
Software 
by Design 
Creating People Friendly Software 

• Improve any product under development 
• Involve users in product design 
• Use software prototyping tools 
• Design "people friendly" software products 

for easy use 

Penny Bauersfeld 



Software by Design 

Creating People Friendly Software 
for the Macintosh 



Software by Design 

Creating People Friendly Software 
for the Macintosh 

Penny Bauersfeld 



M&T Books 
A Division of MIS:Press 
A Subsidiary of Henry Holt and Company, Inc. 
115 West 18th Street 
New York, New York 10011 

© 1994 by MIS:Press 

Printed in the United States of America 

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, 
electronic or mechanical, including photocopying, recording, or by any information storage and retrieval 
system, without prior written permission from the Publisher. Contact the Publisher for information on 
foreign rights. 

Limits of LlabWty and Disclaimer of Warranty 
The Author and Publisher of this book have used their best efforts in preparing the book and the pro­
grams contained in il These efforts include the development, research, and testing of the theories and 
programs to determine their effectiveness. 

The Author and Publisher make no warranty of any kind, expressed or implied, with regard to these pro­
grams or the documentation contained in this book. The Author and Publisher shall not be liable in any 
event for incidental or consequential damages in connection with, or arising out of, the furnishing, per­
formance, or use of these programs. 

Bauersfeld, Penny 
Software by design : creating people friendly software for the 
Macintosh I Penny Bauersfeld 

p. cm. 
Includes index. 
ISBN 1-55828-296-3 : $29.95 

1. Macintosh (Computer)--Programming. 2. Computer software­
-Development. 3. User-computer interaction. I Title. 
QA76.8.M3B375 1994 
005.265--dc20 

Trademarks 

93-46242 
CIP 

Throughout this book, trademarked names are used. Rather than put a trademark symbol after every 
occurance of a trademarked name, we used the names in an editorial fashion only, and to the benefit 
of the trademark owner, with no intention of infringement of the trademark. Where such designations 
appear in this book, they have been printed with initial caps. 

Publisher: Steve Berkowitz 
Associate Publisher: Brenda McLaughlin 
Development Editor: Margot Pagan 
Production Editor: Mark Masuelli 
Associate Production Editor: Joseph McPartland 

97 96 95 94 

Copy Editor: Jeri Marler 
Technical Editor: Ed Hogan 
Illustrations: Jean Ann Greaves, 
Joseph McPartland, Penny Bauersfeld 

4 3 2 1 



.,: 

For·E:oppy 

··.:.1, 



Table of Contents 

Why This Book is for You ••••••••••••••••••••••••••• 1 

Introduction ••••••••••••••.•••••••••••••••••••••••••••••••• 3 
How this Book is Structured .... ........ ..... .. ....... .............. .. ....................... .4 

Chapter 1 : An Approach to User-Oriented 
Interface Design ••••••••.•••••••••••••••••••••••••••••••• 7 

The User and the Task .. ...... .... .. .. .. .. ............................ .. .... ......................... 7 

Addressing the User in Product Design ................................................... . 8 
Human Factors versus User-Oriented Design .. ..................................... .. 10 
Interdisciplinary Design ....................................... ...... ..................... ......... 12 

Visual Design ........ .. ...... .. ...... ... ........ ................ ...................... ... .... ............ 16 
Software Implementation Skills ........... ....... ............. ................. ........ .. .... 19 

Chapter 2: The Exercise •••••••••••••••••••••••••••• 21 
The Supermarket Guide Exercise .............. .... ............. ..... ... .... ........ ......... 22 

Substituting Another Exercise Topic ...................... ................................. 25 

VII 



V 111 Software by Design 

Importance of Applied Design .................................................................. 25 
The Exercise Tasks ................................................................................... 26 
Making it Work for You ........................................................................... 26 

Chapter 3: Early User Studies ••••••••••••••••••• 27 
What are Early User Studies? ................................................................... 27 
The Advantages of Early User Studies ..................................................... 28 
How to Select, Design, and Perform Early User Studies ........................ 30 

Evaluate the nature of the task ............................................................ 30 
Evaluate the state of the technology ................................................... 30 
Spend enough time, include enough users .......................................... 31 
Record the user study ........................................................................... 33 

Method 1 :User Observation ..................................................................... 34 
The importance of user observation .................................................... 35 
Steps for observing users ...................................................................... 36 
Hints/suggestions ................................................................................. 37 
Exercise task ......................................................................................... 3 7 

Method 2: User Interviews ....................................................................... 38 
The importance of user interviews .......................................................... 39 

The advantages of user interviews ....................................................... 41 
Steps for interviewing users ................................................................. 41 
Hints/suggestions ................................................................................. 42 
Exercise task ......................................................................................... 43 

Method 3: Task Analysis .......................................................................... 43 
The importance of task analysis .......................................................... 45 
The advantages of task analysis ........................................................... 46 
Steps for conducting a task analysis .................................................... 4 7 
Hints/suggestions ................................................................................. 47 
Exercise task ......................................................................................... 48 

Method 4: Expert Interviews .................................................................... 48 
The importance of expert interviews .................................................. 50 
Advantages of expert interview ........................................................... 50 
Steps for interviewing experts .............................................................. 52 



. 
Table of Contents IX 

Hints/suggestions ................................................................................. 52 
Exercise task ......................................................................................... 53 

Method 5: Seed Studies ............................................................................. 53 
The importance of seed studies ........................................................... 55 
Advantages of seed studies ................................................................... 55 
Steps for conducting a seed study ........................................................ 56 
Hints/suggestions ................................................................................. 57 
Exercise task ......................................................................................... 5 7 

Method 6: Evaluating Early Designs ........................................................ 58 
The importance of evaluating early designs ........................................ 61 
Steps for conducting an early design evaluation ................................. 62 
Hints/suggestions ................................................................................. 63 
Exercise task ......................................................................................... 63 

Chapter 4: Off-line Tools 
ancl l'rctcecl1.1res ••••.•.••...•..••...•••.....•.••..•.... ().5 

What Are Off-line Tools and Procedures? ............................................... 65 
The Advantages of Off-line Tools and Procedures .................................. 67 
How to Select, Design, and Perform Off-line Tools and Procedures ..... 70 
Method 1: Off-line Design Materials ....................................................... 74 

The importance of materials ................................................................ 75 
Steps for gathering materials ................................................................ 77 
Hints/suggestions ................................................................................. 77 
Exercise task ......................................................................................... 78 

Method 2: Scenarios .................................................................................. 78 
The importance of scenarios ................................................................ 80 
Steps for writing scenarios ................................................................... 81 
Hints/suggestions ................................................................................. 84 
Exercise task ......................................................................................... 84 

Method 3: Drawing ................................................................................... 85 
The importance of drawings ................................................................ 8 7 
Steps for drawing .................................................................................. 88 
Hints/suggestions ................................................................................. 89 



X Software by Design 

Exercise task ......................................................................................... 89 
Method 4: Storyboards .............................................................................. 90 

The importance of storyboards ............................................................ 93 
Steps for storyboarding ......................................................................... 95 
Hints/suggestions ................................................................................. 95 
Exercise task ......................................................................................... 98 

Method 5: Flipbooks ................................................................................. 98 
Hints/Suggestions ............................................................................... 103 
Exercise ............................................................................................... 104 

Method 6: Mockups ................................................................................ 105 
The Importance of Mockups .............................................................. 106 
Steps for Building Mockups ............................................................... 106 
Hints/Suggestions ............................................................................... 107 
Exercise ............................................................................................... 107 

Chapter 5: On-line Tools 
and Procedures ••••••••••••••••••••••••••••••••••••• 1 09 

What Are On-line Tools and Procedures? ............................................. 109 
The Advantages of On-line Tools and Procedures ................................ 112 
How to Select, Design and Perform On-line Tools and Procedures ..... 113 
Method 1: Early On-line Explorations ................................................... 117 

The importance of early on-line explorations ................................... 119 
Steps for performing early on-line explorations ................................ 122 
Hints/suggestions ............................................................................... 122 
Exercise task ....................................................................................... 123 

Method 2: System Requirements ........................................................... 124 
Writing the system requirements documentation ............................ 125 
How to use the system requirements documentation ..................... 126 
The importance of system requirements .......................................... 127 
Steps for conducting system requirements ....................................... 131 
Hints/suggestions ............................................................................... 132 
Exercise task ....................................................................................... 133 

Method 3: Building a Backbone .............................................................. 134 



. 
Table of Contents XI 

The importance of building a backbone ............................................ 135 
Steps for building a backbone ............................................................ 137 
Hints/suggestions ............................................................................... 138 
Exercise task ....................................................................................... 138 

Method 4: The Power of Clip Art .......................................................... 139 
Sources of clip art ............................................................................... 140 
Storing clip art .................................................................................... 142 
Using clip art in prototyping .............................................................. 143 
The importance of clip art .................................................................. 144 
Steps for collecting and using clip art ................................................ 145 
Hints/suggestions ............................................................................... 146 
Exercise task ....................................................................................... 146 

Method 5: On-line Flipbooks ................................................................. 147 
Flip books and HyperCard ................................................................... 149 
Using on-line flipbooks ...................................................................... 149 
The importance of on-line flipbooks ................................................. 150 
Steps for building on-line flipbooks ................................................... 151 
Hints/ suggestions ............................................................................... 152 
Exercise task ....................................................................................... 153 

Chapter 6: Prototyping •••••••••••••••••••••••••• 155 
What is Prototyping? .............................................................................. 155 

How to approach prototyping ............................................................ 15 7 
The Advantages of Prototyping .............................................................. 158 
How to Select, Design, and Perform Prototyping Techniques ............. 160 

Overall schedule ................................................................................. 160 
Available resources ............................................................................. 161 
Your final software ............................................................................. 162 
The nature of what you are developing ............................................. 162 
Access to users .................................................................................... 163 
How you will use the prototypes ....................................................... 163 
Past experience ................................................................................... 164 

Method 1: Planning and Scheduling ...................................................... 164 



.. 
X 11 Software by Design 

The importance of planning and scheduling ..................................... 167 
Steps for planning and scheduling ..................................................... 169 
Hints/suggestions ............................................................................... 169 
Exercise task ....................................................................................... 1 70 

Method 2: Selecting the Right Tools ..................................................... 170 
The importance of selecting the right tools ...................................... 173 

Steps for selecting the right tools ........................................................... 175 
Hints/suggestions ............................................................................... 176 
Exercise task ....................................................................................... 17 6 

Method 3: Using Software Prototyping Tools ....................................... 177 
Creating software without writing code ........................................... 179 
Testing software designs .................................................................... 179 
Integrating outside elements into your program .............................. 181 
Timing of software prototyping ......................................................... 181 
The importance of using software prototyping tools ........................ 182 
Steps for using software prototyping tools ........................................ 183 
Hints/suggestions ............................................................................... 184 
Exercise task ....................................................................................... 185 

Software Prototypes in User Studies ...................................................... 186 
Value of software prototypes in user studies .................................... 186 
Implications of building prototypes for user studies ........................ 187 
Hints for prototypes in user studies .................................................. 189 

Preparing for the Actual Software .......................................................... 190 

Chapter 7: Usability Testing ................... 193 
What Is Usability Testing? ..................................................................... 193 

Formal versus Informal Testing ......................................................... 194 
Establishing Test Goals and a Plan .................................................... 194 
The Timing of Usability Testing ....................................................... 195 
Determining the Number of Tests to Run ........................................ 195 
Usability Testing-Part of User-Oriented Design ............................ 196 

The Advantages of Usability Testing .................................................... 197 
How to Design and Perform Usability Tests ......................................... 199 



Table of Contents XII I 

Examine the goals of your system ..................................................... 199 
Evaluate the state of your system ...................................................... 200 
Assess the capabilities and availability of your testers .................... 200 
Consider which and how many users to include .............................. 201 
Determine the setting for your tests ................................................. 201 
Spend enough time and include enough users ................................. 202 
Document the testing sessions .......................................................... 202 
Understand what usability testing can do for you ............................ 203 
Know when to test .............................................................................. 203 

Method 1: Designing a User Test ........................................................... 204 
Establish goals for the test ................................................................. 204 
Devise tasks for the test ..................................................................... 205 
Determine the environment for the test ........................................... 206 
Decide how to record the test ............................................................ 206 
Establish the need for post-test interviews or questionnaires ......... 207 
Establish the timing of the test .......................................................... 208 
The importance of designing a user test ............................................ 211 
Steps for designing a user test ............................................................ 212 
Hints/suggestions ............................................................................... 213 
Exercise task ....................................................................................... 215 

Method 2: Selecting Test Subjects ......................................................... 215 
Identify the target users ...................................................................... 216 
Decide how many participants you need .......................................... 216 
Determine the motivation for the participants ................................ 217 
Finding the participants ..................................................................... 217 
Scheduling the tests ............................................................................ 218 
The importance of selecting test subjects ......................................... 219 
Steps for selecting test subjects ......................................................... 220 
Hints/suggestions ............................................................................... 221 
Exercise task ....................................................................................... 221 

Method 3: Conducting a User Test ........................................................ 222 
Learn from multiple users .................................................................. 222 
Record the sessions ............................................................................. 223 



. 
XIV Software by Design 

Post-test interviews and questionnaires ............................................ 223 
Example of conducting a user test ..................................................... 224 
During the test .................................................................................... 225 
The importance of conducting a user test ......................................... 225 
Steps for conducting a user test ......................................................... 226 
Hints/suggestions ............................................................................... 227 
Exercise task ....................................................................................... 22 7 

Method 4: Analyzing Test Results ......................................................... 228 
Compare goals and results ................................................................. 229 
Look for patterns in the results .......................................................... 229 
Review test records ............................................................................. 229 
Document your findings .................................................................... 230 
Timing of the analysis ........................................................................ 230 
The importance of analyzing test results .......................................... 230 

Steps for analyzing test results ............................................................... 234 
Hints/suggestions ............................................................................... 234 
Exercise task ....................................................................................... 235 

Method 5: Making Design Recommendations ...................................... 236 
Identifying the recommendations ...................................................... 236 
Support recommendations with findings .......................................... 237 
Devise alternative recommendations ................................................ 237 
The importance of making design recommendations ...................... 240 
Steps for making design recommendations ....................................... 241 
Hints/suggestions ............................................................................... 241 
Exercise task ....................................................................................... 242 

C:'1e11>tttr II: ltttre1tie>11 ••••••••••••••••••••••••••••••• ~~~ 
What Is Iteration? .................................................................................... 245 

Plan for iteration ................................................................................. 246 
A cyclical process of development ..................................................... 246 
Integrate user test results ................................................................... 24 7 
Other reasons for iterative design ...................................................... 248 

The Advantages of Iteration ................................................................... 248 



Table of Contents XV 

How to Design and Perform Iteration .................................................... 250 
Spend time outlining and planning ................................................... 250 
Build flexible component-based systems .......................................... 251 
Work closely with all team members ................................................ 251 
Don't become attached to implementation details .......................... 252 
Understand the nature of your design ............................................... 252 
Plan for each iteration stage ............................................................... 253 
Verify design changes ......................................................................... 253 

Method 1: Deciding on Next Steps ........................................................ 253 
Analyze the situation ......................................................................... 255 
Team meetings to discuss progress ................................................... 256 
The importance of deciding on next steps ........................................ 256 
Steps for deciding next steps .............................................................. 25 7 
Hints/suggestions ............................................................................... 258 
Exercise task ....................................................................................... 260 

Method 2: Scheduling the Iteration ....................................................... 260 
Examine the relationship among tasks ............................................. 261 
Consider the end product of this iteration ........................................ 261 
Plan around resources ......................................................................... 262 
The importance of scheduling the iteration ...................................... 262 
Steps for scheduling the iteration ...................................................... 264 
Hints/suggestions ............................................................................... 264 
Exercise task ....................................................................................... 266 

Method 3: Testing Again ........................................................................ 267 
Choosing test participants ................................................................. 267 
Choosing test tasks ............................................................................. 268 
Reuse test components when possible .............................................. 268 
Using focus groups to evaluate redesigns .......................................... 269 
The importance of testing again ........................................................ 269 
Steps for testing again ......................................................................... 273 
Hints/suggestions ............................................................................... 273 
Exercise task ....................................................................................... 2 7 4 

Method 4: Knowing When to Stop ......................................................... 275 



. 
XVI Software by Design 

Use the allotted time well .................................................................. 275 
Signs to watch for ............................................................................... 275 
When the time or money runs out .................................................... 276 
Evaluating your progress .................................................................... 2 77 
The importance of knowing when to stop ........................................ 2 77 
Steps for knowing when to stop ......................................................... 2 78 
Hints/suggestions ............................................................................... 279 

' Exercise task ............................................................................................ 280 

Chapter 9: Applying the User-Oriented 
Design Process ••••••••••••••••••••••••••••••••••••••• 281 

Demonstrating Process Viability to Others .......................................... 282 
Integration with Traditional Software Design ..................................... 283 

Critical steps for system design ......................................................... 284 
Include the techniques wherever possible ........................................ 284 
Use the techniques to increase awareness ........................................ 285 
Test software within its known constraints ..................................... 286 

When Another Process is Already in Place ........................................... 286 
Dealing with Schedule Limitations ....................................................... 288 
When You Don't Have Support from Your Organization ..................... 290 
Choose to Do What Works for You ....................................................... 291 

Chapter 1 0: Extending the User-Oriented 
Design Process ••••••••••••••••••••••••••••••••••••••• 295 

Incorporating Other Techniques ........................................................ 296 
Evaluate the techniques against each project .................................. 296 
Keep in mind the purpose of involving the user ............................... 297 
Draw on past experience .................................................................... 297 
Consider using any method ............................................................... 298 

Elaborating on a Single Technique ........................................................ 298 
User testing as an example ................................................................. 299 
Follow the needs of your design ......................................................... 299 



Table of Contents XVI I 

Learn from others ............................................................................... 299 
Research other sources ....................................................................... 300 

Revisiting an Older Design .................................................................... 300 
Analyze what worked ......................................................................... 301 

Analyze why you chose those techniques ......................................... 301 
Analyze the results ............................................................................. 301 
Apply subsequent knowledge and experience ................................... 302 
Keep track of your process ................................................................. 302 

When Additional Resources Are Allocated ........................................... 303 
Changing An Existing Framework ......................................................... 305 

~IJl11111Clf)# •••••••••••••••••••••••••••••••••••••••••••••• 3()CJ 
What It All Means ................................................................................... 309 

The Role of Users in Software Design ............................................... 309 
User Interface Design Methods .............................................................. 310 

Early User Research, Off-line Procedures, On-line ........................... 310 
Applying and Adapting Software Design Methods ........................... 312 

General Steps for Software Design ......................................................... 313 
Final Thoughts ........................................................................................ 316 

Bibliogre1phy •••••••••••••••••••••••••••••••••••••••••• 31 7 

Index •••••••••••••••••••••••••••••••••••••••••••••••••••• 31 CJ 



Ack:nowledgements 

The process described in this book has evolved over the years from work I 

have completed with many of my colleagues. In particular, I would like to 
thank Kathleen Gomoll for sharing her skills and secrets for working with 

people, and Laurie Vertelney for her endless creativity and design ideas. 

Thanks to Tony Meadow for your confidence and guidance; Margot Owens 

Pagan, Mark Masuelli, Jules Gilder and others at MIS/M&T for making this 

happen; and my family and friends who supported and encouraged me and 

gave me the time and energy to write this book . 

. 
XIX 



Preface 

Most software user interfaces are designed by programmers and, unfortu­

nately, it shows. Most programmers have had no training in interface design. 

Programmers are trained to work with computers, but not with people. Most 
of us programmers have learned something of user interface design the hard 

way, but there is a lot that we just don't know. 

Computer users are more and more demanding. The largest software com­
panies have all established interface design groups and many of them have 

produced higher quality applications. Consequently, users expect all appli­
cations to rise to these higher standards, including those from medium and 

small-sized companies. High quality user interfaces are expected of all appli­

cations. 
As a programmer you know too much and yet not enough to design great user 

interfaces. You know far more than most of your users about what happens 
within the computer (unless you're creating a developer tool). On the other 
hand, you might have forgotten most of what it was like using a computer 
to accomplish day-to-day tasks. 

This book will help you produce high quality interfaces that are easy to learn 

and easy to use. Penny Bauersfeld explains clearly and concisely the tech-

. 
XXI 



.. 
XXI I Software by Design 

niques which you can use to design, evaluate and test user interfaces. She 
also gives you tips, tricks and things to avoid when doing interface design, 
some of which are not readily described. 
In this book you'll learn about how to go about designing user interfaces, no 
matter what development tool you are using. It shouldn't matter to your users 
that you've used C++ or Omnis or any other tool. What matters to them is 
that your software helps them accomplish their tasks and goals. 
The techniques and processes described in this book are not specific to the 
Macintosh, or, in fact, even to computers. What you learn from this book is 
applicable to developing applications under IBM's Presentation Manager or 
Microsoft Windows or any other interface. 

I'll be looking for more applications with better interfaces. 

Anthony Meadow 



Why This Bool< is for You 

I
f you're the head of a program design team or a programmer determined 

to design software that people can successfully use, this book is for you. 

If you are a medium to small-sized company competing with major soft­

ware companies with established interface design groups, this book will be 

of invaluable help to you in your efforts to design better user interfaces. 

Or, if you are already in the process of designing user interfaces and aren't 
sure how to proceed, this book with its techniques, tips and tricks - and com­
mon pitfalls - can save you hours of effort and enhance your on-going pur­

suit of better user interfaces. 

Software By Design: Designing People-Friendly Software takes you through 
the design process step-by-step, with a progressive exercise called the "Super­

market Example", which provides opportunity for the user to try out each of 

the techniques in a real world problem. When the user completes the exer­
cises, at the end of the book he will have practiced the design methods to cre­
ate a completed user interface design. A design that the reader has constructed 
along the way with advice and guidance from the author, Penny Bauersfeld. 

1 



2 Software by Design 

From understanding "the art of evaluating what people currently do and how 
technology can improve the process;" to learning new techniques that can 
expand user interface design skills; to using and evaluating user studies; to 
off- and on-line tools and procedures, Software By Design: Designing People­
Friendly Software covers it all-and more. Prototyping, usability testing, iter­
ation, and the extending and application of the user interface design process 
are discussed and illustrated. 

The book itself is oriented toward its users, the readers-the informative and 
intuitive narration deals with both the simpler aspects of design construc­
tion, graduating, comfortably, into more sophisticated areas of user interface 
design. 



Introduction 

S 
oftware development typically follows the technological advancements 

of the hardware on which it runs. A software engineering team deter­
mines the functionality of the computer, then writes a software appli­

cation that accesses the hardware features . However, the person who uses 
the software has tasks in mind, not the workings of a computer. 

Successful software developers separate the technology from the interaction. 

The people who use their software think of the computer as an aid in accom­
plishing tasks rather than as an obstacle. 

The real trick is to design software based on users' needs, then to map this 
functionality to the underlying hardware, rather than the other way around. 
The primary goal of any system should be to do what users need, rather than 

getting it to work bug-free. The system will be bug-free eventually, but this 

should be a secondary goal. 

User needs and opinions should be an integral part of software design. To 

identify the functionality and interaction that will make the user's task as 
straightforward as possible, find out what users want. Watch them at work. 

3 



4 Software by Design 

Listen to what they say about what they do and would like to do. Then use 
what you have learned as you develop the system. 

Amazingly enough, users are often the last to be consulted about a software 
product, if they are asked at all! For many software developers, user testing 
is applied after the software is fully designed, and typically it is done only to 
identify bugs. It is more appropriate to consult with users early on so that 
their input can really help the development team to build better software. 

This book presents a user-interface design process oriented toward users. It 
introduces various methods and techniques for involving users, and provides 
examples of software systems built by applying these methodologies. It is a 
guide to an approach for designing software systems rather than a complete 
how-to instruction. Development of individual user interfaces is dependent 
on a number of factors not addressed in this text, including: screen layout 
and principles of graphic design, correct wording of text, and international­
ization of the user interface. The specifics of user-interface development are 
discussed in other sources, and therefore are only introduced in this book. 
Instead, the focus is on methodologies not widely published as approaches 
to user interface design. You will learn that by involving users in the various 
phases of design, you can develop creative, dynamic, and functional systems. 

This book is a result of my many years of experience developing interactive 
graphical software for Macintosh systems. The examples and exercises in the 
book draw primarily from Macintosh software. While the process is tried and 
true for Macintosh software, it is relevant for any hardware platform. 

How this Book is Structured 
This book presents techniques for designing computer software. These tech­
niques are organized in units according to their general roles in the design 
process. 

Chapter 1 discusses the user-oriented design process; how to identify users 
and take advantage of their input and expertise; the role of an interdiscipli-



Introduction: Introduction 5 

nary design team in user interface design; the importance of visual design; 
and how to apply software skills. 

Chapter 2 presents a user-interface design exercise that is the subject of a 
series of tasks throughout the technique sections. The importance of com­
pleting the tasks is also discussed. 

Chapters 3-8 present the components and techniques of the user-oriented 
design process. Each chapter has an introductory section describing that part 
in the design process. Other sections discuss the techniques, which are accom­
panied by tasks to complete for the exercise. 

Chapter 9 discusses how to apply the various elements of this process to your 
own design problems, including: how to integrate the techniques into your 
existing design process, how to attain the necessary support from your orga­
nization for putting this process to work, and how to identify which parts of 
the process to use in your own problems. 

Chapter 10 explores ways to customize the process by adding techniques of 
your own or elaborating on some of the techniques presented. 



Chapter 1 

An Approach to User-Oriented 
Interface Design 

The User and the Task 

When you invite guests to dinner, you plan the menu to suit their culinary 

preferences. You may have a new rotisserie that cooks a delicious roast, but 

if your guests are vegetarians, you wouldn't think of serving them beef. Your 

ice-cream maker may chum out the best toasted-almond variety you've ever 
tasted, but if your guests are lactose intolerant, you wouldn't serve them a 

creamy dairy dessert. 

Why, then, do software developers present users with applications fraught 
with complex, technology-dependent features? Just because a machine can 

do something doesn't mean people want the machine to do that something. 
People want software that does what they need, when they need it-not soft­

ware that does what it can. If software developers would ask people who use 
their software what they want, software would meet the needs of the people 
who use it. 

7 



8 Software by Design 

If asking users what they want were a well understood task, everyone would 
be doing it. There is an art to evaluating what people currently do and under­
standing how technology can improve the process. Still, there are a number 
of techniques that can help even the novice to understand user needs. Once 
users are engaged, goals for the technology become clear. Understanding these 
goals helps system designers to identify and design tasks that are the key to 
a successful user interface design. 

User-oriented software design principles are akin to product design princi­
ples for products of all kinds (not just software). These principles are also 
related to the evolution of human concerns in software design via the field 
of human factors. Understanding the foundations of user-oriented design is 
important to interpreting its purpose and application. However, user-oriented 
design principles alone do not ensure successful software. Other strategies 
and skills are important as well: use of an interdisciplinary design team, apply­
ing sound visual design principles, and having solid software implementa­
tion skills wherever possible. These strategies and skills are presented in this 
chapter, but are not covered in depth. By incorporating them in a user-ori­
ented approach to system design, software developers can focus on deliver­
ing clear, useful systems that meet user needs. 

Addressing the User 
in Product Design 

In the world of product design, whole fields of discipline and degree programs 
at universities are devoted to addressing user needs. Industrial and product 
design professionals ensure that products such as appliances, automobiles, and 
furniture conform to the needs of the people using them. Industrial designers 
realize that if their products are not useful, the products' beauty and elegance 
are unimportant. Software designers can learn much from the experience of 
product and industrial designers, and by studying the products they design. 



Chapter 1: User Oriented Human Interface 9 

Figure 1.1 Product design with users in mind. This coffee 

pot is an example of a consumer product designed with its users in 

mind. The handles of both the coffee carafe and the filter cup are 

easily accessible and fit snugly in an adult's hand. The clear glass 

of the carafe with the written measures on the side make it easy to 

first measure water to pour into the machine and then see how much 

coffee is ready. The latch on the bottom of the filter cup allows the 

user to pull out the carafe while the coffee is brewing without spilling 

coffee onto the burner below. Overall, the design is straightforward 

and easy to interpret. 



1 0 Software by Design 

In the early days of computing, because software was not thought of as a sepa­
rate product, hardware designers were responsible for making usable software 
products. Y esterday1s hardware designers are today1 s human factors professionals 
(more on this later). Software engineering has evolved from the general field of 
computer engineering. With the separation of application software from machine 
or system software, today1s software designers must be concerned with product 
design. Software developers must think of their products on the same level as 
other products such as appliances and automobiles. Realizing that they have 
individual products with specific marketing needs, software development com­
panies have been quick to address the business side of the product world by 
adding sales and marketing staff. However, it is time software development 
companies address the needs of people who use their software by involving a 
team of designers who contribute early and throughout all stages of the devel­
opment. Assessing and addressing the needs of users during the design process 
will guarantee successful, people-oriented software products. 

Human Factors versus 
User-Oriented Design 

While software designers have been slow to apply principles of product design, 
the field of computing has not been totally without concern for its human 
users. Human factors experts are concerned with addressing the equipment 
needs of users. Typically, they focus on the ergonomics of computers, and 
address issues such as: Can the user adequately perceive data on the com­
puter screen? Can the user access the keys on the keyboard? Ergonomic con­
cerns are certainly important to the success of computer hardware, but the 
application of ergonomic concerns to software design is less clear. It is impor­
tant to ask questions like these: Can the user distinguish elements on the 
screen? Can the user select those elements with the mouse? However, soft­
ware designers concentrating on user-oriented design are concerned with 
more than ergonomics. 



Chapter 1: User Oriented Human Interface 11 

The field of human/computer interaction grew out of the first meeting of human 

factors specialists, held in 1982 in Gaithersburg, Maryland. This special top­
ics session of the Association of Computing Machinery (ACM) served as the 

foundation for the ACM Special Interest Group of Computer-Human Interac­
tion (SIGCHI). SIGCHI has evolved into an organization that addresses many 

concerns of software and hardware developers who focus on the human-ori­

ented aspects of computing. Although human factors is only one area addressed 

by the professionals who make up SIGCI-Il, the name of ACM's annual SIGCI-Il 

conference publication is "Human Factors in Computing Systems." The field 
of human factors is, in fact, very different from user-oriented design. 

Figure 1.2 ACM SIGCHI materials. The Association for Com­

puting Machinery's Special Interest Group on Computer-Human 

Interaction puts out a number of publications for user interface 

professionals. These include the proceedings of the annual SIGCHI 

conferences and a quarterly journal, both of which publish rele­

vant articles and papers of interest to user interface designers. 



1 2 Software by Design 

So how does user-oriented design differ from human factors work? As noted 
previously, human factors professionals make sure the physical needs of 
human users are met. Usability testing, an important part of user-oriented 
design, has probably grown in large part from the work of human factors 
experts. User-oriented design goes beyond physical concerns to involve the 
user in a range of different ways at all stages of the design process. Involving 
the user is not simply making sure the user can adequately see, comprehend, 
or use something, although these important concerns should certainly be 
addressed by software developers. The added benefits of user-oriented design 
are in product usability and the creative designs that build on user concerns 
and needs. It involves the user to direct the design of a product-to choose the 
metaphors on which a software model is based, or the visual elements that 
will present certain product concepts. User-oriented design is a way of think­
ing about software design, not simply principles applied at a specific point 
in the design process. It can help solve design problems, or provide direction 
for developers choosing among various approaches. 

Different designs involve different user-oriented concerns. Understanding 
what these concerns are and when they should be addressed is both a science 
and an art. Sound user-oriented design experience is attained over time. The 
following chapters present user-oriented design principles and concerns with 
an exercise designed to help you put the principles into practice. Applying 
the principles to your own work and experiences should make evident the 
creative process of user-oriented design and the many ways it can address 
user needs. 

Interdisciplinary Design 

In many traditional software development environments, software engineers 
are responsible for building the software. Their process typically includes: 
designing the software; designing the way the system will look and function; 
designing the code to get the system to work; and spending long hours cod-



Chapter 1: User Oriented Human Interface 13 

ing and debugging the actual system. When I was trained as a software engi­
neer, my professors spent hours lecturing on the writing and debugging of 
programs and code, but relatively little time discussing system design and 
functionality, or explaining principles for interactive graphical user interface 
design. The discipline of software engineering prepares students for design­
ing and writing the code, but the user interface is often an afterthought. Some­
times a single course-or worse, a single lecture-is devoted to principles of 
user interface design. Programs devoted to user interface design are begin­
ning to appear in some select universities, but these programs are few and 
limited. As a result, user interface principles are taught to only a minority of 
software engineers. 

This is not necessarily bad news for user interface design. Software engineers 
are trained to write programs and get them working-extremely valuable skills 
for systems development. However, they are not necessarily the people who 
should design what the systems do or how they appear to users. If they do 
design these systems, they should follow a process that meets the needs of 
the users, rather than one designed solely to implement the system. They 
should work with experts who are trained to interpret user needs and deter­
mine system functionality accordingly, and with experts in graphic and screen 
design. Together, the software engineer, the designer, and the user expert can 
form an interdisciplinary team that will meet many needs of the system. 

There are a number of advantages to an interdisciplinary team approach to 
software design. The most obvious is that multiple concerns are addressed 
simultaneously throughout development. Additionally, team members can 
devote their energies to their area of expertise, and work together with other 
members to ensure the smooth integration of all the parts of the design. When 
a user advocate, who is in contact with users throughout the design process, 
presents user needs and concerns at team meetings and development ses­
sions, then the user is represented at all stages. The graphic or industrial 
designer can generate quick sketches to show users for testing purposes, and 
to show engineers to ensure that the front-end design and the implementa­
tion are synchronized. While it may seem more costly, in the long run hav-



1 4 Software by Design 

ing an interdisciplinary team saves time and resources in development because 

skills are available when they are needed. Software design is not just about 

implementing software, and the majority of team resources should not be 

devoted to programming. Good software design requires a balance of many 

skills; devoting time to design with interdisciplinary team members will save 

programming time later. 

Figure 1.3 An interdisciplinary team working together. 
One of the most effective tools for user interface design is the inter­

discipl inary team. Team members contribute skills from various 

disciplines, including (as represented here) Visual design, Psy-

chology and Computer Science. · 

The most important contribution of an interdisciplinary team is that ulti­

mately user needs are met in the software development process. The design 

team continually evaluates whether the needs of the user are being met, not 

simply whether or not the software is functional. In the long run, the soft­

ware is more interesting and robust because development team members rep-



Chapter 1: User Oriented Human Interface 15 

resent varied disciplines. Having someone like a film production expert for 
a video product, or a musician for a sound product, leads to more innovative 
products that present functionality in unique and exciting ways. 

The composition of a specific team depends on the nature of the software being 
developed and the budget of the project, which ultimately determines the num­
ber of people the team can support. Some obvious team candidates are experts 
in computer science, psychology, and graphic arts. A team of three people with 
a representative from each of these fields can probably ensure that program­
ming, user, and design needs are met. Some other fields to draw from are: 

Cognitive science. Cognitive scientists are generally computer scientists 
trained in the patterns of human cognition and how that can be translated 
to computing. Cognitive scientists might be useful in developing artificial 
intelligence software, or software that models human thought processes. 

Industrial design. Industrial designers are traditionally trained in product 
design, with a focus on hardware or packaging concerns. They might be par­
ticularly helpful with products that rely heavily on hardware interactivity 
(in addition to or instead of software), or with consumer products based on 
human interaction with physical components. 

Anthropology. Anthropologists are trained to observe human behavior and 
interaction; they often study the way people perform certain tasks or behave 
in certain environments or cultures. An anthropologist might be useful on a 
team exploring the ramifications of a new technology for user interface, or 
one where the technology will dramatically change the work practices of the 
group who will use it. 

Sociology. Like psychologists, sociologists study human behavior, but they 
specialize in group interaction. A sociology expert might be a critical mem­
ber on a team developing software for group work, or academic software 
designed to be used by numerous people simultaneously. 

Film/video production. Film and video production professionals use media 
to communicate stories or messages. As the boundary between computer and 



1 6 Software by Design 

television dissolves, computer software must meet the entertainment needs 
of a generation weaned on MTV. These skills will become increasingly impor­
tant to software development teams. 

Sound. As computing sound technologies advance and merge with analog 
sound production systems, high-quality sound is increasingly important in 

computer software design. For software that requires high-quality sound, a 
sound expert (a musician and/or technician) becomes a critical contributor 
to the development team. 

Entertainment. Entertainment experts trained in attendance trends are becom­
ing more prominent as our society continues to merge work and leisure. Hav­
ing an entertainment expert on an interdisciplinary-software design team could 
help make a piece of software more compelling than a competitor's product. 

The ultimate goal for an interdisciplinary team is to work together to map 
user needs onto a functional product. If project constraints make it impossi­
ble to include multiple experts on the team, it still helps to identify the nec­
essary roles and have one person "wear different hats" when the need arises. 
Another alternative is to bring in experts as consultants during critical devel­
opment phases. Even a few hours with someone skilled in another discipline 
is better than no interdisciplinary input at all. You must do whatever you 
can within the constraints of your project to solicit input from multiple dis­
ciplinarians in your software development process. Recognizing the need for 
this is the crucial first step in interdisciplinary design. 

Visual Design 

One of the most important elements of a Graphical User Interface (GUI) is the 
visual design. Sometimes referred to as screen or graphic design, it is critical 
in communicating information to, and interacting with, users. The success of 
systems similar to the Macintosh, which rely heavily on pleasing aesthetics, 
demonstrates that the benefits of good visual design are well supported by user 



Chapter 1: User Oriented Human Interface 17 

interface designers. Strong visual design alone does not necessarily ensure a 
user interface that meets user needs. It does mean, however, that when user 
input is provided, it can be adequately and pleasingly communicated. 

Although they have slightly different meanings, the terms graphic design and 
visual design are often used interchangeably when applied to computer user 
interfaces. Graphic design refers to basic layout and form principles of text, 
patterns, and illustrations, originally developed for traditional media such as 
paper imagery. Visual design is more comprehensive because it concerns all 
the visual elements of the software: text, still images, illustrations, anima­
tion, photographic images, video, and the visual representation of the non­
graphic components such as sound or speech. 

These basic principles of graphic design have been updated to address GUI 

concerns: form and separation of space; text size and legibility; integration 
of text and graphics; and the use of color. New principles have been devel­
oped specifically for computer screen design. There are now a number of text­
books and seminars on the topic of graphic design for computer user inter­
faces. Years ago there was a shortage of experts skilled in computer software 
visual design and few tools with which to work. Today you can find many 
specialists and tools. 

Many computer graphic design professionals are also skilled in multimedia 
formats such as video, animation, and other forms of computer art. They are 
experienced with advanced paint or video production software, as well as 
with hardware such as pen-based input devices and color scanners. 

Sometimes software developers enlist the services of graphic specialists to 
design icons or complete other small graphic details. However, visual design 
is more than icon design or finishing graphical touches. While involving 
graphic designers at the end of the design cycle is a step in the right direc­
tion, it does not address larger visual design concerns. Successful visual design 
typically involves experts throughout the process-from the early concep­
tual stage that influences the structure of the software, to the details of the 
icons and dialog boxes. 



1 8 Software by Design 

by Small I con 
./by Icon 

by Name 
by Size 
by Kind 
by Label 
by Date 

~ 
Sales Charts 

Figure 1.4 Visual elements of the Macintosh screen. 

The Macintosh desktop user interface is made up of a number of 

components where visual representation plays a significant role 

in the effectiveness of both functionality and interaction. The clearly 

distinct layout of various elements, with the menu bar across the 

top, icons on the right side (at least initially) and windows open 

in the central desktop area help users to locate and differentiate 

interface elements and functions. The visual language of various 

aspects such as window details, icon rendering and font clarity 

are also important in communicating purpose to users. Though it 

cannot be represented here in a single screen representation of 

the Mac desktop, visual detail also plays an important role in 

interactive feedback. While not all user interfaces should follow 

the exact features or representation style of the Macintosh desk­

top, they stand to learn from the clear graphic design principles 

applied here. 



Chapter 1: User Oriented Human Interface 19 

Sofhvare Implementation Skills 

It is important not to overstate the need for design and user skills to a point 

where implementation skills seem unimportant. Clearly, without the abil­

ity to implement a system that is designed to meet user needs, all the user 

research we do is useless. A successful software design team should be able 

to understand user needs, design the system, and then put the system in place. 

Quality software engineers must possess a variety of skills in order to: ana­

lyze system requirements; determine how best to interface with the operat­

ing system; develop the algorithms necessary to support required function­

ality; and finally to get the system working. The importance of skilled software 

engineers is unquestioned. My hope is that the user-oriented focus of this 

book will help software engineers to problem solve specifically to meet user 

needs. Rather than compromise user needs for the sake of the software, strong 

software engineers can adapt their designs to better support users. 



Chapter 2 

The Exercise 

L
earning new techniques helps to expand user interface design skills. 

Putting those techniques into practice is an important way to see their 

value and understand how best to use them. It would be ideal if you 
had a user interface design problem to solve while learning the techniques in 

this book. Having a real-life problem to solve with these methods would pro­

vide additional motivation for learning and applying the different techniques. 

Because it is unlikely you have such a software project waiting to be devel­

oped, this book includes an exercise to help you take advantage of the meth­
ods introduced in Chapters 3 through 8. Although it is not necessarily the 

type of design problem you will solve in your own work, it provides hands­
on experience to help you learn. Following each technique section is a task 
requiring you to use the technique. Complete all the tasks and you will have 

accomplished the exercise. If you choose not to do the tasks, just reading 

about them will help you understand how to apply the techniques to a real 
design problem. If you do complete the tasks, you will have a head start on 
using the techniques when you apply them to your problems. You will have 
a clearer understanding of their roles and advantages. Refer to Chapters 3 

21 



2 2 Software by Design 

through 8 when you apply techniques to your design projects, to help you 
focus on your goals and intentions. 

The Supermarket Guide Exercise 

The exercise that will illustrate the techniques for user-oriented software 
design is to develop an on-line supermarket guide. Think of the guide as a 
central information station for the supermarket. It might provide informa­
tion about the supermarket itself, the products it stocks, pricing information, 
customer purchasing trends, or all of the above. It might be used by super­
market employees, customers, or other involved parties. It is up to you to 
decide the scope and functionality of your application, and to target the user 
population for the supermarket guide. 

You are free to set the objectives for-and define the constraints of-the guide. 
In this way, you can tailor the guide to be relevant to your own work. For 
instance, if you develop networking software, you might want to design the 
guide to be a networked application linking many supermarkets. If you develop 
portable device software, you might want to develop a portable supermarket 
guide. The possibilities are endless. There are no right or wrong solutions to 
this exercise-it is what you make of it. Remember, the intent is to give you 
hands-on experience with the techniques presented in the book, not to actu­
ally build a supermarket guide! 

Questions to consider before you begin the techniques exercise include: 

Where will the guide be located? 
It might be stationed in the supermarket, available to customers at home, 
portable (so it can be at home or at the market or wherever the user goes!), 
or some other specific site. You might want to complete some early user 
research first (see Chapter 3) to help you decide where the guide will be, or 



Chapter 2: The Exercise 23 

you might simply want to dictate the location and make it a constraint of 
your design. 

How many guides will there be? 
Are you designing a single guide to be placed in one supermarket, or will it 
be accessible from every branch of the chain? Will it be available at the super­
market and remotely from home? If there will be more than one guide, will 
they be standalone units or will they be networked? 

What kind of hardware platform will be needed? 
Are there hardware elements you know you want to incorporate, or will you 
determine the hardware needs based on your user studies (Chapter 3) and 
early designs (Chapter 4)? Will there be a screen display, and thus a graphic 
component? What input device will you use-keyboard, touch screen, track 
ball, or voice input (possibly via a phone receiver)? Will the guide use sound 

or video? 

Is size a factor? 
What are the physical constraints of the guide? Think about where the guide 
will go, and how big or small it could reasonably be. 

Is cost a factor? 
Are you on a limited budget? (For the purposes of this exercise, you have no 
actual budget. In real life it will be rare to have a design project that is not 
cost constrained in some way.J Cost constraints might affect the hardware 
platform you elect to use, or the total development time. If cost constraints 
are typical of your work, you should apply some here to help you design in 
a situation more realistic to your own. 

Who are the users? 
You might want to wait to decide who the actual users are until after you've 
done some early user studies (Chapter 3), or you might want to decide this 
now to help you focus your design work. Potential users include supermar-



2 4 Software by Design 

ket employees, customers, check-out clerks, or subsets or supersets of these 
groups. You might decide on a completely different target user population. 

What type of information will be provided? 
Again, this question might be answered with early user research (Chapter 3) 
or designs (Chapter 4), or you might want to make these decisions now. Know­
ing your user group will help determine the contents of the guide. 

Is it customizable? 
Will the guide be adaptable to either the location or the person using it? If 
so, what are the implications for your design? 

Will it need to be updated? 
Is the information in the guide entered only once and intended to remain sta­
tic over the life of the guide? Or must it be updated on a regular basis-daily, 
weekly, monthly, annually, or some other interval? If you want to update 
information, how will you enter new data-by floppy disk, across a network, 
or some other means? 

Is it tied to other supermarket functions? 
Since the guide is a computerized system, you might want to take advantage 
of, or incorporate other, computerized systems currently in the supermarket. 
Some candidates might be check-out functions, coupon distribution or gath­
ering, or even remote home delivery. If these functionalities don't exist at 
the candidate supermarket, consider the possibility that they will eventu­
ally, and design the guide so it can be tied into these functions in the future. 

You might not address all of these issues before you begin the first tasks, but 
thinking about them will help to direct your design. Answers to these ques­
tions might come from the early exercises in user studies and research. Tai­
lor your early user studies to gather information appropriate to your design 
problem. If you have concerns in your real work that would lead you to put 
design constraints on the exercise, by all means do so. 



Chapter 2: The Exercise 25 

Substituting Another Exercise Topic 

The supermarket guide was chosen for this exercise because most people can 

relate to it. User research for the guide is easily accessible to anyone who fre­
quents a supermarket, and the possibilities are endless for tailoring a super­

market guide to your own special concerns. Some readers, however, might 

feel they have enough real problems and don't want to spend time designing 

a supermarket guide they will never use. 

If you are adverse to the supermarket guide, feel free to substitute another 

exercise problem. Remember, the purpose of the exercise is not so that all 

readers can design automated information systems for supermarkets across 

the country. It is to provide experience with the design techniques as you 

learn about them. Better to substitute another design problem for the super­

market guide than to ignore the exercise. 

Importance of Applied Design 

The best way to learn the techniques is to do them. The best way to do them 

is to apply them to a real-world problem. Having a single design problem that 

progresses as you learn will help you see the relationship among the tech­

niques and how they work. This will be true not only in the supermarket 

guide problem, but in later user interface design, as well. 

By trying out these techniques, as you read about them, you will have a ref­
erence point in later design problems. You might forget the relevance of the 
methods or the way they are related if you do not practice applying them to 

a design problem. When you are faced with real problems in your own work, 
you will be able to tum to the examples and prototypes you created in com­

pleting this exercise and remember how you applied this methodology before. 



2 6 Software by Design 

You might want to create a team jpossibly with other readers) to work on the 
exercise. By working as a team (interdisciplinary, if possible), sharing the expe­
rience, and learning together you could create a greater design. If you are for­
tunate enough to work with others as a team, your experience will be richer. 

The Exercise Tasks 

A task is presented at the end of each technique section in Chapters 3 through 
8. If you choose not to complete the task, at least read about it so you under­
stand more about applying the technique to real-world problems. 

Making it Work for You 

Not every technique included in this book is appropriate for every design 
problem. You might want to choose only those that make sense for your 
design. Some of these tasks lend themselves more to the supermarket guide 
than to other problems. However, if you practice all the techniques found 
here, you will be better able to choose those appropriate to your real-world 
design projects, and it might even save you time later. With experience, you 
will understand which techniques make sense for your specific design prob­
lems, and practicing them now will help you understand how to apply them. 



Chapter 3 

Early User Studies 

What are Early User Studies? 

Before the actual implementation of a project, you should consider conduct­

ing research to help direct the design and development process. Research 
involving potential users can be critical to identifying the goals of the sys­

tem and the tasks it should perform. User research can take a number of forms 
and involve many different types of resources. The actual time spent on user 

research varies according to what is known about users and the system, the 

schedule of the project, and the resources available to dedicate to user research. 
All the user research that occurs early in the project cycle, often before any 
other work is started, can be thought of as early user studies. 

User studies are just what they sound like-studies of users. In addition to 
the potential users of the system being designed, studies might include alter­
native user groups. These are not tests because they are rarely formal evalu­

ations of a system in use las are usability tests done later in the product design 
cycle). The studies might involve observation of people at work, interviews 
with users or other experts in the field, task analysis to identify what users 

27 



2 8 Software by Design 

are doing, or studies in which the user gathers information over time (called 
seed studies). 

The unifying characteristic of all user studies is that they help designers 
understand more about the potential system through the people who will use 
it. User studies conducted before design begins impart important knowledge 
about the system that might otherwise be overlooked. They can support 
designs, or point out what is missing from a current design. They ensure that 
system development is driven by what users need rather than what the tech­
nology can provide. 

The various methods of user studies presented in the following sections are 
not meant to be exhaustive. They are a foundation to help you understand 
their value. I encourage you to develop new user study methods for your 
circumstances. 

The Advantages of 
Early User Studies 

Early user studies can support the software development process in a num­
ber of ways. When appropriately structured and conducted, user studies will: 

Help to identify system functionality. 
Observing users while they perform a task clarifies the critical elements or 
steps in that task. For in4'tance, if most users use certain features and ignore 
others, the desired system functionality becomes clear. Looking at the sys­
tem solely for evaluation purposes cannot provide the same feedback as see­
ing what users actually do. 

Introduce design ideas. 
Analyzing the ways users approach their tasks, or talking with users about 
how they might approach a task using alternative technology, might intro-



Chapter 3: Early User Studies 29 

duce ideas for a new product. Users are the direct beneficiaries of new prod­
ucts and technologies. They can provide critical direction on design options, 
both in terms of features and actual implementation details. 

Test technology capabilities. 
Users often think that new technolo_gies in the work place are particularly 
disruptive. By placing prototypes in the target work area, you can observe 
whether the technology supports the desired tasks. Evaluating and refining 
the system with prototypes means the transition to the new system can be 
a positive experience. 

Provide design direction. 
An important benefit of early user studies is that they can help to provide a 
direction for system design when none is known. They also help when con­
flicts arise within the development team, particularly in early phases when 
features are being identified and implementation discussed. Presenting design 
alternatives to users at critical early stages can help to resolve these conflicts. 
User preferences should guide system development. 

Encourage user involvement. 
When users are brought into the process at the beginning, they perceive that 

they are important contributors to the development. This encourages them 
to become involved in other stages of the design, particularly the user test­
ing phase, when their participation is critical. In addition, it helps users to 
support product development in general, and positively affects their attitude 
to the new product. 

The advantages of early user studies are varied and will depend on the work 
that has already been invested, as well as the time and resources available. 
A single study might not provide all the advantages; sometimes it requires 
more than one study to get successful results. Project needs must be identi­
fied and studies designed to achieve that goal. However, any early user study 
can help in product development. Even those early studies that only serve to 
verify the current approach to the design are valuable in checking whether 



3 0 Software by Design 

the design is headed in the right direction. Such verification (or refusal) of 
the design approach can save time and resources if the direction changes or 
problems arise later in development. 

HoV# to Select, Design, and 
Perform Early User Studies 

Choosing the type of study and designing it appropriately is a skill that is devel­
oped over time. With a variety of experiences, a number of factors come into 
play that can help direct study design by determining what studies to perform, 
how many subjects to involve, and how much time to spend on studies. 

Evaluate the nature of the task 
Consider the goals of the project and what users will be doing to accomplish 
those goals. If the task will require the user to be mobile, then the system 
must support a portable solution. You might observe users in their mobile 
state to determine, for instance, what additional factors come into play when 
they use the system. If the system will require extensive preliminary train­
ing before use, then users' goals for training must be identified, and system 
functionality designed to support it. Interviews might be appropriate for gath­

ering data about users' goals for training. The environment where the prod­
uct will be used, the presence of other users, and the relationship of this sys­
tem to other processes already in place must be considered in understanding 
the tasks that users must accomplish. These factors will help to indicate 
what studies make the most sense for the system under development. 

Evaluate the state of the technology 
Look at what users are currently doing to accomplish the task the new sys­
tem will address. If an on-line system is already in place, it might be appro­
priate to test the existing software to understand what users like and dislike 



Chapter 3: Early User Studies 31 

about it. User interviews might be important as well, particularly if the sys­
tem has been in place for some time and users have strong opinions about 
its functionality. Even if there is no system in place and the one under devel­
opment introduces users to completely new functionality, studies might be 
conducted to see how to integrate it smoothly into its target environment. 
Such studies could involve looking at other tasks the targeted user group cur­
rently undertakes and how the technology might change it. Another possi­
bility is to observe an alternative group of users who perform tasks similar 
to those the new technology will introduce. Other studies might include 
some competitive benchmarking of other products that perform similar tasks 
to the new system. 

Spend enough time, include enough users 
Once studies are designed, be sure to dedicate enough time and users to gen­
erate a sufficient range of possible responses. While there is no precise for­

mula to determine how much time or how many users are enough, here are 
some tips to follow: 

Include at least five users, ten or more if possible. 
Even when time is short, try to allow enough to observe, interview, or test 
at least five users. Fewer than five probably will not be able to weed out the 
users who are anomalies, or whose behavior or opinion is tainted. Five users, 
while obviously not enough for a statistical majority, can indicate clear opin­
ions that will help determine results. The more users included the better, 
although the desired number is not infinite because of obvious time and bud­
get constraints. Ten users are often adequate for obtaining useful results, 
especially in the early stages. However, more or fewer might be appropriate­
the time needed or the availability of users might dictate the actual number 
of subjects who can reasonably be studied. 

Get a balance of unbiased user types. 
Once the number of users to study is determined, identify who the subjects 
will be. The most important factor in determining this is to find people as 



3 2 Software by Design 

close as possible in character to the target users of the system. Sometimes 
writing a profile of the target user helps to determine appropriate subjects. 
Do not include users who are too close to the development process, or who 
might be tainted by what they already know. The engineers building the sys­
tem are not appropriate subjects for most user studies (although they might 
be in special cases where they match the profile of the typical user). Consider 
other factors such as: Does the study reveal confidential information? Do 
subjects need to be internal to the company developing the system? You 
might want subjects to sign a confidentiality agreement before participating. 

Try to involve a balance of subjects to cover the range of target users. User 
age, gender, experience, or nationality might play a role in gathering such a 
range of users. (For more information, see Chapter 7, Usability Testing.) 

Keep individual user sessions limited in time. 
Spend enough time with users to allow them to express themselves. In user­

observation sessions, you might spend hours or even days watching subjects 
perform their tasks. Consider the task and how often the types of behavior 
you are looking for occur. Where you only observe, without interrupting their 
work, you might need extended periods of time to get results. However, in 
one-on-one situations you might ask the subject to dedicate an hour to an 
hour-and-a-half to discussing a current process or the potential of a new sys­
tem. More than that often results in fidgety subjects who become distracted 
from the interviewer or the test. Even people who are thrilled to be subjects 
often fade after about an hour-and-a-half. 

Look for patterns in user behavior or responses. 
When more than one subject starts to do or say the same thing, chances are 
you've discovered something important about the task or system. These pat­
terns will help identify desired functions, or provide information about the 
way a feature should be presented to users. Similarly, differences in behav­
ior or responses probably indicate that the feature is not really important, or 
might be approached from a different angle. 



Chapter 3: Early User Studies 33 

If results are ambiguous, keep going. 
If the subjects do not reveal patterns, then you might need to bring in more 

subjects to determine whether the subject pool was unbalanced, or if the 

study's tasks or goals are indecisive or inadequate. Additional subjects will 

probably be useful if you started with the minimum of five subjects noted 
previous! y. 

You'll know it when you see it. 
Some user studies can lead to inconclusive results. More often, however, they 

reveal solid findings that will help to direct the design process. These find­

ings can present themselves after studying two or three subjects, and then 

the rest of the subjects serve primarily as additional support. If genius is the 

perception of the obvious, then the greatest thing about many early user stud­

ies is that the results are so obvious, you cannot believe you didn't know 

them before the study was conducted. 

Record the user study 
An important part of a user study is recording the information gathered. While 

it is critical to gather information first-hand, either by conducting the study 

or by observing it, it is equally important to make a record for later referral. 

Taking notes during the study is one way to record the results, but it should 

not be the only method. Note taking is an excellent way to capture your 

thoughts, but it can interfere with the flow of interaction between you and 
the participants. While you concentrate on expressing your thoughts in writ­

ing, you might miss an important event of the study. During interviews, copi­

ous note taking can be distracting or discomfiting to the subject. 

Other recording methods let you note everything without distracting from 
the study itself. Videotaping is an excellent way to record the session. If that 
is not possible-either because of availability or objection by participants­

audio taping is a viable alternative. You will still probably want to take some 

notes during the study, but you will not have to worry about recording the 

details because you can get them by reviewing the tape. 



3 4 Software by Design 

You should obtain permission from your subjects to record the session. Some 
subjects will object initially, but when you explain that the tapes are for doc­
umentation purposes only, most agree to the taping. You will need to devote 
additional time to reviewing the tapes; however, the results will be well worth 
the effort. 

Another excellent reason to perform video recording is that you then have 
an unarguable account of what transpired; you can convince others (peers, 
team members, management) of the validity of your findings. If all you have 
are notes from your studies, then you might get into a "my word against 
yours" situation. If you have tape to back you up, there is no arguing about 
what really happened. 

Method 1 :User Observation 

The study of people performing an activity in their normal 
work setting or natural environment. 

One of the most effective ways to conduct early research is to simply observe 
users: watch what they do and how they do it, note their setting, their inter­
actions with each other, their use of materials, and the results they achieve. 

It is critical to watch users without interrupting them to ask questions or to 
explain a task. User observation can be conducted in conjunction with other 
research, but the other research should be kept separate from user observa­
tion, if possible. Other methods, such as interviewing, can follow after the 
findings from the observation are determined. 



Chapter 3: Early User Studies 35 

Figure 3.1 User observation video clip. This user obser­

vation for a study of the way people use multimedia tools shows 

a picture of a designer in his studio framed by much of his devel­

opment equipment. An important part of user observation is to 

capture the user the way he currently works - to see the environ­

ment, the setup and the components of his tasks. 

The importance of user observation 
Successful user observations will: 

Describe the state of the environment. 
You will gather information about the setting and factors that are used (or 
ignored) by people in accomplishing tasks. This can help to determine char­
acteristics of the system you are building, as well as reveal relationships that 
might be critical to the user in carrying out tasks. 



3 6 Software by Design 

Find out what users like and don't like. 
Users are excellent critics of the existing systems, whether they are tech­
nology-dependent or not. By observing current situations, you can identify 
desired function and interaction for a future system. 

Help you to see what works and what doesn't. 
Opinions alone are not the only measure of a system's success. By observing 
users at work, you can see what they like, and what does or does not work. 
This also can help to shape function and interaction. 

Uncover real-world metaphors that might 
work in your system. 
Watching the existing system can help you to identify parallels that you can 
carry over to the new system. Seeing the users' actions and environment can 
generate new ideas for visually and semantically organizing on-line tasks in 
the new design. 

Steps for observing users 
1. Identify the profile of a "typical" user (or users). 

2. Decide how many users to include in the study. 

3. Contact users who fit this profile. 

4. Request permission to observe. 

5. Prepare to document the observation with audio, video, or 
multiple observation teams. 

6. Watch users in action to analyze the current situation. 

7. Make note of user actions and any design ideas that come to 
you during the observation. 



Chapter 3: Early User Studies 37 

Hints/ suggestions 
Remember: 

• Observe without interruption. 

• Observe enough users to get valid data. 

Implement this study method: 

• Before design begins to generate ideas. 

• During the development cycle to evaluate development 
concepts. 

• At the end of the development cycle to analyze the product's 
functionality. 

Exercise task 
Plan and conduct a user observation for your supermarket guide. Select a 
supermarket appropriate for your observation, visit that market, and observe 
users (remember to ask permission first). 

Before you conduct the studies, you must decide the following: 

• How much time will you spend in a single observation 

session? 

• How many observation sessions do you want to conduct? 

• How will you record the sessions? 

When you conduct the studies, you will probably want to address the fol­

lowing questions: 

• What kind of information do people want? 

• What kind of information is already available to them? 

• How do they use it? 



3 8 Software by Design 

• Where do people go now to get information in the super­
market? 

• What kinds of features will be appropriate in your guide? 

• Are there any concepts in use that you might model in the 
new system? 

Method 2: User lntervieV#s 

One-on-one sessions with potential users to discuss the meth­
ods currently in place and/or their expectations or require­
ments for a future system. 

Talking to users about their current system and about their ideas and hopes 
for a future system can provide valuable information about what they really 
want their software to do. The best way to gather information from users is 
to put together a list of questions or topics based on the goals of the system. 
This list can serve as a general format for an interview. Conduct a number 
of such interviews with different potential users. 

The length of a single interview session will depend on how much informa­
tion you plan to gather from each participant. In general, you will want to 
spend between 45 and 90 minutes with each subject. Less time than that will 
often not give the users time to really open up and share their thoughts. More 
time than that might make the subjects uneasy or cause them to give quick, 
shallow responses in the hope of ending the session soon. Keep subjects at 
ease and focused on the content of the interview. 

Conduct the interview in a comfortable, informal, and natural setting. For exam­
ple, use their offices when you are interviewing about work practices, or their 
living rooms if you are exploring ideas for a home entertainment system. Being 
in their own environment puts them at ease, and lets them point out how they 
approach a task, or factors that are important to them about their setting. 



Chapter 3: Early User Studies 39 

Interviews are usually conducted in conjunction with other types of user 
studies. After a user observation is complete, you might enlist some of the 
subjects from the observation as interview subjects. This is particularly help­
ful in situations where you want to clarify behavior that occurred in the obser­
vation, or inquire about their goals for tasks you observed. It is important in 

these cases to conduct interviews after the observations are complete, so as 
not to taint the observation outcome. 

Interviews can take a variety of formats. You can ask questions and take notes, 
have the subject complete a questionnaire, or a combination of these 
approaches. Typically, more informal interviews follow a formal question­

answer session. For more formal results, scaled-response questionnaires (such 
as when I represents "I strongly agree" and 5 represents "I strongly disagree") 
will help to generate sound, statistically valid responses. A discussion format 
might also be appropriate-you present general topics and ask the subject to 
comment on them. The format of the interview should derive from the nature 

of the information being gathered. Listen carefully to the subjects' concerns 
and be careful not to direct their answers by providing too much information. 

The importance of user intervie~s 

Like user observations, user interviews reveal valuable information about 
the goals of users. We can discover what users really think about system fea­
tures or components. Users often have excellent ideas about how to improve 
the existing system. Users can provide a wealth of knowledge-all we have 
to do is ask them! 



40 Software by Design 

~ !Printer User Interview 

I Name=------,-.--:-

--==JP~~-~-~---------= 
------- . - - -~-~- - -···-· -···-· .. ··-., -- - - -

-------+
1 _1_. __ Did the pri_n~er P~_!form adequate!.¥?.. __ Why (not)? 

-_ :2.~ ,~~-~~-~c~ibe ~o~~--~o~~i:ii~t~-;i~~~~:~~ -·-
__________ pJ:in t~y:-/ CO_lllI:>U.~~!:__:____~~~~'! X_c:'l __ ~~~_e_!'_f~ce 

: with each? Did you ever have to go back and 

-----==-~=C-=~--i?i~~ -_ (.mu l.t i_p1_~ ·=t-~-~~~L~~:~~£~~ ~~~-· "d~~~~~i~-~~~~--=----------
·· ·-··-···-··· -·-··--·-1 ___ . results? Were th~E_~--~r.1.¥. .... Ec:J:Ets of the _in~-~E-~~':-~---

1 you wish had been on the other machine? 
·----··-··-·t-··-··-··--··- -··- -·· - ·-·--·-·-·--------·-··-·-·-·····--- ·- -----------

----·---·-···----J .... _, -----f?-:. __ "l>_:r}Y !u11~t~_()_l1_~--~~- pri~_t:_~!:_~~~l1~-~------
-----t----- ~couldn't L P.E!J:form? 

~~o_l~__\'I~~ there -~~eE_~_~tim~ whe_E=f~~£i_i;-~~-k~-~~~~ _ _ ___ _ 
_ . ! inad~q~ate? Any time when you might __ ~~-"'.:':__liked 

instruction for some task? 

i5. What can you tell me about the lights on the 
-------- · T - ----;~-i~t~~? _ ii_o~-~~~L~~e--ther~?~-~~ YC>~--~?-~1-~_-e_·-·_----ti 

=:_-:=~=r---h~~-~~~~--?.~J:lave -~ C>l1 ... __ ?.~_!. ____ ~~-~-!1 .. k. .. ~.1"1.~. , __ co loJ:}! ____ _ 

-· 1~- ·--·- ~-·~·-·--·-·-·-· .. --.. ·~·-· .. -·--···· -_ --=f~.:- _Did you use t~~--~-a_r.i~~~-!.e_f;!cl_? ___ How was the 

-------t-_ _ir_i_terfa_ce _,!:_~re? __ ... -------·----··----
! 

---·-·-----·:~=~Ji~~YC>\l_ ev._~ set up ~ printer_? _ _J'lE_~_~as th~-
__________ p_rocess y_o':1_ ':1~~d_? __ ~_LC()mments? 

--~------- - . 

-------<-8.:._li~'.'_e you ~ve:i::_ __ n~~~~-!1e_~~ wh_e~_ erJ:i:ting? What 
___ j ___ --~~~)'_()~_ d9? __ - -------- --·- - -

Figure 3.2 Sample text from user interviews. User inter­

views help you to assess users opinions and responses to your stud­

ies. You formulate the questions or discussion points for the inter­

view based on your goals for the software-they should address 

such issues as what are you trying to learn about the software, what 

functions are you trying to evaluate, what points do you think are 

critical to users? This segment of an interview was used to compli­

ment a user observation of laser printer users. 



Chapter 3: Early User Studies 4 1 

The advantages of user interviews 
Appropriately conducted user interviews will: 

Reveal users' thoughts. 
Take advantage of interview sessions to obtain not only answers to the ques­
tions, but also the users' opinions and thoughts. If the interview takes a dif­
ferent tum from the one you had planned, check to see if the user is trying 
to tell you something important before steering him or her back to the topic. 
Users can provide significant information about something you might not 
have originally planned to discuss. 

Make comparisons with other technologies or processes. 
Ask users to compare the process or system you are studying with others 
with which they are familiar. You might have some comparisons in mind 
that you would like the user to discuss. Ask the user to draw parallels to a 
similar process. Having users make comparisons can be an excellent way to 
understand how they think about a task. Users can also offer design sugges­
tions or likely metaphors on which the user interface could be based. 

Generate design alternatives. 
By having users talk about what they like and don't like about various sys­
tem features or components, you provide them with an opportunity to make 
suggestions for alternative designs. Your interview subjects are "experts" at 
the system or task you are studying. They have probably been thinking about 
ways to improve an existing system, and what they would omit from a future 
system. 

Steps for interviewing users 
1. Identify the profile of "typical" users for your system. 

2. Draft the goals of your interview. Identify what you hope to 
learn. 



4 2 Software by Design 

3. Use these goals to develop questions or discussion points for 
the interview. Be sure that each of your desired goals is 
addressed in at least one question. 

4. Consider using statistical data gathering methods, if appropri­
ate. Sometimes questionnaires that use a scale to rate answers 
(such as the 1-10 Likert scale) allows users to express themselves 
more candidly than a direct response to your verbal questions. 

5. Determine how many interviews you will conduct. 

6. Contact users who fit your profile and schedule a time for each 
interview. 

7. Prepare to document the interview with audio, video, or an 
additional observer. 

8. Conduct the interviews. 

9. Note responses to the questions and topics, as well as any 
other points of interest that arise. 

Hints/ suggestions 
• Plan adequate time between interviews to allow for sessions 

that run over, or simply for you to take a break. 

• Spread the interviews over a period of time; conducting too 
many in one day can be exhausting. For instance, if you are 
planning a dozen interviews, you might want to schedule four 
a day for three days. 

• As with other early user studies, conduct interviews before 
design has begun, if possible. 

• Link interviews with user observations, interviewing users 
after observing them. 

• Plan your interviews to make the best use of your subjects' time. 



Chapter 3: Early User Studies 43 

• Try not to ask leading questions that supply the user with 
potential answers. 

• Encourage the user to give independent responses. 

Exercise task 
Design and conduct user interviews for your supermarket guide. Decide whether 

you will interview users at the supermarket, or at some other time and place. 
You might want to interview users from more than one supermarket. Develop 

interview questions that will guide you in building your interactive system. 

Your goals for your sessions will probably be similar to those for your user 

observation, and will include answers to questions such as: 

• What do people want to know as they shop at the supermarket? 

• What kind of information is already available and how is it used? 

• Where do people go now to get information in the supermarket? 

• How much time do users think they would spend with such 
a guide? 

• Where do users want the guide to be located (in a standing 

central location, on grocery carts, at food displays)? 

Method 3: Task Analysis 
An in-depth study of a task and how it is performed. 

Sometimes it is useful to look closely at how users accomplish a task. Task 
analysis is a special case of user observation that focuses on the process users 
follow, rather than on general concerns such as their likes and dislikes. Under­
standing each component of the whole process can help to show which parts 
will lend themselves to the new system. Task analysis of the process often 



44 Software by Design 

takes little time. It can be an excellent early user study to help with the design 

of a system. 

Task analysis is particularly valuable when the process being replaced is non­
technical. For example, suppose a new on-line system is being developed to 
replace a process that is currently accomplished using paper forms. Even 

though the current and the new processes might not seem to have much in 
common, you can gather an enormous amount of information by observing 
how the current task is done. Some of the steps accomplished with paper will 
need to be translated to an on-line form. At the same time, parts of the process 
that can be automated or improved through an on-line system will become 
evident when analyzing the limitations of the current process. 

Task analysis can be equally valuable when the system being developed is 
an evolution of a technology in place. This is especially true when the sys­
tem in place isn't working well. Conducting a task analysis can help devel­
opers step back from what is known about specific user problems, design 
issues, and flaws. When a lot of time has been devoted to a project, develop­
ers sometimes make assumptions they do not question. Those assumptions 
can be misleading about what is actually going on with the users of the sys­
tem. A correctly-conducted task analysis leaves no room for false assump­
tions. This list of tasks must then be reviewed to understand what is really 
going on in order to plan a future iteration of a design. 

Task analysis is rarely the only type of user study conducted as pre-design 
research. It is usually conducted in combination with interviews or more 
general user observations. While a task analysis can be useful, it is probably 
more revealing when the results of the analysis are used to generate ques­
tions and discussion points for later interviews. Conducting interviews after 
a task analysis allows you to make hypotheses about what is working and 
suggest improvements. You should then check out these hypotheses and sug­
gestions with the system's users. 



Chapter 3: Early User Studies 45 

Figure 3.3 Task analysis of furniture manipulation. This 

child's toy exemplifies that high technology solutions are not 

needed to analyze what users do in their current approach to 

something. A doll house such as this can be used to help users 

explain how they think about moving furniture around in their own 

living rooms. Having physical representations of the furniture, 

even in the form of toys, is extremely useful for helping describe 

the manipulations they might make or the orientation of the fur­

niture as it is moved. 

The importance of task analysis 
Task analysis is an excellent way to evaluate the current process objectively. 

Since it is a study of the precise steps that make up a process, results are not 
tempered by the personal opinions of the users or the researchers. 



4 6 Software by Design 

The advantages of task analysis 
Some of the benefits of task analysis are that it allows you to: 

Develop a detailed description of the task 
your technology addresses. 
Simply observing users to understand what they do and why they do it is impor­
tant for several reasons. When you are building a system that will introduce 
technology to a currently low-tech function, understanding the current steps 
and incorporating them jwhen appropriate) in the new design can ease the tran­
sition for users. When you have problems with an existing system and are not 
sure why, task analysis can point out issues you might have overlooked. 

Evaluate the user interface currently in place. 
All products and processes present a user interface through which people 
interact, whether or not it's a computer-based system. Performing a task 
analysis can help to identify what information is given to users, how they 
enter information into the system, and where they make choices for inter­
action. This can help point out elements important in the user interface you 
are developing for your system. 

Reveal users' knowledge of a task. 
Task analysis reveals the ability users have to perform a task. It identifies 
the tools currently used to perform the task, and points out how users apply 
these tools. It might show that users apply tools in similar or in diverse ways. 
Likewise, task analysis can indicate the constraints and limitations of the 
current system. 

Map the task from the users' point of view. 
Even though you are not directly asking users to express their point of view 
during a task analysis, you gather information about their approach by watch­
ing. This can reveal interesting data, particularly if you conduct task analy­
sis with multiple users and then compare the results. 



Chapter 3: Early User Studies 47 

Identify critical design elements. 
Examining each step the user takes in a process can often present exciting design 
ideas. Seeing the progression of events and identifying the tools currently in 

place can provide ideas for functionality or appearance in the new system. 

Steps for conducting a task analysis 
1. Identify the task that you will evaluate. 

2. Find someone (or some people) who regularly performs the 
task you are studying. 

3. Watch the person (people) perform the task. 

4. Record the steps of the task, in order, using video if possible. 

5. Note the knowledge this person has at each step, and any 

problems encountered. 

6. Interview the person who performs the task. 

7. Review your notes to create a table or map of the task. 

Hints/ suggestions 
• During the observation, try not to read too much into why 

users do what they do. The purpose is to understand objec­
tively what they do. Analyzing the why comes later. 

• Conduct a task analysis at the beginning of a project, before 

design begins. 

• Conduct a task analysis together with a user observation or 
as an earlier step to a user interview. 

• Don't assume you already know what people will do. At the 

very least, a task analysis will help you verify your approach; 
more often than not, it will also present new information that 
can be critical to your design. 



4 8 Software by Design 

Exercise task 
Plan and conduct a task analysis of people gathering information in a super­
market. You might do this in conjunction with your general user observa­
tion, or conduct it as a separate study. Identify a location in the supermarket 
where people go to get information jsuch as the manager's office or a check­
out stand) and wait there until people come to get information. Or follow a 
clerk around and wait for people to approach with questions. In either case, 
take note of everything that happens when supermarket shoppers try to get 
information. You'll want to address these questions: 

• How did they know where to come to get information? 

• What kinds of questions do they ask? 

• What kinds of responses do they get? 

• Are the people happy with the responses, or do they probe 
further? 

• Do people typically ask one or more than one question? 

• Do people record the responses in any way? 

• If the information desired is not available, what do people do? 

Method 4: Expert lntervievvs 

One-on-one or group sessions with people who know a great 
deal about the users of the system, or who are highly experi­
enced with the technology. 

Like user interviews, expert interviews allow you to obtain first-hand infor­
mation from people with valuable opinions. Unlike user interviews, however, 
experts will seldom give you direct feedback on the system under develop­
ment. Instead, they provide indirect ways to explore user behavior or require-



Chapter 3: Early User Studies 49 

ments. Expert interviews are most useful as ways to research the technology 
in place, or the technology needed to support the system you are building. 
Think of expert interviews as background research that allows you to get infor­
mation-not from the people who will use your system, but from people who 
have some unique and informative perspective about the system's users. 

Typically, you will conduct only a few expert interviews, for two reasons. 
One, because there will not be many experts available to interview. Two, it 
doesn't require numerous expert interviews to gather the information you 
seek. You will not need to interview as many experts as you will users. With 
user interviews, you are polling a number of users to see if there is consen­
sus on important development issues, after weeding out individual biases. 
With expert interviews, gathering a large amount of expert data from ten or 
more experts and analyzing it for significance is a waste of time and energy. 
However, each system and technology is unique. The number of expert inter­
views you require will depend on the nature of your task and the resources 

available to you. 

Conduct expert interviews before design on the project truly begins. Since 
expert interviews are research for your technology and can provide a wealth 
of information, it might be strategic to conduct them before any other early 
user studies. The information you obtain about the users and their environ­
ments will be valuable in shaping the goals and contents of user observations 
or user interviews. 

Expert interviews can also be helpful after other early studies are completed. 
Experts can help you analyze the data, point out behavior patterns, or detect 
user motivation. These interviews are typically informal. Prepare some ques­
tions. Present your findings and describe your impressions. Ask for a verifi­
cation or opinion. Experts might be just the design partners you need to help 
understand the complexities of user behavior or the requirements for your 
developing system. 



5 0 Software by Design 

Figure 3.4 Video of an expert interview. Paul Zimmer­

man, the arch itect shown in th is figure, was interviewed as an 

expert for a project to design 3D interaction methods. He talked 

about his experiences in interpreting what his clients wanted in 

3D space, his methods of designing new spaces and communi­

cating his designs to his clients. His approach set a foundation 

for later interactive prototypes and 3D manipulation tools. 

The importance of expert interviews 
Experts offer a critical perspective to your system design, one other user stud­

ies cannot capture. Expert interviews should be conducted in conjunction 
with other user studies. 

Advantages of expert interview 
Some of the advantages of expert interviews are that they: 



Chapter 3: Early User Studies 51 

Allow you to find out about users when you can't talk to 
them directly. 
While there is no substitute for direct user contact, there are times when 
users are unavailable as study subjects. Experts who regularly deal with the 
users of your system will be able to tell you about them. Even when users 
are around, there might be times when your interaction is limited due to 
time, distance, expense, or resource constraints. 

Help you design subsequent user studies. 
Expert interviews can help you design and conduct efficient, useful studies 
with your users. 

Help you see the system from another point of view. 
It is often true that experts have been in contact with your technology or 
users far longer than you have. As a result, they have developed theories on 
user motivation and goals that will help you decide on a direction to pursue 
or to round out your design plans. 

Help to research a technology. 
Rather than providing information about users, some experts will be able to 
provide information on the workings of your technology or system. Their 
insights might prove valuable when designing the interface. The experts also 
might have materials useful for developing prototypes or for making presen­
tations to your users and others to help them understand the system. 

Offer design ideas. 
At the very least, experts offer alternative opinions and points of view on the 
system you are developing. Since they have been around the technology and 
the users for a long time, they probably have ideas about how to improve the 
technology or make users' task easier. These ideas can help you in the early 
phases of design and later as you refine the design. 



5 2 Software by Design 

Steps for interviewing experts 
I. Identify your experts, drawing on people with significant 

knowledge about your technology, your target users, or both. 

2. Identify your goals for the interview and what you hope to 

learn. 

3. Develop questions or discussion points for the interview, 

making sure each goal is addressed with at least one ques­

tion. You might vary your interview format depending on the 

subject of the interviews. 

4. Contact your subjects and schedule the interviews. 

5. Prepare to document the interview with audio, video, or an 

additional observer. 

6. Conduct the interviews. 

7. Use any information gathered to help direct further user 

studies. 

Hints/ suggestions 
• Take advantage of any experts available to you. Don't worry 

about trying to eliminate bias in the case of experts. 

• Think of these interviews as research. 

• Keep the interviews informal and friendly. 

• Touch base with your experts later to check your findings or 

get additional feedback. 

• Not all experts will be directly linked to the technology or 

process--sometimes they can come from unconventional con­

nections. 



Chapter 3: Early User Studies 53 

Exercise task 
Plan and conduct expert interviews for the supermarket guide. Consider the 
resources available to you at the supermarket and at other locations. Some 
"experts" you might think about are: 

• Grocers, check-out clerks, and delivery people at the super­
market. 

• Supermarket managers, and others responsible for organizing 
food displays and other information management tasks. 

• People you know who are super supermarket users-those 
who do a lot of shopping. 

• People who put together supermarket flyers for local news­
papers or mail delivery. 

• Someone who has actually designed an electronic supermar­
ket information system, or some other electronic guide with 
a similar function. 

Method 5: Seed Studies 

Studies of a process over time, where the person being studied 

keeps track of conditions and activities at designated intervals. 

Some user studies require a significant amount of time. The process being 
studied might happen over many days, or the user interaction might be inter­
spersed with numerous other activities. Since it is impractical to follow a 
user for days, a seed study could be the solution. You seed the users with the 
information and tools necessary to record results and note observations, so 
that they are active participants in the study. 



54 Software by Design 

A seed study requires users to record information at either regular or irregular 

time intervals. Users might enter the same information each time, or the infor­

mation gathered might depend on the circumstances. Make the participant's 

task as simple and straightforward as possible. Provide a simple way for sub­

jects to record the data; and, if you don't want users to tire quickly of gather­
ing the data, make each information-gathering occasion as brief as possible. 

1. say 11n.e a11d l&«J1rm. 

z. 54y iM1P 1?; 1>1 ~e r~. 

~ . s:.ty ~f Y"" a~do1'nj 
4. 'd.y hw I~ yiiw p/4.Jf * 

d~ ff~r. 
->. TJ.1/1:.~~f ~.,, Y#U lU'/I 
u~ Mi/ 1J/Jp/1a.nre~. 

Figure 3.5 Seed study recording device. This hand-held 

tape recorder was used in a seed study to follow a person's daily 

activities with home appliances. The questions taped to the front 

of the recorder reminded users what to say each time they recorded 

some information. The small device could easily be carried around 

and used by participants. 

Like other early user studies, seed studies can help to identify the critical ele­
ments of the users' processes. The difference is that a seed study requires active 



Chapter 3: Early User Studies 55 

participation from the user. Since the user is consciously contributing infor­
mation, there is a risk that the information gathered is not as objective as in 
other studies. Don't tell them too much about why you want the information 
they are gathering. If participants do not know very much about the goals of 
the study, they will be more objective during the information-gathering phase. 
However, you will have to tell users something about the study to help inter­
est them in participating and to motivate them during the information-gath­
ering phase. Use statements that lead to direct and honest information with­
out influencing the user. For example, "We are looking to see if you complete 
these tasks in approximately the same amount of time." Or, "We are gather­
ing data about how what you do differs from what other people do." 

In seed studies, information is recorded at different times and under differ­
ent conditions so you can understand the types of tasks that happen over 
extended periods of time. Since seed studies actively engage participants in 
data gathering, they offer insight into the different approaches taken by dif­
ferent subjects. While different subjects' approaches might also be determined 
from other studies conducted by impartial users, seed studies ensure that the 
data is untainted by the opinions of the person conducting the study. 

The importance of seed studies 
Seed studies provide a way to gather information that would otherwise be 
unobtainable with more traditional observation and study methods. They 
give you a way to gather information over extended periods of time, allow­
ing users to participate with minimal interference to their normal routines. 

Advantages of seed studies 
The advantages of seed studies are that they: 

Qualify the user's point of view of a task or process. 
Since the users themselves are active participants in gathering information, 
the data expresses their points of view about what they are doing. If under­
standing the subjects' point of view is important to your study, be sure to ask 



5 6 Software by Design 

the users to provide information that addresses their thoughts or intent at 
the time of data entry. 

Identify if activities are dependent on certain factors. 
Ask users to record precisely what they are doing at the information-gather­
ing intervals. That way you learn whether what they are doing depends on 
other activities or factors. If this is particularly important to your study, have 
users make note of any dependencies. 

Help you understand the interrelation of 
the various elements in a process. 
Processes that occur over time often involve multiple elements and depend 
on the interrelation of those elements. Understanding these relationships 
might be critical in the design of your new system. Give users a question to 
respond to that addresses the interrelation of process elements. 

Generate ideas for design. 
As with other early user studies, seed studies can be important and innova­
tive ways to generate design ideas for your new system. Design ideas will 
seem especially suitable when they are provided by multiple subjects, or 
when the same design idea occurs on multiple occasions to the same person. 

Show how people really use the technology. 
Seed studies might be the only way to get a handle on how people use a tech­
nology over long periods of time. They enable you to observe what different 
people are doing with that technology over time. It might be the most real­
istic way of evaluating a process. 

Steps for conducting a seed study 
1. Find one or more people who regularly perform the activity 

you want to study. 

2. Identify the information you want them to record. 



Chapter 3: Early User Studies 57 

3. Decide on the appropriate method for recording the activity. 
The subjects might carry around a portable audio tape recorder 
and speak into it, or a pen and pad of paper for writing responses. 

4. Determine the time intervals when the subjects will record 
the information: regular intervals, (such as every two hours) 
or more irregular intervals. You might want to equip the sub­
jects with a preprogrammed alarm clock as a reminder to 
record the information. 

5. Send off your subjects to gather the information. 

6. Analyze the information, using charts or graphs for comparison. 

7. Make recommendations based on your findings. 

Hints/ suggestions 
• As with other studies, conduct seed studies before design 

begins in order to generate ideas. 

• Seed studies can also be excellent ways to evaluate your 
designs as the technology develops. You might choose to 
"seed" subjects with a prototype of the system to see how 
people use your technology over time. 

• Sometimes the information-gathering sessions are intrusive 
to participants, particularly if they happen at random inter­
vals and catch them in the middle of something else. In that 
case, offer them the opportunity to postpone the data gath­
ering to another more opportune time. 

Exercise task 
Develop a seed study that is appropriate for learning what kinds of informa­
tion are important to supermarket shoppers. Because seed studies are best 
for understanding processes that happen over longer periods of time, and 



5 8 Software by Design 

supermarket shoppers typically conduct their shopping activity in an hour 
or less, this study will probably not that take place in the supermarket. Spend 
some time imagining what type of process occurs over time while users are 
away from the supermarket. Consider the following issues: 

• How will you engage participants? 

• How many subjects will you include? 

• What types of information will you gather? 

• Will participants answer specific questions, or respond to 
statements? 

• What is the appropriate time interval for recording informa­
tion? Every morning? Twice a day? Hourly? The interval will 
probably depend on the type of information you request. 

• How will participants record their data? You might want to 
use preprinted forms that they fill in each time, or an audio­
recording device. You might want subjects to call and leave 
a message with the information on a voice mail system. 

• How will you process the data? 

Method 6: Evaluating Early Designs 

Review and critique of an application or system in its early phases. 

In the ideal development world, system builders conduct all necessary research 
before they begin designing a new application or system. In the real world, 
research rarely precedes system development. While a preliminary applica­
tion or system might have been developed before any user studies were made, 
it has the benefit of existing. If you are lucky, this work was intended as a pro­
totype-in this event, at least, system developers recognize the need for evo-



Chapter 3: Early User Studies 59 

lution and change. In any case, an existing system should not be overlooked 
while studies and research are conducted. Instead, evaluate the existing design 
and use your findings to help direct your studies from this point forward. 

Making good use of an existing design can help with the design of your user­
oriented system. Use what exists to answer a number of questions that might 
help you define appropriate studies to conduct or determine design paths to 
follow. Evaluating an existing design can help you to understand how the 
developers envision implementing the system. This is important informa­
tion to have before you make your study findings and recommendations. You 
will also have a better understanding of your audience so you can work together 
as an interdisciplinary team. 

Something you should know about the existing design is whether users were 
involved at all before or during its development. Even if user involvement was 
limited to a friend who met the profile of the target user, the reasoning then 
applied to system development might be helpful in understanding the design. 

A big advantage to an existing design-even if it is only drawings of poten­
tial screen designs-is that it can be presented to users for feedback. If an 
interactive on-line prototype exists, it can be used as part of a more directed 
user study to see how users respond to the emerging system. 

When evaluating an existing design, look for what the design tells you about 
the developing technology. Often an existing implementation is a better way 
to understand what the developers had in mind in building the technology 
than discussions alone. You can begin to see the technology at work, and pos­
sibly understand what your potential designs can do, or how they might be 
constrained by implementation details. Discuss the design with system devel­
opers, and find out how flexible they are on various implementation details. 
Some features of the system are actually constrained by the technology, and 
it is necessary to understand this at early stages of the design. 



6 0 Software by Design 

HI O Controller 

House code Module Brightness Port 
@R @Ml @Bl @Modem 

O B 0 M2 0 B2 O Printer 

o c 0 M3 O B3 

O D 0 M4 0 B4 <:.onunand 

O E O MS O BS ( On ) 
O F 0 M6 0 B6 ( Off ) 
0 G 0 M7 0 B7 

O H 0 MB 0 88 ( Dim ) 
0 1 0 M9 0 89 (set Housecode) 
O J 0 MIO 0 810 

O K 0 Mll 0 811 

0 L 0 Ml2 0 812 Dttousecode 

O M 0 Ml3 0 813 0MOOu1e 

O N 0 Ml4 0 814 D»rightness 

O D 0 MIS O BIS The Result I DD DODOO 

O P 0 M16 0 Bl6 

Figure 3.6 Early design for home control system. This 

HyperCard stack shows the basic application for accessing the 

appliance control units that make up the Xl 0 System (circa 1989). 

Radio buttons are used to represent groupings of up to 16 options, 

with simple text buttons for actions and small type in boxes for 

presenting numerical information. The screen is cluttered and func­

tionality is unlabeled and unclear. This implementation reflects 

the underlying structure of the system rather than how users see 

or apply system functionality. In a project later undertaken to apply 

a user-centered design approach to this application, the user inter­

face significantly changed to reflect what users wanted in the 

design and interaction. (See figures 5.2 and 5.3 for evolutions 

of the design of this Home Control System.) 



Chapter 3: Early User Studies 61 

The importance of evaluating early designs 
Evaluation of existing works can have a number of advantages for further sys­
tem development, especially when the implementation team says further 

development is necessary. Some of the ways early designs can be used are to: 

Take advantage of work that has already been done. 
The best reason for using early or existing designs is that they are there. In 

the worst case, you will end up discarding the entire work, but you might 

learn both positive and negative things about the system that exists. Don't 
ignore an existing work just because it wasn't designed with the same goals 
you have in mind. 

Allow you to experience the system as a user. 
Since you have an example of the technology in action, you can begin to eval­
uate the technology by using it yourself. You won't have to guess at how oth­

ers might use it. 

Offer insight into the developers' point of view. 
Evaluating the existing system will teach you something about what the 
developers had in mind for the system implementation. You can use this 

information to help guide you in your recommendations or later study find­

ings. It is important, however, to remain a distant and objective evaluation­
try not to assume that elements of the interface have to be in the ways they 
currently are presented. While developers are sometimes constrained by the 
technology, more often than not they are predisposed to certain ideas because 

of their understanding of the problem. Remain impartial so you can ask for 
what is best for users. 

Generate design ideas. 
By evaluating what works and what doesn't about an early design, you will 
begin to generate alternative ideas for future versions. Design ideas might be 
for specific solutions in the user interface or for user studies that you might 
want to conduct. Questions you have about certain implementation details 



6 2 Software by Design 

might help direct you to appropriate user studies, or to the issues that those 

studies should address. 

Provide a way to give feedback to 
developers at early stages. 
If you include a written evaluation or a presentation to developers as part of 
your evaluation process, you provide critical feedback to the design team at 
early stages of the design. This feedback might help developers to direct their 
work to best meet user needs. 

You might think that existing work limits the possibility of further design. 
This is true only when the early designs are not looked at objectively, and 
they are assumed to be the basis of further design because they already exist. 
If you adopt the attitude that existing designs are helpful for evaluation but 
that they are not necessarily the final system configuration, you will be able 
to put your existing designs to work for you. 

Steps for conducting an early 
design evaluation 

1. Get the most up-to-date version of the design you will be eval­
uating. 

2. Conduct a preliminary review of the design to understand its 
basic functions. Get a demonstration from the implementors, 
if possible, and discuss the design with them. 

3. Draft a documer.t that presents your goals for evaluating the 
design and the criteria you will use to evaluate it. 

4. Think about specific tasks or exercises you can follow through 
the design that will enable you to "test it out" in an appro­
priate way. Choose tasks for which the system really will be 
used. 



Chapter 3: Early User Studies 63 

5. Use your goals and your criteria to document specific tasks 
in evaluating the design. Note your thoughts and reactions 
as you are using the system. 

6. Document your findings and present them to system devel­
opers. 

7. Use what you know about the existing design to plan addi­
tional user studies. 

Hints/ suggestions 
• Try to be impartial in evaluating the design-don't think 

about how your findings might limit future work. 

• Engage colleagues to help you evaluate the design. Additional 
feedback might help you to make the best use of the existing 
system. 

• Think of yourself as a user in a user test-what do you really 
want to do with this system, and how is the design helping 
or impeding that? 

• As you evaluate the design, think about both the existing 
problems and what works well. If something works well, the 
developers have already solved some of your design challenges. 

Exercise task 
Try to locate an existing implementation of an on-line supermarket guide, 
and evaluate it as an early design for your system. You might have to con­
duct some research to find such a guide, since they are obviously not avail­
able at every neighborhood supermarket. Newspapers and magazines in recent 
years have reviewed such systems, and local supermarket employees who are 
technology buffs might be able to help you. If you are lucky enough to find 
one, some of the questions to address during your evaluation are: 



6 4 Software by Design 

• What does this system do? 

• What functions does it provide to the user? 

• What doesn't this system do? 

• Who are the target users for this system? Think about demo­
graphics, frequency of shopping activity, and time necessary 
to spend with the system. 

• Where is this system used? 

• What are the positive and negative points of this system? 

• What is the technology involved in presenting this system 
and how effective is it? 

• Can I talk to the person/people who designed and built this 
system? 

If you cannot find an on-line implementation, you might evaluate a related 
on-line information guide, such as a guide at a mall ar department store. You 
will not be able to obtain information specifically relating to supermarket 
guides, but you will still gather useful information for designing on-line guides 
in general. 



Chapter 4 

Off-line Tools and Procedures 

What Are Off-line Tools 
and Procedures? 

Many kinds of computer software can be designed without going anywhere 

near a computer. Because they are not on-line computer prototypes, I refer 
to them as off-line designs-they can be built using off-line tools and proce­

dures. These tools and procedures include writing a description of the way a 
new system will work, making paper and pencil drawings, or constructing 
models using a variety of other conventional m aterials: scissors, matte knife, 

white glue, and so forth. 

Almost all designers I know are capable of writing a description of a system, 

or at least describing it to someone else who can write it for them. Art mate­
rials, such as different weight and textured drawing surfaces, marking tools 

in a variety of colors and textures, and other materials such as cardboard, 
foam core board, masonite, wooden plyboard, Plexiglas, Styrofoam, telephone 

cabling and other hardware, can all be valuable for building prototypes of 

65 



6 6 Software by Design 

your application or system design. I encourage you to experiment with dif­
ferent media and find what you like best for communicating your designs. 
Your local art store is the best place to start looking for innovative ways to 
express the specifics of your design. 

Creative combinations of materials can lead to effective models that repre­
sent parts of your system. You can use these off-line designs in user studies 
to obtain feedback on the progress of the design, or to gather further design 
ideas. Off-line designs might be stories read to potential users to see if they 
agree with your plans for the developing technology. They might be draw­
ings of potential computer screens, or even less committal sketches of the 
way a technology could be used in the new system. Off-line designs can be 
more complex models used to simulate parts of the user interface, such as 
scrolling windows, or the layout of fields on the screen, or interactive events 
that occur in response to some user action. Combining storytelling with draw­
ings or models can help piece together the elements of a design that can then 
be further developed by the members of a design team. 

Off-line tools can be used at various phases of a design, but they are particu­
larly useful in the early stages, when concepts are beginning to form but no 
commitment to a specific implementation has been made. Off-line tools and 
procedures often follow early user studies, and can quickly and inexpensively 
develop some of the ideas that have come out of these studies. Off-line tools 
and procedures are also important as the design evolves, to test ideas and see 
what makes sense for implementation. Whether these designs are shown to 
potential users for feedback, or to other members of the design team during 
development phases, or are simply built by an individual to validate an idea, 
off-line designs can be extremely valuable to a user interface designer. 

Almost everyone I know has had experience with the kinds of off-line tools 
and procedures that I advocate. While some of the techniques are taught in 
more advanced art or design programs, the basic processes are easily adapted 
to things we already know how to use. Some of us might not have used these 
procedures since grade school, but these are not tools we forget how to use 
or that are difficult to relearn. Off-line tools encourage you to use the ere-



Chapter 4: Off-line Tools and Procedures 67 

ative elements that come most naturally to you-be they storytelling, draw­
ing, building, or tinkering. Creating off-line designs can be extremely reward­
ing because the results are quickly visible and tactile. And best of all, creat­
ing off-line designs is usually fun, because it gives you a chance to get down 
and dirty with the design that you have been researching and thinking about. 

The Advantages of Off-line 
Tools and Procedures 

Off-line tools and procedures are valuable in user interface development for 
many reasons. Some of them are: 

Materials are accessible and (usually) cheap. 
You can find basic writing and drawing supplies in the stockrooms of even 
the smallest offices. If you have to buy new supplies, paper and pens are rel­
atively inexpensive, particularly when compared to computer equipment and 
software. As you gain more experience with the available tools, you will be 
able to better define the materials that you need. Special purchases will be 
fairly inexpensive, and you can reuse supplies for later off-line designs. Some 
advanced designs might require more expense, but you can weigh the cost 
value trade-off for your specific design. None of the tools or processes in the 
following sections are inherently costly; and if you are creative in gathering 
materials, you can usually keep costs low. 

Materials and designs are portable. 
Most off-line designs can be created in pieces that you can take along to 
wherever you happen to be working. Unlike on-line design tools, you are 
not chained to the computer system on your desk. This can be useful dur­
ing the design process and once designs are ready for demonstration or test­
ing purposes. 



6 8 Software by Design 

They can be worked on by more than 
one designer simultaneously. 
Along with portability comes ease of transfer from one designer to another. 
If you are working on a design with a colleague, you can each work on sepa­
rate parts and then combine them, or if it is the type of design that only one 
person can work on at a time, you can pass it back and forth. 

Designs convey more than words. 
Actually building the designs instead of simply telling others about them 
helps you to visualize your ideas and communicate your concept more effec­
tively than words alone can do. Even written descriptions are better than ver­
bal ones. Writing it out helps you to resolve ambiguities or inconsistencies 
and forces you to think about issues you might not otherwise have addressed. 
A physical representation (written or constructed) of your design is useful for 
sharing the concept with fellow designers, system builders (even if this builder 
is you!), and to potential users. 

Training is rarely necessary. 
Writing, drawing, and constructing are skills almost everyone has. I'm not 
talking about writing like Hemingway, drawing like Leonardo da Vinci, or 
building like Frank Lloyd Wright. Using off-line tools and procedures is not 
about making beautiful art, but about communicating ideas for the purpose 
of better design. If you are uncomfortable with your level of skill with draw­
ing or writing, a workshop or seminar might be helpful. 

Designs are dispensable. 
These designs are fairly dispensable because they are inexpensive and can be 
built with minimal time or effort. If what you write, draw, or build isn't exactly 
what's needed, it's fairly simple to write, draw, or build something that is. 
Typically, you will learn enough about what worked and didn't work after 
building the first version to ensure that later versions are more successful. 



Chapter 4: Off-line Tools and Procedures 69 

Designs are accessible to all. 
Since designs are a combination of basic skills, different designers can con­
tribute to designs in ways that utilize their individual strengths and that build 
on each other. One designer can add or change another designer's written 
description of a project. Drawings can be modified easily to communicate a 
variation on a design concept.While it is true that different members of a 
design team will have different skill levels, when it comes to writing or draw­
ing, most will have the basic skills necessary to get the point across. 

Designs are less committal. 
Since the off-line design is not the finished product, it is more likely to elicit 
constructive criticism and is adaptable to change. Design team members tend 
to give honest feedback throughout development with off-line designs, because 
they know that they are not criticizing an end product; they know you will 
have to build the real system anyway. Additionally, subjects of user studies 
might be more inclined to tell you how they feel about your design concepts, 
since they know that what you are showing them is only a transitional step 
in the design, not the real thing. 

They help to clarify designs and lead to other possibilities. 
Since most of us can get our ideas across with a pencil fairly easily and quickly, 
off-line designs require little investment in learning how to make the tools 
work. As a result, you can spend your time concentrating on the details of the 
design. This allows you to clarify the design and lead it through necessary 
changes to build the best design possible before committing to a software 
architecture or building a time-consuming, working prototype. Remember, 
off-line designs are not about pretty drawings, but expressions of the design. 

Physical designs can be studied and tested. 
Off-line designs that model interactivity-either through storyboards, flip­
books, or some other mockup technique-offer the added advantage of let­
ting you evaluate or test the interaction. Testing can be done at early stages, 
before an investment is made (in time or money) in a more complex software 



7 0 Software by Design 

design. Obtaining feedback in these early stages allows you to get the basic 
design right, so that you need to worry about only the less critical details in 
an on-line version. On-line, you can concentrate on the elements of the design 
specific to the software that could not be tested on paper. 

The possibilities are endless. 
The possibilities are endless for the techniques to use and how to use them 
to create off-line designs. Any creative techniques you can think of can prob­
ably be applied to help communicate design ideas. Different applications or 
systems will lend themselves to various alternatives-adapt your own cre­
ative approaches to this process. I have seen these unconventional methods 
applied successfully to the user interface design process: using unconven­
tional materials, involving people to role-play parts of the system, and cre­
ating live theatrical productions that demonstrate the system. 

HoY1 to Select, Design, and Perform 
Off-line Tools and Procedures 

The array of tool and procedure choices might seem overwhelming, because 
so many possibilities exist for creating and applying off-line designs to the 
user interface development process. You will probably not have the time or 
the need to apply all-or even most of-the off-line techniques for each devel­
opment project. While there is no one right way to approach any design prob­
lem, there are disciplined ways to determine which off-line tools are appro­
priate for your given design. These are some of the ways to evaluate the tools 
and procedures: 

Determine how much time you have. 
You have to evaluate the amount of time you will devote to the entire pro­
ject, as well as how much of that time will be spent on designing, testing, 
building, and iterating. It is valuable to establish time estimates for individ-



Chapter 4: Off-line Tools and Procedures 71 

ual prototypes, as well, and to include time for presenting the design to other 

members of the development team and end users (if appropriate). The actual 

time spent might differ from your scheduled time. One good way to evalu­

ate time requirements is to work backward from a known due date. Time for 

each component of the process will depend on the nature of your problem; 

in general, you will probably want to spend roughly a third of your time on 

prebuilding studies and designs; a third of your time building the system, and 

a third of your time testing and rebuilding the system. 

Some design problems might require more time up front in preliminary design 

stages, others might be new implementation technologies that require more 

programming and/or debugging time. It is important, however, that you spend 

at least some time devoted to preliminary design. If you dive in and start cod­

ing right away, you will find yourself spending large amounts of time later 

reworking your code to address the needs of an evolving design. It is much bet­

ter to plan for adequate design time so that during the implementation phase 

all you really have to worry about is getting the on-line design to work as expected. 

See what materials, skills, and resources are available. 
One realistic way to evaluate which off-line tools or procedures are appro­

priate for you is to take inventory of what you have on hand, and evaluate 

the skills of the people on the design team. If you have an industrial designer 

on the team and have easy access to building materials, then creating a mockup 

of your system might be appropriate. If you have a graphic artist on the team, 
then you might want to concentrate on storyboards of the design. If you don't 

have either of these professionals on your design team, all is not lost. At the 

very least, you can write scenarios describing the system design, or do some 

basic drawing to get visual ideas across. You can hire someone on a contract 

basis to help with the design stages, or even take a basic course in drawing 

skills. Remember, off-line designs do not need to be created by profession­
als. Elementary drawings and mockups can be as valuable as professionally­

created design pieces-perhaps even more so, since they are created by the 

members of the design team who understand the nature of the design prob­

lem and are using off-line designs as a way to communicate. 



7 2 Software by Design 

Evaluate what you are going to do with your designs. 
Knowing what you will do with your designs will help you determine the 
procedures to follow. Think about who you are building the designs for. Will 

you show them to other members of the design team? Hardware engineers 
who might be responsible for building an actual product? Software imple­
menters responsible for building the designs? Potential end users who will 
help you to evaluate them as part of a user study? If you are going to visual­
ize a new design for both a hardware and a software product, a physical mockup 
illustrating your ideas would be appropriate. If you are completing a quick 
concept-sketch to get ideas across to other members of the design team, draw­
ings or storyboards will do. 

Think about how durable designs must be. 
Knowing how long you want designs to be around or how much exposure 
they must undergo might also help you decide what types of designs to develop. 
If the designs are simply intermediate expressions of ideas and won't leave 
your office, then you need not worry about the durability of the materials 
you use. On the other hand, if you plan to use a design for user studies, or to 
travel on the "demo circuit," then build them to last. Plan to invest more 
time in the designs that will be around for longer periods of time. 

Understand how much you can accomplish off-line. 
Off-line designs are an excellent way to express basic user interface elements 
and interaction and for visualizing designs. However, they are not suitable for 
testing the specifics of visual details or interactions. You need to move the 
designs to their target platforms to evaluate whether or not users can dis­
criminate forms or obtain adequate feedback on interactive functions. By know­
ing what off-line designs are good for, and moving on to other design techniques 
to accomplish other tasks, you can make the most of your design time. 

Work with others. 
Off-line techniques provide an excellent opportunity to make good use of 
multiple members of a design team-to save time in the long run and con-



Chapter 4: Off-line Tools and Procedures 73 

tribute to a more robust design. Individual team members can work simul­
taneously on separate designs, each generating storyboards to illustrate a sce­

nario. Then, the team can get together and choose the elements from each 

of the storyboards that the group thinks best represent the goal. Team mem­

bers might also work simultaneously on the same design, completing differ­

ent segments of a scenario or pages in a flipbook. In this case, you should 

meet together before starting the design to establish the basics for it. Team 

members can then complete their individual parts, and meet again to com­
bine them. 

Engage experts when needed 
(but don't assume they are always needed!) 
While I maintain that anyone at any skill level can draw well enough to get 

basic points across visually, there are times when you will want a graphic 

designer or an artist to render the images for your designs. Likewise, you might 

need other professionals to help you write a scenario, or to assemble a com­
plicated mockup. You will make the best use of your time and the time of your 
experts by understanding what you can do yourself. After you set tasks for your­

self, you can determine exactly what you want from your professionals. 

Save or Record Your Designs for Later Reference 
Even if you believe your designs are expendable because, for instance, they 
are only an intermediate representation of your project, you will probably 
want to keep them around for later referral. This can be useful at later stages 
in the design process, when you are trying to remember why you made a cer­
tain decision or to help generate alternative ideas for concepts that did not 

work well. You also might need them to justify to others, such as your man­
agement or team members, why you made a particular decision. 

You also might want to hold onto designs so that you can document the 
whole process, either to refer to when you have a similar task, or for publi­
cation of your findings in a technical journal. If you know from the onset of 
the design that these are possible concerns, choose off-line procedures that 
will best facilitate these goals. 



7 4 Software by Design 

Method 1 : Off-line 
Design Materials 

Any media that is appropriate for creating off-line designs of 

computer software, including paper, drawing utensils, card­

board, or plastics. 

Let's start with the materials. I think it is important for people to realize the 

range available with which off-line designs can be created. The most conven­

tional, and probably the ones you will use most often, are paper and pens of 

various weights and widths. Paper and pen are the most widely used for a num­

ber of reasons, the most obvious being that they are readily available and require 

no training to use. They are the perfect tools for creating many designs. Draw­

ings and more complex paper-based designs such as storyboards and flipbooks 

can go a long way in communicating the features of a system or an application. 

I always encourage designers to make use of materials that are readily avail­

able to them. Go through your desk or make a trip to the office stockroom 

to see what kinds of materials you have access to without having to make a 

special trip to the store. Self-adhesive notes in contrasting colors are great 

for illustrating parts of your scenario or storyboarding. They can be placed 

on larger pieces of paper, removed and rearranged without having to cut and 

paste images. They also are an excellent way to facilitate team designing: 

each team member can make illustrations, then the team can pick and choose 

among the illustrations to string together a design. 

There will, of course, be times when the materials on hand are not enough 

for creating the designs you have in mind. Then it's time for a trip to an art 

supply store or a well-equipped office supply store. Browse before you select 

the materials you want, even if you have specific items in mind. You will 

often discover other materials that might suit your purpose even better. At 

the very least, you will see the range of media/materials available to you, and 
be better prepared to identify what you might need in your next off-line design 



Chapter 4: Off-line Tools and Procedures 75 

project. The salespeople at these stores are excellent sources of information, 

as well. If you describe to them the types of materials you are looking for, or 

even the purpose of your project, they might have well-informed suggestions 

for appropriate materials. 

As you spend more time creating off-line designs, you will acquire a prefer­

ence for certain tools you like best, or that seem to best meet the needs of 

your design projects. You will be amazed at how few tools you need to cre­

ate a range of interesting and provocative designs. Examine the designs of 

your colleagues to see the kinds of materials they use-you can learn a lot 

about what works well in off-line designs by viewing as many designs as pos­

sible. Ask your colleagues to identify tools or materials that are unfamiliar 

to you, have a joint design session, or swap tools. 

Figure 4. 1 Illustration of Some Possible Materials. Mate­

rials themselves can be critical to the message del ivered by your 

design. You can use a range of trad itional artists supplies and 

techniques to create different designs which explore both the func­

tionality and look of your emerging system. 

The importance of materials 
Selecting appropriate materials for your prototypes might not seem like a 

critical step in the software development process, but it can have significant 
impact on the designs you create. Some of the benefits of well-chosen mate­
rials are that they: 



7 6 Software by Design 

Help to communicate the design. 
The materials used to develop off-line prototypes determine the aesthetic 
quality of those designs. They set the tone for the way those designs present 
their functionality and interactivity. While the designs themselves are the 
ultimate message, the materials are critical in communicating the designs. 

Promote creativity and fun. 
Different materials can encourage artistic capabilities and creative design. 
Choosing the right materials can help to promote innovation, and can actu­
ally make the difference in your approach to building an off-line prototype. 
With the appropriate materials, you will get your design ideas across, and 
have fun doing it. 

Save you time. 
Materials such as paper and pencil are extremely flexible and dynamic. They 
can be used in a variety of ways and can lead to a range of off-line prototypes. 
As a result, you will find that you are building more creative designs because 
you are not wasting time learning the intricacies of working with unknown 
tools or materials. Computer prototyping tools can be extremely restrictive 
in what they allow designers to create, whereas off-line prototypes can be 
anything the materials allow them to be. 

Generate design ideas. 
Looking for, and selecting, the materials you will use can actually help to 

generate ideas for your designs. Comparing your materials with others will 
help you with concepts and ideas that you might not otherwise have con­
sidered. Imagining ways in which you can use the various materials might 
help you to explore prototype functionality and purpose. 

Require little overhead or investment. 
The best thing about off-line prototype materials is that many of them are 
things you already have access to. This makes the whole process inexpensive. 
Even if you must obtain new or additional materials, the cost is relatively low, 
especially when compared to the cost of computer design tools or platforms. 



Chapter 4: Off-line Tools and Procedures 77 

Steps for gathering materials 
1. Assess the needs of your design. If you will start with draw­

ings, basic pencil and paper will probably be fine. If you want 
to build a more interactive prototype, you will need less con­
ventional materials. 

2. Determine what materials you have on hand. 

3. Map the available materials to your needs. 

4. Determine if there are any additional materials you need, and, 
if so, where you can obtain them. If you do not know the spe­
cific material you want, determine the characteristics that it 
should have. 

5. Gather additional materials. 

Hints/ suggestions 
• Store materials in a common place so you always know where 

to look. 

• Always be on the lookout for new and interesting materials. 
You might discover perfect finds when cleaning out the garage, 
browsing at the mall, or observing the supplies used at your 
child's school. 

• Keep a list of good sources of materials. The list can include 
local stores or the names of people who have good ideas about 
appropriate media to use for different design problems. 

• Learn to make do with what you have or what you can get. Off­
line designs are not about beautiful, polished drawings or mod­
els. Your designs should communicate your ideas and get the 
job done. The materials you use are secondary. 



7 8 Software by Design 

Exercise task 
Gather materials that might be useful to you in designing the supermarket 
guide. Look to see what materials are immediately available. Collect the 
materials in an specific location, so that when the time comes to complete 
your designs, you have them available. Make a trip to a local design or office 
supply store to see what other kinds of materials you might purchase. Browse 
the aisles just to see what's there, or have a type of model in mind and look 
for materials you might use to build that model. 

Method 2: Scenarios 
A design concept-most often in writing and presented as a 
story-that usually includes a description of users, the task 
to be performed, and how the system will work to accom­
plish it. 

Beginning a user interface design-thinking for the first time about how the 
software will work or look-is often the most difficult step in the entire 
design process. Many designers have difficulty knowing where to start. One 
of the best ways is to create a description or scenario of the way the software 
or user interface will be used. Storytelling is an ability that comes naturally 
to many people, and it is a low-pressure way to think about the system you 
want to design. Scenarios discussed among design team members can be writ­
ten down to share with others later. 

A scenario can be a "snapshot" of the system in use, or a more general descrip­
tion of the users and their goals, or the basic functions of the system. You 
decide how specific to be, depending on the needs of your project and how 
much you know about the design. A scenario should consider the general 
user interface, including the usefulness of the system, the environment the 
system will be in, and the tools for interaction (such as a mouse-driven per­
sonal computer, a touch-screen wall-mounted information system, or a phone-



Chapter 4: Off-line Tools and Procedures 79 

accessed audio system). Writing a scenario helps you think about all of these 
aspects of your user interface, and helps you answer some questions about 
your design. In many ways, writing a scenario is like writing a story about 

your users to help you to identify many of their characteristics. 

Scenarios can be used in a number of different ways. You can write a scenario 
to describe your system, geared to lead you through your design process. Writ­
ing a scenario describing the current state of the technology, is particularly 
useful when you don't know much about what you want the new system to 
do (when user studies have not been done or have not been helpful in iden­
tifying design criteria). By writing a story about what currently exists, you 
can identify what doesn't work and generate alternative story lines that solve 
design problems. Scenarios can also be used to discuss far-out possibilities 
or future technologies. Write a description of the way this system might work 
far in the future. Even if it is not the system you will implement, it might 
help to give you ideas about what you will implement. Use the scenario as 
a creative tool for generating ideas. 

Sometimes you will start the design process by writing a scenario, then find 
you want to generate some visual designs (drawings or storyboards) to help 
clarify some of the elements of the scenario. Once you have worked through 
the visuals, you might find that you need to go back to the scenario format, 
to again use a more general tool to work out some ideas. Scenarios can be 
useful in various parts of the design process because they allow you to use 
creative brainstorming free from any constraints that might be imposed by 
a visual representation. 

When writing a scenario, it helps to be as complete as possible. You will refer 
to your scenario throughout development; looking back at your scenario helps 
to more clearly understand design goals and clarify design. At other times, 
referring to the scenario will help you to get a better idea of the general qual­
ities of the user interface and give you additional ideas or options. Writing 
the whole story, when you create your scenario, will give you room to grow 
with the design, and potentially lead you to think of important issues that 
you might otherwise have missed. 



8 0 Software by Design 

The importance of scenarios 
Scenarios are excellent design tools for a number of reasons. Storytelling is 

an easily adaptable way to integrate a process with which users are already 

familiar into user interface development. Some of the reasons scenarios are 

important to the design process are that they: 

Start the ideas flowing. 
Storytelling is a natural way to begin to think about an interactive process. 

Most of us are well versed in communicating through narrative, and are famil­

iar with the process of scenario building/storytelling. Knowing how to tell 

stories, especially among a group or design team, can free you from the process 

enough to concentrate on the functionality and interactivity of the technol­

ogy. When you don't know where to start with information you have gath­

ered, or you aren't sure how to tackle the constraints you've encountered on 

a design, chances are writing a scenario will get the ideas flowing. 

Help piece together aspects of the interface. 
The different aspects of your user interface can be drawn together through var­
ious segments of your scenario. The scenario need not be complete at first, and 

can, instead, be snippets of stories explaining different pieces of the technology. 

You can go back later and connect these components by adding to your story. 

Support creativity before committing the design 
to a more visually concrete format. 
An important element of scenarios is that they are free form and leave quite 
a bit to the imagination. Even the most detailed scenario might be interpreted 

differently by different team members. The phenomenon is much the same 
as seeing a film made from a book you have read-you might have imagined 

the characters or locales in your mind to be quite different from those pre­
sented by the movie. The lack of commitment to a storyboard can be excel­
lent for keeping you from having to make decisions about platform depen­
dencies, or even about what the elements of the system look like. Scenarios 
let you focus on function and interaction in the early stages of design. 



Chapter 4: Off-line Tools and Procedures 81 

Allow all members of the design team to express 
themselves in a common way. 
Since narration and storytelling are skills that most people are socialized to 
have, all the members of a design team probably will be able to express them­
selves through scenarios. This makes scenarios an excellent tool for team 
design, since no team member should be intimidated by lack of this design 
tool. All team members can take part in the verbal scenario, the writing of 
it, and the reading of it for evaluation purposes. 

Doesn't have to be a graphical user interface. 
There is nothing necessarily graphic about the user interfaces described 
through scenarios because scenarios are not tied to visual representations. 
Scenarios can be great for presenting audio user interfaces, or any other non­
graphic interactive system. You can tell a story about almost anything. 

Steps for writing scenarios 
1. Identify a user and a task for your scenario, focusing on the 

technology you are developing. 

2. Provide additional background information, such as location, 
time of day, the user's environment. 

3. Write a story about the user and the technology. Describe the 
task the user is trying to do, and the way he or she goes about 
doing it. 

4. Include any relevant information about other people. If the 
task requires more than one user, describe them all and their 
differences. If the outcome of the task affects others, say so. 

5. Tell more about the technology than you intend to actually 
build. This leaves room for expansion and helps you to be 
more creative. 



82 Software by Design 

Scenarios for Space Planning (A Study in 3D 
Furniture Manipulation) 

Penny Bauersfeld 
April 1990 

Three scenarios are provided to illustrate the need 
for a 30 manipulation space planning application for 
a variety of users. 

Scenario 1: Moving the Microwave 

Janet wants to free up some counter space in the 
kitchen. She decides to put a shelf between two 
cabinets, making a cubby area just big enough to 
hold her microwave oven. She can then put the 
microwave in the cubby hole, and open up the counter 
space where the microwave used to be for other use. 

To build the new cubby area, Janet measures the 
opening and cuts the wood to size. She then slides 
the shelf into place and nails it perpendicularly to 
the adjoining walls. 

She then lifts the microwave off the countertop and 
pulls it toward her to bring it out from under a 
cabinet. Once the microwave is clear of the 
cabinet, Janet lifts it until it is directly in 
front of the new cubby area and then fits it into 
the cubby hole by resting the back end of the 
microwave on the shelf and pushing it into place. 

Scenario 2: Hanging a Picture 

Sam wants to hang a picture above his bed. He wants 
it to be centered on the wall relative to his bed, 
and to be centered between the top of his backboard 
and the ceiling. 

Figure 4.2 Scenario example These short scenarios describe 

elementary manipulation of furnishings and home appliances. 

They were used to help design an interactive 30 manipulation 

scenarios. Even brief scenarios can be useful and helping design-



Chapter 4: Off·line Tools and Procedures 83 

He locates the point at which to place the nail by 
locating the appropriately centered point and then 
off setting to account for the size of his picture 
and the position of the hanging wire on the back of 
the picture. He hammers the nail into the wall. 
Sam then lifts the picture from where it rests 
against a side wall. He carries it over to the bed, 
lifts it until the wire clears the nail, and then 
lowers the picture until it rests securely. He 
slides the wire along the nail to properly center 
the picture. 

Scenario 3: Setting up the Conference Room 

John is building a new conference room in his 
office. He wants to set up the furniture and 
equipment in it to make sure that everything is in 
order. 

John scatters the chairs around the room. He pulls 
the projection screen down so that it is centered on 
the far wall. He sets up the overhead projector at 
the end of the table farthest from the screen. He 
turns on the projector and puts a slide up. 

John then proceeds to sit in each of the chairs to 
insure that the view of the projection sc~een is 
clear from each. He shuts the curtains and then 
turns the lights on, and sits in each of the chairs 
again. He moves chairs and recenters the conference 
table in the room as necessary to provide adequate 
views from each of the chairs. 

ers to understand the current tasks and envision the interaction of 

the future system. The complexity and length of scenarios depends 

on the resources available to you and the nature of the project. 



8 4 Software by Design 

Hints/ suggestions 
• Don't get bogged down with details; keep your format loose 

and general. 

• To help you get started, first brainstorm. with others to verbally 
develop a scenario, Then split up and write down the details. 

• Generate alternative scenario segments, if appropriate. You 
don't need to rewrite the entire scenario, only those segments 
with more than one story line. 

Exercise task 
Write a scenario describing the use of the supermarket guide. Base the descrip­
tion of the system on information you gathered in your early user research. 
Remember that writing a scenario is simply telling a story about the user and 
the system. Keep it general, but try to touch on critical elements of your sys­
tem. Address the following elements in your scenario: 

• Who is the primary user of this guide? Are there secondary 
users? Give relevant demographic information about the users 
of the guide. 

• Where is the guide placed? What is its environment? How 
does this affect system usage? 

• What is the basic service the system supplies? What kinds of 
things does the user expect to be able to do? 

• What method of feedback is used to communicate informa­
tion to the user? 

• Is there any output of the system (sound, paper, or otherwise)? 
What might the user do with this output? 



Chapter 4: Off-line Tools and Procedures 85 

Method 3: Dra~ing 
A sketch or illustration that presents an idea in a visual way. 

Drawings are nothing new to design in general, although the role of drawing 
in user interface design is not always recognized. I present here the critical 

elements of drawings as they relate to user interface design. 

By drawings, I mean images or illustrations drawn on paper with pencils, 

pens, or markers that are made by either an individual or a group. While the 

type of drawing I am describing for user interface design is typically made 

with conventional tools, drawings might also be created on a computer using 

on-line drawing tools. Keep in mind that the purpose of drawings in the early 

stages of off-line prototypes is to spend as little time as possible perfecting 

details. Focus instead on getting ideas across. Computer tools might be a hin­
drance rather than a help to many people. However, experienced computer 

artists might prefer to complete some drawings using on-line tools and still 

meet the criteria of drawings as off-line prototypes. 

Drawings are excellent ways to present ideas, and can be as simple or as com­

plex as desired. Drawing a concept is a sure way to capture an idea quickly, 

without having to dedicate time to learning how to express the idea in a new 

tool or style. Drawing is a skill that most people have and, while not all of 

us draw like Leonardo da Vinci, the purpose of drawing in off-line prototypes 
is not to create timeless masterpieces. The quality of the drawing is not the 

important issue. 

Yes, some drawings will require more skilled artists. I am not arguing that 

drawing professionals are never needed, only that for most concept drawings 
they are not. For some drawings where finer details of a design are exhibited 

or for drawings that will be used for presentation purposes outside of the core 
design team, the skills of a professional artist might be needed. If a skilled artist 
is not directly available on the design team, you might want to bring one in for 

specific cases. If you find that you are developing the types of user interface 
software that require frequent involvement by drawing professionals, you might 



8 6 Software by Design 

very well wish to bring on a skilled artist as a full-time, dedicated member of 
your design team. Your specific design needs will dictate your need for a tal­

ented artist. Still, all members of the design team should feel free to use draw­
ings to communicate ideas and concepts, regardless of their skill level. 

Figure 4.3 Drawing of a Living Room Environment. This 

sketch illustrates the A/ V components and environment currently 

in the average living room - home entertainment system including 

television, stereo, VCR and speakers, and comfortably arranged 

furnishings. Using simple visual language to communicate the set­

ting of today's or future technology can help you with your emerg­

ing design. Drawings don't have to be expertly rendered to com­

municate important information, in fact informal sketches can be 

more effective at illustrating the transient nature of early or evolv­

ing ideas. 



Chapter 4 : Off-line Tools and Procedures 87 

Figure 4.4 Drawing of a Home Library. This drawing 

begins to scope out a possible front end for an on-line home library 

reference system. The looseness of the sketch captures an illus­

trative quality for the screen design, and the recognizable ele­

ments help to begin to piece together the interactive elements that 

might be presented as part of the user interface . 

The importance of drawings 
Drawings are an important off-line technique for designing user interfaces. 
Some of the reasons drawings are advantageous in this respect are that they: 

Present ideas in a visual way. 
Drawings are a transition from the words of your scenario to the visual expres­

sions of your user interface software. They allow you to explore your design 



8 8 Software by Design 

in greater detail, or to focus on a specific design element. Visual presentation 
of ideas is an important step toward clarifying the design-a picture is worth 
a thousand words. 

Provide a common ground for group communication. 
Since everyone on the design team can use this method to communicate, 
drawings can provide a common platform for participation. Even team mem­
bers with no previous drawing experience can provide critical visual repre­
sentations of their ideas and concepts using basic drawing techniques. 

Are portable and easily reproducible. 
Most drawings are created with paper and pencil, or other common materi­
als. Thus, they can be created in many different environments, or started in 
one medium and revised in another. Drawings are easily reproducible (pho­
tocopied) and easily distributed among team members. 

Can be embellished, if desired. 
Drawings are easily updated or revised. Changes can be made with the same 
pen or pencil used on the original drawings. Parts of drawings can be copied 
over while changes are made in other parts, or additions can be made to an 
existing drawing. Possibilities abound for extending the use of drawings to 
later drawings that explore other ideas. 

Can serve as the basis for later system components. 
Drawings can be incorporated in later off-line prototypes, on-line prototypes, or 
even the final system, if appropriate. Even if they are not used directly in later 
designs, the concepts they present can be evolved into the later prototypes. 

Steps for drawing 
1. Identify critical ideas or concepts that require further thought 

or working through from a visual standpoint. 

2. Gather appropriate materials for creating your drawings. 



Chapter 4: Off-line Tools and Procedures 89 

3. Generate at least one drawing for each concept you want to 
illustrate. 

4. Use drawings in team meetings to express your ideas to your 
colleagues. 

5. Refine or revise drawings based on feedback from others and 
your own development. 

6. Use drawings in later designs, if appropriate. 

Hints/ suggestions 
• Don't get caught up in the quality of the image. Start in and 

get your design across. You can revise the quality later if you 
feel it is appropriate. 

• If you are apprehensive about your drawing abilities, practice. 
Doodles during meetings count! Or, if you are really nervous, 
take a one- or two-day drawing seminar. 

• Develop a visual language you are familiar with one you can 
use repeatedly. In user interface design, finding standard rep­
resentations for people, hands, computer hardware, and facial 
expressions is useful. 

Exercise task 
Draw some preliminary ideas for the supermarket guide. Some of the queries 
you might address with your drawings are: 

• What does the guide look like (in a general sense)? 

• Who are some of the people who might use the guide? 

• What are some of the current information-gathering 
technologies? 



9 0 Software by Design 

• What are some of the elements in supermarket life? Consider 

produce, shelf products, check-out stands, supermarket per­

sonnel, coupons, flyers, and so forth. 

Method 4: Storyboards 

A sequence of drawings that tell a story about the user and the 

task to be accomplished by your system. 

Storyboards take drawings one step further in explaining the user interface of 

your system. They present illustrations of key concepts from critical points of 

your scenario. They illustrate the current process that new technology will 

update, the new system, or a specific component of your system. No matter 

what the content of your storyboard, presenting additional information helps 

to refine and clarify the function or ease of use of your developing system. 

The term storyboard comes from the film industry, where successive images are 

used to represent the overall storyline or plot. Storyboards are also used in ani­

mation to illustrate key segments of the story. Rectangular images or frames are 

laid out in a grid on a large piece of paper, one image per frame, with each image 

showing some evolution in the design. A line or two of text is usually written 

under each frame to define it. When you translate your scenario to visual form 

using storyboards, the text might actually come verbatim from your scenario. 

Storyboards provide representational views of the user of the system, the task 

he or she is performing, and the environment in which it is performed. What 

you include in each frame depends on the nature of the design. Images can be 

substantially different from one another within a single storyboard sequence, 

as long as they illustrate key points in the design. In user interface software 

designs, you might design a storyboard that first illustrates the user with the 

machine in the designated environment, then a number of frames that show 

the user interacting with the machine or software, some frames depicting the 



Chapter 4: Off-line Tools and Procedures 91 

changes in the software display as a result of a user action, and close with images 
of the effect the interaction has on the user or the environment. 

While storyboards can show system functionality, the purpose of storyboard­
ing is not solely to present linked screen shots of your potential system. Sto­
ryboards are most useful when they help to determine general factors in the 
interface, not simply what specific screens look like. 

Figure 4.5 Storyboard template Creating and using a tem­

plate for storyboarding can simplify your storyboarding process. 

This template shows a basic 6-frame layout, with space below 

each frame for textually describing the activity in the frame. Frames 

are small and probably appropriate for general or overview type 

storyboards which present basic concepts rather than system 

details. You may want to keep a number of different templates 

available so you can quickly duplicate the one most appropriate 

for your design. 

Typically, a good way to develop storyboards is to take your scenario and 
identify the key segments or scenes. Select the scenes that describe impor­
tant facts about the user, or the environment, or interaction with the sys-



9 2 Software by Design 

tem. Although developing storyboards need not follow writing scenarios, this 
sequence is a logical progression in your design process. Storyboards might 
also be appropriate at any time when features begin to surface that need visual 
design. You might find you get to on-line stages of development and are writ­
ing code when some aspect of the software is not clear. You can use story­
boards at this point to flesh out an idea, or to communicate your design ideas 
to others. Storyboards are an excellent design tool because they combine nar­
rative storytelling with visual representation of your design. 

Sally wakes up at 7:00 
each morning 

feeds Spot ••• 

She washes up and gets 
ready for work ••• 

grabs her briefcase ••• 

eats breakfast and reads 
the paper ••• 

and is off to work. 

Figure 4.6 Sally in the morning storyboard This story­

board sequence chronicles the early morning life of Sally, a typ­
ical office worker. It maps out what Sally does in the morning 

before she goes to work, and before she takes advantage of any 

computing technology available to her in the office. It might be 

used to help understand where technology could be applied in 

the future, but is not taken advantage of today. 



Chapter 4: Off-line Tools and Procedures 93 

The importance of storyboards 
Storyboards are useful design tools in many ways and can help you to: 

Extend the verbal scenario to further explore 
the user interface design. 
As storyboards are usually the next step after scenario development, they 
encourage you to extend your creative design process and further develop 

your user interface. Storyboards are a solid intermediate step in user inter­
face design. Use them after you begin to understand the technology from the 

scenario, but before you have enough information to begin building the sys­

tem on-line. 

Begin to think about details of the interface. 
Storyboards are often your first opportunity to start to think about visual 
details of the software-how it appears to the user, its look and feel, general 

layout issues, and so forth. It is a way to provide potential interface solutions 
through drawing. It can deliver a powerful message linking the elements of 

a scenario through pictures. 

Illustrate ideas to designers and users. 
Since storyboards get your ideas down on paper, you can use them as a com­
munication tool. Show your storyboards to other members of your design 
team to promote group design and to encourage design efforts. Show your 
storyboards to potential users to get their reactions to the system design. An 
informational user study might be appropriate to gauge the success of the 

system based on the plans as presented by the storyboards. 

Come to consensus as a team on 
critical feature and details. 
Again, because storyboards can be used by all team members to express ele­
ments of the design, they can be excellent consensus-building tools for crit­
ical features or details. Different team members might sketch out their solu-



9 4 Software by Design 

tions to various problems as storyboard frames, and you can link appropriate 
frames together to arrive at a group design decision. 

user moves mouse to color 
location on facing page 

user clicks mouse to 
select color 

swatch window with that 
color appears 

user selects an alternate page model animates to flip to the user now clicks the mouse 
to bring it to the facing page selected page to select a color on the new 

facing page 

Figure 4.7 Mouse Interaction Storyboard This storyboard 

series illustrates an interactive sequence by showcasing user inter­

action with the mouse in the upper left corner of each frame. This 

series shows the design of a color selection system based on a 

three-dimensional color model. Depending on where the user 

clicks on the model, either a color is selected or the model rotates 

to support selection of an alternate set of colors. This type of inter­

active storyboard is useful in working out the user interaction of 

your system, both in terms of what the user can do and how the 

system responds. 



Chapter 4: Off-line Tools and Procedures 95 

Steps for storyboarding 
1. Mark the key transitions, or critical points, in your scenario 

as key frames. 

2. Draw a picture representing each of the key frames. 

3. Draw the user, the system, or whatever else is important in 
this scenario. Some frames might show the entire environ­
ment, others might only show a computer screen. 

4. Use a simple graphic language and repetitive symbols through­
out the storyboards. For instance, use a hand in a bubble to 
indicate when the user must select something. 

5. Write a short description of each frame explaining what is 
going on, or to describe the transition from one frame to the 
next. Be sure to describe non-graphic effects or interactions. 

Hints/ suggestions 
• First draw a template for the frames. You might want to make 

several copies of this template, then simply fill in the illus­
trations for the storyboards. 

• Consider using self-adhesive notes as the frames of your sto­
ryboards. They make it easy to reorder the frames, or to insert 
new ideas or remove old ones (without having to cut or redraw 
images on a single piece of paper). They are also an excellent 
way to design as a team, since individual team members can 
draw frames and then the group can string them together on 
a tabletop, wall, or large sheet of paper. 

• Use a copy machine to duplicate repetitive parts so you don't 
have to redraw the same image .. This is especially useful for 
storyboards that show changes in a user interface that have 
a common background. 



9 6 Software by Design 

S\l\PLE GO AND R.El~RN 
De.:i.tr .... ~+io"' : ~======~ 
C,~o.ff 0 1' iT'""·.1-------' 
D~ .. \v\/'c_ Da..ie .__I __ _. 

~~.\-u~ ba'\c.= I ITi""e-·. C:=J OAn OPM Go~.-.m 

r8l Sc-...\...c.Ju I.e.. ·,~ ~\c ... l<.'l b le.. ['h<l rs o~""\,V... Lo<..>c.-r "'<>..ltC....) 

D E'~A~\\)~E 

t>A'TE : ._I ---""" 

"Tl ME : O AN'< I /t1 E' 

I I o AM O o~ All.\\/AL 
. . 0 P fV\ 0 D~ J>~1\>QE' 

t>A1E : I._ __ __.. 
llME' : 0 ,._N'< ~lt"IE 
1---i O AA 0 Of AD\ 
L--J OW.\ Otir-~'21'· 

~~s 
QNOf\l· ~r'PT~eiied (wi \\S~ o) 
0 Ob~n.. Lo....,a4-\' rQ..lfc.... 



Chapter 4: Off-line Tooh and Procedures 97 

NOlES lOT\tf AGENT 

AlterM-le Me.tal>\lov- - E'r'I~ Sc.re.e:n ~ ~ \ 
up a~ prc.\\"V'w~o."d \"'Y\to d~~'~J 

Figure 4.8 Travel request storyboard alternatives These 

storyboards show some alternative designs for an on-line system 

for making travel arrangements developed by the Stanford Uni­

versity Data Center. The first storyboard presents the current design, 

with interactive buttons along the bottom for selecting which type 

of travel information to enter. The second storyboard shows an 

alternative, where information types are presented as a file folder 

model across the top of the screen. The third design illustrates a 

less structured approach, based on a travel agent's model of pre­

senting pamphlets providing the various services typically required 

for travel arrangements. 



9 8 Software by Design 

Exercise task 
• Design and create a storyboard to illustrate your supermar­

ket guide scenario. Identify the key frames of the scenario 
and create an illustration for each of them. Where appropri­
ate, point out user interaction. Be sure that you: 

• Provide initial and final frames that are general in nature, and 
that present the user, the guide, and the overall environment. 

• Illustrate what is going on with the system, as well as the 
user's reaction to various activities. Use facial expressions to 
represent the user's reaction. 

• Incorporate elements of your preliminary drawings. While 
your drawings were not as directed as your storyboards should 
be, there might be elements elements you can reuse. 

• Start to really think about your system. While storyboards 
generally follow your scenario, there is plenty of room to be 
creative with design alternatives. 

• Develop alternative frames or even entire storyboards for ideas 
that you believe deserve consideration. Encourage input from 
others, and feel free to change your frames or suggest alter­
natives whenever you feel the need. 

Method 5: Flipbooks 
Visual representation of the system and the interaction that 
makes it function, usually screen shots linked together by 
user input. 

In order for your prototypes to start to approximate the final system, they 
should begin incorporating some interactive behavior of the on-line applica-



Chapter 4: Off-line Tools and Procedures 99 

tion. Flipbooks are a way to design a more concrete representation of your sys­
tem and to add interaction to your drawings and storyboards, mapping poten­
tial user input to system responses. Typically, flipbooks are paper and pencil 
images arranged in like a stack of paper each page representing a snapshot of 
the computer screen. Interaction is demonstrated by linking interactions on 
pages of the flipbook, with button selections or clicking choices, to another 
page. While all interactions in your final system may not be so absolute, you 
can use a flipbook to approximate them and begin to map out your system. 
You can present flipbooks to users to obtain feedback on system design. 

In building a flipbook, you can begin to design and explore your overall sys­
tem. and translate system features to actual functions in the system. While 
you need not represent every function of your system in your flipbook, it is 
a good idea to include as many as possible. Flipbooks support testing of sys­
tem functionality off-line, without having to design the underlying code to 
support a working system. Indeed, you can try out alternative interactions, 
multiple options for pages in the flipbook, and substitute one page for another 
to observe the interactions. 

Flipbooks are not simply the stacking of storyboards together. The intention 
is to have the pages of the flipbook look as close as possible to the final com­
puter screens. Storyboards, on the other hand, include either textual or visual 
information about the entire system, the environment, or the reasoning behind 
the design .. A flipbook does not include any such information. Storyboards 
tell a story, and are communicative tools used to inform design team mem­
bers. Flipbooks, instead, mime the actual system in detail. 

In building a flipbook, think about the overall structure of your system per­
haps drawing out a system map, a hierarchical representation of the screens 
or elements of your system. Where a hierarchical representation is possible 
draw out small graphic representations of your screen images and link them 
together using a linear tree model. A line from one screen representation to 
another when it is possible to go to that screen from the first screen should 
be represented as an interaction and supported in your flipbook. 



100 Software by Design 

D 

D 

Figure 4.9 Hierarchal system map Using a basic graphic 

language to describe the overall hierarchy of your system can be 

helpful in understanding interaction and navigation. This illustra­

tion of a system may shows how the layout the relation of vari­

ous interactive elements and screens can be used to examine sys­

tem movement. You can look for consistency of interaction, 

completeness of the interface, and balance of the system. 



Chapter 4: Off-line Tools and Procedures 101 

Figure 4.10 Flipbook for a Portable Device This flipbook 

illustrates a user interface for a small hand-held computing device. 

A foam core model was built to represent the device and house 

the interactive flipbook. Screen shots are represented on individ­

ual index cards, which can be fitted into the screen region of the 

model. Cards are " flipped" according to user interaction with the 

card currently showing. 

It is important to remember that you do not want your interactive features 
to be any more visible in your flipbooks than they will be in your final sys­
tem. This is particularly important if you plan to use a flipbook to perform 
user studies of your system's interaction. Instead of labeling the interactive 

moves in the flipbook itself, you can use various tactics to keep track of the 

interaction without presenting it to the users. One way to do this is to keep 
a written account of the results of any interaction on a separate sheet of paper, 
or simply number the pages .. Then, for each page in the flipbook keep track 

of what page to turn to according to what user action is taken. You might 
want to note these potential interactive moves on the back of each flipbook 



102 Software by Design 

page, localizing the information, or incorporate it into the design by, say, 
having liftable tabs revealing where to go upon selection. Use tabs that will 
not draw undue attention to buttons or other elements, if you don't you will 
only stall the identification of problems with your user interface later on by 
not being true to your system in this important off-line design phase. 

Because storyboards are visual representations of your system, you should 
design some storyboards before you go on to design and build a flipbook. This 
will allow you to take advantage of visual elements addressed in your story­
boards when you design your flipbooks. You may find you need to think about 
interactivity quite a bit before you can come up with the final interactive 
flipbook design, and working with a flipbook will help you to identify much 
of this interaction this because the page-by-page off-line design of a flipbook 
supports your conceptualizing. And like other off-line designs, it supports 
team design, as various team members might develop individual screens or 
flipbook pages. You will almost always benefit by developing a flipbook before 
an actual system, even if you don't use it to test users. In the long run, devel­
oping a flipbook can identify and solve problems and inconsistencies with 
your system before you have invested time in on-line development. 

Flipbooks are perhaps the most important of off-line prototypes you can 
develop because for users they are an approximation of the final system and 
can be used to gain feedback on the system's design. While other off-line 
designs help you to understand critical elements of the system to be incor­
porated into your flipbook designs, only flipbooks let you explore elements 
of the entire system. Some of the reasons flipbooks are most important are 
that they help you to: 

• Understand the extent and scope of your system: Using a flip­
book to develop system interaction will help you better under­
stand the scope and structure of the entire system, even if 
you don't develop a flipbook that includes every screen or 
every interactive move of your system. You can follow inter­
active paths all the way through the system, and see repeated 
patterns of interaction that occur throughout. 



Chapter 4: Off-line Tools and Procedures 103 

• Identify the role of each function and interaction in relation 
to all others: Building a flipbook and using it to approximate 
system interaction will help you to see how various functions 

in your system interrelate. You can scope out interactive 
inconsistencies, and build a more dynamic and successful 
system in doing so. 

• Test a system's usability before committing to working pro­
totypes: Flipbooks allow you to come close to system func­
tionality without having to actually build anything on-line. 
They are close enough to the real thing, so much so, that you 
can get amazingly significant feedback on system usability 
through user testing flipbooks. Usability studies of flipbooks 
can help you to identify large or general difficulties with your 
system, which you can then correct and retest before com­
mitting to anything on-line. Designing, building and testing 

interactive flipbooks are an excellent technique for user inter­
face design. 

Hints/ Suggestions 
• Use your storyboards as a starting point for your visual screen 

representations. Even if your storyboards do not clearly rep­

resent screen shots of the system, they include important 
information about what should be included. 

• Use already bound materials, such as a spiral notebook or pad 
of notecards, to hold your flipbook. You may want to design 
portions of the flipbook separately, then make a final version 
using such materials. 

• As with storyboards, use a copy machine or post-it notes if 
appropriate. 

• Don't feel like you have to develop the whole system in a 
flipbook before presenting it to users. If you are at a point 



104 Software by Design 

where critical user input might be helpful, show a partial flip­

book during user studies. 

• See Chapter 7 on User Testing to better understand how your 
usability studies might be conducted and to help you in design 
your flipbook to best meet your study needs. 

Exercise 
• Design and build a flipbook for your supermarket guide. If 

time permits, and you have access to potential users, show 
the flipbook to some of them to get feedback on system inter­
action. Developing the flipbook will require you to explore 
some of the physical elements of your system. Some of the 
things you will want to consider in designing your flipbook 
are: 

• How large should your "pages" be? If you are designing a large 
screen on-line guide, you will want to use large sheets of paper. 
If the screens are to be small, index cards may be better suited. 

• Will you use color or black-and-white images? You will prob­
ably want to be as true to the final designs as possible. 

• How will your flip book images change from your storyboards? 
What information will you want to omit, or develop further? 

• Design multiple options for certain interactions? Designing 
more than one possibility and then reviewing them side-by­
side might help you choose the best one for your flipbook. 

• How will you label the pages of your flipbook and represent 
the interaction? Will numbering be appropriate, or labeling 
the pages "Main menu", "Dairy section", etc. be a better 
method 



Chapter 4: Off·line Tools and Procedures 105 

• How will you "run" your flipbook? When you present your 
flipbook to potential users to explore system usability, will 
you have smooth interactions (so as not to distract the user 
from the tasks at hand) or will you allow the user to see the 
methods for maneuvering the flipbook. 

Method 6: Mockups 
Physical model of a system and its user interface illustrating 
interactive elements of the system, incorporating a flipbook 
or other off-line interactive design. 

Some systems involve special hardware or a novel use of the device which may 
critically affect the user interface. While the off-line prototyping techniques 
described above can be helpful in designing these systems as well, building a 
physical model or mockup of the system may be an important aid in develop­
ing the interactive technology. In systems where hardware interaction is crit­
ical, such as button pushing or highlighted choices on the frame of a device, 
mockups allow you to explore user reaction to these important elements. 

A mockup can be built from any combination of materials you believe are 
appropriate. Some that you might find most useful are cardboard, foamcore, 
masonite or plastics. The intent of a mockup is to represent the final system 
not build a true representation of the final system .. A mockup should read­
ily present system functionality and layout being a substitute for the real 
thing allowing observation of interaction and functionality without spend­
ing the time to build the real system. A mockup-flipbook integrated system 
can be particularly useful for usability studies when a new type of hardware 
is planned A mockup incorporating an index card flipbook, lends itself par­
ticularly well to test users' reactions to system interactions, as well as to the 
overall system. 



1 0 6 Software by Design 

The Importance of Mockups 
While building a mockup is not critical to the design process for each and 
every application or system, it can be a useful technique for certain systems, 
particularly those that depend on novel hardware interactions. Some of the 
reasons it might be advantageous to develop a mockup is that mockups can: 

• Support exploration of physical characteristics that paper 
alone could not. 

• Give clues as to interaction between software and hardware. 

• Allow you to test additional elements of a system without 
building the real thing. 

• Provide additional criteria for usability evaluation. 

Steps for Building Mockups 
1. Identify and gather appropriate materials. 

2. Decide if you will incorporate a flipbook in the design. If so, 
at least start to design the flipbook so that you have enough 
of it to insure it is sized appropriately. 

3. Design the mockup, thinking about how you will use your 
materials. Careful design can help you avoid wasted time 
or supplies. 

4. Build the mockup. 

5. Test your mockup, making sure components are sturdy 
enough to withstand any usage or testing you plan. 

6. Complete the flipbook component if you have included one 
(and not already done so). 



Chapter 4: Off-line Tools and Procedures 107 

Hints/Suggestions 
• Make use of available materials. 

• Take advantage of materials with which you already know 
how to work. Again, the purpose of a mockup is not to actu­
ally build a working system, but to quickly and efficiently 
explore the physical elements of your design. Using materi­
als you can readily manipulate is a definite plus. 

• Consider the purpose of the mockup before you build it. Focus 
on the elements that are important to your exploration, not 
necessarily every detail of the system. 

Exercise 
• If your design for your supermarket guide entails physical ele­

ments in the user interface design a mockup of the system. 
Remember that the mockup should focus on the elements of 
the system which might not otherwise be evident in the paper 
prototypes of your storyboards or flipbook. In designing the 
mockup, you will want to think about: 

• Identifying the particular interactive elements first, so that 
you can focus on them as the critical elements of your 
mockup--such as certain push buttons. 

• Incorporating the flipbook you designed for the last exercise. 
Even if it is not true to size or form, for the purpose of this 
exercise it may serve well enough. 

• Knowing that you will use the mockup as a test piece before 
you build it may affect the way you build it. 



Chapter 5 

On-line Tools and Procedures 

What Are On-line Tools 
and Procedures? 

Early user studies and off-line prototypes are excellent ways to take advan­

tage of non-computer techniques to help you better visualize and understand 

your designs. However, you are building a software application or system, 

and at some point your design will need to address the many issues involved 
with taking it on-line. While it can incorporate many off-line methodologies, 

a successful software design ultimately depends on the computer platform. 

Many on-line tools and procedures are available to you to continue your 
design process and to address the on-line elements of your software. This 
chapter presents some of the techniques for using on-line tools and proce­

dures in developing both prototypes for your system or application, as well 

as for building the system itself. 

Before you build the actual system, you should design and build on-line pro­
totypes to help address the technology-based issues of your software. Think 

109 



11 0 Software by Design 

of them as the beginning of your on-line designs, though they might not actu­
ally evolve into your final system. On-line prototypes should be considered 
as disposable as your off-line prototypes-if they do not meet system needs, 
don't incorporate them simply because they exist. You will probably be able 
to use elements of your prototypes, but if you allow for disposability from 
the beginning, you will protect yourself from potentially damaging decisions 
later on. 

You can use on-line prototyping and techniques to work on many aspects of 
your system that were hypothetical until this stage of development: 

• Experimenting with certain physical components, such as 
screen size and input device interaction. 

• Determining the appropriate software platform. 

• Testing development tools. 

• Testing existing modules that might be included in the final 
program. 

• Identifying system speed and memory requirements (or 
constrain ts). 

• Determining program size and storage requirements (or 
constraints). 

• Experimenting with image and sound data access and stor-
age and performance. 

These issues cannot be addressed in the early concept phases of design (nor 
should they be). By moving your design process on-line, you can begin to deal 
with the technology-dependent aspects of your design and understand the 
effects as you develop your system. 

Your on-line prototyes might not be developed on the hardware platform of 
your final product. You might not have access for testing purposes to the 
hardware or software that you will use ultimately. You might not even know 



Chapter 5: On-line Tools and Procedures 111 

the target hardware or software platform! On-line design can help you to iden­
tify the appropriate platform. 

Before deciding which platform to use for this stage of development, ask your­
self this question: What is the purpose of this on-line prototype? If it is for 
testing interactivity during user studies, then the exact platform is not crit­
ical. It is more important to pick a platform with familiar software proto­
typing tools so you can quickly mockup your designs and get necessary feed­
back. If, on the other hand, you are trying to understand specific hardware 
constraints and how they affect the design, then you should use the hard­
ware the final system will use. You might want to develop different designs 
on alternate platforms-the decision is up to you. The specifics of your design 
problem will help lead you to the appropriate hardware or software for on­
line design. 

On-line designs are useful for obtaining user feedback. Presenting users with 
"working" computer-based versions helps you identify some of the critical 
issues of a system. For example, suppose you are trying to decide on the bal­
ance to strike between image quality and program speed. You could develop 
several prototypes, each representing a different ba~ance between the two. 
Present the prototypes to potential users. Use their feedback to help you reach 
a decision. On-line designs that illustrate various options are effective deci­
sion-making tools. 

On-line designs are typically developed after off-line designs. This is because 
off-line designs are most effective for getting at the large issues and elements 
of the user interface. Time spent developing off-line designs saves you time 
with on-line designs. However, computer-based designs might be developed 
simultaneously with off-line designs, particularly if potential problems or 
system constraints are known. This is an excellent approach when you are 
lucky enough to be part of an interdisciplinary team where visual designers 
are working on the overall design, and software engineers are addressing some 
of the known on-line issues. Typically such early on-line designs gather infor­
mation or evaluate options, and later on-line designs incorporate the efforts 
from the user studies and off-line designs. 



l l 2 Software by Design 

The Advantages of On-line Tools 
and Procedures 

Your on-line designs are the basis for your user interface software. They are 
important in.the overall development process because they: 

Help you prepare for the real system. 
On-line designs help you learn about and structure the design for your final 
software application or system. They introduce you to the issues you will 
face in implementation and give you some experience working on a poten­
tial, or known, platform. Moving your designs on-line will prepare you for 
actual system development. 

Start the software development phase. 
While off-line research and prototyping are valuable to the development 
process, at some point you do have to write the software. Taking advantage 
of on-line tools and procedures helps you start on your software, without the 
worry that you aren't ready to build the real thing. On-line designing and pro­
totyping will help you make the transition to building your software appli­
cation or system. 

Promote rapid prototyping with extension possibilities. 
Approaching your on-line designs as part of the overall design process can 
help you accomplish rapid prototyping techniques, rather than belaboring 
the details of the intended software development. It helps to think of your 
software elements as modular and reusable, since you will probably want to 
extract portions for inclusion in other projects. 

Begin the transition from off-line designs. 
On-line designs are a logical next step for your off-line designs. While you 
probably could prototype off-line for more time than is typically given, there 
comes a time when you have issues and questions that can be addressed only 



Chapter 5: On-line Tools and Procedures 11 3 

by developing on-line work. On-line tools and procedures help you through 
the transition from the off-line designs and their related issues to an on-line 
format that paves the way for the final software. 

Provide a more realistic platform for user studies and tests. 
While you can learn a significant amount about a system by conducting user 
studies with off-line prototypes, sometimes certain feedback can only be 
attained with an on-line piece. Depending on the nature of the software under 
development, users might need to see parts of it running on a plausible hard­
ware platform to envision how it will work, or what it will do for them. Mov­
ing your designs on-line will provide you with a more realistic test of your 
software with potential users. 

Point out potential system constraints. 
Working on-line helps you resolve the issues introduced in your off-line work, 
and might reveal additional issues or constraints not dealt with earlier. Work­
ing on-line will be a better representation of the nature of the final software, 
pointing out issues such as screen size or resolution, input device abilities, 
storage or memory limitation, or other physically binding elements not con­
sidered when you were working off-line. 

HoYI to Select, Design and Perform 
On-line Tools and Procedures 

The criteria for selecting and applying on-line tools and procedures are sim­
ilar to those for off-line tools and procedures. They are, after all, used for sim­
ilar purposes-to design and develop your software system. As with off-line 
tools, it might seem difficult at first to decide which on-line tools to use when 
developing your designs. With time, you will simply know from the nature 
of your design problem which techniques are appropriate. Follow these guide­
lines when making your decisions: 



l 14 Software by Design 

Determine how much time you have in your schedule. 
As with so many design techniques, time is probably your most significant 
factor in identifying the methods that will work best for your design prob­
lem. Unfortunately, project schedules and deadlines will often dictate the 
techniques used. Work backwards from known deadlines, estimating how 
much time you will be able to spend on developing your on-line designs. Esti­
mate the amount of time required for the various techniques you will apply 
to your design problem. 

Once you know your time limitations, you can look for problems or issues 
you know you must address with on-line designs. Allocate time for these 
types of design pieces first. If you still have additional time, then you can 
assess if other methodologies will be useful, and which ones to apply. 

Look at what you already know about 
constraints or potential problems. 
Major issues for on-line prototyping are often identified in earlier develop­
ment stages or even known from the start. Such issues might include whether 
or not users can successfully manipulate a targeted interactive device, or if 
an intended software development environment can support the range of 
bitmap images that will be necessary to implement your targeted design. 
Being aware of these constraints from the start can help you decide how to 
apply various on-line techniques. You might need to conduct some early on­
line studies to evaluate whether the given constraints are truly a problem for 
your design, or you might look for available clip art if you know you need to 
generate a high number of on-line images. While constraints are perceived 
as negative limitations on your range of design options, they often wind up 
helping you make decisions in your overall process. 

Assess the equipment and tools available to you. 
On-line designs give you an opportunity to assess the equipment and tools 
you will use and to evaluate hardware issues. Once you know the hardware 
and software you will use for your development, you can evaluate equipment 



Chapter 5: On-line Tools and Procedures 115 

for how it meets your needs and then apply techniques on that platform to 
determine the specifics of your design. 

If you are choosing from a variety of available platforms, on-line designs can 
help you to compare the various platforms, evaluating which one best meets 
your needs. As you evaluate the hardware, you might identify problems or 
constraints that help to make your decision clear. Spending time early on 
comparing the equipment options could save you significant time later by 
helping you to avoid an inappropriate platform for your design. 

Assess what you have learned from off-line prototypes. 
Your earlier off-line designs will often indicate problems or questions that 
can be addressed only with on-line designs. Earlier work might point out the 
need for representing visual images on-line, or testing actual components of 
the system, or evaluating whether or not a video segment can be interrupted 
and reset in real time. 

Even if your off-line designs did not suggest obvious areas for on-line work, 
you might go back over your designs or notes and reevaluate whether or not 
anything there readily lends itself to an on-line prototype. You might find 
that certain elements of the system can now be designed, built, and evalu­
ated once you move your development on-line. 

Take into account what you have learned from user studies. 
As with earlier off-line designs, early user studies provide obvious indica­
tions of the types of designs you want to conduct on-line. Sometimes your 
users will ask you directly if something will be implemented in a certain 
way, or point out areas where details have not been provided and will need 
to be before the final software can be built. IBe sure to make note of these 
issues during your studies, since they will be valuable in helping you during 
on-line prototyping.) 

Even when users are not so direct in their feedback, they can lead you to these 
problem areas. Evaluate user performance, asking yourself what kinds of on-



1 1 6 Software by Design 

line work are appropriate. Often in assessing early user studies, you will find 
indications of what issues should be addressed by an on-line study. 

Evaluate the purpose of your designs. 
Ask yourself from the beginning what you hope to accomplish with your on­
line designs. 

If you are building on-line designs to test implementation details-such as the 
capabilities of a certain software development environment, or whether or not 
you can successfully play sound or video from within your application-then 
you will not have to worry about the visual details of this on-line piece. 

If you are designing a backbone or some other module of code that might be 
adapted into a future prototype or into the final system, then spend a little 
more time structuring your code and document it accordingly. Document­
ing the code is important, whether or not you intend to share the code with 
other development team members. (We all can forget why we did something 
a certain way, particularly if it's been some time since we looked at the code.) 

If your designs will be used in user studies to provide additional feedback for 
development, then you have additional requirements to consider. You might 
need to include more accurate visuals, or implement an interactive driver if 
people will actually work with your piece during the user studies. Under­
standing what you will do with your on-line designs will dictate the method­
ologies that will work best for developing the on-line design. 

Consider what might be translated to the final system. 
Off-line prototypes, while they might show you important facts about your 
design, can not be directly incorporated into final working software. On-line 
designs can be, when appropriate. The danger with on-line designs is that 
part or all of them will be directly incorporated into the final software sim­
ply because they are there. You can save yourself valuable development time 
by asking, before you create an on-line prototype, if the form and function 
you envision will be truly useful. If the response is no, or even a weak yes, 



Chapter 5: On-line Tools and Procedures 117 

then reevaluate your prototype design. Knowing helps to steer you toward, 
or away from, certain on-line methods. 

Method 1: Early On-line 
Explorations 

Studies built with prototyping tools or simple code sequences 
that examine the different components that make up 
a system. 

Begin your on-line designs with short, simple modules of code that test a 
potential system feature, or that allow you to write a function in a particu­
lar development environment. This piece of code does not need to be a part 
of your final software application or system. It might serve no purpose other 
than to give you practice writing code in this language or environment. How­
ever, the importance of the code is that it plays a necessary role in your soft­
ware development. These segments of code are referred to as early on-line 
explorations. 

Early on-line explorations are open-ended in nature, and can be any early 
piece of code that helps in your on-line development. For example, you might 
write code for reading and interpreting input from a particular input device, 
or for accessing video drivers. You might use on-line explorations to trans­
late off-line designs to an on-line form. This could involve scanning in visu­
als you used in an off-line prototype and representing them in a target soft­
ware environment. Or it might mean that you implement a proposed 
interactive module to see if it can actually work in your on-line system. No 
matter what way you find it appropriate to convert your off-line designs, they 
can be an excellent indication of the early work you will want to do on-line. 

Early on-line prototypes do not have to wait for finalized off-line designs to 
get started. On the contrary, they might even begin before off-line designs 



1 1 8 Software by Design 

begin, particularly if known issues limit the capabilities of your on-line 

designs. For instance, if you are unsure whether or not your platform will be 

able to support color software, limiting you to black and white designs, you 

might want to check whether or not color is feasible. The result should direct 

the use of color or black and white only in your off-line designs. As soon as 

potential platforms and technologies have been identified, you will want to 
start your on-line design process. 

Figure 5. 1 Early on-line prototype hardware. When 

new or exploratory input devices are used, it is probably a good 

idea to build an early on-line prototype. This photo of a thumb­

wheel mouse (developed by Dan Yenolia of Apple Computer) is 

an example of such a prototype input device. It is a standard com­

puter mouse with a roller wheel. Early on-line prototypes can help 

both to test the device drivers themselves to be sure the input 

device functions properly and to begin to try out possible inter­

pretations of interactive behavior. 



Chapter 5: On-line Tools and Procedures 119 

On-line explorations are appropriate during the course of either early user 

research or off-line prototyping. When either of these activities introduces 

issues critical to your on-line system, conduct an on-line project that addresses 

them. On-line designs resolve these issues and make your off-line process 

more accurate. They also might suggest a solution that was not apparent in 

the off-line design phaze. Performing on-line explorations in conjunction with 

other design development enables you to incorporate early findings into your 

software, too. Depending on the nature of your project, you might choose not 

to turn to on-line procedures until you obtain some results from early stud­
ies and off-line work. 

Early on-line explorations should begin before any actual design, but these 

explorations need not be limited to a particular stage of development. They 

might be appropriate any time an implementation or software function ques­

tion arises-something software developers know can happen at any point 

in the design process. Additionally, short on-line explorations can be valu­

able for testing projected useability. The nature of your design problem will 

help you to see where on-line explorations can be used best. 

The importance of early 
on-line explorations 
Early on-line explorations support critical efforts in the software develop­

ment process because they give you hands-on experience with the software 
itself. They are important to the overall design process because they let you: 

Test feasibility before making a maior investment 
in a technology. 
On-line explorations allow you to quickly and simply evaluate singular parts 

of the system without having to build the whole thing. It makes much more 

sense to complete a short development task that might help you resolve issues 
or problems with your system than to try to isolate that problem within the 
context of your entire program. Early on-line designs can often help you eval­

uate whether certain software or hardware systems are appropriate for your 



120 Software by Design 

design. They can save you from making a mistake in adopting a specific plat­
form without knowing how it will handle some issues that are critical for 

your design. 

Reduce on-line time and effort. 
Probably the best reason to conduct early on-line explorations is to save your­
self time and trouble later. While at first it might seem like it takes added 
time to conduct the early work, this early work typically answers questions 
and makes less work overall. This is particularly true when you find your­
seli incorporating the early explorations into later software. When you already 
know that the software supports the function for which it is designed and 
that the function is appropriate for the environment, you can quickly inte­
grate that portion of the program into the final product, saving time in the 
long run. 

Allow the software engineer to begin working while 
waiting for the results of early users tests and off-line 
design evaluations. 
Earlier chapters advocate conducting research and building off-line designs 
before the actual software development starts. Note that this is the actual 
software development, not any software development. You can begin early 
on-line designs as soon as software issues are identified, or when you realize 
that implementing some on-line designs might help direct user studies or 
off-line prototyping. Early on-line designs help the software engineer get 
involved with software design without writing the actual code (which could 
potentially limit design options in the long run). 

Compare implementation on various platforms and identify 
the appropriate platform for actual development. 
One useful activity a software engineer can perform in early on-line designs 
is evaluating the platform for development. If potential platforms are known, 
on-line explorations might be devised that help to compare one platform to 
another. These pieces enable the software engineer to make valuable contri-



Chapter 5 : On-line Tools and Procedures 121 

butions to the overall development activity, and to prepare for both the devel­

opment of further prototypes and the final system. 

Home Control Protot pe ~___::::_ - --- -~-

0 EVENTS 
• Fir\t Floor 

D Morning 

D Evening 

D Dinner 

D Bed T ime 

D Kids Rooms 

D Movie 

Q 
Staiu 

Q 
Q Hlll Lliht 

QjJ Hlll Light 

living Room TIT Entry 

IQll Hall 

ITCR 

Q IQD Bath 

Floor Lllll.p Av.iio Amp. 

D Reiiding Dining Room 

D Emergency 
Kitchm 

0 I All Lights 

Room Light I Spot Lllll.p 

I Everything 

Set Up I 

Figure 5.2 Early on-line prototype for the home con­
trol stack. This HyperCard stack was created early in the devel­

opment process of a remote control application for accessing var­

ious home electronic devices. While not pretty to look at, it shows 

access to the main functions projected to be important to the sys­

tem. Th is basic interface was not intended to be shown to users, 

but rather to test techn ical feasibility of accessing these features 

from a HyperCard stack. Early on-line prototypes such as these 

enable you to confirm that you can accomplish the basic tasks of 

your system. Your success (or failure) may help influence the design 

of your system. 



122 Software by Design 

Steps for performing early 
on-line explorations 

1. Write a code module in the targeted language or software envi­
ronment. Build a piece of code that addresses some known 
problem, or will be incorporated later. 

2. Practice input and output routines on target hardware. If visu­
als will be displayed on a graphic screen, begin to understand 
display requirements. If user input will be with a mouse, 
understand event dynamics by writing a short sample pro­
gram to read mouse input. 

3. Identify inter-dependencies by separating logical components 
of the software. Understand how various modules will need 
to communicate. 

4. Build small applications or subsets of the type of application 
to be built. Sample applications allow the exploration of var­
ious components without building a larger scale system. 

Hints/ suggestions 
• Build many small prototypes rather than one large one, with 

each small prototype dedicated to a specific technology or fea­
ture. Your findings, from these small component-based pro­
totypes, will be easier to incorporate into your future system. 

• Take advantage of early on-line prototypes to test out poten­
tial hardware or software novelties. This is your opportunity 
to see how the technology might work for you or against you. 
It is to your advantage to find out as early as possible if there 
will be problems in your system development, and to com­
municate them to other team members. 



Chapter 5: On-line Tools and Procedures 1 23 

• Communicate with other team members who are conducting 
early user studies or developing on-line prototypes to see if they 
are counting on certain technologies. These might be the tech­
nologies you want to explore with your early on-line prototypes. 

• If you have extra time in these early stages (while waiting for 
results from early studies or other prototypes), spend some 
time exploring system extensions or alternatives. They might 
prove handy later. 

Exercise task 
Think about, plan, and implement at least one early on-line prototype for 
your supermarket guide. Consider experimenting with potential input or out­
put devices, or software models of interaction. Before you begin to build any­
thing, spend some time organizing your thoughts on what will work best for 
you. Some things to consider are: 

• Is there any hardware with which you are unfamiliar and that 
you should test? If so, a prototype involving such hardware 
would be a good candidate. 

• Do you know of any particular software necessary to support 
your system? If so, a prototype involving this software might 
prove useful. If not, you might design a small test prototype 
that you can try on a range of software platforms that are 
available to you, and use this prototyping stage to evaluate 
your options. 

• What can you learn from designing and building this early 
prototype that will help you later on? 

• What are the implementation details-size, memory, cost, 
time? If they are factors in your prototype, then they will be 
factors in the development of your target system. 



124 Software by Design 

Method 2: System Requirements 

Explanation of the needs of the system from the engineers or 

programmer's point of view. 

Early in the development of the software itself, you should write a plan of 
action that explains what the system will do and how it will do it. This is 
the system requirements document. It does not need to be long or formal, 
just a simple description of the system that can serve as a reference, and as 
a basis for further work for the system engineers or programmers. A useful 
system requirements document could be anywhere from two pages to one 
hundred, depending on your system and how you work as a software devel­
oper. Overall, system requirements should present the information telling 
you what you need to build the system. 

Many companies and organizations have a process in place for software devel­
opment that includes system requirements documentation. If yours is one 
of them, you could address the issue of a system requirements document by 
completing your company's standard working procedures. 

Whether you use a documentation procedure already in place, or devise one 
yourself, remember that the purpose is not to meet some company policy. It 
is to help you prepare for the implementation of your system, and to lay out 
a plan for software development. It should help you better understand any 
hardware or software platform requirements or constraints, and give you 
some idea of how individual elements of the system will work, as well as a 
picture of the whole system working together. It will help you answer some 
of the questions necessary before development can continue, and indicate 
other areas where further development or research might be necessary. If your 
company's documentation process does not address these issues, then it is 
in your best interest to take a bit of extra time to draft a system requirements 
document that will suit your needs. 



Chapter 5: On-line Tools and Procedures 125 

Writing the system requirements 
documentation 
While there is no precise formula for writing system requirements, there are 
a number of elements that you will probably address for any application or 
system you are developing. 

Implementation issues. 
Address implementation issues specific to running on the intended hardware 
or software. If you do not know at the time of writing of the system require­
ments what either the hardware or software will be, then you can use the 
requirements document to list known characteristics of the target platform. 
Completing the systems requirements as an exercise might help you deter­
mine either your hardware or software platform, or at least narrow your search 
by having you think about these very real system development issues. 

System components. 
Analyze the components of your system. With as much detail as you can, 
tell about what each module of the software will do, how they will link 
together, and which parts of the software are necessary for user interaction. 

Audience for the documentation. 
Think of writing the system requirements as drafting a contract for what you 
will be building. Depending on any company policy you might have in place 
or on the size of your design team, others might write the document with 
you or be part of the target audience. Clearly, however, as system imple­
mentor, you are (at least one of) the target audience for your system require­
ments document. You will refer to it to see what you had in mind for imple­
mentation throughout the development process. 

Structured development plan. 
While it might evolve as your work continues, you should use your require­
ments document as a structured basis for system development. If your require-



126 Software by Design 

ments change, change the document, even if only informally scribbling on 
it. This way, you will be able to track the development process. Using the 
system requirements document as a structured plan can help you to best orga­
nize your implementation process and proceed in a logical and efficient way. 

How to use the system requirements 
documentation 
You probably learned about system requirements, as it is presented here, in a 
software engineering program at school, or you might find that it is similar to 
processes that are in place at your work. You will probably find that the doc­
ument itself is similar to other documents with which you are familiar. The 
primary difference, however, is the role it plays in system development. Write 
a system requirements document after early design and development have 
clearly indicated system needs. Start with the user needs that arise from 
research and the designs evolved during earlier prototyping stages. Once your 
basic user requirements are known, then write the system requirements doc­
ument to insure that the system you develop meets these design criteria. 

In traditional software engineering programs, software developers are taught 
to write system requirements at the very beginning of the development process. 
In practice, this forces you to develop a system that addresses only what is 
known about hardware and software at the time the project begins. This can 
severely cripple your ability to address user needs. 

While you might draft your system requirements before you begin building 
your system, which will save hack time later, recognize that there is a lot of 
design and prototyping work that will go on before you implement the sys­
tem. You should elaborate on and refine the document after design and pro­
totyping provides significant information about the nature of the system. 
Remember to revise your system requirements to reflect changes in the design 
that develop as you begin to implement the actual system or as further research 
or design work indicates a need for change. Looking at the system require­
ments as an informal but influential part of the overall design process will 
help you to best use them to meet your needs. 



Chapter 5: On-line Tools and Procedures 127 

The importance of system requirements 
System requirements documentation is important to the system implemen­
tor for many reasons. Some of the most important are that they help you to: 

Understand the system better in early stages. 
Even if you believe you have carefully thought out many aspects of the sys­
tem you are developing, writing down your thoughts will almost always help 
you to find inconsistencies or design flaws. It is extremely important that 
you understand your system implementation and the structural decisions 
you have made at the very early phases. As your system develops and gets 
more complex, your design structuring problem only continues to grow. When 
you use system requirements documentation to understand your system's 
functionality and implementation early on, you set a strong guide for further 
development work. 

Document a development plan for referral later. 
Writing down your system implementation plan at the beginning of your 
development process gives you a point of reference. You can tum back to 
your documentation to recall what you intended to do with your design, or 
why you chose an initial underlying structure. The document preserves your 
thoughts, helping you to decide later if you are adhering to the plan or if you 
should revise the design. 

Make an agreement among implementors. 
If your implementation will be done by more than one person, then you should 
draft the system requirements document as a sort of contract among imple­
mentors. Different team members might contribute different sections of the 
requirements document, describing the parts they will be building. Even if 
only one person writes the document, team members can agree to the final 
version and work together to keep the document current as the system imple­
mentation progresses. 



128 Software by Design 

Home Control System 
Preliminary System Requirements 

Penny Bauersfeld 
February 1, 1990 

OVBRVIEW This document describes a system for 
control of various home appliances through a 
centralized computer software interface. The 
software system will be capable of turning 
individual appliances on or off, giving the status 
(on or off) of each appliance, and completing a 
series of related control events, such as turning 
off certain appliances and turning on others. The 
system will have additional control over lamps and 
other lighting devices, being able to control the 
brightness of such fixtures. This document presents 
the desired functionality and the known hardware and 
software components of the system. 

HARDWARE The system hardware will consist of a 
standard Macintosh computer as the control center, 
and outlet controls manufactured by the XlO company 
as the interface to the home appliances. The XlO 
controllers are monitored by a central control box 
which connects to the Macintosh through one of the 
serial ports. The configuration is as follows: 

D 
= 

Figure 5.3 - Sample Home Control System Require­
ments. This sample, on the following three pages, of a systems 

requirements document highlights the key elements of a require­

ments statement and illustrates that requirements don't have to be 

long or complex to be effective. Sections of the document describe 



Chapter 5: On-line Tools and Procedures 

The XlO central controller communicates with the 
remote unit through the standard plug outlets 
already installed in the home, so no additional 
hardware support should be necessary. 

SOFTWARE The XlO control package comes with a series 
of HyperCard XCMDs which can be used to access the 
central controller. HyperCard will therefore be used 
as the front end for user interaction, and the user 
interface for controlling the devices will be a 
HyperCard stack. While the XCMDs for interacting 
with the controller exist, a number of other 
constructs will be necessary for smooth user 
interaction. These include: 

• representations of individual devices for control, 
and a means of representing selection among them 

sequential command structures for executing series 
of related control actions (to support user 
"events" as identified in task analysis stage) 

• centralized on-off control •switch" which can act 
on the currently selected device, and includes a 
dimmer to control light brightness 

• construct to track information about the state of 
the various devices, such as whether it is on or 
off, and if it is a light how bright it is 

key elements of the Home Control system for accessing various 

home appliances remotely through a computer interface. These 

key areas include system hardware (with a functional diagram}, 

system software and a projected schedule for development. 

129 



130 Software by Design 

Each of these elements will have to be tied in with 
the graphical visualization used to represent its 
functionality on-screen. 

SCHEDULE The following list of milestones is a rough 
estimate based on understood needs of the system. 

15 FEB test and incorporate existing XCMDs for 
device control 

1 MAR complete sequential commands for user 
nevents• complete control switch 
with dimmer 

15 MAR incorporate appropriate graphics 
phase I prototype available for 
user tests 

10 APR update prototype based on feedback from 
phase I tests phase II prototype 
available for user tests 

1 MAY deliver final system 



Chapter 5: On-line Tools and Procedures 131 

Schedule system development. 
An important part of the system requirements document should be a short 

schedule of major system milestones, including total projected time and a 
date at which each milestone will be delivered. Drafting a schedule early on 
will help you achieve important delivery dates, and accurately project the 
amount of time necessary to meet them. If you are working on a multi-per­
son team, include information about each team member's responsibilities. 

Steps for conducting system requirements 
1. Analyze the needs of the system. 

Think about the hardware: 

• 1/0 devices 

• speed 

• cost 

• size 

• color 

• sound 

• multi-media 

• complexity 

• portability 

• integration 

Think about the software: 

• range of tools available 

• interconnectivity 

• imports and exports 

• extendibility 

• flexibility 

• programming language issues 



132 Software by Design 

2. Build small prototypes,if appropriate. Short experiments early 
on might help you avoid spending time later building elabo­
rate but useless systems. 

3 Draft a schedule for development, including responsibilities 
and deliverables 

4. Work with other team members to meet all concerns. By incor­
porating feedback from user-focused or graphics-focused experts, 
you will be sure to address many aspects of the interface. 

Hints/ suggestions 
System requirements are for you-to help you plan your system and provide 
a way to document your intentions. Do not feel that they must meet some 
strict format requirements. While you might have similar documentation 
required on your job, be sure to develop a derivative that answers your con­
cerns, not just those dictated by someone else's documentation standard. 

While the type of system requirements presented here are informal in nature, 
you might want to create a more formal format as a personal reference, so 
you are sure to address issues that are important to you each time you develop 
system requirements. Some of the "standard" sections to include might be 
a brief description of the system, a list of hardware and software, any con­
straints you are aware of ahead of time, and a tentative schedule for imple­
mentation. Of course, not every category will be important every time you 
draft system requirements, but having a format as a reference will help you 
to organize your requirements. 

Use diagrams or illustrations where appropriate to clarify system features or 
interrelationships. 



Chapter 5: On-line Tools and Procedures 133 

Exercise task 
Draft, then write the system requirements for your supermarket guide. Your 
system requirements will probably be between two and five pages in length, 
and address the following issues: 

• What is the basic purpose and function of the system? What 
will it do, and how will it do it? 

• What hardware do you anticipate you will use for the sys­
tem? Will all instances of the system (if there are more than 
one) have the same hardware? Is there any additional hard­

ware that might be supported? 

• On what software platform will the system run? Will you 
require any special programs or modules in addition to your 
system? 

• How will you organize your own software application or sys­
tem? What will be the basic structure and modules? 

• Would a diagram help to illustrate how the system functions? 
You might want to illustrate the physical system, the hard­
ware or software relationships, or anything else you think 
would clarify your requirements document. 

• What is your approximate development schedule? Define the 
segments and how long it will take you to implement each 
of them. Putting dates on development schedules can be scary, 
but it can also help you to understand the work you must do. 
Reaching those milestones will help you feel as though you 
are accomplishing the necessary steps to get your guide built 
and out the door! 



134 Software by Design 

Method 3: Building a Backbone 

Creating code that serves as the underlying structure for a 
developing application or system. 

Sometimes short code segments built for your early on-line prototypes will 
not be enough to get at questionable system functionality. You will want to 
know if a targeted or potential software development environment meets 
your needs in a more general, overall sense. For these system questions, you 
must get at the underlying structure of the software system you are build­
ing. Designing and implementing a system driver or backbone allows you to 
evaluate overall system capabilities and test your software. 

Create the backbone with the intention of supporting modifications in the 
design. Your design will undoubtedly need alternatives and changes as your 
goals change. The backbone should not be a rigid underlying framework that 
limits further design or programming work. It should be a flexible base struc­
ture that will support the emerging design all through its development. The 
underlying structure itself, the backbone, need not change if you have designed 
it to support the system development needs. 

The most important element of your backbone is flexibility. It should sup­
port whatever instance data you believe will be important for you design 
(bitmaps, user interactions, and so forth); and you should be able to substi­
tute data, as long as it is of the same basic type, to accommodate any further 
design findings. It should also be supportive of changing entire modules of 
the software, so that if an alternate algorithm or approach to the coding design 
is used, it can readily be adapted within your backbone framework. Overall, 
remember that you do not want the backbone to constrain any later system 
developments. While it is impossible to always have the foresight to know 
what those developments might be, keeping a flexible approach can best help 
you prepare for future changes. 



Chapter 5: On-line Tools and Procedures 135 

The visible end product of your backbone need not be pretty or look much 
like your intended system at all. You are not writing a backbone to see what 
the system will look like, or even to use to show potential users to gather 
feedback. You and other members of the software development team are the 
primary customers for a backbone. 

You might want to develop a backbone even when you know it won't be used 
as the basis of your later system. Sometimes you will develop a backbone 
simply to see how the whole system comes together, even if it is not on the 
target hardware or software platform. In this case, the backbone does not have 
to be in same programming language as the final system (but it helps if the 
languages are similar so basic constructs can be simply substituted). Of course, 
if you do know the targeted platform and can use it, you will probably save 
yourself effort in the long run if you use the same platform. But if you do not, 
or for some reason you cannot, you can still go a long way developing a back­
bone for your system. 

Backbones can be particularly useful when system input or output events are 
known. You can put together a backbone that is event-driven and processes 
each incoming event with a known output event sequences. This is particu­
larly relevant in developing event-driven Macintosh software. For instance, 
if you know that users can enter information into your system by clicking 
the mouse button, moving the mouse, or striking certain keyboard keys, then 
you can write a backbone that reacts to each of those actions. In doing so, 
you will have practiced the challenge of interpreting user input from a vari­
ety of sources. 

The importance of building a backbone 
A backbone can provide the basis for your future system, or at least give you 
some indication of how the total system will work together. It can be impor­
tant for overall system development because it: 



136 Software by Design 

Supports underlying system structure. 
A backbone is probably your first attempt at putting a whole system together. 
In this way, it supports your ability to analyze the entire system structure. 
It might cause you to evaluate the overall system in ways you previously 
overlooked or were unable to because of the nature of your system. Even if 
you do not implement a complete backbone, the effort of outlining and plan­
ning one can be a strong step toward analyzing the underlying structure of 
your emerging system. 

Provides opportunity to practice and learn 
the target programming language. 
Designing and implementing a backbone gives you first-hand experience with 
the programming language in which the backbone is developed. If you know 
that language is the same as the target system, writing a backbone can be an 
excellent way to learn or practice working in that language. You might want 
to consider writing a backbone or segments of one on alternate platforms to 
help you evaluate programming languages or environments, if your target 
platform is not known. This way, you can use a real task-creating the basis 
for your system-as an evaluation of potential platforms. 

Practices ability to interpret input and output (1/0) options. 
When input and output alternatives are known, developing a backbone gives 
you the opportunity to test your ability to support potential interactions. 
Even if all 1/0 options are not known, you might use the backbone to eval­
uate the alternatives, or to test your system's ability to adequately support 
potential options. 

Provides potential to learn about the platform. 
Not only will developing a backbone help you to learn about the language 
in which it is written, it can teach you about the hardware platform, as well. 
Even if the hardware platform on which you are currently working is not 
the same as your target platform, you can begin grappling with issues that 
are common to both environments, such as: screen size and image resolu-



Chapter 5: On-line Tools and Procedures 137 

tion constraints, system memory and data object size requirements, oper­
ating speed or feedback constraints. When you do eventually move to your 
target platform, you will be better prepared to address these hardware-depen­
dency issues. 

Saves time later. 
One very good reason to build a backbone for your system is that it very 
likely will save you development time down the road. This is particularly 
true if you are able to use your backbone as the underlying code for your 
final system. However, even if you don't end up using the backbone itself, 
developing it will serve as a trial run. By showing you the parameters that 
will be important later on, it can be a valuable time saver in the develop­
ment process. 

Steps for building a backbone 
1. Identify the basic functionality you will be building. 

2. Identify input and output routines (such as interpreting mouse 
events or drawing bitmaps to a screen). 

3. Write and run a simple driver. Practice software building activ­
ities that will be used in system development, such as com­
piling, linking, and running. 

4. Structure your routines and file organization (if appropriate). 

5. Implement your basic routines. 

6. Use sample data to try out your routines. Better yet, if you 
have representative data (such as scanned bitmaps from ear­
lier prototypes), use that. 



138 Software by Design 

Hints/ suggestions 
• Consider drivers you built previously, either for prototyping 

purposes or as part of another application or system. Reuse 
anything you can. 

• Write pseudo code first. As with any other programming exer­
cise, pseudo code will help you to organize your thoughts and 
provide a structure for when you actually begin coding. Pseudo 
code can also serve as your comments in the coded version. 

• Don't worry about the front end of the system. Running a 
backbone might mean lots of empty screens and «[something] 
will go here» notices in place of the user interface. While 
your backbone should support whatever user interface you 
eventually design based on user and system needs, in its ini­
tial stages, it is not intended to represent your final system. 

• Use your backbone to test the appropriateness of the pro­
gramming language or environment for your task. If this is a 
familiar environment, does it have the necessary constructs 
as you remember them? If it is a new environment, will it be 
able to support the functionality you will need? Write more 
than one backbone in alternate environments to compare 
them, if necessary. 

Exercise task 
Design and write a backbone for your supermarket guide. Use this opportu­
nity to identify the programming environment you will use for your guide, 
and to try different aspects of the programming environments that are avail­
able to you. Consider these issues: 

• Does the programming environment you have chosen meet 
your needs? What is particularly good or bad about it? Might 
other environments be more appropriate? 



Chapter 5: On-line Tools and Procedures 139 

• Is the backbone extensible? Can you easily plug in code seg­
ments or routines at a later time? Will you easily be able to 
incorporate code segments that others write in the future? 

• Have you made your data interpretation adaptable so that 
alternate bitmaps, sounds, or other data types can be changed 
readily? 

• Is your backbone portable to other hardware platforms, if nec­
essary? Or, if your guide will run on more than one hardware 
platform, have you designed the code to adapt to all platforms 
with minimal modifications? 

• What are the implementation procedures, such as compiling, 
linking, binding, and executing your code? How might this 
affect your development process? 

Method 4: The PoV#er of Clip Art 

Collecting computer-based illustrations, drawings, pho­
tographs, or other images that are incorporated in on-line 
applications. 

Visual elements are a critical part of graphical user interfaces. While visual 
presentation can be important in off-line prototyping as well, the ultimate 
success of the graphical component of a software system is often tied to the 
final graphics presented on the screen. As a result, on-line artwork can be 
critical for software development. Final graphics need not be determined early 
on in the design process, but the earlier the graphic needs are addressed, the 
more likely they will be adequately supported in the final system. Clip art, 
or computer-based visuals that can be incorporated in on-line applications, 
are an important part of on-line development. 



140 Software by Design 

Visual integrity or communication is often a critical factor in the legibility or 
success of a user interface, but developers typically don't want to take the 
time early on to create custom visuals. If you are attempting to judge feasi­
bility of an overall interactive strategy, or qualify functionality of the system, 
then it seems silly to spend time creating detailed graphics that might be omit­
ted in a later version of the system. Still, you will want quality visuals to com­
municate your intentions in a way that is as true to the final system as pos­
sible. Using clip art can solve your short-term problems and help you understand 
important long-term issues about the visual aspects of your final system. 

Think of clip art as a collection of on-line images that you gather over time­
your reference library of visual imagery. You will tum to it to find an image 
to represent a certain function, or for background art to set an overall mood. 
You might use imagery from your clip art collection directly, or change 
details to best meet your needs at the time. You will find with practice that 
you can cut and paste parts of your images together to create precisely the 
image you need for a particular feature. Changing simple details, like the 
font or style of text that is included as part of the image, or the thickness or 
color of a line, can make the difference in your ability to communicate the 
message you want. 

Sources of clip art 
There are numerous sources of clip art. You can: 

• Purchase it from third party vendors. 

• Download it from public access bulletin boards or databases. 

• Draw it on the computer using a draw or paint application. 

• Create it off-line and scan or trace it electronically to convert 
it to an on-line format. 

• Create a composite of off-line and on-line images-for exam­
ple, an off-line design that is scanned in, then manipulated 
using on-line tools. 



Chapter 5: On-line Tools and Procedures 141 

Today's Macintosh draw and paint applications offer a wide range of excel­
lent tools for creating and altering visual designs. Clip art can be created by 

a single person or by multiple designers over time. It doesn' t really matter 

where the clip art comes from or how it was created. It's more important that 
you continually add to your collection of images so that the more designs 

you do, the more options you have for finding the perfect visual. 

8 items 

D Media 

DPen Computing 

M Clip Artwork 
324 MS in disk 79.3 MB available 

DMacintosh 

DDesign Elements 

DPrinting ~~~iiiiiiii~~~w~es~t~e~r~n~~iiiiii~~ii~ 

~western 

Figure 5.4 - Personal favorites clip art. A good way to 

ensure you always have access to a range of clip art is to keep 

and build your own library of cl ip art. As you come across images 

or libraries that you like, make a copy on your local machine. 

You will probably have preferences for certain image styles or 

need for certa in application area illustrations, and keeping your 

own libraries can help you keep track of these. This may seem 

like trivial information, but keeping a centralized version of your 

own personal clip art favorites can save you significant time at 

design time when you are looking for just the right image. 



142 Software by Design 

Storing clip art 
If you will store your clip art on-line, spend time planning how to organize 
it. Clip art can be storage consuming: individual images, particularly 8-bit 
!or more) color images, can quickly consume all the storage space available 
on your hard disk. I am not advocating that you gather many large images 
and plant them on your hard disk for eternity. However, you might want to 
consider investing in a storage strategy !such as a removable hard disk unit) 
that will enable you to keep your images available for quick access. 

With time and experience, you will determine how best to store these images. 
Individual files of each image in a particular application format !such as 
Adobe's Photoshop or Fractal's Painter) will probably be the most storage 
consuming option, but will allow you the most flexible access to the image. 
Storing images in subsequent cards of a HyperCard stack might limit your 
ability to access original image features, but might be an efficient way to 
store 2-bit bitmap-based images. You might want to use some combination 
of storage strategies to keep the different types of art that you collect. 

A major advantage of using the Macintosh as your development platform is 
that images can be stored easily in a common format !PICT or TIFF, for exam­
ple). These formats support imagery that can be readily imported and exported 
to and from a variety of applications. This means that as long as you store 
your images in one of these common file formats, you will be able to access 
it from any number of applications that support that image format. Again, 
storing all your images as individual files will require lots of storage space, 
but for certain images this might prove beneficial. 

One strategy you can use that might help is to store more than one image in 
a single file of a paint application, particularly if all the images fit on a sin­
gle page or screen. These types of applications often store all the color infor­
mation for the entire page, even if the image occupies only a small area of 
that page. 



Chapter 5: On-line Tools and Procedures 143 

M.. IH:a:b ('II Nhn.., tUlf'Ce 

r.1- J - ..... -
~ .... ,....._............. ':t -
., Mypt!rC"~~ ::-... '. Smeltreo...nt 

jM lconkleol ~ ff'emportaUDn ~ _ ... __ 
,.,., llh 

lrtllh 

lfl l ih 

Beasts 
,,. .... ~.r.. ... . o.-. ..... ·"•·""· 
'-•Ult,C-, .. tt 

Figure 5.5 - HyperCard clip art. A number of clip art 

resources are available to the user interface designer for visually 

representing interface elements. HyperCard comes with a variety 

of clip art images, as shown here in the Art Bits stack. 

Using clip art in prototyping 
Clip art is especially useful when developing prototypes; you can simply flip 

through your library of images to pull in one that meets your needs. Clip art 
in prototyping is particularly helpful if it can be used efficiently as a place 

holder for the later final images. Take steps in your on-line design develop­
ment to see that image substitution is a simple process, if this will be part 

of your development strategy. 

When you know that you will substitute your clip art for original art later, 

you have a wide range of possibilities for temporary images, such as scanning 
in photographs or even using original art from other applications. You won't 
use such images in your final system (either for legal or artistic reasons), but 



144 Software by Design 

you can save time now by using them as a temporary image. This is partic­
ularly true when the details and specifications for the final artwork are likely 
to change significantly as your system emerges. 

Depending on the clip art you have available and your project, you might be 
able to use the clip art from your prototypes in your final software. But remem­
ber, this is not the intention of clip art, nor is it the norm for how it is used. 

The importance of clip art 
Clip art can be useful in the on-line development stages for a number of rea­
sons. It is worth investing some time developing a clip art library, adding to 
it, and refining it. The time you spend will pay off repeatedly. Some of the 
ways clip art can help you in your design process are that it: 

Saves you time because you will have 
less need to create custom imagery. 
Time devoted to gathering images when you have free time to do so can save 
you significant time later when you are under schedule pressures to com­
plete software projects. While it might seem difficult to pull together clip art 
images when you can't be sure exactly what type of imagery you will need, 
you will learn with experience the types of images that will be most appro­
priate for the types of projects on which you typically work. 

Allows you to attend to visual design 
in early prototyping stages. 
Because the earlier stages of development are typically devoted to getting at 
general functionality or overall direction rather than individual details, and 
because exact visual representation of imagery can be thought of as specific 
detail, the visual elements of your design are often overlooked in earlier 
phases. With clip art you can still attend to the visual elements of your design 
without having to commit to exact images. You might, of course, need to 
spend time later refining your visuals, but that will come at a design stage 
when you are ready to make visual detail decisions. 



Chapter 5: On-line Tools and Procedures 145 

Gives you ideas for what you might really want. 
Sometimes you will need a visual for your design but not know exactly what 

you want in your image. This can be true even if you are a skilled visual 

designer with the role of providing the visual identity of a software project. 

Looking through your clip art library and trying various options can give you 

ideas for what you might want in your later imagery. At the very least, it 

might point out what you don1t want to use, and help narrow your search for 

the appropriate visuals. 

Requires minimal effort to gather and 
maintain a clip art library. 
You can develop a useful and robust clip art library with minimal effort, par­

ticularly if you have a simple strategy in place. Such a strategy might be 

always storing interesting images on a certain removable hard disk cartridge. 

The marginal amount of time you spend can pay off significantly later. 

Helps you develop a personal style that 11trademarks" 
your prototypes or later work. 
Developing your own clip art library can help you to institute and cultivate 

an individual image style that can "trademark11 your software projects. (This 

might or might not be important to you, depending on the nature of your 

work.) As you gather and alter images in your clip art collection, your images 

can evolve into visuals that are indicative of your personality. 

Steps for collecting and using clip art 
1. Look at the images available in the application software you 

already have. 

2. Make a dedicated folder on your machine for gathering all 
clip art, and put whatever you find in there. When you come 
across useful imagery, simply put a copy in this folder. 



146 Software by Design 

3. Consider hard copy images, as well. Look through old maga­
zines or drawings. If you have time, go "shopping" at a library 
or book store to see what types of illustrations are available 

to you. 

4. Scan in interesting textures and patterns from objects you 
find, such as leather or wood grain. These might be useful to 
give background character to your prototypes, and can be place 
holders for further designs. 

Hints/ suggestions 
• Be aware of potential copyright issues with the images you 

gather. You are free to use any image for intermediate proto­
types, and using pre-existing images will save you time and 
effort. However, if you plan to incorporate some of these 

images in software that you will sell for a profit, you might 
be limited in the imagery you can use. 

• Obtain and use on-line software tools that can help you 
quickly and easily grab parts of images and take them from 
one application to another. Such tools exist on the Macin­

tosh. 

Exercise task 
Begin gathering clip art that you think might be useful in your supermarket 
guide. Consider the functionality you are planning to include, then consider 
what types of imagery would be useful for your system. Some things to think 
about: 

• Include images from on-line clip art sources, and scan in 
images from books, magazines, illustrations, and drawings. 

• Practice manipulating the scanned images and tailoring them 
to your needs. 



Chapter 5: On·line Tools and Procedures 147 

• Use visuals from materials you gathered during your early 
user study phase. 

• If you are able to, create custom imagery you think might be 
useful. A pen-based tablet with one of today's advanced paint 
programs (such as Fractal's Painter) can provide a range of cre­
ative opportunities for making impressive and appropriate 
visuals. 

Method 5: On-line Flipbooks 
A prototype on the computer that illustrates system func­
tionality by linking together, screen by screen, the system 
images with the system interaction. 

Flipbooks are useful in off-line prototyping because they link together the 
representation of various user interface elements with the behavior that 
defines system interaction. (See the Flipbooks section in Chapter 4.) Extend­
ing the notion of flipbooks to on-line representations can have similar ben­
efits for your computer-based designs. On-line flipbooks link the visual ele­
ments of your system (that is, individual screens or subsets of screens) with 
user interaction. You can begin to piece together the workings of the final 
software system. They take the off-line flipbooks a step further by present­
ing the interaction on the computer, and thereby approximating much more 
closely the working of the target system. 

On-line flipbooks help you to get at concrete details that you might have 
overlooked when developing an off-line flipbook, but still save you the trou­
ble of completely building the real system before you're ready. You can use 
on-line flipbooks to link together whatever parts of your system you happen 
to have implemented, or to structure the segments of your system that you 
want to target for design or usability testing purposes. Building partial sys­
tems with on-line flipbooks will help you further your design process with-



148 Software by Design 

out having to commit to a certain implementation or without having to attend 
to all the parts of your system. 

While you can build an on-line flipbook in whatever software development 
environment you plan to use for your final software, you might choose instead 
to use a prototyping environment that readily lends itself to the screen-to­

screen movement of a flipbook. On the Macintosh, tools like HyperCard pro­
vide an excellent platform for building flipbooks. 

TUTORIALS 

(Browse Tulorlots) 

SCHEDULE INSTRUCTOR ( SCHEDULE ) c SUJl(ECT TC INSTll.UCTOA J 
~ @!!!)~ ~ 

'--~~~~~~~~~~~~----' 

CHITullXld Scbodulo 
S..nd•y.AptillJ 

•"-
1.f:Jlpm 

SCHEDULE 

Mond•y.Mayt 

morning 
o.nd 

INSTRUClORS 
..-MOtftrcet 
T\jltrOIOt 
S.rteli,i 
1'1treHDrwn 
~Uh!Mltr 

e111e.,,..~[ffifil[) 
Sll•·KuoC._f'lf 
Jlc._r .. DlltCN' 
Jtrrvhrrtll .... o,.i.e., 
tl11C'.ilwr 

'""~' cu.,.t 
ftdtHtHttltr ............ ,. ......... ,,.., 
CWtaJtrOl'ftM• 

HlllU''flttbitrt'l'lllft 
DtboretiJ Me~tiev 
l!lrMA t1wtr• 
.Jttoll N1tlt•~ 
lhthtrdA"l>lntttlft 
Ptme1tS.mut1teft 
Wl1UtmY~rt1tn-k 

Cllor1tScfl•..:t 
KurtJ$Chm«ttr 
N!tt$C~ 

Mt11Sll'V .. , .. ~ 
Jt•Wtlltr 
511M11Wt1Mdtt1l" 
... ,.WMtma 

tt.'STllUCTOR ( SCHEDULE TT SUBI?CT J1 INSl"RUCTOR } 

~ 8~ ~ .......... ~~~~~~~~~~~~--' 

Figure 5.6 • On-line flipbooks for CHl'89 tutorials. The 

screens of an elementary Hypercard stack are shown here. They 

were used as part of an on-line prototype to explore navigation 

and functionality for part of the CHl'89 lnfoBooth Kiosks, devel­

oped by Apple Computer's ATG Human Interface Group for the 

SIGCHI conference in 1989. While the design of the final kiosk 

was significantly different than that shown here, this early on~ine 

flipbook helped to try out and test the interactivity of this section 

of the system. 



Chapter 5: On-line Tools and Procedures 149 

Flipbooks and HyperCard 
HyperCard's stack model supports a logical screen-by-screen design, and its 
goto linking structure allows you to easily link user actions to screens. Hyper­
Card is particularly good for on-line flipbooks when the basic method of inter­
action is user mouse clicks. It does not work as well when the interface 
requires that user interaction to be synched with real-time activities, such 
as sound or video technologies. Still, for the purpose of testing your on-line 
concepts with an on-line flipbook, it might be worth designing an abstracted 
version of your system and linking screens together with HyperCard. The 
advantage here is that you can quickly pull together some of the basic con­
cepts of your system without investing time and energy in actually getting 
the system to work, especially at early design stages when the design proba­
bly still has much evolution to go through. 

Using on-line flipbooks 
On-line flipbooks serve as excellent platforms for user studies, or to com­
municate design ideas to other team members. Just like off-line flipbooks, 
they allow you to piece together the visual and interactive elements of your 
system. Having an on-line representation of even part of your system to 
include in user studies can provide you with valuable feedback on how users 
respond to the basic components of your system. 

Sometimes it is appropriate to do an on-line flipbook instead of an off-line 
flipbook, depending on your available time and other constraints imposed by 
your particular system. Or, you can do the on-line flipbook as a later step in 
the development process, after an off-line flipbook has been designed and 
used. You might be able to reuse some of the concepts in your off-line flip­
book in your on-line version, either by converting the images and interac­
tions to an on-line representation, or by directly scanning in some of the visu­
als from the off-line design. 

You might want to develop a custom on-line structure to support your flip­
book. If you find yourself using the same software development environment 



150 Software by Design 

again and again, invest the time to design the structure that supports on-line 
flipbooks. You might want to use a custom backbone to structure the flip­
book. Your development strategy will depend on the nature of the software 
environment in which you build the backbone and on the type of software 
you are designing. 

The importance of on-line flipbooks 
The advantages of using on-line flipbooks are similar to advantages of off­
line flipbooks-they help you to piece together elements of the system, link 
interaction to visuals, and save you development time. Some specific advan­
tages of on-line flipbooks are that they: 

Allow you to address more system details. 
On-line flipbooks support more specific system details than their off-line 
counterparts because they are computer-based. They require you to address 
issues like the actual size of the screens or images, the exact user interac­
tions, and real response times in changing imagery or reacting to user input. 
You can tailor them to address only the details of a particular design instance, 
rather than every detail of the full system. 

Help in user studies. 
On-line flipbooks are particularly useful in user studies to obtain feedback 
on the aspects of your system that your flipbook showcases. They allow you 
to get at issues through your user studies that off-line flipbooks might not 
be able to support, since they more directly reflect details of the final sys­
tem. Some such issues might include user reactions to actual response times, 
more representative visuals, or a particular input device. 

Link contributions from multiple team members. 
On-line formats might lend themselves more readily to a group development 
effort, particularly if the platform for the flipbook is readily available to every­
one and supports merging of the different screens or files. (HyperCard, for 
instance, supports copying cards from one stack to another. While it is not 



Chapter 5: On-line Tools and Procedures 151 

the ideal group development environment, if the combined flipbook goal is 

known from the start of the design, it can be achieved with relative ease in 
HyperCard.) Combining efforts in an on-line flipbook will often create a more 

consistent and continuous-looking prototype, whereas a combined off-line 

effort often shows the different styles of its contributors. 

Introduce some platform issues. 
The process of designing and building an on-line flipbook will introduce you 

to both hardware and software issues for the particular platform you are using. 

Even if the flipbook is only a skeletal or partial representation of your final 

system, it will point out platform dependencies you can not address as directly 

in your off-line prototypes. 

Provide a good start for later system development. 
By introducing the platform dependencies of your system, an on-line flipbook 

is often an excellent start to your computer-based development-particularly 

when time or system constraints prevent you from completing other earlier 

on-line prototypes. On-line flipbooks can be a great way to start translating 

your designs onto the computer. 

Steps for building on-line flipbooks 
1. Decide on your hardware and software platforms. If practi­

cal, use the platforms for the target system. If not, consider 
using a development tool that readily lends itself to flipbook 

creation, such as HyperCard. 

2. Identify the features and functions of your system. 

3. Consider the purpose of your on-line flipbook. If you will use 
it in user studies, you will have different concerns than if you 
are developing it as a team design effort. 

4. Create the screen images for your flipbook. They will proba­
bly be the screens for the final system, though not necessarily. 



152 Software by Design 

5. Organize the images in an appropriate order. 

6. Determine which interactions will link which screens. Incor­
porate those interactions in your prototype. 

7. Try out the flipbook to see if it works as you anticipated. You 
might have to make adjustments to account for speed or other 

details. 

8. If you will use the flipbook for user studies, check to see that 
interactions necessary to the flipbook but that will not be 
part of the final system do not mislead the user. You might 
have to trap for certain user interactions to maintain an accu­
rate representation of the target system. 

Hints/ suggestions 
• While you will address more details here than in your off-line 

flipbooks, try not to get bogged down in irrelevant details. 
You can use placeholder graphics, if necessary. On-line flip­
books are still an intermediate prototype, so don't spend 
unnecessary time developing them. 

• Incorporate clip art, even if only as place holders, so that you 
can link the interaction to the prototype. You can always go 
back and replace the visuals later. 

• On-line flipbooks are excellent for demonstrations and user 
studies. With practice, you can make your on-line flipbooks 
look like your target system, and your audience will assume 
they are using the real working version. 

• Use on-line flipbook development as an opportunity to eval­
uate potential hardware and software platforms. Try out the 
features of that platform, and see how appropriate they are 
for the purposes of your system. 



Chapter 5: On-line Tools and Procedures 153 

Exercise task 
Build an on-line flipbook for your supermarket guide. If you can, plan to use 
it for a user study or usability evaluation. (You might save it for some of the 
testing exercises in Chapter 7.) Consider the following items: 

• How much of the system functionality will you represent? 

• What platform will you use? Try to use the platform of your 
target system. (If you cannot do so, consider an alternative 
such as a platform that will support any user studies you 
intend to do). 

• What type of images will you incorporate? First consider those 
readily available to you; create custom imagery, if necessary. 

• Will you include any other "special" elements of your sys­
tem? For instance, if you plan to use sound or video in your 
guide, include at least a few of these elements. This helps 
with implementation details and provides a more realistic 
representation with which to test your system. 



Chapter 6 

Prototyping 

What is Prototyping? 

I use the term prototyping to refer to all design-oriented efforts of software 

development. It is, in essence, all that I have been talking about in the pre­

ceding chapters. Prototypes model som e aspect of the system; for user inter­

face design, prototypes typically present some interactive elem ent of the sys­

t em. The term prototyping often refers specifically to software 

designs-prototypes are thought to be versions of the software developed 
before the final software design is executed. However, in its most loose sense, 
a prototype can be anything that serves a design purpose in designing and 

building a software application or system. While the most common instances 
of prototypes m ight be in software, prototypes can be developed off-line as 
well, using methodologies such as those presented in Chapter 4. A prototype 

is qualified by the purpose it serves, not by the form it takes. 

Prototyping is the process of designing something, off- or on-line, that demon­

strates some feature or interactive elem ent of your intended system . Using 
the prototype, you can evaluate that design, incorporate any changes in your 

155 



156 Software by Design 

next prototype, and eventually refine the design for your final software appli­
cation or system. The evaluation process typically involves potential users 
to offer feedback on the working of the system, although not all stages of pro­
totyping need to involve user input. 

Other terms used to describe this general process include rapid prototyping 
and iterative design. The rapid in rapid prototyping refers to the speed with 
which you generate these designs, typically because the robustness or work­
ing quality of the designs are less important at this stage, allowing you to 
focus on the design itself. Iterative design refers to the cyclical nature of the 
prototyping design process (and is further discussed in Chapter 8). In user 
interface design, prototyping is typically a repeated process, with each iter­
ation moving you closer to the final system design. 

The unifying characteristic of all prototypes is that they serve as an aid in 
the design process. They are not intended to be a final deliverable, and can 
(and should!) be thought of as expendable. This is not to say that you will 
automatically trash everything you build as a prototype, or that you will 
never incorporate your prototyping work in your target system. However, 
you should not necessitate using a prototype for your actual software. If the 
prototype indicates something doesn't quite work, then you should be ready 
to dispense with it and continue prototyping until you find something that 
does. A prototype is simply an early or intermediate design that gets at some 
points of the target system. 

Which functions or interactive elements a user interface prototype addresses 
will depend on its purpose, when it is developed in relation to other system 
milestones, and the other prototypes that have preceded it or are planned to 
follow it. A prototype is used to try out or test one or more design principles, 
to allow you to explore user interface functionality, and possibly present that 
functionality in a format that can be used to obtain feedback from potential 
users. In developing a prototype, you should not worry about whether the 
implementation is as it will be on your target delivery system, or that the 
concerns of that system are necessarily addressed. Instead, you should focus 
on communicating the design aspect for which the prototype was built. Once 



Chapter 6: Prototyping 157 

that user interface design element is working, you can determine if you will 
incorporate it in your target system. 

Most of this chapter presents a general design approach to prototyping, refer­
ring to prototyping as a whole, giving an overview of its role. The methods 
sections refer specifically to software prototyping tools, providing informa­
tion on what is available. Software prototyping tools allow you to translate 
many of the beneficial elements of user interface design to your on-line ver­
sions. Since the techniques and benefits of other prototyping approaches are 
presented in earlier chapters, they are not reiterated here. 

How to approach prototyping 
Prototyping on- or off-line can be in many formats and for many purposes, 
as is evident by the range of techniques already presented. Some projects will 
lead you to apply many of the methodologies; other projects will require only 
one or two methodologies. Deciding which prototyping techniques to apply 
is an integral part of your design process, and is discussed in the preceding 
chapters and summarized below. There are many different ways to design, 
build, and test your software application or system. However, only you can 
be the judge of what will work best for your needs. The process can be well 
directed if you understand how to correctly apply judgment criteria and eval­
uate your needs. 

In many ways, prototyping is a state of mind. You must: 

• Recognize that prototyping is necessary for a robust and suc­
cessful design. 

• Plan carefully and choose wisely from among the many pro­
totyping techniques you can apply to your design. 

• Build into your schedule and budget the time and resources 
necessary for adequate prototyping. 

• Perform the prototyping itself. You might need to revise your 
plan or your prototypes, depending on your results. 



1 5 8 Software by Design 

• Recognize that iterative prototyping is truly the best way to 
incorporate the concerns of your users in your software 
design-which is, after all, the purpose of user interface design 

The Advantages of Prototyping 

Acknowledging the value of prototyping and including it in your software 
development process is probably the most important thing you can do to 
enhance the way you design your software and its user interface. Prototyp­
ing user interface designs can be advantageous because it: 

Can be done using whatever tools you have or prefer. 
The general process of prototyping does not require any particular materials 
or tools. You can build prototypes with whatever is available to you and with 
whatever makes the most sense at the time of development. Certainly the 
tools and materials you use will make some difference in the nature and qual­
ity of your prototypes, but for general purposes you can build many aspects 
of your design with tools and materials you already have around. 

Can take as little or as much time as you have. 
Prototyping does not assume any given amount of time, or necessitate any 
particular minimal time to get worthwhile results. Clearly the more time 
you have to devote to prototyping, the more user interface details you will 
be able to address and the more robust your system will be. Still, even if you 
have only a few days or hours, spending some time mocking up elements of 
your design and evaluating how they meet the users' needs can be critical in 
designing your software system. 

Involves users in the design process to best meet their needs. 
Prototypes can be incorporated readily into user studies or usability tests; 
showing prototypes to potential users can, in fact, be the most valuable aspect 



Chapter 6: Prototyping 159 

of developing them. User feedback can save you hours, days, or weeks of 

development time spent on the mechanics of a system feature, only to find 

that it is unnecessary in your design. When you prototype just the interac­

tive feature, without worrying about how it will be implemented, you will 

be surprised at how quickly you can put a prototype together. Even the most 
sparse of prototypes can be shown to users to obtain feedback, and only 

towards the end of your design cycle will you typically need to worry about 
making the prototype closely mimic the features of your actual system. Pro­

totyping enables you to design systems that best meet user needs because 
you can involve users through interaction with your prototypes. 

Allows developers to focus on what they want to. 
Because you can build a prototype that exemplifies only the elements of your 
system in which you are interested, you can save yourself the time of devel­

oping a full-blown system. Too often software developers will wait "until 
the system is working" to try out anything, either for design purposes or to 
use as part of a usability study. Proper prototyping recognizes the value of 

using a partial system to get at the initial design elements, without having 

to wait for a whole system to be built. Developers can focus on the aspects 

of their designs they think are most important; once those elements are sat­

isfactory, they can go on to develop the whole system. 

Supports integrating known or desired features. 
It is up to you how much of your target application or system you will include 
in any prototype you develop. You can include as much as you know about the 

system, or as little as you want to, depending on what you aim to accomplish 
with the prototype. The ability to integrate whatever features you feel appro­

priate-rather than every feature that exists or must exist for the system to be 
functional-is possible because of the flexible nature of prototyping. 

Supports an incremental, iterative design process. 
Since prototyping promotes the inclusion of only the features you want to 
test at any particular time, it clearly supports a cyclical, incremental approach 



160 Software by Design 

to software development. Even if you can support only one round of proto­
typing, you are making a commitment to an iterative design process. Itera­
tion plays a key role in robust and user-sensitive software designs. 

Guides the building of better systems. 
Ultimately, using prototypes will almost always result in a better designed, 
better built system. You will be able to address basic structure and behav­
ioral concerns of your user interface without the influences of the actual soft­
ware design, allowing you to focus on the design itself rather than making 
the software work. Believing in the importance of prototyping and making 
it work in your design process will truly guide you to develop better software 
applications and systems. 

HoYI to Select, Design, and 
Perform Prototyping Techniques 

The earlier techniques chapters (Chapters 3, 4, and 5) provide information 
about what the different prototyping techniques can achieve and why you 
might use them. They do not, however, offer much guidance as to whether 
you should perform some of each of the different types of techniques, or focus 
your effort on one particular type of prototyping. While there is no specific 
formula for determining how much time to devote to user studies, off-line 
prototypes, and on-line prototypes, there are a number of factors you can con­
sider that will help you make these decisions for your design. The following 
factors, together with the criteria given for each of these three types of tech­
niques presented in the earlier chapters, should guide you in your decision 
on which methods make the most sense for you. 

Overall schedule 
As with all types of techniques, you are probably most directed by any time 
constraints on your project. If you know you have to deliver your final soft-



Chapter 6: Prototyping 161 

ware on a certain date, then you can work backward from that date to deter­
mine time limits on the particular aspects of prototyping you want to achieve. 
Time alone will not help you identify which techniques to use, nor whether 
to develop on-line or off-line prototypes. However, knowing your time lim­
itations will help you evaluate other factors. 

As noted in earlier chapters, you will probably want to spend approximately 
one-third of your time in early studies and the pre-design stages, one-third of 
your time building your system, and one-third of your time testing and iter­
ating the design. This is not a universal formula, and it does not mean that 
you should spend one-third of your time on all three of the earlier design 
methods. If you look at software prototyping as part of building your target 
system, then you might be able to plan for some of your software prototyp­
ing as part of the system design time. Likewise, if you plan to invest time in 
user studies involving your prototypes, then you probably will not need a full 
third of your time for testing and iteration at the end of the process since 
much of that will happen throughout. 

Available resources 
Sometimes you will know which prototypes make the most sense to use 
based on the resources you have available. Consider the skills and experience 
of the people on your design team, the materials and tools that are available 
to you jincluding hardware and software for on-line work), and the facilities 
in which you can create and present any prototypes. Often it will make good 
sense to take advantage of what is readily available to you first, before you 
invest additional time or money in alternatives. 

While you don't want to limit yourself to certain prototypes simply because 
you can do them, if you aren't sure which prototypes will be most appropri­
ate, then first build those that make the most sense from a resource per­
spective. You can always build additional prototypes if the first round does 
not meet your design needs. 



162 Software by Design 

Your final software 
Sometimes you will be able to decide about which prototypes to build from 

analyzing the characteristics of your target system. If you do not yet know 
anything about your target system, then you cannot take advantage of this. 
However, most of the time some decisions have been made about the target 
system, be they specifics about cost, size, hardware or software. 

Choose a prototyping tool or environment based on what you know about 
the target system. You might choose a specific software development pack­

age because it runs on your target hardware. Or you might use a tool that 
supports sound and video if you know you will incorporate these into your 
final system. Mapping from your target system to your prototyping develop­
ment system can help you to understand what types of software prototypes 
(or even off-line prototypes or studies) make the most sense for your designs. 

The nature of what you are developing 
Analyze more closely the design you are developing or the overall software. 
This will help you get a feel for how loose you want to keep your prototypes. 
If the concepts you are presenting are relatively new to your target user pop­
ulation, then you will probably want to start with studies to get information 
for your design and then build low-overhead off-line designs to get feedback 
on the overarching concepts. If, however, you are designing a piece that is 

only incrementally different than something with which your users are quite 
familiar, then you can probably forego some of the earlier stages of design 
and work with software prototypes right away. 

You are free to use whatever design techniques make the most sense for your 
designs. If you happen to have a working version of the software for which 
you are designing a revision or replacement, then you might want to start 
with a usability study, since your users are familiar with the larger concepts 
already. You can use information from such research to help you design your 
alternative software. 



Chapter 6: Prototyping 163 

Access to users 
Before you begin, think about how you might involve users in your proto­
typing work. 

• Will you plan many studies that require user involvement? 

• Will you use the same people in each of the studies, or get 
"fresh" users for each revision? 

• Do you have some users ready and waiting, or will you have 
to recruit participants for your studies? 

• Are your participants cooperative and supportive, or will you 
need to think about influencing them to help you? 

• Will you need to compensate your participants in any way? 

Thinking about all of these details up front will help give you a better under­

standing of the scope of user involvement for this project, and what kinds of 
time and cost commitments you will have to make to support them. 

How you will use the prototypes 
Think about why you are building the prototypes at all, and who the audi­
ence is for them. If the prototypes are simply for design purposes-to share 
among members of your design team or for your own review-then they prob­
ably need not be too polished or complete. If, however, the prototypes are for 
usability studies or tests, they will need to be more thoroughly thought out 
and robust. Similarly, if you plan to use them to document your design process 
or to communicate the design progress to either your management or clients, 
then you will probably want them to be more permanent in nature. Being 
clear about the intent of your designs might help influence you in choosing 
the types of prototypes to build. 



164 Software by Design 

Past experience 
Look at the prototypes you built before. Try to remember why they did or 
did not work well. See if the same reasoning applies to your current design 
project. If storyboarding worked well for you in the past, it will probably be 
worth your while to storyboard again. Likewise, if you haven't had much suc­
cess with on-line flipbooks, you will probably want to stay away from them. 
Look also at prototypes that your colleagues (and possibly even your com­
petitors) have designed, and consider if those kinds of pieces would work for 
you in your current situation. Your own experiences can tell you a lot about 
why certain types of prototypes might be appropriate for your current design. 

Method 1 : Planning and 
Scheduling 

Allocation of time and resources to the user-centered proto­
typing approach of software design and understanding the 
effects on the overall design process. 

Talking about planning and scheduling might seem unnecessary, but since 
it is an integral part of the prototyping process, and since few software engi­
neers I know devote adequate time to thinking about their designs before 
building them, I am including this section as a guide. All too often, planning 
for prototypes-as well as for the actual system software-is overlooked or 
given inadequate time. In order for prototyping to truly help you with your 
design process, it must be planned for and scheduled into the overall devel­
opment process. 

Before you can adequately plan your user interface design prototyping, you 
must understand the array of options available to you, and you need to have 
a sense about which ones make the most sense for your particular design. 
That's why the chapters detailing specific prototyping methods precedes this 
section on planning and scheduling. Practicing the methods and gaining famil-



Chapter 6: Prototyping 165 

iarity with the cost and benefit tradeoffs among them will help you become 

more adept at planning overall system development. By knowing something 

about each, or even some, of the techniques, you will have a head start on 
choosing the work that will make the most sense for your design and in plan­
ning your development process. 

The excuse I hear most often for why people do not plan or develop a realis­

tic prototyping schedule is that they did not have enough time to make it 

worthwhile. Even if the time you have to devote to prototyping and devel­

opment is extremely short, whether it is limited to a week or even a day, 
planning ahead will pay off tremendously in the long run. Making the best 
use of that time, however, requires forethought about which processes can 

yield results that you can reasonably incorporate in your designs. Without 

planning in advance, you risk wasting what little prototyping time you have. 

Effective planning and scheduling does not mean developing an elaborate 

process or following an unrealistic development cycle. At its most basic, plan­

ning and scheduling involves these three activities: 

1. Thinking about which of the prototyping procedures make 
the most sense for your design. Consider which methods can 
most easily be implemented and will be most beneficial for 

your particular design. 

2. Writing the procedures down as a plan, using the documen­

tation format with which you are most comfortable. Include 

basic time frames and deliverables, as well as indicating who 
will carry out the prototyping. Work backward from any 
known deadlines or incorporate any known constraints. Bring 
attention to the importance of prototyping so that you are 
sure to get support for conducting it. 

3. Showing the plan to others, perhaps those on your design 
team or your management, to gather feedback as to whether 
or not it makes sense. Try to gather unbiased feedback as to 
whether or not your approach will work. 



166 Software by Design 

Development Plan 
Home Library 

Project Dates: March 1 - June 30, 1992 

User Observation of library visitors. 
Date of Completion: March 15, 1992 
Staff: Susan Richards 
Critical Resources: Video camera 

Task Analysis of users conducting and organizing 
research. 

Date of Completion: March 31, 1992 
Staff: Susan Richards 

Scenarios and storyboards for Home Library. 
Date of Completion: April 10, 1992 
Staff: Bryan Bower 

Studies of users with early prototypes of Home 
Library. 

Date of Completion: April 25, 1992 
Staff: Susan Richards 
Critical Resources: Video camera 

Hypercard prototypes of Home Library system. 
Date of Completion: May 31, 1992 
Staff: Bryan Bower 
Critical Resources: Macintosh Powerbook 140 

Usability tests of prototypes. 
Date of Completion: June 15, 1992 
Staff: Susan Richards 
Critical Resources: Video camera, Macintosh 
Powerbook 140 

Figure 6.1 - Plan and schedule for home library pro­
totype. A sample prototyping plan for a home library reference 

system is presented here. A milestone for each stage of develop­

ment is listed, along with expected completion dates, design team 

member(s) responsible and projected resource needs. 



Chapter 6: Prototyping 167 

Findings and recommendations for system development. 
Date of Completion: June 30, 1992 
Staff: Susan Richards and Bryan Bower 

The importance of planning and scheduling 
Planning and scheduling are valuable activities because they: 

Save time in the long run. 
Thinking about what prototypes you might build and what makes the most 
sense for your design will not only give you a better understanding of your 
work, it will help you better understand the design process for this project 
and for every project you will undertake in the future. The efficiency and rel­
evance of the work you do toward your final software will more than make 
up for the time you spend planning it. 

Help you to identify work practices that make 
the most sense for your design. 
Making a plan and a schedule really will help you to identify the process that 
will be best for your prototyping and software design. Writing your ideas 
down on paper will give you perspective on your thoughts, and help you to 
see details that you might have overlooked when thinking about or even ver­
balizing your intentions. You will realize that certain processes are not fea­
sible in the time frame you have, or that the product of certain prototyping 
techniques might not be valuable for your effort. Planning and scheduling 
can help you to better understand the prototyping processes as they apply to 
your project. 



168 Software by Design 

Help you to think about how to best use resources. 
When you write down the prototyping processes you plan to tackle and the 
people and materials you plan to apply to each prototype, you will get a bet­
ter overall picture of who will be doing what on this project. Just thinking 
about the techniques and prototypes sometimes does not help you to see that 
you were over-committing one design team member and not taking advan­
tage of another. Likewise, you might assume that you are capable of achiev­
ing more than is actually feasible given your time or budget constraints. When 
you write down a plan that lists each projected prototype and milestone along 
with who and what it will take to achieve it, you leave nothing to question. 
You can best allocate your available resources, as well as realize where addi­
tional resources will be necessary. 

Keep you in touch with the overall development. 
Thinking about and executing your plan will help you keep track of your 
entire prototyping process. If you keep up with your plan, particularly if it is 
for a long period of time, and update it according to changes you make, you 
will have a record of what you achieved. This can be useful in reviewing or 
documenting your current process, as well as helping you the next time you 
plan a prototyping effort. Even if you do not update the plan as your work 
progresses, having a record of what you originally intended can be extremely 
useful for tracking your efforts. 

Help to ensure that prototyping really happens. 
Putting together a plan and then using it to conduct and track your work 
might be a disciplinary action that actually ensures that prototyping happens 
when it otherwise would not. Certainly, if you don't think about what you 
will do, then chances are it will not happen. If you don't plan for a certain 
number of prototypes by certain dates, then the tendency will be to allow 
preliminary procedures to drag out longer than anticipated. This is not to say 
that making a plan will guarantee a successful prototyping and design effort, 
but it is a step in the right direction and will rarely deter you from success. 



Chapter 6: Prototyping 169 

Steps for planning and scheduling 
1. Identify a final delivery date for the project. If a formal one 

doesn't exist, create one. 

2. Work backward from that date, estimating how much time 
you will spend in research, off-line prototyping, on-line pro­
totyping, and actual system development. 

3. Determine milestones for each phase. Identify a delivery date 
for each milestone. 

4. Identify resources for each milestone, such as who will work 
on that milestone and any equipment needed. 

5. Share your plan with colleagues. Obtain consensus from those 
who will be working on the plan, those who expect the final 
software delivery, and anyone else appropriate in your cir­
cumstances. 

Hints/ suggestions 
• While each project will require a slightly different approach, 

a good rule of thumb is to spend about half of the time in 
design (research, off-line prototyping and on-line prototyp­
ing) and the other hall building the actual system. If this seems 
like too much time in design, remember that if it is done cor­
rectly, prototyping should actually reduce system develop­
ment time. Knowing this, you might even consider spending 
more than half your overall time on prototyping. 

• Realize that plans might change and schedules slip. Still, try 
to be as accurate as possible at the onset. If the situation 
changes, update your plan. 

• Use the planning phase to make a first guess at which of the 
methods will be appropriate for your project. Knowing which 



170 Software by Design 

types of design techniques you will use will probably prove 
valuable in estimating time to be spent. Likewise, if you know 
the time you want to spend, that might help you define the 
tasks to which you will apply the techniques. 

Exercise task 
If you have already completed many of the prototyping steps in earlier exer­
cises, it might seem somewhat after the fact at this point to plan a schedule 
for the remainder of your prototyping efforts. Concentrate on planning how 
to convert your prototype designs to your target software system. (You might 

need to read the following method sections before you can complete this exer­
cise.) While preparing for this exercise task, think about: 

• What is your overall time frame? 

• How much of that time will you need to devote to actual sys­
tem development and how much will you have available for 
prototyping? 

• What are the resources available to you? How can you best 
match your skills to the methods? 

• What kinds of prototyping techniques will work best for you? 
Of those that will work well, how many will you have time 
to apply? 

Method 2: Selecting the Right Tools 

Analyzing your development needs and identifying tools with 
which you can build your prototypes and the system. 

The preceding chapters focus on the design aspects of software development, 
presenting various prototyping methodologies and ways to design your soft-



Chapter 6: Prototyping 171 

ware before you actually build it. The focus on design techniques has been 
to emphasize that much can be done to facilitate the design and imple­
mentation process, not to trivialize the importance of sound software imple­
mentation. The process of making the software work-of building an actual 
software application or system-is far from trivial. It is clearly critical to 

the effectiveness of the final system. Using the right tools, both in the early 
design and prototyping phases and in the actual implementation, can make 
a tremendous difference in the efficiency and success of your software devel­
opment process. 

In this section, the term tool (software development tools) applies to any aid 
in the design process, be it a physical implement used in off-line prototypes 
or a software environment used to develop prototypes or your final software. 
Selecting which tools to use for a particular project can be critical to the suc­
cess of your software. Sometimes the choice of tools to use will be obvious, 
or you will have experience which leads you to select one tool over another. 
However, at some point in your software development career, whether it is 
the very first time you prototype or later when your familiar tools no longer 
meet your needs, you will use some criteria to help you choose which tools 

to use for particular tasks. 

Keep in mind that some tools might serve more than one purpose, or that 
different tools might offer similar benefits. Likewise, tools that seem quite 
similar might offer significantly different benefits at different costs. In eval­
uating which tools are right for your design purposes, you will have to weigh 
your cost and benefit tradeoffs. You might want to use more than one tool 
for a single prototype if you can see a way for multiple tools to work together 
and no single tool meets all your prototyping needs. 

There are a number of other considerations to take into account when choos­
ing your development tools, whether for design purposes or for final software 
development. 



172 Software by Design 

Familiarity. 
Certainly familiarity counts for something-knowing a tool's capabilities 
and functionality can save you time and help you take advantage of it for 
your design. 

Purpose. 
Consider up front what you want to do with the prototype. Knowing your 
target audience and intended purpose can help clarify the tradeoffs among 
various tools. 

Team size. 
Consider also how many people on your development team will be working 
together on any particular prototype or software module. If more than one 
person is involved, choose tools that readily support integrating efforts from 
several sources. 

Multiple application support. 
Think about the need to support inter-application features. You might want 
to use the output from one tool as the input for another. If this will be impor­
tant to you, choose tools accordingly. 

Functionality support. 
Consider the functionality you want to test. Software development tools have 
many features that can be isolated and evaluated in comparison, such as sup­
port for graphic capabilities, ability to interpret various user interactions, 
extendibility, and support for sound or video. 

The criteria given here are simply a guideline for helping you evaluate your 
development tools. You might want to establish some standard evaluation 
criteria of your own, criteria that work consistently for the type of develop­
ment you most often perform. You might consider establishing separate cri­
teria for design/prototyping tools and for final software development tools. 



Chapter 6: Prototyping 173 

If certain criteria are consistently important to you, you might want to jot 
down an informal evaluation list that you can reference at the start of each 
new project to help you quickly determine which tools might work the best 
for you. Additionally, you might want to keep a list of the advantages and 
disadvantages of particular tools as you use them, so that you can reference 
the list on later projects. In this case, you will probably want to categorize 
information so that you can evaluate similar characteristics of various tools. 
This will help later in comparisons. 

The importance of selecting the right tools 
Choosing the appropriate tools for development can significantly impact your 
design process. There are a number of advantages to taking the time at the 
beginning of your process to evaluate and select prototyping and design tools. 
Some of the reasons are that they: 

Save development time and costs. 
Using the right tools for development will surely save you time building your 
prototypes and your final software. There might be some initial investment 
costs to learning or acquiring new tools, but in the long run, the cost will be 
well worth it. Time and money spent up front will pay for themselves in the 
quality and success of your designs. 

Prepare you for later work. 
The process of using and evaluating various tools and techniques can be 
extremely productive for the project on which you are working and for later 
projects, as well. Even if you do not end up using each prototyping or devel­
opment tool that you evaluate for your current project, by checking them out 
you learn something about them that can help you understand if they will 
be appropriate for a later design project. So do not feel that you are wasting 
time reviewing tools that you end up not using immediately-you are better 
prepared for future design. 



174 Software by Design 

Enable functionality in your prototype. 
As you evaluate tools, you will explore the functions and features they offer. 
You might discover new ways of implementing them in your prototypes or 
the final software. Even more significantly, some features might help you to 
see your design in new ways, perhaps pointing out ways to enable or enhance 
your designs. They might even indicate features that you had previously 
thought were unavailable, or those that you did not realize could be used for 
the purposes of your designs. In using and evaluating various tools, you might 
get ideas for your designs that can help to make them better than you had 
originally thought possible. 

Showcase the different purposes of different tools. 
Reviewing and comparing different tools, particularly software development 
tools, will help you to evaluate which ones might be appropriate for certain 
designs and which for others. Different tools really do serve different purposes. 
You cannot assume that any tool will do for every prototype. Taking the time 
to look at more than one design tool will help you to know which tools make 
the most sense for you. At the same time, you might discover that you can 
combine available tools to build a prototype or system that is more robust 
than a single tool could provide. Only by looking at and thinking about dif­
ferent tools will you be able to determine the ones to use for your designs. 

Support building better systems with better tools. 
It really is true that your design will only be as good as the tools with which 
you design it. Clearly, sound design principles and strong creative ideas will 
also shape your design, but if you do not have the right tools with which to 
present your ideas, then your design process could be for naught. Even if you 
have excellent tools with which you are familiar, you might want to invest 
some time and energy in reviewing new tools, or talking with colleagues 
about the tools they use for various purposes. You might learn something 
about newly available tools, or how to use existing tools in new ways, which 
can help you in the future to develop excellent designs. 



Chapter 6: Prototyping 17 5 

Steps for selecting the right tools 

1. Identify what you want to do with the tools. Make a list of 
functions you want to support and any qualities you know 
you want in a tool. 

2. Look at the tools with which you are already familiar. Decide 
if any of them are appropriate. 

3. Research other tools available to you. Ask your colleagues, 
read current literature, and visit retail stores to see what tools 
you find. (You might want to conduct this research in your 
spare time, not necessarily only when you are in immediate 
need of prototyping and design tools.) 

4. Establish some criteria for comparing the different tools. Build 
the same sample functional model using each of the tools. 

5. Evaluate both the authoring capabilities (where you create 
your designs) and the runtime capabilities (where you play 
back or interact with your designs) of the tools. 

6. Choose tools that run on an appropriate platform for the soft­
ware being developed. It might be important that hardware 
support adequate prototyping tools. 

7. Look for prototyping environments that support a range of devel­
opment tools, such as graphics creation and manipulation tools. 

8. Weigh the tradeoffs of system complexity with ease of use. 

9. Check out the programming language that is supported. (Make 
sure that one is!) It should support basic constructs (variables, 
conditionals, and looping) and be extensible to link in other 
code modules. It is a benefit, of course, if the programmer is 
already familiarly with the language. 



176 Software by Design 

10. Determine which of the tools is most appropriate for your 
work. You might find that your familiar tools offer as much 
as the newly evaluated tools. If you believe your research has 
been thorough, then you might very well be best off with a 
familiar tool. 

Hints/ suggestions 
• Select prototyping environments that support extension of 

existing prototypes and the integration of other system ele­
ments. Extension and integration can save you significant 
amounts of time. 

• Look for alternate ways to make the most of tools with which 
you are familiar. Don't assume that you know everything 
there is to know about a tool. For example, consider how a 
tool that you've always used by yourself might contribute to 
the work of multiple designers. Also consider how using the 
tool differently might give you a different perspective on your 
prototype or final software. Even if you don't believe your 
current designs will ever change, chances are they will! 

• Watch for useful tools. Look for relevant journal or newspa­
per reports and new software releases. Talk with your friends 
and colleagues about what they use for prototyping tools. 

• When you have some available time, do some comparison 
studies of various tools you think you might want to learn 
more about. This information will be useful later and will 
save you from making the wrong tool decision. 

Exercise task 
Select appropriate tools for your software development project. Some of the 
things you should think about are: 



Chapter 6: Prototyping 177 

• Do you know the platform you are developing for? What soft­
ware tools are available for that platform? 

• With which software development tools are you most famil­
iar? How well-versed are you with these tools? How appro­
priate are they for your purposes? 

• What do you intend to do with these tools? Are you testing 
parts of the design, or building an interactive prototype for 

use in user studies? 

• Do you have specific end products or output in mind? Will 
you need to be able to accept certain input formats? 

• Do you want to be able to reuse or extend your prototypes? 
This might be important to know when selecting tools. 

Method 3: Using Softvvare 
Prototyping Tools 

Software construction toolsets that allow the programmer to 
quickly put together demonstrations of key concepts. 

Software prototyping tools are on-line environments designed specifically to 
help you quickly create robust software. Different software prototyping envi­
ronments provide different features. Some are intended for software engi­
neering purposes-to help create, for instance, code that is as compact as pos­
sible, or targeted for a specific hardware platform. Others are specifically for 
developing a dynamic user interface. 

For the purpose of user interface software design, you will certainly want to 
look for software prototyping tools that support a wide range of user inputs 
and interaction approaches. You need not, however, use only those that bill 
themselves as user interface design tools. A label can be deceptive; some-



178 Software by Design 

times such tools offer little in the way of interactive support. And sometimes 

tools that are not labeled as user interface design tools offer a rich platform 

for interactive development. Use your own evaluation procedure to select 

software prototyping tools that are appropriate for your design needs (and see 

the previous section, Method 2: Selecting the Right Tools). 

© 1991 Apple Computer , Inc. 

Font Style 

Hrin9 Clo~•~ r :)[: • 
~1~ 1ul 1:ar1h<ll' :)[:·· ws 

New Button en ts 

( More ) 

Home 

Appointm•nts v i th Audio 

Addresses with Audio 

s 
Audio Help 

Figure 6.2 - HyperCard as a software prototyping tool. 
Apple's HyperCard is a dynamic software prototyping environ­

ment which supports basic graphic design tools, easy definition 

and editing of basic interactive elements such as buttons or text 

fields, and an interactive message window for entering code 

sequences. Code can also be included in the form of custom scripts 

which can be associated with any interactive element. HyperCard 

supports rapid prototyping of user interfaces which take advan­

tage of simple Macintosh elements like clickable buttons, radio 

buttons, check boxes, text regions, and sounds. 



Chapter 6: Prototyping 179 

Creating software without writing code 
Generally, software prototyping tools let you create software without hav­
ing to write lengthy code to accomplish the task. The clear advantage is that 
you don't have to learn (or aheady know) a programming language to get your 
software to do the things you want it to do, as used to be the case if you 
wanted software to do anything! With the right tools you can, in most cases, 
quickly mock up your interactive designs. Many software prototyping envi­
ronments do support programming language-type interfaces. Of those that 
do, many also allow you to achieve most of the same system functionality 
without having to write code at all. If you are a programmer, you will prob­
ably want to take advantage of an environment that allows you access to its 
features through a programmer's interface. However, if you are not an avid 
code writer, don't despair-you can accomplish a great deal without having 
to know a single programming command or structure. 

Testing software designs 
You can use software prototyping tools to test potentially complex system 
designs. You can get a feel for the complexity of the design, and even evalu­
ate if the prototyping tool will also support your final software design. 

Software prototyping tools offer an excellent platform for testing the com­
plexity of your interactive designs. Once you take advantage of software pro­
totyping tools to quickly put together an on-line version of your design, you 
can then show other design team members or potential users while it is still 
early in the development process. You can save days, weeks, or even months 
of time developing more complex software. Feedback you receive from other 
team members or potential users can help you to shape your design before 
you have invested significant time in the software itself. 

Learning what works or doesn't work with your on-line designs as quickly 
as possible will not only save you time, it can help you to make decisions 
about how to present your software. You can use the feedback from user test­
ing to decide how the software should really function; you won't have to deal 



180 Software by Design 

with a programmer's lament that he or she has already spent so much time 

devoted to the way the system functions now. 

::i: Fife Edit Control Window Lingo Sound Score 

Untitled Paint 

Untltled Score 

I 2: 10 ., 
~~S~cr~lip~t~~.+ __ +.H .. +.H.+;;+;H;+;;~·+;;+;H;+;++t++-t+t-H+++t++-t+t-H+++t++-t+Hiil 

~1---'~"---~:~--~;~-~--~-~--~;~·~;·~·~--~;~·~;+H+Hf++H++H+Hf++H++H+Hr++H~ 
a 4 Mil 

·-· ott..r Ml"-:::~"ll""'=Un'ii'tl=tl-ed"""'ll'Co_s_t -y==y~"""'IJ'-'""'fl:rl 

~ 11g19ltt_ Jl D I~ -== ·•I,.... A13 A14 A15 A16 A17 A19 jl!.j 

Q~QQQQQQ 

Figure 6.3 - Director as a software prototyping tool. 
MacroMedia's Director is another multi-faceted software proto­

typing environment with excellent graphic creation tools, support 

for custom scripting , and an animation-based interaction model 

complete with an organizational score and cast of characters. 

W hile Director does not directly support many of the interactive 

elements present on the Macintosh, its free-form structure supports 

whatever users attempt to create. 



Chapter 6: Prototyping 1 81 

Integrating outside elements 
into your program 
Another way that software prototyping tools are useful in the design process 

is that they often support the integration of elements of other prototypes or 

software. You might be able to import existing graphics from another soft­

ware design, or use a scanner to bring hard-copy designs directly into your 

prototyping environment. Often sounds or videos created in other environ­
ments can be imported into software prototyping tools, as well. In this way, 

design work you did prior to your on-line activity can be transferred to your 
current design work. In some cases, you can even convert prototypes created 
in other design environments, and then import them into your current soft­
ware prototyping tool. Or you can take advantage of components in previous 

designs, integrating them into your new design. Software prototyping tools 

are great construction kits for putting together a brand new design using ele­
ments from a variety of creative sources. 

Timing of software prototyping 
Take advantage of software prototyping tools as soon as you want to develop 
an on-line prototype. At the very least, you should, at that point, evaluate if 
software prototyping tools can work for you. You might want to consider this 
early in the design phase, after you have designed off-line system maps or 

flipbooks, for example. That way you can more thoroughly check out the 
look and feel of your system on-line than is possible with the paper proto­
types. You might want to wait to introduce software prototyping tools until 
some of your early on-line explorations are done, or wait until you have drafted 
system requirements or begun to piece together your various graphic, sound, 
and video data. 

There is no harm in starting on-line prototyping early and bringing in the 
pieces as they are available. You can also continue to use software prototyp­
ing tools during your final software development, even if you do not plan to 
develop your final software in the prototyping environment. As your system 



182 Software by Design 

or application progresses, use software prototyping tools to support small 
studies or experiments, particularly those that would otherwise require long 
amounts of time in your target software development process. Whenever you 
are still testing the appropriateness of the design itself, software prototyping 
tools are excellent ways to save time and still build designs that can provide 
you with significant feedback. 

The importance of using software 
prototyping tools 
As noted previously, there are a number of excellent reasons to take advan­
tage of software prototyping tools. In summary, software prototyping tools 
are important because with them you can: 

Demonstrate the system's capabilities as early as possible. 
Particularly when you can find software prototyping tools that allow you to 
quickly mockup your interactive elements, you can demonstrate function­
ality of your user interface software on-line long before you might otherwise 
be able to using more conventional software development processes. You can 
therefore present what appears to be a working version of your software to 
potential users or any other audience whose feedback might be critical in 
influencing the direction of your system. 

Test components of the system. 
While there might be times when you choose one for other reasons, the 
most consistent advantage of a software prototyping tool is that it supports 
rapid prototyping; you can quickly put together the various components of 
your system. The prototyping tool will also offer organization and presen­
tation benefits. However, the main advantage over a conventional pro­
gramming language should be the speed with which you can put together 
system components. 



Chapter 6: Prototyping 1 83 

Keep in mind that you make a tradeoff when you choose to use a prototyp­
ing tool: you are more confined by the tool model than you might be when 
using an open-ended programming language for development. 

Integrate graphical components. 
Software prototyping tools can be excellent platforms for quickly and dynam­
ically integrating the visual elements of your design. Many software proto­
typing environments offer a range of graphical tools with which you can 
enhance or combine your screen visuals. Typical programming languages 
alone do not support such functionality. Having graphical editing tools directly 
in the software prototyping environment can prove useful as your designs 
develop, even if you do not think that the designs are important at the start 
of the process. If you find it necessary to alter your graphical elements, hav­
ing visual editing tools available for easy access within your software proto­
typing environment can simplify your development and save you time. 

Obtain consensus from others. 
Because you will be able to use software prototyping tools to quickly put 
together parts of your design, you can show these design elements to others 
early in the development process. This will enable you to achieve consensus 
from appropriate parties, such as potential users or your management. Using 
software prototyping tools to put together something you can discuss together 
can be critically helpful to the design process. 

Steps for using software prototyping tools 
1. Gain a basic understanding of how to use the prototyping 

tool: work through tutorials, read introductory manuals, and 
play with any available examples. 

2. Check out the programming language or extensions that are 
supported. Even if you don't know whether you will use the 
language, a basic understanding of what it does will help you 



184 Software by Design 

to know when you might want to use it and whether it is 
appropriate. 

3. Look at a range of designs that have been built using this tool. 
They will help you to understand the kinds of work this tool 
is capable of. You might be so lucky as to have such samples 
immediately available to you through colleagues or other 
sources; if not, you might want to invest some time research­
ing. Sometimes you can contact the tool developer for a list 
of works created with the tool that you might evaluate. 

4. Before you build your "real" prototype, build small sample 
programs (such as a calculator) to test the tool. Using soft­
ware prototyping tools for early on-line explorations can serve 
two purposes: it teaches you about the tool itself, and it lets 
you explore preliminary concepts for your software. 

5. Organize your prototype before you simply dive in and build 
it. Often prototyping tools have metaphors for interaction. 
Thinking about how your prototype can take advantage of 
this model, or how it will have to get around it, will help you 
with your overall design. 

6. As you build your prototype, take advantage of any develop­
ment or debugging features the tool has to offer. 

Hints/ suggestions 
• Understand the features and limitations of the tools you use. 

You might want to focus on one aspect of your design because 
your prototyping tool can best support its functionality. Like­
wise, you might need to minimize another function if you 
cannot easily implement it in your tool's environment. 

• Be creative with your prototyping tools. Learn how to take 
advantage of the features offered, or coerce them into behav-



Chapter 6: Prototyping 1 85 

ing in alternative ways. Talk with colleagues about the tricks 
they use to get the tools to respond in needed ways. 

• Learn to combine different prototyping tools to meet your 
needs. Macintosh prototyping tools such as HyperCard and 
MacroMind's Director will allow you to launch other appli­
cations, or to import other file formats for use within appli­
cations developed in their environments. 

• Remember that you are building prototypes and not full work­
ing systems. Every feature need not work for you to get your 
point across. When your prototyping tool does not support 
necessary implementation capabilities, use creative alterna­
tives. These might include "hard-wired" segments that sim­
ply animate a planned interactive segment, or might even be 
still graphic frames that can serve as a background while you 
describe an intended feature. 

Exercise task 
Design and build at least one on-line prototype using software prototyping 
tools. You will probably want to take advantage of your evaluation from the 
exercise in the previous section, Method 2: Selecting the Right Tools, to iden­
tify which tools to use. These should be some of your considerations: 

• Which tool is most appropriate for your prototype? Will a sin­
gle tool meet your needs, or might you need to combine more 
than one tool? 

• Do you know enough about the tool's features to build your 
prototype? You might want to explore new features with 
which you were previously unfamiliar. 

• Can you use elements from other designs that were created 
with this software prototyping tool? What about elements 
from other pieces of software? Reuse whenever you can. 



1 8 6 Software by Design 

• Can you build small sections of the prototype that can later 
be linked together? There is usually no need to develop pro­
totypes in any particular order. 

• What kinds of place holders can you use to keep from having 
to address particular details at inopportune times? 

Do you have access to all hardware and software functional­
ity you need from this prototyping tool? If not, you might 
need to design creative alternatives. 

If there is more than one way to implement something with 
this tool, do you know which makes better sense for your 
design? 

Sofhvare Prototypes 
in User Studies 

The previous sections in this chapter discuss the importance and use of soft­
ware prototypes in user studies in a general way, looking at the overall advan­
tages of all kinds of prototypes, not simply on-line ones. The rest of this chap­
ter specifically discusses software prototypes and user studies: why to use them, 
the possible implications of using software prototypes in user studies, and hints 
for designing and building prototypes that are to be used in user studies. 

Value of software prototypes in user studies 
Since you are ultimately developing software, using software prototypes for 
your user studies can be especially valuable. While off-line prototypes will 
help you to get at initial design questions and are extremely useful in their 
own right, on-line prototypes can help you obtain more design-specific feed­
back from your study participants and potential users. 



Chapter 6: Prototyping 1 87 

In almost all cases, your users will respond more naturally to software pro­

totypes than to off-line prototypes. Users provide feedback that is more appro­

priate for your design when they are testing software prototypes that repre­

sent the target system as closely as possible As you move your designs on-line, 

you will address, either by choice or necessity, the details of your software 

prototype that will be the same for your final software. Issues that were fuzzy 
or misunderstood in earlier off-line studies will no longer be questionable. 

Users will see graphics of comparable size and resolution to the final images; 

they will hear sound and observe video that are unavailable in off-line pro­

totypes; image color and quality will no longer be in question. Clearly, these 

are details with which you did not want to concern yourself in earlier off­

line designs, but as your design progresses, feedback on these issues becomes 

critical to the success of your software. 

Conducting user studies with software prototypes can also help support con­

ditions that are truer to the actual system you are building, particularly when 

the software prototypes run on the target platform. Issues such as response 

times can be more accurately tested with potential users, both in terms of 

whether speeds are adequate and whether feedback given to the user is appro­

priate. Likewise, if your software prototype supports interaction with the 

same input devices that will be used in your final software, you can gain valu­

able feedback on whether the devices are appropriate and if users can ade­

quately manipulate them. These platform-based concerns can make or break 

your final software, as well. 

Implications of building prototypes 
for user studies 
There are, of course, a number of implications for your designs when you 

intend to use software prototypes in user studies. Users cannot be expected 

to know the delicate condition of your prototypes. In many cases, you don't 

want to let them know that your prototypes are not real working software! 
Prototypes used for user studies or testing purposes need to be more robust 

than those built for design or demonstration purposes. 



188 Software by De'sign 

Your study participants, like it or not, will be hard on your prototypes. They 
will not necessarily know how to interact with them, and might not identify 
interaction methods or feedback mechanisms that you thought completely 
clear in your design process. More importantly, they will try to interact with 
your system in ways that you did not anticipate. While you cannot expect to 
be prepared for every single action a user might take, you should attempt to 
make your system as flexible as possible. Anticipate that the user might select 
the "wrong" button, or try to slide a control bar in an unintended way. 

Include feedback for inappropriate activity in your prototype design. This 
doesn't mean that during the study you should be prepared to point out imme­
diately the intended interaction. On the contrary, you should sit back and 
watch for what the user thinks is the intended interaction. Designing your 
system to anticipate as many misunderstandings as possible will actually 
help you to conduct studies that give you the most valuable feedback on the 
success of your user interface. 

One way to prepare for such user misunderstandings is to analyze your soft­
ware prototype with the user in mind. If you will be using your prototype for 
user studies or testing, identify what you believe are the most important func­
tionalities. Think about how the user might see your software for these spe­
cific functions. Come up with at least one alternative for carrying out each 
important feature, no matter how bizarre it might seem to you or how sure 
you are that users will know what to do. Remember that you know much 
more about this software than the typical user, and someone without your 
knowledge could easily make the mistake that you think is wildly unlikely. 

If the user does make an unexpected move, your software should provide 
appropriate feedback. Better than simply pointing out that the action was 
invalid, provide instruction for the expected interaction. Offering a system 
beep at a "wrong" response is useful, since it indicates to the user that the 
input was received but could not be interpreted. A dialog box explaining what 
the system thought the user was trying to do is more useful. You do not, of 
course, want to bombard your user with dialog boxes for every action. You 
will have to use your best judgment in anticipating the appropriate feedback, 



Chapter 6: Prototyping 1 89 

and then be prepared to change your approach based on the feedback you 

actually receive during your studies. 

Another way to think about your design is to plan ahead for any feature that 

appears to be provided by your prototype but that you know is not going to 

be active for a particular study. Put handles in your prototype that catch a 

user's interactions with the inactive feature, then inform the user that the 

feature is not yet implemented. This feedback might be as direct as a dialog 

box message that says, "Sorry, this feature is not yet available." Depending 

on the nature of your design, you might want to communicate this message 

in some other way. The important aspect is that you give users the feedback 

necessary to know what is going on, to discover how to interact with your 

prototype, and to avoid feeling confused so that they will want to continue. 

Hints for prototypes in user studies 
Tell users about limitations in the software only when necessary. It will throw 

off the accuracy of your findings if you tell the user everything you expect to 

happen before it actually does. Start by letting the user think that more of the 

system works than actually does. As specific problems arise, you can point 

out that something is not yet active. If you tell users too much at the begin­

ning, you might discourage them from trying all the feature that are active. 

Test and evaluate only those concepts that will truly be transferred to the 

final system. Often users will start down the wrong path of giving you feed­

back, thinking you are interested in a particular aspect of the software that 

is there only as a place holder. Don't be afraid to put the user on the right 
path, before you've spent significant time listening to input that cannot help 

you. Try to ignore irrelevant feedback. 

Consider that there could be a need to reset or restart initial conditions of 

your software prototype from study to study. Your prototype does not have 

to be perfect, and there is nothing wrong with planning to reset these condi­

tions at the end of each user session. (However, don't do so in front of users 
and give the impression that the software is not "real" or working.) 



190 Software by Design 

When you aren't sure which features might be interpreted in certain ways but 
you won't have time to run many versions of user studies, you might want to 
use "dry runs" to get the big bugs out early. In these cases, bring in colleagues 
or friends (who aren't involved in the design itself but might not be appropri­
ate study subjects otherwise) and let them play with your software for a bit. 
These people can help you to identify significant problems that weren't appar­

ent to you because you know too much about the design. You can then revise 
your software before user studies begin. Be sure to interpret carefully the input 
from these dry runs. You don't want to make a change that isn't truly mer­
ited before you've had adequate feedback from a balance of users-which is 
precisely why you are to conduct the study in the first place. 

Preparing for the Actual Sofnvare 

At some point you will move from prototyping to building your final soft­
ware. While this book does not talk specifically about software development, 
the following guidelines can help you prepare for the switch to building your 
actual software. 

1. Understand the differences in the actual system and the pro­
totypes. Review both hardware and software requirements 
and re-examine your priorities. Often elements that were 
important to building and testing prototypes might not be 

critical in the final system. Also, factors such as cost and 
speed might have been ignored in the prototyping phases. 

2. Understand how any differences in the system will affect the 
user interface design. Hardware differences might mean alter­
nate input or output devices are necessary. Software differ­
ences can affect system speed or integration. 

3. Reuse anything and everything you can! Graphics, code, and 
even algorithms all are candidates for reuse. Leverage mate-



Chapter 6: Prototyping 191 

rials from early on-line prototypes or studies. Plan to do so 
as early as possible in the process. 

4. Explore translation alternatives. Look at tool environments 
on all target platforms. Talk with others who might have 
some experience. When you are writing code segments, iso­
late machine dependencies (bitmaps, environment variables, 
and so forth) to ease portability concerns later. 

5. Plan to iterate. Schedule generous time for user testing and 
redesign. Assume the worst; it can only get better! 



Chapter 7 

Usability Testing 

What Is Usability Testing? 

Usability testing, also called user testing, is the process of evaluating soft­

ware by having targeted users actually work with it (or a subset of it) in a test 
situation. It is the most widely practiced user-centered design technique. 

User testing can help you see where your software works as expected and 
where there are significant problems. Some problems will be obvious, as when 

many users have trouble with the same parts of the user interface. While it 
will not always be possible to pinpoint all problems, user testing will at least 
indicate inconsistencies in your design, or help you better understand the 

expectations of your users. User testing is valuable because it guides you to 

significant improvements in your software. 

Usability testing can be formally or informally conducted. Formal ways, 
which use rigid testing structures, are oriented toward gathering statistics 
that can be analyzed to show behavior patterns or significant results. Many 

papers and texts present methods for conducting this formal type of usabil­
ity testing. The techniques for user testing presented in the following sec-

193 



194 Software by Design 

tions, however, are a group of informal methodologies. While they don't nec­
essarily lead to statistically formal findings, they can still provide valuable 
information about the functionality and features of your software system. 

Formal versus Informal Testing 
It is important in all usability testing to get feedback from target users in as 

"real" an environment as possible. Formal methods are not needed to obtain 
valuable feedback as long as you follow this basic approach. You do not need 
to set up regulated, controlled environments with large numbers of test sub­
jects to generate useful findings. Of course, there might be times when you 
do want to conduct the more formal types of tests; by no means do I want to 
discourage you from doing so. 

Much of the time, however, you will conduct tests in less than ideal circum­
stances. I refer to this kind of testing as informal because you are, to varying 

degrees, "making do" when the perfect testing situation doesn't exist. Imper­
fect situations might be a result of an incomplete system, or no access to a 
realistic setting, or an inability to recruit test participants who are similar to 

target users. Still, knowing the drawbacks of your particular testing situation 
can help you tailor the test accordingly and achieve extremely useful results. 

Establishing Test Goals and a Plan 
In planning and conducting your user tests, it is important to understand 
what you are trying to learn about the system, not simply to present it to 
your users. It isn't enough to place people in front of your system and say, 
"Use it." Or to ask, "What do you think?" This approach will not yield as 
much information about your system as will guiding test participants to really 
use the system. 

You should prepare for a usability test by establishing goals, and then gen­
erating a plan based on those goals. Give the users tasks to perform that will 
direct them through the system, and that will motivate them to use the sys-



Chapter 7: Usability Testing 195 

tern in a real-world way.This will give you the information you need about 
the problems and successes of your system. 

Have each participant complete the same tasks to give you a basis for com­
parison among users. Examine different users' approaches to the same tasks 
to look for problems as well as see where things seem to work. You can refer 
to the results of the user tests to identify problems and make recommenda­
tions for how to solve them. 

The Timing of Usability Testing 
Even though usability testing is the most widely practiced form of user-cen­
tered design, it is still not practiced as often as it could be. User testing can 
happen at any time-it need not wait until a software product is ready to 
ship. You can apply user testing methods during early phases of development 
as extended user studies. You can combine some of the early user study meth­
ods presented in Chapter 3 with the usability testing techniques here to devise 
your own user-based approaches to design and evaluation. 

Usability testing should not happen only toward the end of the development 
process or wait until a completely working prototype exists. It is valuable 
throughout the design process.The purpose of user testing is to obtain feedback 
to make the software better; your testing will be for naught if you wait until 
the end of the process when you no longer have the time or system flexibility 
to adequately incorporate what you learn. Another kind of testing, quality con­
trol testing, can (and should) happen toward the end of the development cycle 
so you can evaluate how successful the software is for potential users. 

Determining the Number of Tests to Run 
The usability testing procedures described in the following sections do not 
provide a formula for determining how many users must be tested before sig­
nificant results can be realized. In informal usability testing, there is no sci­
ence to determining how many users to test. There is a rule of thumb, how­
ever: test enough subjects to gather useful information. This does not 



196 Software by Design 

necessarily mean hundreds or even tens of users; it can be as few as five or 
six, depending on the nature of the software or problem you are testing. 

Critical problems typically become evident after test sessions with just a cou­
ple of users. Less obvious problems, or issues that might be problematic to 
some users and not to others, will take more participant sessions to become 
evident. With time and experience you will get a feel for how many users to 
test. In any case, I am not arguing for always testing few users. You have to 
be sure that you test enough users so that the results: 

• Include significant information. 

• Eliminate the possibility of chance results. 

• Eliminate any biases among the users. 

Usability Testing-Part of 
User-Oriented Design 
Usability testing is an integral part of user-oriented design. However, it alone 
does not constitute true user-oriented software design. User-oriented design 
involves target users throughout the design and development process. Usabil­
ity testing toward the end of the design process is, of course, better than no 
user involvement at all. But don't call yourself a user-oriented software 
designer because you happen to show your software to a few potential users 
before you ship it out. This chapter presents critical methodologies for usabil­
ity testing. These techniques are most effective when combined with the 
design approaches presented in other chapters, and can be adapted to meet 
your personal needs as long as you keep the basic principles in mind. 



Chapter 7: Usability Testing 197 

The Advantages of Usability Testing 

The various techniques of usability testing are critical to the overall design 
process because they: 

Indicate potential users' reactions to the system. 
The most important aspect of usability tests is that they give you an oppor­
tunity to see and interpret potential users' reactions to your system or appli­
cation. Bringing in objective users to use your design can be an irreplaceable 
way to stage a reality check. Even if you have used other user-oriented tech­
niques in the development of your software, usability testing can expose a 
variety of ways to improve your system because target users will always have 
something to say about your design. 

Show you system problems or flaws. 
The type of usability testing techniques explained here are probably best 
suited to highlight problems in your current design. Identifying these prob­
lems is the reason you conduct usability tests-when you identify the ways 
people have problems using your product, you can refine your design and 
make it better. These changes serve as the bridge for the next iteration of 
your prototype design. 

Show you where the system works well. 
Usability testing also supports the successful aspects of your system. When 
you find that test participants are able to complete various tasks successfully 
and use system features without problems, then you have validation of the 
usability of those aspects of your system. 

Help you evaluate design issues and conflicts. 
Usability testing can be particularly helpful in lending support to design deci­
sions, especially those that might have been somewhat questionable or con­
troversial among team members. Seeing objective, unbiased users support 



198 Software by Design 

one design idea over another can be an extremely convincing argument for 
following that approach. The approach to take might become evident through 
an overwhelmingly positive attitude toward a system feature or element, or 
in repetitive user problems with a specific feature or element. In either case, 
seeing one user after another have the same reaction is persuasive (and can 
be presented to the "non-believers" through back-to-back video clips). 

Provide design ideas through user suggestions. 
Participants in usability tests will typically not only tell you what you want 
to learn about the existing system, but they can be an excellent source for 
design ideas, as well. In the course of trying to complete the tasks of a usabil­
ity test, users will often point out how they would prefer to see a feature or 
element. If users do not offer their suggestions unprompted, be sure to ask 
them what they are thinking about during tests, and at the end of the test 
ask them what they expected or preferred. Don't pass up an opportunity for 
first-hand design ideas! 

Give you a means of comparing multiple users. 
Usability testing allows you to compare the interactions of users. This com­
parison can be critical in understanding the relative importance of a test par­
ticipant's feedback. While having just one participant come in and use your 
software can reveal interesting results, this would yield the opinions of only 
a single person. It is important to solicit responses from enough participants 
so that you can complete this comparison and be sure your findings are truly 
reflective of your system. 

Give you support for further design work. 
Users' reactions to your software can provide the information necessary to 
indicate that your design is not only usable, but needed and wanted. This can 
be the impetus necessary to decide to go further with the software (or it can 
be a clear indication that the current approach will not work and an overhaul 
in the design is needed). 



Chapter 7: Usability Testing 199 

Encourage user support. 
One of the best side effects of usability testing is that you establish a rapport 
with potential users of your system. Participants in your usability tests can 
become strong supporters of your software. Sometimes this is so because they 
are simply happy to have been asked for their opinions; other times it is 
because they see that you are building a product they really need. In any case, 
having advocates of your product from your potential user population is an 
added benefit of usability testing. 

Hov.r to Design and Perform 
Usability Tests 

There are a number of factors to consider when organizing your usability 
tests. They can differ significantly from one another-they are not as simple 
as sitting users down in front of the system and asking them directly to tell 
you how you should change it to make it better. There are some considera­
tions you can make that will help guide you in determining the tasks for the 
test, the qualifications for your participants, the length of time for each test­
ing session, and other related factors. These issues are presented in the fol­
lowing sections. 

Examine the goals of your system 
The best way to understand how to structure and run your usability tests is 
to know ahead of time what you are trying to get out of them. You can do 
this by thinking about the goals of your system. Ask yourself what the main 
purpose is of this system, and what the basic tasks are that you want users 
to be able to accomplish. 

Your goals might be quite general, especially if you are conducting tests early 
in the design process and you are exploring basic navigation or layout of the 
software. On the other hand, if you are trying to understand detailed infor-



200 Software by Design 

mation, such as if users perceive the subtle messages in your iconography, 
you might have very specific goals. Goals will differ from one testing situa­
tion to the next, so it is important that you think about goals for each ver­
sion of the software you want to test. 

Evaluate the state of your system 
Another factor that might influence what you are able to include in your test 
is the actual condition of your software. Particularly if you are testing a pro­
totype, parts of the system might not be functional. It's okay to conduct a 
usability test on a partial system. You will, of course, want to be careful to 
plan the test so that you steer users away from the portions of your system 
that are not active. If need be, you can tell them that this is only a prototype 
and they should ignore certain missing functionality. However, depending 
on the users and the software, telling them this might negatively influence 
their interaction, so tell them only if you absolutely must. Instead, try struc­
turing your tasks to focus on the features that are available that you do want 
to test to obtain the most valuable feedback. 

Assess the capabilities and 
availability of your testers 
Knowing what you can realistically accomplish during your usability tests 
will help you to understand what you can expect to learn from them and how 
to structure them. Look at what resources are available to you for conduct­
ing the test. How many people will be able to participate in the tests? Who 
will those people be? How much time do they have available? What are their 
skills and experience? All of these factors can come into play when you are 
planning your testing sessions. 

While the ideal situation is to be able to select testers who meet your exact 
testing criteria, in the real world it is unlikely that you will be able to fit your 
ideal. You can still make the most of the testing sessions if you critically 
assess the abilities of your testers and structure the tests to take advantage 
of those abilities. 



Chapter 7: Usability Testing 201 

Consider which and how many 
users to include 
Your test participants can also be critical in helping you determine how much 

you will be able to accomplish during your testing. Think about how you 
will recruit test participants and how you will compensate them. In some 
situations, finding representative users is not an easy task. Product confi­
dentiality, limited funds, and not really knowing who your users will be are 
issues that might make it difficult to find an adequate number of test par­
ticipants. If you cannot find truly representative users, you have a choice: 

• You can find a sampling of other participants from whom you 

can still learn valuable information. For instance, you could 
change the nature of the test tasks and then hypothesize about 
how your findings might relate to the actual system and tar­
get users. 

• Or you can use the few representative users available to you, 
but risk not obtaining enough feedback to get sound, unbi­
ased results. 

Understanding what you will be able to expect from your test participants 
can help you better understand and structure your usability tests. 

Determine the setting for your tests 
Consider where you will hold your usability tests and under what conditions. 
The availability of any equipment necessary to support the test, an appro­
priate room for testing (quiet, with adequate space, light, and privacy), video 
or other recording equipment, and accessibility for your participants all might 
come into play when planning your testing sessions. Understanding the cri­
teria that the environment for your tests must meet and finding a setting to 
meet these criteria are important considerations in planning and conducting 
your user tests. 



202 Software by Design 

Spend enough time and 
include enough users 
As with early user studies, make your testing sessions worthwhile by being 
sure to include enough users with whom you spend adequate time (see Chap­
ter 3 for more complete details). While there is no exact formula for know­
ing how much time to spend or how many users are enough, there are some 
rules of thumb to follow. 

• A testing session should be at least 45 minutes; any less 
doesn't really give participants enough time to formulate opin­
ions about your software or its features. 

• A testing session should not be longer than 1-1 /2 to 2 hours; 
beyond that, participants are too bored or tired to contribute 
useful information. 

• Fewer than five users probably does not comprise enough of 
a sample to really get useful results. 

• Time spent testing any more than 20 participants probably 
will not shed significantly new information and will there­
fore not be worth your time. 

With experience you will get a feel for how long to allocate for various tasks 
or how many users to include. Project constraints might also limit the total 
time you can spend or the number of participants you can include. Being 
aware of your constraints and expectations can help you make the most of 
your testing sessions. 

Document the testing sessions 
Record what goes on during the testing sessions. Use written notes, audio or 
videotape recordings, or a buddy system where others can observe or record 
findings to adequately document user responses and feedback. These records 
will help you later to better understand what went on during the tests. They 
also might provide content for reports or presentations based on your findings. 



Chapter 7: Usability Testing 203 

Understand what usability 
testing can do for you 
While usability testing is a valuable way to obtain feedback from target users 
of your software, it will not solve all your design problems or necessarily pro­
vide answers to all your questions. Knowing what you expect to learn from 
your usability tests ahead of time can help you make the most of the time 
you spend with your testers. 

Participants can point out what is incomprehensible about your system, or 
if they don't like the available functions. They cannot, however, always tell 
you what they do want or what would work better. Sometimes you will 
receive as many different suggestions for alternatives as you have partici­
pants. You will have to make sense of users' responses and determine the 
best way to resolve any problems. 

Listening to your users is important, but you still have to apply design and 
problem-solving skills and come up with alternative solutions yourself. You 
might even have to start again from scratch depending on participants' reac­
tions. Don't assume that holding usability tests is enough and that you will 
be done with the project as soon as the testing is complete! 

Know when to test 
Usability testing can be extremely helpful in addressing the issues presented 
previously in the Advantages of Usability Testing section. Recognizing the 
value of user testing and when it is appropriate to conduct user tests in your 
design process can help you make the most of testing and lend the most sup­
port to your design effort. Still, usability testing is not the solution to all your 
design problems, and simply conducting a usability test will not necessarily 
produce helpful results. Knowing when usability testing can be helpful and 
when it is simply adding time to your design process can aid you not just in 
carrying out your usability tests, but in completing your design. 



204 Software by Design 

Method 1 : Designing a User Test 

Understanding how the user interface you are developing can 
be evaluated, and making a plan to adequately conduct that 

evaluation. 

Before you can put your users in front of your software to obtain the valu­

able information that they will impart, spend some significant effort plan­

ning for and designing your usability testing sessions. While it might seem 

that the most important parts of usability testing-and possibly the entire 
user-centered design process-are the usability tests themselves, the usabil­

ity tests are only as good as they are designed. In designing the tests, you will 
set the stage for the type of information that you will gather, and the influ­

ence it will have on your ensuing designs. 

Establish goals for the test 
The first things to consider are the purpose of your software and the goals of 

the test. Think about what you want your users to accomplish with your 
software. The goals set the foundation for what you will ask users to accom­
plish during the testing session and help you configure the test to focus their 

responses. 

Your goals might be general in nature: to determine whether users are able 

to understand the basic functionality of the system, or whether they can grasp 

the general navigation approach. General goals are typical of usability tests 
conducted early in the design process. 

If user testing comes later in the design process, you might have more detailed 
goals, such as: to determine whether users know to use the menus to find a 
certain feature, or whether they are able to adequately express themselves in 
a system that solicits user input. The goals you have for your software largely 
determine your goals for usability testing. This is why it is so important to 
understand the specific goals for your current design when you begin the user 

testing process. 



Chapter 7: Usability Testing 205 

One way to help determine your testing goals is to evaluate the system your­
self. Evaluate the system from the point of view of your target users-not 
necessarily the structure or design of your system (although if the structure 
is something you want users to be able to understand, this might come into 
play in your evaluation). Use the software, or intermediate design, if that's 
what you are testing, as you expect that your users will. Follow the steps in 
the order that you think others will. You will begin to see what kinds of 
expectations you have for the software and your users. 

Keep in mind that you know much more about this design than your users 
will; while you know which step to take next, your users might not. As part 
of this evaluation process, think about what types of things might confuse 
your users, and what they might do instead of the "correct" choice. Think­
ing about potential unexpected responses, as well as thinking about what you 
want users to do, will help you set your goals for the test. 

Devise tasks for the test 
Once your goals are well understood, the next step is to come up with tasks 
that you will ask participants to accomplish that you hope will contribute 
information toward your test goals. You will most likely not want to come 
right out and ask users what they think of a certain feature or screen element, 
since this might cause them to think about this feature or element in an 
unnatural way. Instead, provide them with a real-world task that will intro­
duce them to the feature or element. 

The purpose of the task is to get your participants to act as they would if they 
were trying to use the system to accomplish the actual task on the actual 
system. Although usability tests are a somewhat staged production, make 
the test as much as possible like the situations in which you expect people 
will use your system. By doing this, you will learn the most useful informa­
tion about your software, information that can help you shape a truly usable 
and successful product. 



206 Software by Design 

Determine the environment for the test 
In order for the user tests to be of maximum effectiveness, the sessions should 
parallel as closely as possible the environment and setting in which the tar­
get software will be used. Whenever feasible, plan to conduct the tests in the 
same environment in which you think the final system will be used. 

For example, if you are developing software for a desktop platform in an office 
environment, conduct tests in a similar office environment. If you cannot 
reproduce the environment exactly, try to come as close as possible. If you 
are designing software for public information kiosks to be placed at strategic 
locations around a shopping mall, strongly consider holding your tests in the 
mall itself. If that is not possible, try to simulate the noisy, distracting envi­
ronment. Creating a setting as similar as possible to that of your intended 
environment can help you uncover information critical to the working of 
your software or your user's thought process that would be lost in another 
testing environment. 

Decide how to record the test 
Consider how you will record each session. Will you be able to use audio or 
videotape? Will you have a second observer present who will be able to con­
centrate on recording the session while you run it? Even if you are able to 
use some sort of recording medium or another person is available, it is prob­
ably a good idea to take some form of written notes yourself. 

Don't let your note taking distract from your ability to conduct the tests; 
think carefully about how you will record what goes on. Still, while note tak­
ing can be distracting, it is often the most effective way to mark the events 
of the test session. When you are in the process of conducting the test, you 
will have critical thoughts that you will want to capture for fear of forgetting 
them later. 

One approach that can help you take notes is to prepare a worksheet ahead of 
time and have a copy of the worksheet available for each test session. Structure 
the worksheet around the key goals of the test or the tasks themselves. Then, 



Chapter 7: Usability Testing 207 

when you are taking notes, you will only have to jot down the results in the 

designated areas, not write an explanation of the entire situation. You will need 

room on the worksheet for unanticipated findings, as well, but at least most of 

your note taking will be recorded within your planned organization. 

Establish the need for post-test 
interviews or questionnaires 
Think about whether you will follow each test with an interview, or have 

participants fill out a prepared questionnaire. Remember to conduct the test 

sessions themselves without intervening too much. During the test don't ask 

the user for long explanations, and don't discuss topics that you think are 

important in determining a better approach to your design. However, once 

all the tasks are completed, take advantage of the opportunity to understand 

the participant's thoughts and reactions by asking questions. A post-test inter­
view is an excellent way to find out what the participants were thinking or 
to test new ideas. 

When you are planning your test, determine if you will "debrief" users after 

each test session. Consider whether a verbal interview is appropriate, or 
whether you will have the participant fill out a written questionnaire. 

• Verbal interviews provide an opportunity to clarify a response 
or probe further on an interesting issue. However, some peo­
ple might not respond as openly in a discussion format. 

• Questionnaires allow users to express themselves without fear 
of being judged. However, they limit you to the predetermined 

topics. Questionnaires are also beneficial when you want to 
ask participants to rate responses. For example, you might 
include a scale of l-to-10, where I means "Strongly Agree" 

and 10 means "Strongly Disagree." Scaled responses lend them­
selves well to more statistical analysis of your results. 



208 Software by Design 

In any case, it will help you to think about either a verbal interview or a ques­
tionnaire ahead of time and to outline the topics for discussion or create the 
questionnaire form along with your tasks for the test. 

Establish the timing of the test 
You do not have to wait until you have working software to conduct a usabil­

ity test. Usability testing is appropriate early on in the design process, when 
you have developed a storyboard, flipbook, or other prototype for which you 

would like user feedback on your design. You can also be planning for your 
usability tests throughout your design process. Even if you are not able to 
test as often as you might like, make note of any important issues that come 

up that you will want to be sure to address later, when you do have an oppor­

tunity to test. 

Usability testing can be an excellent way to resolve design problems, partic­

ularly among design team members who have opposing viewpoints. Gaug­
ing users reactions to alternative approaches might help you decide which is 

the more appropriate design to follow. And, of course, be sure to conduct 
usability tests when you do have a working version of your software, before 

you consider it a final product. A design that you think is flawless may appear 

different to the eyes of your users. Your usability tests will introduce you to 

issues that you didn't even know existed; but once acknowledged and resolved, 
those issues will improve your product immensely. 



Chapter 7: Usability Testing 209 

AMBX Project 
Usability Testing Plan 

General Goal: People with access to a Macintosh will 
be able to fill out the form on their desktops and 
send it from there to Am Ex 

Goals: 
• See that people can generally navigate through 

the system. See if we need to have a startup or 
central organization screen. 

• Check all necessary information before an order 
is submitted. 

• Iconography representative of functionality. 

• Clear wording of prompts and commands. 

• Adequate response time and feedback. 

• Obvious separation of inquiry v. reservation. 

• Clear definition and role of the AmEx profile. 

Check the following specific features: 
On the •schedule" screen, current 

departure/arrival layout 
The "flexible" option 
Primary traveler v. companion(s) 
More than one destination, hotels and cars 
International travel 
Rental car or other transportation info 
Typing in information v. choose from a list 
Help system 

Figure 7.1 Test goals and subsequent tasks. This docu­

ment, on the next three pages, presents preliminary usability test­

ing goals and the tasks generated from these goals for an on-line 

travel request system designed by the Stanford University Data 

Center. 



210 Software by Design 

Any features missing which people would like. 

Find out if the on-line system is better than the 
current process. 

Tasks: 

1. You will be attending a seminar in Seattle from 
April 20 - 24. You would like to make airline 
reservations and get some information about hotels 
and rental cars. Use this on-line system to do 
this. 

2. In June, you will be traveling to Toronto to give 
a talk at a conference. You would like to arrange 
the trip, and see how much it would cost to bring 
your spouse and 2 kids along with you. Your 
conference is June 10 - 13, and you would like to 
stay on in Toronto until June 16 to enjoy a vacation 
with them. You will need a hotel room that will 
sleep all of you, as well as a large enough rental 
car. Use the system to plan your trip. 

3. In May you will be making an "east coast tour". 
On May 5 you are scheduled to talk in Boston early 
in the morning. On May 7 you have a talk in 
Philadelphia, and on May 8 and 9 you must be in New 
York. You want to fly from San Francisco, but 
return to San Jose on May 10. You will need a hotel 
and rental car in every city. 
make the arrangements. 

Use the system to 



Chapter 7: Usability Testing 211 

4. You are planning a business trip to Santa Fe, New 
Mexico some time this summer, probably in July, but 
you are flexible if it affects the cost of the trip. 
You have never been to Santa Fe, but have heard a 
few things about it that affect your needs for this 
trip. Firstly, friends have told you that it is 
difficult to fly there from the Bay Area (you may 
have to switch planes or fly out of Oakland or San 
Jose rather than SFO, and you probably will fly into 
Albequerque rather than Santa Fe directly). 
Secondly, there is a wonderful hotel in the main 
square where you would like to stay, but you have 
forgotten the name of the hotel and you do not know 
how expensive it is. Finally, you hear it is not 
the kind of place you want a rental car, and would 
like to know what other transportation options are 
available to you, both from the airport to your 
hotel and then within the city of Santa Fe. Use the 
system to plan your trip. 

The importance of designing a user test 
Taking adequate time and energy to design your user tests is well worth the 

effort you will expend. A well-designed user test can help you to: 

Set up conditions that will identify problems with 
the functions or operations of the system. 
Planning the appropriate tasks for your usability testing sessions can be crit­
ical in achieving results that truly help you evolve your design. Understand 
the conditions in both the test content and test environment that will most 

likely lead you to useful findings. Well-designed tests can help you find prob­
lems that will lead to critical changes in your design. Less well-designed tests 
might simply take your time and provide only marginally important results. 



212 Software by Design 

Provide obiective feedback for the design team. 
In the process of designing your user tests, you will evaluate your design and 
assess the goals of your system. This process allows you to provide objective 
feedback to your design team, both in the course of planning the test and 
then in gathering the subject information. Remember that everyone's goal is 
to build a better product, so being as objective as possible is the best thing 
for everyone. 

Consider direction for further development. 
Designing usability tests can help you understand the strengths and weak­
nesses of your system. This process can provide the basis for any further devel­
opment on your design, both in the results yielded from the testing sessions 
and the structure of your test plan. When questionable areas arise, make note 
of them. Do the same for elements that receive positive attention. Using the 
test-planning stage as a foundation for further design makes it doubly valu­
able to the development process. 

Make the most of your time with potential users. 
Taking time to plan your user tests might seem like an unnecessary drain on 
your resources, but the little time you spend up front organizing your test 
sessions will pay off many times over. We often get little time with our poten­
tial users, because of restricted schedules or participant availability. Take 
advantage of the time you do have with these users; you cannot expect to 
invite them back repeatedly as you change the direction of your desired feed­
back. Planning the user tests will enable you to truly make the most of the 
limited time you have with your users. 

Steps for designing a user test 
1. Evaluate the prototype you will be testing. Use the prototype 

yourself or have someone else demonstrate the system. What 
are the tasks the user must accomplish? Where are the poten­
tial problem areas? 



Chapter 7: Usability Testing 213 

2. Make a list of the general test areas and related goals for the test. 

3. Think of a task that the user can accomplish that will objec­
tively evaluate each item in your list. Make the tasks as "real" 
as possible. 

4. Order the tasks logically, according the way the user might 
be most likely to conduct these tasks when really using the 
system. 

5. Consider using post-test interviews or questionnaires to eval­
uate results. 

6. Determine the length of each session and how you will record 
results. 

7. Schedule the test and recruit subjects. 

Hints/ suggestions 
• Leave plenty of time between tests, usually at least half an 

hour. This will give you time to complete your documenta­
tion of the test, reset any system conditions, prepare for the 
next user, and just take a break. Usability testing can be 
extremely tiring, and short breaks between tests will help. 

• Do not plan too many tests in one day. Even with breaks 
between tests, you probably will not want to spend an entire 
day testing. Four-to-six tests in a single day is probably all you 
should aim for to keep from losing interest or energy in con­
ducting tests. Spread out testing sessions over a period of days. 

• If necessary, run short sample tests to understand what you 
can hope to learn from your tests. These "tests of the tests" 
might help you design your tasks for the actual tests. 

• Plan to let users struggle for a little bit-you will learn from 
their troubles. 



214 Software by Design 

In designing the tasks you will present to users, tell them only as much as 
they need to know to complete each task. Usually, you will provide more 
motivational information on what they should hope to accomplish rather 
than an explanation of system functionality. 

AMBX Project 
Post-Test interview Questions 

_____ ...... J~....__J;rL.g~J.'l~}:: ~.L-.... c.!i.!LYmLU!l_UQ.JJ. __ g91JJQ ... _n.~yJg,g.t_e.. ............. - ... - ........ . 

___ J_th.~!!9'l:L.this_ .. ~Y.!?J;,~l'!I _su_c_~~.$..s.fy_Uy? __ l_Lsq,_.J'[hat __ _ 

-·---·----L. _ma,c:l~_j,J;_J;his __ ~aY.L...Ji..n~..L.. ~..®Lm..i..sb.t. _b.a..Y .. ~L 
·--·-·-·- -l----h-~l.,J~§_Q_1- ........ ···-······ ------- ---- . --...... -·----·-· 

! --·-- -r-~-··-----· 

------•--L--------------·- --···--··--n·--·~--- -------·•-•··-~·-•- -----··-n ••--·--- ··------·---

___ ..iL-oi,<;i__yQu_thin1L .. tJ1ere_\o/1i_§_~ny _ _i.ijJ f e_!"_g_n~e __ bet.J'{~e .. n ___ _ 
, ______ J ___ , __ ;r::~®.S! .. s .. tJng __ i.nJQ!I!l9.,..t.19.n_2,n,g_,_§..£tJ..1al.lY ...... r:.~s~_:i;y:i,9g ____ _ 

----+--a _tri,p"?._ ____ .__ -----·-- __ _ -·--·----- ____ _ 
I ..... ,,_,, ___ ,_ ......... ,... .............. ··- .. --·--·--· .... "--·-·- .... ..--·--· - . ·- ,,, _____ ,_,,, .. ·-·-·--· ........... , _____ ,,, 

-O--+~-J~ic:l ... Y9:!,1.J~1..1.o_~L .. t.nat ... t..lJ.~.:c:-.. ~LWE::l.;r::~J~ql1i~§9 __ inf9iIDa!:.;i._on -· 
____ L__to_be in~JJ!Q!=d_ befo_rEL_g__re_q\!_e.§.t ... coulq_ .. P.e ________ _ -----1---.. $J,.l~Ces_$_fJ,l.H.Y_l?.UPil\i_t.t.~.QJ __ -·- ... --·-·•·""'"" ____ . ·------·-·---··--·-· 

~;J~~f:~~~:£=;~~;~.~!~=~~:~~~~== 
I r-·-- -- _ .. _ --·-........ ·-----..... _.. ----- -

~~=-jfil?_kji~Q_~~~~~~~-~~~=-~ =====-- -~=-~--~~--=-
____ j_ ____ ·_~.!:_ding__,,, __ . __ . ____ ,_, ____ ,_, __ , _____ ............ ___ ,, ___ ...... __ ,_ .. 

·---·--+-·-·- ...... _ -~-... rnsP9.11_~~L.t.!.meLJ§!gg.Q.c.i..i::~-- ·-·-·---- .. . 
•---~--- __ •_typjng__~IJJ..!l.f_q_r..m.cg,,i,Qn ______________ _ 

·---·--~--... ".'....f l~.Xi.Q.i .. ~.:_J?.G.h~Q.yJJn,g,_.... ........ . ....... - .... - .......... -···· .. .. ...... _____ +·--·-·-
T 

___ • _;i,.m:erna t i_onal, __ t_~ave_L _____ .. ·---·-···--- _ 
--·--·-~9Q...ition~], __ J;,z:.~ye_J._~r$.. - .. __ .. ______ ... ___ _ ------,---

------·--+·---· ..... ~_m.i§_siqg_J_~9~.m::~§.L_ ... _._, ____ ---·-.. -·- .. ··-·-.. --

-0·--f--·-- ··- --~--_h~J,p_______ --------- --·----------

------------- ........ --·-----·---·------.. --
Figure 7 .2 A debriefing questionnaire. These questions 

were designed for interviewing users after the Stanford travel 

request system usability tests. (see Figure 7.1) 



Chapter 7: Usability Testing 215 

Exercise task 
Design a usability test for your system in its current state. The more you focus 

on designing a realistic usability test, the more you will be able to identify 

the critical elements of your design that will lead you to changes in the next 

iteration of your product. Some of the things you should think about are: 

• What do you hope to learn from these tests? Consider the 

state of your current design, which features are most critical 

to test at this stage, and what users will really want to do 

with your system. 

• What real-world tasks parallel your goals for the system? Eval­

uate the kinds of requests your users will have for an inter­

active supermarket guide. 

• Where will you hold the tests? Can you find a location at a 

local supermarket, or will you simulate a supermarket envi­

ronment somewhere else? 

• How long will you schedule for each test session? 

• How many sessions will you conduct altogether? 

• Who will conduct the sessions? 

• How will you record the sessions? 

Method 2: Selecting Test Subiects 
Qualifying and recruiting participants for your usability tests 

(or other user studies). 

The people you find to act as potential users for your system are as important 

as the structure and content of the tests themselves. Typically, "just anyone" 
will not do as a test subject (unless your user population is made up of many 



216 Software by Design 

"just anyone's"). The more closely test participants resemble the people that 

you expect to use your system, the more valuable will be the results. 

Identify the target users 
In order to find test participants who closely resemble your target users, you 

must first have a solid understanding of who those users are. Think about 

factors such as demographics (age, gender, race, and so forth) and user com­

puter experience. While these factors are not always important for every user 

test you conduct, often they will help you describe the type of person you 

are expecting to use your system. 

Identifying your ideal user type is not always straightforward. There might be 

times when you don't know exactly who will use your system. In cases like 

these, you might want to bring in a variety of participants to help you estab­

lish who the system is for. In other cases, you might have a clear idea of who 

will use the system, but for some reason you will not be able to find such peo­

ple to act as participants in your tests. At these times, the best you can do is 

to find people who resemble your target users as closely as possible. You will 

want to take into account the differences in your intended and actual test par­

ticipants, both in designing your user tests and evaluating the results. 

Decide how many participants you need 
Think about how many subjects you want to test. You might have difficulty 

finding as many people as you want to include in the test. If this is the case, 

use as many "real" representatives as you can find, and fill in the remainder 

with people who resemble the target users as closely as possible. Better to 

have the numbers necessary to achieve reasonable conclusions than have just 
a few people use your system. 

You will have to be sensitive to the differences between your more represen­

tative users and those who are filling the gaps. Be sure to take advantage of the 
representative users while you have them by conducting post-test interviews 

or asking them to complete questionnaires to confirm findings. Ask your "filler" 



Chapter 7: Usability Testing 217 

participants to imagine that they are the target users with similar goals; hav­
ing them roleplay might help you attain more representative results. 

Determine the motivation 
for the participants 
Consider how you will motivate subjects to participate in your tests. These 
people are spending their time to give you valuable information about your 
system. Depending on who your participants are and the effort they must expend 
to be a part of your test sessions, you should compensate them accordingly. 
Willing users (such as friends and family, or graduate students recruited from 
a local university) might be happy with a complimentary tee-shirt or other 
token. Food and beverages are also a nice way to reward people for their time. 

Participants recruited from other sources, such as some of those noted in the 
following section, might require more substantial compensation, either in 
the form of financial remuneration or complimentary versions of your soft­
ware. Compensating users can be somewhat of an expense, so plan ahead to 
be sure you can cover your needs for objective and impartial test participants. 

Finding the participants 
Finding people to participate is sometimes the most daunting task in orga­
nizing and carrying out your user test. While you might have a good idea of 
the kind of people you want, you might not know where to find them. Here 
are some suggestions: 

• Post notices on bulletin boards at local universities or other 
likely places. Interested people can contact you. 

• Place an advertisement in the local paper. 

• Ask friends and family to participate. It is a low-cost approach 
(and the safest for potential confidentiality conflicts), but be 
aware that they might not give you truly unbiased and criti­
cal feedback. 



218 Software by Design 

• Use a temporary agency. 

• Contact marketing research firms. Sometimes they provide 
services for locating target users. 

Clearly, your compensation budget might come into play here, since these 
different resources will have varying related fees. You might have to modify 
the qualifying characteristics of your users somewhat if you do not have the 
funds to compensate them adequately. In any case, do the best you can to 
find representative users. 

Scheduling the tests 
It takes a significant amount of time to recruit and schedule your partici­
pants. You should allow a minimum of a week, sometimes four weeks or 
more, for the process. Don't underestimate the amount of time you will need 
to accomplish all of these aspects of engaging test participants: 

• Contact the potential participants. 

• Establish that they are appropriate users. 

• Schedule a mutually-convenient test time. 

• Send a reminder of the scheduled test session. 

• Provide some form of compensation. 

• Follow up after the test, if necessary. 

You might want to consider delegating some of these tasks, especially the 
scheduling of participants, to someone with administrative responsibilities 
who can be reached easily by phone. While it might take you time to plan 
the participation of your subjects, being organized during scheduling will 
help ensure smooth-running test sessions and help you get the most from 
your user tests. 



Chapter 7: Usability Testing 219 

The importance of selecting test subiects 
Devoting some energy to qualifying and recruiting your test participants is 
critical to the success of your user tests because: 

Results are only as accurate as your subiects. 
If your test participants are not really representative of the people who will use 
your target software, then the results they present might not be either. In order 
to truly learn how to improve your system, ask people to participate who will 
be using it. These kinds of subjects will tell you what you need to know. 

They can help you understand your audience. 
Sometimes in the design phase of software development, we role-play our 
users to identify an appropriate creative design. In doing so, we might lose 
touch with the users themselves and get caught up in the elements of the 
design. Bringing in test subjects who are your target users-or who represent 
them well-can help you get back in touch with your audience. 

You want people who are motivated, not iust anyone. 
The right test participants will be motivated to use your software to accom­
plish tasks, not simply for the purpose of the test session. These users will 
be able to evaluate the software in light of its actual purpose, not just for the 
superficial aspects that seem important at test time. 

They can be helpful in influencing the design team. 
Appropriate test subjects can also help sway the design team to accept the 
feedback from your user tests. If the design team believes your test partici­
pants to be representative of the people who will actually use the system, 
the team will be more likely to take their comments and criticisms to heart. 

They can help you make design decisions 
and a better product. 
Ultimately, your usability tests are what help lead you to a better design and 
thus a better product. Your test participants will have suggestions and feed-



220 Software by Design 

back that can help influence your design decisions. In a way, they will act as 
co-designers on your product. Take their input seriously and heed their sug­
gestions-they are your "expert" users! 

Steps for selecting test subiects 
1. Make a profile of your system's target users. 

2. Decide how many subjects will be necessary for your test. 
The number of subjects tested will depend on available time 
and on how statistically accurate you want your results to 
be. Test enough subjects to eliminate bias from your test 
results. Account for "no shows" at test time. 

3. Decide what kind of compensation you will offer participants. 
Your budget might affect the types of users you are able to 
recruit. 

4. Identify any confidentiality or security limitations that might 
apply to your participants. 

5. Determine if you will be able to find participants who pre­
cisely fit the profile, or if you will have to compromise in 
some way. If you are compromising, anticipate how this might 
affect your test or any follow-up interview questions. 

6. Plan how you will recruit test subjects. Will you call them 
directly (if you know who they are), ask colleagues to recruit 
friends and family, recruit participants from among people 
you know, or have an agency do the recruiting for you? 

7. Contact your participants and be willing to adjust your test­
ing schedule to accommodate their schedules, if necessary. 
Inform participants that you are counting on their support, 
in order to avoid no-shows. 



Chapter 7: Usability Testing 221 

Hints/ suggestions 
Schedule more participants than you think you will actually need. No-shows 
are, unfortunately, a common occurrence. It can't hurt to have extra sessions, 
but having too few might not provide representative data. 

Think about who your test participants might be from day one of your design, 
not simply when you want to conduct usability tests. You can then be on 
the alert for appropriate people and line them up well ahead of time. 

Keep a list of potential test participants-people who have expressed inter­
est in being a part of your user tests. If you cannot use some people you have 
contacted for one test, or if they seem more appropriate for a product down 
the pipeline, ask them if you might contact them at a later time. This will 
help save scheduling time in the future. 

You might need to travel to find your appropriate users, particularly if you 
are developing software that serves a niche market that doesn't happen to be 
in your area. Plan ahead if travel budgeting is an issue. 

Exercise task 
Think about the test subjects for your supermarket guide usability tests. If 
you will be able to actually conduct user tests, then go ahead and plan for 
your subjects and schedule them for the tests. Remember to ask yourself the 
following questions: 

• What qualifications are you looking for in your test partici­
pants? Will you want people in a range of ages and socioeco­
nomic standings? Are the people you are thinking about rep­
resentative of your target users? 

• How you will recruit subjects? Where will you find people 
who meet your criteria? Might you want help from others in 
locating or engaging these people? 



222 Software by Design 

• If you schedule your participants for testing slots, what times 
will be best for them? Remember to identify a number of 
alternative time slots so people have some flexibility in choos­
ing-they are doing you a favor by attending, so make it con­
venient for them. 

• How will you compensate these people? Can you provide 
something that will be appreciated by everyone (such as cash), 
or will you have to be more creative and individual in your 
compensation plan due to budget or other constraints? 

Method 3: Conducting a User Test 
Objectively gathering information about the usability and 
functionality of a system. 

If planning your user tests is the critical aspect of usability testing, then con­
ducting the tests themselves is to enjoy the fruits of your labor. During the 
user tests, you will observe people using the system to accomplish real tasks, 
listen to the questions they have about the software, understand what users 
find straightforward and what they have difficulties with, and in general see 
your product in action. You will find that test participants have little trouble 
with some features but serious problems with others that you hadn't antici­
pated they would. Conducting a user test can be a very telling experience. 

Learn from multiple users 
When you conduct your user tests, you will gather data about comparative 
usage among many users. Watching multiple users try to accomplish the 
same tasks will quickly show you which features users seem to grasp and 
which are problematic. If one user after another has a problem with some­
thing, that is a sign that you will probably have to change that feature. Like­
wise, if one user has a problem but others seem not to have similar problems, 



Chapter 7: Usability Testing 223 

then that problem very likely is not as critical. Depending on the nature of 
the problem and the user who experienced it, the feature might not need to 
be changed at all. Comparing one user's performance to that of all other par­
ticipants will help you understand which findings are the most relevant. 

Record the sessions 
During the user tests, you should record what transpires to provide docu­
mentation of the critical successes and failures of your system. You can make 
the most of your test sessions if you encourage users to tell you all that they 
are thinking during the course of the test. This procedure is called "thinking 
aloud." It is an effective way of encouraging your participants to tell you what 
they are thinking when something isn't clear, or to explain why they took a 
particular action. 

You have the opportunity to direct users somewhat by asking them questions, 
but you should be careful not to reveal too much about the system or ask ques­
tions that give away what you are trying to get them to do. Questions should 
focus on getting participants to think aloud when they are otherwise quiet. 
And whatever you do, refrain from answering participants' questions, partic­
ularly if your answers reveal exactly the type of information you are trying to 
learn from them. For example, suppose a user asks you, "What does this but­
ton do?" Instead of answering directly, turn it around by asking the user, "What 
do you think it does?" You will learn much more about how your system is 
working and your users' expectations if you prompt users to answer their own 
questions. It might take a little longer, but the results are well worth it. Also 
remember that by asking users numerous questions, you prompt them to share 
their ideas and design recommendations for improving your system. 

Post-test interviews and questionnaires 
As a final part of your testing sessions, you might choose to interview users, 
or discuss various issues either directly or indirectly relating to their perfor­
mance during the test. If so, then you should prepare an interview form and 
schedule some time at the end of the test to complete this interview. 



224 Software by Design 

Another useful approach is to have participants complete an evaluative ques­

tionnaire when they are done with the test. Having them write their thoughts 

or opinions down on paper without you personally interviewing them might 
allow them to be more objective. You might want to use a Likert scale to per­
mit users to respond to questions with a scaled evaluation. For example, you 

could use a scale of 1-to-5 or 1-to-10, where 1 represents "Strongly Agree" 

and 5 (or 10) represents "Strongly Disagree." Numeric responses on the ques­

tionnaire gives you a definitive means of evaluation or comparison. 

Example of conducting a user test 

Figure 7.3 A user test in progress. In this video frame, the 

test participant sits at the computer while the test conductor sits to 

the side observing the events of the test. This user test took place 

in a typical office cubicle, which is where the test designer pre­

dicts the developing application wou ld be used. The test con­

ductor takes notes during the test, but video tapes the entire ses­

sion to be sure not to miss anything. 



Chapter 7: Usability Testing 225 

During the test 
Make the most of your testing sessions. Pay attention to all the major activ­
ities: watch what your users do; listen to the questions they ask or observa­
tions they make; record critical findings on video tape (record the entire ses­
sion, if you can); gather additional information through spontaneous (but not 
leading) questions, final interviews, or questionnaires. Not all sessions will 
require you to complete all of these activities, or even allow you time to do 
so. But don't expect to simply sit back and take it easy during your test ses­
sions. Your mind should be constantly working to analyze results on the spot 
so you can clarify points with your participants while you have them there. 

The importance of conducting a user test 
Since usability testing is the most widely practiced user-centered design tech­
nique, its advantages are fairly well understood. Usability tests are impor­
tant because they let you: 

Understand where the system works and where it doesn't. 
Watching objective test participants use your system will clearly indicate 
what works and what doesn't. There will be no more need for heated design 
discussion or arguments about which approach will work best with your 
users. Seeing users accomplish tasks or not will set you or your colleagues 
straight about what is right for your software. 

Experience first hand what real users think. 
It is one thing to be told that users like or dislike a certain feature. This is 
almost like having a design argument where one team member backs up his 
side with his perceptions of users and another team member similarly backs 
up her argument. There is no substitute, however, for experiencing first hand 
what users really do with-and think about-your system. Videotaping user 
test sessions can be important because your video clips allow you to share 
the first-hand experience with others who were not present during the test. 



226 Software by Design 

Generate data to improve the user interface. 
The best reason to conduct user tests is to help you gather data that will help 
you make your system better. This is the purpose of conducting user tests­
to let your participants lead you to your design problems and potential solu­
tions. While it's nice when your users tell you that they like your system, 
the more important information you gather from them concerns where the 
system needs improvement and why. 

Steps for conducting a user test 
1. Greet users and give a general description of the test. Don't 

provide detailed instructions about how to perform the tasks. 

2. Inform users that they can stop at any time. 

3. Talk about and demonstrate any equipment in the room. 

4. Encourage users to think aloud (explain this if necessary). 

5. Explain that you will not provide help during the test. Encour­
age users to ask any questions that occur, and explain that you 
will answer any unresolved questions at the end of the test. 

6. Describe the tasks and give the users written instructions, if 
appropriate. 

7. Ask if there are any questions before you start. 

8. Conduct the test. Allow users to progress at their own pace. 

9. Conclude the observation. Discuss any responses that you 
want explained in more detail. Conduct an interview or have 
the user complete a questionnaire if you have this planned. 
Answer any remaining questions, and tell what you were try­
ing to accomplish, if users are interested. 



Chapter 7: Usability Testing 227 

Hints/ suggestions 
• Give written instructions if that will help the user to feel 

more comfortable with the task. Written instructions are par­
ticularly useful when the task requires more than one step, 

and you don't want the user to rely on having to ask you 

(which might be inhibiting). Don't give written instructions 
if you think the written form will somehow influence the 
results of the test. 

• Remember not to tell the user too much about the purpose 

of your test, either before it begins or during it. Greet the user 
with a simple explanation, such as, "We are testing a system 

for making airline reservations," rather than a longer descrip­
tion of the system and its many features. 

• When you videotape your sessions, obtain a written release 
for the videotaping, especially if your participants are not 
employees of your company (or the company for whom you 

are conducting the test). This can take care of confidential­

ity agreements when you are showing sensitive information, 

as well as clear you from any legal situations that might occur 
down the road if you use the video clip of that user in a pre­
sentation or demonstration. 

• Write down the steps for conducting the user test and take 
the list with you to each testing session. Reading the steps 
from a piece of paper will help you to remember them and 
free you to focus on other significant information. 

Exercise task 
Carry out the user tests you designed with the users you identified in the two 
preceding exercises. Remember to: 



228 Software by Design 

• Greet users and make them feel comfortable without reveal­
ing too much about your test. 

• Observe and listen during each session without interruption. 
You will have time later to clarify issues or ask questions. 

• During the session, carefully follow user responses so that 
you can ask any clarifying questions later. 

• Prompt users to think aloud; prompt repeatedly with "what" 
rather than with "why" questions, if necessary, even though 
that might feel awkward. Remember, you are conducting 
these tests to find out what users think. When users show 
some doubt or hesitation, ask them to articulate their 
thoughts. 

• Let participants follow an unplanned task path if you think 
it will reveal additional information about your system. If 
you think it won't, however, and you are short on time, steer 
them back on the planned course. 

Method 4: Analyzing Test Results 

Evaluating data gathered from user tests to identify elements 
that will help to improve the user interface. 

When your user tests are complete, your work is not yet done; in some ways, 
it has only just begun. Now that you have gathered the data which can crit­
ically change your design for the better, you must interpret the information 
to make the most of it. Some of your findings will provide clear indications 
about where to make changes, and might even include information about the 
changes themselves. However, other findings will be more elusive, and you 
will have to spend adequate time sorting through them, especially those 
where the results from one participant conflict with those of another. 



Chapter 7: Usability Testing 229 

Compare goals and results 
Before you form conclusions about the overall findings, check your results 
against the goals of the test. Go back to your list of goals and remind your­
self of what you were trying to learn. Then when you review your records of 
the test sessions, keep these points in mind. Since you presumably struc­
tured the test tasks to accomplish these goals, you should have findings that 
provide such information. At this point of findings analysis, you don't yet 
want to think about how to change your design. Simply assess your find­
ings-design alternatives will come later. 

Look for patterns in the results 
Look for patterns of usage among multiple users. If one user after another 
stumbles over the same feature, then chances are that it is a significant prob­
lem. Patterns of usage need not mean that all participants make exactly the 
same mistakes-results that might seem superficially different can actually 
provide support for the same finding. An example of this is when one par­
ticipant selects the wrong icon to perform a task and another wrongly chooses 
a menu command to perform that same function. Chances are that you do 
not need to change the icon and menu; rather, you probably need to make 
more prominent the feature that accomplishes that task. 

Review test records 
It is a good idea to review recordings (either audio or video) to find additional 
data or to verify assumed findings. Watching or listening to your recordings 
can take large amounts of time, but keep in mind that these tapes will help 
you remember exactly what went on during the tests. After all, this is the 
primary reason you made the recordings. If you are short on time, be subjec­
tive about which tapes you review-choose the ones that you believe con­
tain controversial data or are packed with the most information. If you can, 
share the viewing and analyzing of the tapes with others on your design team. 



230 Software by Design 

Document your findings 
Videotape or write down your findings. If you follow your original test goals, 
you will probably be able to categorize findings in the same way. You might 
also find that other categories become evident through the results of your test. 
Organizing your findings into categories will not only help you structure your 
results, it can make the findings clearer to others who might read them. When 
you document your findings, consider including examples or quotes directly 
from the test sessions. First-hand examples will help your audience visualize 
what happened during the tests and lend support to your assessment. 

Timing of the analysis 
The best time to analyze test results is just after you have completed a user 
test because the responses and behaviors of users will still be fresh in your 
mind. However, once you have completed the early analysis of your user 
tests, don't throw out your test notes. You might find that you want to rean­
alyze your findings later in your design process, particularly if further tests 
show conflicting results. Referring to your notes to review the results of ear­
lier tests might help shed new light on a finding. 

The importance of analyzing test results 
Your user test findings will lead you to the changes that will make your design 
more responsive to the needs and expectations of your users. Taking the time 
to critically analyze your test results is important because it can help you to: 

Gather information on system usability and functionality. 
Seeing where your users have problems or where operations run smoothly 
gives you the information you need about how usable your system is. After 
just a few user testing sessions, you will have a fairly basic understanding of 
the general usability of your software, but careful analysis of the test session 
data can help you see just what works and what doesn't. You will also answer 
questions about the features themselves, such as: Do users find them appro­
priate? Do users take advantage of them? These are the kinds of questions 



Chapter 7: Usability Testing 231 

you will ask yourself in determining if the current functionality is appropri­

ate for supporting your users in completing their tasks. 

Check actual findings against expectations. 
When you create the goals for your user tests and generate tasks to attain 

those goals, you probably set expectations about what you think the system 

is capable of and what users' responses will be. Reviewing the results of your 

test sessions will help you to check those expectations against what really 

happens when people sit down with your system. Analyzing the findings will 

not only help you make alternative design decisions, it will prepare you for 

how your software might be received in the real world by its actual users. 

Discover ideas that improve the system. 
Test participants, when they are supportive of your system and cooperative 

in terms of the testing situation, can be incredible allies in the design of your 

software. They will give you suggestions for better design alternatives, or com­

pare your system to others that approach the same tasks in alternative ways. 

They will almost always introduce ideas that you had not considered but that 

could enhance or improve your software. Sometimes you will not even remem­

ber that your participants had such strong ideas, but in reviewing the test data 

you will come across statements such as these. Taking the time to go back 

over your notes or video recordings can help you discover these excellent ideas. 

Identify any missing features. 
In addition to giving you ideas about how to change features that you have in 
your system, your test participants can be great at identifying features that you 

overlooked. Often they will say, "This is nice, but what I really expected or 

wanted was a system that does that." You might have considered such a fea­

ture and purposely omitted it, or you might not have even thought about it. 
Whatever the case, if your users are telling you that this feature is something 

they want in your system, then you should seriously consider including it. 



232 Software by Design 

Faculty Reserves Project 
Usability Test Findings 

GENERAL FINDINGS 

Overall, participants seemed to find the system 
relatively straightforward to use and were able to 
complete all tasks. Most of the participants 
preferred this system to the existing process for 
placing items on reserve. Conunents included that 
they thought the on-line system was •infinitely more 
delightful• or •far better• since it saves walking 
to the library. One participant said •to think this 
is going to be possible is wonderful•, and another 
noted that by using this system she would be more 
likely to get reserves in promptly. The one user 
who said the system wasn't really necessary noted 
that he typically places items on reserves about 
once a year, so it would be more trouble for him to 
learn a new process than to continue with the 
existing process. 

Both faculty and administrative users thought the 
system would make it easier for faculty to place 
items on reserves themselves, and that they would 
reconunend to their colleagues and faculty members 
that they use the system. A couple of administrative 
participants thought that some faculty members 
wouldn't use it and they would have to continue to 
enter reserves for them, but they noted that these 
were the kind of faculty members who had their 
administrators do this kind of work for them in any 
case. 

Figure 7.4 User test findings. This document presents gen­

eral findings from usability tests at Stanford University to evalu­

ate a prototype system for using on-line services to place items 

on reserves at campus libraries. The general findings section sum-



Chapter 7: Usability Testing 233 

One participant did make the point that while she 
really liked this system, there were some perceived 
advantages to the current paper-based method, such 
as she had the impression that she could take her 
time with the paper approach and not have to worry 
about being able to support the application on her 
minimally configured computer. She did say, 
however, that if the on-line system offered obvious 
advantages, such as the ability to copy and paste 
from Socrates, then she would definitely prefer the 
electronic system. 

A couple of participants expressed concern that they 
thought users might not be Mac-literate, and that we 
might want to make specific help available for non­
Mac users. This help might include an introduction 
to pop-up menus, or to clicking in a field to type 
there. One participant wanted to see the system on 
the PC instead of a Mac, since it was his belief 
that few faculty members had or used Macs. We need 
to know who our users are (and specifically if we 
really do have to worry about non-Mac users) before 
we make any such changes. 

marizes users' reactions to the overall system and highlights key 

details. Using quotes from or describing the reactions of individ­

ual users can present what actually went on during the tests to 

help explain the findings. 



234 Software by Design 

Steps for analyzing test results 

1. Review any notes you took during the test. Try to remember 
what you were thinking as the sessions were going on. 

2. Review recordings of the test. 

3. Make a list of any trends in user behavior or other important 
findings. Try not to solve any problems here-just list find­
ings. Back up your claim with information about where the 
problem occurred. 

4. List positive findings as well as negative ones. 

5. Group findings according to logical categories. You might be 
able to use categories corresponding to your goals from your 
test design. If those categories don't fit, don't feel obligated 
to use them. 

6. Within categories, order findings from "most important" to 
"least important." 

Hints/ suggestions 
• Realize that analyzing the results of each test session might 

be a time-consuming task. You might need to review notes 
more than once, checking to see if they match the written 
findings you are generating. 

• Be careful not to make assumptions too early and force results 
to match your expectations or user responses. Be objective in 
analyzing your results and you will produce much more real­
istic findings. 

• As you review test session notes, write down direct quotes 
when they are available and succinctly summarize the prob­
lems you are trying to identify. Using direct quotes from test 



Chapter 7: Usability Testing 235 

participants can be a powerful communication device in later 
reports or presentations. 

• You might want to catalog video or audio tapes to help you 
locate critical clips later, particularly if you plan to edit seg­
ments of the tape for documentation or presentation purposes. 
Or perhaps you can enlist someone else to catalog them for 
you. (To catalog a tape, view it in its entirety and make a 
detailed record of what is covered; note important discussions 
or events and the elapsed time at which they occur.) 

Exercise task 
Analyze the results of your user tests and generate a document listing the 
findings. Following the steps above, categorize the findings-either accord­
ing to your original test goals, if this makes sense, or to system functional­
ity, or some other appropriate structure. Prioritize findings within your cat­
egories. In generating the findings, think about the following questions: 

• What are some of the patterns of behavior you saw from user 
to user? Were there any that all users showed? 

• What are the findings that only one or two users exhibited? 
Why do you think only a small portion of your participants 
had such results, and should those results have any bearing 
on your further system development? 

• Did your participants have any suggestions for missing fea­
tures? Did they seem to think that any of the included fea­
tures could be omitted? 

• Did you use an organizational structure in your notes? If so, 
did it help you to organize your thoughts either during note 
taking or when you were assessing the findings? 

• Are any of your findings contradictory? How will you resolve 
it? (You might need to conduct another user test!) 



236 Software by Design 

• If you recorded the sessions, how will you refer to the record­
ings? What kinds of information did you learn from your 
recordings that you were unable to gather in your notes? 

Method 5: Making Design 
Recommendations 

Generating ideas for redesigning the system based on find­
ings from user studies, user tests, or other evaluation. 

Once you have objectively gathered the test results and generated a list of 
findings, it is time to start thinking about what you have learned and how it 
can positively influence your design. Rather than simply attacking your soft­
ware to make changes directly, spend some time determining redesign solu­
tions and assessing those that make the most sense for further development. 
You are now ready to draw up a list of design recommendations that describe 
alternatives for system design in response to the problems found by your 
users in the test sessions. 

Identifying the recommendations 
Design recommendations are suggestions for how the user interface could be 
changed to alleviate a problem or better meet user needs. When you make 
design recommendations, present specific solutions-in fact, be as specific 
as possible. For instance, if your test participants had problems locating the 
Quit item in the menu, a vague design recommendation might be, "Change 
the Quit item in the menu." A clearer, more helpful recommendation would 
be, "Instead of placing the Quit item in the menu, place a Quit button on the 
screen in a clearly visible place." Another possible recommendation would 
be, "Move the Quit item to the top of the menu, and spell it with all capital 
letters." Each of these more explicit recommendations provides better direc­
tion for implementation, and also leaves no room for questioning your intent. 



Chapter 7: Usability Testing 237 

Support recommendations with findings 
The recommendations will have even more strength if supported by the find­
ings from your test results analysis. Your findings can provide a clear expla­
nation for the recommendations. Particularly if you will be handing off your 
design recommendations to someone else to implement the changes, it is 
important to explain the the users' actions that led you to your recommen­
dation. Even if you will be using the recommendations to make changes to 
the software yourself, listing them with test findings will remind you of why 
you made a decision. This is especially useful if you don't get around to imple­
menting changes until later, when you might forget your reasoning. 

Devise alternative recommendations 
Another reason that listing your findings along with recommendations can 
be useful is that if you find that you are constrained by your system from 

implementing a particular recommendation, you can study your findings to 
determine another design alternative. This is good reason to devise more than 
one solution for a design problem, or more than one recommendation for 
each finding. 

Giving alternatives is useful not only for the system implementer at build 
time, but might also prove helpful later on. If the design recommendation 
you choose to follow does not alleviate the original problem, you can try an 
alternative solution. Having another design that addresses the problem will 
then save you time. 

Consider having the alternative solution handy at the user tests, either as a 
prototype, a storyboard, or even simply a verbal description, to bounce off of 
users who seem dissatisfied with the implemented solution. More than one 
design recommendation gives you bargaining power if you are simply deliv­
ering test results and recommendations for changes to others who will imple­
ment the changes. You can together select the one that makes the most sense 
based on what you know about users and what they know about the software. 



238 Software by Design 

Airline Scheduling Options 

Allow for "any time" or "any am/pm time• as a time 
scheduling choice. 

Many users did not care what time their flights 
departed, or wanted to be able to say •any time in 
the morning.• They tried to do this by leaving the 
time field blank, but on submitting the request were 
warned that they were leaving out the time, and thus 
felt that they had to then enter it. A separate 
•any time• option would allow the user to say to the 
system "I intentionally did not specify a time.• 

Support users being able to specify options such as 
"Non-stop Plight Preferred," "Piret Clase," 
"Business Claes," and the type of seat preferred 
(aisle, window) • 

Many users stressed the importance of these options. 
If the default is for non-stop flight, this was 
nowhere communicated to users and needs to be done. 
Having an explicit option makes this clear. 

Lodging Options 

Provide additional choices in the popup menu for 
room type. :Include "Single Room", "'l'wo Double 
Beds", "King Bed", "Suite" and "Other" with a field 
for entering the "Other" information. 

The available room choices seemed inadequate, and 
users were confused about having to use the remarks 
field and the popup menu. These were the 
predominantly suggested choices. 

Figure 7.5 A design recommendation document. These 

excerpts from design recommendations for an on-line travel sys­

tem illustrate the effectiveness of presenting each recommendation 



Chapter 7: Usability Testing 239 

In the "City where hotel needed" field, provide a 
popup menu made up of all previously entered 
destinations. Better yet, access the hotel 
information from the itinerary-based model 
(described above) so that when the lodging screen is 
accessed the current destination appears in the city 
field. 

Many users felt they had already entered the 
destination in the schedule screen, and wished the 
computer would keep track of the destination for 
them. 

Have users specify dates for hotel and car, rather 
than total number of nights. 

Many users noted they believed date information 
should be given rather than number of nights. 
Again, if the itinerary model is followed this will 
be straightforward because the dates can default to 
the given flight dates. Dates must be able to be 
changed, however, in case the user does not want the 
hotel for all the nights. With date information, 
number of nights becomes irrelevant. Alone, number 
of nights information is incomplete if it is less 
than the total number of nights from the flight. 

backed up by the findings of the tests. Each design recommenda­

tion is presented as a clear, affirmative statement of action. The 

findings help explain the reason for the given recommendation. 



240 Software by Design 

The importance of making 
design recommendations 
After summarizing test findings and presenting user feedback regarding your 
system, design recommendations are truly the next step in the generation of 
your software. Making design recommendations is important because it allows 
you to: 

Document a plan of action for further system development. 
Design recommendations tell the system implementors what to do next to 
address problems discovered during user tests. When design recommenda­
tions are properly documented and presented, they serve as a prioritized plan 
of action. Whether you or others implement that plan, it helps to organize 
future work and make the most of implementation time. 

Communicate user test results to the design team. 
When you are not the person implementing the changes made apparent by 
the user tests, you need a clear way to communicate with the implementa­
tion team. The process of gathering test findings and generating design rec­
ommendations provides you with a straightforward way to express to the 
implementation team what they must do and why. It won't be your word 
against theirs, but rather their design against what the people who used it 
think about it. 

Improve the system from the user's point of view. 
Ultimately, what design recommendations should address are the changes 
users have either suggested themselves or indicated were necessary by their 
interaction with the software and user interface. This means that the rec­
ommendations should list ways to improve the system from the user's point 
of view. Again, the design decisions should not come down to what various 
members of the design team think to be true, but what users really want 
and need. 



Chapter 7: Usability Testing 241 

Steps for making design recommendations 
1. Using the findings from your analysis of the user test, make 

at least one design recommendation for each item in the list. 
Clearly indicate the finding and the associated recommen­
dation. 

2. Suggest positive alternatives for change. Saying something 
like, "The Help icon should be changed" is not as useful as 
saying, "Change the Help icon to something users recognize 
to indicate help, such as a question mark." 

3. Support your recommendations with results from your find­
ings. Describe the situation in which a problem occurred. Bet­
ter yet, include audio or video recordings with your design 
recommendations that clearly indicate user difficulty. Sequen­
tial snippets of multiple users having the same problem can 
be extremely effective. 

4. If appropriate, brainstorm with others, using the findings to 
help generate design recommendations. 

5. List more than one recommendation per finding to give imple­
mentation alternatives. 

Hints/ suggestions 
• Go back to some of the suggestions users themselves had dur­

ing the tests. They might have had some very good ideas for 
changing the design. Look for ideas that were given by more 
than one user. This is a clear indication that people think a 
certain problem would be better solved by this alternative. 

• Use your findings to get to the root of the problem, so that 
your design recommendation can address this problem and 
not a superficial indicator. If users could not find an item on 
the screen, was it because of its visual design, its location, or 



242 Software by Design 

that they didn't even know to look for that element? Review 
what users said when you asked them why they had a prob­
lem or what they were thinking. This can help influence the 
design recommendation you make. 

• If you are really having trouble deciding among multiple 
approaches to a problem, then you might not have gathered 
enough information during your tests to guide you. If possi­
ble, go back to your users and ask for clarification. Or, real­
ize that you might want to test these issues again as quickly 
as possible to understand the real problem. 

• Don't be afraid to be creative here-users don't always tell 
you everything you need to know. Often they will indicate 
that something didn't work but won't be sure what would 
have worked better. Use your design skills to come up with 
something that addresses the problems exhibited during the 
tests. 

Exercise task 
Using the findings from the previous exercise task, generate design recom­
mendations and create an implementation plan for making changes to your 
system. Write down the findings. After each one, write down a design rec­
ommendation or two. As you are documenting your alternatives, ask your­
self the following questions: 

• What is this finding telling me about the user interface? Is 
the feature itself wrong, or is it simply the way the feature is 
displayed or accessed that doesn't seem to be working? What 
is it about the feature that users don't like? Is there anything 
about it that they do like? 

• Are there patterns of problems that might lead to a large, gen­
eral recommendation, such as to put all of the functions in 
the menu into on-screen icons? Sometimes your users will 



Chapter 7: Usability Testing 243 

not be able to broadly categorize problems, but you might 
recognize them when grouping various findings together. 

• Did users suggest anything that would make a good design 
alternative? Did they say something like, "I think this icon 
should look more like a cash register," or anything else that 
gives you an idea for an alternative design? 

• Aie there other people who observed the tests or with whom 
you have discussed the tests who might have suggestions? 

• Did you create a design that allowed most of your users to 
accomplish most of the tasks? If not, then you might need to 
go back to the drawing board and revamp-maybe your users 
weren't who you thought they were! 



Chapter 8 

Iteration 

What Is Iteration? 

User interface prototyping and design methods are most effective when they 
are used in a progressive design fashion. Design iteration allows you to make 

the best use of the various techniques, incorporating suggestions based on 

user feedback and employing alternative prototyping methodologies to evolve 

an improved, fine-tuned system or application. In the user-centered design 

process, iteration refers to the continuous process of creative user interface 
design, implementation of the various design stages in some off- or on-line 
format, and testing the design to obtain critical user feedback. 

The informal nature of the individual techniques presented in earlier chap­

ters permits them to be used in combination with other techniques, partic­
ularly in an iterative process of designing, building, and testing your soft­
ware. Not every project falls neatly into a design-build-test loop. Some projects 

might start with testing, and others involve design-test-build-test sequences. 

What is important in any of these approaches is to recognize that multiple 
stages of design allow you to best integrate user input by working out design 

245 



246 Software by Design 

details at each stage rather than trying to get the whole thing perfect the first 
time. Iteration is about revising a system design in small steps, exploring the 
features and functionality of your system at each step, identifying what might 
be wrong with your system, and solving the most critical problems first rather 
than all the problems at once. 

Plan for iteration 
In planning your design process, be aware of the value of this revisionary 
process and anticipate at least two or three iterations so that you can truly 
put the user interface development techniques to work. In each stage of the 
iteration, build a prototype that showcases the functionality or general inter­
action principles you are trying to explore. Don't worry about getting every 
detail right, but do choose off- or on-line prototyping techniques that enable 
you to test the principles you want. Then design user studies or tests to exam­
ine those principles. Note that the reference to test in the design-build-test 
sequence encompasses both user tests and more informal studies as appro­
priate. Evaluate your test results, and, in the next stage of iteration, try to 
resolve the problems you encountered. If necessary, use the next iterative 
step to introduce additional functions or features. Typically, early stages will 
explore broad issues, and later iterations will refine the interface and exam­
ine features and functions in more detail. 

A cyclical process of development 
Design iteration lends itself to a cyclical process of development. Normally, 
each iteration includes some design, implementation, and testing, even if in 
reduced or refined forms. The process is cyclical primarily because there 
seems to be no obvious ending point. Usually you do not want to end with 
testing because you want to incorporate your test results into the next design 
iteration. You also do not want to end with design, since you want to be sure 
that your design changes are incorporated in the implementation of your 
application or system. 



Chapter 8: Iteration 247 

The "end" of the process will most likely be implementation, when you have 
incorporated changes from the last user session into a new design and then 
bring the design to working order. Ending with implementation is, of course, 
not ideal because it does not provide an opportunity to obtain feedback from 
another round of user tests. However, if there have been enough iteration 
cycles, then the problems you might encounter should be minimal. 

You have to end sometime. Occasionally, when the results of testing show 
that users are overwhelmingly pleased with the system, you might end there. 
Users, however, can almost always find something unsettling about your sys­
tem, and it is nearly impossible to have identified problems through user test­
ing and then not incorporate them in your work---even severely time-con­
strained schedules seem to find room for such updates. Therefore, you will 
usually end with a (potentially very short} implementation step. 

Ideally, you should include as many iterations as necessary to refine the design 
until you are satisfied. This way, you can let the design's progress dictate 
whether more user feedback is needed. In the real world, however, we are 
often limited by time or other resources. When your development constraints 
are known, plan at least two iterations, even if short and limited in scope. 
Having the opportunity to bring users in to see your design, get feedback, and 
revise the design will result in a more usable and attractive user interface 
and system. 

Integrate user test results 
The most compelling reason to apply an iterative design approach is to be 
able to integrate the findings from the user studies and tests into your designs 
recommendations. Clearly, if you do not plan to iterate your design, you 
shouldn't bother to conduct tests, since you won't be able to incorporate any 
of the user feedback. 



248 Software by Design 

Other reasons for iterative design 
There are other reasons to follow an iterative design process, as well. 

• You might be able to take advantage of different resources 
available to you in various phases of the design. This is par­
ticularly helpful if not all of your staff is continuously avail­
able, or if you have a limited research and design budget. 

• It allows you to focus on subsets of the user interface, con­
centrating on them individually instead of having to always 
think about the whole picture. 

• It permits you to improve your design with each successive 
effort. This is, perhaps, the most important reason for itera­
tive design. You will see evidence of the improvements 
through users' responses to your evolving interface, and feel 
secure that you are building a system that meets users' needs. 
Iterative design will support your creative effort and lead you 
to develop usable, dependable software. 

The Advantages of Iteration 

Iteration in the design process is advantageous in many ways. When applied 
successfully, iterative design can: 

Incrementally build the best system possible. 
Approaching your design in smaller, well-focused stages will almost always 
lead you to a better design. Breaking down the design process into a series of 
steps will allow you to focus on a smaller set of issues and problems, intro­
ducing only the features or functions that you intend to explore at that stage. 
You can design a prototype that showcases those few concepts, then conduct 



Chapter 8: Iteration 249 

user tests aimed at specifically addressing those concepts. In increments, you 
will be building up to a fine-tuned, user-sensitive interface. 

Support stages of development and user feedback. 
User feedback plays a significant role in the software development process. 
Acknowledging that you will conduct some period of creative design and 
then present your work in an intermediate stage to potential users is critical 
in supporting user input. Planning for design iteration writes user participa­
tion directly into your schedule and says you will put your design on hold 
until potential users have given the go-ahead. Iterative design makes user­
centered design possible. 

Integrate the work of designers, user specialists, 
and programmers. 
Having different stages of design that play different roles in the overall devel­
opment process permits you to integrate smoothly the roles of the various 
interdisciplinarians on your design team. Each expert can lead that stage of 
the iteration that best utilizes his or her skills-the designers can be respon­
sible for design sessions, user specialists for involving users and obtaining 
feedback, and programmers jor others responsible for implementation) for 
getting the whole thing to actually work. Each skill is important in its own 
right. All team members can participate in each stage, but having skilled indi­
viduals responsible for corresponding segments will help everyone work 
together as a team and make the best use of their talents. 

Help you concentrate on system development 
without fear of failure. 
Knowing that your design follows an iterative process will help you concen­
trate on the issues or problems you want to address in the current design. 
Rather than trying to get everything perfect at every stage, you can focus on 
the issues that are most important in the current stage. Once you complete 
this phase of design and obtain user feedback, you can concentrate on the 
next potential development area-there's always the next cycle of iteration 



250 Software by Design 

if something goes wrong with your current design. This knowledge will help 
you relax and tackle the issues or problems at hand. 

Build robust, successful systems. 
Ideally, what you want to do is design and build great software. Iterative design 
will support this end by allowing you to incorporate all of the user-centered 
techniques (or as many as make sense for your design) and build software that 
addresses user needs. These are the systems and applications that make the 
most robust and successful software. Rather than hope to get lucky with a 
design, you can focus your efforts on what your users are telling you they want 
this system to be and do. Think of this as applied creative design, and as a 
process that will almost always lead you to successful software. 

HoYI to Design and 
Perform Iteration 

Iteration is not as simple as following a sequence of processes numerous 
times. While you will often fall into a design-build-test cycle, you might not 
always start with the design stage, or your stages might not always follow 
one another in the same order. Knowing where to start and where to end your 
design is critical in user-centered design iteration. 

Spend time outlining and planning 
Previous chapters present reasons and methods for planning and scheduling 
various stages of prototyping. Iteration is the culmination of all of these plan­
ning and scheduling efforts. Planning to include iteration in your design 
process takes a little time up front, but unless such planning is done at the 
beginning of the project, it is almost impossible to incorporate later. 

Spend the time necessary at the beginning of your development process to 
understand your design problem and how many iterations might be neces-



Chapter 8: Iteration 251 

sary. Plan to bring users in at least twice to help evaluate your progress. Under­

stand when it makes the most sense for users to be brought in, and what types 

of prototyping can be accomplished in the time you have. If you are fortu­

nate enough to have an open-ended development schedule, plan at least your 
first two iteration cycles to help put some structure in your design process. 

Determine when users might be available and set time limits around each 
iteration to aid you in identifying appropriate prototyping methodologies and 

goals. Don't underestimate the value of the planning time necessary to struc­

ture a successful iterative design process. 

Build flexible component-based systems 
Component-based or object-oriented systems are touted more and more in 

all kinds of software development processes. Such approaches to software 
design are equally valuable in user interface development, particularly for 

on-line prototypes implemented in code. Component-based systems are adapt­
able to change, and change is a critical characteristic of evolving iterative 

designs. Your design should be able to adapt readily to accommodate design 

changes or user feedback; it can prove frustrating if software limitations pre­

vent this. Object-oriented systems do not ensure that all changes can be made 

as desired, but in most cases they make the task significantly easier. Pro­
grams that are hacked together will probably be more difficult to change later. 

Work closely with all team members 
Understand the skills of the members of the design team and those stages of 
iterative design for which they are best qualified. Work together to make the 
most of your development process. An advantage of iterative design is that 

it puts many different skills to use. 

While complete stages of development must happen in succession, some 
work can probably go on simultaneously in more than one stage. You will 
not only make the most of your design team, but also of your total available 
time. However, don't pigeonhole people, relegating them to particular roles. 
Encourage input from all team members at all stages of development. You 



252 Software by Design 

will then be able to incorporate the ideas of others, and continually improve 

on the design. 

Don't become attached to 
implementation details 
For iterative design to be successful, the whole design must be considered a 
work in progress. Keep an open mind about implementation so that if user 
feedback shows the need for change, anything is expendable. Too often devel­
opers become attached to certain features or interactive methods in the user 
interface, or to some concise or novel algorithm used to implement the design. 
In evaluating your designs, remember that the software is only as useful as 
it is usable-if users don't like or need the features you are sure are critical 
to your design, or say something that refutes your need for that brilliant algo­
rithm, be willing to let it go. To best accomplish iteration, you must be free 
to make requested design changes. 

Understand the nature of your design 
Thinking about the type of product you are developing can help you to under­
stand how many iterations might be needed to appropriately refine the design. 
If you believe your design to be truly innovative and that it introduces new 
functionality or methods of interaction, then chances are it will demand a 
higher number of iterations than a design that relies more heavily on known 
approaches or standards. 

The higher the risk you will take with your software, the more you should 
plan to involve users. Allocate time for alternative design development in 
case user feedback indicates significant problems in your general approach. 
On the other hand, applying known user interface techniques, such as those 
specified in standards, presents appreciably lower risk to your interface devel­
opment process and might therefore require less user feedback to help you 
evaluate it. 



Chapter 8: Iteration 253 

Plan for each iteration stage 
With each iteration, identify what must be changed before revising your pro­

totype. As at the beginning of the project, evaluate what you know about the 
design and how you want it to progress. Your initial plan is the starting point; 
update it according to what you have learned in the most recent design or 

user feedback session. Prioritize activities according to a schedule. Under­

stand what you want to accomplish in the next stage, how you might next 

involve users, and what you will leave for a later design stage. In doing so, 

you will have a record of your plans and might save significant time later. 

Verify design changes 
Transfer what you have learned from one design stage to the next. Keep track 

of the design changes you make as a result of feedback from user tests, and 
be sure to retest those changes in your next iteration. Simply making design 
changes in response to user feedback is not enough-they might be worth­

less unless users indicate problems have been alleviated in successive tests. 

This is the whole reason for iteration: to refine your design so it best meets 
user needs. Make the most of iteration by checking your design changes as 

your design progresses. 

Method 1 : Deciding on Next Steps 
To identify what to do next in your prototyping cycle, which 
typically takes place after a user test has been conducted and 
before the next development phase begins. 

At some point in each design iteration, the design reaches the end of its poten­
tial and it is time to move on to the next iteration. Usually, this happens 
after a series of user tests, when you have feedback that you want to incor­
porate in a new version of the design. A typical iterating pattern is made up 

of design-build-test sequences, where each sequence is a single iteration. 



254 Software by Design 

0 Home Library System 
Prioritized Action List 

·---~----· ---------·-~-·-----------------

------l-"----~~!!Q,J,Y.~ . .J..~Y..C>~.tl~.~J..m:i . .P~~:l.~---·---····-·· .... ··------·----· 
-----~- ---·----~--~9.i~~t;__JJ~~---9.i__~J;:_r~~p_gi;;_g_JILffigl,Jl. ... §.C::r.~_g.IL::._ ___ _ 

----!-- _ --~nter ca:t:_cl._gt_gJQ9_,__.mak~...filLm:>~c~ .. :J.~sJ!.. __ ----
---~! ____ __p_r_Q!!linent_ _____________ ---------------

...................... -[ -···-······:_·-~-~~!!!~~-~:n~~~i!~-~ ..... 9 .. l...L .. P.µ_t~~~E! ... .l~9 .. Jl.~.~~=:nm~ ............ -.... . 
, • Make all similar button locations consistent ............. ____ "1'"'''"'"·-------· ........ ___ ................. ---------·-·- --- ........ -------·-.. ·------· ...... ·--- --------·--

~==~i==~-~-~---~:::h_~~~~~~~~filr!~~~e~~~~~-~Jl~~-~=~=~~~~ 
l 

____ .~.a~h..A .... :-... Z l ____________ ............. _. ______ .. ____ ·--···· ·--------------· __ 

~O !- --_:_~~!:,:-'-~=~ .. ~~~~~:~~~· ;,L~·-~~J9n=-= 
' • Store marker in an alternate drawer 

---~! ----·- ... -----------------· .. , ··-----·---- ..... 

. . . ...... ................. -f-·-·"·. ...................... .. -_,_,_,, ..... --.. --.. - .......... --- ....... ......... ..... .. .. .................................................... . 
............ --L~.... Pix ~-:r;'~Qr DQ..~!~g:.Jtt_i9p.~cL~~alQg __ p~..Q..~],~Q _________ _ 
..... ____ J _____ • _s~t-~,;:,o.± .. !?Q .. \.l_mLt..9.......§Y.S~e..rn......J>~ep ___ .... _____ _ ___ 

---·----t----...! __ ?t.::.'.!='_Qx_ng_t..Lti~~~Jc>n_tQ..r: __ §.~l..e..£..tJ..911_9.f__ _______ ... __ 

-· .......... J ................ oQn=.a.G.t.:iYe __ p.Q..q_k __ o_n..l!l_g,.i.11 .. l?G..~..?.go......... .............. .. .................... --· 
1 

• ~heck di_~lgg worc;lings ______________ _. 
I 

........ , ... ,_, ____ _j_,, ...... ____ ,, ...... _,,_,, __ ,, ___ ....... .. ..... - ....... -....... ...... ......... ...... . . ..... --·--·--·----·-·-·-.. ____ ................. _____ ,,,_,, ___ _ 

--~-~----~;_Q.Y.~4..~_gomm~mi.....k..~_M!_t._erf~9~-----·-·-···---·-----·- ---····---------··-
---)---- ...... -~ C.QI.!!1!@1~Lk~Y.......filN.i..Y..alent_s_ fo .. L..na.vi_gat iQn_: ______ ...... _ 

.......... _, ___ 1 __________ t.__o~~.J!L4.1 .... J2.C!.GJs_, __ 111~iIL.. ........... ----- . ----------------·----.......... -·+- ·- _ _! __ H.:int.~-G~.:r..ct ... w.i.th ... ~Q.IBID§.D..9 .. .Js.e.Y!L... ---------·- ------
--·---+---- --------·---·-- .......... _____ -· ----- -----------............. _J~ ..... --~ ·-- ______________ ,, ... ,,_, ____________________ ,, ____________ _ 
-----+---·---·-Q~p.~:r,:~_L.int.~~J;-~~e. .... 9-!l4..3!Y~il.9-.. l:?..il-J,!;y ___ ........... ··---·--· ............... . 

! • Cop_t_ext-sen~tiyi~ _ _respomLt9__§lli!_c;;j f i~-----

·-O·-·t-.. ·---·-----n~e.g_:L, ________ ·---- -- -- --.. - .. ____ ......... ---·---------------
1--·--r·------·-·-------·--.. ----.. --........... ------.. --.. ------·-·--· .. -·-------.. ·--·------

Figure 8. 1 Prioritized list of action from usability test 
findings. Once design recommendations have been identified, 

action items can be generated and prioritized. The most impor­

tant actions are listed first to be implemented first, and less impor­

tant items are at the end of the list. This list of actions acts as a 

plan for next steps in the design process, and can be followed 

much as a dcrto list. 



Chapter 8: Iteration 255 

Analyze the situation 
The first task in moving to the next iteration is to decide what you will do 
in that stage of design. This decision facilitates the transition from one iter­
ation to the next and is, in fact, a vital part of iterative user interface design. 

Between design stages, take the time to analyze the situation. Assessing your 
most recent iteration as well as the next can help make the most of your time 
and resources. Think about what you were trying to accomplish in the last 
cycle-what goals did you set for the user testing? Even earlier, what was the 
basis of your design? 

If this iteration ended with user testing, examine what your users told you 
or showed you. If you made recommendations based on the findings from the 
user tests, evaluate which make the most sense to address in your next iter­
ation. Consider how to revise your goals for the next phase based on what 
you now know about your most recent design. Set goals for the next stage if 
you did not have any in particular for the last phase. Understand what you 
hope to achieve in the next design cycle, and think about how you will meet 
your goals. 

A useful way to check your progress and make sure your design is on track 
is to set development goals and evaluate them at the end of a design stage. 
At the end of an iteration, review the progress of the design. Are you meet­
ing original goals or expectations? Do users agree that you met those goals 
(or even that those goals were important)? Use the results of your user tests 
to help evaluate goals. What did you learn from the testing that you didn't 
expect to? More important, consider how this information might affect your 
design-changes you could make to functionality or features, or presentation 
of interactive methods. Assess the changes you might propose and how they 
might affect your development schedule. What will you be able to accom­
plish in the next round if you are time-constrained? If you don't have exter­
nal constraints, determine how long it might take you to accomplish all that 
you hope to. 



256 Software by Design 

Team meetings to discuss progress 
Take the time between iterations to meet as a team and talk about next steps. 
You don't have to devote much time to this-a few hours will suffice. Sim­
ply provide an opportunity for the team to get together, discuss what you 
have learned, and share ideas about the design direction. This will set the 
foundation for the next phase of design. Meeting as a team will offer every­
one a chance to express his or her individual concerns at this early point, 
before the next design is undertaken. Supporting teamwork can prove espe­
cially useful to the overall design process. 

Devoting time to deciding your next steps is a way to assess what you have 
achieved up to now in your design. It provides an opportunity to reassess your 
development goals. Deciding your next steps allows you to carefully analyze 
the results of any user tests your might have just conducted. It gives you an 
opportunity to gather input from all team members before you dive in and 
make changes. It helps you make the most of time and resources. Taking the 
time to decide what to do supports a multiple-stage development cycle in 
many ways and is critical to successful user interface design. 

The importance of deciding on next steps 
Planning what you will do next before simply moving to the next develop­
ment phase is vital to your design's success for a number of reasons: 

It gives you an opportunity to assess current 
and progressing work. 
Even in a short time, you can surmise the critical findings from your most 
recent phase of development and begin to plan for the next phase. Stopping 
to ask yourself what the goals are of your design, especially those in terms 
of your users, can help avoid simply executing the design because it's there, 
or choosing a development path arbitrarily. Understanding what you have 
done so far with your design, what you have learned from your most recent 
tests can help lead to a usable design. 



Chapter 8: Iteration 257 

Help make the most of time and resources. 
While it might seem that planning what to do next is a drain on available 
time, in the long run it will almost always save you time that would be wasted 
by going down the wrong development path. Think about what a waste of 

time it would be to spend weeks on a development effort that must be dis­
carded later. The nominal time you spend in assessing your work thus far 
and planning the upcoming stage will be worth the effort. Make the most of 
available resources by gathering input from the entire design team about what 
you have accomplished and what to do next. Short checkpoints improve the 
overall quality of the design. 

Provide structure for your design process. 
Planning efforts often lend themselves to structuring your development 
process. While identifying a structure or plan of action requires some criti­
cal analysis, it will set guidelines for future design work and make your job 
easier later on. Even if your plan changes, having one as a reference point will 
help you check your progress. If you record the plan, it will be even easier to 
track. Months or even years later, you might want to refer to this stage of 
design and understand why you interpreted your findings the way you did. 
Creating this record will take little time now, and might provide important 

information later. 

Steps for deciding next steps 
1. Gather findings from your most recent usability tests, or any 

other information reflecting the state of your system {such 
as results of an evaluation or design session). 

2. If recommendations addressing those findings are not avail­
able, generate at least one recommendation for each finding 
you have. Spell out what can be done to address a problem or 
development issue. 



258 Software by Design 

3. Assess all the recommendations together. Do any preclude 
others? Can some be grouped together? Do any have impli­
cations for completing others? 

4. Prioritize the list of actions you will take to address the prob­
lems. Base them on your recommendations, but adapt them 
to the actual situation and constraints. 

5. Identify which of these actions you can take in the next 
development stage according to your time and resources. 
Follow the priority order when possible, but consider omit­
ting certain actions if it means you can accomplish more 
with others. 

6. Think about what your end product will be. Will you build 
another prototype for a successive series of user tests? Will 
the prototype be on- or off-line, and which methodologies 

make the most sense? 

7. Keep a list of the actions that you could not-or chose 
not-to address. You might be able to use this list in later 
development. 

Hints/ suggestions 
• Don't try to do everything. Even when you are not restricted 

by time or budget, it will rarely make sense to implement 
every potential change identified in testing or that is left over 
from an earlier design stage. Think about all of the possibil­
ities together, understand how they interrelate, and choose 
the ones that solve the most problems. 

• Realize that the end product of this iteration need not be the 
same as the end product for the stage before it or after it. Just 
because your last design was on-line does not mean you can­
not now have an off-line prototype, particularly if user tests 



Chapter 8: Iteration 259 

have shown you need to re-evaluate your overall solution. A 
user study might even be needed at advanced stages of the 
design. While you should be working toward a final software 
revision, you need not necessarily do so by moving linearly 
from off- to on-line. If it makes sense to develop a rougher 
prototype at any stage of the design, by all means do so. 

• Consider alternative recommendations and how they affect 
your design schedule, especially when you are constrained 
by time or cost factors. The purpose of identifying multiple 
design recommendations is that one might make more sense 
than another when it comes time for implementation. Itera­
tion is the time when you commit to the implementation­
evaluate the different options in light of what you now know 
about the whole design. 

• Prioritize according to what users want most, but implement 
according to what is most realistic for you. You will not be able 
to do everything that users want, so understand how you can 
give them a design that meets as many of their requirements 
as possible within a workable implementation framework. 

• Look beyond the next stage to see if some actions might make 
more sense in later iterations. If you cannot accomplish every­
thing in the next phase, think about which changes might be 
postponed. Analyze which changes make sense to develop 
and test together and which might be better addressed either 
alone or in combination with other later features. 

• Think about what you might learn from users in the next 
phase. It might be that you need to structure the design to 
get feedback on something rather than directly solve a prob­
lem. If there isn't a way to solve every problem, think about 
how to best gather additional information that will support 
your problem-solving process. 



260 Software by Design 

Exercise task 
Using the results of your user tests and the design recommendations you gen­
erated in Chapter 7, decide what you will do next. Think about all of your 
recommendations together and understand the implications for your imple­
mentation. Some important considerations: 

• Which are the most important items to address? Which might 
be postponed? 

• Are there any recommendations that preclude others? If so, 
which are more important, and can you see an alternative for 
those you cannot address as given? 

• Are you working within time or other constraints? Under­
stand your constraints so you can plan accordingly. Even if 
your schedule is not constrained, estimate a time limit for 
your project to help you understand what you are trying to 
accomplish. 

• Who do you have available on the design team to help carry 
out whatever plan you put into place? Your available resources 
might dictate what you can or can't do. 

• If there is anything you are choosing not to address now, how 
will you keep a record of your decision so that you can refer 
to it later? 

Method 2: Scheduling the Iteration 

To allocate time and resources to your "next-step plan" to 
ensure that it will be carried through. 

While you probably thought about the time frame of your next iteration when 
your were deciding what to do, there is a real benefit to drafting a more con-



Chapter 8: Iteration 261 

crete schedule for development. As discussed in the Planning and Schedul­
ing section in Chapter 6 on prototyping, the primary benefits of a time-table 
are directed progress and a design that specifically addresses necessary issues 
and problems. Scheduling an iteration, however, is more focused in that you 
address a single stage in your design, with known goals and action items that 
can be generated from those goals and your available resources. Be as specific 
as possible when scheduling the iteration because you have a real plan to 
incorporate and real tasks to accomplish. 

Examine the relationship among tasks 
Consider the relationship among your action tasks. Think about which will 
have to precede others, and which might take place simultaneously. Exam­
ine each task in relation to the others, and think about the next iteration as 
a whole. Draw a bar graph or other visual representation of the relationship 
of the tasks if this helps to understand the timing of one activity in terms of 

all others. 

Consider the end product of this iteration 
To assess the time associated with the various action items, it might help to 
consider what you will have when you are done. Certainly you will want to 
know whether there will be a prototype at the end of this process, and whether 
you will test it. You should consider the form of the prototype, and whether 
it will be off- or on-line. Decide on the prototype form most suitable for the 
design goals you must address, not based on what number iteration you are 
on or whether you have already done that kind of prototype before. 

Think about the goal for your prototype-will you run a user test with it, or 
evaluate the prototype in a group design session? What you do with the pro­
totype will nearly always have some affect on the time you must spend devel­
oping it. Allocate the time to do whatever you think is appropriate-don't 
just start at some arbitrary time and work until time runs out. Having a sched­
ule will let you best manage and accomplish each step. 



262 Software by Design 

Plan around resources 
Understand from the start how much time and what resources are necessary 
to carry out each step of your plan. If you have not already done so, assign an 
approximate total time to each task in your action-item list. If a task is par­
ticularly long, identify milestones to break it up into achievable chunks. 

Besides estimating each step in your action-item list, think about team-mem­
ber responsibilities and other resources that you must allocate. Assign respon­
sibilities for each task. Write down the names of the people who will be 
responsible for each task. Note the resources or materials that might be nec­
essary for each job. 

If team members hold conflicting expectations of task delivery, change your 
action list or schedule. Even if all tasks can be spaced adequately, you might 
be relying too heavily on some member of the design team who cannot pos­
sibly accomplish all that you have doled out. Or perhaps the plan is unreal­
istic in that it requires running tasks on the same piece of computer hard­
ware that cannot reasonably support such simultaneous development. These 
are the kinds of issues you want to address in determining the overall sched­
ule for your design iteration. 

The importance of scheduling the iteration 
As with deciding what to do, scheduling your iteration takes a little time. 
However, the time devoted to scheduling is valuable in helping you through 
this phase of development and thus your overall product. Scheduling the iter­
ation is important because it can: 

Make the most of the time and resources available. 
Until you put down on paper how you really plan to spend your time and 
make use of personnel and other resources, you will rarely be able to under­
stand all the interrelations and your overall expectations. Because assessing 
all of these needs in a schedule will help address how resources will be used, 
it will let you make the most of the time and resources available. You might 



Chapter 8: Iteration 263 

discover conditions you were previously unaware of. If problems are caught 

early enough in this development cycle, you can adequately address them 
and save yourself later trouble. 

Help you foresee impossible goals and revise accordingly. 
Even when we think we have considered every possible detail of the design, 
we often find as we get into the process that we have overlooked something 

critical that keeps us from accomplishing our goals. Writing down each task, 

the people responsible for it, and other resources will help ensure that you 
really are addressing the critical details. Making assumptions about your 

design without understanding all of the factors can result in a costly mistake. 

You don't want to compromise the quality of your user interface. You'll avoid 

this by mapping out as much as possible at the start. 

Understand team member roles. 
Think about which team member will be responsible for which tasks. This 
not only helps you make sure that everything gets done, it also ensures that 
everyone on the design team is involved to his or her maximum potential. If 
you do not spell out who will do what, team members might make erroneous 

assumptions about what they should be doing and what others will do. This 

might lead to duplicate effort, or worse, the oversight of some critical actions. 
Let all team members express what they believe they are best suited to do, 

and make assignments according to skills, preferences, and overall schedule 
considerations. 

Set the basis for the next stage of iteration. 
Knowing what you will do in the next stage and having a plan for accom­

plishing it is almost as good as having it all done. A schedule will provide a 
strong foundation for carrying out your design. When questions arise or con­
flicts occur, you can refer to the schedule and understand how the resolution 
you choose might affect the overall design. Without such a schedule, meet­
ing your final goals given the changes you choose to make will be a gamble. 
Having a schedule won't guarantee your work gets done on time, but it will 



264 Software by Design 

establish a continuing basis for evaluation and provide a way to keep the 
development process on track. 

Steps for scheduling the iteration 
1. Next to each of the items in your action list, estimate the 

time needed to carry it out. Write the name of the person who 
will be responsible for the task and the resources to be used. 

2. If necessary, chart or graph the relationships of the action 
items to time and people responsible to get a better overall 
picture. Understand the progression of the design that must 
take place, and any interdependencies. 

3. Look at all your deliverables, dates, and people responsible. 
Put an overall time frame on this phase of development. 

4. Check your schedule against any constraining factors. See 
that your schedule is realistic, and not too time-consuming. 

5. If the schedule indicates any overlap or impossibilities, cor­
rect it. If you are constrained by time, cut out additional action 
items. If you have additional time, go back to your list of sec­
ondary action items and consider including them. Or allot 
more time to the items you have listed. 

6. Produce a final schedule listing each action item, when it will 
be completed, and who will be responsible. Use this sched­
ule as a reference during development. While it might change, 
it will be useful in understanding development ramifications. 

Hints/ suggestions 
• Use comparisons with previous experience to help you gauge 

time. Talk with others who have had similar experiences. 



Chapter 8: Iteration 265 

• When you have no point of reference, try to gather as much 
information as possible: what are the design implications and 
steps, how many people will be involved, and do you have 
everything you need to carry out an action item? An estimate 
of total time will help determine overall scheduling. 

• Use graphical approaches to understand interrelationships­
either on-line applications or simple sketches can help iden­
tify key relationships in your design that words alone might 
not be able to. 

FEB 1 APR30 

Home device study 

On-line device prototype 

Preliminary designs 

Working prololypes 

Usability sbJdies 

Update design 

Figure 8.2 An iteration schedule. This diagram graphs out 

the various stages of an early iteration for a design. Note that 

user studies and on-line explorations are planned to occur simul­

taneously. When they are complete, design can begin. Imple­

mentation starts sometime after design begins, and the last month 

is dedicated to user testing and updating the design. User testing 

actually begins some time before the prototype has been fully 

implemented, to allow for test planning. 



266 Software by Design 

Exercise task 
Take your list of action items describing what you will do and map them out 
in an appropriate schedule. In your schedule, present the order in which the 
tasks will be completed (including which might be completed in parallel), 
time frames and dates for each task, who will be responsible for carrying them 
out, and any necessary resources that must be allocated to accomplish the 
task (particularly computer hardware or other equipment). Think about the 
following: 

• What is your overall time frame? You probably can project 
one, even if you don't have specific time or delivery con­
straints. 

• What is the relative importance of each task to the others? 
Allocate more time and resources to more important tasks. 

• What is the relative difficulty of the tasks to each other? Real­
ize that more difficult tasks will require more time. 

• Are there potential conflicts that require you to rethink cer­
tain tasks? You might not be able to accomplish all that you 
had hoped because of time or resource constraints. If so, use 
your best judgment to include those tasks you believe to be 
more important. 

• Will a graphic approach help you to understand the relation­
ship among tasks, and which might be accomplished simul­
taneously? If so, draw a chart or graph. 



Chapter 8: Iteration 267 

Method 3: Testing Again 

To conduct additional usability tests that allow you to check 
changes made to alleviate problems from a previous test, or 
to incorporate additional elements of your design. 

In most cases, you will tailor your iteration so that you create some kind of 
prototype that can be presented to users for feedback. Many iteration phases 
end in a user testing procedure, where you present the results of your revised 
design. In fact, since you have probably made changes based on feedback from 
earlier user sessions, additional user tests are even more valuable than the 
originals for seeing if the changes made are appropriate. Testing again con­
firms the design changes and helps you see if you are progressing toward a 
more usable design. 

Successive testing is in fact integral to the iterative process of design. The 
primary reason you iterate in user interface software design is to continually 
improve your system or application according to what users want or expect. 
You find out what users want in your user testing sessions. So your iteration 
is about creating a design, showing it to users, incorporating any feedback 
they give in a new design, testing again, and so on. The process can continue 
for quite some time. You obviously cannot iterate infinitely for each system 
you develop. Often two-to-four iterations will reveal the system's most crit­
ical flaws. 

Choosing test participants 
Your additional user tests might involve the same users who participated in 
earlier tests, or perhaps completely different participants. The people you 
involve in your tests will depend on many factors. In most cases, it is best to 
bring in new participants for the tests. Even if you are building a specialized 
system, or one that relies on repeat users, you will probably benefit more in 
the early developmental stages of your design from having fresh points of 
view presented by new participants. 



268 Software by Design 

It might be, of course, that you bring back participants for a repeat testing 
session because they are appropriate, or because you must, due to limited 
access to additional participants. Who you can engage as users, particularly 
for repeat tests, will depend on who is available to you, the nature of your 
system or application, the types of users you are seeking, and what you want 
to learn from your tests. In the last round of testing, for instance, it might be 
appropriate to bring back previous users who can help you address the user 
interface issues significant to repeat users. 

Choosing test tasks 
The tasks you give your users in testing might be the same as those in ear­
lier tests or they might be new ones. This too will depend on a number of 
factors, including your goals for this test (and whether they are the same or 
revised from a previous test), the specific features and functions you are 
addressing, what you hope to learn, who your users are, and the nature of 
your system. 

If you are testing a new approach to a problem that surfaced in a previous 
design stage, you should probably use the same task to check your revised 
design. If you change the task, you risk not adequately answering the ques­
tion. However, if you are exploring an alternative approach to a design based 
on user feedback, then it might be appropriate to come up with an alterna­
tive task. 

Reuse test components when possible 
It is evident that retesting your design is not always as simple as running the 
same test over again. However, you can often benefit greatly from using the 
components of a previous test that make the most sense for your revised 
design. The best way to evaluate how much of the test to reuse is to think 
about the goals of your design. What did you hope to accomplish in the ear­
lier iteration, and how many of those goals hold for the revised design as well? 
You might need only minimal revision in your test to alter it to the point 
where it is useful for the next design. 



Chapter 8: Iteration 269 

Using focus groups to evaluate redesigns 
Another strategy to retesting is to bring back users from previous tests specif­

ically to evaluate whether design changes address the concerns they expressed 
in the earlier tests. Such an evaluative procedure really isn't a user test, 

because the users know too much about the system and because you aren't 
really giving them tasks to test the redesign. 

Consider bringing together a number of previous participants as a focus group. 

Present the new design to them as a group and ask specifically for feedback 

on redesigned features. Focus groups are not the ideal way to conduct your 

user testing of new designs, since they don't provide users with a realistic 

experience for interaction and don't allow them to use the system as they 
really might. Also, putting numerous people together can affect the type of 

feedback you get as compared to feedback from one-on-one situations. How­
ever, for certain redesign evaluations, the group dynamics created by a focus 

group might actually yield more information as people build on the ideas of 
others. Whether to use focus groups for evaluation of a design revision depends 
on your design, time constraints, and resources. 

The importance of testing again 
Testing again is critical to iterative software design for many reasons. Use 

retesting so that you can: 

Check your design decisions. 
As noted, testing again is the most reliable way of checking that design changes 
improve the system. If users are not brought in to offer feedback on the 

changes, there is no guarantee that the decisions you made were appropriate. 

You might have in fact worsened the design rather than improved it. Ideally, 
bringing in users to retest the design can confirm that your changes are suc­
cessful, although this scenario is not always the case. More likely, additional 
tests will help you evaluate whether you are headed in the right direction 
and whether you have reduced the severity of the problems identified. 



270 Software by Design 

Home Library System 
Usability Test 1 

TASKS 

1. Identify what you think this system may be used 
for. What do each of the elements you see on the 
screen mean to you? What does the overall screen 
make you think of? 

2. How would you search for an item in the library? 
What types of references are available to you? 
Look for a book written by the author 
James Joyce. 

3. Once you have found a book by Joyce, would this 
system allow you to store a local copy of it? 
Explain how you might like this system to support 
this feature. 

4. Does this system support searching for more than 
one item at a time? Say, for example, you want 
to find all books written by living American 
presidents. How would you use this system 
to do this? 

5. Find out what individual tools may be available 
to you. 

Figure 8.3 Successive user tests showing progression 
of the design. These two user tests for the same system show 

the progression of the Home Library design. The first test aims to 

explore general system issues, such as basic search techniques 

and organization of screen elements, and presents tasks to prompt 



Chapter 8: Iteration 271 

Home Library System 
Usability Test 2 

TASKS 

1. Look for a book written by author James Joyce. 

2. Store a local copy of this book so that next time 
you want it you do not have to go through the 
same search procedure. 

3. Find all books written by living American 
presidents. Since this is the kind of request 
you have often, see if there is a way to store 
this request so you do not have to make it again 
next time you want it. 

4. Flip through the Joyce book you located before. 
Leave a bookmark at the start of chapter 3. 

5. The librarian has left you a list of references 
you requested last week. Find this list. 

the user to do so. The second test presents tasks which revisit the 

search techniques to check on the design update in the next iter­

ation, but in a more focused way since general impressions aren't 

as important. It also introduces some additional features which 

were too focused for the first version of the test. 



272 Software by Design 

See if you have further or different problems. 
As you change the features and retest them, you might find that you better 
define the problems users have, or that there are further-or even different­
problems than you originally identified. At the same time as you evaluate 
the progress made on problems identified in earlier tests, you will use suc­
cessive revisions to introduce additional issues to your design. New features 
and refinements can also be addressed in successive tests, to help you iden­
tify if there are additional concerns. 

Confirm your choices. 
When you have questions about which design approach might best address 
problems identified in earlier user tests, successive tests can help you con­
firm design decisions. You can choose to incorporate one alternative in the 
design itself; if users react favorably to it, then you probably have found a 
solution. However, you run the risk that the implemented alternative is not 
appropriate and then you have missed the opportunity for feedback on other 
possibilities. 

You can present more than one alternative to users in the tests, either by 
incorporating one and discussing the other, or by mocking up more than one 
choice and obtaining user feedback. Try to present the alternatives as actual 
tasks to allow users to interact with your approaches. Having various choices 
available might help them identify the best one. 

Contribute to a more robust design. 
Successive iterations of user tests will lead you to a more robust and suc­
cessful design. Even if you experience some frustration at negative feedback 
from users in a certain iteration, successive iterations will help guide you to 
a design that best meets user needs. In the long run, you will have designed 
a well-tuned system aimed at doing what users want it to do in a way that 
makes sense to them. 



Chapter 8: Iteration 273 

Steps for testing again 
I. Prepare your prototype for user testing. Incorporate changes 

identified in your action list from previous iterations. 

2. Generate goals for this user test. Consider what you want to 
know, independent of any tests before. 

3. Review goals from previous tests. Check them against your 

current goals to see that your progressive goals make sense. 
Revise your current goals if necessary. 

4. Generate tasks that will address your current goals. You might 
be able to recycle tasks from a previous test. 

5. Consider who you will use as test participants. Is it appro­
priate to include the same users from last time? Should you 

recruit users who have no prior experience with your appli­
cation? Some of both? You might want to hold focus groups 
rather than individual user tests to get general feedback from 
previous users, then conduct individual tests with new users. 

Hints/ suggestions 
Take advantage of work you have already done-there's nothing heroic about 
creating brand new tasks for every test unless it is appropriate. 

Take the time to evaluate whether repeat or fresh participants would be bet­
ter. If you are testing a change that you made in response to user requests, 
you might want to ask the users who requested the change what they think. 
On the other hand, you might be testing a new approach and want a fresh 
and "untainted" pool of users to provide input. Also keep in mind that 
although retesting the same users might be necessary, the tasks you present 
might be affected: using the same participants with the same tasks often will 
not provide motivation to users to tell you what you need to know. 



274 Software by Design 

Remember to check that problems from your earlier tests have been resolved 
with your design changes. Successive tests should reveal less critical prob­
lems. For example, if earlier tests show general confusion with navigation of 
the overall interface, later tests might show users don't recognize individual 
icons for linking locations. The nature of the problems should improvei if 
you still have the same broad problems, your design solutions are not work­
ing and you need to identify and incorporate users' responses to these prob­
lems. 

Exercise task 
Plan and, if possible, conduct user tests for your next iteration. (You might 
have to actually put to use your plan from the previous exercise and imple­
ment that iteration before you can conduct the tests!) Make use of many of 
the general user testing methodologies presented in Chapter 7. Some of your 
considerations in planning these tests should include: 

• What are the goals of this test? Which functions or interac­
tive methods are you trying to test? 

• What tasks will direct users to address your goals? Will they 
be similar to tasks you might have used in earlier tests, or 
new ones? 

• Who and how many users will you test this time? Where will 
you find these users? 

• Have you changed your test significantly from earlier tests? 
Why or why not? 

• Is your testing process evolving so that you are actually refin­
ing your design in successive iterations? It should be; if not, 
evaluate your testing approach to make sure you are obtain­
ing and heeding user advice. 



Chapter 8: Iteration 27 5 

Method 4: KnoV#ing When to Stop 

To understand when your design has evolved to the point that 

further iterative design cycles will not be worth the effort, so 

that you are effectively done. 

Many iterative design cycles end because of time limits imposed by sched­

uling constraints or delivery dates. However, not all design iteration approaches 

are constrained by such factors, and even those that are can be better con­

trolled if you can estimate the ideal time to stop iterations. Even in open­

ended research projects, you cannot iterate forever, nor do you want to. It is 

not always easy to identify the right time to stop, but some considerations 

can help make the process easier. Basically, you want to continue until the 

problems subside, the nature of the problems shifts significantly, or as long 

as time allows. 

Use the allotted time well 
The trick in iterating is not to stop because you have run out of time, but to 

use wisely the time you have-to make enough progress in your design within 

the allotted time. There will probably always be another iteration you could 

do that would improve your design; but when the iterations end, the hope is 

that the existing design is so stable and robust that any further changes would 

make only marginal difference. 

Signs to watch for 
When one or both of these situations develops, you can be confident that you 

are reaching the end of iterative cycling: 

User testing reveals minimal problems. 
When problems are minor and don't concern users much, this is a sign that 

your design has evolved fairly well. This is particularly true when you com­

pare these problems to those identified in your first iteration and find that 



276 Software by Design 

there is a significant difference in the degree of importance. If you have solved 
the general problems introduced early on (such as a misunderstanding of a 
navigational model) and now see small discrepancies (such as wishing a par­
ticular function was called something else), your design has come a long way, 
and you are nearing the end. 

Users give overwhelmingly positive feedback. 
This is especially noticeable if such feedback was lacking in early designs 
and user tests. For the most part, user test participants seem to be a critical 
lot-they tell you what is wrong with the system much more often than what 
is right. (Be careful to assume this of every user, though, since some people 
don't have it in their nature to criticize, and will hold back from telling you 
anything negative. Weigh user feedback as a whole for your tests, and chances 
are that the positive participants will be outnumbered by those telling you 
what's wrong with your system.) If most users are giving you fairly optimistic 
feedback about the system, it's a good sign. 

When the time or money runs out 
Of course, you won't always be able to work on the design up to the time 
when significant problems give way to small inconveniences or when the 
users love your system. There are times when you have to stop because time 
or money has run out. If you have applied a user-centered design process to 
your work, you will know that you have at least made the most of your devel­
opment time. 

Try to plan ahead and get in enough iterations to make this evolution in the 
time that you have-even if it means iteration stages significantly shorter 
than what you had hoped. Then when you must stop designing, you can feel 
good that you built a user-centered system despite the time constraints. 



Chapter 8: Iteration 277 

Evaluating your progress 
Before you actually cease the iterations, it is important to evaluate whether 
your design is successful enough to put it to use in an actual system. It is a 
sad fact of software development that we cannot always deliver the product 
we hope to. Use the user-oriented criteria discussed throughout this book ~o 
assess if you have created a successful system that responds to users' needs. 

If your most recent tests show serious problems or misunderstanding with 
the user interface, you might want to re-evaluate whether this product is 
ready to go simply because your time is up. You can even use the state of the 
user interface as an argument to present to the right people to sway them to 
give you additional time or resources. In the worst case-that is, if your lat­
est testing results are so negative that you risk alienating users or making a 
bad name for yourself-you might have to opt for not seeing the project 
through. Knowing how to evaluate the progress of your design can help in 
your business practices as well. 

The importance of knowing when to stop 
Knowing when to stop iterating is important because it can: 

Save you from needless additional work. 
While it is true that you can always continue with another design iteration, 
the bottom line is that you might not have to. Even if your design is not con­
strained by project milestones or product delivery dates, you probably don't 
want to do any work you don't have to. Rarely is there only one way to pre­
sent software functionality or interaction, and thus successive iterations 
might help you continue to generate alternatives. But these alternatives might 
prove to be of equal value after a certain point. Knowing how to evaluate 
when you can stop iterating can help you avoid cycling needlessly through 
additional alternatives. 



278 Software by Design 

Help you evaluate your progress. 
It is possible to get into an iteration rut, where you continue to iterate your 
design just because you have been doing it for so long. Taking the time to 
evaluate whether you should continue, instead of simply plodding ahead, can 
help you to assess where you are and the significance of the progress you have 
made. Knowing the criteria that should determine if you should go on can 
help you evaluate this progress. 

Turn research into product. 
Software designs built using iterative design methodologies are often regarded 
as research works, particularly when they are not bound by product delivery 
dates. However, if you are conducting software design research, knowing 
when your design has evolved sufficiently might aid you in turning that 
research into product. If you have made significant progress and your design 
solves the problems it set out to, it's time to consider the next step of prod­
uct development. Knowing the criteria by which to evaluate if your design 
has arrived is critical to accomplishing this. 

Illustrate the success of your iterative process. 
When you know that it is time to stop iterating, you are not simply recog­
nizing that you have done enough design work. You are seeing that the iter­
ative process you put into place has helped you achieve successful design. 
Designs that meet user needs, that are not threatening, that do not pose major 
problems, and, most important, that can be used by real people to accom­
plish real tasks are testimony to a process based on structuring the design 
around the user. 

Steps for knowing when to stop 
I. Work within the bounds of any scheduling constraints you 

have. Be aware of when you might have to stop. 

2. Evaluate the problems revealed in your latest user tests. If 
you have earlier tests to compare these results with, do so. 



Chapter 8: Iteration 279 

3. You might not have fewer problems, but they should be less 
critical. They will, for instance, illustrate user complaints 
about specific detailed functions or features rather than gen­
eral structure or functionality. 

4. Assess if an additional iteration and testing would be worth 
your while. How sure are you of any changes you might make? 
How much do you stand to gain? 

5. Determine the effects of not making any further changes to 
your design. If there isn't a serious downside to not making 
changes, it might not be worth your while to make them. 

Hints/ suggestions 
• Listen to what your users say about the system or applica­

tion. If their complaints or problems are overwhelmed by 
their positive reactions to and favorable statements about the 
software, then the problems probably are those users could 
live with. On the other hand, if problems seem small but users 
state they aren't really crazy about the software, there are 
probably additional broader problems that you are missing 
(and unfortunately this indicates that you are not yet done). 

• Try not to let time determine when you will stop iterating. 
From the beginning, plan for multiple iterations in the time 
you have, even if it means shortened stages. This way, you 
will complete iterations when you are ready, not simply when 
time runs out. 

• Solicit input from other team members. They can help you 
determine whether the test results indicate that there is no need 
to test again, or what the ramifications of another iterative cycle 
will be. You might all decide there is time for another iteration, 
or convince each other that another cycle is not necessary. 



280 Software by Design 

Exercise task 
Evaluate your current design based on the results of your latest user test and 
determine if the design is complete. (You might want to go through another 
iteration of the design and then do this exercise. If you do additional itera­
tions, assess the design to see if you should stop at the end of each cycle, as 
it will help you understand the overall progress of your design.) Criteria that 
should be considered include: 

• What are the problems most recently identified? How do they 
compare with earlier problems? Is the nature of the problems 
similar, or less critical? 

• What is the feedback you are getting from users? Are test par­
ticipants telling you they love the system and want it tomor­
row (even if it does have some problems), or are they saying 
they don't really see themselves using it? 

• How much time do you reasonably have ahead of you for devel­
opment, and what can you hope to accomplish in that time? 

• Is additional development worth your while at this time? 
What do you stand to gain from another iteration? What do 
you stand to lose? 



Chapter 9 

Applying the User-Oriented 
Design Process 

U
ser interface design is the kind of process that develops over a long 
period. It is highly likely that the you have been exposed to-and 
perhaps have experience with-many of the concepts presented in 

this book. Even if you don't think of yourself as a user interface designer, you 
probably have had some experience designing a user interface-if not in soft­
ware design, then for some other product used by people. My hope is that 
this book will encourage you to incorporate these techniques more thor­
oughly in the software design you already do, and maybe think about soft­
ware design in a new light. 

Whether you already have a familiar software design process or are develop­
ing entirely new skills, you will probably follow a similar approach to apply­
ing the techniques introduced in the previous chapters. In a general sense, 
you should combine the techniques that work best for you and your partic­
ular software. At first it might not be obvious which of the techniques are 
appropriate, and you might invest some time up front learning how to make 
the different methodologies work within your framework. 

281 



282 Software by Design 

You will not always apply the same combination of techniques for each pro­
ject, but you will find that you have favorites that seem to work best for you. 
User-centered design methodologies are presented in a range of types so that 
they can be flexible and adapted to a process you can use in your work. At 
the very least, apply them to do what you can to make your software more 
usable and approachable. 

Demonstrating Process 
Viability to Others 

In nearly all cases, your goal will be to develop your software to the point 
where it supports appropriate functionality in a way that users can under­
stand and apply. Particularly in your early attempts to apply user-oriented 
design, you will probably have another goal as well: to make the people you 
work with and work for more aware of the importance and feasibility of this 
process. 

You will probably work just as hard at establishing the viability of the process 
as you will at developing the software itself. While having to prove the via­
bility of the techniques might be distracting and add time to your overall 
development process, it shouldn't take that much more time than simply 
using the processes to develop your software. 

You will see the value of applying the techniques through the improvements 
in your software and the benefits of incorporating user feedback. Document 
the process so that you can demonstrate this value to others. In a short time, 
they will see that incorporating user-oriented methodologies is well worth 
any added effort early on, and that the benefits will simply increase as you 
become more adept with this approach. 



Chapter 9: Applying the Process 283 

Integration vvith Traditional 
SofhNare Design 

Many software developers are taught a traditional software life cycle, or a basic 

procedure for software design and development. This typical software develop­

ment approach follows a procedure something like that shown in Figure 9-1. 

Begin 

Design the 
System 

Build the 
System 

Debug the 
System 

Write User 
Documentation 

End 

Figure 9· 1 Traditional software development process. 
This simple flow chart illustrates the software life cycle process as 

conventionally taught in many software development programs. 

Note that the user is not mentioned in the process until the very 

end, and that the actions of the process focus on the software itself. 



284 Software by Design 

Unfortunately, such a process takes the user into account only at the end of 
the cycle. The approach of the traditional software life cycle seems to be: develop 
a system and then tell the user how to use it. We can adapt this software devel­
opment process so the methodologies presented in Chapters 3 through 8 are 
incorporated within this framework. It means changing the approach to soft­
ware design somewhat, but if we look at this new approach within the exist­
ing structure, then maybe the benefits will be evident and change will not seem 
as threatening. The approaches to including the user-oriented techniques in 

such a software development process are discussed below. 

Critical steps for system design 
The traditional software development process focuses primarily on the soft­
ware itself; the design effort focuses more on how the system does what it 
does rather than what it does and the specifics of the interaction and user 
interface. Clearly, the implementation of the system is important, and is not 
meant to be slighted by focusing on the user interface. However, the imple­
mentation should follow from the appropriate functionality and interaction 
of the system. 

The "Design the System" step in Figure 9-1 should probably be the longest 
in the overall process, encompassing early user studies, off- and on-line pro­
totypes, usability testing if appropriate, and finally actual software imple­
mentation design. This is because, typically, you will want to conduct these 
early efforts of user-oriented design before you begin implementation. In the 
case of the blended traditional/user-oriented process, it is before the tradi­
tional software development cycle really begins. Design the software appro­
priate for users, and the design of the implementation will follow. 

Include the techniques wherever possible 
The design stage is not the only one where user-oriented techniques might 
be applied. Even if you cannot incorporate these methodologies in the soft­
ware design-either because you come into the project too late or there is 
too much resistance from others involved-you can still introduce them in 



Chapter 9: Applying the Process 285 

other stages. When you are building the system, for instance, you can con­
duct usability tests and present findings from user feedback to help resolve 
questions about the implementation or make other developmental decisions. 
You might also be able to present usability tests as part of the debugging 
process, if you think of debugging the user interface as part of the overall 
debugging procedure. 

Usability testing methodologies are not the only ones appropriate in these 
stages, but often are the most readily accepted or adapted. Once you have 
shown the value of incorporating findings from usability tests, you can pre­
sent other techniques, such as broader user studies or prototyping methods, 
to help solve some of the problems you might have uncovered. 

Use the techniques to increase awareness 
The hardest part of incorporating the user-oriented methodologies into a tra­
ditional software development process probably will be changing the politics 
of the system. You have to obtain agreement from others that the user-cen­
tered techniques are appropriate, and get support for adapting the current 
approach to include the new tools. Use the techniques wherever you can; 
when you do, draw attention to your successes to increase overall awareness 
of their appropriateness and capabilities. 

One way to do this is through documentation of the processes used. This is 
especially appropriate for findings from user studies or tests, or to record the 
evolution of a design over time. However, documents might not be convincing 
enough by themselves-they do not get read or their message is not com­
municated with enough power. Using videotapes of user sessions to directly 
point out user problems might be more effective. Videotapes of people try­
ing to use software but having serious problems can convince even the most 
skeptical software developers that changes are necessary. 

If videotaping is not possible, audio tapes might provide similar benefits. Even 
still photographs or illustrated storyboards documenting the problems can 
help augment a written description. Present the work that you have done, in 



2 8 6 Software by Design 

person if possible, to communicate your message directly. Do whatever you 
can to let others see the benefit in spending the necessary time and effort in 

a user-oriented approach to design. Even if you do not make significant changes 
in your current system, over time your message will begin to be heard, and 
you will gain support for changing the process. 

Test software within its known constraints 
Usability testing is the most obvious way to "break in" to the traditional 
software development process. You can probably conduct usability tests with 
the software, whatever its condition or progress toward completion. Even if 
there are obvious flaws in the system that cannot be changed, you can improve 
the existing system by obtaining user feedback and reacting to it. This might 
prove somewhat frustrating, especially if the flaws might have been avoided 
with better design methodologies. But remember that you can develop a much 
improved, more usable interface by bringing in users no matter the stage. 

Conducting a usability test just once, even if it is too late to make signifi­
cant changes, can make the development team aware of its value. On the 
next project, you are almost sure to gain support for your usability tests, and 
probably much earlier in the development process than you were able to 
accomplish this first time. 

When Another Process 
is Already in Place 

The traditional software development process illustrated in Figure 9-1 is 
clearly not the only system people use. Adapting the techniques presented 
in the earlier chapters to any existing process can be beneficial. Many of the 
previous suggestions still apply. In addition, the following tips will help you 
deal with general adaptation of the methodologies. 



Chapter 9: Appl:ying the Process 287 

Work within the constraints of that process 
The more you challenge the existing procedures, the more resistance you will 
probably encounter. Work within the constraints of the partic.ular process 
you are trying to influence. Examine the process and understand where ti~e 
allows for the appropriate procedures, as well as where they can do the most 
good. Talk to the development team to understand what constraints they 
might be working under, and which constraints might decide how to best 
apply user-centered methodologies. 

Assess all stages 
Take a good look at the process under way. Review any existing documen­
tation of the process, such as an organization-wide policy. Evaluate the stages 
that are prescribed, and assess which might be the most appropriate for incor­
porating some of the user-centered approaches. Knowledge of the process will 
help you communicate with those who formed the existing policies, and bet­
ter prepare you for any discussions about how or why user-based design £9r 
software development is appropriate. 

When you are trying to introduce the techniques to a process already under 
way, explore particularly the current stage of the design, as well as the remain­
ing stages in the process. This way, you can make an immediate recom­
mendation on how to adapt your techniques, and hope to make a difference 
no matter what stage you begin in. 

Evaluate which techniques are appropriate and feasible 
Take the time to think about which of the techniques make the most sense 
for the existing design, for your organization, and for the process as a whole. 
Consider what might be missing from the current process that can be pro­
vided by the various user-centered techniques. If you don't know enough about 
what users want before development begins, early user studies are probably 
appropriate. If you find that much time is wasted on the visual layout of the 
design or the nature of the interactive elements, more time invested in off­
line designs that address these design considerations would be valuable. 



288 Software by Design 

Also consider which techniques are most feasible in your organization­
where do you have skills to provide the methodologies and what other 
resources might be available to you? While practically any user-centered 
design approach will help your process, there are probably some that would 
make more of an impact. Introducing these first will not only improve your 
process, but also your credibility as a user-centered designer when your rec­
ommendations prove valuable. 

Be willing to do the work yourself 
Pointing out better methods and helping others in your organization to under­
stand how to apply those methods can improve your approach to software 
design. However, simply being a mouthpiece for these ideas might not be 
enough when your audience understands the value but isn't able or willing 
to provide the necessary resources. One of the best ways to support your own 
ideas is to be ready to take action. 

Volunteer to be the one to conduct the necessary work. Give up your current 
responsibilities for those that will help champion these techniques, or, if you 
have to, take on additional responsibilities to get the work done. Even if in the 
short term you must work extra hours or in an area that is not directly your 
responsibility, you might discover in the long run that you are able to convince 
others of the value of your ideas and change the process or team skills. 

Dealing Ylith Schedule Limitations 

Sometimes it is not the process in place or the people for whom you work 
that impede you. You simply might not have adequate time to apply the 
process all the way through. Identify the time you do have, so you know what 
you are working with. Then taking the following steps might help you to 
obtain critical results with a scaled-back version of the techniques. 



Chapter 9: Appl.ying the Process 289 

Analyze where to apply the methodologies 
If there isn't the time to undertake the design the way you would like, under­
stand where the techniques can be most effective. Look at the type of design 
problem you are trying to solve and the nature of your users. Consider where 
user input will be most important. Come up with an effective subset of the 
techniques, and prioritize them in your design process. You might not be able 
to apply them all, but at least you will know which ones you intend to. If 
more time becomes available, you might be able to include others. 

Scale back on testing 
All of the techniques take time, but some take much more than others. It is 
difficult to reduce the time dedicated to off or on-line prototypes-creating 
and building the designs is often a time-consuming process. Usability test­
ing, however, has many components that might be scaled back. Rather than 
eliminating usability testing altogether, cut back on the time by reducing the 
number of user tests or the length of the tests so you can plan for fewer tasks. 
Some testing is better than none. Bring in only three or four people to eval­
uate your software when it isn't feasible to include the nine or ten you want. 

Keep your design simple 
One way to try to accomplish as much of the overall process as possible is 
to guard against having too many features or details to develop and test. Keep­
ing your design simple will keep each stage of the design short, and allow 
you to try out and employ as many of the techniques as possible. Simple 
designs typically require fewer iterations to solve problems and present all 
features to users, so you will keep your total time shorter. 

Developing a purposefully simple design might not be ideal for your specific 
system, particularly if early research shows that users want complexity and 
depth from it. However, it is better to have a simple system in which all com­
ponents have been adequately explored and in which users can understand 
the interface than to have a complex system that is partially developed and 
not adequately tested. 



290 Software by Design 

Limiting the feature set or the complexity of the interaction might not be 
appropriate in an ideal development scenario, but when time is limited it 
might direct the usability of your product. If you won't be able to have an 
elaborate process where feedback can come more often from more iterations, 
then keep it simple. 

When You Don't Have Support 
from Your Organization 

Often the biggest obstacle to putting this process into action is not the diffi­
culty of understanding and applying new techniques, or limits in time or bud­
get, but your organization or management. Here are some suggestions for 
putting the process to work when you don't have official support. 

Do it anyway 
If you cannot apply the process in the way that you would like to, consider 
other more roundabout ways. One might be to solicit support from others on 
your team, and see if together you can find a way to incorporate at least a few 
of the methodologies into your current process. Even if you don't have the 
support of your organization or manager, having colleagues who back up your 
decisions will prove encouraging and helpful. 

Another approach is to do what you can in any spare time you have, even 
after hours if necessary. It might seem like a sacrifice when you aren't being 
compensated for your work, but chances are that once the work is done, you 
can use it to get the support you need for other applications of these tech­
niques. The risk is that your work will not be appreciated and that you might 
waste your time, but more likely than not you will be building a better prod­
uct as a result of your efforts. Even if your attempts to apply the process are 
not rewarded by others, the better design you produce will be reward itself. 



Chapter 9: Applying the Process 291 

Demonstrate feasibility 
Don't underestimate the power of educating others-showing people what 
you have done and why it works can help you gain support for your effort. 
Use documentation of findings and associated changes made in your user 
interface, audio tapes or videotapes of user testing segments (particularly as 

they relate to specific problems with an existing or prior system), and demon­
strations of your prototypes to show others how your design process has ben­
efited your work. 

It might take some extra time to gather the materials, but you will already 
have done most of the hard part-generating the content-during your user 
interface development process. The effort you spend putting that material in 
a form that others can readily comprehend might pay off in winning over the 
support you need to include more of these techniques in future designs. 

Expect to make small advances with time 
Change takes time, particularly when it involves well-established develop­
ment procedures. When you encounter resistance from your organization or 
management, you must expect that it will take time to achieve any success 
in persuading them to incorporate these novel approaches in their software 
design. Continue to talk about and demonstrate the advantages of the vari­
ous methods. Practice those that you can, and always look for ways to intro­
duce them into your routine. Be persistent, and slowly but surely you will 
realize your goals. 

Choose to Do What Works for You 

Even if you encounter no resistance, have all the time in the world, and there 
is no existing process in place, it might not make sense to try to apply all the 
methodologies for every one of your designs. Sometimes success means apply­
ing only some of them. Choose the parts of the process that make the most 
sense for you. Suggestions on how to do this follow. 



292 Software by Design 

Analyze the current process 
As discussed previously, look carefully at what you now do to develop user 
interfaces for your software. Think about which of the user-oriented tech­
niques are needed in your development process and which would be the most 
valuable. Do you need to spend more time in early design stages, or devote 
more effort to building small on-line prototypes that showcase potential inter­
action techniques? Consider the kinds of problems that typically show up in 
the systems you develop. Where might it make the most sense to bring in 
users to give you input on your designs? Familiarize yourself with the vari­
ous techniques, and with your own product and process in mind, determine 
those that make the most sense for you. 

Start where you are comfortable 
Starting with a few of the techniques rather than all of them at once will help 
you adapt them into your work style. Some methods are probably more famil­
iar to you, or make use of skills you believe you can provide with minimal 
effort. You might want to include these in your user interface development 
process first. If you have some drawing skills, some of the off-line techniques 
such as storyboarding might come easily to you. If you are a trained pro­
grammer, try adapting some on-line prototyping methods the first time you 
attempt a user-centered design approach. 

Not only will techniques that make use of your skills be easier for you to 
adapt, they will help you to feel more comfortable with the overall process 
because you will build confidence in your abilities quickly. You can even­
tually include a wider range of methods, and expand on your process. Soon 
you will feel comfortable with even the procedures that do not rely on skills 
in which you were trained. You will be able to extend your process to include 
any techniques that make sense for your designs. 

Continue to introduce methods 
If you start with only a subset of the methodologies, be persistent about using 
others as they become applicable or as time allows. You will begin to feel 



Chapter 9: Applying the Process 293 

comfortable with those techniques over time, but do not fall into the rut of 
using them exclusively. Introducing new techniques will help you gain famil­
iarity and comfort with them as well. For example, introduce just one new 
method in each design you undertake, or one every couple of designs. You 
will expand your repertoire of capabilities and grow as a user interface soft­
ware developer. 

It might be worthwhile at first to introduce new methods even when you 
don't see a direct need for that approach, just to get some experience with it. 
Clearly, you will not be able to introduce new techniques in each design you 
develop unless time and resources allow it. However, practice with a new 
method will improve on your design, and prepare you for a time in which 
your experience with this method will be needed. 

Don't try to do too much 
It is a rare individual who will be able to apply all of the methods presented 
here in a single design and succeed at every one. Especially if you have never 
used any of these approaches before, it will be extremely difficult to make 
them all work together in a smooth and useful way. (The application of all 
the methods to the supermarket guide exercise in this book is a learning 
process and is not intended to advocate the suitability of using all methods 
for a single design.) Trying to accomplish too much, particularly in your first 
experiences with these techniques, might only frustrate you and keep you 
from succeeding in any of them. Start small-you will learn the methods 
more thoroughly and design better software as a result. 



Chapter 10 

Extending the User-Oriented 
Design Process 

T he techniques presented in Chapters 3 through 8 are not a closed, 

linear process for user interface software development. Rather, they 

are a set of methodologies that, when applied in the right combina­

tions and under the right circumstances, can help produce software that 
involves the user in its design and thus meets user needs. Different projects 

will require different combinations of the techniques, and in varying inten­

sities. Some projects might make use of most of them, while others are best 
served by only one or two. You will understand which combinations make 
sense for your particular projects as you get more experience with these tech­
niques. The techniques are a foundation for sound user-oriented software 

development. 

The overall process, however, is dynamic-the individual techniques and the 
process itself can change or be extended when appropriate. You might add 

techniques to the collection when you discover ones that make sense for user 
interface design. Of course, you won't automatically incorporate any method 

you come across. First evaluate the benefits of the new technique. Can you 
accomplish the same results with techniques you already use? 

295 



296 Software by Design 

Be on the look out for methods used in other disciplines that you might adapt 
to your work. For example, you might find techniques in some of the inter­
disciplinary fields listed in Chapter 1. In general, look for ways to obtain infor­
mation from potential users, apply that information to your design, get user 
feedback on the current design, and incorporated the feedback into your soft­
ware. The more experience you have with the process, the better you will 
extend the process in related and goal-oriented ways. 

You will not always need to extend the process. Particularly when you first 
start to practice these methods, you should focus on the ones presented here 
to help you understand this approach to design. As you gain experience, how­
ever, you will know when to build additional practices into the approach. 

Extending this process or the techniques might be accomplished in varying 
ways. It can involve coming up with completely new methods, or building 
on the methods in this book in ways that make sense for your project. It might 
happen by bringing in experts or ideas from other discipline areas, or even 
representatives of your user population to help mold your designs. Some of 
the choices open to you are explored in the following sections. 

Incorporating Other Techniques 
One way to extend the overall process is to introduce new methods. Because 
the user-oriented design process is somewhat informal, it is not at all a con­
tained one. New methodologies might be appropriate, especially for projects 
involving new technologies or areas where user interface software has not 
yet been introduced. The following tips can help you recognize the need for 
new techniques, and how to incorporate them smoothly into your user inter­
face development process. 

Evaluate the techniques against each proiect 
Look carefully at each project you undertake to understand what you can 
gain from applying each of the techniques in Chapters 3 through 8. Consider 
what each technique offers, and if it can indeed be used for your design. If it 



Chapter 10: Extending the Process 297 

isn't right for your project, understand why. Knowing where the approach 
fails your purpose might help lead you to a new method that provides the 
desired result. This evaluation will become easier as you get more experi­
ence with each technique and can more readily understand how it might or 
might not apply to a specific project. 

Keep in mind the purpose 
of involving the user 
Remember that your aim is to design software that does what users want and 
need it to do, and in such a way that they can understand how to do it. Meth­
ods that enable you to better gather information from your users are certainly 
appropriate. Be sure to follow the guidelines detailed in Chapters 3 through 
8, even if the method you are evaluating is not one included in this book. 

Stay objective about the information you interpret from your users and try 
to remain within the users' natural environment and setting when you con­
duct studies and tests. Remember that you want to involve users in order to 
understand their motivations and to help generate creative design ideas. New 
creative prototyping methods are certainly encouraged, particularly those 
that help you showcase the concepts of your designs to others. Keep an open 
mind-any method that supports better design for more usable software might 
be suitable, even if it doesn't seem to be a conventional software develop­
ment approach. 

Draw on past experience 
Your prior experience with other development methods can be extremely 
valuable, especially those you thoroughly understand and are comfortable 
executing. If you have practiced some method before, then you will be famil­
iar with what it can or cannot do for you and what you can hope to gain by 
incorporating it into your software design process. 

Consider methods that you used for other purposes, not necessarily only for 
other software design projects. Think about experiences in social or enter-



298 Software by Design 

tainment situations that might apply to the development of a given software 
product. For instance, consider a storytelling technique that you might have 
used with children where you included sound effects as you related the story. 
It might encourage you to use sound effects in conducting your user tests or 
your prototyping stages. It might seem far fetched, but any experience you 
have had communicating with people might actually apply. All your experi­
ences, of course, will not, so evaluate carefully what you can gain from var­
ious approaches. 

Consider using any method 
You might find that methods of any kind-early studies, off- or on-line pro­
totypes, testing or iteration-make sense in a particular design process. You 
are not limited to expanding only those methods for user research or creative 
prototyping simply because they might seem the most obvious. The user 
interface design process is subjective-what works well for one software pro­
ject might not for another. With time and experience, the decision of whether 
or not to extend the process for a particular design will become more appar­
ent, as will the appropriate ways to do so. Be true to your users, and you will 
learn to recognize and incorporate new techniques that work for you and the 
designs you undertake. 

Elaborating on a Single Technique 

Rather than add whole new methodologies, it might be enough to build on 
one of those already in place. You might discover that you want to focus in 
depth on the one or more techniques that work well for you. You can expand 
the overall development process by elaborating on a single technique, either 
adding prescribed steps to those provided or by broadening the scope of its 
application. Suggestions as to how to expand individual methods are pre­
sented next. 



Chapter l 0: Extending the Process 299 

User testing as an example 
You might have such positive experiences conducting user tests to evaluate 
your software that you want to expand the procedures and adapt them to a 
specialized approach of your own. Analyze what you do when you perform 
user tests, and what does or does not work well for you. If you have a special 
approach to outlining and defining your test goals, you might want to write 
those steps directly into the overall test planning process. Be objective about 
what you do and why it works. Look at your experience over time with more 
than one project-don't jump to conclusions about changing your approach 
based on just one experience. If you have consistently applied a new or 
expanded approach across several designs, your steps are strong candidates 
for extension into that method. 

Follow the needs of your design 
You want to extend techniques to make them more useful and possibly more 
focused, but be careful not to make them too limiting. The techniques pre­
sented in Chapters 3 through 8 are kept general so that they can apply across 
a range of designs. Tailoring them for a particular type of user interface, espe­
cially if it is one your work revolves around, can be helpful. 

However, recognize that you might not always want to use your customized 
version. Look at the way you have applied that particular technique across 
various designs and determine the general steps that you want added to that 
technique. Keep a record of why you have added these steps, so that at a later 
time you will have an easier time evaluating if they are appropriate for the 
specific design you are undertaking. 

Learn from others 
You can learn from the experiences of others as well as your own experiences. 
Discuss with colleagues or friends how they design their user interfaces. Even 
if they do not claim to have been applying a user-oriented approach, there 
might be something in their development procedure that you can adapt to 



300 Software by Design 

your own. Seek out others who practice the user-oriented methodologies so 
that you can learn from their experiences, especially when they have been 
able to apply techniques that you might not have yet yourself. 

Consider forming a user-centered design special interest group in your com­
pany or geographic area. Such an organization can be used to share design ideas, 
and show how and where the process can work for you. Because the user-cen­
tered approach is a flexible and growing process, the more examples you have 
of it working, the better prepared you are to understand it's application. 

Research other sources 
Be on the lookout not only for other techniques that might be transferred 
from other sources, but for these user-oriented software techniques under 
other names or guises. In other disciplinary areas, you might find that simi­
lar approaches are used but are referred to differently. Consider disciplines 
such as advertising, where the user (that is, the consumer) is critical to all of 
its products. Explore how its user studies are handled, usually through focus 
groups. Think about its kinds of prototypes, which might be called treat­
ments or presentations. 

There are broad similarities in these approaches to those for software design. 
You can probably learn from the way that these techniques are applied in dif­
ferent fields, particularly if you pay attention both to the similarities and dif­
ferences. Examining the differences might suggest new ways to apply simi­
lar approaches in user interface design. 

Revisiting an Older Design 

There might be times when you can go back to an old design that was cre­
ated with a user-centered process and expand on what you did. Perhaps your 
time on that design was limited and more time has become available, or 
maybe interest has been sparked for you to renew work on a project that was 



Chapter 10: Extending the Process 301 

not well supported then but is now. Whatever the case, you can extend the 
user interface design process within the scope of the project. It might not 
involve introducing new or expanded techniques, but rather analyzing what 
you did then as an overall process and how you might now extend that process 
based on what you have learned since. Some approaches for extending the 
existing process follow. 

Analyze what worked 
Assess the methods you used in your original design. List them, and under­
stand how you benefited from them. What were you able to transfer directly 
to the next stage of your design? If you worked with others on this design, 
get their perspectives on the various techniques used. Analyze what each 
method contributed to the overall process, and how it led to the design that 
finally evolved. 

Analyze why you chose those techniques 
Think back to why you picked those techniques. Was it to meet certain design 
goals, or because of available resources or limited time? Were you simply 
most familiar with them? Did you choose them because they met the needs 
of your design, or did you have to compromise because of extenuating cir­
cumstances? Were there other techniques you would have rather used in an 
ideal situation? Are the current conditions-such as time or resources avail­
able to you-such that you can now apply alternate methods? Take advan­
tage of your hindsight to see if you can apply other methods, or if you can 
elaborate on those you already used. 

Analyze the results 
Look at the results of the individual method applications, such as the find­
ings from user studies or tests, or storyboards, or on-line prototypes. These 
might help you to remember why you made decisions you did, or if you went 
on to additional stages with certain preconceptions. Be objective as you ana­
lyze what went on at each stage, and assess if you made the right decision 



302 Software by Design 

for that design or if the decision might have been tempered by some other 
factor. As you are doing this, try to understand where various other user-ori­
ented techniques would help. Determine where additional work might improve 
or better direct the design. 

Apply subsequent knowledge 
and experience 
Chances are you have completed other designs since you worked on this 
design. Think about what you have learned and how your process has evolved 
since then; presumably your designs have progressed across the range of pro­
jects. Consider techniques you have been using in more recent designs and 
whether they might have made sense for this older design. Now that you will 
be able to continue or extend work on this design, might you borrow any of 
these techniques? Or are they actually inappropriate for this design based on 
what you know about them from other designs? Try to learn from all of your 
projects and experiences with the user-oriented techniques. 

Keep track of your process 
Keep records of your application of the user interface design process for pro­
jects as you undertake them. This will help you during the development of 
that particular project, since writing down your thoughts or decisions can 
help clarify them. It will also help if you later revisit that project. 

The documentation need not be formal or long-it might even be as simple as 
brief annotations jotted alongside existing notes or documentation. Consider 
using a particular pen type or color for all such process recordings, so that you 
will be able to easily track them later. It might take a little more work on your 
part during your design, but it will definitely pay off later when you are attempt­
ing to review the process you followed and the decisions you made. 



Chapter 10: Extending the Process 303 

When Additional Resources 
Are Allocated 

Often in software development, the allocation of resources changes mid-pro­
ject. Your resources might become limited and you will have to scale back 
what you are doing, or you might be fortunate enough to obtain additional 
resources for your project. This last, happier scenario might be the result 
when you have been able to demonstrate the benefits of applying the user­
oriented design methods early in your process and get the go-ahead from the 
right parties to expand on your design approach. If more resources are allo­
cated mid-project, there are a number of considerations for expanding your 
application of the user-oriented design methods. 

Examine the original plans 
Think about what your original plans for the process were and where you 
might have had to cut back because of project constraints. If you have docu­
mented your plans, this task will of course be easier. Review your reasons 
for omitting or minimizing the amount of time you were planning to spend 
on any of the individual techniques. Some of those reasons might no longer 
hold, especially since more time or resources have now been allocated to this 
project. Now you will be able to include the techniques or the time you 
couldn't before (if the reasons why your originally had wanted to include 
them still hold true). 

Analyze the current plan 
If you did not compromise in your original plan-or even if you did-analyze 
what you are currently doing and see what is working well for you thus far. 
If some of the methods have proven particularly valuable, you might now 
want to elaborate on them. Spend more time on a particular user study, or 
draw up storyboards, or expand a flipbook to help you work through aspects 
of the design that you did not have time for before. Think about ways to incor­
porate those same types of methods in other stages of this design, or ways 



304 Software by Design 

that other methods can help build on your findings. With additional time or 

resources, you might be able to accomplish more than you originally had 

hoped with the same techniques you were going to use all along. 

Analyze current difficulties 
Analyze the problems and issues that have arisen over the course of your 

design. The more time you have spent working on the design, the more con­

cerns you are likely to have. Look for decisions that you made where more 

information would have been useful. This might justify an additional user 

study, or spending more time in early design stages building prototypes for 

design alternatives. Think about the solutions you have devised and whether 

additional research or design work would be appropriate; note where addi­

tional techniques might help. Review the techniques to see if they offer any 

ideas for expanding on your problem areas. Additional resources or time will 

almost always help you troubleshoot your design problems. 

Use the allocated resources wisely 
If more resources are allocated, you should analyze not just where your design 

process could change from a design perspective, but also the opportunities 

now available to you. If you are fortunate, the new resources will let you to 

introduce or build on design methodologies that you could not address before. 

For instance, if because of an increased budget you now have a graphic designer 

on your team, you can produce more detailed and complete visual designs. 

Even if your new resources do not provide new skills, take advantage of what­

ever support they do provide. If you have access to additional programmers, per­

haps you might be able to build interactive software prototypes for a number of 

alternative concepts that you could only talk about before. Additional resources 

might be allocated in the form of equipment; take advantage of it in the way 
that makes the most sense for your design. Making the best use of who and what 

are available to you can help you develop high-quality solutions for your designs. 



Chapter 10: Extending the Process 305 

Changing An Existing Framevvork 

When you encounter obstacles from an existing framework for software design, 
you might be able to put user-oriented techniques into play by expanding on 
those presented here and including those that mesh more easily with ones 
in the existing process. Some creative effort might be required on your part 
to evaluate the methods in place and understand how they might be adapted 
into the user-centered approaches in a valid and useful way, but doing so 
might mean getting the support you need for applying these methods. The 
following information might help you do this. 

Start slow if you have to 
While you might be anxious to put many of these methods into action, real­
ize that others who are not familiar with them might not share your energy 
or enthusiasm. You can help win them over by introducing the methods 
slowly and in small pieces. Casually suggest showing your design to the peo­
ple who might eventually use it. Point out the places in the existing process 
where it would be most appropriate to do this, and offer to gather user par­
ticipants and conduct the sessions. Provide feedback to the design team in 
supportive ways, even if most of the results were somewhat negative. Next 
time around, you might be asked to write your user tests directly into the 
project plan, and you might round up additional support from others for doing 
so. Even the introduction of just one, or part of one, of the approaches can 
help make your development more user-centered. 

Look for holes in the existing process 
Since the techniques presented in this book are approaches to designing soft­
ware, they probably can be adapted to any design stage of an existing process. 
You might not want to tell others on your design team your motivation in 
using these methods, and instead simply introduce elements of them during 
design sessions. For example, bring paper and pens to a design meeting and 
draw out or storyboard some of the ideas you hear people discussing. When 



306 Software by Design 

you hear indecision among meeting participants about how to approach a 
function or feature, take it as a cue that some research is necessary. Do this 
research on your own, conducting whatever form of user study makes sense 
for the particular issue. Bring the results of your findings to the next design 
meeting. Not only will you provide valuable input for the design, you will 
impress your colleagues with your creativity and energy! 

Plan ahead and start early 
While the framework in place might not approach the design problem with 
a user-oriented slant, chances are you will still have to complete many of the 
same tasks that you would in a process that practices the user-based tech­
niques. Most software projects involve delivering the software itself along 
with documentation and other side products. Consider what the end prod­
ucts for your project are, particularly those that end users will see. 

If user documentation (such as a user guide) is planned, but it is not in the 
works until near the end of the design cycle, start working on the guide now. 
Chances are you can muster support for doing so, since it has to be done even­
tually, but you will be able to do so in a way that forces the team to address 
some of the user-oriented issues. 

Thinking about the documentation might help you to address user interface 
features that would otherwise have been delayed until later (probably too late 
to do anything user-based about them). Use some of the user-centered meth­
ods to come up with solutions to the problems-it's a somewhat sneaky but 
effective way to convince others of the importance of what you are doing. 

Gain support through educating others 
Expanding the process to include user-centered methodologies is really about 
expanding the outlooks of the people involved in the process. Not only will 
you have to be creative about incorporating these methods into the existing 
framework, but you will have to subtly tout the benefits of the techniques 
as you do so. This will help you educate others and gain support for the tech­
niques in future design efforts. 



Chapter 10: Extending the Process 307 

Show people the effects of these methodologies on the quality of your soft­
ware, and how you were able to solve design problems or come up with alter­
natives based on your work. If you are applying the methods in a way that 
they can improve the users' experiences, make sure to communicate users' 
positive responses. The most impressive way to do this is to have team mem­
bers hear it from users themselves, either in person or on videotape. Show­
ing how the people who will use the software think it is successful or not 
will lend solid support to your design methods. Point out why the methods 
you use make those responses possible. Your design teammates will see the 
value of these methods, and eventually the old framework will give way to 
a new one. 

Seek out the user experts 
Even if the existing process does not seem to support any user-centered design 
methodologies, chances are that somewhere in the framework there are ways 
that input from users is incorporated. Often it is not the design team that is 
responsible for understanding user needs; it gets information from other orga­
nizations with this function. 

Typically, a marketing department is responsible for specifying user needs 
or requirements. If this is the case, seek out those responsible for providing 
this information. Talk to them about what they have learned from users and 
how they have done so. Ask for copies of any documents they have written 
or for results of any studies they have conducted. Analyze their findings 
according to the user-based techniques approach, re-evaluating the findings 
of the marketing experts, if necessary, to understand the impact on your 
design. In doing so, you might find a way in which different departments 
within your company can work together toward the same goals, and gain sup­
port for applying the user-centered approach to design. 



Summary 

What It All Means 

Design is not a prescribed science, but an art relying on a range and knowl­

edge of techniques, and knowing when to combine them. Interactive soft­
ware design is greatly enhanced by involving the users of the software as, 

ultimately, the users determine the success or failure of a software product. 

The aesthetic quality of, or efficiency of the coding, is of little significance, 

if people cannot use the software for its intended task. People will use it if 
does what they need it to do, in a way that makes sense to them. In interac­
tive software design, it is best to involve users as much as possible to insure 

their satisfaction with the final design. 

The Role of Users in Software Design 
In an ideal software design project, the development process starts with the users 
themselves, either by researching an existing system, technology or meeting 

with users. By interviewing users, the software developer can learn about cur­

rent approaches, users' intended actions, and any limitations in existing soft-

309 



310 Software by Design 

ware. Starting a design project by interacting with users can help guide it to 

meet user needs, rather than deliver a specific technology or haphazardly add 

new capabilities to an existing one. Even if the actual users of the target soft­
ware are not available for direct observation, research can be conducted by inter­

viewing designated "experts" or meeting with users of parallel technologies. 

Involving users in software design should in no way be limited to the initial 
stages of design. Users can provide valuable input throughout the development 
of the project. There are ways to get users involved no matter the stage of design, 

the time, or budget available. These ways range from informally talking with, 

or observing, users and developing different kinds of prototypes; to showing 

designs to users and obtaining feedback; to conducting formal usability test­

ing, and making recommendations based on statistical analysis of data gath­

ered. When designing software, it is important to assess how user involvement 
can be most beneficial to a particular design and plan to include users in the 
development process. Scheduling time to observe users interacting with a sys­
tem or application, dedicating energy to show prototypes, or allocating sessions 

for usability testing before the design is complete, can help to secure users' 

roles in software development. 

User Interface Design Methods 

A number of methods for involving users in the software design process are 

presented in the preceding chapters. These methods can be broken into the 
following categories: 

Early User Research, Off-line 
Procedures, On-line 
Procedures, Prototyping, Usability Testing and Iteration. Each type of user­
oriented design methodology has its own considerations, including the impor­
tance and advantages of any particular method. While not all software designs 



Summary 311 

require, or will be able to draw on, each of these types of methods, using any 
of these in the development of interactive software will enhance the soft­
ware. This is true because each approach incorporates user needs or expec­
tations. Determining the methods that are appropriate for a particular soft­
ware project depends on the project, the nature of the software being developed, 
and the overall time frame of the project. Different projects will almost always 
employ different combinations of the techniques. 

Project needs are not the only factor in determining which of the methods 
to put into place. Access to resources, or skill sets, will make certain of these 
methods easier. Having experience or training in graphic design, for instance, 
will help achieve high quality results in many of the off-line techniques, how­
ever, such expertise is not necessary to achieve adequate results which can 
make a significant difference in software design. Understanding the value of 
the various methods and knowing when to use them as intermediate steps 
can help to develop more complete and appropriate user interfaces. Anyone, 
even someone with no prior experience, can apply any of these methods to 
achieve worthwhile results. Clearly more expertise may help in the aesthetic 
quality of a prototype, or the degree of information gathered from users, but 
expertise can come with time. Any application of these procedures will enable 
user input to be gathered and some user input is infinitely better than none. 

The accessibility of users is another important factor in determining which 
of these methods to apply on a given design . If users are readily available and 
currently using software, then early research or testing can make a lot of 
sense. However, if your users are inaccessible, say for potential security prob­
lems, focus your energy on prototyping (though you should at least try to get 
representative users to obtain some feedback in informal usability testing). 
Knowing how many users are available to you will decide how important 
user feedback can be in determining successive design steps. While input 
from one user is better than from none at all, you must take into account 
that without a representative user group you may not be gathering data that 
applies to all your potential users. Being aware, up front, of your capabilities 
and limitations can help better direct your design. 



312 Software by Design 

Altogether, the methods presented in preceding chapters can be used as steps 
in iterating a design. Iteration is a critical part of involving users in design, 
primarily because the nature of iteration is such that there are multiple gen­
erations of a design. A logical opportunity for user input is provided between 
design steps or cycles. Iteration can be used to refer to complete design phases, 
or merely the development steps created with successive applications of dif­
ferent techniques. A more complete, cycle-based iteration might start with 
user research; then involve some creative design and implementation; be 
shown to users to obtain feedback, and then incorporate this feedback in 
ensuing designs. This design-build-test cycle would continue until the design 
is complete (or resources are depleted, which is most often the determinant 
factor in design completion). A less complete iteration might involve the 
same stages but just one complete research-design-build-test loop. While this 
is not the most opportune way to incorporate user input, it at least acknowl­
edges the importance of the user in software design and is often the only 
approach possible in design projects with limited budgets or resources. 

Applying and Adapting Software 
Design Methods 
The collection of methods presented here are not intended to be absolute. 
They are an informal set of techniques which can and should be adapted to 
the needs of an individual project or developer. Considerations such as the 
nature of the project, the time and resources available, and the composition 
of the design team can all play a role in determining how to best utilize these 
methods. Some of the techniques might work well in other (not computer 
software) design projects. Techniques may be adapted according to similar 
approaches you have found in other fields of research or development, such 
as customer research tactics followed by market research groups. The most 
important underlying factor in all the techniques is that they try to apply 
something about users - their preferences, their customs, their expectations 
- to the user interface under development. If only subsets of the methods, or 
different methods you have discovered elsewhere, work for a particular pro-



Summary 313 

ject, then by all means use those methods. Much of the creative application 
of these methods comes in knowing how and when to (or not to) apply them. 

Likewise, any of these methods might be expanded to meet your own par­
ticular demands. These techniques can be used as a starting point to pursue 
more in-depth user research, or as the basis for more complex designs. Build 
on these steps to find the best way to involve users in your designs. You may 
discover or create alternate techniques that work better for you. The ability 
to introduce new techniques which incorporate user input in a creative or 
novel way is an indication of an understanding of the importance of user­
based software design. As you become a more advanced user interface designer, 
you will become more adept at creating and adapting design methodologies. 

General Steps for Sofmare Design 

In general, for most projects, you will want to take these overall steps: 

1. Assess your proiect and time frame. 
Understand the needs of this project, how you will take advantage of exist­
ing technology or develop new technologies. Do you know exactly what you 
will be building, or will it be tempered by early input from your users? Decide 
if you will be working toward a specific deadline, and if not what criteria will 
determine project completion. 

2. Understand resources available to you. 
Identify who will be working on your software design, their skills and avail­
able time, equipment and other materials, and overall budget. Knowing your 
capabilities and limitations can help direct your design. 

3. Review existing experience. 
Know which members of your team have completed similar projects, worked 
with one another, or dealt with comparable user populations. Understand 



314 Software by Design 

which methods team members have used in the past and why they were or 

were not effective. 

4. Identify the users of your software and their accessibility. 
Think about the range of people who will use your software and how they 

might be available to work with you in your design development. Ask your­

self questions such as: Do you have ready access to your users? Can you share 

the technology with them? How agreeable will they be to working with you 

on your design? 

S. Consider using experts, particularly if 
your users are not available. 
Think about whether your users are well known by others, or whether your 

technology needs further exploration before pursuing the design. Seek out 

experts who can help set a foundation upon which you can build your design. 

6. Select methods to be used. 
Assess your project, resources, experience, users and experts to understand 

which user interface design methods make the most sense for your project. If 
you have more time and resources, you will probably want to encompass more 

of the techniques in your overall design. If you are limited, try to be more 
structured about identifying which methods are most appropriate. Remem­

ber that you can always add or remove certain steps as project needs change, 

but start with your ideal plan given what you know about your project. 

7. Schedule the design and allocate resources. 
Understand the total time you will need to devote to each method to enable 
you to complete your design in time. Determine who on your team will focus 
on which methods, and how they will work together to insure smooth inte­
gration of the design. 



Summary 315 

8. Plan to document your development as you go 
(with video tape or notes). 
Keeping track of your design progress will help you be more thorough in your 
design as well as serve as a reference for later work. 

9. Conduct each development step, 
with as many iterations as possible. 
Finally, you are ready to tackle your design! Try not to accomplish every­

thing in one design-build-test cycle - rather, start with big concepts and refine 

them on successive design-build-test iterations. 

1 O. Make changes along the way if necessary. 
Recognize that the software design process must be flexible enough to accom­

modate changes in project goals, user accessibility, or any revised distribution 
of resources that may come about as a result of user input or project manage­

ment. Making changes to your plan, either in terms of allocated time or total 

number of steps and methods applied, does not indicate failure, rather it shows 

an adaptability that in the long run will help you to deliver better designs. 

11. Assess your results. 
Take the time to evaluate both your design and the procedure you followed. 

Understanding how various methods worked for or against you can give you 

experience which will help you in your future design projects. Evaluate how 
you worked with users and what you learned from your efforts - start to think 
about what you will do the same or differently next time around. 

At first these steps may seem extraneous to your basic design needs. Up front, 
constructive planning will help your design and in the long run save you time. 
Assessing your process after the fact will help you learn from your successes 
and failures. You may of course choose not to include all of these steps every 
time, or limit or expand on any of them. However, you will probably want 

to consider following this general approach with each software application 
or system you design. 



316 Software by Design 

Final Thoughts 

Software design, like any design process, is not about finding the absolute 
and perfect solution to a problem. For any technology or task there are prob­
ably numerous approaches which may follow completely different designs. 
Your job in designing a software user interface is to find one solution that 
meets the needs of your users - one that allows them to accomplish tasks in 
a way that makes sense to them. Keep in mind that there will always be 
design alternatives that you might try which will approach your problem in 
a slightly different way. Your design process need not be an exhaustive search 
for the ultimate solution. When you find something that works, stick with 
it. If in the future your solution turns out not to be as complete as you had 
hoped, you can change it later-if it ain't broke don't fix it. 

Your criteria for evaluating whether or not the design works should always 
come from your users. You don't ever want to become so wrapped up in the 
design that you are unable to stand back and see how the people who must 
use it to accomplish real tasks, feel about it. You may be the designer, but 
once you deliver the software your users will be the most impacted by the 
final design. Regard users as your allies in development - people who can help 
you learn what you need to know about your design - rather than as obsta­
cles to getting your technology to work. 

Most of all, having a range and a variety of techniques for user interface design 
should allow you to find an approach that works for you. If you are a people 
person, concentrate on methods that provide direct interaction with your 
users. If you like to explore design alternatives, direct more energy toward 
your off-line or on-line prototypes. At times you may need to choose meth­
ods that don't utilize your strongest skills for the sake of your current design. 
However, for the most part, you are justified in selecting methods at which 
you best excel or simply most enjoy. Take advantage of the range of software 
design methods and find your element of fun! 



Bibliography 

Apple Computer, Inc., Macintosh Human Interface Guidelines. Reading, 
MA: Addison-Wesley Publishing Company, 1992. 

Bauersfeld, Penny and Gomoll, Kathleen, User-Centered Prototyping. Class 

notes for design classes offered in-house at various companies and organiza­

tions, 1993. 

Bauersfeld, Penny, Gomoll, Kathleen and Vertelney, Laurie, User-Oriented 

Interface Design. Class notes for User-Oriented Interface Design: Process 
and Product, Short Course, UCLA Extension Program, September 1991, July 
1992 and September 1993. 

Gentner, Donald Rand Grudin, Jonathan, Why Good Engineers (Sometimes) 
Create Bad Interfaces, in CHl'90 Conference Proceedings. Reading, MA: 

Addison-Wesley Company, Inc., 1990. 

Gomoll, Kathleen, Some Techniques for Observing Users from The Art of 
Human-Computer Interface Design, Brenda Laurel, editor. Reading, MA: 
Addison-Wesley Publishing Company, Inc., 1990. 

317 



318 Software by Design 

Goodman, Danny, The Complete HyperCard 2.0 Handbook. Toronto, CN: 
Bantam Books, 1990. 

Mountford, S.J., Vertelney, L., Bauersfeld, P., Gomoll, K. and Tognazzini, B., 
Designers: Meet Your Users, panel session from CHl'90 Conference Pro­
ceedings. Reading, MA: Addison-Wesley Company, Inc., 1990. 

Norman, Donald A., Design of Everyday Things (formerly Psychology of 
Everyday Things). New York: Basic Books, Inc, Publishers, 1988. 

Salomon, Gitta B, Designing Casual-Use Hypertext: The CHI'89 InfoBooth, 
in CHl'90 Conference Proceedings. Reading, MA: Addison-Wesley Com­
pany, Inc., 1990. 

Vertelney, Laurie, Using Video to Prototype User Interfaces, in SIGCHI Bul­
letin, October 1980, Volume 21, Number 2. 

Wurman, Richard S., Information Anxiety: What to Do When Information 
Doesn't Tell You What You Need to Know. New York: Bantam Books, 1990. 



Index 

A 

ACM (Association of Computing 
Machinery), l l 

Action list, 254 
Alternative design processes, accommo­

dation to, 286-288 
Alternative design recommendations, 

providing, 237 
Anthropologists, use of, 15 
Association of Computing Machinery 

(ACM), ll 

B 

Backbone, creating system, 134-139 
for event-driven software, 135 
flexibility, need for, 134 
goals, 135 
hints and suggestions for, 138 
importance of, 135-137 
steps for, 137 

c 
Clip art, 139-147 

copyright issues and, 146 
creating collection of, 140, 145-146 
hints and suggestions for, 146 
for HyperCard, 143 
importance of, 144-145 
protyping, use in, 143-144 
sources of, 140-141 
steps for collecting and using, 145-146 
storing, 142 

Code, using software prototyping tools 
instead of, 179 

Code modules, in early on-line 
explorations, 117 

Cognitive scientists, use of, 15 
Compensation of test subjects, 222 
Computer language. See Programming 

language 
Constraints 

cost, 23, 276 
time, 160-161, 165, 276, 288-290 

319 



320 Software by Design 

using on-line tools and procedures to 
identify system, 113 

Copyright issues, and clip art, 146 
Costs, 23 

early on-line explorations as means 
of minimizing, 119-120 

of materials, 76 
and termination of design cycle, 276 

Creativity, in scenarios, 80 
Cycle, prototyping. See Iteration 

D 

Data, analysis of test. See Test results, 
analysis of 

Design, test. See Test design {user tests) 
Design, user-oriented. See User­

oriented design 
Design iteration. See Iteration 
Design recommendations, 236-243 

alternative, 23 7 
document for {example), 238-239 
hints and suggestions for making, 

241-242 
identification of recommendations, 

236 
importance of making, 240 
steps for making, 241 
using test findings to support, 23 7 

Designs, off-line. See Off-line tools and 
procedures 

Director {MacroMedia), as software 
prototyping tool, 180 

Documentation. See also Recording and 
demonstrating process 
viability, 282, 285-286, 291 

for design recommendation, 238-239 
off-line designs as, 73 
and on-line designs, 116 

for reusing of user-oriented design 
techniques, 302 

for system requirements, 124-126 
for usability testing, 202, 230, 232-233 

Drawings, 85-90. See also Storyboards 
hints and suggestions for creating, 89 
importance of, 87-88 

E 

and professional skills, 85-86 
sample, 86, 87 
steps for creating, 88-89 

Early on-line explorations, 117-123 
hints and suggestions for, 122-123 
home control prototype !example), 121 
importance of, 119-121 
open-ended nature of, 117 
platforms for, 120-121 
steps for performing, 122 
thumbwheel mouse {example), 118 
timing of, 117-119 

Early user studies, 27-64 
advantages of, 28-30 
ambiguity in, 33 
balance of users, obtaining, 31-32 
definition, 2 7 
early designs, evaluation of, 58-64 
interviews, expert, 48-53 
interviews, user, 38-43 
number of users, 31 
observation, user, 34-38 
and on-line designs, 115-116 
patterns, identification of, 32 
project goals, determination of, 30 
recording methods, 33-34 
seed studies, 53-58 
session length, 32 
software prototypes in, 186-190 



state of current technology, 
evaluation of, 30-31 

task analysis, 43-48 
Elaboration on single user-oriented 

design techniques, 298-300 
Entertainment experts, use of, 16 
Ergonomics, 10 
Evaluation of early design (early user 

study method), 58-64 
and developing technology, 59 
development, user involvement 

during, 59 
hints and suggestions for, 63 
importance of, 61-62 
steps for, 62-63 

Event-driven software, creating system 
backbone for, 135 

Exercise tasks. See also Supermarket 
guide exercise 

iteration 
next steps, 260 
scheduling, 266 
testing again, 2 7 4 

prototyping 
planning and scheduling, 170 
software planning tool, 185-186 
tool selection, 176-1 77 

usability testing 
analysis of test results, 235-236 
conducting tests, 227-228 
design recommendations, 

242-243 
subject selection, 221-222 
test design, 215 

Existing framework for software design, 
changing, 305-307 

Expert interviews, 48-53 
advantages of, 50-51 
hints and suggestions for, 52 
importance of, 50 
number of, 49 

Index 321 

steps for conducting, 52 
timing of I 49 

Experts, use of, 16 
in iterative design process, 249 
with off-line techniques, 73 
when changing existing framework 

for software design, 307 
Extending user-oriented design process, 

F 

295-307, 312-313 
changing existing framework, 305-307 
and evaluation of techniques, 296-297 
and focus on user, 297 
by introduction of new methods, 296 
older design, expanding on, 300-302 
and openness to other methods, 298 
past experience, drawing on, 297-298 
and resource allocation, 303-304 
single technique, elaboration on, 

298-300 

Feedback, user 
and iterative design process, 249 
on-line designs for obtaining, 111 
and prototyping, 158-159, 186-188 
and termination of design cycle, 276 
from user tests, 212 
using on-line flipbooks to obtain, 150 
using software prototyping tools to 

obtain, 179-180 
Film/video production professionals, use 

of, 15-16 
Flexibility 

and creation of system backbone, 134 
in iterative design process, 251 

Flipbooks, 98-105. See also On-line flip­
books 



322 Software by Design 

and concealing of interactive 
features, 101-102 

hierarchal system map for, 100 
hints and suggestions for 

using, 103-104 
importance of, 102-103 
for portable device I example), 101 
storyboards vs., 99, 102 
structural factors, 99 
timing factors, 102 

Focus groups, for evaluation of design 
revisions, 269 

Formal usability testing, 194 
Functionality, system 

identification of, through early user 
studies, 28 

information gathering on, through 
usability testing, 230-231 

and tool selection, 172, 17 4 

G 

Graphical User Interface IGUI) 
and scenarios, 81 
visual design as factor in, 16-18 

Graphic design. See Visual design 
Graphic designers, use of, 17 
GUI. See Graphical User Interface 

H 

Hard copy images, as source for 
clip art, 146 

Hardware 
system backbone and, 136-137 
and system requirements, 131 

Hierarchal system map, 100 
Home control system !example) 

early design for, 60 

early on-line exploration for, 121 
systems requirements document for, 

128-130 
Home library reference system, proto­

type for, 166-167 
Human factors, user-oriented design 

vs., 10-12 
HyperCard, 121 

I 

building on-line flipbooks using, 
148-149 

clip art for, 143 
as software prototyping tool, 178 

Icons, 18 
Industrial design, 8-9 
Industrial designers, use of, 15 
Informal usability testing, 194 
Interdisciplinary design, 12-16 
Interviews 

expert. See Expert interviews 
user. See User interviews 

1/0 options, system backbone and, 136 
Iteration, 156, 159-160, 245-280. See 

also Iteration scheduling 
advantages of, 248-250 
component-based systems, using, 251 
and cooperation with design team, 

251-252 
and cyclical process of development, 

246-247 
definition of, 245 
end of cycle, recognizing, 275-280 
and implementation details, 252 
and integration of user test results, 247 
next steps, deciding on, 253-260 
planning for, 246, 250-251, 253 
reasons for iterative design process, 

247-248 



and risk factor of design, 252 
and successive testing, 267-274 
and verification of design changes, 253 

Iteration scheduling, 260-266 
end product, focus on, 261 

L 

hints and suggestions for, 264-265 
importance of, 262-264 
and relationship among tasks, 261 
resources and, 262 
sample schedule, 265 
steps for, 264 

Lack of organizational support, dealing 
with, 290-291 

Language. See Programming language 
List of actions, 254 

M 
Macintosh 

draw and paint applications of, 141 
storage of clip art on, 142 
visual elements of screen of, 18 

MacroMedia Director, as software 
prototyping tool, 180 

Materials jfor off-line tools and 
procedures), 65-67, 71, 74-78 

availability, 74 
hints and suggestions for using, 77 
importance of, 75-76 
steps for gathering, 77 

Mockups, 105-107 
hints and suggestions for, 107 
importance of, 106 
steps for building, 106 
uses of, 105 

Motivating test participants, 217 

Index 323 

Mouse, early on-line prototype for 
!example), 118 

Mouse interaction storyboard 
!example), 94 

N 

Next steps !iterative design process), 
253-260 

and analysis of situation, 255 
hints and suggestions for, 258-259 
importance of deciding on, 256-257 
list of action (example), 254 
steps for deciding on, 257-258 
and team meetings, 256 

0 
Observation, user. See User observation 
Off-line tools and procedures, 65-107 

advantages of, 67-70 
definition of, 65 
drawing, 85-90 
flipbooks, 98-105 
materials for, 65-66, 71, 74-78 
mockups, 105-107 
and on-line designs, 111, 114 
scenarios, use of, 78-84 
steps for selecting, designing and 

performing, 70-73 
storyboards, 90-98 
timing factors, 66, 70-71 

On-line explorations. See Early on-line 
explorations 

On-line flipbooks, 147-153 
hints and suggestions for, 152 
HyperCard and, 148-149 
importance of, 150-151 



324 Software by Design 

off-line flipbooks vs., 147, 149 
steps for building, 151-152 
using, 149-150 

On-line tools and procedures, 109-153. 

p 

See also Early on-line 
explorations 

advantages of, 112-113 
backbone, creating system, 134-139 
clip art, 139-147 
definition of, 109 
for drawing, 85 
early user studies, incorporation of, 

115-116 
flipbooks, on-line, 147-153 
obtaining user feedback from, 111 
and off-line designs, 111, 114 
platforms for, 110-111 
steps for selecting, designing and 

performing, 113-117 
system requirements, 124-133 
timing factors, 109-110, 114 

Partial systems, performing usability 
tests on, 200 

Patterns of user behavior, identification 
of, in early user studies, 32 

Planning and scheduling (of prototypes), 
164-170 

basic components of, 165 
hints and suggestions for, 169-170 
for home library !example), 166-167 
importance of, 167-168 
iteration, planning for, 246, 

250-251, 253 
steps for, 169 
time factors in, 165, 169 

Platforms 

for early on-line explorations, 
120-121 

and on-line flipbooks, 151 
for on-line tools and procedures, 

110-111 
Portable device, flipbook for, 101 
Product design, 8-9 
Programming language 

system backbone and, 136, 138 
and tool selection, 175 
using software prototyping tools 

instead of, 179 
Prototypes 

on-line, 110-111, 114-117 
testing technology capabilities 

with, 29 
use of, 163 

Prototyping, 155-191. See also Software 
prototyping tool(s) 

advantages of, 158-160 
deciding on approach for, 157-158 
definition of, 155-156 
expendability and, 156 
and final software, 162 
goals of, 156-157 
and iterative design, 156, 159-160 
past experience, integrating, 164 
planning and scheduling, 160-161, 

164-170 
rapid, 156 
resources for, 161 
steps for selecting, designing and 

performing, 160-164 
timing factors, 158 
tool selection for, 1 70-177 
and transition to actual software, 

190-191 
and use of prototypes, 163 
and user access, 163 



user studies, software prototypes in, 
186-190 

using clip art in, 143-144 
using software prototyping tools, 

177-186 
Pseudo code, use of, 138 

Q 

Quality control testing, 195 
Questionnaires, following user tests, 

207-208, 223-224 

R 

Rapid prototyping, 156 
Recommendations, design. See Design 

recommendations 
Recording 

of early user studies, 33-34, 54 
of user tests, 206-207, 223, 229, 235 

Recruiting test participants, 217-218, 220 
Resources. See also Materials (for off­

line tools and procedures) 
changes in allocation of, 303-304 
for extending user-oriented design 

process, 300 
and iterative design process, 248, 262 
planning and scheduling use of, 168 
for prototyping, 161 

Results, analysis of test. See Test 
results, analysis of 

Retesting. See Successive testing 
Reusing user-oriented design 

techniques, 300-302 
Risk factor of design, iterative process 

and,252 

Index 325 

s 
Scenarios, 78-84 

completeness in, 79 
example of, 82-83 
hints and suggestions for creating, 84 
importance of, 80-81 
steps for writing, 81 
timing factors, 79 
varying uses of, 79 

Scheduling 
iteration. See Iteration scheduling 
limitations, dealing with, 288-290 
of prototypes. See Planning and 

scheduling (of prototypes) 
of usability tests, 218 

Seed studies, 53-58 
advantages of, 55-56 
hints and suggestions for, 57 
importance of, 55 
recording device for, 54 
steps for conducting, 56-5 7 
user participation in, 54-55 

Selection 
of testers. See Test subjects, selec­

tion of 
of tools. See Tool selection (for pro­

totyping) 
Settings, test, 201, 206 
SIGCHI (Special Interest Group of 

Computer-Human 
Interaction), 11 

Sociologists, use of, 15 
Software development 

during early on-line explorations, 120 
general steps for, 313-315 
use of prototyping in, 159 

Software prototyping tool(s), 177-186 
code writing, avoiding, 179 
in early user studies, 186-190 



326 Software by Design 

hints and suggestions for using, 
184-185 

HyperCard as, 1 78 
importance of using, 182-183 
and integration of outside 

elements, 181 
MacroMedia Director as, 179-180 
selection of, 177 -178 
steps for using, 183-184 
testing system designs with, 179-180 
timing factors, 181-182 

Sound experts, use of, 16 
Special Interest Group of Computer­

Human Interaction 
(SIGCHI), 11 

Storage of clip art, 142 
Storyboards, 90-98 

examples of, 69-97, 92, 94 
flipbooks vs., 99, 102 
hints and suggestions for creating, 95 
importance of, 93-94 
mouse interaction (example), 94 
steps for creating, 95 
template for, 91 
timing factors, 91-92 

Storytelling, and scenarios, 80 
Subjects, selection of test. See Test sub­

jects, selection of 
Successive testing, 267-274 

examples of, 270-271 
focus groups for evaluation of design 

revision, 269 
hints and suggestions for, 273-274 
importance of, 269, 2 72 
participants, choosing test, 267 -268 
steps for, 273 
tasks, choosing test, 268 
test components, reusing, 268 

Supermarket guide exercise, 22-25 
choosing design parameters for, 22-24 

early user studies applied to evalua-
tion of early design, 63-64 

expert interview, 53 
seed study, 57-58 
task analysis, 48 
user interview, 43 
user observation, 37-38 

off-line tools and procedures 
applied to 

drawing, 89-90 
flipbook, 104-105 
materials, 78 
mockup, 107 
scenario, 84 
storyboard, 98 

on-line tools and procedures 
applied to 

backbone, 138-139 
clip art, 146-147 
early on-line exploration, 123 
flipbooks, on-line, 153 
system requirements, 133 

System functionality. See 
Functionality, system 

System requirements, analysis of, 
124-133 

T 

hints and suggestions for, 132 
home control system (example), 

128-130 
importance of, 127, 131 
plan of action, 124 
steps for conducting, 131-132 
using documentation for, 126 
writing documentation for, 125-126 

Target users, identification of, 216 
Task analysis, 43-48 

advantages of, 46-4 7 



with evolution of in-place 
technology, 44 

of furniture manipulation 
!example), 45 

hints and suggestions for, 47 
importance of, 45 
with non-technical processes, 44 
steps for conducting, 47 

Tasks 
for successive testing, 268 
for user tests, 205, 210-211 

Teams, interdisciplinary, 13-16 
communicating user test results 

to, 240 
and deciding on termination of 

design cycle, 2 79 
for exercise, 26 
and iterative design process, 251-

252, 256, 263 
off-line techniques with, 72-73 
and selection of usability test 

subjects, 219 
storyboarding and, 93-94 
and system requirements 

document, 12 7 
and tool selection, 1 72 
using on-line flipbooks with, 150-151 

Technologyj-ies) 
comparisons with other, in user 

interviews, 41 
and design of early user studies, 30-31 
and evaluation of early design, 59 
expert interviews and researching 

of, 51 
seed studies as means of studying 

use of, 56 
task analysis and, 46 
testing capabilities of, with 

prototypes, 29 
Termination of design cycle, 275-280 

Index 327 

hints and suggestions for deciding 
on,279 

importance of, 277-278 
indicators, 275-276 
and progress evaluation, 277 
steps for deciding on, 278-279 
and time management, 275 
and time/money constraints, 276 

Test design !user tests), 204-215 
environment, determining test, 206 
goals, establishing, 204-205, 209-210 
hints and suggestions for, 213-214 
importance of, 211-212 
interviews or questionnaires, 

post-test, 207-208 
recording of tests, 206-207 
sample tests, 213 
steps involved in, 212-213 
tasks, 205, 210-211 
timing factors, 208 

Testing. See also Successive testing; 
Test design luser tests); 
Usability testing 

of feasibility, through early on-line 
explorations, 119-120 

of off-line designs, 69-70 
with software prototyping tools, 182 

Test results, analysis of, 228-236 
documentation, 230, 232-233 
goals vs. results, 229 
hints and suggestions for, 234-235 
importance of, 230-231 
and iterative design approach, 247 
patterns, looking for, 229 
recordings, review of, 229, 235 
steps for, 234 
timing of, 230 

Test subjects, selection of, 200-201, 
215-222 

compensation, 222 
hints and suggestions for, 221 



328 Software by Design 

importance of, 219-220 
motivational factors, 217 
no-shows, dealing with, 220, 221 
number of participants, 216-217 
recruitment, 217-218, 220 
scheduling, 218 
steps for, 220 
for successive testing, 267-268 
target users, identification of, 216 

Thumbwheel mouse (example), 118 
Time factors 

constraints, 160-161, 165, 276, 
288-290 

early on-line explorations, 117-119 
expert interviews, 49 
flip books, 102 
off-line tools and procedures, 66, 

70-71 
on-line tools and procedures, 109-

110, 114 
prototyping, 158 
scenarios, 79 
software prototyping tools, 181-182 
storyboards, 91-92 
test design, 208 
test results, analysis of, 230 
usability testing, 195, 201, 203 

Tools and procedures. See Off-line tools 
and procedures; On-line tools 
and procedures 

Tool selection (for prototyping), 170-177 
considerations involved in, 171-173 
definition of tool, 171 
hints and suggestions for, 176 
importance of, 173-17 4 
purposes of tools, 171, 172, 174 
steps for, 175-176 

"Trademark" style, using clip art to 
establish, 145 

Traditional software design, integration 
of user-oriented techniques 
with, 283-286 

Travel request storyboard (example), 
96-97 

u 
Usability testing, 12, 193-243. See also 

Successive testing 
and accessibility of users, 311 
advantages of, 197-199 
choice of users, 201 
definition of, 193 
design of tests, 204-215 
design recommendations based on, 

236-243 
documentation, 202 
elaboration on, 299 
example of, 224 
formal vs. informal, 193-194 
goals and plan, establishing, 194-195 
limitations of, 203 
number of tests, 195-196 
number of users, 202 
procedure for, 222-228 
result analysis, 228-236 
setting for, 201 
and software status, 200 
subjects, selection of, 215-222 
and system goals, 199-200 
testers for, 200 
timing factors, 195, 201, 203 
user-oriented design vs., 196 
using, to increase awareness of value 

of user-oriented approach, 286 
written instructions for, 227 

User access, prototyping and, 163 
User-interface design. See User-oriented 

design 



User interviews, 38-43 
advantages of, 41 
in conjunction with other user 

studies, 39 
following user tests, 207-208, 223-224 
formats for, 39 
hints and suggestions for, 42-43 
importance of, 39 
length of, 38 
sample text, 40 
setting for, 38 
steps for conducting, 41-42 

User observation, 34-38 
hints and suggestions for, 37 
importance of, 35-36 
steps for, 36 

User-oriented design, 3-4, 7-19. See also 
Design recommendations; 
Extending user-oriented design 
process; Off-line tools and 
procedures; On-line tools and 
procedures 

applying, 281-295 
categories of methods for, 310-313 
cost constraints in, 23 
customizing, 291-293 
and demonstration of process 

viability, 282 
early user studies as way to 

encourage, 28-29 
existing processes, adapting to, 

286-288 
human factors vs., 10-12 
and industrial design, 8-9 
and interdisciplinary design, 12-16 
lack of organizational support for, 

290-291 
principles of, 8 
and role of users, 309-310 
and schedule limitations, 288-290 

Index 329 

and software implementation 
skills, 19 

traditional software design, 
integration with, 283-286 

usability testing as part of, 196 
and visual design, 16-18 

User studies. See Early user studies 
User testing. See Usability testing 

v 
Video production professionals, 

use of, 16 
Videotaping 

of early user studies, 33-34 
and increasing awareness of user­

oriented techniques, 285 
of user tests, 225 

Visual design, 16-18 

z 

software prototyping tools for 
integration of, 183 

use of clip art for, 144 

Zimmerman, Paul, 50 



teaches you how to create user-oriented software 
using human interface design guidelines. It 
introduces various methods and techniques 
for involving users in the design process and 
provides examples of software systems built 
with these methodologies. Detailed discussions 
guide you through the steps in the process, 
teaching you how to identify, research, and 
design for the user. In addition, the entire 
procedure is complimented with a practical 
hands-on exercise that allows you to learn the 
process by using it to create an actual human 
interface design. 

Applying the techniques and methods presented, 
you can create user-centered software or redesign 
existing systems so that they are easy to use and 
meet user needs. 

Read this book and learn how to: 
• Improve any product under development 

using the techniques presented in this book 
• Address the needs of users during each phase 

of the design process 
• Design software products that people can 

easily use 
• Conduct user studies to observe users and 

analyze their tasks 
• Evaluate product ideas and make design 

recommendations 
• Evaluate and use software prototyping tools 
• Integrate the human interface design 

process into conventional software 
design procedures 

• Extend the human interface design process 
to incorporate other techniques 

• Organize an interdisciplinary design team 

Penny Bauersfeld 
is a human interface 
design expert with over 
10 years experience in 
software development. 
She is currently a design 
consultant for a number 
of companies in 
California's Silicon 
Valley and has worked 
for such organizations 
as Xerox Corporation 
and Apple Computer, 
where she applied her 
design process to the 
development of future 
software technologies. 

This book is appropriate for human interface 
designers of all levels as well as anyone involved 
in product design. The exercises and examples 
are based on Macintosh software but can be 
applied to any graphical-based user interface 
software. 

us $ 29-')5 
CAN $ 37 .95 

Why this book is for you - page 1. 

M & T Books 

115 West 18th Street 

New York, NY 10011 

ISBN 1-55828-296 - 3 
538080 2·:f35 

I llllll lllll lllll 111111111111111111111111111111111111111111111111 
SOFTWARE BY DESIGN:CREATG USER FRI 
BAUERSFELD "AC/TECH 
1558282963 HEHR 
$ 2'3. '35 
9- 1781558 2829 


