
AOut = -7;{RefNum of serial output port A} 
Control= $A004;{Trap Number of _Control} 
SetSCC = 8;{Reset SCC Channel} 
FastBaud = $CC5E;{BD is 600 baud, 8 data bits, 2 stop and no parity bit} 

{SE is 1200 baud, 17C is 300 baud} 
xc -0.655; 
ye -0.28; 
pi 3 .1416; 

type 
ParamBlk record 

IOLink Longint;(queue link in header} 
IOType Integer;{type byte for safety check} 
IOTrap Integer;{FS: the Trap} 
IOCmdAddr: Longint;{FS: Address t~ ,dispatch} 
IOCompletion : Longint;{pointer to IOCompletion routine} 
IOResult : Integer;{IO result code} 
IOFileName : Longint;{file name pointer} 
IOVRefNum: Integer;{refnum} 
IORefNum: Integer;{reference number for I/0 operation} 
IOFileType : Integer;{Type and permission access} 
IONewType : Integer;{baud rate etc.} 

end; 

var 
windowrect, textrect, click : rect; 
first, veryfirst, bleck : boolean; 
arr: array[l .. 256] of char; 
ff, xold, thetaold, x, y, theta, per, mul, freq, freqO, lightlevel 
i, m : integer; 
ch, h, k : char; 
serialPort : text; 
regs : record 

aO : "ParamBlk; 
al, a2, a3, a4 : Longint; 
dO, dl, d2, d3, d4, dS, d6, d7 Longint; 

end; 
ParamBlock : ParamBlk; 

function change (var bleck boolean) 
function mousein : boolean; 
var 
tl, t2 : boolean; 
h, v : integer; 

begin 
getmouse (h, . v) ; 
tl := (h <= 270) and (h >= 20); 
t2 := (v <= 280) and (v >- 30); 
mousein := (tl) and (t2); 

boolean; 

{continued) 

real; 



212 • Scientific Programming with iylaclntosh Pascal 

end; 
begin 
if (button) and (mousein) then 
begin 

change := true; 
if bleck then 
begin 
eraserect(click); 
pensize(l, 1); 
framerect(click); 
pensize(2, 2); 
bleck := false; 

end 
else 
begin 
paintrect(click); 
bleck := true; 

end; 
end 

else 
change := false; 

end; {change} 

{GRAPHICS ROUTINES} 
function hor (x : real) : integer; 
begin 

hor := 230 + trunc(x * 140); 
end; {hor} 

function vert (y : real) : integer; 
begin 
vert := 137 - trunc(y * 137); 

end; {vert} 

procedure draw (x, y : real); 
begin 

lineto(hor(x), vert(y)); 
end; {draw} 

procedure shift (x, y: real); 
begin 
moveto(hor(x), vert(y)); 

end; {shift} 

function dee (h, k : char) 
begin 

integer; 

dee :"" 16 * (ord(h) - 48 - 7 * (ord(h) div 64)) + ord(k) - 48 - 7 * (ord(k) 
div 64); 

end; 



Serial 1/0 and External Devices • 213 

procedure select (mux : integer); 
begin 
write(serialPort, 'x0103', chr(l3)); 
repeat 
read(serialPort, ch); 

until ch='-'; 
write(serialPort, '0', chr(48 + mux), chr(13)); 
repeat 
read(serialPort, ch); 

until ch='-'; 
write(serialPort, 'q'); 
repeat 
read(serialPort, ch); 

until ch='>'; 
end; 

begin 
bleck := true; 
hideall; 
setrect(windowrect, 2, 35, 300, 342); 
setdrawingrect(windowrect); 
showdrawing; 
penpat (ltgray); 
paintrect(O, 0, 342, 512); {background} 
eraserect(25, 15, 170, 265); {meter face} 
penpat (gray); 
paintrect(170, 15, 220, 265); {meter casing} 
penpat(ltgray); 
paintoval(180, 130, 200, 150);{pin} 
penpat(black); 
pensize(2, 2); 
framerect(25, 15, 220, 265); 
frameoval(180, 130, 200, 150); 
moveto(130, 184); 
lineto(148, 194); 
moveto(15, 170); 
lineto(263, 170); 
pensize(2, 2); 
moveto(15, 220); 
lineto(265, 220); 
lineto(265, 26); 
pensize(2, 2); 
moveto(21, 42); 
drawstring('Logarithmic Intensity (log ft-candles)'); 
moveto(35, 87); 
drawstring('O'); 
moveto(230, 87); 
drawstring('100'); 
moveto(40, 280); 

(continued} 



214 • Scientific Programming with Macintosh Pascal 

drawstring ( 'RELAY') ; 
moveto(80, 250); 
textface ( [bold] ) ; 
textsize(l8); 
drawstring('LIGHT METER'); 
setrect(click, 20, 270, 30, 280); 
paintrect(click); 
for m := -25 to 25 do 
begin 
if m mod 5 0 then 
ff := 0.86 

else 
ff := 0.9; 

theta :=pi* (1 I 2 - m I 100); 
shift(xc +ff* cos(theta), ye+ ff* sin(theta)); 
draw(xc + 0.9 * cos(theta), ye+ 0.9 * sin(theta)); 

end; 
open(serialPort, 'modem:'); 
ParamBlock.IOCompletion := O; 
ParamBlock.IORefNum := AOut; 
ParamBlock.IOFileType := SetSCC; 
ParamBlock.IONewType := FastBaud; 
Regs.AO := @ParamBlock;{AO pointer to Parameter Block} 
Generic(Control, Regs);{Change the baud rate} 
if Regs.DO <> 0 then 
writeln('Serial Port B error:', Regs.DO);{Error codes returned in DO} 

setrect(textrect, 280, 35, 512, 130); 
settextrect(textrect); 
showtext; 
textface ( [] ) ; 
write('Measures and displays real-time'); 
write(' light intensity with Serial Port,'); 
write(' MacPascal, and external'); 
writeln(' lab computer'); 
veryfirst := true; 
close(serialPort); 

end. 

Programs.a 
program Thermometer; 
(* CREATES WORKING THERMOMETER BY COMMUNICATING WITH SPECIAL *) 
(* EXTERNAL SERIAL HARDWARE (EMM-2048a Laboratory Computer) *) 

con st 
AOut = -7;{RefNum of serial output port A} 
Control= $A004;{Trap Number of _Control} 
SetSCC = 8;{Reset SCC Channel} 
FastBaud - $CCSE; {BD is 600 baud, 8 data bits, 2 stop and no parity bit} 

{SE is 1200 baud, 17C is 300 baud} 



Serial 1/0 and External Devices • 215 

type 

ParamBlk record 
IOLink Longint;{queue link in header} 
IOType Integer;{type byte for safety check} 
IOTrap Integer;{FS: the Trap} 
IOCmd.Addr: Longint;{FS: Address to dispatch} 
IOCompletion : Longint;{pointer to IOCompletion routine} 
IOResult : Integer;{IO result code} 
IOFileName : Longint;{file name pointer} 
IOVRefNum: Integer;{refnum} 
IORefNum: Integer;{reference number for I/0 operation} 
IOFileType : Integer;{Type and permission access} 
IONewType : Integer;{baud rate etc.} 

end; 
var 
arr : array[l .. 256] of char; 
per, mul, freq, mean, temp, next, last 
i, m, lasttop, oldtemp, g : integer; 
ch, h, k : char; 
serialPort : text; 
click : rect; 
bleck, raise : boolean; 
regs : record 

aO : "ParamBlk; 
al, a2, a3, a4 : Longint; 

real; 

dO, dl, d2, d3, d4, dS, d6, d7 
end; 

Longint; 

ParamBlock : ParamBlk; 

function change (var bleck boolean) 
function mousein : boolean; 
var 
tl, t2 : boolean; 
h, v : integer; 

begin 
getmouse (h, v) ; 
tl := (h <= 30) and (h >= 20); 
t2 := (v <= 40) and (v >= 30); 
mousein := (tl) and (t2); 

end; {mousein} 
begin 
if (button) and (mousein) then 
begin 

change := true; 
if bleck then 
begin 
eraserect(click); 
framerect(click); 
bleck := false; 

end 

boolean; 

{continued) 



216 • Scientific Programming with Macintosh Pascal 

else 
begin 
paintrect(click); 
bleck :- true; 

end; 
end 

else 
change :- false; 

end; {change} 

function dee (h, k : char) : integer; 
begin 

dee := 16 * (ord(h) - 48 - 7 * (ord(h) div 64)) + ord(k) - 48 - 7 * (ord(k) 
div 64); 

end; {dee} 

procedure thermometer; 
const 

mx 140; 
lx 125; 
ax 130; 
bx 135; 

var 
windowrect, therm 
y : integer; 

begin 

rect; 

setrect(windowrect, 2, 35, 300, 342); , 
setdrawingrect(windowrect); 
showdrawing; 
penpat(gray); 
paintrect(O, 0, 342, 512); 
penpat(black); 
showtext; 
setrect(therm, 140, 10, 160, 270); 
pensize(2, 2); 
eraseroundrect(therm, 30, 30); 
frameroundrect(therm, 30, 30); 
frameoval(250, 130, 290, 170); 
eraserect(250, 142, 270, 158); 
eraseoval(252, 132, 288, 168); 
y := 290; 
repeat 

y := y - 50; 
moveto(mx, y); 
lineto(lx, y); 

until y = 40; 
TextFace ([bold] ) ; 
moveto(l07, 245); 
drawstring('60'); 
moveto(l07, 195); 



Serial 1/0 and External Devices • 217 

drawstring('70'); 
moveto(l07, 145); 
drawstring('80'); 
moveto(l07, 95); 
drawstring('90'); 
moveto(lOO, 45); 
drawstring('l00'); 
y := 240; 
pensize(l, l); 
repeat 

y := y - 25; 
moveto(ax, y); 
lineto (mx, y); 

until y = 40; 
y := 240; 
repeat 

y : = y - 5; 
moveto(bx, y); 
lineto(mx, y); 

until y = 20; 
moveto(20, 245); 
drawstring('Degrees F.'); 
moveto(20, 60); 
drawstring('RELAY'); 
setrect(click, 20, 30, 30, 40); 
paintrect(click); 
paintoval(250, 130, 290, 170); 
paintrect(250, 142, 251, 158); 
oldtemp := 54; 
lasttop := 270; 
next := 70; 
last := 70; 

end; {thermometer} 

{Changes the temperature in the thermometer by} 
{either painting or erasing a rectangle} 
procedure settemp; 

con st 
left = 142; 
right = 158; 

var 
top, bottom : integer; 

begin 
if round(mean) > 104 then 

mean := 104; 
if round(mean) > oldtemp then 
begin 
top.:= 240 - ((round(mean) - 60) * 5); 
bottom := lasttop; 
paintrect(top, left, bottom, right); (continued} 



218 • Scientific Programming with Macintosh Pascal 

lasttop := top; 
end; 

if round(mean) < 54 then 
mean := 54; 

if round(mean) < oldtemp then 
begin 
bottom := 240 - ((round(mean) - 60) * 5); 
top := lasttop; 
eraserect(top, left, bottom, right); 
lasttop := bottom; 

end; 
oldtemp := round(mean); 

end; {settemp} 

procedure changetemp (raise : boolean); 
{changes temp by turning light on and off} 

var 
m : integer; 

begin 
if raise then 
begin 
eraserect(click); 
framerect(click); 
bleck := false; 
write(serialPort, 'sO'); 

end 
else 
begin 
paintrect(click); 
bleck := true; 
write(serialPort, 'rO'); 

end; 
for m := 1 to 2 do 
read(serialPort, ch); 

write(serialPort, chr(l3)); 
repeat 
read(serialPort, ch); 

until ch = '>'; 
end; {changetemp} 

procedure select (mux : integer); 
begin 
write(serialPort, 'x0103', chr(l3)); 
repeat 
read(serialPort, ch); 

until ch= '-'; 
write(serialPort, '0', chr(48 + mux), chr(l3)); 
repeat 
read(serialPort, ch); 

until ch = ' - ' ; 
write(serialPort, 'q'); 



Serial 1/0 and External Devices • 219 

repeat 
read(serialPort, ch); 

until ch = '>'; 
end; 

begin 
open(serialPort, 'modem:'); 
ParamBlock.IOCompletion := 0; 
ParamBlock.IORefNum := AOut; 
ParamBlock.IOFileType := SetSCC; 
ParamBlock.IONewType := FastBaud; 
Regs.AO := @ParamBlock;{AO pointer to Parameter Block} 
Generic(Control, Regs);{Change the baud rate} 
if Regs.DO <> 0 then 

writeln ('Serial Port B error: ', Regs.DO); {Error codes returned in DO} 
thermometer; 

write(serialPort, chr(4), chr(23), '00', chr(l3)); 
repeat 
read(serialPort, ch); 

until ch= '>'; 
select(4); 
bleck := true; 
raise := false; 
repeat 
write(serialPort, 'f0800'); 
for m := 1 to 5 do 
read(serialPort, ch); 

write(serialPort, chr(l3)); 
read(serialPort, ch); 
read(serialPort, ch); 
m := O; 
repeat 
m := m + l; 
read(serialPort, ch); 
arr [m] : = ch; 

until (ch= '>') or (ch 
h := arr [l]; 
k := arr[2); 
per:= 256 * dec(h, k); 
h := arr[3]; 
k := arr [4]; 
per :=per+ dec(h, k); 
h := arr[6]; 
k := arr[?]; 
mul := 256 * dec(h, k); 
h := arr[8]; 
k := arr[9]; 
mul := mul + dec(h, k); 
freq := mul I per * 16573; 
last := next; 
next := temp; 

I_ I) i 

{continued) 



220 • Scientific Programming with Macintosh Pascal 

temp := (0.5 * (freq - 9210) + 85); 
mean := (temp* 0.6) + (next* 0.3) + (last* 0.1); 
writeln(mean : 1 : 1, ' Deg. F.'); 
if (mean >= 70) and (mean < 90) then 
begin 
raise := true; 

end 
else 
begin 
raise := false; 

end; 
changetemp(raise); 
set temp; 
if change(bleck) then 
begin 
if bleck then 
begin 
raise := false; 

end 
else 
begin 
raise : = true; 

end; 
changetemp(raise); 

end; 
until false; 
close(serialPort); 

end. 



9 Selected 
Scientific 
Applications 
THEME: This chapter contains selected applications which 
represent the kinds of modeling problems encountered by the 
practicing scientist. 

GOALS: To attain a familiarity with the notion of real-world, 
practical, applied problems to which Macintosh Pascal may 
apply. 

LIBRARIES USED: DiffEqu.lib and graphics libraries 

REFERENCE MATERIALS: Appropriate texts and references 
from the fields of science, science education, engineering, and 
signal processing. 

Fourier Analysis 
We start this chapter of selected applications by investigating some of the 
programming possibilities associated with Fourier Analysis. This kind of analysis 
is very important in engineering and applied physics, and it manages to find its 
way into many other fields. Since the discovery of the Fast Fourier Transform in 
the 1960's, Fourier Analysis has grown into an important aspect of computer 
science studies also. The Fast Fourier Transform is actually an efficient algorithm 
for computation of the standard Discrete Transform. This, in turn, is defined as 
follows. Let a signal be given by: 

x[OJ, x[1), x[2), ... x[N -11 

221 



222 • Scientific Programming with Macintosh Pascal 

so that the total number of signal data is N. Then the transform is defined also to 
have N elements, denoted: 

x101, x111 •... x1N -11 

If the xUJ represent real-world data, each taken after a sampling timeA increment 
of t, then the frequency !in Hertz) corresponding to the component xUJ is given 
by: 

freqUJ = 2 * r * j/(Nt) 

The Fourier formula which relates the transform elements xUJ to the signal 
elements x[k] is as follows: 

N-1 
xm = 1 E 

sqrt(N) k=O 

The inverse Discrete Fourier Transform is given by a simple conjugation of the 
complex exponential: 

x[kl = _ ____;;._1 __ 

sqrt(N) 

N-1 
E 
j=O 

These transformations would appear to require on the order of N • N complex 
multiply operations, since N are required for each xUJ in the first summation, and 
in that same formula k ranges through N frequency values. 

But the discovery of the Fast Fourier Transform jFFT) was based on the key 
observation that many of the factors exp! ) are redundant in a certain sense. In 
fact, for fixed j, the numbers: 

exp(2rijk/N) 

are just a particular permutation of the complex N-th roots of unity as k ranges 
from 0 to N-1. When a different j is chosen and fixed, the permutation ask runs 
over its range is knowable, and this knowledge can be used to recast the Fourier 
sum as a sum over the complex roots instead of over, for example, k. 

The FFT algorithm is not easy to understand, but once it is programmed, the 
transformation performed by an FFT program will apply to any signal. Program 
9.1, FFT, does the algorithm for the case that N is a power of two. 

The program listing shows that 8 data are expected. One happy byproduct of 
the FFT approach is that the computations can be performed 'in place.' This 
means that the array of signal data, which for this program is an array of type 
'complex, ' is continually re-calculated until the transform desired resides in the 



Selected Scientific Applications • 223 

very places originally taken by the signal. Thus the transform will be the set of N 
complex pairs: 

xUJ.re, xUJ.im 

If desired, the amplitude of the j-th Fourier component is the quadrature sum of 
these: namely, the square root of the sum of their squares. 

In Figure 9.1, the user has input the squarewave data: 

10 
10 
10 
10 
-10 
-10 
-10 
-10 

Note that the zeros correspond to the notion that the input data is pure real-with 
vanishing imaginary parts. The output of the FFT program shows the familiar 

s File Edit Search Run Windows 
fft §[ 

Enter 
progrom fft; 1 0 
(* FAST FOURIER TRA l O 

const 1 O 
pi = 3. 141592653,6 1 0 

size= B· (* This is - l O 
, -1 0 

type 
complex = record 

re, im : real; 
end; 

vor 

-1 0 
-1 0 
Freq. 
0 
1 
2 

c, i , e, m, n, j, k: i~ 3 
x, exp : orroy[O .. si 4 
p, q : integer; 5 
f : text; 6 

7 

Te Ht 
6 complex pairs: 

Re. Im, 
0 . 000 0 . 000 
0.707 1 .707 
0 . 000 0.000 
0.707 0.293 
0.000 0.000 
0.707 -0.293 
0 . 000 0.000 
0.707 -1 .707 

Figure 9.1 I FFT output-squarewave data input 

Amp. 
0.000 
1. 646 
0 . 000 
0.765 
0.000 
0 . 765 
0.000 
1 . 646 



224 • Scientific Programming with Macintosh Pascal 

decay of squarewave harmonics that we saw in Chapter 4, program Square Wave: 
the j indices 1, 3 have decreasing spectral amplitudes, in that order. 

The inverse transform is obtained by simply entering conjugates, meaning 
you reverse the sign of the imaginary part. Figure 9.2 shows what happens when 
you input the complex conjugates of the output fro~ the original run; namely, 
you recover the original squarewave data. 

Once you have a working FFT, there are options for enhancement. One 
option is to extend the algorithm to handle other data sizes N than powers of two. 
This can be done either by changing the so-called 'decimation' algorithm (which 
is the loop containing the call to procedure inplace) or by extending the data size 
to. the next power of two by appending zeros to the signal. Both methods are 
discussed in most signal processing texts. 

Another enhancement option is embodied in Program 9.2, FFTfileIO. This 
program allows input of data not from keyboard but from disk. The filename 
assumed is waveform.dat. Program 9.3, Wavemaker, lets the user input a wave­
form graphically. 

The mouse is to be pressed and slid across the data graph, as shown in Figure 
9.3. 

Figure 9.4 shows the result of the following steps: 

Step 1 
Step2 

Step3 

Run program WaveMaker to create a waveform on a finite interval. 
This program will have saved a file on disk called waveform.dat. 
Now run FFTfilelO, which assumes this input file. 
Observe the final spectrum, which shows amplitudes of frequency 
components of the manually created waveform. Such a spectrum 
for Figure 9.3 is shown in Figure 9.4. 

Alternatively, you can replace Step 2 with: 

Step 2 Using Macintosh Pascal Editor, create a file of data by hand or 
instead, write a separate program which stores data on disk. This 
last option would be useful if you wanted to know the spectrum 
graph for some special, algebraically generated data. 

Many interesting scientific problems involve the FFT. Some of these are 
discussed in the exercises for this chapter. 

Advanced Mathematical Methods 
Nearly all of the concepts and programs discussed in previous chapters can be 
approached in more sophisticated ways. One example is that of advanced tech­
niques in solving differential equations. The DiffEqu.lib contains a procedure 



Selected Scientific Applications • 225 

s File Edit Search Run Windows 

fft D Te Kt 

program fft; Enter 8 complex poi rs: 

(*FAST FOURIER TR 0 0 
0. 707 -1 . 707 

const 0 0 
pi = 3. 141592653 0.707 -0.293 
size= 8; (*This 0 0 

0.707 +0.293 
type 0 0 

complex = recorc 0.707 +1. 707 
re, im : reel; Freq. Re. Im. 

end; 0 1. 000 0.000 
1 1 . 000 0.000 

var 
2 1. 000 0 . 000 

c, i, e, m, n, j, k: 
3 1. 000 0.000 x, exp : array[O .. s 
4 -1 .000 0.000 p, q : integer; 

f : text; 5 -1. 000 0.000 
6 -1. 000 -0.000 
7 -1 .000 0.000 

Figure 9.2 I FFT output-inverse transform 

s File Edit Search Run Windows 
Orawin §D 

Amp. 
1. 000 
1 .000 
1. 000 
1 .000 
1. 000 
1 .000 
1. 000 
1. 000 

Te Kt 
Writing to disk 

Stop Stop end Store ~ 

Figure 9.3 I WaveMaker Output 

Q 

~ 



226 • Scientific Programming with Macintosh Pascal 

a File Edit Search Run Windows 

Figure 9.4 I FFF FilelO Output 

Drawing 

Te Ht 
Now reading signal from 
Now computing FFT 
Now graphing spectrum 

called UPDATE, which uses the powerful Runge-Kutta method of numerical 
solution for a general, second-order differential equation: 

d2x = f(x dx t) 
dt2 I dt I 

This equation is involved in nearly all classical mechanics problems for which 
the force is a function of position {x), velocity { ~~ ) and time (t). Often, of course, 
one or more of these variables does not enter, but the Runge-Kutta still works for 
such cases. Also, any differential equation: 

y' I = f(y,y' ,x) 

is of the required form, so you should not avoid the method just because physical 
time or space is not involved in a problem. 

Recall that in Chapter 3 we used the straightforward approach to solving 
such a system, namely in program Solver we iterated in a loop the sequence: 

v:= v + a•dt; 
x: = x + v•dt; 
t: = t+dt; 



s File Edit Search Run Windows 
Orawin E 

Selected Scientific Applications • 227 

Te Ht 
initial position: 3 
initial velocity: 8 

Figure 9.5 I RKoscillator output-note damping 

The Runge-Kutta method uses more knowledge of the trajectory to predict, in a 
sharper way, the future evolution. Specifically, the Runge-Kutta algorithm used 
in procedure UPDATE involves several different time-steps, not just dt. The 
temporary variables kl, k2, k3, k4 represent fine adjustments to the calculus 
approximation, and while the UPDATE procedure is slower than the straightfor­
ward approach, you may use a larger dt for the same accuracy; many problems 
turn out to go faster overall when this more complicated iteration is used. 

The UPDATE procedure is to be used as shown in Program 9.4, RKoscillator. 
The idea is that a call such as: 

UPDATE(pos,vel,t,dt); 

will update the first three variables (thought of for this problem as position, 
velocity, and time, respectively). 

Figure 9.5 shows the damped oscillator output which is remarkably accurate 
considering the large value (0.2) ascribed to dt. Recall that in program Oscillator, 
Chapter 3, we used dt = 0.03. 

Program 9.5, Comparison, shows the original oscillator program modified to 
be on equal footing (i.e., have the same dt = 0.2). Output Figure 9.6 shows clearly 
that this dt fails completely for the simple approach: the mass is not at all 



228 • Scientific Programming with Macintosh Pascal 

s File Edit SeBrch Run Windows 
DrBwin ~l Te Ht 

initial position: 5 Ql 
initial ve I oc i ty: 1 

~ 
121 

112 

Figure 9.6 I Comparison output-note absence of damping 

damped. Typical initial data in program Comparison will even cause a floating 
point blow-up. 

Runge-Kutta methods are particularly good for orbital problems and prob­
lems for which Macintosh Pascal appears to be too slow for the required accuracy 
or stability. But the most important feature of the Runge-Kutta method for the 
present treatment is that it exemplifies a case in which simplicity in program­
ming technique is sacrificed in favor of higher overall performance. 

Classroom Programs 
By classroom programs we mean projects intended to convey physical con­
cepts-projects from which you may learn the important phenomena of the 
physical world in new ways . The example selected for this chapter involves 
diffraction: the interference of waves. The program is very simple, but this fact 
should not detract from the educational potential of such a problem. As is 
mentioned in the exercises, there are many ways to make the problem more 
complex and richer if you wish to do so. 

You may be familiar with the standard classroom apparatus known as a 
ripple tank in which small probes (usually two) disturb a water surface, causing 
circular waves to emanate from the two source points. You can see bands 
emanating from the general region of the sources (usually close together). A 



Selected Scientific Applications • 229 

11Jin11ows Pause 

Te Ht 

Figure 9.7 I Diffraction output 

Pascal program, taking advantage of the fine resolution of the Macintosh screen, 
can be written to model this water phenomenon, which also applies in its basics 
to light waves. 

Program 9.6, Diffraction, lets the user click the mouse at the position of a 
new source. 

Figures 9.7 and 9.8 show typical output from two wave sources. This 
program is a good example of a programming task which, in its simplest rendi­
tion, conveys one basic scientific fact. Observe the famous diffraction phe­
nomenon evident from these figures: the separation of the bands varies inversely 
with the wavelength; the larger wavelength has smaller separation of the radial 
bands. 

Testing of Theories 
Computers can be used to test theories, whether they be from the realm of pure 
mathematics or from applied science. Witness the recent computer assault on the 
Four-Color Theorem, which had lain unresolved in many aspects until a large 
program proved some especially difficult cases. On the applied side of the 
spectrum, computers have been brought to bear on the formidable computa-



230 • Scientific Programming with Macintosh Pascal 

~ HI<~ 1: di1 Scrnn h UJin1iows Pouse 
Te Ht 

Figure 9.8 I Diffraction output 

tional problems of physics and chemistry, for example, plasma dynamics and 
atomic physics. 

We have selected a relatively simple but instructive example of a program 
which tests a theory. The example involves a magnetic monople. Such particles 
may exist but have not yet been found by experimenters. They would have a unit 
magnetic 'bare' charge-without the usual second pole locatable in nature. The 
field of a magnetic monopole would be radial, given by: 

B = ----9.!:_ 
r3 

that is, point in the r-direction and have inverse-square magnitude. Now there 
are several interesting hypotheses which, although they have been proved in 
many separate ways, are nevertheless difficult to visualize. The proofs them­
selves are somewhat difficult to grasp without considerable education in the­
oretical methods of physics. But a program with appropriate graphics verifies 
(does not prove, but supports) the statements. Consider a charged particle, say an 
electron, moving near a magnetic monopole. What is claimed is that: 

1. Certain orbits will spiral in and then 'reflect back / from the monopole. 

2. The actual speed of the orbiting electron never changes, even though the 
motion is complicated, especially so near the monopole. 



Selected Scientific Applications • 231 

tS File Edit Seorch Run Windows 

Drowin ~D TeHt 

Figure 9.9 I Monopole output 

Magnetic Charge (15): 
15 
x-velocity (0 . 5): 0 . 5 

3. The actual path taken lies completely on the surface of some cone, wrapped 
just like a string which is drawn tight around a conical surface. 

Program 9.7, Monopole, and associated graphical output Figure 9.9, shows 
typical motion. Point one is easily verified, and point three is not hard to 
visualize. This visualization and a verification of point 2 are discussed in the 
exercises at the end of this chapter. 

Deep Calculation 
We close this chapter with an example mentioned in Chapter 1. There are times 
when you simply live with the slowness of execution of a language, turning to 
other matters, for example, as a graphics screen is filling up slowly. But slowness 
is relative, and the example discussed here has counterparts in the field of high­
speed, large computers. 

There are by now famous and spectacular synthetic images which have 
come out of advanced computer and video technology. You can find, for exam­
ple, 'bowls of ornaments' or 'collections of wooden implements' displayed on 
color video monitors which, it is reported, took such-and-such a computer (for 
example a stand-alone Cray or VAX W780) several hours to complete. The 
following is a program whose output is several orders of magnitude less complex 



232 • Scientific Programming with Macintosh Pascal 

S File Edit Search Run Windows 
§0 Orowing 

.· . .. . . :· ... : : . 

: ~."· :.:. :::·~~- ~ ..... ~ ·.·~·. 

Flgure9.10 I Scene output 

than those, and which takes Macintosh Pascal a matter of hours to complete, but 
which is nevertheless compelling. 

Program 9.8, Scene, computes by tedious ray-tracing (again, not really 
tedious to the user who, having run this program, only need return at a later time 
on the clock) the visual scene of a reflecting object floating above a checkered 
floor . 

The output, Figure 9.10, shows the beauty and accuracy of the ray-tracing 
approach, and serves as a fine example of the limits to which Macintosh Pascal 
can be put. 

Exercises 

1. Make alterations to the program FFT so that the amplitude (last "writeln-ed" 
quantity in the program listing) is graphed against an horizontal axis (fre­
quency) which should be given small tick marks because the frequency 
values go from 0 through size - 1 in discrete jumps. 

Try out your graphic method on a signal that is a forced sum of sine waves. 
For example, choose size = 128 (the FFT will take a little while for this many 
terms) and create a signal for n: = 0 to size - 1 as: 

x[n].re: = sin(n/3) + sin(n/2); x[n].im: =0; 



Selected Scientific Applications • 233 

The graphed s.rz~ctrum sh~uld show the two peaks corresponding to the 
frequencies <4.-i and ~~:~ , but are there any more peaks? Remember 
that there is a theorem in Fourier Analysis which says that if the input data is 
pure real, then the spectrum is symmetrical about the center frequency. 

2. Show with graphics techniques that the Fourier transform of a noise signal is 
also noisy. Specifically, start with a signal: 

x[n).re: = GAUSS(0,1); x[n).im: = O; 

for n = 0 to size-1, size =power of two, which will be what is called 'white 
noise' -each datum is a Gaussian distributed random selection, here with 
mean 0 and standard deviation 1-and plot it and its Fourier amplitude 
spectrum. Then show that 'pink noise' has a spectrum peaked at low 
frequencies. You can make pink noise by adding to each datum a piece of the 
last few. This is a good way to force some 'correlation' between one noise 
datum and the last. After you have filled an array with white noise, you can 
track through n and do: 

x[n):= x[n) + x[n-1)/2 + x[n-2)/4; 

or some such correlation. The FFT spectrum will then show the 'pinkness' 
that you expect when the noise data are correlated in this way. 

3. Find some recorded data which expresses a natural phenomenon, such as 
the height of tide vs. time of day for several days, or the temperature in a city 
vs. time of day, or a medical parameter of an organism vs. time of day. Enter 
this data into a text file on your disk and run a program such as FFTFileIO to 
get the frequency spectrum. The spectrum often reveals something interest­
ing. For the given example, the things you should be able to find with Fourier 
technique are, respectively: the approximate period of rotation of the moon 
around the Earth, the fact that 24 hours is the length of a day, the circadian 
rhythm (24-hour periodicity) of most (larger) organisms. 

4. There is a general result that the derivative (with respect to time) of a time 
series has a spectrum related to the original spectrum as follows: if x(n) is the 
n-th transform component of the original signal, and y[n) is the n-th trans­
form component of the differentiated signal, then the amplitude of y(n) is 
approximately a constant times n times the amplitude of x[n). Test this 
hypothesis out on some sample signals. 

5. Try to 'manufacture' some digital filters, using the following basic princi­
ples. If you have a signal x, then the new signal z created by the recursion: 

z[O]: = x(OJ; 
z[n): = x[n) + z[n-1)/2; (* for n: = 1 to size -1 *) 



234 • Scientific Programming with Macintosh Pascal 

will be, amazingly enough, a low-passed version of the x signal. This means 
that although z looks something like x, low frequency components of x 
survive preferentially in z. This is similar to the effect of a tone control on an 
audio system which performs treble cut (removes high frequencies). What is 
intriguing about digital filters is that they are so easy to program-usually a 
simple loop will transform the orginal signal as required. 

Test the low-pass phenomenon out on some sinusoidal signal data: graph 
the original sine wave and the low-passed version, for various frequencies, 
to see that for higher frequencies (up to a point-you cannot go too near to 
the frequency <2,5~~:> ) there is attenuation when z is graphed. 

You can try FFT techniques to see if the spectrum of more complex x, z 
signals are indeed digitally filtered. 

There are many kinds of digital filters. Usually the recurrence relation is 
one of a general class given by the form: 

z[n): = x[n)/a0 + x[n-1)/Eti + .. . 
+ z[n -1J/b1 + z[n - 2J/b2 + .. . 

That is, the new datum z(n) is correlated with various data from both x and z 
in the past. With some work you can discover a bandpass filter which allows 
one frequency through preferentially, and so on. 

6. With some differential equation techniques, solve the SAM problem of N. 
Tufillaro. SAM stands for 'Swinging Atwood Machine': one mass ml, 
which will always move straight up and down, hangs from a pulley; but the 
pulley cord extends horizontally over to a second pulley from which a mass 
m2 hangs but is allowed to 'swing' (combining up and down with left and 
right motion). Graph the trajectories of the left-hand mass. What do you 
think (intuitively) happens if you start m2 at some initial angle * 0 (with 
respect to the vertical) and you let it go, but m2 < ml? It would seem like m2 
would crash into its (point-sized) pulley. But this is not so! Any ratio :~ > 1 
gives rise to bounded, 'forever' motion of the swinging mass. 

7. With a program find the escape velocity of the Earth. You start with an initial 
velocity V at the Earth's surface and solve the differential equation: 

GM = - --
sqr(r) 

finding out, the best way you can within the program, when the initial 
velocity is just enough to eventually break away from the Earth. 

8. For the magnetic monopole project of Chapter 9, show numerically the 
theoretical prediction that the speed (absolute value of velocity) does not 
change during the motion. If it does, there must be an error in the differential 



Selected Scientific Applications • 235 

equation solver. As an extra option, try to invoke a Runge-Kutta solver for 
the special equations of motion for the monopole problem. 

9. Work out a way to verify numerically the prediction that the electron in the 
monopole field does, in fact, move on the surface of some cone. Hint: what is 
true of all the vectors which lie on a conical surface? 

10. Using Macintosh Quickdraw it is possible to create some really satisfying 
visual effects. Try writing a program which enables you, by some mouse 
means of your invention, to 'sail through space' in different directions, 
watching globes fly by as you do so. You can use the principles of 3-D 
graphics and perspective of Chapter 6, and the facts about screen and mouse 
from Chapter 2, to draw, from your vantage point (x,y,z) in 3-space, the 
appearance of globes at any time. You can animate either by full screen 
blanking between overall re-drawings, or by blanking then re-drawing each 
globe in succession. The former is easier to program, since the latter requires 
you do the closest globes last; but the latter looks better to some 
'navigators ' . 

Answers 

1. It is a good idea to compute, prior to graphing, the maximum amplitude over 
the 0 ... size - 1 Fourier components. Call this ampmax. Then use shifts and 
draws to the points: 

x amplitudeij) 
' ampmax 

for a spectral plot which will now fit nicely on the screen. There should be 
four major peaks in your graph. 

2. The noisy spectrum, according to theory, is also Gaussian. There is no easy 
way to tell this, except for the qualitative observation that the spectrum 
looks 'something like' the original signal. One exception is that for real 
signal data, the spectrum is symmetrical about the center frequency. For 
'pink' noise, the spectrum will be again very noisy in the qualitative sense, 
but should have noticeably greater amplitude for lower frequencies. 

3. This is an exploratory problem whose results depend on the nature of the 
input data. The observations with respect to peaks in the spectrum must 
usually be qualitative. 

4. The canonical example of this is the squarewave-triangle wave system, for 
which the former is the derivative of the latter. 



236 • Scientific Programming with Macintosh Pascal 

5. The digital filter systems of the recursive type indicated are easy to solve 
theoretically if the input data x(n] is periodic. In fact, if: 

x(n) = exp(iWn) 

then the trial solution: 

z[n) = A(n) exp(iWn) 

results, when substitued into the recursion relation for the filter, in an 
algebraic equation for A(n). This factor A(n) will, of course, be the filter 
function for the filter in question. On balance, this theoretical calculation is 
the best way to approach the problem, especially if a particular filter is 
desired. You can try different coefficients and graph the function A(n) until 
it has the desired shape. Then the actual digital filtering will have the correct 
behavior. 

6. The 'magic ratios' of :~ are interesting. A special case is :~ = 3, for which 
every trajectory of mass m2 which starts right at its pulley, and for any initial 
angle and velocity * 0, forms a perfect 'teardrop' shape. For other ratios, 
you can also get 'smiles' and 'figure eights. ' 

7. Start with a trialv and r = radius of Earth, then iterate: 

v: = v - GM/sqr(r) • dt; 
r:= r + v • dt; 
t:=t+dt; 

Good values for dt should be in the 100-second region if you use book values 
(in M.K.S. system of units) for M, r, and G. 

The problem of finding the initial v which barely allows escape is not easy, 
but with a little work, you can show that the escape velocity is of the order of 
11000 meters per second. 

8. The reason why speed is constant over the whole trajectory is that the 
magnetic force q v X B is always perpendicular to the velocity vector v. If 
you define a dot product function, then: 

speed = sqrt(dot(v,v)) 

It is interesting to try to get more precise trajectories by continually nor­
malizing the velocity vector so that the speed is forced to always be equal to 
the initial speed. This expedient-of using a known physical theorem to 
normalize a solution to a differential equation-often enhances accuracy 
significantly. 



Selected Scientific Applications • 237 

9. The condition that a vector v lie on a certain cone is that for an appropriate 
vectoru: 

dot(u,v) 
sqrt(dot(v,v)) 

is a constant. 

10. The remarks relating to Exercise 5, Chapter 6 are relevant for this problem. 
It is probably best always to keep track of all globes at all times. This can be 
done in three arrays of x[i), y[i), z[i); i = 1. .N, or in a matrix of dimensions 3 
byN. 



238 • Scientific Programming with Macintosh Pascal 

Program9.1 
program fft; 
(* FAST FOURIER TRANSFORM PROGRAM *) 

con st 
pi = 3.1415926536; 
size = 8; (* This is data sample size - must be power of two *) 

type 
complex = record 

re, im : real; 
end; 

var 
c, i, e, m, n, j, k : integer; 
x, exp : array[O .. size] of complex; 
p, q : integer; 
f : text; 

procedure inplace (var g, h : complex; 
f : complex); 

(* Performs in-place computation for data pair (g,h) and exponential*) 
(* multiplier f *) 

var 
tmp : real; 

begin 
g.re := g.re + (f.re * h.re - f.im * h.im); 
g.im := g.im + (f.re * h.im + f.im * h.re); 
tmp := g.re - 2 * (f.re * h.re - f.im * h.im); 
h.im := g.im - 2 * (f.re * h.im + f.im * h.re); 
h.re := tmp; 

end; 

begin 
showtext; 
wri teln ('Enter ' , size : 1, ' complex pairs: ' ) ; 
c := 1; 
n := round(ln(size) I ln(2)); (*i.e., size= 2"n *) 
for j := 0 to size - 1 do 
begin 

(* Next, fix sin and cos array elements for maximum speed later *) 
exp[j].re := cos(2 *pi* j I size); 
exp[j].im := sin(2 *pi* j I size); 

(* Next, scramble the input order with reverse-complement-binary *) 
e := size div 2; 
i := j; 
k := O; 
m := 1; 



Selected Scientific Applications • 239 

p := i div e; 
i := i mod e; 
e := e div 2; 
k := k + m • p; 
m := m + m; 

until e = O; 
(* Next, get the actual signal data as re, im pair *) 

readln(x[k] .re, x[k].im); 
end; 

e := size; 
(* Next, use decimation-in-frequency FFT algorithm *) 
(* j will be the count of inplace full-vector iterations *) 
for j := 0 to n - 1 do 
begin 

e := e div 2; 
for k := 0 to c - 1 do 
begin 
for i := 0 to e - 1 do 

begin 
p := k + c * (2 * i): 
q := p + c; 
m := (p * e) mod size; 

(* Next, process the (p-th,q-th) 'butterfly' *) 
inplace(x[p], x[q], exp[m]); 

end; 
end; 

c := c + c; 
end; 

Amp.'); writeln('Freq. Re. Im. 
(* Next, output the re, im parts 
for j := 0 to size - 1 do 

and amplitudes of Fourier Transform *) 

begin 
x[j].re := x[j] .re I sqrt(size); 
x[j].im := x[j] .im I sqrt(size); 
write(j: 1, '', x[j].re 10: 3,' ', x[j].im: 10 3); 
writeln(sqrt(sqr(x[j].re) + sqr(x[j].im)) : 10 : 3); 

end; 
end. 

Program9.~ 

program fftf ileIO; 
(* FFT PROGRAM WITH FILE INPUT AND SPECTRUM GRAPH OUTPUT *) 

cons 
pi = 3.1415926536; 
size 64; (* This is data sample size - must be a power of two *) 

(continued} 



240 • Scientific Programming with Macintosh Pascal 

type 
complex = record 

re, im : real; 
end; 

var 
c, i, e, m, n, j, k : integer; 
x, exp : array[O .. size] of complex; 
p, q : integer; 
f : text; 
maxamp : real; 

procedure inplace (var g, h : complex; 
f : complex); 

(* Performs in-place computation for data pair (g,h) and exponential*) 
(* multiplier f *) 

var 
tmp : real; 

begin 
g.re := g.re + (f.re * h.re - f.im * h.im); 
g.im := g.im + (f.re * h.im + f.im * h.re); 
tmp := g.re - 2 * (f.re * h.re - f.im * h.im); 
h.im := g.im - 2 *. (f.re * h.im + f.im * h.re); 
h.re := tmp; 

end; 

procedure CLEAR; 
var 

windowrect : rect; 
begin 
hideall; 
setrect(windowrect, 2, 35, 512, 342); 
setdrawingrect(windowrect); 
showdrawing; 

end; 

procedure MAP (x, y : real; 
var hor, ver : integer); 

begin 
if abs(x) > 1.9 then 

x := x I abs(x) * 1.9; 
hor := 255 + trunc(x * 130); 
if abs(y) > 1 then 

y := y I abs(y); 
ver := 138 - trunc(y * 130); 

end; 

procedure DRAW (x, y 
var 
hl, vl : integer; 

begin 

real); 



Selected Scientific Applications • 241 

MAP(x, y, hl, vl); 
lineto(hl, vl); 

end; {draw} 

procedure SHIFT (x, y 
var 
hl, vl integer; 

begin 

MAP(x, y, hl, vl); 
moveto(hl, vl); 

end; {shift} 

begin 
CLEAR; 

real); 

reset(f, 'waveform.dat'); 
showtext; 
writeln('Now reading signal from disk'); 
c := l; 
n := round(ln (size) I ln (2)); (* i.e., size 
for j := 0 to size - 1 do 
begin 

2"'n *) 

(* Next, fix sin and cos array elements for maximum speed later *) 
exp[j].re := cos(2 *pi* j I size); 
exp[j].im := sin(2 *pi* j I size); 

(* Next, scramble the input order with reverse-complement-binary *) 
e := size div 
i := j; 
k := O; 
m := l; 
repeat 

p := i div 
i := i mod 
e := e div 
k := k + m 
m := m + m; 

until e = 0; 

e; 
e; 
2; 
* 

2; 

p; 

(* Next, get the actual signal data as re, im pair *) 
readln(f, x[k].re, x[k].im); 

end; 
close(f); 
writeln('Now computing FFT'); 
e := size; 

(* Next, use decimation-in-frequency FFT algorithm *) 
(* j will be the count of inplace full-vector iterations *) 
for j := 0 to n - 1 do 
begin 

e := e div 2; 
for k := 0 to c - 1 do 
begin 
for i := 0 to e - 1 do (continued} 



242 • Scientific Programming with Macintosh Pascal 

begin 

p := k + c * (2 * i); 
q := p + c; 
m := (p * e) mod size; 

(* Next, process the (p-th,q-th) 'butterfly' *) 
inplace(x[p], x[q], exp[m]); 

end; 
end; 

c : = c + c; 
end; 

maxamp := 0; 

(* Next, find the maximum unnormalized amplitude *) 
for j := 0 to size - 1 do 
begin 

x[j].re := sqrt(sqr(x[j].re) + sqr(x[j] .im)); 
if x[j] .re > rnaxamp then 

rnaxamp := x[j) .re; 
end; 

SHIFT (-1, -1); 

DRAW{l, -1); 

SHIFT(-1, x[O].re I maxamp - 1); 
writeln('Now graphing spectrum'); 
for j := 0 to size - 1 do 

begin 

DRAW(-1 + 2 * j I size, x[j].re I rnaxamp - 1); 
end; 

end. 

Program9.a 

program wavernaker; 
(* USED TO DRAW WAVEFORMS FOR ANALYSIS BY OTHER PROGRAMS *) 

' ' 
con st 
bins 64; (* Make compatible with FFT data size *) 
pixels = 5; 

var 
y: array[O •• bins] of integer; 
x, xx, yy, n : integer; 
f : text; 

procedure CLEAR; 
var 

windowrect : rect; 
begin 
hideall; 



Selected Scientific Applications • 243 

setrect(windowrect, 2, 35, 512, 342); 
setdrawingrect(windowrect); 
showdrawing; 

end; 

begin 
CLEAR; 

for n := 0 to bins - 1 do 
y[n] := 128; 

moveto(lOO, 128); 
lineto(lOO +pixels* 64, 128); 
moveto (0, 260); 
lineto(500, 260); 
moveto (8, 280); 
writedraw('Stop'); 
moveto(300, 350); 
lineto(300, 260); 
moveto(304, 280); 
writedraw('Stop and Store'); 
pensize(l, 2); 
repeat 
getmouse(x, yy); 
if (button) and (yy < 258) and (yy > 2) then 
begin 

n := round((x - 100) I pixels); 
if (n > 0) and (n < bins - 1) then 
begin 
penpat(white); 
xx := 100 +pixels* (n - l); 
moveto(xx, y[n - l]); 
lineto(xx +pixels, y[n]); 
lineto(xx + 2 *pixels, y[n + l]); 
penpat (black) ; 
y[n] := yy; 
lineto(xx +pixels, y[n]); 
lineto(xx, y[n - l]); 

end; 
end; 

until (yy > 260) and (button); 
if (x > 300) then 
begin 

showtext; 
rewrite(f, 'waveform.dat'); 
writeln('Writing to disk'); 
for n := 0 to bins - 1 do 
writeln(f, y[n] - 128 : i, ' 0'); 

close (f); 
end; 

end. 



244 • Scientific Programming with Macintosh Pascal 

Program9.~ 

program RKoscillator; 
(* RUNGE-KUTTA METHOD FOR DAMPED OSCILLATOR*) 
(* POOR dt = 0.2 INTENTIONALLY CHOSEN *) 
(* TO DEMONSTRATE STABILITY *) 

con st 
m l; 
k = 100; 
b l; 

var 
pos, vel : real; 
t : real; 

procedure UPDATE (var x, dxdt, t 
dt : real); 

var 
kl, k2, k3, k4 : real; 

real; 

function f (x, dxdt, t real) : real; 
begin 

f := -k * x I m - 2 * b * dxdt I m; 
end; 

begin 
kl := dt * f(x, dxdt, t); 
k2 := dt * f(x + dt * (dxdt + kl I 4) I 2 I dxdt + kl I 2 I t + 
k3 := dt * f(x + dt * (dxdt + k2 I 4) I 2 I dxdt + k2 I ·2 I t + 
k4 := dt * f(x + dt * 
x := x + dt * 
dxdt := dxdt 
t := t + dt; 

end; 

(dxdt + 
+ (kl + 2 

procedure CLEAR; 

(dxdt + k3 I 2), dxdt + k3, t + dt); 
(kl + k2 + k3) I 6); 
* k2 + 2 * k3 + k4) I 6; 

(* Activates and expands Drawing Window to fill screen *) 
var 

windowrect : rect; 
begin 
hideall; 
setrect(windowrect, 2, 35, 512, 342); 
setdrawingrect(windowrect); 
showdrawing; 

end; 

procedure MAP (x, y : real; 
var hor, ver : integer); 

dt I 2); 
dt I 2); 



Selected Scientific Applications • 245 

(* Returns hor,ver as pixel integers for given real coords (x,y) *) 
begin 
if abs(x) > 1.9 then 

x := x I abs(x) * 1.9; 
hor := 255 + trunc(x * 130); 
if abs(y) > 1 then 

y := y I abs(y); 
ver := 138 - trunc(y * 130); 

end; 

procedure DRAW (x, y 
(* Draws to (x,y) *) 

var 
hl, vl : integer; 

begin 
MAP(x, y, hl, vl); 
lineto(hl, vl); 

end; 

real); 

procedure SHIFT (x, y : real); 
(* moves invisible to (x,y) *) 

var 
hl, vl : integer; 

begin 
MAP(x, y, hl, vl); 
moveto(hl, vl); 

end; 

begin 
CLEAR; 
SHIFT(-1, 1); 
DRAW(-1, -1); 
SHIFT(-1, 0); 
DRAW(l, 0); 
showtext; 
write('initial position: '); 
readln(pos); 
write('initial velocity: '); 
readln(vel); 
t := O; 
SHIFT(-1, pos); 
repeat 

UPDATE(pos, vel, t, 0.2); 
DRAW(t I 3 - 1, pos); 

until t > 6; (* Or some appropriate condition *) 
end. 



246 • Scientific Programming with Macintosh Pascal 

Program9.5 
program comparison; 
(* MODIFED DAMPED OSCILLATOR, FOR COMPARISON WITH*) 
(* RUNGE-KUTTA METHOD HAVING SAME dt = 0.2 *) 

con st 
dt = 0.2; (* this is your small time increment *) 
m l; 
k = 100; 
b = l; 

var 
pos, vel, ace 
t : real; 

procedure CLEAR; 

real; 

(* Activates and expands Drawing Window to fill screen *) 
var 

windowrect : rect; 
begin 
hideall; 
setrect(windowrect, 2, 35, 512, 342); 
setdrawingrect(windowrect); 
showdrawing; 

end; 

procedure MAP (x, y : real; 
var hor, ver : integer); 

(* Returns hor,ver as pixel integers for given real coords (x,y) 
begin 
if abs(x) > 1.9 then 

x := x I abs(x) * 1.9; 
hor := 255 + trunc(x * 130); 
if abs(y) > 1 then 

y := y I abs(y); 
ver := 138 - trunc(y * 130); 

end; 

procedure DRAW (x, y 
(* Draws to (x,y) *) 

var 
hl, vl : integer; 

begin 
MAP(x, y, hl, vl); 
lineto(hl, vl); 

end; 

real); 

procedure SHIFT (x, y : real); 
(* moves invisible to (x,y) *) 

var 



Selected Scientific Applications • 247 

hl, vl : integer; 
begin 

MAP(x, y, hl, vl); 
moveto(hl, vl); 

end; 

begin 
CLEAR; 
SHIFT(-1, 1); 
DRAW(-1, -1); 
SHIFT(-1, 0); 
DRAW(l, 0); 
showtext; 
write('initial position: '); 
readln(pos); 
write('initial velocity: '); 
readln(vel); 
t := O; 
repeat 

aqc := -k * pos I m - 2 * b * vel I m; 
vel := vel + ace * dt; 
pos := pos + vel * dt; 
if t = 0 then 

SHIFT(t I 3 - 1, pos) 
else 

DRAW(t I 3 - 1, pos); 
t := t + dt; 

until t > 6; (* Or some appropriate condition *) 

end. 

Program9.6 

program diffraction; 
(* WAVE DIFFRACTION MODEL - USER CREATES SPHERICAL~ 
(* COHERENT SOURCES *) 

var 
x, y, lambda : integer; 

procedure CLEAR; 
var 

windowrect : rect; 
begin 
hideall; 
setrect(windowrect, 2, 35, 512, 342); 
setdrawingrect(windowrect); 
showdrawing; 

end; 
(continued} 



248 • Scientific Programming with Macintosh Pascal 

procedure dosource (x, y, lambda 
var 

r : integer; 
al, a2, a3, a4, a 

begin 
r := l; 

real; 

al := sqrt(sqr(x) + sqr(y)); 

integer); 

a2 
a3 
a4 
if 

:= 
:= 
:= 
al 

sqrt(sqr(x) + sqr(300 - y)); 
sqrt(sqr(SlO - x) + sqr(y)); 
sqrt(sqr(SlO - x) + sqr(300 - y)); 
> a2 then 

a := al 
else 

a := a2; 
if a3 >a 

a := a3; 
if a4 >a 

a := a4; 
repeat 

then 

then 

frameoval(y - r, x - r, y + r, x + r); 
r := r + lambda; 

until r > a; 
end; 

begin 
CLEAR; 
showtext; 
write ('Wavelength: '); 
readln(lambda); 
write('Place sources with mouse'); 
repeat 
if button then 
begin 

getmouse(x, y); 
if (y > 2) then 
dosource(x, y, lambda); 

end; 
until false; 

end. 

Program9.7 
program monopole; 
(* MODELS ORBITAL MOTION OF ELECTRON NEAR *) 
(* A MAGNETIC MONOPOLE *) 

con st 
dt .. 0.02; 
aa = 0; 



Selected Scientific Applications • 249 

bb 1; 
cc -1; 

type 
vector array[l .• 3] of real; 

var 
r, v, B, F 
g : real; 

vector; 

procedure cross (var c : vector; 
a, b : vector); 

begin 
c[l) := a[2] * b[3] - a[3] * b[2]; 
c[2] := a[3] * b[l] - a[l] * b[3]; 
c[3] := a[l] * b[2] - a[2] * b[l]; 

end; 

function norm (v : vector) : real; 
begin 

norm := sqrt(sqr(v[l]) + sqr(v[2]) + sqr(v[3])); 
end; 

procedure compute (var B 
r : vector); 

var 
n : integer; 
nor real; 

begin 
nor := norm(r); 
nor := nor * sqr(nor); 
for n := 1 to 3 do 
B[n] := g * r[n] I nor; 

end; 

procedure UPDATE (var x 
dxdt : vector; 
dt : real); 

var 
n : integer; 

begin 
for n := 1 to 3 do 

vector; 

vector; 

x[n] := x[n] + dxdt[n] * dt; 
end; 

procedure CLEAR; 
var 
windowrect : rect; 

begin 
hideall; 

(continued) 



250 • Scientific Programming with Macintosh Pascal 

setrect(windowrect, 2, 35, 512, 342); 
setdrawingrect(windowrect); 
showdrawing; 

end; 

procedure MAP (x, y : real; 
var hor, ver : integer); 

begin 
if abs(x) > 1.9 then 
x :ax / abs(x) * 1.9; 

hor := 255 + trunc(x * 130); 
if abs(y) > 1 then 

Y := y I abs(y); 
ver := 138 - trunc(y * 130); 

end; 

procedure DRAW (x, y 
var 
hl, vl : integer; 

begin 
MAP(x, y, hl, vl); 
lineto(hl, vl); 

end; 

procedure SHIFT (x, y 
var 
hl, vl : integer; 

begin 
MAP(x, y, hl, vl); 
moveto(hl, vl); 

end; 

real); 

real); 

procedure ROTATE (var x, y, z real; 
a, b, c : real); 

var 
sx, sy, sz, tx, ty, tz : real; 

begin 
sx := x * cos(c) - y * sin(c); 
sy :• x * sin(c) + y * cos(c); 
sz •a: z; 
tx := sx; 
ty := sy * cos(b) - sz * sin(b); 
tz := sy * sin(b) + sz * cos(b); 
x := tx * cos(a) - ty * sin(a); 
y := tx * sin(a) + ty * cos(a); 
z := tz; 

end; 

procedure SDRAW (x, y, z, a, b, c 
var 

real); 



u, v, w 

begin 
u :er x; 
v := y; 
w := z; 

real; 

ROTATE(u, v, w, a, b, c); 
DRAW(u, v); 

end; 

procedure SMOVE (x, y, z, a, b, c 
var 
u, v, w : real; 

begin 
u := x; 
v := y; 
w := z; 
ROTATE(u, v, w, a, b, c); 
SHIFT (u, v); 

end; 

procedure AXES (a, b, c : real); 
begin 

SMOVE(-1, 0, 0, a, b, c); 
SDRAW(l, O, O, a, b, c); 
SMOVE(O, -1, 0, a, b, c); 
SDRAW(O, 1, 0, a, b, c); 
SMOVE(O, 0, -1, a, b, c); 
SDRAW(O, O, 1, a, b, c); 

end; 

begin 
CLEAR; 
AXES(aa, bb, cc); 
showtext; 
repeat 
write('Magnetic Charge (15): '); 
readln(g); 
write('x-velocity (0.5): '); 
readln(v[l]); 
r[l] :- -1; 
r[2] :- O; 
r[3) :- 0.3; 
v[2) := 0.5; 
v [ 3] : = -0 • 2; 

SMOVE(r[l], r[2], r[3], aa, bb, cc); 
repeat 
compute(B, r); 

Selected Scientific Applications • 251 

real); 

cross(F, v, B); 
UPDATE(v, F, dt); 

(* Lorentz Force is F = q v X B *) 

(continued) 



252 • Scientific Programming with Macintosh Pascal 

UPDATE(r, v, dt); 
SDRAW(r[l], r[2], r[3], aa, bb, cc); 

until norm(r) > 1.7; 
until false; 

end. 

Program9.B 
program scene; 
(* CREATES VISUAL SCENE OF FLOATING MIRRORED SPHERES *) 
( * ALLOW 2 4 HOURS FOR THE RUN *) 
type 
vector= array[l •• 3] of real; 

var 
v, o, n, r, centerl, center2 : vector; 
i, xpixel, ypixe,l : integer; 
screenx, screeny, shade : real; 
intersection, blackhit : boolean; 

procedure CLEAR; 
var 

windowrect : rect; 
begin 
hideall; 
setrect(windowrect, 2, 35, 512, 342); 
setdrawingrect(windowrect); 
showdrawing; 

end; 

function dot (o, v : vector) : real; 
{ dot returns the dot product of o and v } 

begin 
dot := o[l] * v[l] + o[2] * v[2] + o[3] * v[3]; 

end; { dot } 

function magnitude (v : vector) real; 
{ returns the length of vector v 

begin 
magnitude := sqrt(sqr(v[l]) + sqr(v[2]) + sqr(v[3])); 

end; { magnitude } 

procedure reflect (n : vector; 
var v : vector); 

{ calculates r, the reflection of v relative to n } 
var 

i : inteqer; 



Selected Scientific Applications • 253 

length : real; 
begin 

length := dot(v, n); 
for i := 1 to 3 do 
v[i] := v[i] - 2 * n[i] * length; 

end; { reflect } 

function intersectspherel (o, v : vector) : boolean; 
{ tests whether the ray o+tv intersects sphere with radius 1 centered at 

centerl } 
begin 

o [ 1] : = o [ 1] - centerl [ 1] ; 
o[2] := o[2] - centerl [2]; 
o[3] := o[3] - center1[3]; 
if (sqr(magnitude(o)) - sqr(dot(o, v))) < 1 then 
intersectspherel := true 

else 
intersectspherel := false; 

end;{ intersectspherel } 

function intersectsphere2 (o, v : vector) · : boolean; 
{ tests whether the ray o+tv intersects sphere with radius 1 centered at 

radius2 } 
begin 

o [ 1] : = o [ 1] - center2 [ 1] ; 
o[2] := o[2] - center2[2]; 

o[3] := o[3] - center2[3]; 
if (sqr(magnitude(o)) - sqr(dot(o, v))) < 1 then 
intersectsphere2 := true 

else 
intersectsphere2 := false; 

end;{ intersectsphere2 } 

function intersectplane (v : vector) : boolean; 
{ checks for intersection of v with plane } 

begin 
if v[3] < 0 then 
intersectplane := true 

else 
intersectplane := false; 

end; { intersectplane } 

function shadepixel (v : vector) : real; 
{ shadepixel chooses a shade between 0 and 1 } 

begin 
if blackhit = true then 
shadepixel := 0 

else 
shadepixel := 1.4 * (v[3] + 1.0) I 2.0; 

(continued} 



254 • Scientific Programming with Macintosh Pascal 

{ background gets lighter as it gets higher} 
{change this to change how background looks} 

end; { shadepixel } 

procedure drawpixel (xpixel, ypixel :' i'nteger; 
shade : real); 

{ drawpixel colors the pixel white or black } 
begin 
if shade< ((random+ 32767) I (2 * 32767)) then 
begin 
moveto(xpixel, ypixel); 
lineto(xpixel, ypixel); 

end 
end; { drawpixel } 

procedure coordinatechange (xpixel, ypixel : integer; 
var screenx, screeny : real); 

{ changes screen coordinates to "window" coordinates 
begin 

screenx := (1.0 I 171.0) * xpixel - 512.0 I 342.0; 
screeny := 1.0 - (1.0 I 171.0) * ypixel; 

end; { coordinatechange } 

procedure initialize (var o, v : vector; 
var blackhit : boolean); 

var 
i : integer; 
length : real; 

begin 
coordinatechange(xpixel, ypixel, screenx, screeny); 
o[l] := -1.0; 
o[2] :cz 0.0; 
o[3] := 0.0; 

{ o is the "eye", where the initial sight vector v originates } 
v[l] := l; 
v[2] := screenx; 
v[3] := screeny; 
length := magnitude(v)i 
fqr i := 1 to 3 do 
v[i] := v[i] I length; 

blackhit := false; 
end; { initialize ) 
procedure newray (var o, v : vector; 

var intersection, isblack : boolean); 
{ traces ray v and reflects it off any object it hits } 
var 

i : integer; 
tspherel, tsphere2, tplane, a, b, c, t : real; 
n, otemp, spherelhit, sphere2hit, planehit : vector; 

begin 
isblack := false; 



Selected Scientific Applications • 255 

intersection := false; 
if intersectspherel(o, v) then 
begin 
otemp[l) := o[l) - centerl[l); 
otemp[2) := o[2) - centerl[2); 
otemp[3) := o[3) - centerl[3]; 
a := sqr(magnitude(v)); 
b := 2 * dot(otemp, v); 
c := sqr(magnitude(otemp)) - 1.0; 
if (sqr(b) - 4.0 * a * c) > 0.0 then 

t := (-b - sqrt(sqr(b) - 4.0 *a* c)) I (2.0 *a) 
else 

t := 100. 0; 
if t > 0.0 then 
begin 
intersection := true; 
tspherel := t; 

end 
else 
tspherel := 100.0; 

end 
else 
tspherel := 100.0; 

if intersectsphere2(o, v) then 
begin 

otemp[l] := o[l] - center2[1]; 
otemp[2] := o[2] - center2[2]; 
otemp[3] := o[3] - center2[3]; 
a := sqr(magnitude(v)); 
b := 2 * dot(otemp, v); 
c := sqr(magnitude(otemp)) - 1.0; 
if (sqr(b) - 4.0 * a * c) > 0.0 then 

t := (-b - sqrt(sqr(b) - 4.0 *a* c)) I (2.0 *a) 
else 

t := 100. 0; 
if t > 0.0 then 
begin 
intersection := true; 
tsphere2 := t; 

end 
else 
tsphere2 := 100.0; 

end 
else 
tsphere2 := 100.-0; 

if intersectplane(v) then 
begin 
intersection := true; 
tplane := (-1.0 - o[3)) I v[3]; 
for i := 1 to 3 do 

{continued} 



256 • Scientific Programming with Macintosh Pascal 

planehit[i] := o[i] + tplane * v[i]; 
end 

else 
tplane := 100.0; 

if intersection then 
begin 
if ( ( (tspherel < tsphere2) and (tspherel < tplane) ) and (ts1 
then 

begin 
for i := 1 to 3 do 
spherelhit[i] := o[i] + tspherel * v[i]; 

n[l] :-= spherelhit[l] - centerl[l]; 
n[2] := spherelhit[2] - center1[2]; 
n[3] := spherelhit[3] - center1[3]; 
o := spherelhit; 
reflect(n, v); 

end 
else if ( ( (tsphere2 < tspherel) and (tsphere2 < tplane)) and (tsphere2 < , 

90.0)) then 
begin 
for i := 1 to 3 do 
sphere2hit[i] := o[i] + tsphere2 * v[i]; 

n[l] := sphere2hit[l] - center2[1]; 
n[2] := sphere2hit[2] - center2[2]; 
n[3] := sphere2hit[3] - center2[3]; 
o := sphere2hit; 
reflect(n, v) 

end 
else if (((tplane < tspherel) and (tplane < tsphere2)) and (tplane < 

90.0)) then 
begin 
begin 
if (((trunc(planehit[l])+trunc(planehit[2]+ 300.0)) mod 2) = l)then 
begin 
isblack := true; 
intersection := false; 

end, 
else 
begin 
n[l) := 0.0; 
n[2] := 0.0; 
n[3] := 1.0; 
o := planehit; 
reflect(n, v); 
intersection := true; 

end; 
end; 

end 
else 



intersection := false 
end; 

end; { newray } 

begin 
CLEAR; 
centerl[l] := 1.0; 
center1[2] := 0.5; 
center1[3] := 1.0; 
center2[1] := 2.0; 
center2[2] := -1. 0; 
center2[3] := 0.0; 
{ describes centers of spheres 
for ypixel := 307 downto 1 do 
begin 
for xpixel := 500 downto 1 do 
begin 
initialize(o, v, blackhit); 
intersection := true; 
repeat 
if intersection = true then 

Selected Scientific Applications • 257 

newray(o, v, intersection, blackhit); 
until intersection = false; 
shade := shadepixel(v); 
drawpixel(xpixel, ypixel, shade) 

end 
end 

end. 



Appendix A 
Graphics Library 

(* GRAPHICS. lib *) 

(* MACINTOSH LIBRARY FOR GRAPHICS OUTPUT *) 

(* The region of the drawing plane defined by the *) 
(* inequalities: -1 < x < +l, -1 <y < +l will be a convenient square*) 
(* centered in the graphics window. *) 

procedure CLEAR; 
(* Activates and expands Drawing Window to fill screen *) 
var 

windowrect : rect; 
begin 
hideall; 
setrect(windowrect, 2, 35, 512, 342); 
setdrawingrect(windowrect); 
showdrawing; 

end; 

procedure MAP (x, y : real; 
var hor, ver : integer); 

(* Returns hor,ver as pixel integers for given real coords (x,y) *) 
begin 
if abs(x) > 1.9 then 

x := x I abs(x) * 1.9; 
hor := 255 + trunc(x * 130); 
if abs(y) > 1 then 

y := y I abs(y); 
ver := 138 - trunc(y * 130); 

end; 

procedure DRAW (x, y 
(* Draws to (x,y) *) 
var 
hl, vl integer; 

begin 
MAP(x, y, hl, vl); 
lineto(hl, vl); 

end; 

real); 

{continued) 

259 



260 • Scientific Programming with Macintosh Pascal 

procedure SHIFT (x, y : real); 
(* moves invisible to (x,y) *) 
var 
hl, vl integer; 

begin 
MAP(x, y, hl, vl); 
moveto(hl, vl); 

end; 

procedure PLOT (x, y : real); 
(* Plots a point to (x,y) *) 
begin 

SHIFT(x, y); 
DRAW(x, y); 

end; 

procedure CIR (x, y, r : real); 
(* Draws circle of radius r centered at (x,y) *) 
var 
hl, vl, h2, v2 : integer; 

begin 
MAP (x - r, y + r, hl, vl); 
MAP(x + r, y - r, h2, v2); 
frameoval (vl, hl, v2, h2); 

end; 

procedure UNMAP (h, v : integer; 
var x, y : real); 

(* Forces real coordinates (x,y) to correspond to given pixel(h,v) *) 
begin 

x := (h - 255) I 130; 
y := (138 - v) I 130; 

end; 

procedure REALMOUSE (var x, y : real); 
(* The real-coordinates equivalent to 'getmouse(h,v)' *) 
var 

m, n : integer; 
begin 
getmouse (m, n); 
UNMAP(m, n, x, y); 

end; 

Statistics Library 

(* STAT.LIB STATISTICS LIBRARY*) 
(*requires globals "size: integer" and type sample=array[ •• ]of real*) 
(* arguments of type sample are declared var for efficiency reasons *) 



function RAND (x : real) : real; 
(* Returns a random real in (0,x) exclusive *) 
begin 

RAND := x * (random + 32768) I 65536; 
end; 

function SUMM (var v 
var 
ctr 
sum 

begin 

integer; 
real; 

sum := O; 

sample) 

for ctr := 1 to size do 
sum :=sum+ v[ctr]; 

SUMM := sum; 
end; 

real; 

function MEAN (var v : sample) : real; 
(* Returns mean value of sample *) 
begin 

MEAN := SUMM(v) I size; 
end; 

function PROD (var u, v 
var 
ctr 
sum 

begin 

integer; 
real; 

sum := O; 

sample) 

for ctr := 1 to size do 
sum:= sum+ u[ctr] * v[ctr]; 

PROD := sum; 
end; 

real; 

function ERROR (var u : sample) : real; 
(* Returns standard deviation of sample *) 
var 

m : real; 
ctr : integer; 
z : sample; 

begin 
m:=MEAN(u); 
for ctr := 1 to size do 
z[ctr] := u[ctr] - m; 

ERROR := sqrt(PROD(z, z) I (size - 1)); 
end; 

function DETR (var u : sample) : real; 
begin 

DETR:= sqr(SUMM(u)) - size* PROD(u, u) 
end; 

Appendix A • 261 

{continued} 



262 • Scientific Programming with Macintosh Pascal 

function BESTM (var x, y : sample) real; 
(* Returns best-fit slope *) 

begin 
BESTM := (SUMM(y) * SUMM(x) - size * PROD(x, y)) I DETR(x); 

end; 

function BESTB (var x, y : sample) real; 
(* Returns best-fit intercept *) 
begin 
BESTB := (SUMM(x) * PROD(x, y) - SUMM(y) * PROD(x, x)) I DETR(x); 

end; 

procedure GETDATA (var x : sample; 
var size : integer); 

(* Reads a sample and sets 'size' *) 
begin 
size := O; 
repeat 
size := size + l; 

readln(x[size]); 
until eof; 

end; 
(* Hit ENTER for keyboard eof *) 

procedure GETPAIRS (var x, y : sample; 
var size : integer); 

(* Reads two sample columns of data and sets 'size' *) 
begin 
size := O; 
repeat 
size := size + 1; 
readln(x[size], y[size]); 

until eof; (* Hit ENTER for keyboard eof *) 
end; 

function MAXPOINT (var x : sample) : integer; 
(* Returns index of sample maximum *) 
var 
pt, ctr : integer; 
m : real; 

begin 
m := x[l]; 
pt := 1; 
for ctr := 2 to size do 
if x[ctr] > m then 
begin 
pt := ctr; 
m := x[ctr) 

end; 
MAXPOINT ;= pt; 

end; 



function MINPOINT (var x : sample) : integer; 
(* Returns index of sample minimum *) 
var 
ctr, pt : integer; 
m : real; 

begin 
m := x[l]; 
pt := 1; 
for ctr := 2 to size do 
if x[ctr] < m then 
begin 
pt := ctr; 
m := x[ctr] 

end; 
MINPOINT := pt; 

end; 

function POISS (mean : real) : integer; 
(* produces random integers in Poisson distribution *) 
var 

sum 
ctr 

begin 

real; 
integer; 

sum := O; 
ctr := -1; 
repeat 
ctr := ctr + 1; 
sum :=sum - ln(RAND(l)) 

until sum > mean; 
POISS := ctr 

end; { poiss } 

function GAUSS (mean, error : real) : real; 
(* Produces random real in Gaussian distribution *) 
var 

u, v, x : real; 
beg~n 
repeat 

u := RAND(l); 
v := RAND(l); 
x := 2.0 * (V - 0.5) I u 

until sqr(x) <= -(4.0 * ln(u)); 
GAUSS := x * error + mean; 

end; 

Matrix Algebra Library 

(* MATRIX.lib - MATRIX ALGEBRA LIBRARY *) 

Appendix A • 263 

(*requires globals type matrix= array[l •• dim,1 .. dim] of real; *) 
(*and vector= array [l •. dim] of real*) {continued) 



264 • Scientific Programming with Macintosh Pascal 

procedure READVECT (n : integer; 
var x : vector); 

(* Read a vector of dimension n *) 
var 

j : integer; 
begin 
for j := 1 to n do 
read(x[j]); 

readln; 
end; 

procedure READMAT (n : integer; 
var m : matrix); 

(* Read an nXn matrix *) 
var 
i, j : integer; 

begin 
for i := 1 to n do 
begin 
for j := 1 to n do 
read(m[i, j]); 

end; 
end; 

procedure WRITEMAT (n : integer; 
m : matrix); 

(* Outputs an nXn matrix *) 
var 
i, j : integer; 

begin 
for i := 1 to n do 
begin 
for j := 1 to n do 
write(m[i, j] : 6 3); 

writeln; 
end; 

end; 

procedure WRITEVEC (n : integer; 
x : vector); 

(* Outputs a vector x of dimension n *) 

var 
i, j : integer; 

begin 
for i := 1 to n do 
write(x[i] 6 : 3); 

writeln; 
end; 

function DET (n : integer; 
a : matrix) : real; 



Appendix A • 265 

(* Return the determinant of nXn matrix a *) 
(*NOTE !! Dimension of matrix var must be at least n+l *) 
var 
ii, jj, kk, 11, ff, nxt : integer; 
piv, en, big, temp, term : real; 

begin 
ff :"" 1; 
for ii ·= 1 to n - 1 do 
begin 
big := O; 
for kk := ii to n do 
begin 
term := abs(a[kk, ii]); 
if term - big > 0 then 
begin 
big := term; 
11 := kk; 

end; 
end; 

if ii - 11 <> 0 then 
ff := -ff; 

for jj := 1 to n + 1 do 
begin 

temp := a[ii, jj]; 
a[ii, jj] := a[ll, jj]; 
a[ll, jj] := temp; 

end; 
piv := a[ii, ii]; 
nxt := ii + 1; 
for jj := nxt to n do 
begin 

en := a[jj, ii] I piv; 
for kk := ii to n + 1 do 
a[jj, kk] := a[jj, kk] - en* a[ii, kk]; 

end; 
end; 

temp := 1; 
for ii := 1 to n do 

temp :=temp* a[ii, ii]; 
det := temp * ff; 

end; 

procedure SOLVE (n : integer; 
a matrix; 
c vector; 
var x : vector); 

var 
k integer; 
d : real; 

{continued} 



266 • Scientific Programming with Macintosh Pascal 

procedure swap (n, k : integer; 
var a matrix; 
var 9 : vector); 

var 
e : real; 
j : integer; 

begin 
for j := 1 to n do 
begin 

e := c[j]; 
c[j] := a[j, k]; 
a[j, k] := e; 

end; 
end; 

begin 
d := DET(n, a); 
for k := 1 to n do 
begin 

swap(n, k, a, c); 
x[k] :=det(n, a) /d; 
swap(n, k, a, c); 

end; 
end; { solve } 

procedure CHANGECOL (rows, columns, target 
var m : matrix; 
newcol : vector); 

var 
i : integer; 

begin 
for i := 1 to rows do 
m[i, target] := newcol[i]; 

end; { changecol } 

procedure INVERT (n : integer; 
a : matrix; 
var b : matrix); 

(*invert the n-by-n matrix in a into b.*) 
var 
I, tmp : vector; 
j : integer; 

begin 
if det(n, a) = 0 then 
writeln('invert : singular matrix') 

else 
begin 
for j := 1 to n do 

integer; 



Appendix A • 267 

begin 
I[j] :== 1; 
solve(n, a, I, trnp); 
changecol(n, n, j, b, trap); 
I [j] :== O; 

end; 
end; 

end; 

Three Dimensional Graphics Library 

(* 3D.lib - THREE DIMENSIONAL GRAPHICS LIBRARY *) 

procedure CLEAR; 
(* Size and clear the Drawing Window *) 
var 

windowrect : rect; 
begin 
hideall; 
setrect(windowrect, 2, 35, 512, 342); 
setdrawingrect(windowrect); 
showdrawing; 

end; 

procedure MAP (x, y : real; 
var hor, ver : integer); 

(* Force hor and ver to be integer pixel coordinates *) 
begin 
if abs(x) > 1.9 then 

x := x I abs(x) * 1.9; 
hor := 255 + trunc(x * 130); 
i£ abs(y) > 1 then 
y := y I abs(y); 

ver := 138 - trunc(y * 130); 
end; 

procedure DRAW (x, y: real); 
(* Draw to the point (x,y) *) 
var 
hl, vl : integer; 

begin 
MAP(x, y, hl, vl); 
lineto(hl, vl); 

end; 

procedure SHIFT (x, y : real); 
(* Move invisible to the point (x,y) *) 
var 
hl, vl : integer; 

begin {continued) 



268 • Scientific Programming with Macintosh Pascal 

MAP(x, y, hl, vl); 
moveto(hl, vl); 

end; 

procedure PLOT (x, y : real); 
(* Place a dot at (x,y) *) 
begin 

SHIFT(x, y); 
DRAW(x, y); 

end; 

procedure ROTATE (var x, y, z : real; 
a, b, c : real); 

(* Rotate (x,y,z) by the three Euler angles (a,b,c) *) 
var 

sx, sy, sz, tx, ty, tz : real; 
begin 

sx := x * cos (c) - y * sin(c); 
sy := x * sin (c) + y * cos(c); 
sz := z; 
tx := sx; 
ty := sy * cos (b) - sz * sin(b); 
tz := sy * sin (b) + sz * cos(b); 
x := tx * cos(a) - ty * sin (a); 
y := tx * sin(a) + ty * cos (a); 
z := tz; 

end; 

procedure SPLOT (x, y, z, a, b, c : real); 
(* Plot a point at the (a, b, c) -rotated (x, y, z) but no change in (x, y, z) *) 

var 
u, v, w : real; 

begin 
u := x; 
v := y; 
w := z; 
ROTATE(u, v, w, a, b, c); 
PLOT (u, v); 

end; 

procedure SDRAW (x, y, z, a, b, c : real); 
(* Draw to the (a,b, c)-rotated point (x,y, z); but no change in (x,y, z) *) 

var 
u, v, w : real; 

begin 
u := x; 
v := y; 
w := z; 
ROTATE(u, v, w, a, b, c); 
DRAW(u, v); 

end; 



Appendix A • 269 

procedure SMOVE (x, y, z, a, b, c : real); 
(* Move invisible to the (a,b,c)-rotated but unchanged point (x,y,z)*) 
var 
u, v, w : real; 

begin 
u := x; 
v := y; 
w := z; 
ROTATE(u, v, w, a, b, c); 
SHIFT(u, v); 

end; 

procedure AXES (a, b, c : real); 
(* Draw the coordinate axes for new view (a,b,c) *) 
begin 

SMOVE (-1, 0, 0, a, b, c); 
SDRAW(l, 0, O, a, b, c); 
SMOVE(O, -1, 0, a, b, c), 
SDRAW(O, 1, 0, a, b, c); 
SMOVE(O, 0, -1, a, b, c); 
SDRAW(O, 0, 1, a, b, c); 

end; 

Special Mathematical Functions Library 

(* MATH.lib - Special Mathematical Functions Library *) 

function GAMMA (z real) : real; 
(* gamma function of z > 0 *) 

con st 
pi = 3.141592653589793238463; 

var 
zz real; 

begin 
if (z > 1) then 

GAMMA := (z - 1) * GAMMA(z - 1) 
else if (z = 1) then 

GAMMA := 1 
else if (z > 0.5) then 

GAMMA :=pi I (sin(pi * z) * GAMMA(l - z)) 
else 
begin 

zz := 1 I z - 0.5748646 + 0.9512363 * z - 0.6998588 * z * z; 
GAMMA := zz + 0.4245549 * z * z * z - 0.1010678 * z * z * z * z; 

end; 
end; 

{continued) 



270 • Scientific Programming with Macintosh Pascal 

function J (nu, z : real) : real; 
(* Bessel function of order nu *) 
var 

n, d, 
ctr 

begin 

f, sum : real; 
integer; 

if z 
begin 
if nu 

0 then 

j := 1 
else 

j := O; 
end 

else 
begin 

0 then 

f := 1 I GAMMA(nu + l); 
n : ... - ( sqr ( z) I 4 ) ; 
d :- nu + l; 
sum := f; 
ctr := l; 
repeat 

f := f * n I (ctr* d); 
d : .. d + l; 
ctr := ctr + 1; 
sum := sum + f 

until abs(f) < 0.0000000001; 
if z > 0 then 

J :=sum* exp(nu * ln(z I 2)) 
else 

J := (1 - 2 * (trunc(nu) mod 2)) * sum* exp(nu * ln(abs(z I 2))) 
end; 

end; 

function ERF (x : real) : real; 
(* Error function of statistics *) 
var 

temp, mult, t, al, a2, a3, a4, a5, p 
begin 
if x < 0 then 
mult := -1 

else 
mult := l; 

x :- abs (x); 
p := 0.3275911; 
al := 0.254829592; 
a2 := -0.284496736; 
a3 := 1.421413741; 
a4 := -1,453152027; 

real; 



Appendix A • 271 

as := 1.06140S429; 
t := 1 I (1 + p * x); 
temp := al * t + a2 * t * t + a3 * t * t * t + a4 * t * t * t * t 
+ as * t * t * t * t * t; 
ERF := mult * (1 - exp(-sqr(x)) *temp); 

end; 

function F (a, b, c, z : real) : real; 
(* The Gauss Hypergeometric function *) 
var 

g, sum : real; 
n : integer; 

begin 
g := 1; 
n := 1; 
sum := O; 
repeat 

sum := sum + g; 
g := g *a* b * z I (n * c); 
n := 
a := 
b := 
c := 

n + 
a + 
b + 
c + 

1; 
1; 
1; 
1 

until 
f := 

end; 

(n > SO) or (abs(g) < le-13); 
sum; 

function M (a, b, z : real) : real; 
(* The Kummer (confluent) Hypergeometric function *) 
var 

g, sum : real; 
n : integer; 

begin 
sum := O; 
g := 1; 
n := 1; 
repeat 

sum := sum + g; 
g := g * a * z I 
n := n + 1; 
a := a + 1; 
b := b + 1 

until (n > SO) or 
M := sum; 

end; 

(b * n); 

(abs (g) < le-13); 

function U (a, b, z : real) : real; 
(* Associated confluent Hypergeometric function *) 
con st 
pi = 3.141S926S35897932; 

{continued) 



272 • Scientific Programming with Macintosh Pascal 

begin 
if abs(z) < le-10 then 
u :"" 0 

else 

U :""pi I sin(pi * b) * (m(a, b, z) I GAMMA(l +a - b) * GAMMA(b)) -exp 
((1- b) *ln(z)) *M(l +a - b,2 - b,z) I (GAMMA(a) *GAMMA(2 - b))); 

end; 

function HER (n : integer; 
x : real) : real; 

(* Hermite polynomial of order n *) 
begin 
if n = 1 then 

HER :- 2 * x 
else 
HER:= x * exp(n * ln(2)) * u(0.5 - n I 2, 3 I 2, sqr(x)); 

end; 

function LEG (n : integer; 
x : real) : real; 

(* Legendre polynomial of order n *) 
begin 

LEG:== F(-n, n + 1, 1, (1 - x) I 2); 
end; 

function LAG (n : integer; _ 
a, x : real) : real; 

(* Laguerre function of order n, superscript a *) 
var 
fact : real; 

begin 
if n mod 2 == 0 then 
fact := 1 

else 
fact := -1; 

LAG :"" u(-n, a + 1, x) I GAMMA(n + 1) * fact; 
end; 

function I (nu, x : real) : real; 
(* Modified Bessel function of order nu *) 
begin 

I := exp(-x) * exp(nu ln(x I 2)) * m(nu + 0.5, 2 *nu + 1, 2 * x) I 
GAMMA (nu + 1); 

end; 

function K (nu, x : real) : real; 
(* Modified Bessel function of order nu *) 
(* positive args only *) 
con st 
pi = 3.1415926535897932; 



Appendix A • 273 

begin 
K: =exp(nu * ln(2 * x)) * exp(-x) * sqrt (pi) * U(nu + 0.5, 2 *nu 
+l, 2 * X); 

end; 

function COMB (n : real; 
m : integer) : real; 

(* Combinatorial bracket n-over-m, m an integer *) 
begin 
if m = 1 then 

COMB := n 
else 

COMB := COMB(n - 1, m - 1) * n I m 
end; 

function JAC (n : integer; 
a, b, x : real) : real; 

(* Jacobi polynomial of order n, superscripts (a,b) *) 
begin 

JAC := COMB (n + a, n) * F (-n, n + a + b + 1, a + 1, (1 - x) I 2); 
end; 

function TCHEB (n : integer; 
x : real) : real; 

(* Tchebyshev polynomial of order n *) 
begin 

TCHEB :co F(-n, n, 0.5, (1 - x) / 2); 
end; 

Number Theoretic Functions Library 

(* NUM.lib - Number Theoretic Functiona ·library *) 

function PMOD (x, y, z : longint) : longint; 
(* return x ~ y (mod z) *) 
var 

e : longint; 
begin 

e :== 1; 
while y <> 0 do 
begin 
if (y mod 2) <> 0 then 
begin 

y : .. y - 1; 
e :== (e * x) mod z; 

end; 
y := y div 2; 
x := (x * x) mod z; 

end; 
(continued} 



274 • Scientific Programming with Macintosh Pascal 

PMOD := e; 
end; 

function GCD (a, b 
var 

r : longint; 
begin 
if b < 0 then 

b := -b; 
if a < 0 then 

a := -a; 
if a > 0 then 
begin 

b := b mod a; 
r : =- l; 
if b = 0 then 

r := 0; 
while r > 0 do 

begin 
q := a div b; 
r := a - q * b; 
a := b; 
b ·= r; 

end; 
end; 

GCD := a; 
end; 

longint) long int; 

Differential Equations Library 

(* DiffEqu.lib - DIFFERENTIAL EQUATIONS LIBRARY *) 
(* Procedure 'Update' is self-contained Runge-Kutta Solver *) 
(* for general second-order equation:*) 
(* (dd/dtt)x f (x,dx/dt,t) *) 

procedure UPDATE (var x, dxdt, t 
dt : real); 

var 
kl, k2, k3, k4 : real; 

function f (x, dxdt, t real) 
begin 

f := -k * x I m - 2 * b * dxdt 
end; 

begin 
kl := dt * f(x, dxdt, t); 

: real; 

I m; 

k2 := dt * f(x + dt * (dxdt +kl I 4) I 2, dxdt +kl I 2, t + dt I 2); 



Appendix A • 275 

k3 := dt * f (x + dt * (dxdt + k2 I 4) I 2, dxdt + k2 I 2, t + dt I 2); 
k4 := dt * f(x + dt * (dxdt + k3 I 2), dxdt + k3, t + dt); 
x := x + dt * (dxdt + (kl+ k2 + k3) I 6); 
dxdt := dxdt + (kl + 2 * k2 + 2 * k3 + k4) I 6; 
t := t + dt; 

end; 

I 



Index 
additive recursion, 49 
animation, 15, 64, 98, 104-105, 184 
Apple menu, 3 
arrays, 62 

character, 16 
multidimensional, 62 

AXES procedure, 161 

backpat procedure, 11, 15 
baud rate, 201 
Bessel functions, 100, 107 
BESTB function, 141 
BESTM function, 141 
brachistochrone problem, 109 
Buffon's Needle, 138, 140 
button function, 17 

CIR procedure, 98 
cleanbuf procedure, 201 
CLEAR procedure, 98 
close procedure, 20 
coefficients matrix, 67 
COMBO function, 68 
continual reduction, 47 
continued fractions, 49-52, 69 
Cramer's rule, 67 
cycloid, 102 

derivatives,56,59,233 
differential 

calculus, 56, 57 
equations,57,59,226 

diffraction, 228 
diffusion equation, 187 
Discrete Fourier Transform, 222 
disk, 10, 20-21 
divisor, greatest common, 48 
DRAW procedure, 98 
Drawing window, 9, 11-12, 14 
dynamical trajectories, 65 

e,52-53,68 
enter key, 16 
eof function, 16 
eoln function, 16 
erase procedure, 12 
eraseoval procedure, 11 
eraserect procedure, 11 
errorchecking,2,3 

ERROR function, 141 
Euclid's Algorithim, 48 
Euler angles, 160-166 
exp function, 55, 69 
exponentiation, complex, 64 

factorial, 45, 48 
factors, 48 
Fast Fourier Transform (FFTj, 221-224, 232-234 
Fermat's Principle, 47, 103, 109 
Fibonacci numbers, 49, 67 
fillbuf function, 201 
floating point, 55 
Four-Color Theorem, 229 
Fourier 

analysis, 221 
sumlOO, 102 

fractions, continued, 49-52, 69 
framcoval procedure, 11, 98 
framerect procedure, 11, 14 
full duplex, 200 
function, 

Bessel, 100, 107 
BESTB, 141 
BESTM, 141 
button, 17 
COMB0,68 
eof, 16 
eoln, 16 
ERROR,141 
exp,55,69 
fillbuf, 201 
Gamma, 107, 108 
Gaussian density, 137 
MAXPOINT, 141 
MEAN,141 
MINPOINT, 141 
Poisson density, 137 
PtlnRect, 18 
RAND, 137, 140 
random,134 
reciprocating, 60-61 
recursive, 46, 48 
Reimann Zeta, 70 
tickcount, 22-23 

Gamma function, 107, 108 
Gaussian density function, 137 
getkey procedure, 201 

277 



278 • Scientific Programming with Macintosh Pascal 

getmouse procedure, 17, 98 
GETP AIRS procedure, 141 
GetTime procedure, 22 
Gibb's phenomenon, 100 
graphics, 98 
greatest common divisor, 48 

handshake procedure, 201 
Hooke's constant, 59 

1/0, 199 
iconic instrumentation, 18, 202-203 
ImageWriter, 10 
imaginary numbers, 63 
infinite sums, 55 
Input/Output, 199 
integer 

coordinates, 99 
sequences, 45 

integral calculus, 61-62 
interpreter, 2-3 
interval of integration, 62 

keyboard, 9, 16 

laboratory interfacting, 201 
lazy 1/0, 199-200 
libraries, 3-7, 13 
limits, 51-56, 61, 70 
linear equations, 67 
lineto procedure, 11, 98 
logarithmic spiral, 102 · 
Lorenz Attractors, 183 

Macintosh, 128K, 3 
MAP procedure, 99 
matrices,62-64 
MAXPOINT function, 141 
MEAN function, 141 
memory limitations, 3 
MINPOINT function, 141 
modeling, multidimensional, 65 
modem port, 10 
Monge surface, 162-163 
monopole, magnetic, 230 
Monte Carlo, 138 
motion law, 57-58 
mouse, 9, 17-18 
move procedure, 11 
moveto procedure, 11, 98 

Newton's method, 59-61, 71, 109 
Newton, Isaac, 59 
note procedure, 19 
numbers, complex, 62-64 

PaintOval procedure, 11 
PaintRect procedure, 11 
parametric 

curves, 102 
space curves, 182 

Pascal's Triangle, 68 
penmode procedure, 11 
penpat procedure, 11, 15 
pensize procedure, 11 
periodic sequences, 69 
perspective, 163-164 
pi, 69-70 
Poisson density function, 137 
polar coordinates, 102 
Pollard Rho factoring, 48 
polling, 200 
population biology, 186 
prime 

factors, 48 
numbers,46-48,67-68 

printer, 10, 19 
probability, 138-140 
procedure 

AXES,167 
backpat, 11, 15 
CIR,98 
cleanbuf, 201 
CLEAR,98 
close, 20 
DRAW,98 
erase, 12 
eraseoval, 11 
eraserect, 11 
frameoval, 11, 98 
framerect, 11, 14 
getkey, 201 
getmouse, 17, 98 
GETPAIRS, 141 
GetTime,22 
handshake, 201 
lineto, 11, 98 
MAP,99 
move,11 
moveto, 11, 98 
note, 19 
paintoval, 11 
paintrect, 11 
penmode,11 
penpat, 11, 15 
pensize, 11 
read, 16 
readln, 16 
REALMOUSE, 98 
reset, 20 
rewrite, 19, 20 



ROTATE,161 
SDRAW,161 
SetDrawingRect, 11 
SetRect, 11, 14 
SetSoundVol, 19 
SetTextRect, 11 
SetTime, 22 
SHIFT, 98 
show,15 
ShowDrawing, 12 
ShowText, 11 
SMOVE,161 
SPLOT, 161 
Synch,22 
SysBeep, 18-19 
textface, 11 
textsize, 11 
UNMAP,99 
UPDATE, 226-227 
vanish, 15 
write, 10 
writedraw, 11 

writeln, 11 
PtlnRect function, 18 

quadratic residue, 68 
quadrature, 62 
quadritic surd, 69 
quartic polunomial, 70 
QuickDraw, 3, 98, 105 

RAND function, 137, 140 
random 

function, 134 
integers, 134-135 
reals, 136-137 

rational sequences 51-52 
ray tracing, 232 
read procedure, 16 
readln procedure, 16 
real coordinates, 98-100 
REALMOUSE procedure, 98 
reciprocating function, 60-61 
rectangles, 14 
recursion, 46 

additive, 49 
recursive function, 46-48 
reductions, continual, 47 
Reimann Zeta function, 70 
resetprocedure,20 
rewrite procedure, 19, 20 
ROTATE procedure, 161 
rotation, 64 

matrix, 64-65 
Runge-Kutta method, 226-228 

SANE,55 
Satum,185 
Scrapbook, 4-7, 13 
screen, 9 
SDRA W procedure, 161 
sequences, 45 
Serial port, 10 
SetDrawingRect procedure, 11 
SetRect procedure, 11, 14 
SetSoundVol procedure, 19 
SetTextRect procedure, 11 
SetTime procedure, 22 
SHIFT procedure, 98 
Shirley, Peter, 2 
show procedure, 15 
Show Drawing procedure, 12 
ShowTextprocedure,11 
Sieve of Eratosthenes, 46, 68 
SMOVE procedure, 161 
Snell's Law, 109 
sound generator, 10, 18-19 
space-time models, 181-182 
squares, perfect, 67 
SPLOT procedure, 161 
square roots, 71 
statistics, 140-141 
Synch procedure, 22 
SysBeep procedure, 18-19 

terminal emulation, 200-201 
Text window, 9-12 
textface procedure, 11 
textsize procedure, 11 
three-dimensional graphics, 160 
three-body problem, 184 
TickCount function, 22-23 
time series, 100, 233 
Timers, 22 
trapesoidal approximation, 62 
twin prime pairs, 68 

UNMAP procedure, 99 
UPDATE procedure, 226-227 

vanish procedure, 15 
vectors, 62-64 

Wilson's Theorem, 47 
Wirth, Niklaus, 1 
write procedure, 10 
writedraw procedure, 11 
writeln procedure, 11 

Xon/Xoff protocol, 200 

Index· 279 



Computers 

Master problem-solving 
with your mouse. 

$18.95 

SCIENTIFIC 
PROGRAMMING 
WITH MACINTOSH 
PASCAL 

Richard Crandall and Marianne Colgrove 
show you how to use the Macintosh's 
mouse and window technology to solve 
real-world problems in biology, chemistry, 
mathematics and physics. Using the 
unique teaching approach developed in 
courses at Reed College (a member of the 
Apple University Consortium), Crandall 
and Colgrove explain the basics of pro­
gramming in Macintosh Pascal. They take 
you step by step through keyboard, text, 
drawing, mouse and windowing routines 
and show you how to use the sound gener­
ator, printer and disk drive. Once you know 
how the Macintosh works, you'll start solv­
ing problems-everything from integral 
calculus, linear equations, complex num­
bers, vectors and matrices to probability 
and statistics. 

Scientific Programming with Macintosh 
Pascal also shows how to take advantage 
of the Macintosh's superior graphics and 

-· animation capabilities. You'll learn tech­
niques for graphing functions and real­
valued coordinates as well as how to 

Wiley Press guides have taught more than 
three million people to use, program, and 
enjoy microcomputers. Look for them all at 
your favorite bookshop or computer store. 

Macintosh" is a trademark licensed to Apple Computers, Inc. 

create 3-dimensional graphs using Kupin 
space-time models and parametric space 
curves. 

The guide's self-teaching format makes it 
easy for those who've already learned 
Pascal to convert to Macintosh Pascal. 
Examples and exercises from various sci­
entific disciplines are designed to 
strengthen problem-solving and program­
ming skills. The book features a wealth of 
pre-tested, powerful routines, covering 
such areas as statistics, mathematical 
physics and signal processing. Extensive 
libraries of scientific routines in Macintosh 
Pascal are also included. 

RICHARD E. CRANDALL--is founder of 
Metasearch, Inc. and a member of the 
physics faculty at Reed College. 

MARIANNE M. COLGROVE is the Edu­
cation and Documentation Coordinator in 
the Software Development Laboratory at 
Reed College. 

WILEY PRESS 
JOHN WILEY & SONS, Inc. 
Business/Law/General Books Division 
605 Third Avenue, New York, NY 10158-0012 
New York• Chichester• Brisbane• 
Toronto• Singapore 

ISBN 0 471-82176-4 


