

Structured Programming
Using THINK™ Pascal on
tlie Macintosh

J. Winston Crawley
Shippensburg University

William G. McArthur
Shippensburg University

Norman M. Jacobson
University of California, Irvine

PRENTICE HALL, Englewood Cliffs, New Jersey 07632

-~.\

Library of Congress Cataloglng~tn-Publlcatlon Data

Crawley, J. Hinstan.
Structured programming using Think Pascal an the Macintosh I J.

Hinstan Crawley, Hilliam G. McArthur, Norman M. Jacobson.
p. cm.

Includes index.
ISBN 0-13-853037-8
1. Macintosh <Camputer>--Pragramming. 2. THINK Pascal <Computer

program language> 3. Structured programming. I. McArthur, Hilllam
G. II. Jacobson, Norman M. Ill. Title.
QA76.8.M3C74 1992
005.265--dc20 91-19485

Acquisitions Editor/Editor-in-Chief: Marcia Horton
Production Editor: Bayani Mendoza de Leon
Cover Designer: Lundgren Graphics, Ltd.
Prepress Buyer: Linda Behrens
Manufacturing Buyer: Dave Dickey
Supplements Editor: Alice Dworkin
Copy Editor: Peter Zurita
Editorial Assistant: Diana Penha

CIP

The author and publisher of this book have used their best efforts in preparing
this book. These efforts include the development, research, and testing of the
theories and programs to determine their effectiveness. The author and publisher
make no warranty of any kind, expressed or implied, with regard to these pro
grams or the documentation contained in this book. The author and publisher
shall not be liable in any event for incidental or consequential damages in
connection with, or arising out of, the furnishing, performance, or use of these
programs.

© 1992 by Prentice-Hall, Inc.
A Simon & Schuster Company
Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America
10987654321

ISBN 0-13-853037-8

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Simon & Schuster Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

TRADEMARK INFORMATION

Apple is a registered trademark of Apple
Computer Inc.

Apple-DOS is a registered trademark of
Apple Computer Inc.

dBase IV is a registered trademark of
Ashton-Tate.

IBM is a registered trademark of Interna
tional Business Machines Corporation.

Laserwriter is a trademark of Hewlett
Packard.

MS-DOS is a trademark of Microsoft Cor
poration.

MYS is a registered trademark of Interna
tional Business Machines Corporation.

PC-DOS is a trademark of International
Business Machines Corporation.

PostScript is a registered trademark of
Adobe Software.

THINK Pascal is a trademark of Borland
International Inc.

UCSD is a trademark of the Regents of the
University of California.

Unix is a registered trademark of AT&T
Bell Laboratories.

VMS is a registered trademark of Digital
Equipment Corporation.

Contents

PREFACE TO THE INSTRUCTOR

PREFACE TO THE STUDENT

1 GETTING STARTED

Objectives 1

Introduction 1

1-1 Computers and Programs 2

Computers, 2
Programs and Programming Languages, 2
The Programming Environment, 3
Pascal, 4
Writing and Running a THINK Pascal Program. 5
Integrated Development Environments, 6
About this Book. 6
Review, 7
Exercises, 7

1-2 Elements of the Pascal Language 8

Basic Elements, 8
Declarations, IO
Action Statements, 12
Putting the Pieces Together, I 3
DPT (Defensive Programming Tips). I4

xv

xix

iii

2

Review, 15
Exercises, 17

1-3 Planning and Writing Looping Programs (Part 1) 17

Algorithms, Data, and Refinement, 17
Planning the Looping Program, 19
Writing the Looping Program, 20
DPT, 23
Review, 24
Exercises, 25

1-4 Planning and Writing Looping Programs (Part 2) 25

Running the Program, 26
What Can Go Wrong, 27
Program Testing, 28
Case Study No. 1, 30
DPT, 33
Review, 35
Exercises, 36

FUNDAMENTALS OF PASCAL PROGRAM DESIGN

Objectives 37

2-1 The Assignment Statement 37

Numeric Assignment Statements, 38
DPT, 43
Character Assignment Statements, 45
String Assignment Statements, 45
Examples, 47
Review, 47
Exercises, 51

2-2 Introduction to Procedures 54

An Example Procedure, 54
Some Characteristics of Procedures, 55
Standard Procedures, 57
Some Advantages of Using Procedures, 59
Some Rewards of Focusing on a Single Task, 59
A Review of Program Design, 63
DPT, 64
Review, 65
Exercises, 66

2-3 Decision Structures 66

If-Then, 67
Conditions in Pascal, 69

iv

37

CONTENTS

If-Then-Else, 70
DPT, 73
Adding to Case Study No. 1, 76
Testing, 77
Review, 80
Exercises, 80

2-4 Additional Pascal Topics 82

Formatting Output, 82
Output to the Printer, 86
Square Roots and Absolute Value, 88
Functions, 90
Integer Operations: mod and div, 91
Introducing Predefined Identifiers: maxint, 92
Real-to-Integer Conversions, 93
Integer-to-Real Conversions, 95
Real-to-Real Conversions, 96
Other Standard Numeric Library Functions, 99
DPT, 100
Review, JOI
Exercises, 102

2-5 More on Decision Structures 105

Boolean Expressions, 105
Multiple-Way Branches: Genera~ 108
The Case Structure, 112
Nested Decisions, 114
Testing, 117
DPT, 118
Review, 119
Exercises, 121

2-6 Yet More on Decision Structures 124

The "Dangling Else" Pitfall, 124
Boolean Variables, 125
Enhancements of the Case Statement, 127
Case Study No. 2, 129
Review, 134
Exercises, 135

2-7 User-Defined Functions 139

An Example, 139
The Form of a Pascal Function, 142
Parameters, 143
How to Write a Function, 144
DPT, 146
Review, 147
Exercises, 148

CONTENTS v

3

2-8 Modular Design and Testing 150

Testing, 150
Case Study No. 3, 151
Review, 161
Exercises, 161

USING LOOPS

Objectives 163

3-1 Common Applications of Loops 163

Loop Planning, 163
Counting, 164
Accumulation, 167
Largest and Smallest, 171
Case Study No. 3 (Continued), 176
Testing, 178
DPT, 182
Review, 182
Exercises, 183

3-2 Pascal Looping Structures 185

Repeat-Until Loops, 185
While-Do Loops, 186
Repeat Versus While, 188
For-Do Loops, 188
Random Numbers, 190
More Examples Using Loops, 191
DPT: Loops, 197
A First Look at A"ays, 200
DPT: A"ays, 206
Review, 207
Exercises, 209

3-3 Planning Loops 213

_ The Loop-Planning Process, 214
Loop Control: While-Do Versus Repeat-Until, 217
Examples, 220
DPT, 227
Review, 227
Exercises, 228

3-4 Nested Loops and Complex Loop Termination 234

Nested Loops, 234

vi

More Than One Termination Condition, 237
Use of Multiple-Termination Conditions: Searching, 244
Validating input, 244
DPT, 248

163

CONTENTS

Review, 250
Exercises, 251

3-5 Antibugging, Debugging, And Testing 258

Antibugging and Debugging, 258
Testing, 261
Summary, 267
Review, 267

4 MORE ON SUBPROGRAMS 269

Objectives 269

4-1 Parameters and Variables 269

Review and Terminology, 269
Reasons for Subprograms, 270
Value and Var Parameters, 271
Parameters: Type Matching, 273
Choosing Parameters, 276
Global and Local Variables; Scope, 277
DPT, 280
Review, 281
Exercises, 283

4-2 Procedures and Functions 287

Nested Subprogram Invocation, 287
Procedures Versus Functions, 289
Writing a Subprogram, 291
Examples, 292
Recursion, 302
DPT, 305
Review, 307
Exercises, 308

4-3 Case Studies 313

Case Study No. 4, 313
Case Study No. 5, 324
Case Study No. 6, 326
Exercises, 340

5 ELEMENTARY DATA STRUCTURING 347

Objectives 347

5-1 Text Files 347

Basic Text-File Operations, 348
File-Processing Activities, 350
Displaying and Printing Text Files, 350

CONTENTS vii

6

Summary of File-Handling Syntax, 354
Adding Lines to a Text File, 354
Interactive File Processing, 356
Searching and Modifying Text Files, 358
Text Files as Standard 110, 363
DPT, 364
Testing, 365
Review, 366
Exercises, 368

5-2 Records and Sets 372

Records, 372
Operations with Records, 376
Sets, 379
Set Operations, 380
An Example, 383
DPT, 383
Review, 388
Exercises 391

5-3 User-Defined Data Types 393

Scalar Types, 393
User-Defined Ordinal Types, 396
Subrange Types, 399
Type and Range Checking, 400
Error Trapping, 402
More on Records, 404
DPT, 410
Review, 410
Exercises, 411

5-4 Case Studies: Rational Arithmetic 413

Case Study No. 7 (A Rational Number Package), 413
Case Study No. 8 (An Application of the Rational-Number Package), 419
Exercises, 428

ONE~DIMENSIONAL ARRAYS

Objectives 432

6-1 Defining and Using Arrays 432

The Need for Arrays, 432

viii

Array Declaration, 434
Array Reference, 435
Array Algorithms: Count-Controlled, 436
Array Algorithms: Condition-Controlled, 441
Initialization, Copying, and Shifting, 443
Processing Single Elements, 445

432

CONTENTS

7

Testing, 447
DPT, 448
Review, 450
Exercises, 451

6-2 Arrays and Data Structures 456

Arrays in Pascal, 456
Data Structures, 457
Parallel Arrays and Arrays of Records, 458
Records Containing Arrays, 462
Other Combinations, 463
Testing, 467
DPT, 471
Review, 471
Exercises, 472

6-3 Searching and Sorting 478

Linear Search, 478
Binary Search, 481
Selection Sort, 484
Quicksort, 487
Comparing Efficiency Ratings, 492
DPT and Testing, 493
Review, 494
Exercises, 496

6-4 Case Studies 499

Case Study No. 9, 499
Case Study No. 10, 514
Exercises, 525

MORE ON ARRAYS

Objectives 531

7-1 More on Arrays 531

Arrays of Arrays, 531
Interactive Input and Output of Two-Dimensional Arrays, 534
Text File Input and Output of Two-Dimensional Arrays, 536
Processing Two-Dimensional Arrays, 537
Matrices, 538
Matrix Multiplication, 540
Matrix Utilities, 541
Using Part of an Array, 541
More than Two Dimensions, 544
DPT, 544
Review, 546
Exercises, 547

CONTENTS

531

ix

8

9

10

STRING MANIPULATION

Objectives 551

8-1 String Data and Operations 551

String Data Types, 551
Basic String Operations, 552
Built-In String Functions, 553
Built-In String Procedures, 559
String-to-Numeric Conversions, 561
DPT, 566
Testing, 569
Review, 569
Exercises, 571

8-2 String Processing 575

Some Additional String Tools, 575
Character-Conversion Techniques, 580
Longer-Length Strings, 583
Review, 588
Exercises, 588

POINTERS

Objectives 594

9-1 Pointer Variables 594

Pointers, 594
Declaring and Using Pointers, 595
Obtaining Data for Pointer Variables, 597
Managing Dynamic Memory Resources, 599
Advantages of Pointers, 605
Disadvantages of Pointers, 606
Using Pointers to Advantage, 606
DPT, 607
Review, 608
Exercises, 609

9-2 Using Pointer Variables 612

Linked Lists, 612
Saving Both Space and Time with Pointers, 616
Exercises, 625

RECURSION

Objectives 628

10-1 Thinking Recursively 628

Problem-Solving Tools, 628

x

551

594

628

CONTENTS

II

The Templates of Recursion, 629
Reversing a String, 631
Subsequences and Substrings of a String, 633
Some Counting Problems, 635
A Power Set of a Set, 638
Mutual Recursion, 640
Review, 643
Exercises, 643

10-2 Recursive Programming 646

Factorial, 647
Reversing a String, 648
Recursive Sorting, 648
Subsequences and Substrings of a String, 649
Strings of Length N Using M Letters, 649
Number of Divisors of an Integer, 652
Obtaining a Number as a Sum, 653
The Power Set of a Set, 654
Mutual Recursion, 660
DPT, 660
Testing, 660
Review, 664
Exercises, 664

10-3 Recursion, Iteration, or ... ? 666

Program Measurements, 666
Measuring Time and Space, 667
A First Comparison, 670
The Fibonacci Numbers, 671
Combinatorial Coefficients, 674
Reversing a String, 676
Sorting , 677
Prefix Expressions, 679
Some Final Thoughts on Recursion, 680
Review, 680
Exercises, 680

·FILE VO

Objectives 683

11-1 Introduction 683

File Terminology, 684
Pascal Files, 685
Review, 688
Exercises, 688

11-2 Sequential Files: Control Breaks 690

An Example, 690
Control Breaks: General, 693

CONTENTS

683

xi

A

B

c

Using Subprograms with Control Breaks, 696
Review, 697
Exercises, 701

11-3 Sequential Files - Merge and Update 705

The Merge Algorithm, 705
Sequential-File Update, 708
Review, 709
Exercises, 710

11-4 Random-Access-File Techniques 712

Random-Access-File Commands, 713
Random-Access-File Algorithms, 716
Inactive Records, 717
Review, 718
Exercises, 718

ADDITIONAL THINK PASCAL FEATURES

A-1 Transfer Statements (Labels, Goto, Exit) 722

A-2 Variant Records 725

A-3 Nested Procedures 727

A-4 Units 732

Introduction, 732
Defining a Unit, 733
An Example, 733
Compiling and Using a Unit, 736

SYNTAX DIAGRAMS

B-1 Basic Program Layout 739

B-2 Program Structures 743

B-3 Unit Structure 748

B-4 Data Structures 749

B-5 Expressions 753

FILE UTILITIES

C-1 Exists 756

C-2 OpenRead 756

C-3 OpenWrite 757

722

738

756

xii CONTENTS

D

C-4 FileBuild 758

C-5 FileList 759

THE ASCII CHARACTERS

REFERENCES

INDEX

CONTENTS

761

771

773

xiii

Pref ace to the Instructor

This book is intended as an introduction to computer problem solving using structured
programming methodologies; the THINK Pascal language is used as the vehicle for discuss
ing and providing examples of the presented material. Throughout the book, emphasis is
placed on approaching problems systematically and approaching solutions using well-known
techniques of proven effectiveness. The text contains numerous example programs, written
in a consistent style.

The pedagogical philosophy of the book is the spiral approach: topics are first gently
presented in a simple context, and then presented again in a richer context when the
students' experience allows them to understand a complete exploration of the topic. Deci
sion structures, looping structures, subprograms, and arrays, as well as other topics, are
treated in this fashion. In each case, by the time the student reaches the complete discussion .
of the topic, he or she will have worked with simple instances of the concept for some time.

The authors take the role of partners in the learning process. The use of the word "we"
is intentionally ambiguous so that it can refer to the authors, to the teacher and students, or
to all concerned in various places throughout the book. The. authors have drawn upon their
many years of teaching university-level computer science courses as well as their extensive
experience as consultants to the computer industry. Many of the ideas expressed in the book
have been used in actual applications in various businesses and industries.

The first six chapters of the book form an appropriate outline for a first course in
computer programming. The enrichment material in the second part of the book can be used
as additional topics for the first course or as a supplement for subsequent courses. The
second part of the text touches on most of the topics normally found in a second course in
the computer science curriculum.

xv

The book can be used in a traditional teacher-student classroom setting or it can be
used by an individual for self-study. In either case, there are many features of the book that
will help the student to master the subject matter.

Getting Started

"Getting Started" is the title of the first chapter of the text, and its purpose is just that: to
cover enough material quickly to enable the student to write simple looping programs. This
chapter sets the stage for the spiral approach; topics introduced here are expanded at the
beginning of Chapter 2.

Examples

The text is extremely rich in examples. In addition to 10 major case studies, there are a large
number of complete program examples. These are supplemented by numerous examples
consisting of either a single module or a segment of code. The authors have tested all
program examples, using THINK Pascal version 4.0.

Thorough Explanations

The student is not left to figure out the material just by studying the examples. All concepts
are carefully explained; most are carefully explained more than once, as part of the spiral
approach.

Emphasis on Program Design

The major emphasis of the text is the entire program-design process. Special attention is
paid to commonly encountered algorithm types, such as counting and searching. Guidelines
are given on choosing appropriate designs and appropriate language tools to implement
those designs.

Exercise Sets

Whether the text is used in a classroom or for self-study, proper study of the book must
include solving many of the exercises that appear at the end of each section. We have
included an exceptionally large number of exercises to choose from. Some of the exercises
are for drill and practice, and some are intended as programming projects, with varying
degrees of effort required. Solutions for a representative selection of the exercises appear in
the Instructor's Guide.

Review Sections

Most sections contain a review that can be used for various purposes. The student can use
the review portion before reading the section as a preview of the material to come. The
student can also use the review sections in order to diagnose the degree of understanding of
the presented concepts or as study guides for examinations. The instructor can use the
review sections as a convenient outline for the preparation of lectures and examinations.

xvi PREFACE TO THE INSTRUCTOR

Finally, the review portions can be used by either student or instructor to gain a quick
understanding of the topics and order of presentation of the book.

Defensive Programming Tips (DPT)

Most sections contain Defensive Programming Tips (DPT) in which the major sources of
problems are discussed and suggestions are made for avoiding difficulty in programming.
These ideas are unified and expanded upon in a special Antibugging, Debugging, and Test
ing section.

Testing Guidelines

The text contains numerous testing sections which present many ideas in this frequently
overlooked area of programming. Topics include strategies for selection of test cases and the
use of stubs and drivers to perform incremental testing. These discussions, like the rest of
the text, follow the spiral approach. The topic is introduced in the very first chapter; as new
programming ideas are presented, new ideas for testing the programs are discussed in paral
lel. There is also the special unifying Antibugging, Debugging, and Testing section men
tioned earlier.

Language Reference

In Appendix B, we present a concise summary of the THINK Pascal programming language
via the use of syntax diagrams with semantic explanations. This material will be useful for
reference not only in the first course, but in subsequent courses using THINK Pascal. In
addition, an experienced programmer who wants an efficient introduction to THINK Pascal
can use this appendix as a study guide, with excursions into the textbook presentations when
needed.

Documentation

Use of consistent and meaningful comments is emphasized throughout the text, in part by
setting an example in all the program examples. In addition, the Instructor's Guide discusses
documentation at some length. This may be useful if you wish to introduce your students to
some of the ideas involved in external documentation of programs.

Software Engineering

The authors are advocates of the principles of software engineering. This fact has had a
great influence on the flavor of the textbook: its emphasis on program design, with the
particular language and dialect used as tools for implementation of design; its emphasis on
modularity beginning early in the text; its emphasis on arrays and records as tools for
meaningfully structuring data; its emphasis on testing throughout the text; and its emphasis
on documentation as part of the design process. The student who uses this text will receive,
along with an introduction to programming, an introduction to the software-engineering
approach to programming.

PREFACE TO THE INSTRUCTOR xvii

Acknowledgments

We are grateful to Henry Etlinger, Rochester Institute of Technology, and Chris Kay, De Vry
Institute of Technology (Chicago), and other anonymous reviewers of the text, who provided
many useful suggestions for improvements. Special thanks to Professor Thomas A. Standish
and student Manny Powers, University of California at Irvine, for their meticulous reviews
of a draft of this text. The ICS21 classes at UCI used the predecessor to this text; their ef
forts to find mistakes and their suggestions for improving it were most appreciated.

When possible, we have incorporated suggestions made by our reviewers, students,
and colleagues. Strong points of the text can be attributed to the reviewers as well as the
authors; any remaining inadequacies are the sole responsibilities of the authors.

xviii

J. Winston Crawley

William G. McArthur

Norman M. Jacobson

PREFACE TO THE INSTRUCTOR

Pref ace to the Student

The purpose of this book is to help you learn how to program a computer. Writing a
program involves two major subtasks: designing the program and translating the design into
the actual program. In this textbook, we translate the designs into the particular program
ming language known as THINK Pascal. It is, therefore, easy to come to the conclusion that
the book is a book about THINK Pascal. However, of the two skills you will develop, the
program-design skill is by far the more important. This skill can be transferred to writing
programs in any of a large number of other languages that are in common use.

In this preface, we would like to point out a few features of the book that can help you
use it effectively.

First of all, there are many examples in the text. You should study the examples, relate
them to the material being discussed, and adapt their ideas to your own programs.

The exercise sets contain many "drill-and-practice" type problems, as well as prob
lems calling for programming projects. After reading a section, you might wish to work
through all or most of these exercises and check your answers. This would give an indica
tion of your comprehension of the material in the section.

There are review portions at the end of each section. These can be used in several
effective ways. For example, you could use them as an outline prior to reading the section.
After you read the section, you could use the review portion to gauge your understanding of
the material. They should prove especially helpful when reviewing for tests.

Most sections contain a portion on "Defensive Programming Tips." In these, we
attempt to give you the benefit of our programming and teaching experience. We identify
common problem areas with the hope that you will be able to avoid these areas if you are
forewarned. You may also find these portions helpful in figuring out what is going wrong if
your program is not working properly.

xix

Throughout the text, there are pointers on how you can do a good job of testing your
program. This involves running the program with data specifically designed to find any
errors that may be there. It is, of course, much better to find the errors yourself than to have
the instructor point them out to you after you have turned in the program!

Appendix B contains a language reference. After you have achieved some fluency in
writing Pascal programs, you may find this appendix a useful tool. You may look there to
answer questions about how specific Pascal statements are written or how they work. You
will find this especially useful if you retain this text as a reference for later courses.

xx

J. Winston Crawley

William G. McArthur

Norman M. Jacobson

PREFACE TO THE STUDENT

I Getting Started

OBJECTIVES

This chapter gets you started by presenting just enough information to allow you to design
and run simple yet meaningful programs. After completing this chapter, you will be able to:

• use basic terminology relating to computers and programming

•recognize the basic structure of THINK Pascal programs and use a few of THINK's
statements

•begin to design and write programs
•run a program and, in general terms, verify that it works correctly

INTRODUCTION

There is more to writing good computer programs than simply sitting down at a computer
and typing away. In developing software, a programmer first spends time thinking about the
task the program is to undertake and designing the approach the program will take to
accomplish that task. Then the programmer enters the program into the computer, following
rules to exhibit its structure, have its approach apparent, minimize the number of errors that
might occur, and make it easy to read, understand, test, and (as the need arises) modify and
enhance.

The goal of this book is to help you learn how to design and implement good pro
grams. By imitating the examples we present in this chapter, you will be able to write
simple THINK Pascal programs. Beginning in Chapter 2, and continuing throughout the
book, you will add to your knowledge of program design, the THINK Pascal language, and
the process of testing a program to see that it meets its specifications.

1

1-1 COMPUTERS AND PROGRAMS

Computers

The digital computer has become an increasingly common device in our society. It appears
in a variety of sizes, shapes, and functional capabilities. Computers are sometimes classified
as mainframe computers, minicomputers, or microcomputers. A microcomputer can be
easily moved from an office to a car in just a few trips. A minicomputer would probably
require a hand cart to move its components, and one would load it into a van or pickup truck
instead of a car. A mainframe computer would require professional movers with the proper
equipment to move it, and one would probably load it into a large truck. The boundaries
between these and other classifications for computers are not really well-defined, but the
previous categories are widely used in discussions concerning computers. Other less-used
categories are supercomputers (very high-speed computers used for complex problems)
and laptop computers (so called because they are small enough to fit on one's lap). What
ever the size, all computers possess the following components:

Input Devices: Enable the computer to receive data from the outside world; for exam
ple, keyboards, mice, light pens.

Output Devices: Enable the computer to send data to the outside world; for example,
cathode-ray-tube (CRT) displays, printers, loudspeakers.

Processing Unit: Provides for computation and transformation of data.

Storage: Saves data for later use.

Computers are most often identified with the manner in which the user interacts with
the input and output devices. This interaction, known as the user interface, is accomplished
by a combination of the input and output devices and the computer programs that control
those devices.

Programs and Programming Languages

A computer program is a collection of instructions that guides the computer through its
operations. The program can be in a form directly understandable by the computer, machine
language, or it can be written in a high-level language, a form that requires some transla
tion by other programs before the computer can use it. A program is usually thought of as an
unambiguous sequence of instructions, directed at the computer, to accomplish a specific
task. There are many computer languages, including Assembler Language, COBOL, FOR
TRAN, BASIC, Algol, and Pascal, to name a few. Figure 1-1 contains an example of a
computer program written in the THINK Pascal dialect of the Pascal programming lan
guage. You are not expected to understand the details of the program at this point, but see if
you can read it and get a general idea of what it does.

The steps in the logical flow of a computer program are collectively called an algo
rithm, which can be communicated to other humans in a specialized algorithmic language
such as flowcharting or pseudocode. Some programming languages, including Pascal, are
rich and flexible enough to be used as their own algorithmic languages. A computer program
and its associated algorithm are used for written communication with the computer and

2 GETTING STARTED CHAP. 1

program NetBill;

{Written by: XXXXXXXXXX on XX/XX/XX}

{Purpose: To add sales tax to price}

const
rate 0.06;

var

Bill: real;

Price: real;
Tax: real;

{bill including tax}

{retail price}

{sales tax}

begin

Write('Enter the Price: ');

Readln(Price);

Tax := Rate * Price;

Bill := Price + Tax;
Writeln('The bill is: $

end.

Figure 1-1 First program.

Bill)

{price prompt}

{read the price}

{compute sales tax}

{compute bill including tax}
{print bill}

other people. For this reason, there is an intimate relationship between computer program
ming and expository writing. We can find direct analogies in programming for the writing
activities of outlining, preparing a rough draft, peer reviewing, etc. As is the case for writ
ing, programming is a discipline that requires much practice and hard work to obtain profi
ciency. Programming also includes some expository writing in the preparation of written
descriptions and explanations, called documentation, for a computer program.

The Programming Environment

Operating systems. The "master" program of the computer, which is responsible
for accepting commands to the computer and handling the input and output of data for the
computer, among other tasks, is known as the operating system. It is responsible for the
computer's "personality": change a computer's operating system, and the way the computer
communicates with input, output, and storage devices-and the user--changes, perhaps
dramatically. Operating systems are usually known by name, for example, Unix, MYS,
MS-DOS, and Apple-DOS.

Editors. A program can be created by pure thought or by laborious manual effort
with pencil and paper; but in either case, the program must be put into a form that is
acceptable to the computer if it is to actually perform its function. The activity of entering
the program into the storage area of the computer is accomplished by use of a computer
program called an editor. The editor allows for entering the text of the program, storing the
program for later use, and changing the program by adding, correcting, and deleting portions
of it. The editor can be supplied as a utility that is purchased with the computer (e.g.,
EDLIN on the IBM PC); it can be a separate, more general, word processing program; or it
can be an intimate part of the particular Pascal implementation (e.g., THINK Pascal).

1-1 COMPUTERS AND PROGRAMS 3

Translators. The reason for writing a computer program is to use it eventually to
accomplish some task. Before the program can be executed-run-it must be stored on the
computer via an editor, and then submitted to a translator to be converted into a form the
computer can execute. There are two kinds of translators: interpreters, which execute each
action of the program as it is translated, and compilers, which first translate the entire
program into a machine-readable object file and then (after linking) execute it. THINK
Pascal uses the compiler approach to translation.

Compilers and interpreters are designed specifically for a particular language (THINK
Pascal), a particular kind of computer (a Macintosh), and a particular operating system (the
one the Macintosh employs).

Libraries. Even though programs vary widely, they often contain many of the same
activities, such as calculating certain mathematical results or communicating with a screen
or keyboard. Rather than requiring each programmer to invent (and reinvent) the sequences
of instructions to accomplish these commonplace activities, standard libraries containing
these instructions are usually associated with a particular computer and a specific computer
language.

Linkers. For compiled languages, a linker is used to link a program's object file
with any needed library procedures. The resulting file is called an executable file, and is the
one from which the computer actually runs the program. (Interpreters do not use linkers,
since they execute a program immediately as each line is translated.)

Utilities. A programmer's duties often include writing, testing, documenting and
modifying programs. These tasks can require the programmer to perform such mundane (but
necessary) activities as renaming programs, deleting obsolete programs, making copies of
reusable parts of programs, and printing the text of programs or the data on which they
operate. These and related activities are usually made possible by a collection of computer
programs called system utilities. In the case of a microcomputer, the programmer is also
usually responsible for obtaining diskettes for program storage, for preparing the diskettes
for use, and for making backup copies of diskettes and hard disks; utilities also help with
these chores.

The Environment. All of the previous items are facets of the computer program
ming environment. Pertinent information concerning the programming environment can be
obtained from the several manuals that accompany any computer system. Consult with the
local computer center or the course instructor to determine which manuals should be read or
referenced for the computer you are using.

Pascal

The Pascal programming language was named for the French mathematician and philoso
pher Blaise Pascal (1623-1662), who is perhaps best known for his early work in the
mathematical theory of probability, his invention of a mechanical calculator, and his book
Pensees. In the late 1960s, Niklaus Wirth of Switzerland invented the Pascal language,
which he announced in 1971 in the paper "The Programming Language Pascal," published
in the journal Acta Informatica. In his 1971 report, Wirth explained he developed Pascal to

4 GETIING STARTED CHAP. 1

be used as a convenient language to teach computer programming and as an efficient tool
for writing large programs.

Pascal has been implemented in various forms on various computers, but a few com
mon variations have been identified as "standards" for Pascal. These Pascal implementations
include ANSI (American National Standards Institute) standard Pascal, ISO (International
Standards Organization) Pascal, and UCSD (University of California at San Diego) Pascal.
In this textbook, a particular Pascal that runs on a particular class of computers has been
chosen for use in examples. The authors have chosen THINK Pascal, as implemented for the
line of Macintosh computers, as the basis for all examples (and language-specific discus
sions) in the book. Each of the complete program examples has been tested for this particu
lar Pascal implementation. THINK Pascal is one of several language dialects that are
descended from UCSD Pascal. Other UCSD Pascal implementations will be consistent with
nearly all of the material in this book. Pascal implementations that follow other Pascal
standards will have some variance with the discussion of the book, but, in their essential
features, all versions of Pascal are the same.

The major features of the Pascal language are that it is a structured language that
encourages and enforces good programming habits; it has a rich assortment of data struc
tures for wide-ranging applications; and it is implemented on nearly all computer systems,
both large and small.

The computer community has embraced the Pascal language and has employed it
successfully for applications in most categories of programming: accounting systems, educa
tional courseware, scientific data processing, and operating systems. The nearly universal
acceptance and applicability of the language make Pascal a good choice for a first program
ming language and an important part of the education of any computer scientist.

Writing and Running a THINK Pascal Program

You must master an editor before you can progress very far in writing and running THINK
Pascal programs. The editor integral to the THINK Pascal language is sufficient for entering
and modifying your programs, but you may wish to learn to use more powerful editors for
writing documentation.

Once you enter your program (via the editor) and believe it to be correct, you invoke
the THINK compiler (usually by issuing the Go command). The compiler attempts to verify
that the program has correct form and informs you of any deviations from that correct form.
It is natural to resent any agent that points out errors, but in this case, the compiler is being
helpful; by noting the errors and stopping program compilation, it prevents the computer
from executing an erroneous (and potentially embarrassing or catastrophic) program.

Each compiler has its own manner for detecting and reporting program errors, but the
underlying principles are the same. Common errors are pointed out as "pitfalls" at appropri
ate places throughout the textbook. These pitfalls form a part of various sections throughout
the text entitled Defensive Programming Tips (DPT). These sections contain general infor
mation on defensive programming, the art of programming in such a way as to avoid errors.

Once the compiler has approved the program and translated it (placing that translation
into an object file), the program is linked and executed. In THINK Pascal, the linking and
execution are done automatically when you tell THINK to "Go." (In other environments,
linking and execution are separately invoked steps.)

1-1 COMPUTERS AND PROGRAMS 5

Since the compiler does not attempt to understand intention, it cannot certify that the
compiled program will behave in the manner you intended. You must, therefore, test and (if
needed) correct the program before it can be considered acceptable.

Integrated Development Environments

Some Pascal implementations (such as THINK Pascal) offer program editing, compiling,
debugging, and execution as parts of an integrated program-development environment. This
offers advantages because the compiler can cooperate with the editor and aid in the correc
tion of compiler-detected errors. Upon detecting an error, the compiler typically causes the
editor to be loaded and to indicate the point in the program where the error occurred. This
kind of environment makes it easy to find and repair typographical errors, significantly
reducing the time it takes to make the program acceptable to the computer. An inherent
danger in this type of environment is for one to assume that, since a program can be so
easily corrected, it does not have to be well planned. Proper planning is essential to all
programming and cannot be replaced by ease of revision.

About this Book

The most important topic of this text is using the computer to solve problems through the
design of well-written programs. This involves the entire design process, some of whose
components include:

1. Understanding what the program should do

2. Planning for the data that the program will utilize

3. Planning for the steps required to accomplish the desired task

4. Converting the plan into a form acceptable to the computer (THINK Pascal, in this
text)

5. Including appropriate documentation to explain the program to those who will use it
or to those who must understand how it works

6. Running the program and verifying that it does what it is supposed to do

As you can see, this involves much more than simply learning Pascal. Your programming
work in the future may or may not utilize Pascal. For example, you might use COBOL or C,
or some yet-to-be-invented language. What you learn about good program design will, how
ever, be applicable in any of these environments.

On the other hand, talking about program design is not sufficient; to learn program
ming principles and practice programming techniques, you need to write and run actual
programs. To write programs, you must learn some computer language; we think Pascal is
good one to learn, since it is designed to foster good programming techniques. Therefore, a
major component of this text involves details of the Pascal language.

The particular dialect we discuss in the text and use in the examples is THINK Pascal
as implemented on the Macintosh. Choosing a specific Pascal implementation allows us to
present examples in the text that have actually been run and allows you to learn a popular
and useful programming language.

6 GETTING STARTED CHAP. 1

We discuss enough of the THINK Pascal environment to allow you to edit, compile,
print, and run your Pascal programs, but we do not address all its capabilities (by far); those
topics can fill a small book in their own right. There are several places where you can find
detailed information about the THINK environment. One good reference is Chapters 3 to 9
of THINK Pascal User Manual (the main reference manual that accompanies the THINK
Pascal language); a few others are listed in the References.

Note. We use the term THINK Pascal when we discuss that Pascal dialect in par
ticular. We use the term "Pascal" when we discuss features common to several Pascal
dialects.

REVIEW

Terms and Concepts

algorithm
compiler
documentation
editor
environment
executable file
high-level language
input devices
interpreter
laptop computers
libraries
linker
mainframe computers
machine language
microcomputers

minicomputers
object file
operating system
output devices
Pascal, Blaise
processing unit
programs
run
storage
supercomputers
translator
user interface
utilities
Wirth, Niklaus

EXERCISES

1. Invoke THINK Pascal and create a new project called NetBill.7t. Then create a new program
and, using THINK Pascal's editor, enter the example program in Figure 1-1 exactly as it is.
Then, use the editor to change the "written by" line to your name and the correct date. Use
THINK's features to store the program on disk, add it to the project, and to obtain a printed
listing of it.

2. Run the example program of Figure 1-1 as changed by Exercise 1.

3. Change the line appearing as "Rate = 0.06" to the form "Rate := 0.06". Compile this (errone
ous) version of the program to notice how THINK Pascal displays error messages.

4. Make several arbitrary changes to the example program of Figure 1-1 (for example, eliminate
one of the ";" characters). Study the error messages the compiler produces. After several itera
tions of arbitrary changing and compiling, do you think that a correct program can be effec
tively constructed in a random manner?

EXERCISES 7

1-2 ELEMENTS OF THE PASCAL LANGUAGE

In this section, we discuss the basic form of a Pascal program and some of the elements that
comprise it. In Figure 1-2, we have added line numbers to the program of Figure 1-1. The
line numbers are not part of the program and would not normally be present. They have
been added so that we can easily refer to the lines.

The program begins with a statement giving the name of the program (line 1). This is
followed by declarations specifying the names of the constants (line 7) and variables used
(lines 10 to 12). Finally, there are statements specifying the actions to be performed (lines
15 to 19). The statements in lines 15 to 19 are separated by semicolons (;).A statement can
occupy more than one line, if needed, or more than one statement can be placed on a given
line. However, it is preferable to place one statement per line, as in Figure 1-2.

Basic Elements

In the following discussion, this example is used as a basis for a more thorough introduction
to Pascal programs. Let's begin with the individual pieces that make up the program.

Pascal programs are made up of words (similar to words in ordinary text), numbers or
other constants, punctuation characters, and operators. Some of the words have predefined
meanings to the Pascal compiler (for example, program, Write, Readln, begin, end, and a
number of others). These words must be used in certain restricted ways. Other words can be
defined by the programmer.

Programmer-defined words (such as Rate, Tax, Price, and Bill) are called identifiers.
Identifiers start with a letter (a-z, A-Z) and can contain letters or digits (0-9). In Pascal,
uppercase and lowercase letters are equivalent when used in identifiers and in predefined
words. (Although THINK Pascal allows the use of an underscore (_) in an identifier, we
usually do not do so in this text.) The maximum number of characters in an identifier is 255.

In addition to following the rules for identifiers, you should make identifiers meaning
ful and easy to read. This approach makes it easier for others to understand your programs.
In this text, we use lowercase letters, but with uppercase for the first letter of each major
word that makes up the identifier. For example, an identifier made up of the two English
words "pay" and "rate" is written as "PayRate". The following shows a few legal and illegal
identifiers.

TaxAmount

Tax-Amount

XY3Z

Sumi

I Sum

largevalue

(legal)

(illegal; dash not allowed)

(legal, but not good!)

(legal)

(illegal, begins with digit)

(legal, but does not follow our convention)

Numbers are basically of two types, either integer or real. Integer numbers are writ
ten as a string of digits, without a decimal point, whereas reals are written with a decimal
point. Reals can also contain an exponent part written with an "e" or "E," possibly a sign,
and a short integer number. (If the exponent part is used, the decimal point is not required.)
The following are examples of valid integer (left-hand column) and real (right-hand column)
constants.

8 GETTING STARTED CHAP. 1

1) program NetBill;

2)

3) {Written by: XXXXXXXXXX on XX/XX/XX}

4) {Purpose: To add sales tax to price}

5)

6) const
7) rate 0.06;

8)

9) var
10)

11)

12)

13)

Bill: real;

Price: real;

Tax: real;

{bill including tax}

{retail price}

{sales tax}

14) begin

15)

16)

17)

18)

19)

20)

Figure 1-2

15

-23

475

-10000

0

-5
-0

-9999

Write('Enter the Price: ')

Readln(Price);

{price prompt}

{read the price}

{compute sales tax} Tax := Rate * Price;
Bill := Price + Tax;

Writeln('The bill is:

{compute bill including tax}

$ ' Bill) {print bill}

end.

First program with line numbers.

0.2

0.0025

-25.6738

2.4E3

2.4e+3

0.25E-2

2e5
-5.0

The exponent part is interpreted as a power of 10 multiplying the rest of the number. The
2.4E3 and 2.4e+3 are equal and mean 2.4 times 10 to the third power, or 2400. The 0.25E-2
means 0.0025 and the 2e5 means 200,000. This representation is sometimes called scientific
notation. In Pascal, we do not use commas within numbers, either real or integer. The
numbers 0 and 0.0, although they have the same "value," are different in Pascal. The first is
an integer and the second is real. (There are instances, to be covered later, where we must be
careful to use either an integer value or a real value, so the distinction can become an
important one.)

There are some restrictions to observe in writing numbers in Pascal:

1. Commas are not used.

2. No blanks are allowed between the minus sign and the number.

3. If an exponent is used, it must be an integer.

4. For real numbers (with a decimal point), there must be at least one digit on each side
of the decimal point.

1-2 ELEMENTS OF THE PASCAL LANGUAGE 9

In addition to numbers, we can use characters and character strings in Pascal pro
grams. These values are written using single quotes (apostrophes) before and after the value.
A character value consists of exactly one character enclosed in single quotes, as, for exam
ple,

'A'

•a•
(a single character, a blank)

A character string (or just string) can contain more than one character, as in these
examples:

'The value of the money is '
'Strings are lists of characters'

If you wish to represent an apostrophe within a character or string constant, it is
written using two apostrophes, as shown here:

'Why don' 't you come along?' (a string containing an apostrophe)

Finally, the following is a valid string:

(no character at all, a null string)

Operators are sometimes denoted by special symbols such as"-","+", etc. Sometimes
more than one special symbol is used for an operator, such as":=" or"<=". Sometimes the
name of the operator is spelled out, as in "and" and "or". Commas, semicolons, colons, and
other special symbols are used as punctuation in different statements.

Blanks are used in Pascal to separate words. They can be used either before or after
any punctuation symbol or operator represented by a special symbol. They must be used
between any words or alphabetic operators. For example, the word "program" and the
program's name in the program header (line 1 of the example) must be separated by at least
one space. Blanks may not be used within an identifier nor within any of the special words
that Pascal uses. Similarly, identifiers and words may not be broken from the end of a line to
the beginning of the next.

Wherever we would use a blank in Pascal, except for blanks within strings, we may
use a comment. A comment is simply text describing the program to a human reader and is
ignored by the Pascal compiler. We write comments by enclosing them in braces, "{" and
"}". The compiler ignores information starting with a left brace, "{", until it finds a right
brace, "} ". After the right brace, the compiler begins to process the information again.
Comments should be used to describe your program, what it does, how it works, and who
wrote it. (Lines 3, 4, 10 to 12, and 15 to 19 of the sample program contain comments.)

We can also use blank lines any place a single blank could appear. We frequently use
blank lines to separate the program into parts, each of which carries out a single, basic
action. These blank lines, although they are not comments, are, like comments, ignored by
the compiler.

Declarations

All identifiers that we are going to use in a program must be preceded by a declaration.
(Actually, there are a few exceptions, which are discussed later.) At present, our identifiers
are one of three items: the program name, the name of a constant, or the name of a variable.

10 GETTING STARTED CHAP. 1

The program name is declared in the program header and is not used elsewhere within the
program. In our sample program, the program header is line 1; the name of the program is
NetBill. All program header lines are identical to that in the sample, except "NetBill" is
replaced with the name of the particular program.

Next, all of the constant declarations are gathered together in a section beginning with
the word "const". They are of the form:

name = value;

An example of such a section is

const
TaxRate = 0.06;
MonthinYear = 12;

Another example appears in lines 6 and 7 of the sample program. The const section appears
before the section declaring variables and is used to define constants that we regard as
particularly important. Constants can also be declared with character or character string
values, as in these examples:

const
Comma= ',';
Company= 'XYZ Corp.';

Variables, in contrast with constants, have values that can be changed as the program is
executed. Their names follow the rules for identifiers. Each variable has a type associated
with it that tells what kind of value can be placed in it. Some of the common types are real,
integer, and char (for character). Real variables are those that store numbers that have an
explicit fractional part (such as 3.5, -2.353, and 10.0), whereas integer variables store num
bers that do not have a fractional part (such as 3, -2, and 10). In each case, there are limits
on the size of the numbers. These limits will vary from machine to machine, but in THINK
Pascal on the Macintosh, standard integers can range from -32768 to +32767, long inte
gers-type longint-can range from about -2 billion to +2 billion, and real variables can
range from about -3.4 x 1038 to +3.4 x 1038• Real variables also have a limit on their
precision, which also varies from machine to machine; in THINK Pascal, type real variables
have at most eight decimal digits of accuracy, and occasionally only 6 or 7 digits of accu
racy. (The reason is that reals are represented internally by numbers in base 2. The principal
effect of this is that some simple decimal values, such as 0.1, are not represented exactly.)
So, computations with reals can have slight inaccuracies.

Char variables hold a single character. Any character that the Macintosh can represent
(there are 255 of them) can be placed in a char variable.

THINK Pascal also allows string variables, which may contain a string of zero charac
ters (called the null string), one character, or more than one character, up to a maximum of
255 characters. To declare a string variable in THINK Pascal, we give the variable the type
string. If no size is specified, it implies the variable can contain from 0 to 255 characters. If
we wish the maximum allowed size of the string to be less than 255 characters, we indicate
the maximum size by placing it in square brackets after the string. For example, if we
declare

Name: string[20];

1-2 ELEMENTS OF THE PASCAL LANGUAGE 11

we are saying that the v;nable Name can contain anywhere from 0 to 20 characters. The
number in the brackets (following the word string in the declaration) must lie in the range
from 1 to 255 inclusive.

The variable declarations are collected together in a var section, such as the following:

var
i, j, k: integer;

Cost: real;

Price: real;

Letter: char;

Line: string[l33];

Note here that the colon (:) is used to separate the variable names from the type, and that
commas (,) are used to separate variable names. Each declaration ends in a semicolon. The
order of declarations doesn't matter; we could declare Line before Cost, for example.

In the sample program, all of the variables are real, and the variable declarations are
contained in lines 10 through 12.

Notes

1. For variables, we declare the type explicitly. For constants, on the other hand, the
value defines the type. The constant 0.06, for example, is real.

2. In THINK Pascal, a string of I character is considered to be equivalent to a character.
So 'A' is both a string constant with a length of I and a char constant. It can be used
in a context where a string would be appropriate or in a context where a character
would be appropriate.

3. One of Pascal's major strengths is to allow the programmer to build up new types out
of existing ones. These types are declared in the type section, a section similar to the
const and var sections. How to define your own types is discussed later.

Action Statements

The statements describing the actions to be performed are written between the words begin
and end. These statements are separated by semicolons. Notice, in the example, that lines
14, 19, and 20 do not have semicolons. This is because the begin and end are not regarded
as statements in Pascal but rather as symbols that group statements. Line 19 does not need a
semicolon because it is not followed by another statement. (Actually, a semicolon could
have been placed at the end of line 19 because Pascal permits a so-called empty or null
statement.) The final "end" is followed by a period.

The statement in line 15 is a Write statement, which displays whatever is within the
parentheses on the computer display screen. In this case, the string within single quotes is
displayed. (The quotes will not be displayed because they serve merely to delimit-mark the
beginning and end of-the string.) The message this Write statement prints out is called a
prompt. It explains to the user (of the program) what the program expects to be entered.
Line 19 is similar, but after displaying the string within the single quotes and the value of
the variable Bill, the Writeln statement advances the output display to a new line.

12 GETTING STARTED CHAP. 1

The Write and Writeln statements can write any number of expressions, variables, or
constants. They are displayed one after the other, starting with the leftmost item within the
parentheses. In all cases, the value of the expression, variable, or constant is written. The
output from a Write or Writeln that follows another Write statement appears on the same
line as the output from the first Write statement (if there is room). The output from a Write
or Writeln that follows a Writeln statement always begins on a new line. For example, the
sequence of statements

Writeln (A, B) ;
Writeln(C, D)

prints the current values of A and B on one line, and the current values of C and D on the
next. Contrast this with

Write (A, B) ;
Writeln(C, D)

which prints all four values on the same line.
The form of the Writeln statement is

Writeln(list of things to be displayed)

where the list contains the expressions, variables, and constants separated by commas. It is
also possible to use a Writeln statement without any list of items, as in

Writeln

This causes a blank line to be displayed. Later, we will see how to control the form in which
the values are printed.

The statement in line 16 reads the value entered by the user of the program and places
that value in the variable Price. The Readln is of the form

Readln(list of variable names)

It reads through the end of the input line. Like the Writeln, the names in the list are sepa
rated by commas. The statement reads a value for every variable in the list. If the user types
more values than there are variables, the extra values are ignored.

The Write, Writeln, and Readln statements described here are commonly called
input/output, or 1/0, statements because they cause the transfer of data into or out of the
computer's central processing unit. Pascal has other I/O statements that are considered later.

Lines 17 and 18 are examples of assignment statements. The expression on the right
of the := operator is evaluated, and the result is assigned to the variable appearing on the left
of the := operator. Expressions in Pascal are similar to normal algebraic expressions, except
that variable names can contain several characters. This means that one cannot imply multi
plication by writing two variable names next to each other as in ordinary algebra. Therefore,
the * is used to indicate multiplication. The operators +, -, and I are used to indicate
addition, subtraction, and division, respectively. The assignment statement is discussed in
more detail in Section 2-1.

Putting the Pieces Together

The general form of a Pascal program, for our first simple programs, follows. The italicized
portions are those the programmer supplies; the rest is a part of every Pascal program.

1-2 ELEMENTS OF THE PASCAL LANGUAGE 13

program name;
const constant declarations
var variable declarations

begin
program steps

end.

It is possible to omit some of these parts. For example, if there are no constants to be
declared, the const section can be omitted. However, if a section is needed, then it must
appear in the place indicated in the previous outline. To write a program, we must know
what steps we wish the program to perform, and how to express those steps in Pascal. We
must know exactly what variables we need and decide on the names to give those variables.
Finally, we must write our program in the general form indicated here. The next two sec
tions present more information on this process.

DPT (Defensive Programming lips)

This is the first of a series of sections that occur throughout the text. We abbreviate the
section names as DPT. The purposes of the sections are to help you avoid errors in writing
your programs and to quickly decipher those errors that do occur. (Even if the compiler
detects the error for us, it cannot always determine exactly what we really did wrong.)

The name of the section indicates our general approach. We program "defensively,"
trying to protect against errors. This can involve any number of related ideas. One of the
ways we can avoid errors is to be aware of what types of errors are frequently made, or of
what types of misconceptions can occur. In this first DPT section, we can identify the
following:

1. All variables must be declared. If we forget, the compiler generates an error mes-
sage.

2. THINK's font when it is first "started up" is Geneva. Geneva has a lowercase 1
(letter 1) that looks very much like 1 (the digit 1); it has a 0 (zero) and 0 (uppercase letter
0) that are indistinguishable when viewed on the screen. So, we recommend you avoid
variable names of "l" or "O", and be on the lookout for one symbol (1 or 0) masquerading
as the other (I or 0). If the THINK compiler is finding fault with what appears to be a
perfectly valid statement (such as Value := 0), check for similar-looking characters. (To help
distinguish these symbols, you can change the font the THINK editor uses to one that makes
clear the differences between these characters; Helvetica works well. To change the font,
select the Source Options choice from the Edit menu, click on "Geneva" and select the font
you wish from the menu that appears.)

3. Misspelling an identifier, especially one with a special meaning to the compiler,
can cause problems. If we misspell a variable name, we will probably be warned that we
forgot to declare that variable. Misspelling a word such as "end" can so thoroughly confuse
the compiler that its error messages are totally unrelated to the actual problem.

4. All declaration lines (const or var sections) end with a semicolon.

14 GETTING STARTED CHAP. 1

5. Action statements are separated by semicolons, and special words such as begin
and end are not statements, but delimiters.

6. There is sometimes confusion between "=" and ":=" in Pascal. This is partially
caused because algebra uses an "=", whereas Pascal uses a ":=". For example, the algebraic
formula

d=rt

can be written as the assignment statement

Distance := Rate * Time

in Pascal. Constant declarations use "=" and assignment statements use ":=" as the operator.

7. The assignment symbol":=" is a double symbol. The colon and the equal sign must
be adjacent. Do not put a blank between them.

8. We must use * to signify multiplication. If, in the example just given we wrote

Distance := RateTime

the compiler would interpret "RateTime" as a variable and would tell us we forgot to
declare it. What we really forgot was the multiplication symbol.

9. There is sometimes confusion over strings that contain digits. The string '156', for
example, is not the same as the integer 156. The latter can be used in arithmetic computa
tions, the former cannot.

REVIEW

Terms and Concepts

assignment statement
character string
char
characters
comment
constants
declarations
identifiers

prompt
Read In
real
scientific notation
statements
string
variables

input/output (110) statements
integer

Write statement
Writeln statement

long int
null string

Pascal Syntax

Basic Elements

1. Identifiers: First character is a letter; others are ejther a letter or a
digit; maximum length 255 (THINK); lowercase and
uppercase are equivalent.

REVIEW 15

16

2. Numbers:

3. Character values:

4. String values:

5. Operators:

6. Comments:

7. Constant declarations:

8. Variable declarations:

First Program Form

program name;
con st

constant declarations
var

variable declarations
begin

program steps
end.

Statements

Integer-no decimal point (3, -7, etc.); real-decimal
point (3.5, -2.1, etc.); or exponential form (2.3E5,
5e-2, etc.).

Single character enclosed in single quotes (the
apostrophe character); two apostrophes to represent
one ("").

Enclosed in single quotes; two apostrophes to represent
one ('don"t', etc.).

+, -, *,and I are to do arithmetic (assignment) statements.

Form: {any string as a comment} - can be placed
anywhere a blank could go.

Form: name = value;

Form: variable list: type; type can be real, integer, char,
string, or string[maximum length], where the "maximum
length" specified is in the range 1 to 255.

Readln(list of variable names)
Write(list of expressions, variables, or constants)
Writeln(list of expressions, etc.)

variable := expression

DPT

1. Declare all variables.
2. Do not type letters 0, 1, I for digits 0, 1, etc.
3. Watch for misspelling a keyword or an identifier.
4. End all declarations with a semicolon.
5. Separate statements with a semicolon.
6. Do not use= in an assignment statement or := in a canst declaration.
7. Do not add space in the:= operator.
8. Use an *to indicate multiplication.
9. '156' is not the same as 156.

GETTING STARTED CHAP. 1

EXERCISES

1. Decide whether the following are valid THINK Pascal identifiers. For those that are not valid,
explain why not.
(a) Beta
(b) TI0056t
(c) !Time
(d) Tax Rate
(e) X
(f) First.Time
(g) FirstTime
(h) firsttime

2. Decide whether the following are valid Pascal constants. For those that are not valid, explain
why not, and for those that are valid, give the type of the constant.
(a) 123
(b) 1.23
(c) 1,234.00
(d) '123'
(e) 'Now is the hour'
(f) 'X"t'
(g) 'John's'
(h) 123.05E+25

3. For each of the following, decide on appropriate variable names for the quantities involved, and
give the required declarations.
(a) social security number, age, hourly pay, number of hours worked
(b) student name, three test grades, average test grade
(c) section number, number of students, number who passed the course, number who failed,

average grade of the class
(d) number of bears in a sample, total height in centimeters of all the bears, average height in

centimeters
(e) state name, population, number of cities over 250,000 population, square miles, population

density (population per square mile), percentage of population with high school education
or above

1-3 PLANNING AND WRITING LOOPING PROGRAMS (PART 1)

The first two sections introduced some basic concepts. In the first, we had an overview
about computers and about the Pascal programming language. The second section went into
more detail about THINK Pascal and discussed a simple but complete program. In this
section, we go through the steps one takes to develop a complete program.

Algorithms, Data, and Refinement

Before we write the program, however, we would like to discuss the program-development
process. This discussion will be brief at this point, but it will be built upon throughout the
text. As we will see, writing a program requires thought. The first step is a careful statement
of the problem to be solved, known as the specification. This defines what needs to be

1-3 PLANNING AND WRITING LOOPING PROGRAMS (PART 1) 17

done, presents the available information about the task, and usually describes how the pro
gram is to function from the user's point of view.

Using the specification as a starting point, we must analyze what is required and
develop a plan for achieving the desired results. The plan we develop is usually called a
design. A design is a careful, perhaps detailed, statement of what the program will accom
plish and how it will accomplish it. In many ways, it is similar to a program. In fact, the
completed program can be viewed as a very detailed design. However, an effective design
may not require the amount of detail that the program will have. And it certainly does not
have to satisfy the rigid syntax rules (for example, concerning the placement of semicolons)
of a programming language such as Pascal.

Programs (and, therefore, designs) deal with data. Many of the programs we will
write, especially early in the text, follow this general pattern: read some data, calculate some
values based on that data, print the answers. This pattern can be repeated for a number of
sets of data. For example, the program we will develop shortly will calculate the areas of a
number of rectangles, given the length and width of each rectangle.

Part of planning a program involves planning for the data needed, and the variables to
hold that data. It is frequently useful to first determine what input data the program must
read (for example, length and width). In connection with this, we can determine the
expected output data (for example, area of the rectangle). As we will see as our examples
get more complex, we frequently need some extra data to aid in our calculations. Thus, we
may categorize the variables we use as "input," "output," and "other."

For a reasonably complex problem, the first design (plan) we devise may not be
detailed enough to enable us to write the program. We may have to go back and fill in
details for some of the steps. This process can be repeated indefinitely, until we finally reach
a point that we can successfully write a program based on the plan. The process of filling in
details in the design is called refinement. Refinement is an expected part of the program
design process. Sometimes students expect that the first algorithm they write will be suffi
ciently detailed. This just is not so, in general. In fact, purposefully taking several refine
ment steps can lead to better programming.

As our final comment on program planning, we note that there are four basic pro
gram structures that we use to build our algorithms, and thus our programs. The word
structure, as used here, simply refers to ways of putting together the pieces of the program.
These four fundamental program structures are as follows:

18

1. Sequence. This structure consists of a number of steps that are to be performed in
order (in "sequence"). The program steps are simply listed in the proper order. The
example in the previous section used this type of structure.

2. Loops. Loops are program structures that allow repetition. If we have a step (or a
sequence of steps) that should be repeated a number of times, we place the steps in a
loop.

3. Decision. Sometimes the steps to be performed depend upon some condition. For
example, in many companies, the rule used to calculate an employee's pay depends
upon whether the employee worked more than 40 hours that week. A decision struc
ture in a program allows the program to perform different sets of steps based upon
various conditions.

GETIING STARTED CHAP. 1

4. Subprograms. There are several other terms related to this program structure. Among
these are modules, submodules, functions, and procedures. Briefly, a subprogram is
a piece of a program designed to perform a certain task or calculation. This program
structure is useful in breaking down a complicated task into a number of less compli
cated subtasks. Its use frequently goes hand in hand with the refinement process
described earlier.

The example that follows utilizes the first two of these program structures, as well as a
limited form of the third. More details concerning all these structures are given as we
proceed through the text.

Planning the Looping Program

Let us develop the example referred to earlier. We wish to write a program that calculates
the areas of rectangles. Early in the planning process, we analyze the data required for the
program and begin a list of necessary variables. For this program, the output (the value the
program calculates) is the area. The input (the values on which the output depends) consists
of length and width. The program description does not specify whether these should be
integer or real; we choose to make them real so the program can handle lengths and widths
which have fractional parts (such as 3.25). We can write this preliminary variable list:

Input:

Output:

Length

Width

Area

Real

Real

Real

Length of rectangle

Width of rectangle

Area of rectangle

Along with planning the data, we begin our plan for the program. If we were calculating the
area of a single rectangle, we might list this sequence of steps:

ask the user to enter a length and a width
read values for Length and Width variables
calculate the value for the Area variable (Length times Width)
print the value of the Area variable

Because we are to write a program that handles many rectangles, we realize we will need a
loop structure. The program must repeat the four steps listed a number of times.

As with all the loops we will write, we must decide on how to terminate the loop.
Although there are a number of possible ways to achieve this loop control, we concentrate
on one specific technique for the early part of this text. This technique consists of asking the
user to supply some special value as input, to signal that there are no Qtore rectangles to be
processed. For example, we might use a value of 0 for the Length variable as a signal that
the repetition should cease. This special value is referred to by many names, including
sentinel, terminal value, dummy value, trailer value, and terminating value. We gener
ally describe the value as a terminating value.

Unless the user is told that a length of 0 will terminate the process, the user will not
know what to do to stop the program. We, therefore, print some instructions to notify the
user of this fact. This step occurs once, at the very beginning of the program.

This discussion leads to the following refined variable list and design.

1-3 PLANNING AND WRITING LOOPING PROGRAMS (PART 1) 19

Note. We have added a constant named EndOIData to our list. This constant is
used as part of the loop control.

Strictly speaking, we now have a constant and variable list. However, we use the
simple term "variable list" throughout the text.

Constant: EndOIData Value 0, used to terminate loop

Input: Length Real Length of rectangle

Width Real Width of rectangle

Output: Area Real Area of rectangle

print instructions
repeat these steps until the user enters 0 for the Length:

ask the user to enter a length and a width
read Length, Width values
calculate Area value (Length times Width)
print Area value

As we see in the next section, this algorithm, together with the variable list and some
knowledge of Pascal looping mechanisms, is detailed enough to allow us to write the pro
gram.

Writing the Looping Program

The program whose plan we have just developed is typical of many programs. We may
indicate the pattern as follows:

print instructions
repeat these steps until the user enters the terminating value:

"prompt" the user to supply input
read the input values
perform calculations
print answers

In this section, we continue our example by writing the desired Pascal program. The meth
ods we use apply to any program that follows this pattern.

There are other ways that this same general plan could be realized as a Pascal pro
gram. In Chapter 3, we analyze all the possible looping structures in some detail. For now,
however, we concentrate on learning one possible way to write the program.

The complete program is given in Figure 1-3. As before, the line numbers to the left
are for reference; they are not part of the program.

To write a program such as this, we need to know the following about Pascal:

1. The general program layout

2. How to declare constants and variables

3. How to print (messages, values of variables)

4. How to read values for variables

20 GETTING STARTED CHAP. 1

S. How to perform calculations

6. How to write loops, including loop control

The first five in the list were introduced in the last section. We provide a quick review based
on the program in Figure 1-3.

Lines 1, 14, and 31 form the basic program layout. Line 1 names the program.
Between lines 1 and 14 are the declarations (and some comments), and between lines 14 and
31 are the statements to be performed by the program.

Lines 6 and 7 define the constant EndOIData, with a value of 0. Lines 9 to 12 declare
(and comment on) the variables the program uses.

Lines 15 to 18 use Writeln to print a series of lines as instructions to the user. Lines 21
and 22 issue the prompt, requesting input. Line 21 prints a blank line, thus separating the
prompt from the previous answer. Line 22 prints the actual prompt, staying on the same line
to wait for user input.

Line 23 reads the values the user entered. The area is calculated in line 26 and printed
by line 27. Line 27 is worth examining a little closer. As we described in the last section,
Writeln can be used to print any constants, expressions, or variables. The message enclosed
in apostrophes is printed verbatim, and the current value of the Area variable is printed.
Another possibility would have been to write

Writeln (Area, ' is the area of the rectangle.')

printing first the value and then the message of explanation.

Note. We generally include a blank space within a message to separate it from any
variable value being printed. For example, consider the blank just before the word "is" in
the example just given and the one just after the word "is" in line 27 of the sample program.
Another example appears in line 22, where the blank space provides a separation between
the colon and the data the user will enter.

Lines 20, 24, 25, 28, and 29, which are in italics, provide the looping and the loop
control. Lines 20 and 29 form the skeleton of a repeat-until loop. The form is

repeat
list of steps to be repeated

until condition

In our example, we want to repeat lines 21 to 28 until the user inputs a length of 0 (that is,
EndOIData).

There is a slight subtlety here, however. When we wrote the plan, we surely did not
intend the program to calculate and print the area after the user indicated he was done (by
entering a length of 0). Although we did not say so explicitly, it was clear that those two
steps should only be done when the user inputs an actual rectangle's length and width. In a
program, however, we must explicitly make sure that this is what happens. This is what
lines 24 to 28 accomplish. They say, in essence,

"If the user entered an actual length and width value, then calculate and print the area
of that rectangle."

1-3 PLANNING AND WRITING LOOPING PROGRAMS {PART 1) 21

1) program Rectangles;

2)

3) {Written by: XXXXXXXXX XX/XX/XX}

4) {Purpose: To calculate the areas of rectangles}

5)

6) const

7) EndOfData O; {used to terminate loop}

8)

9) var
10)

11)

12)

13)

Length: real;

Width: real;

Area: real;

14) begin

{length of rectangle, input}

{width of rectangle, input}

{area of rectangle, calculated}

15) Writeln(' This program calculates areas of rectangles. You');

16) Writeln('supply the length and width when asked, separated by');

17) Writeln('a space. To stop the process, enter a length of 0,');

18) Writeln('along with any value for the width.');

19)

20) repeat
21) Writeln;

22) Write('Enter length and width: ');

23) Readln(Length, Width);

24) if Length <> EndOfData then

25) begin

26) Area := Length * Width;

27) Writeln('The area is ' Area)

28) end

29) until Length = EndOfData

30)

31) end.

Figure 1-3 A looping program.

More precisely, they say,

"If the Length variable's value is not equal to 0 (EndOfData), then do these two steps:
calculate the area, print the area."

The if statement's form is

if condition then

begin

steps to be done if condition is true

end

Notice (line 24) that"<>" means "not equal to" in a condition. As with":='', this is a double
symbol, so no blank is allowed between the"<" and the">".

This completes our description of the sample program. In the next section, we discuss
what happens when the program is run. Before we quit, however, we want to discuss two
topics briefly: indentation and semicolons.

22 GETTING STARTED CHAP. 1

Pascal programs are free-form. Any division into individual lines, and any indentation
or spacing patterns, are optional. However, a judicious use of blank space and indentation
can improve a program's readability. THINK Pascal automatically employs several format
ting features, some that are fixed, and some that you can change. For those formatting
options which can be changed, we stick with the defaults, that is, the settings you have
when you first invoke THINK Pascal. Among other conventions used to improve program
readability, THINK:

•displays key words in bold (lines 1, 6, 9, 14, 20, 24, 25, 28, 29 and 31)

•indents the lines between the begin and end that bracket the body of the program (lines
15to31)

•indent the steps that are repeated in a loop (lines 21 to 28)

• indents the steps inside an if statement (lines 24 to 28)

•uses blank spaces to improve readability (around the "<>" in line 24, the ":=" and "*"
in line 26, and the "=" in line 29)

We also do some formatting ourselves. In particular, we usually place blank lines before and
after loops (lines 19 and 30), and arrange comments so they are easy to find and read (lines
3, 4, 7, 10, 11, and 12).

One thing that frequently bothers beginning Pascal programmers is the placement of
semicolons. Within the declarations, the rules are fairly rigid and not too difficult. Within
the body of the program, they can cause more difficulty. We have more to say about this
later. For now, notice that semicolons are used between steps. For example, consider the if
statement form:

if condition then

begin

steps to be done if the condition is true
end

Semicolons are used between the steps to be done if the condition is true. If there are
10 steps, there will be 9 semicolons; if 2 steps, then 1 semicolon. In the sample program, a
semicolon separates the two steps on lines 26 and 27 within the if statement.

Likewise, in the sample program, the steps within the repeat-until loop are separated
by semicolons. There are five steps-the two Writelns, two Readlns, and the if. (The entire
if is considered to be one step of the loop body.) Thus there are four semicolons, at the ends
of lines 21, 22, 23, and 26.

Similarly, the entire body of the program contains five steps-four Writelns and the
repeat-until loop. There are, therefore, four semicolons (lines 15, 16, 17, and 18).

Keep in mind that semicolons go between statements and that such words as repeat, if,
begin, and end are not (by themselves) statements.

DPT

The sample program suggests two possible pitfalls. The first relates to the use of the if
statement in the program. As indicated in the previous discussion, we do not want to do the
calculations and print the answer for the user's terminating entry. The purpose of the dummy
entry is to say, "I'm finished." In the type of program illustrated by the example, we always

1-3 PLANNING AND WRITING LOOPING PROGRAMS (PART 1) 23

have an if statement whose meaning is, "If the user did not enter the dummy value, then
perfonn the calculations and print the answers."

What happens if we forget this? The program calculates and prints a meaningless
answer for the terminating value. Although this is not as serious as some errors, we should
try to write our programs to do exactly what they are supposed to do.

The second possible pitfall relates to the use of semicolons. This issue is explored in
much more detail later. For now, we simply advise you to be careful. In writing programs
that use the sample program as a guide, use the placement of semicolons in the example to
guide you.

REVIEW

24

Terms and Concepts

decision
default
design
dummy value
functions
loop control
loops
modules
procedures
program structure
refinement

Four Program Structures

sequence

loop

decision

repeat-until structure
sentinel
sequence
specification
submodules
subprograms
syntax rules
terminal value
terminating value
trailer value

subprogram (module, submodule, function, procedure)

Pascal Statements
repeat

steps to be repeated
until con di ti on

if condition then

begin

steps to be done if condition is true
end

General Plan for Sample Program (and Similar Programs)

print instructions
repeat these steps until the user enters a terminating value:

prompt the user to supply input
read the input values
perform calculations
print answers

GETTING STARTED CHAP. 1

General Program Form for Sample Program (and Similar Programs).
Italicized portions are those that depend on the specific program.

EXERCISES

program name;
declarations

begin
Writeln(instructions);
Writeln(more instructions);

repeat
Writeln;
Writeln(prompt);
Readln(input variables);
if not the terminating value then

begin
calculate;
Writeln(answers)

end
until terminating value

end.

1. By following the example given in this section, and by using the typical algorithm and program
form just given in the Review, write programs for the following. You should make a variable
list, decide on an appropriate terminating value to terminate the loop, write an algorithm, and
finally write the program.

(a) The area of a square can be found by multiplying the length of a side by itself (side x
side). Write a program to find the areas of squares.

(b) The perimeter of a square is four times the length of the side. Write a program to find the
perimeters of squares.

(c) Write a program that repeatedly reads two real numbers. For each pair of real numbers it
reads, it should calculate and print their sum.

2. What changes would you make to the program in Exercise l(c) in order to find the difference
rather than the sum?

3. What changes would you make to the program in Exercise l(c) if the numbers were integers
rather than real numbers?

1-4 PLANNING AND WRITING LOOPING PROGRAMS (PART 2)

We now discuss the execution of the program shown in Figure 1-3. In Figure 1-4, we show
the results of running the program. The printout in the figure begins with the output the
program produces.

1-4 PLANNING AND WRITING LOOPING PROGRAMS (PART 2) 25

Note. Before running the program, select the text window (by selecting Text in the
Window menu) and make it about as large as the screen. This will make it easier to see the
program's output. There is a way to have your program automatically size and show the text
window. Since it relies on Pascal features we explore in Chapter 2, we discuss it there.

Running the Program

In Figure 1-4, the underlined portions indicate what the user typed when the program ran.
All other portions the program itself generated. Throughout the text, when we illustrate a
sample run of a program, we will do the same thing; underlining will indicate user input.

This program calculates areas of rectangles. You

supply the length and width when asked, separated by

a space. To stop the process, enter a length of 0,
along with any value for the width.

Enter length and width: !_,_Q 2..:.Q_

The area is 2.0e+l

Enter length and width: ~ .£..:_Q

The area is 5.0e+O

Enter length and width: 0.05 0.05

The area is 2.5e-3

Enter length and width: 0.001 0.001

The area is l.Oe-6

Enter length and width: 175.72 39.045

The area is 6.9e+3

Enter length and width: 1000.0 1000.0
The area is l.Oe+6

Enter length and width: -5.0 -4.0

The area is 2.0e+l

Enter length and width: 10 15

The area is l.5e+2

Enter length and width: !
5

The area is 2.0e+l

Enter length and width: 7 8

The area is 5.6e+l

Enter length and width: 0 0

Figure 1-4 Sample input and output.

26 GETTING STARTED CHAP. 1

The four Writeln statements in the program caused four lines of instructions to be
printed. This was followed by the prompt (a blank line, then the message "Enter length and
width:"). The computer then waited for the desired input to be supplied on the same line by
the person running the program. When the user hit the "Return" key to indicate the end of
the line of input, the two numbers 4.0 and 5.0 were read into the variables Length and
Width, respectively.

The computer next checked the Length variable. Since its value was not 0, the Area
value was calculated and printed. Notice that the answer is printed in the exponential nota
tion 2.0e+l. As was explained in Section 1-2, this means 2.0 times 10 to the power 1, or
20.0.

Note. In Section 2-4, we discuss how to exercise some control over the exact form
in which the answers appear. This allows us to display output in a more familiar form, rather
than the exponential form shown in Figure 1-4.

The prompt, input, calculate, and print cycle was repeated a number of times, as
illustrated in the figure. The last five input lines are of particular interest. They illustrate the
following points:

1. The program was not designed to detect erroneous input, so the data line "-5.0 -4.0"
was accepted. In future sections, we learn how to write more sophisticated programs
that do not allow erroneous data to be processed.

2. We may supply whole-number values when the program is reading real variables.

3. We may put more than one blank space between the numbers.

4. If we only enter one number on a line when the program is reading two variables, it
continues to wait for further input.

5. The last data line contains the terminating value of 0. Because the program is reading
two variables, we had to supply a value for both the Length and Width. Because the
Length is 0, the calculation and print of the Area did not occur, the loop terminated,
and the program was finished.

What Can Go Wrong

Unfortunately, any human endeavor is subject to errors. In computer programs, these errors
are frequently called bugs, and removing them from your program is called debugging. The
programming process includes a number of techniques whose goal is to eliminate errors.
The DPT (Defensive Programming Tips) sections throughout the text provide guidelines for
avoiding common bugs and for removing those that do occur.

The compiler itself can be a useful tool in uncovering certain types of bugs. It is
especially valuable for the type of error that is caused by a typing mistake or by a lack of
familiarity with the programming language. For example, the following list shows some
possible errors in the rectangles program. For each, it shows the error message THINK
Pascal generated.

1-4 PLANNING AND WRITING LOOPING PROGRAMS (PART 2) 27

omit semicolon line 16

omit right parenthesis, end of line 27

write Area = Length * Width, line 26

misspell "until" on line 30

omit left parenthesis in line 27

< > rather than <> on line 24

spell "Area" on line 26 as "Ara"

Semicolon (;) or END expected after the
previous statement

This doesn't make sense.

This doesn't make sense as a statement.

This doesn't make sense.

This doesn't make sense.

This doesn't make sense.

"Ara" is not declared.

As you can see, sometimes the error message tells exactly what the error is, but sometimes it
does not. To fix the error, we might see if the error message does correctly describe the
problem. If not, we may need to review the Pascal rules to see what we did wrong. Some
times, the error will have occurred earlier in the program. For example, misspelling "Area"
in line 12 might cause an error message in line 26.

These errors are often called compile-time errors, compilation errors, or just com
pile errors (or sometimes "compiler errors," even though the problem is with the program,
not the compiler). Another class of errors is known as run-time errors. They are not caused
by violations of the language's syntax rules, but by some problem occurring when the
program is running.

For example, here are some errors that could occur as the rectangles program is
running:

The user entering a number that is too large

The user entering an invalid character when a number is being read

The product of the two numbers entered is too large

THINK Pascal will, when an error occurs, locate the portion of the program that was
running at the time. As with the compile-time errors, it may take some investigating to find
the error's exact cause.

Writing programs fully protected from errors in user input requires a sophistication
generally beyond the scope of a first course. However, we can (and will) write programs
that avoid other common run-time errors, such as division by zero.

A third type of error is sometimes called a logic error. The computer does not indi
cate that anything went wrong, but the program is nonetheless incorrect. As a simple exam
ple, replacing the "*" in line 26 with a "+" could not be detected by the compiler. We would
detect it when we observed the incorrect answers.

Program Testing

Testing a program begins, at least informally, as soon as planning is begun. As we design the
algorithm, we are probably thinking about how the algorithm will perform with some sam
ple input. For complex programs, we may write down some input data to help guide our
plans.

In addition, there are several types of more formal testing we may perform as we
develop the program. First, we may hand-trace either the design or the program, using

28 GETIING STARTED CHAP. 1

some sample data. This involves "playing computer," tracing the actions the computer will
perform, step by step. For example, we might step through the algorithm or program for the
rectangles example using input data lines of "2.5 4.0" and "0.0 0.0". This hand-tracing
process can be done before running the program to detect errors in our planning process.

A second type of testing uses the compiler as a tool. This involves running the pro
gram and fixing the compile-time errors that may be present.

Eventually, we get all the syntax errors fixed and get a "clean compilation." If we are
very careful typists, we might even get a clean compilation the first time we run the pro
gram. In addition, we may not have any obvious run-time errors. At this point, we must
avoid the tendency to think that we are done. We still need to test the program for any
remaining bugs.

There are two general types of bugs that we hope to detect by doing this testing. The
first involves an error in thinking about the algorithm, and the second involves erroneous
coding of the algorithm into Pascal. In an attempt to uncover these errors, we run the
program with a variety of input data, and we examine the answers carefully to see if they
are correct.

The only way to test a program thoroughly would be to run it with every possible
combination of input. However, this is impossible in practice. We must be satisfied with a
compromise-a carefully chosen sample of input data.

It is difficult to say what constitutes adequate testing, especially for a complex pro
gram, where bugs are sometimes discovered months or years after a program has been
pronounced correct. However, we can give some general guidelines.

In testing the sample program, we used data that illustrate a few of the principles
involved. First, we included some input for which the answers could easily be verified by
doing the calculations in our head. If the program contained an error, such as adding the
length and width rather than multiplying them, these input lines would have allowed us to
detect the error quickly. However, not all the data were of this form. Some of the input
included some more realistic values, such as 175.72 and 39.045. We did, however, use a
calculator to make sure that the answers for these input lines were also correct.

A second principle illustrated by the sample test data concerns boundary conditions.
The length and width could be any number from just slightly greater than zero on up. We
included data very close to the lower limit, or boundary, for the input. In fact, we included
both 0.05 and 0.001 as test data. Although there was no stated upper limit for the length and
width, we did also check with some relatively large numbers (1000.0 for each). Experience
has shown that errors are more likely to occur for data near boundaries, so these tests may
be among the most important that we do. (However, not all our tests should be boundary
tests. We should also include some data that are between the boundaries. In our sample test
run, we had a number of values between the very small and the very large.)

A third principle concerns "bad" data, that is, data we do not expect the program to
process correctly, but still might encounter. In this example, we entered negative numbers
for the length and width. Since the program was not designed to detect negative values, we
got a wrong answer. In later programs, where the program is supposed to detect such errors
and print warning messages about them, this type of testing becomes very important.

There are a number of other important testing principles that we introduce later in the
text when we write programs for which the principles become pertinent. For now, we can
summarize the three ideas we have presented:

1-4 PLANNING AND WRITING LOOPING PROGRAMS (PART 2) 29

1. Check all answers. Include some data that are easy to check.

2. Test near boundaries; also test a random sampling away from the boundaries.

3. Include some erroneous input, especially if the program is designed to detect and warn
about such errors.

The THINK Pascal environment contains a number of tools and options to help you
detect compile-time and run-time errors. Most of these features are found in the Debug
menu. We list a few of the more immediately useful features here for your reference;
detailed information about these features and information about more advanced THINK
Pascal debugging aids can be found in the THINK Pascal User Manual.

•By selecting the Observe option, you can see the Observe window, in which are
printed the values that variables and expressions take on as your program executes.
You can call up the Observe window any time the program stops-including when it
stops because of a run-time error. Looking at variables' values when a program aborts
is often very helpful in finding and fixing bugs.

•The Step Into and Step Over options allow you to execute your program one statement
at a time, stopping after each statement. You can watch the Observe window as you
step through the program to see how variables' values change-this approach can
often let you see exactly where your program went wrong.

• The Stop Signs option lets you place a pause in your program, so you can execute all
the statements to a given point and then stop. You can look at the Observe window,
perhaps do other forms of checking, and then continue the program with the Go or
Run command.

•You can also enter expressions into the right half of the Observe window, and THINK
Pascal will evaluate them (if they are valid at this point in the program) or print a short
error message (if they are not). This feature allows you to manipulate variables to help
you determine the condition that caused a program to abort or to produce incorrect
output.

•The Instant window, which you can access by selecting the Instant selection, allows
you to enter THINK Pascal statements and execute them immediately (by clicking on
the Do It button). You can execute virtually any statement which would be legal at the
point the program was stopped, even if the program was stopped because of a run-time
error. You can use the Instant window to try out bug fixes to be sure they do actually
fix the bug before making the code a part of your program.

Case Study No. 1

To conclude this section, we develop another example similar to the one developed in the
previous section. We expand this case study in later sections.

Statement of Problem. A class instructor needs a program to calculate the total of
the scores on three tests for each of his students. The student's name should be printed along
with the score.

Preliminary Analysis. In order to output the student's name, the program has to
obtain the name from the instructor (the user) as the program is run. The other input consists

30 GETTING STARTED CHAP. 1

of the three test scores. Output contains the student's name and the total of the three scores.
(Note: Having the name with the total on the output is especially useful if the program
produces a printed copy of the output.)

Algorithm and Variables List. Based on the preliminary analysis, we can develop
this list of variables (and one constant):

Constant:

Input: Name

Scorel

Score2

Score3

Output: Total

EndOtData

String[20]

Integer

Integer

Integer

Integer

Value ", indicates end of input

Student name, also printed

Test scores

Total of 3 scores

Recall that the string[20] variable type signifies a string of characters of maximum length
20. The EndOtData constant " can be matched by the user by just pressing the Return key
when prompted for a name.

The algorithm involves a loop of the same general form as that in the previous exam
ple: obtain input, calculate answers, and print answers. We choose to ask for the student's
name first, then for the three test grades.

Note. In general, we avoid entering character or string values on the same input
line as numerical data. In the conversational programs we are writing, obtaining a few data
at a time is a good idea. In addition, there are subtleties involved in mixing numeric and
nonnumeric data on the same line. We choose not to get bogged down in these subtleties
now.

To terminate the looping process, the user is asked to enter an empty name. In some of
our previous programs, we told the user to press Return to terminate the program, so it did
not return to THINK Pascal before the user had a chance to read the output. Here, though,
the name prompt serves the same purpose: the output remains on the screen until an empty
name is provided. So, for this program, we don't need a special termination message.

This planning leads to the following algorithm. (Steps marked (*) are not done if the
user enters an empty name.)

print instructions
repeat the following until the user inputs an empty name:

prompt for the name
read Name
prompt for the three scores (*)
read Scorel, Score2, Score3 (*)
calculate Total (*)
print Name and Total with a message (*)

Compare this algorithm to the algorithm for the areas of rectangles. You see that it is
almost identical in form. The only difference is that the reading of the name is separated
from the reading of the scores. This general form of algorithm is frequently appropriate for
the types of programs written in the early chapters of the text.

1-4 PLANNING AND WRITING LOOPING PROGRAMS (PART 2) 31

Test Plan. At this point, we might pause to plan our testing strategy. Recalling the
discussion earlier in this section, we might include the following types of tests for the three
scores (we are assuming that valid test scores are in the range from 0 to 100). It may be a
good idea to jot down the expected result for each test, as shown here.

Easy to check: 70, 70, 70 : 210

50, 100,50 : 200

More realistic: 87,94, 78 : 259

68,92, 75 : 235

Boundaries: 0,0,0 0

100, 100, 100 300 (program does not

-1, -5, -10 -16 check for bad data)

101,101,101 303

As we gain more sophistication in our testing, we will discover some other tests that
might be important here. Notice that we have, for instance, included some bad data (101 and
-1) right on the boundary between data values that produce correct and incorrect results.

In addition to these specific tests, we would include some randomly chosen input
lines.

Write Program. We now write the program, which is shown in finished form in
Figure 1-5. Again, we have numbered the program lines for reference.

The following paragraphs contain brief notes on how we translated our plan into
THINK Pascal.

1. Lines 3 to 5 form the header comments for the program, explaining what the
program does and listing information about the authorship.

2. Lines 17, 31 to 32, and 4 7 also contain comments. This is the first instance of a
program that uses this type of comment; they are sometimes called section comments,
because they appear at the beginning of important sections of the program. They lead the
reader to a quick understanding of the section's purpose and actions.

In this program, there are three major portions: the loop body, the steps performed
before the loop, and the steps performed after the loop. We have, therefore, inserted brief
comments before each of these three portions. The comments not only help someone read
ing our program to understand it, but help us understand it when we come back to it after a
period of time. Section comments, in addition to the header comments, provide a valuable
piece of documentation for any program.

In order to make them stand out, we always surround section comments by blank
lines. In general, judicious use of white space (blank lines) makes the program easier to
read.

In this text, we consistently utilize section comments. Early in the text, they are
directed partially to the reader of the book, sometimes explaining some Pascal or program-

32 GETIING STARTED CHAP. 1

ming features. Later, they are directed primarily to the reader of the program and may be
briefer.

3. Lines 1, 15, and 49 form the basic structure of the program. They are similar to the
previous program.

4. Lines 7 to 13 contain the constant and variable declarations, based directly on the
variable list. For each, we have provided a brief comment.

5. The algorithm step, "print instructions," generates lines 19 to 29. Notice that, in
line 20, in order to print the word "student's," which includes an apostrophe, we must add a
second apostrophe.

6. The repeat step in the algorithm leads to several things in the program. First, lines
34 and 45 form a Pascal repeat-until loop, used to accomplish the repetition. In addition, we
must remember that we do not want to do the steps following reading the name if the user
has entered an empty name. Thus, we also include the if statement beginning in line 38. This
if statement automatically includes the begin in line 39 and the end in line 44.

In THINK Pascal, a blank name would not be considered the same as an empty name;
the user must hit return without typing any characters to terminate the loop.

7. The prompt asking for the name results in lines 35 and 36. We include a Writeln to
print a blank line before the prompt.

8. The step "Read Name" results in line 37.

9. The prompt asking for three scores is in line 40. Line 41 reads the three scores, and
line 42 calculates the Total. The next section has more details on the Pascal assignment
statement.

10. "Print Name and Total with a message" generates line 43. Notice that we print a
message, then the Total variable, then another brief message, and then the Name variable.
The resulting printed line reads like a sentence. Notice also the extra spaces around the word
"for" to separate it from the total and from the name.

Run Program. The results of a short sample run are given in Figure 1-6. Only a
portion of the actual run is shown. The total run tested all the planned test items (from step 4
before), along with some other randomly chosen input. Notice that the word "student's" is
printed by the program with just the one apostrophe.

DPT

1. The entire section on Program Testing can be viewed as a defensive programming
tip. In particular, hand tracing an algorithm or program can uncover a logic error in a
fraction of the amount of time it takes to find it after running the program.

2. Comments aid in making a program understandable. They do, however, introduce a
pitfall. If we forget the closing bracket("}") to end the comment, the compiler ignores parts
of the program. This can cause error messages seemingly unrelated to the actual mistake.

3. The begin in line 39 and the end in line 44 of the Case Study program (Figure 1-5)
are mandatory.

1-4 PLANNING AND WRITING LOOPING PROGRAMS (PART 2) 33

1) program TestScores;
2)

3) {Written by: XXXXXXXXX XX/XX/XX}
4) {Purpose: To calculate the total on three tests, and}

5) print that total with the student 's name}

6)
7) const

8)
9)

EndOfData ''; {empty string to terminate input}

10) var
11)
12)

13)

14)

Name: string[20J;
Scorel, Score2, Score3: integer;
Total: integer;

{student name, input}

{three test scores, input}
{total of test scores, calculated}

15) begin {TestScores}
16)

17) {*** Before the loop, print instructions}

18)

19) Writeln('This program totals test scores. For each');

20) Writeln('student you will be asked to enter the student''s');

21) Writeln('name. You may use up to 20 characters for the');

22) Writeln{'name when you type it in. After that, you will');

23) Writeln('be asked to type in the three test scores, in the');

24) Writeln('range from 0 to 100. Enter these all on one line,');

25) Writeln('separated by blank spaces.');

26) Writeln(' The program will then print the name and the');

27) Writeln('total score, and repeat the whole process. When');

28) Writeln('you wish to terminate the program, just tap the');

29) Writeln('return key when asked for the name.');
30)

31) {***In the loop, read name, scores; calculate and print total;}

32) quit when user enters empty name}
33)

34) repeat

35) Writeln;

36) Write('Enter the name (just tap return to quit): ');
37) Readln(Name);

38) if Name <> EndOfData then
39) begin

Write('Now enter the three scores: ');
Readln(Scorel, Score2, Score3);

40)
41)

42)

43)
Total := Scorel + Score2 + Score3;
Writeln('The total is', Total, ' for' Name)

44) end

45) until Name = EndOfData;
46)

47) {*** After the loop, stop the program}
48)

49) end.

Figure 1-5 A looping program with instructions.

34 GETTING STARTED CHAP. 1

This program totals test scores. For each

student you will be asked to enter the student's
name. You may use up to 20 characters for the

name when you type it in. After that, you will

be asked to type in the three test scores, in the
range from O to 100. Enter these all on one line,

separated by blank spaces.

The program will then print the name and the

total score, and repeat the whole process. When

you wish to terminate the program, just tap the

return key when asked for the name.

Enter the name (just tap return to quit): John Jones
Now enter the three scores: 70 70 70

The total is 210 for John Jones

Enter the name (just tap return to quit): Sue Smith

Now enter the three scores: 50 100 50 ----
The total is 200 for Sue Smith

Enter the name (just tap return to quit) : A. B. Simpson

Now enter the three scores: 70 100 89 ----
The total is 259 for A. B. Simpson

Enter the name {just tap return to quit):

Figure 1-6 Sample input and output.

REVIEW

Terms and concepts

boundary conditions
bugs
compile-time errors
debugging
hand-trace

Program testing

THREE PHASES

1. Hand-tracing the algorithm

2. Removing syntax errors

3. Running the program with test data

TEST DATA

logic error
run-time errors
section comments
white space

1. Some easy to check (but all should be checked, perhaps using a calculator)

2. Test near boundaries and away from boundaries

3. Test bad data

REVIEW 35

EXERCISES

36

1. Enter and run the first sample program (Figure 1-3).

2. Using the program from Exercise 1, experiment with compile-time and run-time errors; some
suggestions:
(a) Make changes, such as misspellings, and notice the error messages generated. Include

omitting the "}" at the close of some comments.
(b) Change the "*" to a "f' and enter a width of 0 to obtain a "division by O" run-time error.
(c) Enter inappropriate data (such as words) for the length or width.
(d) Enter extremely large numbers for length and width.

3. Enter and run the second sample program (Figure 1-5).

4. Enter and run the programs for Exercise 1 of Section 1-3.

5. Determine an appropriate set of test data for each of the programs from Exercise 1 of Section
1-3. Be sure to include some that are easy to check, some that are near any boundaries, some
not near the boundaries, and some bad data (if applicable).

6. By following the method used in Case Study No. 1, write programs to perform the following
tasks:
(a) The perimeter of a triangle is the sum of its three sides. Write a program to find the

perimeters of triangles.
(b) The distance traveled in miles is the product of the speed in miles per hour and the number

of miles traveled. Write a program that reads in appropriate input, and calculates the dis
tance traveled, for a number of different inputs.

(c) Given a number that represents inches, we can compute the equivalent number of centime
ters by multiplying the number by (about) 2.54. Write a program that accepts from the user
inputs in inches and outputs the same measures in centimeters.

(d) Write a program that, for each employee in a company, accepts as input the employee's
name, hours worked this week, and hourly wage, and prints that employee's name and
weekly pay. The weekly pay is the product of the number of hours the employee worked
and that employee's hourly wage.

(e) Write a program that determines the amount of money each customer of a company owes,
based on this rule: the new amount owed is 1.015 times the old amount owed. The
program accepts as input each customer's name and old amount and prints out that infor
mation, along with the customer's new amount owed.

7. Tell how to modify the first example (Figure 1-3) so that, just before it stops, it prints "Enjoy
the day!" preceded by a blank line.

8. Tell how to modify the first example (Figure 1-3) to read the user's name at the beginning of
the run, then print the message "Enjoy the day," and followed by the user's name. (For instance,
if the user is Dana, print "Enjoy the day, Dana".)

9. Tell how to modify the second example (Figure 1-5) to read the date as a string of characters
and print it out prior to obtaining the lists of names and grades. (Just print out the data exactly
as the user enters them.)

GETTING STARTED CHAP. 1

2 Fundamentals of Pascal
Program Design

OBJECTIVES

Chapter 1 introduced sufficient information about writing programs and the TiilNK Pascal
programming language to enable you to write some short programs (which. hopefully, you
have done by now). In this chapter, we build on this foundation by discussing program
design and Pascal in more detail. After completing this chapter, you will be able to:

•add to your knowledge of the four building blocks of program structure: sequencing,
looping, decisions, and subprograms

•use more complex assignment statements

• use complex arithmetic and conditional expressions

•understand why using procedures and functions is recommended in programming

•use several of Pascal's predefined procedures and functions in your programs

• define your own procedures and functions

• improve the format of your program output, both to the screen and to the printer
•employ more complex decision structures in your programs

•perform more in-depth testing of your programs

2-1 THE ASSIGNMENT STATEMENT

We begin our study by providing a more complete description of the assignment statement
than that of the previous chapter.

Recall that the assignment statement assigns values to variables. The form of the
statement is

variable := expression

37

where "variable" represents any Pascal variable name, and "expression" represents some
combination of variables, constants, and operations. The ":=" is called the assignment oper
ator. (Although made up of two symbols, ":" and "=", it is treated as if it were a single
symbol.)

The purpose of an assignment statement is to give a new value to a variable. Each
variable has a particular place in the computer memory where its value is stored, so the
effect of an assignment statement is to store a new value in that memory location. We say
that the new value is "assigned to the variable."

When the assignment statement is executed, there are two major events that occur, in
this order:

1. The expression on the right side of the assignment operator is evaluated. Because the
expression can be complicated, the evaluation process can involve several variables
and subexpressions. The current value of all variables is used in calculating the value
the expression represents.

2. The value obtained by evaluating the expression on the right side of the assignment
operator is assigned to (placed into) the variable on the left side of the assignment
operator.

In the remainder of this section, we first look at numeric assignment statements and
then at a few simple character and string assignments.

Numeric Assignment Statements

A numeric assignment statement is one for which the value on the right side of the
assignment operator is a number and the variable on the left side of the assignment operator
is a numeric type. For example, the following are numeric assignment statements (all vari
ables are real):

TaxRate . - O. 06
Balance .- Balance + 345.68
x := y
Price := 1.5 * Cost

The first example gives the variable "TaxRate" a value of 0.06. The second changes
the variable "Balance" by adding 345.68 to the previous value of "Balance". The third
copies the value of the variable "Y" to the variable "X", and the fourth gives the variable
"Price" the product of the variable "Cost" multiplied by 1.5. The variable "Y" in the third
example and the variable "Cost" in the fourth example are not changed by the execution of
the assignment statements. Only the variables on the left side have their values changed.

Note. The assignment operator ":= " is suggestive of a left-facing arrow, which
reminds us that values flow from right to left. There is no space between the colon and the
equals sign.

Precedence. As you may have noticed, the assignment statement appears some
what similar to an algebraic formula. For example, the formula

d =rt

38 FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2

tells us how to calculate the distanced for a given value of r (rate) and t (time). In a formula
such as this, just as in an assignment statement, the quantity on the left is the quantity that
we wish to calculate, using the formula or expression on the right. Our Pascal rendering of
this formula might be

D := R * T

or, more clearly,

Distance := Rate * Time

Formulas typically involve combinations of variables and constants using such operators as
addition, subtraction, multiplication, and division. For example, the familiar formula

F = (9/5)C + 32

(for determining the Fahrenheit temperature corresponding to a given Celsius reading)
involves division (9 divided by 5), multiplication, and addition. The inverse formula

C = (5/9) (F - 32)

involves division, subtraction, and multiplication. The formulas also introduce parentheses
to control the order in which the operations are to be performed. (In the last case, they
ensure that the quantity "F - 32" is evaluated before being multiplied by "5/9".)

The following rules are commonly used as conventions in determining the order of
operations in algebraic formulas.

1. A unary minus (as in "-5 + 6") is evaluated by acting upon the constant, variable, or
parenthetical group that immediately follows to the right of the minus sign.

2. Multiplication and division are performed before addition and subtraction, unless
parentheses force another sequence of evaluation. When multiplications or divisions
occur in a row, they are evaluated from left to right.

3. Addition and subtraction are then performed, again from left to right.

4. Within a parenthetical expression, the evaluation occurs according to these rules
(including this one).

The following is a set of examples that illustrates these rules:

3+4·7is31

(Multiplication takes precedence over addition.)

(3 + 4)7 is 49

(Parentheses force evaluation of addition first.)

-5 + 9 is 4
(The unary minus acts first.)

8/4 · 2 is 4
(Division and multiplication go from left to right.)

2-1 THE ASSIGNMENT STATEMENT 39

8/(4 · 2) is 1

(Parentheses force evaluation of multiplication first.)

7-4-2isl
(Subtractions go from left to right.)

7-(4-2)is5

(Parentheses force evaluation of right subtraction first.)

6 · (5 - (2 + 1)) is 12

(Innermost parentheses are evaluated first.)

The Pascal symbols for the arithmetic operators are:

+ addition

subtraction (and unary minus)

* multiplication

I division

Note (for the curious). There is no standard Pascal operator for exponentiation.
We discuss an alternative in Section 2-4.

In algebra, you may recall, a dot indicates multiplication, as in the formula

y=a · b

Later, you were allowed to drop the dot, writing

y= ab

Consider, however, the corresponding Pascal assignment statement

Y := AB

Because Pascal variable names can be (and are encouraged to be) more than one letter long,
we cannot be sure whether the right side refers to a single variable "AB" or to the variable
"A" multiplied by the variable "B". To clarify the situation, we must always include a
symbol for multiplication. For historical reasons, the asterisk symbol was chosen to repre
sent the multiplication operator in Pascal.

In algebra, we are accustomed to seeing fractions that have expressions for both
numerator and denominator; for example,

a+2b
c-3d

In Pascal, we use the slash(/) symbol for the division operator. Note that a naive translation
of the last formula into the Pascal assignment statement

40 FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2

Z := A + 2 * B I C - 3 * D

yields an erroneous result. The correct translation to Pascal is

Z := (A + 2 * B) I (C - 3 * D)

Note. The reason the first statement is incorrect is that, without the parentheses, the
subexpression 2 * B I C is calculated before the addition and subtraction. For example,
suppose the variables A, B, C, and D contain the values 4, 6, 8, and 2, respectively. The
correct value for z is

(4 + 2 * 6) I (8 - 3 * 2) =
(4 + 12) I (8 - 6) =

16/ 2 =
8

The incorrect assignment statement yields

4+2*6/8-3*2=
4+12/ 8-6 =

4 + 1.5 -6 =
5.5-6 =

--0.5

The precedence rules for the arithmetic operators of Pascal coincide with the algebraic
rules:

1. Unary minus(-) first

2. * and I next, left to right

3. + and - next, left to right

4. Parentheses can be used to group operations

Because the precedence rules in Pascal are the same as those for algebraic formulas, most
algebraic formulas can be rewritten as Pascal assignment statements with little difficulty. We
must, however, remember to use the asterisk (*) for multiplication and the slash (/) for
division, and to group numerator and denominator expressions with parentheses.

The following illustrates the correspondence between algebraic formulas and Pascal
assignment statements:

ALGEBRAIC FORMULA

y=x+t

x=2y
x =ylz+ r

y=ax+b

a =x(t+ w)

PASCAL ASSIGNMENT STATEMENT

Y := X + T

x := 2 * y

X:=Y/Z+R

Y:=A*X+B

A:=X*(T+W)

2-1 THE ASSIGNMENT STATEMENT 41

Note. It is permissible to add extra parentheses to an expression in order to empha
size the meaning of subexpressions. For example, we can write

Y := (B * A) I C

instead of the equivalent

Y := B * A I C

if we wish to emphasize that the multiplication comes before the division. Similarly, we can
write

Y := (40 * R) + (1.5 * R * T)

· if we wish, although no parentheses are required to obtain the desired precedence.

Real and Integer Expressions. In the examples just given, we have usually
been assuming that all variables are real. As mentioned earlier, Pascal does make a distinc
tion between integer and real quantities. Some implications of this are discussed in detail in
Section 2-4. However, a brief discussion is in order here.

Fortunately, Pascal's way of handling expressions is what we would normally expect.
For example:

2.5 + 7 is 9.5

(Adding a real to an integer is allowed.)

5 * 6.43 is 32.15

(Multiplication (and division or subtraction) is also allowed.)

5 I 2 is 2.5

(Dividing two integers gives just what we expect here.)

4 I 2 is 2.0

(The answer from the division operator"/" is always real.)

Only the last example may be somewhat unexpected.
In general, then, we can write our assignment statements in a completely natural way.

For example, if the Price of an item is a real and the Quantity purchased is an integer, an
assignment

Totalcost := Price * Quantity

is acceptable (TotalCost is real).
There is one important restriction to note. We cannot assign a real expression to an

integer variable. For example, suppose we know that a real number R is evenly divisible by
10. If N is an integer, an assignment such as

N := R I 10

would still generate a type mismatch compile-time error because "/" always returns a
real result. Section 2-4 addresses this issue further.

42 FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2

DPT

For the most part, assignment statements in Pascal are straightforward. If we know what
formula or expression is needed to calculate a new value for a variable, we place the
expression to the right side of the assignment operator and the variable to the left. There are,
however, seven points that deserve special emphasis.

1. The main point to remember is that the assignment operator is written as ":=". A
common mistake made by those new to Pascal is to use the "=" alone as the assignment
operator. Another common mistake is to put space between the colon and the equals sign.
Fortunately, the Pascal compiler detects and reports any such erroneous symbol usage.

2. Multiplication cannot be implicit in an expression; it must always be made explicit
by use of the symbol "*". The compiler generally detects this error, but it might give a
misleading error message. For example, if we write

Y := AB

instead of

Y := A * B

the error message says that the identifier AB is unknown (because it is undeclared).

3. Extra parentheses may be needed to group numerators and denominators when
using the division symbol "/ ". The compiler does not detect a failure to do so and the
program yields incorrect results.

4. Using "/" to divide always yields a real value, and a real value cannot be assigned
to an integer variable.

5. Although the assignment statement is similar to an algebraic formula, it is not at all
similar to an algebraic equation. For example, an assignment statement similar to

K := K + 1

is commonly used in Pascal programs. The meaning of the statement is

(a) Evaluate the right side by taking the current value of the variable K and adding 1
to it.

(b) Change the value of the variable K to the value obtained on the right side. If we
translate the assignment statement into the algebraic equation

k=k+I

we obtain an unsolvable equation and a surprising equality if we attempt to solve
it (0 = 1).

6. A variable should never appear on the right side of an assignment statement until it
has been given a value. For example, if the variable K has not yet been given a value in a
Pascal program, then the statement

K := K + 1

2-1 THE ASSIGNMENT STATEMENT 43

will have an unpredictable result. The resulting value of K will not be under the control of
the programmer or the program. When you are reading through your Pascal code to check it
for correctness, ask for each instance of a variable that appears on the right side of an
assignment statement: "How did this variable receive its value?" In particular, look to see
that the variable has received a value via an earlier Readln statement, or by being on the left
side of an earlier assignment statement.

7. Be careful to avoid assignments that result in numeric overflow, that is, never let
the value to be assigned into the left-hand variable be larger in magnitude than the type of
the variable permits. This problem can occur with any numeric type, but is most common
with integers.

The integers in THINK range between -32768 to +32767. Suppose we had this series
of assignment statements (where I is an integer):

I .- 100
I . - I * I

I . - I * 5

After the first assignment, I will contain 100; after the second, 10,000; and after the third, I
does not contain 50,000. Because the last assignment results in a number that is too large to
be stored as an integer, integer overflow occurs. I contains the value -15,536! Notice that no
run-time error is generated; THINK cheerfully takes the value it finds in I after the overflow
occurred and uses it as if nothing unusual had happened.

Fortunately, you can tell THINK Pascal to check your program for overflow during
arithmetic operations that involve integers; to do so, you must turn on the "overflow"
option. One way to do this is to click on the V next to your program's name in the project
window. (Of course, you must add your program to the project for its name to appear in the
project window.) A box will appear around the V, indicating overflow checking is on for
that program. To tum overflow checking off, just click on the V again; the box will disap
pear. Enabling overflow checking instructs the THINK compiler to place additional code
into your program so that, when an overflow occurs, the program stops with a run-time
error. This extra code does cause the program's execution to slow down, so most program
mers turn overflow checking on while the program is being debugged, and turn it off when
the program is ready to use.

"Boxing" the V turns overflow checking on for the entire program, which is what we
usually want. Sometimes, though, we want to check just part of a program. If our program
only does integer arithmetic in one section, we might want to check for overflow only in
that section.

A way to check for overflow in part of a program is by placing the compiler directive
{ $V +} in the program at the point overflow checking is to begin and the directive { $V-} at
the point it is to end. (You can turn verification on again later in the program by issuing
another {$V+} directive.) Compiler directives are specific strings placed within curly
brackets that give instructions to THINK as it compiles the program. THINK knows these
specific strings are not comments because of the '$' symbol that begins them. Each should
be placed on its own line of the program. (You can do overflow checking for the entire
program by issuing { $V +} at the start of the program and { $V-} at its end. This use of $V
directives is equivalent to "boxing" the program's V option on the project window.)

44 FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2

We strongly recommend that you tum on the check for integer overflow in any pro
gram that includes integer arithmetic. We will assume that the V option has been turned on
in any example programs we give that contain integer arithmetic.

Character Assignment Statements

A variable of type char can have as its value any single character. Some of these characters
correspond to the characters that can be generated on the keyboard and printed on a printer.
The two most common ways to assign values to a char variable are by the use of a char
literal or by use of the built-in function Chr. If X and Y are char variables, we can also
assign the value of Y to X by use of the statement

x := y

A char literal consists of exactly one character enclosed between apostrophes. For example,
the statement

Letter := 'C'

assigns to the variable "Letter" the value of uppercase "C". In similar fashion, but less
obviously, the statement

Blank : = ' '

assigns to the variable Blank a single blank space. Note that the statement

Blank : = ''

does not have the desired effect because there is no blank space between apostrophes. In
fact, this generates a compile-time error.

If you want to represent the apostrophe as a char variable, type it twice in succession
as in the statement

Apostrophe:= '''';

The standard Pascal function "Chr" generates a char value from any of the numbers
from 0 to 255. The character set used on the computer determines the meaning of any
particular instance of this function; the Macintosh uses the ASCII (American Standard Code
for Information Interchange) character set (as do most microcomputers, and many other
kinds of computers). For instance, the value of Chr(67) is the uppercase letter "C" because
"C" has the ASCII code of 67. The assignment statement

Letter := Chr(67)

assigns the character 'C' to the variable Letter. (Appendix D contains a list of ASCII values
for characters.)

String Assignment Statements

In THINK Pascal, a variable of the type string has associated with it a maximum length that
is either (a) declared with it in the var section of the program or (b) assumed to be 255
characters, if no size is provided with its declaration. The most common ways to assign

2-1 THE ASSIGNMENT STATEMENT 45

values to a string variable are by using string literals or the concatenation operator. Other
string operations are discussed in Chapter 8.

A string literal consists of 0 or more characters enclosed between apostrophes. The
null string is denoted by " (two apostrophes next to each other) and means a string of no
characters. This particular string is also referred to as the empty string. Note that the string
literal consisting of one blank space, ' ', is not the same as the null string. Also note that a
string literal consisting of a single character is indistinguishable from a char literal. For
example, the expression

'c'

could represent either a string literal or a char literal. Another point to remember is that the
following two strings are different:

'The lazy fox'

'The lazy fox '

The latter string contains one more character (a blank space) than does the former string.
Suppose that the string variable ShortWord has a maximum size set to 4 (is declared

as string[4]) and that the following statement is executed:

ShortWord := 'longest'

In THINK, a run-time error occurs because 'longest' is 7 characters and ShortWord can
accommodate only 4. Suppose that for the same variable ShortWord, the following state
ment is executed:

ShortWord := 'is'

This does not have the same effect as does the statement

ShortWord := 'is

because the lengths of the two string literals in question are different. A string variable with
a maximum length 4 can contain a string of length 0, 1, 2, 3, or 4.

As in the case of char variables, if you want to include the apostrophe within the
string literal, use two consecutive apostrophes. For example, to assign the value "Wanda's"
to the string variable Whose, we would use the statement

Whose := 'Wanda' 's'

Concatenation is done in THINK Pascal by using the predefined concat function. We can
think of concatenation as the pasting together of two strings. For example, if First, Second,
and Third are strings of declared sizes 8, 6, and 7, respectively, then the execution of the
statements

First . - 'apple';

Second .- 's';

Third .- concat(First, Second)

would result in Third having the value 'apples'. First must be declared to be at least of size
5, and Second of at least size 1; Third can be of any size (up to 255). If the string 'apples' is
too large to fit into the space reserved for Third, it is truncated to fit-the rightmost
characters of apples are lost. For example, if Third were declared as string[3], it would
contain 'app' after the concatenation was done. Some other possible methods of placing the
value 'apples' in the variable Third are as follows:

46 FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2

METHOD ONE

First .- 'apple';
Third := concat(First, 's')

METHOD TWO

First := 'apple';
Second:= Chr(ll5);
Third := concat(First, Second)

METHOD THREE

Third := concat('apple', 's')

METHOD FOUR

Third := 'apples'

If concatenation yields a string value with a length greater than 255, then THINK
Pascal truncates the string to 255 characters.

Note. The relationship between variables of type char and string with respect to
the assignment statement is simply that variables of type char and strings of length 1 behave
similarly. Thus, we can assign a string to a char variable provided the length of the string is
exactly 1.

Examples

In Figures 2-1 and 2-2, we present complete Pascal programs that utilize numeric and string
assignment statements. In each case, the program reads lines of input until the value chosen
to denote end-of-data is read.

Note. In entering the strings in Figure 2-2, the user placed a blank prior to
"MORNING!" and "now". If she had not done so, the output would have appeared as
"GOODMORNING!" and "Goodbye fornow".

REVIEW

Terms and Concepts

ASCII
assignment operator (:=)
Chr
compiler directive
concatenation (+)
empty string
literal
null string

REVIEW

numeric assignment statement
precedence
truncation
+

*
I

47

program Volume;

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To compute the volume of cones}

const

EndOfData = O;
Pi = 3.1415927;

{Terminating value for Radius}

var

Radius: real; {Radius of Base of the cone}

Height: real; {Height of the cone}

Volume: real; {Volume of the cone}

begin {Volume}

{*** In loop, read Radius and Height, compute and print Volume}

repeat

Writeln;

Write('Enter the Radius: ');

Readln (Radius) ;

if Radius <> EndOfData then
begin

Write('Enter the Height: ');

Readln(Height);

Volume := Pi * (Radius * Radius) * Height I 3;

Writeln('The volume of the cone is: ',Volume)

end

until Radius = EndOfData

end.

SAMPLE INPUT AND OUTPUT

Enter the Radius: 3.7

Enter the Height: 10.85

The volume of the cone is: 1.6e+2

Enter the Radius: 34.6

Enter the Height: 2.3
The volume of the cone is: 2.9e+3

Enter the Radius: O

Figure 2-1 Numeric assignment.

48 FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2

program Join;

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To concatenate two strings}

const

EndOfData , '; {Terminating value for Pref ix}

var
Prefix: string[20];

Suffix: string[20];

Joined: string[40];

{First string}

{Second string}

{Joined strings}

begin {Join}

{*** In loop, read Prefix and Suffix}

repeat

Writeln;

Write('Enter the first string: ');

Readln(Prefix);

if Pref ix <> EndOfData then

begin

Write('Enter the second string: ');

Readln (Suffix) ;

Joined:= concat(Prefix, Suffix);

Writeln('The joined string is:

end
until Pref ix EndOfData

end.

SAMPLE INPUT AND OUTPUT

Enter the first string: GOOD

Enter the second string: MORNING!

The joined string is: GOOD MORNING!

Enter the first string: Goodbye for

Enter the second string: now.

The joined string is: Goodbye for now.

Enter the first string:

Figure 2-2 String assignment.

REVIEW

Joined)

49

Pascal Syntax

variable := expression

(One or more variables or constants are contained in "expression".)

50

POSSIBLE OPERATORS

1. For numbers: +, -, *,I

2. For strings: concat (concatenation)

ACTION

1. Evaluates expression using current values of variables

2. Assigns result to variable

PRECEDENCE

1. Unary minus

2. * and/, left to right

3. + and -, left to right

4. Parentheses can group

TRUNCATION

1. The results of string operations are truncated to fit the maximum length of the string
variable. An assignment of a string literal to a string variable too small to contain it
results in a compile-time error.

DPT

1. Use:= for assignment.
2. Use *for multiplication.
3. May need parentheses to group numerators and denominators.
4. Using a I (slash) yields a real answer; real values cannot be assigned to

integer variables.
5. Assignment is not an algebraic equation; it is more like an algebraic

formula.
6. Make sure that a variable has been given a value before it is used on the

right side of an assignment statement.
7. Avoid assignments that result in numeric overflow; integers are espe

cially susceptible to this condition.

FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2

EXERCISES

1. Give the value of the following Pascal expressions:

(a) 3 * 2 + 7

(b) 4 I 3

(c) 6 + 5 I 2

(d) 3 I 2 + 1

(e) 3 * (2 + 5)

(f) 3 - 7 + 2

(g) 3 - (7 + 2)

(h) concat ('A', 'B')

(i) 4 * 3 I 2

(j) 4 * (3 I 2)

(k) 8 I 2 * 4

(I) concat ('4 * 6'' '5')

2. Assume that A, B, and C are real and X, Y, and Z are integer. Also assume that at the time the
assignment statement is executed, the variables have the values:

A 3.2
X4

B 6.0
y 63

c 1.5
z 17

What value is given to the variable on the left side of each assignment statement?

(a) A .- 0.5 * A

(b) x ·- x + 1

(c) B := A I 2

(d) A .- 12.3

(e) y .- x * z
(f) c .- c - A - B

3. Convert the following algebraic formulas to Pascal assignment statements. Assume that all
variables are real.

(a) y =ax+ b
(b) t=la+r

2

(c) w=x+y
2

(d) j = k+ 5
(e) s = 5t

(f) r=~
y+3

(g) w= x+3y
r+a-3

(h) j = (k + 3)j

EXERCISES 51

52

4. For the following assignment statements, determine what value is assigned to the variable on
the left. Assume all variables are of type string and the declared size of Str3 is 3, Str5 is 5, and
Str7 is 7. Further, suppose the string variable Bees has the value 'bbb' and that Sees has the
value 'cccc'.
(a) Str3 .- Bees

(b) Str5 .- Bees

(c) Str3 .- Sees

(d) Str3 .- concat ('b', Bees, Sees)

(e) Str7 .- concat('b', Sees)

(f) Str7 . - concat ('b' , Bees, Sees)

(g) Str3 . - 'cbc'

(h) Str3 . - 'Str3'

(i) Str7 ·- concat (' ' 'b' ' ' , 'c')

(j) Str5 ·- concat('', Bees)

5. Write Pascal assignment statements to perform each of the following calculations. Use meaning
ful variable names and give declarations for your variables.
(a) Calculate the area of a rectangle given its length and width.
(b) Convert inches to centimeters (I inch= 2.54 centimeters).
(c) Find the average of three real numbers.
(d) Find a person's age in months given his age in years and months (for example, 3 years, 4

months yields an answer of 40 months).
(e) Find the local tax given the income. The rule is: 5 percent of the portion of the income in

excess of $1,000. (Assume that the income is at least $1,000.)
(f) Prefix a last name with "Professor''.
(g) Calculate the batting average given the times at bat and the number of hits.
(h) Find the percentage of mutated ants in an ant colony given the number of mutated ants and

the total number of ants in the colony.
(i) Convert a speed in kilometers per hour to meters per second.
(j) Convert a swimmer's time (seconds) for the 50-meter freestyle to an estimate of the time

for the 50-yard freestyle by multiplying the time by 0.9.

6. Using the assignment statements you wrote in Exercise 5, plan and write complete programs
that calculate the indicated values for a number of input lines.

7. Write a complete Pascal program to read a person's name and print the message:

Hi, <name read in>, how's it going?

For example, if the user enters the name "Stacy", then the program will output

Hi, Stacy, how's it going?

8. Write a program to allow experimentation with the Chr function. For each numeric value input
by the user (in the range 0 to 255), it should print the corresponding character. Use the program
to experiment. Is Chr(O) a character you can see on the screen? (Is it "printable?") What is
Chr(68)? What happens if you enter a value not in the prescribed range?

9. Using three separate Readln statements, write a program to read a person's last name, then the
first name, and finally the middle initial. Use string variables for the first and last names and a
char variable for the initial. The program should create a variable AddressLine that has the

FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2

contents "To the parents of <first name> <middle initial>. <last name>" (such as ''To the
parents of Smedley Z. Oglethorpe"), and print AddressLine on the screen.

10. Write a complete Pascal program to calculate how long it would take someone who wishes to
lose weight to reach a specific goal weight. Prompt the user (with meaningful messages) for
these inputs:

Current weight
Goal weight
Gender (female or male)
Rate of weight loss (slow, moderate, fast)
Activity level (sedentary, moderately active, very active)

(Sedentary means never exercises; moderately active means
exercises three times a week for at least 30 minutes; very
active means exercises virtually every day for at least 60
minutes.)

And print these outputs:

Currentnumberofcaloriespersonistakingin
Number of calories to cut out of the person's diet
Calories to take in to reach goal weight
Number of days to reach goal weight
Other informational messages (see below)

Use the following information:

If female and sedentary, factor is I 0
If male and sedentary, factor is 13
If female and moderately active, factor is 13
If male and moderately active, factor is 15
If female and very active, factor is 15
If male and very active, factor is 20

Current calorie intake = factor x Current weight
Goal calorie intake = factor x Goal weight

Goal calorie intake must not drop below l l 00. (If it did, the
person may not be getting enough calories to maintain her or
his health.) If the above formula would result in an intake of
less than l l 00 calories, set the goal intake to 1100 calories,
and tell the user you have done so and the reasons behind the
decision.

If rate is slow, Daily calorie reduction = 500 calories
If rate is fast, Daily calorie reduction = 1500 calories
If rate is moderate, Daily calorie reduction =
Current calorie intake - Goal calorie intake, but is at minimum
500 and at maximum 1500 calories. If the formula generates
an amount less then 500, set the amount to 500; if it generates
an amount greater than 1500, set the amount to 1500, and
explain to the user that a larger calorie reduction may be
unhealthy.

EXERCISES 53

Daily calorie reduction of 500 calories a day results in l
pound lost in I week (7 days); higher reductions cause
proportionally larger weight losses (for example, a 1000-calorie
a-day reduction results in 2 pounds lost in I week).

Number of days = (500 calories minimum * 7 days) I
Daily calorie reduction * Number of pounds to lose

Run the program on several test cases. Does it work well for all cases of weight loss (goal
weight less than current weight)? Does it work correctly if someone wants to gain weight (goal
weight greater than current weight)? What happens when the goal and current weights are
equal? What does the program suggest if a sedentary female currently weighs 105 pounds and
wishes to weigh 97? Does this advice make sense?

Note: This is a programming exercise, not a proven diet plan. Although this approach to weight
reduction is based on formulas developed by health care professionals, it should not be used as
an actual guide to weight loss. Should you wish to lose weight, consult with a health care
professional to obtain a diet and exercise plan that is suited to your particular situation.

2-2 INTRODUCTION TO PROCEDURES

Previously (in Section 1-3), we discussed the four building blocks used for developing
programs:

1. Sequencing

2. Looping

3. Decisions

4. Subprograms

The examples discussed so far have used the first three techniques. Sequencing appears in
any program where we have a series of steps to perform, one after the other. We should
expect to continue to find segments of all of our programs that fall into the sequencing
category. Looping has been used in many of our examples to provide the structure in which
we could repeatedly read values, make calculations, and print the results. Thus far, the loops
have been terminated by the user entering a terminal (dummy) value. Decisions have been
used to ensure that the dummy value is not processed inside of our read, calculate, and print
loops. Subprograms are introduced in this section in one specific context. The variety of
subprogram that we discuss is known in Pascal as a procedure.

An Example Procedure

The algorithm used to develop the program for the example (Case Study No. 1) from Section
1-4 is reproduced here as Figure 2-3 and its corresponding program as Figure 2-4. As we
study the algorithm and then go on to read the program, we are struck by the fact that the
printing of instructions has seemed to attain relatively more importance in the Pascal pro
gram than it .had in the algorithm. In the algorithm, the task of printing the instructions
occupies one line out of a total of nine algorithm lines. However, in the program, the
printing of instructions occupies 11 out of a total of the 25 lines of Pascal (ignoring blank

54 FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2

print instructions
repeat the following until the user inputs an empty name

prompt asking for name
readName
prompt asking for three scores
read Scorel, Score2, Score3
calculate Total
print Name and Total with a message

print the termination message

Figure 2-3 Looping algorithm.

and comment lines) that lie between the begin and end for the program. It seems that the
proportion of lines dedicated to instructions in the algorithm is appropriate and that the
program is harder to understand because of its inordinate emphasis on printing instructions.

The process of refining the algorithm line "print instructions" into the details of the
instructions themselves has hindered readability of the resulting program. It would be nice if
one could just say "print instructions" in the Pascal program and obtain the desired results
when the program is executed. In fact, as we will see, we can attain that goal by the use of
procedures.

The form of a Pascal procedure is similar to that of a Pascal program. This similarity
lends itself well to the concept of subtasks of a task, which is what we will be using
procedures to implement. When we remove the lines of the Pascal program of Figure 2-4
and place them within the confines of a Pascal procedure (named Instructions), we obtain
the result shown as Figure 2-5.

Note there are two essential details that differentiate the procedure from a program:

1. The keyword procedure appears instead of program.

2. The final end is followed by a semicolon (;), not a period.

A more significant difference is that a Pascal procedure cannot be run by itself, but must be
called (invoked) by another program unit to execute. In order to call our example procedure,
the Pascal program just has to invoke its name with the command:

Instructions

When it does so, the statements in the Instructions procedure are executed. The program
then continues with the statement following the invocation of the procedure.

For the Pascal program to invoke a procedure, it must have access to it. To achieve
this, we simply include the procedure definition in the region of the program's code that
immediately follows the var section and immediately precedes the begin of the program.

The program with procedure Instructions included appears as Figure 2-6. We have
indicated, in italics, the differences between this and the program in Figure 2-4.

Some Characteristics of Procedures

We note here some of the properties of Pascal procedures illustrated in the example proce
dure, Instructions.

2-2 INTRODUCTION TO PROCEDURES 55

program TestScores;

{Written by: XXXXXXXXX XX/XX/XX}
{Purpose:
{

To calculate the total on three tests, and print that total}
with the student's name.}

const
EndOfData

var

I I;

Name: string[20];

Scorel, Score2, Score3: integer;
Total: integer;

begin {TestScores}

{empty string to terminate input}

{student name, input}
{three test scores, input}
{total of scores, calculated}

{*** Before the loop print instructions}

Writeln{' This program totals test scores. For each');
Writeln('student you will be asked to enter the student''s');
Writeln('name. You may use up to 20 characters for the');
Writeln{'name when you type it in. After that, you will');
Writeln('be asked to type in the three test scores, in the');
Writeln('range from 0 to 100. Enter these all on one line,');
Writeln{'separated by blank spaces.');
Writeln(' The program will then print the name and the');
Writeln('total score, and repeat the whole process. When');
Writeln('you wish to terminate the program, just tap the');
Writeln{'return key when asked for the name.');

{*** In the loop, read name and scores; calculate and print total;}
quit when user enters empty name}

repeat

Write{'Enter the name {just tap return to quit): ');
Readln{Name);
if Name <> EndOfData then

begin

Write{'Now enter the three scores: ');
Readln(Scorel, Score2, Score3);
Total := Scorel + Score2 + Score3;
Writeln{'The total is', Total, ' for' Name)

end
until Name EndOfData;

{*** Stop the program}

end.

Figure 2-4 Instructions in program.

56 FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2

procedure Instructions;
{Written by: XXXXXXXXX XX/XX/XX}
{Purpose: To print instructions}

begin {Instructions}
Writeln(' This program totals test scores. For each');
Writeln('student you will be asked to enter the student''s');
Writeln('name. You may use up to 20 characters for the');
Writeln('name when you type it in. After that, you will');
Writeln('be asked to type in the three test scores, in the');
Writeln('range from 0 to 100. Enter these all on one line,');
Writeln('separated by blank spaces.');
Writeln(' The program will then print the name and the');
Writeln('total score, and repeat the whole process. When');
Writeln('you wish to terminate the program, just tap the');
Writeln('return key when asked for the name.')

end; {Instructions}

Figure 2-5 Instructions procedure.

Name: A Pascal procedure has a name that is formed according to the rules
for Pascal identifiers. The name of a procedure should not conflict
with any of the program variables or constants (there are more spe
cific details on this issue later).

Body: A Pascal procedure must have its lines of code contained between
the begin and end; pair (note the mandatory semicolon after end).

Use: A program calls a procedure by specifying its name as an entire
statement (including the semicolon, if needed).

Place: A Pascal procedure must be completely contained (from procedure
to end;) in the area of the program that follows the var section and
that precedes the begin of the program.

Note. We are discussing the simplest form of a Pascal procedure in this section. In
subsequent sections, we treat other types of subprograms.

Standard Procedures

From the beginning, we have been dealing with procedures that are supplied with the Pascal
language. In particular, we have used two procedures: Readln and Writeln. When we used
the statement

Writeln

in our examples, we were using the procedure in the same manner that we have used the
procedure "Instructions" in this section. We used Writeln to print a blank line in order to
format our program's output in a more readable fashion. In our other uses of Writeln and
Readln, we supplied some information for the procedures by enclosing that information
within parentheses following the procedure name. For example, in the statement

2-2 INTRODUCTION TO PROCEDURES 57

program TestScores;

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To calculate the total on three tests, and print that total}

with the student's name}

const

EndOfData

var

, , ;

Name: string[20J;

Scorel, Score2, Score3: integer;

Total: integer;

procedure Instructions;

{Written by: xxxxxxxxx XX/XX/XX}

{empty string to terminate input}

{student name, input}

{three test scores, input}

{total of scores, calculated}

{Purpose: To print instructions on entering test scores}

begin

Writeln(' This program totals test scores. For each');

Writeln('student you will be asked to enter the student''s');

Writeln('name. You may use up to 20 characters for the');

Writeln('name when you type it in. After that, you will');

Writeln('be asked to type in the three test scores, in the');

Writeln('range from Oto 100. Enter these all on one line,');

Writeln('separated by blank spaces.');

Writeln(' The program will then print the name and the');

Writeln('total score, and repeat the whole process. When');

Writeln('you wish to terminate the program, just tap the');

Writeln('return key when asked for the name.')

end;

begin {TestScores}

{*** Before the loop print instructions}

Instructions;

{***In the loop, read name and scores; calculate and print total;}

quit when user enters empty name}

repeat

Write('Enter the name (just tap return to quit): ');

Readln (Name);

if Name <> EndOfData then
begin

Write('Now enter the three scores: ');
Readln(Scorel, Score2, Score3);

Total := Scorel + Score2 + Score3;

Writeln('The total is', Total, ' for' Name)

end

until Name = EndOfData;

{*** Stop the program}

end.

Figure 2-6 Procedure placement and use.

58 FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2

Readln(Scorel, Score2, Score3)

we communicated to the procedure Readln that we wished to receive keyboard input for the
three specified variables. Later, we encounter other standard Pascal procedures and we
also learn how we can communicate with our own procedures.

Some Advantages of Using Procedures

Simplification: By using the procedure Instructions, we were able to simplify the
code of the main program so as to make it more understandable.
Both the main program and the procedure are sometimes referred to
as modules of the program.

Focus: By using the Instructions procedure, we are able to take a closer
look at the function of supplying directions without being distracted
by the other details of the program. Some people call this kind of
focus "divide and conquer." The activity of dividing a program into
modules is called modularization.

Reuse: Some other program might have a similar set of directions. We are
able to reuse the idea of giving instructions, and, with the THINK
Pascal editor, we can "cut and paste" the code of the procedure and
make some minor textual changes. Some call this kind of reuse "not
reinventing the wheel."

We can assure you there are many more advantages to using procedures, but we will discuss
them when we have presented the ideas with later examples.

Some Rewards of Focusing on a Single Task

When we isolate the task of supplying instructions for a program, we may realize that there
are at least two categories of users: novices and experts. A novice user is grateful for
detailed explanation and, in fact, can hardly be satisfied in his quest for clarification. On the
other hand, an expert user is put off by the condescending tone of directions and may be
angered by the inconvenience and loss of valuable time resulting from having to view
unnecessary and unwanted details. Although these ideas about users are obvious, the impli
cations might not be considered during program design; "print instructions" is just one of
many tasks that the program has to perform. However, when the only task under scrutiny is
that of giving the user directions, we might more naturally consider the user's needs.

A simple solution to the novice-versus-expert-user dilemma is to ask the user if direc
tions are desired. Thus, we may wish to refine the algorithm step

print instructions

into the rough steps

ask the user if directions are desired
if the answer is yes then

print instructions

These steps can be refined into a smooth algorithm for the Instructions procedure as follows:

2-2 INTRODUCTION TO PROCEDURES 59

print 'Do you want instructions (Y or N)?'
read Answer
if Answer= 'Y' then

print detailed instructions

In this algorithm, we have introduced another use of the if-then decision structure. We
translate this use of the decision into Pascal in a manner similar to what we used to decide
whether to execute the body of a repeat-until loop in our previous examples.

We have introduced a more subtle idea in the use of the variable "Answer". The main
program does not use this variable and so it need not be known (declared) in the main
program. Such a variable is said to be a local variable for the procedure in which it appears.
As we see, the variable is declared and used exclusively within the procedure Instructions.
Since the variable Answer is intended to hold a single character, we use the type char in its
declaration.

The program TestScores, including the modified procedure Instructions, appears as
Figure 2-7. Changes have been shown in italics for emphasis.

Note that the modified procedure Instructions now contains a var section just as does
the main program. It is the procedure's var section in which all of its local variables are
declared. Remember that these are the variables, such as Answer, used within the procedure
itself and not in the main program.

Note. We now know enough about procedures to write one which will automati
cally size the text window and place it in front of all the other THINK windows. Here is its
definition:

procedure MakeTextVisible;

const

var

LeftEdge = 5;

TopEdge = 40;

RightEdge = 510;

BottornEdge = 340;

TextWindowSize: Rect;

begin

SetRect(TextWindowSize, LeftEdge, TopEdge, RightEdge, BottornEdge);

SetTextRect(TextWindowSize);

Showtext

end;

SetRect is a predefined procedure that defines the shape of a rectangle (a kind of data called
a Rect); we call the rectangle TextWindowSize. SetTextRect then sets the text window to be
the shape of the TextWindowSize rectangle. Showtext displays the text window at its set
size.

The constants LeftEdge, TopEdge, RightEdge, and BottomEdge tell where the left,
top, right, and bottom edges of the text window are to be placed, according to the

60 FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2

program TestScores;

{Written by: XXXXXXXXX XX/XX/XX}
{Purpose:
{

To calculate the total on three tests, and print that total}
with the student's name}

conat
EndOfData

var

I I;

Name: atring[20];
Scorel, Score2, Score3: integer;
Total: integer;

procedure Instructions;

{Written by: XXXXXXXXX XX/XX/XX}

{empty string to terminate input}

{student name, input}
{three test scores, input}
{total of scores, calculated}

{Purpose: To print instructions on entering test scores}

var
Answer: char; {user response to question, input}

begin {Instructions}
Writeln;
Writeln('Do you want directions (Y or N)?'};
Readln(Answer};
if Answer = 'Y' then

begin
Writeln(' This program totals test scores. For each'};
Writeln('student you will be asked to enter the student''s'};
Writeln('name. You may use up to 20 characters for the'};
Writeln('name when you type it in. After that, you will'};
Writeln('be asked to type in the three test scores, in the'};
Writeln('range from 0 to 100. Enter these all on one line,'};
Writeln('separated by blank spaces.'};
Writeln(' The program will then print the name and the'};
Writeln('total score, and repeat the whole process. When'};
Writeln('you wish to terminate the program, just tap the'};
Writeln('return key when asked for the name.'}

end
end; {Instructions}

begin {TestScores}

{*** Before the loop print instructions}

Instructions;

Figure2-7 Local variable (continues next page).

2-2 INTRODUCTION TO PROCEDURES 61

{*** In the loop, read name and scores; calculate and print total;}
quit when user enters empty name }

repeat
Writeln;
Write('Enter the name (just tap return to quit): ');
Readln(Name);
if Name <> EndOfData then

begin
Write('Now enter the three scores: ');
Readln(Scorel, Score2, Score3);
Total := Scorel + Score2 + Score3;
Writeln('The total is', Total, ' for' Name)

end

until Name EndOfData;

{*** Stop the program}

end.

SAMPLE INPUT AND OUTPUT (RUN NO. 1)

Do you want directions (Y or N)?
y

This program totals test scores. For each
student you will be asked to enter the student's
name. You may use up to 20 characters for the
name when you type it in. After that, you will
be asked to type in the three test scores, in the
range from 0 to 100. Enter these all on one line,
separated by blank spaces.

The program will then print the name and the
total score, and repeat the whole process. When
you wish to terminate the program, just tap the
return key when asked for the name.

Enter the name (just tap return to quit): Delores Hayes
Now enter the three scores: 67 87 iZ_
The total is 251 for Delores Hayes

Enter the name (]ust tap return to quit): Tim Rae
Now enter the three scores: 45 65 23
The total is 133 for Tim Rae

Enter the name (just tap return to quit):

Figure2-7 (continues next page).

62 FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2

SAMPLE INPUT AND OUTPUT (RUN NO. 2)

Do you want directions (Y or N)?

!".

Enter the name (just tap return to quit): Jim Smith

Now enter the three scores: 67 87 97 ---
The total is 251 for Jim Smith

Enter the name (just tap return to quit): Sally Tie

Now enter the three scores: 34 67 100 ---
The total is 201 for Sally Tie

Enter the name (just tap return to quit}:

Figure 2-7 Local variable.

Macintosh's built-in screen coordinate system. The settings given in MakeTextVisible shape
the text window so it just about fills a small-sized Macintosh screen without covering up
THINK's menu bar at the top of the screen. You might want to experiment with the edge
settings to best position the window for the size of screen you are using.

To use MakeTextVisible in your program, place its definition into your program
before the begin of the main program. Then call it with the statement

MakeTextVisible

in your main program before you do any input or output.

A Review of Program Design

We show in what follows the variable lists and designs for the main program and the
procedure "Instructions" that led to the Pascal program of Figure 2-7.

FOR THE TESTSCORES MAIN PROGRAM

Constant: EndOfData Value"

Input: Name String[20]

Scorel Integer

Score2 Integer

Score3 Integer

Output: Total Integer

print instructions (using procedure Instructions)

Null string for dummy name

Student name, also printed

Test scores

Total of 3 scores

repeat the following until the user inputs an empty name:
prompt asking for name
read Name

2-2 INTRODUCTION TO PROCEDURES 63

prompt asking for three scores
read Scorel, Score2, Score3
calculate Total
print Name and Total with a message

print the termination message

FOR THE INSTRUCTIONS PROCEDURE

Input: Answer char

print 'Do you want directions (Y or N)'
read Answer
if Answer = 'Y' then

print detailed instructions

User response 'Y' or 'N'

In this example, we have explicit use of the four building blocks that are used to erect
the program structure: sequencing, looping, decisions, and subprograms.

Sequencing. We can find several instances of sequencing in our example. Recall
that sequencing refers to program steps that are performed one after another in the same
order that we read them from top to bottom. One instance of sequencing is seen in these
steps of the main program:

prompt asking for three scores
read Scorel, Score2, Score3
calculate Total
print Name and Total with a message

Looping. We have a single loop in the main program of our example that has the
form that we have been using throughout the previous portions of the book. This loop is of
the form repeat . .. until. In subsequent sections of the book, we encounter other forms of
looping that can be represented in Pascal. An important feature of the kind of loop that we
are currently using is that the user stops the loop when she inputs a terminating value (for
Name, in this case).

Decisions. We have seen two instances of decisions in our example. Both the
decision structures are of the form if . .. then. Our roster of decision structures will grow as
we proceed through the book.

Subprograms. We have encountered two different kinds of procedures in our
example. We have been using the standard Pascal procedures Readln and Writeln in previ
ous sections, and we have introduced our first use of a defined procedure (Instructions).
Once again, Pascal has many variations on the subprogram theme, which we study later.

DPT

The following are the most common pitfalls that threaten the Pascal programmer who is
using procedures.

64 FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2

1. If the programmer does not declare the variable Answer as a local variable of the
procedure Instructions, then the compiler produces an error message indicating that a vari
able has been used without a prior declaration.

2. The final end of the procedure body must be followed by a semicolon. If omitted,
the compiler usually detects its absence (although the error message you receive may point
to a part of the program well beyond the end of the procedure's definition, and may not be
very illuminating).

3. The final end of the procedure body must not be followed by a period. The com
piler reports the inappropriate presence of a period (with the message"';' expected").

4. The name of a procedure must not be used as the name of a variable used by the
main program, or as the name of another procedure declared within the main program. If
this error is made, the compiler generally detects and reports this redundancy.

5. The programmer must be aware of the execution sequence of the program. A pro
cedure executes only when called (invoked). Execution of a program always starts with the
first statement after the begin of the main program. When a procedure is called, execution
continues with the first statement after the begin of the procedure body. When execution
reaches the final end of the procedure, then it continues with the next statement after the
procedure call.

REVIEW

Terms and Concepts

call
local variable
main program

Procedures

modules, modularization
procedure
standard Pascal procedures

1. Heading line containing the name of the procedure.

2. Declarations similar to a main program.

3. The initial begin.

4. The body of the procedure.

5. The final end, followed by a semicolon.

Properties

Name:

Body:

Use:

Place:

identifier for the procedure

code between the begin and end;

just mention the name to activate

define after var section

REVIEW 65

DPT

1. Declare local variables.
2. Place 11 ; 11 after end of procedure body.
3. Do not place 11 • 11 after end of procedure body.
4. Do not also use the name of the procedure as a variable or constant.
5. Remember to invoke the procedure in the main program.

EXERCISES

1. Rewrite the program of Figure 1-3 (Section 1-3) to utilize an instruction printing procedure.

2. Run the revised program from Exercise 1. Is there any difference in what appears on the screen
as the program is running? Could a user tell whether the program uses a procedure?

3. Choose one of the parts (a to e) of Exercise 6 in Section 1-4. Rewrite and run the program using
an Instructions procedure that asks the user if the instructions are to be shown.

4. Consider the enhanced version of the Instructions procedure (Figure 2-7). What will happen if
the user accidently enters 'y' instead of 'Y' when asked if the instructions are to be shown?
Suggest possible solutions. (Note: At this point, you have not covered enough Pascal to code
some of the possible solutions; however, you should be able to describe in words what you
might do.)

5. Suppose there are 37 lines of instructions to print. (Many Macintosh displays allow the THINK
text window to be large enough to print out 26 lines before lines start scrolling off the top of the
window.) Enhance the Instructions procedure so it prints the first 25 lines, then pauses until the
user hits return, and then prints the remaining 12 lines. (Hint: To implement the pause, try a
Readln with no variables listed with it.)

6. (Challenge) What do you think would happen if the main program in our example of Figure 2-7
contained its own variable named "Answer"? Under those circumstances, what if we forgot to
declare "Answer'' in the Instructions procedure?

2-3 DECISION STRUCTURES

In this section, we begin our formal study of decision structures. Recall that decisions are
one of the four program structures described in Chapter 1. (The other three are sequences,
loops, and subprograms.) We can classify decisions in three general categories:

1. There are some steps to be done if some specific condition is true. (We have already
seen examples of this type.)

2. There is one set of steps to be done if some condition is true and a different set of
steps if the condition is not true.

3. There are a number of conditions, one of which could be true, and a set of steps
corresponding to each condition.

We examine multiple-way branches, this third category of decisions, in some detail in
Section 2-5. In this section, we limit our attention to the first two categories.

66 FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2

In order to successfully use decision structures in a program, there are three steps to
be followed. First, we recognize that we need a decision structure; that is, that the choice of
steps to be performed depends upon some condition or conditions. Words such as "if ",
"depends upon", "whether or not", and so on, used in describing the task to be done, can
indicate the need for a decision structure. Second, we should classify the structure as one of
the three types previously listed, identifying the conditions and the corresponding steps.
Third, we must accurately reflect the decision structure using the appropriate Pascal code.

If-Then

The if-then structure is the first category of the decision structure previously described. It
is used when we have a set of steps to be performed when a condition is true, and nothing is
to be done when the condition is false. We have already seen two uses of this structure.
First, we have used it several times to perform calculations and print the answers, provided
the user did not enter the terminating input value. Second, the instruction printing procedure
in Section 2-2 used it to print instructions, provided the user specified he wished to see the
instructions.

To code this structure in Pascal, we use the if statement. We have used the if statement
in this form:

if condition then
begin

list of steps to be performed if condition is true
end

The individual steps in the list of steps are separated by semicolons. There is a second form
of the if statement that is frequently convenient. If there is exactly one statement to be
performed when the condition is true, we can use the form

if condition then
one statement to be performed if condition is true

Notes

1. To be precise, this is the only form of the if statement. However, the "one statement"
can be a compound statement, which consists of a list of statements enclosed in a
begin and end. This is the form we have seen before.

2. There are many ways to present the form of statements in a language. One choice,
which we are using throughout, is a semiformal description with italics to indicate
items that will be filled in based on the situation. Our descriptions of the if-then are of
this form. In this form, the language descriptions look somewhat like a sample of the
item they explain.

Two other popular ways to present the language are (a) by a more formal notation
called the Backus-Naur or Backus Normal form (BNF), and (b) by means of syntax
diagrams. For those who prefer this more diagrammatic presentation, Appendix B presents
the language elements by means of syntax diagrams.

2-3 DECISION STRUCTURES 67

Note. Although it is not a requirement of the language, we do indent the if state
ment as illustrated here and in the examples that follow. It is difficult to give a single rule
that explains the particular indentation style we use. One might say the indented statements
in some sense "belong to" the statements they are indented from. For example, the state
ments within a repeat-until loop are indented from the repeat and the until. The statements
within a compound statement are indented from the begin and the end. The statement to be
perfonned if the condition is true is indented from the if. Our advice is to follow the
examples when you write your own programs. A good, consistent use of indentation helps
anyone reading the program to understand the program's structure and, therefore, what it
does and how.

As an example of the if statement, suppose we wish to write Pascal code to print a
person's name if his blood is type 0. We may use a decision structure in either of these
fonns:

if BloodType = '0' then
begin

Writeln(Name)
end

Notes

if BloodType = '0' then
Writeln(Name)

1. This is only a segment, or piece, of a program. The complete program would include
declarations, among them those for BloodType and Name:

BloodType: char;
Name: string[20];

It would also, more than likely, include various looping, input, output, and assignment
statements. It might even include other decision structures. In order to concentrate our
attention on the details of Pascal decisions, many of the examples in this section
present only segments of a program.

2. If the if statement given in this example were followed by another statement in the
complete program, there would be a semicolon between the if statement and that next
statement.

For our second example, let us write a Pascal segment that adds 1 to a variable named
HighCount and adds the income to a variable named HighTotal, provided the income is
greater than $25,000. Assuming that among the declarations we have

HighCount: integer;
HighTotal: real;
Income: real;

the solution can be given as

68 FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2

if Income > 25000.00 then

begin

end

HighCount .- HighCount + 1;
HighTotal .- HighTotal + Income

In this case, there are two statements, so we must use the begin and end to group
them. Notice the semicolon separating the two statements. Notice also how we "add 1" to a
variable. The assignment statement assigns a new value to HighCount. The new value is the
old value of HighCount plus 1.

Conditions in Pascal

These two examples illustrate the use of the if-then. To complete our discussion, we need to
know the rules for writing a conditional expression. Actually, the rules are fairly complex,
so we do not tackle them all at this point.

Simple conditions can be written to compare any two expressions. The expressions
must be "compatible." For example, we cannot compare integers to character strings. There
are six possible relationships in the comparison:

PASCAL NOTATION

=
>
<
>=
<=
<>

MEANING

is equal to

is greater than

is less than

is greater than or equal to

is less than or equal to

is not equal to

In performing the comparisons, the two expressions can be as simple or as complex as
we require. For example, each of the following is a valid condition:

Sum = 15

R - C <= 0
0.05 * Nickels < 0.25 * Quarters
State = 'Virginia'
Name > 'Brown'

The last two examples involve string variables (State and Name). In THINK Pascal, two
strings are equal if their values and lengths are identical.

When we compare two strings in THINK Pascal to see if one is greater than the other,
we get an ordering where a blank space precedes any digit, which precedes any uppercase
letter, which precedes any lowercase letter and the letters and digits are in the expected
order. Thus,

' ' < '0' < '1' < ... '9' <A'< 'B' ... < 'Z' < 'a'< 'b' < •.. < 'z'

In our example, Name > 'Brown', the condition is true for any value beginning with C, D,
and so on, or any lowercase letter. It is also true for any value beginning with 'Brown' but

2-3 DECISION STRUCTURES 69

longer than five characters. If we compare two strings in THINK Pascal, the longer is
considered greater if they match up through the last character of the shorter.

This set of rules is fairly complex, but it does ensure that, in most situations, a string
comparison has the results we would expect in everyday usage (except for lowercase, which
is handled differently from a dictionary).

Some other verbal conditions, such as "is not greater than," can be seen to be equiva
lent to one of those listed earlier. In fact, we can give a list of negations for each of the six
relationships, as shown in the table that follows. (The negation of a condition is the result of
using the word not with the condition.) For example, the negation of "greater than" (>) is
"not greater than," which is equivalent to "less than or equal to"(<=).

CONDITION NEGATION

= <>

> <=

< >=

>= <

<= >

<>

The use of comparisons in conditions is illustrated by our earlier examples and is
further illustrated in the following subsection.

If-Then-Else

The second general category of a decision structure is commonly referred to as an if-then
else structure. It recognizes that sometimes there are two sets of steps to be performed: one
if the condition is true and the other if it is not. Pascal has a statement that is specifically
designed to handle this situation. Its form is summarized as follows:

if condition then
statement to be performed if condition is true

else

statement to be performed if condition is false

As for the if-then, the "statement to be performed" can be a compound statement (a
list enclosed between a begin and an end). Thus, for example, if both branches are com
pound statements, we will have

70

if condition then
begin

list of steps to be performed if condition is true

end
else

begin

list of steps to be performed if condition is false

end

FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2

Note. In each "list of steps," the steps are separated by semicolons. However, there
must be no semicolons before or after the else. Again, the indentation pattern shown is
optional, but useful in conveying the statement's structure to a reader.

In the English language, situations that require this type of decision structure fre
quently are described using the word "otherwise." Other possible indications that two
branches are involved might include phrases such as "if not, "

As an example, let us give a code segment for the following situation: We wish to
double the value of an integer variable J if its current value is less than 5, otherwise triple
the value. In addition, we will print a message telling which occurred.

Notice that this does fall in the general category of decision we are discussing. There
are two possible branches: J is less than 5 or it is not. The if-then-else is therefore appropri
ate, and we write

if J < 5 then
begin

J := 2 * J;
Writeln('J was doubled to ' ,J)

end
else

begin
J := 3 * J;
Writeln ('J was tripled to ' J)

end

Notice that each branch includes two steps, so each branch uses a begin and end.
For our next example, we will find the smaller of two test scores, Scorel and Score2,

placing the answer in the variable SmallScore. Assuming these declarations,

Scorel, Score2: integer;
SmallScore: integer;

we can write:

if Scorel < Score2 then
SmallScore .- Scorel

else
SmallScore .- Score2

"But," you might ask, "What if the scores are equal?" The answer is that, for example, if the
two scores are both 90, the answer should be 90. This program segment takes the else
branch because the condition 90 < 90 is false. It sets SmallScore to Score2, which is 90.
Thus, when they are equal, the segment does yield the correct answer.

For our final example in this subsection, we develop a short program that uses a
decision structure. This common example occurs in companies that pay for overtime. In its
simplest form, the rule might be that any hours in excess of 40 earn ''time and a half." This
means that the pay for those hours is 1.5 times the pay for the usual hours. We will write a
program to calculate pay, given the hours worked and the hourly pay rate.

2-3 DECISION STRUCTURES 71

We begin, just as we did for the programs in Chapter l, with a tentative variable list
and a preliminary algorithm.

Constant: EndOtData Value 0 Used to terminate loop

Input: Hours Real Hours worked

Hourly Rate Real Pay per hour

Output: Pay Real Pay (before taxes, etc)

print instructions
repeat these steps until the user enters 0 for hourly rate

prompt for hours and hourly rate
read Hours, HourlyRate
if HourlyRate is not 0 do these steps:

calculate Pay
print Pay

We have chosen an HourlyRate value of 0 for the terminating entry.
Since the pay is not calculated by a single formula, we need to refine this step. The

rule described previously indicates that the method to use depends on how many hours were
worked. This leads us to an if-then-else decision structure, with the condition "Hours > 40"
determining what steps to perform. If the condition is true, we pay overtime; if false, we do
not. We obtain the following incomplete Pascal segment. (The italicized portion needs more
refinement.)

if Hours > 40 then

calculate Pay using overtime rule

else

Pay := Hours * HourlyRate

To refine the first branch, we might do the calculations in three steps:

1. Calculate the regular pay for the first 40 hours.

2. Calculate the overtime pay for the remaining hours. This is the number of overtime
hours (Hours - 40) times the overtime rate (HourlyRate * 1.5).

3. Add the two to get Pay.

If so, we would write

if Hours > 40 then
begin

RegularPay := 40 * HourlyRate;

OvertimePay := (Hours - 40) * HourlyRate * 1.5;

Pay .- RegularPay + OvertimePay

end

else

Pay .- Hours * HourlyRate

72 FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2

Notice that this adds two variables, RegularPay and OvertimePay, that were not in the
plan for our original variables list. In addition, we must write the three steps enclosed in a
begin and end. The complete program appears in Figure 2-8. The decision structure for
calculating the pay is in italics. Observe that it is placed precisely where the pay calculation
would have gone if pay were calculated by a single assignment statement.

One other point to observe is the form of the output in the sample run. The default for
printing a real number is exponential notation. In the next section, we learn some techniques
for obtaining a more readable output for real numbers.

DPT

There are a number of points to be observed in connection with decision structures in
Pascal:

1. The negation of "greater than" is "less than or equal to." It is not "less than."
Similar comments apply to other comparisons.

2. There is sometimes confusion concerning the use of ":=" and "=" in Pascal. Pascal
uses "=" to mean "is equal to" and uses it in comparing two quantities or in identifying a
named constant with its value. Therefore, it can be used in connection with an if statement, a
repeat-until loop, and some other situations we have not yet seen. The ":=" symbol, on the
other hand, assigns a new value to a variable.

3. Due to the imprecision with which real values are stored in the computer, compar
ing two real quantities for equality can be misleading. For example, if we obtain a value for
a variable X by adding 10 O.l's, the resulting value might not be exactly 1.0. Section 2-4
discusses this issue further.

4. The issue of where to place semicolons and where not to can be confusing. The
compiler can catch some incorrect placements, but not others.

In general, semicolons separate statements in a list of statements. (Observe that the
lists of statements are either set off by a begin and an end, or by a repeat and an until.)
Based on what we have studied so far, we can formulate some guidelines.

Use a semicolon when the next step begins with:

a Readln or Writeln

a procedure name (e.g., Instructions)

a variable for an assignment statement

an if (there are exceptions to this)

Do not use a semicolon right before these words:

end (marking the end of the list of steps)

until (also marking the end of the list of steps)

begin (exception-at the start of the procedure or the main program)

else

2-3 DECISION STRUCTURES 73

program Payroll;
{Written by: xxxxxxxx XX/XX/XX}
{Purpose: To calculate pay based on hours worked and hourly pay rate,}

where the rule used depends on whether overtime was earned}
{Procedures used: Instructions, to print instructions for user}

const
EndOfData

var

O;

Hours: real;
HourlyRate: real;
Pay: real;
RegularPay: real;
OvertimePay: real;

{used to terminate loop}

{hours worked, input}
{hourly pay rate, input}
{pay before taxes, output}
{pay for first 40 hours}
{pay for overtime hours}

procedure Instructions;
begin

{The details of this procedure are left as an exercise}
end; {Instructions}

begin {Payroll}

{*** Before the loop, print instructions for the user}

Instructions;

{*** Read hours and hourly rate; use if-then-else structure to}
calculate pay; print answers. Quit when rate of 0 is entered.}

repeat
Writeln;
Write('Enter hours and hourly rate (rate 0 to quit): ');
Readln(Hours, HourlyRate);
if HourlyRate <> EndOfData then

begin

if Hours > 40 then
begin

RegularPay := 40 * HourlyRate;
OvertimePay := {Hours - 40) * HourlyRate * 1.5;
Pay := RegularPay + OvertimePay

end
else

end

Pay := Hours * HourlyRate;
Writeln{'The pay earned was ', Pay)

until HourlyRate = EndOfData

{*** After loop, terminate program}

end.

Figure 2-8 If ... then ... else (continues next page).

74 FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2

SAMPLE INPUT AND OUTPUT

Enter hours and hourly rate (rate 0 to quit):
The pay earned was 2.2e+2

Enter hours and hourly rate (rate 0 to quit):
The pay earned was 8.0e+2

Enter hours and hourly rate (rate 0 to quit):

Figure 2-8 (continued).

Do not use a semicolon right after these words:

begin

if

then

else

repeat

40 5.50 ---

34 23.45 ---

0 0

For the short term, you can refer to these concrete guidelines. For the long term, you will
want to remember the general rule:

Use semicolons to separate statements in a list of statements.

5. As described earlier, the rule for the if-then and if-then-else statements requires a
begin and end only when there is more than one statement in the branch. The fact that the
compiler follows this rule can lead to some strange interpretations if we forget the begin or
end. For example, consider

WRITTEN

if X > Y then

T := 1;
s := 3;

INTENDED

if X > Y then

begin

T .- 1;

s := 3

end;

The compiler assumes that only the T := 1 goes with the if. The S := 3 assignment is
executed whether or not X is greater than Y.

Similarly, consider

WRITTEN

if X > Y then
S := O;

T ·- O;
else

s .- 1;

T .- 2;

INTENDED

if X > Y then
begin

S .- O;

T := O;
end

else

begin
s .- 1;

T := 2
end;

2-3 DECISION STRUCTURES 75

The compiler, when it sees the else, thinks that the if terminated with the assignment S := 0.
It, therefore, indicates an error on this line. However, it would not detect the error in the else
branch.

Even experienced Pascal programmers can fall into the trap of forgetting the begin
and end. Leaving it off for the special case allowed by the compiler (one statement in the
branch) increases the likelihood of making this mistake.

One way to avoid this trap is to always use a begin and end, even if the branch
contains only one statement. There are some trade-offs involved in this. In addition to
avoiding the pitfall, it makes the program easier to modify in the future. On the other hand,
the extra, unneeded begins and ends can hinder program readability.

6. Finally, programmers sometimes view an if-then-else as equivalent to two if-then
statements. In fact, this is frequently true. For example, these two segments of code have
identical meanings:

if Scorel < Score2 then

SmallScore .- Scorel

else

SmallScore .- Score2

if Scorel < Score2 then

SmallScore := Scorel;

if Scorel >= Score2 then
SmallScore .- Score2

However, these do not:

if J < 5 then

J := 2 * J

else

J := 3 * J

if J < 5 then

J := 2 * J;

if J >= 5 then

J := 3 * J

For example, suppose that J has a value of 4 when the segment is executed. In the left-hand
segment, since J < 5 is true, the first branch is executed, causing J to become 8. The else
branch is not executed. In the right-hand segment, since J < 5 is true, the first if statement
changes J to 8. Now the condition J >= 5 in the second if statement is examined. Since it is
true (8 >= 5 is true), the second if statement changes J to 24.

To avoid this type of pitfall, we should not code if-then-else structures with two
consecutive if statements.

Adding to Case Study No. 1

In this section, we consider further modifications to Case Study No. 1, begun in Section 1-4.
The program is one that, for each student, calculates the total score on three tests. In Section
2-2, we added a procedure to handle the printing of instructions for the user. (The latest
version of the program appears in Figure 2-7.)

We now consider two possible enhancements. First, we could modify the algorithm to
also print an indication of whether the student is passing or failing. If we assume that a total
score of 210 is a passing grade, then we might reason as follows:

If the Total is 210 or higher, then the student's result is "passing," otherwise it
is "failing."

We may add a string variable to our list of variables, which we call Result. This
variable is assigned either the word "passing" or the word "failing" based on the total score.
Thus, we have this segment of Pascal to add to our main program:

76 FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2

if Total >= 210 then
Result .- 'passing'

else
Result .- 'failing'

We place this immediately after the step that calculates the Total variable, on which it is
based, and modify the Writeln statement to include this variable in its list of items to print

Our second modification, in addition, prints a message identifying those students who
are exempt from the final exam (total score above 290). We would like the output to look
something like this for such a student:

The total is 298 for John Smith - passing
********* EXEMPT FROM FINAL *********

Since the message appears after the line with the total, name, and result, we place the steps
to do this after the Writeln statement that prints these values.

Notice that this is an if-then situation; no message is desired for those who are not
exempt. Thus, we write

if Total > 290 then
Writeln('********* EXEMPT FROM FINAL*********')

Figure 2-9 contains the modified program, with the changes in italics. Notice that
these changes do not directly affect the Instructions procedure, although we should probably
modify it to reflect the changes. This modification is left as an exercise. (The sample input
and output were generated by running the program exactly as it appears, without inserting
the body of the Instructions procedure in the program.)

Testing

In Section 1-4, we introduced some of the concepts involved in program testing. At this
point, we are concerned with testing after we have obtained a clean compilation. By this we
mean that the compiler has not listed any syntax errors. The program runs, and we want to
see whether it is generating correct answers. In that section, we listed three principles:

1. Check all answers. Include some data that are easy to check .

. 2. Test near boundaries; also test a random sampling away from the boundaries.

3. Include some erroneous input, especially if the program is designed to detect and warn
about such errors.

In this subsection, we look at the second of these principles in more detail.
When a program includes branching, boundary testing becomes especially important.

By a "boundary" we mean a point at which the rule for determining the answer changes.
Experience has shown that programs are more likely to contain errors at or near boundary
points than at other points. As a result, we want to include special tests to make sure that the
program works at and near boundaries.

For example, consider our case study program. There are now a number of different
boundary points. Of course, there are still the boundaries of 0 and l 00 for each individual
score, which we included in our original test plan in Section 1-4. In addition, we now have
two more boundaries, based on the total score: scores 210 and 290. At 210, the rule for

2-3 DECISION STRUCTURES 77

program TestScores;

{Written by: xxxxxxxxx XX/XX/XX}

{Purpose: To calculate the total on three tests, and print that}

{ total with the student's name}

const

EndOfData

var

, , ; {empty string to terminate input}

Name: string;

Score!, Score2, Score3: integer;

Total: integer;

{student name, input}

{three test scores, input}

Result: string;

{total of test scores, calculated}

{'passing' or 'failing' result}

procedure Instructions;

begin

{The Instructions procedure is placed here, exactly as it appears in}

{Figure 2-7.}

end; {Instructions}

begin {TestScores}

{*** Before the loop print instructions}

Instructions;

{*** In the loop, read name and scores; calculate and print total;

determine whether passing or failing, and whether exempt from final;}

quit when user enters empty name}

repeat

Writeln;

Write('Enter the name (just tap return to quit): ');

Readln (Name);

if Name <> EndOfData then
begin

Write('Now enter the three scores: ');

Readln(Scorel, Score2, Score3);

Total := Score! + Score2 + Score3;

if Total >= 210 then

Result .- 'passing'

else
Result := 'failing';

Writeln('The total is

if Total > 290 then

Total, ' for Name, ' -

Writeln('********* EXEMPT FROM FINAL *********')

end

until Name = EndOfData;

{*** Stop the program}

end.

Figure2-9 If . .. then (continues next page).

Result);

78 FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2

SAMPLE INPUT AND OUTPUT

Enter the name (just tap return to quit): Joan Smith
Now enter the three scores: 78 67 87 ---
The total is 232 for Joan Smith - passing

Enter the name (just tap return to quit): Tim Rae

Now enter the three scores: 34 99 71

The total is 204 for Tim Rae - failing

Enter the name (just tap return to quit): Sally Tie

Now enter the three scores: 60 61 59 ---
The total is 180 for Sally Tie - failing

Enter the name (just tap return to quit): Alex Wilkins

Now enter the three scores: 100 95 96

The total is 291 for Alex Wilkins - passing
* * * * * * * * * EXEMPT FROM FINAL *********

Enter the name (just tap return to quit):

Figure 2-9 (continued)

determining pass or fail changes, and at 290, the rule for telling whether the student is
exempt from the final exam changes. It is a good idea to include test cases that result in
values exactly on the boundary, just below the boundary, and just above the boundary.
Hence, in our test plan, we might write

BOUNDARY ON PASSING

70,69, 70

65, 76,69

100, 50, 61

total 209, fail

total 210, pass

total 211, pass

BOUNDARY ON EXEMPTING FINAL

100,90,99

95,97,98

99,96,96

total 289, not exempt

total 290, not exempt

total 291, exempt

In addition to these boundary values, we would also include other passing and failing grades
chosen randomly and other exempting and non-exempting grades chosen randomly.

Note. Of the three tests listed for the boundary on passing, the first two are the
most vital: 209 is the highest failing grade and 210 is the lowest passing grade. For the
second list, the second and third tests are the most vital.

In general, in testing a program involving branching, we choose some test cases that
exercise the boundary points, as well as others chosen more randomly within the different
branches.

2-3 DECISION STRUCTURES 79

REVIEW

Terms and Concepts

Backus-Naur form (BNF)
compound statement
if-then structure
if-then-else structure

Pascal Syntax

Conditions

expression relationship expression

multiple-way branches
negations
syntax diagrams

The relationship is one of=, >, <, >=, <=, and<>.
The expressions must be "compatible" (e.g., cannot compare integers to strings).

String Comparisons

' '<'0'< ... <'9'<'A'< ... <'Z'<'a'< ..• <'z'

To be equal, the strings must have the same length. For example,

' John ' < ' Johnson '
'Joe' > 'Bill'
'An' < 'an'
'Sue ' <> 'Sue'

are all true.

Decisions

if-then:

if condition then
statement

The statement can be a compound statement, yielding:

if condition then
begin

list of statements separated by semicolons
end

if-then-else:

if condition then
statement (can be compound statement)

else
statement (can be compound statement)

EXERCISES

80

1. Run the payroll program exactly as it appears in Figure 2-8. Then add appropriate steps for the
instructions procedure and run it again.

FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2

2. Give an appropriate decision structure (if-then-else or if-then) for each of these situations. Use
appropriate variables, and give both the necessary declarations and the segment of Pascal for the
decision.

(a)

INCOME

Less than $8000.00

$8000.00 or higher

TAX RATE(%)

2.0
4.5

(b) If the sex code is "M", add 1 to the variable Males, otherwise add 1 to the variable
Females.

(c) The commission rate is 3 percent if the sales amount is less than $150. If the sales amount
is $150 or more, the commission rate should be 5 percent.

(d) Sales tax is 6 percent on any purchase of $500 or less, but only 3.5 percent on a purchase
over $500.

(e) If the tax is greater than $550, a penalty of 6 percent should be added to the tax.
(t) If T is currently 0, do nothing; otherwise add 1 to the value of T.
(g) Calculate the bonus based on the current value of Years and Sales. If Years is 5 or less,

then the bonus is nothing; otherwise it is 0.1 percent of the sales.
(h) If the average of the three test scores is greater than 59.5, print "passes".
(i) If the ratio of two integers I and J is above 4.7, then calculate K as the sum of I and J; if

not, K is the difference.
(j) If Sex is 'female', then daily caloric need is 16 times body weight in pounds. If Sex is

'male', then daily caloric need is 18 times body weight in pounds. (Assume that Sex has
one of the two listed values.)

3. For each program segment of Exercise 2, determine all boundary values and come up with a
minimum set of test cases for each branch at and near each boundary value.

4. Add appropriate input, output, and looping steps to create an entire program built around the
situations described in Exercises 2(a), (c), (d), and (g). Where it makes sense, add names to the
list of data input by the user.

5. Modify the case study example (Figure 2-9) to print "IMPROVING" for those students whose
third grade is better than the average of the first two grades. What additions would be needed in
the test plan?

For each of Exercises 6 to 10, (a) determine the input and output and give a variables list;
(b) write and refine an algorithm; (c) create a test plan; (d) write the program in Pascal; and
(e) run the program, utilizing your test plan to help locate errors.

6. Each line of data has three integers, A, B, and C. These form a "Pythagorean triple" if A*A +
B*B = C*C. Write an algorithm to read each input line; print the values of A, B, and C; and
print a message: either "is a Pythagorean triple" or "is not a Pythagorean triple".

7. The amount of sales is quantity times price. The discount is 1 percent of the sales amount if the
quantity is over 100, otherwise 0. The net price is the sales amount minus the discount. The
commission is 3 percent of the net price if the net price is less than $250, 5 percent for $250 or
more. The program should input quantity and price, then calculate and print the sales amount,
discount, net price, commission rate, and commission.

8. The first input line contains the beginning balance of a savings account for a year. This is
followed by a series of inputs, each representing one transaction for the account. Each consists

EXERCISES 81

of a transaction code ('W' = withdrawal, 'D' = deposit) and an amount. Write a program to
determine the final balance at the end of the year by adding and subtracting from the running
balance based on each transaction. (You can assume that the code is either a 'W' or a 'D' .)

Revise the program to print a running account of the transactions for the account, including the
beginning and ending balances for each transaction.

9. Each data set has an employee name, an incentive factor (in the range 0.01 to 0.15), a weekly
base salary, and the number of units produced during the week. Write a program to calculate the
payroll for the company. A person's actual salary is computed from the base salary as follows: If
the number of units produced is less than 500, then IO cents is deducted from the pay for each
unit by which the quota of 500 was missed. If the units produced is 500 or more, then the base
salary is increased by an amount consisting of the incentive factor times the number of units
produced above the quota.

Modify the program to also print a message "at or above quota" or "below quota" for each
employee.

10. The data are the same as in Exercise 9. However, this time the salary is computed as follows: If
the number of units produced is less than 750, the salary is merely the base salary. If 750 or
more units are produced, the incentive factor is treated as a percentage; this percentage of the
base salary is added to the base salary to obtain the actual salary.

11. Write a complete Pascal program to input sex, current weight in pounds, goal weight, and daily
caloric intake. Use the calculation of Exercise 2(j) to calculate and print the projected number of
days that are required to attain the weight loss. Use the relationship

3500 calories = I pound

and calculate the daily caloric need based on the average of the current weight and the goal
weight.

2-4 ADDITIONAL PASCAL TOPICS

In this section, we explain how to control the appearance of output from a THINK Pascal
program and introduce the use of the printer. We also investigate some of THINK's built-in
features that aid us in writing our programs. We discuss integer and real numbers in more
detail and show how we can convert numbers from real to integer and from integer to real.

Formatting Output

You probably were not overjoyed by the form of the output of our example program's real
numbers. Instead of seeing an old friend such as "23," you observed scientific notation such
as "2.3e+l". The two forms for the number are mathematically equivalent, but they are quite
different from the point of view of simplicity and understandability. Admittedly, there are
certainly cases in which one would prefer scientific notation to the explicit presence of all
the decimal positions; for example, we probably would prefer the scientific form "3.Se-12"
to the explicit form "0.0000000000035". The best approach is for the programmer to decide
on the form of the output as part of the program design process. We now describe the
formatting tools Pascal provides for programmer control of the way numbers should look
when a program prints them.

Output Position. Whether we output to a display screen or to a printer, we write
the first character of the output to a particular location. This location has both vertical (row)

82 FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2

and horizontal (column) attributes with respect to the top and left margins of the screen or
sheet of paper. We refer to this location as the output position.

THINK Pascal treats the top line of the text window or a sheet of paper as line 1 and
the leftmost character position as column 1, often referred to as position (1,1).

If we cause the output position to become (1,1), then we refer to this action as "going
to top-of-form." In the case of output to a screen, top-of-form is usually accompanied by
erasing all the information that may have been on the screen.

THINK Pascal also provides the standard procedure Page; calling Page places the text
window's cursor at top-of-form and also erases (clears) the entire screen. To move to the
top-of-form and clear the screen just say

Page

in your program. (See what follows for how to advance the printer to the top-of-form.)
For the rest of this discussion, we assume that we are in some given print position, and

that we wish to control the output of the next item, including the print position at which it
will appear.

Output of Integers. Suppose that we wish to output the integer variable Area,
starting at the current print position and within the next three output columns. In this case,
we can use one of the two Pascal statements:

Writeln(Area:3)

or

Write(Area:3)

The effect of "Writeln(Area:3)" is to output the value of Area right-justified within the next
three columns and to set the print position to column 1 of the next line. The effect of
"Write(Area:3)" is to output the value of Area right justified within the next three columns
and to set the print position to the next column of the same line (i.e., three columns from the
original print position).

Note. "Right-justified" means that the number is printed in the columns allotted as
far to the right as possible. For example, if we print a two-digit number right justified in five
columns, it will be preceded by three blanks.

We illustrate the results for an Area that has a value of 12. The # stands for blank
spaces, I for the left margin, and A for where the cursor stops after printing is complete.

Writeln(Area:3)

#12
IA

Write(Area:3)

2-4 ADDITIONAL PASCAL TOPICS 83

If you send output to the text window, as much of each line will appear as there is room in
the window to display it. (You can change the window's size before or after you run your
program, or while it is stopped, but not while it is running. The wider you make the window,
the more of an output line you can see.) It is possible to print out more on a line than you
can expand the text window to see. If that occurs, consider reformatting your output.

If the value to be output is larger than the number of columns specified, then the
output will begin in the current print position and extend to the right for as many columns as
are necessary to represent the number. We should also note that the "-" sign for a negative
number occupies an output column.

We can use any reasonable number of columns in place of the "3" used in the previ
ous example. If "Writeln(Area)" or "Write(Area)" is used without specifying the number of
columns, the resulting form of the output will be as if "Writeln(Area:O)" or "Write(Area:O)"
were used.

To provide maximum flexibility for the programmer, the number of columns can be
expressed as an integer variable or expression. For example, if "Width" is an integer vari
able or constant, we can use the statement

Writeln(Area:Width+3)

Output of Reals. In order to specify the format for a real number output, we can
specify not only the number of columns to be used (the field width), but also the number of
decimal places (the precision). Suppose that "Number" has the value 34.567. We now show
various possibilities for printing out "Number". In all cases, we assume that the current print
position is in column 1. (The I symbol signifies the left margin of the output.)

84

STATEMENT

Writeln(Number:6:3)
Writeln(Number:6:2)
Writeln(Number:7:2)
Writeln(Number:7:0)
Writeln(Number:2:2)
Writeln(Number:7)
Writeln(Number:8)
Writeln(Number:9)
Writeln(Number:lO)
Writeln(Number:ll)
Writeln(Number:l2)
Writeln(Number:l3)
Writeln(Number:l4)
Writeln(Number:l5)
Writeln(Number:l6)
Writeln(Number:l7)
Writeln(Number:l8)
Writeln(Number:l9)
Writeln(Number:l8:10)
Writeln(Number)
Writeln(Number:O)
Writeln(Number:O:lOJ

OUTPUT

34.56
34.57

34.3
35

34.57
3.5e+l
3.5e+l
3.5e+l
3.5e+l
3.46e+l
3.457e+l
3.4567e+l
3.45670e+l
3.456700e+l
3.456700le+l
3. 45670013e+l
3. 456700134e+l
3.45670001343e+l

34.5670013428
3.5e+l
3.5e+l

34. 5670013428

COMMENT

Perfect fit!
Blank on left, rounded
Right-justified
No decimal point!
Takes all it needs
If number of decimal
places is not given,
THINK uses a minimum
width of 10!
Aha! How far will it go?

Now just trailing zeros

Where did the one come from?
It's a precision problem

More digits than accuracy!
THINK's default
Minimum configuration
Precision 10

FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2

As we can see from the listing, the possibilities are many. One principle that we note
is that the desired precision is always printed, even if the field width must be violated in
order to do it. (The example with field width = 0 and precision = 10 provides an extreme
situation.) The next priority after precision is field width. In THINK Pascal, whenever the
number of decimal places is not provided, the width is always a minimum of 10-if you
give a width less than 10, THINK makes it 10. (Depending upon the number, THINK may
not use all 10 spaces when printing it, but 10 spaces are reserved nonetheless.)

Another principle to remember is that representation of real numbers in a computer is
usually not exact; that is why the number 3.4567 does not print out exactly if we print too
many decimal places.

Again, to provide maximum flexibility for the programmer, the field width and preci
sion can be expressed as integer variables or expressions. For example, if "Width" and
"Places" are integer variables or constants, we can use the statement

Writeln(Number:Width+3:Places-1)

Character and String Output. A field width value can also be used with a char
variable or a string variable. The treatment of the two is identical, so we combine them in
our discussion.

Suppose that Name is a string variable whose current value is 'Joe'. The following
listing indicates the output for various field widths. Observe that the current length of the
string, not its maximum length, determines what is printed.

STATEMENT OUTPUT COMMENT

Joe
Joe Preceded by one blank

Joe Four blanks

Writeln(Name)
Writeln(Name:4)
Writeln(Name:7)
Writeln(Name:2) IJo Will print only the first two characters

The output is right-justified if the width is the length of the string or larger. If the width is
shorter than the string's length, then the string is truncated (on the right) when it is printed.

A technique that can be useful is illustrated by the following example:

Writeln(Testl:5, ' ':7, Test2:5, ' ':7, Total:5)

This prints Testl, Test2, and Total. In between, the ' ':7 prints a blank space, right-justified
in a field of width 7. This has the effect of printing seven blank spaces. For example, for
values 95, 68, and 100 for the three tests, this would print the following. (The)j symbols on
the line represent blank spaces.)

~~~95~~~~~~~68~~~~~~~~~100 

This technique can be useful in creating tables of output. 
To complete this discussion of formatting output, we show two ways to produce the 

output line 

The Weight of Player 85 is 211.6 pounds. 

For this example, we suppose that the integer variable "Number" contains the value 85 and 
that the real variable "Weight" contains the value 211.6. 

2-4 ADDITIONAL PASCAL TOPICS 85 



FIRST METHOD 

Writeln (' The Weight of Player Number:l,' is ' Weight:l:l, 

' pounds.') 

SECOND METHOD 

Write(' The Weight of Player'); 

Write(Number:l); 

Write(' is'); 

Write(Weight:l:l); 

Write(' pounds.'); 

Writeln 

The running of these two segments of code should produce identical results. In the 
first, the entire line is written with one Writeln. In the second, the Write is used to print each 
part of the line. The final Writeln moves the print position to the following line. 

Which is preferable? It is a matter of choice. There are several exercises at the end of 
the section that will help to clarify this subject. 

Output to the Printer 

For many programs, it is more appropriate to print some or all of the output on the printer 
than in the text window. In THINK Pascal, there are two basic ways to send output to a 
printer. 

One approach is to redirect all output that would have gone to the text window to go 
to the printer. This is done by checking the "Echo to the printer" box on the Run Time 
Environment Settings screen. (You get to that screen by selecting Run Options from the Run 
menu.) This tack allows you to send output to the printer quickly, without changing your 
Pascal program, but it is inflexibile, since all text output now goes to the printer. 

The more flexible approach is to include a directive to send output to the printer in 
those Write and Writeln statements whose output is intended to be on paper rather than in 
the text window. 

The first step in doing this is to come up with a name to refer to the printer. Say we 
choose the name Report. In the var section, we declare Report to be a text variable: 

Report: text; 

Next, we tell THINK Pascal that this name is the one we wish to use to stand for the 
printer by placing the statement 

rewrite(Report, 'Printer:') 

in the body of the program, before we send any output to the printer: 
We now use the name Report in those Write and Writeln statements whose output we 

wish to go the printer: 

Writeln(Report, 'This will go to the printer.') 

86 FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2 



Notes 

1. We cannot use the term "Printer:" directly in Write or Writeln statements. The printer 
is considered to be a device (akin to keyboards, screens, and disk drives) and THINK 
Pascal requires that we send output that does not go to the screen to a file. So we use 
the steps mentioned previously to "connect" the printer to a text file (that we called 
Report) to work around this limitation. Files we will discussed in detail in Chapter 5. 

2. Output to certain printers, particularly some kinds of laser printers, may not actually 
print out until the Pascal statement 

close(Name assigned to Printer:) 

is issued. Include the close statement once, right before the end of the program. If you 
forget to include a close statement, the program could abort, go into an infinite loop, 
or fail to send the output to the pointer. 

Moving the Printer to Top-of-Form. Not all printers behave the same way 
when it comes to controlling the position of the print head. However, on most printers, 
moving the printer to position (1,1)-the top of the next page-can be accomplished iri 
THINK Pascal with the statement 

Page(Name assigned to the printer) 

For example, if the printer had been connected to the name Report, 

Page(Report) 

would cause the printer to go to the top of the next page. 

The Appearance of Output Sent to the Printer. The appearance of output on 
a printed page is often quite different from the way it appears on a screen. A printed page is 
sometimes organized into a table consisting of columns of information, whereas the screen 
usually shows lines of interactive dialogue. The program shown in Figure 2-10 illustrates 
both of these points. The purpose of the program is to produce a small table of square roots. 
Note the way that the page and column headings are handled using the formatting tech
niques discussed earlier in this section.(The expression "Sqrt(Number)" in the Writeln calcu
lates the square root of the number. It will be more fully explained in the next section.) 

Note. As illustrated by this example, a program can send output to both the printer 
and the screen. Sometimes we display the answers on the screen and we also print the 
answers on paper to obtain a permanent record. For example, we might modify the example 
to read 

if Number <> EndOfData then 
begin 

Writeln{'The square root is Sqrt(Number):l:4); 

Writeln{Report, ' ':29, Number:4, ' ':7, Sqrt(Number) :10:4) 

end 

Observe that the form of the output for the printer can differ from that for the screen. 

2-4 ADDITIONAL PASCAL TOPICS 87 



program RootTable; 

{Written by: XXXXXXXXXX XX/XX/XX} 
{Purpose: To create a small table of square roots on the printer} 

const 
EndOfData 

var 

-1; 

Number: integer; 
Report: text; 

begin {RootTable} 

{terminating value} 

{user input} 
{name for printer} 

{*** Assign the printer the name report, and prepare it to receive output} 

reset(Report, 'Printer:'); 

{*** Print headings} 

Writeln(Report, 
Writeln(Report, 
Writeln(Report, 
Writeln(Report, 
Writeln(Report); 

30, 'TABLE OF SQUARE ROOTS'); 

28, '---------------------------'); 
28, 'Number 
28, '------

Square Root'); 
-----------'); 

{*** Read numbers in a loop, calculate square roots and print} 

repeat 
Write('Enter a number (-1 to terminate): '); 
Readln(Number); 
if Number <> EndOfData then 

Writeln(Report, ' ' : 29, Number 
until Number = EndOfData 

{*** Terminate program} 

{Close(Report)} 
{Include if necessary} 

end. 

4, I I 

Figure 2-10 Output to a Printer (continues next page). 

Square Roots and Absolute Value 

7, Sqrt(Number) 10 4) 

There are several built-in THINK Pascal library functions that can help the programmer 
with numerical calculations. Among the most common and useful are those that take the 
square root (Sqrt) of a number or the absolute value (Abs) of a number. 

In order to calculate a square root, the programmer uses the form 

Sqrt(exp) 

where "exp" is any real or integer variable or expression. The value of the square root 
function is always a real number and only makes sense when "exp" has a nonnegative value. 
Some example values of the square root function are listed. 

88 FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2 



SAMPLE INPUT AND OUTPUT 

Screen display: 

Enter a number (-1 to terminate): 

Enter a number (-1 to terminate) : 
Enter a number (-1 to terminate) : 

Enter a number (-1 to terminate): 

Enter a number (-1 to terminate): 

Enter a number (-1 to terminate) : 

Enter a number (-1 to terminate) : 

Enter a number (-1 to terminate) : 

Enter a number (-1 to terminate): 

Enter a number (-1 to terminate): 

Enter a number (-1 to terminate) : 

Enter a number (-1 to terminate) : 
Enter a number (-1 to terminate) : 

Printer: 

TABLE OF SQUARE ROOTS 

--------------------------
Number 

2 
4 

6 

8 

10 

12 
14 

16 
18 

20 

22 

24 

Figure 2-10 (continued) 

Square Root 

1. 4142 
2.0000 

2.4495 

2.8284 
3.1623 

3.4641 

3.7417 

4.0000 
4.2426 

4.4721 

4.6904 

4.8990 

2 

4 

6 

8 

10 
12 

14 

16 

18 

20 

22 

24 
-1 

NUMBER 

25 
0.3 

0 

-1 

1 

0.5 

SQRTINUMBER) TO TWO PLACES 

5.00 
0.55 

0.00 
* * * error, Number must be positive or zero 

1. 00 
0. 71 

Some example Pascal statements that use the square root are 

Deviation:= Sqrt(Variance); 
Range:= 3 * Sqrt(Number + 5); 
Writeln(Sqrt(Number) :6:2); 
Root := (-B + Sqrt(B * B - 4 *A* C)) I (2 *A) 

2-4 ADDITIONAL PASCAL TOPICS 89 



In order to calculate an absolute value, the programmer can use the form 

Abs(exp) 

where "exp" is any real or integer variable or expression. The value of the absolute value 
function is an integer if "exp" is an integer and is real if "exp" is real. Some example values 
of the absolute value function are 

NUMBER 

25 

-10.3 

0 

-0.0 

Abs(Number) 

25 

10.3 

0 

0.0 

Some example Pascal statements that use the absolute value are 

Magnitude := Abs(Measurement); 

Writeln(Abs(Number) :5); 

Distance:= Abs(X - Y); 

GeoMean := Sqrt(Abs(N*M)); 

if Abs(X - 1) < 0.00001 then 

Writeln('The number is close to 0') 

Note that the square-root and absolute-value functions can be combined as in the expression 
"Sqrt(Abs(N*M))". (This expression means to take the square root of the absolute value of 
N*M. That is, first N*M is calculated, then its absolute value is determined, and finally the 
square root of that absolute value is obtained.) 

In earlier sections, we observed that real arithmetic is not always precise. The reason 
for this has to do with the way real numbers are stored in the computer. For example, if we 
add 0.1 ten times, placing the answer in Sum, the if statement 

if Sum= 1.0 then 

Writeln('Precisely 1.0') 

might not print the message. 
One approach to dealing with this difficulty uses the absolute value function. We 

would expect that Sum would be very close to 1.0. We might write 

if Abs(Sum - 1.0) < 0.000001 then 

Writeln('Sum is "close to" 1.0') 

(The expression "Abs(Sum - 1.0)" calculates the difference between Sum and 1.0.) If abso
lute precision is required, then real variables are not appropriate. 

Functions 

Sqrt and Abs are just two examples of standard THINK Pascal functions. Others are dis
cussed later in this section. One (Chr) was introduced very briefly in Section 2-1. The 
examples given earlier illustrate a number of important ideas associated with functions in 
general. 

90 FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2 



1. The call (or invocation or use) of the function takes the form 

function-name(argument) 

The argument (or parameter) is the value the function uses in doing its calculation. 
For example, in the expression 

Sqrt(Variance) 

the variable Variance is the argument. It represents the number whose square root is to 
be calculated. (As we will see later, some functions have two or more arguments and 
some have none.) 

2. The use of the function can take place almost anywhere that a variable or expression 
can be used. For example, it can appear on the right side of an assignment statement, 
in the condition for an if statement, or in the list of values to be written by a Writeln 
statement. It may not appear in a call to Readln or on the left side of an assignment 
statement. 

3. The precedence rules are expanded when a function appears in an expression. Func
tion values are calculated first, prior to unary minus. This involves calculating the 
value of the argument with the usual precedence rules. For example, consider the 
following expressions. The operations are done in the indicated order. 

Sqrt(3*2+30)/5 

Sqrt(6+30)/5 

Sqrt(36)/5 

6.0/5 

1.2 

First, evaluate the argument: 

* first 
+ to finish the argument 

Then, use the function 

Finally, do the division 

Integer Operations: mod and div 

In Section 2-1, on the assignment statement, we included a discussion of the "/" operator 
for division. This operator is sometimes called the "real division" operator because the result 
is always real. This is true even if the numbers being divided are integers. Some examples 
follow: 

N M N/M 

15 0.3 50.0 

6.3 21 0.3 
-32 5 6.4 

100 5 20.0 

45 0.0 error; division by 0 is undefined 

Pascal also allows for the concept of integer division, which is similar to the long 
division that is practiced by students in elementary school. In long division, we speak of a 
quotient and a remainder when we divide one integer into another. 

2-4 ADDITIONAL PASCAL TOPICS 91 



Similarly, in Pascal, we have two operations available: div to compute the quotient of 
two integers, and mod to compute the remainder. The div and mod operations are used in 
the same way that the more familiar operations +, -, *, and I are used. Some examples of the 
operations of div and mod follow: 

N M NdivM NmodM 

5 2 2 1 

-5 2 -2 -1 

5 -2 -2 
-5 -2 2 -1 
23 23 0 

-38 7 -5 -3 
12 19 0 12 
9 0 error; division by 0 is not allowed 

5 2.0 error; both numbers must be integers 

For two integers N and M, the following relationship holds: 

N = M * (N div M) + (N mod M) 

as long as M is not equal to zero. This statement is known as the division relation and is the 
basis for many other numerical algorithms. 

The operators div and mod have the same precedence as * and /. Thus, we can 
summarize the precedence rules so far as: 

1. Function evaluation. This involves evaluating the arguments (using these rules), then 
invoking the function. 

2. Unary minus. 

3. *, /, div, and mod (left to right). 

4. + and - (left to right). 

5. Can use parentheses to group. 

Introducing Predefined Identifiers: maxint 

The THINK Pascal programming language supplies some assistance to the programmer in 
the form of predefined identifiers. As the term suggests, these identifiers can be used 
without the programmer declaring them, and, in addition, they have values that have already 
been established. 

One of the most useful of these identifiers is maxint, which establishes the largest 
valid integer value that can be used for a specific implementation of Pascal. For THINK 
Pascal, maxint is 32767. This means that any positive integer values must range from 0 to 
32767, inclusive. Depending upon how a particular computer represents integers, negative 
integers can range from -maxint to -1 or -(maxint + 1) to -1. (For THINK Pascal, the latter 
range applies.) 

92 FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2 



REAL NUMBERS AND INTEGER NUMBERS 

Accuracy: 
Limits. 

Operators: 

Integer arithmetic is accurate. Real arithmetic can be inaccurate. 
Integer numbers are limited to the range of -maxint - 1 to maxint 
inclusive. Real numbers also have limits of magnitude but the range 
is immensely greater (-3.4e38 to 3.4e38 in THINK), so the practi
cal limit is more one of precision than magnitude. 
Integer numbers can use the div and mod operators. Real numbers 
cannot use these operators. 

Figure 2-12 Real versus integer. 

Note. Since maxint is a predefined constant, it is not declared in the program. In 
fact, if "maxint" were declared as a constant or variable, it would no longer function as 
intended. For the curious, some experiments are suggested in the exercises. 

There are a number of standard predefined identifiers that will be introduced later. 
Implementations of Pascal often have their own special (nonstandard) predefined identifiers. 
(THINK Pascal has several.) Using these has the advantage of simplifying and speeding up 
program implementation, but also has the disadvantage of hindering program portability
moving the program to non-Macintosh computers. If a program written on the Macintosh is 
also intended to be run on other computers, the use of nonstandard identifiers should be 
minimized. This practice reduces the amount of rewriting of program code that will be 
necessary to allow the program to run on the other machines. 

Real-to-Integer Conversions 

One of the most difficult aspects of numerical programming is the distinction between 
integers and real numbers. We are accustomed in algebra to deal with integers as merely 
special cases of real numbers and not as an entirely different set of entities with their own 
rules and operators. However, as we have already seen, there are differences between the 
"worlds" of real numbers and integers in Pascal. Some of the differences are summarized in 
Figure 2-12. 

One way to manage the differences between the two types of numbers might be to 
avoid mixing them; however, it is not always possible (or desirable) in practice. For exam
ple, if we were attempting to calculate the average amount of rainfall per day for the month 
of June in a particular area, we would probably calculate the total amount of rain for the 
month (to tenths of an inch) and divide by 30. We see here that the total amount of rain is 
"naturally" a real number and the number 30 is "naturally" an integer (the number of days 
in the month). Therefore, our calculation of the average would involve a mixed-mode 
computation (a mix of a real and an integer). 

Suppose the total rainfall is contained in the variable TotalRain and the number of 
days is contained in the variable Days. If the variable Average is to contain the answer, we 
have already seen that the statement 

2-4 ADDITIONAL PASCAL TOPICS 93 



Average := TotalRain div Days 

is illegal because TotalRain is a real variable. The alternative choice 

Average := TotalRain I Days 

is not only legal, but it accomplishes the purpose. The way that we know which division to 
select is our realization that the result Average is to be a real quantity. The rule that we need 
to remember about the operator "/" is 

N I M is always real, regardless of the types of N and M. 

There are other cases of mixing modes that are not so easily handled. For example, suppose 
that we have an amount of money in the real variable Allowance and we wish to calculate 
the number of video games that we can play at a quarter per game. The number of games 
should be expressed as an integer (it is not usually possible to purchase one-half of a video 
game) and might be represented in the integer variable Games. We are naively led to the 
following mixed mode Pascal statement 

Games := Allowance I 0.25 

Unfortunately, as we indicated in Section 2-1, this is illegal and leads to a run-time error. 
For this type of situation, Pascal provides the built-in function Trone, which converts a real 
number to an integer number by merely dropping the fractional part (that which follows the 
decimal point) of the real number. Thus, the THINK Pascal statement that we should use is 

Games = Trunc(Allowance I 0.25) 

Some examples of the results of this conversion are 

ALLOWANCE 

10.34 

5.20 
1.99 

ALLOWANCE/0.25 

41.36 

20.8 

7.96 

GAMES 

41 

20 

7 

As another example, suppose that a teacher grades on the basis of a final average 
according to 

90-100= A 

80-89 = B 

70-79 = c 
60-69= D 

under 60 = F 

Suppose further that the final average is based on three 100-point examinations according to 
the computation 

FinalAverage .- (Examl + Exam2 + Exam3) I 3 

94 FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2 



where FinalAverage is a real variable, and Examl, Exam2, and Exam3 are integer variables. 
Consider the hypothetical student who has earned: 

Examl =90 

Exam2=89 

Exam3=90 

FinalAverage = 89.67 

Should the student be awarded a grade of B for the course? Many teachers would handle 
this situation by treating FinalAverage as an integer variable instead of real. In this case, the 
value of FinalAverage would be 89 if we computed 

FinalAverage .- (Examl + Exam2 + Exam3) div 3 

or if we computed 

FinalAverage := Trunc((Examl + Exam2 + Exam3) I 3) 

Pascal provides us with another possibility via the built-in function Round. If we 
computed the final average for the student in question with the formula 

FinalAverage := Round((Examl + Exam2 + Exam3) I 3) 

then the value of FinalAverage would be 90 and the student would receive a grade of A for 
the course. The following illustrates results of the Round function: 

Exam1 

90 

89 

Exam2 

89 

90 

Exam3 

90 

89 

(Exam1 + Exam2 + Exam3)/3 

89.67 

89.33 

FinalAverage 

90 

89 

The following further illustrates the effect of the Round and Trone functions. (Suppose 
Number is a real variable.) 

NUMBER Round(Number) Trunc(Number) 

12.1 12 12 

11.99 12 11 

-1.3 -1 -1 
2.5 3 2 

2.49 2 2 

-2.5 -3 -2 
-2.49 -2 -2 

-0.5 -1 0 

Integer-to-Real Conversions 

Sometimes it is desirable to treat an integer number as a real number. For example, suppose 
that the integer variable Count represents the number of old dollar bills that Jack has tom in 

2-4 ADDITIONAL PASCAL TOPICS 95 



trying to smooth them out. If we wanted to output the value of the tom money, we might try 
the statement 

Writeln('The value destroyed is$', Count:7:2) 

However, this statement is not allowed because "Count" is an integer variable. One remedy 
would be to use the statement 

Writeln('The value destroyed is$', Count/1:7:2) 

Although this statement has the desired result, its form does not reflect what we are trying to 
accomplish, and so is poor programming style. Here's a better solution: Suppose that Value 
is a real variable. Then, the job can be accomplished by the following statements 

Value := Count; 

Writeln('The value destroyed is$', Value:7:2) 

The statement "Value := Count" is an implicit conversion from an integer value to a real 
value. 

Real-to-Real Conversions 

Often, when we are dealing with a real number, we want to know what number comes 
before the decimal point (the integer part) and what number comes after the decimal point 
(the fractional part). For example, if we are studying the distribution of our allowance into 
bills and change then 

The integer part of the amount is the number of dollar bills that we could receive. 

The fractional part of the amount represents change that we could receive. 

THINK Pascal does not provide built-in functions to obtain the integer and fractional 
parts of a real number, but they are easily computed. To obtain the integer part of real 
number Number (and to keep that part type real), we use the expression: 

Trunc(Number) * 1.0 

(Although this is not the best programming style, it is the best we can manage and accom
plish the task.) 

To obtain the factional part, we just subtract the integer part from Number: 

Number - (Trunc(Number) * 1.0) 

To complete the discussion of the distribution of our allowance, suppose that the real 
variable Amount represents the money that we are to receive. The Pascal program of Figure 
2-13 asks the user to input the amount of allowance to be received and distributes the 
allowance into $20, $10, $5, and $1 bills, and quarters, dimes, nickels, and pennies for the 
change. 

96 FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2 



program Allowance; 

{Written by: xxxxxxxxxxxx XX/XX/XX} 

{Purpose: To distribute an allowance into $20 , $10 , $5 and $1} 

bills and quarters, dimes, nickels, and pennies} 

const 
EndOfData O; {Used to terminate loop} 

var 
{Value of allowance, input} Amount: real; 

Dollars: integer; 

Twenties: integer; 
Tens: integer; 

Fives: integer; 

One.s: integer; 

Cents: integer; 

Quarters: integer; 

Dimes: integer; 
Nickels: integer; 

Pennies: integer; 

{Number of dollars to distribute} 

{Number of twenty dollar bills} 
{Number of ten dollar bills} 

{Number of five dollar bills} 

{Number of one dollar bills} 

{Number of cents to distribute} 

{Number of quarters} 

{Number of dimes} 
{Number of nickels} 

{Number of pennies} 

begin {Allowance} 

{*** Print heading} 

Writeln; 
Writeln(' 

Writeln(' 

Writeln; 

ALL 0 WAN CE S'); 

-------------------'); 

{*** Read amount, calculate and print distribution} 

repeat 

Writeln; 

Write('Enter the amount of the allowance (0 to quit): '); 

Readln(Amount); 

Writeln; 

if Amount <> EndOfData then 
begin 

Writeln(' DISTRIBUTION'); 

Writeln; 

Dollars:= Trunc(Amount); 
Cents:= Round(lOO * (Amount - Dollars)); 

{*** Distribute the bills} 

Twenties := Dollars div 20; 
Dollars := Dollars mod 20; 

Figure 2-13 Mod and div (continues next page). 

2-4 ADDITIONAL PASCAL TOPICS 97 



if Twenties > 0 then 

Writeln('$20 bills: ' Twenties 0); 

Tens := Dollars div 10; 

Dollars := Dollars mod 10; 

if Tens > 0 then 
Writeln('$10 bills: ',Tens 0); 

Fives := Dollars div 5; 

Dollars := Dollars mod 5; 

if Fives > 0 then 

Writeln('$5 bills: ', Fives 0); 

Ones := Dollars; 

if Ones > 0 then 
Writeln('$1 bills: Ones 0); 

{*** Distribute the change} 

end 

Quarters := Cents div 25; 

Cents := Cents mod 25; 

if Quarters > 0 then 

Writeln('Quarters: ',Quarters 0); 

Dimes := Cents div 10; 

Cents := Cents mod 10; 

if Dimes > 0 then 
Writeln('Dimes: ',Dimes 0); 

Nickels := Cents div 5; 

Cents := Cents mod 5; 

if Nickels > 0 then 

Writeln('Nickels: ' Nickels 0); 

Pennies := Cents; 
if Pennies > 0 then 

Writeln('Pennies: ' Pennies 0); 

Writeln 

until Amount = EndOfData; 

{*** Stop the program} 

end. 

Figure 2-13 (continues next page) 

98 

Notes 

1. Consider the step 

Cents:= Round(lOO * (Amount - Dollars); 

near the top of the loop. If the amount is 17.23, we would expect 100 * (Amount -
Dollars) to be 23.0. However, due to the imprecision of real numbers, it might be just 
below or just above 23.0. To be on the safe side, we use Round rather than Trone to 
convert to an integer. 

FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2 



SAMPLE INPUT AND OUTPUT 

A L L 0 W A N C E S 

Enter the amount of the allowance (0 to quit): 234.56 

DISTRIBUTION 

$20 bills: 11 

$10 bills: 1 

$1 bills: 4 

Quarters: 2 

Nickels: 1 

Pennies: 1 

Enter the amount of the allowance (0 to quit): 123 

DISTRIBUTION 

$20 bills: 6 

$1 bills: 3 

Enter the amount of the allowance (0 to quit): 10.34 

DISTRIBUTION 

$10 bills: 1 

Quarters: 1 

Nickels: 1 

Pennies: 4 

Enter the amount of the allowance (0 to quit): Q 

Figure 2-13 (continued) 

2. Consider the two steps 

Twenties := Dollars div 20; 

Dollars := Dollars mod 20; 

Suppose that Dollars has the value 114. The first step sees how many twenty dollar 
bills this represents. The second sees how much is left to be distributed as smaller bills 
(114 mod 20 is 14). The Dollars variable is changed to this value and the program 
continues. 

Other Standard Numeric Library Functions 

There are several other standard functions available in THINK Pascal for numeric computa
tion. Each of these is supplied with an argument and returns a value. In the following table, 
we list the functions we have discussed, along with the other commonly used standard 
numeric functions. 

2-4 ADDITIONAL PASCAL TOPICS 99 



Note. Functions that are standard in one version of Pascal are often not standard in 
another version. Standard functions are those available in an implementation of Pascal with
out the programmer needing to take special action. 

Standard Numeric Functions 

Function Argument Value Comment 

Abs Either Same Absolute value 

Arc Tan Either Real Arctangent in radians 

Cos Either Real Cosine of angle given in radians 

Exp Real Real Exponential function (e') 

Ln Real>O Real Natural logarithm 

Round Real Integer Rounds off 

Sin Real Real Sine of angle given in radians 

Sqr Either Same Square 

Sqrt Real>=O Real Square root 

Trunc Real Integer Truncates fractional part 

DPT 

Defensive programming tips for the topics covered in this section consist primarily of 
remembering several key points. 

1. Division by 0 is illegal. A good program will check the value of the divisor before 
attempting the division, as in this example: 

if NumberOfTests = 0 then 
Writeln( 'No tests taken') 

else 
begin 

Average := TestTotal I NumberOfTests; 
Writeln('The average is •,Average: 6: 2) 

end 

2. Both mod and div require integer operands and yield integer results. 

3. Sqrt provides a real answer; Abs provides an answer of the same type as its argument. 

4. The division operator (/) always yields a real result. 

5. The trigonometric functions (Sin, Cos) require arguments in radians. (Recall that we 
can convert degrees to radians by multiplying by n1180.) 

6. An assignment of the form 

100 

integer variable := real expression 

is illegal. We must explicitly choose whether to round or truncate. (The existence of 
this rule in Pascal is itself an aid to defensive programming-it forces us to face the 
issue head on.) 

FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2 



REVIEW 

Terms and Concepts 

absolute value (Abs) 
Arc Tan 
argument 
call, invocation 
close statement 
Cos 
div 
division relation 
Exp 
field width 
float 
formatting 
fractional part 
implicit conversion 
integer part 
Ln 
mod 

Output in Pascal Programs 

Formatting 

output position 
maxint 
mixed mode 
parameter 
precision 
predefined identifiers 
Printer 
program portability 
quotient 
remainder 
Round 
Sin 
Sqr 
square root (Sqrt) 
top-of-form 
Trunc 
wrap 

1. For integer, character, or string variables and expressions, we can use 

Writeln(exp : fw) or Write(exp : fw) 

where "exp" represents an integer, character, or string variable or expression to be 
output, and "fw" represents an integer variable or expression for the field width to be 
used. We can omit the field width. 

2. For real variables and expressions, we can use 

Writeln(exp : fw : prec) or Write(exp : fw : prec) 

where "exp" represents a real variable or expression to be output, ''fw" represents an 
integer variable or expression for the field width to be used, and "prec" represents an 
integer variable or expression for the precision (number of decimal places) to be used. 
We can omit the precision or both the field width and the precision. 

Output to a Printer. To direct output to a printer, declare a variable of type text 

printer name: text; 

connect the name to the printer device: 

reset(Printer name, 'Printer:') 

and add the Printer name to your Write and Writeln statements as in: 

Writeln(Printer name, X, Y, Z) 

REVIEW 101 



Pagi,ng 

1. Can accomplish a new page on the screen by calling procedure 

Page 

2. Can accomplish (for many printers) a new page on the printer output by the statement 

Page(Printer Name) 

library Functions 

1. See the previous table, "Standard Numeric Functions," for a list. 

2. Form to use (call or invoke) a function: 

function-name(argument) 

3. Can use: 

EXERCISES 

(a) on the right side of an assignment statement 

(b) in the condition of an if statement 

(c) in a Writeln 

(d) not on the left side of an assignment statement 

( e) not in a Readln 

DPT 

1. Avoid division by 0. 
2. Mod and div require integers and yield integer results. 
3. Sqrt yields a real. Abs yields the same type as its argument. 
4. Division Ul yields a real. 
5. Sin and Cos require radian arguments. 
6. Must use Trunc or Round for real-to-integer conversion. 

1. Write a Pascal program to read an integer into the variable Number and write it using several 
variations of the statements "Writeln(Number:3)", "Writeln(Number:4)" ... Discover the num
ber of columns that you have available for output on your terminal or printer. 

2. What is the result of the following lines of Pascal code? 

Writeln; 
write(3); 
Write(4); 
Write(5) 

3. Write a Pascal program to read a real number into the variable Number and write it using 
several variations of the statements "Writeln (Number:7:2)", "Writeln(Number:7)", 

102 FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2 



"Writeln(Number)'', and so on (changing the "7" and "2" to other choices). Discover the num
ber of columns and the precision used by "Writeln(Number)". 

4. Suppose that player numbers range from 0 to 99 and that player weights range from 145.0 to 
312.9 pounds. Write a Pascal program to read the numbers and weights of players and produce 
printed output similar to the following: 

THE PLAYERS' BEEF 

Player Number 

12 
89 
55 

Weight 

185.3 
298.8 
216.2 

5. Give Pascal expressions corresponding to the following algebraic expressions: 
(a) 1 +...fi 

(b) >/(I+ x) 
(c) lx-yl 
(d) 13 - 2xl + y 
(e) x3 

(f) l~I 
(g) V(b2 -4ac) 

(b) >/(Ir+ 51- 5/(5 - y)) 

(i) >l(x -y)/lzl 

6. A variable Money contains a real number that is to represent a money figure. Give Pascal steps 
to round the value in Money to the nearest cent (e.g., if Money is 100.5372, the answer would 
be 100.54). 

7. Give the value of the following expressions (if an expression is illegal, give the reason): 
(a) 5 mod 2 

(b) 2 mod 5 

(c) 103 mod 7 

(d) 1900 mod 4 

(e) Abs (16-11) 

(f) Abs ( 15-23 *2) 

(g) Trunc (23 I 4) 

(b) 23 div 4 

(i) 200 div 11 mod 4 

G) 200 div (11 mod 4) 

(k) 5 * Sqrt(96/4 + 1) 

(I) Sqrt(4) div 2 

(m) Abs ( -16 l div 5 

(n) 100 div 4 div 5 

(o) 100 div (4 div 5) 

(p) 100 div (4 I 5) 

(q) 100 I ( 4 I 5 l 

(r) 5123 div 100 mod 10 

EXERCISES 103 



8. Write a Pascal program that in a loop reads a real number, calculates the square root and 
absolute value of the number, and prints the results. If the number input is negative, then print 
an appropriate message in place of the square root (which does not exist). After each number is 
processed, ask the user whether to continue. 

9. Write a Pascal program that in a loop reads two integer numbers N and M; calculates the 
expressions N div M, N mod M, and N I M: and prints the results. If M is equal to 0, then print 
an appropriate message in place of the three expressions. After each number is processed, ask 
the user whether to continue. 

10. Write a Pascal program that in a loop reads two integer numbers N and M; calculates the 
expressions N div M, N mod M, and M * (N div M) + (N mod M): and prints the results. Is the 
division relation N = M*(N div M) + (N mod M) true in all cases for which M does not have 
the value O? 

11. (For the curious) Try the following experiments with the predefined identifier ''maxint": 
(a) Violate the range of valid integers established by maxint by input, output, and calculation. 

What happens? 
(b) Change the program of Figure 2-11 by declaring max.int as a variable of the integer type. 
(c) Write a program in which you declare maxint as a constant whose value is different from 

that used in your implementation. Does the range of valid integers change? 

12. Suppose that you output the real variable Number with the statement "Writeln(Number:7:0)". Is 
the output statement equivalent to "Writeln(Trunc(Number):7)" or "Writeln(Round(Num
ber):7)"? Write a Pascal program to discover which it is. 

13. Does "Writeln(Trunc(lOO * (23.46 - Trunc(23.46))))" output the value 46? Think of a safer 
alternative and then test both this statement and your alternative. 

14. (a) Write a segment of Pascal code that, for a given four-digit positive integer, will calculate 
the second digit. (If the number is 3613, the answer is 6.) Hint: See Exercise 7(r). 

(b) Do the same for the third digit. 
(c) Do the same for the first digit. The fourth digit. 

15. Using Exercise 14, write a program that reads a series of four-digit positive integers and calcu
lates their value ''reversed." (For input 3612, the answer is 2163.) 

16. Hand-trace the program of Figure 2-13, that is, trace its calculations for several different values 
for the Amount variable. Record the values for the different variables. Try these input values: 
37.62, 2.99, and 0.41. This process should help you understand how the program works. 

17. A barrel holds 11 monkeys, a crate holds 7 monkeys, and a coconut holds 1 monkey. Write a 
Pascal program that asks the user for a quantity of monkeys and distributes the monkeys to 
minimize the number of containers used. 

18. A runner reports the number of minutes run daily in a diary with a running (no pun intended) 
total for the year. Write a Pascal program to ask the user for the total amount of minutes run for 
the year, and output the equivalent amount of time in months, weeks, days, hours, and minutes. 

19. An electrical supplier sells wire in rolls of 500, 300, and 75 feet. Write a program to ask the 
user for the total number of feet of wire required, and output the number of 500-, 300-, and 
75-foot rolls, and the number of feet left over~ (For 1695, the answers would be three 500-foot 
rolls, and three 75-foot rolls, for a total of 1725 feet; the buyer is required to buy an extra 30 
feet. The program's output would be 3, 0, 3, and 30.) 

20. A familiar trigonometric identity translated into Pascal states that 

104 

Sqr(Sin(X)) + Sqr(Cos(X)) = 1 

Write a Pascal program to read values for X and print the left side of the identity rounded to two 
decimal places. 

FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2 



21. Another trigonometric identity translated into Pascal states that 

ArcTan(Sin(X) I Cos(X)) = X 

unless Cos(X) = 0. Write a Pascal program to read values of X and print the two sides of this 
identity, both rounded to two decimal places. 

22. Pascal does not come with a standard operator for raising one integer to another integer power. 
For two integers N and M, the value of "N raised to the Mth power" is expressible as 

Round (Exp(M * Ln(N))) 

Write a Pascal program that asks the user for two positive integer values and outputs the first 
raised to the power of the second by means of the previous formula. 

23. (Challenge) Write a Pascal program for computing "N raised to the Mth power" for positive 
integers N and M using a loop and only multiplication and the "Sqr" function. Try to write an 
efficient algorithm. Hint: To compute 2 to the 6th power, here are some possibilities: 

Five multiplications: 

Three multiplications: 

2-5 MORE ON DECISION STRUCTURES 

2*2=4 

2*4=8 
2*8 = 16 

2*16 = 32 
2*32=64 

2*2=4 
4*4= 16 

4*16 = 24 

This section continues the discussion of Section 2-3. In that section, we examined decision 
structures with two important limitations: 

1. The condition involved consisted of comparing two expressions. 

2. There were only two branches (if-then-else), and one branch might be empty (if-then). 

In this section, we learn about some more complex forms the condition can take and 
about how to develop multiple-way branches. In addition, we examine nested decisions 
(decisions within decisions). 

Boolean Expressions 

The technical term for the condition in the if statement is a Boolean expression. A Boolean 
expression in Pascal is one whose value is either true or false. (Such an expression is also 
called a logical expression, although that is not the official Pascal terminology.) 

One simple way to obtain a Boolean expression, as we have seen, is to compare two 
quantities using one of the six relational operators (=, <>, >, <, <=, and>=). In addition, 
comparisons such as this can be combined, as illustrated in the following examples: 

2-5 MORE ON DECISION STRUCTURES 105 



(X > O) or (Y > O) 
(Sex= 'F') and (Age> 21) 

(Grade= 'A') or (Grade= 'B') or (Grade 'C') 

(State<> 'PA') and (State<> 'VA') 

As you can see, we can combine one or more comparisons using an and or an or. 
When we combine using and, the resulting condition is true provided all of the individual 
conditions are true. When we use or, the resulting condition is true if one (or more) of the 
individual conditions is true. 

We can, therefore, paraphrase the meaning of these four examples as 

either X or Y (or both) is positive 
female over age 21 
Grade is either an A, B, or C 
State is not Pennsylvania, and it is also not Vrrginia 

Note. The parentheses in these examples are mandatory. In general, when we com
bine individual comparisons, those comparisons must be placed in parentheses. This is true 
because the relational operators(<,=, etc.) have lower precedence than and and or. 

The and and or used to combine the comparisons are called Boolean operators (or 
logical operators). They operate on Boolean expressions (the individual comparisons) to 
create new Boolean expressions. 

There is a third Boolean operator in Pascal: not. This operator forms the negation (the 
logical opposite) of a Boolean expression. For example, 

not(X = 0) 

means the same as 

x <> 0 

These operators, just as the arithmetic operators, have precedence rules. The order of prece
dence is 

not: highest 

and: next 

or: lowest 

This means that we sometimes have to include parentheses to obtain the desired order of 
operations. We illustrate these ideas by a series of examples; each example is a Pascal 
Boolean expression corresponding to a particular English language condition. (We make up 
variable names for quantities in the examples. In a complete program, of course, these 
variables must be declared.) 

1. Not a female over age 21. We need the negation of the condition "female over age 
21", which was one of our earlier examples. The easiest way to negate a condition is simply 
to place the entire condition in parentheses and precede it by the not operator: 

not( (Sex = 'F') and (Age > 21)) 

106 FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2 



Another way to negate the condition is to negate each individual comparison, and change 
the and to or. To see why this works, we may reason as follows: If a person is not a female 
over age 21, there are two possibilities: The person either is not female or is not over 21 (or 
both). We write 

(Sex<> 'F') or (Age<= 21) 

2. Operation code is one of '+', '*', or '/'. There are two possible approaches: 
The first uses or to link the possibilities: 

(Operation '+') or (Operation '-') or 
(Operation= '*') or (Operation '/') 

Pascal also provides an easier way to state this condition: 

Operation in [ '+', ' - ', '*' , '/'] 

This condition says that Operation has one of the values listed between the square brackets. 
This list is called a set. We study the general concept of sets in Pascal at a later time. For 
now, we simply note that it is useful in conditions of this type: 

variable in [list of values separated by commas] 

The variable and the list of values must be of the same ordinal type. Of the types we have 
studied so far, they can be integer or char because these are ordinal types. They cannot be 
real or string, which are not ordinal types. 

3. Operation code is not one of '+', '- ', "*', or '/'. We can negate either solution 
from number 2: 

not ((Operation 
(Operation 

'+') or (Operation 
'*') or (Operation 

not(Operation in['+','-','*','/']) 

'-') or 
'I')) 

Alternatively, we can negate each comparison and change each or to and. We reason that the 
operation code is not a '+',it is also not a '-', and so on. This yields 

(Operation<> '+') and (Operation<> '-') and 
(Operation<>'*') and (Operation<>'/') 

4. The sum is between 25 and 35, inclusive. To be between, the sum must satisfy two 
conditions: It must be at least 25, and it must be no more than 35. Since it must satisfy both, 
we use and: 

(Sum >= 25) and (Sum <= 35) 

The word "inclusive" causes us to use >= and <= rather than > and <. 

5. The answer is neither 'Y' nor 'N'. When we use neither/nor in English, we mean 
that both conditions are false. Therefore, we use and to join the conditions: 

(Answer<> 'Y') and (Answer<> 'N') 

2-5 MORE ON DECISION STRUCTURES 107 



Alternatively, we can reason that the answer is not in the set consisting of 'Y' and 'N', and 
write 

not (Answer in [ 'Y', 'N']) 

6. Data are good, meaning that the code is 'T' and the numerical value is either below 
10 or above 500. We write 

(Code= 'T') and ((Value< 10) or (Value> 500)) 

The extra parentheses grouping the two conditions joined by or are necessary. Because or 
has lower precedence than and, we need the parentheses to force the or to be performed 
first. 

7. Data is bad (see number 6). We must negate the condition in number 6: 

not ((Code= 'T') and ((Value< 10) or (Value> 500))) 

Although there are other ways to negate an expression involving both and's and or's, we 
suggest using the not operator. 

Note. In some of these examples, we have used DeMorgan's laws for negating 
compound conditions. The negation of a compound condition consisting of individual condi
tions joined by and may be formed by: 

1. negating each individual condition; and 

2. changing each and to or. 

Likewise, to negate a compound condition consisting of several conditions joined by or, we: 

1. negate each individual condition, and 

2. change each or to and. 

If both and and or appear in a compound condition, properly applying DeMorgan's laws 
requires a great deal of care, hence our suggestion to simply use the not operator. 

Multiple-Way Branches: General 

Now we will learn how to write multiple-way branches in Pascal. These are a direct exten
sion of the if-then and if-then-else decision structures. 

Multiple-way branches occur when the steps to be performed depend on certain 
conditions in three or more different categories. As a simple example, suppose we have 
variables BobHeight and JimHeight, containing the heights of Bob and Jim (in inches). We 
wish to print a message telling which is taller or stating that they are the same height. We 
identify three possibilities: 

1. BobHeight > JimHeight 

2. BobHeight = JimHeight 

3. BobHeight < JimHeight 

108 FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2 



We write, in Pascal, 

if BobHeight > JimHeight then 
Writeln{'Bob is taller') 

else if BobHeight = JimHeight then 

Writeln{'They are the same height') 

else 
Writeln('Jim is taller') 

In general, the form for this structure (which we informally call an if-elseif structure) 
is the following: 

if condition 1 then 
statement to be done if condition 1 is true 

else if condition 2 then 
statement to be done if condition 2 is true 

else if condition 3 then 
statement to be done if condition 3 is true 

else 
statement to be done if none of the listed conditions is true 

As usual, any of the statements can be compound statements (lists of statements 
grouped using begin and end). For example, if each statement were a compound statement, 
we would have this form: 

if condition 1 then 
begin 

steps to be done if condition 1 is true (separated by semicolons) 

end 
else if condition 2 then 

begin 
steps to be done if condition 2 is true (separated by semicolons) 

end 
else if condition 3 then 

begin 
steps to be done if condition 3 is true (separated by semicolons) 

end 
else 

begin 

end 

steps to be done if none of the previous conditions are true 

{separated by semicolons) 

We simply deal with the branches one at a time by specifying 

1. a condition that identifies the branch 

2. the steps for the branch to be performed if the condition is true 

2-5 MORE ON DECISION STRUCTURES 109 



A word about the semantics (i.e., the meaning) of this structure may be in order. 
Because we have "else if condition 2 then", condition 2 is not be examined if condition 1 is 
true. Likewise, condition 3 is not examined if either of the first two conditions is true, and 
so on. The basic meaning of the structure is 

Examine the conditions in the order listed. For the first one (and only the first one) 
that is true, perform the indicated steps. If none is true, perform the steps in the final 
else branch. 

Notes 

1. The final else is optional, just as it is in the if-then structure. If there are no steps to be 
done when none of the listed conditions is true, we simply omit the last branch. 

2. As in Section 2-3 on the if-then and if-then-else, begin and end indicate to the com
piler that there is more than one step in the branch. 

3. In the example just given, the three conditions are exhaustive conditions; they 
exhaust all the possibilities. In the third branch, we were able to omit the condition, 
writing 

else 

Writeln ('Jim is taller') 

We could, however, make the condition explicit if we wished: 

else if JimHeight > BobHeight then 

Writeln( 'Jim is taller' ) 

To further illustrate these ideas, we develop three more program segment examples. 
In the first example, we utilize the following simple tax table, similar to the one used 

by the federal government: 

INCOME TAX 

Below $10,000 0 
$10,000 or more but less than $15,000 7% of income over $10,000 

$15,000 or more $350 plus 10% of income over $15,000 

We immediately identify three conditions, with the corresponding formulas for the tax: 

1. Condition: Income < 10000 

Formula: o 

2. Condition: 10000 <=Income< 15000 

Formula: 0.07 * (Income - 10000) 

3. Condition: Income>= 15000 

Formula: 350 + 0.10 * (Income - 15000) 

110 FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2 



Before we begin coding in THINK Pascal, it will be helpful to think about the condi
tions more carefully. Because of the semantics (meaning) of the if-elseif structure, we can 
simplify the second condition. We do not need to verify that Income >= 10000. If it were 
not, the first condition would already have been true. Similarly, by the time the third branch 
is reached, we know the Income must be at least 15000. The three conditions are exhaustive, 
so we can omit the third condition. This discussion leads us to write 

if Income < 10000 then 

Tax := 0 

else if Income < 15000 then 

Tax .- 0.07 * (Income - 10000) 

else 

Tax .- 350 + 0.10 * (Income - 15000) 

In the second example, let us assume that a company has had a sales contest, with the 
eastern branch (code 'EA') winning and the northwestern branch (code 'NW') coming in 
second. Each employee in the winning branch is to have a bonus of $1000 added to her next 
check, with a $500 bonus for the second-place employees. We could write 

if Branch = 'EA' then 

Pay := Pay + 1000 

else if Branch = 'NW' then 

Pay := Pay + 500 

In this example, we definitely need the condition in our second branch. This is not an 
if-then-else structure. There is an implicit third branch ("none of the above") with no steps. 

Note. We could make the third branch explicit, adding 

else 

Pay := Pay 

to the previous code. However, assigning a variable's value to itself does not change the 
value, so these extra two lines are pointless. 

For our final example, assume we are given a variable Letter known to contain a valid 
letter grade (A, B, C, D, or F). We are to print an appropriate message ("excellent" for A, 
etc.) and also add 1 to an appropriate variable (ACount for A, etc.). We can write 

if Letter = 'A' then 

begin 

Writeln('excellent'); 

ACount := ACount + 1 

end 

else if Letter = 'B' then 

begin 

Writeln ('good'); 

BCount := BCount + 1 

end 

else if Letter = 'C' then 

2-5 MORE ON DECISION STRUCTURES 111 



begin 

Writeln('average'); 

ccount := ccount + 1 

end 

else if Letter = 'D' then 

begin 

Writeln('below average'); 

DCount .- DCount + 1 

end 

else 

begin 

Writeln('failing'); 

FCount .- FCount + 1 

end 

The Case Structure 

Pascal offers an alternative approach to coding certain decision structures. This approach 
applies when the conditions on which the branches are based consist of seeing whether a 
variable has a certain value, such as the last decision-structure example of the previous 
subsection. We introduce this new case structure by rewriting that example: 

112 

case Letter of 

'A': 

'B': 

'C': 

'D': 

'F': 

end 

begin 

Writeln('excellent'); 

ACount .- ACount + 1 

end; 

begin 

Writeln( 'good'); 

BCount .- BCount + 1 

end; 

begin 

Writeln('average'); 

CCount .- ccount + 1 

end; 

begin 

Writeln('below average'); 

DCount .- DCount + 1 

end; 

begin 

Writeln('failing'); 

FCount .- FCount + 1 
end 

FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2 



The semantics for this example are simple: Based on the value of Letter, the list of state
ments given for that value is executed. 

In its simplest form, the case statement has the structure that follows. Later, we learn 
about some possible extensions. 

case variable of 
value 1: 

statement for first value; 
value 2: 

statement for second value; 

value n: 
statement for last value 

end 

Note that each branch except the last ends with a mandatory semicolon. The last branch 
need not have a semicolon. Also, there is an extra end with no matching begin to mark the 
completion of the case structure. 

As usual, any of the statements can be a compound statement, as in our example. 
Notice that there are two ends at completion: one for the final branch and the other for the 
entire case structure. 

Consider the following example: 

case NumberOfChildren of 
0: 

end 

Writeln('Childless'); 
1: 

Writeln('Have only one child'); 
2: 

Wri teln ( 'About Average' ) 

What happens if the value of the variable NumberOfChildren is not one of those listed? The 
answer is: nothing. We could modify the example: 

case NumberOfChildren of 
0: 

Writeln('Childless'); 
1: 

Writeln('Have only one child'); 
2: 

Writeln ('About Average') 
otherwise 

Writeln ('Larger than the average family'} 
end 

The structure illustrated is the following. If we wish, we can place semicolons after 
the "value n" statement and the otherwise statement. There must be semicolons after the 
"value 1" statement, etc. 

2-5 MORE ON DECISION STRUCTURES 113 



case variable of 
value 1: 

statement l; 
value 2: 

statement 2; 

value n: 
statement for last value 

otherwise 
statement for any value not listed 

end 

Note. Just as for the set condition "variable in [list]'', the variable and the list of 
values in the case structure must be of the same type. Moreover, that type cannot be real or 
string. Among the types we have studied, only integer and char types can be used in the 
case structure. 

Nested Decisions 

When we write any type of decision structure (if-then, if-then-else, if-elseif, or case), each 
branch of the structure can be either a single statement or a compound statement of this 
form: 

begin 
list of steps for the branch, separated by semicolons 

end 

One or more of the steps can itself involve a decision structure. (In fact, we have been using 
this type of structure without calling attention to it; see, for example, Figure 2-9 in Section 
2-3.) 

We describe this situation by saying that we have nested decisions. One decision is 
contained totally within (nested within) a branch of another decision structure. Generally 
speaking, the need for this type of structure arises quite naturally as we refine our algorithm. 
For example, consider the following. 

We wish to calculate a bonus based on the years an employee has worked with the 
company and the number of sales made. The bonus for people with 10 years or more of 
service is based on the number of sales for the year: less than 500 earns a bonus of $100, 
500 to 1000 earns $150, and over 1000 earns $250. For those with less than 10 years, the 
rules are: 0 to 4 years, $20; 5 to 7 years, $50; 8 to 9 years, $70 plus $1 for each unit sold in 
excess of 1000. 

This is a fairly complex problem made more so by the fact that the information has 
been presented in a somewhat disorganized fashion. Our first task is to organize the rules 
just given. As we attempt to organize the information, we may come up with four branches 
based on the number of years: 

114 FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2 



CONDITION (YEARS) 

0-4 
5-7 
8-9 
10 or more 

We begin to write: 

if Years <= 4 then 

Bonus := 20 

BONUS 

$20 

$50 

Based on sales (rule 1) 

Based on sales (rule 2) 

else if Years <= 7 then 

Bonus ·- 50 

else if Years <= 9 then 

here we must place the code for rule 

else 

here we must place the code for rule 

1 

2 

To refine the algorithm (and the Pascal), we must determine the structure for rules 1 and 2. 
These are fairly simple: 

RULE 1 

if NurnberOf Sales <= 1000 then 

Bonus .- 70 

else 

Bonus .- 70 + (NumberOfSales - 1000) 

RULE2 

if NurnberOf Sales < 500 then 

Bonus := 100 

else if NurnberOfSales <= 1000 then 

Bonus .- 150 

else 

Bonus .- 250 

The entire decision structure simply consists of our original code with the appropriate 
code for rules 1 and 2 inserted: 

if Years <= 4 then 

Bonus .- 20 
else if Years <= 7 then 

Bonus . - 50 
else if Years <= 9 then 

begin 

if NurnberOfSales <= 1000 then 

Bonus .- 70 

end 

else 

else 
Bonus .- 70 + (NumberOfSales - 1000) 

2-5 MORE ON DECISION STRUCTURES 115 



begin 

end 

if NumberOfSales < 500 then 
Bonus := 100 

else if NumberOfSales <= 1000 then 
Bonus .- 150 

else 
Bonus .- 250 

Notice that we have written each of the inserted statements as a compound statement. 
Strictly speaking, this was not necessary because each if-then-else is a simple statement. 
However, we will generally follow this practice in writing nested decisions. One advantage 
is that it avoids the so-called "dangling else" pitfall, discussed in the next section. 

Note. Consider these two code segments, where we have exaggerated the indenta
tion to emphasize the differences: 

if BobHeight > JirnHeight then 
Writeln{'Bob is taller') 

else if BobHeight = JirnHeight then 
Writeln{'They are the same height') 

else 
Writeln{'Jim is taller') 

if BobHeight > JirnHeight then 
Writeln{'Bob is taller') 

else 
if BobHeight = JirnHeight then 

Writeln{'They are the same height') 
else 

Writeln{'Jim is taller') 

To the compiler, they are identical. The compiler does not concern itself with indentation 
patterns or new lines. To the reader, however, they suggest two ways of viewing the prob
lem: 

1. As a "three-way branch." Bob's height is either greater than, equal to, or less than 
Jim's. 

2. As a nested decision. Either Bob is taller or he isn't. If he isn't, there are two possibili
ties: either he is the same height or he isn't. 

Which is correct? Both are. Which is better? It depends on the specific problem. In this 
example, we like the first segment better because we view the situation as a three-way 
branch ( >, =, <). Sometimes the choice is not so clear. For example, a program used by a 
bank might contain a decision structure with three branches: 

1. Deposits 

2. Checks that are good (sufficient funds) 

3. Checks that bounce (insufficient funds) 

116 FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2 



Another, equally valid way to structure this would be as two branches: 

1. Deposits 

2. Checks 

with a decision structure in the second branch with two subbranches 

2. (a) Good checks 

2. (b) Checks that bounce 

Testing 

Two important testing strategies, introduced in Section 2-3, apply equally well here: 

1. Test the boundaries for each branch. 

2. Include other tests for each branch not at the boundary points. 

For example, for the previous program segment that calculates a bonus, we might 
devise the following test plan: 

BRANCHES AND BOUNDARIES FOR YEARS 

Boundaries: Years= 0 

Years= 4 

Years= 5 

Years= 7 

Years= 8 

Years= 9 

Years= IO 

Others: Years = 3 

Years= 6 

Years= 12 

BRANCHES AND BOUNDARIES FOR NUMBEROFSALES (FOR YEARS IN 7-9 RANGE) 

Boundaries: NumberOfSales = 0 

NumberOfSales = 1000 

NumberOfSales = 1001 

Others: NumberOfSales = 529 

NumberOfSales = 1325 

BRANCHES AND BOUNDARIES FOR NUMBEROFSALES (FOR YEARS 10 OR OVER) 

Boundaries: NumberOfSales = 0 

NumberOfSales = 499 

NumberOfSales = 500 

NumberOfSales = 1000 

NumberOfSales = 1001 

A third strategy is a new one for this section: 

2-5 MORE ON DECISION STRUCTURES 

Others: NumberOfSales = 217 

NumberOfSales = 632 

NumberOfSales = 1107 

117 



3. When complex conditions are involved (with and or or), we should test all possible 
combinations of the individual parts. As an example, for the condition female over age 
21 we should include test cases covering these four possibilities 

FEMALE OVERAGE 21 SAMPLE TEST CASE EXPECTED RESULT 

True True 'F', 30 True 

True False 'F',20 False 

False True 'M', 27 False 

False False 'M', 17 False 

As another example, for the condition "valid data," where to be valid the code must be 
'T' and the numerical value either below IO or above 500, we would have 

CODE= 'T' VALUE< 10 VALUE> 500 SAMPLE TEST CASE EXPECTED RESULT 

True True True Impossible 

True True False 'T',5 True 

True False True 'T', 519 True 

True False False 'T', 17 False 

False True True Impossible 

False True False 'R',9 False 

False False True 'M', 1000 False 

False False False Q,490 False 

DPT 

The first two tips are generally similar to some of those discussed in Section 2-3. The others 
are new. 

1. We must take care in the placement of the semicolon. In the if-else if type of struc
ture, the only semicolons are those occurring between the statements of the branches, within 
a begin/end series of steps. However, the case structure introduces special semicolons at the 
end of each branch but the last. 

2. The begin and end delimiters on a branch are required when the branch contains 
more than one statement. They should be used, as a defensive programming measure, if the 
branch consists of another decision structure. 

3. When we use and, or, or not with comparisons, the comparisons must be enclosed 
in parentheses. 

4. The precedence order (in the absence of parentheses) is not, then and, then or. 
Parentheses may be required to obtain the desired meaning when two or more of these occur 
in the same condition. In particular, one way (frequently, the easiest and best way) to negate 
a condition is to place the entire condition in parentheses preceded by not. 

5. In mathematics and in everyday language, we take certain shortcuts in describing 
conditions. For example, we can write 

118 FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2 



5 < x < 10 

to mean x is between 5 and 10, and we can say 

x is less than y and z 

to mean that x is less than both. 
In Pascal, there are no such shortcuts. We must write the conditions explicitly: 

(5 < X) and (X < 10) 

(X < Y) and (X < Z) 

6. Suppose we wish to write 

if Y/X > 5 then ... 

To be safe, we ought to make sure that X is not 0. We might be tempted to combine the 
check that X is not 0 with the original condition, as shown here: 

if (X <> 0) and (Y/X > 5) then ... 

However, this does not work. The difficulty occurs because both conditions are checked 
when the if statement is executed. If the first condition (X <> 0) is false, then the second 
condition (Y I X > 5) causes a run-time error, due to division by 0. (Run-time errors are 
often called "bombs"; the term is often used as a verb in sentences such as "Drat! My 
program just bombed!") 

Note. There are languages in which the computer would not bother checking the 
second condition if the first were false. In fact, some versions of Pascal might behave this 
way. However, THINK Pascal always checks all parts of a compound condition. To avoid 
this pitfall, we must write something like 

if x > 0 then 

begin 

if Y I X > 5 then . . . 

We see some more common instances of this type of pitfall later. 

7. The case statement has its own end, which is in addition to any use within the 
individual branches. The compiler usually detects the error of omitting this end. 

REVIEW 

Terms and Concepts 

Boolean expressions 
Boolean operators 
case structure 
DeMorgan's laws 
exhaustive conditions 
logical expressions 
logical operators 

REVIEW 

multiple-way branches 
negation 
nested decisions 
ordinal 
relational operators 
semantics 
set 

119 



Pascal Conditions 

1. Can combine comparisons using relational operators not, and, and or. 

2. The precedence is 

not: highest 

and: next 

or. lowest 

3. Can use this form (for integer or char variables and values): 

variable in [list of values separated by commas] 

4. Can negate any condition by: 

not (condition to be negated) 

lf-elseif structure. (Any branch can be a compound statement.) 

1. Form 

if condition 1 then 

statement to be done if condition 1 is true 

else if condition 2 then 

statement to be done if condition 2 is true 

else if condition 3 then 

statement to be done if condition 3 is true 

else 

statement to be done if none of the previous 

conditions is true 

2. Meaning: Examine the conditions in the order listed. For the first one (and only the 
first one) that is true, perform the indicated statement. If none is true, perform the 
statement in the final else branch, if present. 

Note: The final else branch is optional. 

Case structure. (Any branch can be a compound statement.) 

1. Form: 

120 

case variable of 

valuel: 

statement 1; 

value2: 

statement 2· 

last value: 

statement for last value 

otherwise 

statement for any value not listed 

end 

FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2 



Note the following: 

(a) Semicolons after each branch but the last. 

(b) Final end means "end of the case structure." 

(c) If no branch applies and no otherwise clause is present, the case statement performs 
no action. 

Testing 

1. Test all boundaries of branches. 

2. Test all branches away from boundaries. 

3. Test all combinations of parts of complex conditions. 

EXERCISES 

DPT 

1. Semicolon placement must be watched, especially with a case state-
ment. 

2. Begin/end must be used for branches with more than one statement. 
3. Comparisons are to be enclosed in parentheses in complex conditions. 
4. Precedence (not, and, or) must be followed; use extra parentheses as 

necessary. 
5. Final end is required for a case statement. 
6. All the parts of a compound condition are evaluated. Hence, for example, 

if (X <> O) and (Y I X > S) then ... 

will bomb if X is 0. 

1. For each of the following, choose variable names and write Pascal Boolean expressions for the 
given condition: 
(a) Married male 
(b) Not a married male 
(c) Neither married nor male 
(d) Either a freshman ('FR') or a sophomore ('SO') 
(e) Neither a freshman nor a sophomore 
(t) Either a freshman with a GPA of 4.0, a sophomore with a GPA of 3.7 or higher, or a junior 

or senior with GPA of 3.5 or higher 
(g) I divides evenly into both J and K 
(h) One of I, J, or K is even 
(i) All of I, J, and K are multiples of IO 
(j) J is between 0 and 100, inclusive 
(k) J is not between 0 and 100, inclusive 
(I) Made a passing grade (A, B, C, or D) 

(m) x and y are both positive 

EXERCISES 121 



(n) x and y are not both positive 
(o) Exactly one of x and y is positive 
(p) Neither x nor y is positive 
(q) The pair (x,y) lies in the unit box in the plane; that is, both lie between 0 and 1, inclusive. 
(r) Either z is negative or both x and y are greater than 5. 
(s) y is greater than 5, and either z is negative or xis greater than 5. 

2. Integer variables I, J, K, and L have values 4, 7, 12, and 19, respectively. What is the value of 
each of these logical expressions? 
(a) (I > J) and (K > L) 

(b) (J < 10) or (K = 7) and (L > 10) 

(c) ((J < 10) or (K = 7)) and (L > 10) 

(d) not(I < J) or (I<> K) and (K <> L) 

(e) not((I < J) or (I<> K)) and (K <> L) 

(0 (not(I < J) or (I<> K)) and (K <> L) 

(g) I in [ 3 , 4 , 5 ] 

(h) not(K in (10, 11, 15]) 

3. Negate the following logical expressions: 
(a) x = 45 

(b) I < J 

(c) Class <> 'SR' 

(d) (Y < Z) or (Y >= Z + 4.0) 

(e) (Class= 'FR') and (Sex= 'M') and (GPA< 3.2) 

(0 (I mod J = 0 ) or (I mod K = 0) 

(g) (Percent > 0.49) and (Years < 4) and (Bonus > 5.53) 

(h) (Class= 'FR') or (Class= 'SO') and (Hours< 35) 

(i) ((Class= 'FR') or (Class= 'SO')) and (Hours< 35) 

{j) I in (3,4,5] 

(k) (I in [ 6, 7 J ) or (J in [ 6, 7] ) 

(1) not ( I in [ 3 , 4 , 5 l ) 

4. Choose variable names and write a Pascal segment for each of the following situations: 

122 

(a) Football players are marked on their performance in the preceding game. A grade above 93 
percent is considered excellent, below 75 percent poor. Your segment should, given a name 
and grade, print the name, grade, and appropriate message ("excellent" or "poor''). 

(b) Given three test grades, print "improving" if the third test score is greater than the average 
of the first two tests; print "declining" if it is 5 or more points less than the average. 

(c) For a quadratic equation ax2 + bx+ c, the value b2 - 4ac is called the "discriminant." This 
value determines how many real roots the equation has (none if it is less than 0, one if it is 
0, and two if it is greater than 0). Write a segment that, given a, b, and c, prints a message 
telling the number of roots the equation has. 

(d) Given a value representing a roll of the dice, print one of these messages based on the roll 
value: 

'You win' (7, 11) 
'You lose' (2, 12) 
'Roll again' (anything else) 

FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2 



(e) (Simplified roulette) The following variables have assigned values, and you are to write a 
segment based on them: (1) a number indicating the result on a roulette wheel (0 to 32); 
(2) the amount of a bet; (3) a char variable telling the type of bet made (value 'E'----even, 
'O' -odd, or 'N'-number); and (4) the number bet on if the char variable is 'N' (1 to 32). 
Your segment should calculate the winnings based on these rules: If the number on the 
wheel was 0, you lose. If you bet on a number and you matched it, you win 30 times the 
bet. If you bet 'E' (even) or 'O' (odd) and were correct, you win twice your bet. 

(t) Given three numbers representing a date, the segment should print the date. The input 
numbers 11, 7, 85, for example, would cause the date "November 7, 1985" to be printed. 

(g) Revise part (f) to assign the date value to a string variable rather than printing the date. 

5. Follow the instructions of Exercise 4. 
(a) Wage tax rate is based on city codes, as given in the listing 

CITY CODE TAXRATE 

'MUR' 0.005 

'MORR' 0.01 

'JCY' 0.03 

'BSTA' 0.005 

Others 0.0 

Compute the taxes for a given annual wage and city code. 
(b) Write a segment to calculate charges for a checking account. For "regular" accounts, the 

charge is $5.00, unless the lowest monthly balance is $500.00 or more, in which case there 
is no charge. For "special" accounts, the charge is 20 cents per check; for "VIP" accounts, 
there is no charge. Hint: Use a variable AccountType with value 'R', 'S', or 'V' to deter
mine the type of account. 

(c) Taxes in a certain state are based on taxable income and are calculated differently depend
ing on whether the person is single or married. The taxable income is either 0 or the 
weekly income minus $13 for each dependent, whichever is more. The taxes are given by 
the listings: 

TAXABLE INCOME 

Less than $145.00 

$145.00-$293.00 

Over $293.00 

TAXABLE INCOME 

Less than $130.00 

$130.00-$250.00 

$250.01-$350.00 

Over $350.00 

TAX (MARRIED) 

1% of income 

2% of income 

$50.00, plus 3% of amount over $293.00 

TAX (SINGLE) 

1% of income 

2% of income 

$60.00, plus 3% of amount over $250.00 

$100.00 

Write a Pascal segment to calculate taxable income and tax for a taxpayer given the needed 
information. 

EXERCISES 123 



(d) A certain small company manufactures five items. The prices are listed. Write a Pascal 
segment that, given a valid item number, calculates the price. 

ITEM NUMBER PRICE 

4927 100.50 

2178 3000.00 

2111 100.50 

1137 143.50 

1342 25505.00 

(e) Revise part (d) to print an error message if the item number is invalid. 

6. Indicate some tests that should be in a test plan for each of the following exercises. 
(a) Exercise 4(a) 
(b) Exercise 4(b) 
(c) Exercise 4(c) 
(d) Exercise 4(d) 
(e) Exercise 5(b) 
(f) Exercise 5( c) 
(g) Exercise 5(e) 

7. (a-s) For each of Exercises l(a) through l(s), create a test plan relating to the condition. Use a 
table format similar to that used in the testing section. 

2-6 VET MORE ON DECISION STRUCTURES 

In this section, we complete our formal study of decision structures. We introduce a few 
more ideas relating to decisions and conclude with a case study. 

The "Dangling Else" Pitfall 

Consider these two segments of Pascal code, where we have exaggerated the indentation to 
emphasize the difference: 

if X > 5 then 
ifY>Othen 

z := 1 

else 

z := 2 

if X > 5 then 
if Y > O then 

z := 1 

else 

z := 2 

Under exactly what conditions will the step ''Z := 2" be performed? The indentation patterns 
suggest what the author had in mind: for the left-hand code, when X > 5 and Y <= 0; for the 
right-hand code, when X <= 5. However, the compiler pays no attention to indentation. To 
the compiler, these two segments are the same. Moreover, the interpretation the compiler 
takes is the one implied by the left-hand indentation pattern: 

124 

Each else is matched with the most recent unmatched if (within the same begin ... 
end grouping). 

FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2 



(THINK helps us remember this rule by automatically indenting this code using the left
hand pattern.) 

To obtain the meaning desired by the right-hand example, we would use begin and 
end as illustrated in what follows. In fact, in the interest of defensive programming, we 
should use a begin and end for both program segments. This would make sure that we 
obtained the desired results. Here are the two examples rewritten in this fashion: 

if x > 5 then 

begin 

end 

if Y > 0 then 

z .- 1 

else 
z := 2 

if X > 5 then 

begin 

end 

else 

z : = 2 

if Y > 0 then 

z := 1 

The problem illustrated by this example arises when the then branch of an if-then-else 
consists of another decision structure. It, therefore, pays to be especially careful when writ
ing nested decisions. Our defensive programming tip is as follows: 

When the then branch of a decision structure involves another decision structure, use 
a begin ... end to surround the nested decision structure. 

(In fact, when we nest decisions, we frequently include all the nested decision structures 
within begin .. . end groupings.) 

Some of the exercises give other examples illustrating this point. 

Boolean Variables 

In the preceding section, we discussed the Boolean expression. It is an expression whose 
value is either true or false. It should not surprise you to learn that Pascal has variables 
capable of holding such values. Just as integer variables store integer values and char vari
ables store one-character values, Boolean variables store Boolean values. 

These variables are declared as are other variables and used analogously to the ways 
in which real and integer variables are used. Remember that the only values they can 
contain are true and false. For example, we can declare 

var 

X, Y: integer; 

XBigger: boolean; 

YZero: boolean; 

BothPositive: boolean; 

and include steps such as these in our program: 

XBigger := X > Y; 

YZero := Y = O; 
BothPositive := {X > 0) and {Y > 0); 
Writeln{'Is X bigger? ', XBigger, 'Are both positive? ' BothPositive); 

if XBigger and BothPositive then 

Writeln{'Both are positive but Xis larger'); 

2-6 YET MORE ON DECISION STRUCTURES 125 



This example illustrates several points about Boolean variables. These and other points are 
described in the following list: 

1. The Boolean expressions that we assign to Boolean variables are of exactly the 
same form as those used in an if statement. 

2. The assignment "Y'.Zero := Y = O" assigns true to Y'.Zero if the condition "Y = O" is 
true, false if not. To understand this step, you must realize that "Y = O" is a comparison 
(Boolean expression) whose value is either true or false. This value is assigned to the 
boolean variable Y'.Zero. 

Another way to accomplish the same thing would be 

if Y = O then 
YZero .- true 

else 
YZero .- false 

3. The Boolean operators and, or, and not act with and yield Boolean values. Thus, 

XBigger and BothPositive 

is true if both XBigger and BothPositive are true, false otherwise. An equivalent way to 
write this is 

(XBigger = true) and (BothPositive = true) 

The "= true" is redundant, but it is allowed. When you first start working with Boolean 
variables, this second approach may seem clearer. However, you will soon become used to 
the first approach, especially because it reads "more like English." 

4. Similarly, these two if statements are equivalent: 

if not YZero then 
Writeln('Y is not 0'); 

if YZero = false then 
Writeln('Y is not 0'); 

5. We can print Boolean values. The resulting output is either the word TRUE or the 
word FALSE. 

6. We cannot read values for Boolean variables using the Readln procedure. (We can, 
if we wish, read a char variable and use it to assign a value to a Boolean variable, as in this 
code segment.) 

Readln(Ch); 
if Ch in ['T','t'J then 

BVar .- true 
else 

BVar .- false 

7. Boolean variables can be used in case statements and in the "variable in [list of 
values]" type of condition. For example, the following three segments are equivalent, 
although the first is most readable: 

126 FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2 



if x > y then 

T .- 0 

else 

T .- 5; 

XGreater . - x 
if XGreater in 

T ·- 0 

else 

T .- 5 

> Y; 

[true] then 

XGreater := X > Y; 

case XGreater of 

true: 

T := O; 
false: 

T := 5 
end; 

8. Boolean variables are useful whenever we have a "yes or no" situation. They can 
make a program more readable. For example, the line 

if Upperclassman and HighAverage then 

is easier to follow than the line 

if ((Class= 'JR') or (Class= 'SR')) and (GPA> 3.75) then 

Of course, this is only true if we choose meaningful variable names. To be appropriate, a 
Boolean variable's name should be suggestive of what its true value denotes. 

9. You may have noticed that we have used "boolean" and "Boolean" in our descrip
tions. The capital letter usage is based on the fact that the name "Boolean variable" is 
named after logician George Boole. The lowercase usage is consistent with our treatment of 
other standard types (integer, real, char, and string). The compiler, of course, does not care 
about uppercase or lowercase. 

10. We can even use boolean constants that are declared using a declaration such as 

const 

TestPhase = true; 

The program might have steps such as these: 

Readln(Numberl, Number2); 

if TestPhase then 
Writeln('Values entered: Numberl, Number2); 

This idea is frequently used to allow extra information to be printed during program devel
opment. When the program is turned over to the user, the declaration would be changed to 

const 

TestPhase = false; 

and the extra information would no longer be printed. (Later, if modifications were to be 
made, the extra prints could be reinserted simply by changing the constant's value back to 
true.) 

Enhancements of the Case Statement 

Here we present some minor enhancements to the case statement. To illustrate the first 
enhancement, consider this example: 

2-6 YET MORE ON DECISION STRUCTURES 127 



case Letter of 

'A': 

Writeln('Above average'); 

'B': 

Writeln('Above average'); 
'C': 

Writeln('Average'); 

'D': 

Writeln('Below average'); 

'F': 

Writeln('Below average') 

end 

This has the same meaning as the following, slightly shorter, version: 

case Letter of 

'A' I 'B': 

Writeln('Above average'); 

'C': 

Writeln('Average'); 

'D', 'F': 

Writeln('Below average') 

end 

Instead of placing just a single value before the colon for each branch, we can place a list of 
values separated by commas. 

In fact, THINK Pascal extends this idea a little further by allowing a range of values 
to be entered. For example, consider this fragment that calculates a letter grade based on an 
integer average: 

case Average of 

90 .. 100: 

LetterGrade 

80 .. 89: 

LetterGrade 
70 .. 79: 

LetterGrade 

60 .. 69: 

end 

LetterGrade 

0 .. 59: 

LetterGrade 

: 

: 

: 

: 

: 

= 'A' ; 

= 'B' ; 

= 'C' ; 

= 'D' ; 

= ' F' 

The first branch of the example is equivalent to either a branch written as 

90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100: 

LetterGrade := 'A' 

or to a list of 11 separate branches for all possible grades. 
The general form of one branch of the case statement would also allow a list of single 

values and ranges as in 

128 FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2 



10 .. 14, 17, 19 .. 21, 25: 

statement for these values 

The listed statement would be executed for any of the values 10, 11, 12, 13, 14, 17, 19, 20, 
21, or 25. (The values and ranges in the case statement as a whole may not overlap.) 

This feature is useful when applicable, but some care should be taken in using it. 
Values should be grouped only if they really belong together, not if they just happen to have 
the same statement to be executed. As a simple example, consider the code segment 

case ItemNumber of 

10, 931: 

Price := 0.94; 
end 

When the price for item number 931 changes, there is a danger that we will also change the 
price for item number 10. Even if we remember to avoid this, the program will be more 
difficult to modify than if we had separate branches for these two item numbers. 

Case Study No. 2 

This case study explores some decision structures, including the use of a Boolean variable. 
It also introduces some rudimentary error-checking concepts. 

Statement of Problem. We want a program that inputs two 1- to 4-digit positive 
integer numbers and an operation code. The operation code is a "+", "-", "*", or "/ ". The 
program should print output similar to 

1103 + 1407 = 2510 
317 - 419 = -102 

3 * 15 = 45 

where the result of the operation is the number following the equals sign. 

Preliminary Analysis. As we learned in Section 2-4, there are two possible interpre
tations of division for integers. We write the program to print both answers when division is 
the requested operation. 

We need to design the exact form of the input. As described earlier, we separate the 
numeric and character input to avoid some subtleties of input. The program first asks for the 
two numbers (using a line with both numbers zero to terminate the loop). It then requests 
the operation to be performed. We use a Boolean variable, as discussed earlier in this 
section, to control the loop. Its value is true when the user enters the terminating values, 
false otherwise. 

Algorithm and Variable List. Based on the preliminary analysis, we may write this 
variable list: 

Constant: EndOfData Value 0 Used to terminate loop 

Input: Numberl Integer First number 

Number2 Integer Second number 

Operation Char Operation code(+,-,*, or/) 

2-6 YET MORE ON DECISION STRUCTURES 129 



Output: 

Other: 

Result 

Result2 

UserlsDone 

Integer Result of operation 

Real Second answer 

Boolean True when user enters terminating values 

Our algorithm follows a structure similar to earlier ones. In particular, we use a proce
dure to print instructions. (Steps followed by an (*) are not performed when the terminating 
values have been entered.) 

print instruction (using procedure Instructions) 
repeat these steps until user enters both numbers as 0: 

prompt for two numbers 
read Number! and Number2 
prompt for operation (*) 
read Operation (*) 
depending on Operation value, choose a branch: (*) 

'+' : Result is sum, print Result 
'-' : Result is difference, print Result 
'*' : Result is product, print Result 
'/' : Result is integer quotient, Result2 is real quotient; print both 

print a closing message and stop 

(Of course, there are other possible approaches we could have taken.) 
This algorithm, like previous ones in the text, does not deal with errors. In this case 

study, we consider two possible error situations. Others are suggested in the exercises. 
First, it is possible that the operation code entered might not be valid. We might add a 

fifth branch based on the Operation value: 

anything else: print an error message 

Second, division by 0 is an error. We might modify the "divide" branch to read: 

'/':check Number2 
if it is not 0 do these steps: 

calculate Result as the integer quotient 
calculate Result2 as the real quotient 
print both answers 

otherwise do this: 
print an error message 

We will code this refined algorithm. 

Test Plan. The test plan is fairly simple. We want to exercise all possible paths for 
the decision structure, especially including the possibility of a faulty operation code or 
division by 0. In fact, we might include several different faulty codes. 

If we reread the statement of the problem, we see that the input is to consist of one- to 
four-digit integers. This implies a range of 0 to 9999. We want to include test data that 
exercise both boundaries (0 and 9999) for each number. In addition, we should include some 
numbers in between. 

These considerations raise an important question. What happens if the numbers are not 
in the correct range? Ideally, the program should perform error checking here; this is the 
subject of one of the exercises. As the program stands, there are several possibilities: 

130 FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2 



1. The answer could be entirely correct. For example: 

15101 - 14323 = 678 

2. We could get strange but correct output such as 

-5 + -4000 = -4005 

3. The numbers could be so large that the answer (or even the numbers themselves) is 
too large for the computer to store in the kind of variable we have declared the answer 
to be, resulting in numeric overflow. In some Pascal implementations, overflow 
causes a run-time error; in THINK Pascal the program does produce output, but it is 
(often radically) incorrect. For example, if we were to execute the program segment 

N := 30000; 

N := N * 2; 
Writeln(N) 

where N is an integer, THINK's output would be -5536! The overflow occurs because 
N takes on the value 60,000, but the largest integer THINK can properly store is 
32,767. 

In our test plan, we might include some input in all these categories. In any case, the 
test plan does point out the need for further work on the algorithm, as indicated in the 
exercises. 

One final test might involve entering a zero for exactly one of the two numbers. This 
test table contains the cases necessary to check that the looping process does not terminate 
unless both are zero. 

NUMBER 1 ZERO NUMBER 2 ZERO TEST CASE EXPECTED RESULT 

True True 0,0 Terminate loop 

True False 0,5 Continue loop 

False True 7,0 Continue loop 

False False 17,2 Continue loop 

Write Program. Figure 2-14 contains the program that is based on the algorithm, as 
modified by our error-handling discussion. Various exercises deal with alternate coding 
approaches, enhancements, and modifications. In particular, we have chosen to use the 
if-elseif approach to handle the various operation codes. Exercise 6 asks you to rewrite this 
using the case statement approach. 

Observe the use of the Boolean variable UserlsDone. This avoids the pitfall of 
improper negation of the condition for terminating the loop. 

Revise/Enhance Program. Although we do not do so at this point, this program 
could benefit from some revisions. The main module (not including the const or var declara
tions or the Instructions procedure) occupies about a page. More importantly, it has loop and 
decision structures nested to four levels: 

2-6 YET MORE ON DECISION STRUCTURES 131 



program OperationCodes; 

{Written by: XXXXXXXX XX/XX/XX} 
{Purpose: To perform addition, subtraction, multiplication, or division} 

(both integer and real) for two integers.} 
The program also illustrates some error-handling ideas.} 

{Procedures used: Instructions, to print instructions for user} 

const 
EndOfData 

var 

O; 

Numberl: integer; 
Number2: integer; 
Operation: char; 
Result: integer; 
Result2: real; 
UserisDone: Boolean; 

procedure Instructions; 
begin 

{Left to the reader} 
end; {Instructions} 

begin {OperationCodes} 

{terminating data indicator} 

{first number, input} 
{second number, input} 
{operation code, input} 
{result of operations, output} 
{second answer for division, output} 
{true if terminating value entered} 

{*** Before the loop, print instructions} 

Instructions; 

{* * * In loop, obtain two numbers and operation; perform operation;} 
print answer (two answers for division).} 
Check for two errors: bad operation and division by zero.} 
Stop when both numbers are terminating values.} 

repeat 

Writeln; 
Write('Enter two integer numbers (both 0 to stop): '); 
Readln(Numberl, Number2); 
UserisDone := (Numberl = EndOfData) and (Number2 = EndOfData); 
if not UserisDone then 

begin 

Write('Now enter the operation: '); 
Readln(Operation); 
if Operation = '+' then 
begin 

Result := Numberl + Number2; 
Writeln(Numberl 0, ' + ', Number2 

end 
else if Operation= •-• then 
begin 

Result := Numberl - Number2; 
Writeln(Numberl 

end 
0, ' - ', Number2 

Figure 2-14 Case Study No. 2 (continues next page). 

0, • Result 

0, • Result 

0) 

0) 

132 FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2 



else if Operation= '*' then 
begin 

Result := Numberl * Number2; 

Writeln(Numberl 0, ' * ', Number2 
end 

0, ' Result 0) 

else if Operation='/' then 
begin 

if Number2 <> 0 then 
begin 

Result := Numberl div Number2; 

Result2 := Numberl I Number2; 

Writeln(Numberl : 0, ' I ' Number2 

' (integer)'); 
Writeln(Numberl : 0, ' I ' Number2 

' (real)') 

end 
else 

0, ' 

0' ' 

Writeln('*** Division by 0 is not allowed! ***') 

end 
else 

Result : 0, 

Result2 1 

Writeln('*** Error made in operation. You entered: ' Operation) 

end 

until UserisDone; 

{*** Stop} 

end. 

SAMPLE INPUT AND OUTPUT 

Enter two integer numbers (both 0 to stop): 45 67 

Now enter the operation: * 

45 * 67 = 3015 

Enter two integer numbers (both 0 to stop) : 2 0 

Now enter the operation: ~ 
2 + 0 = 2 

Enter two integer numbers (both 0 to stop) : 23 4 
Now enter the operation: I 
23 I 4 5 (integer) 

23 I 4 = 5.75 (real) 

Enter two integer numbers (both 0 to stop) : 3 19 
Now enter the operation: -

3 - 19 = -16 

Enter two integer numbers (both 0 to stop) : 0 0 

Figure 2-14 (continued) 

2-6 YET MORE ON DECISION STRUCTURES 

2' 

133 



1. a repeat loop 

2. an if to avoid processing the terminating data 

3. an if-elseif based on the operation code 

4. an if-then-else to handle division by zero 

Both the length of the module and the level of nesting are close to the limits of easy 
comprehension. The program should probably be modularized, even as it now stands. If any 
more sophisticated error checking were incorporated, it would certainly be desirable to 
modularize further. However, in order to do a good job with the modularization, we need to 
develop more tools, which are presented in the next chapter. 

REVIEW 

Terms and Concepts 

numeric overflow 

Pascal Syntax 

Case Statement. A branch can have a form as indicated by the example: 

10, 11. .14, 16 .. 18, 25: 

statement 

Boolean Variables and Constants 

1. Constant declaration: 

canst 
constant-name true; 

constant-name false; 

2. Variable declaration: 

var 
variable name: boolean; 

3. Assignment: 

variable := any boolean expression 

4. Use in if. Examples: 

if XGreater then . 

if Valid and (Sex= 'M') then 

if Valid and Male then . 

(XGreater, Valid, and Male are boolean variables that have an assigned value.) Note: 

if XGreater then . . . 

134 FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2 



means 

if XGreater = true then 

if not Male then . 

means 

if Male = false then . . . 

5. Output: Use Write or Writeln: prints TRUE or FALSE. 

6. Can use in case statement or in "variable in [list]" condition. 

EXERCISES 

DPT 

1. Cannot read Boolean variables. 
2. Always use begin ... end for a then branch if the branch consists of 

another decision structure. 

1. For a certain honor fraternity, freshmen and sophomores must have a 3.8 grade point average 
(GPA) to be eligible. Others must have a 3.5 grade point average. 
(a) Here is a segment of Pascal code that is supposed to print a message if the person is 

eligible. Does it correctly accomplish its task? If not, revise it so it does. 

if (Class= 'FR') or (Class= 'SO') then 

if GPA>= 3.8 then Writeln('eligible') 

else 

if GPA>= 3.5 then Writeln('eligible') 

(b) Modify the segment to print the message 'not eligible' if the person is not eligible. 
(c) Modify the segment of part (b) to assign a value (true or false) to a Boolean variable 

Eligible rather than printing a message. 

2. (a) Consider this segment of Pascal code, which calculates a letter grade based on a numerical 
average. Some people are taking the course for a "pass-fail," others for a letter grade. 

if Code = 'P' then 

if Average >= 70 then 

Letter .- 'S' 

else 

Letter .- 'U' 

else 

if Average >= 90 then 

Letter := 'A' 

else if Average >= 80 then 
Letter := 'B' 

EXERCISES 135 



else if Average >= 70 then 

Letter := 'C' 

else if Average >= 60 then 

Letter .- 'D' 

else 

Letter .- 'F' 

The part in italics is a decision structure within the then branch of the main decision. It violates 
our defensive programming tip by not being included in a begin ... end grouping. Does the 
code segment do what it should? 

(b) These two segments have the same meaning: 

if Average >= 70 then 

Letter .- 'S' 

else 

Letter .- 'U' 

if Average >= 70 then 

Letter := 'S' 

else if Average < 70 then 

Letter := 'U' 

Does substituting the right-hand version for the italic part of the program segment in part (a) 
change the meaning of that program segment? 

(c) Comment on the relationship of this example to our defensive programming tip concerning 
the "dangling else." 

3. For each condition listed, choose the appropriate variable names, including a Boolean variable. 
Give the variable declarations needed (the var section), and give an assignment statement to 
assign an appropriate value to the Boolean variable. 
(a) A given number is even. 
(b) The data are valid (either an 'M' or 'S' for the code, and the number of dependents 

between 0 and 12). 
(c) Eligible for an honor fraternity (freshman with 4.0 GPA, sophomore with 3.8 or better, or 

junior or senior with 3.5 or better). 
(d) All three values are odd. 
(e) A given number is a multiple of both Mand N. 
(f) A given number is either positive or negative. 
(g) Improving (third test better than the first two). 
(h) vowel (one of 'A', 'E', 'I', 'O', or 'U'). 

4. Write the following decision structures using case statements. Assume Grade is an integer that 
can range from 0 to 100. 
(a) if Grade>= 60 then 

Writeln('Passing') 

(b) if Grade>= 60 then 
Writeln ('Passing') 

else 

Writeln('Failing') 

5. (a) Rewrite the solutions to Exercises 4(d) and 5(d) of Section 2-5 using the enhancements to 
the case statement. Which is better for those problems: your original solution or the new 
one? Why? 

136 

(b) Write a decision structure to assign a value of +1, 0, or -1 to a quiz. The quiz is worth 15 
points, and scores from 11 to 15 earn a + 1, scores below 7 earn -1, and all others earn 0. 

FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2 



6. Write segments of Pascal code to assign a value for a Boolean variable as indicated by the 
following descriptions or questions: 
(a) Is the average of the four test scores at least 70? 
(b) Is the test average "close to" the homework average? They are close if they differ by no 

more than one letter grade. (Use 90 percent= A, etc.) 
(c) Repeat part (b) so that scores below 50 are not considered close to a 'D' score. 
(d) Are three given values Valuel, Value2, and Value3 in increasing order? 
(e) Is Y within 10 units of X? 
(f) Is a four-digit number a "palindrome," that is, the same backward or forward? For exam

ple, 5115 is; so is 220, because as a four-digit number, it would be 0220. 
(g) Are three given points (x,y), (z,w), and (t,u) on the same straight line? Assume all values 

are integers. 
(h) Is a person qualified for a rent rebate program? The answer is yes (true) for income of 

$10,000 or less. It is also yes for income between $10,000 and $13,000 inclusive, provided 
the number of dependents is at least two. For all others, the answer is no (false). 

Exercises 7 to 11 refer to Case Study No. 2. 

7. Write the necessary Instructions procedure. 

8. Rewrite the if-elseif structure, which handles the operation code, using the case statement. 

9. One possible approach for handling input data error is to check the data, print an error message 
if it is faulty, then "fix" it. Although there are more sophisticated approaches, this approach is 
better than simply ignoring errors. 
(a) Modify the check for the operation code in Case Study No. 2. As soon as Operation is 

read, check its validity. If it is not valid, print a message like 

Invalid code 'T', changed to '+' 

Then change it to'+' and continue. 

(b) Do a similar check for Numberl and Number2. If they are not in the proper 0 to 9999 
range, change them to 1. 

10. Revise Case Study No. 2 to handle the operations listed below. Include any necessary changes 
to the test plan. 
(a) +, -, * 
(b) I= real division 
(c) I= integer division 
(d) M=mod 
(e) D = isolate digit. (Number2 must be in the range 1 to 4, or an error message should be 

printed.) For example, 

6279 D 3 7 
6279 D 1 6 

279 D 1 0 

11. Rewrite the program so that numeric overflow is less likely. Some approaches to consider: 
(a) Change the declarations of Numberl, Number2, Result, or Result2. 
(b) Check the entered numbers to be sure they are not too large. 
(c) Place the result into a real number, checking that it is within the allowed range of the 

Result (or Result2) variable, and then place the result into Result (or Result2). 

EXERCISES 137 



The remaining exercises deal with programs you will develop yourself. 

12. Write complete Pascal programs for the following, using a planning process similar to that used 
in the various case studies. 
(a) Given a year in the range from 1920 to 1990, the program should print a message telling 

whether or not the year is a leap year. (A leap year is one divisible by 4.) 
(b) Revise part (a) to work for any year less than 4000. For years in this range, the rule is more 

complicated. For example, 1900 was not a leap year, but 2000 will be. In general, a year 
divisible by 100 is not a leap year unless it is also divisible by 400. 

(c) Revise part (b) to print the message 'I can't handle years 4000 or above' if the input year is 
not less than 4000. 

(d) Write a program to read a four-digit number representing "military" time. Assume the input 
is valid. It should add one minute to the time, and print the original time and the new time. 
Sample output might be: 

1912 plus one minute is 1913 

759 plus one minute is 800 

Hint: Use mod and div to split the given time into hours and minutes. 

(e) Repeat part (d), but input three values: hours, minutes, and either "a.m." or "p.m." Assume 
valid input. Sample output: 

11:59 a.m. plus one minute is 12:00 p.m. 

Hint: Can you think of a way to have 0 print as "00"? 

13. Follow the instructions of Exercise 11. 

138 

(a) The input consists of these items: a name, the person's gross income, and a code for the 
county (P = Pembroke, R = Richland, T = Tioga). The three counties have different tax 
rates: Pembroke County, 2 percent; Richland County, 1.5 percent; and Tioga County, 3 
percent. Write a program to print a listing of name, county code, gross income, tax rate, 
and tax. Print an error message for any input containing an invalid county code. 

(b) A salesperson's commission is based on two factors: the sales amount and the number of 
years with the company. The basic commission rate is found by using this table: 

SALES AMOUNT 

Less than $500.00 

$500.00-$1000.00 

$1000.01-$1499.99 

$1500.00 on up 

RATE(%) 

5 

7 

8 

IO 

In addition, the commission is doubled if the salesperson has worked over 7 years with the 
company. If the salesperson has worked over 15 years, it is doubled and $5 is added for 
each year over 15. Write a program to calculate commission rate and commission for each 
employee. 

(c) Calculate a customer's bill for an order of some quantity of a single item. We assume there 
are only four items available, as shown: 

FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2 



ITEM NUMBER UNIT PRICE 

100 24.03 

247 105.00 

16 10.35 

240 16.00 

A discount is allowed for a large order: If the total bill is $1000.00 or over, a 2 percent 
discount is given; from $800 to $999.99 earns a 1 percent discount. 

(d) The first input contains a number indicating a beginning inventory (the number of items 
presently in stock). Each subsequent input consists of a code (P =purchase or S =sale) and 
a quantity. For a sale, the quantity should be subtracted from the current inventory; for a 
purchase, added to the inventory. Write a complete program to maintain the running status 
of the inventory. 

If there is insufficient inventory to cover a sale, print a message and reject the sale. If 
the resulting inventory is below 750 after a sale, issue a "time-to-reorder" message; if it is 
below 250, issue a message of the sort "URGENT- time-to-reorder". 

14. Indicate some tests that should be in a test plan for each of the following exercises. 
(a) Exercise ll(a) 
(b) Exercise 11 (b) 
(c) Exercise ll(d) 
(d) Exercise 12(b) 
(e) Exercise 12(c) 
(t) Exercise 12(d) 

2-7 USER-DEFINED FUNCTIONS 

For some time, we have been routinely utilizing Instruction procedures in our examples and 
exercise solutions. The use of a separate module to perform the instruction printing subtask 
has a number of benefits. Perhaps the major benefit is that the details of instruction printing 
do not interfere with developing or displaying the major logic of the program. 

In this section, we develop this theme a little further. We study user-defined func
tions, which we can write to perform a subtask consisting of calculating a single value. As 
we will see, using a function we write ourselves is similar to using a standard function such 
as Sqrt. 

An Example 

Suppose we wish to write a program to calculate the area of a triangle given the three sides. 
Following the general method used in earlier programs, we might devise this plan. (Steps 
with an asterisk are not executed for the terminating value.) 

print instructions (using the Instructions procedure) 
repeat these steps until the user enters 0 for A 

issue prompt 
read values A, B, C (the three sides) 
calculate the area based on A, B, C (*) 
print the area (*) 

2-7 USER-DEFINED FUNCTIONS 139 



We choose to write a function whose name will be AreaFn to perform the details of 
calculating the area. By drawing on our knowledge of user-written procedures and standard 
functions, we can complete the Pascal code for the main program. In particular: 

1. A user-written function must be defined before it is used. We place its definition after 
the variable declarations and before the begin of the main program. This is the same 
as for a user-written procedure. 

2. To use a user-written function in an assignment statement, we must place the neces
sary arguments (parameters) in parentheses after the function name. These parameters 
are the values the answer is based on. This is the same as for a standard function, such 
as Sqrt. 

3. In the module that uses the function, we cannot have another variable with the same 
name as the function. We might choose another variable (perhaps Area) to store the 
answer from the function. This is the same as for a standard function. 

Figure 2-15 contains the resulting program, with the parts related to the issues just 
discussed in italics. 

To continue with this example, we must learn how to write a function. The key to the 
process is that, as for a procedure, we simply write the steps necessary to perform the 
subtask, along with one statement declaring that these steps form a function. As with the 
procedure, the function can, if desired, declare local variables for its own use. 

There are some major differences, however, between a function and the type of proce
dure we have studied to this point. Before we discuss these issues in detail, let us examine 
them as they relate to the AreaFn function. The Pascal function is given in Figure 2-16, with 
lines numbered for easy reference. It uses a mathematical formula for the area based on the 
sides. 

Note. In order to complete the program in Figure 2-15, we would merely insert this 
code in place of the comment that shows where it goes. 

From this example, we can learn a great deal about writing functions. 

1. Line 1 declares that AreaFn is a function. The final real following the colon says that 
the value the function calculates is real. 

2. Line 1 also describes the function parameters for the function. There are three, and all 
three represent real values. The function uses the names A, B, and C to represent 
them. In the example, we have chosen names that happen to match those used in the 
main program. This was not necessary, but it is allowed. 

3. Lines 2 to 7 represent the type of header comments we use for functions. We include a 
brief description of the parameters (lines 5 and 6). 

4. A function, like a procedure, can declare local variables. Lines 8 to 9 declare the local 
variable S, the semiperimeter of the triangle. This variable is used only within the 
function. It is not available to the main program. 

5. A function can, in tum, use another function or procedure. In line 13, the AreaFn 
function uses the standard square root function (Sqrt). 

140 FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2 



program Triangles; 

{Written by: XXXXXXXX XX/XX/XX} 
{Purpose: To calculate areas of triangles} 

{Procedures used: Instructions, to print instructions} 
{Functions used: AreaFn, to calculate the area} 

const 

EndOfData O; 

var 

A, B, C: real; {sides of triangle, input} 
Area: real; {area of triangle, output} 

procedure Instructions; 

begin 

{stub} 

end; 

{We will place the area function at this point in the program when it has} 

{been developed. Its name will be AreaFn. (See Figure 2-16)} 

begin {Triangles} 

{*** Before the loop, print instructions} 

Instructions; 

{* * * In loop, read the 3 sides of the triangle, use the area function} 
{ to find the area, and print the result. Quit on entry of A= 0.} 

repeat 

Writeln; 

Write('Enter three sides of triangle (first 0 to stop): '); 

Readln(A, B, C); 

if A <> EndOfData then 
begin 

Area := AreaFn(A, B, CJ; 

Writeln('The area is', Area) 

end 
until A = EndOfData; 

{***After the loop, terminate the program.} 

end. 

Figure 2-15 Use of a user-defined function. 

6. The function sends its answer to the program using it by placing the answer into the 
function name. Line 13 performs this step. 

7. The body of the function is bracketed by begin (line 11) and end (line 14). The final 
end is followed by a semicolon. We add a comment on each of these lines, identifying 
that these are the beginning and end of the module AreaFn. 

2-7 USER-DEFINED FUNCTIONS 141 



1) function AreaFN (A, B, C: real): real; 

2) 

3) {Written by: XXXXXXXX XX/XX/XX} 
4) {Purpose: To calculate the areas of a traiangle based on its sides} 

5) {Parameters: A, B, and C are the three sides. This function assumes they} 

6) do form the sides of a triangle.} 

7) 

8) 

9) 
10) 

var 
s: real; {semiperimeter (half the perimeter)} 

11) begin {AreaFn} 

12) S := (A + B + C) I 2; 

13) AreaFn := Sqrt(S * (S - A) * (S - B) * (S - C)) 

14) end; {AreaFn} 

Figure 2-16 Code for AreaFn. 

The Form of a Pascal Function 

This example illustrates the general form of a Pascal function: 

1. A header line identifying the function and its parameters. 

2. Declaration of local constants and variables, if any. 

3. A list of statements forming the "body" of the function (bracketed by begin and end; 
and separated by semicolons). 

The body must contain at least one statement that gives a value to the function name. It can 
contain more than one such statement. The entire function (from header line through the 
final end;) is placed after the variable declarations and before the begin of the main pro
gram. 

The header line has this form: 

function function-name (list of parameters) : result type; 

The "result type" can be real, integer, char, string (without an explicit size-string[?] is not 
allowed), or boolean. It represents the type of value the function calculates and returns. 

The "function-name" follows the usual rules for Pascal identifiers. The "list of param
eters" can be simple, as in the example, or it can be quite complex. There are alternative 
ways to express the same list. For example, these two lists are equivalent: 

A, B, C: real 

A: real; B: real; C: real 

The first says, "There are three parameters: A, B, and C. All three are real." The second 
says, "There are three parameters. The first is A, which is real. The second is B, which is 
real. The third is C, which is real." In general, we can describe the "list of parameters" as 
containing one or more repetitions of this basic pattern: 

variable list: type 

142 FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2 



Within each list, the variables are separated by commas. If there are several occurrences of 
the pattern, they are separated by semicolons. 

The following sample header lines should help clarify these points: 

function Lowest(Scorel, Score2, Score3: integer): integer; 
function Lowest(Scorel: integer; Score2: integer; Score3: integer): integer; 
function LetterGrade(Average: real): char; 
function Average(A, B, C, D, E: integer): real; 
function Raise(Salary: real; Tenured: boolean): real; 
function F(X, Y: real; T, U, V: integer; A, B: Char): real; 

Notes. 

The result type does not have to match the type of the parameters. 
Strings can be passed as parameters, but only without an explicit size. Strings with an 

explicit size can be passed as parameters, but doing so requires the concept of a "named 
data type," which we have yet to cover. So, this is legal: 

function Bonus(category: string): real; 

but this is not: 

function Bonus(category: string[lO]): real; 

Parameters 

A complete discussion of parameters is given in Chapter 4. However, a few comments are in 
order at this point. 

The parameters for a function are called value parameters. This means that a value 
(such as 7, 3.0, or 'Hello there') comes into the function through the parameter. When the 
main program uses the function, the values of the function's arguments are calculated and 
placed into the parameter variables listed in the function's definition. 

For the AreaFn function we just wrote, any of the following would be legal uses, 
assuming that all the variables are real and have assigned values. 

Area ·- AreaFn(A, B, C) 
Area .- AreaFn(X, Y, Z) 
Area .- AreaFn(Sidel, Side2, Side3) 
Area .- AreaFn(3.0, 4.0, 5.0) 
Area .- AreaFn(X + 3. 5' y I 17.2, (Z + W) I 3.2) 

In each case, the first parameter is evaluated and the value is placed into the variable A 
within the function, the second evaluated and placed into B, and the third evaluated and 
placed into C. 

We can summarize the use of parameters by a function as follows: 

1. The program invoking the function must supply the correct number of parameters 
(three, in our example). 

2. The values supplied must be of the proper type (real, in our example). 

2-7 USER-DEFINED FUNCTIONS 143 



3. The values must have the proper meaning (the three sides of a triangle, in our exam
ple). 

4. The parameter correspondence occurs by position, not by name. The names used can 
match those in the function (as in our first use given before), but they don't have to (as 
in all the other sample uses given). 

How to Write a Function 

There are five general steps involved in writing a function. 

1. Decide That a Function is Appropriate. This step occurs as part of the 
design of the module that will use the function. A function is appropriate whenever there is a 
subtask that involves calculating one value. ff the steps involved in the calculation are 
complex, then certainly a function is in order. Even if the steps are simple, however, using a 
function can make the main program easier to follow. 

For example, the standard function Round is not necessary; rounding can be accom
plished in a single step without using it. However, an assignment such as 

NumberPerDay := Round(Total I NumberofDays) 

is far easier to understand with the function than without it. 

2. Determine Function Name and Result Type. We name our function with 
an identifier descriptive of what it calculates. The only restriction is that the name must be 
different from any other variable name, procedure name, or function name declared in the 
main program. 

The result type is the type of the value the function calculates and returns. It can be 
real, integer, char, (unsized) string, or boolean. 

3. Identify the Parameters. A function calculates a value as an answer. If we 
ask, "What is the answer based on?" we will be identifying the parameters. We choose a 
variable name for each of these parameters. 

In choosing the variable names, we can use the same names that the main program 
uses for these quantities. This is allowed, but it is not necessary. 

4. Write an Algorithm and Identify Local Variables. This is, in a sense, a 
segment of an algorithm. It contains only those steps needed to calculate the answer, based 
on the parameters. The algorithm should place the final answer into the identifier that is the 
function name. 

To obtain the answer, additional variables may be required. These should be declared 
as local variables within the function. 

5. Code the Algorithm. Steps 2 and 3 have identified all the information 
required for the header line. We declare any local variables identified during step 4, and 
write the body of the function implementing the algorithm of step 4. 

Note. If an exercise reads, "Write a function to ... ," then you should begin at step 
2. The authors will already have accomplished step 1. 

144 FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2 



An Example. As an example of the function design process, we carry out steps 2 
to 5 for the following problem. (This problem is essentially Exercise 12(c) of Section 2-6.) 

Write a function to calculate a customer's bill for an order of some quantity of a single 
item. We assume there are only four items available, as shown: 

ITEM NUMBER 

100 

247 

16 

240 

UNIT PRICE 

24.03 

105.00 

10.35 

16.00 

A discount is allowed for large orders: if the total bill is $1000.00 or over, a 2 percent 
discount is given; from $800 to $999.99, a 1 percent discount is given. 

Step 2. Determine the function name and the result type. Because the bill is in 
dollars and cents, we use a real function, named BillFn. 

Step 3. Identify the parameters. For a function, the parameters are the variables on 
which the answer depends. In this case, the bill depends on what the item is and on how 
many of the items are being purchased. We begin our variable list: 

Value parameters: ItemNumber 

Quantity 

Integer 

Integer 

Item number purchased 

Quantity purchased 

Step 4. Write an algorithm and identify local variables. The algorithm contains three 
major steps: (1) calculate the price; (2) calculate the total cost before discount; and (3) 
deduct the discount, if applicable. A more refined algorithm follows, along with local vari
ables to be added to the variable list. (We are assuming that ItemNumber and Quantity are 
valid. Perhaps they have been checked in the main program.) 

Local variables: 

Algorithm: 

Price 

Total Cost 

Real 

Real 

Unit price of item 

Total cost before discount 

1. Calculate Price, based on ItemNumber, as indicated in this table (use a case structure) 

ITEM NUMBER 

100 

247 

16 

240 

UNIT PRICE 

24.03 

105.00 

10.35 

16.00 

2. Calculate TotalCost as Price times Quantity 

3. Calculate BillFn by subtracting a discount based on TotalCost, as indicated in this 
table (use an if-elseif structure) 

2-7 USER-DEFINED FUNCTIONS 145 



function BillFn (ItemNurnber, Quantity: integer): real; 

{Written by: XXXXXXXX XX/XX/XX} 

{Purpose: To calculate the total bill based on item ordered and quantity.} 
{Parameters: The first is the item number purchased,} 

the second the quantity of that item which was purchased.) 

Both are assumed to be correct.} 

var 

Price: real; 

TotalCost: real; 

{price of item, from the table} 
{total cost, before discount} 

begin {BillFn} 

case ItemNumber of 

100: 

Price . - 24.03; 
247: 

Price . - 105.00; 
16: 

Price ·- 10.35; 

240: 

Price . - 16.00 
end; 

TotalCost := Price * Quantity; 

if TotalCost >= 1000 then 

BillFn := TotalCost - 0.02 * TotalCost 

else if TotalCost >= 800 then 
BillFn TotalCost - 0.01 * TotalCost 

else 

BillFn .- TotalCost 

end; {BillFn} 

Figure 2-17 Another function. 

TotalCost: 1000.00 or more 

800-999.99 

below 800 

Subtract: 2% of TotalCost 

1 % of Total Cost 

nothing 

Step 5. Code the algorithm. We must write the header line, declare the local vari
ables, and write the necessary steps for the body of the function. We have used blank lines 
to highlight the three major steps of the function. The solution appears as Figure 2-17. 

DPT 

In writing or using functions, beware of a few common misconceptions and language subtle
ties. 

146 FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2 



1. Functions are written to perfonn calculations. As a general rule, they contain no 1/0 
statements. They obtain the values they use from the parameters, not from reading 
input. They do not print the answer, but rather send it back to the calling module. 

2. Any variables used in the function should be one of these: a parameter, the function 
name, or a local variable. Local variables are declared and used strictly within the 
function. They have no effect outside the function. 

3. Each module should declare only the variables it uses. For example, the main module 
should not declare the function's local variables. 

4. For the answer to reach the calling program (the program that invokes the function), 
it must be placed into the function name variable. 

5. The parameters as supplied by the calling program must match those in the function 
by type, number, and purpose. The names may or may not match. In fact, the supplied 
values can be constants or even complicated expressions. 

6. The result type is the type of the calculated answer. It does not have to match the 
types of the parameters. (In fact, the parameters can be of several different types.) 

7. Within the function, we should not use the function name in a condition or on the right 
side of an assignment statement. For example, consider the BillFn function written in 
this section. We wrote these lines: 

TotalCost := Price * Quantity; 
if TotalCost >= 1000 then 

BillFn := TotalCost - 0.02 * TotalCost 

These similar lines are incorrect: 

BillFn := Price * Quantity; 
if BillFn >= 1000 then 

BillFn := BillFn - 0.02 * BillFn 

The use of BillFn in the if statement and both uses on the right side of the assignment 
statement are treated as invocations of the BillFn function. This is not what we intended at 
all. Although the function name looks like any other variable name, it cannot be truly used 
as a variable. For now, only use the function name inside a function on the left side of the 
assignment statement. (In Chapter 4, we learn some other uses.) 

If we make the error just described, the compiler will detect it; a call to BillFn is 
supposed to supply two parameters, and these do not. 

REVIEW 

Terms and Concepts 

calling program 
user-defined functions 
value parameters 

Parameters. Parameters (arguments) in the calling program must match those in 
the function as to number, type, and purpose. They may or may not match in name. Any 
expression of the proper type can be supplied as a parameter by the calling module. 

REVIEW 147 



Pascal Syntax 

1. Function is declared after variable declarations and before the begin for the main 
program. 

2. Header statement: 

function function-name (parameter list): result type; 

3. Parameter list: one or more occurrences of the following separated by semicolons: 

list of variables separated by commas: type 

Considerations for Using Functions 

Writing a Function 

1. Decide if a function is appropriate (for a subtask to calculate a value). 

2. Choose a function name and determine the result type. 

3. Identify and name the parameters. 

4. Write an algorithm. (Might introduce local variables.) 

5. Code as a Pascal function. Write the header line using the function name, parameter 
information, and result type. Declare local variables. Code the algorithm. 

Invoking a Function 

1. Include a function call, along with required parameters, in an expression. (This is 
usually in an assignment statement, but it can be in a condition or a call to Writeln.) 

2. Supply expressions representing the supplied values for the parameters, using vari
ables or constants of the calling module. 

EXERCISES 

1. Find the errors, if any, in the following function header lines. 
(a) function Max (A) ; 

(b) function Cube(A; B; C: integer): integer; 

(c) function Cube(A: integer): real; 

(d) function Maxtwo(A, B: real): integer; 

(e) function 2Times(A; integer, B: real): char 

<n function XTimesY(X real, Y real); 
(g) function Salary(Years: integer; Department: string[8)): real; 

2. Write function header lines for the following: 
(a) A real function XDivY with two real parameters X and Y. 
(b) An integer function Largest with three integer parameters A, B, and C. 
(c) A char function LetterGrade with an integer parameter Grade. 
(d) A real function Salary with parameters: Department(integer), Years(integer), Bonus(real), 

Rank(char), and NumberSupervised(integer). 

3. Write a function to find the smaller of two real numbers. 

4. Write a function to find the largest of three integer numbers. 

148 FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2 



5. Write a function to find the smallest of three integer numbers. 

6. Write a function to calculate the total surface area of a cone. The formula is 

A= rcrV? + h2 +re? 

7. Write a function to determine the letter grade for a given numerical average. Use the 90-80-70-
60 scale. 

8. Write a function to calculate the final average based on the homework average, test average, and 
final exam percentage. If the homework average is 0.70 or higher, the final average is the higher 
of the test average and the final exam percentage. Otherwise the final average is the sum of 0.3 
times the homework average, 0.4 times the test average, and 0.3 times the final exam. 

9. (a) The vacation days per year are based on the employee type and years of experience as 
defined by the following rules: All type 'A' employees get 7 days and all type 'E' employ
ees get 21 days. Type 'S' employees earn IO days if they have 6 or fewer years of experi
ence, otherwise 15 days. All other types get 0 days. Design a function to calculate the 
vacation days up to the point of Pascal coding. 

(b) Code the function. 

10. (a) Write a function to find the larger of two integer numbers. 
(b) Use the function you wrote in part (a) in an assignment statement to accomplish this task: 

The variable Try should be given an initial value that is the larger of M and N. 
(c) Use the function you wrote in part (a) in an assignment statement to accomplish this task: 

The final grade for the course is to be the final exam grade or the average of the two 
midterm test grades, whichever is larger. 

11. (a) Write a function Round2 with two parameters: a real number to be rounded and an integer 
telling the number of places. For example: 

Round2(3.1416, 3) is 3.142 

Round2(17.1498, 1) is 17.1 

Round2(16.5, 0) is 17.0 

(b) Use the function you wrote in part (a) to calculate BasketsPerDay as Baskets divided by 
Days rounded to the nearest hundredth. 

(c) Repeat part (b), but round to the nearest whole number. What is the difference between this 
answer and the one supplied by the standard Round function? 

(d) Use the function of part (a) to find the average on three tests rounded to the nearest tenth. 

12. Write functions for the situations described by each of the following exercises from Section 2-5. 
Note: If the situation calls for printing the answer, instead calculate that answer as the function 
value. 
(a) Exercise 4(c) 
(b) Exercise 4(e) 
(c) Exercise 5(a) 
(d) Exercise 5(c) (tax only) 
(e) Exercise 5(d) 

13. In Section 2-6, you wrote some assignment statements and segments of code to assign values to 
Boolean variables. By choosing appropriate parameters, rewrite the following exercises from 
Section 2-6 as Boolean functions: 
(a) Exercise 3(a) 
(b) Exercise 3(b) 

EXERCISES 149 



(c) Exercise 3(c) 
(d) Exercise 3(h) 
(e) Exercise 6(c) 
(f) Exercise 6(d) 
(g) Exercise 6(f) 
(h) Exercise 6(g) 
(i) Exercise 6(h) 

14. For each of these exercises from Section 2-6, determine a portion of the program that might 
reasonably constitute a function. Then write a function to perform the identified calculation 
subtask. 
(a) Exercise IO(b) 
(b) Exercise IO(d) 
(c) Exercise 11 (a) 
(d) Exercise ll(b) 
(e) Exercise ll(c) 

15. The library functions Sin and Cos require the parameter values to be supplied in radians. Write 
functions called DegreeSin and DegreeCos that calculate their values for an angle given in 
degrees. (Degrees can be converted to radians by multiplying by n/180.) 

16. Write a function Tan that calculates the tangent of an angle supplied in radians. (Watch for an 
error condition.) 

2-8 MODULAR DESIGN AND TESTING 

Testing 

A program that contains subprograms raises some issues about the way in which we test the 
program. For example, with a main program and one procedure, there are four possibilities: 

1. We could write the entire program, then start testing the whole program as a single 
unit. 

2. We could make sure the main program works, separately make sure the procedure 
works, then put them together, and see if they work together. 

3. We could make sure the main program works, then add the untested procedure, and 
make sure the package works. 

4. We could make sure the procedure works, then add it to the untested main program, 
and make sure the package works. 

Of course, with two subprograms the possibilities increase. 
The third and fourth alternatives are examples of incremental testing. For programs 

containing large numbers of subprograms, incremental testing has been found to work better 
than the other two methods. The first method has the disadvantage that, when an error 
occurs, it can be difficult to determine which subprogram caused the error. The second 
method is an improvement, but it has been found that pieces that work perfectly well 

150 FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2 



separately sometimes do not work well when combined. If we combine them all at once, it 
can be difficult to see which particular combinations are causing the problems. 

Method 3 from the previous list is an example of top-down testing. The top level 
(main) module is tested first, then the lower level modules are added, one at a time, and the 
program is tested again. In this form of testing, so-called stubs are needed for the subpro
grams that have not yet been written and tested. We would test the main program with the 
stub versions of the subprograms. When we get this running properly, we would replace one 
of the stubs by the actual subprogram and perform more testing of the resulting program. 
This would be followed by replacing another stub by the actual subprogram and the pro
gram as a whole is tested again. This continues until the entire program has been tested. 

Method 4 is an example of bottom-up testing. The lowest level modules are tested; 
when they are running correctly, the module that calls them is added and the combination is 
tested. This form of testing requires a driver main program, a substitute for the actual main 
program that is used to "drive" the subprograms that are being tested. 

We will have more to say about incremental testing in general, and about top-down 
and bottom-up testing, in other testing sections later in the text. In the case study that 
follows, we illustrate simple instances of both top-down testing with stubs and bottom-up 
testing with drivers. 

Case Study No. 3 

This case study develops a complete program that uses a number of subprograms. It is a 
simplified payroll program. Part of the case study describes some strategies for testing a 
program that includes subprograms. 

Statement of Problem. Write a program that calculates weekly pay and the amount 
of state tax to be withheld from the paycheck. The pay is the hourly rate times the number 
of hours, except that hours over 40 earn time and a half. The state tax is based on the 
following rules: 

First, $12 is deducted from the income for each dependent. Then the tax is deter
mined by the following table: 

RESULTING INCOME 

Less than 0 

$0-$300 

Over$300 

TAX 

0 
2% of resulting income 

$15.00 plus 2.5% of the amount over $300 

Preliminary Analysis. The problem is not well described because it does not specify 
the necessary input. We will have to discover what input will be required by analyzing the 
problem. It is clear that we need at least the hourly rate and the number of hours in order to 
calculate the weekly pay. The tax is based on the pay, which we calculate, and the number 
of dependents, another part of the input. Finally, we assume that the input will contain an 
integer clock number. 

For output, we will print the clock number, weekly pay, and state tax withholding. 

2-8 MODULAR DESIGN AND TESTING 151 



We will not do complete error checking on the input; that will be left to the exercises. 
However, we do check one possible error: hours less than 0. One final note: "Time and a 
half' means that if a person works over 40 hours, then the first 40 are paid at the normal rate 
and all other hours are paid at 1.5 times the normal rate. 

Algorithm and Variable List 

1. Main Program. For the main program, we have the following input and output 
variables, based on our analysis: 

Constant: EndOtData Value 0 Used to terminate loop 

Input: ClockNumber Integer Employee clock number (also printed) 

Hours Worked Real Hours worked by employee 

Hourly Rate Real Rate of pay per hour 

Dependents Integer Number of dependents 

Output: Pay Real Pay for week 

State Tax Real State tax withheld for week 

The algorithm is quite similar to ones we have written before. (As we have been doing, we 
mark steps with an(*) to indicate they are not done for the terminating data.) 

print instructions (use procedure Instructions) 
repeat these steps until a clock number of 0 is entered: 

issue prompt for clock number 
readClockNumber 
issue prompt for hours, rate, # dependents (*) 
read Hours Worked, HourlyRate, Dependents(*) 
if Hours Worked < 0 then (*) 

print an error message (including Hours Worked) 
set Hours Worked to 0 

calculate Pay (*) 
calculate StateTax (*) 
print ClockNumber, Pay, and StateTax (*) 

We chose to use a procedure named Instructions for the subtask "print instructions." In 
addition, we write functions called PayFn and TaxFn for the "calculate Pay" and "calculate 
StateTax" subtasks. We refine those two steps as follows: 

calculate Pay: Pay : = PayFn (Hoursworked, HourlyRate) 

calculate StateTax: StateTax : = TaxFn (Pay, Dependents) 

In doing so, we have supplied as parameters the values on which the calculations are based. 

Note. Given in Figure 2-18 is a hierarchy chart for the program. This is a visual 
description of the fact that it contains four modules and that the main module calls the other 
three. Along with the diagram, we give a short description of what task each module per
forms. 

152 FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2 



Main program (Payroll): 

Instructions: 

PayFn: 

TaxFn: 

Figure 2-18 Hierarchy chart. 

Payroll 

PayFn TaxFn 

Reads data (some minor checking), calls 
functions, and prints answers in a loop 

Procedure that prints instructions 

Function that calculates weekly pay 

Function that calculates state tax withholding 

2. PayFn Function. This completes the design for the main program. Next we design 
the PayFn function. We have already decided that it should be a real function with two 
parameters (hours and rate). 

The basic algorithm was developed as a part of an earlier example, in Section 2-3 
(page 72). That algorithm used the variables Hours and HourlyRate for the hours and rate, 
respectively. We will make use of the earlier work, so we choose to use these variable 
names for our parameters. 

Note. One of these variable names happens to match the name used in the main 
program and the other does not. This is perfectly acceptable. One of the reasons for this 
flexibility in naming parameters is to make it easy to use previous work on the same or 
similar problems. 

That algorithm also contained two other variables, which will become local variables 
for the function. We obtain this variable list and algorithm: 

Value parameters: Hours Real Hours worked 
Hourly Rate Real Hourly pay rate 

Local variables: RegularPay Real Pay for first 40 hours 
OvertimePay Real Pay for overtime hours 

Algorithm: 

if Hours > 40 then do these steps: 
calculate RegularPay (formula 40 *Hourly Rate) 
calculate OvertimePay (formula (Hours - 40) * HourlyRate * 1.5) 

2-8 MODULAR DESIGN AND TESTING 153 



calculate PayFn as RegularPay + OvertimePay 
otherwise do this step: 

calculate PayFn as Hours * HourlyRate 

3. TaxFn Function. We now design the TaxFn function. It is a real function with 
parameters representing the pay (a real quantity) and the number of dependents (an integer 
quantity). We choose names that match those in the main program. In addition to the param
eters, we need a local variable for the taxable income. 

Value parameters: 

Local variables: 

Pay 

Dependents 

Real 

Integer 

Taxableincome Real 

Week's pay 

Number of Dependents 

Taxable income 

The algorithm, based on the verbal description, is 

calculate Taxableincome 
calculate TaxFn based on Taxableincome, using this table (use an if-elseif structure) 

RESULTING INCOME 

Less than 0 

$0-$300 

Over $300 

TAX 

0 
2% of resulting income 

$15.00 plus 2.5% of the amount over $300 

Note. You might wonder about the use of the local variable Taxableincome. Could 
we not just mOdify the parameter Pay, then use that in our TaxFn calculation? The answer is 
yes. However, this relies on the fact that for value parameters, Pascal is designed so that the 
Pay variable in the main program is not modified. Value parameters behave much like local 
variables. There are languages that do not provide this protection. In such languages, the use 
of the local variable would be mandatory. It is good defensive programming not to change a 
value parameter. 

However, in this situation, we should use the local variable in any case. In general, it 
is a good design practice to use different variables where different quantities are being 
handled. "Pay" is the weekly pay and "Taxableincome" is the portion that is taxable. These 
are not the same concepts, so we should use two different variables. 

4. Instructions Procedure. We leave the plan for the Instructions procedure to the 
reader. 

Note. In working with subprograms, what we just did was typical. We developed 
and presented each module's plan as a separate piece, starting with the main program and 
working our way to the subprograms. This is part of what is meant by to~own design. 

154 FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2 



Test Plan. We now develop the test plan. This consists of two parts: a planned order 
to write and test the modules and a set of test data for each module. We choose this order: 
PayFn, TaxFn, main program, and Instructions. Notice that this is "bottom-up" in the sense 
that PayFn and TaxFn are developed before the main program that uses them. On the other 
hand, it is "top-down" in the sense that the main program is developed before its procedure 
Instructions. Quite frequently in large projects, a mixture of the two methods is used. 

When we write a test plan for each separate module, this is sometimes referred to as 
unit testing. We will outline a plan for each module. 

Note (On Testing Philosophy). In this case study, we present an "idealized" 
approach to the joint process of testing and program development. This means that, under 
ideal circumstances, we should follow guidelines similar to those presented here. But what 
if circumstances are not ideal? If we do not "have time" to do the thorough testing required, 
shall we just forget about testing altogether? The answer is no. In testing programs (as in 
most human endeavors), the choice is not really all or nothing. Even if our test plan is not 
perfect, any test plan is better than none at all. 

There are, of course, risks in taking shortcuts. If at all possible, we should do a 
thorough testing. If we must skimp, we should try to do the most critical tests in any case. 
(In general, boundary tests are probably the most critical.) 

With the preceding discussion in mind, we now develop our unit test plans. 

Main: Branches and borderlines on bad vs. good hours: 

hours =-0.1 

hours= 0 

hours= 0.1 

hours= -5 

hours= 30 

Note. There are other possible "bad data" situations, which will be explored in the 
exercises. (In testing the main program, we will repeat some of the branch tests that we have 
done for the pay and tax functions.) 

PayFn: Branches and borderlines on hours: 

hours= 39.9 

hours= 40.0 

hours= 40.1 

hours= 25 

hours= 50 

TaxFn: Branches and borderlines on number of dependents: 

# dependents = 0 

# dependents = 1 

# dependents = 5 

2-8 MODULAR DESIGN AND TESTING 155 



Branches and borderlines on taxable income: For each test, we show the desired taxable 
income. Because the taxable income depends on the pay and the number of dependents, we 
also indicate how we plan to achieve the desired taxable income. Notice that we use a 
variety of values for the number of dependents. 

tax. inc. = -1 (pay 23 #dep 2) 

tax. inc.= 0 (pay 12 #dep l) 

tax. inc.= 1 (pay 1 #dep 0) 

tax. inc. = 299 (pay 299 #dep 0) 

tax. inc. = 300 (pay 360 #dep 5) 

tax. inc. = 301 (pay 337 #dep 3) 

tax. inc. = -50 (pay 10 #dep 5) 

tax. inc. = 100 (pay 148 #dep 4) 

tax. inc. = 400 (pay 400 #dep 0) 

Note. We have chosen to test our borderlines 1 dollar below and above rather than 
1 cent below and above. At a 2 percent tax rate, a 1 cent difference in income would lead to 
only a very small change in the tax. 

In doing the actual testing, we found that a taxable income of 301 yielded an answer 
of 15.02 when printed with two decimal places. It was not clear that the 2.5 percent rate was 
being used correctly, so we immediately tried a taxable income of 302, which yielded the 
correct answer of 15.05. 

Instructions: Since the design of the Instructions procedure has been left to the exer
cises, we also leave the details of the test plan to the exercises. It should include tests of 
branches based on whether instructions are wanted. 

Write Program. We write the program in the order indicated in our test plan. We 
begin with the PayFn function. In order to test the function, we need a driver main program. 
This is a temporary main program written for the sole purpose of testing the function. 
Because it is temporary, we do not include many comments or complicated instructions, and 
we use shorter-than-usual variable names. 

Note. For large projects, or for programs that are expected to be in service for a 
long period, drivers and stubs are often kept as part of the program's documentation. They 
serve as a record of what testing was done, and are used to retest the program's modules if 
changes need to be made to them. In these situations, the drivers and stubs are written with 
complete comments, instructions, and mnemonic variable names. 

The function, along with a possible driver, is given in Figure 2-19. 

156 FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2 



program DriverforPayFn; 

const 

EndOfData -1; 

var 

Hours: real; 

Rate: real; 

Pay: real; 

function PayFn (Hours, HourlyRate: real): real; 

{Written by: XXXXXXXX, XX/XX/XX} 

{Purpose: To calculate the pay for one person} 

{Parameters: The first is the number of hours the person worked.} 

The second is the hourly rate of pay. Both are assumed} 

valid.} 

var 
RegularPay: real; 

OvertimePay: real; 

{pay for first 40 hours} 

{pay for hours over 40} 

begin {PayFn} 

if Hours > 40 then 
begin 

RegularPay := 40 * HourlyRate; 

OvertimePay := (Hours - 40) * HourlyRate * 1.5; 

PayFn .- RegularPay + OvertimePay 

end 

else 

PayFn .- Hours * HourlyRate 

end; {PayFn} 

begin {Driver} 

repeat 

Writeln; 

Write('Enter hours and rate (-1 to quit) '); 

Readln(Hours, Rate); 

if Hours <> EndOfData then 
begin 

Pay := PayFn(Hours, Rate); 

Writeln('Hours = ' Hours : 2 

' Pay = ' , Pay [ 2 : 2) ; 

end 

until Hours 

end. 
EndOfData 

2, ' Rate 

Figure 2-19 Driver program for a function (continues next page). 

2-8 MODULAR DESIGN AND TESTING 

Rate 2 2' 

157 



SAMPLE INPUT AND OUTPUT 

Enter hours and rate (-1 to quit) : 34 5.67 

Hours= 34.00 Rate= 5.67 Pay= 192.78 

Enter hours and rate (-1 to quit) : ~ 6.04 

Hours = 45.00 Rate = 6.04 Pay = 286.90 

Enter hours and rate (-1 to quit) -1 0 

Figure 2-19 (continued) 

We test the PayFn function by running the Driver program. If there are any errors in 
the function, we correct them, and test PayFn again. We continue in this way until PayFn 
seems correct, then proceed to the next step. 

In the next step, we do exactly the same thing for the TaxFn function. The details are 
left as an exercise. 

We are now ready to write the main program. We do so, inserting the already tested 
functions in the proper spot. (We should not retype the functions; rather, we should use our 
system's editor to load them into the proper place in the program. This approach is faster 
than retyping the functions and avoids typing errors that could cause bugs:) 

We test the main program together with the two functions we have already written and 
tested. However, notice that the main program also calls for a procedure that has not been 
written. In order to test the main program, we write a stub for the Instructions procedure. 
This stub can be very simple; for example, 

procedure Instructions; 

begin 

Writeln('Instructions procedure successfully called') 

end; 

When we run the main program, this message will be printed prior to entering the loop. The 
actual procedure is added later. Figure 2-20 contains the program we tested at this point with 
the actual functions and the stub procedure. 

The final steps are to replace the stub by the actual Instructions procedure and run our 
tests for this procedure. At this point, we have a complete program. We would probably do 
some more testing, similar to some that we did for the individual pieces, to try to make sure 
that the program as a whole is working as it should. 

Modifications. One of the advantages of modularity is that it makes modifications 
easier. For example, we develop some additions to the program in the next chapter that do 
not affect any of the subprograms, so they do not have to be retested. As another example, if 
we modified the pay function, only this function and the program as a whole would have to 
be retested. 

The exercises suggest some modifications to the case study. 

158 FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2 



program Payroll; 

{Written by: xxxxxxxx XX/XX/XX} 

{Purpose: To calculate pay and state tax for a number of employees.} 

The input consists of a clock number, the number of hours worked,} 

the hourly rate, and the number of dependents} 

{Procedures used : Instructions, to print instructions for user} 

{Functions used: PayFn, to calculate the pay based on hours and rate} 

TaxFn, to calculate the tax based on the pay and the} 

number of dependents} 

const 
EndOfData 

var 

O; 

ClockNumber: integer; 

Hoursworked: real; 

HourlyRate: real; 

Dependents: integer; 

Pay: real; 

StateTax: real; 

procedure Instructions; 

{terminating data indicator} 

{employee clock number, input} 

{hours worked, input} 

{rate of pay, input} 

{number of dependents, input} 

{pay for week, output} 

{state tax, output} 

begin {Instructions (stub version)} 

Writeln('Instructions procedure successfully called') 

end; {Instructions} 

{Function PayFn as shown in Figure 2-19 is inserted here} 

function TaxFn (Pay: real; Dependents: integer): real; 

{Written by: XXXXXXXX, XX/XX/XX} 

{Purpose: To calculate the tax for one person.} 

{Parameters: The first is the person 'spay for the week.} 

var 

The second is the number of dependents. Both are} 

assumed to be valid.} 

TaxablePay: real; {portion of pay used for taxing} 

begin {TaxFn} 

TaxablePay := Pay - 12 * Dependents; 

if TaxablePay < 0 then 
TaxFn := 0 

else if TaxablePay < 300 then 
TaxFn := 0.02 * TaxablePay 

else 
TaxFn := 15 + 0.025 * (TaxablePay - 300) 

end; {TaxFn} 

Figure 2-20 Payroll program (continues next page). 

2-8 MODULAR DESIGN AND TESTING 159 



begin {Payroll} 

{*** Before the loop, print instructions} 

Instructions; 

{* * * 

{ 

{ 

In loop, obtain clock number, hours, rate, and number of dependents.} 

Check for dummy value. Check for invalid hours. Calculate and print} 

pay and tax.} 

repeat 

Writeln; 

Write('Enter clock number for next employee: '); 

Readln(ClockNumber); 

if ClockNumber > EndOfData then 
begin 

Write('Now enter the hours, rate, and number of dependents: '); 

Readln(HoursWorked, HourlyRate, Dependents); 

if HoursWorked < 0 then 
begin 

Writeln(HoursWorked, 

HoursWorked := 0 

is invalid; changed to 0.'); 

end; 

Pay := PayFn(HoursWorked, HourlyRate); 

StateTax := TaxFn(Pay, Dependents); 

Writeln(ClockNumber, ' earned ', Pay : 2 

StateTax : 2 : 2) 

end 
until ClockNumber <= EndOfData; 

{*** Stop} 

end. 

SAMPLE INPUT AND OUTPUT 

Instructions procedure successfully called 

Enter clock number for next employee: 345 

2, ' and was taxed 

Now enter the hours, rate, and number of dependents: }.! 5.67 ~ 
345 earned 192.78 and was taxed 1.94 

Enter clock number for next employee: 101 

Now enter the hours, rate, and number of dependents: 44 6.78 l 
101 earned 311.88 and was taxed 5.52 

Enter clock number for next employee: 0 

Figure 2-20 (continued) 

160 FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2 



REVIEW 

Terms and Concepts 

bottom-up testing 
driver 
hierarchy chart 
incremental testing 

Testing 

stubs 
top-down design 
top-down testing 
unit testing 

1. Use an incremental approach (top-down, bottom-up, or a mixture). 

2. Develop a unit test plan for each module. 

3. Use drivers and stubs where needed. 

EXERCISES 

1. Rewrite the following programs from Section 2-6, using a function for an appropriate calcula
tion subtask. (You will have to identify an appropriate subtask to be placed into a function.) 
(a) Exercise lO(d) 
(b) Exercise l l(a) 
(c) Exercise ll(b) 
(d) Exercise l l(c) 

2. Write unit test plans for the functions you identified in Exercise 1. 

3. Describe a unit test plan for these exercises in Section 2-7. 
(a) Exercise 3 
(b) Exercise 4 
(c) Exercise 5 
(d) Exercise 7 
(e) Exercise 9 
(f) Exercise 11 

4. Write a driver program and test each function referred to in Exercise 3 using your test plan 
devised in that exercise. 

5. Modify Case Study No. 1 (Section 1-4) to calculate and print the letter grade for each student. 
Use a function that you write and test prior to inserting it into the case study program. Test the 
revised program. 

6. Write a complete program, modeled after Case Study No. 2, to accomplish the following. It 
should read a real number, a one-digit integer number, and a code for the operation to be 
performed. (The real number is of the form xxx.yyy.) It should use functions where appropriate. 
The valid operations 

p (part): 

D (digit): 

EXERCISES 

123.456 

123.456 

617.354 

617.354 

p 

p 

D 

D 

2 

2 

6 

is 

is 

is 

is 

123 

456 

1 

4 

161 



R (rotate): 123.456 R 1 is 612345 

123.456 R -1 is 234561 
123.456 R 0 IS 123456 

S (split and add): 123.456 s is 1+2 + 3 + 4 + 5 + 6 = 21 
123.456 s 2 is 12 + 34 + 56 

123.456 s 3 IS 123 + 456 

The integer number is in these ranges: 1 to 2 for 'P', 1 to 6 for 'D', -1 to 1 for 'R', and 1 to 3 
for 'S'. In each case, the answer is 0 if the integer number is not in the proper range. 

7. Write a complete program to calculate wages and state taxes for a number of employees. Input 
consists of name, clock number, marital status, number of dependents, and job code. Wages are 
based on department and job code. If we let Department be the first digit of the four-digit clock 
number, the wages are as indicated in the following table (any entry not appearing indicates an 
error): 

Department = 1 Department = 2 Department = 3 Department = 4 
Job Wages Job Wages Job Wages Job Wages 

A 157.00 A 345.00 A 264.00 A 130.00 

B 171.00 B 415.00 B 289.00 B 175.00 

c 306.00 Any 653.00 c 315.00 c 210.00 

D 339.00 Other D 347.00 Any 239.00 

E 389.00 Other 

State taxes are based on the description given in Exercise 5(c) of Section 2-5. 

Exercises 8 to 14 refer to Case Study No. 3. 

8. Write an algorithm and a test plan for the Instructions procedure. The person should be able to 
get instructions by either entering a lowercase or a capital Y. 

9. Write a driver program for the TaxFn function. Run the driver program with the function to test 
the function. 

10. Modify the PayFn function to allow "double time" for all hours in excess of 50. Write a revised 
test plan. 

11. Modify the TaxFn function to deduct 10 percent of the original income from the taxable income 
prior to calculating the tax. Write a revised test plan. 

12. Think of some other possible input errors, and modify the main program to check for them. 
Note: Some errors violate "reasonableness" standards. For example, an hourly wage of $1,000 
would be unreasonable. 

13. Modify both functions to use named constants (const declarations). What are the advantages of 
this? Are there any disadvantages? 

14. Add code to create a printed report. Before the loop, print some column headings. Then, for 
each employee, print (in columns) the clock number, hours worked, hourly rate, dependents, 
pay, and state tax. 

162 FUNDAMENTALS OF PASCAL PROGRAM DESIGN CHAP. 2 



3 Using Loops 

OBJECTIVES 

The primary topic of this chapter is loops. It also provides more detail in areas of program 
design and testing, espceially as they apply to loops. After completing this chapter, you will 
be able to: 

• use loops to accomplish common programming tasks 

•employ the while-do and for-do loops effectively 

• generate pseudorandom numbers 

•become familiar with the elementary aspects of arrays 

• control loop termination using more complex conditions 

• add to your knowledge of antibugging, debugging and testing techniques 

3-1 COMMON APPLICATIONS OF LOOPS 

Loop Planning 

We discuss loop planning in detail throughout this chapter. However, before we begin this 
section's major topic (some common loop applications), let us give a brief overview of the 
loop-planning process. 

We may view a loop as consisting of two components. First, we have the actual steps 
that we wish to perform repeatedly. This is frequently referred to as the body of the loop. 
For example, the bodies of the loops we have written up to this point have generally con
tained three major steps: 

163 



1. read data values 

2. calculate an answer, and 

3. write a line of output. 

The second component of a loop is the loop control. Whenever we write a loop in a 
program, we must incorporate some way to terminate (or exit from) the loop. The loop 
control consists of the portion that causes the steps of the loop to be performed the proper 
number of times. In our sample programs so far, the loop control has been of a type we 
might call "direct user control." The steps in the loop were repeated until the user indicated, 
by entering a terminal data value, that there were no more data to be read. There are many 
other possible types of loop control, which we study in later sections of this chapter. For 
now, we continue to use the "terminal data value" loop control used in earlier examples. 

In addition to the body and the loop control, there can be other steps closely related to 
the loop. These steps occur either before or after the loop. For example, many applications 
of loops require steps, called initialization steps, to be performed before the loop begins. 
For example, programs that accumulate totals generally must initialize the variable contain
ing the total to zero before the loop. Many other problems require variables to be initialized. 
Similarly, after the loop, we may need steps that use the information gathered or calculated 
in the loop. For example, many times we print totals after a loop has finished summing up a 
set of values. 

In this section, we present three common applications of program loops. These are 
counting how many times some condition occurs as the loop executes; accumulating the 
total of some set of values; and finding either the largest (maximum) or smallest (mini
mum) of some set of values. In each case, we concentrate on three major issues: 

1. The initialization steps required 

2. The steps that should be part of the loop body 

3. The steps to be performed following the loop body 

Note. Counting, accumulating, and finding largest or smallest are tasks that can 
appear in a wide variety of programs. In order to concentrate our attention on these three 
tasks, we present them in a context where the program consists of reading some values, 
calculating some answers, and then printing them. We examine the steps that must be added 
to these examples in order to count, to accumulate, or to find the largest or smallest. 

Counting 

Consider the following problem. A program is to read a series of nonzero integers. The end 
of the input is indicated by a terminal value of 0. For each number, except the 0, the 
program is to print a message telling whether the number is even or odd. Pascal provides a 
Boolean function "Odd(n)" that is true if n is odd and false if n is even. The following 
fragment shows the main loop of the program (EndOIData is the constant 0): 

164 

repeat 

write('Enter number (0 to quit): '); 
Readln (Number) ; 

USING LOOPS CHAP. 3 



if Number <> EndOfData then 
if Odd(Number) then 

Writeln(Number:5, ' is odd.') 
else 

Writeln(Number:5, ' is even.') 
until Number = EndOfData 

We would like to modify this example so that our program prints the number of even 
values at the end of the loop. Generally, we need to keep four points in mind when writing a 
program involving counting: 

1. A counter, a variable to contain the count value, is needed. It should normally be an 
integer variable. 

2. This variable must be initialized to 0 before starting the count. 

3. Whenever the condition to be counted is reached, one must be added to the counter 
variable. 

4. After leaving the loop (or the part where the counting occurs), the counter is used in 
some way, perhaps by printing it. 

For our specific example, we use an integer variable, EvenCounter, as our counter 
variable. The modified program fragment is shown in Figure 3-1. The changes are in italics. 
Notice that the changes correspond to the considerations listed previously. (Notice, also, that 
the "even" branch of the if-then now contains two steps. We therefore use a begin and end to 
group these into one compound statement . ) 

Note. In the following example, we use the term record, which, as used here, is 
related to files. In an employee file, for example, the information about one employee is 
called a record. It would contain the name, social security number, and other information for 
that employee. We use record here to signify the collection of data about one entity, usually 
one person. The user can supply this data through a single Readln or through several 
Readlns. This use of the term "record" occurs throughout this section and later in the text. 

EvenCounter := O; 
repeat 

Write('Enter number (0 to quit): '); 
Readln(Number); 
if Number <> EndOfData then 

if Odd(Number) then 
Writeln(Nurnber:5, ' is odd.') 

else 
begin 

Writeln(Number:5, is even.'); 
EvenCounter := EvenCounter + 1 

end 
until Number = EndOfData; 

Writeln{'There were ', Evencounter, ' even numbers.') 

Figure 3-1 Counting. 

3-1 COMMON APPLICATIONS OF LOOPS 165 



OldCounter := 0; 
TotalCounter := O; 
repeat 

Write('Enter I.D. and age (age 0 to quit): '); 
Readln(IDNumber, Age); 
if Age <> EndOfData then 

begin 
TotalCounter := TotalCounter + 1; 
if Age >= 30 then 

OldCounter := OldCounter + 1 
end 

until Age = EndOfData; 
Percent := (OldCounter I TotalCounter) * 100; 
Writeln; 
Writeln(Percent:1:2, '%age 30 or over.') 

Figure 3-2 Two counters. 

It is possible, of course, to have a program that does no processing other than the 
counting, as illustrated in the next example: 

Each record contains an identification number and an age. Write a program to deter
mine what percentage of the people represented are age 30 or older. 

Here we need two counters because, to calculate the percentage, we must determine 
how many are 30 or older and also how many there are all together. 

Here is the resulting variable list. 

Input: IDNumber Integer Identification number 

Age Integer Age 

Other: Old Counter Integer Number age 30 or older (a counter) 

Total Counter Integer Number all together (a counter) 

Percent Real Percent 30 or older 

Once again, we must initialize both counters at 0 before entering the loop that reads 
data and does the counting. Each time through the loop, add I to the OldCounter variable if 
the Age is 30 or above. This is similar to the previous example. Also add 1 to TotalCounter 
for every employee entered, regardless of age. After the loop, use the counters to calculate 
Percent, then print the answer. The program segment appears in Figure 3-2 with the count
ing steps in italics. 

Notice the step that calculates the percentage: 

Percent := (OldCounter I TotalCounter) * 100 

Notice that real division (/) is used. Integer division (div) would not work because we 
would always obtain a result of zero. Also notice the program assumes that TotalCounter is 
not 0. Probably for this problem that is a reasonable assumption; however, there are 
instances where a count of 0 is quite possible, and in those instances, we would want to 
guard against the possibility of dividing by 0. 

166 USING LOOPS CHAP. 3 



Accumulation 

Now consider the accumulation process, which finds the total of all the values in a list. For 
example, we may have a file with employee number and net pay and want to write a 
program to determine the total payroll for a pay period. Or we may have a list of names and 
test scores and wish to determine the average score on a test. (To find the average, we would 
add all the scores and divide by the number of students.) 

The procedures used in accumulation are similar to those used in counting. First, we 
need a variable, called an accumulator, to keep track of the running total. The required 
steps before, during, and after the loop are as follows: 

1. Before the loop, initialize the accumulator to 0. 

2. In the loop, add the appropriate value to the accumulator. (As in the case of counting, 
this step can be conditional.) 

3. After the loop, use the total. Either print the total obtained or use it in further calcula
tions (such as in obtaining an average). 

These steps are analogous to what happens in a cash register at a grocery store check
out. In the cash register, the accumulator is usually a piece of hardware within the machine. 
With each new grocery item, its price is added to the total. In this way, the accumulator 
maintains a running total. At any point in the process, it contains the total up to that point 
(the subtotal). When all the items have been processed, it contains the final total. 

Now let us write a program to print a list of salespeople and to determine the total 
sales during the week. Assume that each set of inputs contains a salesperson number, a 
department number, a basic commission rate, and a sales amount for the week. 

This is a typical accumulation problem. We wish to accumulate, or add, the week's 
sales amount for all employees. Because we are accumulating real quantities, the accumula
tor is real. The program initializes the accumulator to 0 prior to entering the loop, adds each 
sales amount to it in the body of the loop, and prints the answer after the loop. In addition to 
the accumulator, we need variables for the quantities represented in the input. 

Input: ID Number Integer Salesperson number 

Department Integer Department number 

Rate Real Commission rate 

Sales Real Sales for week 

Other: TotalSales Real Total sales for week (printed at end) 

The program segment merely incorporates what we have already decided should be 
done before, in, and after the loop. The loop is controlled by the user entering a terminal 
data value. See Figure 3-3, where the accumulation steps are in italics. 

Notes 

1. This program fragment uses the THINK feature Writeln(Report, ... ), introduced in 
Chapter 2, to print on the printer. 

3-1 COMMON APPLICATIONS OF LOOPS 167 



2. The Header procedure invoked at the beginning contains a series of Writeln(Report, 
... ) statements to print column headings at the top of the page. 

Suppose that we now consider a slightly more complicated problem. In addition to the 
ac-cumulation, we perform other processing in the loop, and not every record is included in 
the total. For the same set of input used in the previous example, this time we want to write 
a program to print a report of commissions earned and to find the average commission 
earned by department l 00. 

In this problem, we again need an accumulator, this time used to calculate the total 
commission department 100 earned. We also need a counter to count the people in depart
ment 100. As before, we initialize both the counter and the accumulator to 0 before the loop. 
After the loop, we use these values to calculate the average. In doing the counting and 
accumulating, we include only those in department 100. However, we do calculate the 
commission for each person, regardless of department number. 

Let us use a function CommFn to calculate the commission, and assume that the 
commission is based on the commission rate and the sales amount. Then the step to calcu
late the commission can be refined as 

Commission := CommFn(Rate, Sales) 

Figure 3-4 shows a main program that contains stubs for its three subprograms (two 
procedures and a function). This version can be used to perform preliminary testing of the 
main program. The submodules can be added one at a time. 

Header; 

TotalSales := O; 
repeat 

Write('Enter salesperson number (0 to quit): '); 

Readln(IDNumber); 

if IDNumber <> EndOfData then 

begin 

Write('Now enter department, rate, sales: '); 

Readln(Department, Rate, Sales); 

Writeln(Report, IDNumber : 10, ' ' 7, Department 

Rate : 5 : 3, ' ' : 7, Sales : 9 : 2) ; 

TotalSales := TotalSales + Sales 

end 

until IDNumber = EndOfData; 

Writeln; 

Writeln('Total Sales is ', TotalSales : 3 : 2); 
Writeln(Report); 

Writeln(Report, 'Total sales is ', TotalSales : 3 2) 

Figure 3-3 Accumulation 

5, I I 7' 

168 USING LOOPS CHAP. 3 



program Commissions; 

{Written by: xxxxxxxx XX/XX/XX} 

{Purpose: To calculate and print a commission report;} 

included is a summary for department 100 personnel} 

{Procedures used: Header, to print headings} 

PrintLine, to print a detail line} 

{Functions used: CommFn, to calculate commission} 

const 
EndOfData 

var 

O; 

IDNumber: integer; 

Department: integer; 

Rate: real; 

Sales: real; 

Commission: real; 

TotalComm: real; 

CountDeptlOO: integer; 

Average: real; 

Report: text; 

procedure Header; 

{used to terminate loop} 

{salesperson number, input} 

{department number, input} 

{commission rate, input} 

{sales for week, input} 

{commission for week} 

{total for dept 100) 

{count of dept 100) 

{average for dept 100) 

{name for the printer} 

begin {Header, stub version} 

Writeln(Report, 'Header routine output') 

end; {Header} 

procedure PrintLine (ID, Dept: integer; Rate, Sales, Comm: real); 

begin {PrintLine, stub version} 

Writeln(Report, ID 5, Dept : 5, Rate 

Comm : 10 : 2) 

end; {PrintLine} 

function CommFn (Rate, Sales: real): real; 

begin {CommFn, stub version} 

10 

Writeln('CommFn entered with rate= ',Rate 

Sales : 1 : 2) ; 

CommFn := 150 
end; {CommFn} 

begin {Commissions} 

2, Sales 10 2' 

5 2, ' sales 

{*** Set up printer file, Print headings, and initialize count and total} 

rewrite(Report, 'Printer:'); 

Header; 

Total Comm : = 0; 
CountDeptlOO .- O; 

Figure 3-4 Accumulation with a function (continues next page). 

3-1 COMMON APPLICATIONS OF LOOPS 169 



{*** Read data, calculate commission, adjust count and total} 

repeat 
Write('Enter salesperson number (0 to quit): '); 
Readln(IDNumber); 
if IDNumber <> EndOfData then 

begin 
Write('Now enter department, rate, sales: '); 
Readln(Department, Rate, Sales); 
Commission:= CommFn(Rate, Sales); 
PrintLine(IDNumber, Department, Rate, Sales, Commission); 
if Department = 100 then 

begin 

end 

TotalComm := TotalComm + Commission; 
CountDeptlOO .- CountDeptlOO + 1 

end 

until IDNumber EndOfData; 

{*** Calculate and print average commission} 

if CountDeptlOO = 0 then 
Writeln(Report, 'No one in department 100') 

else 
begin 

Average := TotalComm I CountDeptlOO; 
Writeln; 
Writeln(Report, 'Average commission for department 100 is • 

Average : 1 : 2) 
end; 

end. {Commissions} 

SAMPLE INPUT AND OUTPUT 

On the terminal: 

Enter salesperson number (0 to quit): 56 
Now enter department, rate, sales: 100 ~ 250 
CommFn entered with rate = 0.05 sales = 250.00 
Enter salesperson number (0 to quit): 34 
Now enter department, rate, sales: 21 0.125 1000.10 
CommFn entered with rate = 0.13 sales 1000.10 
Enter salesperson number (0 to quit): O 

On the printer: 

Header routine output 
56 100 0.05 
39 99 0.13 

250.00 
1000.10 

150.00 
150.00 

Average commission for department 100 is 150.00 

Figure3-4 (continued) 

170 USING LOOPS CHAP. 3 



Now let us plan the function CommFn. We have already named it and established that 
its parameters are the commission rate and the sales amount. We have this variable list: 

Value parameters: Rate 

Sales 

Real 

Real 

Commission rate 

Sales amount 

Suppose the commission is simply rate times sales if sales is less than $250, otherwise it is 
1.2 times rate times sales. Then the function is easy to write: 

function CommFn(Rate, Sales: real): real; 

{Written by: XXXXXXXXXXXX XX/XX/XX} 

{Purpose: To calculate one person's commission} 

{Parameters: Rate - the commission rate, real} 

Sales - the amount of the sales, real} 

begin {CommFn} 

if Sales < 250 then 

CommFn .- Rate * Sales 

else 

CommFn .- 1.2 * Rate * Sales 

end; {CommFn} 

This would go in place of the stub version. The other modules are left to the reader. 
To summarize, with a problem involving accumulation, a special accumulator variable 

is needed. Before the loop, initialize the accumulator to O; in the loop, add to the accumula
tor, if appropriate; after the loop, either print the total or use the result. 

Largest and Smallest 

We now discuss using a loop to determine the largest of a set of values. As a simple 
example, not directly related to the computer, consider the following problem. 

You (as a person) are given a large stack of cards, each containing a number. You are 
asked to determine the largest number on any of the cards. You are told that the numbers 
could be positive, negative, or zero. How would you solve this problem? 

Before reading on, stop a moment and consider exactly how you would find the 
largest number if someone handed you such a deck of cards and you had to sequence 
through the deck one card at a time. Try to be as detailed as you can in describing your 
solution. 

There are a number of possible solutions to this problem. Perhaps your solution was 
similar to the following: "Pick up the first card in my left hand. Then repeatedly pick up one 
card in my right hand until I run out of cards; anytime that the card in my right hand is 
larger than the one in my left hand, I will replace the card in my left hand. At the end, the 
card in my left h;md will be the one with the largest number on it." 

If your algorithm was similar to this one, you have described a method for using a 
loop to determine the largest item in a list. We know a loop is involved because you will 
repeat the steps of picking up a card and perhaps replacing the card in your left hand. You 
are using your left hand as a storage location for the largest value encountered so far and 
your right hand as a storage location for each of the other cards in succession. Before the 

3-1 COMMON APPLICATIONS OF LOOPS 171 



loop, when you pick up the first card in your left hand, you are giving an initial (default) 
value to the largest value; if no other cards have a larger value, then at the end, this one is 
the largest. 

It might be helpful to write this algorithm in the slightly more formal style we have 
been using for our other algorithms. 

Large is assigned the first value 
repeat the following until there are no more values 

Next is assigned the next value 
if Next > Large then 

change Large to the value of Next 
print Large 

This is a form of algorithm that we can use whenever we wish to find the largest using a 
loop. 

As an example, consider a set of inputs that contains a name and a yearly salary. The 
program in Figure 3-5 determines the largest yearly salary. It is based on a specific instance 
of the general algorithm used before to describe how to find the largest number by hand. 
Observe how similar the process of finding the largest is to that of counting or accumulat
ing. All three processes involve these properties: 

1. A special variable is used to obtain the summary information (count, or total, or 
largest value). 

2. This variable is initialized prior to the loop. 

3. In the loop, this variable is modified based on the values read, perhaps involving 
comparisons of various types. 

4. After the loop, the summary value is either printed or used to determine other values 
of interest (for example, an average). 

In finding the largest of a set of values, there are two distinct approaches to initializing 
the variable that will store the largest value. The first is illustrated by the example in Figure 
3-5. LargeSalary's initial value is the first person's salary. 

Another possible approach is to give this variable a small initial value. Consider this 
simplified fragment. 

Large := O; 

repeat 

Readln (Number); 

if Number > O then 
begin 

if Number > Large then 

Large . - Number 

end 

until Number <= O; 

Writeln(Large) 

We are reading a collection of positive values. Hence, in finding the largest, an initial 
value of 0 is appropriate. The first number is larger and replaces Large. 

172 USING LOOPS CHAP. 3 



program FindLargest; 

{Written by: XXXXXXXX XX/XX/XX} 
{Purpose: To demonstrate the process of finding the largest.} 

The program reads a series of names and salaries, and finds} 
the largest salary.} 

{Procedures used: Instructions, to print instructions for use} 

const 
EndOfData ''; {null string terminates program} 

var 
Name: string; 

Salary: real; 
LargeSalary: real; 

{employee name, input} 
{salary, input} 
{largest salary, calculated} 

procedure Instructions; 
begin 

{stub} 
end; 

begin {FindLargest} 

{*** Print instructions and initialize using first data} 

Instructions; 
Writeln; 
Write('Enter first person''s name: '); 
Readln(Name); 
Write('Enter first salary: '); 
Readln(Salary); 

LargeSalary := Salary; 

{*** Repeatedly obtain name and salary. Check each salary against the} 
largest so far, changing LargeSalary when appropriate} 

repeat 
Writeln; 
Write('Enter next name (tap RETURN to quit): '); 

Readln(Name); 
if Name <> EndOfData then 

begin 
Write('Enter next salary: '); 
Readln (Salary); 
if Salary > LargeSalary then 

LargeSalary := Salary 

end 
until Name = EndOfData; 

{*** Print largest salary} 

Writeln; 
Writeln('The largest salary found was ' LargeSalary 

end. 

Figure 3-5 Finding the largest value (continues next page). 

3-1 COMMON APPLICATIONS OF LOOPS 

1 2) 

173 



SAMPLE INPUT AND OUTPUT 

Enter first person's name: Joe Robertson 

Enter first salary: 13000 

Enter next name (tap RETURN to quit): Sue Johnson 

Enter next salary: 12903 

Enter next name (tap RETURN to quit): Sara Michaels 

Enter next salary: 17045 

Enter next name (tap RETURN to quit): 

The largest salary found was 17045.00 

Figure 3-5 Finding the largest value. 

Note. Giving Large an initial value of 0 works only because the first number read 
is larger than 0. When working with negative numbers, use a different initial value. 

The general rule for determining an appropriate initial value will be based on the 
possible range of values in the list of numbers involved. The initial value should be chosen 
to be smaller than the smallest number in this possible range. In this way, the first value in 
the list is larger than the initial value, and Large is changed to this first number. 

In the preceding examples, the quantity whose largest value we wished to find hap
pened to be one of the fields in our input. Of course, this need not be the case. For example, 
our input might contain the hourly rate and number of hours and we might wish to find the 
largest gross pay. To do so, we would have to calculate the pay for each person and compare 
this pay with the largest we had found so far. 

Another point that may have struck you as you examined Figure 3-5 is that you might 
want to know, in addition to the value of the largest salary, the name of that employee who 
has the largest salary. To do so, we simply need another variable to keep track of the desired 
information. Add the declaration 

LargeName: string; {name of person with largest salary} 

Because this variable is associated with LargeSalary, it is given a value whenever Large
Salary is given a value. Before the loop, LargeSalary is assigned the value of the first 
person's salary, and we should follow t.his by 

LargeName := Name; 

If it turns out that this first salary is the largest, then LargeName has the first person's name 
stored. 

Within the loop, we replace the step 

if Salary > LargeSalary then 

LargeSalary .- Salary 

by the step 

174 USING LOOPS CHAP. 3 



if Salary > LargeSalary then 

begin 

LargeSalary := Salary; 

LargeName := Name 

end 

Because we have found a new largest salary, we need to record both that salary and the 
associated name. (Notice that we need a begin and end to fonn a compound statement 
within the if.) 

Finally, after the loop, we can print both the largest salary and the associated name: 

Writeln ('The largest salary, ', LargeSalary: 1: 2, 

'was earned by', LargeName) 

There are two further topics to be discussed concerning the preceding example. The 
first is the matter of ties. Suppose there are two people in the company with the same largest 
salary. Our program identifies only the first person. (Why?) Although this problem can be 
fixed, it is relatively difficult to do, especially prior to studying arrays in depth (Chapter 6). 
So, for the present, we assume our data sets consist of unique values. 

The second topic relates to the alternate method for initializing LargeSalary. Because 
the salaries are nonnegative, we could use a value of -1 as the initial value. If we did so, 
then only these two steps would be required before the loop: 

Instructions; 

LargeSalary := -1 

When the first data value is read, Salary is compared to LargeSalary. It is bigger, so Large
Salary and LargeName are given the values from this first employee. 

Note. When the possible range of values is known, using a default value is easier. 
On the other hand, initializing with the first data value is more general, since it does not 
depend on knowing the range of values. 

Consider, however, the problem of fmding the largest salary earned by a female. In 
this instance, we could not initialize using the first data value. We would have to use the 
first data value for a female. This would complicate our program substantially, so we would 
be inclined instead to use a default of -1, as in the previous example. 

In short, it is important for you to know both methods of initialization. 

Until now, all the examples have had to do with finding the largest value in a list. 
Finding the smallest is similar; there are only two differences: 

1. When initializing the variable (perhaps called Small), start either with the first value 
or with a number larger than the possible range of values. 

2. In the loop, change Small when a smaller value than the current smallest is found. 

For example, the program given in Figure 3-6 reads name, age, and sex code and fmds the 
name, age, and sex of the youngest person. Key portions are italicized. 

Keep in mind that for a problem in which we are to find the largest of some value, and 
perhaps other infonnation concerning the record possessing that largest value, special vari-

3-1 COMMON APPLICATIONS OF LOOPS 175 



ables are needed for the largest (say, Large) and for all the other information concerning the 
record with the largest value. Before the loop, either initialize Large to a suitable small 
value or initialize Large and all the other variables based on the first data record. In the 
loop, change Large and all the associated special variables whenever a record is found with 
a larger value than that currently stored in Large. After the loop, either print the answers or 
use them in further calculations. Finding the smallest value is similar. 

Case Study No. 3 (Continued) 

As a comprehensive illustration of the topics discussed in this section, we modify the pro
gram written in Section 2-8 as Case Study No. 3. The main program for that case study 
appears in Figure 2-20. 

Statement of Problem. Case Study No. 3 calculated wages and state tax withhold
ing for a number of employees. We wish to modify that program to report how many 
employees had tax withholding of $10 or less, who had the largest amount of tax and what 
that amount was, and what the average pay was. 

Preliminary Analysis. One of the advantages of modularity is that modifications 
can be restricted to specific portions of the program. For example, these modifications do 
not change the methods for calculating the wages or the tax withholding, so those two 
functions remain entirely unchanged. The only changes involve the main program. (You 
might want to consider minor changes to the Instructions procedure, but those are not 
presented here.) 

Algorithm and Variable List. In a problem of this type, we need to plan for the 
additional variables needed. All the variables originally used in the main program are still 
used. Here is a list of the additional variables: 

LowCount Integer Number with tax< 10 (Counter) 

Large Real Largest tax 
LClock Integer Clock number for person with largest tax 
TotalPay Real Total pay (Accumulator) 
EmpCount Integer Number of employees (Counter) 
Average Real Average pay 

The rest of the planning involves inserting the proper steps before the loop, in the loop, and 
after the loop, using standard methods for these types of problems. 

Test Plan. When a program is modified, it should be run again using the test plan 
that was used when it was developed. This ensures that code that originally worked still 
does work. (This is sometimes called regression testing.) In addition, additional tests should 
be devised relating to the steps added. Details of the types of tests needed are covered in the 
next section. 

Write Program. The complete modified main program is shown in Figure 3-7. We 
have run the program for the same input as in the original case study. Again, note that the 
functions would not be modified. 

176 USING LOOPS CHAP. 3 



program FindSmallest; 

{Written by: XXXXXXXX XX/XX/XX} 

{Purpose: To demonstrate finding the smallest and associated information.} 

The program finds the name, age, and sex of the youngest person.} 

{Procedures used: Instructions, to print instructions for user} 

const 

EndOfData 

var 

'I; 

Name: string; 
Age: integer; 

Sex: char; 

{null string terminates program} 

{employee name, input} 

{age, input} 

{sex code, input} 

SmallAge: integer; 

SmName: string; 

smsex: char; 

{smallest age} 

{name of youngest} 

{sex of youngest} 

procedure Instructions; 

begin 

{stub} 

end; 
begin {FindSmallest} 

{*** Print instructions and initialize} 

Instructions; 

SmallAge := 100; {high default value} 

{***Repeatedly obtain input data. Check each age against youngest so far,} 

changing SmallAge and all associated variables when a younger person} 

is found.} 

repeat 

Writeln; 

Write('Enter name (hit return to quit): '); 

Readln(Name); 

if Name <> EndOfData then 

begin 
Write( 'Age: '); 

Readln (Age); 

Write('Sex code: '); 

Readln (Sex) ; 

if Age < SmallAge then 

begin 

end 

end 

SmallAge := Age; 

SmName : = Name; 

SmSex := Sex 

until Name = EndOfData; 

Figure 3-6 Finding the smallest value (continues next page). 

3-1 COMMON APPLICATIONS OF LOOPS 177 



{*** Print answers} 

Writeln; 
Writeln {'The youngest person was ', SmName); 
if SmSex in ['M', 'm'] then 

Write( 'He •) 
else 

Write{'She '); 
Wri teln {'is ', SmallAge 

end. 

SAMPLE INPUT AND OUTPUT 

First run: 

1, ' years old.' J 

Enter name (hit return to quit) : Sally Frisling 
Age: 2_ 
Sex code: F 
Enter name (hit return to quit): Joe Salzburg 
Age: 21 
Sex code: M 

Enter name (hit return to quit): Mike Sawyer 
Age: 15 
Sex code: m 

Enter name (hit return to quit): 

The youngest person was Sally Frisling 
She is 9 years old. 

Second run: 

Enter name (hit return to quit): Barry Purnell 
Age: 45 
Sex code: m 

Enter name (hit return to quit): 

The youngest person was Barry Purnell 
He is 45 years old. 

Figure3-6 (continued) 

Testing 

It may require several runs of the program to test adequately a program involving counting, 
accumulation, or finding the largest/smallest. Among the most important types of tests are 
these: 

178 USING LOOPS CHAP. 3 



program Payroll; 

(Written by: XXXXXXXX XX/XX/XX} 

(Purpose: To calculate pay and state tax for a number of employees.} 

The input consists of a clock number, the number of hours} 

worked, the hourly rate, and the number of dependents.} 

(Modified: 
( 

XXXXXXXX XX/XX/XX - to report how many employees had tax} 

withholding of $10 or less, who had the largest amount of tax} 

and what that amount was, and what the average pay was.} 

These changes affect only the main program.} 

(Procedures used: Instructions, to print instructions for user} 

(Functions used: PayFn, to calculate the pay based on hours and rate} 

TaxFn, to calculate the tax based on the pay and the} 
number of dependents} 

const 
EndOfData 

var 

O; 

ClockNumber: integer; 

HoursWorked: real; 

HourlyRate: real; 

Dependents: integer; 
Pay: real; 

StateTax: real; 

LowCount: integer; 

LargeTax: real; 

LClock: integer; 

TotalPay: real; 
EmpCount: integer; 

Average: real; 

procedure Instructions; 

begin 
(stub} 

end; 

(terminating data indicator} 

(employee clock number, input} 

(hours worked, input} 

(rate of pay, input} 

(number of dependents, input} 
(pay for week, output} 

(state tax, output} 

(# with tax < $10} 

(largest state tax} 

(clock # of person with most tax} 

(total pay for week} 
(counter of employees} 

(average pay for week} 

(function PayFn, as shown in Figure 2-19, is inserted here} 

(function TaxFn, as shown in Figure 2-20, is inserted here} 

begin (Payroll} 

(*** Before the loop, print instructions and initialize} 

Figure 3-7 Case Study No. 3 (payroll) (continues next page). 

3-1 COMMON APPLICATIONS OF LOOPS 179 



Instructions; 
LowCount .- O; 
LargeTax .- O; 
Total Pay .- O; 
EmpCount .- O; 

{*** In loop, obtain clock number, hours, rate, and number of dependents. } 
Check for dummy value . Check for invalid hours. Calculate and print} 
pay and tax. Also modify summary information (counters, etc .)} 

repeat 

Writeln; 
Write('Enter clock number for next employee: '); 
Readln(ClockNumber); 
if ClockNumber > EndOfData then 

begin 

Write('Enter the hours, rate, and number of dependents: '); 
Readln(HoursWorked, HourlyRate, Dependents); 
EmpCount := EmpCount + l; 
if HoursWorked < 0 then 

begin 

Writeln(HoursWorked, ' is invalid; changed to 0.'); 
HoursWorked := 0 

end; 

Pay := PayFn(HoursWorked, HourlyRate); 
TotalPay := TotalPay + Pay; 
StateTax := TaxFn(Pay, Dependents); 
Writeln(ClockNumber, ' earned', Pay, ' and was taxed' StateTax 

2); 

if StateTax < 10 then 
LowCount := LowCount + l; 

if StateTax > LargeTax then 
begin 

LargeTax := StateTax; 
LClock := ClockNumber 

end {if} 

end {if} 

until ClockNumber <= EndOfData; 

{*** Print summary information and stop} 

Figure 3-7 (continues next page) 

FINDING THE LARGEST 

1. Largest first (no ties) 

2. Largest last (no ties) 

3. Largest in middle (no ties) 

4. All the same value 

180 USING LOOPS CHAP. 3 



Writeln; 
if EmpCount = O then 

Writeln('No employees entered') 
else 

end. 

begin 
Average := TotalPay I EmpCount; 
Writeln(LowCount, 'employees had less than $10 withheld'); 
Writeln('Clock #', LClock: 1, 'paid the most tax -- $', 

LargeTax : 1 : 2}; 
Writeln('The average pay was$', Average: 1 : 2) 

end; 

SAMPLE INPUT AND OUTPUT 

Enter clock number for next employee: 345 
Enter the hours, rate, and number of dependents: 34 5.67 ~ 
345 earned 192.78 and was taxed 1.94 

Enter clock number for next employee: 101 
Enter the hours, rate, and number of dependents: 44 6.78 l 
101 earned 311.88 and was taxed 5.52 

Enter clock number for next employee: 0 

2 employees had less than $10 withheld 
Clock #101 paid the most tax -- $5.52 
The average pay was $252.33 

Figure 3-7 (continued) 

COUNTING 

1. No data input at all 

2. Data input, but count is still 0 for what is being counted 

3. Everything in the input list is in the category being counted 

ACCUMULATION 

1. This is similar to counting. 

It may help to understand these tests if they are viewed as the boundary values for the 
answers to questions such as: 

1. Where in the list is the largest found? 

2. How many ties are there? 

3. How many items in the list of data? 

4. How many items in the category being counted or accumulated? 

3-1 COMMON APPLICATIONS OF LOOPS 181 



As we mentioned earlier, boundary situations are those that are most likely to yield 
errors in our programs. Hence, these types of tests are the most fruitful because they are the 
most likely to uncover the errors that the program contains. 

DPT 

The most frequently encountered pitfalls in writing programs using the methods of this 
section may be briefly described as follows: 

1. Forgetting to initialize counters and accumulators. 

2. Improper initialization of "Large" or "Small" variables. 
There are two choices. One is to give the variable a value based on the first input data. 

In this case, we also initialize any associated variables (for example, LargeName) being 
used to maintain additional information concerning the record with the highest value. 

On the other hand, we can initialize based on the known range of values. In this case, 
initialize Large (or Small) in such a way that the first record is certain to contain a larger (or 
smaller) value. If we choose this approach, the associated variables such as LargeName need 
not be initialized. 

Notice that both approaches require that there be at least one set of valid data. If it is 
conceivable that there will be no input, we should handle this possibility, perhaps by dis
playing a "no valid data" message. 

3. Improper assignment statements. A typical error of this type is 

if Salary > LargeSalary then 
begin 

Salary := LargeSalary; 

Name .- LargeName 

end 

The two assignment statements are both reversed. Remember that the variable to be changed 
should be on the left-hand side. LargeSalary and LargeName are to be changed; write 

REVIEW 

182 

if Salary > LargeSalary then 
begin 

end 

LargeSalary := Salary; 

LargeName .- Name 

Terms and Concepts 

accumulation 
accumulator 
body 
counter 
counting 
finding largest/smallest 

initialization 
loop control 
record 
regression testing 
terminate 

USING LOOPS CHAP. 3 



EXERCISES 

Algorithm Techniques 

Counting 

Before loop: initialize to 0 
In loop: add 1 to counter, if appropriate 
After loop: print or use answer 

Accumulation 

Before loop: initialize to 0 
In loop: add to accumulator, if appropriate 
After loop: print or use answer 

Finding the Largest 

Before loop: initialize to a "small" value, or value from first record 
In loop: change Large and associated variables when new value is larger 
After loop: print or use answer 

Finding the Smallest 

Before loop: initialize to a "large" value or a value from the first record 
In loop: change Small and associated variables when new value is smaller 
After loop: print or use answer 

1. For each of the following, determine appropriate initial values for Large for an algorithm to find 
the largest of the quantity indicated. Then determine appropriate initial values for Small for an 
algorithm to find the smallest. 
(a) age 
(b) age of elementary school children 
(c) IQ 
(d) salary of managers in a small company 
(e) number of children in a family 
(f) numbers ranging from -23,000 to + 1700 
(g) balances in checking accounts that just had an overdraft 
(h) balances in checking accounts 

2. Each record (i.e., set of input data) has a name and a letter grade (A, B, C, D, or F). Write a 
program to count the number that passed and the number that failed. (All grades except F are 
passing.) 

3. Each record has a name and a numerical average. Write a program that, for each record, calcu
lates the variable Result as follows: If the numerical average is 60.0 or higher, the variable 
should be given the value "pass", otherwise the value "fail". The program should print the 
name, numerical average, and Result for each person, and tell how many passed. 

4. (a) In a certain company, a bonus is based on the number of years worked and a skill code (a 
one-character code). For skill level 'E', the bonus is $15 for each year worked. Write a 
program to read a set of records, each with name, years worked, and skill code, and print a 
list of the bonuses for persons with skill level 'E'. 

EXERCISES 183 



(b) Modify your program to print the following summary information: percentage of employ
ees with skill level 'E' and total bonus for skill level 'E' employees. 

(c) Modify your program to show which skill level 'E' employee had the largest bonus. 

5. Each record has an ID number, sex code, age, and number of children. 
(a) Write a program to count the number of females under age 21. 
(b) Write a program to find the average number of children for persons under age 25. 
(c) Write a program to find the age and ID number of the oldest person with no children. 

(Assume that there is such a person.) 
(d) Revise part (c) to find the age and ID number of the youngest person who has children. 

6. Each record contains, for a single course, the number of credits and a letter grade (A, B, C, D, 
or F). There is one record for each course taken by John Smith during his college career. Write a 
program to calculate his grade point average. The quality point average is the total of the quality 
points divided by the total number of credits. (A, 4 quality points per credit; B, 3 per credit; C, 
2 per credit; and D, I per credit.) 

7. Modify the latest version of Case Study No. I (Figure 2-9, Section 2-3) to count how many 
passed, how many failed, and the percentage of those who were exempted from the final. 

8. Modify Case Study No. 2 (Section 2-7) to count how many of each possible operation were 
performed. 

9. Devise test plans for the following: 
(a) Exercise 2 
(b) Exercise 4(b) 
(c) Exercise 4(c) 
(d) Exercise 5(b) 
(e) Exercise 5(c) 

10. Write a program to handle all the transactions on a single checking account during a month. 

184 

Input starts with a record indicating an account number, account type, and a beginning balance. 
This is followed by a number of transaction records, each containing a code (C: check, D: 
deposit) and an amount. 

Output should be a table with each transaction and the resulting balance, as illustrated: 

ACCOUNT # 12345 BEGINNING BALANCE= 123.14 TYPE= R 

CODE AMOUNT BALANCE 
-------

c 150.00 -26.86 
***OVERDRAFT $5.00 CHARGE *** -31.86 

D 30.00 -1. 86 
c 1. 00 -2.86 

***OVERDRAFT $5.00 CHARGE *** -7.86 
D 100.00 92.14 
c 10.05 82.09 

CLOSING BALANCE = 82.09 

The following summary information should be given: minimum balance, number of bad checks, 
and total of the checks not including the bad checks. 

USING LOOPS CHAP. 3 



3-2 PASCAL LOOPING STRUCTURES 

Pascal has three looping structures. We have seen the repeat-until loop, which we have 
used in all our programs to this point. In those programs, the condition that terminated the 
loop was that the user entered a terminal data value. In this section, we study the repeat
until looping structure in more detail. In addition, we will learn about the other two looping 
statements available in Pascal, the while-do loop and the for-do loop (usually just called the 
while and for loops). 

In writing programs, there are two related tasks. We must design the algorithm, that is, 
determine what the program should do and how it should do it. And we must write the 
program in some suitable programming language. In connection with loops, this implies that 
there are two topics to study: how to design loops and how to write loops in THINK Pascal. 
In this section, the basic form of the three loops is studied and a few examples are pre
sented. The next section begins a thorough study of the techniques of loop design that will 
enable us to make good use of these three looping structures. 

This section also introduces two concepts not directly related to loops. They are ran
dom numbers and arrays. We will use these concepts in some of our examples in this and 
later sections. With random numbers, we can develop some interesting examples of loops 
that involve simulation of random events such as coin tossing. Arrays are the subject of a 
complete chapter (Chapter 6), but it is helpful to gain familiarity with the concept now. 

Repeat-Until Loops 

We begin with repeat-until loops. Recall that the general form of the loop is 

repeat 

statement(s) 

until condition 

It is not necessary to use a begin and end to delimit the body of the loop because the two 
key words repeat and until already delimit it. Recall also that the loop executes the state
ments forming its body repeatedly until the condition is true. The body of the loop executes 
one or more times. The precise semantics (meaning) of the repeat-until are as follows: 

1. Perform the loop body. 

2. If the condition is true, terminate the loop, otherwise go back to step 1. 

We can summarize this by saying that 

The test for terminating a repeat-until loop occurs at the bottom of the loop 

The condition used after the keyword until can be a Boolean constant, a Boolean variable, 
or a more complex Boolean expression. Any condition that could be used in an if statement 
can also be used in a repeat-until loop. 

As an extreme example of a repeat-until loop, one that keeps the computer busy for a 
long time, we could (but, of course, we wouldn't) use the construct: 

repeat 

until false; 

3-2 PASCAL LOOPING STRUCTURES 185 



This example is extreme for two reasons. First of all, it uses the Boolean constant false for 
its condition. Second, the body of the loop is empty. This is an infinite loop; it will run 
forever. Another extreme example that we are not likely to use in a program is 

repeat 

until true; 

which will act as though no statement is there at all. 
To gain further understanding of the repeat-until loop, consider this program segment: 

I : = 5; 

repeat 

Writeln(I); 

I := I + 5 
until I > N 

The table gives a list of the numbers printed for various values of the variable N. It 
also indicates what value the variable I has following termination of the loop. 

N 

17 

20 

5 
4 

NUMBERS PRINTED 

5, 10, 15 

5, 10, 15, 20 

5 
5 

VALUE OF I AFTER LOOP 

20 

25 

10 

10 

Because the loop termination condition is not checked until the bottom of the loop, the loop 
always executes at least once. Note especially the last line of the table (N = 4). Even though 
I is already greater than 4 when the loop begins, the body executes once, printing 5 and 
changing I to 10. 

While-Do Loops 

The while-do loop (which we will call the while loop), like the repeat-until loop, is a 
condition-based loop. That is, there is a condition whose truth or falsity determines how 
long the repetition continues. The general form of this looping construct is 

while condition do 

statement that forms body of loop 

In most circumstances, the statement that forms the body of the loop is a compound 
one, so that our general form usually has the appearance: 

while condition do 
begin 

body of loop 

end 

The condition, like that in the repeat-until loop, can be any Boolean constant, Boolean 
variable, or more complex Boolean expression. 

186 USING LOOPS CHAP. 3 



The meaning of the while loop is to continue to execute and reexecute the body of the 
loop as long as the condition remains true. Two extreme examples, analogous to those for 
the repeat-until loop, are 

while true do; 

which executes an empty loop body forever; and 

while false do; 

which is an empty loop that executes 0 times. Although a silly example, the second loop 
does illustrate the important point that a while loop executes 0 or more times. 

To contrast the repeat-until loop with the while loop, consider these two program 
segments: 

I : = 5; 

repeat 

Writeln(I); 
I := I + 5 

until I > N 

I : = 5; 

while I <= N do 

begin 
Writeln(I); 

I .- I + 5 

end 

First, note that the loop bodies are identical (a Writeln and an assignment). However, the 
while loop requires a begin and an end to group the two statements of the loop body into 
one compound statement. 

An important point to observe relates to the conditions controlling the two loops. In 
the repeat-until, we have "I> N", and in the while, we have "I<= N". These are negations 
of each other. In the while loop, the condition expresses "how long the program stays in the 
loop" (as long as I <= N). In the repeat-until loop, on the other hand, the condition 
expresses "when the program terminates the loop" (when I > N). In general, the conditions 
for similar repeat-until and while loops are negations of each other. 

On the surface, then, these two loops are similar in meaning. However, the table 
illustrates a fundamental difference between the two looping structures. 

VALUE OF N 

5 
4 

PRINTED BY REPEAT-UNTIL PRINTED BY WHILE-DO 

5 5 
5 None 

The semantics of the while loop are as follows: 

1. If the condition is true, go to step 2, otherwise the loop terminates. 

2. Perform the loop body, then go back to step 1 to check the condition. 

Thus, if N is 5, the loop body is executed, printing I (5) and changing I to 10. Because 
the condition is now false, the loop terminates. On the other hand, if N is 4, the loop 
terminates immediately without ever performing the loop body. 

We can summarize these semantics of the while loop by saying that 

The test for terminating a while loop occurs at the top of the loop. 

3-2 PASCAL LOOPING STRUCTURES 187 



Repeat Versus While 

To summarize, the key differences between these two condition-based looping structures are 
as follows: 

I. (a) Repeat-until tests after each execution of the body 

I. (b) While tests before each execution of the body 

2. (a) Repeat-until condition is true to exit the loop 

2. (b) While condition is false to exit the loop 

3. (a) Repeat-until body is always performed at least once 

3. (b) While body might not be performed. 

For-Do Loops 

In this subsection, we consider the for-do (or just/or) loop. This loop counts the number of 
times the computer executes the body of a loop and terminates the loop after a certain 
number of executions. The general form is 

for control variable := start to end do 

statement that forms body of loop 

As with the while loop, the statement that forms the body of the loop is most frequently a 
compound one, so that our general form usually has the appearance: 

for control variable .- start to end do 

begin 

body of loop 
end 

The control variable successively takes on the values from the indicated starting value 
to the indicated ending value. An alternative form, discussed in what follows, uses the key 
word downto in place of the key word to in the for statement. 

Perhaps the easiest way to understand the meaning of the for loop is by example. The 
table shows the output of the following program fragment for various values of the variables 
Start and End. 

for I := Start to End do 
Writeln(I) 

START END NUMBERS PRINTED 

1 4 1, 2, 3,4 
13 19 13, 14, 15, 16, 17, 18, 19 
2 2 2 
3 2 None 

The for loop can also count "down" from the starting value to the ending value as in 

188 USING LOOPS CHAP. 3 



for I := Start downto End do 
Writeln(I) 

Again, we can summarize the semantics of this loop: 

START END NUMBERS PRINTED 

4 1 4, 3 ,2, 1 

17 12 17, 16, 15, 14, 13, 12 

5 5 5 

5 6 None 

We can summarize the for loop as follows: 

1. The control variable successively takes on the values from the indicated starting value 
to the indicated ending value. For each value assumed by the control variable, the loop 
body is executed once. 

2. The starting and ending values can be given by constants, variables, or more complex 
expressions. For now, the control variable and these expressions should all be integers. 

3. If the for statement uses to and the final value is less than the initial value, then the 
body is not executed. Likewise, if the for statement uses downto and the final value is 
greater than the initial value, the body is not executed. 

4. After the loop terminates, the control variable is "undefined." This means that the 
program cannot depend upon its having some specific value. 

5. The control variable can be used within the loop body, but do not modify it. 

6. If any variables are involved in the starting and ending values, they should not be 
modified within the loop. Doing so will not modify the behavior of the loop, but it 
will be confusing to the reader of the program. 

7. Afor loop, in contrast to a while or repeat loop, cannot be infinite (as long as you do 
not change the control variable's value inside the loop). It terminates after a predeter
mined number of passes. 

Notes 

1. This loop is sometimes referred to as a count-controlled loop, which means that it is 
possible to know exactly how many times the loop body will be executed. The control 
variable can be thought of as "counting" the passes through the loop. 

2. The logic of the loop "for I := I to N" is essentially equivalent to the following while 
loop form: 

while I <= N do 
begin 

end 

{loop body} 

I := I + 1 

3-2 PASCAL LOOPING STRUCTURES 189 



Random Numbers 

We pause momentarily in our study of Pascal loops to introduce the notion of random 
numbers. Using random numbers in conjunction with loops allows us to write programs 
that simulate chance (such as rolling a die). 

Many computer languages include functions that generate "random" numbers. What 
this means is that every time the function is used, a value results in what looks like a 
random pattern. (These numbers are sometimes (and more precisely) called "pseudorandom 
numbers," and the functions that generate them are sometimes called "pseudorandom num
ber generators." This refers to the fact that the generated numbers look random, but that they 
are actually generated by a (complicated) formula.) In many languages, using the random 
number generator is a simple matter of calling a procedure. Unfortunately, in THINK Pascal 
for the Macintosh, there are several steps we must take to ensure the random-number gener
ator behaves as we would like. We discuss each of those steps in tum in the next few 
sections. 

The Random Function. Many languages provide a random-number function that 
returns a random number greater than or equal to zero and less than 1. THINK Pascal's 
random-number function, called Random, returns integers in the range of -32768 to 32767. 
For example, the following fragment would print out eight values within that range: 

for I := 1 to 8 do 

begin 

end 

Value . - Random; 

Writeln(Value) 

Changing the Range of Random Numbers. Most of the time, we desire ran
dom numbers within a range smaller than -32768 to 32767. To change the range, the easiest 
way is to use the abs function, along with the mod and addition (or subtraction) operations. 
For instance, to simulate the roll of one 6-sided die, we would want a random number 
between 1 and 6. We can obtain this range with the statement: 

RandomValue := abs(Random mod 6) + 1 

The mod operation produces an integer in the range of -5 to 5 (the remainder of 
dividing the random number by 6); the absolute-value function makes the result of the mod 
operation positive (producing an integer from 0 to 5); adding 1 gives us the desired range of 
1to6. 

Seeding the Random-Number Generator. Random produces the same se-
quence of random numbers each time the program is run. To make the sequence of random 
numbers different each run of the program, RandSeed (a predefined variable) must be 
assigned a new value each time the program is run. This assignment, done once in the 
program prior to the first use of the Random function, is known as seeding the random
number generator. 

One approach to seeding the random-number generator is to ask the user to enter an 
arbitrarily chosen integer. This is a poor choice, since the user should not be bothered with 

190 USING LOOPS CHAP. 3 



the particulars of THINK's random-number generator. A much better approach is to have the 
program itself provide the seed. 

The Macintosh has an internal clock that keeps track of the date and time. It does so 
by counting the number of seconds since midnight of January 1, 1904, and then converting 
that count into the current date and time. The predefined procedure GetDateTime, when 
called, places into its parameter the number of seconds since New Year, 1904. This parame
ter makes an excellent random number seed; it changes every second, and the same number 
never appears twice. 

To seed Random, use the statement: 

GetDateTime(RandSeed) 

An Example. Random functions such as this can be used to perform a variety of 
simulations of randomly occurring events in the real world. Figure 3-8 is a complete 
THINK Pascal program that contains all the statements needed to set up and use the ran
dom-number generator, including a function that simulates rolling a pair of dice. Each 
"abs(Random mod 6) + 1" gives a value from 1 to 6 and represents one of the dice. The 
total on the two dice is placed into the function name RollOf Dice. Notice that this function 
has no parameters. The answer is obtained using Random, not from parameter values. 

For the simulation to be valid, each outcome must be equally likely. This is the reason 
for simulating each die by a separate call to the Random function. 

More Examples Using Loops 

In this section, we present a number of examples of the use of count-controlled and condi
tion-based loops. In each case, we show only a program segment so that we can concentrate 
our attention on the looping process itself. In Section 3-3, we develop some complete pro
grams from scratch. 

Suppose we wish to estimate the number of rabbits that would be present in an area 
after 10 years if the number of rabbits doubles each year and there are two rabbits to start. 
We could count the rabbits using a variable Rabbits and the years using a variable Years. 
Both Years and Rabbits would be integers. At the start, Rabbits would be 2. After the first 
year, Rabbits would be 4 and Years would be 1. After the second year Rabbits would be 8 
and Years 2. Figure 3-9 contains two solutions. 

Notice how much simpler the second code fragment is than the first one. We do not 
have to write the initialization statement, the modification statement, nor the test for leaving 
the loop. They are all included in the for statement. 

Once you are familiar with the for statement, it is much clearer to read a fragment like 
the second one. It takes a few seconds of study to determine from the while loop just what 
the initial and final values are and, in fact, that the while was being used for a count-con
trolled loop. 

You should also notice that, in this case, there is only one statement in the body of the 
for loop, and, thus, we could omit the begin and end to get: 

Rabbits := 2; 

for Years := 1 to 10 do 

Rabbits := Rabbits * 2; 
Writeln('After 10 years there are 

3-2 PASCAL LOOPING STRUCTURES 

Rabbits l, ' rabbits') 

191 



program RollSomeDice; 

{Written by: XXXXXXXXXX XX/XX/XX} 

{Purpose: To illustrate the use of the random number generator} 

var 
i: integer; 

function RollOfDice: integer; 

{Purpose: To simulate the roll of a pair of dice} 

var 
Rolll: integer; 

Roll2: integer; 

begin {RollOfDice} 

{first die} 

{second die} 

Rolll := abs(Random mod 6) + 1; 

Roll2 := abs(Random mod 6) + 1; 

RollOfDice := Rolll + Roll2 

end; {RollOfDice} 

begin {Main program} 

GetDateTime(RandSeed); {Seed the random number generator} 

for i := 1 to 10 do 
Writeln('This roll of the dice was ' RollOfDice 2); 

end. {Main program} 

Figure 3-8 Simulating rolling dice. 

Note. The comments " {for}" and " {while}" are included following the end; of the 
loops at the programmer's option. As in other such situations, we make a judgment on 
whether the program is more easily understood by the inclusion of a comment. As program
mers, we should keep in mind that comments can be illuminating, neutral, or annoying; we 
should strive for the first kind, ignore the second, and avoid the third. 

On the other hand, it is true that programmers tend to underestimate the illuminating 
value of comments within their own work. 

For another example, the fragment in Figure 3-10 simulates an experiment in which 
we roll a pair of dice 1200 times, counting the number of Ts that occur. 

Our next example (shown in Figure 3-11) is a procedure that prints a row of asterisks. 
In addition to the looping structure, it illustrates an important aspect of procedures: 

Procedures can have value parameters, just like those for functions. 

192 USING LOOPS CHAP. 3 



Solution #1 

Rabbits := 2; 

Years := l; 

while Years <= 10 do 
begin 

Rabbits : = Rabbits * 2; 
Years := Years + 1 

end; {while} 

Writeln.( 'After 10 years there are ' Rabbits 

Solution #2 

Rabbits := 2; 

for Years := 1 to 10 do 
begin 

Rabbits .- Rabbits * 2 

end; {for} 

Writeln('After 10 years there are 

Figure 3-9 While and for loops. 

Count7 := O; 
for I := 1 to 1200 do 

begin 

Dice := RollOfDice; 

if Dice = 7 then 

Count7 := Count7 + 1 

end; {for} 

Rabbits 

1, ' rabbits') 

1, ' rabbits') 

Writeln(Count7 : 1, '7''s occurred in 1200 rolls') 

Figure 3-10 Counting sevens. 

This procedure has one parameter, called Number, which tells how many asterisks to print. 
We assume that Number lies between 0 and 70, so that the asterisks will easily fit on a 
single line. 

We use a count-controlled (for) loop. We could use either a repeat-until or a while 
loop, but a for loop is easiest to write and understand for this example. 

Two points should be observed, in addition to the looping structure and the parameter. 
First, we use Write rather than Writeln in the loop, so that all the asterisks stay on one line. 
The Writeln after the loop terminates the line. Second, we declare I, the loop's control 
variable, as a local variable within the procedure. 

So far our examples have been count-controlled (for) loops. We now consider some 
condition-based loops (while and repeat-until loops). 

3-2 PASCAL LOOPING STRUCTURES 193 



procedure Asterisks(Number: integer); 

{Written by: xxxxxxxxxx XX/XX/XX) 
{Purpose: To print a line containing 1 to 70 asterisks.} 
{Parameters: Number - how many asterisks to print (assumed to be} 

in the range 1 to 70)} 

var 
I: integer; {for loop control variable} 

begin {Asterisks} 
for I := 1 to Number do 

begin 
Write('*•) 

end; {for} 

Writeln 
end; {Asterisks} 

Figure 3-11 Printing N asterisks. 

Figure 3-12 contains a program segment that accepts an unknown number of exam 
scores as input, terminated by the value -1. It calculates the average of the scores, and prints 
the number of scores read and the resulting average to one decimal place. Along with the 
program segment, we show some sample runs. (For the sample runs, the program segment 
was expanded into a complete program.) 

In this example, the program reads the first test score prior to the loop, and then the 
remaining test scores in a loop. As long as the score entered is not-1, the looping continues. 
The loop body counts and accumulates the scores using the techniques covered in Section 
3-1. After the loop, the average score is printed. 

Figure 3-13 contains our first example of the repeat-until loop. In the example, we 
make use of random numbers and the dice rolling function (RollOfDice), which was intro
duced previously. The purpose of the program is to roll the pair of dice the first time to 
obtain a value, called the "point," which we will subsequently attempt to match. Then we 
roll the dice over and over until we match the point with a roll. We count the number of 
rolls that it takes to match the point and, when we finally do match it, we print the number 
of rolls that it took. 

For our second repeat-until example, we return to Case Study No. 1, developed in 
Chapter 1. That case study calculated the total on three exam scores for a number of stu
dents, terminated by a null student name. For this example, we change the specification of 
the problem to state that there is no terminating value for the student name, but after the 
processing of the test scores total for a student, the user will be asked if the processing is to 
continue. See Figure 3-14. 

The type of loop presented in this example can be used for many interactive programs 
that are to perform repeatedly an activity until the user decides to terminate the progression 
by stating that the activity is not to continue. 

194 USING LOOPS CHAP. 3 



PROGRAM SEGMENT 

{*** Read and total scores} 

Total := O; 
Number := O; 
Write('Enter score (-1 to quit): '); 
Readln(Score); 

while Score <> -1 do 
begin 

Total := Total + Score; 
Number := Number + l; 
Write('Enter score (-1 to quit): '); 
Readln(Score) 

end; {while} {***Calculate and print average.} 

Writeln; 
if Number > 0 then 

begin 
Average := Total I Number; 
Writeln(Number : 1, ' exam scores were processed.'); 

Writeln('The average is: ',Average: 1 : 1) 
end 

else 
Writeln('*** No scores were input ***') 

SAMPLE INPUT AND OUTPUT 

Run 1: 

Enter score (-1 to quit): 89 

Enter score (-1 to quit): 56 
Enter score (-1 to quit): 77 

Enter score (-1 to quit): 83 

Enter score (-1 to quit): 92 

Enter score (-1 to quit): -1 
5 exam scores were processed. 
The average is: 79.4 

Run2: 

Enter score (-1 to quit): .::.1:_ 
*** No scores were input *** 

Figure 3-12 Average value. 

Notice the use of the condition "Answer in ['N', 'n']" to terminate the loop. This 
causes the loop to terminate if the user tries to say no with a lowercase n. Even though the 
program asked for uppercase input, it seems reasonable to interpret a lowercase n as desiring 
termination of the input process. 

3-2 PASCAL LOOPING STRUCTURES 195 



PROGRAM SEGMENT 

GetDateTime(RandSeed); 

{*** Roll the point} 

Point := RollOfDice; 

Writeln('The point is: ' Point l); 

Writeln; 

{*** Roll until a match occurs; count the tries} 

Count := O; 
repeat 

Roll := RollOfDice; 

Writeln('This try: ' Roll l); 

Count := Count + 1 

until Roll = Point; 

Writeln; 

if Count = 1 then 

Writeln('It took 1 try to match the point: ', Point: 1); 
else 

Writeln('It took', Count : l, 'tries to match the point: ' Point l); 

SAMPLE INPUT AND OUTPUT 

Run 1 

The point is: 1 
This try: 9 

This try: 9 

This try: 7 

This try: 5 
This try: 10 
This try: 10 
This try: 8 
This try. 11 

This try: 4 

This try: 1 
It took 10 tries to match the point: 1 

Run 3 (Note: Run 2 took 49 tries to match the point 10) 

The point is: 7 

This try: 7 

It took 1 try to match the point: 7 

Figure 3-13 Repeat-until loop. 

196 USING LOOPS CHAP. 3 



PROGRAM SEGMENT 

{*** Process name and scores until the user decides to quit} 

repeat 

Writeln; 

Write( ' Enter the name : '); 

Readln(Name) ; 

Write( ' Now enter the three scores : '); 

Readln(Scorel , Score2 , Score3) ; 

Total : = Scorel + Score2 + Score3 ; 

Write ln ( ' The total is ',Total : 1, ' for' Name) ; 

Write ln; 

Write( ' Do you wish to continue (Y , N)? ' ); 

Readl n(Answer) 

until Answer in [ ' N', 'n ' ] {allow both uppercase and lowercase 'no ' } 

SAMPLE INPUT AND OUTPUT 

Enter the name: John Smith 
Now enter t h e three scores: 75 8 1 99 ---
The total is 255 for John Smith 

Do you wish to continue (Y,N)? r 
Enter the name : Joe Jones 

Now enter the thr ee scores: ~ ~ ~ 

The total is 226 for Joe Jones 

Do you wish to continue (Y , N)? ~ 

Figure 3-14 Case Study No. I revisited (grades). 

DPT: Loops 

1. The repeat-until loop body is always executed at least once. The while loop body 
can be executed 0 times. In either case, the computer does not continuously monitor the 
condition. It is checked only at the bottom of the loop (for a repeat-until) or at the top (for a 
while loop). Notice this is the reason we have consistently had checks in our loops such as 
"if Name<> EndOIData then ... " . 

2. Two particularly insidious pitfalls exist when using for loops. These relate to semi
colons and to using begin and end. 

To illustrate the problem, consider the program fragment of Figure 3-10, which is 
reproduced here but with two commonly made errors. 

Count? := O; 
for I := 1 to 1200 do; 

begin 

Dice := RollOfDice ; 

if Dice = 7 then 

Count? := Count? + 1 

end {for} 

Count? := O; 
for I := 1 to 1200 do 

Dice := RollOfDice; 

if Dice = 7 then 

Count? := Count? + l ; 

Wr i teln(Count7 : 1 , ' 7 " s out of 1200 ' ) 

Writeln (Count? : 1, ' 7 ' ' s out of 1200') 

3-2 PASCAL LOOPING STRUCTURES 197 



In the left-hand example, a semicolon is placed after the key word do. This causes the loop 
to have a single null statement as its body. The computer executes this null statement 1200 
times, and then executes the compound statement once. The answer printed is either 0 or 1. 
The result of the second error, in which the begin and end is missing, is similar. This time 
the loop body consists of the single statement "Dice := RollOfDice". After this is executed 
1200 times, the if and Writeln are executed, with an answer of 0 or l. 

Because the compiler does not detect these errors, we must take extra care to avoid . 
them. Defensive programming suggests that we double check each for loop for the presence 
of an unwanted semicolon after the do . The second pitfall can be avoided by consistently 
using a begin and end even for single-statement loops. 

3. The same possibilities for errors exist with the while loop. The consequences are, if 
anything, more disastrous than with the for loop. Consider, for example, these two modifica
tions of the example of Figure 3-12. 

while Score <> -1 do; 

begin 

Total : = Total + Score; 

Number := Number + l; 

Write( ' Enter the score ( -1 to quit): ' ) ; 

Readln(Score) 

end ; {while} 

while Score <> -1 do 

Total : = Total + Score ; 

Number : =Number + l ; 

Write( ' Enter nex t score (-1 to terminate) : ' ) ; 

Readln (Score) ; 

;. . 

THINK accepts each of these as legal and meaningful Pascal. However, the meaning is not 
what we intended. In the first segment, we have an empty loop 

while Score <> -1 do; 

followed by a compound statement. In the second, we have the loop 

while Score <> - 1 do Total : = Total + Score 

followed by three statements not in the loop body. 
What happens when we execute the program? If the score entered is not -1, the 

program loops forever. This is the most likely occurrence. If the user enters a -1 to abort the 
program, it instead asks for one more score and prints a meaningless answer. 

Note. THINK's automatic formatting of programs will help us avoid these errors, 
since it displays the previous while statements quite differently. The statement group 

198 

while Score <> - 1 do ; 

begin 

Total := Total + Score; 

Number := Number + l ; 

USING LOOPS CHAP. 3 



Write('Enter the score (-1 to quit): '); 
Readln(Score) 

end; {while} 

would be formatted (using THINK's default format settings) as 

while Score <> -1 do 

begin 
Total := Total + Score; 
Number := Number + l; 
Write('Enter the score (-1 to quit): '); 
Readln(Score) 

end; {while} 

and this block of code 

while Score <> -1 do 
Total := Total + Score; 
Number := Number + 1; 
Write('Enter next score (-1 to terminate): '); 
Readln(Score); 

would appear as 

while Score <> -1 do 
Total := Total + Score; 

Number := Number + l; 
Write('Enter next score (-1 to terminate): '); 
Readln(Score); 

But we should not rely solely on THINK's formatting to point out our errors for us. THINK 
formats our program only when we hit certain keys, so we can go for quite some time 
before THINK formats our (incorrect) code. And we could easily write erroneous code that 
would be formatted in the same way as correctly written code. 

4. Another potential problem exists with the while loop or the repeat-until loop. This 
problem could be caused by the omission, or by the erroneous coding of, the line that 
changes the value of the condition. In the example considered previously, if the line 

Readln(Score) 

is either missing or in error, the loop can continue forever or terminate at the wrong time. 
The most common mistake in this example might be the omission of the statement, but 
another possibility would be reading another variable (perhaps Number) rather than Score. 
This kind of error can be avoided by the consistent use of meaningful variable names. It 
would be far more likely that a mistake could occur if the variables "A" and "B" were used 
rather than Number and Score. We should make it a regular practice to ensure the condition 
used for loop control can change its value to terminate the loop, and that the change will 
occur in exactly the correct manner. 

3-2 PASCAL LOOPING STRUCTURES 199 



A First Look at Arrays 

In this section, we see a brief, simple introduction to arrays in Pascal. As we will see, an 
array is a type of variable that allows us to work with lists of related values. Although 
simplified, this first look is sufficient for us to understand some meaningful examples in the 
sections to come. In Chapter 6, we study arrays in more detail. 

We all know about the value of being able to have lists of things. As an example in a 
program context, recall Case Study No. 1, developed in Chapter 1. In that case study, we 
made use of three variables for test scores: Scorel, Score2, and Score3. Suppose that we had 
10 scores. Would we want to use 10 variable names? What about 100 scores? Let us use the 
concept of a list to help out. We could think of the 3 (10, or 100) scores as a list with a 
single name Scores. To illustrate, in our previous way of thinking about this problem, we 
might write 

Scorel: 89 

Score2: 78 

Score3: 91 

for a particular set of scores. 
Thinking of the scores as a list, we might write: 

Scores: 89, 78, 91 

for the same set of scores. We can now locate the first score by its position on the list, rather 
than by a separate variable name. 

So it is with Pascal arrays. If we declared Scores as an array (we see how in what 
follows), then we can refer to the first score as Scores[l], the second as Scores[2]. and so on. 

You are probably thinking that we haven't really gained anything. In fact, what we 
have said so far can be summarized as follows: 

OLD WAY OF THINKING 

Scorel: 89 

Score2: 78 

Score3: 91 

NEW WAY OF THINKING 

Scores[l]: 89 

Scores[2]: 78 

Scores[3]: 91 

But, here is a big advantage: Suppose that I is a variable that contains one of the numbers 1, 
2, or 3. How can we refer to the Ith score? Compare: 

OLD WAY OF THINKING 

?????????? 

NEW WAY OF THINKING 

Scores[!] 

Note. A frequent error made by beginning programmers is assuming that Score! 
would work for the "old way of thinking." It would not. However, it is the right idea. What 
we need is an array, so that we can use the similar form Scores[I]. 

Suppose that we wanted to calculate the total of the three scores. Compare: 

200 USING LOOPS CHAP. 3 



OLD WAY OF THINKING 

Total := Scorel + Score2 + Score3 

NEW WAY OF THINKING 

Total := O; 

for I := 1 to 3 do 

begin 

Total .- Total + Scores[I] 
end {for} 

Notes. Study the "new way of thinking" carefully. Here's how it works: 

1. Total starts at 0. 

2. The first pass through the for loop, I has the value 1. The reference to Scores[!] 
therefore refers to Scores[l]. This is added to Total, so Total is now equal to the first 
score. 

3. The second pass through the loop, I is 2, so Scores[!] refers to Scores[2]. After this is 
added to Total, Total is equal to the sum of the first two scores. 

4. On the third (and final) pass, I is 3, so Scores[!] refers to Scores[3]. Total becomes 
equal to the sum of the three scores. 

This use of afar loop to gain access to each array value is typical of a large number of 
algorithms using arrays. 

Another big advantage of this new list (array) way of thinking comes when the lists 
are longer. For example, suppose that we wanted to calculate the total of 20 scores. Com
pare: 

OLD WAY OF THINKING 

Total := Scorel + Score2 + Score3 + Score4 + Scores + 

Score6 + Score? + Score8 + Score9 + ScorelO + 

Scorell + Score12 + Score13 + Score14 + Score15 + 

Score16 + Score17 + Score18 + Score19 + Score20 

NEW WAY OF THINKING 

Total := O; 

for I := 1 to 20 do 

begin 

Total .- Total + Scores[I] 

end {for} 

Suppose that we wanted to calculate the total of 100 scores. Compare: 

OLD WAY OF THINKING 

Exercise for the unconvinced reader 

3-2 PASCAL LOOPING STRUCTURES 201 



NEW WAY OF THINKING 

Total := O; 

for I := 1 to 100 do 

begin 

Total .- Total + Scores[I] 

end {for} 

For the discussion that follows, assume that we have an array called Scores that contains 
five scores: 

Scores:76,87,80,85,88 

In the array notation, this means that 

Scores[l] is 76 

Scores[2] is 87 

Scores[3] is 80 

Scores[4] is 85 

Scores[5] is 88 

If we wish to refer to the third score, then we say that its value is 80. 
With this terminology in mind, consider the following table, for which we suppose 

that the variable I has the value 3, the variable J has the value 5, and the variable K has the 
value 7: 

REFERENCE VALUE 

Scores[l] 76 

Scores[3] 80 
Scores[!] 80 
Scores[!+ l] 85 

Scores[!] + 1 81 
Scores[J] 88 
Scores[K] Illegal 

Scores[K - 3] 85 

There are three points to note well: 

COMMENT 

Scores[3] since I is 3 

Scores[4] since I+ 1 is 4 

One more than Scores[3] 
Scores[5] 

Scores[?] does not exist 

Scores[4] since K- 3 is 4 

1. It is okay to use I + 1 as an indicator of which score we want, but be sure to do the 
arithmetic in the proper place. That is, the two legal expressions: 

Scores[I] + 1 
Scores[I + ll 

almost always have different values. The first means "one more than the th score." 
The second means "the (I+ l)s1 score." 

2. Reference to a score (e.g., Scores[?]) that is not on the list is illegal. 

202 USING LOOPS CHAP. 3 



3. We refer to the expression that appears inside of the square brackets ([]) as an index 
(sometimes called a subscript) of the array. We can extend the previous table to 
include this concept as follows: 

INDEX REFERENCE VALUE 

1 Scores[!] 76 

3 Scores[3] 80 

I Scores[!] 80 
I+ 1 Scores[I + 1] 85 

I Scores[!] + 1 81 

J Scores[J] 88 
K Scores[K] Illegal 

K-3 Scores[K- 3] 85 

Now suppose that we are going to have 20 scores for each student of a course, but that 
it is the middle of the term and we only have values for 10 of each student's scores. We 
have here two variations of the concept of size of the array Scores. Because there will be 20 
scores, we have the potential size or maximum allowable size of 20 for the array. Because 
there are now 10 scores, we have the actual size of 10 for the items in the array that are in 
use. 

The price that we have to pay for this more powerful way of referring to data is that 
we must declare each array within the Pascal module that uses it. In the declaration of an 
array, we include both type and size information. The size information is for the potential 
size of the array. 

Declaring Arrays. For now, we will use a simplified scheme for declaring our 
arrays. First, assume the arrays are lists of integer numbers. Second, assume that if a pro
gram has to use two or more arrays, then they have the same size. Remember that size refers 
to the potential (maximum allowable) number of items in the array and not the number of 
items in the array actually in use. Further, assume that the potential size of 1000 suffices for 
all of our early work with arrays. 

The way that we declare our arrays is to include the following among our declarations 
in the main module: 

const 
Maxindex = 1000; {size of arrays} 

This canst statement sets the mnemonic constant Maxlndex equal to 1000. Using a 
named constant not only helps us remember what the quantity 1000 means in this context 
(that it is the potential size of the arrays we will use), but also allows us to change the size 
of the arrays easily. 

type 
IntegerArray = array[l .. Maxindex] of integer; 

The type statement, among other things, allows a programmer to define data structures that 
hold more than one value. The array is one such data structure; there are others. The type 

3-2 PASCAL LOOPING STRUCTURES 203 



statement is very powerful and useful, but also quite complex. As we talk about data struc
tures in later chapters, we will discuss the type statement in detail. 

This type statement indicates that we want to define our own data structure, IntegerA
rray. It will be an array, indexed from 1 to Maxlndex, and contain integer values. 

For each particular array (Scores, for example), we will include among our declara-
tions: 

var 
Scores: IntegerArray; {Test scores} 

This statement declares a variable Scores and defines it to be of type IntegerArray, which 
was itself defined to be an array of Maxlndex (1000) integers. So Scores is an array of 1000 
integers. 

Out-of-Bounds Conditions. Be careful not to refer to an array item that is past 
the potential size of the array. In general, Pascal will not pick up this out-of-bounds condi
tion. The program assigns a meaningless value to the non-existent array position. It may 
also on occasion exhibit strange behavior or produce unexpected and unusual run-time 
errors. 

You can have THINK Pascal check your program for out-of-bounds conditions by 
turning on range checking, (Out-of-bounds checking is one aspect of range checking.) We 
can turn on range checking by using a project window option or a compiler directive. 

Clicking on the R option next to your program's name in the project window will 
cause a box to appear around the R, indicating range checking is on for that program. To 
turn range checking off, just click on the R again; the box will disappear. Range checking 
causes additional instructions to be placed into your program to do the checking, so execu
tion is usually slower than when range checking is off. So, most programmers turn range 
checking on while the program is being debugged, and turn it off when the program is ready 
to use. 

We can turn on range checking for part of a program by placing the compiler directive 
{$R+} in the program at the point range checking is to begin and the directive {$R-} at the 
point it is to end. (You can turn range checking on again later in the program by issuing 
another {$R+} directive.) 

We strongly recommend that you turn on range checking in any program that uses 
arrays. In all our program examples from now on, we will assume the R option is turned on 
(boxed) for any program that uses arrays. 

An Example. We illustrate declaring an array with the program in Figure 3-15, 
which is Case Study No. 1 rewritten using an array. In this case, the actual number of 
elements of the array that are being used is 3. Note that we have changed the way that the 
data are input from all on one line to the use of a separate line for each data item. Also, the 
example has been simplified so that it deals with only one student. Array usage is indicated 
by italics. 

Note. This program can be and was written earlier without arrays. However, the 
use of arrays gives some additional flexibility. If the values of the individual scores were 
needed after computing the total, then it would be difficult to write the program without 
arrays if the number of scores were increased. For example, suppose we needed to compute 

204 USING LOOPS CHAP. 3 



program TestScores; 

{Written by: XXXXXXXXX XX/XX/XX} 

{Purpose: To calculate the total on three tests, and} 

print that total for one student} 

const 

Max Index 1000; {size of arrays} 

type 

IntegerArray array[l .. Maxindex) of integer; 

var 

Name: string; 

Scores: IntegerArray; 

Total: integer; 

{student name, input} 

{test scores, input} 

I: integer; 

{total of test scores, calculated} 

{loop index} 

begin {TestScores} 

{*** Read name and scores; calculate and print total} 

Writeln; 

Write('Enter the name: '); 

Readln(Name); 

Writeln('Now enter the scores'); 

Total .- O; 

for I := 1 to 3 do 

begin 
Write('Enter score' I: l, ' '); 

Readln(Scores[I]); 

Total .- Total + Scores(IJ 

end; 

Writeln('The total is 

end. 

SAMPLE INPUT AND OUTPUT 

Enter the name: John Smith 

Now enter the scores 

Enter score 1 78 

Enter score 2 : 85 

Enter score 3 : 91 

Total 

The total is 254 for John Smith 

Figure3-15 

3-2 PASCAL LOOPING STRUCTURES 

1, ' for ' Name); 

205 



the number of grades that were within 10 percent of the average grade, and furthermore the 
number of grades was to be a variable N. We can compute the average using code like this: 

Total := O; 

for I := 1 to N do 

begin 

Readln(Scores[I]); 

Total := Total + Scores[I] 

end; {for} 

Average := Total I N; 

Once we have the average, we can count the number of scores within 10 percent of the 
average by 

Count .- O; 

for I .- 1 to N do 

begin 

if (Scores[I] <= 1.1 * Average) and 

(Scores[I] >= 0.9 * Average) then 

Count := Count + 1 

end; {for} 

DPT: Arrays 

1. Remember that arrays must be declared. The actual size of an array can never 
exceed the potential size of an array. To avoid problems, use our suggested declaration 
scheme for your early work with arrays. 

2. Don't write the expression Scores[!] + I when you mean the expression 
Scores[!+ I]. Think about what the two expressions mean. 

3. Make sure range-checking is on for any program that uses arrays, especially during 
program development. 

4. Do not refer to an array item that is past the potential size of the array. Range 
checking ensures THINK catches the error, but it's still an error! 

5. Use square brackets"[]" for your array references and do not use parentheses"()". 
If you use parentheses instead of square brackets, THINK usually provides an error mes
sage, but one that may not be too helpful in identifying and fixing the problem. For instance, 
if I is an integer, and ABC is an array of the type we defined before, then 

ABC(3) := 5 

produces the error message 

This doesn't make sense. 

and the statement 

I := ABC(3) 

results in the message 

206 USING LOOPS CHAP. 3 



Assignment type incompatibility. 

Depending upon how the array is used, any one of several not-too-helpful error messages 
might appear. Avoid the problem; use square brackets. 

6. Be sure to initialize all array locations you plan to use in your program. This is 
most often done with a Readln into the array item, such as 

Readln(Scores[l]) 

or with an assignment statement, such as 

Scores[l] := 15 

If you use an array item that has not been initialized, there will be an unpredictable (and 
meaningless) value in it, but THINK will use it. No run time error results. 

REVIEW 

Terms and Concepts 

actual size 
array 
count-controlled loop 
data structures 
for-do 
index 
out-of-bounds condition 
potential size 

Pascal Syntax 

Procedures 

1. Procedures can have value parameters. 

Loops 

1. General form of repeat-until loop: 

repeat 
statement {s) 

until condition 

2. General form of while-do loop: 

while condition do 

statement that forms body of loop 

3. Usual form of while-do loop: 

while condition do 
begin 

body of loop 
end 

REVIEW 

random numbers 
repeat-until 
seeding 
simulations 
subscript 
while-do 
value 

207 



4. General form of for-do loop (can use downto for to) 

for control variable := start to end do 

statement that forms body of loop 

5. Usual form of for-do loop (can use downto for to) 

for control variable .- start to end do 

begin 

body of loop 
end 

Arrays 

1. For now, declare arrays using the following among the declarations: 

const 

Maxindex = 1000; 
type 

{size of arrays} 

IntegerArray =array [l .. Maxindex] of integer; 

var 
Array name: IntegerArray; 

2. Refer to the J1h element of the array Scores by the expression: 

208 

Scores[!] 

DPT 

Loops 

1. A while loop executes 0 or more times. 
2. A repeat-until loop executes 1 or more times. 
3. You usually need a begin and end to enclose the body of a for loop or a 

while loop. 
4. Be careful that you do not place a semicolon directly after the do of the 

for loop or the while loop. 
5. Make sure that the condition part of a while loop can become false 

sometime during the execution of the loop. 
6. Make sure that the condition part of a repeat-until loop can become true 

sometime during the execution of the loop. 

Arrays 

1. Declare arrays. 
2. Scores[ I + 11 and Scores[ I] + 1 are different. 
3. Do not violate array bounds. 
4. Use "[]" and not "()"to bracket array indices. 
5. Initialize all array items to be used in your program. 

USING LOOPS CHAP. 3 



EXERCISES 

Exercises 1 to 14 can be solved without arrays. 
1. Trace the following segments by determining what values are printed and the value of I follow

ing loop termination. 

(a) I := 1; (Trace forN = 6, 7, 15) 
while I < N do 

begin 
Writeln(I); 
if Odd(I) then 

I := I + 3 

else 
I := I + 5 

end 

(b) I : = 6; (Trace for N = 6, 7, 15) 
repeat 

Writeln(I); 
if Odd(I) then 

I := I + 3 

else 
I := I + 5 

until I >= N 

(c) I : = 1 (Trace for N = 10, 1, 0) 
while I <= N do 

I := I + 1; 

Writeln(I) 

(d) I : = 1; (Trace for N = 10, 1, 0) 
repeat 

I := I + l; 

Writeln(I) 
until I > N 

2. Show the output from the program fragment: 

N := 2; 
while N < 100 do 

begin 
N := Sqr(N); 
Writeln(N) 

end 

3. Show the output from the program fragment: 

S := O; 

for I := 1 to 10 do 
begin 

Writeln(I); 
S := S + I 

end; 
Writeln(S) 

EXERCISES 209 



4. Hand-trace this program segment for the indicated input values of the variables I and J. What 
values does the Writeln print? 

Readln(I,J); 
repeat 

I : = 2 * I; 

if I <= J then 
I := I + 1 

until I > J; 
Writeln(I) 

(a) 2, 4 
(b) 3, 14 
(c) 0, 12 
(d) -1, 0 

5. Each segment is supposed to print a table of the powers of 2 that are less than or equal to N, 
where N is known to be at least 2. By hand-tracing with different values of N, determine 
whether they are correct. 

210 

(a) 

(b) 

Readln(N); 
I .- O; 
p ·- l; 
repeat 

Writeln(I,P); 
if p <= N then 

begin 
I .- I + l; 
p .- p * 2 

end 
until p > N 

Readln(N); 
I .- O; 
p ·- l; 
while p <= N do 

begin 
Writeln(I,P); 
I := I + l; 

p := p * 2 

end 

(c) Readln (N) ; 
I : = O; 

p := l; 

Writeln(I,P); 
while I <= N do 

begin 
I := 1 + 1 

p := p * 2; 
Writeln(I,P) 

end 

USING LOOPS CHAP. 3 



(d) Readln (N) ; 

I . - O; 

p := l; 

S := O; 

while P <= N do 
begin 

Writeln (I, P); 

I .- I + l; 

S .- S + P; 
p .- s + 1 

end 

6. Write program segments to print tables of feet and inches for the following: 
(a) feet from I to 30 
(b) feet from 30 back to I 
(c) feet from I to N 
(d) feet from N back to I 

7. (a) Write a program segment to compute the sum I + 2 + ... + 75. Hint: See Exercise 3. 
(b) Write a function to find the sum of the integers between (and including) two given inte

gers. Assume that the first is less than or equal to the second. 
(c) Using the function written in part (b), write an assignment statement to find the sum of the 

N integers beginning at First. For example, if First is 7 and N is 3, the answer is 24 (7 + 8 
+ 9). 

8. (a) How could Random be used to simulate a situation with equally likely outcomes ranging 
from 5 to 15? 

(b) How could Random be used to simulate a roulette wheel with numbers from 1 to 30, and 0 
and 00? 

(c) How could Random be used to simulate a situation with equally likely outcomes 3, 6, 9, 
12, 15, and 18? 

9. Write a program fragment to throw a pair of dice and print the value thrown until it is 7 (also 
print the value 7). 

10. Write a program fragment to throw a pair of dice and print the value thrown as long as it is not 
a 7 (do not print the value 7). 

11. (a) Write a program to simulate generating 1000 random numbers in the range 1 to 10,000, 
and print the largest number generated. 

(b) Write a program to simulate generating 1000 random numbers in the range 1 to 1000, and 
count how many times the number generated matches the control variable's value. 

12. (a) Write a program fragment to print all multiples of 19 that are less than 642 (19, 38, 57, and 
so on). 

(b) Extend part (a) to write a procedure that prints all multiples ofM that are less than N. 

13. (a) Modify the rabbits example so that, instead of doubling each year, it either stays the same, 
doubles, or triples, with each equally likely. 

(b) Modify part (a) to print the population at the end of each year for 10 years rather than after 
the entire 10 years. 

(c) Modify part (b) to print the population at the end of each year up to and including the year 
the population exceeds 10,000. 

EXERCISES 211 



14. A sum of $200 is deposited and compounded at 5 percent annually. Write program fragments to 
do the following. Note: This is similar to the rabbits example, but instead of doubling each year, 
the amount is multiplied by l.05. 
(a) Print the amount in the account at the end of each year for 9 years. 
(b) Print the amount in the account at the end of each year until the amount exceeds $475. 

Exercises 15 to 20 refer to arrays. 

15. Suppose the array Ages contains the values: 

Ages: 12,23,45,2 

Suppose that the variable Oldest has the value 3 and the variable Terrible has the value 4. 

(a) What is the value of the expression Ages[2]? 
(b) What is the value of Ages[Oldest]? 
(c) What is the value of Ages[Terrible]? 
(d) Show how to refer to the value 12. 
(e) Show how to declare the array in a program. 

16. Suppose the array Days contains the values: 

Days: 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 

(a) What is the value of the expression Days[2]? 
(b) What is the value of the expression Days[2] + 1 (which you might use in a leap year)? 
(c) Write a fragment of Pascal to print all of the values of the array Days. 
(d) What Pascal statement could you use to change the value of Days[2] to 29? 

17. Determine the values printed by the following program segments, where A is an integer array as 
described in this section: 

(a) 

(b) 

212 

for I : = 1 to 7 do 
begin 

A[I] .- I 

end; {for} 

for I := 7 down to 1 do 

begin 

Writeln(A[I]) 

end; {for} 

for I : = 1 to 5 do 
begin 

A[I] .- 2 * I 

end; {for} 

J ·- 3; 
A[J + 2] := A[J] + 
A[J] := A[J] - J; 

for I : = 1 to 5 do 
begin 

Writeln(A[I]) 

end; {for} 

- 5 

2; 

USING LOOPS CHAP. 3 



i\i 
1~\ 
~'(, 

~'(,~ 

(c) for I : = 1 to 15 do 
begin 

if I mod 3 = O then 
A[I] .- I + 5 

else 
A(I] .- I 

end; {for} 

while A(I] <= 12 do 
begin 

if A[I] >= 5 then 
Writeln(I, A[I]); 

I := I + 1 

end; {while} 

18. Change the Pascal program of Figure 3-15 so that it uses six scores instead of three. 

19. Modify your answer to Exercise 18 to change the declaration of the constant Maxlndex to 4 
instead of 1000. That is, use the lines 

const 
Maxindex = 4; {size of arrays} 

Compile your program and run it. What happens? Try this both with and without range check
ing turned on. 

20. Modify the answer to Exercise 18 so that, after printing the value of Total, it prints the value of 
Scores[lO]. Compile the program and run it. What happens? What is the interpretation of the 
value printed for Scores[lO] within the context of the program? 

21. In the discussion of the old way of thinking and the new way, we did not have a correct 
alternative to offer for the "new way" statement Wri teln (Scores [I l ) . There is a possible 
alternative given by the following case statement: 

case I of 

1: 

Writeln(Scorel); 
2: 

Writeln(Score2); 
3: 

Writeln(Score3) 
end {case} 

What do you think of this alternative? Which approach, the new or the old, would you prefer if 
there were 20 scores? If there were 100? 

'lG LOOPS 

<;t two sections of the chapter, we have covered several applications of loops. These 
1unting, accumulating totals, and finding largest or smallest values in a list of 
'dition, we have learned about two new looping constructions: the for loop and 

'1. By imitating the sample program segments of the last two sections, you have 
•ten some looping structures similar to the examples. However, you may not 

OOPS 

/ 

213 



. tt 
\\ke those examples. 

. . that are not eiact\~ ~'-11t \nvo\Ve 
. l S for app\1caUOUS 'bl prograffiS UlU 

yet feel confident to design oop f l that cover all poss1 e . l this 
is impossible to make a small set o ~ es . quite useful in loop design. n 

. general planning strategy is f 
loopmg. However, some h l lanning and illustrate it with a number o exam-
section, we present one approac to oop p 

ples. 

The Loop-Planning Process 

The general approach to loop design can be outlined in four steps: 
, 

1. Recognize the need for a loop. 

2. Plan the loop control. 
3. Design the loop body and any necessary initialization and finalization steps. 

4. Double check the loop control. 

As we will see, in actual practice the steps interact. For example, the loop control can affect 
the initialization steps. 

Let us begin with a brief description of the four steps. 

1. Recognize the Need for a Loop. The purpose of a loop is to provide repeti
tion. A program that must repeat one or more steps usually includes a loop for this purpose. 

Part of recognizing the need for a loop involves identifying, in a general way, what is 
to be repeated. It may be helpful to think in terms of what one pass through the loop (i.e., 
one repetition of the loop body) accomplishes. For example, for a specific program, this 
might be: 

Completely process one set of user input, or 
Print one element of the array, or 
Simulate one roll of a pair of dice, or 
Double the number of rabbits I 

In the third step, where we plan the body of the loop, this general statement of the purpose 
of the loop is refined. I 

2. Plan the Loop Control. Planning loop control involves identifying the condi- / 
tions under which the loop will terminate. For example, the four loops described before / 

might ::n:::user enters a special terminal data value, or ;1 
When all the array elements have been printed, or / 
When the roll is a 7, or 
When the number of rabbits exceeds l 0,000 / 

~~~~~~~~~~~~~~~~~~~~~___,! 
Note. Identifying a termination condition for a loop is equivalent to identify)

unde: what conditions the loop will continue. For example, we can say that "the loop~/
termmate when the user enters a length of O" or that "the loop will continue as long as
user does not enter a length of O." Similarly, we can say that "the loop will terminate

I
214 USING LOOPS cl

I

;

the number of rabbits exceeds 10,000" or that "the loop will continue as long as the number
of rabbits is 10,000 or less."

In general, the conditions for termination and for continuation of the repetition are
negations of each other. The types of loop control can be categorized as follows:

1. Count Control. Most frequently, this involves a specific number of repetitions of
the loop body. Afor loop is the most appropriate structure.

2. Direct User Control. We have seen two types of direct user control. In the first,
the user enters a special terminal value to indicate the end of a set of data. In the second, the
program specifically asks the user if the process is to be repeated, and reads a yes or no
answer. We can develop "standard" ways to handle these types of loops, consistent with our
personal programming style. Up to this point in the text, we have used repeat-until loops for
these types of problems.

3. File Control. When we learn about files in Chapter 5, we will see that loops are
sometimes controlled by terminating upon reaching the end of the file. At that time, we will
learn some standard ways to write this type of program.

4. General Condition. This is a catch-all category for any loop that does not fit one
of the previous categories. For this type of loop, we choose an appropriate repeat-until or
while-do looping structure. Sometimes the choice of which to use is obvious and sometimes
it is not. There can be trade-offs to consider. This subject is dealt with in more detail in the
next section, which discusses choosing between the repeat and the while loops.

3. Design the Loop Body, Initialization, and Finalization. The loop body
consists of the steps to be repeated. As we learned in Section 3-1, certain types of looping
tasks include specific types of initialization and finalization steps. For example, in a pro
gram to find the average age of a group of individuals, we would initialize a counter and
accumulator to 0 prior to the loop. After the loop, we would calculate the average by
dividing the accumulator by the counter and print the result.

The exact nature of the initialization steps may relate to our choice of looping struc
ture. For example, for a while loop, we may have to include some preliminary steps to make
sure that the condition for the loop "makes sense" the first time we execute the loop body.
Thus, designing the initialization portion and the choice of loop control in step 2 may
interact with each other.

By the end of this step, our algorithm should be ready (or almost ready) to write in
Pascal.

4. Double Check the Loop Control. The major reasons for double checking
can be summarized by these phrases:

Don't be "off by 1."

Don't be "off by 1/2."

Don't write infinite loops.

3-3 PLANNING LOOPS 215

These relate to three common errors involving loop control. The first phrase warns against
writing loops that execute one too many times or one too few times. For example, consider
this fragment:

Write('Enter a number: ');
Readln(Limit);
Writeln('The multiples of 17 that are less than ' Limit l);
Multiple := 17;
repeat

Writeln(Multiple);
Multiple := Multiple + 17

until Multiple >= Limit;

For any Limit that is less than 17, the fragment is incorrect; we should have used a while
loop.

The second phrase (Don't be "off by 1/2.") warns that frequently there are some steps
in the loop body that should not be executed during the last pass through the loop. For
example, we have written many repeat-until loops that skip the calculations and printing for
the terminal data value entered by the user.

The third phrase (Don't write infinite loops.) indicates that we should always make
sure that the termination condition can eventually become true. As we discussed in the DPT
portions of the previous section, this can be caused by Pascal errors such as erroneous
semicolons or forgetting begin-end pairs. It can also be caused by errors in reasoning. For
example, the following loop, although it is correct Pascal, is faulty:

I := l;

Sum := O;
Readln(N);

repeat
Sum := Sum + I;
I := I + 2

until I = N;

For example, if N is even, the loop will not terminate. To remedy this, we would change the
termination condition to "until I >= N".

One way to double check the loop control is to hand-trace the loop with specific
values. If the loop control involves a value that would cause many passes through the loop,
we may mentally replace this value with a smaller one. For example, if the loop is to
terminate when an account balance exceeds $5,000.00, we might trace an equivalent loop
that terminates when the balance exceeds $500.00. This process does not prove the program
correct, but it can help us locate faulty reasoning. For example, consider this fragment to
find the sum of the numbers from 1 to 100:

216

Sum := O;

repeat
Sum := Sum + I;
I := I + 1

until I >= 100;

USING LOOPS CHAP. 3

If we hand-trace this using 3 instead of 100, we observe the following:

First pass through the loop: Sum is set to 0 + 1 = 1

I is set to 2

Second pass through the loop: Sum is set to 1 + 2 = 3

I is setto 3

Since the condition "I >= 3" is now true, the loop terminates. But it did not find the sum of
the numbers from 1 to 3, only from 1 to 2. Our loop control is off by 1. (Notice that we
should really have used a count-controlled/or loop, which would avoid this problem for this
example.)

To illustrate the loop-planning process we have outlined, let us design a program to
find the squares of numbers input by the user. The numbers are to be in the range from 1 to
100, terminated by a value of 0. The program also will indicate what percentage of the input
was greater than 50.

1. Recognize the need for a loop. A loop is needed because several numbers supplied by
the user are to be handled. Each pass through the loop will process one input.

2. Plan the loop control. This loop is under direct user control: an entry of 0 terminates
the process. We can, therefore, use our standard techniques for this type of problem.
The loop will be a repeat-until, terminating when the number entered is 0.

3. Design the loop body and any necessary "initialization" and ''finalization" steps. The
body of the loop consists of these steps to be repeated:

issue a prompt
read a number
calculate and print the square
increment the count of numbers entered
see if the number was over 50; if so,

increment the count of numbers over 50

Before the loop, we initialize both counts to O; after the loop, we calculate and print
the percentage.

4. Double check the loop control. If we code the algorithm as it stands, we will be "off
by 1/2." That is, we will execute some steps for the terminal value 0. All the steps
beginning with the calculation should be omitted for this last pass. (We have fre
quently placed an asterisk in our algorithms beside these types of steps.)

Loop Control: While-Do Versus Repeat-Until

Figure 3-16 shows one possible fragment of Pascal code for the loop designed in this
example. It uses our usual techniques for writing this type of loop. However, consider the
program fragment in Figure 3-17, which accomplishes the same thing in a different way.
This fragment primes the loop by reading the first value. (This terminology is intended to
suggest the act of priming a pump by adding water.) As long as the Number obtained is not
0 (EndOIData), the program calculates and prints the square and does the counting. When
the Number is 0, it terminates.

3-3 PLANNING LOOPS 217

Entered : = 0;

Over50 := O;

repeat

Write('Enter number (0 to quit): ');

Readln(Number);

if Number <> EndOfData then

begin

Square := Sqr(Number);
Writeln(Number: 1, ' squared is ' Square);

Entered := Entered + l;

if Number > 50 then

Over50 := 0Ver50 + 1

end

until Number = EndOfData;
if Entered <> 0 then

begin

Percent := Over50 I Entered * 100;

Writeln(Percent

end

1 : 2, '%were over 50')

Figure 3-16 Percentage calculation-repeat loop.

Entered : = 0;
Write('Enter number (0 to quit): ');

Readln(Number);

while Number <> EndOfData do
begin

Square:= Sqr(Number);
Writeln(Number : l, ' squared is ' Square);

Entered : = Entered + l;

if Number > 50 then

OVer50 : = Over50 + l;

Write('Enter number (0 to quit): ');

Readln(Number)

end;

if Entered <> 0 then

begin

Percent := Over50 I Entered * 100;
Writeln(Percent 1 : 2, '%were over 50')

end

Figure 3-17 Percentage calculation-while loop.

If you examine the two segments, you will see that there are trade-offs:

1. The repeat-until form includes an extra level of nesting. This can make the program
harder to understand. In addition, there is the danger that we will forget to skip the
processing for the terminal data value.

218 USING LOOPS CHAP. 3

2. The repeat-until loop body contains its steps in the "natural" order: read, calculate,
print. The while loop body has steps in this order: calculate for the value already read,
print, read another value to get ready for the next pass. This can be troublesome for
beginners, although we can get used to it. In addition, there is the danger that we will
forget the priming read.

3. The while loop duplicates the read step: it appears before the loop and at the bottom of
the loop. This can lead to problems if this step is modified. (Placing the step in a
procedure would help avoid this problem.)

In short, the decision of which approach to use for this type of problem is not obvious.
The authors chose the first approach as a starting point for the textbook examples. Many
Pascal programmers (including authors of other texts) choose the second approach.

Sometimes, as in this example, there are trade-offs, and the choice is at least partially
a matter of personal style. However, there are times when one or the other loop structure
seems more appropriate. We offer a few general guidelines. They are not meant to cover all
possible situations, but they do indicate some of the possibilities.

1. A while loop executes its body 0 or more times. If it is possible that the loop should
terminate immediately without executing the loop body at all, a while loop should be
used. For example, a loop to print all the multiples of 17 that are less than some user
supplied number should be a while loop.

2. A while loop is ideal for activities that involve performing a first action, and then
repeating a similar action if necessary. For example, in checking the validity of input
data, we can write code such as:

Write('Enter a number in the range 0 co 100');

Readln(Number);

while (Number < 0) or (Number > 100) do

begin

Writeln('Invalid entry of ',Number);

Write('Please reenter (in the range 0 to 100) ');

Readln(Number)

end;

The first read and the one in the loop are similar but not quite the same. In particular,
the prompt is different.

3. A repeat-until loop may be better for some types of problems where the loop body
must be executed in order for the termination condition to make sense. For example,
in a loop to count the number of dice rolls until a 7 is reached, we might write:

RollCount : = 0;
repeat

Roll := RollofDice;

RollCount := RollCount + 1

until Roll = 7;

An equivalent while loop would have to perform the roll (and count it) prior to the
loop. Loop priming that duplicates the entire loop body is generally not an ideal structure.

3-3 PLANNING LOOPS 219

This last statement can supply some further insight into which loop type to use. First,
identify the condition that is to control the loop and also the steps that form the initialization
and the body of the loop. If the condition makes sense before the loop executes for the first
time, then a while loop is indicated. If the entire body of the loop must be executed once
before the condition should be tested, then a repeat-until loop is the best choice. If, as
frequently happens, the condition first makes sense after part but not all of the loop is
executed, we must make an intelligent choice. If we use a repeat-until loop, part of the loop
body may have to be skipped on the last pass through the loop. If we use a while-do loop,
we may have to move the first part of the loop body before the loop to prime the loop, and
duplicate those steps at the bottom of the loop to prepare for the next pass through it.

Examples

For our first example, let us write a function called SmallDivisor, which finds the smallest
divisor (other than l) of a given number. (A divisor of an integer I is an integer that yields no
remainder when it is divided into I.)

SmallDivisor(15)

SmallDivisor(l 4)

SmallDivisor(29)

SmallDivisor(175)

should be 3

should be 2

should be 29

should be 5

The function has one parameter, Number, an integer assumed to be greater than l. Since this
is our first example, we discuss it explicitly in terms of the planning steps described earlier.
In our later examples, the use of those steps is implicit, even if we do not make an issue of
it.

1. Recognize the Need for a Loop. How would you go about finding the smallest
divisor of some large number such as 19,327? You would perhaps start trying numbers in a
definite pattern: first try 2, then 3, then 4, then 5, and so on. If we imitate this manual
solution, we will be repeatip.g a process: try a potential divisor to see if it works. Thus, a
loop is appropriate.

At this point, we can see the need for these two variables:

Input parameter: Number Integer

Local variable: Potential Integer

Number to find divisor of; the number is
assumed to be greater than 1

A potential divisor; takes on the values
2, 3, etc.

2. Plan the Loop Control The appropriate loop control is the "general condition"
type. We cannot use count control because we do not want to try all the potential divisors
from 2 to the given number. We want to stop when we find a divisor, that is, when Number
mod Potential is 0.

In the verbal description of how we would solve the problem, we indicated that our
first attempt would be with Potential equal to 2. Because the given number could be even,
this initial value could already be the desired answer. This implies that we should use a
while loop rather than a repeat loop.

220 USING LOOPS CHAP. 3

3. Design the Loop Body, Initialization, and Finalization. As part of planning the
loop control, we have already identified an initialization:

Potential := 2

(This is typical-the planning steps tend to interact.) In the loop body, we must add 1 to
Potential; after the loop, we assign the answer to the function name.

4. Double Check the Loop Control In rough form, our algorithm is

set Potential to 2
see if it is a divisor; as long as it isn't do this:

add 1 to Potential

We might hand-trace this for several possible inputs: perhaps 14, 5, and 45.

For 14: Potential: 2
loop terminates, answer is 2

For 5: Potential: 2
not a divisor, so Potential := 3
not a divisor, so Potential := 4
not a divisor, so Potential := 5
loop terminates, answer is 5

For 45: Potential: 2
not a divisor, so Potential := 3
loop terminates, answer is 3

Note. These inputs were chosen by observing that a number's smallest divisor lies
between 2 and the number itself. The first two inputs exercise the boundaries of this possible
range. In hand-tracing, as in testing, boundaries are extremely important considerations.

Based on this tracing, we appear to have avoided the three common pitfalls (off by 1,
off by 1/2, infinite loop).

See Figure 3-18 for the function. There are several things to observe about that func
tion. First, Potential is declared as a local variable within the function. Second, the mod
operator checks for divisibility. Third, the while loop is written using a begin and end even
though there is only one step in the loop; this is a matter of personal style (and defensive
programming).

There is one other, fairly subtle, point. You might wonder, since in the last step of the
program, we simply assign Potential to SmallDivisor, why we couldn't just use Small
Divisor itself in the loop. To be precise, would this work?

SmallDivisor := 2;

while Number mod SmallDivisor <> 0 do
begin

SmallDivisor .- SmallDivisor + 1

end; {while}

3-3 PLANNING LOOPS 221

function SmallDivisor(Nurnber: integer): integer;

{Written by: XXXXXXXXXX XX/XX/XX}

{Purpose: To find the smallest divisor of a given number.}

{Parameters: Number - the number whose divisor is to be found}

(assumed to be bigger than 1))

var
Potential: integer;

begin {SmallDivisor}

Potential := 2;

{a potential divisor of Number}

while Number mod Potential <> 0 do
begin

Potential := Potential + 1

end; {while}

SmallDivisor := Potential

end; {SmallDivisor}

Figure 3-18 Smallest divisor of a number.

The answer is no. Recall our previous defensive programming tip that, in writing a function,
we should not use the function name anywhere except on the left side of an assignment
statement. If we use it in a condition or on the right side of the assignment statement, the
compiler treats it as an invocation of the function and expects parameters. Although we
learn (in Chapter 4) how to make good use of this ability of a function to invoke itself, for
now we should follow the rule just described.

As a second example, let us write a function to find the number of different divisors of
a given number. We are not counting 1 nor the number itself as divisors. NumDivisors(15)
should be 2, because 3 and 5 are divisors. NumDivisors(7) should be 0, because there are no
divisors other than 1 and 7. NumDivisors(36) should be 7, because 2, 3, 4, 6, 9, 12, and 18
are divisors.

This problem is so similar to the previous one that we might be tempted to just use the
same loop control. However, there is an important difference that changes the loop control:
the previous example found a particular divisor, and the loop could terminate when that
divisor was found. This example determines a count; we must examine every integer
between 1 and the number (excluding 1 and the number). We do not want to terminate the
loop when we find a divisor. A count-control loop can be used.

We need an input parameter Number, a local variable Potential as a trial divisor, and a
local variable Counter to count the number of divisors found. The Pascal code for Num
Divisors is shown in Figure 3-19.

As another example, let us use the RollOfDice function (written in Section 3-2) to
write a procedure that simulates a game of chance. In this game, a pair of dice is rolled once
to establish a "goal." The dice are then rolled repeatedly until the goal is matched on a
future roll. The player pays $10 to play the game and wins $1 for each successful roll that
does not match the goal. We wish to simulate one play of the game and print an appropriate
message showing the results.

We use these variables: Goal, to record the first roll; Roll, for the subsequent rolls; and
Money, to keep track of the player's money. Each pass through the loop simulates one

222 USING LOOPS CHAP. 3

function NumDivisors(Number: integer): integer;

{Written by: XXXXXXXX XX/XX/XX
{Purpose: To find,the number of divisors of a given number}
{Parameters: Number - the number whose divisors are to be}

counted (assumed to be bigger than 1)}
var

Potential: integer;
Counter: integer;

begin {NumDivisors}

Counter := O;

for Potential .- 2 to Number
begin

if Number mod Potential
Counter .- Counter +

end; {for}

NumDivisors := Counter

end; {NumDivisors}

Figure 3-19 Count of divisors of a number.

- 1

0

1

{a potential divisor}
{number of divisors found}

do

then

attempt to match the goal. The loop tenninates when there is a match, that is, when Roll =
Goal. We have the following initialization, loop body, and finalization steps:

INITIALIZATION

obtain the Goal value
set the Money to -10 (you pay $10 to play)

LOOP BODY

obtain the Roll value
print the Roll value
add 1 to the Money

FINALIZATION

print a message (depending on whether Money is positive, negative, or zero)

We now consider whether to use a while loop or a repeat loop. The tennination
condition (Roll = Goal) does not make sense until we have rolled the dice. We therefore
choose a repeat loop. We must be cautious, however, not to be "off by 112." The final step of
the loop body should not be executed if the roll matched the goal. For example, if the Goal
is matched on the 13th roll, as illustrated in the second sample run of the program, the
player would win only $2 ($12 minus the $10 to play).

The planning just described leads us to the procedure presented in Figure 3-20.

3-3 PLANNING LOOPS 223

procedure MatchRoll;

{Written by: XXXXXXXXXX XX/XX/XX}

{Purpose: To simulate one play of a game of chance}

{Parameters: None}
{Functions used: RollOfDice, to simulate rolling a pair of dice}

var

Goal: integer;
Roll: integer;

Money: integer;

begin {MatchRoll}

{result of first roll, the "goal"}

{subsequent rolls of the dice}

{player's money}

{*** Obtain goal and initialize player's money}

Goal := RollOfDice;
Writeln('The goal is

Money : = -10;

Goal 1);

{*** Roll until goal is matched, winning $1 for each successful roll}

repeat

Roll .- RollOfDice;

Writeln ('This roll:

if Roll <> Goal then

Money := Money + 1

until Roll Goal;

{*** Print the results}

if Money > 0 then

Roll 1);

Writeln ('You won$', Money 1)

else if Money = 0 then

Writeln('You broke even')
else

Writeln('You lost$', Abs(Money) 1)

end; {MatchRoll}

Figure 3-20 Game of chance (continued next page).

Sometimes a problem is "almost" a count-control problem. For example, to find the
sum 1 + 2 + · · · + 400, we could use

Sum : = 0;
for I := 1 to 400 do

begin

Sum := Sum + I
end; {for}

What might we do to find the sum 2 + 4 + ... + 266?

224 USING LOOPS CHAP. 3

SAMPLE INPUT AND OUTPUT

First run:

The goal is 8

This roll: 8

You lost $10

Second run:

The goal is 7

This roll: 11

This roll: 4

This roll: 4

This roll: 11

This roll: 4
This roll: 5

This roll: 9

This roll: 8

This roll: 6
This roll: 8

This roll: 8

This roll: 12

This roll: 7

You won $2

Figure3-20 (continued)

One approach is to imitate the logic of the for loop with a while loop, as described in
the previous section. We would like to go from 2 to 266, but by 2's. We can write:

Sum : = 0;

I := 2;

while I <= 266 do

begin

Sum := Sum + I;

I := I + 2
end; {while}

Note. Some programming languages, such as FORTRAN, COBOL, and BASIC,
expand the notion of the count-control loop to include a "step size," so one could use a for
loop to, say, sum the even numbers from 2 to 266. The Pascal for loop does not include a
step size, so we typically use a while or repeat loop in these situations.

For the final example, we consider a problem involving an integer array. For this
problem, we recall the definitions of potential size and actual size for an array. The potential
size is the declared size (Maxlndex in the declaration scheme we suggested). The actual size
is the number of meaningful values presently stored in the array.

3-3 PLANNING LOOPS 225

Note. We are suggesting using a large potential size (Maxlndex = 1000). This
means that the actual size is usually considerably smaller. This avoids some subtle pitfalls
that we discuss in detail in Chapter 6.

There are two frequently used ways to indicate the actual size of an array. The first
uses a separate variable to keep track of this value. The second places a delimiter in the
array following the last meaningful value. The delimiter plays the same role that a terminat
ing input value does. It can be any chosen value that could not possibly be mistaken for a
meaningful value.

Assuming that this second method is used with a delimiter of -maxint, let us write
code to find the sum of an array called A. We need a loop because there are several values
to be summed. In our preliminary planning, we observe that each pass through the loop adds
one of the array values to the sum. We accomplish this by causing a variable I to take on the
values 1, 2, Then we can use A[I] to refer successively to A[l], A[2],

Because we do not know how many values there are, we use the general condition
form of loop control, terminating the loop when we reach the delimiter. To deal with the
question of whether to use a while loop or a repeat-until loop, we ask: Could it be possible
that the loop body might be executed 0 times? The answer is yes; if A[l] contains the
delimiter, then there are no numbers to sum.

Further planning leads to the following:

INITIALIZATION

set the sum to 0
start the subscript at 1

LOOP BODY

add the array element to the sum
add 1 to the subscript

FINALIZATION: ??

The finalization step might be to print the sum. However, we choose to write a func
tion for this task, so the finalization step assigns the answer to the function name.

The function, based on this planning process, appears as Figure 3-21. Several points
are worth noting:

1. An array can be passed as a parameter to a function. We declare the parameter using
the identifier lntegerArray defined in the main program. (More details on arrays as
parameters are given in Chapter 4.)

2. The termination condition is "A[I] contains the delimiter." As usual in a while loop,
the controlling condition tells how long the loop should continue and is the negation
of the condition for terminating.

3. If we forget the loop's begin and end, or the step "I := I + l", the program may
execute forever.

4. Sum and I are variables local to the function. (Recall that this means they are declared
and used within the function, not in the main program.)

226 USING LOOPS CHAP. 3

function ArraySum(A: IntegerArray): integer;

{Written by: XXXXXXXXXX XX/XX/XX}

{Purpose: To find the sum of an array which uses a delimiter of -maxint}
{Parameter: A, the array to be summed}

var

Sum: integer;
I: integer;

{array sum}

{subscript}

begin {ArraySum}

Sum : = 0;

I : = l;
while A[I] <> -maxint do

begin

Sum:= Sum+ A[I];

I := I + 1
end; {while}

Array Sum : = Sum
end; {ArraySum}

Figure 3-21 Summing an array with a delimiter.

DPT

REVIEW

1. In writing a while loop, the condition for the loop must make sense when the loop is
first executed. This may require some "priming" steps prior to the loop. Some or all of
these steps may have to be duplicated at the bottom of the body of the loop.

2. We should double check our loops to make sure that we are not "off by l." One way
to accomplish this is by hand-tracing the execution of the loop. If the loop executes a
large number of times, we can make an appropriate modification of the loop for the
purpose of this tracing.

3. We should also avoid being "off by 1/2." We should check to see if there are any of
the steps in the loop that should not be executed on the final pass through the loop.

4. Check for initialization steps. Many times the correct initial value for some variable is
a value other than zero.

Terms and Concepts

delimiter
finalization
hand-tracing
initialization

loop control
pass (through a loop)
priming a loop

REVIEW 227

Loop Planning

Steps in Loop Design

1. Recognize the need for a loop.

2. Plan the loop control.

3. Design the loop body and any necessary "initialization" and "finalization" steps.

4. Double check the loop control.

Types of Loop Control

1. Count control

2. Direct user control

3. File control

4. General condition

Choosing While or Repeat

1. Sometimes there is no obvious choice; there are trade-offs.

2. Use a while loop if the body can be executed 0 times.

3. Use a while loop to execute an action, and then perform a similar action 0 or more
times.

4. Use a repeat-until if the body must be executed once before the termination condition
"makes sense."

DPT

1. May need priming steps for the while loop to cause a condition to umake
sense" on the first pass.

2. Don't be uotf by 1."
3. Don't be uotf by 1/2."
4. Double check the initialization steps.

EXERCISES

1. By modifying the initialization of Potential, rewrite the SmallDivisor function (Figure 3-18) to
use a repeat loop instead of a while loop. Which design seems better? Why?

2. Modify the MatchRoll procedure (Figure 3-20) to use a while loop. Is the revised approach
better or worse? Why?

3. Each record has an ID number, yearly income, number of years worked for the company, and a
four-letter department code.

228

(a) Write a program to find the ID number and yearly income of the person who earned the
most during the year.

USING LOOPS CHAP. 3

(b) Modify this program to print how many years this person has worked for the company and
her department code (this requires two more special variables).

(c) Write a program to find the average number of years worked by persons in department
'TRNG'.

(d) Write a program to find the ID number and income of the person who earned the least
during the year.

4. Each record contains a name, four test scores, the final exam score, and a quiz grade. Give a
program to print the final average and resulting letter grade for each student. Also, find who had
the highest and lowest scores on the final exam, which of the four tests had the highest class
average, and how many received an A for the course. (Grades are based on 90 percent for an A,
80 percent for a B, and so on.)

5. The loop that follows repeatedly divides a positive integer number by 10 until the result is 0.
For example, for the number 1372, the results would be 137, then 13, then 1, then 0.

Readln (Number) ;
repeat

Number := Number div 10
until Number = 0

Modify the segment to obtain a count of the digits in the Number that was read. Would the
program work for Number = O? For Number < O?

6. Write a function to find the sum of the digits of a given positive integer. Hint: Use Exercise 5
and the fact that, for a positive number N, the expression N mod 10 "picks off' its rightmost
digit.

7. Write a function to find the largest digit of a given positive integer. For 1632, the answer would
be 6. For 989, the answer would be 9. Hint: See Exercise 6.

8. Write a function HighPower(Number) that, for a given positive number, finds the highest power
of 2 that divides into the number. For example, HighPower(6) is I (2 is the highest power that
divides into 6). Likewise, HighPower(24) is 3 (23 is the highest), and HighPower(l 75) is 0 (2° is
the highest). Hint: Repeatedly divide the number by 2 until an odd number is obtained.

9. In this section, we wrote a function that found the smallest divisor (other than l) of a number.
Using a similar idea, write a function that finds the largest divisor (other than N itself) of a
number N. Hint: Start high and work your way down; the first divisor found is the largest.

10. Using an idea similar to that in the SmallDivisor function of this section (Figure 3-18), write a
function GCD(M,N). The input parameters are positive integers. The answer is the "greatest
common divisor" of M and N, that is, it is the largest number that divides evenly into both M
and N. Hint: Start at the smaller of M and N and work your way down.

11. See Exercise 10. Write a function LCM(M,N) that finds the "least common multiple" of M and
N. This is the smallest number into which both M and N divide evenly.

12. The algorithms suggested in Exercises 10 and 11, respectively, for the greatest common divisor
and least common multiple ofM and N, run very slowly for large values ofM and N. There are
a number of better algorithms.

Probably the most popular and fastest algorithm for calculating the GCD of two positive
integers is an algorithm credited to Euclid. One form of Euclid's algorithm is

set Big, Small to the larger and smaller of M, N
repeat these steps

set R to Big mod Small
Big:= Small
Small:= R

EXERCISES 229

until R = 0
set GCD to Big

(a) Hand-trace this algorithm for the following pairs of numbers:
(i) 45, 10

(ii) 10,45

(iii) 100, 48
(iv) 105, 32

(v) 10,000; 4994
(vi) 500, 735

(b) Code the algorithm as a function.
(c) Temporarily modify each of the functions in Exercises 10 and 12(b) to count and print the

number of assignment statements executed. Write a main program that inputs a series of
pairs of numbers and calls each function. Compare the speed of the two functions in terms
of the number of assignment statements.

(d) Modify the LCM function to take advantage of this relationship:

GCD(M,N) * LCM(M,N) = M * N

13. In this section, we wrote a function that calculated the number of divisors of a given integer.
(a) Write a procedure that for a given N prints a table listing its divisors.
(b) Write a main program that reads a series of records, each containing an integer. For each

such integer, it should use the procedure from part (a) to print a table of divisors of the
integer.

14. Write a segment of Pascal code for the following:
(a) Print a table of feet and inches for feet = I, 2, ... , 20.
(b) Repeat part (a) for feet= 5, 10, ... , 150.
(c) Repeat part (a) for feet= 0.00, 0.25, 0.50, ... , 4.75, 5.00.

15. (a) How could Random be used to simulate the toss of a coin?
(b) Simulate tossing a coin 1000 times, counting the number of heads.
(c) Simulate tossing a coin I 000 times, counting the number of times the toss does not match

the previous toss.
(d) Simulate tossing a coin 1000 times, determining the longest streak of consecutive heads.

16. Write a program fragment that generates a series of random numbers in the range I to 10,
counting how many numbers must be generated until two consecutive numbers are the same.

17. We can estimate the probability of a particular outcome occurring in a random experiment by
performing the experiment a large number of times and finding for what percentage the out
come occurs. For example, if we roll a pair of dice 12,000 times and there are Count? Ts, then
the probability of getting a 7 is approximated by Count7/12,000. Using this idea, write program
segments for the following. (Note: These can also be solved mathematically.)

230

(a) What is the probability that the roll of a pair of dice is between 4 and 8?
(b) If two people each roll a pair of dice, what is the probability that their rolls are identical?
(c) If you toss three coins simultaneously, what is the probability that only one is a head?
(d) If you draw a card at random from a set of 10 cards numbered 1 to 10, what is the

probability that it has an even number?

USING LOOPS CHAP. 3

(e) If you draw two cards from the set of 10 cards in part (d), replacing the first before
drawing the second, what is the probability that both have even numbers?

(f) For the situation in part (e), what is the probability that the sum of the numbers on the
cards is at least 15?

18. Write a program to simulate 200 rolls of a single die, counting how many l 's, 2's, 3's, 4's, S's,
and 6's occur. In addition to printing the counts, use the Asterisks procedure of the previous
section (Figure 3-11) to print a graph of the answer. For each outcome, the graph contains a row
of asterisks, with one asterisk for each occurrence. Sample output:

1 : ********************************
2 : ***********************************
3 : *********************************
4: *******************************
5 : ***********************************
6: **********************************

19. (a) Write a function with two parameters N and Total. The function should count how many
random numbers in the range 1 to N must be generated to obtain a sum of the numbers
generated that is greater than Total.

(b) By placing the call to the function in part (a) in a loop that is executed 15,000 times,
calculate the average number of random numbers that must be generated in the range 1 to
100 to obtain a sum greater than 500.

20. In this exercise, we describe a technique sometimes known as the "Monte Carlo" method.

(a) Consider the following diagram containing a quarter of a circle with a radius 1 and a
square with a side 1.

If we randomly dropped a large number of darts onto the figure, we would expect that
the following ratio would be approximately true:

Number in quarter circle area of quarter circle
Total number dropped area of square

Since the area of the quarter circle is n/4 and the area of the square is 1, we get an estimate
for n given by

EXERCISES

n = 4 (number in quarter circle)
total number dropped

231

We can simulate this situation by generating a large number of pairs of number (x,y) in the
range from 0 to I. If :l- + y2 ::; I, then the point is inside the quarter circle. Write a program
to estimate 1t using this technique.

(b) The idea in part (a) can be extended to other functions. Consider the following diagram.

y=O
X=B X=b

If we generate a large number of random points (x,y) with a ::; x ::; b and 0 ::; y ::; M, we
would expect that the following ratio be true:

Number of points with y :5:[(x) _ area of highlighted portion
Total number of points - area of rectangle

Use this method to approximate the area under the curve y = x2 between 0 and I. (The
exact answer is 1/3.)

(c) Repeat part (b), using y = 3x3 - x between I and 2. (The exact answer is 9.75.)

21. Write a function to calculate n! for given n. (n! is n * (n - l) * (n - 2) * · · · * 2 * 1.) Hint:
Finding the product of the first n integers is similar to finding their sum.

22. Write a function that, given an integer N and a real number X, computes X raised to the Nth
power by multiplying X by itself the proper number of times. (It should handle the case that N
is 0 or a positive number.)

23. The expression ff for a given real number Xis given by the infinite series

x2 x3 x4
I+X+-+--+---+···+

2 2·3 2·3·4

Write a function Exp(X,N) that calculates the sum of the first N terms of this series. Hint: In a
"for I := I to N do" loop, each term can be calculated from the previous term by multiplying the
previous term by XI I.

24. Write a function Exp(X) that calculates the sum of the terms of the series in Exercise 23 up to
and including the first term whose value is less than the current value of the sum times 0.00001.

25. The derivative of a function y = f (x) at a point a is given by

232

1. f (a+ h) -[(a)
Im

h-+0 h

USING LOOPS CHAP. 3

To demonstrate the limit process, some calculus textbooks print tables showing the value of the
expression

f(a + h)-f(a)
h

for values of h getting closer and closer to 0. Write a program to generate such a table for h =
112", n = 1, ... ,14 and for h = -1/2", n = 1, .. . ,14. Use these functions and points.

(a) y = x2, a= 2 (the limit is 4)
(b) y = f.X, a= 16 (the limit is 8)
(c) y = llx, a= 3 (the limit is -119)

26. The area under a positive curve can be approximated by finding the areas of a collection of
rectangles. Refer to the diagram.

y =f(x)

X=a X=b

If we divide the region from a to b into n subintervals, then the area of the first rectangle is
hf (a + h), where h = (b - a)!n. The area of the second rectangle is hf (a + 2h), the area of the
third is hf (a+ 3h), and so on.

Use this idea to write a program that approximates the area under the curve y = x2 - 5
between x = 3 and x = 10. Divide the interval into n = 28 regions. Repeat the process with n =
56, and with n = 224. (The actual area is 2893.)

27. Give test plans for the following exercises:
(a) Exercise 3(a)
(b) Exercise 3(c)
(c) Exercise 5
(d) Exercise 7
(e) Exercise 8
(f) Exercise 9
(g) Exercise 10
(h) Exercise 21
(i) Exercise 22
(j) Exercise 23

EXERCISES 233

Exercises 28 to 32 deal with integer arrays as described in the previous section.

28. Modify the function ArraySum (Figure 3-21) to use a separate variable to keep track of the
actual size. That is, there are two parameters: the array and the actual size, N. Use a count-con
trol loop.

29. For an array that uses a -maxint delimiter to indicate the actual size, write a segment of code to
calculate the actual size as the variable N. For the array

12, 4, -6, -maxint,

the answer is 3.

30. For an array without a delimiter and the size as a variable N, write code to place a -maxint
delimiter in the array.

31. For each of the following, solve the problem twice by using the delimiter approach and the
approach with a separate "size" variable.
(a) Find the largest value in an array.
(b) Count the even numbers in an array.
(c) Read an array with input terminated by a dummy entry of -maxint.
(d) Print an array, printing one number per line.

32. Give test plans for the following:
(a) Exercise 29
(b) Exercise 30
(c) Exercise 3l(a)
(d) Exercise 31(b)
(e) Exercise 31(c)
(t) Exercise 3l(d)

3-4 NESTED LOOPS AND COMPLEX LOOP TERMINATION

Many problems require combinations of the techniques discussed in Sections 3-1 to 3-3.
Frequently, loops must be contained within other loops, leading to nested loops. In addition,
the terminating conditions for loops frequently involve more than one condition. This is
especially true for loops that perform searches. These topics are discussed in this section,
along with the important topic of validating user input.

Nested Loops

Just as decisions can be nested, so also loops can be nested. As an example, consider the
following program segment:

234

for Row : = 1 to 5 do
begin

for Seat .- 1 to 8 do
begin

Writeln('Row #',Row 1, 'Seat#', Seat 1)
end {for Seat loop}

end {for Row loop}

USING LOOPS CHAP. 3

The variable Row successively takes on the values 1, 2, 3, 4, and 5. For each value of Row,
the inner for loop is executed, causing Seat to take on the values 1, 2, 3, 4, 5, 6, 7, and 8.
Thus, the output for this segment begins with these lines:

Row #1 Seat #1

Row #1 Seat #2

Row #1 Seat #3

Row #1 Seat #4

Row #1 Seat #5

Row #1 Seat #6

Row #1 Seat #7

Row #1 Seat #8

Row #2 Seat #1

As a second example, consider this segment that, five times in a row, counts the
number of rolls of the dice it takes to obtain a 7.

for I := 1 to 5 do
begin

Count .- O;
repeat

Roll := RollOfDice;

Count := Count + 1

until Roll = 7;

Writeln('A 7 was rolled on roll #', Count 1)
end; {for}

This illustrates that a repeat-until loop can be one of the steps within a for loop. Conversely,
consider this example:

repeat

for I := 1 to 100 do

begin

Roll := RollOfDice;

if Roll = 2 then

Count := Count + 1
end; {for}

Writeln('There were', Count

until Count >= 3

1, ' two"s rolled')

This segment, which contains a for loop nested in a repeat loop, counts how many of 100
rolls of the dice are 2's. It continues to do so until a count of at least 3 occurs.

Notes

1. We follow our (and THINK's) usual indentation pattern for loops by indenting the
body of each loop.

2. The terms inner loop and outer loop are frequently used in describing nested loops.
In the previous example, the for loop is the inner loop and the repeat loop is the outer
loop.

3-4 NESTED LOOPS AND COMPLEX LOOP TERMINATION 235

3. Loops can be nested to any depth. However, we should limit the levels of nesting (of
both loops and decisions) to a number that does not hinder our ability to understand
the program. Subprograms can be useful in this regard.

4. Loops can be nested; they may not overlap. The inner loop must be completely con
tained within the outer loop.

Nested loops occur quite naturally during the program design process. It is not neces
sary when beginning the design of a program to know at the outset that nested loops will be
involved. For example, suppose we wish to print all the divisors of a series of input num
bers. We might begin with an algorithm something like this:

print instructions
repeat these steps until the user enters a terminal value ($; 0)
issue a prompt
readN
print the divisors of N (not done if N is the terminal value)

Now, to print all the divisors of N involves a count-controlled loop that, for each number I
ranging from 1 to N, checks to see ifl is a divisor of N. We therefore have a for loop nested
within a repeat loop.

Note. Alternatively, we could use a procedure to print the divisors. The loop for
printing would be in the procedure rather than nested within the main program's loop.

There is one situation, however, where we can immediately realize that nested loops
can be appropriate. This situation is illustrated by the following example. Suppose that the
user wishes to obtain a listing of the total sales for a number of employees. To do so, the
user inputs the employee name, followed by a list of sales amounts terminated by a 0. Thus,
the input will follow this pattern:

employee name
sales amount

terminal amount of 0
next employee name
sales amount

terminal amount of O

The data itself consist of repetitions of repetitions. The set of data for an employee is
repeated, and the sales figures are repeated within each set of employee data. As a general
rule, we can state:

Nested repetitions of data imply nested loops in the program.

The program in Figure 3-22 reads the data and prints a report on the printer as well as at the
terminal. It includes a count of the employees processed. Notice the placement of initializa
tion and print steps for the employee counter and for the sales amount accumulator. The

236 USING LOOPS CHAP. 3

counter is initialized once, before the outermost loop (the repeat loop), and is printed after
this same loop. The accumulator, on the other hand, is initialized within the repeat loop, but
prior to the while loop, and is printed following the while loop. This is appropriate because
this total should be reinitialized to 0 for each new employee, and it should be printed for
each employee.

Note. As you can see from the printer output, some adjustment in the spacing is
needed to achieve better alignment. After this adjustment, the Header procedure would no
longer be a stub.

The design process for a program involving nested loops is similar to that described in
the previous section for single loops. As we have indicated, we may or may not immediately
realize that nested loops are needed. However, once we do realize this, we should plan each
loop using our usual loop-design methods.

In considering the placement of initialization and finalization steps, it may be helpful
to do two things: (1) identify the primary "purpose" of each loop, and (2) visualize the loops
as dividing the program into segments. For example, for the program of Figure 3-22, we
would have

1
outer loop beginning (one pass= 1 employee)

2
inner loop beginning (one pass= 1 sale)

3
inner loop end

4
outer loop end

5

We can then summarize as shown:

REGION NUMBER

1

2

SUMMARY

Steps done once prior to handling all the employees

Steps done once for each employee, prior to handling the
employee's sales

Steps done once for each sale 3
4
5

Steps done once for each employee after the employee's sales

Steps done once after all employees are processed

More Than One Termination Condition

For some loops, there is more than one possible condition for terminating the repetition.
These loops are designed in much the same way as the simpler loops with a single termina
tion condition. We simply use the Boolean operators and and or to write a compound-condi
tion for loop continuation (for a while loop) or termination (for a repeat-until loop). For
example, the segment of code that follows simulates a game of chance with these rules:

3-4 NESTED LOOPS AND COMPLEX LOOP TERMINATION 237

program ReadSales;

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To read and total a number of sales for a number of}

employees. The program illustrates the maxim nested}

repetitions of data imply nested loops.}

{Procedures used: Instructions, to print instructions}

con st
EndOfData

var

Header, to print headings}

O; {loop control}

Name: string;
Sales: real;

Total: real;
Answer: char;

Count: integer;

Report: text;

{employee name, input}

{sales amount, input}

{total sales, calculated}
{continue?}

{number of employees}

{name for the printer}

procedure Instructions;
begin

{stub}

end;

procedure Header;

begin {Header - stub version}
Writeln(Report, 10, 'Name',

Writeln(Report, ' ' : 10,
end; {Header}

begin {ReadSales}

12, 'Total sales');
12, ' -----');

{*** Initialize and print instructions and headings}

Rewrite(Report, 'Printer:');

Count := O;

Instructions;

Header;

{*** Read name}

repeat
Write('Enter name: ');
Readln(Name);

Count :=Count + l;

Figure 3-22 Counting and accumulation with nested loops (continues next page).

238 USING LOOPS CHAP. 3

{*** Read and total sales figures}

Total := 0;

Write('Sales: ');

Readln (Sales);

while Sales <> 0 do
begin

Total := Total + Sales;

Write ('Sales: ');

Readln(Sales)

end; {while}

{*** Print total, ask user if done}

Writeln('The total is ', Total : 1 : 2);

Writeln(Report, Name : 20, Total 10 : 2);

Writeln;

Write ('Any more? ');

Readln(Answer)

until not (Answer in ['Y', 'y'));

{*** Print summary for entire set of data and quit}

Writeln;

Writeln('There were•, Count : 1, 'employees.');

Writeln(Report);

Writeln(Report, 'There were' Count : 1, ' employees.');

end.

SAMPLE INPUT AND OUTPUT

Terminal

Enter name: Bob Ransome

Sales: 100

Sales: 53.40

Sales: 125.07

Sales: 0

The total is 278.47

Any more? :i:'.:

Enter name: Joe Hocking

Sales: 0

The total is 0.00

Any more? Y

Enter name: Mary Wilkinson

Sales: 450

Sales: 0

The total is 450.00

Any more? !!
There were 3 employees.

Figure 3-22 (continues next page)

3-4 NESTED LOOPS AND COMPLEX LOOP TERMINATION 239

Printer

Name

Bob Ransome

Joe Hocking

Mary Wilkinson

Total sales

278.47
0.00

450.00

There were 3 employees.

Figure 3-22 (continued)

Generate a random integer from l to 25. If the number is l, 2, 3, or 4, you win $5, otherwise
you lose $1. Starting with $20, we play the game until we either go broke or double our
money.

Money : = 20;

repeat

Number := abs(Random mod 25) + 1; {random number, 1 - 25)

if Number < 5 then

Money .- Money + 5

else

Money .- Money - 1
until (Money= 0) or (Money>= 40);

if Money = 0 then

Writeln ('You went broke')

else

Writeln('You doubled your money to ' Money 1)

Note. It may be useful in working with loops using multiple-termination conditions
to use an assertion (a Boolean expression known to be true) to verbalize the situation on
leaving the loop. In our example, we might insert the comment:

{Either Money is $0 or it is at least $40)

right after the loop. This assertion can help us decide what should be done next (frequently a
decision structure).

To illustrate this comment, consider the following slightly modified segment, which
limits play to 30 rolls:

240

NRolls .- O;

Money . - 20;

repeat

Number .- abs(Random mod 25) + 1;

NRolls .- NRolls + 1;

if Number < 5 then

Money .- Money + 5
else

Money .- Money - 1

until (Money = 0) or (Money >= 40) or (NRolls 30);

USING LOOPS CHAP. 3

{Either Money = $0, or Money >= $40, or NRolls 30}

if Money = 0 then
Writeln('You went broke')

else if Money >= 40 then
Writeln('You doubled your money to', Money: 1)

else
Writeln('You neither went broke nor doubled your money. '

'You have ', Money : 1)

In an or condition, it is possible that more than one of the individual conditions is true. This
leads to a defensive programming tip:

Be careful in writing decision structures after loops with compound termination condi
tions. More than one part of the condition can be true.

In our example, if we wrote

if NRolls = 30 then
Writeln('You neither went broke nor doubled your money. '

'You have ', Money : 1)
else if Money = O then

Writeln('You went broke')
else

Writeln('You doubled your money to ' Money 1)

we would be incorrect. (Why?)
In addition, we must take special care to avoid some pitfalls described earlier. We

must make sure, in particular, that:

1. The condition used for loop control makes sense on the first pass through the loop,

2. The condition makes sense on the last pass (i.e., when the loop terminates),

3. We are not "off by 1/2."

We illustrate these ideas with two examples.
For the first, let us simulate a game of chance in which we roll a pair of dice. The

object of this game is to roll 10 consecutive numbers greater than 3. If we succeed we win,
and if we fail we lose.

At first glance, this looks like it might be a count-controlled loop; however, the game
should terminate immediately if a 2 or a 3 is rolled. Since the Pascalfor loop is designed to
execute precisely the number of times indicated, it is not appropriate. We, therefore, write
code to explicitly count the rolls using a variable RollCount. We initialize this to 1, which is
consistent with the semantics of the for loop "for RollCount := 1 to 10 do " The loop
should terminate when RollCount indicates that we have rolled 10 rolls or when a 2 or 3 is
rolled, whichever occurs first.

Because we must roll the dice to check for a 2 or 3, we use a repeat-until loop. A
Pascal segment is given in the first half of Figure 3-23. However, it has some problems.
Before you read on, and without looking at the second half of the figure, try to locate the
bugs.

3-4 NESTED LOOPS AND COMPLEX LOOP TERMINATION 241

FAULTY PASCAL CODE

RollCount := l;

repeat

Roll := RollOfDice;

RollCount .- RollCount + 1

until (Roll<= 3) or (RollCount = 10);

if Roll <= 3 then
Writeln('You lost with a', Roll : 1, 'on try#', RollCount 1)

else

Writeln('Congratulations, you win.'}

CORRECTED CODE

RollCount := O;
repeat

Roll := RollOfDice;

RollCount .- RollCount + 1
until (Roll<= 3) or (RollCount > 10);

if Roll <= 3 then

Writeln('You lost with a', Roll : 1, 'on try#', RollCount 1)

else
Writeln('Congratulations, you win.'}

Figure 3-23 Wrong and right way to exit a loop.

As the first half of the figure stands, the loop is off by 1 and also off by 1/2. If we
never roll a 2 or 3, the loop executes only nine times. If we do roll a 2 or a 3, the RollCount
reported is one greater than the roll on which it actually occurred. With the loop the way we
have written it, RollCount keeps track of which pass of the loop is occurring, and the step
that adds 1 is getting ready for the next pass. The second half of the figure illustrates one
correct solution. Other possible approaches, and other issues related to this example, are
explored in the exercises.

For the second example, we write Pascal code that works with an array of integers
named Nums. As in our previous array example, we assume that values have been read into
the array. Moreover, we assume that the actual size is indicated by a variable rather than by
using the delimiter method. Thus, we assume that a variable Count contains the number of
values read in. For example, Nums might contain the integers 3, 15, -101, 214, -66, 14 with
Count having the value 6.

We can use the following program segment to print the values in the array:

for I : = 1 to Count do

begin
Writeln(Nums[I]}

end {for}

This works even if Count has the value 0 because a for loop whose ending value is greater
than its starting value executes 0 times. In our example, we do not assume that Count is
positive.

242 USING LOOPS CHAP. 3

MoreToPrint := true;
while (I <= Count) and MoreToPrint do

begin
if Nums[IJ < O then

MoreToPrint .- false
else

begin
Writeln(Nums[I]);
I := I + 1;

end {if}

end {while}

Figure 3-24 Avoiding a pitfall with arrays.

What we wish to do in this example is to modify the program segment to print only up
to the first negative value in the array. For the array values given before, only the 3 and the
15 would be printed. Because the loop should terminate (possibly) prior to printing all the
values, the for loop is no longer appropriate. However, perhaps we can modify the following
equivalent representation of the for loop logic:

I := 1;

while I <= Count do
begin

Writeln(Nums[I]);
I := I + 1

end {while}

Our planning might go something like this: The loop should continue as long as I is
less than or equal to Count and Nums[I] is positive. We are tempted to make a simple
modification to the while loop, writing

while (I<= Count) and (Nums[I] > 0) do ...

To consider whether this is correct, we must look in particular at whether the condition
makes sense on the last pass when the loop terminates. For the condition to make sense,
both halves must make sense:

I <= Count
Nums[I] > 0

Now if the loop terminates because it has found a negative value in the array, both parts are
fine. However, suppose the loop terminates because it has printed all the array values. In this
case, the variable I has a value one greater than Count, and the reference to Nums[I] makes
no sense.

For example, if Count is 3, the array contains values Nums[l], Nums[2], and Nums[3].
The reference to Nums[4] in this condition refers to something that does not exist. (This is
especially bad if Count is equal to the declared size of the array. Then Nums[I] would refer
to a location beyond the end of the array (and only range checking being on would prevent
the program from producing erroneous output).

3-4 NESTED LOOPS AND COMPLEX LOOP TERMINATION 243

One way to resolve this problem is illustrated in Figure 3-24. This is a well-known
pitfall in dealing with arrays; you should study carefully the solution given in the figure. (In
Chapter 6 on arrays, we have more to say about this pitfall.)

Use of Multiple-Termination Conditions: Searching

The examples just given are typical of many problems in which loops have more than one
termination condition. In each example, we could view the loop as performing a process that
would either succeed or fail. For example:

SUCCESS

Doubling money

Rolling 10 times

Printing the entire array

FAILURE

Going broke

Getting a 2 or 3 before 10 rolls

Reaching a negative value

The broad class of searching algorithms has this same "succeed or fail" characteris
tic. We study this class in some detail in Chapter 5 (in connection with files) and in Chapter
6 (in connection with arrays). In a searching algorithm, we have this general form:

repeat the steps of a loop:
if we find for what we are searching, terminate the loop
if we reach the end of the data without finding it,

terminate the loop

Observe that we may not examine all the data. As soon as we find the desired item,
we want to terminate. One common approach is to use a flag (a Boolean variable) to cause
this termination to occur, as we did in the array printing example of Figure 3-24.

Another typical feature of this type of program is that the loop is followed by a
decision structure. This decision structure is used to choose an action based on which indi
vidual condition caused the loop to terminate.

Validating Input

Perhaps you have heard the phrase "garbage in, garbage out." This is a rather cynical
reaction to shortcomings that are sometimes found in programs. The phrase indicates that if
you supply the program with invalid data, you may very well get answers that are not to be
trusted.

Unfortunately, that is an accurate observation for some programs in current use. There
are some programs in which no effort is made to see if the data being supplied make sense.
Certainly there is some excuse for this with beginning programmers, and it is not always
possible to anticipate every possible error in input. However, we should make an effort to
avoid writing programs that proce!IS nonsensical data as if it were reasonable.

Already in this text, we have indicated some techniques involved in editing input (or
validating input), that is, making sure that it has an appropriate value. For example, recall
Case Study No. 2, which read two numbers and an operation symbol, and applied that
operation to the two numbers. In that case study, the program checked user input for two
errors: attempting to divide by 0 and entering an invalid operation symbol. In this section,

244 USING LOOPS CHAP. 3

{*** Read and total scores}

Total .- O;
Number .- O;
Write('Enter the score (-1 to quit): ');
Readln (Score) ;
while Score <> -1 do

begin
Total := Total + Score;
Number : = Number + 1;
Write('Enter the score (-1 to quit): ');
Readln (Score)

end; {while}

{*** Calculate and print average}

Writeln;
if Number > 0 then

begin
Average := Total I Number;
Writeln(Number : 1, 'exam scores were processed. ');
Writeln('The average is: ',Average)

end
else

Writeln(' ***No scores were input *** ')

Figure 3-25 Reading without data validation.

we examine some commonly used methods for examining the input as soon as it is read and
not proceeding any further unless it is valid. This is not always possible to do: the validity of
the data may depend on some calculation not yet performed. However, it is frequently
possible.

Consider, for example, the program segment of Figure 3-25, which obtains user input
for the variable Score.

An algorithm for this program segment might contain a step:

read value for Score

Suppose we replace this algorithm step by

read a valid value for Score

We can view the task of obtaining Score and making sure that it is valid as a subtask. We
might choose to write a Pascal procedure to perform the task.

A procedure to read a value for Score might begin by issuing a prompt and reading
Score. Then the procedure would check the value read to make sure it was valid. If it was
not valid, the procedure would print an error message and read a new value for Score.
Notice, moreover, that this new value might also be invalid. Thus, the procedure should
continue printing an error message and reading a new value "as long as" the Score is not
valid. We have described this rough algorithm:

3-4 NESTED LOOPS AND COMPLEX LOOP TERMINATION 245

procedure GetScore(var Score: integer);

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To accept a valid score (-1 or higher).}

{Parameter: Score, the score read (passed back to the calling program}

begin {GetScore}

Write('Enter the score (-1 to quit): ');

Readln(Score);

while Score < -1 do

begin

Writeln('You entered an invalid score: ', Score: 1);
Writeln('The score must be positive (or -1 to quit)');

Write('Re-enter the score: ');

Readln(Score)

end {while}

end; {Get Score}

Figure 3-26 Data-validation procedure.

issue a prompt
read Score
as long as the Score is not valid, do these steps:

print an error message
read a new value for Score

A Pascal procedure to accomplish this task is contained in Figure 3-26. It accepts any
score greater than or equal to -1 as valid. (A score of -1 is valid because that is the
terminating value for the loop.)

This procedure, like some of the procedures developed earlier in this chapter, has a
parameter. However, the way it uses its parameter is new. This is our first example of a var
parameter.

All our previous parameters have been value parameters, which means that the call
ing program passes a value into the submodule (function or procedure). A var (short for
"variable") parameter, on the other hand, is used when the submodule is passing information
back to the calling program via the parameter. A submodule can modify a var parameter's
value. As a result, the calling program must supply a matching variable for the parameter.
This matching variable in the calling program is modified whenever the parameter is modi
fied within the submodule.

If the data are invalid, the GetScore procedure prints the value that the user entered
prior to printing an error message. Although this was not required by the problem descrip
tion (or even the algorithm), it is a good idea.

Note. If a procedure has a var parameter, then the statement that invokes that
procedure must supply a variable to match the parameter. Constants and expressions cannot
match var parameters. This is one of the important distinctions between value and var
parameters.

246 USING LOOPS CHAP. 3

{*** Read and total scores}

Total := O;

Number := O;

GetScore(Score);

while Score <> -1 do

begin

Total := Total + Score;

Number := Number + 1;

GetScore(Score)

end; {while}

{*** Calculate and print average}

Writeln;

if Number > O then

begin

Average := Total I Number;
Writeln(Number : 1, ' exam scores were processed.');

Writeln('The average is: ',Average: 1 : 1)

end

else

Writeln('*** No scores were input***')

Figure 3-27 Reading using the data validation procedure.

We now consider what changes would be made to the original program segment as a
result of writing this procedure to edit (validate) the input. Figure 3-27 is the revised pro
gram segment that now uses the GetScore procedure. The changes are in italics. As far as
the calling program segment is concerned, the process of prompting the user, accepting
input, checking the input, and persisting until the input is valid is all contained in the one
statement Get Score (score).

Note. As is frequently the case, the calling module and the submodule use the
same name (Score) for the parameter. We remind you, however, that this is not a require
ment of the Pascal language. If the person writing the submodule had chosen a different
variable name, the program segment would still have worked the same. The parameter
correspondence is by position in the list of parameters, not by name.

Note that the keyword var in the parameter list is that which determines that the value
of the parameter can be changed and passed back to the caller. If the var keyword were
omitted from the header line of procedure GetScore, then the program would still compile
correctly. However, the value of Score in the main program could not be changed by the
procedure GetScore, so that Score would have some "random" value that would depend on
factors outside of the user's control. A way to avoid this problem is to test each module

3-4 NESTED LOOPS AND COMPLEX LOOP TERMINATION 247

separately. An independent test of the GetScore procedure would quickly show the effects of
the absence of the var keyword.

We show a sample driver program for the procedure GetScore as Figure 3-28. In this
case, we wish to test the procedure to be sure that it handles negative, zero, and positive
integers correctly.

When we use the driver program to test the GetScore procedure, we precede each call
of GetScore with the message "GetScore called." If the program should hang up or abort,
we can tell that it happened in that procedure. We also print a message when GetScore
returns, and we include the value returned to produce a record of the testing. In the driver,
we have called GetScore three times in order to try three different test cases:

CASE 1

-5 (bad input)

-2 (bad input)

-1 (good input)

CASE2

-2 (bad input)

-2 (bad input)

23 (good input)

CASE3

15 (good input)

Although this is not an exhaustive test plan, it does have sufficient cases (including the
boundary between good and bad input) for us to have a large degree of confidence that the
procedure works correctly.

DPT

The DPT subsections of Sections 3-1 to 3-3 should be reviewed. In addition, there are some
specific tips relating to the material of this section.

1. Check for initialization and finalization steps. For nested loops, make sure the steps
are associated with the correct loop. It can be helpful to verbalize what each pass through
the loop accomplishes. For example, in the program of Figure 3-22, each pass through the
outer loop processes one employee, and each pass through the inner loop processes one
sales amount for the employee. The step to initialize the counter of employees should occur
prior to the loop that processes the employees. The step to initialize the sales accumulator
should occur for each employee, so it is placed within the outer loop, but before the inner
loop.

2. Examine loops with compound (multiple) conditions for continuation or termina
tion especially carefully. The entire condition should make sense on the first pass and on the

248 USING LOOPS CHAP. 3

program Driver;

{Written by: XXXXXXXXX XX/XX/XX}
{Purpose: To test the GetScore procedure}

{Procedures used: GetScore, to get a score of -1 or higher}

var
Score: integer;

I: integer;

{Valid score from GetScore}

{Loop index}

{procedure GetScore as shown in Figure 3-26 is inserted here}

begin {Driver}

{*** Call GetScore 3 times}

for I := 1 to 3 do

end.

begin

Writeln;

Writeln('GetScore called.');

GetScore(Score);

Writeln('Value returned from GetScore: ' Score 1)

end;

SAMPLE INPUT AND OUTPUT

GetScore called.
Enter the score (-1 to quit): _:2
You entered an invalid score: ~5

The score must be positive (or -1 to quit)

Re-enter the score: -2

You entered an invalid score: -2

The score must be positive (or -1 to quit)

Re-enter the score: -1

Value returned from GetScore: -1

GetScore called.

Enter the score (-1 to quit): =±.
You entered an invalid score: -2
The score must be positive (or -1 to quit)

Re-enter the score: -2

You entered an invalid score: -2

The score must be positive (or -1 to quit)

Re-enter the score: 23

Value returned from GetScore: 23

GetScore called

Enter the score (-1 to quit): 15

Value returned from GetScore: 15

Figure 3-28 A driver for testing.

3-4 NESTED LOOPS AND COMPLEX LOOP TERMINATION 249

last pass. The possibility of being "off by 112" is greater for this type of loop than for those
where the condition is a simple condition.

3. Take care in writing decision structures after loops with multiple-termination con
ditions. Sometimes more than one of the individual conditions can occur during the same
pass through the loop. In this case, the order in which the individual conditions are exam
ined can be important.

4. Use a var parameter if a value is to be passed from the procedure to the calling
program using that parameter. Using a var parameter when one is not required can lead to
inadvertently modifying a value in the calling program that should not have been modified.

S. On the other hand, use a var parameter when appropriate. Failure to do so will
prevent the value that is obtained in the subprogram from being passed to the calling pro
gram.

6. When a procedure does use a var parameter, the statement that invokes the proce
dure must use a variable that matches that parameter.

REVIEW

Terms and Concepts

assertion
editing input
flag
inner loop
nested loops
outer loop

Pascal Syntax

Var parameter form:

var list of parameters

Var parameter use:

searches
searching algorithms
validating input
value parameter
var parameter

To allow a subprogram to send a value back to the calling program

Program Design

1. Nested loops: Each loop is designed in the usual way; each loop is coded in the usual
way.

2. Nested data repetitions can imply nested loops are needed.

3. More than one termination condition: Use a compound condition in the while or
repeat loop control.

4. Loops with compound-termination conditions are frequently followed by a decision
structure.

250 USING LOOPS CHAP. 3

S. General form of algorithm to edit input:

prompt
read data
as long as the data is not valid do the following:

error message
prompt for reentering data
read data

6. General form of search loop:

EXERCISES

set flag to indicate not yet found
initialize so first pass examines first item
as long as not yet found and more to examine do

examine an item;
if it is the one sought, set flag to indicate found;
if not, move on to the next item

DPT

1. Check the initialization and finalization steps. For nested loops, associate
them with the correct loop.

2. For loops with compound-termination conditions:

(a) Condition must make sense on the first and last passes.
(b) Do not be off by 1/2.
(c) Take care in writing a following decision structure.

3. Use a var parameter when, and only when, that parameter is being used
to pass back a value to the calling program.

4. Only variables can match var parameters.
5. Test each module separately.

1. For each program segment, find the output that would be produced.

(a) for I : = 1 to 3 do
begin

Sum : = O;

for J := 1 to 4 do
Sum := Sum + J;

Writeln(Sum)

end

(b) Sum:=O;
for I := 1 to 3 do

begin

for J := 1 to 4 do

EXERCISES 251

Sum := Sum + J;

Writeln(Sum)

end

(c) J : = 1;

repeat I : = 1;

while I <= J - 2 do

begin

Writeln(I);

I := I + 3

end;

J := J + 1

until J >= 15

2. Using the program of Figure 3-22, what changes would you make for each of the following?
(a) As it stands, the program's printer output is not done well. Change the output to align the

columns better and to right-justify the name within its allotted 20 columns.
(b) How many individual sales did each person have?
(c) What was the total sales amount for the entire company?
(d) Who had the highest total sales?
(e) What was the largest individual sales amount for the entire company? Who had it?
(f) How many individuals had no sales?
(g) Among those employees who had at least five individual sales, who had the lowest total?

3. Consider the program segment of Figure 3-23.
(a) Write a correct segment that uses a while loop with RollCount initialized to I.
(b) Following the lead of a typical for loop, we initialized RollCount to 1. Another possibility

is to initialize to 0. Write a correct segment that does so by using either a while or a repeat
loop.

(c) What other corrections can fix the problems of the faulty code?

4. Write a complete Pascal program to produce the output:

Row 1 Seat 1

Seat 2

Seat 7

Row 2 Seat 1

Seat 2

Seat 7

Row 5 Seat 1

Seat 2

Seat 7

5. Simulate an election in which candidate A is expected to receive 60 percent of the vote and
candidate B 40 percent. There are 30,000 votes, and your loop should simulate each vote. Hint:

252

Generate a random number from I to 10, with I to 6 indicating a vote for A and 7 to IO a vote
for B.

USING LOOPS CHAP. 3

Your program should answer three questions: How many times in the counting was the vote
tied? What was the last time the vote was tied? What was the largest lead candidate A ever had?
The output might be similar to this:

The vote was tied 100 times.
The last tie occurred when counting the 9177th ballot.
At ballot 23417, A was ahead by 7913 votes, the largest lead.

6. (a) Write a program that reads a beginning balance, an interest rate, and an ending balance. It
should print the amount in a savings account at the end of each year until the current
balance exceeds the read-in ending balance. The interest for each year is calculated by
multiplying the interest rate by the current balance.

(b) Modify part (a) to allow a deposit to be made at the end of each year.
(c) Modify part (a) to place an asterisk in the left margin for the first year (if any) in which the

current balance exceeds twice the original balance.
(d) Modify part (a) to print, for each year, the beginning balance and the ending balance for

that year on a single line.

7. (a) Write a program segment that simulates rolling a pair of dice until a 5, 6, or 7 is rolled. If it
took an even number of rolls and a 5 or 7 occurred, it should print the message "you win",
otherwise it should print the message "you lose".

(b) Write a program segment that repeats the action for part (a) a total of 100 times. Instead of
printing "you win" and "you lose", it should count and print the number of wins and
losses.

8. A deposit of $10,000 is compounded annually at 8 percent. At the end of each year, after the
interest has been added, $1,000 is to be withdrawn from the account.

(a) Write a program that prints the balance in the account every year up to, but not including,
the year in which $1000 can no longer be withdrawn.

(b) Modify the program to show how many $1,000 withdrawals were made and the amount
that remains the final year.

9. Write procedures to input each of the following lists of variables with the indicated restrictions.
For this exercise, the error message handling can simply print a single error message "invalid
data".
(a) Name and sex code, where the sex code must be either "M" or "F'.
(b) Four test scores, each of which must be in the range 0 to 100, inclusive.
(c) A single integer that must be larger than 2 and no more than 10,000.
(d) Two integers that must both be positive and even.
(e) A color code (three characters) that must be either "RED", "GRE", "BLU", "BLA",

"WHI", or "ORA".

10. Modify the procedures in Exercises 9(b) and 9(d) to have the error message tell exactly what is
wrong with the input data.

11. (a) Write a program that generates a random number in the range l to 1000 and then asks the
user to guess the number. The program should terminate with a message telling how many
tries it took the user to guess the number. For incorrect guesses, it should print the mes
sages "too high" or "too low".

(b) Modify the program to allow no more than seven guesses.

EXERCISES 253

12. By thinking about your guessing strategy for Exercise 11, write a program in which the com
puter tries to guess the number the user is thinking of. Hint: The program might want to keep
track of a range in which it knows the answer lies.

13. For each number from 1 to 200, print a list of its divisors in a form similar to this:

Divisors of 1: 1
Divisors of 2: 1

2

Divisors of 3: 1

3

Divisors of 4: 1

2

4

14. Suppose we generate random numbers in the range from I to 10. On the average, how many
numbers would have to be generated until two consecutive numbers are the same? To answer
the question, write a program to perform the experiment I 000 times.

15. A person offers you a game of chance that involves rolling a pair of dice until either 2, 7, or 11
comes up. If 2 or 11 comes up, you win $5, if a 7 comes up, you lose $2. Should you play the
game (assuming you are a betting person in the first place)? To answer the question, write a
program to play the game 1000 times.

16. Some state lotteries operate on the following principle: You bet $1, choose a number in the
range 0 to 999, and win $500 if your number is drawn in the lottery. A person described a
sure-fire system to win: Bet on the same number every day, eventually it is bound to tum up.
This exercise explores the wisdom of that system.
(a) Assume that the person has $1,500 with which to play the lottery 300 times a year for 5

years (50 weeks a year, 6 days a week). Write a program to allow the user to choose a
number, then simulate 5 years of play. At the end of the simulated 5 years, tell the person
how much of the original $1,500 is left.

(b) Suppose 1000 people all tried this system. What would be the average amount left after the
5 years? To answer the question, write a program to simulate the 5 years of play 1000
times using a single chosen number.

(c) Modify part (b) to simulate each of the 1000 people choosing a different number to play
for the 5 years.

17. Suppose that 5000 people all decide to play the daily number lottery game until they either go
broke or win once. Each person starts with $1,000. Based on a simulation of the situation,
answer these questions: What percentage will go broke? What percentage will quit with more
than $1,000? What percentage will quit with between $0 and $1,000? (See Exercise 16 for a
description of the lottery game.)

18. Modify the procedure MatchRoll of Figure 3-20 so that if a roll of the dice (after the first roll)
comes up with either a match of the goal or the value of 7, then the loop terminates. The
program should print the message "you win" if the goal was matched or "you lose" if a 7 was
rolled. (If the first roll of the dice comes up with a 7, then roll for another point.) (Hint: Use
another repeat-until loop for the rolling of the point and change the condition of the original
repeat-until loop.)

254 USING LOOPS CHAP. 3

19. Write a program to simulate a simplified game of craps. The simplified rules of the game are as
follows:

(a) Roll the dice for a first time. If the roll is a 7 or 11, then you win; if the roll is a 2 or 12,
then you lose; otherwise, the point is equal to the roll.

(b) If you have a point, then roll the dice repeatedly until you match the point (which makes
you a winner) or you roll a 7 (which makes you a loser).

20. Use the program from Exercise 19 to write another program that simulates the running of 100
games of craps. Instead of printing whether you are a winner or loser, use variables Wins and
Losses to count the number of times that you win and lose. Ask someone who knows some
probability theory (or a gambler) what the odds of winning at craps are. Compare the results
from the program with the theoretical odds.

21. A given real function Approx(X) computes an approximation to the answer to some problem,
starting with an initial approximation X. For example, if we write

XNew := Approx(XOld)

then XNew is a new approximation that is, we hope, better than the previous approximation
XOld.

Write a loop to compute a series of approximations starting with an initial value XOld equal
to 1.0. The loop should compute XNew := Approx(XOld) and then replace XOld by XNew
before redoing the calculation. The loop should terminate when either

I XN~~:old I < 1.0 x 10-4

or when 50 iterations of the loop have been completed. Print a message showing which
occurred and the latest value of XNew.

22. Write a program for each of the following situations:

(a) Each record has a beginning balance and an interest rate. The interest is compounded
annually: the balance after 1 year is the original balance plus the interest for that year; the
interest for the second year is based on this new balance, and so on. Write a program that,
for each record, shows how many years it takes for the balance in the account to be more
than twice the starting balance.

(b) The setup is the same as for part (a). However, for each record, the algorithm should print
out a table showing the year number, the beginning balance for that year, the interest for
the year, and the ending balance for the year up through and including the year in which
the balance exceeds twice the starting balance. Print one new page per record.

(c) Modify part (b) so that it does not print a line of information for the final year when the
balance goes over twice the starting balance.

(d) Repeat part (a), but with no data records. Instead, use a beginning balance of $1,000.00
and interest rates of 4 to 20 percent in steps of 0.25 percent, that is, 4 percent, 4.25 percent,
4.5 percent, etc.

23. Find and print the smallest divisor of each odd number from 3 to 201.
24. The input data consist of repetitions of this pattern:

account record for a checking account

0 or more transaction records for this account
terminal transaction record (code "L")

EXERCISES 255

For each account, generate output similar to that illustrated in Exercise 10 of Section 3.l.

Then modify the program to do the following for each account:

(a) Count the checks and deposits.
(b) Determine the lowest and highest balance.
(c) Calculate the average check amount.
(d) Calculate the service charge for the month. The first record of each group will contain an

account type (R, S, or V). For regular (R) accounts, the service charge is $3.00 unless the
minimum balance is at or above $750, in which case it is 0. For special (S) accounts, the
charge is $0.20 per check. For VIP (V) accounts, the charge is based on the average of the
minimum and maximum balances. If this is less than $500, there is a $7 .00 charge; $500 to
$1,000, a $5.00 charge; over $1,000, free.

25. Using the Random function to simulate the throw of a pair of dice, write programs for the
following:
(a) Simulate an experiment in which we roll the dice once, and then attempt to match that

number on future rolls. If we succeed in five or fewer rolls, print how many rolls it took;
otherwise print a message reporting failure.

(b) Write a program to repeat the experiment of part (a) 10,000 times, reporting the percentage
of successes and the average number of rolls for the successes. For example, the output
might be

Succeeded 75% of the time, with 3.72 average rolls for each successful
experiment.

(c) Simulate a game in which two players roll dice. Player A starts with $15 and player B with
$23. When they roll, the player with the higher number wins $1. They agree to go until one
or the other is broke or 100 rolls, whichever occurs first. Print an appropriate message at
the end.

(d) Place the game in part (c) in a loop to simulate it a number of times in order to answer the
question: Is the game fair?

26. To see if a number N (~ 2) is prime, it suffices to check for divisors in the range from 2 to .JN.
If no divisors are found, then N is prime. Using this fact, write a Boolean function that tells if a
number is prime or composite (not prime).

27. For a function y = f(x), finding a root for the function means finding a value x that yields y = 0.
For many functions (the continuous functions), the following is true: if f(a) and f(b) have
different signs, then there must be at least one root between a and b.

One way to approximate that root is by the bisection method, described as follows: Let m be
the midpoint of the interval from a to b. If f(m) = 0, then you have found a root, so quit. If f{a)
andf(m) have opposite signs, there must be a root between a and m; if not, there must be a root
between m and b. In either case, you can repeat this process with one or the other of the
subintervals. Since the subintervals get smaller as you proceed, you will be getting closer and
closer to the root. Quit after some predetermined number of passes.

Write a program that uses this method to approximate the root of y = x3 + 4.5.x2 - O.I 9x -
0.14 that lies between 0 and I. Stop after 30 iterations and use mas the approximation, unless a
root is found before 30 iterations have occurred.

28. Suppose Otto the Automaton is a robot whose tasks require it to walk metal ramps, high above
the factory floor, that connect assembly lines. Its builders are concerned that its direction-sens
ing circuitry could be damaged in unpredictable ways (such as by an electric charge running

256 USING LOOPS CHAP. 3

through a ramp on which it is moving), so they have asked you to run some simulations of what
might happen if Otto loses its directional sense. ·

Each ramp is as pictured in the figure. Label the squares on the ramp as illustrated by the
example labeling in the figure.

Factory Floor

(1,5) (7,5)

(3,4) (7,4)

Assembly
(7,3) Assembly

line line
Start
here (7,2)

(1,3)

(1, 1) (5,1) (7,1)

Factory Floor

(a) For one simulation, assume the circuitry completely fails; with each step, Otto is equally
likely to stagger left, right, forward, or backward. Print an indication of the location after
each stagger, and a message at the end: "fell off the ramp", backed off the ramp", or "made
it across".

(b) Put part (a) in a loop that executes 1000 times. Replace the prints by counting steps. Tell
how many times each of the three possible outcomes occurred.

(c) Repeat parts (a) and (b) with Otto's circuitry only partially damaged, resulting in a 0.4
probability of staggering forward, a 0.25 probability of staggering left or right, and a 0.1
chance of staggering backward. Hint: Generate a random number from 1 to 20, with 1 to 8
representing forward, 9 to 13 left, 14 to 18 right, and 19 to 20 back.

29. Give test plans for the following:
(a) Exercise 2(c)
(b) Exercise 6(a)
(c) Exercise 6(c)
(d) Exercise 9(b)
(e) Exercise 9(c)
(f) Exercise 12
(g) Exercise 24, without modifcations
(h) Exercise 24, with parts (a) to (d)

Exercises 30 to 34 refer to integer arrays as discussed in Section 3-2.

30. Write a program to read an array of 10 integers and to print the first integer that is greater than
or equal to the average of the 10 numbers. Hint: After you calculate the average of the numbers,
use a repeat-until loop to search the array.

31. Repeat Exercise 30 using a while loop.

EXERCISES 257

32. Should you repeat Exercise 30 using a count-control (for) loop?

33. Write a program to read an array of an unknown number of positive integers (terminated by a 0)
and to print the position and the value of the first integer that is greater than or equal to the
average of the numbers that are input.

34. Put the steps of Exercise 30 in a loop, and terminate by asking the user if the steps are to be run
through again.

3-5 ANTIBUGGING, DEBUGGING, AND TESTING

Many sections of a textbook represent material to be mastered, perhaps through memoriza
tion, preferably through concentrated practice and understanding. Many sections of this
book fall in that category. For example, you should come to understand counting applica
tions thoroughly; if you are asked to do any problem that involves counting, the techniques
involved should be fairly automatic.

This section has a somewhat different flavor. In it, we attempt to gather together some
ideas that will aid you in writing correct programs and in feeling confident that they are
correct. The section does not cover any new algorithmic techniques. It does contain some
techniques and ideas that can form a part of your program-development style no matter what
the specific program is designed to accomplish.

In some of your early programs, the program logic was relatively simple. On the other
hand, all the rules about how to write the Pascal statements were new and perhaps confus
ing. As a result, your programs may have generated many compile-time errors. These errors
include, for example, forgetting the final parenthesis in a Writeln statement, leaving out a
semicolon, or misspelling the word "integer" in a declaration. It is possible that once you
got past the list of errors generated by the compiler and any misunderstandings about the
THINK Pascal language, your programs ran correctly.

At this point in your study of programming, your programs are becoming more com
plex, but you are getting used to the Pascal language. It is possible that you are able to
resolve compiler-generated errors with little difficulty. However, you may be discovering
that, even with no compiler-detected errors, the program is just not doing what it should. In
the first section, we discuss antibugging and debugging, two related techniques that seek to
avoid this situation or to allow you to correct this situation as easily as possible.

The second section is on program testing. We have included sections on this topic
from time to time in the text, and we will continue to do so. Here we attempt to pull
together some of the ideas into a single summary discussion of program testing.

Antibugging and Debugging

We begin with two related concepts: antibugging and debugging. Both terms come from the
common use of the word bug to describe an error in a computer program. They tend to
relate to the types of errors that occur after you have obtained a clean compilation. Errors
that the compiler detects are not the primary subject of this section. Those errors can gener
ally be fixed by careful examination of the subject line of code, comparing it to the required
syntax (form) for that type of statement. The errors we discuss here are more subtle, fre
quently requiring more work to uncover.

258 USING LOOPS CHAP. 3

The purpose of antibugging is to avoid bugs, and the purpose of debugging is to help
you uncover and remove those bugs that do occur. The two concepts are closely related. Of
course, if the antibugging is done sufficiently well, then no debugging is necessary. In a
way, debugging can be thought of as adding more antibugging to the system to flush out
those bugs that the original antibugging was not sufficient to prevent.

We cover these concepts by presenting a list of ideas that can be useful either in
antibugging or in debugging. Where it is appropriate, we indicate differences between using
the ideas for antibugging and using them for debugging. Following the list, we discuss a few
issues that arise when using these ideas.

1. Awareness of Pitfalls. This is emphasized throughout the text, especially in
the DPT sections. By being aware of what some common errors are, we can avoid making
those errors. This is a form of antibugging. On the other hand, if errors do occur, we can
review the known pitfalls to see if we have made any of the common errors and to see if the
particular pitfall accounts for the observed behavior of the program. This is a form of
debugging.

2. Hand-Tracing. This refers to "playing computer" and executing the algorithm
or program by hand. Deciding on the data to hand-trace is in some ways similar to deciding
on test data. We want to use that data that is most likely to uncover any errors, just as we do
in testing.

It is sometimes useful to hand-trace a slightly modified form of an algorithm. For
example, if an output table is to contain 40 lines per page, it could take a long time to
hand-trace sufficiently to make sure that exactly 40 lines are printed prior to moving to a
new page. We might want to write and hand-trace the same program modified to print three
lines per page. If the modified program works correctly, we can have some assurance that
the original program also works.

3. Echo Printing of Input. Sometimes a program appears to be performing cal
culations incorrectly when actually it is the input data that are at fault. As a simple example,
we might have this:

Write('Enter pay rate and hours worked: ');

Readln(Hours, Rate)

The user who, in response to the prompt, types a line containing 5.50 and 40 will not realize
that the program interprets this as 5.5 hours at $40 an hour.

To avoid this type of problem, we could always echo print all input to the program.
This would be antibugging. Alternatively, we could insert the echo prints when errors do
occur. This would be debugging.

4. Edit (Validate) Input. This topic was discussed in Section 3-4. If we check all
input for correctness and reasonableness, we can avoid many problems. For example, the
error described in the previous paragraph would be uncovered by an input procedure that
made sure that the pay rate was in the expected range.

5. Diagnostic Prints (Trace Prints). This idea expands upon the idea of echo
printing the input. Trace prints are print statements that trace the execution of the program.
A few examples:

3-5 ANTIBUGGING, DEBUGGING, AND TESTING 259

(a) If the program does many complex calculations, it might be desirable to print the
partial answers as they are calculated. For example, in a function that calculates the
total taxes for an individual, each specific tax could be printed as soon as it is calcu
lated. The print statement could use a variable name, as in

Writeln('SocSec = •, Socsec: 1 : 2)

or a more meaningful message as in

Writeln('Social security withheld= ' SocSec : 1 : 2)

Which you use is up to you; the output from these print statements is not seen by the
program's user.

(b) Trace prints can be useful in examining the progress of a loop. For example, in Figure
3-19, we wrote a function to calculate the number of divisors of a given integer. At the
bottom of the loop in that function, we might print Number, Potential, Number mod
Potential, and Counter to verify that the count is occurring properly. Similarly, a
program to locate a particular name in a file might print each name that it reads within
the search loop.

(c) Trace prints are frequently used in programs that involve a number of subprograms.
They might consist of a print statement at the beginning of each subprogram and one
at the end of each. The one at the beginning might print the message "Entering sub
program xxxxx", where xxxxx is the subprogram name. This print might also print the
value of the parameters. (This is similar to echoing all user input.) The print statement
at the end could print the message "Leaving subprogram xxxxx" and again print the
parameters.

For trace prints to aid our error detection, we would compare the output to that we
expect to see. This implies that we are hand-tracing the program or algorithm to determine
what to expect. By seeing exactly where the output begins to differ from what we expect,
we can focus our efforts on the portion of the program that is causing the error.

The term diagnostic prints, which is frequently used to describe trace prints, conveys
the idea of using these prints as a debugging tool to "diagnose" errors. Many programmers,
however, do not wait until errors occur; they routinely include trace prints in all their
programs.

Note. Programs that involve random numbers may need trace prints even to know
if the answer is correct. For example, if the program is supposed to count the number of Ts
rolled in a dice simulation, we should print each dice roll to check the answer. (Of course,
we might temporarily modify the program to perform the simulation only 10 to 20 times
rather than 12,000 times.)

The various prints (echo prints of input and trace prints) raise an important issue.
There can very well be differences between the program during development and the pro
gram as delivered. The extra prints are useful in uncovering and fixing bugs, but the person
who is running the finished program certainly does not want to see them. This person is

260 USING LOOPS CHAP. 3

interested only in the final answer, not in all the details of how the program reached that
answer. Thus, the final version must not print the trace messages.

There are several ways to remove the extra print statements. The simplest is to delete
them. However, this has the disadvantage that if they are needed later (for example, when
modifications are made to the program), they must be done over. Another alternative fre
quently used is to "comment them out." This means to place them in braces, as illustrated
here:

{Writeln('Length = ',Length: 1 : 2);}

If the prints are needed again, the comment braces can be removed. A variation of this might
involve something like this:

{Debug: Writeln('Length = ', Length: 1: 2);}

This makes them stand out more, and thus they are easier to locate when they need to be
reactivated. In addition, they look different from ordinary comments. Other possibilities
exist for handling this problem; some are discussed in later sections.

Testing

In this section, we summarize a number of testing concepts, most of which have been
presented in more detail earlier in the text. Because whole textbooks have been written on
the subject, our treatment here will be obviously at an elementary level. Becoming an expert
tester (or expert programmer) requires several courses and significant experience. Our goal
in this section (and this text) is to make you aware of the need for testing and have you
develop the ability to come up with a reasonable test plan for the types of programs you are
writing.

We should emphasize that the purpose of testing is to find bugs. For some (perhaps
most) people, testing is psychologically difficult: They do not really want to find bugs in the
program they have just spent so much time developing. For that reason, many companies
that develop computer software have groups whose primary job is to test the programs
others have written. In the context of a programming course, however, you will generally be
doing your own testing. It may help to adopt the attitude, when a test case indicates a
problem, that the bug was there and would probably have been noticed by the person
grading the program. The fact that your test uncovered the bug is, therefore, a benefit, not
something to get upset about.

We begin with some general testing concepts. This is followed by a few specific
pointers for testing programs that use some of the algorithm concepts we have studied, such
as counting and searching. Finally, we discuss top-down and bottom-up testing. Further
explanations of all these topics can be found in the various testing sections throughout the
text.

1. Check Your Answers. Some of the test cases should contain data for which
the correct answer is easily determined, preferably without using a calculator. This allows
you to see at a glance whether there are obvious bugs in the program. However, this does
not imply that you should ignore the other test cases. After you have verified that the
program is working correctly for those that are easy to check, check all the answers. Never
stop work on a program for which there are known errors; correct all bugs you find. Some

3-5 ANTIBUGGING, DEBUGGING, AND TESTING 261

of the techniques described in the previous section can be helpful in tracking down and
removing the bugs.

2. Class Testing. Class testing is sometimes referred to as branch testing
because it frequently relates to branching in the program. For example, when a program
contains a decision structure

if Value < 1000 then

Rate := 0.04

else if Value < 5000 then

Rate .- 0.07

else

Rate .- 0.10

we can identify three branches or classes for the variable Value: under 1000, 1000 or greater
but less than 5000, and 5000 or greater.

However, we generally should base our analysis of what classes there are on the
problem description in addition to, or instead of, the actual algorithm or program. Even if
the programmer found some way to calculate the Rate without using a decision structure,
the testing should treat the calculation of Rate as one involving three classes for Value. As a
simple example, in rounding a real number to the nearest integer, we can identify two
classes of input: input with fractions less than 0.5 and input with fractions 0.5 or greater.
The rounding process treats these two classes of input differently, so we want to test both
classes. The fact that the built-in Round function is used rather than a decision structure
does not change the need for that testing.

Class testing frequently involves ranges of values, as in the previous example. It
sometimes involves specific values rather than ranges. For example, if the price of a win
dow depends upon its color, we might identify these classes for the color: white, brown,
cream, etc.

In class testing, we want to include test cases that exercise each identifiable class. In
fact, if the class consists of a range of values, we should generally include a number of
realistic, randomly chosen values within that class.

3. Bad Data. In the previous example, which calculated the variable Rate, we
actually missed at least one important class: Value less than 0. This represents an error class
for which the program should ideally generate some sort of error message. In addition, the
problem statement or analysis can indicate that values larger than 100,000 are considered
unreasonable and probably indicate a data-entry error. If so, then another class of bad data
(larger than 100,000) exists and should be tested.

Just as we generate test cases for each class of good data, we generate test cases for
each error class. It is important to note here that each error should be tested separately. For
example, if the sex code must be "M" or "F', and the grade must lie between 0 and 100, we
identify three classes of bad data:

262

Sex code incorrect

Grade less than 0

Grade greater than 100

USING LOOPS CHAP. 3

Each should be tested by itself. A single record with an incorrect sex code and a grade less
than 0 is not adequate.

4. Boundary Values. Experience has shown that errors are more likely to occur
for boundary values than for any other values. Thus, test cases that exercise the boundaries
are likely to be more valuable in uncovering bugs.

Boundary values are frequently related to class testing. If a class consists of a range of
values, then there are boundaries at each end of the range. For example, in the calculation of
Rate based on Value (described previously), we can identify these boundaries:

0 (between good data and bad data)

1000

5000

100,000 (between good data and bad data)

Since 1000 is the lowest number in the class for which the Rate is to be 0.07, we include a
test case with Value equal to 1000. We also want to test the upper boundary of the class
where the Rate is 0.04, so we include a value just below 1000, perhaps 999, or 999.99, or
even both. A similar approach holds for the other boundaries.

A couple of comments may help here. First, we might wish to test both just below and
just above the boundary. In the previous example, we would add test cases 1000.01, or
1001, or both. Second, the actions for the two classes are sometimes not distinguishable for
numbers very close to the boundary. For example, consider this decision structure:

if Amount <= 500 then

Tax .- 50

else

Tax .- 50 + 0.10 * (Amount - 500)

If Amount is 500.01, then Tax would be 50.001, which would appear as 50.00 if printed as a
dollars and cents figure (using Amount:l:2, perhaps). Because this cannot be distinguished
from the answer for 500.00, we might include a test case a little further from the boundary
(e.g., 500.10).

Finally, we should note that some boundaries are related to output rather than input.
For example, if we are supposed to print exactly 45 lines per page, we should include a test
where the output ends on the 45th line of a page and a test where it ends on the first line of
the following page.

5. Special Cases. This is closely related to boundary testing, and, in fact, you
may wish to view special cases and boundary as the same thing. An example of a special
case test might involve a program finding the average check amount for a month in a
checking account. We would want to include a test where there were no checks at all.

For many, if not all, special case tests, we can view the test as a boundary test in
connection with a "how many?" or a "where?" question. For example, if we ask, "How
many of the transactions for the month were checks?" the answer would be, "Anywhere
from no checks to all checks." Our special case where there were no checks is one of the
two boundaries for the possible range of answers to the question. Similarly, in looking for

3-5 ANTIBUGGING, DEBUGGING, AND TESTING 263

the largest of a set of numbers, we could ask, "Where in the list could the answer occur?"
The answer is, "Anywhere from first to last," and we have two boundaries (first and last) for
that range.

6. Compound Conditions. Consider the following description of who gets a
bonus: Any employee with an attendance record of 95 percent, or who sold more than 500
units, or who recruited at least one new customer. This policy can be coded as a simple
if-then construction. However, in testing the program, it is not really sufficient to just test
both branches. We should test various combinations of the three conditions involved. As you
can see in the following table, there are eight possible combinations.

ATTENDANCE > 95% SOLD> 500 RECRUITED

No No No

No No Yes

No Yes No

No Yes Yes

Yes No No

Yes No Yes

Yes Yes No

Yes Yes Yes

We should check all combinations in a situation such as this. As usual, the "boundaries" (all
no, all yes, exactly one no, exactly one yes) are the most critical tests.

A particularly important example of compound conditions occurs in validating input
data. To be valid, the data typically must meet a number of criteria. This implies a number
of combinations, similar to those for the example just given. Experience has shown that for
each way in which the data could fail to be acceptable, there should be a test case that is
correct except for that one particular item.

7. Path Testing. In a program with several different decision structures, it is desir
able to test all possible paths through the program. For example, consider the segment:

if Category = 3 then
Bonus .- 100

else
Bonus .- 250;

if Total > 1000 then
Bonus := Bonus * 2;

There are four possible paths: (1) category 3, total> 1000; (2) category 3, total ::; 1000; (3)
category not 3, total > 1000; and (4) category not 3, total ::; 1000. We should test all
possibilities.

As you can imagine, for a large program, the number of paths can grow quite rapidly.
This is one strong argument for modularity. We write small modules and test them indepen
dently using drivers. Some of the tests for each module might involve thorough path testing
of that module.

264 USING LOOPS CHAP. 3

8. Loop Termination. In Section 3-4, we studied loops with more than one termi
nation condition. For this type of loop, we should include at least one test case for each
possible termination condition. As a simple example, consider a search loop that is looking
for the name "John Jones" in a data file. Since he might not be in the file, we would use a
loop with two conditions for termination; either we find "John Jones" or we reach the end of
the file and therefore know he is not in the file. Both possibilities should be tested for in our
test plan. (Notice the idea on which this approach is based is similar to that for path testing.)

9. Include Random Tests. Sometimes when we carefully plan our tests, we can
fall into the trap that our tests are too orderly. For a grading program, for example, our test
sequence might go: 100, 90, 89, 80, 79, etc. These are all important boundary tests for a
90-80-70-60 grading scale. However, it would be good to mix up the tests. In addition, we
would want to include some random testing.

This point was driven home to one of the authors in a recent program. The user was
allowed to perform a sequence of activities. It turned out that a certain activity X worked
fine unless it came right after activity Y. In testing, the user never had that particular combi
nation. However, during the demonstration of the product, the combination arose. How
much better it would have been to uncover the bug during testing rather than during demon
stration!

We now consider how some of the general concepts just listed apply in specific types
of algorithms. We are especially interested here in special case tests. For example, for a
counting problem, we might identify the following tests:

No data input

Data input, but count is 0

Everything input is in the class being counted

A similar list would apply for accumulation. For finding the largest (or smallest)
value, we could list tests such as:

No data input

Exactly one data item (would be both largest and smallest)

First is largest (no ties)

Largest in middle (no ties)
Last is largest (no ties)

All values the same

In a program that searches for a particular value in a file (or a set of user input, or an
array), we can list tests such as:

Not found

Found, only one in file

Found, first one in file (file containing > 1 record)

Found, last one in file (file containing > 1 record)

Found, somewhere in middle of file

3-5 ANTIBUGGING, DEBUGGING, AND TESTING 265

Generalizing this last situation slightly, we can come up with the following types of tests for
algorithms that use either count-control or general-condition loops:

Loop terminates on first pass through loop

Loop terminates on last possible pass through loop

We now tum to a brief review of top-down testing and bottom-up testing. To
illustrate the difference, consider the following hierarchy chart of modules. The main mod
ule A uses modules Band C to accomplish subtasks. B, in tum, uses subprograms D and E,
whereas C uses subprogram F.

In both types of testing, we test one module at a time in the context of modules that
are already tested. For example, one possible order for top-down testing is

A (stubs for B and C)

B (using the tested A, and stubs for D, E, and C)

D (using the existing A and B, and stubs for E and C)

E (using the existing A, B, and D, and a stub for C)

C (using the existing A, B, D, and E, and a stub for F)

F (using the existing A, B, D, E, and C)

Other orders are also possible, such as A, B, C, D, E, and F. In bottom-up testing, on
the other hand, we would start with the lowest-level modules, perhaps in this order:

D (using a driver)

E (using a driver)

B (using a driver to call it, and the existing D and E)

F (using a driver)

C (using a driver, and the existing F)

A (using the existing B, C, D, E, and F)

Again, other orders are possible, such as F, C, D, E, B, and A.

266 USING LOOPS CHAP. 3

Sometimes it is helpful to combine the two techniques. For example, suppose that the
logic of main program A depends heavily on parameters it obtains from B, and that those
parameter values cannot be easily imitated by a stub. We might first develop the subsystem
consisting of B, D, and E. The resulting order might be B, D, E, A, C, and F.

SUMMARY

This section, in contrast with many others in the text, can be most useful as a reference to be
applied to your programming projects. It, together with DPT and testing sections throughout
the text, can be useful in writing programs that avoid bugs and in discovering, uncovering,
and removing those that do occur.

REVIEW

Terms and Concepts

antibugging
bottoms-up testing
bug
class/branch testing
debugging

Antibugging and Debugging lips

1. Beware of pitfalls.

2. Hand-trace algorithms and programs.

3. Echo print input.

4. Edit (validate) input.

5. Use trace prints.

Testing

Tips

1. Check answers.

2. Test all classes.

3. Test with bad data.

4. Use boundary values.

diagnostic prints
path testing
testing
top-down testing
trace prints

5. Use special cases (boundary values for "how many" or "where").

6. Test combinations for compound conditions.

7. Test all paths (use small modules to make this easier).

8. Test all possible loop-termination conditions.

9. Include random tests.

REVIEW 267

Specific Tests for Counting Problems, Etc.

1. Counting (accumulation is similar)

No data input

Data input, but count is 0

Everything input is in the class being counted

2. Finding the largest (or smallest)

No data input

Exactly one data item (would be both largest and smallest)

First is largest (no ties)

Largest in middle (no ties)

Last is largest (no ties)

All values the same

3. Searching in file (array search similar)

Not found

Found, only one in file

Found, first one in file (file containing > 1 record)

Found, last one in file (file containing > 1 record)

Found, somewhere in middle of file

4. Any loop with count or general-condition control

Loop terminates on first pass through loop

Loop terminates on last possible pass through loop

268 USING LOOPS CHAP. 3

4 More on Subprograms

OBJECTIVES

By the end of this chapter, you will have an almost complete picture of the technical aspects
of Pascal subprograms. After completing this chapter, you will be able to:

•employ value parameters and var parameters, and be able to determine when to use
each type

• use local and global variables and to discern the differences between them

• use strings and arrays as parameters

• invoke subprograms from within other subprograms

•use elementary recursive functions

•use subprograms effectively when designing your programs

4-1 PARAMETERS AND VARIABLES

Review and Terminology

A Pascal program consists of a number of modules. The main module (or main program)
is always present; there may or may not be submodules (subprograms). Pascal has two
types of subprograms: procedures and functions. We generally use a function for a subtask
whose purpose is to calculate one value and a procedure for any other subtask. The main
program can invoke (or call) any subprogram. A procedure is invoked by using its name as
a statement; a function is invoked by including it as part of an expression, frequently in an
assignment statement.

It is possible for one subprogram to invoke a second subprogram. In this case, we can
use the terms calling program (or calling module) and called program (or called module)

269

in describing the situation. If module A invokes module B, for example, then module A is
the calling module and module B the called module.

The terms parameter and argument are frequently used interchangeably. For exam
ple, in a function declared with the header

function AreaFn(A, B, C: real): real;

the variables A, B, and C are the parameters. These are sometimes called the formal
parameters. When we use the function in an assignment statement such as

Area := AreaFn(Sidel, Side2, Side3)

the variables Sidel, Side2, and Side3 are supplied as parameters to match the formal param
eters A, B, and C. To distinguish between these two uses of the word, we refer to Sidel,
Side2, and Side3 as the actual parameters. Some programmers reserve the word "argu
ment" to mean "actual parameter."

Formal parameters and actual parameters correspond by position within the list of
parameters. The names may or may not be the same. However, the types must match. If a
function expects to receive a real value as its second parameter, then the second actual
parameter must be real. Moreover, the purpose of the parameters must match. For the func
tion with header

function Volurne(Radius, Height: real): real;

the actual parameters supplied when the function is invoked should represent the radius and
height in that order. Reversing the order would almost certainly cause erroneous answers.

Reasons for Subprograms

There are at least four reasons for using subprograms. We mention them briefly here. These
themes, especially the fourth, are expanded upon throughout the text

1. Repetition. Sometimes a task must be executed several times within a program. If
so, writing the task as a procedure or function precludes having to place the detailed steps
for the task in several places in the program. In fact, by using parameters judiciously, it may
be possible to unify several almost identical tasks as a single submodule.

2. Universal Use. Some procedures might be needed in more than one program.
Perhaps a large group of programmers all need the same procedure. By writing a subpro
gram and making it available to the entire group, we can avoid duplication of effort. (This
saves not only the effort of copying the code, but also that of creating the code in the first
place.) Further, programmers working on subsequent projects often discover that the new
program needs to perform many of the same tasks as the already written program. By
reusing procedures from the old program in the new one, much development effort, time,
and. money can be saved.

3. Teamwork. A large portion of programming in the "real world" is done by pro
gramming teams. Rather than having the whole team work on the whole program, the
program is generally divided into subprograms. Each subprogram is written by one or two
team members.

270 MORE ON SUBPROGRAMS CHAP. 4

4. Modularity. Using subprograms enables us to break up a large project into more
manageable pieces. This is important not only during the initial development of a project,
but also during subsequent modification. Modularization allows us to focus our attention on
the specific task at hand during development. For the person who must later modify the
program, it makes the program easier to understand. In addition, it allows that person to
concentrate on the piece that needs to be changed.

Of these four reasons, the most important is the last. As we have seen in some of our
examples involving subprograms, it is extremely useful to be able to allocate subtasks to
either functions or procedures. This aids in the top-down design of our program. As we
design the main program, we identify various tasks or calculations that we allocate to proce
dures or functions. This allows us to complete the design of the overall solution to our
problem without getting bogged down in the details of the subtasks. We then come back and
design the subprogram for each identified subtask. Of course, if the subtask is complex, we
may in tum identify further subtasks. This would lead to one subprogram in turn invoking
another subprogram. We continue in this fashion until we have designed the entire program.
Because we start with the main program and work our way down to successively more and
more detailed pieces, we refer to this as top-down design and refinement.

Note. Top-down design is similar to but different from top-down testing. In cod
ing and testing a program that has already been designed, it can make sense to use top-
down testing, or bottom-up testing, or some suitable combination. However, the design
process should always be top-down.

Value and Var Parameters

Parameters are the primary means of communication between a calling program and a called
program. Values used by the submodule are passed into the submodule, and answers can be
passed back. As a simple example, consider this procedure that calculates the quotient and
remainder of two integers.

procedure QuotRem(I, J: integer; var Quotient, Remainder: integer);
begin

Quotient := I div J;
Remainder .- I mod J

end;

The parameters I and J are used to pass values to the procedure; the parameters Quotient and
Remainder pass back the answers.

In this example, I and J are value parameters and Quotient and Remainder are var
parameters. The way these parameters work is very different. Consider the following sim
ple main program.

program Sample;
var

A, B, Q, R: integer;

4-1 PARAMETERS AND VARIABLES 271

{procedure QuotRem goes here}

begin

A := 34;

B := 6;
QuotRem(A, B, Q, R);

Writeln(Q, ' ', R)

end.

When QuotRem is invoked, the actual parameters A, B, Q, and R "correspond to" the
formal parameters I, J, Quotient, and Remainder, respectively. For the two value parameters
A and B, the present value is calculated and sent to the procedure's variables I and J,
respectively. Thus, I and J are 34 and 6, respectively.

For the var parameters, however, no values are calculated. Rather, the procedure is
informed where in the computer's memory the variables Q and R are stored. It then uses
those locations for any reference to its formal parameters Quotient and Remainder. Thus, the
assignment

Quotient: = I div J

divides I (34) by J (6) and places the result directly into the variable Q in the calling
program. At this instant, Q already contains the answer 5. The next step, likewise, places its
answer (4) directly into the variable R in the main module. When the procedure terminates,
the answers are there, ready for the Writeln statement to print. Figure 4-1 summarizes this
discussion.

Notes

1. When the procedure is invoked, the expression "A" is evaluated and its value (34) is
placed in the QuotRem variable I.

2. Likewise, the value of the second argument ("B") is placed into J.

3. The variable Quotient in the QuotRem procedure has no storage space of its own. The
procedure call establishes the correspondence between it and the main program's vari
able Q.

4. Likewise, the procedure call establishes that Remainder in QuotRem refers to R in the
main program.

This fundamental difference in how the parameters are handled helps explain various
rules concerning value and var parameters. Among these are the following:

1. The actual parameter for a value parameter can be any expression of the proper type.

272

It need not be a variable. For example,

QuotRem(A + B, 17, Q, R)

would be legal.

Reason: The value of the actual parameter is calculated and passed into the formal
parameter variable in the submodule. Therefore, the actual parameter can be an
expression.

MORE ON SUBPROGRAMS CHAP. 4

In Main Program

Denotes a value
being passed

A

B

Q

R

Figure 4-1 Passing parameters.

In QuotRem Procedure

J

Quotient

Remainder

Denotes direct use of
the actual parameter

2. The actual parameter for a var parameter must be a variable (of the proper type). It
cannot be a constant or other expression.

Reason: The formal parameter variable in the submodule does not occupy its own
memory space. Instead, it works directly with the memory location the corresponding
actual parameter occupies.

3. Changing a value parameter in a submodule has no effect in the calling module.

Reason: The communication using a value parameter consists solely of sending a
value to the submodule when the submodule is invoked.

4. Changing a var parameter in a submodule immediately changes the corresponding
actual parameter.

Reason: The communication using a var parameter consists of the submodule working
directly with the corresponding actual parameter.

Parameters: Type Matching

The communication that occurs through parameters is based on the position in the parameter
list. It is not based on the name. Thus, in our previous example, we had these correspon
dences:

4-1 PARAMETERS AND VARIABLES 273

MAIN MODULE QuotRem

A I

B J

Q Quotient

R Remainder

The names used in the calling program may or may not match.
However, the number, use, and type must match. In the example, the main module

must supply four actual parameters, each of type integer. These parameters must represent
the two numbers to be divided and the resulting quotient and remainder, in that order. In this
section, we examine type matching for parameters in some detail.

For example, suppose we have an integer function whose header is given as

function Double(Number: integer): integer;

It should not be surprising that assignments such as

Twice := Double(Number)

and

Again := Double(Twice)

are legal (provided Twice, Number, and Again are integer). Also, because the parameter is a
value parameter, we can write

Four := Double(2)
Final := Double((2 *I - 5) mod 3)

In addition, because a single element of an integer array is an integer variable, we can
declare an integer array as

type

IntegerArray = array[l .. 1000] of integer;

var

Grades: IntegerArray;

and then use an assignment such as

Grades[!+ l] := Double(Grades[I])

We can summarize this by saying that

For a formal parameter of type integer, the actual parameter can be an integer vari
able or a single member of an integer array. If the parameter is a value parameter, it
can be any integer expression whatsoever.

Note. Similar comments apply for real, char, string, and boolean parameters. That
is, when we learn about arrays of reals, for example, we will see that a real array element
can match a real parameter.

274 MORE ON SUBPROGRAMS CHAP. 4

function ArraySum(List: IntegerArray; N: integer): integer;

{Written by: XXXXXXXXXXXX XX/XX/XX}
{Purpose: To add the numbers in an array}

{Parameters: The array to be summed, and an indication of how many}

numbers are stored in the array}

var

I: integer;

Sum: integer;

begin

Sum : = O;

for I := 1 to N do
begin

{for loop control}

{accumulates the sum}

Sum := Sum+ List[I]

end; {for}

ArraySum . - Sum

end;

Figure 4-2 Array parameter.

Parameters can also be arrays. For example, consider the function in Figure 4-2. The
two parameters are List, an IntegerArray, and N, the number of integers in the list. The type
IntegerArray has been declared in the main module, as we have been doing for several
sections now.

To use an array as a parameter, it must be given a named type. The following is
illegal as a header:

function ArraySum(List: array[l .. 1000] of integer; N: integer): integer;

We must use the type name "Integer Array" and not the definition of that type.
A similar comment applies to the use of strings as parameters. For example, the

following procedure header might seem reasonable; however, it is illegal:

procedure PrintLine(Name: string[20J; Age: integer; Department: string[5));

The parts in italics are illegal. Rather, we must, in the main module, include type declara
tions such as

type

String20 = string[20];
Strings= string[S];

Then the procedure header would be

procedure PrintLine(Name: String20; Age: integer; Department: String5);

In the calling program, the actual parameters corresponding to Name would be declared as
String20 rather than as string[20).

4-1 PARAMETERS AND VARIABLES 275

Note. The type string in THINK Pascal is considered to be the (predefined) named
type for string[255]. So it is legal (and often convenient) to use string as the type of string
variables used as parameters.

We can summarize this discussion as follows:

When using arrays or explicitly sized strings as parameters, the formal and actual
parameters must be of the same type. That type must be a named type defined in the
"type" declarations of the main module.

Choosing Parameters

Understanding the preceding discussion is valuable, but the real test comes in applying it to
programs. In this section, we describe some general advice on choosing parameters.

1. The parameters for a function represent values on which the function answer is based.
They are called input parameters to emphasize the fact that the information flows
into the subprogram from the calling program. They should be value parameters
because the function should not modify its input.

2. For a procedure, we can have a mixture of input parameters and output parameters.
Output parameters represent "answers" determined by the procedure. Put another way,
they represent the information passed back to the calling module. Output parameters
must be var parameters. Values passed into the procedure (input parameters), on the
other hand, should be value parameters.

Note. A potential for confusion exists in this terminology. Notice that the terms
input and output, when used to describe parameters, have nothing to do with reading from
the keyboard or printing to the screen. An output parameter, for example, is one calculated
by the procedure and returned to the calling module. That does not mean the procedure
should print its value. Since we cannot invent our own terminology, we must learn to
recognize the distinction between, for example, an input parameter and input from the user.

3. Sometimes a procedure has a parameter representing a value that is passed in, modi
fied, then passed back. For example, a procedure can modify a bank balance by
adding a deposit or subtracting a withdrawal. Such a parameter, called an update
parameter, must be a var parameter.

4. There can be memory considerations that override this advice for array parameters, or,
more generally, when the combined size of value parameters is very large. For exam
ple, consider the ArraySum function of Figure 4-2. Because the parameter List is a
value parameter, it occupies storage space iri the function. When the function is
invoked, the actual parameter is automatically copied (all 1000 integers) to the formal
parameter; this action takes a small amount of time as well as requiring memory. If the
array were a var parameter, it would not occupy space and no copying would be
needed. Instead, the function would work directly with the calling module's array,
which is the actual parameter. In general, if the amount of memory needed by the

276 MORE ON SUBPROGRAMS CHAP. 4

current set of value parameters exceeds what is available, the program bombs. (In
THINK Pascal for the Mac, the available memory depends upon the amount installed
in the particular Macintosh; in general, the more memory on the machine, the more
that is available for value parameters.)

For these reasons, many programmers habitually use var parameters for all arrays.
However, see the note that follows.

Note. Defensive programming argues against the practice of making all arrays var
parameters. Value parameters protect the programmer from inadvertently modifying a
parameter in the calling program. If we use a var parameter, we must take extra care that
any modification of the parameter is intended to modify the corresponding actual parameter.

Thus, there is a design trade-off between defensive programming and efficiency.
Unless the program contains an exceptional number of subprogram calls, we suggest that
value parameters be used as a general rule. For most interactive applications, the extra time
for copying the array to the value parameter is not noticeable, and the amount of available
memory should be sufficient.

Note. The terms input parameter, output parameter, and update parameter are
generic terms. That is, they apply to writing subprograms in a number of languages that
support parameters for subprograms. They describe the desired use of the parameter as
information flowing into the subprogram (input), as information flowing out of the subpro
gram (output), or as a combination (update). The term value parameter is also used as a
generic term, and generally has a similar (but not necessarily identical) meaning as when it
is used in a Pascal context. The term var parameter is strictly Pascal; the generic term for a
similar way of handling parameters is reference parameter.

Global and Local Variables; Scope

At this point in the text, a program is of this form

Program header line

Constant definitions (const)

Type definitions (type)

Variable declarations for the main module
Zero or more procedures and functions
Main module action steps (begin ... end')

Our discussion here is limited to this context. See Appendix A for a more complete discus
sion.

Each of the procedures and functions in the scenario described previously can, in turn,
declare its own constants, types, and variables. For example, the first procedures we learned

4-1 PARAMETERS AND VARIABLES 277

about were Instructions procedures that declared a variable "Answer." These variables are
called local variables; they are usable "locally" within the particular procedure or function.
They are not accessible in the main program or in any of the other procedures or functions.

Consider the following rather frivolous program:

program Demo;

var
I, J: integer;

procedure Manipulate;

var
I, N: integer;

begin {Manipulate}

I . - 1;

N := 2;
J := I + N

end; {Manipulate}

begin {Demo}

I := 10;

J := 11;

Manipulate;

Writeln{I, ' J);

end. {Demo}

The main module (Demo) has two variables I and J. The procedure has two variables I and
N. The I variable in the Manipulate procedure is not the same as that in Demo. Examine the
following diagram:

Main Module Demo

Variables:
J

Submodule Manipulate

Variables: I
N

To understand how Pascal interprets these variables, imagine that the box enclosing
the submodule Manipulate is a one-way mirror, with the outside surface silvered. From
within Manipulate, we can see out, but it is impossible to see in.

278 MORE ON SUBPROGRAMS CHAP. 4

Thus, within Manipulate, three variables are visible: the local variables I and N and
the global variable J. The variable I in the main module is not visible because the compiler
will assume that any reference to I means the locally defined I.

Within Manipulate, therefore, any references to I and N refer to the local variables I
and N. However, Manipulate also references (and changes) J. Because J is not declared
locally, it is assumed to be global. The reference to J refers to the globally defined J in the
main module.

Any variable used in a submodule, which is not declared either as a local variable or
a parameter for that submodule, is assumed to be global. If the main module has a
variable by that name, that main module variable is used. (If not, a syntax error
undefined variable-exists.)

In our example, the assignments I := 1 and N := 2 do not affect the main module. The
assignment J :=I+ N changes Jin the main module to 3. The Writeln prints the unchanged I
(10) and the modified J (3).

Notes

1. The visibility of a variable is called its scope. Scope is discussed in more depth in
Appendix A. For the programs that we will write:

(a) The scope of anything defined in the main program includes the entire program.
However, local declarations of the same name "hide" the global version. (The
variable I in our example illustrates this hiding process.)

(b) The scope of anything defined within a subprogram is that subprogram only.

2. The term "global" refers to the fact that the main program's declarations are visible
throughout the entire program.

It is possible to contrive perfectly horrendous examples illustrating the results of this
global default. For our purposes, however, we need to concentrate on three issues:

1. Accidental Global Variables Can Be a Disaster. Defensive programming re-
quires that we take extra care that all variables used in a module are declared in the module
(either as parameters or as local variables). This prevents the submodule from having
unwanted "side effects." The only exception is when we specifically design the module to
use global variables.

2. Global Type Declarations Are Useful, Indeed Necessary. For example, to pass
arrays and explicitly sized strings as parameters, the type (lntegerArray, String6, etc.) should
be declared in the main module.

3. Intentional Global Variables Should Be Used Sparingly, If At All. The primary
means of communication among modules should be parameters. Some languages, such as
BASIC and COBOL, force modules to communicate via global variables. Sometimes this
seems easier than parameters for introductory-level programs. However, experience has
shown that using globals leads to increased program complexity. Excessive use of global

4-1 PARAMETERS AND VARIABLES 279

variables makes it harder to get large programs working and makes it harder to modify
them.

A little reflection on some of the reasons for using subprograms helps clarify these points.
For example, one important reason is modularity. This term implies units that perform
predictable tasks with specified input. By using parameters, we have a complete list of the
input and output for the subprogram, right in the subprogram header. If globals are used, we
must study the code itself to see which variables are used and which are modified. More
over, if a variable does not have the desired value, it can be quite a task to track down which
module changed it.

Two other considerations relate to the concepts of universal use and teamwork. First,
to be truly universally useful, a module must not require certain declarations in the calling
program. For example, the standard subprograms (Writeln, Sqrt, etc.) do not require us to
declare certain variables in order to use them. All their communication occurs through the
parameters.

Second, part of the advantages of allocating pieces of a project to different team
members is lost if they must collaborate on all the variable names. By using local variables
and parameters, it is possible to concentrate one's attention on the key issues: What data
does each module need, what data does it generate, and what procedures are needed to
transform the input data to the output data?

Our general rule is to use parameters rather than globals for communication.

DPT

1. The most insidious difficulties with Pascal subprograms involve inadvertent side
effects. If a subprogram fails to declare a variable it uses, the compiler looks in the main
program for a variable of that name. If it fails to find one that is good, it prints an error
message for the undefined variable. On the other hand, if it does find a variable by that
name, it assumes that the reference in the submodule meant to refer to this variable as a
global variable.

Special care must be taken with for loop control variables. The use of variables I, J,
and K for these variables is very common. Hence, the likelihood of the main module con
taining a variable of the same name increases.

One possible way to detect this involves unit testing each module. When we test a
module, we can use a driver with "unusual" variable names. Perhaps each variable name in
the driver could begin with a sequence such as "XXXX." Any variable not declared in the
submodule would almost certainly fail to have the same name as a variable in the driver
routine. This would allow the compiler to detect undeclared local variables for the module.

2. Attention must also be paid to the choice of value and var parameters. If a parame
ter is used to pass a value into the module, it should be a value parameter. Var parameters
should be reserved for parameters that communicate answers to the calling module.

Two things can go wrong here. If a parameter should be declared as var, failing to do
so prevents the calling module from getting its answer. On the other hand, suppose we use
var for what should have been a value parameter. Then, if the submodule modifies the
parameter, the corresponding variable in the calling program is modified.

Another point: If the parameter is a var parameter, we cannot supply an expression as
the actual parameter. If we do, the compiler detects the error and tries to tell us what is

280 MORE ON SUBPROGRAMS CHAP. 4

wrong. The actual compiler message can vary. For example, if we use an expression such as
I+ J, it stops at the plus sign and tells us that it expected either a comma (if there is another
parameter following) or a right parenthesis (if this is the last parameter). If we use a number,
it tells us that the number is an illegal identifier.

3. Remember that variables defined within a subprogram are local. They cannot be
used outside that subprogram.

4. When a subprogram has several parameters, we must pay close attention to the
order of the parameters. When we invoke the submodule, we must supply the actual parame
ters in the proper order.

5. Parameters must match by type. This can be a little confusing with arrays. For
example, suppose List has been declared as an integer array; consider this program segment.

for I := 1 to 50 do

begin

Root := Sqrt(List[IJ);
Writeln(List[I] : 10, Root 10)

end; {for}

The first 50 elements of the array "List" are passed, one at a time, to the standard Sqrt
function. This function's parameter is a single number. Since each List[I] is one number, the
invocation is correct.

On the other hand, the function ArraySum of Figure 4-2 has an integer array (type
lntegerArray) as its first parameter. The step

Sum := ArraySum(List,50)

calculates the sum of the first 50 elements of the array List Notice that in this case, we pass
the entire array. There is no subscript.

REVIEW

Terms and Concepts

actual parameter
argument
call
called module
called program
calling module
calling program
formal parameter
function
global variable
input variable
invoke
local variable
main module
main program

REVIEW

module
named type
output parameter
parameter
procedure
reference parameter
reuse
scope
submodule
subprogram
top-down design
update parameter
value parameter
var parameter
visible

281

Reasons for Subprograms

1. Repetition

2. Universal use

3. Teamwork

4. Modularity

Communication Between Modules

Value versus Var Parameters

1. Value

(a) Actual parameter can be any expression (of proper type).

(b) Value of expression is passed to the formal parameter when the subprogram is
invoked.

(c) Nothing is passed back to the calling program.

(d) Usually supplies input values to the subprogram.

2. Var

(a) The actual parameter must be a variable.

(b) No value is passed to the subprogram; instead, the subprogram works directly
with the calling program's actual parameter.

(c) Changes (within the subprogram) to the formal parameter immediately modify the
calling program's actual parameter.

(d) Usually supplies "answers" to the calling program or updates a variable of the
calling program.

Type Matching for Parameters

1. Any expression of the proper type matches a value parameter.

2. An integer variable or one element of an integer array matches an integer var parame
ter. (Similarly for real, boolean, char and (unsized) string).

3. Arrays can be passed to match arrays of the same type. The type must be a named
type declared in the "type" section of the main program.

4. Strings can be passed to match strings of the same named type.

Global versus Local Variables

1. Local: Declared within the subprogram where it is used.

2. Global: Not declared within the subprogram where it is used, but declared in the main
program.

3 •. When interpreting the use of a variable, the compiler:

(a) checks for a local declaration first

(b) checks for a global declaration if there is no local one

(c) generates an error message if there is neither a global nor a local declaration

282 MORE ON SUBPROGRAMS CHAP. 4

EXERCISES

DPT

1. Declare all local variables. Be especially careful to declare control vari-
ables of for loops (I, J, etc.).

2. Unit test modules.
3. Avoid using global variables.
4. Use value parameters to supply input to a subprogram. Use var param

eters to supply answers to the calling program or to update a variable.
5. Do not attempt to use a subprogram's local variables (or its formal

parameters) outside that subprogram.
6. Do not supply an expression for a var parameter.
7. Watch the order of the parameters.
8. Remember that parameters must be named types. (Use lntegerArray,

not array[l..1000] of integer; use String20, not string[20]).
9. Only arrays can match array parameters.

10. Either simple variables or single-array elements can match nonarray
var parameters.

1. Suppose that the main program contains these declarations:

const

Maxindex = 1000;

type

IntegerArray array[l .. Maxindex] of integer;

var

L: IntegerArray;

I, J, K, T, U, V: integer;

B, C, X: real;

S: string[20];

For each of the following, you are given a procedure or function header and an invocation of
that procedure or function. Decide whether each is legal; if not, explain why not.

(a) procedure Pl (A, B: integer} ;
Pl(I, J, K};

(b) function Fl (A, B: real} : integer;
T := Fl(B, C};

(c) functionF2(X: array[l .. 1000] of integer}: integer;
U : = F2 (L};

(d) procedure P2 (A: integer; B: real}: real;
X := P2(T, U};

EXERCISES 283

(e) function F3 (I: integer): integer;
F3 (I);

(f) procedure P3 (L: integer);
P3 (L);

(g) procedure Pl (var R: integer);
Pl(L[S]);

(h) procedure PS (A: integer; var B: integer);
P5(7, V + 12);

(i) function F4 (Q : string[20]): integer;
I : = F4 (S);

2. The following is a procedure to swap two integer numbers.

procedure Swap(var Nl, N2: integer);

var

T: integer;

begin {Swap}

T .- Nl;

Nl := N2;

N2 := T

end; {Swap}

{temporary variable}

{save a copy of Nl}

(a) What would be printed if we use this procedure in a program containing these steps?

I : = 5;

J := 16;

Swap(I, J);

Writeln(I, J)

(b) Repeat part (a) assuming that the Swap procedure failed to declare its parameters as var
parameters.

(c) What would happen if the Swap procedure failed to declare its local variable T?

3. Suppose that an integer array named A has been declared using our usual method and contains
these as its first 10 values:

284

5 2 6 17 -3 4 9 -2 15 -53

(a) Is this use of the procedure Swap from Exercise 2 legal?

Swap(A[l], A[5])

If so, what would the array look like after the procedure invocation?

(b) Repeat part (a) for this invocation:

Swap(A, A[lO])

What occurs?

MORE ON SUBPROGRAMS CHAP. 4

(c) What would be printed by this program segment?

for I := 1 to 5 do
begin

Swap(A[I], A[ll-I])

end; {for}

for I := 1 to 10 do

Write(A[I] : 6);

Writeln

What is the purpose of the final Writeln?

(d) What would be the effect of this program segment?

for I := 1 to 9 do
begin

Swap(A[I], A[I+l])

end; {for}

(e) What would be the effect of this program segment?

for I := 1 to 9 do

begin
if A[I] > A[I+l] then

Swap(A[I), A[I+l])

end; {for}

4. The following is a procedure that prints the digits of a positive integer in order from right to
left.

procedure RightToLeft(N: integer);

var

Number: integer; {holds •working copy• of N}

begin {RightToLeft}

Number := N;
repeat

Writeln(Number mod 10);

Number := Number div 10

until Number = 0
end; {RightToLeft}

{print right digit}

(then strip it off}

(a) Hand-trace the procedure with various values of the parameter N to see how it works.
(b) Is the variable Number really needed? That is, could we just write the loop as follows?

repeat

Writeln(N mod 10);
N := N div 10

until N = 0

(c) What would happen in part (b) if N were inadvertently listed as a var parameter?

EXERCISES 285

5. Each of the following procedure and function headers is illegal. For each, indicate the type
declarations that the main program needs and modify the header line to be legal.

(a) procedure Shift (var Scores: array [1 .. 1000] of integer);

(b) procedure Print (Name: string[20]; Initials: string[5]; Score: integer);

(c) function Inorder (Stringl, String2: string [15]) : boolean;

(d) function Largest (A: array[l.. 75] of integer; N: integer);

6. Type and run the following program. What happens? Why?

program Exercise;

var

I: integer;

procedure PrintRow(RowNumber: integer);

begin {PrintRow}

Write('Row # ', RowNumber: 1, ':');

for I := 1 to 10 do

Write(RowNumber*I : 5);

Writeln

end; {PrintRow}

begin {Exercise}

for I := 1 to 10 do
PrintRow(I)

end.

7. For each of the following, write a header line for a function or procedure to do the indicated
task. Do not write the entire submodule.

286

You need to identify parameters and decide whether they should be value or var parameters. If
you make any assumptions about type declarations, state those assumptions.

(a) Calculate a person's commission based on a sales amount and commission rate.
(b) Convert a date from Julian form to the usual form. For example, day 1 is January 1, day 33

is February 2, etc. The answer consists of a month and a day within that month. Assume
that this is not a leap year.

(c) Modify part (b) to include a parameter telling the subprogram whether or not this is a leap
year.

(d) Reverse a number viewed as a four-digit number. For example, 4172 would become 2714
and 319 would become 9130.

(e) Sort an array containing 1000 integers.
(f) Repeat part (e) assuming that a variable N indicates how many of the possible 1000 places

in the array actually contain numbers.
(g) Split a name into first and last names. For example, for "John Smith", the answers would

be "John" and "Smith".
(h) Add a bonus to the salary. The amount of the bonus depends on three things: the person's

rank, department, and number of years in the company.

MORE ON SUBPROGRAMS CHAP. 4

4-2 PROCEDURES AND FUNCTIONS

In this section, we study the syntax (form) and semantics (meaning) of Pascal subprograms.
To a great extent, the section merely brings together material you have studied previously,
but it also discusses two new major areas:

1. In previous sections, we have not used subprograms that invoked other subprograms
(except for the built-in subprograms such as Readln or Sqrt). As we will see, you can
write subprograms that invoke other subprograms you have written.

This capability is extremely important in top-down design. When we break a program
into subtasks, some of those subtasks can still be complicated. We want to subdivide
them further, and this involves subprograms invoking other subprograms.

2. We introduce the important notion of recursion. This involves a subprogram invoking
itself to solve a simpler version of the same problem. There are certain types of
problems for which a recursive solution (one using recursion) is the easiest to create
and to understand.

Nested Subprogram Invocation

Subprograms can in turn invoke other subprograms. For example, we can have the pattern
of calls suggested by this hierarchy chart:

This suggests that the main module uses modules A, B, and C to perform needed subtasks.
In tum, module A invokes both modules D and E, and module E invokes I. We refer to this
situation as nested invocations (invocations within invocations). When module I completes
its task, control returns to module E; when E completes, control returns to module A; and
when A completes, control returns to the main module.

4-2 PROCEDURES AND FUNCTIONS 287

To write a program with the indicated hierarchy, it is only necessary to remember this
rule:

In Pascal, everything must be declared before it is used.

Thus, for instance, because module A uses module E, the declaration for module E
must precede that for module A. One possible program layout is this:

Program header

Constants, types, and variables for main module (globals)

Module D

Module I

Module E

Module A

Module B

Module F

Module G

ModuleH

Module C

Main module

Each module declares any necessary parameters and local variables.

288

As another example, consider the following:

program Nested;

var

Number: integer;

{This program illustrates nested invocation}

function Double(I: integer): integer;

begin {Double}

Double := 2 * I
end; {Double}

procedure Triple (var X: integer);

begin {Triple}

X := Double(X) + X
end; {Triple}

begin {Nested}
Number := 10;

Writeln('Before call: ', Number : 1);

Triple(Number);

Writeln('After call: ',Number: l);

Readln
end.

MORE ON SUBPROGRAMS CHAP. 4

The main program uses the Triple procedure to triple the value of the variable Number. The
procedure accomplishes this by invoking the function Double (which calculates twice the
number), then adding the number to that. Double must be declared before Triple.

Note. In addition to nesting invocations, it is possible to nest declarations. That is,
we can declare one procedure within another. In the previous example, Double is used only
by the Triple procedure, not by the main program. It could, therefore, be declared within
Triple.

For an advanced programmer, there are some advantages to nested definition. For very
large programs with a chance of inadvertent duplicate module names, defining a module
where it is used is sometimes useful.

On the other hand, nested definition increases the likelihood of accidental use of
globals. Since this is a common pitfall encountered by beginners, we have chosen to defer
our detailed discussion of this concept to Appendix A. (Any program we write in this text
can be written quite effectively without using nested declarations.)

Procedures Versus Functions

In both form and use, there are many similarities between procedures and functions. The
major difference between the two can be summarized by noting that a function returns
exactly one value, and that value is returned to the calling program by the function name.

Both types of subprograms have this general form:

Header line

declarations of local constants, types, and variables

Body (a compound statement)

There are three differences between the two:

1. In the header line, one uses the wordfanction, and the other the word procedure.

2. The header line for a function includes an indication of the type of the answer.

3. The body of a function must include at least one assignment statement giving a value
to the function name. A procedure cannot give a value to the procedure name.

The header lines have this form:

function function-name parameter-list: result-type;

procedure procedure-name parameter-list;

The parameter-list is optional. If it is present, it consists of one or more repetitions of the
following pattern, enclosed in parentheses, separated by semicolons:

var list of variables separated by commas: type

The keyword "var" is optional. If it is included, the parameters in that list are var parame
ters, otherwise they are value parameters. The type of the parameters can be any named type
(boolean, char, String20, IntegerArray, etc.).

4-2 PROCEDURES AND FUNCTIONS 289

For a function, the header line contains a result type. This can be any of the following:

integer

longint

real

Boolean

char

string

a named string type

(as well as a few other types we have yet to cover).
It cannot be an array type. If we wish to return an array answer to the calling program,

it must be a var parameter of a procedure. (A function returns exactly one value, and Pascal
does not view an array as being a single value.)

The methods used to invoke a procedure differs from that used to invoke a function. A
procedure is invoked by using its name, with necessary parameters, as a single statement.
For example,

Triple(Nurnber)

invokes the Triple procedure, passing the parameter Number. A function is invoked by using
it in an expression, as in these three examples:

I := l;

repeat
I := I + 1

until Double(I) > 17

Y := Double(X) - 35 div Double(Z)

Writeln(T : 1, ' times 2 = ', Double(T) : 1)

In addition to the differences in form, there are differences in use. These differences arise
from the view that the job of a function is to calculate its answer. It should have no other
effects (known as side effects). This view is not enforced by the compiler, but it is a
commonly accepted programming practice. In accordance with this view, we have the fol-

. lowing rules.

1. All parameters for a function are value parameters. Procedures can use value or var
parameters or a mix of the two.

2. Functions should not do any input or output (exception: temporary diagnostic prints,
as described in Section 3-5). A procedure may or may not include 1/0, depending on
whether that is part of its identified subtask.

3. Functions should never use global variables. (Procedures should "almost never" use
global variables.)

The following table summarizes some of the important differences between a function
and a procedure.

290 MORE ON SUBPROGRAMS CHAP. 4

Item Function Procedure

Name Has a type (integer, etc.) Does not have a type

Function name is assigned a value within Procedure name is never assigned a value
the function

Use Used to calculate a single real, boolean, Used to perform a task other than calcu-
char, integer or string value lating a single value

Invoked by using in an expression Invoked by using its name as a statement

Parameters Uses value parameters Can use value or var parameters

Writing a Subprogram

In writing any type of subprogram, it is important to identify precisely the task to be
performed. For example, many of our algorithms have been of this form:

print instructions
repeat these steps until user enters terminal value

obtain input
if not terminal input then do these steps:

calculate answers
print answers

We can use subprograms to refine the step "calculate answers." If so, these subprograms
would probably not involve any I/O operations. They would receive input from the main
program through value parameters and send back answers using var parameters (or through
function names).

On the other hand, we can have subprograms whose task specifically involves input or
output. For example, a procedure to obtain valid input would issue prompts, read values,
and check for validity. Thus, some procedures do include 1/0.

The key to proper design is defining precisely what task the subprogram is to accom
plish.

We can summarize the steps for writing a subprogram as follows:

1. Identify the Task to Be Performed. Determine whether to use a function or a
procedure. Choose a name for the subprogram, and determine the type (real, etc.) if it is to
be a function.

2. Decide on Parameters. "Answers" passed to the calling program are var parame
ters. Values needed to perform the task are value parameters. Any parameter that is updated
(used as input and then modified) must be a var pa.<llileter.

(All parameters for a function should be value parameters.)

3. Devise a Plan for the Submodule. This can involve identifying further subtasks.
Both an algorithm for the required actions and a list o(local variables should be generated.
Remember that the algorithm for a function must include assigning a value to the function
name.

4-2 PROCEDURES AND FUNCTIONS 291

4. mite the Subprogram in Pascal The first and second steps just listed supply
information for the header line. The third step supplies the local variable declarations and
the body of the subprogram.

These four steps are always necessary. The degree to which they must be written
depends on two things: the complexity of the task and your skill as a program designer and
programmer. For most programmers, jotting down some notes and thoughts enhances the
process.

Examples

Let us write a number of example functions and procedures. These examples are relatively
simple. Their purpose is to illustrate some of the variety possible in working with Pascal
subprograms. The examples here are not recursive. In the next section, we present some
recursive examples. In addition, Section 4-3 contains some complete program case studies.

For the first example, we find the largest and smallest of three given integers. Since
there are two answers, we write a procedure rather than a function. We name the procedure
Max.Min.

The parameters include the three given integers, which we name Numl, Num2, and
Num3. These are value parameters. The answers, which are var parameters, are Maximum
and Minimum, also integer.

We are now ready to devise an algorithm. Several different ones are possible. How-
ever, the one that follows has certain advantages.

Give Maximum and Minimum default values of Numl
compare them to Num2 and adjust if necessary
compare them to Num3 and adjust if necessary

One major advantage is that this algorithm can easily be adapted to more than three num
bers. In fact, it is based on our standard method of finding the largest or smallest of a long
list of input.

We can now write this in Pascal. There are no local variables. The step "compare them
to Num2 and adjust if necessary" becomes

if Num2 > Maximum then
Maximum : = Num2 ;

if Num2 < Minimum then
Minimum : = Num2

The code for Num3 is similar.
See Figure 4-3 for the complete subprogram and a sample call.
For our next example, let us do some string processing. Suppose we are given three

variables containing the city, state, and zip code of an individual. We would like to build a
line suitable for an address on an envelope, similar to the following:

Jefferson City, TN 37760

Since there is one answer and no need to change any information the subprogram is sup
plied, a function is more appropriate than a procedure. We choose to write a function of type

292 MORE ON SUBPROGRAMS CHAP. 4

SUBPROGRAM

procedure MaxMin(Numl, Num2, Num3 integer; var Maximum, Minimum: integer);

{Written by: XXXXXXXXXX XX/XX/XX}
{Purpose: To calculate the largest and smallest of three numbers}
{Parameters: Numl, Num2, Num3 - input, the three numbers}

Maximum - output, the largest}
Minimum - output, the smallest}

begin {MaxMin}

{*** Give Maximum and Minimum default values}

Maximum . - Numl ;
Minimum . - Numl ;

{*** Compare to second number}

if Num2 > Maximum then
Maximum : = Num2;

if Num2 < Minimum then
Minimum .- Num2;

{*** Compare to third number}

if Num3 > Maximum then
Maximum := Num3;

if Num3 < Minimum then
Minimum : = Num3

end; {MaxMin}

SAMPLE CALL (I, J, K, Large, and Small are integer variables)

Readln(I, J, K);
MaxMin(I, J, K, Large, Small);
Writeln('The largest is', Large

Figure 4-3 Procedure with two tasks.

1, ' and the smallest is ' Small 1)

string with parameters City, State, and ZipCode, also of type string. We then use concatena
tion to obtain the address line. See Figure 4-4.

For our next example, let us write a subprogram to check three integers to see if they
are in increasing order. Because the answer is either yes or no, a Boolean function is
appropriate. For parameters, we need the three numbers to be checked, which we will call
First, Second, and Third. No local variables are involved. The algorithm is quite simple, but
we do need to resolve one issue: Does "increasing order" allow duplicates? Are 6, 6, and 8

4-2 PROCEDURES AND FUNCTIONS 293

SUBPROGRAM

function AddressLine(City, State, ZIP) string;

{Written by: XXXXXXXX, XX/XX/XX}

{Purpose:

{Parameters:

To concatenate a city, state, and zip code into

City - input,

State - input,

Zip - input,

begin {AddressLine}

AddressLine := City +

end; {AddressLine}

SAMPLE CALL

Writeln (Name);

Writeln(StreetAddress);

the city part of the

the state part of the

the zip code part of

' + State + ' ' + ZIP

CityState := AddressLine(City, State, ZipCode);

Writeln(CityState)

Figure 4-4 String-valued function.

address}

address}

the address}

an address}

in increasing order? This could be answered either way, but for this example, we choose to
assume the answer is no. The function appears as Figure 4-5. Study both the function and
the alternate approach given for the function body.

To illustrate subprograms that deal with arrays, let us calculate the "elementwise sum"
of two arrays. Here is what we mean. A and B are two variables of type IntegerArray, each
containing N values. For example, if N is 5, then A and B might be

A: 6, 1, 3,-5, 2

B: 2, 5,-3, 1, 7

We wish to calculate Sum, found by adding corresponding elements of A and B. For the
example, Sum would be

Sum : 8, 6, 0, -4, 9

To do so, we need a procedure. Conceptually, there is a single answer (Sum), but that
answer is an array. Pascal does not allow a function to have an array type as its type, so we
must use a procedure.

There are four parameters we need: the two arrays A and B, the answer array Sum,
and the variable N, which shows how many values the arrays contain. Of these, only the
answer (Sum) is a var parameter.

The algorithm needs to accomplish the following steps:

Sum [1] . - A [l] + B [l] ;

Sum[2] := A[2] + B[2];

Sum[N] .- A[N] + B[N]

294 MORE ON SUBPROGRAMS CHAP. 4

SUBPROGRAM

function InOrder(First, Second, Third integer) Boolean;

{Written by: XXXXXXXX, XX/XX/XX}
{Purpose:
{

To see if three given numbers are in strictly increasing}
order}

{Parameters: First, Second, Third - input,-the numbers to be tested}

begin {InOrder}
if (First < Second) and (Second < Third) then

InOrder .- true
else

InOrder .- false
end; {InOrder}

ALTERNATE BODY

begin
InOrder .- (First < Second) and (Second < Third)

end;

SAMPLE CALL

Readln(Scorel, Score2, Score3);
if InOrder(Scorel, Score2, Score3) then

Writeln('Improving')
else if In0rder(Score3, Score2, Scorel) then

Writeln('Going steadily downhill')
else

Writeln ('Neither steadily increasing nor steadily decreasing')

Figure 4-5 Boolean function.

If we use a for loop to cause the variable I to take on the values 1 through N, then the body
of that for loop would be

Sum[I] := A[I] + B[I]

The first time through the loop, I is 1, and Sum[l] is calculated as A[l] + B[l]. The second
time through, Sum[2] is calculated as A[2] + B[2], and so on. Observe that I is a local
variable for the procedure. See Figure 4-6 for the subprogram and a driver main program
used to test the procedure. Study the matchup of the formal parameters (A, B, Sum, N) to
the actual parameters (Arrl, Arr2, Answer, N). You may wish to adapt the driver to write
drivers to test your own subprograms that have array parameters.

One approach to printing tables of output involves using procedures to print detail
lines and headers. As a simple example of one possible approach, consider the program of
Figure 4-7, which has lines numbered for reference purposes. That program is similar to one
we wrote in Chapter 2 (Figure 2-10). It prints a table of square roots for numbers input by

4-2 PROCEDURES AND FUNCTIONS 295

program Driver;

{Written by: XXXXXXXX XX/XX/XX}
{Purpose: To test the AddArrays procedure}
{Procedures used: AddArrays, to add two arrays}

const
Maxindex = 1000;

EndOfData = O;
{array size}
{terminal value}

type
IntegerArray array[l .. Maxindex] of integer;

var
Arrl, Arr2: IntegerArray;
N: integer;
Answer: IntegerArray;
I: integer;

{the two arrays to add, input}
{the size of the arrays, input}
{the sum array, output}
{loop control variable}

procedure AddArrays (A, B: IntegerArray; var Sum: IntegerArray; N: integer);

{Written by: XXXXXXXX XX/XX/XX}
{Purpose: To add two arrays elementwise}

{Parameters: A, B input, the arrays to be added}
Sum - output, the sum}
array N - input, the present size of the arrays}

(that is, the number of actual values in the arrays)}

var
I: integer; {control variable - for loop}

begin {AddArrays}
for I := 1 to N do

begin
Sum[I] := A[I] + B[I]

end {for loop}
end; { AddArrays }

begin {Driver}
Write('Enter array size (0 to stop): ');
Readln(N);

while N <> EndOfData do
begin

{*** Get first array}

Figure 4-6

296

Writeln('Enter first array, one number per line');
for I := 1 to N do

begin
Readln (Arrl [I])

end; {for loop}

Procedure to calculate an array (continues next page).

MORE ON SUBPROGRAMS CHAP. 4

{*** Get second array}

Writeln('Enter second array, one number per line');
for I := 1 to N do

begin

Readln(Arr2[I])

end; {for loop}

{*** Use procedure to calculate sum}

AddArrays(Arrl, Arr2, Answer, N);

{*** Print answer}

Writeln('The sum array is: ');

for I := 1 to N do
begin

Writeln(Answer[I])

end; {for loop}

{*** Prepare for next pass}

Writeln;
Write('Enter array size (0 to stop): ');

end; {while}

{*** Stop}

end.

SAMPLE INPUT AND OUTPUT

Enter array size (0 to stop): 3

Enter first array, one number per line

4

-6
7

Enter second array, one number per line

-6
6
203

The sum array is:
-2

0

210

Enter array size (0 to stop): 0

Figure4-6 (continued)

4-2 PROCEDURES AND FUNCTIONS 297

the user. In Chapter 2, we simply assumed that the list would occupy no more than one
page. If it did go beyond one page, headers appeared only on the first page.

The hierarchy chart illustrates the overall structure of the program:

RootTable:
Header:

Sqrt:
DetailLine:

TopOtForm:

Header

Reads values in a loop and calculates square roots using Sqrt

Procedure to print column headings on printer (it is used both by
DetailLine and the main module)

Built-in square root function
Procedure to print one line of output on printer, advancing to a new
page with new headings when the previous page is full
Procedure to send a "form feed" to the printer, to advance to a new
page

The program in Figure 4-7 contains some interesting features. First, notice that the
header printing routine prints and then increments a PageNumber variable (lines 33 and 39).
The main program initializes its value at 1 (line· 82), and the Header procedure updates it.
(PageNumber could not be local. If it were, it would never change its value.)

We chose to make PageNumber a parameter (rather than a global variable), for the
reasons discussed in Section 4-1. However, the trade-off is that PageNumber must be
"passed through" DetailLine in order that Header (called from within DetailLine) has access
to it. Some programmers feel that passing through variables is cumbersome, especially if it
must be done through several procedures; they would make PageNumber (and, perhaps,
LineCount) global variables. We think the benefits of avoiding global variables usuallly
outweigh the awkwardness of passing through parameters.

We use the predefined function Page as the method of going to the top of a new page
(line 64). This causes the printer to advance the paper to what it thinks is the top of a new
page. Provided the paper was at the top of a page when the printer was turned on, this
generally works out correctly. If Page did not function correctly for a particular printer, we
would need to write our own top-of-form procedure.

The DetailLine procedure not only prints the output line, but also counts how many
have been printed. If 45 lines have been printed, it calls Header (line 65) to advance to a
new page prior to printing the line. LineCount, which is initialized to 0 by the main program

298 MORE ON SUBPROGRAMS CHAP. 4

1) program RootTable;

2)

3) {Written by: XXXXXXXXXX XX/XX/XX}

4) {Purpose: To create a table of square roots on the printer}

5) with new headings on each new page}

6) {Functions used: Sqrt, the built-in square root function}

7) Page, the built-in paging function, to advance to a new}

8) page}

9)

10)

11)

12)

Header (called by DetailLine as well as main module), to}

print headings}

DetailLine, to print one line of the table }

13) const

14)

15)

16)

EndOfData = -1;

MaxLines = 45;

{terminating value}

{maximum lines per page}

17) var

18)
19)

20)

21)

22)

23)

Number: integer;

LineCount: integer;

PageNumber: integer;

Report: text;

{user input}

{line count}

{page number}

{name for printer}

24) procedure Header (var PageNumber: integer);

25)

26) {Written by: XXXXXXXXXX XX/XX/XX}

27) {Purpose: To print headings at the top of a page}

28) {Parameters: None}

29) {Globals used: Page Number, printed and incremented by 1)

30) { Report, the name for the printer}

31)

32) begin {Header}

33) Writeln(Report, ' ' : 29, 'TABLE OF SQUARE ROOTS', ' '

34) 'page', PageNumber);

35) Writeln(Report);

36)

37)

38)

Writeln(Report, ' '

Writeln(Report, ' '
Writeln(Report);

28, 'Number Square Root');

28, ' -----------');

39) PageNumber := PageNumber + 1

40) end; {Header}

41)

10' 46'

42) procedure DetailLine (Number: integer; Root: real; var PageNumber,

43) LineCount: integer);

44)
45)

46)

47)

48)

49)

50)

Figure 4-7

{Written by: XXXXXXXXXX XX/XX/XX}

{Purpose: To print a detail line (one line of a table).}

If the page is full, it first advances to a new page}

and prints heading.}

{Parameters: Number - input, the integer number to be printed}

Root - input, the square root, also to be printed}

Header and Detai!Line procedures (continues next page).

4-2 PROCEDURES AND FUNCTIONS 299

51) PageCount, passed onto Header to print page number}

52) LineCount - update, used to see if it is time to start}

53) a new page;}

54) set back to 0 for each new page}

55) {Procedures used: Page, to advance to a new page}
56) Header, to print headings}

57)

58) begin {DetailLine}

59)

60) {*** Check for full page}
61)

62) if LineCount = MaxLines then
63) begin

64) Page(Report);

65) Header(PageNumber);

66) LineCount .- 0
67) end; {if}

68)
69) {*** Print the line and increment the count of lines on this page}
70)

71) Writeln(Report, ' ' · 29, Number : 4, ' ' : 7, Root : 10 : 4);

72) LineCount := LineCount + 1

73) end; {DetailLine}

74)
75)

76) begin {RootTable}
77)

78) {*** Initialize line counter and page number, and print headings}

79)

80) Reset (Report, 'Printer:') ;

81) LineCount := O;
82) PageNumber := l;

83) Header(PageNumber);
84)

85) {*** Read numbers in a loop, calculate square roots and print}
86)

87) repeat
88) Writeln;

89) Write('Enter a number (-1 to terminate): ');

90) Readln(Number);
91) if Number <> EndOfData then
92) begin

93) Writeln('The square root is' Sqrt(Number) : 10 : 4);

94) DetailLine(Number, Sqrt(Number), PageNumber, LineCount)
95) end; {if}

96) until Number = EndOfData;
97)

98) {*** Stop program}
99)

100) end.

Figure4-7 (continues next page)

300 MORE ON SUBPROGRAMS CHAP. 4

SAMPLE INPUT AND OUTPUT

Terminal:

Enter a number (-1 to terminate 6

The square root is 2.4495

Enter a number (-1 to terminate): 4

The square root is 2.0000

Enter a number (-1 to terminate): 10

The square root is 3.1623

Enter a number (-1 to terminate): 0

The square root is 0.0000

Enter a number (-1 to terminate): 1231

The square root is 35.0856

Enter a number (-1 to terminate): 97

The square root is 9.8489

Enter a number (-1 to terminate): 50

The square root is 7. 0711

Enter a number (-1 to terminate) : -1

Printer (with Max.Lines temporarily changed to 3 rather than 45):

First page:

TABLE OF SQUARE ROOTS
Number

6

4

10

Square Root

2.4495

2.0000

3.1623

Second page:

TABLE OF SQUARE ROOTS

Number Square Root

0 0.0000

1231 35.0856

97 9.8489

Third page:

TABLE OF SQUARE ROOTS

Number Square Root

50 7. 0711

Figure4-7 (continued)

4-2 PROCEDURES AND FUNCTIONS

page 1

page 2

page 3

301

(line 81), is incremented by DetailLine (line 72). Whenever a new page is begun, it is reset
to 0 (line 66).

The global constant MaxLines (declared in line 15) indicates how many lines we want
on each page. This is used by DetailLine to see if the page is "full" (line 62). This proved
useful in preliminary testing of the program. We changed its value (temporarily) to 3, which
allowed us to test multiple pages of output more quickly.

Note that if the user terminates the program without entering any numbers, a report
consisting just of header lines is printed. If we wanted a report only when numbers were
entered, then setting LineCount to MaxLines in line 81, and removing the call to Header at
line 83, would accomplish this change. If -1 were entered, then DetailLine would not be
called, and so no report would print. If a number were entered, then DetailLine would be
called; since its first action is to check for MaxLines (line 62), a report header would be
printed, followed by a detail line for the entered number.

Another approach would be to print a special version of the report when no numbers
were entered, perhaps one consisting just of the report title and a message that no roots were
calculated. Then the program would need a flag; it would be set to true if numbers were
entered, and false if none was entered. The value of the flag can then be checked to deter
mine which type of report is to be printed. Think about what else you would need to change
in the program so it would implement this change to the reporting process.

Finally, observe that the main program passes the value "Sqrt(Number)" as the Detail
Line procedure's second parameter (line 94). Because that parameter is a value parameter,
this is legal.

This example can appear complicated at first. However, you should study it carefully.
It contains some ideas you may wish to use (or improve upon) in programs that create tables
of printed output.

Recursion

Pascal subprograms are allowed to call themselves. A subprogram that calls itself is a recur
sive subprogram, and the process of calling itself is called recursion.

Recursion is an extremely useful tool in certain areas of computer science. For some
applications, it represents the easiest approach to understanding and solving a problem. In
addition, it is frequently easier to prove a subprogram's correctness when the subprogram is
written recursively.

In this section, we examine a few recursive subprograms. Our purpose is twofold.
First, we wish to develop a mode of thinking that lends itself to finding recursive solutions
to problems. Second, we want to understand how recursion actually works. We begin this
study here; Chapter 10 provides a more in-depth examination of the topic.

For our first example, consider the problem of raising an integer number to an integer
power. We wish to calculate

an

where both a and n are integers, and n is not negative. Suppose we decide to write a
function with the header

function Power(A, N: integer): integer;

How do we go about writing the function's body?

302 MORE ON SUBPROGRAMS CHAP. 4

One possibility is to observe that the following property holds:
n n-1 a =a· a

A naive approach might be this:

function Power(A, N: integer)
begin {Power}

Power := A * Power(A, N-1)
end; {Power}

integer;

Although naive, this is almost correct, and it captures the spirit of recursion very nicely:

Restate the problem in terms of a "simpler" form of the same problem

In this case, a0 • 1 is "simpler" than a" because the exponent is one less.
To see what is wrong with this function, let us trace its execution for A= 4 and N = 3.

When the function is invoked, space is set aside in the computer memory for the two value
parameters. We can visualize the situation as shown:

Power:
A 4 N 3

The first step that Power takes is to invoke itself with actual parameters A and N - 1 (4 and
2, respectively). This causes additional space to be set aside for a second instance of the
two value parameters:

Power:
A 4N 3

>>>>>>>> >>
Power:

A4 N2

The >> >> >> >> >> signifies that the first-level Power has invoked the second-level
Power.

The second-level Power in turn invokes a third level, which invokes a fourth level,
which invokes a fifth level. At this point, we have

Power:
A 4N 3

>>>>>> >> >>
Power:

A4 N2
>> >> >> >> >>

Power:
A4N1

>> >> >> >> >>
Power:

A4 NO
>> >> >> >> >>

Power:
A4 N-1

4-2 PROCEDURES AND FUNCTIONS 303

function Power(A, N : integer): integer;

{Written by:
{Purpose:
{

{Parameters:

XXXXXXXX, XX/XX/XX}

To raise an integer to an integer power. If the numbers}
are too large, overflow may yield an incorrect result.}
A - input, the number to raise to the power}
N - input, the power (must be 0 or higher)

{Functions used: Power is called recursively}

begin {Power}
if N = 0 then

Power := 1
else

Power := A * Power(A, N-1)
end; {Power}

Figure 4-8 Recursive function for an.

As you can see, the fifth level in tum calls a sixth level, and so on forever. What we need is
a way to terminate this process.

This example can suggest a possibility. The fourth-level version of Power has to
calculate 4 to the 0 power, which is simply 1. Suppose we rewrite the Power function as
shown in Figure 4-8.

In the tracing we did before, the fourth-level Power now does not invoke a fifth level.
Since its value for N is 0, it instead returns the answer 1 to the third level. The third level
multiplies this answer times A (which is 4), returning the answer 4 to the second level. The
second level multiplies this by A, sending 16 to the first level. Finally, the first level multi
plies this by 4, returning the answer 64 to the original caller.

There are two important principles of recursion illustrated by this example. (We have
stated one previously.) They are as follows:

1. For the general case, phrase the answer in terms of a simpler version of the same
problem.

2. Identify one or more simple base cases for which the answer is easy to calculate
without a recursive call.

We can now identify what "simpler" means: closer to the base cases. This ensures that
the process does not keep on invoking new levels infinitely.

In the example, N = 0 was identified as a base case where the answer is easy. For
larger values of N, the relationship

n n-1 a =a· a

gave the answer in terms of a simpler version of the same problem.

Note. This function works only for positive values of N. In the exercises, you are
asked to consider negative values. The function would have to be real to handle this. For
example, 4 to the -1 power means 1 divided by 4 to the 151 power, which is 0.25.

304 MORE ON SUBPROGRAMS CHAP. 4

Now let us consider a nonnumerical application of recursion. Given a string, we wish
to "double" it. For example, the following values of the string yield the indicated answers:

STRING

'N
'Sam'

'Doublelt'

ANSWER

'AA'

'SSaamm'

'DDoouubblleelltt'

" (the null string doubled is still null)

To solve this problem, we use the two principles of recursion listed before.

1. Phrase an answer in terms of a simpler version of the same problem. For strings, one
way to get a simpler string is to remove the first character. The resulting string is
shorter and therefore simpler. (It is closer to the base case.) We call ourselves with this
shorter string, using the answer obtained to build our answer for the string as a whole.

2. Identify a simple base case. If the string is null, the answer is simply the null string.

In writing recursive subprograms, it is not necessary to trace the subprogram as we did
for Power. (Once we have written it, however, tracing can help us understand how it really
works.) When writing the subprogram, we think as follows:

Assuming the recursive call does calculate the correct answer for the simpler prob
lem, how can I use that to calculate the answer for the original problem?

In our example, suppose our string is 'fine'. We call ourselves with the simpler string 'ine'
and trust that the answer is correct ('iinnee'). To finish the problem, we concatenate 'f' on
the front of this twice. Figure 4-9 contains the solution that is based on this observation.

Notes

1. We have used a procedure Split to split a string into two pieces: the first character and
the rest of the string. One of the exercises indicates one way this procedure could be
written.

2. The string type allows strings of up to 255 characters, THINK's maximum size. Our
procedure "works" for any input string whose length is 127 or less, since doubling a
larger string will result in the rightmost characters being lost. And, on some
Macintoshes, we run out of memory space because each level of the recursive Double
String procedure contains its own copies of the value parameter AString and the local
variables First, Rest, and RestDoubled. See the exercises for some possible enhance
ments.

DPT

1. Subprograms must be declared before they are used. This implies that the lower
level subprograms in the hierarchy chart come first in the program.

4-2 PROCEDURES AND FUNCTIONS 305

procedure DoubleString(AString: string; var Doubled: string);

{Written by: xxxxxxxx, XX/XX/XX}
{Purpose: To 'double' a string by duplicating each character}
{Parameters: AString - input, the string to be doubled, assumed no}

longer than 127 characters}
Doubled - output, the doubled string}

{Procedures used: Split, to split off the first character of the string}
DoubleString is called recursively}

var
First: string;
Rest: string;
RestDoubled: string;

begin {DoubleString}
if AString =''then

Doubled .-
else

begin
Split(AString, First, Rest);
DoubleString(Rest, RestDoubled);

{the first character}
{the rest of the string}
{the rest, doubled recursively}

Doubled := concat(First, First, RestDoubled)
end {if}

end; {DoubleString}

Figure 4-9 Doubling a string recursively.

2. Each module declares its own local variables. These cannot be accessed outside the
module.

3. Make sure you understand precisely what task each module is to perform, and write
the module to perform that task. For example, many procedures are designed to calculate
answers for the calling program, which use them and perhaps later print them. If the
procedure's subtask does not include printing the answers, then it should not print them. (A
function should never include any J/O.)

4. Use parameters as the primary means of communication. Do not use globals with
out giving that use careful thought.

5. Be careful in your choice of value and var parameters. Value parameters should be
used to supply values to the subprogram. Var parameters are used to pass answers back to
the calling program or to modify a variable in the calling program.

6. A function cannot be used to calculate an array answer. Instead, the array should be
a var parameter for a procedure.

7. Always include an assignment to the function name in a function. Never assign a
value to a procedure name.

8. Remember that any reference to the function name, other than on the left side of an
assignment statement, represents a recursive call. If this is what was intended, great. If not,
use a local variable to obtain the answer, then assign the answer to the function name.

306 MORE ON SUBPROGRAMS CHAP. 4

9. When writing a recursive function or procedure, make sure you identify the base
case or cases that do not involve a recursive call. Without this, the recursive process has no
way to stop.

Exactly what will happen depends on the problem. One possibility is a "stack over
flow" run-time error. This means that the program has run out of memory. (Each new level
of the subprogram contains space for its value parameters and also any local variables.)
Another possibility is that the program attempts to do some illegal activity and terminates.

REVIEW

Terms and Concepts

instance
nested invocations
recursion
recursive

Pascal Syntax

Program Layout

Program header line

Global constants, types, and variables

Procedures and functions

Main module body (compound statement)

Form of Subprogram

Header line

Local constants, types, and variables

Body of subprogram (compound statement)

Header Line Form

procedure procedure-name parameter-list;

function function-name parameter-list: result-type;

Parameter List (Optional)

One or more repetitions, in parentheses, separated by semicolons, of:

var variables separated by commas: type

"Var'' is optional; default is value parameter

Function 1'ypes Allowed

Integer

Boolean

String

REVIEW 307

Real

Char

Name string type

Function versus Procedure. See table in Procedures versus Function section.

Writing a Subprogram

1. (a) Identify the subtask.

(b) Choose a function or procedure.

(c) Choose a name (and a type if a function is chosen).

2. Decide on parameters (value and var).

3. Write an algorithm, identifying local variables.

4. Code in Pascal.

Recursion

Two Principles

1. Write the general case using a recursive call to solve a simpler version of the same
problem.

2. Identify base case(s) not involving a recursive call.

EXERCISES

DPT

1. Declare before use.
2. Local variables are usable only in the module.
3. Identify subtasks precisely.
4. Avoid global variables.
5. Be careful in choosing between var and value parameters.
6. Remember a function answer cannot be an array.
7. Always assign an answer to the function name (in the function). Never

assign a value to a procedure name.
8. Avoid unintentional recursion.
9. When using recursion, don't forget the base case(s).

1. Write a subprogram to calculate the volume and surface area of a sphere of radius r.

v = (4/3)7tr3

s = 47tr2

2. If P dollars are deposited in a savings account earning interest i compounded annually, then
after n years, the amount present is given by

308 MORE ON SUBPROGRAMS CHAP. 4

A=P(l+it

Write a subprogram to calculate A and also the total interest earned, given P, i, and n.

3. Write a subprogram to detennine the state tax based on the following rules. First, $500 is
deducted from the income for each dependent. Then a standard deduction of IO percent of the
original income is subtracted. Finally, the tax is detennined according to the following table.

RESULTING INCOME

Less than $0

$0-10,000

Over $10,000

TAX

0
2% of resulting income

$200.00 plus 2.5% of amount over $10,000

4. (a) Write a subprogram to find the largest and smallest of two integers I and J.
(b) Write a subprogram to find the largest and smallest of five integers.

5. Write a subprogram to calculate the letter grade, given the number grade based on the following
table. (What type of variable is the answer?)

NUMBER

90 and up

75-89.999

Under75

LETTER

H

c
F

6. Write a subprogram with three integer parameters. This subprogram is to find the range of the
numbers, that is, the difference between the largest of the three and the smallest of the three.
Use the MaxMin procedure, developed in this section, to calculate the largest and the smallest.

7. Write a Boolean function that detennines whether two given real numbers are within 0.00001 of
each other.

8. One way to approximate the square root of a real number X is by the method of iteration, as
given by Newton. This consists of choosing a first approximation (perhaps X itself), then repeat
edly getting a new (and better) approximation by using the formula:

anew = -21 (aold + .Jf_)
a old

Thus, we have a loop involved. We continue until

I ao/d _anew I < 0.00001

(Use the function from Exercise 7.)

Write a subprogram to approximate the square root of X in this manner. Then write a main
program that invokes your program and also the built-in Sqrt function. Print both answers and
compare them. How good is your subprogram? How fast?

9. (a) Write a subprogram that, given an integer and a position, finds the digit in that position of
the integer. For example, for the number 29867, we would have the following answers for
various positions.

EXERCISES 309

POSmON ANSWER

7
2 6
3 8

4 9

5 2
Other 0

(b) Using this subprogram, print the digits of a number in reverse order, one per line.

10. Write Boolean functions for the following:
(a) Given four integer test scores, see whether or not the average is at least 60.
(b) Repeat part (a), but the parameter is an integer array containing 14 weekly quiz scores; see

if the average is at least 12.0.
(c) Given a character, determine whether it is a vowel.
(d) Given three integers, Value, Low, and High, see whether Value lies between Low and

High, inclusive.
(e) Given a four-digit integer, determine whether it is a "palindrome" (reads the same front to

back as back to front). Examples: 1001 and 3443 are; 6117 is not. Also, 110 is because 110
is 0110 as a four-digit number.

(f) See whether a given point (x,y) lies within the "unit square" from (0,0) to (1.1)
(g) See whether a given point (x,y) lies within a circle with center (0,0) and a given radius.

11. Use the function written in Exercise lO(d) as a tool for the following:
(a) Write a GetScores procedure that reads three test scores and makes sure each lies between

0 and 100 inclusive.
(b) Write a segment of code to see if at least one of the integers I and J lies between 500 and

553, inclusive.
(c) Write a segment of code to see if an integer A is at least 112 of B and no more than twice

B.

12. (a) Write a function to simulate the following game. It should generate random numbers in the
range 1 to 100, continuing until a generated number is divisible by 10.

If the sum of the numbers generated (including the last one) is 1000 or more, the result is
'W' (win); for 500 to 999, it is 'T' (tie); and for less than 500, it is 'L' (lose).

(b) In a large number of plays, what percentage of wins, losses, and ties might you expect?
Write a program to find out.

13. THINK Pascal supplies some facilities for working with strings that we have not discussed. For
example, a string is treated as very similar to an array of characters. For the following descrip
tions, StrngVar represents any string variable. We can write

310

StrngVar[I]

to obtain the Ith character of the string. If Name has the value 'John Smith', for example, then
Name[l] is 'J' and Name[?] is 'm'. In addition, there are some useful functions. One is Length
(StrngVar), which calculates the present length of the string. Another is Copy(StrngVar, Posi
tion, Number). The answer is a substring of StmgVar, beginning at position Position and having
Number characters. These examples illustrate the functions:

MORE ON SUBPROGRAMS CHAP. 4

Length ('Tom Jones•)

Length('')

Copy ('ABCDEFG' , 3 , 4)

Copy('Alphabet', l, 1)

Copy('Tom', 4, 2)

Copy ('Tom' , 2, 5)

is 9

is o

is 'CDEF'

is 'A'

is ' ' (null, 4 is beyond end of string)

is 'om' (only copies what is there)

Using these functions, do the following:

(a) Write a procedure to print a string, one letter per line. For the string 'find', the output
would be

f

i
n

d

(b) Write a function to count the blanks in a string.
(c) Write the Split procedure that was used in this section.
(d) Find the middle character (or characters) in a string. For 'hop', the answer would be 'o',

and for 'Mary' it would be 'ar'.
(e) Write a SplitLast procedure that talces off the last rather than the first character.
(f) Write a procedure that removes both the first and the last characters.

14. (a) Write a subprogram to find the sum of an array. The parameters are A, an IntegerArray,
and N, which indicates how many values are in the array.

(b) Modify part (a) to "drop the lowest value." For the list

3, 7,2, 5

the sum would be 15. Hint: As you are calculating the sum, find the lowest value. Then
subtract that from the sum.

(c) Modify part (a) to drop the two lowest values.

15. Write a subprogram to find the smallest and largest values in an integer array. The parameters
include a variable telling how many values are in the array.

16. As part of a check printing program, it is desired to print a line such as

EXACTLY 55 DOLLARS AND 04 CENTS

Write a procedure to accomplish this, given a real number containing the amount to be printed.

17. Repeat Exercise 16, but print words instead of numbers:

EXACTLY FIFTY-FIVE DOLLARS AND FOUR CENTS

Assume the dollars are in the range 0 to 99.

18. (a) As it stands, the Power function is not very good; because maxint is 32767, numeric
overflow happens quickly. Modify the function so that it will return a value of 0 when its

EXERCISES 311

answer is going to be wrong. Hint: Consider how you can tell that A * Power(A, N - I) is
going to be larger than maxint.

(b) Another approach to the problem mentioned in part (a) would be to make the function a
real function rather than an integer function. This expands its range of usefulness.
Although the resulting answers may not be completely accurate for large values, they are at
least reasonably close. Make the suggested change.

(c) Modify the Power function to handle negative integer powers. Use the fact that

19. Write a recursive function to calculate n! (n factorial). This is defined as n! = n · (n - 1) · ... ·
3 · 2 · 1. Hint: n! = n · (n - 1)!

20. Write a recursive GCD function to find the greatest common divisor of two positive integers m
and n. An algorithm due to Euclid states that if m divides evenly into n, then the answer is m.
Otherwise it is the same as the greatest common divisor of (n mod m) and m.

21. Write an LCM function to find the least common multiple of two positive integers m and n.
Hint: For any two positive integers m and n, it is true that

LCM(m,n) * GCD(m,n) = m * n

22. A famous sequence of numbers is the collection of Fibonacci numbers, defined as

F0 =0

F1 =1

Fn = F n-I + Fn_2 for n ~ 2

Using these rules, we can list the first few Fibonacci numbers:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...

Observe that each one is the sum of the previous two. Write a recursive function Fibonacci(N)
that calculates FN for a given N.

23. The usual definition for the binomial coefficients is expressed in terms of factorials:

(~)= k!(nn~k)! OSkSn

However, it is also possible to give a recursive definition. There are two base cases: if k = 0,
then the answer is l; if n = k, then the answer is 1. The general case is given by

Use this recursive definition to write a recursive function Binomial (N,K).

24. By imitating the example in this section, write a recursive subprogram to do the following string
manipulations. You can use the Split procedure.

312

(a) Reverse a string. For 'ABCD', the answer is 'DCBA'.
(b) See if the string contains a given character. Hint: There are two base cases: (1) the null

string and (2) a string whose first character matches the given character.
(c) Count the blanks in a string.
(d) Create a string with all blanks removed. Hint: For the complex case, you either will or will

not concatenate the first character with the result from the recursive call.

MORE ON SUBPROGRAMS CHAP. 4

25. (a) H you test the Doublelt procedure in the text, you may find that "stack overflow" occurs
for long strings. This means that the program has run out of memory due to having several
versions of Doublelt, each with a value parameter and three local variables. Experiment to
discover the longest string that does not cause stack overflow. You will need to write the
Split procedure, Exercise 13(c), to run this experiment.

(b) Modify the Split procedure and the Doublelt procedure to make the first parameter type
char rather than string. Does this increase the size string that can be handled? H so,
suggest other similar modifications.

26. Describe a unit test plan for these exercises in this section.
(a) Exercise 3
(b) Exercise 4
(c) Exercise 5
(d) Exercise 6
(e) Exercise 7
(t) Exercise 9
(g) Exercise 13(a)
(h) Exercise 13(b)
(i) Exercise 13(c)
(j) Exercise 13(d)
(k) Exercise 14(a)
(1) Exercise 14(b)

(m) Exercise 15
(n) Exercise 16
(o) Exercise 19
(p) Exercise 20
(q) Exercise 24(a)
(r) Exercise 24(b)
(s) Exercise 24(c)
(t) Exercise 24(d)

4-3 CASE STUDIES

In this section, we present three case studies that use a number of the ideas developed to this
point in the text

Case Study No. 4

Statement of Problem. Write a program to print all the prime numbers between 1
and N, where N is a value supplied by the user.

Preliminary Analysis. A prime number is a positive integer larger than 1 that has no
divisor other than itself and 1. The first few primes are

2, 3, 5, 7, 11, 13, 17, ...

The number 4 is not prime (it is divisible by 2) nor is 15 (it is divisible by both 3 and 5).
Notice that the number 1 is not a prime as mathematicians define the concept

We want to put limits on the values of N that are allowed. (Why?) Suppose we specify
that N must lie between 2 and 1000 inclusive.

4-3 CASE STUDIES 313

Algorithms and Variable List

1. Main Module. We begin with a general description of what we must do to solve the
problem:

print instructions
read a valid value for N
for each integer I in the range from 2 to N

check I to see if it is prime
if it is, then print I

There are four natural candidates for submodules:

• A procedure to print instructions

• A procedure to read a valid value for N

• A Boolean function to see if a number is prime

• A procedure to print a number

We use a procedure for printing in order to print 20 numbers on the terminal, then pause
until the user is ready to continue. (If we did not do this, the numbers would be displayed
too rapidly to read.)

For our variable list, we have the following:

Constant: MaxLines Value 20 Maximum number of lines to be

Input: N

Output: I

Update: LineCount

Integer

Integer

Integer

printed per screen

Indicates the desired range

Printed if prime

Used to print MaxLines lines
per screen

LineCount is initialized to 0 in the main module and updated in the printing module.
We compare it to MaxLines to see if the screen is full.

The hierarchy chart at this point is

Print

2. GetValidN Procedure. This is very similar to the validation procedures we have
written before. The logic is

314

issue prompt
readN
while N is not valid

error message
read N again

MORE ON SUBPROGRAMS CHAP. 4

The variable N must be a var parameter.

3. Print Procedure. In some ways, this is similar to the procedure we used in the
previous section. However, we pause just after printing the twentieth value rather than just
before printing the twenty-first. Using the parameter LineCount, we write

print Number
add 1 to LineCount
if LineCount = MaxLines then do the following:

issue a message
wait for user to hit return
reset LineCount to 0

The accompanying variable list is:

Input parameter:

Update parameter:

Global constant:

Number

LineCount

MaxLines

Integer

Integer

The number to be printed

Keeps track of lines printed

Value = 20 Maximum number of lines
to be printed per screen

4. Prime Function. A number is prime if its smallest divisor (other than 1) is the
number itself. Hence, we can do the following

use a function Divisor to get SmallDivisor
if SmallDivisor =Number,

our answer is true,
otherwise it is false

The variables are

Input parameter:

Other:

Number

SmallDivisor

At this point, our hierarchy chart is

Integer

Integer

The number to check

The smallest divisor (other
thanJ)

Print

Divisor

4-3 CASE STUDIES 315

5. Divisor Function. This function can be written by using a search loop, starting at 2
and continuing until we find a divisor for the number.

We use these variables:

Input parameter:

Other:

Number Integer

PotentialDivisor Integer

The number for which to find a
divisor (assumed to be~ 2)

Takes on values 2, 3, ... until a
divisor is found

Since 2 can itself be a divisor, we need a while loop rather than a repeat-until loop.

set PotentialDivisor to 2
while we still do not have a divisor do this:

add 1 to PotentialDivisor
assign the final value of PotentialDivisor as the function answer

Test plan. We use a top-down testing strategy augmented by a unit test for the
critical module (the Divisor function). The planned tests include the following:

GetValidN: borderlines on valid:
1, 2, 1000, 1001, others in between

Print: borderlines on total number printed:
1, 20, 21, 40, 41, others in between

Prime:
branches: is prime, is not

number of factors: 1(example,9=3 · 3)

Divisor:
branches:

> 1 (example, 105 = 3 · 5 · 7)

smallest divisor= Num
smallest divisor not = Num
smallest divisor= 2

Except for GetValidN, all of these tests occur naturally as a part of the process of running
the program.

Write in Pascal We begin at the top level with stubs for GetValidN, Prime, and
Print (Figure 4-10). Observe that we document as we go along. When we run this with a
valid value of N, all the numbers from 2 to N are printed without pause.

Next we refine the procedure GetValidN and run its unit tests. This is followed by the
procedure Print. Observe that because the stub version of Prime still reports that all numbers
are prime, it is easy to verify that exactly 20 numbers per screen are being printed. It is also
easy to force the boundary tests on the total number printed.

We now write the Prime function with a stub for Divisor. Because we want to check
both branches of the Prime function, we have the stub sometimes reporting that the smallest
divisor is equal to the number and sometimes not. See Figure 4-11 for the current version of
the program. (Changes from Figure 4-10 are in italics.)

316 MORE ON SUBPROGRAMS CHAP. 4

program FindPrimes;

{Written by: xxxxxxxx XX/XX/XX}
{Purpose:
{

To find and print the primes between 2 and a user supplied}
limit value (<= 1000 l .}
They are printed 20 per screen, pausing after each screenful.}

{Procedures used: Instructions, to print instructions}
GetValidN, to edit the limit value}
Print, to print each prime and pause after each screen}

{Functions used: Prime, to determine if prime}
{ Divisor, to find the smallest divisor of a number}

const
{maximum limit allowed} Maximum = 1000;

MaxLines = 20; {maximum number of lines per screen}

var
N: integer;
I: integer;

{indicates the desired range, input}
{loop control, printed if prime}

LineCount: integer; {used to see when screen is full}

procedure Instructions;
begin

{stub}
end;

procedure GetValidN (var N: integer);

{Written by: xxxxxxxx, XX/XX/XX}
{Purpose: To obtain a valid limit from the user.}
{Globals used: constant Maximum, the largest value allowed for N}
{Parameters: N - output, the valid limit (will lie between 2 and}

begin {GetValidN}
Writeln;

Maximum, inclusive)}

Write('Enter a number in the range 2 to • Maximum
Readln(Nl

end; {GetValidN}

function Prime (Number: integer): boolean;

{Written by: XXXXXXXX, XX/XX/XX}
{Purpose: To see if a given number is prime}
{Parameters: Number - input, the number to be checked}

1, I! I);

{Functions used: Divisor, to find smallest divisor of the number}

Figure 4-10 Case Study No. 4 (find primes) (continues next page).

4-3 CASE STUDIES 317

begin {Prime}
{stub version}

Prime := true
end; {Prime}

procedure Print (Number: integer; var LineCount: integer);

{Written by: XXXXXXXX XX/XX/XX}
{Purpose: To print a number on the screen, pausing at bottom

of each screen}
{Globals: constant MaxLines, indicating the max lines per screen}
{Parameters: Number - input, the number to be printed}

LineCount, which Main has initialized to 0 prior to the}
first Print call}

begin {Print}
Writeln(Number : 6);
LineCount .- LineCount + 1

end; {Print}

begin {FindPrimes}

{*** Print instructions, and initialize line counter}

Instructions;
LineCount := O;

{*** Ask the user for the desired range}

GetValidN (N) ;

{*** Loop to check each number in the range}

for I := 1 to N do
begin

if Prime(I) then
Print(I, LineCount)

end; {for loop}

{*** Terminate}

Writeln('FindPrimes program finished');
end.

Figure 4-10 (continued)

318 MORE ON SUBPROGRAMS CHAP. 4

program FindPrimes;

{Written by: XXXXXXXX XX/XX/XX}

{Purpose: To find and print the primes between 2 and a}

user-supplied limit value (<= 1000) .}
They are printed 20 per screen, pausing after)

each screenful.}

{Procedures used: Instructions, to print instructions}

GetValidN, to edit the limit value}

Print, to print each prime and pause after each screen}

{Functions used: Prime, to determine if prime}

Divisor, to find the smallest divisor of a number}

const
{maximum limit allowed} Maximum = 1000;

MaxLines = 20; {maximum number of lines per screen}

var
N: integer;

I: integer;

{indicates the desired range, input}

{loop control, printed if prime}

LineCount: integer; {used to see when screen is full}

procedure Instructions;
begin

{stub}

end;

procedure GetValidN (var N: integer);

{Written by: XXXXXXXX, XX/XX/XX}

{Purpose To obtain a valid limit from the user.}
{Globals used: constant Maximum, the largest value allowed for N}

{Parameters: N - output, the valid limit (will lie between 2 and}

begin {GetValidN}

Writeln;

Maximum, inclusive)}

Write('Enter a number in the range 2 to

Readln(N);

Maximum 1, , : ,) i

while (N < 2) or (N > Maximum) do

begin
Write('Illegal number entered. Try again: ');

Readln(N)

end {while}

end; {GetValidN}

Figure 4-11 Case ~tudy No. 4 (find primes) (continues next page).

4-3 CASE STUDIES 319

function Divisor (Num: integer): integer;

{Written by: XXXXXXXX, XX/XX/XX}
{Purpose: To find the smallest divisor of a number}
{Parameters: Num - input, the integer to be checked (assumed to be}
{ at least 2)}

begin {Divisor - Stub version}
if Odd(Num) then

Divisor . - Num
else

Divisor . - Num - 1
end; {Divisor}

function Prime (Number: integer): boolean;

{Written by: xxxxxxxx XX/XX/XX}
{Purpose: To see if a given number is prime}
{Parameters: Number - input, the number to be checked}
{Functions used: Divisor, to find smallest divisor of the number}

var
SmallDivisor: integer;

begin {Prime}

end;

SmallDivisor := Divisor(Number);
if SmallDivisor = Number then

Prime ·- true
else

Prime ·- false
{Prime}

procedure Print (Number: integer; var LineCount: integer);

{Written by: XXXXXXXX XX/XX/XX}
{Purpose:
{

To print a number on the screen, pausing at bottom}
of each screen}

{Globals: constant MaxLines, indicating the max lines per}
{ screen}
{Parameters: Number - input, the number to be printed}

begin {Print}

LineCount, which Main has initialized to 0 prior to}
the first Print call}

Writeln(Number: 6);
Linecount := LineCount + 1;

if LineCount = 20 then
begin

Writeln;
Write('Tap RETURN to continue');
Readln;
Linecount : = 0

end {if}

end; {Print}

Figure 4-11 (continues next page)

320 MORE ON SUBPROGRAMS CHAP. 4

begin {FindPrimes}

{*** Print instructions, and initialize line counter}

Instructions;
LineCount := O;

{*** Ask the user for the desired range}

GetValidN (N) ;

{*** Loop to check each number in the range}

for I := 1 to N do
begin

if Prime(I) then
Print(I, LineCount)

end; {for loop}

{*** Terminate}

Writeln('FindPrimes program finished');
end.

Figure 4-11 (continued)

Notes

1. In the Prime function, we do not really need the local variable SmallDivisor. We could
write the body as

if Divisor(Number)
Prime .- true

else
Prime .- false

2. In fact, we could write

Number then

Prime := (Divisor(Number) = Number)

The condition "Divisor(Number) = Number" is either true or false, and the answer for
Prime is the same true or false value.

Finally, we refine the Divisor function. Because this is a critical module, we give it a
special unit test with a driver. (Notice that in the context of our current program, we could
not tell if this function is correct. For example, if it reported that the smallest divisor of 36 is
18 and the smallest divisor of 49 is 3, our program would appear to be correct.) Figure 4-12
contains the driver with the function and a sample run. In Figure 4-13, we present a sample
run of the entire program with the stub Divisor function replaced by that in Figure 4-12.

4-3 CASE STUDIES 321

program DivisorDriver;

{Written by: xxxxxxxx XX/XX/XX}
{Purpose: To test the Divisor function}
{Functions used: Divisor, to find the smallest divisor of a number}

const
EndOfData O; {terminating value for loop}

var
N: integer; {number to find smallest divisor of}

function Divisor (Num: integer): integer;

{Written by: XXXXXXXX, XX/XX/XX}
{Purpose: To find the smallest divisor of a number}
{Parameters: Num - input, the number to be checked (assumed to be}

at least 2) J

var
PotentialDivisor: integer;

begin {Divisor}
PotentialDivisor := 2;

{takes on values 2, 3, ... }

while Num mod PotentialDivisor <> 0 do
begin

PotentialDivisor .- PotentialDivisor + 1
end; {while}

Divisor := PotentialDivisor
end; {Divisor}

begin {DivisorDriver}
repeat
Writeln;
Write('Enter an integer (2 or higher, 0 to quit): ');
Readln(N);
if N <> EndOfData then

. Writeln('The smallest divisor is ' Divisor(N) 1)
until N = EndOfData

end. {DivisorDriver}

Figure 4-12 Driver for smallest divisor function (continues next page).

Enhancements. This case study has adopted a "brute-force" approach to finding
primes: check each candidate by locating its smallest divisor. Moreover, the process of
finding the smallest divisor has been carried out in the most straightforward manner. Many
improvements are possible; the exercises suggest several that can be made.

322 MORE ON SUBPROGRAMS CHAP. 4

SAMPLE INPUT AND OUTPUT

Enter an integer (2 or higher, 0 to quit): 2
The smallest divisor is 2

Enter an integer (2 or higher, 0 to quit): 17
The smallest divisor is 17

Enter an integer (2 or higher, 0 to quit): 77
The smallest divisor is 7

Enter an integer (2 or higher, 0 to quit): 100
The smallest divisor is 2

Enter an integer (2 or higher, 0 to quit): 0

Figure 4-12 (continued)

SAMPLE INPUT AND OUTPUT FOR FINAL PROGRAM

Enter a number in the range 2 to 1000: 100
2

3

5

7

11

13
17
19
23

29
31
37
41

43
47

53

59

61

67

71
Tap RETURN

73
79
83
89
97

Done; tap

to continue:

RETURN to exit

Figure 4-13 Sample run for Case Study No. 4.

4-3 CASE STUDIES 323

Case Study No. 5

Statement of Problem. Write a program that reads a series of integers from the
terminal. For each number input, the program should factor the number. For example, for
the series of inputs 35, 100, and 17, the output would be similar to this:

5 7
2 2 5 5

17

Preliminary Analysis. Let us restrict the input to positive numbers greater than or
equal to 2. We can use a slightly modified revision of the procedure GetValidN from the
previous case study. Also, we observe that the first number to be printed is the smallest
divisor of the number. In the previous case study, we wrote a function Divisor that we can
use to find that smallest divisor. A tentative hierarchy chart is

"Factor" is the procedure that does the factoring. It is always a good idea to consider
whether previously written modules are either exactly or almost what we need for the
current program.

Algorithms and Variable Lists

1. Main Module. We need only one variable and one constant.

324

Constant: EndOfData

Input: N

The algorithm is

Value 1

Integer
Terminating entry

Number to be factored

repeat these stages until the user enters the terminating value
read a valid N (use GetValidN)
if N is not the terminal value,

factor the number N (use Factor)

MORE ON SUBPROGRAMS CHAP. 4

2. GetValidN Procedure. This is almost identical to the procedure in Case Study No. 4.
For this case study, a valid number is 1 (the terminating value) or higher.

3. Divisor Function. This function was written and unit tested as part of Case Study No.
4. We use editor commands to obtain an exact copy of the function to use in the
present program. No further planning, writing, or unit testing is required.

4. Factor Procedure. This procedure is the heart of the case study. To aid in writing it, let
us suppose the number to be factored is 63. If we did this by hand, we might use two
steps:

63 = 3 . 21 = 3 . 3 . 7

First, we find one factor (the smallest one), obtaining 3 · 21; then we factor 21.
Similarly, for 245 and 100, we might write

245 = 5 . 49 = 5 . 7 . 7

100 = 2. 50 = 2. 2. 25 = 2. 2. 5. 5

For a prime such as 17, we simply write

17 = 17

This discussion suggests a possible solution to our problem. We can state it in three
steps:

1. Find the smallest divisor and write it.

2. Calculate the "rest of the number": divide by the smallest divisor.

3. Factor the rest of the number, if present.

For the first two steps, we need these variables:

Input parameter:

Local variables:

In Pascal, we write

N

FirstFactor

Quotient

FirstFactor := Divisor(N);

Writeln(FirstFactor);

Quotient := N div FirstFactor;

Integer

Integer

Integer

The number to factor

The smallest divisor

N div FirstFactor

How do we factor the rest of the number (the variable Quotient)? There are several
approaches; one is to simply call the Factor procedure recursively:

Factor(Quotient)

Will this work? The answer is, "Yes, almost." Remember the two important concepts of
recursion:

1. Call yourself with a simpler version of the same problem.

2. Write a nonrecursive solution for the "simplest" (base) inputs.

4-3 CASE STUDIES 325

Since Quotient is smaller than N, the first is satisfied. However, the second is not; we would
have infinite recursion. To fix this, we note that when the number N is prime, we do not
have anything left to factor. In this case, Quotient will have the value 1. We want to call
Factor recursively only if Quotient is greater than 1:

if Quotient > 1 then
Factor(Quotient)

Test Plan. What tests are needed for the Factor procedure? To answer this, we con
sider the question, "How many factors could N have?" The answer is, "One or more." This
leads to two types of test input: primes and nonprimes.

A few other considerations can be included in the test plan. We should have numbers
where the same factor is repeated several times, and some numbers where there is no such
repetition. Some of our answers should be easy to check. We should test some large num
bers whose answers we know. (We can do this by starting with the desired answer and
multiplying it on a calculator.)

Based on these considerations, we devise the following list of tests with the expected
answers. (Note: The program as currently designed prints one factor per line.)

17 17
15

64

2261

700

31407

4171

3
2

5

2
19 7
2 2
3 19

43 97

9409 97 97

2 2

17
5 5 7

19 29

Write Program. The program with a sample run containing some of the tests from
the test plan appears in Figure 4-14.

Enhancements. One possibility, developed in the exercises, is to print the factoriza
tion on a single line rather than one number per line. We could also insert a multiplication
symbol (*) between successive factors.

Case Study No. 6

In Section 4-2, we wrote a program (Figure 4-7) that created a printed list of numbers with
their square roots. In this case study, we use some of the ideas from that program. In
addition, we include some array-processing ideas.

Statement of Problem. For each salesperson in a company, records are kept on the
amount of sales for each month of the year. A printed report is desired that, for each person,
indicates three items:

326

Name

12 monthly sales figures

Total sales for the year

MORE ON SUBPROGRAMS CHAP. 4

program PrintFactors;

{Written by: XXXXXXXX XX/XX/XX}
{Purpose: To read a series of numbers and print a complete factoriza-}

tion of each}

{Procedures used: Instructions, to print instructions}
GetValidN, to obtain a valid input number}
Factor, a recursive procedure to perform the}

factorization}
{Functions used: Divisor, to find the smallest divisor of a}

number (called by Factor)}

const
EndOfData

var
N: integer;

l;

procedure Instructions;
begin {stub}
end;

{terminating input value}

{number to be factored, input}

{procedure GetValidN as shown in Figure 4-11 is inserted here}
{with minor modifications (valid range is 1 or higher) }

{function Divisor as shown in Figure 4-12 is inserted here}

procedure Factor (N: integer);

{Written by: XXXXXXXX XX/XX/XX}
{Purpose: To print the factors of a given number}
{Parameters: N - input , the number to be factored}
{Procedures used: Factor is called recursively.}
(Functions used: Divisor is used to find the smallest}

divisor of N}

var
FirstFactor: integer;
Quotient: integer;

begin {Factor}

{smallest divisor of N}
{part left after FirstFactor is}
{factored out}

{*** Find and print the first factor}

FirstFactor := Divisor(N);
Writeln(FirstFactor : 5);

Figure 4-14 Case Study No. 5 (recursive factoring) (continues next page).

4-3 CASE STUDIES 327

{*** If the number was not prime, factor the rest of the number}

Quotient := N div FirstFactor;
if Quotient > 1 then

Factor(Quotient)
end; {Factor}

begin {PrintFactors}
Instructions;
repeat

GetValidN (N) ;
if N <> EndOfData then

begin

Writeln;
Writeln('The factors are: ');
Factor(N)

end

until N = EndOfData;
end.

SAMPLE INPUT AND OUTPUT

Enter a number in the range 1 or higher (1 to quit): 17

The factors are:
17

Enter a number in the range 1 or higher (1 to quit): 15

The factors are:
3

5

Enter a number in the range 1 or higher (1 to quit): 64

The factors are:
2

2

2

2

2

2

Enter a number in the range 1 or higher (1 to quit): 9409
The factors are:

97
97

Enter a number in the range 1 or higher (1 to quit): 1

Figure 4-14 (continued)

328 MORE ON SUBPROGRAMS CHAP. 4

In addition, the final page of the report should indicate the totals for the company for each
month.

Preliminary Analysis. Input consists of a name and 12 sales figures. Although we
could use 12 distinct variables for the sales figures, a better design would use a "real array"
declared as follows:

const
Maxindex = 12;

type
RealArray = array[l .. Maxindex] of real;

var
SalesArr = RealArray;

Observe how similar this is to declaring integer arrays of size 1000, which we have done
several times previously.

When we plan the output for this program, ideally we would like:

name Jan. sales Feb. sales ... Dec. sales Total sales

However, a typical Macintosh printer (using the standard THINK output font) prints 80
characters on a line; all this information would not fit. We therefore decide on a layout like
this for each person:

name Jan sales

Apr sales

July sales

Oct sales

Feb sales

May sales

Aug sales

Nov sales

March sales

June sales

Sept sales

Dec sales Total sales

Program Design. In this case study, we do not present the detailed design for each
module. Rather, we discuss the design of the program from a broader perspective.

One can view this program as containing two relatively independent components: 1/0
and calculations. One approach to solving the problem would be to work on one component
first and then add the other. For example, we might postpone concerns about getting a
"nice" output report (with headers, new pages when appropriate, etc.). Alternatively, we
could tackle this aspect first. Using the program of Figure 4-7 as a starting point, we chose
the latter approach. We wrote TopOtForm, Header, and DetailLine procedures, and a driver
to test them. The final version of this driver program appears in Figure 4-15, along with
sample input and output. (Portions to be discussed in the Notes that follow are in italics.)

We ran this program several times, testing:

1. Exactly one salesperson.

2. First page exactly full, no second page.

3. First page full, one entry on second page.

4. Two pages full, several entries on third page.

4-3 CASE STUDIES 329

Notes

1. Observe the treatment of LineCount in the DetailLine procedure (italicized). Each
person's print adds five lines of output. When we do not increment LineCount by 1, it
is safer to use ">=" in the comparison with MaxLines.

2. The Header procedure prints the PageNumber, then increments it.

3. When we ran the test originally, the names were right-justified. Usually, lists of names
are left-justified, as in

Bill Johnson

Timothy Axenhall

Jo Coy

To achieve left justification, we used a local variable PrintName in the DetailLine
procedure.

4. The DetailLine procedure uses

for I := 1 to 80 do

Write(Report, '-');

Writeln

to print a row of dashes.

5. The Name parameter for DetailLine must be a named type (string, not string[25]).

6. The driver routine initializes variables, assigns values to the items to be printed, and
calls DetailLine the number of times indicated by the user.

With the "easy but messy" details of printing the report out of the way, we can
concentrate our attention on the rest of the program.

As far as variables are concerned, we need these:

Input:

Output:

Update:

Other:

Name

SalesArr

YearTotal

Total Sales

PageNumber

LineCount

I

In a loop, we want to

330

read employee name
read 12 sales figures
calculate the total for the year
add to the company totals
print the data (DetailLine)

String

RealArray

Real

RealArray

Integer

Integer

Integer

Salesperson name

12 sales figures

Individual's total for year

Company totals (12 totals, one per
month)

Page number

Count of detail lines printed

For loop

MORE ON SUBPROGRAMS CHAP. 4

program Driver;

{Written by: XXXXXXXXXX XX/XX/XX}

{Purpose: To test the header printing, page, and detail line routines}

for compatibility}

{Procedures used: Instructions, to print instructions}

Header, to print headings}

DetailLine, to print a set of detail lines for 1 individual}

const
Max Index

MaxLines

12;

45;

{size of arrays}

{maximum lines per page}

type

RealArray array[l .. Maxindex] of real;

var

PageNumber: integer;

LineCount: integer;

Name: string;
SalesArr: RealArray;

YearTotal: real;

I: integer;

{page number}

{line count}

{name to be printed}

{sales array to be printed}

{total sales to be printed}

{loop control}

NPeople: integer;

Report: text;

{number of salespeople to print, input}

{name for printer}

procedure Instructions;

begin {stub}

end;

(procedure TopofForm, as shown in Figure 4-7, is inserted here}

procedure Header (var PageNumber: integer);

{Written by: XXXXXXXXXX XX/XX/XX}

{Purpose: To print headings at the top of a page}

{Parameters: PageNumber - update, to keep page number current}

{Globals used: None}

var
I: integer;

begin {Header}

Write(Report,

Writeln (Report,
Writeln(Report);

{loop control to print dashed line}

27, 'LIST OF EMPLOYEE SALES');

21, 'page ' PageNumber : l);

Writeln(Report, : 8, 'NAME', 27, 'MONTHLY SALES', ' '

'TOTAL SALES');

Figure 4-15 Case Study No. 6 (sales report) (continues next page).

4-3 CASE STUDIES

16,

331

Writeln(Report);
Writeln(Report,
Writeln(Report,
Writeln(Report,
Writeln(Report,

for I := 1 to 80 do

Write(Report, '-');
Writeln(Report);
Writeln(Report);

30' 'January
30, ' April
30, ' July
30, 'October

PageNumber := PageNurnber + 1
end; {Header}

February March');
May June');

August September');
November December');

procedure DetailLine (Name: string; Sales: RealArray; Total: real;
var PageNurnber, LineCount: integer);

{Written by: XXXXXXXXXX XX/XX/XX}
{Purpose To print a detail line (one line of a table).}

If page is full, it first advances to a new page and}
prints headings.}

{Parameters: Name - input, the salesman name}
Sales - input, the array of 12 sales figures}
Total - input, the total sales for the sale rep.}
LineCount - update, the current line; controls}

the call to Page and Header;}
following those calls it is reset to 0,)
and it is incremented for each}
person printed.}

{Procedures used: Header, to print headings}
{Globals modified: None}

var

I: integer;
PrintName: string[20];

{loop control to print sales}
{name right padded with blanks}

begin {DetailLine}
{stub version - adapted from Figure 4-7)

{*** Check for full page}

if LineCount >= MaxLines then

begin

Page(Report);
Header(PageNurnber);
Linecount .- 0

end; {if}

{*** Print the lines and increment the count of lines on this page}

PrintName := concat(Name, ' ');

Write(Report, PrintName 20, I I 4);

{20 spaces}

{name}

Figure 4-15 (continues next page)

332 MORE ON SUBPROGRAMS CHAP. 4

for I := 1 to 3 do

Write(Report, Sales[I)

Writeln(Report);

Write(Report, ' ' : 24);

for I := 4 to 6 do
Write(Report, Sales[I)

Writeln(Report);

Write(Report, ' ' : 24);

for I := 7 to 9 do

Write(Report, Sales[I)

Writeln(Report);

Write(Report, ' ' : 24);

for I := 10 to 12 do

13 2);

13 2);

13 2);

Write(Report, Sales[I) : 13 : 2);

Write(Report, ' ' : 3, Total : 13 : 2);

Writeln(Report);

Writeln(Report);

LineCount := LineCount + 5

end; {DetailLine}

begin {Driver}

{*** Initialize the page control variables}

PageNumber : = 1 ;

LineCount : = 0;

{*** Set up variables to be printed}

for I := 1 to 12 do
SalesArr[I] := 100 * I;

Name:= 'name';
YearTotal := 7800;

{*** Perform the trial run}

Instructions;

{Jan - Feb - Mar}

{Apr - May - Jun}

{Jul - Aug - Sep}

{Oct - Nov - Dec}

{total sales}

Write('How many people do you want to print? ');
Readln(NPeople);

end.

Header(PageNumber);

for I := 1 to NPeople do
begin

DetailLine(Name, SalesArr, YearTotal, PageNumber, LineCount)

end {for}

Figure 4-15 (continues next page)

4-3 CASE STUDIES 333

SAMPLE INPUT AND OUTPUT

At terminal:

How many people do you want to print? 2

On printer:

LIST OF EMPLOYEE SALES

NAME MONTHLY SALES TOTAL SALES

January February March

April May June

July August September

October November December

name 100.00 200.00 300.00

400.00 500.00 600.00

700.00 800.00 900.00

1000.00 llOO. 00 1200.00

name 100.00 200.00 300.00

400.00 500.00 600.00

700.00 800.00 900.00

000.00 ll00.00 1200.00

Figure 4-15 (continued)

Before the loop, we must

initialize variables for output control (PageNumber, LineCount)
print headings on the first page
set the company totals to 0

After the loop, we print the company totals on a new page.

page 1

7800.00

7800.00

In studying the steps listed here, we chose to modularize as indicated in this hierarchy
chart, which emphasizes the portion of the program we are working on now:

334 MORE ON SUBPROGRAMS CHAP. 4

Initialize:

GetValidSales:

TotalForYear:

Procedure to set company totals to 0.

Procedure to obtain sales amount for one month.

Function to calculate total sales for one employee.

AddToTotal:

PrintTotal:

Procedure to add one employee's sales amounts to the company totals.

Procedure to print the company summary.

The complete program appears as Figure 4-16; a small sample run appears as Figure
4-17. The program is long, but it has been modularized so that no one piece is very compli
cated. You should examine the main module and each procedure, using the hierarchy chart
as a guide to the overall structure of the program.

program SalesTable;

{Written by: xxxxxxxxxx XX/XX/XX}
{Purpose: To create a table listing the names and monthly sales}

figures for a number of sales employees.}
In addition, the total sales for each month}
are calculated and printed on a separate page}

{Procedures used: Instructions to print instructions}
Header (called by DetailLine as well as main module),}

to print headings}
DetailLine, to print one line of the table}
GetValidSales, to obtain a valid sales figure for}

one month}
Initialize, to initialize the array of sales totals}
AddToTotal, to add each salesperson's sales figures}

to the running total}
PrintTotal, to print the total sales}

{Functions used: CommisFn, to calculate a monthly commission}

const
EndOfData = ' ' ;
Maxinsiex = 12;
MaxLines = 45;
MaximumAmount 5000.0;

type

{terminating value for name}
{size of arrays}
{maximum lines per page}
{maximum sales amount}

RealArray array[l .. MaxindexJ of real;

var
{loop control}
{page number}
{line count}
{salesperson name, input}

I: integer;
PageNumber: integer;
LineCount: integer;
Name: string;
SalesArr: RealArray;
TotalSales: RealArray;
YearTotal: real;
Report: text;

{12 sales figures for salesperson, input}
{12 total sales figures for company}
{total sales to be printed}
{name for printer}

Figure 4-16 Program to print monthly sales (continued next page).

4-3 CASE STUDIES 335

procedure Instructions;
begin {stub}
end;

{procedures Header and DetailLine as shown in Figure 4-15 inserted here}

procedure GetValidSales (Month: integer; var Amount: real);

{Written by: XXXXXXXXXX XX/XX/XX}
{Purpose: To obtain a valid sales figure (in the range from 0}
{ to MaximumAmount, a global constant}
{Parameters: Month - input, the month number to be read}

Amount - output, the value of the amount read}

begin {GetValidSales}
Writeln;
Writeln('Month #',Month: 1);
Write('Enter sales amount (0 - ' MaximumAmount
Readln(Amount);

1

while (Amount < 0.0) or (Amount > MaximumAmount) do
begin

Write('Illegal amount entered, try again: ');
Readln(Amount)

end {while}

end; {GetValidSales}

procedure Initialize (var Total: RealArray);

{Written by: xxxxxxxxxx XX/XX/XX}
{Purpose: To set the total array to all zeros}
{Parameters: Total - output, the array to be initialized}

var
I: integer;

begin {Initialize}

for I := 1 to 12 do
begin

Total [I] : = 0 . 0
end {for loop}

end; {Initialize}

{loop control}

2, •) : •) ;

procedure AddToTotal (OnePerson: RealArray; var CompanyTotal:
Real Array);

{Written by: XXXXXXXXXX XX/XX/XX}
{Purpose: To add one person's sales to the company total}
(Parameters: OnePerson - input, the array of sales for one person}

CompanyTotal - update, the company total array}

Figure 4-16 (continues next page)

336 MORE ON SUBPROGRAMS CHAP. 4

var

I: integer;

begin {AddToTotal}

for I := 1 to 12 do
begin

{loop control}

CompanyTotal[I) .- CompanyTotal[I) + OnePerson[I)

end {for loop}

en&; {AddToTotal}

procedure PrintTotal {CompanyTotal: RealArray);

{Written by: XXXXXXXXXX XX/XX/XX}
{Purpose: To print the company totals on a new page.}

{Parameters: CompanyTotal - input, the company total array}

(Procedures used: None}

var
I: integer;

begin {PrintTotal}

Page {Report);
Writeln{Report,

Writeln(Report);

Writeln{Report,

{loop control}

12, 'TOTALS FOR COMPANY');

Month Total') ;

Writeln{Report, ' ----------------------------------');

for I := 1 to 12 do
begin

Writeln{Report, I

end {for loop}

end; {PrintTotal}

14, / I 10, CompanyTotal[I]

function TotalForYear {Sales: RealArray): real;

{Written by: XXXXXXXXXX XX/XX/XX}

12

{Purpose: To calculate the total salesfor one person for one}
year, based on the array of 12 sales figures}

{Parameters: Sales - input, the salesperson 's set of figures}

var
I: integer;

Sum: real;

begin {TotalForYear}

Sum := 0.0;
for I := 1 to 12 do

begin
Sum := Sum + Sales[!]

end; {for loop}

TotalForYear := Sum

end; {TotalForYear}

Figure 4-16 (continues next page)

4-3 CASE STUDIES

{loop control}

{accumulates the total}

2)

337

begin {SalesTable}

{*** Print instructions, initialize the page control variables, and}

print the first set of headings}

Instructions;

PageNumber := l;

LineCount := O;
Header(PageNumber);

{*** Initialize total sales array to all zeros}

Initialize(TotalSales);

{*** Read names and sales in a loop, calculate individual yearly}
total, add to company totals, and print lines containing the}

information for one employee}

repeat

Writeln;
Write('Enter name (tap RETURN to quit): ');

Readln (Name);

if Name <> EndOfData then
begin

for I := 1 to 12 do
begin

{get sales figures}

GetValidSales(I, SalesArr[I])

end; {for}

YearTotal := TotalForYear(SalesArr);{calculate yearly total}

AddToTotal(SalesArr, TotalSales); {add person to total}

DetailLine(Name, SalesArr, YearTotal, PageNumber, LineCount)

{print data}

end {if}

until Name = EndOfData;

{*** When no more input, print the total array and stop the program}

end.

PrintTotal(TotalSales);

Writeln;
Writeln('Report complete.')

Figure 4-16 (continued)

338 MORE ON SUBPROGRAMS CHAP. 4

SAMPLE INPUT AND OUTPUT (PARTIAL)

At terminal:

Enter name (tap RETURN to quit): Bill Frederickson

Month # 1

Enter sales amount (0 - 5000.00): 100

Month # 2

Enter sales amount (0 - 5000.00): 200

Month # 12

Enter sales amount (0 - 5000.00): lQ_Q_

Enter name (tap RETURN to quit): Sally Fielding

Month # 1

Enter sales amount (0 - 5000.00): 5001

Illegal amount entered, try again: 5000

Month # 2

Enter sales amount (0 - 5000.00): 5000.01

Illegal amount entered, try again: 5000

Month # 3

Enter sales amount (0 - 5000.00): -1

Illegal amount entered, try again: -.01

Illegal amount entered, try again: 0

Month # 12

Enter sales amount (O - 5000.00): 432

Enter name (tap RETURN to quit):

Report complete.

Tap RETURN to exit.

Figure 4-17 Sample run of Case Study No. 6 (continues next page).

4-3 CASE STUDIES 339

On printer (first page):

LIST OF EMPLOYEE SALES

NAME

January

April

July

October

name 100.00

400.00

600.00

300.00

name 5000.00

100.00

308.78

100.00

On printer (second page):

TOTALS FOR COMPANY

Month

1

2

3

4

5

6

7

8

9

10

11

12

Figure 4-17 (continued)

EXERCISES

MONTHLY SALES

February

May

August

November

200.00

500.00

500.00

200.00

5000.00

500.00

3800.00

150.00

Total

5100.00

5200.00

300.00

500.00

1000.00

956.45

908.78

4300.00

805.50

400.00

350.00

532.00

Exercises 1 to 4 refer to Case Study No. 4.

page 1

TOTAL SALES

March

June

September

December

300.00

600.00

400.00

100.00 4200.00

0. 00

356.45

405.50

432.00 16152.73

1. Write a program to read an integer N, then print the first N primes. (For example, if N = 7, then
the answers are 2, 3, 5, 7, II, 13, and 17.) Write a test plan for this program.

2. Write a program that reads a series of input integers; for each, print a message telling whether
the number is prime or composite (not prime).

3. (a) It is unnecessary to check even numbers to determine if they are prime, as 2 is the only
even prime number. Revise the case study to print 2 before the loop, and then check only
the odd numbers(~ 3).

340 MORE ON SUBPROGRAMS CHAP. 4

(b) If we revise the main program as in part (a), then we are only checking odd numbers.
Revise the Divisor function to take advantage of this fact. (That is, look for divisors that
are odd numbers.)

(c) Can this revised Divisor function be used in Case Study No. 5? Explain your position.

4. If a number N is going to have a divisor other than N, then the smallest divisor is~ Sqrt(N).
(a) Explain why this statement is true.
(b) Revise the Divisor function to take advantage of this fact.

Exercises 5 to 7 refer to Case Study No. 5.

5. Modify Case Study No. 5 to print the factors on a single line. (Hint: Use Write rather than
Writeln.) When is it appropriate to send a carriage return using Writeln?

6. Modify Exercise 5 to obtain output similar to

2 * 2 * 5 * 5

7. Modify Exercise 6 to obtain output similar to

100 = 2 * 2 * 5 * 5

Exercises 8 to 9 refer to Case Study No. 6

8. Modify Case Study No. 6 to precede the name with an asterisk (*) if the total sales are under
$10,000. If any names are marked, place a footnote on the final page explaining the asterisk.

9. Add other summary statistics to the final page for Case Study No. 6:
(a) Which months had the lowest and highest company totals?
(b) What was the company grand total?
(c) How many employees had at least one month with no sales?
(d) Who had the highest total sales? What was this total?

In the remaining exercises, you will develop subprograms or complete programs. For some,
ideas developed in the case studies can be useful.

10. Write the main program for the following situation. (You will want to decide which steps might
be done as subprograms and what parameters would be required.)

Each set of input data contains employee ID number, rank, number of units manufactured, basic
bonus rate, and number of years experience. Your program should calculate and print basic pay
and bonus pay for each employee. It should also print the ID of the person of rank 'A' with the
most units produced and the average years of experience of the employees.

The basic pay consists of $200 for code 'A', $300 for code 'B', and $355 for code 'C', plus $5
for each year of experience.

The bonus pay is based on the number of units manufactured: 0 if under 100; basic bonus rate
times basic pay if 100 to 150; 1.5 times as much if over 150.

11. (a) Write a Boolean function RelativelyPrime(A, B) that returns true if A and B are relatively
prime, false otherwise. Use the GCD function developed earlier: GCD(A, B) is the greatest
common divisor of A and B.

(b) Write a driver to test the function.

12. (a) Write a Boolean function Near(Test, Homework) to do the following. Input consists of two
real numbers between 0.00 and 1.00, representing a test percentage and a homework per
centage. The function returns true if the homework percentage is no more than one letter

EXERCISES 341

grade below the test percentage (using 90 percent = A, 80 percent = B, etc.); otherwise it
returns false. For example, for a test percentage of 0.958 and a homework percentage of
0.8012, the answer is true. For 0.901 and 0.795, the answer is false.

(b) Write a main program that reads a series of data containing name, test percentage, and
homework percentage. For each person, it should calculate and print the final average and
the corresponding letter grade. Use subprograms where appropriate. For any subprogram
you use, describe its parameters and logic. Note: The final average is

0.7 x test percentage+ 0.3 x homework percentage

However, for a person whose homework percentage is lower than the test percentage, but
"near" as defined in part (a), the final average is just the test percentage.

(c) Give a test plan for the Near function.

13. A "prime pair" is a pair of primes exactly two apart. For example, 11 and 13 form a prime pair,
as do 29 and 31. Write a program to print all the prime pairs between 2 and N, where N is
supplied by the user.

14. Write a program to find the roots of a quadratic equation, using the following general design.

342

Recall that, for a quadratic equation aX2 +bx+ c = 0, the roots are given by

-b+...fb2 -4ac
2a

There are three distinct possibilities:

2a

(1) b2 - 4ac is positive. Then there are two distinct real roots. For example, if a = 1, b = 4, and
c = 3, then b2 - 4ac = 4 and (plugging these values into the previous formulas) the roots are
-1.0 and -3.0.

(2) b2 - 4ac is zero. Then there is a single real root. For example, if a= 1, b = 2, and c =l, then
b2 - 4ac = 0, and the single root is -1.0.

(3) b2 - 4ac is negative. Then there are two complex number solutions, m + ni and m - ni,
where

m=-bl2a

and

...f-(b2 -4ac)
n=

2a

For example, with a= 1, b = 1, and c = 514, b2 - 4ac = -4, and we have the roots of -0.5 + l.Oi
and -0.5 - 1.0i.

(Note: The quantity b2 - 4ac is known as the discriminant, and the letter D is used to indicate
it.)

Your output should appear in a form similar to the following, with new headings on each page.

A

1. 00

1. 00

1. 00

B

-2.00

-2.00

-2.00

c
-3.00

10.00

1. 00

Type First Root Second Root

2 real 3.00 -2.00

2 complex 1.00 + 3.00 I 1.00 - 3.00 I

1 real 1. 00

MORE ON SUBPROGRAMS CHAP. 4

(a) Write a DetailLine procedure to print the output line in the proper form. It should have six
parameters: A, B, C, Numberl, Number2, and DSign.

A, B, and C are the coefficients of the original equation. DSign is an integer that is either
1, 0, or -1, the "sign" of the discriminant (1 for positive, 0 for zero, -1 for negative).
Numberl and Number2 are real; what they represent depends on the value of DSign:

(1) If DSign is 1 (D is positive), then Numberl and Number2 are the two distinct real
roots.

(2) If DSign is 0 (D is 0), then Numberl is the single real root and Number2 is meaning
less.

(3) If DSign is -1 (D is negative), then Numbed and Number2 are the real and imaginary
parts, respectively, of the complex solutions (m and n before). You can assume that Num
ber2 is positive. The answers are

Numberl + Number2 I

Numberl - Number2 I

(b) Write a GetData procedure that reads data records containing A, B, and C, the coefficients
of a quadratic equation. We insist that A is a positive number; print an error message for
faulty input.

(c) Write a procedure that calculates three values. The first is the sign of the discriminant D =
b2 - 4ac . The second and third are

-b/2a and ..Jfi51/2a

(d) Using the routines developed in parts (a) to (c), write a program that reads a series of
inputs, each containing A, B, and C, and prints a table of solutions to the corresponding
equations.

15. Modify the program of Exercise 14 to remove the restriction that A must be positive. (Notice
that if A is 0, the equation is bx + c = 0, which has one real solution, x = -c/b. However, if both
A and B are 0, print an error message.)

16. Print a table of square roots for all the integers from 1 to 500, 50 per page.

17. Repeat Exercise 16, but for the real numbers 0.1, 0.2, ... , 49.9, and 50.0.

18. An instructor gives five tests but allows each student to take either three, four, or five. (A
student who takes fewer than three is treated as having taken three.) Write a program to create a
printed grade report in a form similar to this:

Name Grades # Total Ave Letter Grade

John Jones 100 - 95 90

Sue Smith - 100 60 90 90

Bill Jacobs 50 40 -

3

4

3

285

340

90

95

85

30

Round the average to the nearest integer. Include various statistics, such as:

(a) How many took test 5?
(b) What was the average on test 5?
(c) What percentage received each letter grade?
(d) Were there any F's other than by people who apparently "gave up"?

EXERCISES

A

A

F

343

19. Write an elementary school arithmetic tutorial package. The basic idea is to pose questions to a
student and check the answers. In its simplest form, for example, the program might do the
following 10 times:

pose an addition problem
read the student's answer
if the answer is right, add 1 to a count; if not, print the correct answer

At the end, it could print a count of how many were right. However, you should go beyond this
simplest form. Here are some suggestions:

(a) Include several operations: add, multiply, find least common denominator, etc. Allow the
user to choose which she wants.

(b) Allow up to three attempts to get the correct answer.
(c) Calculate a score where getting the answer on the first try is worth more than getting it on

the second try, and so on.
(d) Allow the user to set a difficulty level, with a higher level getting harder problems (bigger

numbers).

20. In this exercise, we explore some ideas related to the game of blackjack. In a simplified version
of the game, an ace is worth 11 points; cards 2 to 10 are worth the face value; and jack, queen,
and king are worth I 0. The object is to get as high a score as possible, without going over 21,
by drawing cards from a deck.

344

(a) We can simulate the cards with integers 0 through 51, as shown here:

0: ace of clubs

1: 2 of clubs

9: 10 of clubs

10: jack of clubs

11: queen of clubs

12: king of clubs

13: ace of diamonds

25: king of diamonds

Write a procedure that, given an integer in the range 0 to 51, prints the card description.
Hint: A case structure with 52 branches works, but is not very pleasant. Can you think of a
way to use mod and div to solve this?

MORE ON SUBPROGRAMS CHAP. 4

(b) Write a function that, given a number between 0 and 51, calculates its value. See the hint
for part (a).

(c) Simulating the draw of a card is a little tricky. If we assume that the card supply consists of
an infinite number of decks, then

Card: = abs(Random mod 52) + 1

works.

If we have only one deck, on the other hand, we must avoid repeating a card. One possibil
ity is a Boolean array Dealt with index values 0 through 51, where Dealt[I] is true if and
only if card I has already been dealt.

Write a function Card that simulates drawing a card. It should utilize the Dealt array to
avoid redealing a card that was previously dealt. Note: Declaring Boolean arrays is similar
to declaring integer or real arrays.

(d) Combine the ideas presented here to simulate one play of a game of blackjack. It should
deal two cards, then repeatedly ask the user if it is to continue. Print a message such as
"You quit with 17 points" or "You went over 21 ".

(e) Modify part (d) to allow several games. Shuffle the deck after each game.
(t) Modify part (d) to have the user play against the computer. Deal two cards to the user; deal

two to the computer, but only print the second. Deal cards to the user until told to quit or
the cards go over 21. If the cards go over 21, the computer wins. If not, print the first
computer card, then deal cards to the computer with the strategy: "stay" (stop) on a total 16
or higher. If the computer goes over 21, the user wins; otherwise the user wins if her total
is greater than the computer's. Shuffle the deck after each game.

21. Many enhancements to the previous exercise are possible. We suggest a few for your consider
ation.
(a) Aces are worth either l or 11, whichever yields the higher score not over 21. (The choice

can change after subsequent draws.)
(b) Drawing five cards whose total is not over 21 is an automatic win for the user.
(c) Betting could be allowed with a house limit and with the player staked to an initial amount.
(d) The deck could be shuffled less frequently. (With our somewhat primitive way of telling

which cards have been dealt, this could slow down the drawing of a card.)

22. It is possible to run simulations to determine probabilities for the blackjack game. These can be
done with any version of the game you have written. Notice that the printing of the cards should
be removed for these simulations.
(a) How many times out of 1000 would you expect the dealer to exceed 21 using the strategy

of stopping at 16 or higher?
(b) Would a user strategy of stopping at 17 or higher likely win or lose more often? Run the

game l 000 times to find out.
(c) The user can see one but not both of the dealer's cards. Suppose the user chooses to stop at

17 if the dealer shows a 10 or higher (including an ace) and at 14 otherwise. How many
out of 1000 might the user expect to win?

23. Write a program that, given a series of integers, calculates the score for a game of bowling.
Each integer in the series represents the number of pins knocked down by one ball. A sample
game is shown here.

EXERCISES 345

346

FRAME

2
3

4

5

6
7

8
9

10

BALLS

3,6

4,6

7,3

10

10

10
3, 2

5, 1

8,2

10

SCORE FOR
FRAME

9

17

20

30
23

15

5

6

20

19

TOTAL COMMENT

9 Open frame

26 Spare-10 plus next ball

46

76 Strike-10 plus next two balls

99

114

119

125

145

164 Strike in last frame gets two extra
balls (spare gets one)

The following are some tips that may help you in your design.

(a) To record the score from strikes and spares, you must "look ahead" at future balls. This is a
lot easier to do if you store the series of integers in an integer array.

(b) For starters, you might write a program to:

(1) Read a game into an array (terminate by an entry of -1)

(2) Print output similar to sample game shown, but with only three columns filled in (frame,
balls, and comment--either "strike," "spare," or "open"). Ignore the "extra" balls for now.
Assume the data are valid.

(c) Once you get part (b), finishing the problem should not be too difficult. You should, if
possible, include detection of illegal situations such as this:

Frame 1: 3, 6

Frame 2: 4, 7-impossible

MORE ON SUBPROGRAMS CHAP. 4

5 Elementary Data Structuring

OBJECTIVES

This chapter focuses on the file, record, and set Pascal data types. After completing this
chapter, you will be able to:

• use text files in your programs

•use the record and set data types effectively
• build your own data types from records, sets, and arrays

• use records, sets, arrays, and files in combination to solve a variety of programming
problems

5-1 TEXT FILES

A text file is organized as a number of lines, each consisting of a varying number of
characters. The concept is similar to a (perhaps long) page of typewritten words.

The file can be read from or written to either line by line or character by character. We
can think of reading from a text file as similar to input via a keyboard and writing to a text
file as similar to output to a display screen or printer. Thus, we are already familiar with
most of the details of reading and writing lines of text files. In fact, most of the programs
that we have discussed thus far can be easily modified to obtain input from a text file
instead of a keyboard and to produce output to a text file instead of a screen or printer. We
can either read from a text file or write to it, but not both simultaneously. In order to use a
text file, we must first activate it (open the file); then we can either read from or write to the
file; when we are finished, we must deactivate it (close the tile).

347

Basic Text-File Operations

Suppose we wish to work with a file that has the name "MyFriends". Text files are consid
ered a type, just like strings or integers. Each text file used in a program is given a name for
use within the program (called the f"de designator or logical file name), and defined to be a
variable of type text:

var
MyFile: text;

We are free to choose the name by which the program will refer to the file; it does not
have to be the same name the file has on disk, which is often known as the disk name or
physical file name. (This decoupling of names has certain advantages, which are discussed
in what follows.)

Next, in the body of the program (sometime after the first begin), we open the file to
make it ready for use.

If we wish to create a new file of friends' names, we can open the file with the
Rewrite command:

Rewrite(MyFile, 'MyFriends')

Rewrite first makes the connection between the file designator (MyFile) and the correspond
ing disk file (MyFriends). If a file with the name MyFriends does not exist, it is created; if a
file with this name already exists, it is erased and replaced by the new file (with the same
disk name).

After the file has been opened, we can write to it by using the procedures Write and
Writeln in conjunction with the file designator. For example, if we wish to write "Sally
Jones" to the file, we could use the statement:

Writeln(MyFile, 'Sally Jones')

When we are finished with file activities, we must close the file with the Close command:

Close(MyFile)

The program in Figure 5-1 illustrates these ideas. This program creates a file called
MyFriends and writes two friends' names into it. After you have run the program, check the
contents of the file MyFriends (by using a text editor). You should see that the contents of
the file are

Sally Jones

John Smith

My Friends

If we wish to read information (input) from an existing file, we use the Reset com
mand. Suppose a file of friends' names called MyFriends already existed on the disk. Then

• the command

Reset(MyFile, 'MyFriends')

348 ELEMENTARY DATA STRUCTURING CHAP. 5

program Friends;

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To write the names of some friends on a file}

{Procedures Used: Instructions - to print instructions}

var
MyFile: text;

procedure Instructions;
begin {stub)

end;

begin {Friends}

{File designator}

{*** Print instructions and open the file}

Instructions;

Rewrite(MyFile, 'MyFriends');

{*** Write to the file}

Writeln(MyFile, ' My Friends');

Writeln(MyFile);

Writeln(MyFile, 'Sally Jones');

Writeln(MyFile, 'John Smith');

{*** Close the file}

Close (MyFile);

{*** Print terminating message and stop program}

Writeln;

Writeln('Friends file created.')

end.

Figure 5-1 Writing to a text file.

would connect the file designator MyFile to the MyFriends disk file and open it for input.
We can now use Read and Readln to input information from the file into our program; for
instance:

Readln(MyFile, Name)

would read the next portion of data in the file into the variable "Name".
As with files opened for output, files opened for input must also be closed (via the

Close command) when we have finished with them.

5-1 TEXT FILES 349

File-Processing Activities

A text file can be created by using a program similar to the one in Figure 5-1 or by using a
text editor. In any case, once a file has been created, there are various activities that we can
perform on the file. Among these are

Display the file

Print the file

Add lines to the file

Find a particular line in the file
Change a particular line in the file

We now discuss each of these activities.

Displaying and Printing Text Files

Suppose that we wish to display the file on the screen. We must first declare our file
designator :

FriendsList: text;

We have used a different name for the file-designator variable to emphasize that you have
the choice of naming the variable as you wish. We assign the file name to the file designator
with the statement:

Reset(FriendsList, 'MyFriends')

since we wish to read from the file. We read lines from the file by using the Readln
procedure along with a string variable. Suppose that we have declared the string variable
Line in the var section of the program. Then, we can read one line of the file with the
statement:

Readln(FriendsList, Line)

The first time that we use the Readln statement, we read the first line of the file; the
second time, we read the second line, and so on. Pascal provides a Boolean function Eof to

help us in reading exactly the correct number of lines of a text file. We can test to see if we
have read the entire file by the test:

if Eof(FriendsList) then ...

If we are reading lines of the file in a loop, then we can use one of the looping
constructs:

while not Eof(FriendsList) do ...
repeat ... until Eof(FriendsList)

Eof(file designator) is true exactly when there are no more data left in the file that can
be read. In a program that reads using Readln, it becomes true immediately after the last line
is read. We should use the construct

while not Eof(file designator) do ...

350 ELEMENTARY DATA STRUCTURING CHAP. 5

for a loop where we are not sure if there are any data to be read. If we are certain that there
are data that can be read, then we can use the construct

repeat ...
until Eof{file designator)

We can display each line that is read from the file by the statement

Writeln(Line)

Finally, when we are through, we close the file with the statement

Close(FriendsList)

In Figure 5-2, we illustrate this discussion by means of a program that reads and
displays the disk file MyFriends.

Note. We chose to use a while loop in this program. This allows the program to
function correctly even if the file is empty.

After you study the program of Figure 5-2, you may note that the dependence on the
particular file MyFriends is slight. In Figure 5-3, we give a general-purpose program to read
and display any text file whose lines are at most 80 characters in length. The major differ
ences between this program and the one in Figure 5-2 are italicized.

Note. In Figure 5-3, we allow the user to specify file names with lengths of up to
255 characters (the length of type string variables). Since the Mac allows disk file names to
be at most 31 characters, you might be wondering why we need such a large-sized variable.

Up to now, we have been assuming that a file is within the same folder as the THINK
Pascal compiler (or that neither is in a folder). If the file to be opened is not in the same
location as THINK, its path name must be supplied or THINK is not able to locate the file.

On the Mac, a folder can contain files and folders; these folders in turn can contain
files and folders, and so on. To specify a path to a file not in the same location as THINK,
we give the disk drive name followed by all the folders in order from the first encountered
to the last, followed by file's name, with each item in this listed separated by colons. For
example:

MyDisk:Personal:Telephone Lists:MyFriends

would indicate the file MyFriends is in folder Telephone Lists, which in turn is in folder
Personal, which resides on the disk MyDisk. (Note that blanks in disk file or folder names
are legal, but not in Pascal file designators.)

By allowing a long file name, the program in Figure 5-3 becomes even more general,
as files having very long path names can still be used. Were the file name variable to be a
shorter string, we would be limiting ourselves to those files whose path names are no longer
than the size of this short string.

5-1 TEXT FILES 351

program Display;

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To read and display the file MyFile}

{Procedures Used: Instructions - to print instructions}

var
FriendsList: text;

Line: string;

procedure Instructions;
begin {stub}

end;

begin {Display}

{File designator}

{For lines of the file}

{*** Print instructions and designate the file}

Instructions;

{*** Open the file}

Reset(FriendsList, 'MyFile');

{*** Put heading on the screen}

Writeln;

Writeln(' Lines of the file: ' MyFile);

Writeln;

{*** Read and display lines of the file}

while not Eof(FriendsList) do

begin

Readln(FriendsList, Line);

Writeln(Line)
end; {while}

{*** Close the file}

Close(FriendsList);

{*** Print terminating message and stop program}

Writeln;
Writeln('All of MyFile has been displayed.');

end.

Figure 5-2 Reading from a text file.

You can use the program of Figure 5-3 to display the Pascal programs that you have
written so far. You may find other text files that you can also display using the program.

352 ELEMENTARY DATA STRUCTURING CHAP. 5

program FileDisplay;

{Written by: XXXXXXXXX XX/XX/XX}
{Purpose: To read and display the contents of a text file}
{Procedures Used: Instructions - to print instructions}

var
AnyFile: text;
FileName: string;
Line: string[BOJ;

procedure Instructions;
begin {stub}
end;

begin {FileDisplay}

{File designator}
{Name of the file}
{For lines of the file}

{*** Print instructions and ask the user for the filename}

Instructions;
Write('Enter the filename: ');
Readln'(FileName);

{*** Open the file}

Reset(AnyFile, FileName);

{*** Put heading on the screen}

Writeln;
Writeln('Lines of the file: • FileName);
Writeln;

{*** Read and display lines of the file}

while not Eof(AnyFile) do
begin

Readln(AnyFile, Line);
Writeln(Line)

end; {while}

{*** Close the file}

Close(AnyFile);

{*** Print terminating message and stop program}

Writeln;
Writeln('All lines of • FileName, • displayed.')

end.

Figure 5-3 User-specified file name.

5-1 TEXT FILES 353

Summary of File-Handling Syntax

In the examples so far, we have introduced various text file handling. Before presenting
further examples of their use, let us give a brief summary. The file-handling statements are

var

file designator: text;

Reset(file designator, file name)

Rewrite(file designator, file name)

Readln(file designator, ...)

Writeln(file designator, ...)

Eof(file designator)

Close(file designator)

In a typical program that uses a text file, we choose a variable name to represent the
file (the file designator). We use either Reset or Rewrite to open the file (for input or output)
and to assign the file designator to a particular file. We use Readln or Writeln to read or
write lines of the file. If we are reading, we can use the Boolean function Eof to see if there
are more data to be read. Finally, after processing is complete, we close the file using Close.

Adding Lines to a Text File

Suppose you have just made a new friend, Nancy Doe, and wish to add her to the My
Friends file. This can be done by following these steps:

copy MyFriends to the file WorkingFile
read the lines of WorkingFile, writing them to My Friends
write the new line (for Nancy Doe) to MyFriends

Copying one file to another requires that we have two files open at the same time, one
for reading (Reset) and one for writing (Rewrite). We need two file designators; we must be
sure to close both files when the copying is complete. After the files are open, the copying
could be accomplished with this loop:

while not Eof(InFile) do
begin

Readln(InFile, Line);

Writeln(OutFile, Line)

end {while}

The copy operation is a good one to make into a procedure. We use the procedure
CopyFile, which has the header line:

procedure CopyFile(var SourceFile, TargetFile: text);

Note. File parameters are required to be var parameters.

In the main program, let us assume that the file designator InFile is used for the source
file and the file designator OutFile is used for the target file. When we wish to perform the
copy operation, we invoke the procedure with the statement:

354 ELEMENTARY DATA STRUCTURING CHAP. 5

CopyFile(Infile, OutFile)

In Figure 5-4, we show the complete program for adding a friend to our list.

program AddFriend;

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To add a friend's name to the file}
{Procedures Used: Instructions - to print instructions}

CopyFile - to copy one text file to another}

var
InFile: text;

OutFile: text;

Line: string[80];

procedure Instructions;

begin {stub}

end;

{File designator for source file}

{File designator for target file}

{One line of file}

procedure CopyFile (var SourceFile, TargetFile: text);

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To copy one text file to another. The files}

must be open.}

{Parameters: SourceFile - file to copy from (var)}

TargetFile - file to copy to (var)}

begin {CopyFile}

while not Eof(SourceFile) do
begin

Readln(Sourcefile, Line);

Writeln(Targetfile, Line)

end {while}

end; {CopyFile}

begin {AddFriend}

{*** Print instructions}

Instructions;

{*** Open the files}

Reset(InFile, 'MyFriends');

Rewrite(OutFile, 'WorkingFile');

{*** Copy the source file to the target file}

CopyFile(Infile, OutFile);

Figure 5-4 Updating a text file (continues next page).

5-1 TEXT FILES 355

{*** Close the files}

Close (InFile);
Close (OutFile);

{*** Open the files to recopy lines}

Reset(InFile, 'WorkingFile');
Rewrite(OutFile, 'MyFriends');

{*** Copy the source file to the target file}

CopyFile(Infile, OutFile);

{*** Write the new name to the target file}

Writeln(OutFile, 'Nancy Doe');

{*** Close the files}

Close (InFile);
Close(OutFile);

{*** Print terminating message and stop program}

Writeln;
Writeln('New name has been added to friends file')

end.

Figure 5-4 (continued)

Interactive File Processing

The method of file creation that we used in Figure 5-1 is crude and inflexible. A better way
of building files is for the user to respond to prompts for the information that is to be placed
in the file, that is, to build the file interactively. For example, if we wish to build a file of
friends that includes both their names and their phone numbers, we could prompt the user
for the information:

356

file name

list of friends and phone numbers

In Figure 5-5, we show a program that creates such a file.
Note that the form of the file is

Friends Names and Phone Numbers

Smedley Smoke
111-2222

Lionel Train
(213) 555-1234

ELEMENTARY DATA STRUCTURING CHAP. 5

program Build;

{Written by: XXXXXXXXX XX/XX/XX}
{Purpose: To build a file of friends}
{Procedures Used: Instructions - to print instructions}

const

EndOfData = '$END';
var

FriendsFile: text;
FileName: string;
Name: string;
Phone: string[l3];

procedure Instructions;
begin {stub}
end;

begin {Build}

{File designator}
{Name of the file}
{Friend's name}
{Friend's phone (including room for}
{area code)}

{*** Print instructions and ask the user for the filename}

Instructions;
Write('Enter the filename: ');
Readln(FileName);

{*** Open the file}

Rewrite(FriendsFile, FileName);

{*** Put heading on the file}

Writeln(FriendsFile, '
Writeln(FriendsFile);

Friends Names and Phone Numbers');

{*** Get names and phone numbers for file}

repeat
Writeln;
Write('Enter name ($END to quit): ');
Readln (Name);
if Name <> EndOfData then

begin
Write('Enter phone number: ');
Readln(Phone);
Writeln(FriendsFile, Name);
Writeln(FriendsFile, Phone)

end {if}

until Name = EndOfData;

{*** Close the file}

Close(FriendsFile);

{*** Stop program}

end.

Figure 5-5 Interactive text-file building.

5-1 TEXT FILES 357

The reason why we put the names and phone numbers on separate lines of the file is a bit
complicated. Suppose that we used the same line for name and phone number. A sample line
of the file might be

Joan Smith 111-2222

Now suppose that we wish to read lines of the file and recover the name and phone number.
How can we tell our program that the name should be "Joan Smith" rather than "Joan" and
the phone number should be "111-2222" rather than "Smith 111-2222"? It would require
some tricky use of formatting when building the file and subsequent care when reading the
file to achieve the desired results. (We discuss some further formatting issues in Chapter 8.)
We find a simple and satisfactory solution for dealing with this file in the next section; but
for now, we use separate lines for separate data items to avoid difficulty.

Searching and Modifying Text Files

For our next example, we present a program that asks the user for the name of a friend and
displays the friend's phone number. This program provides an example of a search of a file.
The basic idea is to ask the user for a friend's name, to skip over the heading lines of the
file, to read names and phone numbers from the file until the friend is found, and to display
the phone number for the friend. Can we trust the user to ask for the name of a friend that is
in the file? To answer this question, we quote from an axiom of interactive programming:

The user will make mistakes!

Our searching strategy must take into account that we may not find the friend's name
in the file. We can use the Eof function to signal that we have searched the entire file and
not found the friend for whom the user is looking.

Note that there are two ways for the search to terminate: successfully (finding a
friend) or unsuccessfully (reaching the end-of-file). We choose to design the search in the
following way:

while friend has not been found and end-of-file has not occurred:
read name and phone number
if friend was found, print phone number; otherwise print not found

Note that in the program, we use a compound condition in searching for the friend's
name:

while (Friend<> Name) and (not Eof(FriendsFile)) do ...

The loop can terminate in one of two ways:

1. Friend = Name (the friend has been found).

2. Eof(FriendsFile) is true (end-of-file has occurred).

After the loop, we wish to check to see which condition caused the search to end.
The condition that always works correctly is

Friend = Name

358 ELEMENTARY DATA STRUCTURING CHAP. 5

If we substituted the condition

Eof(FriendsFile)

in order to check how the loop has terminated, we would get the wrong result if the desired
name were the last name in the file. This is a subtle point worthy of some reflection. (What
is the value of Eof(FriendsFile) before the last name is read? Before the last phone number
is read? After the last phone number is read?)

Note. The answers are false, false, and true. Thus, if the last name is the one we
seek, Eof(FriendsFile) is true after the loop.

One other step of the program is worthy of special note. When we write a while loop,
we must always be sure that the condition for the loop is defined when the loop begins. In
our case, the condition is

(Friend<> Name) and (not Eof(FriendsFile))

Before we read the first name, the variable Name is undefined. We therefore must
assign some value to it, so that "Friend <> Name" makes sense. We choose a null value
because this could not inadvertently be equal to the name for which we are searching.

Figure 5-6 shows a program that searches for a friend's phone number.

program Search;

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To search for a friend and display her phone number}

{Procedures used: Instructions - to print instructions}

var

FriendsFile: text;

FileName: string;

Friend: string;

Name: string;

Phone: string[l2];

procedure Instructions;
begin {stub}

end;

begin {Search}

{File designator}

{Disk file name}

{Name of friend to find}

{Name from file}

{Friend's phone number}

{*** Print instructions and ask the user for the filename}

Instructions;
Write('Enter the filename: ');

Readln(FileName);

Figure 5-6 Searching a text file (continues next page).

5-1 TEXT FILES 359

{*** Open the file}

Reset(FriendsFile, FileNarne);

{*** Skip heading lines of the file}

Readln(FriendsFile);
Readln(FriendsFile);

{Reads "Friends Names and Phone Numbers"}
{Reads the blank line}

{*** Get name from the user}

Writeln;
Write('Enter the friend''s name: ');
Readln (Friend);

{*** Search the file for the name}

Name:= ''; {Required so while condition is defined}
while (Friend<> Name) and (not (Eof(FriendsFile))) do

begin
Readln(FriendsFile, Name);
Readln(FriendsFile, Phone);

end; {while}

{*** Display the results of the search}

if Friend = Name then
Writeln('The phone number is: ', Phone)

else
Writeln('*** Friend not found.');

{*** Close the file and stop program}

Close(FriendsFile);
end.

Figure 5-6 (continued)

As our last example of text-file processing, we present a program that allows us to
change the phone number of one of our friends. This program is a combination of the
concepts of adding lines to a file, as illustrated in Figure 5-4, and searching a file, as
illustrated in Figure 5-6. We allow the user to specify the friend's name and, if we find the
friend in the file, we ask the user for the new phone number. The steps for the program are
as follows:

360

ask the user for the filename
open the file
copy the file to WorkingFile
ask the user for the friend's name
search WorkingFile for the friend while copying back to the file
if found, ask the user for the new phone number and write to

the file; otherwise, tell the user that the friend was not found
copy the remainder of WorkingFile back to the file

ELEMENTARY DATA STRUCTURING CHAP. 5

We use the CopyFile procedure once again in order to perform the copying activities
in the program, as shown in Figure 5-7. Two items in the figure are especially noteworthy.
First, after files have been closed, they can be reassigned. Second, the Copy procedure is
invoked a second time to finish the copying operation. It copies starting at the current record
of Infile until end of file is reached.

program ChangePhoneNumber;

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To change a friend 's phone number}

{Procedures Used: Instructions - to print instructions}

Copy - to copy one file to another}

const

WorkingFile 'Search Work File'; {name of working file}

var
InFile: text;

OutFile: text;

FileName: string;

Friend: string;

Name: string;

Phone: string[l2];

Line: string[80];

procedure Instructions;

begin {stub}

end;

{File designator for source file}

{File designator for target file}

{Name of the file}

{Name of friend to find}

{Current name from file}

{Friend's phone number}

{Line of file}

(procedure Copy, as shown in Figure 5-4, is inserted here}

begin {Change}

{*** Print instructions and ask the user for the filename}

Instructions;

Write('Enter the filename: '};

Readln(FileName};

{*** Open the files}

Reset(InFile, FileName};

Rewrite(OutFile, WorkingFile};

{*** Copy the source file to the target file}

CopyFile(Infile, OutFile};

{***Close the files.}

Close(InFile};

Close(OutFile);

Figure 5-7 Interactive text-file update (continues next page).

5-1 TEXT FILES 361

{*** Reopen the files to search for friend}

Reset(InFile, WorkingFile);
Rewrite(OutFile, FileName);

{*** Skip heading lines of the file}

Readln(InFile, Line);
Writeln(OutFile, Line);
Readln(InFile, Line);
Writeln(OutFile, Line);

{*** Get name from the user}

Writeln;
Write('Enter the friend''s name: ');
Readln(Friend);

{*** Search for the name while copying the file}

Name := 11 ;

while (Friend<> Name) and (not Eof(Infile)) do
begin

Readln(Infile, Name);
Writeln(OutFile, Name);
Readln(InFile, Phone);
if Friend = Name then

begin
Writeln('The old phone number is: •, Phone);
Write('Enter the new phone number: ');
Readln(Phone)

end; {if)

Writeln(OutFile, Phone)
end; {while}

{*** Act on the results of an unsuccessful search}

if Friend <> Name then
Writeln('*** Friend not found.');

{*** Finish the copying operation}

CopyFile(Infile, OutFile);

{*** Close the files}

Close (InFile) ;
Close (OutFile);

{*** Print terminating message and stop program}

Writeln;
Writeln('Finished')

end.

FigureS-7 (continued)

362 ELEMENTARY DATA STRUCTURING CHAP. 5

The program of Figure 5-7 assumes that the filename of the file of friends is not called
WorkingFile because that is the file that is used for copying. Another assumption is that the
user will enter the correct name for the file. The program will fail to work correctly if either
of these assumptions is incorrect. You should experiment with this program by violating one
or both of the assumptions. A program that is intended for serious use should not make any
assumptions; the program should be designed to handle all contingencies. We discuss the
handling of input/output errors (such as trying to read from a non-existent file) in Section
5-3.

Text Files as Standard 1/0

The examples in this section have dealt with a file as the primary focus of the program. For
example, we have had programs to create a file, to print its contents, to search for a value in
a file, and to modify a value in a file.

As we have indicated, text-file processing has much in common with processing input
from a terminal or output to either a terminal or a printer. We describe briefly several types
of programs in which text files can be used as substitutes for the standard input and output
devices.

When the amount of input to be supplied to a program is large, it may be more
convenient for the user to build a text file using an editor, then run the program with that
data. Suppose it turns out, upon examining the result of running the program, that some of
the input is faulty. Then that input can be corrected (using an editor) and the program run
again. This may be much simpler than rerunning an interactive program and having to redo
all the input, including the correct input.

Two specific examples of this come to mind. The first is the THINK Pascal compiler.
It accepts your program as a text file rather than interactively one line at a time. When there
is a problem, you do not have to retype the entire program.

Second, even for a program that will be interactive, this idea can be useful during
debugging and testing. Suppose your test plan includes 34· individual test cases and that the
261h uncovers a bug. After you fix the bug, you should start over with the testing. This is
easy if your test cases are in a text file. When the entire run is bug-free, you can then change
the input to the terminal and run through the tests one final time. (fhe input text file can be
saved for future testing in case modifications are made to the program.)

In a similar way, we can use a file for output rather than the terminal, especially if the
amount of output is extensive. As an example, suppose we are debugging and testing as
described in the previous paragraph. The output from the 34 test cases might flash by so
quickly on the screen that we are unable to see it. We can send the output to a file instead
and examine it using a text editor after the program runs.

A similar example occurs in many production programs. Along with the interactive
input and output, the program can be building a text file (called a trace file). The trace file
contains a complete record of all output from the program and all user input. If a problem
develops while the program is running, the file can be examined to isolate the difficulty. It
can, if it is built carefully, even be used to rerun the program up to the point of the difficulty.

Finally, text files can be used in place of printer output. Consider this situation: You
are to write a program that creates a printed report, but you do not personally own a printer
(or the printer is in the shop). By redirecting all the output that would have gone to the

5-1 TEXT FILES 363

printer to a text file, you can build a file version of the report. Later, when you have access
to a printer, you can print the file (such as by opening the file within THINK and issuing the
Print command) to obtain a printed report. By using this idea, you can write programs that
generate two or more printed reports simultaneously.

We can achieve additional advantages using this technique. It is possible to obtain
multiple copies of the report without having to run the program again, simply by printing
multiple copies of the text file containing the report. And, if the printer paper jams or the
printer malfunctions, the program need not be rerun to obtain the report: we simply fix the
printer and print the disk file again.

DPT

1. We must open a file before we can perform input or output operations on it. Also,
we must use Reset if we wish to read from the file and Rewrite if we wish to write to the
file. If we fail to open the file before attempting to use it, the compiler does not detect the
omission, but we encounter a run-time 1/0 error when we attempt to read from or write to
the file. If we attempt to read from a file that has been opened with Rewrite or to write to a
file that has been opened with Reset, a run-time 1/0 error occurs.

2. There is a danger in using Rewrite to open a file. If the file already exists, then it is
deleted as soon as the Rewrite is executed. Be careful not to carelessly lose valuable files
through this effect of Rewrite.

3. If we attempt to open a file using Reset and the file does not exist, a run-time 1/0
error occurs. We explain a mechanism for controlling this situation in Section 5-3.

4. After using a file, we should close it. If we forget to close a file that has been
opened with Reset and attempt to reopen the file with either Reset or Rewrite, no error
results and nothing is wrong except our programming style. If we forget to close a file that
has been opened with Rewrite, we are very likely to lose some of the data that we have
written to the file. If we get in the habit of always closing files, we will not encounter any
difficulty.

5. Always use the file designator when performing input and output activities with a
file. If we forget to include the file designator in our input and output statements, then we
will find ourselves using the keyboard and screen instead of the file.

6. After searching a file in a loop with a compound exit condition, do not use the
function Eof after the loop has terminated as a check on how termination occurred. Remem
ber that as soon as the last line in a file has been read, Eof(file designator) becomes true.

7. Do not assume that the user of your program always does the correct thing, spells
words correctly, or even types what he or she is intending to type. You already have had
enough experience at using your own programs to realize that even a knowledgeable user
makes mistakes. Attempt to write programs that protect the user from mistakes, instead of
punishing the user for making them. We provide some special techniques for making pro
grams ''bulletproof' (immune from user errors) later in the book.

364 ELEMENTARY DATA STRUCTURING CHAP. 5

Testing

We have given several example programs that illustrate file searching. There are certain test
cases that should always be tested when searching a file for a particular instance of a data
item.

Empty File. Your program should not falter when it encounters a file that contains
no data. You can produce an empty file to use in testing with the following Pascal program:

program EmptyFile;

var
AnyFile: text;

begin {EmptyFile}

Rewrite (AnyFile, 'EmptyFile');

Close(AnyFile)

end.

Target Item Is First. Your program should be tested with a file in which the first
data item is the only one that should be successfully found.

Target Item Is Last. Your program should be tested with a file in which the last
data item is the only one that should be successfully found.

Target Item Is Between First and Last. Your program should be tested with a file
in which some middle data item is the only one that should be successfully found.

Multiple Target Items. Your program should be tested with a file in which there are
at least two data items that should be successfully found. Even more thorough testing would
have several files in which the data items are in the first and last positions, two middle
positions, etc.

No Target Item. Your program should be tested with a file in which there are no
data items that should be successfully found, although some of the data items should be
close (for example: Smith, Sirnth).

If we wished to test the program of Figure 5-6, searching for Joan Smith, we might
use the following set of test files:

Empty File

Target Item First

Friends Names and Phone Numbers

Joan Smith
111-2222
Bill Jones
222-1111

5-1 TEXT FILES 365

REVIEW

366

Target Item Last

Friends Names and Phone Numbers

Bill Jones
222-1111
Joan Smith
111-2222

Target Item in Middle

Friends Names and Phone Numbers

Bill Jones
222-1111
Joan Smith
111-2222
Carol Doe
333-4444

Multiple Target Items (just the phone number should be reported)

Friends Names and Phone Numbers

Carol Doe
333-4444
Joan Smith
111-2222
Bill Jones
222-1111
Joan Smith
999-9999

No Target Item:

Friends Names and Phone Numbers

Bill Jones
222-1111
Joan Simth
111-2222
Carol Doe
333-4444

Terms and Concepts

Close
close a file
disk name
Eof
file designator
interactive
logical file name
open a file

path name
physical file name
Reset
Rewrite
search
text file
trace file

ELEMENTARY DATA STRUCTURING CHAP. 5

Pascal Syntax. Text file manipulation: All examples use "MyFile" as the file des
ignator.

1. To declare the file designator:

var

MyFile: text;

2. To open the file for output:

Rewrite(MyFile, disk file name)

3. To open the file for input:

Reset(MyFile, disk file name)

4. To write to the file:

Writeln(MyFile, 'John Smith')

5. To read from the file:

Readln(MyFile, Name)

6. To test for the end of the file:

if Eof(MyFile) then ...

or

while not Eof(MyFile) do ...

or

repeat until Eof(MyFile)

7. To close the file:

Close(MyFile)

DPT

1. Open a file with Reset before reading or Rewrite before writing.
2. Rewrite deletes an existing file.
3. Opening a non-existent file with Reset causes a run-time error.
4. Close files after using them.
5. Always use the file designator when reading or writing a file.
6. Don't test Eof outside of a loop that has used Eof as part of a compound

exit condition.
7. The user will make mistakes.

REVIEW 367

Testing. To test a program that is searching a file for a particular object, use at ·
least the following test cases:

1. Empty file

2. Target item first

3. Target item last

4. Target item in the middle

5. Multiple target items

6. No target item, some close

EXERCISES

1. Write a program to build a text file called ShoppingList with the following contents:

A Shopping List

2 Frozen Pizzas
10 Bags of chips

4 Cans of soup (assorted)
1 Case of cola

2. Write a program to add the two lines

3 Boxes of cough drops
3 Bottles of aspirin

to the file at these positions:

(a) To the beginning of the file.
(b) To the end of the file.
(c) Between lines 5 and 6 of the file (after the chips).

3. Modify the programs of Exercises 1 and 2 as follows:
(a) Obtain input from the user to be placed into the file you are creating.
(b) Allow the user to insert new data after any line of the file. For each line of the original, do

these steps:

Read the line
Write the line to the output file
Ask the user if he wishes to add lines

if so, read 0 or more lines and add them to the output file

4. Modify the program of Figure 5-3 so that after each segment of 23 lines is displayed, the user is
prompted to tap a key to continue.

5. Modify the program of Figure 5-3 to output to the printer instead of displaying to the screen.
Also, print a heading and page number at the top of each page except the first. Finally, print at
most 58 lines of text on a page.

6. Modify the program of Figure 5-1 by omitting the Close statement. Run the program, and look
at the contents of the MyFriends file. What effect does omitting the Close statement have?

368 ELEMENTARY DATA STRUCTURING CHAP. 5

7. Write a program to produce a text file with the following contents:

program SelfMade;

var
N: integer;

begin {SelfMade}
N := 6;
Writeln(N)

end.

After you have successfully created the file with your program, see if the text file can be
compiled and run as a program in its own right. In a small way, you just wrote a program that
wrote a program.

8. Write a program that reads a text file and prints each line, allowing the user to choose one of
three options. The user can choose to delete the line, retype it, or leave it unchanged. For
convenience, this last option should be chosen just by hitting return.

9. Write a program combining the ideas of Exercises 3 and 8.

10. Write a program that allows the user to build a file of student names, student numbers, and
scores on an examination interactively. A sample set of lines of. the file should appear as

John Smith
11-333-5555
85

11. Use the program from Exercise 10 (or a text editor) to build a file that has several students with
the same score on the examination. Write a program that asks the user for a score and then lists
all students who have earned that score on the screen. Example input and output are as follows:

Enter a score: 85

Students with a Score of 85
John Smith 11-333-5555
Nancy Doe 22-222-6666
*** list complete

Enter a score: 66

Students with a Score of 66
*** list complete

Enter a score: -1

12. Write a program that processes the file created in Exercise 11 by asking the user for a student
number and displaying the name and score for the student Example input and output are as
follows:

Enter a student number: 11-333-5555

The student is:
John Smith 85

EXERCISES 369

Enter a student number: 33-333-3333
*** Student not found.

Enter a student number: $END {program exits}

13. Write a program that processes the file created in Exercise 11 by adding 5 points to Nancy
Doe's score.

14. Revise Exercise 10 to allow multiple tests by making the first data item in the file N, the
number of tests.

15. Write a program that uses the file created in Exercise 14 to add another test score for each
student.

16. This exercise deals with a text file that, for each person, contains the following data:

Name

Age

Sex

Marital status

Earned income for previous year

Number of children

You can build the file using the ideas of Exercise 10 or using a text editor.

(a) Write a procedure to read the data for one person. This procedure will be used in part (b).
(b) Write programs (or program segments) to answer these questions concerning the data file.

(1) How many people are in the file?
(2) What percentage are single (code 'S')? Female (code 'F')? Either single or female?
(3) Who has the largest earned income? How old is that person?
(4) What is the marital status of Mary Wikinson?
(5) What is the average number of children for married males between the ages of 40 and

60?
(6) Who is the first person in the file who is either widowed (code 'W') or divorced

(code 'D'), has no children, and has an income over $50,000?

17. (a) Tell what changes you would make to Case Study No. 6 (Figure 4-16) if the data were in a
text file rather than obtained from the user as the program runs.

(b) Which approach do you think would be preferable to the user of the program: the original
approach or the one suggested in part (a)?

(c) Tell how you could modify Case Study No. 6 to create an output file containing name and
total sales for each employee.

18. (a) Choose any program that you have written and revise it to read its input from a text file.
(b) Choose any program that you have written and revise it to create a trace file (see page 363)

containing a complete record of the program run.
(c) Choose any program that you have written that creates a printed report and revise it to send

the report to a file instead. Print the file using a text editor.

19. A text file consists of repetitions of the following data:

370

Student information

One or more groups of course information for the student

A line containing the string XXX

ELEMENTARY DATA STRUCTURING CHAP. 5

The student information consists of name, total semester hours taken prior to this semester, and
total grade points earned prior to this semester. Each group of course information consists of
course department (e.g., CPS), course number (e.g., 121), semester hours credit for the course,
and letter grade for the course. The course information groups represent courses taken during
this semester.

(a) Design the exact file structure and give a small sample file for two students.
(b) Write a program to read the file. For each student, it should display the information on the

screen and then use Readln to wait for the user to tap return.
(c) Modify part (b) to create a printed grade report for each student, indicating name, list of

courses (department, number, grade, and grade points for course), total semester hours for
the semester, total grade points for the semester, and grade point average for the semester.
(Quality points for each course are found by multiplying the semester hours for the course
by 4 for an A, 3 for a B, 2 for a C, 1 for a D, or 0 for an F. Quality point average is grade
points divided by semester hours.)

(d) Write a program to create an output text file containing this information for each student:
name, semester hours taken including this semester, and total grade points earned including
this semester. The output file should follow the same general form as the iriput file. It can
then be used as a starting point for building next semester's input file.

(e) Add a printed report to the program in part (d). Send the printed output to a file for future
printing. The columns of the report are name, total semester hours, total grade points, and
grade point average. See part (c) for information on grade point calculations.

21. A text file contains the following information:

A line containing the number of departments

Department information (code, number of professors) for the first department

Name and salary information for each professor in the first department

Department information (code, number of professors) for the second department

Name and salary information for each professor in the second department

And so on.

Write a program to read the text file and generate a report in this form:

Department Professor Salary

---------- ---------
xxx xxxxxxxxxxxxxxxxxx xxxxx

xxxxxxxxxxxxxxxxxx xxxxx

xxxxxxxxxxxxxxxxxx xxxxx
xxx xxxxxxxxxxxxxxxxxx xxxxx

xxxxxxxxxxxxxxxxxx xxxxx

Then show what changes to make to accomplish the following:

(a) Find and print the average salary in each department.
(b) Find and print the average salary in the entire school.
(c) Count the number earning over $28,000 in the entire school.
(d) Find and print the person with the highest salary in each department.
(e) Find the number of departments that have an average salary in excess of $20,000.
(t) Find the largest average salary for a department.

EXERCISES 371

For example, the answer might be:

BIO department has highest average salary: 25533.00

22. Give test plans for the following.
(a) Exercise 3(b)
(b) Exercise 4
(c) Exercise 8
(d) Exercise 11
(e) Exercise 12
(t) Exercise 13
(g) Exercise 16(b)(2)
(h) Exercise 16(b)(3)
(i) Exercise 16(b)(4)
(j) Exercise 16(b)(5)

5-2 RECORDS AND SETS

In this section, we introduce a powerful data structuring technique via the Pascal record.
We continue our discussion of files that was begun in the last section and we learn some
more about the Pascal set data structure.

Records

Record Structure. Especially when dealing with files, it is frequently the case
that certain data items are associated with one another. For example, in the last section, we
discussed a text file that consisted of friends' names and phone numbers. The two data items
Name and Phone are associated because of their relationship with one particular individual.
Recall that we stored the name and phone number in a rather awkward manner: on two
separate lines of the file. Pascal provides a better way of dealing with this information via
the record structure.

Note. Historically, the term "record" referred to files. However, the concept of
grouping related data is an important one, whether files are involved or not. In our discus
sion of records, some examples involve files and others do not.

We begin by adapting the programs of the previous section, which dealt with text
files, to files of records.

A record consists of data entities called fields that have values. The general form of
the definition of a record occurs in the type section of a Pascal module and has the following
form:

type

identifier = record

list of field declarations
end;

372 ELEMENTARY DATA STRUCTURING CHAP. 5

In our example, we want to have a record called PersonalData, which has two fields: Name
and Phone. We declare this data structure in the type area of our declarations as follows:

type

PersonalData = record
Name: string[50];
Phone: string[12]

end;

We also must declare a variable of type PersonalData, which can hold the values for one
particular instance of a friend. We make this declaration in the var area of our program as
follows:

var
Friend: PersonalData;

We can refer to the individual fields of a record variable by means of the construction:

record variable name.field name

Therefore, for our example, we can refer to the fields of the variable Friend by means of the
designations:

Friend.Name
Friend.Phone

If we want to use our records for a file (and we do), then we declare a file type as follows:

type

PersonalFile = file of PersonalData;

We also declare a file designator variable in the var section:

var
Friend: PersonalData;
FriendsFile: PersonalFile;

Files of Records. Files of records (and, in fact, any file that is not of type text),
are called binary files. The properties of binary files in THINK are somewhat different than
those of text files; we discuss these properties in more detail in Chapter 11. The major
differences we need to concern ourselves with now are as follows:

1. We use Read and Write rather than Readln and Writeln with binary files. We must take
care not to use Readln and Writeln except with text files; otherwise, we will encounter
compile-time errors. We also read and write entire records in this new setting.

2. Since a binary file does not contain text, we can no longer view our file's contents
with a text editor. We would need to write a THINK Pascal program to examine its
contents.

An Example. We rewrite the programs of Figures 5-5 and 5-6 using the record
concept, as shown in Figures 5-8 and 5-9. Major differences are in italics.

5-2 RECORDS AND SETS 373

program Build;

{Written by: XXXXXXXXX XX/XX/XX}
{Purpose: To build a file of friends}
{Procedures used: Instructions - to print instructions}

const
EndOfData

type

'$END';

PersonalData = record

Name: string;

Phone: string[12J;

end;
PersonalFile = file of PersonalData;

var

Friend: PersonalData;
FriendsFile: PersonalFile;
FileName: string;

procedure Instructions;
begin {stub}
end;

begin {Build}

{Instance of record}
{File designator}
{Disk name of file}

{*** Print instructions and ask the user for the filename}

Instructions;
Write('Enter the filename: ');
Readln(FileName);

{*** Open the file}

Rewrite(FriendsFile, FileName);

{*** Get names and phone numbers for file}

repeat

Writeln;
Write('Enter name ($END to quit): ');
Readln(Friend.Name);
if Friend.Name <> EndOfData then

begin

Write('Enter phone number: ');
Readln(Friend.Phone);
Write(FriendsFile, Friend);

end {if}

until Friend.Name = EndOfData;

{*** Close the file}

Close(FriendsFile);

{*** Stop program}

end.

Figure5-8 Writing to a file of records.

374 ELEMENTARY DATA STRUCTURING CHAP. 5

program Search;

{Written by: xxxxxxxxx XX/XX/XX}
{Purpose: To search for a friend and display her phone number}
{Procedures used: Instructions - to print instructions }

type

PersonalData = record

Name: string;
Phone: string[12];

end;
PersonalFile = file of PersonalData;

var
FriendsFile: PersonalFile;
FileName: string;

Name: string;

Phone: string[l2];

Friend: PersonalData;

procedure Instructions;
begin {stub}
end;

begin {Search}

{File designator}
{Disk file name}
{Name of friend to find}
{Friend's phone number}
{Instance of record}

{*** Print instructions and ask the user for the filename}

Instructions;
Write('Enter the filename: ');
Readln(FileName);

{*** Open the file}

Reset(FriendsFile, FileName);

{*** Skip heading lines of the file}

Read(FriendsFile, Friend); {Reads "Friends Names and Phone Numbers"}
Read(FriendsFile, Friend); {Reads the blank line}

{*** Get name from the user}

Writeln;
Write('Enter the friend''s name: ');
Readln(Name);

{*** Search the file for the name}

Friend.Name := '';

while (Friend.Name
begin

{Required so while condition is defined}
<>Name) and (not (Eof(FriendsFile))) do

FigureS-9

Read(FriendsFile, Friend);
end; {while}

Searching a file of records (continues next page).

5-2 RECORDS AND SETS 375

{*** Display the results of the search}

if Friend.Name = Name then
Writeln('The phone number is: ' Friend.Phone)

else
Writeln('*** Friend not found.');

{*** Close the file and stop}

Close(FriendsFile)
end.

Figure 5-9 (continued)

Because the file to contain the friends' names and phone numbers is no longer avail
able for use with a text editor, we no longer use the concept of heading lines in the file.

Note. There is one disadvantage of using files of records instead of text files. Text
files can be created using an editor, and they can also be examined using an editor. This is
not true for files of records. It is therefore very useful, when writing a program that works
with nontext files, to first write simple programs for file creation and file display.

Appendix C contains a framework for writing file creation and display utilities. To
use these frameworks, you only need to write a procedure to read one record and a proce
dure to display one record.

Operations with Records

Assignment. We can assign the entire contents from one record to another record
of the same type. For example, if Friend and NewFriend are both declared to be of type
PersonalData, then the statement:

Friend := NewFriend

is equivalent to the two statements:

Friend.Name := NewFriend.Name;
Friend.Phone := NewFriend.Phone

This is a convenience when a record contains many fields.

Processing a Single Record. Pascal allows a shorter way to refer to fields than
the examples we have seen: NewFriend.Phone, for example. The shorter route involves the
Pascal keyword with. The general form of the with-do construction is

376

with record variable name do
begin

list of statements
end

ELEMENTARY DATA STRUCTURING CHAP. 5

Between the begin and end of the with-do construct, we can use the names of the record's
fields without using the record variable and a dot(.) as a prefix.

As an example, suppose that we wish to read the name and phone number of New
Friend from the keyboard. Our first style for doing this would be as follows:

Write('Enter the name: ');
Readln(NewFriend.Name);
Write('Enter the phone number: ');
Readln(NewFriend.Phone)

The shorter method uses the form

with NewFriend do
begin

Write('Enter the name: ');
Readln(Name);
Write('Enter the phone number: ');
Readln(Phone)

end

Note that because we have told Pascal that we are dealing with NewFriend, we do not have
to use the record identifier as a prefix for the field names.

Records as Parameters. We can pass records as parameters to procedures or
functions. For example, if we wanted to use a detail line print procedure Detail to print the
friend's name and phone number, then we could declare the procedure with the heading:

procedure Detail(Friend: PersonalData);

We could then invoke the procedure from our program with the statement

Detail(Friend)

As another example, consider the following segment of code. It works with records
whose fields are Name and Age. The variables Person and Large are records of this type.

Large.Name := '';

Large.Age : = 0;

repeat
GetRecord(Person, Quit);
if not Quit then

begin
if Person.Age > Large.Age then

Large . - Person

end {if}

until Quit;

PrintRecord(Large)

This segment reads a series of input consisting of Name and Age. After the loop, it prints the
name and age of the oldest person (assuming no ties). We have written a number of pro
grams similar to this, but this one is notable in several ways:

5-2 RECORDS AND SETS 377

1. The data items that "belong together'' (name and age) are associated by putting them
in a record.

2. We use variables that are records as parameters to two procedures: GetRecord, Print
Record.

3. If a larger age is found, we assign

Large := Person

which makes a record of both the name and age of the person whose age is larger. If
the record contained 10 fields, all 10 fields would be copied by the one assignment
statement.

Arrays of Records. We can use the array concept with records as well as with
other types of variables. For example, if we wanted to be able to deal with a list of 10
friends, we could use the declarations

type

PersonalData = record

Name: string[SOJ;

Phone: string[l2]

end;

PersonArray array[l .. 10] of PersonalData;

var

Friends: PersonArray;

Note. We could accomplish the declaration by

var

Friends: array[l .. 10] of PersonalData;

However, the former method of declaring the array is more general and is recommended
over this one. One advantage is that it allows passing array Friends to a subprogram.

To illustrate a few possible ways we could work with arrays of records, suppose that
the PersonArray type is declared globally (i.e., in the main program's declarations). Then we
can declare a procedure ReadPeople as follows:

procedure ReadPeople(List: PersonArray);

We can invoke the subprogram ReadPeople this way:

ReadPeople(Friends);

If we wish to refer to the name field of the fifth record in the array, we can use the form

Friends[5] .Name

We can do extensive processing with the sixth record in the array by using the construct

378 ELEMENTARY DATA STRUCTURING CHAP. 5

with Friends[6] do
begin

end

Finally, we can print the names in the Friends array by

for I := 1 to 10 do
begin

Writeln(Friends[I] .Name)
end

Arrays of records are dealt with in greater detail in Chapter 6.

Sets

We have used the concept of a Pascal set in some of our previous examples. In particular,
when a user is asked a yes or no question, we have checked for a valid response by means
of the Boolean expression

Ans in ['Y' , 'y' , 'N' , 'n' l

In this subsection, we discuss some additional details of Pascal sets.
A set in Pascal is similar to the mathematical notion of a collection of objects. Each

object that is in the set is called a member or element of the set. Two sets are equal if they
have exactly the same elements, regardless of order. All of the elements of a set must be of
the same Pascal type. The legal types for elements in sets are

Integer

Boolean

Char

User-defined scalar types (discussed in the next section)

Constant sets are specified by listing the elements of the set between a pair of square
brackets (for example, ['Y', 'y' ,'N' ,'n']). Some examples of set constants are

[l, 3' 5]

['a', 'b', 'c']

[]

The third example, [], is the empty set, the set with no elements. We can also specify a
constant set by means of ellipses (..). Thus, we can specify the set of all uppercase letters
between A and F by

[A •• F]

We declare a set type by specifying the kind of elements that may belong to sets of
that type. The type of the elements of the set is called the base type. For example, if we
wanted to work with sets of integers less than 100, we could declare the set type as

5-2 RECORDS AND SETS 379

type

SmallNumbersSet set of 1 .. 99;

Note. We have seen the notation value .. value (as in 1..99) before: in defining array
types and in listing the branches of a case statement. This notation indicates a subrange of
the integers. Subranges are examined in more detail in Section 5-3.

If we wish to work with sets of characters, then we could declare the set type as

type

CharacterSet = set of char;

We declare variables to have a set type in the var section of the program. For example, if we
want the variables A and B to be sets of numbers less than 100, we can use the declarations

type

SmallNumbersSet = set of 1 .. 99;

var

A, B: SmallNumbersSet;

Set Operations

Assignment. We can assign a set value to a set variable of the same type. Thus, if
A is declared of type SmallNumbersSet as before, we can use the statement

A := [17,23,41]

to give A a value. If B is also of type SmallNumbersSet, then we can also assign a value to
A with the statement

A := B

Union. If A and B are variables of the same set type, then we can form the union
of A and B by the expression A + B. This new set is comprised of all elements that are in
either A or B (or in both). For example, if A is [l,3,5] and B is [4,6], then A + B is
[1,3,5,4,6]. Remember that order does not matter with sets, so we can also say that A+ B is
[1,3,4,6,5].

We do not allow repetition in sets. For example, if C is (1,3,5] and Dis (5,7] then C +
Dis [l,3,5,7].

Intersection. If A and B are variables of the same set type, then we can form the
intersection of A and B by the expression A * B. This new set A * B is comprised of all
elements of A that are also members of B. For example, if A is [1,3,5] and Bis [5,7], then A
*Bis [5]. As another example, if C is (1,3,5] and Dis (1,3], then C *Dis [1,3].

Difference. If A and B are variables of the same set type, then we can form the
difference of A and B by the expression A - B. This new set is comprised of all of the
elements of A that are not members of B. For example, if A is [1,3,5] and B is (4,6], then
A-Bis (1,3,5]; ifC is [1,3,5] and Dis [5,6], then C-D is [1,3).

380 ELEMENTARY DATA STRUCTURING CHAP. 5

Note that in general A- (A - B) is equal to A * B. Note also that D - C is [6], which
is totally different from C - D. In general, A- B and B - A are not equal.

Membership Test. We have already encountered the Pascal keyword in. In gen
eral, if A is a variable of set type, and if X is a variable of the base type of A, then we can
construct the Boolean expression "X in A", which is true if Xis an element of A (and false
if it is not). We must be careful not to attempt to test mismatched types with the membership
test.

Set Equality. We can compare two variables of the same set type for equality by
use of the "=" operator. Thus, if A and B are variables of the same set type, we can construct
the Boolean expression

A = B

which is true if A has exactly the same elements as does B. Remember that order does not
count, so that

[l,3,5] = [3,5,1]

is true. We can use the operator"<>" to test for inequality.

Set Inclusion. We can compare two variables of the same type to see if one is a
subset of the other by means of the operators <, <=, >, and >= . If A and B are two variables
of the same set type, then we can construct the following Boolean expressions:

A<B

A<= B

true if every element of A is also an element of B and A is not equal to B

true if every element of A is also an element of B

A>B

A>= B

true if every element of B is also an element of A and B is not equal to A

true if every element of B is also an element of A

For example, these are true conditions:

[1,5] < [3,l,5,6]

[6,3,2] >= [3,2]

[l,2,3] <= [l,2,3]

but these are not:

[l, 5] < [2, 6]

[1,2,3] > [l,2,3]

Input and Output. No automatic input or output of sets is allowed using the key
board, screen, printer, or text files. We can read and write sets with files declared to be of set
type in a fashion similar to that of records.

However, we can write our own code to print sets one element at a time. For example,
these steps can be used to print a set A of the type SmallNumbersSet defined before. (The
numbers in the set are printed one per line.)

for I := 1 to 99 do
begin

5-2 RECORDS AND SETS 381

if I in A then
Writeln(I)

end {for}

Similarly, we can read a set of this type by reading the numbers one at a time and using a
step such as

A := A + [I]

where I is the number read. (A would be initialized to [].)

Set Construction. Sets can be constructed using constants or variables of the
base type. For example, if A is a set with base type char, and if X and Y are variables of
type char, then we can construct a set as follows:

A:= ['a', X, 'b', Y];

If X has the value 'c' and Y has the value 'd' in the last expression, then the resulting value
of A is ['a', 'c', 'b', 'd']. The following is a Pascal fragment to test the validity of the
example just cited:

var
A: set of char;
X, Y: char;

X := 'c';

y := 'd';

A:= ['a', X, 'b', Y);

if A = ['a' , 'c' , 'b' , 'd' J then
Writeln('The example is valid')

else
Writeln('The example is invalid');

Parameters. Sets, with some care, can be passed as parameters. A valid scenario
for passing a set as a parameter is shown in the fragment

type
Kind = set of char; {This is a named type}

var
A : Kind;

procedure BeCareful(S: Kind);

BeCareful (A) ;

The main point is that for passing set parameters, named types must be used. The
scenario that follows is invalid; the compiler will reject it:

var
A: set of char;

procedure BeCareful(S: set of char);

BeCareful (A) ;

382 ELEMENTARY DATA STRUCTURING CHAP. 5

Set parameters follow the same rules that we have already seen with arrays, strings, and
records.

An Example

We develop an example use of sets for obtaining valid input from a user. Quite often, a
program has to ask the user for a response that consists of a single character. For example,
in answering a yes-or-no question, we often consider any of Y, y, N, or n to be valid
responses. If a menu has the options

S(top the process)

R(estart the process)

C(ontinue the process)

then we would consider any of S, s, R, r, C, or c to be valid responses. We write a subpro
gram called AskUser, which as has two parameters: a prompt message to be shown to the
user and a set of valid responses. It returns a valid response from the user. The steps in the
subprogram are

print the prompting message
read response from user
while the response is invalid do the following:

ask user to try again
read response from user

return the valid response

Accepting single-character input from the keyboard can be a bit tricky. We take a straight
forward approach and read the user's response into a variable of type char, using Readln. If
the user enters more than one character before tapping the return key, only the first is read;
the remaining characters are ignored. So as long as the user enters a string whose first
character is in the set of valid responses, AskUser will return that first character. We could
take the position that any input string longer than one character should be invalid, regardless
of its first character; we leave it as an exercise to change AskUser to reflect that position.

In the example program shown in Figure 5-10, we exercise the AskUser function in
two of the most common contexts in which it would be used. Note that in the first, we use
variables in the invocation of the function, whereas in the second, we use constants. Either
method is valid.

DPT

1. When we are dealing with nontext files, we use Read and Write and do not use
Readln and Writeln. If we use Readln or Writeln in a program, then the compiler detects and
reports the error.

2. We must be sure to use the "." when dealing with a field of a record when not
within a with-do construct. For example, suppose that we have a record declared as

5-2 RECORDS AND SETS 383

program Ask;

{Written by: xxxxxxxxx XX/XX/XX}

{Purpose: To ask the user to respond}

{Procedures used: Instructions - to print instructions}

{Functions used: AskUser - to obtain valid input}

type

Letters = set of char;

Sentence= string[80];

var
Responses: Letters;

Prompt: Sentence;

Answer: char;

procedure Instructions;

begin {stub}

end;

{Valid responses}

{Message to user}

{Answer from user}

function AskUser (Message: Sentence; Valids: Letters): char;

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To ask the user to respond}

{Parameters: Message - input, a string to be displayed}

Valids - input, a set of valid responses}

var
Keystroke: char;

begin {AskUser}

Write(Message);

Readln(KeyStroke);

{User's response}

while not (Keystroke in Valids) do

begin
Write('*** Invalid response, please reenter: ');

Readln(KeyStroke);

end; {while}

AskUser := Keystroke

end; {AskUser}

begin {Ask}

{*** Print instructions}

Instructions;

{*** Show typical "yes/no" setup}

Responses:= ['Y', 'y', 'N', 'n');

Prompt .- 'Do you wish to continue (Y,N)? ';

Answer.- AskUser(Prompt, Responses);

Writeln('Your answer was: ',Answer);

Figure 5-10 Using a set to validate input (continues next page).

384 ELEMENTARY DATA STRUCTURING CHAP. 5

{*** Show sample menu setup}

Writeln('S(top the process)');
Writeln('R(estart the process)');
Writeln('C(ontinue the process)');

Answer:= AskUser('Selection: ', ['S', 's', 'R', 'r', 'C', 'c']);
Writeln(•Y'our answer was: ', Answer);

{*** Stop program}

end.

SAMPLE INPUT AND OUTPUT

Do you wish to continue (Y,N)? g
*** Invalid response, please reenter: w
*** Invalid response, please reenter: z
Your answer was: y
S(top the process)
R(estart the process)
C(ontinue the process)
Selection: z
* * * Invalid response, please reenter: ~
* * * Invalid response, please reenter: ~
Your answer was: s

Figure 5-10 (continued)

type

PersonalData = record
Name: string[50];
Phone: string[12]

end;
var

Friend: PersonalData;

Suppose that in our program (and not in a "with Friend do" construct) we unintentionally
omit the prefix and write

Name:= 'Joan Smith';

One of two things happens:

(a) If there is no string variable Name in the program, then the compiler reports that
"Name " is not declared.

(b) If there is a string variable Name in the program, then the compiler does not report
any problem. This could cause the program to act erroneously without causing a
compiler or run-time error. This kind of bug can be very hard to locate.

5-2 RECORDS AND SETS 385

3. The preceding tip raises a very subtle point. It is legal to have a program containing
these declarations:

type

String20 = string[20];

InputRecord = record

Name: String20;

Age: integer

end;

var

Person: InputRecord;

Name: String20;

Age: integer;

The identifiers Name and Age are not considered to be duplicates because the actual names
of the fields within the record are

Person.Name

Person.Age

Inside a with statement, as indicated by tip number 1, the field name would take precedence
over the variable name. Thus, the output of the fragment

Person.Name:= 'Sam';

Name : = 'Sue' ;

with Person do

Name := 'Mary';

Writeln(Name, ' ', Person.Name)

would consist of "Sue" and "Mary".
Our defensive programming tip is to try to avoid this situation because it has the

potential for confusion. Do not include a field name and a variable name that are the same.

Note. On the other hand, using identical field names within two different record
structures can be appropriate. For example, this might be useful:

type

String20 = string[20];

InputRecord = record

Name: String20;

Scorel, Score2, Score3: integer

end;

OutputRecord = record

Name: String20;

Total: integer

end;

4. We must take care to use the file designator in all of our Read and Write statements
that are intended to work with a file. If we omit the file designator, then we will read from
the keyboard and we will write to the display screen.

5. We must be sure to use a subscript when dealing with a field of one element of an
array of records. Suppose that we have declared the array of records

386 ELEMENTARY DATA STRUCTURING CHAP. 5

Friends: array[l .. 10] of PersonalData;

It would be an error to attempt to refer to one of the elements as in the following example:

Friends.Name := 'Joan Smith'

The compiler detects and reports this error.

6. We must use a named type when passing a record as a parameter to a subprogram.
The compiler detects an attempt to declare a parameter as a record in the heading of a
procedure or function.

7. When we specify a range of values, we must use two dots as in

5 .. 99

A common mistake is to use three dots instead of two, as we do when using ellipses in
composition. Also, some electronic spreadsheets allow the use of three dots to specify
ranges of rows or columns. An example of the misuse of range specification is the follow
ing:

if 'C' in ['A' ... 'F'] then

Writeln('You won''t see this message!')

The compiler detects this error.

8. When we wish to specify a range of characters, we must use single quotes around
the characters at the beginning and end of the range as in the example:

'A' .. 'F'

Suppose that we omit the quotes, as in the example:

if C in [A .. Fl then
Writeln('Will you see this message? '

One of two things will happen:

(a) If any one of C, A, or F have not been declared as variables, then the compiler reports
an undeclared variable error.

(b) If C, A, and F have been declared as variables, then the statement can be legal. For
example, if all three have been declared as integer variables and if A has the value 4,
C has the value 2, and F has the value 6, then the condition

C in [A .. F]

is legitimate and has the value of false. The main principle that will help us to avoid
this kind of situation is the use of meaningful variable names in our programs. It is
unlikely the variables C, A, and F would be the best choices.

9. Two sets must have the same base type in order for them to be used together in set
operations. For example, we cannot construct the set union

[1, 2, 3] +['A', 'B', 'C']

The compiler detects this type incompatibility.

10. Input and output of sets as text is not allowed. If we attempt to print a set as in the
example

5-2 RECORDS AND SETS 387

Writeln([l, 2, 3])

the compiler detects the error.

11. Use of the set membership condition in requires that the element being tested be
of the base type of the set. Thus, the condition

1 in ['A' .. 'F']

is notfalse, it is illegal. The compiler usually detects this error.

12. We must remember the significance of using single quotes. We have already dis
cussed this point in DPT number 7. But for reemphasis, remember

[X, Y, Z] is different from ['X', 'Y', 'Z']

13. We must be aware of the restrictions that apply to the use of sets. First, the base
type of the set must be integer, boolean, char, or any of the other types that are discussed in
Section 5-3. By default, THINK Pascal permits at most 256 items in a set and, when using
integers in sets, we must use values between 0 and 255, inclusive. Because of this restric
tion, the following declaration is illegal:

A = set of integer;

THINK does give us the capability of building an integer set containing integer values
outside of the range of 0 to 255. Checking the Large Sets box in the Compile Options
selection of the Project menu allows us a range for integer sets from -32768 to 32767 (the
full range of integers). With this option enabled, the declaration

A = set of integer;

would then be legal.
Choosing the larger integer range has the disadvantage of taking up about 8, 100 more

memory cells than using the 0 to 255 range, leaving less memory available for other pur
poses (such as for arrays). So we only use the larger range when it is truly required.

REVIEW

Terms and Concepts
base type
binary file
difference (-)
element
empty set
field
in

Pascal Syntax

Records

intersection (*)
member
record
set
subset (<, <=, >, >=)
union(+)
with

1. Define a record structure in the type section:

388 ELEMENTARY DATA STRUCTURING CHAP. 5

type
identifier = record

list of field declarations
end;

2. Declare a variable to have a record type in the var section:

var
variable name: record type name;

3. Refer to a single field of a single record:

record variable name.field name

4. Process a single record using the with-do construct:

with record variable name do
begin

list of statements
end

S. Declare an array of records in the var section; for example:

Friends: array[l .. 10) of PersonalData;

6. Refer to a field of an element of an array of records, as shown in the example:

Friends(SJ .Name

7. Pass a record as a parameter using a named type, as shown in the example:

procedure Print(List: PersonalData);

Files of Records

1. Define a type for a file of records:

file type name = file of record type name;

2. Define a file designator for a file of records:

file designator: file type name;

3. Use Read and Write for input and output activities with a file of records:

Read(file designator, record variable name)

Write(file designator, record variable name)

Sets

1. Define a constant set using square brackets, as shown in the example:

[1, 3' 5)

2. Declare a set type in the type section, as shown in the example:

SmallNumbersSet =set of 1 .. 99;

3. Refer to the empty set by

[)

REVIEW 389

4. If A and B are of the same set type, then the set operations are

Assignment A:=B

Union A+B

Intersection A*B

Difference A-B

Equality tests A=B

A<>B

Subset tests A<B

A<=B
A>B

A>=B

S. If A is of set type and X has the base type of A, then we can test to see if X is a
member of A with the Boolean expression

X in A

6. If X, Y, and Z are elements of the same base type, then we can construct the set
containing the values of the variables

390

[X, Y, Z]

DPT

1. Do not use Readln and Writeln with nontext files.
2. Be sure to use the "." when dealing with a field of a record when not

within a with-do construct.
3. Do not use duplicate names for variables and field names.
4. Make sure that you use the file designator in your Read and Write

statements that are intended to work with a file.
5. Be sure to use a subscript when dealing with a field of one element of

an array of records.
6. Use a named type when passing a record as a parameter to a subpro

gram.
7. When specifying a range of values, use two dots as in: 1 .. 99; do not

use three dots.
8. When specifying a range of characters, use single quotes around the

characters atthe beginning and end of the range, as in 'N . .'F'.
9. Two sets must be of the same base type in order for them to be

involved in set operations.
10. Input and output of sets as text are not allowed.
11. Use of the set membership condition in requires that the element being

tested be of the base type of the set.
12. Note that [X,Y,Zl is different from ['X','Y','Z'].
13. There can be no more than 256 elements in a set unless the range is

expanded on the compiler options screen.

ELEMENTARY DATA STRUCTURING CHAP. 5

EXERCISES

1. Write declarations or expressions to represent each of the following:
(a) The field Phone of the record variable Friend is assigned the value '555-1212'.
(b) The record type Complex is to consist of the two real number fields RealPart and

Imaginary Part.
(c) The variable Number is of type Complex.
(d) If the field Name of the record variable Friend is equal to 'Joan Smith', then print

"Found".
(e) The set consisting of the numbers 1, 2, and 3.
(f) The set consisting of the characters '1 ', '2', and '3'.
(g) If the value of the variable N is a member of the set consisting of the numbers between 3

and 9, inclusive, then print "Yes".
(h) The variable A is to have sets of characters as its values.

2. Write a procedure or function for each of the following:
(a) Given a record variable of type PersonalData, print a detail line consisting of the phone

number, a colon, and the name.
(b) Given a record variable of type Persona!Data, get input from the user for the name and

phone number.
(c) Given a record variable of type Complex (see Exercise l(b)), calculate the sum of the

squares of the real and imaginary parts.
(d) Given a character set variable, ask the user for characters to be members of the set.
(e) Given a set of characters and one character that is a member of the set, ask the user to enter

a character that is a member of the set. Check for valid input and return a value of true if
the user enters the given character and return a value of false otherwise. (This might be
part of a program for administering a multiple-choice examination.)

3. Extend the record structure of Figure 5-9 by adding the fields:

Address (string of size 80)

Month of birth (integer)

4. Write a Pascal program to interactively build a file of records of the form:

COMPANY

Name

Address
City

State
ZIP code

Number of employees

(string)

(string)
(string)

(string)
(string)

(integer)

5. Write a Pascal program to deal with the file created by Exercise 4. The program should accept
the company name as input and should print the number of employees of the company.

6. (a) Write a Pascal program to list the contents of the file from Exercise 4 on the printer. You
should use appropriate headings.

(b) Modify the program of part (a) to also print the following summary information:

(1) The number of companies.
(2) The percentage of large companies (more than 700 employees).

EXERCISES 391

(3) The company with the most employees and the number of employees.
(4) The number of the companies that are New York (state= NY) companies.
(5) The California company (state = CA) with the most employees (assume there is at

least one California company).
(6) Repeat (5) without the assumption; if there is no California company, the program

should say so.

7. Using the file from Exercise 4 as input, write a program to create an output file containing only
the name and number of employees for those companies from North Carolina (state = NC)
employing 50 or fewer employees.

8. Write a program to consist of two loops:

First loop:

Second loop:

Read integers between 50 and 100 and store them in a set A. The loop
should terminate when the user enters a 0. Use set union to add to the set.

Read integers and tell the user whether or not each integer is in the set.

9. Write a program to check that THINK does not allow you to pass set parameters in a manner
similar to the statement:

procedure Check(A: set of char);

10. Modify AskUser so that it considers a user's input valid only if it exactly one character. [Hint:
Read the user's response into a string variable and check its length before comparing it to the
set of valid responses.] Write a driver program to test the modified AskUser. What happens if
the user just taps Return? Enters a very long string? What other changes might you make to
AskUser to make it even more particular about the input it will consider valid?

11. Write a calculator program that provides the following menu:

0 P T I 0 N S

A(dd two numbers)
S(ubtract two numbers)
Q(uit)

Use the AskUser function to get the user request for a menu option.

Use a case statement for the different menu options.

12. Write a program to allow the user to complete (in any order) a list of five unrepeatable tasks:

F(ill in a blank)
S(olve an addition problem)
G(uess a number)
N(ame a famous person)
R(ead a joke)

Use the set difference operator to reduce the set of options, and when there are no more options
left, quit. Hint: There are no options left when the set of options is equal to [].

13. Write a program to build a set of all prime numbers between numbers N and M input by the
user. The numbers N and M must be in the range from 0 to 255, inclusive. Then, in a loop, let
the user enter a number and have the program say whether the number is a prime or is a
composite. Hint: Use set union to build the set incrementally.

392 ELEMENTARY DATA STRUCTURING CHAP. 5

14. Write a test plan for the following exercises:
(a) Exercise 2(c)
(b) Exercise 2(d)
(c) Exercise 5
(d) Exercise 6(a)
(e) Exercise 6(b)(3)
(t) Exercise 6(b)(4)
(g) Exercise 6(b)(6)
(h) Exercise 8
(i) Exercise 12

5-3 USER-DEFINED DATA TYPES

Pascal provides a powerful and flexible means of dealing with data in the form of user
defined data types. We have seen some examples of this facility when we dealt with arrays,
records, files, and sets. In this section, we discuss some additional possibilities for structur
ing data through data typing.

Defining the structure of data is a significant part of the total program design effort.
Choosing an appropriate structure for the data can make writing the program more straight
forward than choosing an unnatural, awkward one. For example, we could deal with time in
minutes and seconds by using two integer variables Minutes and Seconds, or we could use a
single real variable Minutes. If we have to perform time arithmetic, we will appreciate
having chosen the latter data structure. (However, due to the limitation of real accuracy, we
might have to use the former structure in a program where accuracy is critical.)

In this section, we deal with scalar types, enumerated types, ordinal types, subrange
types, type checking, and more information on records. We also illustrate input/output error
trapping for two common situations.

Scalar Types

Pascal provides the standard scalar types: integer, real, boolean, and char. All of these
except real are also referred to as ordinal types because it makes sense to think of them as
being in order, one after another. Ordinal types are sometimes referred to as enumerated
types. When we are looking at an element of an ordinal type, it is meaningful to talk about
the previous and the next element, for all but the first and last elements. For example:

TYPE ELEMENT PREVIOUS NEXT

Integer 4 3 5

Boolean false true

Char 'd' 'c' 'e'

Pascal provides three built-in functions to help in dealing with ordinal types. The
function Ord tells us the serial order of an element within its ordinal type. If X is an
element of an ordinal type, then Ord(X) is an integer value expressing its position within the
type. In general, Ord begins its count at 0 rather than 1. For integers, Ord(X) is X itself. The
following table gives some example values of Ord:

5-3 USER-DEFINED DATA TYPES 393

TYPE ELEMENT Ord(Element)

Integer 0 0
Integer 1 1

Integer -4 -4
Boolean false 0

Boolean true 1

Char 'a' 97

Char 'A' 65

Char 3 51

For an integer, Ord acts as an identity. The values of Ord for false and true are 0 and
1, respectively. The values of Ord for char variables depend upon the particular character
code set that is used for each implementation of Pascal. The values in the previous table for
the char variables are those for the Macintosh, which uses a version of the popular character
code set called ASCII, the character code set used on most microcomputers. (See Appendix
D.) Figure 5-11 shows a program that allows you to print the Mac's character code set for
your reference. ·

For elements of char type, the Chr function is the inverse of the Ord function. That is,
for any char variable X:

Chr (Ord (X)) = X

Also, for any integer variable I that has a value from 0 to 255:

Ord(Chr(I)) =I

Because of the order that is associated with ordinal types, we can use the relational opera
tors:

<> < > >= <=

These operators behave in the manner that the Ord function dictates. For example, if X and
Y are elements of the same ordinal type, then X < Y is true if and only if Ord(X) < Ord(Y)
is true. One concrete example is the ethical inequality false< true. You can test this inequal
ity with the small program shown as Figure 5-12.

Pascal provides two additional functions that can be used with ordinal types: Pred and
Snee. For any element X of an ordinal type that is not the first element of the type, Pred(X)
is the element of the ordinal type that precedes X. The relationship between Pred and Ord is

Ord(Pred(X)) = Ord(X) - 1

Pred(X) is not meaningful when X is the first element of the ordinal type.
Note that if X is an element of any ordinal type except integer, then X is the first

element of the type if and only if Ord(X) = 0. Thus, when moving "backwards" through an
ordinal type using the Pred function, we should stop when Ord returns the value 0.

For any element X of an ordinal type that is not the last element of the type, Succ(X)
is the element of the ordinal type that follows X. The relationship between Succ and Ord is

394 ELEMENTARY DATA STRUCTURING CHAP. 5

program CodeSet;

{Written by: XXXXXXXXX XX/XX/XX}
{Purpose: To print the ASCII character set from position 27 onward}

var
{Loop index} I: integer;

Report: text; {Name for printer}

begin {CodeSet}

{*** Print headings on the printer}

Rewrite(Report, 'Printer:');

Writeln(Report, 30, 'ASCII Code Set');
Writeln (Report, ' ' : 30, '--------------');

Writeln(Report};

Writeln(Report);

Writeln(Report, '

Writeln(Report);

28, 'Ord Value', ' '

{*** Generate the ASCII set}

6, 'Character');

for I := 27 to 255 do

Writeln(Report,

Close(Report)

31, I 3 I I I 13 , Chr (I)) ;

{*** Stop program}

Writeln;

Writeln('ASCII list printed')

end.

Figure 5-11 Printing the ASCII code.

program Ethics;

{Written by: xxxxxxxxx XX/XX/XX}

{Purpose: To illustrate the ethical inequality}

begin {Ethics}

if (false < true) then

Writeln('All is well.')
else

Writeln('Something is wrong.');

end.

Figure 5-12 An ethics lesson.

5-3 USER-DEFINED DATA TYPES 395

Ord(Succ(X)) = Ord(X) + 1

Suec(X} is not meaningful when X is the last element of the ordinal type.
Note that we cannot detect the last element of an ordinal type in as easy a manner as

for the first element of the type. However, we can define an integer constant to be the Ord
of the last item of the type we are manipulating, and match Ord(X) against it to determine if
we are at the last element.

User-Defined Ordinal Types

Pascal allows for user-defined ordinal types, declared by naming the elements of the type
in the order they are to have, from first element to last. For example, one can specify a type
consisting of adventure game character classes as follows:

type
Classes= (Fighter, Thief, Paladin, Monk, Cleric, MagicUser);

Note that the identifier Fighter, for example, represents a constant of the type Classes.
THINK does not allow any duplication of identifiers within a program unit. So we could not
use the type Classes as just specified along with any variable called Fighter within the same
program unit. We can declare variables to have a user-defined ordinal type, as shown in the
example:

var
Class: Classes;

The variables and constants of a user-defined ordinal type can be used in a manner similar
to other ordinal types, but with some restrictions (discussed in what follows).

As another example, we could define

type

Days= (Sun, Mon, Tue, Wed, Thr, Fri, Sat);
var

Today: Days;

Assignment. If Class is a variable of the type Classes, then we can use the assign
ment statement

Class := Cleric

If PrimaryClass and SecondaryClass are two variables of the type Classes, then we can use
the assignment statement

Secondaryclass := PrirnaryClass

Comparison. If Class is a variable of the type Classes, then we can use any of the
comparisons

396

Class = Human;
Class <> Human;
Class < Human;
Class <= Human;
Class > Human;
Class >= Human

ELEMENTARY DATA STRUCTURING CHAP. 5

If Today and PayDay are two variables of the type Days, then we can use any of the
comparisons

Today = Pay Day;

Today <> PayDay;

Today < PayDay;

Today <= PayDay;

Today > PayDay;

Today >= PayDay

Use of the Functions Ord, Pred, and Succ. If Today is a variable of type
Days, then we can use any of the expressions

Ord(Today)

Pred(Today)

Succ(Today)

For example,

Ord(Sun) is 0

Ord(Red) is 4

Pred(Sat) is Fri

Succ (Wed) is Thr

if the value of Today is not Sun

if the value of Today is not Sat

Retyping. For the char type, the Ord function has an inverse function, Chr:
Ord(' A') = 65, and Chr(65) = 'A'. In THINK Pascal, the inverse function for Ord with
user-defined types is the name of the type used as if it were a predefined function. It has one
parameter, a legal position within that type. For example, if we define:

type

Days= (Sun, Mon, Tue, Wed, Thr, Fri, Sat);

then Days(O) is Sun, Days(4) is Tur, and Days(6) is Sat. This THINK Pascal feature is called
retyping and is typically not found in other versions of Pascal.

Input and Output. In standard Pascal, we cannot use any of the functions Read,
Write, Readln, or Writeln with variables or constants of a user-defined ordinal type. THINK
Pascal, though, does allow us to use these functions with user-defined ordinal types. For
instance, if we have these declarations:

type

Classes= (Fighter, Thief, Paladin, Monk, Cleric, MagicUser);

var
ClassName: Classes;

the following statements are examples of legal THINK Pascal 1/0 statements that employ
user-defined enumerated types:

Writeln(Fighter);

Writeln(ClassName);

Read(ClassName)

5-3 USER-DEFINED DATA TYPES 397

Notes

1. Notice that Fighter is not in quotes; 'Fighter' is a string, not a value of Classes.

2. When reading a value into ClassName, THINK looks for a value of Classes. It starts
where the last Read or Readln statement left off, and then skips over any blanks or
end-of-line characters. Then it starts looking at characters. If the first character
encountered matches the first character of one of the type values, it reads the next
input character. If these two characters match the first two characters of (at least) one
of the type values, it reads the next input character, and so on, until it reads a character
that doesn't match. It then takes all the characters up to but not including the last one
read, and determines if that character sequence matches one of the type values. If so,
that value is placed into ClassName; if not, a run time error occurs.

Indexes of arrays. We can employ the constants of a user-defined ordinal type as
the indexes of an array. For example, to add a description when printing a name, such as
"Kragthom the Wise", we could initialize an array as follows:

type

Classes= (Fighter, Thief, Paladin, Monk, Cleric, MagicUser);

ClassesStrings = array[Classes) of string[30);

var

PrintTitle: ClassesStrings;

begin

PrintTitle[Fighter) :='the Fierce';

PrintTitle[Thief) := 'the Sneaky';

PrintTitle[Paladin) := ·~he Crusader';

PrintTitle[Monk) := 'the Holy';

PrintTitle[ClericJ := 'the Wise';

Print Title [MagicUser) : = 'Doctor of Illusionary Sciences';

We shall provide more details on arrays in Chapter 6.

For Loop Index. We can employ the constants of a user-defined ordinal type to
control a for loop. For example, suppose that we have defined the ordinal type DaysOfWeek
as follows:

type

DaysOfWeek = (Sun, Mon, Tue, Wed, Thr, Fri, Sat);

and defined an array to hold strings for the days of the week spelled out (for printing
purposes):

NameArray = array[DaysOfWeek) of string;

We initialize this array to the days of the week (as strings) using this procedure:

398 ELEMENTARY DATA STRUCTURING CHAP. 5

procedure Initialize(var PrintNarne: NarneArray);

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To initialize PrintName array}

begin (Initialize}

PrintName[Sun] .- 'Sunday';

PrintName[Mon] ·- 'Monday';

PrintName[Tue] .- 'Tuesday';

PrintName[Wed] ·- 'Wednesday' ;

PrintName[Thr] . - 'Thursday' ;

PrintName[Fri] ·- 'Friday';

PrintName[Sat] ·- 'Saturday'

end; {Initialize}

If we wish the user to input the amount of sales for each day of a week in order to
compute a total, we could use the following code fragment (assuming that the variables
DaysSales and WeekTotal have both been declared as real and that the variable Day has
been declared to have type DaysOfWeek):

WeekTotal := 0.0;

for Day := Sun to Sat do

begin

Write('Enter the sales for ', PrintName[Day], ': $');
Readln(DaysSales);

WeekTotal .- WeekTotal + DaysSales

end; {for}

If we used "for Day := Mon to Fri do'', then this fragment would ask for sales only for the
days Monday through Friday.

In summary, we have seen that user-defined ordinal types allow the programmer to
make clear his or her intentions within the code of the program. This clarity can make the
jobs of program design, coding, debugging, and program maintenance easier and less time
consuming.

Subrange Types

Pascal allows us to define ordinal types that contain part of the values of a given ordinal
type lying between two values. This construction of a subrange type can be accomplished
using built-in ordinal types or user-defined ordinal types. We specify the subrange values by
means of the construction:

first value in the subrange .. last value in the subrange

Some examples:

2 .. 5

'd' .. 'g'

Thief. . Cleric

represents the subrange of integers 2, 3, 4, and 5

represents the subrange of chars 'd', 'e', 'f', and 'g'

represents the subrange of the type Classes defined
previously and consists of Thief, Paladin, Monk, and Cleric

5-3 USER-DEFINED DATA TYPES 399

We have seen subranges used in our preliminary discussions of arrays wherein we
defined the type:

type

IntegerArray = array[l .. 1000] of integer;

In this case, the subrange 1 .. 1000 is used to limit the legal indexes for the arrays of the type.
This use of the subrange concept is typical: to limit the values that can be used for a given
situation. For example, in adventure games, characters have certain assigned qualities, such
as dexterity, wisdom, and intelligence. In some such games, the values of these qualities are
obtained from a roll of an 18-sided die. In addition, values under 6 are considered to be too
low to be useful. So, we have a working rule that the values of these character qualities are
to lie between the values 6 and 18, inclusive. This concept can be embodied in a Pascal
program via a type declared as follows:

type

RolledValue = 6 .. 18;

We can then declare character qualities as variables of type RolledValue as follows:

var

Dexterity: RolledValue;

Wisdom: RolledValue;

Intelligence: RolledValue;

We could accomplish the same result without an explicit type name by means of the lines of
code:

var

Dexterity: 6 .. 18;

Wisdom: 6 .. 18;

Intelligence: 6 .. 18;

We consider the use of a named type to be better programming style because it allows the
use of the variables Dexterity, Wisdom, and Intelligence to be passed as parameters. Use of
a named type also makes it relatively easy to change the subrange (say, to 7 .. 18).

Type and Range Checking

Pascal provides for two levels of checking for the legality of certain activities such as value
assignment, input/output, array referencing, and parameter passing. At compile time, Pascal
performs type checking in which each instance of the previously listed activities is checked
to see if the types involved are legal for the context.

Earlier in this book, we discovered that the compiler does not allow an assignment
statement that has an integer variable on the left side and a real variable on the right side.
This was our first example of type checking. As programmers, we should be grateful that
the compiler attempts to stop us from doing things that are likely to cause the program to
produce erroneous results. As we have introduced different data types in this book, we have
attempted to indicate what activities can be legitimately performed with each type.

400 ELEMENTARY DATA STRUCTURING CHAP. 5

In general, activities performed with objects of subrange types of the same base type
pass through type checking. For example, if X is a variable of type RolledValue (defined
previously as a subrange of the integers from 6 to 18) and if Y is a variable of type integer
or any subrange of the integer type, then the compiler deems the assignment statement:

x := y

legal.
In other type-checking activities, the compiler only allows variables of a named type

to be passed as parameters. Also, indexes of arrays must be of the same base type as that
used in the declaration of the array.

The other kind of checking occurs at both compile time and run time and is called
range checking. The main purpose of having subrange types in Pascal is to allow for the
detection of invalid values for variables that can occur as the program runs. The invalid
values can result from bugs in the program or they can result from invalid user input.

In THINK Pascal, the default compiler option is for run-time range checking not to be
performed; that is why we have been turning on the range-check option in all our programs
that use arrays. We strongly suggest that you activate range checking for all programs under
development that use arrays or subranges. If program speed is a concern, the range checking
can be turned off once the program has been completely debugged. (Programs without range
checking run faster than those with range checking active.)

The following are some of the common violations of range restrictions:

1. A1Tay Index Out of Range. If we have declared that the array X has indexes that
are integers in the range from 3 to 6, inclusive, then the array references X[7) and X[2] are
invalid. These two errors are detected by the compiler whether run-time range checking is
active or inactive. A slightly different set of circumstances is found in the following lines:

y := 7;
z := x[y]

This range violation is not detected at compile time, but is detected at run time if range
checking has been activated.

2. Assignment Outside of Subrange. Suppose that the type Classes and a subrange
type Elite have been declared as follows:

type
Classes= (Fighter, Thief, Paladin, Monk, Cleric, MagicUser);

Elite = Thief .. Cleric;

Also, suppose that the variable HiClass has been declared to be of type Elite. Then the
assignment statement

HiClass := Fighter;

is a range violation that is detected at run time if run-time error checking is activated.

3. Numeric Value Out of Range. If real number values exceed the maximum possi
ble value, then a run-time error occurs whether or not range checking is activated. For
example, the following statement results in a run-time error:

X := Exp(l000)

5-3 USER-DEFINED DATA TYPES 401

In this statement, we are attempting to produce a value of order of magnitude 1 followed by
435 zeros.

4. Illegal Value for Function. Recall that the Chr function is defined for the ordinal
values of the character set used in the implementation of Pascal, in our case, the ASCII set,
which has Ord values from 0 to 255. The expression Chr(300) is illegal, yet in THINK
Pascal it does not result in a run-time error, even if range checking has been turned on. (A
result is returned, but its value is meaningless.) So be careful!

Examples of the same kind are the attempts to refer to the predecessor of the first
element or the successor of the last element of an ordinal type. The expressions Pred(false)
and Succ(true) are illegal and result in meaningless values being returned.

5. Input of an Integer of Overlarge Magnitude. If the user responds to a Read or
Readln of an integer with a value that is above maxint or below -maxint, there are two
possibilities. If checking for integer overflow has not been turned on, an incorrect value is
stored in the variable; no run-time error occurs. If overflow checking is turned on, a run
time error results. This error can be trapped (i.e., noticed and dealt with within the program);
we discuss error trapping in more detail in what follows.

Error Trapping

There are two circumstances that are quite aggravating when dealing with files. If you have
been running the example programs of this chapter, you have probably experienced both of
these situations.

The first situation occurs when you are asked for the name of an existing file. If you
make a spelling mistake in entering the name of the file, the program aborts with a "file not
found" run-time error.

The second situation can cause you to lose valuable files. It arises when you are asked
for the name of a file that is to be created. If a file by the same name already exists, then it
is deleted and any information that was in the file is lost. If you accidently enter the name of
one of your existing program or data files, your file will be destroyed.

THINK Pascal provides a solution to both of these problems by means of error
trapping. By default, THINK Pascal aborts the program when an input/output error is
detected, but this can be changed by using the predefined procedure IOCheck. IOCheck
takes one Boolean parameter. If it is set to false, then there is no program abort when
input/output errors are detected; if the parameter is true, then the program does abort when
input/output errors are detected.

In addition, THINK Pascal provides a built-in function IOResult that indicates the
presence of an input/output error when IOCheck(false) has been issued. The values of IOR
esult are interpreted as follows:

IOResult = 0 means that no input/output error has occurred

IOResult <> 0 means that some input/output error has occurred

By using the compiler directives and the built-in function IOResult, we can cause our
programs to behave properly. For example, Figure 5-13 contains a function Exists that will
tell if a file with a given name exists on the disk. Also shown in the figure is a procedure

402 ELEMENTARY DATA STRUCTURING CHAP. 5

OpenRead that invokes the Exists function. If the file the user specified does not exist, the
procedure provides the user another chance to specify the file name.

Any program that reads from a file needs to contain code similar to that in Figure
5-13. The easiest way to accomplish this is to put the code in subprograms, as illustrated in
the figure. These subprograms can then be inserted in any program that needs them.

function Exists (FileName: string): boolean;

{Written by: XXXXXXXXX XX/XX/XX}
{Purpose: To check a given file name for existence, using IOCheck}
{ and IOResult}
{Parameters: FileName - input, the name of thefile to be checked}

var
DummyFile: text; {Used to check file name}

begin {Exist}
IOCheck(false);
Reset(DummyFile, FileName);
IOCheck(true);

{Turn off error messages}
{Try to open for input}
{Turn on error messages}

Exists := IOResult = O;
if IOResult = 0 then

{Call IOResult function to see if ok}

Close(DummyFile)
end; {Exists}

{Don't leave open files about}

procedure OpenRead (var InputFile: text);

{Written by: XXXXXXXXX XX/XX/XX}
{Purpose:
{

{Parameters:

To obtain the name of an existing file from the user,}
and open it for reading.}
InputFile - the file to be opened}

{Functions used: Exists, to see if the file exists}

var
FileName: string;
ValidName: boolean;

begin {OpenRead}
repeat

{Name of file on disk}
{Name entered exists}

Write('Enter the filename: ');
Readln(FileName);
ValidName := Exists(FileName);
if not ValidName then

Writeln(' ***File does not exist')
until ValidName;
Reset(InputFile, FileName); {Open the file for output}

end; {OpenRead}

Figure 5-13 Trapping 1/0 errors.

5-3 USER-DEFINED DATA TYPES 403

Note. OpenRead as shown in Figure 5-13 opens a text file. For any other file type,
you would simply change the parameter type to match the file to be opened.

This type of module is sometimes referred to as a "utility" module. It can be used in a
large variety of programs. Another useful utility would be Open Write, to open a file for
output. Appendix C (Utilities) contains such a module, along with the OpenRead and Exists
presented here.

Note. Notice that the function Exists closes the file "AnyFile" after it checks for its
existence. If you use this function in your programs, do not leave out that step. (If you do
leave it out, you may exceed the limit on how many files can be open at once, even in a
program that only uses one or two files.)

More on Records

In this section, we look at a slightly richer record structure that combines some of the ideas
that we have been developing. In our example, we use a record structure that represents
some of the attributes of an adventure game character. Our record structure is defined as
follows:

Character = record

end;

Name: String20;

Class: Classes;

Dexterity: RolledValue;

Constitution: RolledValue;

Wisdom: RolledValue;

Strength: RolledValue;

Intelligence: RolledValue;

Charisma: RolledValue

The type String20, Classes, and RolledValue must have been defined prior to defining the
type Character.

The name of the character is a string of up to 20 characters and would include the
examples: Gandalf the Grey, Garvin, and Mirro the Ugly. The type Classes is the same as
discussed previously:

Classes= (Fighter, Thief, Paladin, Monk, Cleric, MagicUser);

The type RolledValue is a subrange type that was also discussed previously:

RolledValue = 6 .. 18;

The other fields of the record represent qualities of the character that determine the limits of
the character's activities during a game. In the two programs that comprise Figures 5-14 and
5-15, we provide the means to build a file of characters and to search that file.

The Build program of Figure 5-14 makes considerable use of the random-number
function Random to produce the simulated dice rolls and also to choose the character class

404 ELEMENTARY DATA STRUCTURING CHAP. 5

for each character. The simulated dice rolls are supposed to be random numbers in the range
from 6 to 18, inclusive. To get the random numbers in the range that we want (6 to 18), we
use the expression

abs(Random mod HighRollLess5) + 6

where HighRol1Less5 is 13.
In order to choose a random member of the enumerated type Classes, we begin at the

first element (Fighter) and, at random, execute 0 or more instances of the Succ function to
arrive at a random element in the enumerated type. Note that because the number of ele
ments in the type is 6, we want to execute between 0 and 5 instances of Succ. This is
accomplished via the lines

Class := Fighter;

for I := 1 to abs(Random mod ClassesSize) do

Class := Succ(Class)

where ClassesSize has the value 6. Input/output error trapping is utilized via the Exists
function and Open Write procedure to prevent the user from inadvertently deleting a file.

program Build;

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To build a file of game characters}

{Procedures used: Instructions - to print instructions}

{Functions used: Exists - to check for existence of a file}

const

EndOfData '$END';

ClassesSize 6;

HighRollLess5 = 13;

type

String20 = string[20];

{Terminating value}

{Number of classes}

{Highest possible roll minus 5}

Classes = (Fighter, Thief, Paladin, Monk, Cleric, MagicUser);

RolledValue = 6 .. 18;

Character = record

Name: String20;

Class: Classes;

Dexterity: RolledValue;

Constitution: RolledValue;

Wisdom: RolledValue;

Strength: RolledValue;

Intelligence: RolledValue;

Charisma: RolledValue

end;

Figure 5-14 A comprehensive example: build a file (continues next page).

5-3 USER-DEFINED DATA TYPES 405

FileType file of Character;

var

MyChar: Character;

AnyFile: FileType;

I: integer;

procedure Instructions;

begin {stub}

end;

{Instance of record}

{File designator}

{Loop index}

{function Exists, as shown in Figure 5-13, is inserted here}

{procedure OpenWrite, as shown in Appendix c, is inserted here; with}

{type text changed to type FileType)

begin {Build}

{*** Print instructions and initialize}

Instructions;

GetDateTime(RandSeed); {Seed the random number generator}

{*** Ask the user for the filename and open the file}

OpenWrite(AnyFile);

{*** Get names for file}

with MyChar do
begin

repeat

Writeln;

Write('Enter name ($END to quit): ');

Readln(Name);

if Name <> EndOfData then
begin

Class := Fighter;

for I := 1 to abs(Random mod ClassesSize) do
Class := Succ(Class);

Writeln('The class is: ', Class);

Dexterity := abs(Random mod HighRollLess5) + 6;

Writeln('The dexterity is: ', Dexterity);

Constitution := abs(Random mod HighRollLessS) + 6;

Writeln('The constitution is: ', Constitution);

Wisdom := abs(Random mod HighRollLessS) + 6;

Writeln('The wisdom is: ',Wisdom);

Strength := abs(Random mod HighRollLess5) + 6;

Writeln('The strength is: ', Strength);

Figure 5-14 (continues next page)

406 ELEMENTARY DATA STRUCTURING CHAP. 5

Intelligence := abs(Random mod HighRollLess5) + 6;

Writeln('The intelligence is: ', Intelligence);
Charisma := abs(Random mod HighRollLess5) + 6;

Writeln('The charisma is: ', Charisma);

Write(AnyFile, MyChar)

end {if}

until Name = EndOfData

end; {with}

{*** Close the file}

Close (AnyFile);

{*** Stop program}

end.

SAMPLE INPUT AND OUTPUT

Enter the filename: CharacterFile

File already exists. Delete(Y,N)? r

Enter name ($END to quit): Kragthorn

The class is: Cleric

The dexterity is: 6

The constitution is: 7

The wisdom is: 12

The strength is: 15

The intelligence is: 10
The charisma is: 11

Enter name ($END to quit): Nephron

The class is: MagicUser

The dexterity is: 16

The constitution is: 18
The wisdom is: 15
The strength is: 14
The intelligence is: 17

The charisma is: 11

Enter name ($END to quit): $END

Figure 5-14 (continued)

The program Search of Figure 5-15 allows the user to specify the name of a character
and receive the other information associated with the character. The procedure Initialize is
once again used to establish the array of print names for the character classes. Input/output
error trapping is used to detect the situation where the user specifies a file that does not
exist. The file-searching technique is similar to that used earlier in this chapter.

5-3 USER-DEFINED DATA TYPES 407

program Search;

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To search for a character and display its information}

{Procedures used: Instructions - to print instructions}

{Functions used: Exists - to check for existence of a file}

type

String20 = string[20];

Classes= (Fighter, Thief, Paladin, Monk, Cleric, MagicUser);

RolledValue = 6 .. 18;

Character = record
Name: String20;

Class: Classes;

Dexterity: RolledValue;

Constitution: RolledValue;

Wisdom: RolledValue;

Strength: RolledValue;

Intelligence: RolledValue;

Charisma: RolledValue

end;

FileType file of Character;

var
MyChar: Character;

AnyFile: FileType;

PrintName: ClassesStrings;

I: integer;

ToFind: string[20];

{Instance of record}

{File designator}

{For printing classes}

{Loop index}

{Name to find}

{procedure Exists, as shown in Figure 5-13, is inserted here}

{procedure OpenRead, as shown in Figure 5-13, is inserted here with}

{type text changed to type FileType}

begin {Search}

{*** Print instructions and initialize}

Instructions;

{*** Ask the user for the filename and open the file}

OpenRead(AnyFile);

{*** Get name from the user}

Writeln;

Write('Enter the character''s name: ');

Readln (ToFind) ;

Figure 5-15 A comprehensive example: search a file (continues next page).

408 ELEMENTARY DATA STRUCTURING CHAP. 5

{*** Search the file for the name}

with MyChar do
begin

Name .- '';

while (Name
begin

{Null value in case no characters in file}
<> ToFind) and (not Eof(AnyFile)) do

Read(AnyFile, MyChar);
end; {while}

{*** Display the results of the search}

if Name = ToFind then
begin

Writeln('The class is: ' Class);
Writeln('The dexterity is: ', Dexterity);
Writeln('The constitution is: ', Constitution);
Writeln('The wisdom is:', Wisdom);
Writeln('The strength is: ', Strength);
Writeln('The intelligence is: ', Intelligence);
Writeln('The charisma is: ', Charisma)

end
else

Writeln('*** Character not found.')
end; {with}

{*** Close the file}

Close (AnyFile) ;

{*** Stop program}

end.

SAMPLE INPUT AND OUTPUT

Enter the filename: CharactersFile

* * * File does not exist.
Enter the filename: CharacterFile

Enter the character's name: Kragthorn
The class is: Cleric
The dexterity is: 6

The constitution is: 7

The wisdom is: 12
The strength is: 15
The intelligence is: 10
The charisma is: 11

Figure 5-15 (continued)

5-3 USER-DEFINED DATA TYPES 409

DPT

1. Perhaps the most important defensive programming tip is to make sure that range
checking is in effect so the compiler can detect illegal references outside the proper range.
Without this checking, almost anything can happen when we make an illegal reference. For
example, if we write

Y := A(I]

and I is out of range, Y's value is totally meaningless. Even worse,

A[I] := Y

"clobbers" some memory location by placing the value of Y in it. This could, for example,
give some other variable the value of Y, give some other variable a meaningless value, or
even modify part of the program.

2. We must not use the functions Ord, Pred, or Succ on variables of type real. The
compiler detects these errors.

3. Do not use Pred on the first element of an ordinal type or Succ on the last element.
These may not produce an error message, but they have no reasonable meaning.

4. Do not use duplicate identifiers within a program unit. They produce a compile
time error.

One possibility for violating this rule occurs when we create user-defined ordinal
types. For example, suppose we have a type declaration

Days = (Sun, Mon, Tue, Wed, Thr, Fri, Sat)

Then we cannot use Days or any of Sun, Mon, and so on as variable names. More subtly, we
cannot define another type such as

Weekdays = (Mon, Tue, Wed, Thr, Fri)

The duplicate use of Mon, for example, is illegal. (However, we can define Weekday using
the subrange type Mon .. Fri, since subranges are portions of other ordinal types.)

5. Use input/output error-trapping techniques for friendlier programs. Remember that
the programmer is responsible for the behavior of a program, even when it is being used by
a less-than-attentive user.

REVIEW

410

Terms and Concepts

abort
ASCII
Chr
constant
enumerated type
error trapping
Ord
ordinal type

Pred
range checking
retyping
scalar type
subrange
Su cc
type checking
user-defined ordinal types

ELEMENTARY DATA STRUCTURING CHAP. 5

Pascal Syntax

1. Functions for ordinal types:

(a) Ord(X) shows the position of X within the type.

(b) Succ(X) gives the successor of X.

(c) Pred(X) gives the predecessor of X.

2. Declare user-defined ordinal type by listing the constants of the type, as in this exam
ple:

type

Classes= (Fighter, Thief, Paladin, Monk, Cleric, MagicUser);

3. Specify the limits of a subrange by separating the first and last elements with two
dots:

first value .. last value

4. IOResult = 0 indicates no error occurred (IOCheck(false) must have been issued).

EXERCISES

DPT

1. Use range checking during development.
2. Do not use the functions Ord, Pred, or Succ on variables of type real.
3. Do not use Pred on the first element of an ordinal type. Do not use Succ

on the last element of an ordinal type.
4. Do not use duplicate identifiers within a program unit.
5. Use input/output error-trapping techniques.

1. Evaluate the following:
(a) Ord ('b')

(b) Succ ('1')

(c) Pred(true)

(d) Ord(-5)

(e) Succ(Pred('t'))

(f) Ord (Chr (7 5))

(g) Chr(Ord('d'))

(h) Succ(Chr(68))

(i) Pred (4)

(j) Pred (' 4 ')

(k) Succ (9)

(1) Succ ('9')

2. Suppose that we have defined a type as follows:

EXERCISES 411

type

Outcomes= (Lose,Draw,Win);

Evaluate the following:

(a) Ord(Lose) (b) Pred(Win)

(c) Succ (Draw) (d) Lose< Draw

(e) Win = Lose

3. Write an integer function Roll that returns a random integer between 6 and 18, inclusive.

4. Write an integer function Roll(Low, High: integer) that returns a random integer between Low
and High, inclusive.

5. Either of the functions of Exercises 3 and 4 would prove useful for the program of Figure 5-13.
Discuss pros and cons of each of the functions and choose one of them to use. Rewrite the
program of Figure 5-13 using the function that you have chosen.

6. (a) Write a function of type Outcomes (see Exercise 2) as follows: Two pairs of dice are
rolled. If the first pair's result is greater than the second, you win; if less, you lose; if equal,
you draw.

(b) Using the function of part (a), write a program that plays the following game. Two players
start, one with $20 and one with $14. They roll the dice 100 times or until one goes broke,
whichever occurs first. The winner of each roll wins $1 from the other player. The program
should tell what happened.

(c) Is the game described in part (b) fair? To answer the question, simulate the game 1000
times, calculating the average amount of money each player has left at game's end.

7. Write a function:

function UppercaseValue(N: integer): Uppercase;

which returns the uppercase letter associated with position N. (For example, for N = 0, 'A'
would be returned. The type Uppercase is defined as 'A' .. 'Z'.

8. (Inspired by Steve's of Somerville, MA.) Define the following types:

Fruits:

Flavors:

Toppings:

Sundaes:

Includes strawberries, raspberries, plums, and bananas

Includes vanilla, chocolate, tinroof, and tuttifruiti

Includes chocolatechips, nuts, candybars, and hardcandy

A record containing a name, 3 flavors, 1 fruit, and 3 toppings

9. Write Pascal programs to build and search for sundaes as defined in Exercise 8.

10. (a) Define a procedure TimeAdd(Timel, Time2: Times; var Sum: Times). Times is a record
type that includes the two integer fields Minutes and Seconds.

(b) Define a procedure TimeSub similar to TimeAdd.

11. Define the record types:

412

Point: Includes two real fields: X and Y
Line: Includes three real fields: Y coeff, Xcoeff, and Constant

We want to interpret the record type Point to represent points in a coordinate plane. We want to
interpret Line to represent a line in a coordinate plane via its equation:

(Ycoeff)*Y + (Xcoeff)*X + (Constant) = 0

Write the following functions:

ELEMENTARY DATA STRUCTURING CHAP. 5

(a) IsLine--Boolean; input parameter of type Line; returns true if the equation represents a
line. Hint: At least one of Y coeff or Xcoeff must be nonzero.

(b) OnLine--Boolean; determines if the input parameter of type Point lies on the input param
eter of type Line.

12. Give test plans for the following:
(a) Exercise 4
(b) Exercise 6
(c) Exercise 9
(d) Exercise 10

5-4 CASE STUDIES: RATIONAL ARITHMETIC

In this section, we present two case studies. In the first, we develop portions of a package to
deal with rational numbers (fractions). In order to represent the data, we use the record data
structure. (As we indicated when we first discussed records, the record concept is frequently
employed when files are not involved. This case study illustrates this type of use.) As the
program design proceeds, we present the venerable Euclidean Algorithm for determining the
greatest common divisor of two integers. It is a function that is needed for several of the
activities involved with rational numbers.

The second case study illustrates the use of modules in a package by developing a
working program that acts as a "calculator'' for rational numbers, but which contains only
two functions. In order to present the user interface, we use sets to specify valid menu
options. We suggest several other functions in the exercises.

Case Study No. 7 (A Rational Number Package)

Statement of Problem. The real variables in Pascal are usually only approximately
accurate representations. For example, the constant 1/3 as used in the statement

x := 1/3

does not provide the exactness that it appears to have. We might expect that following this
assignment, we could use X as an accurate representation of the rational number 1/3. How
ever, if we execute the code

x := 1/3;

if 3 * X = 1.0 then

Writeln ('I' 'm surprised!')
else

Writeln ('I knew it was only approximate!')

we see that real variables do not provide a faithful representation for rational numbers. In
this case study, we develop a set of modules to provide a more faithful representation.

Preliminary Analysis. There are an infinite number of mathematical representations
for a given rational number. For example, 1/2, 5/10, 25150, -7/-14, and so on, are all
representations for the same number. However, there is a unique preferred representation,
namely, the one in which the numerator and denominator have no common factors and the
denominator is positive.

5-4 CASE STUDIES: RATIONAL ARITHMETIC 413

Since the mathematical representation of a rational number contains two integer num
bers, it is natural to choose a computer representation that uses two Pascal integer variables.
In our case, we use a record with two integer fields to represent a single rational number:

RationalNumber = record
Numerator: integer;
Denominator: integer

end;

The use of this data structure allows us to deal with a rational number as a single entity
when we are communicating with subprograms, and it allows us to deal with the numerator
and denominator individually when necessary.

We must next decide on the operations to perform. We obviously need to provide
addition, subtraction, multiplication, and division. In addition to these, it would be desirable
to have operations for reading and writing rational numbers, converting a rational number to
an integer or a real number, and converting an integer to a rational number. We might also
provide comparison of rationals and possibly other operations.

Note that some of the operations can be expressed in terms of others. For example,
subtraction involves a change of sign followed by addition. Division involves inverting one
rational and multiplying. This suggests a separation of the operations into primitive and
composite operations, as shown in Table 5-1.

We must next decide on the form of the operations. Most operations take several steps
to perform, so it seems reasonable to use subprograms. Many operations in Table 5-1 pro
duce a rational result. Because we cannot have Pascal functions of a record type, we use
procedures for these operations. Input and output activities are normally not appropriate for
functions, so we use procedures for these activities as well. It is natural to expect compari
son operations to produce conditions to be used in if-then, while-do, and repeat-until con-

TABLE 5-1 OPERATIONS SEPARATED INTO
PRIMITIVE AND COMPOSITE OPERATIONS

Primitive

Addition

Multiplication

Input

Output

Convert ration al to integer

Convert rational to real

Convert integer to rational

Compare for equality

Compare for less than

Composite

Subtraction

Division

Compare for less than or equal

414 ELEMENTARY DATA STRUCTURING CHAP. 5

structs, so we use Boolean functions for these operations. Finally, we use an integer function
and a real function for the conversion of a rational number to integer and real, respectively.

The arithmetic operations require two operands and one result. We could use another
argument to indicate success or failure of the operation. However, in order to simplify the
argument lists of the subprograms, we adopt the following convention: any error causes an
error message and the program terminates.

Some of the operations are commutative and others are not. For example, 1/2 + 1/3 is
the same as 1/3 + 1/2, but 112 - 113 is not the same as 1/3 -112. When we add two rational
numbers to produce the sum, there are six different ways to arrange the parameters for the
addition procedure. We choose our arrangement based on the principles:

1. Input parameters come before output parameters.

2. The two operands for the operation are arranged in the natural order for the equivalent
operation we use in arithmetic.

Summarizing our discussion so far, we have decided to use the following procedures:

procedure Add(FirstNumber, SecondNumber: RationalNumber;
var Sum: RationalNumber);

procedure Subtract(FirstNumber, SecondNumber: RationalNumber;
var Difference: RationalNumber);

procedure Multiply(FirstNumber, SecondNumber: RationalNumber;
var Product: RationalNumber);

procedure Divide(FirstNumber, SecondNumber: RationalNumber;
var Quotient: RationalNumber);

We adopt the convention that all rational numbers that appear as parameters of the
operations of Table 5-1 have the following reduced form:

1. The numerator and denominator have no common factor larger than 1.

2. The denominator is positive.

In order to produce this internal consistency of representation in the package, we use the
procedure:

procedure Reduce(Number: RationalNumber; var ReducedNumber:
RationalNumber);

Algorithms and Programs. We select a few of the operations for detailed discussion
and leave the others for the exercises.

A simple method of adding the two rational numbers A/B and CID is shown in the
equation:

The equation shows us that the algorithm for addition is essentially two steps:

set the numerator to AD + BC
set the denominator to BD

5-4 CASE STUDIES: RATIONAL ARITHMETIC 415

procedure Add {FirstNum, SecondNum: RationalNum; var Sum: RationalNum);

{Written by: XXXXXXXXX XX/XX/XX}
{Purpose: To add two fractions)
{Parameters: FirstNum - input, first fraction to add}

SecondNum - input, second fraction to add}
Sum - output , sum of the two fractions}

{Procedures used: Reduce - to reduce a fraction to lowest terms }

begin {Add}
with Sum do

begin
Numerator := FirstNum.Numerator * SecondNum.Denominator +

SecondNum.Numerator * FirstNum.Denominator;
Denominator .- FirstNum.Denominator * SecondNum.Denominator

end; {with}

Reduce{Sum, Sum)
end; {Add}

Figure 5-16 Adding rational numbers.

Because of our desire to maintain the reduced form for all of our results, we add a third
step:

reduce the answer

This algorithm becomes the Pascal procedure of Figure 5-16. Note the use of the
with-do construct to simplify the calculation of the numerator and denominator. Also, notice
that Sum is used as the input and the output in the call to the Reduce procedure. This is very
similar to the dual use of a variable in an assignment statement such as:

I := I + 1

Note. However, it can be dangerous if both parameters are var parameters. Because
that is not tlie case here, we are safe. An alternate approach would be to use a local variable
ReducedSum, and replace the line

by the steps

Reduce{Sum, Sum)

Reduce{Sum, ReducedSum);
Sum := ReducedSum

The next procedure is intended to accept the input of a rational number from the user.
We call this procedure ReadOne because it reads one rational number. This procedure must
not allow the user to input a denominator of 0, which would produce an invalid rational
number. The steps in the algorithm for ReadOne are

416 ELEMENTARY DATA STRUCTURING CHAP. 5

prompt the user for the numerator
read the numerator
prompt the user for the denominator
read the denominator
as long as the denominator is zero do these steps:

print a message
read a new value for the denominator

reduce the rational number

The Pascal code for ReadOne is shown in Figure 5-17.

The next procedure, which we call WriteOne, is for output of a rational number on the
terminal. We do not attempt to produce any fancy output for this discussion, but simply
perform the following steps:

print a blank line
print the numerator preceded by "Numerator:"
print the denominator preceded by "Denominator:"
print a blank line

The code for the procedure WriteOne appears as Figure 5-18.

procedure ReadOne{var Number: RationalNumber);

{Written by: XXXXXXXXX XX/XX/XX}
{Purpose: To read a fraction}
{Parameters: Number - output, fraction to be entered by user}
{Procedures used: Reduce - to reduce a fraction to lowest terms}

begin {ReadOne}
with Number do

begin
Write {' Enter numerator: ');
Readln{Numerator);
Write { ' Enter denominator: ') ;
Readln{Denominator);
while Denominator = 0 do

begin
Writeln;
Write{'Denominator of 0 not allowed. Please reenter: ');
Readln{Denominator)

end; {while}
end; {with}

Reduce{Number, Number)
end; {ReadOne}

Figure 5-17 Reading rational numbers.

5-4 CASE STUDIES: RATIONAL ARITHMETIC 417

procedure WriteOne(var Number: RationalNumber);

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To print a fraction}

{Parameters: Number - input, fraction to be printed}

begin {WriteOne}

Writeln;

with Number do

begin

Writeln(' Numerator: ' Numerator);

Writeln('Denominator: ' Denominator}

end; {with}

Writeln

end; {WriteOne}

Figure 5-18 Writing rational numbers.

The Reduce procedure has two major jobs: to eliminate any common factor bigger
than 1 from the numerator and denominator and to provide for a positive denominator. The
steps in the algorithm for Reduce are

determine the greatest common divisor (gcd) of the numerator and denominator
divide the numerator by the gcd
divide the denominator by the gcd
if the denominator is negative, then negate both numerator and denominator

The process of determining the greatest common divisor of two integers is a natural candi
date for a subprogram. The best method for producing the gcd is an algorithm attributed to
the Greek mathematician Euclid (ca. 300 B.C.). The algorithm is based on the idea that for
any two positive integers N and M (not 0), we can find integers Q (quotient) and R (remain
der) so that

N=Q*M+R

and such that R < M. Some examples:

N

12

34

20
43

M

10

7

3

8

EQUATION

12 = 1*10 + 2

34 = 4 * 7 + 6

20=6*3+2

43 = 5 * 8 + 3

The simplest way to find the numbers Q and R is to let Q be the integer part of NIM
and let R be N - Q * M. The basis of the Euclidean Algorithm is that the gcd of N and M is
the same as the gcd of M and R. Thus, the basic idea is a recursive one:

418

To find the gcd of N and M:

if M is zero, N is the gcd
otherwise:

determine Q and R
find the gcd of M and R

ELEMENTARY DATA STRUCTURING CHAP. 5

The following is an example that traces the recursion for the two numbers 1101 and
24:

N M a R

1101 24 45 21
24 21 3
21 3 7 0
3 0

This example calculates the gcd of 1101 and 24 as 3. Note that there is no requirement that
N be larger than M because the two numbers switch places in the first step if N is smaller.

Usually, the gcd of two integers is expected to be positive even if one or both of the
integers is negative. We accomplish this requirement by calculating the gcd of the absolute
values of the numerator and denominator in Reduce. The code for Reduce and the recursive
Gcd function appear in Figure 5-19.

The final operation we discuss is the "compare for less than." In designing the algo
rithm for this operation, we must consider how it is that we know that

5/8 is less than 11/16

315 is less than 61/99

We can tell very simply which of two fractions is smaller by using a calculator to divide the
denominators into the numerators and comparing the resulting decimals. This is the strategy
that we adopt for our algorithm for our operation, which we call Less:

divide the numerator of the first number by its denominator
divide the numerator of the second number by its denominator
if the first quotient is less than the second, then return true;

otherwise, return false

The code for the operation is given in Figure 5-20. Note that the value of the function
Less is produced by the assignment statement:

Less := (FirstQuotient < SecondQuotient)

Because the right side of the assignment statement provides a value of type boolean, the
statement is valid. It is also meaningful because it clearly states that the value of the func
tion Less is directly dependent on the sizes of the quotients for the two fractions.

Case Study No. 8 (An Application of the Rational-Number Package)

The purpose of this case study is twofold:

1. To demonstrate how the rational-number package (or, more generally, any package)
might be used.

2. To illustrate a program that provides the user with a menu of choices.

Statement of Problem. Hand-held calculators typically work with decimal numbers.
Write a program that acts as a calculator but works with fractions instead.

5-4 CASE STUDIES: RATIONAL ARITHMETIC 419

function Gcd(N, M: integer): integer;

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To calculate the greatest common divisor of two positive}

integers by means of the Euclidean Algorithm}

{Parameters: N - input, first number for gcd}

M - input, second number for gcd}

{Functions used: calls itself recursively}

begin {Gcd}

if M = 0 then

Gcd .- N

else
Gcd .- Gcd{M, N mod M)

end; {Gcd}

procedure Reduce(Number: RationalNumber;

var ReducedNumber: RationalNumber);

{Written by: xxxxxxxxx XX/XX/XX}

{Purpose: To reduce a fraction to lowest terms:}

Numerator and denominator have no common}

factor bigger than 1. The denominator is positive.}

{Parameters: Number - input, fraction to be reduced}

ReducedNumber - output, reduced fraction}

{Functions used: Gcd - to compute the greatest common divisor}

abs - to calculate the absolute value}

var
CommonFactor: integer;

begin {Reduce}

with Number do

{Greatest common factor}

CommonFactor := Gcd(abs(Numerator), abs(Denominator));

ReducedNumber.Numerator :=.Numerator div CommonFactor;

ReducedNumber.Denominator := Denominator div CommonFactor;

with ReducedNumber do
if Denominator < 0 then

begin

end; {Reduce}

Denominator := -Denominator;

Numerator .- -Numerator
end {if}

Figure 5-19 Greatest common divisor (reducing rational numbers).

Preliminary Analysis. We approach this problem using "menu-driven" logic. That
is, we display the possible options and let the user decide which one to choose. This simu
lates the existence of the function keys on a typical calculator. Contrary to what most
calculators do, we input first the operation and then the fraction(s) the operation should use.

420 ELEMENTARY DATA STRUCTURING CHAP. 5

function Less(FirstNumber, Second.Number: RationalNumber): Boolean;

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To compare two fractions to determine if the first}

is less than the second}

{Parameters: FirstNumber - input, first fraction to compare}

Second.Number - input, second fraction to compare}

var
FirstQuotient: real; {The first number "divided out"}

SecondQuotient: real; {The second number "divided out"}

begin {Less}

with FirstNumber do

FirstQuotient .- Numerator I Denominator;
with SecondNumber do

SecondQuotient :=Numerator I Denominator;

Less := (FirstQuotient < SecondQuotient)

end; {Less}

Figure 5-20 Comparing rational numbers.

(Thus, we are using prefix input, whereas most calculators would use infix input, with the
operation in the middle, or postfix input, with the operation entered last.)

(The Mac has facilities to produce a user interface that would look very much like a
real calculator, where the mouse could be used to indicate which keys are pressed. Unfortu
nately, producing that kind of interface requires advanced programming concepts and tech
niques, so we stick with our menu-driven approach.)

Algorithms, Data, and Program. The logic of the main program is

print instructions
repeat the following until the user wants to quit:

present the user a menu and get user choice
depending on the choice, perform appropriate activity

print message and terminate program

The main program declares our record type for rational numbers, three variables for
use as rational numbers, a variable for the user choice from the menu, and a set to be used
for valid menu options. The declarations of the main program are

type

Letters = set of char;
RationalNumber = record

Numerator: integer;
Denominator: integer

end;

var
FirstNumber, Second.Number,

Third.Number: RationalNumber; {Rational numbers input}
Option: char; {User choice of menu option}
ValidOptions: Letters; {Valid menu options}

5-4 CASE STUDIES: RATIONAL ARITHMETIC 421

In the spirit of top-down design, the main program delegates most of its activities via
calls to subprograms. To print the instructions, the procedure Instructions is used, as was
shown earlier in this book. To display the menu and obtain a valid user option, the proce
dure Menu is used. To perform the appropriate activity, the procedure Handle is called. The
only detail the main program handles is establishing the valid menu options. The code for
the main program is as shown:

begin {Calculator}
ValidOptions := ['R', 'r', 'A', 'a', 'Q', 'q'];

{*** Print instructions}

Instructions;

{*** Main loop}

repeat

{*** Display Menu and get user option}

Menu (ValidOptions, Option);

ClearScreen;

{*** Handle user choice}

Handle(Option)

until Option in ['Q', 'q'];

*** Stop program}

end.

The decision to have the main program establish the valid menu options was made
because two subordinate program units depend on the valid options. The communication of
the valid options to the Menu procedure is done via a parameter, but the procedure Handle
has the valid options as elements of a case statement, as we will see. If an option is to be
added to the list of valid options, then the following must be changed:

the set in the main program must be enlarged
another menu line must be added in Menu
another case must be added in Handle

We use the procedure Pause in several places throughout the program. Its purpose is to
cause the user to tap a key on the keyboard before activity can continue. The code for the
procedure is as follows:

422 ELEMENTARY DATA STRUCTURING CHAP. 5

procedure Pause;

{Written by: XXXXXXXXX XX/XX/XX}
{Purpose:
var

To wait for user keystroke}

Answer: char;

begin {Pause}
Writeln;

{User keystroke}

Writeln(' ' : 20, '<Tap any key followed by Return to continue.>');
Readln(Answer)

end; {Pause}

The Menu procedure displays the options to the user and obtains a valid choice. The
procedure is as follows:

procedure Menu(ValidOptions: Letters; var Option char);

{Written by: xxxxxxxxx XX/XX/XX}
{Purpose: To display the menu and obtain the user choice}
{Parameters: ValidOptions - input, the set of legal options)

Option - output, the option selected by the user}
{Procedures used: Page

const
Margin 23;
Bel = 7;

var
Answer: char;

begin {Menu} Page;

- to clear the screen}

{Left margin for menu}
{ASCII Bel character}

{User response}

{Clear the screen}
Writeln(' ' 34, 'MENU OPTIONS');
Writeln (' '
Writeln;
Writeln(' '
Writeln(' '
Writeln (' '
Writeln;
Write (' '

34, '------------');

Margin, 'R(educe fraction to lowest terms)');
Margin, 'A(dd two fractions)');
Margin, 'Q(uit) ');

Margin+S, 'Option: ');

repeat
Readln(Answer);
if not (Answer in ValidOptions) then

Write(Chr(Bel))
until Answer in ValidOptions;

Writeln(Answer);
Option := Answer

end; {Menu}

5-4 CASE STUDIES: RATIONAL ARITHMETIC 423

We use the local constant Margin to determine the left "edge" of the menu display. As
we add options to the calculator, the number of spaces that we want to indent each option
very likely changes. Note that we do not print the invalid keystrokes on the screen, but we
do cause the computer to beep (or chirp or bong or whatever, depending upon the Mac's
setting) by using the Bel character. Once a valid key has been tapped, we print the valid
choice on the screen.

The procedure Handle actually performs the useful work of the program. The module
is organized as a case structure according to the options the user can select. Note that both
the uppercase and lowercase alternatives for each choice are listed together, separated by a
comma, to lead into the case. We use the otherwise for the case structure to detect an invalid
option. This error message is useful only during debugging of the program because once the
program begins to work as designed, the user cannot select invalid options. Note that in
order to reduce a fraction to lowest terms, the program need only read and write the fraction
because the procedure ReadOne calls Reduce before returning the user input. The code for
this module is

424

procedure Handle(Option: char);

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To perform the appropriate activities depending}

on the user choice.}

{Parameters: Option - input, user choice}

{Procedures used: ReadOne - to get a fraction from the user}

begin {Handle}

case Option of

'R', 'r':

begin

WriteOne - to print a fraction}

Pause - to wait for a user keystroke}

Add - to add two fractions}

Writeln(' ':25, 'REDUCE FRACTION TO LOWEST TERMS');

Writeln(' ':25, '-------------------------------');

Writeln;

ReadOne(FirstNumber);

Writeln;

Writeln('The reduced number is:');

WriteOne(FirstNumber);

Pause

end;

'A', 'a':

begin

Writeln(' ':32, 'ADD TWO FRACTIONS');
Writeln (' ': 32, '-----------------');

Writeln;

Writeln('Enter the first fraction: ');

Writeln;

ReadOne(FirstNumber);

Writeln;

Writeln('Enter the second fraction: ');

ELEMENTARY DATA STRUCTURING CHAP. 5

Writeln;

ReadOne(SecondNumber);

Add(FirstNumber, SecondNumber, ThirdNumber);

Writeln('The sum of the fractions is:');

WriteOne(ThirdNumber);

Pause

end;

IQI I tql:

Writeln

otherwise

Writeln('*** illegal option: ' Option, ' detected in procedure

Handle')

end {case}

end; (Handle}

Now that we have discussed all of the modules of the program, it is time to put things
together. To comply with the idea of defining elements before using them, it is helpful to
view the hierarchy of the program. We show the program hierarchy in an alternative "para
graph" form in which indentation indicates subordination of modules:

main program
Instructions

Page
Pause

Menu
Page

Page
Handle

Read One
Reduce

Gcd
Gcd

Pause
Add
Reduce

Gcd
Gcd

WriteOne

(denotes a possible recursive call)

We can see from the hierarchy that the following order of defining modules ensures
that each module is defined before it is used:

Page
Pause
Instructions
Menu
Gcd
Reduce
Add
Read One
WriteOne
Handle

5-4 CASE STUDIES: RATIONAL ARITHMETIC 425

This order is by no means unique, but it does have the virtue of keeping subordinate mod
ules close to calling modules to some extent. The assembled program appears as Figure
5-21, with a sample run given in Figure 5-22. The output could be made more attractive; we
leave that as an exercise.

program Calculator;

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To provide a calculator for fractions}

{Procedures used: Instructions - to print instructions}

Menu - to display the menu and get the user option}

Handle - to perform the user option}

{The declarations previously discussed are inserted here}

procedure Instructions;

begin {stub}

end;

{The following modules are inserted here:}

{ Pause}

{ Menu}

Gcd from Figure 5-19}

Reduce from Figure 5-19)

Add from Figure 5-16)

ReadOne from Figure 5-17)

WriteOne from Figure 5-18}

Handle}

begin {Calculator}

ValidOptions := ['R', 'r', 'A', 'a', 'Q', 'q'];

{*** Print instructions}

Instructions;

{*** Main loop)

repeat

{*** Display Menu and get user option}

Menu(ValidOptions, Option);

Page;

(*** Handle user choice}

Handle(Option)

until Option in ['Q', 'q']

{*** Stop program}

end.

Figure 5-21 Menu-driven calculator.

426 ELEMENTARY DATA STRUCTURING CHAP. 5

SAMPLE INPUT AND OUTPUT
MENU OPTIONS

R(educe fraction to lowest terms)

A(dd two fractions)

Q (uit)

Tap option: !:

REDUCE FRACTION TO LOWEST TERMS

Enter numerator: 11

Enter denominator: 33

The reduced number is:

Numerator: 1

Denominator: 3

<Tap any key to continue.>

MENU OPTIONS

R(educe fraction to lowest terms)

A(dd two fractions)

Q(uit)

Tap option: A

ADD TWO FRACTIONS

Enter the first fraction:

Enter numerator: 2

Enter denominator: 0

Denominator of 0 not allowed. Please reenter: 3

Enter the second fraction:

Enter numerator: 6

Enter denominator: -4

The sum of the fractions is:

Numerator: -5

Denominator: 6

<Tap any key to continue.>

MENU OPTIONS

R(educe fraction to lowest terms)

A(dd two fractions)
Q(uit)

Tap option: g;

Figure 5-22 Sample input and output for Case Study No. 8.

5-4 CASE STUDIES: RATIONAL ARITHMETIC 427

Documentation. As becomes apparent when one uses a package of modules to
develop a program, the documentation for such a package is different from that for a pro
gram. The fundamental reason is that the class of user is different.

If we think about the user of a program, we might picture a person sitting at a terminal
running the program. Such a person needs to know enough about computers to get the
computer going and initiate the program. He or she needs to know about the use of the
return key, the back space key, and other similar features. However, the user need not know
how to program in Pascal. (Most users are not programmers in any language.) Accordingly,
the user documentation should avoid technical jargon. It should explain how to start the
program, what type of input is expected, what type of output is generated, how to handle
any error situations, and similar topics.

On the other hand, the user of a package of modules is definitely a programmer. She
or he may not be proficient in the language in which the package was written; for example,
many packages are written in assembly language. However, the user understands terms such
as subprogram, input parameter, and other technical terms, and needs to know some of the
technical details of the package. She or he needs to know what parameters must be supplied
to the package's modules in order for them to work properly. The user needs to know what
declarations must be included in the main program for use by the modules in the package.
She or he wants to know precisely what output values result from given input values to
modules. (The user does not, however, care about the details of how the inputs generate
outputs: the algorithm and the code are not important.) The user's guide for a package of
modules is, therefore, much more technical than a typical user's guide.

EXERCISES

Exercises I to 7 relate to the case studies of this section.

1. Write modules for one or more of the modules that were mentioned in this section but not fully
discussed:
(a) Subtract. Use procedure Add to write this one.
(b) Multiply.
(c) Divide. Use procedure Multiply to write this one.
(d) Convert rational to real.
(e) Convert rational to integer.
(0 Compare for equality. Do not do this the same way as for Less. Take advantage of the fact

that all fractions are in a standard form in order to just compare numerators and denomina
tors.

2. In the code for Add, the product of the denominators is used as the denominator of the
unreduced sum. This is not how schoolchildren do this problem; instead, the concept of least
common denominator is used. This concept makes use of the mathematical idea of the least
common multiple (LCM) of two integers: the smallest integer that is a multiple of each of the
two integers. Because we already have a function to compute the gcd of two numbers, we can
take advantage of the relationship:

428

LCM of N and M = (product of N and M)/(gcd of N and M)

(a) Write a LCM function to compute the least common multiple of two integers. In order to
keep the numbers generated by the calculation as small as possible, calculate the LCM of
NandMas

ELEMENTARY DATA STRUCTURING CHAP. 5

LCM := N * (M I GCD(N,M))

(b) Use the LCM function to change the method used in Add to arrive at the denominator of
the unreduced sum.

3. Add some more user options to the fraction calculator of Figure 5-21. Some possible options to
add:

S(ubtract two fractions)

M(ultiply two fractions)
D(ivide two fractions)

l(nvert a fraction)

4. (a) Add an option to the fraction calculator of Figure 5-21:

C(onvert a fraction)

Make this new option lead to a submenu:

R(eal conversion)

l(nteger conversion)

Q(uit this menu)

(b) "Clean up" the output of user prompts and answers so it is more pleasing to the eye.

5. Use the ideas of this section to write a Pascal program for fraction drill and practice. Your
program should pose random problems in the categories:

R(educe fraction to lowest terms)

A(dd two fractions)

M(ultiply two fractions)

D(ecimal equivalent of a fraction)

The program should tell the user if the answer to a problem is correct or incorrect and a running
score should be kept. The user should get a "report card" when the session ends.

6. (a) Write a program using the rational arithmetic package to read three rational numbers A, B,
and C and compute and print DI= (A+ B)/C and D2 =(A- B)/C.

(b) Write a program using the rational arithmetic package to read rational numbers A, B, and C
and an integer number X. Calculate and print P = A * X + B * X + C. The answer should
be printed as an integer if possible.

(c) Repeat part (b), but print the answer as a real number.
(d) Repeat part (c), but first convert A, B, C, and X to real numbers. Compare the answer to

that of part (c).

7. For a quadratic equation ax2 + bx + c = 0, where a, b, and c are integers, the solutions may or
may not be rational numbers. If the quantity b2 - 4ac (the discriminant of the equation) is a
positive perfect square (1, 4, 9, 16, 25, and so on), then the solutions are rational. Write a
program to read values for a, b, and c, and either print a message "no rational solutions" or else
print the rational solutions. You may wish to refer to Exercise 14 of Section 4-3 for more
information on quadratic equations.

Exercises 8 to 15 involve writing packages of subprograms that use Pascal's record types to
represent various data.

EXERCISES 429

8. In Exercise 11 of Section 5-3, we defined two record types:

Point: includes two real fields: X and Y

Line: includes three real fields: Ycoeff, Xcoeff, and Constant

This choice of record for a line is based on the standard form of the equation of a straight line:

(Y coeft) * Y + (Xcoeft) * X + (Constant) = 0

Using these record definitions, write subprograms for the following:

(a) Determine whether two lines are parallel.
(b) Determine whether two lines are perpendicular.
(c) Determine whether two lines are the same.
(d) Given a line and an X value, find the corresponding Y value.
(e) Given a line and a Yvalue, find the corresponding X value.
(f) Given a line and a point, determine whether or not the point is on the line.
(g) Given a line and two points, determine whether or not the points are on the same side of

the line.

9. Another possible representation for a line is based on the fact that two distinct points determine
a line. Thus, we define a line as a record consisting of two points. Repeat Exercise 8 for this
representation.

10. A third possible representation for a line is based on the slope-intercept equation for a line:

y=mx+b

Provided the line is not vertical, we can represent the line as a record containing slope m and
intercept b. To handle vertical lines as well, we might choose a record with three components:

Vertical:

Slope:

Intercept:

A boolean field indicating if the line is vertical

A real field

The x intercept for a vertical line x = c; otherwise they intercept (b in the equation)

Repeat Exercise 8 for this representation.

11. Write routines to convert from any of the three representations in Exercises 8 to 10 to any other
representation.

12. Revise Exercise 10 to use rational numbers (as developed in this section) rather than real
numbers for the slope and intercept portions of the record.

13. Using real numbers for dollars and cents operations can lead to accuracy problems. An alternate
approach might be to keep each money value as a record containing two integer fields repre
senting the dollars and the cents, respectively. For this situation:

430

(a) Write a subprogram to add two such figures. Notice that there are two parts to the answer.
Given 101, 50 representing $101.50, and 45, 63 representing $45.63, the answer should be
147, 13 representing $147.13. You can assume that the numbers are positive.

(b) Write a subprogram to subtract two such figures. Assume that the first amount is larger
than the second. ·

(c) Write a subprogram similar to part (b) except that it does not assume that the first amount
is larger than the second. Instead, it has another parameter that is used to report to the main
program whether it was able to do the subtraction. If it is able, it sets this parameter to true
and does the subtraction; if not, it sets this parameter to false.

ELEMENTARY DATA STRUCTURING CHAP. 5

(d) Write a subprogram to multiply two such figures. Assume that both are positive, and round
the answer to the nearest cent. For example, 145.01times1.10 should be 159.51.

(e) Modify part (d) to make the second figure represent a real number with three decimal
places. For example, l, 85 to represent 1.085.

(f) Write subprograms to compare two such dollar and cents figures. One, called Equal,
should tell whether or not they are equal. The second, called Larger, should tell whether or
not the first is larger than the second.

(g) Extend your representation scheme to include a Boolean field that indicates if the number
is positive or negative, and rewrite the various subprograms.

(h) Write a program for Exercise 14 of Section 3-2 that uses this representation for money
rather than using real numbers.

(i) Write a program for Exercise 24 of Section 3-4 that uses this representation for money
rather than using real numbers.

14. Maxint is 32767. This imposes a stringent limit on the size of integers than can be used. There
are various ways to extend the range of values; one is suggested by analogy with what we did in
Exercise 13 to represent money.

For example, to represent positive numbers with up to nine digits, we could think of the
number as we typically write it by hand, as in these examples:

213,567,198

3,175 ,000

We might choose to use a record with three integers to represent the number of millions,
thousands, and units. Using this representation, write subprograms for the following:

(a) Add two integers.
(b) Subtract two integers, assuming the first is larger.
(c) Compare two integers to see if they are equal.
(d) Compare two integers to see if the first is larg.er.
(e) Multiply two integers. Caution: If you multiply two 3-digit numbers, the result may be

larger than maxint. Can you suggest some solutions to this problem?

15. Refer to Exercise 14. Add a field to the record indicating whether the integer is positive, zero, or
negative. Write routines that use this representation scheme to find the absolute value of an
integer and to compare, to add, and to subtract two integers.

EXERCISES 431

6 One.-Dimensional Arrays

OBJECTIVES

This chapter's main objectives are to discuss in detail the array data type and its uses. We
introduced the concept of an array in Chapter 3, and we have used arrays in Chapters 4 and
5. After completing this chapter, you will have:

•gained a thorough understanding of the definition and use of one-dimensional arrays

•learned how to employ the array to help structure the data our programs use

•learned how to design and implement linear search (in more detail than previously),
binary search, selection sort, and quicksort

• studied two examples of array use in detail

6-1 DEFINING AND USING ARRAYS

The Need for Arrays

An array can be thought of as a list of values. The values must be of the same type, and
they are generally related in some way. For example, we might declare an array as

AverageTemp: array[l .. 31] of real;

Our program can then use AverageTemp to store a list of 31 real values. Those values might
represent the average temperature in Tempe, Arizona, for the 31 days of March 1988. We
would refer to the first value as AverageTemp[l], the tenth as AverageTemp[IO], and so on.
(Notice that we would know that AverageTemp[23] refers to the average temperature on
March 23; the computer would know only that it refers to the 23rd value in the array named
AverageTemp.)

432

As a general rule, we can state that:

An array is probably the proper choice of data type when the program needs to store
a list of related values of the same type.

To illustrate this rule, we briefly describe some situations in which we might consider using
an array and some in which an array is probably inappropriate. (Some of these examples are
developed more fully later in the section.)

1. Given a list of 40 test grades for a class, find how many are greater than the
average. To solve this problem, we would read the grades, add them, and divide by 40 to
calculate the average. We would then have to compare each grade to the calculated average.
Rather than ask the user to reenter the grades, we would want to store the grades in an array
as we read them. We then could compare the values in the array to the average in order to
find the desired count.

2. Given a list of 40 test grades for a class, find the average. This is similar to the
previous problem, but we do not need an array. We can read the grades one at a time, as
shown in this segment:

Sum := O;

for I := 1 to 40 do

begin

Readln(Grade);

Sum := Sum+ Grade
end;

Average := Sum I 40

As we read each grade, we do everything that is required for that grade prior to reading the
next. We do not need to store all 40 grades, so we do not need an array.

3. Data for each employee consist of name and 12 monthly pay figures. Print the
name, the 12 pay figures, and the total pay for each person. To solve this problem, it is
convenient to store the 12 pay figures in an array as we read them, then print the array along
with the name and total. By making clever use of Write rather than Writeln, we could avoid
using an array. However, the program design is "cleaner" if we do use an array.

4. Simulate rolling a pair of dice 12,000 times, and tell how many 2 s, 3 s, etc., are
rolled. For this, we will need 11 counter variables. We could use Count2, Count3, . . . ,
Countl2 as variables. However, it is useful to think of the counters as a list of values and use
a declaration such as

Count: array[2 .. 12] of integer;

Count[7] would be the number of 7's rolled, and so on. This allows us, for example, to print
the results using

for I := 2 to 12 do
begin

Writeln(I 2, ' occurred ' Count[!]

end

4, ' times.')

(You might consider how you would print the results using variables Count2, Count3, etc.)

6-1 DEFINING AND USING ARRAYS 433

Notice that we would not need an array of size 12,000 to store the 12,000 simulated
rolls. We would generate one at a time, adding to the appropriate counter.

5. Given /, a number between 1 and 12 representing a month, print the month name.
This can be solved without an array, of course. For example, we could use the structure
suggested here:

case I of

1:

Writeln ('January') ;

end {case}

However, if an array Month were set up by the program to contain the 12 month names,
then we could simply use

Writeln(Month[I])

to accomplish the task.

Array Declaration

Arrays can be declared in Pascal using a declaration of the form

array[index type] of component type

For example, in the declaration

array[l .. 100] of integer

the index type is "1..100" and the component type is integer. This says that:

1. The subscript (index) must be an integer in the range 1 to 100.

2. Each value (component) in the array is an integer.

The example given illustrates the most common form for the index type: a subrange of
the integers from 1 to some number greater than 1. However, declarations such as

array[2 .. 100] of integer
array[-500 .. 500] of real

are also allowed; we use them when they are appropriate for the problem to be solved.

Note. If a subscript range has a negative lower bound and a positive upper bound,
then 0 is one of the valid subscripts.

The "component type" can be any of the following: integer, real, Boolean, char, a
string type, or a programmer-defined scalar or subrange type.

434 ONE DIMENSIONAL ARRAYS CHAP. 6

Note. In Section 6-2, we discuss a more general fashion in which the index type
and component type can be defined.

There are several ways to declare a specific variable to be an array. For example, to
declare an array of 50 names, we could write

var
Names: array[l .. 50] of string[45);

or we could write

const

Maxindex 50;

type
String45 = string[45);

NameArray = array[Maxindex) of String45;

var

Names: NameArray;

The second approach has several advantages. First, by using the constant Maxlndex, it
is easier to adjust the array size in the future. Second, the array Names can be passed as a
parameter to a procedure or function because it is of a named type. (Likewise, Name[3]
could be passed as a parameter because it is of the named type String45.) As we will see,
there are other advantages to be gained by using named types; we almost always use them
when declaring arrays.

Array Reference

Suppose that we have these declarations:

type
CountArray =array [2 .. 12) of integer;

RealArray = array[-5 .. 25) of real;

var

Count: CountArray
X: RealArray,

I, J: integer;

More often than not, a program step that refers to one of these arrays would be referencing a
specific value of the array. To do so, it would use

array-name[subscript]

The subscript (index) can be any integer expression in the proper subscript range. For
example, if I and J currently have the values 5 and 3, respectively, then each of these is a
valid reference:

Count[7)

Count[I]

Count[2 *I]

X[-I + J]

refers to Count[S]

refers to Count[lO]

refers to X[-2]

6-1 DEFINING AND USING ARRAYS 435

Note. If we turn range-checking on, the computer detects subscripts that are out
side the range of valid subscripts.

A reference to an element of the Count array can be used anywhere an integer variable
could be used. For example, we could write steps such as these:

Count[4] := 0

if Count[I] > Count[I+l] then ...

Readln(Count[J])

X[I] := Sqrt(X[I+l])

In particular, an array element can be passed to a function or procedure (as long as it
matches the type of the corresponding formal parameter). Since X[l+l] is a numeric value,
it can be passed to the Sqrt function. For any function with an integer parameter, we could
pass Count[12] to match that parameter.

Less frequently, a program step refers to the array name without using a subscript.
Such a reference refers to the entire array. The most frequent example involves passing an
entire array as a parameter to a subprogram. In such a case, the parameter in the subprogram
must be of the same named type.

Another instance in which we would use the array name without a subscript involves
array assignments. For example, the assignment

A := B

could be used to cause the entire array B to be copied to array A. This is possible only if the
arrays are of precisely the same type. For example, it is legal with the declarations:

type

IntegerArray = array[l .. 50] of integer;

var

A: IntegerArray;

B: IntegerArray;

It is illegal with the similar declarations:

var

A: array[l .. 50] of integer;

B: array[l .. 50] of integer;

Array Algorithms: Count-Controlled

The easiest program segments to write dealing with arrays are those that use a "count-con
trolled" logic. We can describe segments of this type generically as

for I := start to end do
begin

steps which process array element A[IJ

end; {for}

For example, the program in Figure 6-1 carries out the task referred to earlier in this section:
read exactly 40 grades and count how many are larger than the average. Some portions are

436 ONE DIMENSIONAL ARRAYS CHAP. 6

in italics for emphasis. First, we have used a named constant for the number of grades. In
our preliminary testing, we changed this to a smaller value. Second, the variable I is used
both to control the for loop and as a subscript for the array. The for loop causes I to take on
the values 1 through 40, and, therefore, the reference "Grades[!]" refers to Grades[l] the
first time through the loop, Grades[2] the second time, and so on.

program CountGrades;

{Written by: XXXXXXXXXX XX/XX/XX}

{Purpose: To read a list of grades (of a fixed length),}

and count how many are greater than the average}

const
Maxindex 40; {size of grade array}

type

GradeArray array[l .. Maxindex] of integer;

var

Grades: GradeArray;

I: integer;

Sum: integer;
Average: real;

Count: integer;

{list of grades}

{loop control, and subscript}

{sum of grades}
{average of grades}

{how many are > average}

begin

{*** Read the grades and find the sum}

Sum := O;

for I := 1 to Maxindex do
begin

Write('Enter grade#', I, ' ');

Readln(Grades[I]);

Sum := Sum+ Grades[I]

end; {for}

{*** Find and print the average}

Average := Sum I Maxindex;

Writeln;
Writeln('The average is Average : 1 : 2);

{*** Count how many are larger than the average, and print answer}

Count .- O;

for I .- 1 to Maxindex do
begin

if Grades[I] >Average then

Count := Count + 1
end; {for}

Writeln(Count : l, ' grades are larger than the average.');

end. {CountGrades}

Figure 6-1 Number of above-average grades.

6-1 DEFINING AND USING ARRAYS 437

Notes. It happens that this example uses an array of integers. We can write similar
examples using arrays of other "component types." For example, we can declare:

type
VoicePart = (bass, tenor, alto, soprano);
voiceArray = array[l .. 50] of VoicePart;

var
Voice: VoiceArray;

Assuming that some earlier steps in the program have supplied values to this array, code
such as the following could be used to count the tenors in the array:

TenorCount . - 0;
for I := 1 to 50 do

begin
if Voice[!] = tenor then

TenorCount := TenorCount + 1
end {for}

As another example, let us write a function that finds the largest grade in an array
GradeList. To do so, we maintain a variable Large that at all times contains the largest value
encountered so far. We compare each value in the array with this largest value. Our "step
that processes array element A[I]" is, in this case:

if GradeList[I] > Large then
Large := GradeList[I]

Before the loop, we must give Large an initial value; otherwise, the comparison "Grade
List[I] > Large" would be meaningless the first time through the loop. We have two choices:
start at a low value (0 is low enough for this example) or start with the first value. In
working with an array, it is easy to start with the first value, so we do:

Large := GradeList[l]

Figure 6-2 contains the function. Observe the following:

1. We have included a parameter that indicates the number of students. This allows the
function to be used more generally than if it used the array size for its loop control.

2. The for loop index I goes from 2 to NumberOfStudents. There is no need to compare
the first grade with itself.

3. We need a local variable Large to obtain the answer. As our last step, we copy the
answer to the function name. (Without this, a step "if GradeList[I] > Largest" would
be considered a recursive call to the function.)

In Figure 6-3, we present a slight modification. In addition to the largest value, we
wish to know the position (that is, the subscript) for which the value occurred. To do so, we
add an additional variable, LargePosition. Because there are now two answers, we use a
procedure rather than a function. Whenever we assign a value to Large, we also assign a
value to LargePosition to keep track of where Large obtained its value. For example, if at

438 ONE DIMENSIONAL ARRAYS CHAP. 6

function Largest(GradeList: GradeArray; NumberOfGrades integer): integer;

{Written by: XXXXXXXXXX XX/XX/XX}

{Purpose: To find the largest value in an array of grades}

{Parameters: GradeList - input, the array of grades to examine}

NumberOfGrades - input, a count of how many students there are}
var

Large: integer; {used to get the largest}

I: integer; {loop control and subscript}

begin {Largest}

Large:= GradeList[l];

for I := 2 to NumberOfGrades do
begin

if GradeList[I] >Large then

Large := GradeList[I]
end; {for}

Largest := Large

end; {Largest}

Figure 6-2 Largest value in an array.

the end, LargePosition has the value 3, this means that the third grade was the largest. (It is
useful to notice that GradeList[LargePosition] is the largest, and, hence, we do not really
need to pass back Large to the calling program.)

Notes

1. We can pass the current length of an array as a parameter to a procedure or function.
The subprogram can use that parameter to make sure it uses only the portion of the
array that contains meaningful data. However, the declared size of the array is fixed. It
cannot be defined or redefined by the subprogram. It is set by the type declaration in
the main program.

2. One of the most frequent errors made in working with arrays is confusing a subscript
with the array element to which it refers. In working with arrays, we must always ask,
"Do I want to refer to the subscript or to the array element indicated by the subscript?"

As another example, let us write a procedure to print an integer array. For this, we use
two parameters: the array and an indication of how many values are in the array. We
assume, as we have in the previous examples, that the lowest subscript is 1. We would like
our procedure to print eight values per line.

We begin with steps that print one value per line, then modify the procedure to print
eight per line. We might write

for I := 1 to NumberOfGrades do
begin

Writeln(Grades[I] : 7)
end {for}

6-1 DEFINING AND USING ARRAYS 439

procedure Largest (GradeList: GradeArray; NumberOfGrades: integer;
var Large, LargePosition: integer);

{Written by: xxxxxxxxxx XX/XX/XX}
{Purpose:
{

To find the largest value, and its subscript, in an}
array of grades}

{Parameters: GradeList - input, the array of grades to examine}
NurnberOfGrades - input, a count of the number of students}
Large - output, the largest number found}
LargePosition - output, the position where the largest}

was found (in case of a tie, it is the}
first position where a largest was found)

begin {Largest}
Large := GradeList[l];
LargePosition := l;

for I := 2 to NumberOfGrades do
begin

if GradeList[I] > Large then
begin

Large:= GradeList[I];
LargePosition .- I

end (if}

end {for}

end; {Largest}

Figure 6-3 Position of largest value in an array.

Each Writeln invocation prints the grade followed by a carriage return to move to the next
line. What we must do to get eight grades per line is to only send a carriage return after
every eight grades, so we might write

for I := 1 to NurnberOfGrades do
begin

Write(Grades(I] : 7);
if I mod 8 = 0 then

Writeln
end {for}

Each individual grade is written (using Write not Writeln) without a carriage return. When I
is 8, 16, 24, and so on, I mod 8 is 0 and the Writeln sends a carriage return.

This version almost works; however, if NumberOfGrades is not evenly divisible by 8,
the last line of grades does not get a carriage return. Thus, we add

if NurnberOfGrades mod 8 <> 0 then
Writeln

after the loop. We leave the details of writing this as a procedure to the reader.

440 ONE DIMENSIONAL ARRAYS CHAP. 6

Array Algorithms: Condition-Controlled

In the preceding subsection, we examined several types of problems where a count-con
trolled loop (for loop) is an appropriate structure. Some looping processes involving arrays,
however, cannot use such a structure. An important class of problems where this is true is
that involving an array search.

In Chapter 5, we wrote several programs that involved searching in a file. As we
discovered, the loops involved in those searches used a compound condition for termination.
We wanted to terminate the loop "successfully" as soon as the desired item was found or
"unsuccessfully" if the entire file was traversed without finding the desired item.

A similar approach can be used in searching an array. If, for an array A, the subscripts
range from 1 to N, we can cause an index variable I to assume the values 1, 2, and so on,
using this basic logic:

initialize I to 1
as long as the search is not complete,

add 1 to I to move to the next array element

When is the search complete? If A[I] is the item sought, it is complete (we have found
it). If I goes beyond N (the number of items in the array), it is also complete (the item is not
there). We may be tempted to write the condition "the search is complete" as

(I > N) or (A[IJ = Valuesought)

However, this contains a subtle flaw: if I is greater than N, the reference to A[I] is illegal (at
best, meaningless). One common solution to this problem is to use a Boolean variable
Found to indicate success in the search. Our basic logic becomes

initialize Found to false, I to 1
as long as the search is not complete:

if A[I] is the sought value, set Found true;
otherwise, add I to 1.

The function of Figure 6-4 illustrates this approach. It searches for a given integer in
an array of integers. This technique (using a Boolean variable to indicate success) can be
useful in solving any problem that involves searching for the occurrence of some condition
in an array.

As another example of a condition-based loop using an array, we write code that reads
up to 10 nonzero integers into an integer array of size 10. We would like the procedure to
stop after 10 numbers have been read or when the user enters a terminating (0) value.
Moreover, the 0 should not be placed into the array, and a parameter N should indicate how
many numbers were actually input.

One approach to this problem involves "simulating" the for loop. To read exactly 10
numbers, we could use the for loop on the left or the equivalent while loop on the right:

for I := 1 to 10 do
begin

Readln(Number);
A[I] := Number

end {for}

while I <= 10 do
begin

Readln(Number);
A[IJ := Number;
I := I + 1

end {while}

6-1 DEFINING AND USING ARRAYS 441

function Search (A: IntegerArray; Key, N: integer): integer;

{Written by:
{Purpose:

XXXXXXXXXX XX/XX/XX}

To locate a given value in an array}
{

{Parameters:
The answer is the subscript where found (0 if not found)}
A - input, the array in which to search}
Key - input, the value for which to search}
N - input, the portion of the array in use}

var
Found: boolean;
I: integer;

begin {Search}
Found := false;
I := l;

{used to indicate success}
{loop control and subscript}

{assume value not in array}

while (I <= NJ and (not Found) do
begin

if A[I] = Key then
Found .- true

else
I := I + 1

end; {while}

if Found then
Search .- I

else
Search .- 0

end; {Search}

Figure 6-4 Searching an array.

If we use a for loop, we must read exactly 10 values. With the while loop, we can quit
when the input number is 0. One idea is to use the Boolean variable UserlsDone initialized
to false. In the loop, because we do not want to put the 0 in the array, we write

if Number = 0 then
UserisDone := true

else
A[I] := Number

The while loop condition is modified to

while (I <= 100) and (not UserisDone) do

After the loop, we can calculate the size of the array as

N := I - 1

With these changes, the while loop solution becomes

442 ONE DIMENSIONAL ARRAYS CHAP. 6

I : = l;
UserisDone := false;

while (I <= 10) and (not UserisDone) do

begin

Readln (Number);
if Number = 0 then

UserisDone := true

else

A[I] := Number;

I := I + 1

end; {while}

N := I - 1

(You should convince yourself that this is correct for the boundary values N = 0, 1, 9, and
10.)

Initialization, Copying, and Shifting

We have considered a few examples of processing an entire array. These examples have
included important algorithm classes, such as finding the largest and searching, which were
considered at length in earlier chapters. We now consider some array-processing methods
that have no analogues in earlier chapters.

It is frequently necessary to initialize arrays to some known value. To initialize all
elements of an array X with 100 elements to some value, for example, Z, we could write

for I := 1 to 100 do
begin

X[I] := Z

end {for}

Of course, Z could be replaced by a constant such as 0, ' ', or other value, as might be
needed.

Another common initialization is to place values equal to the index of the element into
each element, as such as X[l] = 1, X[2] = 2, ... , X[lOO] = 100. This can be accomplished
by

for I := 1 to 100 do
begin

X[I] : = I

end {for}

In addition to initializing arrays, we frequently wish to copy one array, or part of one array,
into another. As we have seen, if A and B are the same named type, the assignment

A := B

can be used to copy all of B to A. Suppose now that we want to copy only the first 10
elements of B to the first 10 elements of A. A simple loop such as

6-1 DEFINING AND USING ARRAYS 443

for I := 1 to 10 do

begin

suffices.

A[I) := B[I)

end {for}

On the other hand, suppose we want to copy elements 1 to 5 and 10 to 15 of B into
the first 11 positions of A. One approach is to copy B[l] through B[5] to A[l] through A[5],
as in the first example, then copy B[lO] through B[15] to A[6] through A[ll].

There are several approaches to writing a loop to move B[lO] through B[15] to A[6]
through A[ll]. We might make a table of subscripts, as follows:

A SUBSCRIPT COMES FROM B SUBSCRIPT

6 10

7 11

8 12

9 13

10 14

11 15

After studying this table, we might write

for I := 1 to 5 do

begin
A[I) := B(I]

end; {for}

for I := 1 to 6 do

begin

A[I+S) := B[I+9)

end {for}

The second loop was written by first noting that we wished to move six elements. This led
to the loop for I = 1 to 6. Now we know we want our loop body to be of the form

A[??) := B[??)

We must come up with the proper formulas for the A subscript and the B subscript. To
determine the formula for the A subscript, we note that when I is 1, the subscript is 6; when
I is 2, the subscript is 7; and so on. The subscript is always 5 more than I, and hence the
proper formula is I+ 5. Similar reasoning leads to the formula I+ 9 for the B subscript.

Notes

1. The second loop could be replaced by

444

for I := 6 to 11 do
begin

A[I) := B[I+4)

end {for}

ONE DIMENSIONAL ARRAYS CHAP. 6

In this case, we have chosen the index range to match the destination subscripts. By
having I take on the values 6 to 11, we avoid the need to determine a formula for the
A subscript. The formula for the B subscript is found by observing that it is always 4
more than the A subscript.

2. If we do not wish to devise a formula for B's subscript, we might use this alternate
approach:

J := 10;

for I := 6 to 11 do

begin
A[I] := B[J];

J := J + 1

end {for}

By initializing J to 10 prior to the loop and incrementing it each time through the loop,
we have J take on the values 10 to 15.

Shifting is a frequently used array operation. It is similar to copying, but involves only
one array. As an example, let us write code to shift the array A to the left by one position.
This means to copy A[2] to A[l], A[3] to A[2], and so on. If A contains 50 values, our last
copy would copy A[50] to A[49]. We might then set A[50] to 0, or decrease a variable
representing the actual length by 1. The code would be

for I := 2 to 50 do
begin

A[I-1] := A[I]

end; {for}

A[50] := 0

Next consider a shift to the right. We might be inclined to write code that copies A[l]
to A[2], then A[2] to A[3], and so on. However, this does not work, since A[2] is changed
before we copy it to A[3]. The solution is to work from right to left: first copy A[49] to
A[50], then A[48] to A[49], and so on. The code to do so is left as an exercise.

Processing Single Elements

In the examples we have considered in this section, the subscripts of the array elements have
been set by the loop index or have been obtained using a formula based on that index.

The loops are of the general form

for I : = 1 to N do

begin

process A[formula involving I]
end {for}

Frequently, however, we need to work with a single element of an array. We need a sub
script, but because we are not in a loop, the subscript is not a loop index.

6-1 DEFINING AND USING ARRAYS 445

It sometimes happens that, in reading values for an array, we do not read the entire
array at once. Instead, each input record can contain a subscript along with the value to be
placed in the array at that position. For example, the input

7 150.25

indicates that the value 150.25 is to be placed into A[7].
It is possible to read such an input record using

Readln(I, A[I])

This practice is dangerous because it makes the program vulnerable to data-entry errors. For
example, we might have an array with 10 elements in it and the data value read for I might
be 25. A reference to A[25] is either recognized as an error (if we turned on range checking)
or treated as a reference to some part of the computer memory outside of the array A. A
much better approach is to read the array value into a temporary variable. We then check
that the subscript is in the valid range before placing the value in the array. Thus, the
previous Readln statement is better written as

Readln(I, ReadValue);
if (I >= 1) and (I <= 10) then
A[I] := ReadValue

else

Writeln('Subscript value ', I : l, ' is illegal.')

The following problem illustrates a second situation involving subscripts that are not
loop indexes. We are to simulate rolling a pair of dice 12,000 times and to count the number
of times each possible number (2 through 12) occurs.

As we discussed in the section ''The Need for Arrays," it is convenient to use an array
(with possible subscripts from 2 to 12) for the counters. The array can be declared as

type

CountArray = array[2 .. 12] of integer;
var

Counter: CountArray;

The first step in the program involves initializing the entire array to 0:

for I := 2 to 12 do
begin

Counter[I] := 0
end; {for}

The steps to do the counting can be written as

for I := 1 to 12000 do
begin

Roll := RollOfDice; {use the function we wrote earlier}
Counter[???] := Counter [???] + 1

end; {for}

Our only problem is determining the proper subscript. However, that is easily solved.
If the roll is 2, we want to increment Counter[2]; ifit is 3, we want to increment Counter[3];
and so on. The variable Roll gives the desired subscript. Thus, the counting step should be

Counter[Roll] := Counter[Roll] + 1

446 ONE DIMENSIONAL ARRAYS CHAP. 6

As a final indication of the use of subscripts other than the loop index itself, consider
the following situation. Each child in a nursery school has been assigned to one of six
different groups, numbered 1 to 6. An array Group contains the group assignments for the
children. There are N children. Count how many are in each group.

We have a program segment similar to the one involving dice rolls:

for I := 1 to N do

begin

calculate subscript CountSub for Counter array;

Counter[CountSub] .- Counter[CountSub] + 1
end {for}

What is the proper value for CountSub? It is the person's group number, namely, Group[!]:

CountSub := Group[I];

Counter[CountSub] := Counter[CountSub] + 1

We may combine the steps as

Counter[Group[I]] := Counter[Group[I]] + 1

(Some find the former notation a bit easier to read than the latter.)

Testing

In working with arrays, there are two natural boundaries: the first element in the array and
the last element in the array. Moreover, in speaking of the last element in the array, we can
mean one of two things: the last element the array is capable of holding or the last element it
actually holds. For example, consider an array Names of size 50, capable of holding names
for a class of 50. For a given class, it might actually contain only 33 students. The "last"
element of the array could be thought of as Names[33] or as Names[50].

Likewise, in an array such as the Names array, we have boundaries on how "full" the
array is. Put another way, if NStudent indicates the number of students in the class, then
there are boundaries at NStudent = 0, NStudent = 1, and NStudent = 50.

Most testing involving arrays uses these considerations together with those for the
specific problem. For example, in finding the largest grade in an array Grade of size 50 that
currently contains NStudent grades, we can identify tests such as these:

Value ofNStudent: 0, 1, 50, in between, 51 (an error)
Location of largest (assuming no ties):

position 1, with NStudent > 1
position NStudent, with NStudent = 1
position NStudent, with NStudent > 1
position NStudent, with NStudent = 50
in between I and NStudent

Number of ties for largest:
none
all scores the same
in between none and all

As another example, similar tests would apply for an array search. Among the most
important tests would be these:

6-1 DEFINING AND USING ARRAYS 447

value not found
value found:

in first position
in last position in use (N), with N < declared array size
in last position in use (N), with N = declared array size

DPT

1. Do not use subscripts in place of array elements and vice versa. In any reference to
an array, we must ask, "Do we want to refer to the location (the subscript) or the value in
that location of the array?"

2. Think carefully about the formula for subscripts. Because so many standard pro
cesses involve a reference A[I], we may have a tendency to assume that all subscripts are
always a loop-control variable I. In this section, we have seen several examples where the
proper subscript is not the loop-control variable.

3. Avoid subscripts out of range. An out-of-range subscript can be caused by the
errors indicated in items I and 2. In addition, some common causes are

(a) Failing to check the input that indicates a subscript

(b) Adding values to an array without checking if the array is full

If we turn on range checking, the computer detects this error. If we do not, the out-of
range array reference is allowed. This reference refers to (and perhaps modifies) some part
of the computer memory outside the array-perhaps another variable, a constant, or even
the program itself. This can cause almost any type of error to occur.

4. Think carefully when using arrays as arguments for subprograms. If the subpro
gram expects an array as a parameter, then pass the whole array [for example,
Print (scores)]. If the subprogram expects a single value, pass an array element [for exam
ple, Y : = Sqrt (Total [I J)].

5. Parameters must be of a named type. For example,

function Sum(A: IntegerArray): integer;

is legal, but

function Sum(A: array[l .. 100] of integer): integer;

is illegal.

6. Be especially wary of compound conditions involving subscripts. Any condition
such as the ones that follow are suspect:

(a) (I> N) or (A[IJ =Value)

(b) (I<= N) and (A[IJ <>Value)

(c) (I> O) and (A[I] >Temp)

448 ONE DIMENSIONAL ARRAYS CHAP. 6

The problem is that Pascal evaluates both halves of the condition even if only the first half
is needed to determine whether the condition is true or false. If the valid subscripts for the
array A are 1 to N, then these three conditions are faulty because

(a) If I> N is true, then A[I] = Value is illegal (an out-of-range subscript).

(b) If I <= N is false, then A[I] <> Value is illegal.

(c) lfl > 0 isfalse, then A[I] >Temp is illegal.

Notes

1. As we discussed in our array-search example, a common solution to this last problem
is to introduce a Boolean variable such as Found, which represents the second half of
the compound condition. This variable is initialized prior to the loop and changed
within the loop body.

2. Versions of this bug can be found in the sample programs of many computer science
textbooks. What this should say to you as a student is that it is an exceptionally
dangerous bug: even experienced programmers can easily make this mistake. You
must be especially alert to avoid the problem.

7. THINK Pascal reserves 28 - 2 (32,766) bytes (memory units) for all static vari
ables-that is, those variables whose memory needs can be determined at compilation time.
Except for file variables, all of the types of variables that we have discussed to this point in
the text are static variables. Since each item of an array takes at least 1 byte, arrays are a
prime suspect when THINK says its memory has been exceeded: declaring one very large
array (or many small ones) can cause THINK to exceed its static memory limit.

The memory needs of each array vary depending upon the array's component type. As
a guide, the largest array you can declare is one that can hold 16,384 integers, 8192 reals, or
only 128 strings of size 255. If the array's memory needs exceed 32,766 bytes, or the
combined size of all static variables exceeds the available memory, THINK prints this error
message at compile time: "Available memory for variables declared at this level has been
exhausted."

A good way to resolve these errors is to make the arrays (or other data structures)
smaller. You can cut down the number of items in the array, or change the component type
to one that uses less memory. An often overlooked way to reduce memory usage in string
arrays is to replace the component type string, which is 255 characters, with a named string
type of a smaller size. For instance, changing

type
StringArray = array[l .. 128] of string;

to

type
String128 = string[128];
StringArray = array[l .. 128] of String128;

frees up over 16,500 bytes.

6-1 DEFINING AND USING ARRAYS 449

REVIEW

Terms and Concepts

array
array search
index

Pascal Syntax

Array Declaration:

array[index type] of component type

subscript range
subscript

where the index type can be of the form low .. high, and the component type can be integer,
real, string, etc.

Array Reference:

array-name[subscript]

where the subscript can be any integer expression in the proper range, as is given in the
declaration of the array.

Enabling range checking causes the computer to check for a subscript out of range.

Array Algorithms. Initialization, if needed:

for I := 1 to N do
begin

process involving A[I]

end {for}

Searching

Found := false;
I := l;

while (I <= N) and (not Found) do

begin

if A[I] Value then

Found . - true

else

I := I + 1
end; {while}

{at this point, take action based on whether or not found}

Working with a Single Element. Subscript based on some action, such as search
ing, formula calculation, and reading data.

Testing

1. Natural boundaries for arrays:

First element

Last possible element

Last element actually present

450 ONE DIMENSIONAL ARRAYS CHAP. 6

2. Portion of array in use:

EXERCISES

None

Completely in use

In between

DPT

1. Do not confuse a subscript and the corresponding array element.
2. Do not use a wrong subscript.
3. Avoid a subscript out of range.
4. Pass arrays to match array parameters, array elements to match real,

integer, etc., parameters.
5. Parameters must be of a named type.
6. Be wary of compound conditions such as:

{I > N) or {A[I] = Value)

7. Avoid very large arrays, and arrays storing long strings, so as not to
exceed THIN K's limit for static variables.

Many of these exercises ask you to write subprograms involving arrays. To do so, you must
make intelligent assumptions about the context.

For example, in Exercise 3, you must assume that the type for the array has been
declared in the main program, and you must make an assumption about what that type is
called. Also, you should assume that N represents the portion in use, and that the lowest
subscript is 1.

(If a specific array size such as 50 or 100 is mentioned, we suggest you use a global
constant such as Maxlndex in place of the specific constant.)

1. Give the appropriate constant, type, and variable declarations to declare the following arrays:
(a) An integer array with subscripts ranging from 0 to 100.
(b) A real array with subscripts ranging from -50 to 75.
(c) A Boolean array with subscripts ranging from 22 to 53.
(d) An array of days of size 100. The array values are Monday, Thursday, etc. Use an appro

priate user-defined scalar type.
(e) An array representing the positions played by a 28-member baseball team. Possible posi

tions are P, C, lB, 2B, SS, 3B, and OF.
(t) An array to contain the names of up to 250 students in an introductory calculus section.
(g) An array to contain the classes (FR, SO, JR, SR, CONTED, or GRAD) of approximately

1750 students at a small college.

2. (a) Give appropriate declarations and Pascal code to create an array containing the names of
the months.

EXERCISES 451

(b) Repeat part (a) for an array containing the 16 single characters "O" through "9" and "A"
through "F". (The subscript for "O" should be 0, for "I" should be 1, and so on.)

3. Assume that we have an array A containing N elements. Write subprograms for the following:
(a) Find the value of the smallest element in A.
(b) Find the location of the first element equal to the smallest.
(c) Find the location of the last element equal to the smallest.
(d) Count the number of elements equal to the smallest.
(e) Print the subscripts of all array elements equal to the smallest. Hint: This requires two

loops.

4. (a) By making minor modifications to the procedure in Figure 6-3, write a function that finds
the position of the largest value in an array.

(b) Can you accomplish this task without using a variable such as Large to contain the largest
value? Hint: In Figure 6-3, GradeList[LargePosition] is the same as Large.

5. (a) Given this code to read an array, terminating when the user enters a O; N is the array size.

I : = 0;

Readln(Number);

while Number <> 0 do
begin

I := I + 1;

A[I] := Number;

Readln(Number)

end; {while}

N := I

Modify this segment to limit the array to IO numbers. Compare this to the segment in the
section "Processing Single Elements" that accomplishes the same task.

(b) Trace your solution, and that in the section, for situations where the resulting value of N
should be 0, 1, 9, and IO.

6. Previously, we gave the following solution to a problem of counting how many children in a
kindergarten are assigned to each of six groups. (We assume the Counter array has been initial
ized to 0.)

for I := 1 to N do
begin

CountSub := Group[I];
Counter[CountSub] .- Counter[CountSub] + 1

end {for}

A student has proposed the following alternative solution:

for I ·- 1 to 6 do
begin

for J ·- 1 to N do
begin

if Group[J] = I then

Counter[I] .- Counter[Il + 1

end {for J}
end {for I}

452 ONE DIMENSIONAL ARRAYS CHAP. 6

Compare the two solutions to see which has fewer steps. If N is 150, how many steps are
involved for each?

7. Write subprograms for the following using an integer array A. Assume the array is of size 50,
but that it presently contains only N ($; 50) values.
(a) Find the average of the values.
(b) Find what percentage of the values are positive.
(c) Set a variable Location to contain the subscript of the first negative value in the array

(Location is to be 0 if there are no negative values).
(d) Set a Boolean variable to true if none of the array values are O; otherwise to false.
(e) Add a new value to the end of the array. The variable NewValue contains the value to be

added. Assume that N < 50.
(f) Repeat part (e), but remove the assumption that N < 50. Set a Boolean variable to indicate

if the array is full.
(g) Repeat part (t), but assume that if that value is already present in the array, it should not

be added.
(h) Repeat part (g), but assume that the numbers in the array are in increasing order and that

they should still be in increasing order after the new value is inserted.

8. The standard deviation of a group of N values of A can be defined as

(The .l: (summation) notation indicates the sum of the indicated values for i varying from 1 to
N.) Write a subpro_gram that computes A (the average of the A values), then compute the sum
of the values (A; - A)2, and finally compute the standard deviation.

9. We are given two arrays A and B of N elements each. Write a subprogram to compute

P=A1 * B1 +A2 * B1 + ... +AN* BN

10. Suppose an array of N integers is known to contain only O's and l's. Write code to place all the
O's at the beginning of the array and all the l's at the end of the array.

11. Given an array representing the positions played by a 28-member baseball team, count the
pitchers. (See Exercise l(e).)

12. Given an array representing the voice parts of a 75-member choir, compute the ratio of tenors to
sopranos.

13. Using the array defined in Exercise 2(a), write a subprogram to convert a date to printable form.
The input is a record containing three fields (month, day, and year); the output is a string. For
example, for input 11 7 90, the output would be 'November 7, 1990'.

14. Using the array defined in Exercise 2(b), write subprograms for the following:
(a) Given an integer in the range 0 to 15, the output is the corresponding character from "O" to

"9", "A" to "F'.
(b) Given a character in the range "O" to "9" or "A" to "F', the output is the corresponding

integer in the range 0 to 15.

15. Write a subprogram to calculate a student's score on a 100-point true-false test. The input
consists of two Boolean arrays of size 100: the answer key and the student's answers.

16. Assume that we have real arrays A and B, each containing 100 elements. Write subprograms for
the following:

EXERCISES 453

(a) Copy B to A.
(b) Copy the first 50 locations of B to the last 50 locations of A; that is, copy B[l-50] to

A[51-100].
(c) CopyB[l7-23]toA[l-7].
(d) Copy B[First] through B[Last] to the first locations of A. Assume First and Last are vari

ables containing numbers in the range 1 to 100, with First ~ Last.
(e) Copy the next six numbers, starting at the first nonzero number in B, into A[l-6]. You can

assume that there is a nonzero number in B, located prior to or at location 95.
(f) Repeat (e), but copy six or fewer numbers. For example, if B[98] is the first nonzero

number, you should copy only three numbers: B[98], B[99], and B[lOO]. If there are no
nonzero numbers, do not copy any. Set a parameter to indicate how many were copied.

(g) Shift A one place to the right, setting A[!] to 0.
(h) Shift A two places to the left.
(i) Shift A two places to the right.
(j) Shift A in a given direction by a given amount. The parameters are A (the array), a char

variable telling which direction to shift (value 'L' or 'R'), and an integer N telling how far
to shift (assume N > 0).

17. A large data file contains the SAT scores for all the students in an incoming freshman class. The
scores can range from 200 to 800.
(a) Write a program segment that counts how many students had each of the possible scores.

What is a suitable type definition for the array of counters?
(b) Modify the code to also find which score occurred most frequently.
(c) Give two ways to find the average score.
(d) Modify part (a) to count scores in ranges of IO points each: 200 to 209, 210 to 219, etc.

Hint: Use integer division by 10.
(e) Modify part (a) to count scores in the ranges 200 to 300, 301 to 400, 401 to 500, ... , 701

to 800.

18. (a) Write a subprogram to interchange two integers A and B. Use this subprogram to inter
change the elements in positions I and J of an integer array A.

(b) Using the subprogram of part (a), write code to reverse the elements of an array A of five
elements. For example, if A = (2, 4, 6, 8, 10), then the code should change A to (10, 8, 6, 4,
2). (Set this up so that elements 1 and 5 are interchanged followed by elements 2 and 4.)

(c) Repeat part (b), but allow the number of elements to be N. Does N have to be odd? Hint:
First do the specific cases where N = 51 and where N = 50.

19. (a) Write code for scanning an array A and whenever A[I] > A[l+l] interchanging A[I] and
A[l+l]. If the array has N elements, how many comparisons should be made? What is the
value of the last element of A after the algorithm has been performed?

(b) Enclose your solution to part (a) in a loop that causes J to take on the values 1 through
N - 1. Trace this algorithm using N = 5 and A= (1, 4, 5, 3, 2).

20. Write a subprogram to compare two arrays A and B of N elements each to see if the arrays are
identical. In other words, the subprogram should see if the Ith element of A is the same as the Ith
element of B for all I from 1 to N. If the arrays are identical, the answer is true; otherwise.false.
Hint: This can be viewed as a search problem.

21. Write a subprogram to check if each element of A occurs only once in A. The answer is true if
each does and false if some element occurs more than once. Hint: This can be viewed as a
search problem.

454 ONE DIMENSIONAL ARRAYS CHAP. 6

22. Write a subprogram to check if each element of A occurs at least once in an array B. Hint: This,
too, can be viewed as a search problem.

23. (a) A is an array of N elements, where N is larger than 7. Write code to locate the largest
element in positions 7, 8, up to N, and interchange it with the element in position 7.

(b) Redo part (a), but instead of using element 7, make that position variable, perhaps J.
(c) Enclose your solution to part (b) in a loop that causes J to take on the values 1 through

N - 1. Trace this subprogram using N = 5 and A= (I, 4, 5, 3, 2).

24. Each record in a file contains a name and 12 monthly take-home pay figures. We can use this
segment of code to read and print the file:

while not Eof{InputFile) do

begin

Getinput{InputFile, Name, Pay);

DetailLine(Name, Pay)

end {while}

Getlnput is a procedure that reads a name and 12 pay figures from the file. Detai!Line is a
procedure that prints the data, with headings when appropriate. We assume that these proce
dures have already been written. (Note: For a complete program, we would have to add steps to
open and close the file, initialize line and page counts, and so on. In this exercise, we do not
deal with these issues. See Exercise 25.)

Show how to modify this segment of code to do the following:
(a) Also print the total yearly take-home pay for each person.
(b) Find and print the name of the person who had the highest total take-home pay.
(c) Find the highest take-home pay for each of the 12 months. Hint: Use an array LargePay of

size 12.
(d) Find who had the highest take-home pay in each month and print (for each month) a

message like

In month 1 xxxxxxxxxxxx had the largest pay - xxxxxx.xx.

(e) Modify part (d) to print messages like

In January xxxxxxxxxxxx had the largest pay - xxxxxx.xx.

Hint: Use a string array of size 12 containing the names of the months.

25. (a) Write the Getlnput procedure for Exercise 24 under the assumption that the file is a text
file consisting of 13 lines for each person: name, January pay, and so on.

(b) Redo part (a) assuming that the file is of Pascal records each consisting of a name and 12
pay figures.

(c) Using either file description from part (a) or (b), write a complete program accomplishing
everything outlined in Exercise 23.

26. Give test plans for the following exercises in this section.
(a) Exercise 4(a)
(b) Exercise 7(a)
(c) Exercise 7 (b)
(d) Exercise 7(c)
(e) Exercise 7(f)
(t) Exercise 7(g)

EXERCISES 455

(g) Exercise 7(h)
(h) Exercise 16(d)
(i) Exercise 18(c)
(j) Exercise 20
(k) Exercise 22

6-2 ARRAYS AND DATA STRUCTURES

In the previous section, we examined arrays in some detail, expanding the knowledge we
had been gradually building over the previous three chapters. In that section, we placed a
number of restrictions on the arrays under consideration: (1) the subscripts were integers; (2)
the component type was integer, real, char, string, or a user-defined scalar type; and (3) we
dealt (mostly) with one array at a time. In this section, we remove these restrictions and
consider the important topic of data structures in more detail.

Arrays in Pascal

We begin with a more complete description of Pascal arrays. We can declare an array type
using a declaration of the form

array[index-type] of component-type

As we have seen, a common form for index-type is a range of integers from 1 to some
number greater than 1. However, there are other possibilities, including these:

1. A subrange of the integers, such as

2 .. 12
-500 .. 500

2. Either boolean or char.

3. A subrange of char, such as

'a' .. 'z'
I 'o I 0 0 I 9 I

'A .. 'J'

4. User-defined enumerated or subrange type, such as

456

type

Suits= (Clubs, Diamonds, Hearts, Spades);

ValidGrade = 0 .. 100;

Days= (Sun, Mon, Tue, Wed, Thr, Fri, Sat);

Distribution = array[Suits] of 0 .. 13;

Summary = array[ValidGrade] of integer;

HourArray = array[Mon .. Fri] of real;

We access an element of an array by giving the array name and the subscript, or index,
in an expression of the form

array-name[index]

ONE DIMENSIONAL ARRAYS CHAP. 6

The "index" can be any expression of the proper type. For example, suppose we
declare these arrays, using the type definitions just given:

var

GradeCount: Summary;

HandCount: Distribution;

Hours: HourArray;

LetterCount: array[char] of integer;

Then these are valid array references:

Hours[Mon]

GradeCount[73]

HandCount[Hearts]

LetterCount ['w']

Moreover, if Score is an integer variable in the range 0 to 100, Today is a type Days
variable in the range Mon to Fri, and ThisCharacter is a char variable, then these are legal:

Hours[Today]

GradeCount[Score]

LetterCount[ThisCharacter]

In fact, we can use any legal expression of the proper type as a subscript.
The component type in the array declaration can be any legal type. This specifically

includes arrays and records. We defer the consideration of "arrays of arrays" to the next
chapter. However, we consider arrays of records extensively in the remainder of this section.

Data Structures

The term data structure refers to "structuring data." Thus, a data structure is a way of
organizing data in a meaningful way. In this text, we have already seen numerous examples
of data structures, including the following:

Strings. THINK Pascal uses the string data type to organize a series of individual
characters into a meaningful entity.

Records. Records are one of the most useful tools for structuring data. For example,
we can organize information about a person (name, age, and so on) as a record with a field
for each piece of information. A slightly different example occurred in the case study of
Section 5-4, where we used a record to structure the two parts of a fraction: numerator and
denominator.

Arrays. Arrays allow us to organize a large number of related items of the same
type.

Files. Files provide two important services. Most people probably think first of the
"long-term storage" aspect of files. However, they also provide a structuring of the data they
store.

Most computer science curricula include at least one course whose primary topic is
data structures; we cannot cover the entire topic in this section. However, we indicate,
primarily by examples, how arrays and records can be used in various combinations to
organize data in meaningful ways.

6-2 ARRAYS AND DATA STRUCTURES 457

Parallel Arrays and Arrays of Records

Consider the following simple example. We wish to read the names and grades for 40
individuals and print the name of each person whose grade is larger than the average grade.
This is a slight extension of the program of Figure 6-1. We can solve the problem by
modifying that program, as shown in Figure 6-5. The changes are in italics.

Notice especially the step that prints the name:

if Grades [I] > Average then

Writeln (' ' : 3, Names[I])

If, for example, the third grade in the Grades array exceeds the average, then this
. prints the third name in the Names array. Because of the manner in which the names and
grades were stored in the array, the third name corresponds to the third grade, and thus the
program prints the correct name.

We say that the name and grade arrays are parallel arrays.
As another example, we might have parallel arrays ClockNumber, Age, Sex, and

Salary, each of size 50. We can think of these arrays as the columns of a table:

ClockNumber Age Sex Salary

1149 25 M 12,500

1614 20 F 14,000

2319 35 F 17,250

1003 50 M 16,750

3914 39 M 22,000

Notice that, in the table, the arrays are parallel to each other (vertically).
Pascal, with its record structure, provides an alternative way to organize the data in

our example program. Rather than using two parallel arrays Name and Grade, we might use
a single array of 40 records, where each record has a name component and a grade compo
nent. Figure 6-6 illustrates the differences involved with this approach.

Conceptually, parallel arrays and arrays of records are the same. We can visualize
each in terms of a table, as illustrated earlier. For languages that do not provide a record
structure, we are forced to use the parallel array idea; in Pascal, we have a choice.

Many of the array-processing techniques we have learned can fruitfully be used in the
context of tables (either as parallel arrays or as arrays of records). For example, Figures
6-7(a) and 6-7(b) each give code to locate a student in the data structure and tell his grade.
The first assumes parallel arrays and the second assumes an array of records. They both
assume that the data have been read earlier in the program. The significant differences are in
italics.

Note. As usual, when there are two ways to accomplish a task, there are trade-offs
to be considered when choosing between parallel arrays and arrays of records. Fortunately,
the thought processes involved in the two methods are similar, as illustrated by the small
number of differences between Figures 6-7(a) and 6-7(b).

458 ONE DIMENSIONAL ARRAYS CHAP. 6

program PrintNames;

{Written by: XXXXXXXXXX XX/XX/XX}

{Purpose: To read a list of names and grades {of a fixed length) and }

print the names whose grades > the average}

const
Maxindex

type

40;

String50 = string[50];

{size of grade array}

NameArray = array[l .. Maxindex] of String50;

GradeArray = array[l .. Maxindex] of integer;

var

begin

Names: NameArray;

Grades: GradeArray;

I: integer;

Sum: integer;

Average: real;

Count: integer;

{list of names}

{list of grades}

{loop control, and subscript}

{sum of grades}

{average of grades}

{how many are > average}

{*** Read the names and grades and find the sum}

Sum := O;

for I := 1 to Maxindex do
begin

Write('Enter name#', I : 1, ': ');

Readln(Names[I]);

Write{'Enter grade#', I, '');

Readln(Grades[I]);

Sum := Sum+ Grades[I]

end; {for}

{*** Find and print the average}

Average := Sum I Maxindex;

Writeln;

Writeln{'The average is ' Average : 1 : 2);

{*** Prints names whose grades are larger than the average}

Writeln;

Writeln('Names whose grades are larger than the average:');

for I := 1 to Maxindex do
begin

if Grades[!] >Average then
Writeln{' • : 3, Names[I])

end {for}

end. {PrintNames}

Figure 6-5 Parallel arrays.

6-2 ARRAYS AND DATA STRUCTURES 459

program PrintNames;

{Written by: XXXXXXXXXX XX/XX/XX}

{Purpose:
{

To read a list of names and grades (of a fixed length),}

and print the names whose grades are greater than the}

average} {

const
Max Index 40;

type
String50 = string[50);

StudentRecord = record
Name: String50;

Grade: integer

end;

{size of grade array}

StudentArray = array[l .. MaxindexJ of StudentRecord;

var
Student: StudentArray;

I: integer;

Sum: integer;

Average: real;

Count: integer;

{list of names and grades}

{loop control, and subscript}
{sum of grades}

{average of grades}

{how many are > average}

begin

{*** Read the names and grades and find the sum}

Sum := O;

for I := 1 to Maxindex do
begin

Write('Enter name#', I : 1 '· ');
Readln(Student[I) .Name};

Write('Enter grade#', I, ' '};

Readln(Student[I) .Grade};

Sum :=Sum+ Student[!) .Grade

end; {for}

{*** Find and print the average}

Average := Sum I Maxindex;
Writeln;

Writeln('The average is ',Average: 1 : 2);

{*** Prints names whose grades are larger than the average}

Writeln;
Writeln('Names whose grades are larger than the average:');

for I := 1 to Maxindex do
begin

with Student[!) do
if Grade > Average then

Writeln(' ' : 3, Name}
end {for}

end. {PrintNames}

Figure 6-6 Array of records.

460 ONE DIMENSIONAL ARRAYS CHAP. 6

{*** Read a name to search for}

Writeln;
Write('Enter a name to search for: ');
Readln(NameToFind);

{*** Locate name and print grade, or error message}

Found := false;
I : = l;
while (I <= Maxindex) and (not Found) do

begin
if Names[I] = NameToFind then

Found := true
else

I := I + 1
end; {while}

if Found then
Writeln('The grade is', Grades[I] 1)

else
Writeln ('Name not found.')

Figure 6-7a Searching parallel arrays.

{*** Read a name to search for}

Writeln;
Write('Enter a name to search for: ');
Readln(NameToFind);

{*** Locate name and print grade, or error message}

Found := false;
I : = 1;

while (I <= Maxindex) and (not Found) do
begin

if Student[I].Name

Found := true
else

I := I + 1
end; {while}

if Found then

NameToFind then

Writeln('The grade is', Student[I].Grade 1)
else

Writeln('Name not found.')

Figure 6-7b Searching an array of records.

Generally, the array of records more closely matches our usual notion of a table as a
set of rows, each row describing one entity, a plus for this method. Using parallel arrays, it
is up to the programmer to tie together the related data.

6-2 ARRAYS AND DATA STRUCTURES 461

On the other hand, suppose we modified the code in Figures 6-7(a) and 6-7(b) as
follows: Write a procedure that finds the subscript of a given name. Using parallel arrays,
we would pass the name array to the procedure. The same procedure could be used in other
programs with arrays of names. Using the array of records representation, we would have to
pass in the entire data structure (the array of records called Student). The procedure would
not be usable (without some changes) in another program needing a procedure to locate a
name in an array. (In addition, the procedure could inadvertently modify a part of the data
structure totally unrelated to its purpose of looking for a name.)

Records Containing Arrays

In defining a record data type, we are allowed to use an array as one of the fields of the
record. To illustrate this, we design a program that reads payroll data from a file and prints a
report. For each person, the data consist of these components:

Name
Pay rate
Hours worked each of 7 days (Sunday through Saturday)

The basic logic of the program involves repeating these steps for each employee:

read the data
calculate the total hours
calculate the pay
print the name and pay

An appropriate data structure involves several of the ideas developed in this section:

type
String50 = string[SOJ;
DaysOfWeek = (Sun, Mon, Tue, Wed, Thr, Fri, Sat);
HourArray = array[DaysOfWeek] of real;
WorkerRecord = record

Name: String50;
PayRate: real;
Hours: HourArray

end;
WorkerFile = file of WorkerRecord;

var
Worker: WorkerRecord; {individual's data}
MasterFile: WorkerFile; {master worker file}

Leaving for later the details of opening and closing files, we can write the body of the
main program as

462

while not Eof(MasterFile) do
begin

Read(MasterFile, Worker);
TotalHours := TotalFn(Worker.Hours);
Pay := Worker.PayRate * TotalHours;
DetailLine(Worker.Name, Pay)

end; {while}

ONE DIMENSIONAL ARRAYS CHAP. 6

We have chosen to use a function to calculate the total hours, passing it the Hours array
portion of the Worker record as its parameter. (Its parameter is of type HourArray.) We have
also chosen to use a procedure to print the output (and to use the OpenRead procedure
discussed in Chapter 5 to handle the details of opening the file). We can begin with a stub
version, later adding refmements such as printing headers, etc.

The entire program is presented in Figure 6-8. Of special interest is the TotalFn func
tion. It adds the weekday hours; any in excess of 40 are scaled by a factor of 1.5 (''time and
a half'). Weekend hours are "double time", reflected in the scaling factor of 2.0. Notice the
use of "for Day := Mon to Fri" to loop through the five weekdays (Monday through Friday),
and of "HourList[Day]" to refer to the array elements.

Note. An array such as HourList, which uses an enumerated type for its subscripts,
raises an interesting issue. With integer subscripts, we are used to expressions such as

A[I+l]

A[I-3]

To do a similar thing with enumerated types, we would have to use the functions Succ and
Pred. For example, if Day has the value Wed, then HourList[Succ(Day)] would refer to the
hour for Thursday, and HourList[Pred(Day)] to the hours for Tuesday.

We now consider an important data structure with an entirely different flavor. In
dealing with arrays in the preceding section, we frequently maintained a count of how many
values were in the array. We used a separate variable for that purpose.

Another approach that is sometimes used associates the array size more closely with
the array, as indicated by these data declarations:

const
EndOfData = -1;
MaxSize = 50;

type

{terminates input}
{maximum size of array}

IntegerList = record
Len: integer; {length of list}
Values: array[l .. MaxSize] of integer;

end;

When we pass a parameter of type lntegerList to a subprogram, its current length (Len)
automatically goes along. We do not have to remember to pass it as a separate parameter.

Note. In a subprogram that has this type of variable as a parameter, we might wish
to use the Pascal with statement. See Figure 6-9.

Other Combinations

As we indicated earlier, our intention here is simply to suggest some data-structuring ideas.
For our final example, we consider a combination of ideas from the previous two subsec
tions. We have an array of records, where each ~ecord contains an array. Specifically, we
deal with an array of student records, where each student record has these components:

6-2 ARRAYS AND DATA STRUCTURES 463

program PayReport;

{Written by: XXXXXXXXXX XX/XX/XX}
{Purpose: To data from a payroll file , and print a pay report}

{Functions used: TotalFn, to find total hours, adjusted for overtime}

rules}

{Procedures used: OpenRead, to open the master file}
DetailLine, to print a line of the report}

type

String50 string[50];

DaysOfWeek = (Sun, Mon, Tue, Wed, Thr, Fri, Sat);

HourArray = array[DaysOfWeek] of real;
WorkerRecord = record

Name: String50;

PayRate: real;

Hours: HourArray

end;

WorkerFile = file of WorkerRecord;

var
Worker: WorkerRecord;

MasterFile: WorkerFile;

TotalHours: real;

Pay: real;

{individual's data}

{master worker file}

{total hours for week}

{pay for week}

function TotalFn (HourList: HourArray): real;

{Written by: XXXXXXXXXX XX/XX/XX}

{Purpose: To add up all the hours, adjusting for double}

time (for weekends), and time and a half (for}

over 40 hours during a week)}

{Parameters: HourList - input, array of hours for week}

var

Day: DaysOfWeek;

Total: real;

begin {TotalFn}

{*** Total weekday hours}

Total := O;

{loop control and subscript}

{local variable for total}

for Day := Mon to Fri do

begin
Total := Total + HourList[Day]

end; {for}

Figure 6-8 Record containing an array (continues next page).

464 ONE DIMENSIONAL ARRAYS CHAP. 6

{***Adjust for time and a half (over 40 hours)}

if Total > 40 then
Total := 40 + (Total - 40) * 1.5;

{*** Add in weekend at double time}

Total :=Total+ 2 * (HourList[Sun] + HourList[Sat]);

{*** Send answer back}

TotalFn := Total
end; {TotalFn}

{function Exists, as shown in Appendix c, is inserted here}

{procedure OpenRead, as shown in Appendix C, is inserted here, with}

{text type changed to WorkerFile}

procedure DetailLine (Name: StringSO; Pay: real);

begin {DetailLine - stub version; full version left as exercise}

Writeln(Name, ' ', Pay: 1 : 2)

end; {DetailLine}

begin {PayReport}

{*** Open file}

OpenRead(MasterFile);

{*** Read records and process pay report}

while not Eof(MasterFile) do
begin

Read(MasterFile, Worker);

TotalHours := TotalFn(Worker.Hours);
Pay := Worker.PayRate * TotalHours;
DetailLine(Worker.Name, Pay)

end; {while}

{*** Close file and terminate}

Close(MasterFile);
Writeln;

Writeln('Report complete.');

end.

Figure 6-8 (continued)

6-2 ARRAYS AND DATA STRUCTURES 465

procedure AddToEnd(var List: IntegerList; Number: integer;

var OK: boolean);

{Written by: XXXXXXXXXX XX/XX/XX}

{Purpose: To add a number to the end of a list, if possible}

{Parameters: List - update, the list to add to}

Number - input, the number to add}
OK - output, whether or not the list was full}

{Globals used: MaxSize - global constant telling maximum size of list}

begin {AddToEnd}

with List do

begin

if Len = MaxSize then

OK := false

else

begin

OK := true;

Len := Len + 1;

Values[Len] .- Number
end {if}

end {with}

end; {AddToEnd}

Figure 6-9 Keeping the actual size with an array.

Name
4 test grades
Final exam grade
10 program grades
Final average
Letter grade

We define our data structure as

466

canst

Maxstudents 50;

type

String50 = string[50];
TestArray = array[l . . 4] of integer;

ProgramArray = array[l .. 10] of integer;

StudentRecord = record
Name: String50;

TestList: TestArray;
Exam: integer;

ProgList: ProgramArray;

Average: real;

Letter: char
end;

StudentList = array[l .. MaxStudents] of StudentRecord;

ONE DIMENSIONAL ARRAYS CHAP. 6

var
Student: StudentList; {array of student records}

The program in Figure 6-10 has three major steps:

1. Read the data for the class: How many students? How many tests so far? How many
programs so far? And what is the student list?

2. Add the scores for a test to each student's record.

3. Rewrite the data to the same files.

Besides illustrating data structures, the program illustrates one approach to maintain
ing data on files over a period of time. We can read the entire set of data from the file into
memory, allow the user to perform a number of steps that modify the data in various ways,
then write the data back to the file. This approach works adequately well for files with a few
thousand records or less; other techniques (discussed later in the text) are needed for large
files (both for efficiency reasons and because of memory restrictions).

A difficulty arises in this example because we have two different types of data. First,
we have the list of student records, which can be stored using a file declared as "file of
StudentRecord". Second, we have the "control" information: how many students, how many
tests, how many programs?

There are a number of ways to approach this problem. The program illustrates one
possibility: use a control file to store control information about the data file. The data file
has the data for the students in the class, and the control file has the information about the
number of students, tests, and programs. (Chapter 11 discusses other file-related ideas.)

Testing

We suggest you review the comments presented in Section 6-1 on testing involving arrays.
Here we discuss additional testing issues raised by this section's topics.

To begin, consider a program that reads an array of student records from a file, allows
the user to make a series of changes, then writes the records back to the file. Suppose that
among the possible changes to the data are these:

Delete a student
Add a student
Change a grade

In this type of program, we might want to test the relationship of various steps per
formed in sequence. This is sometimes called sequence testing or combination testing. For
example, these are some important tests:

• delete a name, then try to delete the same name again

• delete a name, do some other steps, then add the same name

• try to add the same name twice in a row

•change a test, then later change it again for the same person

• add a name, change a test, and delete the name

• add enough names to "overflow" the array

• with the array full, try to add a name that is already there

• delete all names, then add a name

6-2 ARRAYS AND DATA STRUCTURES 467

program EnterTest;

{Written by: xxxxxxxxxx XX/XX/XX}

{Purpose: To allow the user to enter test scores for the class}

{Procedures used: OpenFiles, to open the files}
ReadFiles, to read the files into the data structure}

WriteFiles, to write the data structures back to the files}

GetValidScore, to obtain a score in the range 0 - 100}

const
Maxstudents 50; {limit on array size}

type

String50 = string[50];
TestArray = array[l .. 4] of integer;

ProgramArray = array[l .. 10] of integer;

StudentRecord = record

Name: String50;

TestList: TestArray;

Exam: integer;
ProgList: ProgramArray;

Average: real;

Letter: char

end;

ControlRecord = record
NStudents: integer;

NTests: integer;
NPrograms: integer

end;

StudentList = array[l . . MaxStudents] of StudentRecord;

StudentFileType file of StudentRecord;

ControlFileType = file of ControlRecord;

var
Student: StudentList;

Control: ControlRecord;

StudentFile: StudentFileType;

ControlFile: ControlFileType;
I: integer;

{array of students}

{control information}

{master student file}

{control file}
{loop control}

procedure OpenFiles (var Master: StudentFileType; var ControlFile:
ControlFileType);

begin {OpenFiles - stub version; full version left as exercise}

Reset(Master, 'Studentinfo');

Reset(ControlFile, 'StudentControl')
end; {OpenFiles}

Figure 6-10 Array of Records Containing Arrays (continues next page).

468 ONE DIMENSIONAL ARRAYS CHAP. 6

procedure GetValidScore (var Score: integer);

begin {GetValidScore - stub version; full version left as exercise}
Readln(Score)

end; {GetValidScore}

procedure ReadFiles (var StudentFile: StudentFileType;
var ControlFile: ControlFileType;
var Student: StudentList;

{Written by:
{Purpose:
{

{Parameters:

var
I: integer;

var Control: ControlRecord);

XXXXXXXXXX XX/XX/XX}
To read the data from the control and student files}
into the internal data structure}
StudentFile - the file designator for the student file}
ControlFile - the file designator for the control file}
Student - output, the array of student records}
Control - output , the control record)

{loop control}

begin {ReadFiles}
Read(ControlFile, Control);
for I := 1 to Control.NStudents do

begin

Read(StudentFile, Student[!])
end {for}

end; {ReadFiles}

procedure WriteFiles (var StudentFile: StudentFileType;
var ControlFile: ControlFileType;
Student: StudentList;

{Written by:
{Purpose:
{

{Parameters:

var
I: integer;

Control: ControlRecord);

XXXXXXXXXX XX/XX/XX}
To write the data from the internal data structures back}
to the original files}
StudentFile - the file designator for the student file}
ControlFile - the file designator for the control file}
Student - input, the array of student records}
Control - input, the control record}

{loop control}

begin {WriteFiles}
Rewrite(ControlFile, 'StudentControl');
Rewrite(StudentFile, 'Studentinfo');
Write(ControlFile, Control);

Figure 6-10 (continues next page).

6-2 ARRAYS AND DATA STRUCTURES 469

for I := 1 to Control.NStudents do

begin

Write(StudentFile, Student[I])

end {for}

end; {WriteFiles}

begin {EnterTest}

{*** Open files and read the data}

OpenFiles(StudentFile, ControlFile);

ReadFiles(StudentFile, ControlFile, Student, Control);

{*** See if another test can be entered. If so, print each student name}

and read the test score.}

if Control.NTests >= 4 then

Writeln('There have already been 4 tests.')

else

begin

Control.NTests := Control.NTests + l;

for I := 1 to Control.NStudents do

begin

with Student[I] do

begin

Write('Score for' Name, ': ');

GetValidScore(TestList[Control.Ntests])

end {with}

end {for}

end; {if}

{*** Write the resulting data structure back to the files}

WriteFiles(StudentFile, ControlFile, Student, Control);

{*** Close files and stop program}

Close(StudentFile);

Close(ControlFile);

Writeln;

Writeln('Test scores updated.');

end.

Figure 6-10 (continued)

In this type of problem, the results of a specific step depend on what has come before.
The rules for determining the important test sequences, in a context such as this, are not as
precise as those for boundary or class testing. Although we can give some general guide
lines, writing a good test plan is always a creative process, even more so for this type of
problem than for those we have dealt with previously.

470 ONE DIMENSIONAL ARRAYS CHAP. 6

DPT

1. The most important defensive programming tip, perhaps, is an offensive program
ming tip: Choose your data structures wisely. Data structures that adequately reflect the
"real world situation" are much easier to understand as you develop your program. Hastily
chosen data structures can lead to a great amount of frustration later. Carefully chosen data
structures can make the program easier to write and easier to understand.

2. Remember that subscripts are necessary to access an element of an array. For
example, in the data structures used in Figure 6-10, the reference Student[5] would refer to
the fifth student record. Within that record, Student[5].TestList[3] would refer to that
student's third test. To access the fifth student's third test, we need both subscripts in the
form indicated here.

3. The subscript must be an expression of the proper type. For example, if we declare:

type
Days= (Sun, Mon, Tue, Wed, Thr, Fri, Sat);

var

Hours = array[Days] of real;

then Hours[l] makes no sense, but Hours[Sun] does.

4. Don't forget to use range checking during development.

S. When we define complex data structures involving records, it is a good idea to use
named data types for each component of the record. For example, use

type
String50 = string[50];
TestArray = array[l .. 5] of integer;

StudentRecord = record

Name: String50;

Test: TestArray

end;

This allows us to pass individual components, if necessary or convenient, as parameters to
subprograms.

6. All other tips relating to arrays (especially in Sections 3-2 and 6-1) and to records
(Sections 5-2 to 5-4) must be kept in mind when dealing with combinations of these struc
tures.

REVIEW

Terms and Concepts

combination testing
control files
data file

REVIEW

data structures
parallel array
sequence testing

471

Pascal Syntax

1. Index type for an array declaration can be

(a) Subrange of integers, e.g., 1..50 or -3 .. 5

(b) Boolean

(c) Char

(d) Subrange of char, e.g., 'a' .. 'z'

(e) User-defined enumerated type or subrange type, e.g., Days or Mon .. Fri

2. Array reference: array-name[indexJ

Data Structure Examples

1. Strings

2. Records

3. Arrays

4. Files

S. Parallel arrays

6. Arrays of records

7. Records containing arrays

8. Other combinations, e.g., arrays of records, where each record contains an array

EXERCISES

Testing

Sequence (combination testing); for example:
add same name twice
delete name, then add back
change same value twice
etc.

DPT

1. Choose data structures carefully.
2. Use subscripts to access array elements, e.g., Student[5J.Test[3J.
3. Subscript must be of the proper type.
4. Use range checking.
5. Use named data types for record components.

1. Define data structures for each of the following. Give the type and var declarations and show
how to access each part of the data structure. (For example, Student.Grade[!].)

472 ONE DIMENSIONAL ARRAYS CHAP. 6

(a) One entry for a mailing list: name, address, expiration date, and a special 8-character code.
(b) Data for a family consisting of a husband, wife, and up to five children. Include name and

age for each person.
(c) A list of rainfall figures for one year for one state. The data consist of the state name and

12 monthly rainfall figures.
(d) Repeat part (c), but store the data for all 50 states at once.
(e) Repeat part (d), but simultaneously store the data for 7 years. For each year, the data

consists of the year (e.g., 1992) and the data for the 50 states.
(t) A table containing data for up to 100 employees: name, social security number, and last

year's salary.
(g) A polynomial having up to 20 terms, each consisting of a real coefficient and an integer

exponent.
(h) An answer key for a multiple-choice test containing up to 100 questions. Each question has

possible answers a, b, c, d, or e, and has a point value assigned to it.
(i) A student's answer sheet for the test described in part (h).
(j) An array to contain the characters 'O', 'l ', ... , '9'. The array should be set up in such a

way that the element with subscript 5 contains '5' and so on. Also give the assignments to
initialize the array.

(k) An array called Vowel, indexed by capital letters 'A' through 'Z', to make it easy to answer
the question, "Is this capital letter a vowel?" For example, Vowel['T'] would be false. Also
give the assignments to initialize the array.

2. The person designing the data structure for a class list has chosen to use a group of parallel
arrays: Name, Testl, Test2, Test3, Test4, Test5, Test6, Exam, Average, and Letter. Name[I]
contains the name of the l1h student, Testl[I] her score on the first test, and so on. Suppose that
the names, test grades, and exam grade have already been read and that there are N students.
Write segments of Pascal code to do the following:
(a) Compute the values for the Average array.
(b) Print the names of all students who received the highest average. Notice that there may be

several tied for highest.
(c) Print the highest and lowest score for each test
(d) Compute the average score for each test.
(e) Assuming that the function l..etterGrade calculates a letter grade, given a numeric average,

write code to calculate the values for the Letter array.

3. Repeat Exercise 2, but assume that students can withdraw. When they do, the information
remains in the arrays; however, their letter grade is given the value 'W'.

(a}-(d) Repeat parts (a) to (d) of Exercise 2, but ignore all students who have withdrawn.

(e) Write code to count the number of students who have withdrawn and print the percentage
of withdrawals.

(t) Write code that, given a student name, locates that student and marks him as withdrawn. If
the student has already withdrawn or if the name is not present, print an appropriate error
message.

4. Repeat Exercise 2 with a different choice for the data structure. Use an array of records, each
record having these fields: name, an array of six test scores, exam score, final average, and
letter grade.

5. Was there any significant advantage to either of the data structures in Exercises 2 and 4? Which
strategy would be more appropriate if there were 3 tests and 14 weekly quizzes? Which would
be better if there were variables indicating how many scores have been entered so far?

EXERCISES 473

6. In this exercise, we explore three possible data structures to represent a list of campers and the
cabins to which they are assigned. There are 20 cabins, with names such as "BlackHawk,"
"Wigwam," and so on. For each data structure, we use an array of records, one record per
camper. The record has the camper's name and a representation of the cabin. The differences are
in how we represent the cabin.

Data Structure No. l:

Data Structure No. 2:

Data Structure No. 3:

The cabin is given by a string variable containing the name of
the cabin.

The cabin is an integer code representing the cabin number.

The cabin is a user-defined scalar type defined in the form
CabinType = (BlackHawk, Wigwam, ...).

For each part of the exercise, give code to solve the problem for each data structure. (You may
need to define additional data, such as print name arrays; if so, describe them in words.)

(a) Print a list of campers: name and cabin name.
(b) Read a camper's name and print his or her cabin name (or an error message if the person is

not in the list).
(c) For each cabin, print the cabin name and a count of the campers in the cabin.
(d) Read a name and cabin name for a camper to be added to the list. Make sure the cabin

name is one of those allowed and that the camper's name is not a duplicate.

7. (a) Write a program that declares an array CountLetter indexed by the range type 'A' .. 'Z'. It
should initialize the array to contain all zeros, then read a series of single-character inputs
from the user. The array should be used to count how many of each letter ('A' to 'Z') are
input. Output consists of a series of lines such as

B was entered 3 times

Skip any for which the count was 0.
(b) Extend part (a) to include all characters. Hint: The index type is "char" and a loop

for I := Chr(O) to Chr(255)do

can be used to move through the array.
(c) Extend part (a) to read strings rather than single characters. Hint: For a string InputString,

InputString[I] is the ith character, and Length(lnputString) returns the number of characters
in InputString.

8. Suppose that an array of 100 records contains data for NEmpl employees. Each record contains
the employee number, name, sales, age, sex, department, and group. Give segments of code for
the following. Assume that the data have been read earlier in the program.

474

(a) Give the appropriate declarations to declare the array.
(b) There are 10 groups. Find the total sales for each of the 10 groups putting the answers in

an array of size 10. Then read an employee number and new sales amount; add this amount
to that employee's sales figure and to the total for each group.

(c) Suppose that an array ValidDepartrnent, of size 17, contains a list of all the valid depart
ment codes. Print the employee number of all employees whose department entry is pres
ently invalid.

(d) Add a new employee to the end of the list. Check for these errors: invalid department code,
employee number already in use, and list full.

(e) Count how many are in the following age groups: under 20, 20 to 29, 30 to 39, 40 to 49,
50 to 59, and 60 or over. Use an array of counters.

(0 Count how many are in each department. Hint: The ValidDepartment array of part (c) can
be used to convert a valid department name to a number from I to 17.

ONE DIMENSIONAL ARRAYS CHAP. 6

9. (a) Write a program to interactively build an array of records of the form: father's name,
mother's name, number of children, and children's names (array of up to 8). At the end,
print the array and write it to a file.

(b) Write a program to read the file created in part (a) into an array, and print the array on the
terminal.

10. Do the following for the example of Figure 6-8:
(a) Write the DetailLine procedure.
(b) Write another program to create the file this program uses. It should read data from an

appropriate text file, check for errors in the data, and write it to the file of records.

11. Do the following for the example of Figure 6-10:
(a) Write a program to create the files the program uses. At the beginning of the semester, the

number of tests and programs is 0. Thus, the program should simply read a series of names
and write the appropriate values to the data and control files.

(b) Write the OpenFiles procedure. It should ask the user for a "base name" and use that to
build the file names. For example, if the user enters Hist305, the file names would be
Hist305Scores and Hist305Control. The procedure should print a message if the files do
not exist. Hint: Use an Exists function as shown in Appendix C. You may also wish to
imitate the logic of the OpenRead procedure of Appendix C.

(c) Write the GetValidScores procedure.
(d) Write a program to dump the data in the files. It should print the control record, and then

each student record. For each student, print all 4 test scores and all 10 program scores,
even if all have not yet been entered. Note: Unless the create program puts meaningful data
(such as 0) in the fields of the record, the dump program may show "garbage" until later
programs fill in the data.

(e) Describe what additional programs would be needed to make the system useful to an
instructor. Do you think it would be better to have a separate program for each task or to
use a single menu-driven program with each task a menu option?

12. One very useful data structure is called a stack. A stack is a list where items are inserted and
removed from only one end of the list. The term is suggestive of a stack of cafeteria trays or a
stack of papers in an "in" box. A stack has the last in, first out property: The item removed from
a stack is always the most recent one that was placed onto it.

One way to implement a stack of integers is as a record defined by

type

Stack = record

Top: integer;

Values: array[l .. Maxindex] of integer

end;

"Top" contains the subscript of the top element in the stack. It is 0 for an empty stack, increases
by l each time an item is added to the stack, and decreases by 1 each time an item is removed.
Observe that this data structure is similar to the one where an array and its count are kept
together by placing them in the same record.

Write the following subprograms:

(a) Procedure CreateEmpty(var S: Stack). It causes S to be an empty stack by setting S.Top to
0.

(b) Function IsEmpty(S: Stack): boolean. It sees if Sis empty.

EXERCISES 475

(c) Procedure Push(var S: Stack; Item: integer; var Overflow: boolean). It "pushes" an item on
the stack, that is, adds an item to it. "Overflow" indicates whether the push succeeded. If
there was no more room on the stack, it is set to true, otherwise to false.

(d) Procedure Pop(var S: Stack; var Item: integer; var Underflow: boolean). It "pops" an item
from the stack, that is, removes an item from the stack and places its value into the variable
Item. Underflow is set true if there was no item on the stack; otherwise it is false.

13. Using the stack operations defined in Exercise 12, write a program to reverse a series of integer
inputs. (Push all input onto the stack, and then pop each item off in turn.)

14. Define subprograms to perform various operations on lists of integers. Use the data structure:

476

type

Integerlist = record
Length: integer;
Values: array[l .. Maxindex] of integer
end;

For example,

Length= 3
Values= 6, 7, 9

would represent a list of three integers.

(a) Read a list of integers.
(b) Print a list, eight numbers per line.
(c) Given a list and a value, place the value on the end of the list if it is positive; otherwise

place it on the front of the list. Assume there is room for it.
(d) Concatenate two lists. For example, consider

A. Length= 3

Values= 6, 7, 9

B. Length= 2

Values= I, 8

If C is the answer, it would be

C. Length= 5

Values= 6, 7, 9, I, 8

Assume that A.Len + B .Len :S: Maxlndex.
(e) Repeat part (d) without the assumption. The result should be truncated to the first

Maxlndex values.
(t) Extract a sublist. The parameters are

List:

Posn:
Len:

Sublist:

a list

starting position for the sublist
the length of desired sublist

the resulting sublist

Assume that Posn and Len are such that the desired sublist is entirely contained within the
list and that Len ~ 0. The original list is unchanged.

(g) Repeat part (t), but without the assumptions on Posn and Len. If Posn < I, Posn >
List.Length, or if Len < 0, the resulting list should be empty. If Posn lies within the list and
Len would go beyond the end, stop at the end. (For a list of length S with Posn = 4 and
Length = IS, the resulting list would have only the fourth and fifth values of the original
list.)

ONE DIMENSIONAL ARRAYS CHAP. 6

(h) Repeat part (t), but modify the original list by removing the extracted sublist.
(i) Insert a list into a given position "Posn" in another list. Assume that the position is

between I and the length of the list into which it is being inserted.
(j) Repeat part (i), but without the assumption. If Posn < 1, place the new list at the front of

the other; if Posn > the length of the list, place the new list at the end.

15. Suppose we have an array of up to 75 records for choir members. Among the fields are name,
voice part, and range (e.g., 'John Smith', bass, high) would denote a "first bass," that is, a bass
with a higher range than a "second bass." The voice parts are soprano, alto, tenor, and bass; the
ranges are high and low. There are Number members in the choir at present. Give code for each
of the following; use subprograms if appropriate. Except for part (c), assume that the data have
already been read.
(a) Give the necessary declarations for the array.
(b) Declare and initialize "print name" arrays for the voice part and range. Using these, print a

list of the choir.
(c) Read values for the array from the terminal.
(d) What percentage of the choir is soprano?
(e) What percentage of the tenors are "first tenors" (high range)?
(f) Given a name, tell his or her voice part and range.
(g) Declare an array of four counters indexed by the voice part data type. Use this array to

count the number of each voice part.

16. A file contains 50 records, each consisting of the name of a state and 12 monthly rainfall
figures. Give code for the following:
(a) Give appropriate declarations (see Exercises l(c) and l(d)).
(b) Read the file into an array of size 50.
(c) Rewrite the array to the file.
(d) Given the name of a month, find the average rainfall for that month.
(e) Given the name of a state, find which month had the largest rainfall.
(f) Find the total rainfall for each state.
(g) Find which state had the highest total rainfall. If there were ties, print all the states with the

highest total.

17. (a) Using the random-number generator, write a function with two parameters, Range and
Previous. The function should generate an integer in the range 1 .. Range, with the generated
number not equal to Previous.

(b) Repeat part (a), but with Range, Previous!, and Previous2. The number generated should
not equal either Previous! or Previous2.

(c) Expand on this idea by having an array Previous containing N different values. The num
ber generated should not equal any of the values in the array. Note: In order to be assured
of eventual success, assume that N < Range.

18. One of the authors was given a chance to win a prize at a movie video rental store. The game
slip had nine hidden numbers. The goal was to uncover any three of the nine numbers; if the
total was 15 or more, the author would win the prize.

After failing to win, the author proceeded to uncover all nine numbers. They were 2, 9, 2, 5, 8,
9, 8, 6, and 5. What was the probability that the author would lose? To answer this, write a
function of type win-or-lose that simulates one play of the game. Invoke the function 5000
times, counting how many are losses. (Hint: For the function, use an array of size 9 containing
the nine values. Generate three different numbers in the range 1..9, and add those three array
elements. The functions written in Exercises 17(a) and 17(b) could prove helpful.) You may
wish to allow the user to enter the values for the array to make the game more general.

EXERCISES 477

19. (a) One way to simulate shuffling a deck of 52 cards is to generate random numbers in the
range 1..52, making sure that each number is different from all those that came before.
Using the function of Exercise I 7(c), write a procedure to generate an array of size 52,
containing the numbers I to 52, shuffled.

(b) The problem with the approach in part (a) is that toward the end it may take quite some
time to find a number that does not duplicate some earlier number. A better approach is
this: Put the numbers I to 52 in the array. Then generate 52 random numbers in the range
1 .. 52. If Num is the l1h number generated, swap A[!] with A[Num]. Write a procedure to do
this form of shuffling.

(c) Write a program to compare the times for the two methods. See the StatPack procedures in
Section 10-3 for a method to time a routine. To obtain a meaningful test, you may want to
invoke each procedure a number of times in a loop.

20. We can use the shuffling procedure of Exercise 19, suitably modified, to simulate the following
experiment: Shuffle five cards, numbered from I to 5, into random order, then count how many
cards are in their "correct" position. For example, if the cards are in the order 5, 2, 4, I, and 3,
then the 2 is in the correct position. For the order I, 5, 3, 2, and 4, both the I and the 3 are in
the correct position.
(a) On the average, how many cards would we expect to be in the correct position? To answer

this question, write a program to simulate the experiment a large number of times.
(b) Suppose there were IO cards, numbered I to IO. On the average, how many would we

expect to be in the correct position?
(c) Suppose there were 52 cards, numbered I to 52. On the average, how many would we

expect to be in the correct position?

6-3 SEARCHING AND SORTING

Two important applications involving arrays are searching and sorting. Searching involves
looking for a specific value in an array and reporting its position (subscript), or the fact that
this value was not found. Sorting involves ordering the array's elements in increasing or
decreasing order. For simplicity, we use integer arrays, but the techniques developed apply
to any data type for which order comparisons make sense. These types include integers,
reals, strings, and user-defined scalar types.

For each application, we present two solutions. The first is easier to understand; the
second faster. For very small arrays, speed may not be important. For large arrays, though, it
becomes quite important, so we examine solutions that are faster than the first naive solution
we may devise.

Linear Search

For this and the other applications, let us assume we are dealing with an integer array A with
subscripts ranging from 1 to a constant Maxlndex. We also assume the array actually con
tains N values, with 0 ::;; N ::;; Maxlndex. In searching problems, we are also given a value to
look for in the array.

The Algorithm Linear search is an approach to searching for what we have
already seen. We simply start at the first element A[l] and proceed through the array until
one of two conditions occurs:

478 ONE DIMENSIONAL ARRAYS CHAP. 6

1. We reach the end of the portion of the array containing values.

2. We find the desired value.

As we learned in Section 6-1, we have to take some care in writing the condition for
the loop. Figure 6-11 shows a subprogram that accomplishes the search.

There are actually two "answers" from this subprogram. They answer the questions:
(1) Is the value present? (2) If so, in what location? However, by setting the location to 0 if
the value is not found, we can convey the answer to both questions in a single variable.

Note. As a general rule of program design, using "trickery" to convey two answers
as if there were only one is not good programming style.

However, using a 0 to indicate "not found" is widely used and understood within the
computer science community. Thus, this use is generally accepted.

function Search(A: IntegerArray; Key, N: integer): integer;

{Written by: XXXXXXXXXX XX/XX/XX)

{Purpose: To locate a given value in an array. The answer is}

the subscript where found (0 if not found).)

{Parameters: A - input, the array to search in}

Key - input, the value to search for}

N input, the portion of the array in use}

var
Found: boolean;

I: integer; {loop control and subscript}

begin {search}

Found := false;

I := l;

{assume value not in array}

while (I <= N) and (not Found) do

begin

if A[I] = Key then

Found : = true

else

I := I + 1
end; {while}

if Found then

Search .- I

else

Search . - O;

end; {Search}

Figure 6-11 Linear search of an array.

6-3 SEARCHING AND SORTING 479

By making a slight modification to the linear search, we can simplify it a good deal.
Its major complexity arises from not knowing whether we will find the value in the array.
Suppose, before we enter the loop, we do an assignment

A[N + l] := Value

Now, we can write our loop as

I := l;

while A [I) <> Value do
begin

I := I + 1

end; {while}

Because we have placed the value into the array, we know it is there, so we do not
need the test I <= N in the while condition. After the loop, we can write

if I = N + 1 then
Location .- 0

else
Location := I

If I is N + 1, then the only occurrence of the value was the one we put in, so we set
Location to 0 to show that the value was not in the original array.

Note. If N = Maxlndex, the size of the array, this does not work. The rest of our
program must treat the array such that N always stays less than Maxindex.

Some people always declare arrays to be one larger than they really need, so that
techniques such as this always work. For example, the declaration

array[l .. 51] of integer

might be used for an array to store up to 50 (not 51) student grades.

Efficiency. When discussing the efficiency-the speed-of search algorithms, a
very good measure is to look at the number of times we must compare a value in the array
against the key value to determine if the key value is present or absent. For the linear search
algorithm of Figure 6-11, asking how many comparisons occur corresponds to asking the
question:

On the average, how many passes through the loop will be required?

Intuitively, we can reason as follows. We might get lucky and find the value at A[l],
requiring one pass. Or it might require two, three, or four passes. At worst, it will require N
passes. On average, we would expect about N/2 passes to be required (higher if many are
not found).

Computer scientists describe this by saying that the linear search has average time
O(N) (read as order N or big oh of N). Roughly speaking, this means that the time is
"approximately proportional to N." So, if the array size doubles, the number of comparisons
about doubles, and so the average time for the search doubles as well.

480 ONE DIMENSIONAL ARRAYS CHAP. 6

Binary Search

If the array is in order, we can use a more efficient search known as the binary search. The
easiest way to understand this method is by looking at an example.

The Algorithm. Suppose we have the following array:

15 23 36 42 79 101 125 140 142

The numbers are in increasing order. Because N is 9, we know that whatever value we are
looking for is between position 1 and position 9, inclusive, if it is there at all. For our
example, assume we are looking for the value 101.

Suppose we initialize a variable Low to 0 and a variable High to 10 (= N + 1). Then
the value, if it is there, must be strictly between position Low and position High. ("Strictly
between" means "between but not including.") Rather than check the positions in order, let
us check the middle item of the array. We calculate

Middle := (Low + High) div 2

and examine A[Middle]. In this case, Middle is 5, so we examine A[5], which is 79. If we
were looking for the value 79, we would be done-the location would be 5.

Because the number we are looking for (101) is larger than the one at position Middle
(79) and because the array is in increasing order, we know it must be above the Middle
position (again, if it is in the array at all). If we do

Low : = Middle

then this is our situation:

1. Low is 5.

2. High is 10.

3. If the value is there, it must be strictly between position Low and position High.

We again go to the middle of the possible positions, setting Middle to (5 + 10) div 2 = 15
div 2 = 7, and examine A[7]. This time the number we are looking for is less than
A[Middle], so we know it must be to the left of the Middle position. We set

High : = Middle

and have

1. Low is 5.

2. High is 7.

3. If the value is there, it must be strictly between position Low and position High.

This time, we set Middle to (5 + 7) div 2 = 6, and A[6] is our desired value, so we quit with
the answer 6.

Suppose, now, that We had been searching for 40. The following table summarizes
what would happen:

6-3 SEARCHING AND SORTING 481

LOW HIGH MIDDLE NEW LOW NEW HIGH

First pass 0 10 5 0 5
Second pass 0 5 2 2 5
Third pass 2 5 3 3 5
Fourth pass 3 5 4 3 4

At the start of the fifth pass, we have

1. Low is 3.

2. High is 4.

3. If the value is there, it must be strictly between position Low and position High.

But this cannot be: nothing can be strictly between positions 3 and 4. This is how we detect
that an element is not present in the array: when High - Low = 1.

The function in Figure 6-12 reflects this discussion. It uses a Boolean variable Found
to indicate success, with High - Low ~ 1 indicating failure.

Notes

1. The condition "if the value is there, it must be strictly between position Low and
position High" is an example of a loop invariant. It is true when we start the loop,
and we make sure it remains true for each successive pass through the loop.

The concept of a loop invariant can be made very formal and used in proving that
programs are correct, a process called program verification. For our purposes in this
introductory text, we use loop invariants primarily in an informal way. We might not
even use the term "invariant," but rather think in terms of what is true on each succes
sive pass. Such reasoning can help us understand how the loop accomplishes its task,
and thus can help us write correct loops.

2. Another key aspect of the correctness of the program of Figure 6-12 is that the dis
tance between Low and High is becoming smaller on each successive pass. Thus, if
the value is not in the array, the loop eventually terminates when High - Low is 1.

3. Notice that ifthe array is empty (N = 0), then Low starts at 0, High at 1, and we leave
the loop immediately with Found stillfalse.

Efficiency. To begin to assess the efficiency of the binary search, imagine an array
of size 31. Each pass through the loop eliminates the middle number from consideration and
also half of the remaining numbers. For example, after the first pass, we have found the
number, or know that it is between positions 0 and 14, or know that it is between positions
16 and 32. In the worst possible case, this happens:

482

At start

After one pass

After two passes

After three passes

31 numbers left to examine

15 numbers left to examine

7 numbers left to examine

3 numbers left to examine

ONE DIMENSIONAL ARRAYS CHAP. 6

After four passes

After five passes

1 number left to examine

Have found the number or know it is not there

Thus, five passes is the most it could take.
Now, because 25 = 32, we have log232 = 5. Thus, the number of passes is approxi

mately the log base 2 of the array size. We say that the binary search has a worst-case
behavior O(log N), where the base 2 is understood. For an O(log N) algorithm, doubling the
array size adds a constant amount of time to the running time. Although the average number
of passes is more difficult to calculate, it is also O(log N).

Notice that for an array of size 1024, logN is 10, whereas N/2 is 512. Thus, the binary
search would be significantly faster than the linear search. Yet, binary search requires the
array to be sorted. If the array to be searched is not (already) sorted, then using sequential
search might well be faster than first sorting the array and then using binary search.

function BinarySearch(A: IntegerArray; Key, N: integer): integer;

{Written by: XXXXXXXXXX XX/XX/XX}
{Purpose: To locate a given value in an array. The answer is the}

subscript where found (n if not found) . Because a binary}

search is used, the array must be in increasing order.}

{Parameters: A - input, the array to search in}

Key - input, the value to search for}

N input, the portion of the array in use}

var
Found: boolean; {used to indicate success}

Low: integer; {lower end of subarray}
High: integer; {higher end of subarray}

Middle: integer; {middle of subarray}

begin {BinarySearch}

Found := false;
Low := O;

High := N + l;

{assume not there as default}

while {High - Low > 1) and (not Found) do

begin

Middle := (Low + High) div 2;

if A[Middle] = Key then
Found : = true

else
if A[Middle] > Key then

High := Middle
else

Low : = Middle
end; {while}

if Found then

BinarySearch .- Middle

else

BinarySearch .- 0
end; {BinarySearch}

Figure 6-12 Binary search of an array.

6-3 SEARCHING AND SORTING 483

Selection Sort

We now turn to sorting algorithms. Given an array A containing N values, we wish to
rearrange the array so that the values are in increasing order. Our first method is sometimes
called selection sort.

The Algorithm. The underlying idea is to select the number that should be in the
first position in the array and to put it there. We then select the number that should be in the
second position in the array and put it there. We continue in this fashion until the proper
numbers have been selected and placed into each position in the array. In order to under
stand the selection sort algorithm, we begin with some preliminary examples.

First, let us write a segment of Pascal to determine the subscript SmLoc of the small
est element in A. We have written algorithms of this type before. We use a for loop indexed
by the variable J. (The reason for the use of J rather than I becomes apparent later.)

SmLoc := 1;

for J := 2 to N do
begin

if A[J] < A[SmLoc] then

SmLoc := J
end; {for}

Next we write code to exchange A[l] and A[SmLoc]. For example, if SmLoc is 7, this
exchanges A[l] and A[7]. To accomplish this, we write a procedure capable of swapping any
two integers. We can then invoke the procedure to swap A[l] and A[SmLoc] by a step such
as

Swap(A[l], A[SmLoc])

To write the procedure, we need two var parameters, which we call X and Y. We use a
temporary location to keep the value of X, moving data as indicated by this diagram, in the
order indicated:

Temp

Temp := x;
X := Y;

Y := Temp

Figure 6-13 shows the Swap function.
To make use of the ideas just developed, we must generalize them slightly. Rather

than starting at position 1, let us start at position I. We, therefore, write code to determine
the subscript SmLoc of the smallest element in A[I] through A[N] and then exchange A[IJ
with A[SmLoc]. For example, if A is the following array shown and I is 4, then SmLoc is 7.

6 9 10 25 15 27 13 14 20 31

After swapping A[4] and A[7], we have A as follows:

484 ONE DIMENSIONAL ARRAYS CHAP. 6

procedure Swap(var X, Y: integer);

{Written by: XXXXXXXXXX XX/XX/XX}
{Purpose: To swap two integers}

{Parameters: X, Y - update, the integers to be swapped}

var
Temp: integer; {temporary variable for swapping}

begin {Swap}

Temp := X;

X := Y;
Y := Temp

end; {Swap}

procedure SelectionSort(var A: IntegerArray; N: integer);

{Written by: XXXXXXXXXX XX/XX/XX}

{Purpose: To sort an array, using the selection sort technique}

{Parameters: A - update, the array to sort}

N - input, the portion of the array in use}
{Procedures used: Swap, to swap two array elements}

var
I,J: integer;

SmLoc: integer;

Temp: integer;

begin {SelectionSort}

for I := 1 to N - 1 do
begin

SmLoc .- I;

{loop control}

{location of smallest}

{used for swapping}

for J .- I + 1 to N do
begin

if A[J] < A[SmLoc] then
SmLoc := J

end; {for J}

Swap(A[I], A[SmLoc])

end {for I}

end; {SelectionSort}

Figure 6-13 Selection sort.

6 9 10 13 15 27 25 14 20 31

Here is the code to accomplish this swapping, with the generalizations in italics:

SmLoc := I;

for J := I + 1 to N do
begin

if A[J] < A[SmLoc] then
SmLoc .- J

end; {for}

Swap(A[I], A[SmLoc])

6-3 SEARCHING AND SORTING 485

The selection sort method consists of applying this algorithm segment repeatedly. Starting
with an array A that is not sorted, we determine the subscript SmLoc of the smallest number
in A[l] through A[N], then exchange A[l] with A[SmLoc]. For example, if A is

21 17 3 16 12 10 19 9

then after this first swap, we have

3 17 21 16 12 10 19 9

We now determine the subscript SmLoc of the smallest number in A[2] through A[N],
and exchange A[2] with A[SmLoc], with the results shown:

3 9 21 16 12 10 19 17

As you can see, the first exchange located and placed into A[l] the smallest number in A.
The second placed the proper number (the smallest of the remaining numbers) into A[2]. A
third exchange determines the subscript SmLoc (it turns out to be subscript 6) of the small
est number in A[3] through A[N], exchanging A[3] with A[SmLoc]:

3 9 10 16 12 21 19 17

After each such exchange, one more number is in its correct location. After N - 1
exchanges, N - 1 numbers are correct and the Nth is, therefore, also correct. Our algorithm is

for I := 1 to N-1 do
begin

determine the subscript SmLoc of the smallest element in

A[IJ through A[N], then exchange A[I] with A[SmLoc]

end {for}

To obtain the final procedure, we replace the body of the loop with the code we wrote
earlier.

Efficiency. The selection sort is easy to analyze; we use the usual technique of
counting comparisons. Because each pass through the inner loop does one comparison,
counting comparisons is equivalent to counting the total passes through the inner loop. The
following table should help.

WHEN I IS J STARTS AT AND ENDS AT

2 N
2 3 N

3 4 N

N-3 N-2 N
N-2 N-1 N

N-1 N N

486

NO. OF PASSES

N-1

N-2

N-3

3

2

ONE DIMENSIONAL ARRAYS CHAP. 6

The total is 1+2 ... + (N - 1), which is equal to

N(N-1) _N2 N
2 - 2 2

This is roughly proportional to N2 (for large N, the N/2 is insignificant). We therefore
have an O(N2) algorithm. For such an algorithm, doubling the array size quadruples the
time. Thus, selection sort is satisfactory for small arrays, but not for larger ones.

Ouicksort

One of the fastest known sorting algorithms is quicksort. Many variations of the underlying
idea have been developed. We present one of the simpler forms.

The Algorithm. Quicksort is easiest to understand as a recursive procedure,
although it can be written nonrecursively. The basic idea is this:

1. Rearrange the given array so that:

(a) Its first element has been moved to its proper spot. We call this the pivot location
and use the variable name PivotSub for this subscript.

(b) Everything to the left of position PivotSub is less than or equal to A[PivotSub].

(c) Everything to the right of position PivotSub is greater than or equal to
A[PivotSub].

This is called the partition step.

2. Do a recursive call to sort the subarray to the left of position PivotSub.

3. Do a recursive call to sort the subarray to the right of position PivotSub.

Because when we call quicksort recursively, we are sorting subarrays of the original array,
we have three parameters:

A: The array to be sorted. This is modified, so it is a var parameter.

Low: The lowest subscript of the part to be sorted.

High: The highest subscript of the part to be sorted.

If Low < High, there are at least two elements in the subarray. If not, then there is nothing to
do; this (very small) subarray is already sorted. This is our base case, which we must have
in any recursive algorithm.

Note. The program that originally calls the QuickSort procedure does so as shown
here:

QuickSort(A, 1, N)

This says the subarray to be sorted is the entire array.

As an example, suppose the array is

6-3 SEARCHING AND SORTING 487

23 6 24 17 29 12 19 28 8

After the partition, if it is done correctly, we have PivotSub = 6, with this situation

A[l] to A[5] contains A[6] is 23

6, 17, 12, 8, 19

in some order

A[7] to A[9] contains

24,29,28

in some order

If the recursive calls work, they sort A[l] to A[5] into the order 6, 8, 12, 17, 19, and A[7] to
A[9] into the order 24, 28, 29. The entire array is then sorted.

Let us use a Partition procedure for the partition step. It requires the parameters A,
Low, and High and returns the value for PivotSub. Quicksort itself is fairly easy; it simply
reflects everything we have just said, using the procedures Partition and QuickSort:

if Low < High then

begin

Partition{A, Low, High, PivotSub);

QuickSort{A, Low, PivotSub - 1);

QuickSort{A, PivotSub + 1, High)

end {if}

To complete QuickSort, we must now write the Partition procedure. We present a version of
the general method that is frequently described in discussing quicksort. There are a number
of other possible ways to do this; some are explored in the exercises.

The method is easy to describe intuitively, although it is a bit more subtle than most
algorithms in this text. For illustration, consider this small array:

23 6 24 17 29 12 19 28 8

where Low is 1 and High is 9. The idea works equally well for a piece of an array.
The idea is this. We use two pointers (variables containing subscripts) that we call I

and J. We start I at the left end of the array and J at the right end. We then move them
together until they meet or cross, constantly maintaining this condition (the loop invariant):

Everything to the left of position I is less than or equal to the pivot, and
everything to the right of J is greater than or equal to the pivot.

When I and J meet or cross (that is, I 2:: J), we can swap the pivot with the J1h element;
then, everything to the right of position J is still greater than or equal to the pivot, and
everything to the left of J is also to the left of I and is less than or equal to the pivot. This is
the desired result. To see how this works, we step through the algorithm for the last array
given.

First, starting at the left (not including the pivot number 23), locate a number that is
bigger than or equal to the pivot number. Then, starting at the right, locate a number less
than or equal to the pivot number. The numbers we locate are in boldface, with the variables
I and J containing their subscripts:

23 6 24 17 29 12 19 28 8
i i
I J

488 ONE DIMENSIONAL ARRAYS CHAP. 6

In order to maintain the loop invariant as I and J continue moving, we must swap the Ith and
Jth elements:

23 6 8 17 29 12 19 28 24
i i
I J

Continuing, we move I to the right again, then J to the left again, obtaining

23 6 8 17 29 12 19 28 24

After the swap, we have

i i
I J

23 6 8 17 19 12 29 28 24
i i
I J

Once more we move 1, then J, obtaining

23 6 8 17 19 12 29 28 24
i i
J I

Because I and J have crossed, we do not swap. To finish the partition, we need only place
the pivot in its proper position, by swapping it with A[J], and observe that J is the
PivotLocation.

Note. You may wonder why J, and not I, is the PivotLocation. To answer this,
recall our invariant: Everything to the left of position I is less than or equal to the pivot, and
everything to the right of J is greater than or equal to the pivot.

If I and J are equal, then either one would do. However, if they have crossed, then I is
to the right of J. The invariant would say that A[I] is greater than or equal to the pivot. If we
swap the pivot with A[I], we moving a large value into the left subarray, a result we do not
want.

The final result of the partition process is
s

12 6 ~ 17 19 23 29 28 '&. z '{
Items ~ pivot i Items ~ pivot

pivot

The complete Partition and QuickSort procedures are given in Figure 6-14. The Swap proce
dure referred to is that of Figure 6-13.

Note. Because the recursive calls to QuickSort sort a piece of the array, there are
three parameters: the array and the lower and upper bounds of the piece to be sorted.

6-3 SEARCHING AND SORTING 489

To sort the entire array, the main program would include a call such as

QuickSort(GradeArray, l, NumberOfStudents)

The argument "l" must be supplied as the lower bound of the array.

Efficiency. In the best case, each Partition splits the array exactly in half. To find
the first pivot takes about N comparisons, as we compare the values at I and J, swapping as
necessary. Making the partition itself requires no comparisons (we already know their
boundaries). Looking for a pivot in one of the two partitions requires about N/2 comparisons
(as each partition is half the size of the original array); there are two partitions, so the total

procedure Partition (var A: IntegerArray; Low, High: integer;
var PivotLocation: integer);

{Written by: XXXXXXXXXX XX/XX/XX}

{Purpose: To partition an array into three parts:}

1. values less or equal to the pivotal element}

2. the pivotal element}

3. values greater than or equal to the pivotal element}
{Parameters: A - update, the array to partition}

Low, High - input, the portion of the array to}

partition}

PivotLocation - output, the location for the pivot}

element}

{Procedures used: Swap, to swap two elements of the array}

var

I: integer;

J: integer;

Pivot: integer;

begin {Partition}

I := Low;

J := High + l;
Pivot := A[Low);

repeat

{used to locate large values}

{used to locate small values}

{the pivotal element}

{*** Move I to right looking for a value >= the pivot}

repeat

I := I + 1

until (I High) or (A[I) >=Pivot);

{*** Move J to left looking for a value <= the pivot}

repeat

J := J - 1

until A[J) <= Pivot;

Figure 6-14 Quicksort (continues next page)

490 ONE DIMENSIONAL ARRAYS CHAP. 6

number of comparisons is again about N. When each partition is itself partitioned again
(creating 4 partitions), each one contains about N/4 elements; again, the total number of
comparisons for each partition is about N.

If an array of N elements is partitioned in half repeatedly, (first two partitions, then
four, then eight, and so on), then the number of partitions made is about log N. For each set
of partitions, we have N comparisons; we have log N partition sets to examine. So the best
case time for quicksort is O(N log N).

In the worst case, instead of dividing the current partition in half each time, quicksort
divides it into one partition of size 1 and another of size N-1. It turns out that this kind of
partitioning slows quicksort way down; in this worst case, quicksort is O(N\ This worst
case occurs when the array is already in order.

{*** Swap if the values are out of order}

if I < J then

Swap(A[I], A[J])

until I >= J;

{*** Put the pivotal element in the proper place, and return the value}

of its subscript to the calling module}

Swap(A[Low], A[J]);

PivotLocation := J

end; {Partition}

procedure QuickSort (var A: IntegerArray; Low, High: integer);

{Written by: XXXXXXXXXX XX/XX/XX}
{Purpose: To sort an array , using quicksort technique}

{Parameters: A - update, the array to sort}
Low, High - the portion of the array to sort}

{Procedures used: Partition, to partition the array into two pieces}

QuickSort(recursively), to sort the two pieces}

var

PivotSub: integer; {location of pivot element}

begin {QuickSort}

if Low < High then
begin

Partition(A, Low, High, PivotSub);
QuickSort(A, Low, PivotSub - 1);

QuickSort(A, PivotSub + 1, High)
end {if}

end; {QuickSort}

Figure 6-14 (continued)

6-3 SEARCHING AND SORTING 491

The calculations to compute the average case are fairly extensive; we just report that
the result is O(N log N). For an algorithm that is O(N log N), doubling the array size
multiplies the time by a factor just barely more than 2. This factor gets smaller as N gets
larger. This is much better than an O(N2) algorithm. Thus, for large arrays, we would defi
nitely choose quicksort rather than selection sort.

It is important to note that the efficiency of quicksort depends partially on the effi
ciency of the partition process. It is possible to replace the Partition procedure with another
that accomplishes the same goal but is either faster or slower than the one we described.
This effects quicksort's speed. However, as long as the time to make a partition is O(N),
Quicksort is O(N log N).

Some of the work that has been done in speeding up quicksort has concentrated on
making the partition faster. Other work has concentrated on trying to make sure the partition
splits the array as nearly in half as possible. Thus, if you examine a half dozen quicksort
programs in papers or texts, you find that the major differences occur in how the partition
ing works.

Comparing Efficiency Ratings

To help you get a better feel for the different efficiency ratings discussed in the section, we
present a table showing the values of log N, N log N, and N2 for various values of N. (The
column labeled "Ratio" is discussed in what follows.)

N logN NlogN N2 RATIO

16 4 64 256 4.00

32 5 160 1,024 6.40

64 6 384 4,096 10.67
128 7 896 16,384 18.29

1,024 10 10,240 1,048,576 102.40
2,048 11 22,528 4,194,304 186.18
4,096 12 49,152 16,777,216 341.33
8,192 13 106,496 67,108,864 630.15

Of course, when we say an algorithm is O(expression), that means that it is approxi
mately proportional to the expression. For example, quicksort might take approximately
0.01 N log N and selection sort approximately 0.001 N2• If so, then the ratio of selection sort
time to quicksort time would be

2 2
O.OOlN = O.l N

O.OlN log N N log N

The Ratio column is the ratio N2/ (N log N) (which is N/log N). As you can see, with these
hypothetical times, the two would be approximately equal for N = 64 (0.1 x 10.67). For N =
2048, quicksort would be almost 20 times faster.

Some of the exercises give further insight into the significance of these "efficiency
ratings."

492 ONE DIMENSIONAL ARRAYS CHAP. 6

DPT and Testing

We already know about some of the pitfalls to watch for from our previous study of arrays
and of the linear search. Specifically, we must take care that our array references do not
include subscripts beyond the legal array limits. If we have included range-checking in the
program, THINK tells us the subscripts are out of bounds; if we do not, our program may
run very strangely. It may actually appear to work for several runs, then begin not to work.
Remember that searching programs are especially prone to this type of error.

Avoid compound conditions that could possibly lead to errors, such as

while (I> OJ and (A[I) >Key) do ...

Remember the fairly widely used solution to this problem: a Boolean variable such as
Found to indicate success.

The sorting and searching algorithms presented in this section have their own pitfalls,
which seem to occur with regularity. For example, in the binary search as we have written it,
our loop invariant states that the item to be found is strictly between positions Low and
High. To make this true at the start, we must set Low to 0 (not 1) and High to N + I (not N).
(See the exercises for a version of the binary search with a slightly different loop invariant)

Another pitfall involves the partition algorithm for QuickSort. Notice that in the loop
involving I, we must include the test for I = High. If we do not, the condition A[I] >= Pivot
might never become true if the first element is the largest in the array. The variable I would
go beyond the end of the array, leading to thoroughly unpredictable results (unless we have
enabled range-checking).

Searching and sorting, then, seem to be relatively dangerous, error-prone activities, yet
they are ones we cannot avoid when writing programs. What can be done to reduce our
chances of making mistakes? One possibility is to make more careful use of assertions about
the loops (loop invariants). A second is to make extensive use of hand-tracing with small
sample arrays. Yet another is to do very careful testing.

Here is a number of tests we feel are important for any searching or sorting algorithm.
First, for searching:

1. An important boundary test relates to the actual size (N) of the array. Try arrays of
size 0, 1, and Maxlndex, where Maxlndex is the declared (potential) size of the array.

2. Two other important boundaries are closely related. We would want to try searching
for the first and last items in the array. However, this has two possible interpretations:
by the ''first," we could be referring to A[l] or we could be referring to the smallest
value. Both interpretations should be tested. In addition to the boundaries, we should
search for items we know to be in the array, but which are not at the boundary
positions.

3. We should exercise the possibility that the item sought is not present. Of special
interest are values less than the smallest or greater than the largest.

4. Finally, we suggest a totally exhaustive test for a relatively small array. For example,
we might set up an array such as this:

10 20 30 40 50

6-3 SEARCHING AND SORTING 493

REVIEW

and search for 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, and 55 (in some random order).
Notice that we have searched for each item that is there and between each pair of
items, as well as below the first and above the last.

If the search does not require the array to be ordered, we might try the same test with
a rearranged array, perhaps 30, 40, 10, 50, and 20.

The tests we suggest for sorting are similar:

1. Test arrays of size 0, 1, and Maxlndex.

2. Test an array that is already in order and one that is in exactly reversed order. (Also, of
course, test some in random order.)

3. Test arrays with and without duplicates; perhaps include an array for which the entire
array consists of the same value.

4. For some small arrays, try every possible ordering. In a graduate class, a student was
assigned to present a variation on quicksort that had been published in a leading
computer science journal. She was to explain the method to the class and give some
analysis of the efficiency. Within a few days, she reported that the algorithm did not
work. What she had tried (and the author of the article apparently had not) was testing
the method on some small arrays. In particular, she tried all possible orders of the
three numbers 1, 2, and 3. For more than one of these, the algorithm failed.

Terms and Concepts

big oh
binary search
efficiency
linear search
log base 2
loop invariant
0 notation
order

Searching

linear Search

parition step
pivot location
program verification
quicksort
searching
selection sort
sorting

Start at the beginning, keep going until found or reach the end
Order is O(N)

Binary Search

Look in the middle; keep cutting the part of the array to search in half until found or
there is no part left to search

Array must be in order
Order is O(log N)

494 ONE DIMENSIONAL ARRAYS CHAP. 6

Selection Sort

Repeatedly find the smallest of those left, and swap it with the first of those left
Order is O(N2)

Quicksort

Partition the array based on a pivot element, then sort the subarrays to the left and
right of the pivot element recursively

Order is O(N log N)

Efficiency.

O(log N):

O(N):

The approximate results on time from doubling the size of the array:

adds a constant amount of time

doubles the time

O(N log N): multiplies the time by a factor slightly above 2; the larger the array,
the smaller the factor

quadruples the time

DPT

1. Hand-trace the algorithms for some small arrays.
2. Avoid the known bugs.
3. Avoid conditions such as

(I > 0) or (A[I] ...)

Testing

Searching

1. Test arrays of size 0, 1, and Maxlndex.

2. Search for the first and the last items, and items in between.

3. Search for the smallest and the largest items, and items in between.

4. For some small arrays, try searching for each item.

5. Search for numbers less than the lowest in the array, greater than the highest, and in
between but not there.

Sorting

1. Test arrays of size 0, 1, and Maxlndex.

2. Test arrays already in order and in reverse order.

3. For some small arrays, try every possible ordering.

REVIEW 495

EXERCISES

1. Under the assumption that the array is in increasing order, the linear search algorithm could be
modified to give up as soon as it encounters a value larger than the one sought. Comment on
this as compared to the binary search. (Which is faster for small arrays? Large ones?)

2. If a searching method is O(N) and it takes an average of 10 ms to locate a value in an array of
a given size, how long would you expect it to take if the array size is doubled? Note: ms stands
for milliseconds; 1 ms = l/10001h of a second.

3. Suppose that you are using an order O(N2) sorting algorithm, and it takes about 2 seconds to
sort an array of size 60. About how long would you expect it to take for an array of size 120?
250? 500? 1000? 2000? 4000?

4. Suppose that you are using an order O(N log N) sorting algorithm, and it takes about 5 seconds
to sort an array of size 60. About how long would you expect it to take for an array of size 120?
250? 500? 1000? 2000? 4000? Note: The time is scaled by a factor of approximately 2 + 2/log
N.

5. Suppose that you are using an order O(N) algorithm, and it takes about 3 ms to sort an array of
size 60. About how long would you expect it to take for an array of size 120? 250? 500? 1000?
2000? 4000? (See the note in Exercise 2.)

6. Suppose that you are using an order O(log N) algorithm, and it takes about IO ms to sort an
array of size 60. Assuming that each doubling adds 25 ms to the time, about how long would
you expect it to take for an array of size 120? 250? 500? 1000? 2000? 4000?

7. Hand-trace the partition algorithm given in this section for these arrays:
(a) 10, 12, 9, 14, 7, 21
(b) 2, 22, 7, 24, 100, 5, 13, 4, 1, 23
(c) 1, 2, 3, 4, 5
(d) 5, 4, 3, 2, 1
(e) 10, IO, IO, IO

8. For the following array, trace the binary search for each element of the array. For each, find the
number of passes through the loop it takes to find the value.

101 122 123 203 417 500 623

9. An alternate version of the binary search uses the loop invariant "the value, if it is there, lies at
or between the positions Low and High". This method initializes Low to I and High to N. Write
the algorithm. Caution: This approach contains a notorious pitfall into which many professional
programmers have stumbled. Hand-trace your solution with some small arrays. Make sure you
avoid an infinite loop by ensuring that the subarray remaining is smaller for each pass.

10. Write a recursive form of the binary search. Note: By rights, the array being searched should be
a value parameter. However, in a recursive routine, passing an array as a value parameter uses
considerable time and space because each level must maintain its own copy of the array. Make
the array a var parameter.

11. What is the maximum number of passes that it could take to locate a value using the binary
search of this section in an array of size 63? Of size 127? Of size 80?

12. (a) Generate a random array of size 2000, and sort it using selection sort. How long does it
take? Repeat for quicksort.

(b) Modify the two sorts of part (a) to count the number of key comparisons that occur. Run
each to compare the two in terms of this count.

13. A colleague once made a bet with an unsuspecting friend. He wagered that he could locate a
person in the white pages of the phone book in 20 guesses or less. For each guess, the friend

496 ONE DIMENSIONAL ARRAYS CHAP. 6

must merely indicate whether the actual name came before or after the guess in the phone book.
The local phone book contains perhaps 20,000 entries. Did the colleague win the bet? If so, can
you explain how? If not, why not?

14. (a) An array contains N student records, each with a last name, first name, the final average,
and space for a letter grade. To aid in figuring grades, the professor desires a listing of the
students in order from highest to lowest average. Write a procedure to sort the array and
print the listing.

(b) For the final grade list, the names must be in alphabetical order. Write a procedure to print
a listing of name and letter grade in alphabetical order by last name.

15. An array contains 50 records, each with a state name and 12 monthly rainfall figures. Write a
procedure to print a listing of the states, in order from lowest to highest total yearly rainfall.

16. See Exercise 15. A naive approach might involve calculating the total rainfall for some of the
records over and over again. Suggest a data structure that would allow you to calculate the total
for each state only once. Note: You cannot, as the person writing the procedure, change the
description of the parameters. However, you can define local variables. You may wish to write
your procedure to set up the local variables, then call the procedure that actually accomplishes
the sorting.

17. (a) Write a procedure that has as parameters an array, its current size (N), and a value to be
inserted into the array. The array is in increasing order, and Maxindex is the declared size
of the array (N < Maxlndex). Insert the value into the array so that the array is still in
order. Hint: If the value is bigger than the last, put it at the end. If not, move the last one
over 1 and compare the value to the next to last. Continue until you find the proper spot.

(b) Your procedure in part (a) should be O(N). Present a reasonable argument that this is so.
(c) A student proposed accomplishing part (a) by just placing the new value at the end, then

calling quicksort to reorder the array. Comment on the efficiency of this approach.

18. (a) By using the procedure of Exercise 17(a) repeatedly, write a sorting algorithm. Insert A[2]
into the (sorted) subarray A[l], then insert A[3] into the (now sorted) subarray consisting of
A[l] and A[2], and so on. This is known as insertion sort.

(b) By counting the number of array comparisons for the worst possible case, determine the
efficiency of insertion sort.

19. One version of bubble sort has this form:

for I:=l to N-1 do

begin

for J := 1 to N-1 do

begin

if A[J] > A[J+ll then

Swap(A[J], A[J+l])
end {for J}

end {for I}

Analyze the efficiency of this algorithm by counting the number of array comparisons.

20. An easy way to accomplish the partition process for an array is to simply copy the array to
another array. Then, starting with subscript 2 of the other array, return the values to the original
array. If they are less than the pivot, they go to the front of the array; if not, to the end. Use two
pointers, one starting at Low and increasing and the other starting at High and decreasing. Write
the code for this approach. Is it easier to understand? Is it faster? On the whole, is it better?

EXERCISES 497

21. See Exercise 20. Another approach to the partition process can be based on a possible solution
to Exercise 10 in Section 6-1. In that exercise, you were asked to arrange an array containing
only O's and l's in such a way that all the O's came before all the 1 's. A possible solution is the
following:

Lastzero := O;
for I := 1 to N do

begin
if A[I] = O then

begin
Swap(A[Lastzero+l], A[I]);
Lastzero := LastZero + 1

end {if}

end {for}

The variable LastZero keeps track of where you have placed a O; when another 0 is found, it is
swapped into the next available spot and LastZero is incremented. (This approach appeared in
the "Programming Pearls" column of the Communications of the ACM, April 1984, Vol. 27,
No. 4. The column's author, Jon L. Bentley, says he learned the method from Nico Lomuto of
Alsys, Inc.)

(a) Trace this code for some sample arrays to make sure you understand it.
(b) This code can be thought of as partitioning the array into two pieces: the O's and the l's.

Using the basic idea of the code, write code for the following. You are given an array of
size N. Partition the subarray from position 2 to N so that everything that is less than A[I]
comes first and then comes everything that is not less than A[I].

(c) Generalize the solution to part (b) to obtain a Partition procedure. Note: After you obtain
the result of part (b), swap the first element with the last one that is smaller than it.

(d) Trace your code from part (c) for the arrays of Exercise 5 as well as for the one traced in
this section for the Partition procedure.

(e) Explain in your own words how this method works. Is it easier to understand than the one
in Figure 6-14?

(f) Test your code by writing it as a procedure and including it in the QuickSort of Figure
6-14.

22. Quicksort performs best if the pivot element is always in the middle of the subarray being
sorted. If an array is already partially sorted, this does not happen. This exercise describes two
approaches to solving this problem.
(a) Modify the partition procedure to swap A[Low] with A[RandomLoc] prior to beginning the

partitioning, where RandomLoc is a randomly generated subscript in the range Low .. High.
(b) Modify the partition procedure so that, prior to beginning the search for the pivot position,

it swaps A[Low) with the median of A[Low], A[High], and A[(Low +High) div 2). The
median of three numbers is the middle one. For example, the median of 5, 16, and 10 is
10; the median of20, 12, and 20 is 20; and the median of7, 7, and 7 is 7.

23. Write a procedure to merge two sorted arrays. Input consists of arrays A and B and the size of
each. Output consists of array C and its size. Assume that the sum of the sizes of A and B is less
than or equal to Maxlndex, the declared size of the three arrays.

498

The two input arrays are in increasing order, as should the output array. For example, if we
merge the arrays A and B illustrated here, the answer is the array C, as shown:

ONE DIMENSIONAL ARRAYS CHAP. 6

A= 5 6 8 12 13

B=4679
c = 4 5 6 6 7 8 9 12 13

Hint: Maintain pointers for each array. Use a decision structure based on whether the A element
or the B element is larger.

24. (a) Modify the procedure of Exercise 23 as follows: Input consists of an array A and three
subscripts Startl, Start2, and End2. In addition, a "scratch" array is passed for the proce
dure to use. The arrays to be merged are both subarrays of A, namely, A[Startl] through
A[Start2 -1] and A[Start2] through A[End2]. Merge these into the scratch array, then copy
the result back to A[Startl] through A[End2].

(b) Using the procedure of part (a), write a procedure to sort an array by this method: Use a
recursive call to sort the left half of the array, use a recursive call to sort the right half of
the array, then use the merge procedure to merge the two halves into a single sorted array.
This is called a recursive merge sort. Provided the procedure of part (a) is written properly,
it is of order O(NlogN).

(c) Repeat Exercise 12 for the recursive merge sort of part (b).

6-4 CASE STUDIES

In this section, we develop two case studies that indicate the broad range of possible appli
cations of arrays. The first is a business-related application in which we use arrays to store
information on prices, customer discounts, and so on. In the second, we write a package of
modules that could be used in programs that need to manipulate polynomials.

Case Study No. 9

Statement of Problem. A small, locally owned store wants to computerize its point
of-sale operations. It sees a number of benefits to be derived from this automation, including
automatic updating of inventory records and granting of discounts to preferred customers.

Preliminary Analysis. A system such as this involves quite a few activities. We
implement only a few of them, and even then in only a simplified way. Some enhancements
are suggested in the exercises.

To accomplish some of the desired point-of-sale and inventory functions, we use a file
containing information about the items the store stocks. Likewise, a file contains a list of
preferred customers. The following table represents sample information from the two files:

ITEM CUSTOMER
NUMBER INVENTORY PRICE NUMBER DISCOUNT

101 249 3.89 4398 2%
247 1300 24.99 3898 112%
93 500 0.78 6756 1%
16 55 100.04 4528 1/2%
89 453 6.34

6-4 CASE STUDIES 499

For simplicity, let us assume that the customer file contains no more than 75 records,
and the item number file no more than 500. As we did for the program of Figure 6-10, we
use a control file to record the current status of the data. This file contains one record with
two fields: current number of items and current number of preferred customers.

There are techniques, beyond the scope of our knowledge at this point, that would
allow us to work directly with the data in the files. Instead, we read the file data into arrays,
work with the arrays, and then rewrite the arrays to the files.

We use a menu-driven program similar to that in Case Study No. 8 (Section 5-4). In
fact, rather than begin from scratch, we build our menu system by modifying the menu
portion of the program of Figure 5-20. We choose to implement these four actions for the
case study:

P-purchase:

C-new customer:

S-save:

Q-quit:

Obtain an item number and quantities, adjust the inventory,
and calculate the bill.

Add a new customer to the preferred list.

Save the data to the files.

Warn the user if there is a change since the data were last
saved.

Overall Data Requirements. This analysis indicates the need for these variables:

1. A control record with two fields: number of items and number of customers

2. An array of item records, each with three fields: item number, current inventory, and
price

3. An array of customer records, each with two fields: customer number and base dis-
count

4. A Boolean variable indicating whether the arrays have been changed

5. A set of valid options

6. The user option

7. File designators for the three files

In addition, the various modules were require local variables to be determined as we
write the modules. In this case study, we choose to use the data listed in items 1 to 4 as
global data throughout the program. The alternative would involve passing the arrays and
control information as parameters to almost every subprogram.

Main Program (and Menu-Handling Procedures). The main program initializes
the data just described, and then processes user requests in a loop. As mentioned, it is
adapted from Figure 5-20 of Case Study No. 8. By using the code from the previous work as
a starting point, we significantly reduced the time required to get started.

Figure 6-15 contains a first attempt at the program. Most of the modules are stubs. We
have added an option D, which "dumps" the data. This is helpful for debugging purposes,
but is removed from the version of the program delivered to the user.

500 ONE DIMENSIONAL ARRAYS CHAP. 6

program PointOfSale;

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To handle point-of-sale procedures}
{Procedures used: Instructions - to print instructions}

Menu - to display the menu and get the user option}

Handle - to perform the user option}

const
MaxCust 75;
Maxitem 500;

Bel = 7;

{Customer array size}
{Item array size}

{ASCII Bel character}

type
Letters = set of char;

Sentence:string[80];

ControlRec = record
Nitem: integer;

NCust: integer
end;

ItemRec = record
ItemNumber: integer;

Inventory: integer;

Price: real

end;
CustomerRec = record

Number: integer;

Discount: real
end;

{# of items presently}

{# of customers presently}

ItemArray = array[l .. Maxitem] of ItemRec;

CustomerArray = array[l .. MaxCust] of CustomerRec;

CFile = file of ControlRec;

CustFile = file of CustomerRec;

ItFile = file of ItemRec;

var
Item: ItemArray;

Customer: CustomerArray;

Modified: boolean;
ControlRecord: ControlRec;
ControlFile: CFile;
CustomerFile: CustFile;

ItemFile: ItFile;

Option: char;

ValidOptions: Letters;

Answer: char;

{Array of item information}
{Array of customer information}

{Has data been changed?}
{The control record}
{The control file}

{The list of customers}

{The list of items}

{User choice of menu option}

{Valid menu options}

{User answer to yes/no}

Figure 6-15 Case Study No. 9: first cut (continues next page).

6-4 CASE STUDIES 501

{procedures Pause, Instructions, and Menu are inserted here. They are}

{minor modifications of the procedures of Figure 5-20}

procedure Purchase;

begin {Purchase - stub version}

Writeln('Purchase procedure invoked'};

Pause

end; {Purchase}

procedure NewCustomer;

begin {Newcustomer - stub version}

Writeln('NewCustomer procedure invoked');

Pause

end; {NewCustomer}

procedure SaveData;

begin {SaveData - stub version}

Writeln('SaveData procedure invoked');

Pause

end; {SaveData}

procedure DumpData;

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To dump the data on the screen to aid in testing and}

debugging}

{Globals used: The following are used for the dump:}

{ ControlRecord.Nitem}

ControlRecord.NCust}

Item}

Customer}

Modified}

{Procedures used: Pause - to wait for a user keystroke}

var
I: integer; {Loop control}

begin {DumpData}

if Modified then

Writeln('Data has been modified since save')

else
Writeln('Data has NOT been modified since save'};

Pause;

Page;

Writeln('There are ' ControlRecord.Nitem

Pause;

Page;

1, ' items'};

Figure 6-15 (continues next page)

502 ONE DIMENSIONAL ARRAYS CHAP. 6

for I := 1 to ControlRecord.Nitem do

with Item[I) do
begin

Writeln('Item number: ', ItemNumber);
Writeln('Inventory: ', Inventory : l);
Writeln ('Price:
Pause;
Page

end; {with}

', Price: 1 : 2);

Writeln('There are ' ControlRecord.NCust
Pause;
Page;

for I := 1 to ControlRecord.NCust do

with Customer[I] do
begin

1, ' customers') ;

Writeln('Customer number: ' Number : 1);
Writeln('Discount:
Pause;
Page

end; {with}

Writeln('End of Dump');
Pause

end; {DumpData}

procedure Quit;

Discount : 1 : 2);

begin {Quit - stub version}
Writeln('Quit procedure invoked');
Pause

end; {Quit}

{procedure Handle is inserted here. It is a minor modification of the}
{procedure of Figure 5-20}

procedure Initialize;
begin {Initialize - stub version}

ControlRecord.Nitem .- 3;
ControlRecord.NCust := 2;

Item[l].ItemNumber := 101;
Item[2] .Inventory := 10;
Item[3] .Price := 1.56;
Item[2] .ItemNumber := 202;
Item[2].Inventory := 20;
Item[2] .Price := 2.56;
Item[3].ItemNumber := 303;
Item(3] .Inventory := 30;
Item[3].Price := 3.56;

Figure 6-15 (continues next page)

6-4 CASE STUDIES 503

Customer[l).Number := l;
Customer[l) .Discount := 0.01;
Customer[2) .Number := 2;
Customer[2) .Discount := 0.02;
Customer[3) .Number := 3;
Customer[3J .Discount .- 0.03;

Modified := false
end; {Initialize}

begin {PointOfSale}
ValidOptions := ['P', 'p', 'C', 'c', 'S', 's', 'Q', 'q', 'D', 'd'];

{*** Print instructions}

Instructions;

{*** Load data from files}

Initialize;

{*** Main loop}

repeat

{*** Display Menu and get user option}

Menu(ValidOptions, Option);
ClearScreen;

{*** Handle user choice}

Handle(Option)
until Option in ['Q', 'q' J

{*** Stop program}

end.

Figure 6-15 (continued)

Purchase Procedure and Its Subprograms. This procedure consists of the follow-
ing steps:

1. Clear the screen, input an item number, and make sure it is valid.

2. Input the quantity desired, between 0 and the available inventory.

3. Adjust the inventory (and indicate that the arrays have been modified).

4. Calculate the cost before discount.

S. Input the customer number and determine the discount.

504 ONE DIMENSIONAL ARRAYS CHAP. 6

6. Detennine the net cost.

7. Display lines of infonnation on the purchase.

We use subprograms for steps 1, 2, and 5.
We can now identify required variables and write the body of the Purchase subpro

gram.

Global variables: Item Array of Used to access the price for the item
item records

Modified Boolean Have data been modified?

Local variables: ltemSub Integer Subscript of item number entered

Quantity Integer Number purchased

Gross Real Cost before discount

Discount Real Discount percentage

Net Real Cost after discount

We do not directly deal with the item number or customer number. Rather, the procedures
that read them report the item number subscript and the discount percentage.

In the Pascal code that follows, we have numbered the lines based on the general
description of the steps given before.

1. GetValiditem(ItemSub);

2. GetAmount(Quantity,ItemSub);

3. with Item[ItemSub] do

Inventory := Inventory - Quantity;

3. Modified : = true;

4. Gross :=Quantity* Item[ItemSub] .Price;

5. GetCustomer(Discount);

6. Net:= Gross - Discount * Gross;

7. Writeln;

7. Writeln(Gross : 10 : 2, '<---Gross');

7.writeln(Discount *Gross: 10: 2,'<-~-Discount');

7. Writeln(Net : 10 : 2, '<---Net');

7. Pause

1. GetValidltem Procedure. The general logic of the procedure consists of repeating
these steps until a valid number is entered:

(a) Prompt and read the item number.

(b) Use a lookup function to calculate the subscript for the item number.

(c) Handle three possibilities:

6-4 CASE STUDIES 505

Not found
Found, but no inventory
Found, valid

Based on this statement of the algorithm, we can identify variables and write the required
code. Notice the use of the Bel character to "beep" for an error.

Global variables: Item Array of item
records

Parameters: ItemSubsc Integer

Local variables: ItemNum Integer

repeat

Writeln;

Valid Boolean

Write('Enter item#:');

Readln(ItemNum};

ItemSubsc := ItemLookup(ItemNum);

if ItemSubsc = 0 then

begin

Valid := false;

Used to check inventory

Output parameter (therefore, var)

User input

Is input valid?

Writeln(Chr(Bel}, 'Item does not exist. Please try again')

end
else if Item[ItemSubsc] .Inventory <= 0 then

begin

Valid := false;

Writeln(Chr(Bel), 'Out of stock. Please try again')

end

else

Valid .- true

until Valid

Notes

1. At first, we wrote a while loop for this, but we changed to a repeat loop. Try writing a
while loop yourself. Caution: Do not write a condition such as (ltemSubsc <> 0) and
(condition using ItemSubsc). Why not?

2. We could not exchange the first two branches of the if-then-else-if decision structure.
Why not?

3. ltemLookUp Function. This is a standard array lookup function. See Figure 6-16.

4. GetAmount Procedure. See Figure 6-16. Observe that this procedure needs the param
eter ItemSub in order to check that the quantity entered does not exceed the inventory
for that item.

5. GetCustomer Procedure (and CustomerLookup Function). These are similar to the
subprograms for the item number. Notice, however, that if the customer number is not
found in the customer array, this is not an error. It simply means that the discount is
zero. See Figure 6-16.

506 ONE DIMENSIONAL ARRAYS CHAP. 6

2. NewCustomer Procedure. We perform the following steps:

(a) Obtain a customer number and a discount.

(b) Handle these possibilities:

The customer number is already in the array.

There is no more room in the array.

Everything is OK; add to the array.

In step (2a), we use the CustomerLookup function described before. In step (2c), we should
signal that the data have changed by setting the global Modified flag to true.

Based on this discussion, we can describe the variables and write the code.

Global variables: Customer Array of
customer
records

Control Record.NCust Integer

Modified Boolean

Global constants: MaxCust

Local variables: CustomerNo

Disc

Integer

Real

Write('Enter customer number, discount:');

Read(CustomerNo, Disc);

if CustomerLookup(CustomerNo) <> 0 then

begin

Record added to end

Number of customer, modified

Has data been modified?
(Set to true)

Maximum number of customers

New customer number

New discount

Writeln(Chr(Bel), 'Customer already in file');

Pause

end

else if ControlRecord.NCust = MaxCust then

begin

Writeln(Chr(Bel), 'Customer list is full.

'Must modify program.');

Pause

end
else

begin

with ControlRecord do

begin

NCust := NCust + l;

Customer[NCust] .Number := CustomerNo;

Customer[NCust].Discount .- Disc

end; {with}

Modified := true;

Writeln('Added to list');

Pause
end {if}

Figure 6-16 Case Study No. 9: refined (continues next page).

6-4 CASE STUDIES 507

program PointOfSale;

{*** The main program declarations and the Pause, Instructions, and}

Menu procedures are unchanged}

function ItemLookup (ItemNum: integer): integer;

{Written by: XXXXXXXXX XX/XX/XX}
{Purpose: To look for an item number in the item array}

{Parameters: ItemNum - input, the number to look for}

{Globals used: Item - to check the item number}

{ ControlRecord.Nitem - to know array size}

var
I: integer;

Found: boolean;

{Array subscript}

{Loop control}

begin {ItemLookup}

I := 1;

Found := false;

while (not Found) and (I <= ControlRecord.Nitem) do
begin

if ItemNum = Item[I] .ItemNumber then
Found : = true

else

I := I + 1
end; {while}

if Found then

ItemLookup . - I
else

ItemLookup . - 0

end; {ItemLookup}

procedure GetValiditem (var ItemSubsc: integer);

{Written by: XXXXXXXXXX XX/XX/XX}

{Parameters: ItemSubsc - output, the subscript of the item entered}

{Globals used: Item - to check for out of stock}
{Functions used: ItemLookup - to look up item number in array}

var

ItemNum: integer;
Valid: boolean;

{Item number, user input}
{Is input valid?}

begin {GetValiditem}

{*** The previously developed body of the procedure is placed here}

end; {GetValiditem}

Figure 6-16 (continues next page)

508 ONE DIMENSIONAL ARRAYS CHAP. 6

procedure GetArnount (var Quantity: integer; ItemSub: integer);

{Written by: XXXXXXXXX XX/XX/XX}
{Purpose: To obtain a valid quantity for an item}
{Parameters: Quantity - output, the quantity desired}

ItemSub - input, the item's subscript}
{Globals used: Item - to access the inventory}

var

Limit: integer; {Inventory available}

begin {GetArnount}
Limit := Item[ItemSub] .Inventory;
Write('Quantity desired (maximum', Limit : 1, '): ');
Readln(Quantity);
while (Quantity <= 0) or (Quantity > Limit) do

begin

Write(Chr(Bel), 'Quantity desired (maximum' Limit
Readln(Quantity)

end {while}
end; {GetArnount}

function CustomerLookup (CustNum: integer): integer;

{Written by: xxxxxxxxx XX/XX/XX}

1, •) : ');

{Purpose: To look for a customer number in the customer array}
{Parameters: CustNum - input, the number to look for}
{Globals used: Customer - to check the number}
{ ControlRecord.NCust - to know array size}

var

I: integer;
Found: boolean;

begin {CustomerLookup}
I := l;

Found := false;

{Array subscript}
{Loop control}

while (not Found) and (I <= ControlRecord.NCust) do

begin

if CustNum = Customer[I].Number then
Found : = true

else

I := I + 1

end; {while}

if Found then

CustomerLookup .- I
else

CustomerLookup .- 0
end; {CustomerLookup}

Figure 6-16 (continues next page)

6-4 CASE STUDIES 509

procedure GetCustomer (var Disc: real);

{Written by:
{Purpose:
{Parameters:
{Globals used:
{Functions used:

var
CustNum: integer;
CustSub: integer;

XXXXXXXXX XX/XX/XX}
To input customer number and determine discount}
Disc - output, the discount}
Customer - to get the discount}
CustomerLookup - to look up item number in array}

{Customer number, user input}
{Customer subscript}

begin {GetCustomer}
Writeln;
Write('Enter customer#: ');
Readln(CustNum);
CustSub := CustomerLookup(CustNum);
if CustSub = O then

Disc .- 0.0
else

Disc:= Customer[CustSub].Discount
end; {GetCustomer}

procedure Purchase;

{Written by: xxxxxxxxx XX/XX/XX}
{Purpose: To handle a customer's purchase}
{Globals used: Item - to access the price}
{Globals modified: Modified - changed to true}
{Procedures used: GetValiditem - to obtain item subscript}

GetAmount - to obtain quantity desired}
GetCustomer - to get customer percentage}
Pause - to wait for a user keystroke}

var

ItemSub: integer;
Quantity: integer;
Gross: real;
Discount: real;
Net: real;

{Subscript of item}
{Number purchased}
{Cost before discount}
{Discount percentage}
{Cost after discount}

begin {Purchase}

{*** The body of the previously developed procedure}

end; {Purchase}

Figure 6-16 (continues next page)

510 ONE DIMENSIONAL ARRAYS CHAP. 6

procedure NewCustomer;

{Written by:
{Purpose:

{Globals used:
{

XXXXXXXXX XX/XX/XX}

To add a new customer}

ControlRecord.NCust - to see if array is full}

MaxCust - to see if array is full}

{Globals modified: Modified - changed to true}

{ Customer - new customer added at end}

{Procedures used: Pause - to wait for a user keystroke}

{Functions used: CustomerLookup - to check for a duplicate}

var

CustomerNo: integer;

Disc: real;

begin {NewCustomer}

{New customer #}
{New discount}

{*** The body of the previously developed procedure}

end; {NewCustomer}

procedure SaveData;

XXXXXXXXX XX/XX/XX}

To save the data to the files}

{Written by:

{Purpose:

{Globals used: ControlFile - the control file handle}

{

{

{

CustomerFile - the customer file handle}

ItemFile - the item file handle}

The following are written to the files:}

ControlRecord}

Item}

Customer}

{Globals modified: Modified - set to false}

var

I: integer; {Loop control}

begin {SaveData}

Rewrite{ControlFile);

Write{ControlFile, ControlRecord);

Close{ControlFile);

Rewrite{ItemFile);

for I := 1 to ControlRecord.Nitem do
begin

Write(ItemFile, Item[IJ)

end {for}

Close(ItemFile);

Rewrite(CustomerFile);

for I := 1 to ControlRecord.NCust do

begin
Write(CustomerFile, Customer[!))

end; {for}

Close(CustomerFile);

Figure 6-16 (continues next page)

6-4 CASE STUDIES 511

Modified := false;

Writeln('Data has been saved to files');

Pause

end; {SaveData}

{*** procedure DataDump, as shown in Figure 6-16)

{function AskUser, form Figure 5-10, is insered here}

procedure Quit;

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To quit, first allowing a save if anything has changed}

since the last save}

{Globals used: Modified - to see if a save should be offered}

{Procedures used: SaveData - to save data to the files}

var
Responses: Letters;

Prompt: Sentence;

Answer: char;

{Valid responses}

{Message to user}

{Answer from user}

begin {Quit}

if Modified then

begin

Write(Chr(Bel));

Writeln('Data modified since last save');

Prompt :='Do you wish to save (Y, N): ';

Responses : = ['Y', 'y', 'N', 'n'];

Answer:= AskUser(Prompt, Responses);

Writeln(Answer);

Writeln;

if Answer in ['Y', 'y'] then

SaveData

end {if}

end; {Quit}

{*** Procedure Handle is unchanged}

procedure Initialize;

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose:

{Globals
{

{

To open files and read data}

modified: ControlFile - the control file handle}

CustomerFile - the customer file handle}
ItemFile - the item file handle}

The following are read from the files}

ControlRecord}

Item}

Customer}

Modified - set to false}

Figure 6-16 (continues next page)

512 ONE DIMENSIONAL ARRAYS CHAP. 6

var
I: integer; {Loop control}

begin {Initialize}
Reset(ControlFile, 'SalesControl');
Read(ControlFile, ControlRecord);
Close(ControlFile);

Reset (ItemFile, 'Salesitem');
for I := 1 to ControlRecord.Nitem do

begin
Read(ItemFile, Item(I])

end; {for}
Close(ItemFile);

Reset(CustomerFile, 'Customers');
for I := 1 to ControlRecord.NCust do

begin
Read(CustomerFile, Customer[I])

end; {for}
Close(CustomerFile);

Modified := false
end; {Initialize}

begin {PointOfSale}

{*** Main program is unchanged}

end.

Figure 6-16 (continued)

SaveData and Quit Procedures. These are fairly straightforward. See Figure 6-16.
We simply comment on their use of the Modified flag. The SaveData procedure sets it to
false because now the data have not been modified since the last save. The Quit procedure
allows the user to save the data if the Modified flag is true.

Test Plan. We do not write a complete test plan, but rather describe a few tests to
remind you of some of the testing strategies:

• Item number not in list

•Item number for item with 0 inventory

•Item number first in list; last in list; in between

• Quantity = entire remaining inventory

•Quantity one more than remaining inventory

•Quantity = O; = 1

•Password correct, except it has trailing blanks

6-4 CASE STUDIES 513

•New customer already in array: first, last, in between

• Customer array full

•Try to add same new customer twice
•Do several purchases of same item, driving inventory eventually to 0

• Add several customers in a row to fill the array

•New customer already in array, with array full

Case Study No. 10

In this case study, we prepare a package of subprograms rather than a single program. The
modules in the package assist us when writing programs that manipulate polynomials in a
single variable. Because the package of subprograms handles the details of working with
polynomials, we are able to concentrate on the problem we wish to solve and not on these
details.

Statement of Problem. Polynomials of degree n or less in a single unknown, say, x,
can be written as

where the e's are the coefficients of the individual powers of x.
Such a polynomial can be specified completely by giving the values for the coeffi

cients and the name of the single unknown. We want to have a collection of subprograms for
performing arithmetic and other operations on polynomials of a single unknown that we call
x.

Analysis. There are a number of ways to represent polynomials in the computer.
Some use techniques that have not yet been covered. The one we present has a number of
drawbacks. For example, there is a limit placed on the degree of the polynomials. However,
it has the advantage of being one of the easiest to understand.

In the case study, then, we choose to represent the polynomials by real arrays contain
ing their coefficients. For example, a polynomial P is represented by an array C declared as

type

Polynomial= array[O .. MaxDegree] of real;

var

P: Polynomial;

(MaxDegree is a constant defined in the const section.)

Note that we are taking advantage of the fact that we can specify a lower bound other
than 1 for the array subscripts. Thus, the coefficient of XK in the polynomial is the element
of the array with subscript K.

We next decide on the operations to be performed. We normally would like to provide
addition, subtraction, multiplication, and division. (Division is fairly difficult and, therefore,
we do not do that in this example.) Other operations that we can provide are the evaluation
of a polynomial for a given value of X, and integration and differentiation by X. More
computer-related operations would be reading and writing polynomials, finding the degree
of a polynomial, comparing two polynomials to see if they are the same polynomial, and

514 ONE DIMENSIONAL ARRAYS CHAP. 6

TABLE 6-1 OPERATIONS TO BE PROVIDED BY POLYNOMIAL PACKAGE

(a) Addition

(b) Subtraction

(c) Multiplication

(d) Multiplication by a constant

(e) Multiplication by X

(f) Evaluate a polynomial

(g) Integrate a polynomial

(h) Differentiate a polynomial

(i) Read a polynomial

(j) Write a polynomial

(k) Find the degree of a polynomial

(l) Compare two polynomials for equality

(m) Copy a polynomial

copying one polynomial into another. We also include some special cases of multiplication,
namely, by a constant and by X. Refer to Table 6-1 for a summary of these operations.

We must next decide on the form our operations will take. Most of the operations
require a number of steps to complete, and so it seems reasonable to use subprograms for
the operations. Most of the operations have a polynomial for a result In Pascal, a function
cannot return an array as the function value. Since we are representing polynomials with
arrays, we use procedures for these operations. Operations (t), (k), and (1) do return single
values and thus could be implemented using functions.

Let us name the subprograms with names that start with "Poly" for polynomial and
end with characters in some sense descriptive of the operation. Thus, we use names like
PolyAdd, PolySub, PolyMult, and PolyEval. By starting with the prefix Poly, the routines
are usually listed together in any automatically generated alphabetical lists of subprograms
used in any program. Although this is not a consideration in using THINK Pascal, it is in
many production environments.

The arithmetic operations require two operands and one result. Also, we sometimes
use another argument to indicate success or failure of the operation. The operation

R := OPl - OP2

could be represented with six different orderings of R, OPl, and OP2. However, it would be
very confusing to the user of the routine to have OPl follow OP2 or to have OPl separated
from OP2 by the result R. Therefore, the two reasonable choices for the ordering of these
three seem to be R, OPl, OP2 and OPl, OP2, R. As we did in Case Study No. 7 (Section
5-4), we choose the order OPl, OP2, R.

For example, the first routine would have this header line:

procedure PolyAdd(P, Q: Polynomial; var Result: Polynomial);

Result is the array representing the result polynomial, and P and Q are the arrays represent
ing the operand polynomials.

One remaining question is the size of the arrays to be used. We pick 50 as the maxi
mum degree of the polynomials, writing

6-4 CASE STUDIES 515

const
MaxDegree = 50;

in the main program. Many of the submodules reference this global constant.

Algorithms and Programs. Most of the algorithms are very simple and short, so in
many cases we omit the variable lists. Also, because we have many short programs, we
show them right after the discussion of the algorithm.

Addition of two polynomials is performed by adding the coefficients of the same
power of X. The sum of

and

is

llx5 + 2x3 - 4x2 + 9

The first and second polynomials are represented by arrays containing

6 0 -4 0 0 5

and

3 0 0 2 0 6

as their first six elements (in positions 0 through 5). The result is represented by the array

9 0 -4 2 0 11

The algorithm uses a count-control loop to add each corresponding array element. This is
easily coded, as shown in Figure 6-17. The subtraction routine is very similar to the addition
routine.

procedure PolyAdd(P, Q: Polynomial; var Result: Polynomial);

{Written by: XXXXXXXXX XX/XX/XX}
{Purpose: To add two polynomials}
{Globals used: MaxDegree, constant for maximum degree}
{Parameters: P, Q - input, the polynomials to add}

Result - output, the resulting sum}

var
I: integer; {loop control}

begin {PolyAdd}
for I := 0 to MaxDegree do

begin
Result[!] .- P[I] + Q[I]

end {for}
end; {PolyAdd}

Figure 6-17 Adding two polynomials.

516 ONE DIMENSIONAL ARRAYS CHAP. 6

Multiplication, on the other hand, is much more complex. The product of two polyno
mials

and

is

2
Po+p,x+pzX

Poqo + (p~, + P1qo)x + (poqz + p,q, + Pzqo)x2

+ (poq3 + P1q2 + P2q1)x3 + (plq3 + P2qz)x4 + P2q3x5

The first polynomial has three terms and the second four terms. The product has 12 individ
ual terms, each a product of one P term and one Q term. In other words, each P coefficient is
multiplied by each Q coefficient. The power of x in the product associated with the term p,.qj
is just i + j. The degree of the product polynomial is the sum of the degrees of the two
factors.

This is one place where it is convenient to have a routine to compute the degree of a
polynomial. Let us define that routine as an integer function named PolyDegree. It has a
single parameter, which is a polynomial. (We write the function later.)

In order to multiply each term of polynomial P by each term of polynomial Q, we
need a nested loop structure. We use the variables IP and IQ as indices for the loops. For the
degrees of P and Q, we use the variables PDegree and QDegree. Similarly, we use IR and
RDegree for the index and degree, respectively, associated with the result polynomial
Result.

The rough algorithm for the multiplication routine is

Compute the degree of Result and check for a legal value.
Initialize the coefficients of Result to zero.
Compute all the products of the terms of P and Q, adding them into the appropriate
terms of Result.

The first step becomes

PDegree .- PolyDegree(P);

QDegree := PolyDegree(Q);

RDegree := PDegree + QDegree;

if RDegree > MaxDegree then

OK .- false

else

The output parameter OK is used to indicate to the calling program whether the multiplica
tion was possible.

Within the else branch, we set OK to true and perform the second and third steps of
our algorithm.

The second step becomes

for IR := 0 to 50 do

R[IR] := 0.0

6-4 CASE STUDIES 517

Notice that we initialize all elements of R to zero and not just the elements from 0 to
RDegree. This is done so that later calculations, such as adding or finding the degree, work
correctly. The main part of the algorithm are the nested loops multiplying the individual
terms and adding to the proper terms in R:

for IP := 0 to PDegree do

begin

for IQ := 0 to QDegree do

begin

IR := IP + IQ;
R[IR] := R[IR] + P[IP] * Q[IQ]

end {for IQ}

end {for IP}

Combining the pieces, we obtain the procedure shown in Figure 6-18.
Let us now work on the PolyDegree function used in PolyMult. The degree of a

polynomial P is the highest power of X that appears in the polynomial. This corresponds to
the subscript of the last nonzero coefficient for the polynomial. A simple way to find that
element is to search the array from the last term back until we find a nonzero element. Note
that if all the elements are zero, then the polynomial represents the constant zero and the
degree is zero.

This can be written using our usual searching techniques, as outlined here:

1. Set Found to false and I to MaxDegree.

2. In a loop, examine P[I]. If it is nonzero, set Found to true; otherwise decrement 1.

3. The loop terminates when Found is true or I reaches 0.

4. After the loop, I is the answer. Notice this is true no matter which condition causes the
loop termination.

Based on this discussion, we write the function given in Figure 6-19.
Now let us consider the routine for evaluating a polynomial. It requires two argu

ments: the array of coefficients and the value of X. The routine returns only a single value
and, therefore, can be a function. Let us call the function PolyEval, with arguments P and X.

A first rough algorithm might look like

PDegree := PolyDegree(P);

Value := P[O];

for I := 1 to PDegree do
add P[I] times Ith power of X to Value

To compute X to the Ith power, we could use

XToI := X;
for J := 2 to I do

XToI := XToI * x

This approach would require I - 1 multiplications. To compute the value of a polynomial of
degree N would require N multiplications of coefficients by powers of X plus

518 ONE DIMENSIONAL ARRAYS CHAP. 6

procedure PolyMult(P, Q: Polynomial; var Result: Polynomial;

var OK: boolean);

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To multiply two polynomials}

{Globals used: MaxDegree, constant for maximum degree}

{Parameters: P, Q - input, the polynomials to multiply}

Result - output, the resulting product}

var
IR: integer; {index for Result}
IP: integer; {index for P}

IQ: integer; {index for Q}

RDegree: integer; {degree for Result}

PDegree: integer; {degree for P}

QDegree: integer; {degree for Q}

begin {PolyMult}

{*** Calculate Result degree, see if legal}

PDegree .- PolyDegree(P);

QDegree .- PolyDegree(Q);

RDegree .- PDegree + QDegree;

if RDegree > MaxDegree then

OK .- false
else

{*** Set OK, initialize result to 0}

{***

begin

OK := true;

for IR := 0 to MaxDegree do
begin

Result[IR] .- 0
end; {for}

Multiply P, Q terms; add to Result

for IP . - 0 to PDegree do
begin

for IQ .- 0 to QDegree do
begin

IR := IP + IQ;

terms}

Result[IR] .- Result[IR] + P[IP] * Q[IQ]

end {for IQ}

end {for IP}
end {if}

end; {PolyMult}

Figure 6-18 Multiplying two polynomials.

6-4 CASE STUDIES 519

function PolyDegree(P: Polynomial}: integer;

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To find the degree of a polynomial}

{Globals used: MaxDegree, constant for maximum degree}

{Parameters: P - input, the polynomial whose degree is sought}

var
I: integer; {array index}

Found: boolean; {used to quit loop}

begin {PolyDegree}

Found := False;

I := MaxDegree;

while (I <> O} and (not Found} do

begin

if P(I] <> 0 then
Found : = true

else

I := I - 1

end; {while}

PolyDegree := I

end; {PolyDegree}

Figure 6-19 The degree of a polynomial.

(N - 1) + (N - 2) + (N - 3) + · · · + 2 + 1

additional multiplications to compute the various powers of X. The expression

(N - 1) + · · · + 2 + 1

is equal to

N(N -1)
2

and so the total number of multiplications needed is

N2 N N2 N
2-2+N=2+2

If N were 50, this would require 1275 multiplications. This number can be reduced consid
erably. Notice first that the powers of X are needed in sequence. Rather than compute the Ith

power of X starting from scratch, we can compute it from the (I - 1)st power. This leads to
the following code:

520

PDegree := PolyDegree(P);
XTO! := l;

Value:= P[OJ;

ONE DIMENSIONAL ARRAYS CHAP. 6

for I := 1 to PDegree do
begin

XToI := XToI * X;
Value := Value + P[I] * XTO!

end; {for}

PolyEval := Value

For this algorithm, the number of multiplications for a polynomial of degree N is just
2N. Note that for N = 50, this is a reduction by a factor of almost 13.

There is still a better method, commonly called Homer's method. A polynomial such
as

can be rewritten in a nested form as

Po + x(p1 + x(p2 +x(p3 + x(p4)))).

This can be evaluated in the order

val:= P4
val := p 3 + x * val

val := p2 + x * val

val := p1 + x * val

val := p0 + x * val

When we are finished, val has the value of the polynomial. We have used, in this case,
only four multiplications. In general, the algorithm would be that shown in the function of
Figure 6-20.

Of course, here a polynomial of degree N requires N multiplications. Notice that in
this situation the fastest of our three algorithms is also the shortest to write. One should not
assume that this last procedure is twice as fast as the second procedure because there are
other operations, such as additions, loop control, etc., involved. Still this should be faster
than the others on most conventional computer systems.

The routines for integration and differentiation use similar methods. If you have not
studied calculus yet, you can skip this material without affecting your understanding of the
other routines in the package.

The integral of a polynomial is the sum of the integrals of each of the terms plus an
arbitrary constant. The integral of the term

is

Pii

Pri+1

i+ 1

The result is a new polynomial, say, Result, with the (i + 1)81 coefficient of Result being the
ilh coefficient of P divided by i + 1. For the degree of Result to be less than or equal to
MaxDegree, the degree of P must be less than or equal to MaxDegree - 1.

6-4 CASE STUDIES 521

function PolyEval(P: Polynomial; X: real): real;

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To evaluate a polynomial for a given x value}

{Parameters: P - input, the polynomial to evaluate}

x - input, the given X value}

var

PDegree: integer;

Value: real;

I: integer;

begin

{degree of P}

{local copy of answer}

{loop control}

PDegree := PolyDegree(P);

Value:= P[PDegree];

for I := PolyDegree - 1 downto 0 do

begin

Value := P[I] + X * Value

end; {for}

PolyEval := Value

end; {PolyEval}

Figure 6-20 Evaluating a polynomial (Homer's method).

Let us call our routine Polylntegrate and use arguments P, C, Result, and OK.Pis the
original polynomial, C is the arbitrary constant, Result is the result polynomial, and OK
indicates success. See Figure 6-21.

For our final example we write the output routine. This should be a procedure because
it returns no value. It needs only the one argument, the polynomial to be printed. Let us call
the routine PolyOut. Suppose we print all coefficients except the constant term as

(dddddd.ddddd) * X A (dd)

(where the d's stand for digits) and the constant term as

(dddddd.ddddd)

(This uses A to stand for exponentiation, a common notation.)
Also, let us not print any terms with a zero coefficient; however, we should be sure to

print at least one term. We use a Boolean variable AnyPrinted to indicate whether any terms
have been printed. The procedure is shown in Figure 6-22.

Testing. Testing a package of subprograms differs from testing a program in several
ways. First, the individual subprograms cannot stand alone, and so you must write programs
to call the subprograms. These programs are commonly called drivers. Second, the individ
ual routines tend to be fairly simple, so the tests are generally fairly simple.

Probably the input and output subroutines should be tested first. In that way, you can
use those routines when you test the others. A simple way to test these routines is to use a
driver program that calls Polyln (the input routine) and PolyOut in a loop. You can then
check the output to see if it matches your input. The driver should also print the array
corresponding to the polynomial that has been read by Polyln to guard against errors in

522 ONE DIMENSIONAL ARRAYS CHAP. 6

procedure Polyintegrate(P: Polynomial; C: real;
var Result: Polynomial; var OK: boolean);

{Written by: XXXXXXXXX XX/XX/XX}
{Purpose: To integrate a polynomial}
{Parameters: P - input, the polynomial. to integrate}

C - input, the constant of integration}
Result - output, the resulting integral}
OK - output, indicates whether or not ok}

{Globals used: MaxDegree - largest possible degree}

var
PDegree: integer; {degree of P}
I: integer; {loop control}

begin {Polyintegrate}
PDegree := PolyDegree(P);
if PDegree > MaxDegree - 1 then

OK := false
else

begin
OK := true;
Result [0) : = C;
for I := 2 to PDegree + 1 do

begin
Result[I) := P[I-1) I I

end; {for}
for I := PDegree + 2 to MaxDegree do

begin
:iesul t [I J • - 0

end {for}
end {if}

end; {Polyintegrate}

Figure 6-21 Integrating a polynomial.

PolyOut and Polyln that might cancel each other. An example of such an error would be if
Poly In placed the coefficients in the wrong elements of the array and PolyOut picked up the
elements in the same wrong manner. The test data for the driver should include polynomials
of degree 0, 1, MaxDegree - 1, MaxDegree, and some over MaxDegree. (You may wish to
reduce the size of MaxDegree for most of the tests.) Some of the polynomials should consist
of just a few nonzero terms, whereas others should have all nonzero terms. The constant 0
should be one of the test values because that causes a special action in the PolyOut routine.

Once Polyln and PolyOut are tested and appear to be correct, you can begin testing
the other routines. A driver that reads two polynomials and computes their degrees, adds
them, subtracts them, differentiates them, compares for equality, and multiplies by X would
be a natural next step and would test a large number of the routines. These operations have
been grouped because they each require one or two input polynomials but do not require
any additional data. In addition, separate drivers should be used to provide each routine that
has error checks with invalid data so as to check error handling.

6-4 CASE STUDIES 523

procedure PolyOut(P: Polynomial);

{Written by: XXXXXXXX, XX/XX/XX}

{Purpose: To print out a polynomial}
{Globals used: MaxDegree, constant for maximum degree}

{Parameters: P - input, the polynomial to print}

var
AnyPrinted: boolean;

I: integer;

{to make sure at least one term is printed}

{loop control}

begin {PolyOut}

AnyPrinted := false;

for I := MaxDegree downto 1 do

begin
if P[I] <> 0 then

begin
Writeln(' (', P[I] : 12

AnyPrinted .- true
end {if}

end; {for}

5, ') * X ~ (', I:2, ')');

if (P[OJ <> 0) or (not AnyPrinted) then

Writeln(' (', P[OJ : 12 : 5, ')')

end; {PolyOut}

Figure 6-22 Output of a polynomial.

The copy routine can be tested after the routine for comparing for equality. Finally, the
last group to be tested could be the routines for evaluating a poly.nomial, multiplication by a
constant, and integration. This group requires both a polynomial and a real value as inputs
for each routine.

The detailed unit test plans for the various modules are left as an exercise. To get you
started, we list a few possible tests for two of the modules.

For PolyDegree: degree MaxDegree

degree I

For Poly Add:

degree 0 (not zero polynomial)

degree 0 (zero polynomial)

both polynomials zero

first polynomial zero

second polynomial zero

neither polynomial zero, result not zero

neither polynomial zero, result zero

Documentation. The documentation for a package of subprograms normally
includes a description of what operations are provided, how the polynomials are repre
sented, how the user has to define the data arrays that hold the polynomials, and, finally, a

524 ONE DIMENSIONAL ARRAYS CHAP. 6

detailed description of each routine in the package. The detailed description should include
precise descriptions of how to call each routine and precise descriptions of each argument. It
is desirable to include examples of each routine's use. You can use Pascal terminology, if
convenient, to describe these routines because anyone using the package has to know Pascal
to write a program calling the routines. Notice that the user documentation for a package
such as this differs from that for a program. For a program, Pascal terminology is not
appropriate for the user's guide.

EXERCISES

Exercises 1 to 5 refer to Case Study No. 9.

I. (a) Write a program to create the data files initially used by the case study.
(b) Modify the Initialize procedure to obtain the base part of the file name from the user, and

check that files <base>Control, <base>Items, and <base>Customer exist prior to opening
them. See the hint for Exercise 11 (b), Section 6-2.

2. The case study uses a linear search for item number and customer number. What changes would
be necessary to use a binary search? Caution: The new customer procedure would change.

3. Modify the Purchase activity as follows:
(a) Allow the user to abort the process of obtaining a valid item number. (This avoids the

possibility of being stuck forever in the Purchase procedure if the item numbers entered are
all invalid.)

(b) Obtain a list of one or more item numbers and quantities rather than just one.
(c) Double the discount for preferred customers if the total bill is at least $500.
(d) Add sales tax to the bill.
(e) Add to part (b) as follows: When the user can enter several item numbers, it is possible

that he or she may want to abort the whole activity. Allow this to occur at any point up to
indicating that the list of input is through. This must adjust the inventory properly. Hint:
One way to solve this involves building up the purchase information in an array. Assume
that there are no more than 30 individual items input.

4. Modify the new customer procedure as follows:
(a) Require the user to enter a password before a new customer can be entered.
(b) Validate the discount entered. It must lie between 0.0 and 10.0 percent. (It can be 10.0, but

not 0.0.)

5. Add the following activities. Note: To avoid a "cluttered" menu, you may want to reorganize it.
For example, you might have a single menu item for the various Utility activities, such as
adding an item or a customer, changing a price, etc. Choosing this item would cause a submenu
to be displayed for the various utility activities.
(a) Add an item to the list.
(b) Remove an item from the list.
(c) Change a price.
(d) Change a discount percentage.
(e) Change the password. You might wish to store the valid password in the control file.
(t) See part (e). If the control file contains the password, it should not be in character form.

Modify the program to store the password on the control file as a record containing: (I)
length of the password and (2) an array of the Ord values for the characters in the pass
word.

EXERCISES 525

(g) Query: Given an item, what is the current price and inventory?
(h) Query: Given a customer number, what is the discount?
(i) Generate an order. Add a field to the item file indicating a cutoff point. When the inventory

drops below that point, it is time to reorder. This activity should print a list of all items that
should be reordered.

Exercises 6 to 12 refer to Case Study No. 10.

6. (a) Design and write an interactive version of the module Polyin(P, EndOfData). You need to
devise a way for the user to indicate that she or he does not wish to enter more data. In
addition, you need a way to terminate the polynomial being entered. EndOfData is a
Boolean parameter set to true if the user does not wish to enter a polynomial and set to
false otherwise.

(b) Design and write a file version of the module. It should read its data from a text file
opened by the main program. (Prompts are not appropriate in this version.)

7. (a) Design and write the routines for multiplication of a polynomial by a constant or by X.
(b) If you have studied calculus, design and write the routine for differentiation.
(c) Design and write the routines for comparing for equality and for copying polynomials.

8. Think carefully about how you do polynomial division. Write a routine to divide P by Q, giving
a quotient polynomial and a remainder polynomial. Hint: You may be able to write this almost
entirely in terms of other routines in the package.

9. Test all of the routines written in Exercises 6 to 8.

10. The family of polynomials known as Chebyshev polynomials is used in several different areas
of mathematics. These polynomials are denoted by

T ,./..x)

where N is the degree of the individual polynomial. The first few of these are defined as

and

T0(x) = 1

T1(x) =x

T2(x) = 2x2 - I

TJO(x) = 512x10 - 1280x8 + I 120x6 - 400x4 + 50x2- 1

The polynomial of degree N can be calculated from those of degree N - 1 and degree N - 2 by
the equation:

Write a program using the polynomial package to compute and print the Chebyshev polynomi
als for N = 0 through N = 15. How would you have to modify the package for N greater than
15? Hint: Use recursion.

11. (a) Revise each of the routines developed in the case study to use the following representation
of a polynomial.

526

type

Polynomial = record

Degree: integer;

Coeff: array[l .. MaxDegree] of real

end;

ONE DIMENSIONAL ARRAYS CHAP. 6

The degree is stored as part of the record, and the coefficient array contains meaningful
data only for the portion indicated by the degree.

(b) Repeat part (a) for the routines developed in Exercises 6 to 8.
(c) What differences would the revised representation of a polynomial make for Exercise IO?

12. Follow the instructions for Exercise 11 for this data structure. A polynomial is represented as a
list of its nonzero terms. For example, 5x6 - 4x3 + 7 .5 would have these values stored:

3 (there are 3 terms)

5.0, 6 a record representing 5x6

- 4.0, 3 a record representing - 4x3
7.5, 0 a record representing 7.5 (7.5x0)

The terms are stored in order from the highest degree to the lowest. We use the declarations:

con st
MaxTerms = 50; {maximum number of terms}

type

Term = record
Coeff: real;
Power: integer
end;

Polynemial = record
NTerms: integer;
Terms: array[l .. MaxTerms] of Term
end;

Hint: The add routine can be done using the "array merge" logic, as described in Exercise 21 of
Section 6-3.

Exercises 13 to 14 suggest packages of subprograms that could be developed to aid in
working with certain types of problems.

13. Integers of long length can be stored in the computer as arrays, one digit per array element. For
example, a 15-digit number could be represented as an integer array Number of size 15. Num
ber[!] would contain the first digit of the number, and Number[15] the last digit.
(a) Write a procedure to add two such numbers. It should give an indication of whether the

ooswer fits in the array that represents the answer.
(b) Subtract two such numbers, indicating whether it is possible to do so.
(c) Compare two such numbers to see whether the first is greater than the second. (This might

be a Boolean function.)
(d) Multiply two such numbers.
(e) Use this package to find the sum

1 + 2 + 4 + 8 + ... + 21 + . . . + 263

(The answer is fewer than 30 digits long.)

14. Numbers in base IO can be represented as arrays, each array element having one digit whose
value is 0 to 9 (see Exercise 13). If we limit our digits to 0 to 7, we have a ''base 8" number
instead of a base IO number. For example, in base 8, the array

0000153

would represent 1 * 82 + 5 * 8 + 3 = 107. Write procedures or functions for the following:

EXERCISES 527

(a) Given an array and a base, calculate the value of the number represented by the array in
that base.

(b) Given a value, convert it to an array in a given base.
(c) Print the number represented by an array, given the array and the base. For example,

ARRAY

0,0, 8,0,3
0, 1, 5, 1, 0

0, 1, 5, 1, 0, 1, 9

BASE

IO

8
16

RESULT

803
1510

FA19

Hint: Convert the given array to an array of characters, with leading zeros converted to
blanks. Notice that for base 16, the digits are 0 to 9 and A to F, with A= 10, etc. An array
containing the characters 'O', 'l ', etc., may help.

(dHg) Revise parts (a) to (d) of Exercise 13 to work for arrays representing numbers in any given
base.

Exercises 15 to 21 suggest other "case study" applications.

15. (a) A simple encryption ("secret code") method is to jumble the alphabet, replacing, for exam
ple, A by D, B by X, C by M, and so on. One way to implement this uses two parallel
arrays. The first contains the letters in order, and the second contains the letters in the
desired jumbled order (for example, D, X, M, ...). Give the declarations and assignment
statements to create these arrays.

(b) Another approach would be to use one array indexed by the char values •A' to 'Z'. Give
the necessary declarations and assignment statements to set this up.

(c) Write a subprogram segment to encode a single character. Assume that characters that are
not letters are replaced by themselves (CAB$ might become MDX$). Use the representa
tion of either part (a) or part (b).

(d) Write a main program that codes or decodes lines of text. It reads a series of lines, each 65
columns long. The first character of each line should contain either a C or D to indicate
whether the remaining 64 characters should be coded or decoded.

(e) Modify your program to handle both uppercase and lowercase letters.

16. (a) Modify Exercise 15 to use the following different encryption method: A is replaced by G,
B by H, C by I, and so on, each letter replaced by the sixth letter further along in the
alphabet. Some care is required to handle the letters near the end properly; for example, Z
is replaced by F. Use only a single array containing the letters in order.

(b) Modify Exercise 15 to replace A by Z, B by Y, C by X, D by W, and so on. Use only a
single array containing the letters in order.

17. Write subprograms for the following actions that deal with an array of records containing
employee ID, sales, and rate. There are presently NEmployees employees represented in these
arrays. Hint: Write a search function first.

528

(a) Inquire. Given an ID number, print the sales amount and rate for that employee or print an
error message if the given ID is faulty.

(b) New Sale. Given a sales amount and ID, add the amount to the Sales figure for that ID (or
print an error message). Also calculate the commission as sales amount times rate.

(c) Change the Rate. Given a new rate and an ID, change the rate for that employee to the
given new rate or print an error message.

ONE DIMENSIONAL ARRAYS CHAP. 6

(d) Find the Largest. Print the ID, rate, and sales amount of the salesman with the largest sales
amount.

(e) New Employee. Given a new employee ID and rate, add that employee to the end of the
list. If the ID is already in use, print an error message.

(f) Sort. Sort the data in order by sales (highest to lowest).

18. Repeat Exercise 17 under the assumption that the array is maintained in increasing numerical
order by employee number. Notice that for part (e), the new employee goes at the proper place
based on her ID, which is not necessarily at the end of the list. For part (t), create a separate
sorted array. Hint: Rewrite the search function so it returns the subscript of the first table
element larger than or equal to the given key. This simplifies part (e), but it also requires some
changes in parts (a) to (c).

19. (a) Write a general-purpose procedure to copy a portion of the array B to the array A. Assume
A and B are integer arrays, each of size 200. The routine is given A, APosn, B, BPosn, and
ArrLength. APosn and BPosn represent the starting positions in the A and B arrays, respec
tively, and ArrLength is the number of items to be copied. You can assume that ArrLength
is valid, that is, copying that many items does not run past the end of either A or B.

(b) Rewrite part (a) to handle the possibility that ArrLength may be "too long." The routine
should copy up to ArrLength items, taking care to stay within the bounds of both arrays.
For example, if APosn = 199, BPosn = 3, and ArrLength = 14, only two items are copied
(to A[l99] and A[200]).

20. In Case Study No. 4 (Figures 4-11 to 4-13), we presented a program to find all the primes less
than or equal to a number N. To do so, we checked each number I from 2 to N to see if I was
prime.

The method used to see if I is prime can be improved significantly using arrays. To see if I is
prime, we checked for divisibility by all the numbers from 2 to I - 1. It would suffice to check
for divisibility by all the primes from 2 to {/. If, as we located a prime, we put it into an array
of primes, then this check would be easy to accomplish.

Write a program that carries out this procedure.

21. An efficient method for determining all the primes less than some given value N is the so-called
sieve of Eratosthenes, which consists of two major phases. The first is to write the positive
integers from 2 to N. The second phase is a nested search and marking process: Starting with
the first unmarked number in the list, say, K (at the start, all the numbers are unmarked), go
through the list and mark off all multiples of K.

The result of applying this process three times to the numbers from 2 to 34 is shown in tlie
following list. The marks (X) are shown above the numbers so that we can indicate at which
time the markings occurred. Notice that some numbers are marked more than once. The first
mark shows all numbers divisible by 2 except for 2. The second mark shows all values divisible
by 3 except for 3. The third mark shows all values divisible by 5 (4 was already marked
because it is divisible by 2). Upon completion of the entire marking process, all numbers
divisible by some smaller number other than 1 have been marked. Thus, the unmarked values
are primes.

Third

Second

First

EXERCISES

2 3

x
4 5

x
x
6 7

x
8

x

9

x

x
10 11

x
x
12

529

Third

Second
First

Third

Second

First

13

x
x
24

x
14

x

25

x
x

x
15 16 17

x
x x
26 27 28

x
x x
x x x
18 19 20 21 22 23

x
x x
x x x

29 30 31 32 33 34

The key to the efficiency of this process is that the marking process does not require any
checking of divisibility. In general, the multiples of K are in positions 2K, 2K + K, 2K + 2K,
and so on. Also, notice that only values up to K = ..JN need to be processed.
(a) Write Pascal code for initializing an integer array Num, with subscripts ranging from 2 to

2000, to the values 2, 3, ... , 2000.
(b) Write Pascal code that, given the array Num initialized as in part (a), carries out the

marking process described for the sieve of Eratosthenes. One way of marking the numbers
is to set the array element equal to zero.

(c) The values of the numbers do not actually have to be used because the positions of the
numbers can indicate their values in this algorithm. Rewrite parts (a) and (b) using a
Boolean array Marked, with subscripts ranging from 2 to 1000. Initialize the elements to
false, and indicate marking by setting an element to true. After marking, we can determine
if a value J (2 ~ J ~ 2000) is prime by checking to see if Marked[J] is true or false.

(d) Write a program to produce a printed table of primes up to 2000 with 10 primes printed on
each line. Be sure that the last line is printed whether or not it includes 10 numbers.

22. Compare the efficiency of the programs written in Exercises 20 and 21 by timing them for
various values of N.

23. Revise the program of Figure 6-10 (Section 6-2) to develop a menu-driven system that allows
various activities with the files' data. You might include, for example, the ability to initialize the
files, add students, delete students, change grades, calculate current averages, set values for tests
and programs, and so on.

530 ONE DIMENSIONAL ARRAYS CHAP. 6

7 More on Arrays

OBJECTIVES

In Chapter 6, we described the fundamental techniques for dealing with arrays. In this
chapter, we will deal with some additional array concepts that can prove useful in your
programming. By the end of this chapter, you will be able to:

• use arrays of arrays with effect in your programs

• represent matrices using arrays

• accept input into and produce output from arrays

7-1 MORE ON ARRAYS

Arrays of Arrays

The form for declaring an array is

array [index type] of component type;

The index type is frequently of the form l..N for some integer N, but it can also be, for
example, a user-defined scalar type. The component type can be, among other types, inte
ger, real, a string type, or a record type. It can also be an array type.

Thus, for example, we can declare an array to consist of three arrays, where each of
those arrays consists of four real numbers. There are three ways to accomplish this. First, we
could translate what we have written into Pascal more or less directly:

type
ArrayofArrays = array[l .. 3] of array[l .. 4] of real;

531

Second, we could predefine the notion of an array of four real numbers and then use that in
our definition of the array of arrays:

type

RealArray = array[l .. 4] of real;
ArrayofArrays = array[l .. 3] of RealArray;

Finally, Pascal provides an abbreviated form of declaration as follows:

type
ArrayofArrays = array[l .. 3, 1 .. 4] of real;

In this example, we can think of the declaration as (1) showing the number of arrays (three,
indexed by 1..3) and (2) describing each as consisting of four real numbers (indexed by
1..4).

The three methods simply give alternative ways to describe precisely the same type. If
we declare a variable X to be of the type ArrayofArrays, then it will consist of three arrays
of four real numbers each. It is useful, at times, to be able to visualize such an array of
arrays. A common technique is to list the three arrays, one below the other, as illustrated
here:

3.6

2.9
0.5

-1.0

7.8
-0.l

4.2

11.5

-6.5

1.0

0.0
10.2

Because of this commonly used visualization, arrays of arrays are frequently referred to as
two-dimensional arrays.

Within an array of arrays, we can refer to the entire array by using its name (X, in our
example). We can also refer to X[l], which is the first array, consisting of the four numbers
3.6, -1.0, 4.2, and 1.0. X[2] is the second array and X[3] is the third.

It is also possible to refer to the individual numbers within the array of arrays. One
way to refer to the number 4.2, for example, is to realize that it is the third number in the
array X[l]. Thus, we can write

X[l] [3]

Similarly, X[2][4] refers to the fourth number in X[2], whose value is 0.0 in the previous
illustration.

Pascal provides an alternative way to say the same thing. Rather than writing X[l][3],
we can abbreviate this as X[l, 3]. The two notations mean exactly the same thing: the third
number in the array X[l]. Notice that, because of this meaning, both X[4, 2] and X[3,5]
would be illegal. The first says to take the second value of X[4], and there is no X[4]. The
second says to take the fifth value of X[3], and X[3] contains only four numbers.

An interpretation of X[I][J] or X[I, J], then, is as follows: the first subscript tells
which array to choose, and the second which number within that array. If we are picturing
the array in the table form described previously, the first subscript tells which row to choose,
and the second which number within that row.

To further illustrate these ideas, in the context of a meaningful application, we work
extensively with the following example. We wish to use an array to represent the monthly
rainfall iii inches for several cities of the United States. For each city in the list-Philadel-

532 MORE ON ARRAYS CHAP. 7

phia, New York, Atlanta, Los Angeles, and Chicago-we have a list of 12 real numbers
representing the rainfall for the 12 months. We wish to employ a data structure that allows
us to specify one of the cities and one of the months of the year and obtain the average
rainfall. Some alternative ways of defining the data structure are as follows:

1. Separate Declaration

type

Months

Amount
Cities

var

(January, February, March, April, May, June, July,
August, September, October, November, December);

array[Months] of real;
(Philadelphia, New_York, Washington_DC, Los_Angeles,
Chicago);

MonthlyRain: array[Cities] of Amount;

2. Joint Declaration

type

Months

Cities

var

(January, February, March, April, May, June, July,
August, September, October, November, December);

(Philadelphia, New_York, Washington_DC, Los_Angeles,
Chicago);

MonthlyRain: array[Cities] of array[Months] of real;

3. Abbreviated Joint Declaration

type

Months

Cities

var

(January, February, March, April, May, June, July,
August, September, October, November, December);

(Philadelphia, New_York, Washington_DC, Los_Angeles,
Chicago);

MonthlyRain: array[Cities, Months] of real;

In any of the variations for the declaration of the array, we can refer to November's
rainfall in Philadelphia by either of the expressions:

MonthlyRain[Philadelphia] [November]
MonthlyRain[Philadelphia, November]

Note that the second expression is an abbreviation of the first.
To put the ideas into perspective, let us look at some possible expressions and the data

types that correspond to them.

EXPRESSION

MonthlyRain[Philadelphia, November]

MonthlyRain[Philadelphia]

MonthlyRain[January]

MonthlyRain

7-1 MORE ON ARRAYS

DATA TYPE

Real

Array of real
Illegal construction

Array of arrays of real

533

We can perform activities appropriate to the type on each kind of expression. For
example, if we wished to make the rainfall figures for Chicago the same as that for Los
Angeles for the entire year, then we could execute the statement

MonthlyRain[Chicago] := MonthlyRain[Los_Angeles]

If we wished to make the amount of rainfall for the month of June for New York the same
as that of the month of May for Philadelphia, then we could execute the statement

MonthlyRain[New_York, June] := MonthlyRain[Philadelphia, May]

If we wish to make the monthly rainfall statistics for February the same as the rainfall
statistics for January, then we could use a variable City of type Cities and the loop:

for City := Philadelphia to Chicago do

MonthlyRain[City, February] := MonthlyRain[City, January]

Interactive Input and Output of Two-Dimensional Arrays

Suppose we wish to read in the rainfall values by having the user enter them one at a time.
As your own experiences have shown, it is important to indicate clearly to the user, by using
meaningful prompts, what input is required. We can expect most users to know that a
prompt such as "Month2" indicates February, but we cannot expect the user to know that
"City2" indicates New York. As we know, THINK allows us to print the constants of the
user-defined types Cities and Months in order to prompt the user. If we wish to read
in the values for the rainfall from the user by city and then by month for each city, we can
use the loops:

for City := Philadelphia to Chicago do
begin

Writeln('Enter rainfall for ', City, '· ',);

for Month := January to December do
begin

Write('': 5, Month,':');

Readln(MonthlyRain[City, Month])

end {for}

If we wish the user to enter the values for the rainfalls for each city, month by month,
we can use the nested loop:

for Month := January to December do

begin

Writeln('Enter rainfall for ', Month, '· ');
for City := Philadelphia to Chicago do

begin
Write(' • : 5, City, ': ');

Readln(MonthlyRain[City, Month])

end {for}
end; {for}

Now, suppose that we have obtained the rainfall values in either of the ways shown
previously and that we wish to print the values in a table that appears similar to the follow
ing:

534 MORE ON ARRAYS CHAP. 7

Philadelphia New York Atlanta Los Angeles Chicago
January 2.33 1.40 1.58 4.34 1.35
February 1.11 4.05 3.07 2.52 0. 71
March 2.81 3.60 0.31 4.25 4.48
April 3.94 3.91 1.05 1.29 2.73
May 3.40 4.07 1.11 2.13 4.42
June 1.56 2.42 3.39 0.41 1.23
July 4.34 0.67 1. 94 0.33 1.60
August 2.22 2.91 1. 03 0.88 4.83
September 4.37 4. 71 4.22 4.56 0.13
October 2.64 2.19 3.40 4.61 0.66
November 0.70 1. 02 2.86 3.30 2.61
December 3.02 0.56 3.37 3.95 2.90

THINK Pascal writes out enumerated types right justified. If we want to left justify or
center enumerated values when they are printed (as we do to print out the chart just shown),
we first convert the enumerated values to strings, and then use string functions and Write
field size designators to position the values as we desire.

To convert enumerated values to strings, we use the THINK function StringOf. The
parameters to StringOf are the same kind of expressions that are legal to use in a Write
statement, including field width and number-of-decimal-places designators. StringOf then
returns as a string what would have been the result of writing out those values. For instance:

StringOf('We are writing out a string and the real value•, 34.234: 7: 2,
•as a single string.')

will return the value:

We are writing out a string and the real value 34.23 as a single string.

as a (single) string.

In the following code fragment, we use the StringOf function to convert the enumer
ated values of types City and Month into strings so we can position them where we desire:

{*** Write out rainfall chart with cities centered over the columns and}
months left justified labelling each row}

Writeln;
Write(' • 10);
for City := Philadelphia to Chicago do

begin
CityName := StringOf(City);
Left := (13 - Length(CityName)) div 2;
Right := 13 - (Left+ Length(CityName));
Write(' '

end; {for}
Writeln;

7-1 MORE ON ARRAYS

Left, CityName, •• : Right)

535

for Month := January to December do

begin

MonthName := StringOf(Month);

Write{MonthName, ' ' : 10 - Length(MonthName));

for City := Philadelphia to Chicago do

Write(MonthlyRain[City, Month] : 10 : 2, ' ' :

Writeln

end; {for}

-----~ We use the string function Length to determine the number of charac~nth and
city name contains. We use a Write field designator to allow us to left justify the month
names. We compute Left and Right, the size of the left and right halves of a city name, to
allow us (using some arithmetic and Write field designators) to center that name. By using
Left and Right, we avoid accumulating any "off-by-one" errors that might occur if we had
used the expression

(13 - Length(CityName)) div 2

for both sides. This is another example of a small detail that makes the difference between
code that accomplishes the desired result and code that surprises us with its behavior.

Text File Input and Output of Two-Dimensional Arrays

If you run a program that interactively obtains data for a large array, you may come to the
conclusion that there must be a better way. It is possible to obtain data from a text file
instead of from a terminal. Perhaps the most common context is where the data have been
placed onto a text file hy another program or the same program at an earlier time. The
method also works for text files created using an editor.

The discussion given here applies only to numeric arrays. For arrays that involve
strings, it is difficult to write programs that deal with text files. (With numbers, it is easy to
tell where one ends and the next begins; with strings, this is much harder, and generally
requires the use of special characters to mark where one string stops and the next begins. We
discuss string manipulation in Chapter 8.)

Provided we take some care when we write the array, we can later read a numeric
array from the text file and expect its values to be the same as they were when we wrote the
array to the file.

We illustrate the methods by again referring to our rainfall array. The code given
before for printing the array can be used to place the same data into a text file by simply
declaring a file and placing its name in each Write and Writeln statement. This approach is
appropriate if people will be examining the text file. If we want to use the file as input to a
program at a later date, however, we would not want the row or column headings. The code
that follows would place one month's rainfall per line of the text file RainFile:

536

for Month := January to December do

begin

for City := Philadelphia to Chicago do
Write(RainFile, MonthlyRain[City, Month]

Writeln(RainFile)
end; {for}

10 2 ' ' 3);

MORE ON ARRAYS CHAP. 7

Similar code could be used to read the data from the file:

for Month := January to December do
begin

Notes

for City := Philadelphia to Chicago do
Read(RainFile, MonthlyRain[City, Month]);

Readln(RainFile)
end {for}

1. The spaces between the figures (written using ' ':3) are a good idea for user-read
output. They provide white space between the numbers. They are mandatory if the
data are to be read by another program (because they separate one number from the
next).

2. The Readln(RainFile) step in the last code segment is optional. When the Read runs
out of data on a line of a text file, it goes on to the next line automatically. The Readln
can be useful, however, to cause the rest of the input line to be skipped. And it is
useful in this example to illustrate how similar the code for reading data from a text
file is to that for writing it.

3. Note that the order of the loops is important. If we write the data by month, then by
city, we should read them in the same order.

Processing Two-Dimensional Arrays

We continue to refer to our rainfall example to consider some processing· activities typically
done with two-dimensional arrays. We consider three problems to illustrate the techniques
needed for common processing situations.

Find the Average Rainfall in Philadelphia. We use real variables, TotalRain
and AverageRain, whose values we can calculate with the following code fragment:

TotalRain := O;
for Month := January to December do

TotalRain := TotalRain + MonthlyRain[Philadelphia, Month];
AverageRain := TotalRain I 12

Note that in the loop, we use the expression

MonthlyRain[Philadelphia, Month]

in which the first subscript is a constant and the second subscript is a variable.

Find the Average Rainfall in January. We use the same two real variables as
in the previous example. The following code segment can be used to calculate the values:

TotalRain := O;
for City := Philadelphia to Chicago do

TotalRain := TotalRain + MonthlyRain[City, January];
AverageRain := TotalRain I 5

7-1 MORE ON ARRAYS 537

Whereas in the first example, the constant 12 is an obvious choice to use as the number of
months, the number 5 is not such an obvious choice. What if we add a city to the list? It
would be better to use a constant named NumberCities that would be set to 5 in this case.
When we add a city, we would change the named constant. Perhaps even better would be to
simply count the cities within the loop, as shown here:

TotalRain := O;

CityCount := O;

for City := Philadelphia to Chicago do

begin
TotalRain .- TotalRain + MonthlyRain[City, January];

CityCount .- CityCount + 1

end; {for}

AverageRain := TotalRain I CityCount;

Find the Average Rainfall Overall. We use the same two real variables. In this
case, we are being asked to average all the rainfall numbers in the array. It doesn't matter
what order is used as long as each number is involved once and only once. We choose one
of the two natural alternatives in the following code fragment:

TotalRain := O;
for City := Philadelphia to Chicago do

for Month := January to December do

TotalRain := TotalRain + MonthlyRain[City, Month];

AverageRain := TotalRain I 60;

Once again, it would be better to use the expression 12 * NumberCities, or to count the
number of cities, rather than using the constant 60 to caleulate the average.

Matrices

A matrix is a mathematical structure that consists of a rectangular table in which we refer to
the horizontal groupings as rows and the vertical groupings as columns.

A matrix can be written as, for example,

[3 2 1]
267

We usually refer to the size of the matrix by specifying the number of rows and columns, in
that order. This example is called a "2-by-3" matrix, which is frequently written as "2 X 3."
A natural way to represent a matrix within a Pascal program is as a two-dimensional array.
We could represent 2-by-3 matrices with integer entries by use of a declaration such as

var

A: array[l .. 2, 1 .. 3] of integer;

In a program that makes extensive use of such 2-by-3 matrices, we would want to declare a
global type such as

type

MatrixType array[l .. 2, 1 .. 3] of integer;

538 MORE ON ARRAYS CHAP. 7

By using the global type, we can pass variables as parameters, which would be a common
desire in any program dealing with matrices.

One operation that is often performed upon matrices of the same size is that of matrix
addition. When we add two matrices, we get a third matrix of the same size that is obtained
by adding the two elements in each of the positions of the matrices. For example,

[3 2 1] +[-5 4 o]=[-2 6 1]
267 1-16 3513

Let us design a procedure MatrixAdd to add two matrices to obtain a third. In order to
create a general-purpose matrix adder, we need to have available the number of rows and
columns of the matrices. Therefore, we will alter our declarations slightly to the following:

const

NumberRows 2;

NumberCols 3;

type

Element Type integer;
MatrixType array[l .. NumberRows, 1 .. NumberCols] of ElementType;

If A and B are two matrices that we wish to add to obtain matrix C, then the algorithm
is

loop Row going from 1 to NumberRows:
loop Col going from 1 to NumberCols:

set C[Row, Col] to A[Row, Col] + B[Row, Col]

The two variables Row and Col must be declared as integer variables in the program.
Translating the algorithm into Pascal code is quite straightforward, as we see by inspection
of the code in Figure 7-1.

procedure MatrixAdd(A, B: MatrixType; var C: MatrixType);

{Written by: XXXXXXXXXX XX/XX/XX}

{Purpose: To add two matrices}

{Parameters: A, B - input, the matrices to add}

C - output, the resulting sum}

{Globals used: NumberRows, NumberCols - constants for matrix size}

var
Row: integer;

Col: integer;

begin {MatrixAdd}

{Loop index through the rows}

{Loop index through the columns}

for Row := 1 to NumberRows do

for Col := 1 to NumberCols do
C[Row, Col] .- A[Row, Col] + B[Row, Col]

end; {MatrixAdd}

Figure 7-1 Adding two matrices.

7-1 MORE ON ARRAYS 539

procedure ScalarMult(M: ElementType; A: MatrixType; var C: MatrixType);

{Written by: XXXXXXXXX XX/XX/XX}
{Purpose: To scalar multiply M times A}
{Parameters: M - input, scalar to multiply by}

A - input, matrix to multiply}
C - output, resulting matrix}

{Globals used: NumberRows, NumberCols - constants for matrix size}

var
Row: integer; {Loop index through rows}
Col: integer; {Loop index through columns}

begin {ScalarMult}

for Row := 1 to NumberRows do
for Col := 1 to NumberCols do

C[Row, Col] ·- M * A[Row, Col]

end; {ScalarMult}

Figure 7-2 Scalar multiplication of a matrix.

Another standard activity for rectangular matrices is the operation of scalar multipli
cation. The operation consists of multiplying a specified number by each of the elements of
the matrix to produce another matrix of the same size. For example, if we multiply the
scalar 4 by the matrix

[3 21]
267

we obtain the resulting matrix

[12 8 4]
8 2428

Once again, we can write a procedure, ScalarMult, to accomplish the operation. The code
appears in Figure 7-2.

Matrix Multiplication

For matrix multiplication, the number of columns of the first matrix must be equal to the
number of rows of the second matrix. The most usual circumstance for this operation is for
square matrices, where the number of rows is equal to the number of columns. For such
matrices, we still would like to maintain the operations of addition and scalar multiplication,
so we would probably use a set of declarations such as

540

const
NumberRows 3;
NumberCols 3;

type
ElementType = integer;
MatrixType =array [1 .. NumberRows, 1 .. NumberCols] of ElementType;

MORE ON ARRAYS CHAP. 7

The algorithm for multiplying two matrices is a bit complicated. If we are multiplying two
matrices A and B to obtain matrix C, then we obtain the individual elements of C by the
computations

C[Row, Col) := O;
for Runner := 1 to NumberRows do

C[Row, Col) := C[Row, Col) + A[Row, Runner) * B[Runner, Col];

Because we must calculate C[Row, Col] for each row and column combination, the code
fragment for matrix multiplication is

for Row := 1 to NumberRows do
for Col := 1 to NumberCols do

begin
C[Row, Col] := O;
for Runner := 1 to NumberRows do

C[Row, Col] := C[Row, Col] + A[Row, Runner) * B[Runner,Col)
end; {for Col}

As always, the variable Runner must be declared as an integer in the program (most likely,
within a MatrixMult procedure, which you can write as an exercise).

Matrix Utilities

When we are dealing with operations on matrices, it is convenient to have a procedure that
"pretty prints" a matrix, horizontally centered on the screen if possible. We illustrate such a
routine for matrices with integer entries. We note that our procedure works for real matrices
with a small number (of important) changes. The procedure, named MatrixPrint, performs
many detailed computations to account for various combinations of numeric ranges, number
of columns, etc. The code for MatrixPrint appears in Figure 7-3.

Another convenience for testing matrix routines is a means of quickly generating test
matrices. For instance, the following fragment of code can be used to generate a random
matrix, A, with values from -5 to +5 :

for Row := 1 to NumberRows do
for Col := 1 to NumberCols do

A[Row, Coll := abs(Random mod 11) - 5

Using Part of an Array

As we have seen when working with arrays in Chapter 6, we frequently declare an array
with more room than is used. The same is true for two-dimensional arrays. For example, a
program that deals with matrices might very well have many different sizes of matrices at
any given time. This can be handled by declaring the type MatrixType to be the largest
expected size (say, 10 by 10), then keeping track of the size of each individual matrix
separately. This can be done using three variables, declared as in this example:

var
A: MatrixType;
ARows: integer;
ACols: integer;

7-1 MORE ON ARRAYS 541

procedure MatrixPrint (InMatrix: MatrixType);

{Written by: XXXXXXXXX XX/XX/XX}
{Purpose: To print a matrix}
{Parameters: InMatrix - input, the matrix to print}
{Globals used: NumberRows, NumberCols - constants for matrix size}

var

Width: integer;
MaxWidth: integer;
TotalWidth: integer;
Row: integer;

{Width of an element}
{Max width of element}
{Total width of matrix}
{Index for rows}
{Index for columns}
{String for numbers}

Col: integer;
TestString: string;
Entry: integer;
PerRow: integer;
ScreenRows: integer;
LeftMargin: integer;
ScrRow: integer;

{Loop index for current matrix element}
{Number per row}
{Number of rows on screen}
{Spaces on left of row}
{Loop index for row on screen}

begin {MatrixPrint}

{*** Establish the maximum width for an element}

MaxWidth : = 0;
TestString := '';
for Row := 1 to NumberRows do

for Col := 1 to NumberCols do
begin

TestString := Concat(TestString, StringOf(InMatrix[Row, Col] 1));
Width:= Length(TestString);
if Width > MaxWidth then

MaxWidth .- Width
end; {for}

{*** Decide on the number of elements per screen row}

TotalWidth := NumberCols * (MaxWidth + 1) - 1;
if TotalWidth <= 80 then

begin

PerRow := NumberCols;
LeftMargin .- (80 - TotalWidth) div 2;
ScreenRows .- 1

end
else

begin

PerRow := 80 div (MaxWidth + 1);
LeftMargin .- O;
ScreenRows .- NumberCols div PerRow + 1

end;

Figure7-3 Output of a matrix (continues next page).

542 MORE ON ARRAYS CHAP. 7

{*** Print the matrix}

Writeln;
for Row := 1 to NumberRows do

begin
if Lef tMargin > 0 then

Write(' ' : LeftMargin);
Col := l;
for ScrRow := 1 to ScreenRows do

begin
for Entry := 1 to PerRow do

if Col <= NumberCols then
begin

Write(InMatrix[Row, Coll
if Entry < PerRow then

Write (' ');
Col := Col + 1

end; {if}

Writeln
end; {for}

if TotalWidth mod 80 <> O then
Writeln

end; {for}

Writeln
end; {MatrixPrint}

begin
for i := 1 to NumberRows do

for j := 1 to NumberCols do
Matrix[i, j] := i + j;

MatrixPrint(Matrix);
end.

Figure 7-3 (continued)

MaxWidth);

Alternatively, we could define a record type consisting of three components: the matrix, the
number of rows, and the number of columns:

type
MatrixType = record

Data: array [1 .. 10, 1 .. 10] of ElementType;
NumberRows: integer;
NumberCols: integer

end;

No longer are NumberRows and NumberCols global constants that apply to all matrices.
Each matrix carries its own size. To illustrate, Figure 7-4 repeats the scalar multiplication
example u~ing the record data type.

7-1 MORE ON ARRAYS 543

procedure ScalarMult(M: ElementType; A: MatrixType; var C: MatrixType);

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To scalar multiply M times A}

{Parameters: M - input, scalar to multiply by}

. {

{

var

A - input, matrix to multiply}

C - output, resulting matrix}

Row: integer; {Loop index through rows}

Col: integer; {Loop index through columns}

begin {ScalarMult}

C := A;
with C do

begin

for Row := 1 to NumberRows do

for Col := 1 to NumberCols do

Data[Row,Col] .- M * Data[Row,Col]

end {with}

end; {ScalarMult}

Figure 7-4 Matrix as a record with size information.

More than Two Dimensions

You will not be surprised to learn that the notion of arrays of arrays can be generalized. For
example, we can declare an array of two-dimensional arrays to obtain a three-dimensional
array. One way to accomplish this is illustrated by this example:

var

A: array[l .. 3, 1 .. 4, 1 .. SJ of integer;

This might be called a 3 x 4 x 5 array; it can be conceptualized as consisting of three
separate 4-by-5 matrices. To access a single value from the array, we supply three sub
scripts. The first picks one of the three 4 x 5 matrices; the second chooses a row; and the
third a column. Because of this view of what the array is, we might choose to print the data
as three 4 x 5 arrays.

We do not pursue this subject at length. We should, however, point out that it can be
useful in the type of problem typified by our rainfall example. For example, we might
declare an array indexed on three subscripts, where the first chooses a year in the range
1980 to 1995, the second chooses the city, and the third chooses the month. With such a
declaration,

MonthlyRain[l990, Philadelphia, March]

signifies the rainfall in Philadelphia in March 1990.

DPT

All the defensive programming techniques we learned in connection with arrays in Chapter
6 apply to two-dimensional arrays as well. In addition, there are some tips that apply specif
ically to two-dimensional arrays.

544 MORE ON ARRAYS CHAP. 7

1. To access a single value from the array, two subscripts must be supplied. In a
matrix application, the first tells the row and the second the column. More generally, the
first chooses one of the arrays that make up the two-dimensional array and the second
chooses one value from that array.

What happens if we use only one subscript varies with the context. For example,
consider a matrix defined as

var
X: array[l .. 2, 1 .. 3] of integer;

We can visualize X as having this form:

[2-45]
-6 13

If we write X[l], this refers to the entire first row, an array of three integers. This may
or may not be what we intended. A reference to X[3], on the other hand, is illegal. There is
no way to refer to the columns of the matrix as separate entities.

Similarly, for our declaration

var
MonthlyRain: array[Cities, Months] of real;

we need to specify both the city and the month to get a single rainfall figure. A reference
such as MonthlyRain[Philadelphia] is legal and refers to the entire array of 12 rainfall
figures for Philadelphia. A reference such as MonthlyRain[January], on the other hand, is
illegal.

2. In addition to supplying two subscripts, we must supply them in the proper order.
When the two subscript types are different, as in the rainfall example, the compiler catches
this error. (This is an added advantage to choosing data types to match closely the problem
being solved.) If the compiler cannot detect the error, as in the case of matrix applications,
we access the wrong data item and get erroneous results.

3. Nested loops are frequently used to process the entire array in some fashion. The
outer loop control is based on one of the subscripts, and the inner loop control on the other.
For example, to process a matrix by rows, then by columns within each row, we would use
the row subscript as the outer loop index. To process the rainfall array by months, then by
city for each month, we would use the month subscript as the outer loop index. By thinking
about the order in which we wish to process the data, we can properly write the loops.

4. Although we can access an entire array or a row of an array, we cannot do input or
output with these structures. For example, with the declarations:

type
MatrixType = array[l .. 5, 1 .. 10] of integer;

var
A, B: MatrixType;

the statement

A[3] := B[5]

7-1 MORE ON ARRAYS 545

is legal (and assigns the values stored in the fifth row of B to the third row of A). However,
the statement

Writeln(A[3])

is illegal.

REVIEW

Terms and Concepts

matrix
matrix addition
matrix multiplication

Two-Dimensional Arrays

Examples of Declarations

1. type

scalar multiplication
square matrix
two-dimensional arrays

ArrayofArrays = array[l .. 3] of array[l .. 4] of real;

2. type

Rea1Array4 = array[l .. 4] of real;

ArrayofArrays = array[l .. 3] of Rea1Array4;

3. type

ArrayofArrays array[l .. 3, 1 .. 4] of real;

Processing and 110

1. A single row can be processed by letting the row subscript remain constant and the
column subscript vary.

2. A single column can be processed by letting the column subscript remain constant and
the row subscript vary.

3. An entire array can be processed by using nested loops, one controlled by varying the
row subscript and the other by varying the column subscript.

DPT

1. Generally need two subscripts when working with two-dimensional
arrays.

2. Don't interchange the subscripts.
3. Pay attention to which subscript is the outer loop control when writing

nested loops to process arrays.
4. Only do 1/0 using an array's elements.

546 MORE ON ARRAYS CHAP. 7

EXERCISES

1. For the two-dimensional array X shown, what is the size of the array? What is X[3][2]? What is
X[2, 4]? What is X[4, 2]?

[
1 4-3 2]

10-5 5 7
-60111

2. (a) Write a Pascal program to read rainfall statistics and display a table such as that shown in
this section.

(b) Write a Pascal program to read rainfall statistics and print a table such as that shown in this
section on your printer.

3. (a) Write a segment of Pascal code to print the rainfall statistics on a printer with 132 columns,
one city per line.

(b) Modify the segment to handle printers of smaller width by printing two lines for each city.
Label the columns appropriately.

4. Write segments of Pascal code to allow a person to query the rainfall statistics:
(a) Given a city name, print the total rainfall for that city.
(b) Given a month, show which city had the most rainfall during that month.
(c) Given a city and a month, print the rainfall.

5. Write code for the following, which deal with a 21-by-28 real matrix.
(a) Find the largest number in the entire matrix.
(b) Modify part (a) to also find which row and column contained the largest value. Assume

there are no ties.
(c) Modify part (b) to handle ties.
(d) Find the largest number in each row, placing the results in an array Large.
(e) Print the sum of each row.
(t) For row 5, find the column number of the first positive value (0 if none are positive).
(g) Exchange rows 14 and 19.
(h) Exchange columns 14 and 19.
(i) Sort the rows of the matrix so that the row with the largest sum is the first, and so on.
(j) Repeat part (i), but sort the columns instead.

6. Write the MatrixMult procedure for multiplying two square matrices, assuming global constants
for the array size.

7. Generalize the matrix addition procedure to handle matrices that are only partially used. Part of
the output should be a Valid variable set to true or false depending on whether or not the
operation was legal.
(a) Use separate variables for the sizes.
(b) Use records containing the size to represent the matrices.

8. Repeat Exercise 7 for the matrix multiplication procedure of Exercise 6. You should handle
matrices that are not necessarily square.

9. Write a MatrixRead procedure that prompts the user for input as shown:

Enter row 1:
element for column 1:
element for column 2:

EXERCISES 547

Enter row 2:
element for column 1:

10. Write a procedure similar to MatrixPrint that has another parameter specifying the number of
decimal places for real numbers.

11. Write a Pascal program that acts as a matrix calculator for 3-by-3 matrices. The program should
be menu-driven with the main menu:

Main Menu

1 Matrix Addition
2 Scalar Multiplication
3 Matrix Multiplication
4 Terminate Session

Selection?

When the user selects an operation, the program should ask the user to input the two matrices
(or the number and matrix in the case of scalar multiplication). The program should print the
user input and then print the answer. Ask the user to touch a key to return to the main menu.

12. A matrix is called sparse if most of the entries are zeros. Suppose that we wish to work with
10-by-10 sparse matrices with entries that are either O's or l's. One technique for accepting
input for such a matrix is to ask the user to specify the row and column pairs for each of the l's
in the matrix. Write a Pascal program to read a sparse matrix and print it using the MatrixPrint
procedure.

13. Modify the program of Exercise 12 so the nonzero entries in the matrix can be any integer
values.

14. Write a program to generate two random 10-by-10 matrices, multiply them, and print the
answer using the MatrixPrint procedure. How many individual additions are required in the
matrix multiplication operation?

15. In a square matrix, the main diagonal is the collection of elements that have their row equal to
their column. That is, the main diagonal of the matrix A is the collection of elements A[l,l],
A[2,2], etc.
(a) Write a function to calculate the sum of the elements on the main diagonal of a square

matrix.
(b) Write a function to find the largest number on the main diagonal.
(c) Write a function to find the average of the numbers that lie on or below the main diagonal,

that is, the average of those elements A[l,J], where I~ J.
(d) Write a function to find the sum of the numbers on or below the diagonal that runs from

the lower left to the upper right.

16. A square matrix A is symmetric if A[I, J] is equal to A[J, I] for each I and J from 1 to the
number of rows of the matrix.

548

(a) Write a Boolean function to determine if a given square matrix is symmetric.
(b) Generate 1000 random 2-by-2 matrices with elements ranging from 1 to 6 and calculate the

fraction of these that are symmetric. (The probability that such a square matrix is symmet
ric is the same as the probability of throwing doubles on a pair of dice; can you see why?)

MORE ON ARRAYS CHAP. 7

17. Write a program to declare a 3-by-4-by-5 integer array, fill it with random integers in the range
from -5 to 5, and print it as three 4-by-5 matrices.

18. Do the following for the rainfall array indexed by year, city, and month alluded to in the section
"More than Two Dimensions":
(a) Give declarations for the array.
(b) Write a procedure that, given a year and a city, prints the rainfall figures for that year and

city.
(c) Write a procedure that prompts the user for a month name and a city name, and prints the

history of rainfall for that month and city.
(d) Write a procedure that answers the question: For a given year, which cities had a total

rainfall of less than 20 inches?
(e) Write a procedure that answers the questions: For a given year, what was the highest

rainfall figure? What city had that highest figure? What month?
(t) Write a procedure that answers the question: Within the entire structure, what year, city,

and month combination had the highest rainfall figure?

19. Write programs for the following.
(a) Read a series of birthdays represented as a month number and a day number. Keep track of

how many people were born on each day. When the data have all been read, print a list of
all the days on which two or more persons were born. Hint: Use a two-dimensional array
of counters to count the birthdays.

(b) Repeat part (a), but do not read the data. Instead, generate 30 random birthdays using
Random.

(c) Place the process of part (b) in a loop to execute 1000 times, and find how many of those
1000 executions resulted in at least one duplicate birthday.

20. (a) Write a function to calculate the "number of combinations of n items taken k at a time,"
whose value is given by

n!
k!(n-k)!

(b) The k! in this formula "cancels with" the last k factors of then!, leaving

n(n - l)(n - 2) .. . (k+ 1)
(n - k)!

Revise your function to take advantage of this fact.
(c) If we have many of these to calculate in a program, we might want to set up an array

Comb declared as

array[0 .. 10,0 .. 10) of integer;

Comb[N, K] is the number of combinations of N items taken K at a time. It is known that
Comb[N, K] can be calculated by

if K = 0 or N = K then
Comb[N, K) .- 1

else
Cornb[N, K) ·- Cornb[N - 1, K - 1) + Cornb[N - 1, K]

Use this fact to fill the portion of the array on and below the main diagonal.

21. Write a program to play Conway's Game of Life. On an infinite checkerboard, each square has
eight neighbors:

EXERCISES 549

550

2 3

6 7 8

This game simulates growth and decay in a collection of interacting organisms, where cells
(squares) are born, survive, or die based on how "crowded" the conditions are. The cycle occurs
in "generations" by these rules (each square is either dead (empty) or alive):

Birth. If an empty (dead) square has exactly three live neighboring squares, it will be alive the
next generation.
Survival. If a live square has either two or three live neighbors, it will still be alive the next gen
eration.

Death. Any live square that does not survive dies either from overcrowding (more than three
neighbors) or isolation (less than two neighbors).

For example,

x x x

x x x x x

x x x x

x x

Input to the program includes an initial configuration and an indication of how many genera
tions to print. Output is one screen (or printed page) per generation (starting with the initial
configuration).

Because programming an infinite array is difficult (not to mention printing it), we restrict our
selves to a 20-by-78 array if using the display or a 50-by-50 array if using the printer. Use the
character"*" to denote live and"" (blank space) to denote dead. Treat the squares on the edges
as infertile regions where nothing is ever born.

MORE ON ARRAYS CHAP. 7

8 String Manipulation

OBJECTIVES

In this chapter, we present an in-depth discussion of string handling. Strings are the most
common form of nonnumeric data that programs process. By the end of this chapter, you
will be able to:

• define string variables

• process strings using the THINK Pascal string operators

• process strings using predefined and user-defined subprograms

• perform string input and output

8-1 STRING DATA AND OPERATIONS

String Data Types

We already know much about strings because we have been using them throughout the
book. Strings are ·similar to an array of type char in that they consist of a sequence of
characters that can be accessed by use of an index. However, strings form a distinct class of
data types with their own special properties. A string can consist of from 0 to 255 characters.
Note that, during the running of a program, any string that is created that is greater than 255
characters THINK truncates to 255 characters. A string variable has a maximum length that
is specified when it is declared. (Variables of the type string have a predefined length of
255.)

For example, if we wish to work with lines of text that are less than or equal to 80
characters in length, then we might declare a variable Line as follows:

551

var
Line: string[80];

Remember that the number 80 specifies the maximum number of characters that Line can
contain, not necessarily the actual number of characters that Line does contain. The actual
number of characters that Line contains at any time during the running of a program can
vary from 0 to 80, inclusive. /

When a string literal is assigned to a (string) variable, its length must noeexceed that
variable's size: If a string literal is assigned to a variable that is too small to contain it,
THINK issues a compile-time error message. However, assigning a string variable to a
string variable of smaller size results in the truncation of the value. The truncation does not
cause a run-time error, but it can produce unwanted results. Yet again, reading a string into a
variable that is too small to hold it does cause a run-time error. For example, suppose that
we wish to have the user enter his or her name into a variable for later use. A commonly
used maximum size for names is 20 characters; but there certainly are names that exceed
this length. If the user enters a name longer' than 20 characters and the accepting variable
has a maximum length of 20, then the run-time error 'String too large' results. (By the way,
we have found a string of length 50 is capable of holding most anyone's name.)

We can access the individual characters of a string by use of an index. If StringX is a
string variable, then StringX[l] is the first character of the string, StringX[2] is the second
character of the string, and so on. If we try to refer to a character position that is beyond the
declared length of a string and if range checking is on, then a run-time error results. What
happens if we try to refer to a character position that is within the declared length of the
string, but that is beyond the actual length of the string (and range checking is off)? A
run-time error does not occur when referring to such a position, but the reference is not
meaningful. We must be careful to avoid using character positions beyond the string's actual
length because of their meaningless nature. The best way to avoid trouble when dealing with
strings is to view them as higher-level data constructs and to use the string operations that
THINK Pascal provides.

Basic String Operations

We can use global string types in our programs so that we can more easily work with
procedures and functions that deal with strings. It is tempting to simply declare all string
variables within a program to be of type string, but we should resist the temptation because
of the possible waste of memory resources. Another common type that appears in many
programs using strings is String80, which can be defined by

type

String80 = string[80];

We can compare strings with a similar set of relational operators that are used for
other types of objects. String equality uses the symbol '='and operates on two strings, such
as

Stringl = String2

The result is true if the actual lengths of String 1 and String2 are the same and all the
characters of the two strings from the first up to the actual length are the same. The result is
false if the actual lengths of the strings are different or if any character position contains

552 STRING MANIPULATION CHAP. 8

different characters. In short, the contents of the two strings must be identical. Note that the
strings may be defined to be of different maximum lengths and still be compared.

If two strings are not equal, then the non-equality relation

Stringl <> String2

is true, otherwise it is false.
The other string relational operators depend on the collating sequence of the charac

ter set that underlies the implementation of Pascal (which for THINK Pascal is the ASCII
character set). The definition of"<" is as follows:

Stringl < String2 is true if either: 1

(a) in some character position, the character for Stringl precedes the character in the same
position of String2, with all characters prior to this character position matching; or

(b) every character of Stringl is equal to the character in the same position of String2 and
the actual length of String 1 is less than the actual length of String2.

The other relational operators(>,<=, and>=) have analogous definitions. Two impor
tant functions that we have used from time to time are Chr and Ord. Ord(character) gives
the position of the character in the collating sequence. Chr is the inverse of Ord. That is,
given a number n in the proper range (0 to 255), Chr(n) is the character in the nth position in
the collating sequence. Thus, for example, in the ASCII collating sequence, Ord('a') is 97,
and Chr(97) is 'a'.

Built-In String Functions

THINK Pascal provides standard string functions to aid in our programming with strings.
The first of these functions is the integer-valued function Length. The function is used in
the form

Length(string expression)

which returns the actual number of characters in the string expression that is provided as a
parameter. Suppose that the string variable X has the value 'abc'. Then the following table
of examples shows the nature of the Length function. (We use the symbol 1' to signify a
blank space to help you see the lengths more clearly.)

StringExpression

x
"
'a'

'aWW
'WaW

Length(StringExpression)

3
0
1

5
5

Notice that the presence of blank spaces in a string is detected by the Length function and
that blanks are counted in the same way as other characters. The Length function permits us
to access only the valid character positions in a string. For example, suppose that we wish to
print the contents of the string variable X vertically. The following fragment of code
accomplishes the task:

8-1 STRING DATA AND OPERATIONS 553

for I := 1 to Length(X) do
Writeln(X[I])

If we want to print the string "diagonally" down the screen, we could use the fragment

for I := 1 to Length(X) do
Writeln(•• : I, X[I])

Concat is the concatenation function; it has the form

Concat(list of string expressions)

and returns the string that results from concatenation of the parameters from left to right.
The string-valued function Copy is provided for extracting substrings of a string. The

function is used in the form

Copy(string expression, start position, number of characters)

and returns the substring that begins in the start position and continues for the number of
characters specified. Suppose that the string variable X has the value 'abc'. Then the follow
ing table of examples shows the nature of the function Copy:

Str Start Chars Copy(Str, Start, Chars)

x 2 2 'be'

Concat (X, X) 3 3 'cab'

x 1 3 'abc'

x 2 0 "
x 0 2 Run-time error

x 2 5 'be'

x 2 -1
x 4 1 "
x -1 3 Run-time error

We note that the starting position cannot be set to 0 or below or a run-time error
results. On the other hand, if the starting position is set to a value beyond the length of the
string (actual or declared), Copy will return the null string. If number of characters would
cause Copy to go beyond the actual length of the string, Copy returns a substring that
contains only the characters from the given starting position to the (actual) end of the string.

The integer-valued function Pos is provided to permit searching a string for a speci
fied substring. The function is used in the form

Pos(search string, object string)

and returns the starting position of the leftmost occurrence of the search string within the
object string. If there is no occurrence of the search string within the object string, then the
value of Pos is 0. Suppose that the string variable X has the value 'abc'. Then the following
table shows the nature of the Pos function:

554 STRING MANIPULATION CHAP. 8

Search Object Pos(Search, Object)

'b' x 2
'cb' x 0
'ca' Concat (X, X) 3
'abc' x 1
'b' Concat (X, X) 2

When the null string is the search string, and the object string is not null, Pos always returns
a I. Yet, if both the search and object strings are null, Pos returns 0.

THINK's Omit function returns a given string with a selected substring removed from
it. The function has the form

Omit(string, start position, number of characters)

Omit takes the passed string, removes "number of characters" characters from it, beginning
at the start position, and returns the remaining characters of the string as its result. If the
number of characters passed to Omit would cause the substring to be beyond the string, only
the characters up to the end of the string are removed. The following table shows some
results from the Omit function (where the string variable X has the value 'abc'):

Str Start Chars Omit(Str, Start, Chars)

x 2 1 'ac'

x 2 2 'a'

x 2 3 'a'

x 1 3 ''
x 2 0 'abc'

x 2 5 'a'

Omit does not modify its parameters; in particular, the passed string is left unchanged.
The Include function adds characters to a string and returns the revised string as its

result. The form of the function is:

Include(insertion string, original string, position)

Include adds the string into the original string beginning at the given position, and returns
this new string as its result. (Neither the insertion string nor the original string is changed.)
The following table shows Include's behavior. (Again X is a string variable with the value
'abc'.)

lnsStr Str Pos lnclude(lnsStr, Str, Pos)

'a' x 'aabc'

x x 'abcabc'

x x 3 'ababcc'

x 4 'abc'

'12' x 4 'abc12'

'12' x 0 '12abc'

8-1 STRING DATA AND OPERATIONS 555

As an example of the use of the string functions, suppose that we are dealing with
strings that may contain a substring between pairs of single quotes. Some examples of such
strings are

this string contains no substrings of interest

this string also doesn't contain any

this string 'certainly' does contain one

this string also contains 'one'

For our example, we assume that the strings contain at most one substring contained
between pairs of single quotes. The goal of the example is to read in a string, extract the
substring between the quotes (if any), and print the substring or a message indicating that no
substring was found. The substring extraction process is implemented as a procedure called
Extract with three parameters:

InString:

SubString:

NotFound:

(input) string sent in

type = string

(output) substring foUIJd

type = string

(output) indicates whether substring is found or not

type = Boolean

The steps of the procedure are as follows:

look for a single quote
if none found, set NotFound to true and quit; otherwise:

set Start to the position of the single quote
look for single quote in substring of the string which comes after Start
if none found, set NotFound to true and quit; otherwise:

set Finish to the position of the second single quote in the string
set SubString to the string between Start and Finish

set NotFound to false

We present the procedure Extract as part of the program Find in Figure 8-1. Note the
correspondence of parameters in the procedure call:

Extract(InString, Substring, NotFound)

In the case of the first parameter, we have a String80 variable associated with a string
variable. This is valid for value parameters. In the case of the second parameter, which is a
var parameter, both variables are of type string because their types must match exactly.

The following lists the tests that are shown in the sample input and output for Figure
8-1 . Notice that many of these are boundary tests.

1. A string with no substring to find

2. The null string

3. The null string between quotes

4. A substring at the beginning of the string

556 STRING MANIPULATION CHAP. 8

program Find;

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To read strings and locate substrings between}

{Procedures used: Instructions - to print instructions}
Extract - to extract substrings}

const

EndOfData

type

String80

var

'$END';

string[80];

InString: String80;

Substring: string;
NotFound: Boolean;

procedure Instructions;

begin {stub}

end;

{terminates input loop}

{string read in}

{substring found}

{indicator for success of search}

procedure Extract (InString: string; var Substring: string;
var NotFound: Boolean);

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To find a substring between two single quotes}

{Parameters: InString - input, the string to look in}

Substring - output, the substring found (if any)}
NotFound - output, true means no substring found}

{Functions used: Pos - to locate the single quotes}
Copy - to get substrings}

const

Quote

var

111 I;

Start: integer;

Finish: integer;

Rest: string;

{single quote character}

{location of first single quote}
{location of second single quote}

{string after first single quote}

begin {Extract}

{*** Find first single quote, if any}

Figure 8-1

Start .- Pos(Quote, InString);

if Start = 0 then
begin

NotFound := true;

Substring .-
end

else

Finding quoted substrings (continues next page).

8-1 STRING DATA AND OPERATIONS 557

{*** Find second single quote, if any}

begin
Rest := Copy(InString, Start+ l, Length(InString) - Start);
Finish:= Pos(Quote, Rest);
if Finish = 0 then

begin
NotFound := true;
Substring .-

end
else

{*** Establish substring}

begin
Substring:= Copy(Rest, l, Finish - l);
NotFound .- false

end
end

end; {Extract}

begin {Find}

{*** Print Instructions}

Instructions;

{*** Read and process strings}

repeat
Write('Enter the string ($END to quit):');
Readln(InString);
if InString <> EndOfData then

begin
Extract(InString, Substring, NotFound);
if NotFound then

Writeln('*** No substring found.')
else

Writeln('Substring found: ->', Substring, '<-')

end {if}

until InString = EndOfData

{Terminate program}

end.

Figure 8-1 (continues next page)

5. A substring at the end of the string

6. A substring in the middle of the string

7. A substring that covers the whole string

8. A string with only one quote

558 STRING MANIPULATION CHAP. 8

SAMPLE INPUT AND OUTPUT

Enter the string ($END to quit):there is none here
*** No substring found.
Enter the string ($END to quit) :there is 'one' here
Substring found: ->one<-
Enter the string ($END to quit) :there is 'one ' here
Substring found: ->one <-
Enter the string ($END to quit) :i don't see one
*** No substring found.
Enter the string ($END to quit) :'tis not here
*** No substring found.
Enter the string ($END to quit) :not here'
*** No substring found.
Enter the string ($END to quit):'
*** No substring found.
Enter the string ($END to quit):''
Substring found: -><-
Enter the string ($END to quit):
*** No substring found.
Enter the string ($END to quit) :'first' thing
Substring found: ->first<-
Enter the string ($END to quit) :'only'
Substring found: ->only<-
Enter the string ($END to quit}:and 'last'
Substring found: ->last<-
Enter the string ($END to quit):$END
Find program terminating.

Figure 8-1 (continued)

9. A string consisting of only one quote

10. A string that has only one quote at the beginning

11. A string that has only one quote at the end

12. A string that has only one quote in the middle

Built-In String Procedures

THINK Pascal also provides two procedures that deal with strings. The first of these proce
dures is Delete, which allows for the deletion of a substring of a specified string. The use of
the procedure has the form

Delete(string variable, start position, number of characters)

This procedure has the side effect of altering the value of the string variable that is supplied
as the first parameter. Suppose that the string variable X has the value 'abc'. Then the
following table shows the nature of the procedure Delete:

8-1 STRING DATA AND OPERATIONS 559

Str Start Chars Str after Delete(Stg, Start, Chars)

x 2 1 'ac'

x 2 2 'a'

x 2 3 'a'

x 1 3 "
x 2 0 'abe'

x 2 5 'a'

Note that you can specify more characters than are remaining in the string after the start
position, as is shown in the example Delete(X, 2, 5), which causes X to have the value 'a'.

The procedure Insert allows a substring to be inserted into a string. The procedure is
used in the form

Insert(substring expression, string variable, start position)

and has the effect of changing the value of the string variable by inserting the substring
beginning at the start position. Suppose that the string variable X has the value 'abe'. Then
the following table shows the nature of the procedure Insert:

SubStr Str Start Str after lnsert(SubStr, Str, Start)

'd' x 2 'adbe'

'd' x 4 'abed'

'd' x 5 'abed'

'de' x 1 'deabc'

We note that you can specify a starting position that is beyond the end of the string, but no
matter what number you specify, you get the substring concatenated with the string as the
result.

As an example of the string procedures, we write a program that reads a string and
replaces any occurrence of the word ''thing" with the two words "general object." We
consider a word to have on both sides a nonnumeric, nonalphabetic character. Thus, in the
following strings, we find "thing" as a word:

The word "thing" is here.

The music is the thing.

We have the thing, and it has us.
The thing's attributes are right.

In the middle of the thing

thing is one of the

In the following strings, we do not find ''thing" as a word:

Something is wrong.

Things go better without bugs.

To make our design simpler, we assume that there is only one occurrence of the substring
"thing" within the string. We use a Boolean function Break to determine if the characters to

560 STRING MANIPULATION CHAP. 8

the left and right of the substring "thing" are nonnumeric and nonalphabetic. We use the
procedure ChangeThing to do the replacement of "thing" by "general object." The proce
dure has two parameters:

InString: (input) string for replacement

OutString: (output) string with replacements made

The steps for the procedure ChangeThing are as follows:

set OutString to InString
set Start to position of ''thing" in OutString
if Start is not zero and if characters to left and right of "thing" are both

break characters, then:
delete "thing"
insert "general object" into OutString at Start

If you think about these steps, you can uncover a subtle flaw in the logic. If the word
"thing" occurs at the extreme left of InString, then there is no character to its left to be a
break character. A similar problem arises if the word is at the extreme right. Instead of
handling these situations as special cases, we take another approach that is frequently useful:
We add an extra blank at the front and rear of our string when we start, and then take them
off when we are done. Now the word ''thing" cannot be at either the extreme left or the
extreme right.We show the code for ChangeThing in the program of Figure 8-2.

Note. The algorithm condition

if Start is not zero and if characters to left and right of "thing"

is changed to

if Start is not zero then
if characters to left and right of "thing"

This avoids examining OutString[Start - 1] when Start is 0, which would generate a range
check error.

We make the program of Figure 8-2 more useful in the exercises.

String-to-Numeric Conversions

SANE. The Standard Apple Numeric Environment-SANE-contains several con
stant, type, and module declarations, most of which are designed to allow a programmer to
perform very precise computations involving real numbers. It also contains other routines
serving a variety of purposes, including ones that convert strings to numbers and numbers to
strings, our concern in this section. A complete description of SANE's workings and features
is beyond the scope of this text; see the references for sources that discuss SANE in detail.

To THINK Pascal, SANE appears as a unit. Units (roughly speaking) are pieces of
code set up for programmers to use as part of their programs. They usually contain state-

8-1 STRING DATA AND OPERATIONS 561

function Break (Character: char) : Boolean;

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To determine if a character is a break character or not}

('0' to '9', 'a' to 'z', and 'a' to 'Z' are not break}

characters, all others are) }

{Parameters: Character - input, the character to test}

begin {Break}

Break := ((Character< '0') or (Character> '9')) and
((Character< 'a') or (Character> 'z')) and
((Character< 'A') or (Character> 'Z'))

end; {Break}

procedure ChangeThing (InString: string; var OutString: string);

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To replace the first occurrence of the word "thing• with}

{ the phrase "general object"}

{Parameters: InString - input, the string to work with}
Outstring - output, the resulting string with the}

replacements made}
{Procedures used: Delete - to delete "thing• }

Insert - to insert "general object"}

{Functions used: Pos - to locate a substring }

Break - to determine break characters}

var

Start: integer; {location of "thing"}

begin {ChangeThing}

{*** Initialize; put blanks at front and rear to avoid special cases}

OutString := Concat(' ', InString, ' ');

{*** Replace "thing• if there}

Start := Pos('thing', OutString);

if (Start <> 0) then {if 'thing' is there}

if (Break(OutString[Start - 1])) and (Break(OutString[Start + 5]))
then
begin

{check for breaks}

Delete(OutString, Start, 5); {replace 'thing'}

Insert('general object', OutString, Start)
end; {if}

{*** Remove the extra blanks at front and rear}

OutString := Copy(OutString, 2, Length(OutString) - 1)

end; {ChangeThing}

Figure 8-2 Changing substrings.

562 STRING MANIPULATION CHAP. 8

ments that perform common tasks, or statements that reference the large number of pre
defined variables and procedures Apple built directly into the Macintosh hardware. There
are many predefined units, of which SANE is one. (We can also define units for our own or
other's use. Since the topic is fairly advanced, we have placed its discussion in Appendix
A.)

To incorporate one or more units into a program, we include the statement

uses

list of unit names

immediately after the program statement that begins the THINK Pascal program. So to use
SANE in our program, we place

uses

SANE

after the program header.
In THINK, the project must also be set up to use SANE. To make use of the SANE

unit, you must add the files SANELib.lib and SANE.p to your project. (Both of these files
are supplied with THINK Pascal.) SANELib.lib should appear after the Interface.lib file in
the project file list. After SANELib.lib should come SANE.p, then your program file. (For
certain Macintosh computers, you may need to use SANELib88 l .lib instead of SANEL
ib.lib; see the THINK Pascal User Manual for details.)

Note. You might wonder why we are going to the trouble of using SANE to do
string to numeric conversions, when there is a THINK procedure (called ReadString) that
can also perform them.

If we use ReadString to convert a string to a number, a run-time error will occur if the
string does not "look like" a number (for example, 'X123.5'). This would cause our pro
gram to bomb whenever the user made a data entry error. It also prevents us from using a
special string value to indicate that data entry is complete (as we will want to do later in this
section).

SANE, though, has methods to identify strings that cannot be converted properly to
numbers. Thus the programmer can catch data entry errors and use special string values
without the program bombing.

Numeric-to-String Conversion. The SANE procedure Num2Str allows the
conversion of a numeric expression into a string. The procedure is called with

Num2Str(format, numeric expression, string variable)

and has the effect of converting the numeric value into its string equivalent and placing it
into the string variable. The string equivalent might take on several different forms, depend
ing upon how the format parameter is set. (For instance, the number 10 could be converted
to the string "10", "10.0", "l.Oe+l", and so on. All reflect the number 10, but are strings of
characters rather than the numeric quantity 10.)

Some of the types of Num2Str's parameters are a bit unusual. The numeric expression
can be any numeric type. The string variable must be of type DecStr, a SANE-defined type

8-1 STRING DATA AND OPERATIONS 563

declared to be a string of 255 characters. The format parameter must be of type DecForm.
DecForm is a record type:

DecForm = record

Style: (FloatDecimal, FixedDecimal);

Digits: integer

end;

Style has two values. FloatDecimal causes the string to look like a floating point number (a
number with an exponent); FixedDecimal makes the string have the form of a fixed-point
number (a number without an exponent). If Style is FixedDecimal, Digits defines the num
ber of digits to appear after the decimal point; if Style is FloatDecimal, it is the number of
significant digits.

There are many conditions that govern exactly how a given number appears, but
examining the following table indicates Num2Str's nature more easily than memorizing a
long series of rules.

NUMBER STYLE DIGITS STRING RESULT

1 FixedDecimal 0 1

1 FixedDecimal 3 1.000

0 FixedDecimal 4 0.0000

10.25 FixedDecimal 0 10

10.25 FixedDecimal 1 10.2

10.25 FixedDecimal 2 10.25

10.25 FixedDecimal 3 10.250

-3.42 FixedDecimal 0 -3

-3.42 FixedDecimal 2 -3.42

--0.234 FixedDecimal 5 --0.23400

-8 FixedDecimal 7 -8.0000000

1 FloatDecimal 0 le+O

1 FloatDecimal 3 l.OOe+O

0 FloatDecimal 4 O.OOOe+O

10.25 FloatDecimal 1 le+l

10.25 FloatDecimal 2 l.Oe+l

10.25 FloatDecimal 3 l.02e+l

10.25 FloatDecimal 4 l.025e+l

-3.42 FloatDecimal 1 -3e+O

-3.42 FloatDecimal 3 -3.42e+O

--0.234 FloatDecimal 5 -2.3400e-l

-8 FloatDecimal 7 -8.000000e+O

String-to-Numeric Conversion. The SANE function Str2Num allows us to
convert a string that represents a numeric expression into a number. The use of the function
has the form

564 STRING MANIPULATION CHAP. 8

Str2Num(string to convert)

and returns the value represented by the string. The returned value is of type extended,
which is a real number with about 19 decimal digits of accuracy. (Type real numbers are
accurate to about seven digits to the right of the decimal point.) All SANE arithmetic
computations (and, in fact, many internal THINK arithmetic computations) are performed
using type extended variables. TIDNK allows an extended type value to be placed into a
type real variable (but some accuracy may be lost).

If the string does not represent a numeric expression, Str2Num returns a value called
NaN(017) - Not a Number for reason 17 (an invalid conversion). NaN values cannot be
printed, but can be detected using "class" functions. There are four class functions; which
one is used depends upon the type of the variable being checked. Since we use real variables
for our work here, we employ the ClassReal function.

ClassReal returns several values; the one of interest here is the value QNaN. If Class
Real returns QNaN, then we know the real number does not contain a legitimate numeric
value. ClassReal is commonly used in a Boolean expression to see if an invalid number is
present; for example:

Str .- '23.45X7';

Result := Str2Num(Str);

if ClassReal(Result) = QNaN then
Writeln (Str, ' does not represent a real number')

The following table illustrates Str2Num's behavior:

STRING TO CONVERT RESULTING NUMBER

' 1 ' NaN(Ol7)
' 1' 1.0
'la' NaN(017)

' ' NaN(017)

'3+4' NaN(017)
'-3.4+' NaN(017)

'-3.4' -3.4
'23' 23.0

' -23' -23.0
'2E2' 200.0
'3e-3' 0.003
'34' 34

In general, the strings to convert can "look like" integers or reals, with the latter in
either fixed- or floating-point format. The string may contain leading blanks or tabs, but
trailing blanks (or any other nonnumeric character) result in a NaN value.

8-1 STRING DATA AND OPERATIONS 565

An Example. As an example of using Str2Num and Num2Str, suppose that we
want to have the user input real numbers representing profits and losses in a loop and that
we don't wish to designate any particular real number as a terminating value. We can read
the user input as a string, check to see if it is the terminating value ($END, in our example),
and convert the string to a number using the Str2Num procedure, if appropriate. In our
example, we are to add the numbers that are input and print the total. If the total is positive,
we are to print

Profit: $total

If the total is negative, we are to print

Loss: ($total)

We could accomplish this form of output with two Writeln statements, but for the
purpose of the example, we use the Num2Str procedure to build the output line and then
print it. The example program is shown as Figure 8-3.

Note. Even with SANE's help, we can still input values that are not numbers, but
that the previous program will treat as numbers. For example, the string "45 ... 5" will be
converted to the number 45 and 123,456 will be converted to 123. Fully "bulletproofing"
input is a difficult task, one that requires us to become conversant with the Macintosh
toolbox routines-which is well beyond the scope of this text. We will do what bulletproof
ing we can using the routines we have readily available in THINK.

DPT

1. Whenever we access a character of a string by indexing as in an array, we must be
sure that the index is not out of range. This means it may not be less than 1 and it may not
exceed the declared maximum length of the string. Conditions such as "(I = 0) or (Str[I] =
")" are suspect, for example. It will often not cause a run-time error if you index to a
character position past the length of a string (but not past the declared maximum size of the
string), but the character at that position has no meaning for your program. Use the Length
function to keep your indices in the proper range.

2. Be careful of unwanted truncation when using string-assignment statements. You
can anticipate truncation by use of the Length function.

3. In THINK Pascal, position 0 of a string contains the length of the string in charac
ter form. You should avoid the use of position 0: you can determine the length of a string by
using the Length function, and you can change the length of a string by concatenation or
substring extraction via the Copy function.

4. In one of the examples in this section, we used the statement

Writeln(' ':I, X[I])

in order to print the Ith character of the string in X in increasing columns. You may have
noted that this prints the Ith character of X in column I + 1. It may seem obvious that we can
print the Ith character of X in the Ith column with the statement

566 STRING MANIPULATION CHAP. 8

program ProfitAndLoss;

{Written by: XXXXXXXXX XX/XX/XX}
{Purpose: To read profit and loss figures for a period and print}

the total}

{Procedures used: Instructions - to print instructions}

ReadString - to convert a string to a number}

StringOf - to convert a number to a string}

uses
SANE;

const

EndOfData

type

String80

var

{use SANE for string <-> number conversions}

'$END';

string[80];

{terminates input loop}

{string read in}
{string to write}

{total profit or loss}

{input profit or loss}

{total in string form}

InString: string;
OutString: string;

Total: real;

Amount: real;

StrTotal: DecStr;

Format: DecForm; {format for numeric equivalent of string}

procedure Instructions;
begin {stub}

end;

begin {ProfitAndLoss}

{*** Print Instructions and initialize}

Instructions;

Total := 0;
{fixed point} Format.Style := FixedDecimal;

Format.Digits := 2; (2 digits to right of decimal}

{*** Read and total profit and loss figures}

repeat
Write('Enter the amount ($END to quit}: ');

Readln(InString);

if InString <> EndOfData then
begin

:z;~peat

Amount := Str2Num(InString);

if ClassReal(Amount} = QNaN then
begin

Write('*** Invalid amount, redo ($END to quit): ');

Readln(InString)

Figure 8-3

end {if}

until (ClassReal(Amount) <> QNaN} or (InString

end; {if}

Output of monetary values (continues next page).

8-1 STRING DATA AND OPERATIONS

EndOfData)

567

if InString <> EndOfData then

Total := Total + Amount

until InString = EndOfData;

{*** Set up output}

if Total < 0 then
begin

Num2Str(Format, -Total, StrTotal);

OutString .- Concat('Loss: ($ ', StrTotal, ')')

end

else
begin

Num2Str(Format, Total, StrTotal);

OutString .- Concat('Profit: $ ' StrTotal)

end; {if}

{*** Print the output}

Writeln;

Writeln(OutString)

{*** Terminate}

end.

SAMPLE INPUT AND OUTPUT

First run:

Enter the amount ($END to quit) :2.34

Enter the amount ($END to quit) :45.6

Enter the amount ($END to quit) :-23.4

Enter the amount ($END to quit) :$end

***invalid amount, redo ($END to quit): $END

Profit: $ 24.54

Second run:

Enter the amount ($END to quit) :5.67
Enter the amount ($END to quit) :/34

*** invalid amount, redo ($END to quit): -12.34

Enter the amount ($END to quit):5.6

Enter the amount ($END to quit) :-99.9

Enter the amount ($END to quit) :$END

Loss: ($ 100.97)

Figure 8-3 (continued)

568 STRING MANIPULATION CHAP. 8

Writeln(' ' : X[I] - 1)

However, note that the idea fails when I is equal to 1, because the statement

Writeln(' ' : 0)

prints one blank. These boundary value problems are a constant plague to programmers.

5. We cannot use anything but a string variable for the first parameter of the proce
dure Delete and the second parameter of the procedure Insert. We cannot use string con
stants or string expressions such as X + Y. The compiler detects violations of this rule.

6. Do not put quotes around the numeric expressions that you use for the Num2Str
and Str2Num routines.

7. When we pass a string as a value parameter, we can mix the string types of the
formal and actual parameters. We can produce more general purpose subprograms by using
the string type for all value parameters. The situation is different for var parameters. In this
case, the formal and actual parameters must have the same type. Thus, if we wish to pro
duce more general-purpose subprograms, we must declare both formal and actual var
parameters to be of type string.

Testing

When we are testing programs and subprograms that use string data, we should include the
following in our test cases:

REVIEW

1. The null string should always be tested because it is a boundary value for string data.

2. Strings of maximum length should be tested because they are boundary values for the
program's data.

3. When the program builds strings by concatenation or insertion of substrings, stress
testing should be performed to attempt to force a string to be constructed of more than
255 characters.

Terms and Concepts
Co neat
Copy
Delete
extended
Insert
Length
Num2Str

Pascal Syntax

Pos
stress testing
string equality (=)
other string relational operators (<>. <, >, <=, >=)
Str2Num
Unit

General String Manipulation

1. Indexing. We can refer to the Ith character of the string variable X with the char
expression

REVIEW 569

X[I]

2. Relational Operators. For string expressions El and E2, we can form the Boolean
expression

El relational operator E2

where the relational operators are =, <>, <, >, <=, and >=.
3. Chr and Ord. Chr returns a character's position in the (ASCII) collating sequence; Ord

does the opposite.

4. Length Function. For a string expression El, we can determine the number of charac
ters in El with the integer expression

Length(El)

5. Concat Function. For string expressions El, E2, ... , En, we can form the concatena
tion of the strings with the string expression

Concat(El, E2, ... , En)

6. Copy Function. For the string expression El, we can form the substring that begins at
the Ith character of El and that consists of N characters with the string expression

Copy(El, I, N)

7. Pos Function. For the string expressions El and E2, we can find the starting position
of the leftmost occurrence of El as a substring of E2 with the integer expression

Pos(El, E2)

The value returned is 0 if there is no occurrence of El as a substring of E2.

8. Omit Function. For a string variable or literal X, we can remove N characters from the
string starting at position I, and return the remaining characters of the string with the
string expression

Omit(X, I, N)

9. Include Function. For a string variable or literal X, we can insert a string S into X at
position I, and return the modified string with the string expression

Include (S, X, I)

10. Delete Procedure. For a string variable X, we can delete N characters from X, begin
ning with the character in position I, by use of the procedure invocation

Delete(X, I, N)

11. Insert Procedure. For a string variable X, we can insert the value of the string expres
sion El, beginning at position I, by use of the procedure invocation

Insert(El, x, I)

SANE Routines

1. Num2Str Procedure. For an extended, real or integer numeric expression El, we can
convert El into the DecStr type string variable X with the format specified by F by
use of the procedure invocation

Num2Str(F, El, X)

570 STRING MANIPULATION CHAP. 8

2. Str2Num Function. For a string expression El that is a representation of a number, we
can obtain the numeric value of El with the type extended expression

Str2Num(El)

DPT

1. Keep the lengths of all string expressions to within 255 characters.
2. Do not index beyond the length of a string.
3. Watch for unwanted truncation.
4. Avoid position 0 of a string.
5. Writeln(' ':O) prints one space.
6. The first parameter of Delete and the second of Insert must be a string

variable.
7. Do not use quotes around numeric expressions.
8. Do not mix types for string var parameters.

Testing

1. Test the null string.

2. Test strings of maximum length.

3. Try to push against the 255-character barrier.

EXERCISES

1. Define a string variable Stringl to have maximum length 10. Assign the value 'banana' to
Stringl and then assign the value 'grape' to Stringl. Print String1[6]. Experiment some more
with direct changes to a string's characters. Is this a good idea?

2. Write careful, detailed definitions for the string comparisons '>', '<=', and '>='.
3. The purpose of this exercise is to illustrate the danger of altering position 0 of a string. Write a

Pascal program to execute the following lines of code. Run it with range-checking on and with
it off.

var
X: string[80];

X :='This string is valid';
Writeln (X) ;
X := 'A mess it is in';
writeln(X);
X[O] := Chr(20);

Writeln(X);

4. Suppose X has the value 'abcde' at the beginning of each of the parts of this exercise. State the
value of X after the statement of each part has been executed.
(a) x : = 'yz' + x

EXERCISES 571

(b) if X = 'abcde' then
X : = •surprise'

else

X := •no surprise'

(c) X:=Concat('a', 'b'. 'de')
(d) X := Copy(X, 2, 3)

(e) Delete (X, 2, 3)

(f) Insert (•yz', X, 3)

(g) X :=Include ('a', X, 2)

(h) X :=Omit (X, 2, 2)

(i) Str2Num (Pos ('cd ', X))
(j) Str2Num(X)

5. Evaluate the following:
(a) Length('ab'+ 'cd' +' ')

(b) Pos ('de', 'ad'+ •ef')
(c) Pos ('ce' , 'abcde')

(d) Copy ('some' +'where', 4, 3)

(e) Copy ('abcde' , 4, 5)

6. Suppose that X is a string variable. Is it always true that the length of Copy(X, 4, 6) is equal to
6? Explain.

7. Suppose that Xis a string variable of length 4 and that Y is a string expression of length 5. Is it
always true that, after execution of Insert(Y, X, 2), X has a length of 9? Explain.

8. Modify the program of Figure 8-1 to allow multiple substrings between pairs of quotes on a
single line.

9. Modify the program of Figure 8-2 to allow multiple instances of the word "thing" to appear on
a single line.

10. Modify the program of Figure 8-2 to accept as user inputs the word to find (''thing" in the
example) and the phrase to substitute ("general object" in the example).

11. Modify the program of Figure 8-3 to allow the user to input amounts using an optional dollar
sign.

12. Write a program that accepts as input the user's name and prints a continuous "snake" of the
user's name on the screen. For example, for the user named Jane, we would begin with

J

a
n

e

J

a
n

e

J

a
n

e

572 STRING MANIPULATION CHAP. 8

13. Write procedures or functions for the following:
(a) Given a name and an array of names, print all the names in the array that match the first

five characters of the given name.
(b) Determine whether or not an array of strings adheres to this rule: There can be no non-

empty entries after the first one that is empty.
(c) Given an array of strings, delete any duplicates by changing them to empty strings.
(d) Given an array of strings, move all empty strings (if any) to the end of the array.
(e) Find out how many blanks are in a given string.

14. Write procedures or functions for the following:
(a) Given a string containing a name such as

Johnson, Jose~h Lawrence

obtain three strings consisting of the last, first, and middle names. Assume valid input.

(b) Create a magazine account number, given the last name, initials, city, and expiration date
in the form mrnlyy. The account number is in a form such as

CRAJW-DEC89-SP

This consists of
(1) the first three letters of last name
(2) the initials
(3) a dash
(4) the month of expiration (JAN, FEB, etc.)
(5) the year of expiration
(6) a dash
(7) the first and fourth characters of city

The ''#" character is used if the last name is short (e.g., "Ho" or "Ng") or the initials are
missing (e.g., no middle initial).

(c) Given a string Strand an integer N, place N blanks into Str beginning at position N.

15. (a) Show how to use Pos to convert a given character 'O', 'l ', etc. to its numeric value. Hint:
Consider the string '0123456789'.

(b) In base 16, the "digits" are 'O' through '9' and 'A' through 'F', where 'A' represents 10, 'B'
represents 11, and so on. Use Posto convert a given base-16 "digit" to its numeric value.

16. In this exercise, you will write a program to parse input strings. The input to the program
consists of a text file that has lines of six different types. The file should be considered as a file
of commands for drawing a primitive text picture on the screen. The types of commands are
identified by the first character on the line. The types are as follows:
D (Duplicate):

a single character follows the D

a positive integer follows the character

examples:

Dx20

D#65

meaning:
print the specified character consecutively the specified number of times

EXERCISES 573

574

C (Center):

a string follows the C examples:

CA Bar Graph

CFigure3-4

meaning:

print the centered string on a new line, as the entire line

N (Newline):

either a positive integer or nothing follows the N

example:

N

meaning:

go to a new line

example:

N2

meaning:

go to a new line twice

P (Print):

a string follows the P

examples:

PLoss:

PMonth

meaning:

print the string without going to a new line

E (Erase):

nothing follows the E

example:

E

meaning:

clear the screen

H (Halt):

nothing follows the H

example:

H

STRING MANIPULATION CHAP. 8

meaning:

halt the program

Your program should read the file one line at a time and execute the command contained on the
line. For example, suppose that your program reads the following file (we use V to represent a
blank):

E

CAverage Earnings
N

Pl984:W

D$7

N

Pl985:W

D$3

N

P1986:W

D$5
N2
CTable 3.1
H

The program should produce output similar to

Average Earnings

1984: $$$$$$$

1985: $$$

1986: $$$$$

Table 3.1

8-2 STRING PROCESSING

In this section, we discuss various aspects of string processing. We begin by developing
some extensions to the basic string operations that are provided as built-in features of
THINK Pascal. We continue with a discussion of character-conversion techniques and pro
vide some useful illustrations of these methods. We complete the section with a presentation
of a package for dealing with arbitrarily long string data (allowing us to break the 255-char
acter barrier).

Some Additional String Tools

The first additional tool that we discuss is the user-defined string function Trim, which
deletes trailing blanks from a string. The function accepts a string of any type as a value
parameter and returns the trimmed string as its value. Some examples of the behavior of the
function Trim are shown in the following table, where we have used 1i to signify a blank in
order to clarify the action.

8-2 STRING PROCESSING 575

lnString Trim(lnString)

'abcWlf 'abc'

·~abc' ·~abc'

'0'Wli' "
'al1b' 'atdb'

We note that Trim only deletes blanks that are on the right of the string. It does not deal with
embedded blanks or blanks on the left. If the input string consists of all blanks, then the
value of Trim is the null string.

The result type of the function and of its single-value parameter is string. The function
uses the built-in Length and Copy functions to produce its value. The header for the Trim
function is

function Trim(InString: string): string;

The function has a local integer variable I for use as a loop index and a local Boolean
variable Found for loop control. The algorithm uses a standard searching loop, except that
rather than searching forward, it searches backward. The first nonblank found represents the
desired length of the result. A special check is included for the null string to avoid trying to
set Trim to the first zero characters of InString.

if InString is null
set Trim to null

else
[search backwards for a nonblank character]

set I to the length of InString, Found to false
while no nonblank character has been found and I <> 0

decrement by 1
[return the trimmed string]

set Trim to the first I characters of InString

The Trim function is shown in Figure 8-4.
The next tool that we discuss is a function that produces a string consisting of repeti

tions of a single character. The function RunOf is a string-valued function that has two
value parameters: the number of repetitions and the character to be repeated. We show some
examples of the behavior of the RunOf function in the following table:

Number Character RunOf(Number, Character)

3 '*' '***'
1 '#' '#'

5

0 '%'

256 '$'

We note that if the number of repetitions is specified as less than 1 or greater than 255,
RunOf returns the null string.

576 STRING MANIPULATION CHAP. 8

function Trim (InString: string): string;

{Written by: xxxxxxxxx XX/XX/XX}

{Purpose: To trim trailing blanks from a string}

{Parameters: InString - input, the string to be trimmed}

{Functions used: Length - (built-in) to get number of characters}
"' Copy - (built-in) to extract a substring}

const
Blank

Null

var

- ' , . - '
11;

I: integer;

Found: boolean;

begin {Trim}

{Blank space}
{Null string}

{Loop index}

{Has nonblank been found?}

{*** If null, return null}

if InString = Null then

Trim .- Null
else

{*** Search backwards for a nonblank character}

begin

I:= Length(InString); {Start at last position}

Found :':' false;
while (not Found) and (I >= 1) do

begin
if InString[I] <> Blank then

Found : = true

else

I := I - 1

end; {while}

{*** Return the trimmed string}

Trim := Copy(InString, 1, I)
end {if}

end; {Trim}

Figure 8-4 The trim function.

The header for the RunOf function is

function RunOf(Number: integer; Character: char): string;

The function has a local string variable WorkString for use in creating the value to be
returned. The logical steps of the algorithm for RunOf are

8-2 STRING PROCESSING 577

function RunOf(Number: integer; Character: char): string;

{Written by: XXXXXXXXX XX/XX/XX}
{Purpose: To create a string of a specified number of}

occurrences of a specified character}
{Parameters: Number - input, number of characters to generate}

Character - input, character to generate Procedures used}

const
NullString ' ' ; {Empty string}

var
WorkString: string;
i: integer;

begin {RunOf}

{used to build up RunOf string}
{loop counter}

{*** Return null string if invalid Number of characters}

WorkString .- NullString;
if (Number >= 1) and (Number <= 255) then

begin
for i .- 1 to Number do
WorkString .- Concat(WorkString, Character)

end; {if}

{*** Return the created string}

RunOf := WorkString

end; {RunOf}

Figure 8-5 The RunOf function.

set WorkString to the null string
if Number is between 1 and 255 (inclusive) then

for I = 1 to Number
concatenate Character onto end of WorkString

set RunOf to WorkString

The RunOf function is shown in Figure 8-5.
Sometimes when dealing with strings, we wish they were all the same constant length.

The usual character that is used to "pad" strings is the blank. We introduce the function Pad
to pad a string to a specified length by adding spaces if necessary. Pad is a string-valued
function that has two value parameters: the input string to be padded and the desired mini
mum length of the resulting string. Some examples that illustrate the behavior of the Pad
function are shown in the following table:

lnString Margin Pad(lnString, Margin}

'ab' 5 'abb"W'

3 'b"W'

'abed' 3 'abed'

'abc' 0 'abc'

'abc' 256 'abc'

578 STRING MANIPULATION CHAP. 8

function Pad(InString: string; Margin: integer): string;

{Written by: XXXXXXXXX XX/XX/XX}
{Purpose:
{

To add blanks to the end of InString in order}
to extend its length to Margin}

{Parameters: InString - input, the string to pad}
Margin - input, the resulting margin}

(if less than current length,}
or greater than 255, answer is InString)}

{Functions used: RunOf - to obtain a string of blanks}
Length - (built-in) to get the length of a string}

const
Blank

begin {Pad}

' '; {Blank space}

{*** Pad blanks to InString if Margin is valid}

if (Margin > 255) then
Pad .- InString

else
{Do nothing if invalid}

Pad.- Concat (InString, RunOf(Margin - Length(InString), Blank))

end; {Pad}

Figure 8-6 The Pad function.

The function uses the functions RunOf and Length to produce its value. The header
for the Pad function is

function Pad(InString: string; Margin: integer): string;

The logical steps of the algorithm for Pad are

if Margin is greater than 255
set Pad to InString

otherwise
set Pad to the concatenation of InString with a run of

Margin - Length(lnString) blanks

The Pad function is shown in Figure 8-6.
The next tool is the procedure Replace, which replaces the leftmost occurrence of a

substring with a replacement substring. The procedure has a var parameter consisting of the
string to work on and also has two value parameters: the substring to find and the substring
to replace the found string. If the substring to be found does not exist in the input string,
then the procedure does not change the input string. Some examples of the behavior of the
Replace procedure are shown in the following table:

8-2 STRING PROCESSING 579

Original After Replace Called
In String Search Change lnString

'abed' 'be' 'efg' 'aefgd'

'abed' 'bd' 'efg' 'abed'

'abed' 'efg' 'efgabed'

'abed' 'd' 'defg' 'abedefg'

" " 'abed' "
'abed' 'be' " 'ad'

The procedure uses the procedures Delete and Insert as well as the functions Pos and Length
to produce its result. The header for the Replace procedure is

procedure Replace(var InString: string; Search, Change: string};

The procedure uses the local variable Start to indicate the beginning of the substring within
the input string and a local variable Total to ensure that no attempt is made to produce a
string of length greater than 255.

The logical steps of the algorithm for Replace are

[check for existence of substring]
set Start to Pos(Search, InString)

[check the resulting length of the replaced string]
set Total to Length(lnString) - Length(Search) + Length(Change)

[do the replacement, if valid]
if Start is not 0 and Total is not greater than 255:

Delete(lnString, Start, Length(Search))
Insert(Change, InString, Start)

The Replace procedure is shown in Figure 8-7.
We suggest a few more string-processing tools in the exercises at the end of the

section.

Character-Conversion Techniques

There are a number of instances where we want to move through a string, character by
character, changing the character to some other character if appropriate. Some examples of a
conversion strategy are as follows:

Change all uppercase characters to lowercase.
Change all lowercase characters to uppercase.
Encode each character according to some (secret?) code.
Decode each character according to some code.

We often wish to process an entire text file using one of these schemes. A good design
methodology for these tasks is to modularize according to size of data:

580

Module to change an entire text file

Module to change an entire string

Module to change individual characters, if appropriate

STRING MANIPULATION CHAP. 8

procedure Replace(var InString: string; Search, Change: string);

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To replace the leftmost occurrence of Search in}

InString with Change}

{Parameters: InString - update, the string to be modified}

Search - input, the substring to look for}

Change - input, the substring to replace Search by}

{Procedures used: Delete - (built-in) to delete a substring}

Insert - (built-in) to insert a substring}

{Functions used: Pos - (built-in) to find a substring in a string}

Length - (built-in) to find the length of a string}

var

Start: integer;

Total: integer;

begin {Replace}

{Position of Search within InString}

{Potential total length of result}

{*** Check for the existence of Search in InString}

Start:= Pos(Search, InString);

{*** Check the resulting length of the replaced string}

Total .- Length(InString) - Length(Search) + Length(Change);

{*** Do the replacement if valid}

if (Start > 0) and (Total <= 255) then

begin

Delete(InString, Start, Length(Search));

Insert(Change, InString, Start)

end {if}

end; {Replace}

Figure 8-7 The Replace procedure.

The module to change an entire text file reads one line at a time into a string, calls the
module that changes entire strings to make the modifications, and writes the line to the
output file. The module to change an entire string loops through the string one character at a
time and calls the module that changes individual characters, as appropriate.

Note that one advantage of this particular modularization is that we can use essentially
the same modules for the top two levels in the hierarchy. Then, by plugging in different
lowest-level modules, we can change our conversion application.

Let us begin with a discussion of changing lowercase letters to uppercase. In ASCII,
lowercase letters run from positions 97 (a) to 122 (z). Uppercase letters occur at positions 65
(A) to 90 (Z). Notice that the uppercase version of a lowercase letter is exactly 32 positions
prior to it in the ASCII collating sequence. So to convert a lowercase letter to its uppercase

8-2 STRING PROCESSING 581

equivalent (and leave the other characters alone), we use the following THINK statement,
where CntChar is the current character being checked:

if (CntChar >= 'a') and (CntChar <= 'z') then

InString[I] := Chr(Ord(CntChar) - 32);

By placing this statement within a loop that checks each character in a string, we have the
needed routine.

(Note the approach we use is dependent upon the ASCII collating sequence; moving
this program to a computer that uses a different collating sequence requires changes in the
program.)

We place this conversion activity in the module LowToUp and choose to implement it
as a string-valued function. This allows us to test for a terminating value in an input loop
with the statement

until LowToUp(Stringl) = '$END'

so that the user can enter any of the following as terminating values:

$END $ENd $EnD $End $eND $eNd $enD $end

By now you have probably typed '$end' instead of '$END' enough times to appreciate
this more flexible way of handling user responses. The header for the function is

function LowToUp(InString: string): string;

We use the built-in function Length to help produce the desired value. Since InString
is a value parameter, we use it as a working string inside of LowToUp with no fear of side
effects. We use a local variable I as a loop index. The basic logical steps of the algorithm are

[loop through the string, converting each character]
loop I from 1 to the length of lnString:

if InString[I] is between 'a' and 'z'
set InString[I] to uppercase version (using code above)

[return the converted string]
set LowToUp to InString

The code for the function LowToUp is shown in Figure 8-8.
The module that deals with the text file is normally the main program and is responsi

ble for the user interface and opening and closing files. We simply list the rough steps of
this module here and refer you to Figure 8-10, which is a complete example of one of the
applications. The rough steps of the file-level module are as follows:

1. Print the instructions.

2. Ask the user for the filenames and open the files.

3. Convert the lines of input file into output file.

4. Close the files.

5. Print the terminating message and stop program.

We now turn to another application area, changing uppercase to lowercase. We note
that it is a chore almost identical to that of converting lowercase letters to uppercase ones:

582 STRING MANIPULATION CHAP. 8

function LowToUp(InString: string): string;

{Written by: XXXXXXXXX XX/XX/XX}
{Purpose: To convert lowercase to uppercase}
{Parameters: InString - the string to be converted}
{Functions used: Length - to get the length of a string}

var
I: integer; {Loop index}

begin {LowToUp}

{*** Loop through the string, converting each lowercase letter}

for I := 1 to Length(InString) do
if (InString[I] >= 'a') and (InString[I] <= 'z') then

InString[I] := Chr(Ord(InString[I]) - 32);

{*** Return the converted string}

LowToUp := InString
end; {LowToUp}

Figure 8-8 Converting a string to uppercase.

the only difference is that we add 32 to compute the new letter's ASCII value rather than
subtracting 32. The code for this function (which we call LowCase) is shown in Figure 8-9.

Longer-Length Strings

Although it is not usually a problem, the strings of THINK Pascal are limited to a length of
255 characters. What if we wanted to deal with larger strings? In this subsection, we begin
to develop a package for dealing with strings of lengths longer than 255.

Our basic data structure for dealing with BigStrings is a type such as the following:

BigString = record
Character: array[l .. MaxLength] of char;
Length: integer

end;

MaxLength is a named constant, perhaps in the 500 range. We wish to be able to perform
similar activities with BigStrings as we do with the usual string types. Some of the opera
tions we have in mind are as follows:

Inputting and outputting

Determining length

Concatenating

Extracting substrings

Comparing strings

Converting a string to a BigString

Converting a BigString to a string

8-2 STRING PROCESSING

Searching for substrings

Deleting substrings

Inserting substrings

Replacing substrings

Trimming trailing blanks

Padding with blanks

583

function LowCase(InString: string): string;

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To convert uppercase to lowercase}

{Parameters: InString - the string to be converted}

{Functions used: Length - to get the length of a string}

var

I: integer; {Loop index}

begin {LowCase}

{*** Loop through the string, converting each uppercase letter}

for I := 1 to Length(InString) do
if (InString(I] >= 'A') and (InString[I] <= 'Z') then

InString[I] := Chr(Ord(InString[I]) + 32);

{*** Return the converted string}

LowCase := InString

end; {LowCase}

Figure 8-9 Converting a string to lowercase

We will develop some of these activities and leave some of the others for the exer
cises. Before we move on to some development, let us agree to the following naming
convention: If a string routine is called xxx, then we call the corresponding BigString
routine by the name Bigxxx. With this in mind, the names of the routines in the package are
as follows:

BigReadln BigFromStr

BigWriteln BigPos

BigLength BigDelete

BigConcat Biglnsert

BigCopy BigReplace

BigEqual Big Trim

BigLessThan BigPad

BigToStr

The first routines to develop are the input and output routines because they form the inter
face with the user and ultimately allow the user to check on the correctness of other routines
as they are developed. ,

The simplest routine to design is BigWriteln, so we start with it. Our version of
BigWriteln accepts a single-value parameter of type BigString and prints the contents on the
screen. We use a single local variable I as a loop index. The basic logic of the algorithm is

loop I from 1 to the Length of the BigString:
Print the Ith character of the BigString

Go to a new line

The code for the BigWriteln procedure appears in Figure 8-10. The single Writeln at the end
of the procedure ensures that the next data that are printed begin on the next line.

584 STRING MANIPULATION CHAP. 8

procedure BigWriteln(InString: BigString);

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To print out InString}

{Parameters: InString - input, string to print}

var
I: integer; {Loop index}

begin {BigWriteln}

with InString do

begin

for I:= 1 to Length do

Write(Character[I])

end; {with}

Writeln

end; {BigWriteln}

Figure 8-10 Output of a BigString.

The next routine that we wish to implement is BigReadln to allow us to input data to
BigString-type variables. We read in user-entered characters one at a time until a carriage
return is pressed to signal the end of input. Return is Chr(l3), a fact we make use of to
terminate the character-by-character input loop.

Our version of BigReadln has a single var parameter of the type BigString, which
returns the string input by the user. The basic logic of the algorithm is

set Length of the BigString to 0
until we reach end of the line

read input character
if not a carriage return

increment the Length of the BigString by l
place the character into the Character array at position Length

The code for the BigReadln procedure is shown in Figure 8-11.
The next module we develop is the integer function BigLength, which returns the

length of a BigString. The function has one value parameter of the type BigString. It may
surprise you that we wish to use a procedure for a "one-line" operation. The reason for this
is to respect the principle of information hiding, which holds that the one using the pro
gram should not know the details of data structures used to represent information; instead,
the program user should employ higher-level operations to gain access to the information.
The code for the procedure BigLength is shown in Figure 8-12.

Next, we develop the procedure BigCopy, which extracts a substring of a BigString.
Notice that the usual Copy subprogram in THINK Pascal is a function. However, BigCopy
must be a procedure because functions are unable to return a record type as a result.

The procedure has one value input parameter and one var output parameter, both of
the type BigString. The procedure also has two integer-value parameters: the start position
of the substring and the number of characters desired. The procedure uses the local variable
I as a loop index and the local variable InLen to store the length of InString. The basic logic
of the steps of the program is

8-2 STRING PROCESSING 585

procedure BigReadln(var OutString: BigString);

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To read characters into OutString}

{Parameters: Outstring - output, the string being read}

var
CntChar: char; {Character just entered}

begin {BigReadln}

with OutString do
begin

Length := O;

{*** Take characters one at a time until end of line}

repeat
Read (CntChar);

if CntChar <> Chr(l3) then
begin

Length := Length + l;

Character[Length) .- CntChar

end {if}

until CntChar = Chr(l3)

end {with}

end; {BigReadln}

Figure 8-11 Input of a BigString.

function BigLength(InString: BigString): integer;

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To return the length of a BigString}

{Parameters: InString - input, the string to find the length of}

begin {BigLength}

BigLength := InString.Length

end; {BigLength}

Figure 8-12 Length of a BigString.

586

set InLen to the length of InString

[see how many to copy]
if the number of characters to copy is less than 0, then set the

number of characters to copy to 0
if the start position is less than 1, then set the number of characters

to copy to 0
otherwise,

STRING MANIPULATION CHAP. 8

if the start position plus the number of characters is greater than
InLen, then set the number of characters to the number that
will go to the end of InString

[perform the copy]
loop I from 1 to the number of characters to copy

set the J1h character of OutString to the Start+ (I - 1)'1 character
of InString

set the length of OutString to the number of characters copied

The algorithm for BigCopy, because of our desire to remain consistent with the
THINK Pascal Copy function, contains a few subtleties due to the possibilities:

Number< 0
in this case, we wish to set Number to 0

Start< 1
in this case, we wish to set Number to 0

Start + Number > InLen
in this case, we wish to copy characters to the end of
InString, so we set Number to lnLen - Start + 1

The code for the procedure is shown in Figure 8-13.
The last routine that we present is the procedure BigConcat, which concatenates two

elements of the type BigString. The procedure has two value input parameters, InStringl
and InString2, and one var output parameter, OutString. The procedure uses the local vari
able I as a loop index and two local variables InLenl and InLen2 to store the lengths of the
input BigStrings. For simplicity in the presentation, we assume that the resulting length of
the answer is less than or equal to MaxLength, the maximum length allowable. The basic
logic of the steps of the procedure is

set InLenl to the length of lnStringl
set InLen2 to the length of InString2
loop I from 1 to InLenl:

set the Ith character of OutString to the Ith character of
InStringl

loop I from InLenl + 1 to InLenl + InLen2:
set the Ith character of OutString to the (I - InLenl)th
character of lnString2

set the length of OutString to InLenl + InLen2

There are several special cases of concatenation to consider:

InStringl is null.

InString2 is null.

Both InStringl and lnString2 are null.

Resulting OutString is as large as possible.

You should hand-trace the algorithm for BigConcat to verify that these special cases cause
no difficulty for the algorithm. The code for the procedure BigConcat is shown in Figure
8-14.

8-2 STRING PROCESSING 587

procedure BigCopy(InString: BigString; Start, Number: integer;
var OutString: BigString);

{Written by: xxxxxxxxx XX/XX/XX}
{Purpose: Extract a substring from a string}
{Parameters: InString - input, the string to look in}

Start - input, where the substring should start}
Number - input, desired length of the substring}
OutString - output, the substring}

{Functions used: BigLength - to find the length of a BigString}

var
InLen: integer; {Length of InString}
I: integer; {Loop index}

begin {BigCopy}
InLen := BigLength(InString);
with OutString do

begin
if Number < 0 then

Number := O;
if Start < 1 then

Number := 0
else if (Start + Number) > InLen then

Number := InLen - Start + l;
for I := 1 to Number do

Character[!] := InString.Character[Start +I - 1];
Length .- Number

end {with}
end; {BigCopy}

Figure 8-13 Extracting a substring of a BigString.

For testing these first routines of the package, we have written a driver program. The
driver main program is shown in Figure 8-15. To run the driver, the routines of the package
would have to be inserted so those used by other routines are defined previously to them;
one possible ordering is shown in Figure 8-15.

REVIEW

EXERCISES

Terms and Concepts

BigStrings
information hiding
LowCase
LowToUp

Pad
Replace
Run Of
Trim

1. Write Pascal procedures or functions for the following. Use 1HINK's built-in string type:
(a) CountSubstr, which counts how many times a substring occurs within a given string.

588 STRING MANIPULATION CHAP. 8

procedure BigConcat(InStringl, InString2: BigString;

var OutString: BigString);

{Written by: xxxxxxxxx XX/XX/XX}
{Purpose: To concatenate two BigStrings}

{Parameters: InStringl, InString2 - input, the strings to concatenate}

OutString - output, the concatenated string}

var
InLenl: integer;

InLen2: integer;

I: integer;

begin {BigConcat}

InLenl .- BigLength(InStringl);

InLen2 := BigLength(InString2);

with OutString do

begin

for I := 1 to InLenl do

{End of Stringl}

{End of String2}

{Loop index}

Character[I) := InStringl.Character[I);

for I := InLenl + 1 to InLenl + InLen2 do

Character[I] := InString2.Character[I - InLenl);

Length := InLenl + InLen2
end {with}

end; {BigConcat}

Figure 8-14 Concatenating BigStrings.

(b) IsBlank, which sees if a given string is either null or totally blank.
(c) Equal, which sees if two strings are equal when the shorter is padded with blanks to be as

long as the longer. For 'Johnson' and 'Johnson ',the answer would be true.
(d) InsertBlanks, which inserts a given number of blanks at a given position in a given string.
(e) FindSubst, which locates a substring without respect to character case. For example, it

would find' Anne' in the string 'Dianne Wilson' in position 3.
(f) ReplaceAll, which replaces all instances of the search substring with the change substring.

2. Write the following functions:
(a) Reverse, which reverses the order of the characters in the input string, using a loop.
(b) Repeat part (a) using a recursive function. Run the function for a string of length 255.

What happens?
(c) Use the Reverse function of part (a) to write a function RPos that finds the rightmost

occurrence of a substring in a string.
(d) Use the Reverse function to write a function Clip that removes leading and trailing blanks

from a string.

3. Think of a simple coding scheme that involves character exchange such as

A~B

B~C

EXERCISES 589

program Driver;

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To test the BigString Package}

type
BigString = record

var

Character: array[l .. 500) of char;

Length: integer

end;

Stringl, String2, String3: BigString;

Start, Number: integer;

{function BigLength inserted here}

{procedure BigConcat inserted here}

{procedure BigCopy inserted here}

{procedure BigReadln inserted here}

{procedure BigWriteln inserted here}

begin {Driver}

{*** Read two BigStrings)

Write('Enter a string: ');

BigReadln(Stringl);

Write('Enter a second string: ');

BigReadln(String2);

{*** Write out a BigString}

BigConcat(Stringl, String2, String3);

Writeln('The length of the string is: ' BigLength(String3));

BigWriteln(String3);

{*** Extract a substring}

Write('Enter start position for substring: ');

Readln(Start);

Write('Enter number of characters for substring: ');

Readln(Number);
BigCopy(String3, Start, Number, Stringl);

Writeln('The length of the string is: ', BigLength(Stringl));

BigWriteln(Stringl);

{*** Print terminating message and stop program}

Writeln;

Writeln('Tests completed.')
end.

Figure 8-15 Testing with BigStrings.

590 STRING MANIPULATION CHAP. 8

Z....+A

a-+ b
b--+ c

z+a

O+ 1

1--+ 2

9....+0

all others stay the same

Write a function Encode to encode characters according to this scheme.

4. Write the string-level function for encoding an entire string using the result of Exercise 3.

5. Write the text-file-level program for encoding a file using the results of Exercises 3 and 4.

6. Write the character, string, and text-file-level modules for decoding files produced by the results
of Exercise 5.

7. Do the following for the examples of this section:
(a) Explain why the RunOf function has a local variable WorkString.
(b) Modify BigConcat to simply copy the first string to the output using a record assignment,

and then fill in the second string. Is this better (faster or clearer)?
(c) Modify BigConcat to handle the situation where the sum of the lengths exceeds the maxi

mum allowed. It should simply yield a truncated answer.
(d) Modify the BigReadln and BigWriteln procedures to handle very long strings more

smoothly. For example, BigWriteln might send a carriage return every 70 characters. Big
Readln should be able to get around any terminal limitations on the length of an input line.

8. Write the following additions to the BigStrings package:
(a) BigChar(Str, I), a char function to return the Ith character.
(b) BigTrim(Strl, Str2), a procedure to delete trailing blanks for Strl and return the results as

Str2.
(c) BigRunOf(Num, Chr, Str), a procedure to produce a BigString of Num consecutive charac-

ters specified by Chr.
(d) BigPos(SubStr, Str), an integer function to locate a substring.
(e) BigEqual(Strl, Str2), a Boolean function to determine equality.
(f) BigLessThan(Strl, Str2), a Boolean function to determine if Strl is less than Str2.
(g) Biglnsert(SubStr, Str, Start), a procedure to insert a substring.
(h) BigDelete(Str, Start, Num), a procedure to delete Num characters from Str, beginning with

the position specified by Start.
(i) BigReplace(Str, Search, Change), a procedure to replace the leftmost occurrence of Search

in Str by Change.
(j) BigToStr(Bstr, Lstr), a procedure to change the BigString Bstr into the regular string Lstr.

Lstr should be of the type string. Truncate if the length of Bstr is more than 255.
(k) BigFromStr(Bstr, Lstr), a procedure to change the regular string Lstr into the BigString

Bstr. Lstr should be of the type string.

9. Write a comprehensive test plan for the Replace procedure of Figure 8-7.

10. Write subprograms for the following:

EXERCISES 591

(a) Given an array of strings and a new string, add the new string to the end of the list if it is
not already in the list.

(b) Extract the first word from a string. Consider a word to be any sequence of nonblank
characters. The given string should not be changed.

(c) Repeat part (b), but modify the original string to take the word out of it.
(d) Given a string, print a list of the words in the string, one word per line.

11. Write a program to read the lines of text and to find how many times each word that appears is
used. (This is a simple form of analysis of an author's style.) Hint: See Exercise 10.

12. (a) Write a function that captures the last 10 characters of a string.
(b) Generalize part (a) to allow the number of characters to be captured to be a parameter.

13. Write a paragraph formatter. It should read a series of lines of text, interpreting lines that begin
with a blank as the beginning of new paragraphs. The beginning of each paragraph should be
indented five spaces. All strings of consecutive blanks should be converted to a single blank. As
many words as possible should be placed on each line of output.

14. Add these enhancements to the paragraph formatter of Exercise 13:
(a) Right-justify each line except the last line of the paragraph by inserting blanks between

words and keeping the words as evenly spaced as possible on the line.
(b) Do not compress blanks that immediately follow a period.
(c) Handle multiple-page printed output, leaving an appropriate margin at the top and bottom.
(d) Treat a line that begins with a period as a command, as outlined in the rest of this exercise.

Any command immediately terminates a paragraph. After the command is processed, the
next line is treated as the beginning of a new paragraph, but it is not indented unless it
begins with a blank.

(e) The command .C means to center the remainder of the input line on an output line by
itself.

(f) The command .E means to generate a top of form.
(g) The command .H signifies that the rest of the line is to be treated as a header for each page

of output, centered near the top of the page. Any occurrence of the character '#' in the
header line is to be replaced by the page number for each page.

(h) Within the body of the text, a "" character is to be treated as a noncompressible space. On
output, it should be replaced by a blank.

15. Develop a subprogram that creates a "printable" version of a dollar-and-cents figure given as a
string of up to 10 digits. For example,

'1234567890'

'7891'

'0000007891'
'2'

'135692'

yields '$12,345,678.90'

'$78.91'

'$78.91'

'$0.02'

'$1,356.92'

16. Write a conversion routine to change base 2 to base 8. Its input is a string representing a number
in base 2. Its output is a string representing the same number in base 8. For example,

592

'101'

'10101'

'111010110'

yields '5'

'25'

'726'

There is no limit, other than the built-in limits, on the length of the input string. Hint: When
grouped by threes from the right, the triplets of base-2 digits yield the corresponding base-8
digit. You may have to pad the leftmost triplet with O's on the left.

STRING MANIPULATION CHAP. 8

17. Write a conversion routine similar to Exercise 16 for base 8 to base 2.

18. Write a routine that converts an integer value to a string of binary digits. For example, the
integer 26 would yield '11010'. Hint: If you successively divide the integer by 2, each remain
der is one of the digits of the base-2 string, working from right to left. For 26:

26 div 2 is 13

13 div 2 is 6

6 div 2 is 3

3 div 2 is 1

1div2 is 0

26 mod 2 is 0 -t 'O'

13 mod 2 is l -t'l'

6 mod 2 is 0 -t 'O'

3 mod 2 is 1 -t 'l'

l mod 2 is l -t 'l'

We quit when the quotient is 0.

19. Repeat Exercise 18 for base 8. Divide and mod by 8 instead of 2. For 26:

26 div 8 is 3

3 div 8 is 0

The answer is '32'.

26 mod 8 is 2 -t '2'

3 mod 8 is 3 -t'3'

20. Write a routine to reverse Exercise 19. That is, given a string representing a valid base-8 integer,
it should calculate the integer. Assume that the integer lies between 0 and maxint.

EXERCISES 593

9 Pointers

OBJECTIVES

In this chapter, we introduce the concept of pointers and their use in Pascal programs. By
the end of this chapter, you will be able to:

• appreciate the value of pointers in programming

• define and use pointers in Pascal programs

• use pointers to develop your own data structures

9-1 POINTER VARIABLES

Pointers

A pointer is an indirect reference to a data item. We deal with pointers often in our daily
lives, although we don't often call them by that name. For example, suppose you write your
name on a slip of paper and put the slip in a hat for a drawing to see who gets to wash the
dishes. If we think of your name as being similar to a variable with you as its contents, what
is the content of the slip of paper? Your name, of course. The slip of paper is an indirect
reference to you. It is indirect because it leads to you through first leading to your name. We
can maintain the indirect reference to you without mentioning your name at all by writing
on the slip: "the worried-looking individual sitting on the folding chair, in the comer." Also,
if a stranger enters the room and sits on the red pillow, we can enter the newcomer in the
competition by writing on a slip of paper: ''the confused-looking individual sitting on the
red pillow." The new slip of paper is a pointer to the new individual and is certainly not the
name of that individual.

We use pointers to data items stored in computer memory. When data items have
names (in the form of variables), we continue to use the names to refer directly to the data.

594

But, when new data items appear, whose names we do not know, then we use pointers to
refer indirectly to the data items. We explain later in the section where to obtain these new
"nameless" data items.

Declaring and Using Pointers

Declaring Pointers. Every type of data can have a pointer type associated with it.
We can declare named pointer types or we can declare variables as belonging to an
unnamed pointer type. This is exactly the same case as for the other data types with which
we have dealt. For example, if we wish to declare a variable Scores to be an integer array
with at most 1000 cells, we can choose either of the alternatives:

type

IntegerArray = array[l .. 1000] of integer;

var

Scores: IntegerArray;

var

Scores: array[l .. 1000] of integer;

The choice depends on whether it is an advantage to have the global named type available
for passing as a parameter or for the declaration of other variables.

We begin with the idea of declaring pointer variables directly. Because pointers can
hinder the readability of a program, it is important to select names for our pointer variables
carefully. Let us suppose that we have a type called ItemType and we want to point to an
item of that type. Since it's the first such pointer to ItemType, let us call the pointer variable
First. In Pascal, to declare the variable First to be a pointer to ItemType, we can use the
declaration

var

First: AitemType;

We use the caret (") to denote that First is a pointer. Note carefully where the caret is
located in the declaration; it is "pointing to" the name of the type. We can visualize the
situation as a box (variable) called First, whose content is a pointer - an arrow - to
another variable. Since First has yet to be initialized, its arrow points to some unknown
place in memory; we can illustrate this situation:

First

If we wish to name our pointer type, then we must first choose a name. We select the
name ltemType_Ptr, which conveys that it represents a type that points to data of type
ItemType. Using the named pointer type, we can alternatively declare the variable First as

type

ItemType_Ptr = AitemType; {Type for pointer to ItemType}

9-1 POINTER VARIABLES 595

var
First: ItemType_Ptr; {Pointer variable for ItemType}

Note that the caret is used in exactly the same way: as a modifier of ltemType.
We can violate a principle of Pascal and declare ltemType_Ptr before we declare

ItemType. It is always legal to declare the pointer first, but not always valid to declare the
pointer afterwards. Therefore, we adopt the strategy of declaring the pointer first as a defen
sive programming measure. For example, if ltemType represents data that might appear on a
shopping list, then we might have a set of declarations such as

type
ItemType_Ptr = AitemType;
ItemType = record

Quantity: integer;
Item: atring[20]

end;

var
First: ItemType_Ptr; {First is a pointer to ItemType}

Assigning Values to Pointers. We will discuss how we assign a data element to
the pointer First in a bit. For now, assume First does point to some data of the type Item
Type. We now concentrate on how we can use the indirect referencing of a pointer variable.
The general rule is that the notation

First A

provides the indirect reference to the data and is treated as if it were a name for the data.
This statement would commonly be read as ''the variable First points to".

If we want the item on the shopping list to be "apples", then we make the assignment

FirstA.Item := 'apples'

If we want to buy six apples, then we make the assignment

FirstA.Quantity := 6

So now the Quantity and Item fields of the variable to which First points have been set to 6
and 'apples' (respectively):

596

First Quantity Item

[] >I 6 apples I
Because the data item is of a record type, we can use the with-do construct:

with FirstA do
begin

Item:= 'apples';
Quantity .- 6

end {with}

POINTERS CHAP. 9

If we wish to print the item, we can use the statement

Writeln('The item is: ', FirstA.Item)

The @ Operator. Another way to assign a pointer a value is to assign it to the
location in memory (the address) of an existing variable by using the "@" operator. For
instance, if S is a string variable, and StrPtr is a pointer variable that points to items of type
string, we can have StrPtr point to Sas follows:

StrPtr := @s

This operation is often read "place the address of S into StrPtr", StrPtr now points to S. The
@ operator is a THINK extension to standard Pascal, and is not often used. We generally
stick to examples that use the more standard pointer operations.

Obtaining Data for Pointer Variables

Now that we have some idea of how to use a pointer once it is pointing to some data item,
we will discuss how to obtain a data item to which it can point. Pascal provides us with the
built-in procedure New to obtain a data item of any pointer type. If we wish to obtain a data
item for the pointer variable First, then we execute the statement

New(First)

Pictorially, we have this situation before First is initialized:

First

and this situation after New(First) is issued:

First Quantity Item

If we use the previous declarations, the following fragment of code reads and prints a
shopping-list item:

{declarations}

New(First); {Obtains a data item to use}
with FirstA do

begin
Write('Enter the item: ');

Readln(Item);

Write('Enter the quantity: ');

Readln(Quantity);

Writeln('You wish', Quantity,

end; {with}

9-1 POINTER VARIABLES

Item)

597

Suppose that we follow this fragment of code with the statement New(First). This
statement assigns another data item to the pointer First and the original data item cannot be
accessed because we have no way to refer to it. Besides now having "wasted" memory, we
can no longer access the data stored in the first item. Pictorially, we have this situation:

Quantity Item

First
6 apples I

Fortunately, Pascal provides two ways for us to avoid this problem:

1. Keep the Old Data Item. If we have available another pointer variable, Before,
declared to be of the type ltemType_Ptr, then we can execute the sequence

Before := First;

New(First);

{Assigns old data item to Before}

{Obtains new data item for First}

2. Discard the Old Data Item. Pascal provides a mechanism for recycling old data
items. If we are through with the particular data item pointed to by First, then we can
execute the statement

Dispose(First)

After the statement is executed, First no longer refers to the data item and the data
item is returned to available memory for potential future use.

First still has a value, but what it points to is unpredictable, since the data item it used
to point to has been "sent back to" the available memory pool. A pointer pointing to "who
knows where" is called a dangling pointer and is often illustrated:

First

(You will notice the variable is in the same state as it was when first declared; we know it is
a pointer, but what it points to is unknown.)

On the Macintosh (and many other computers), dangling pointers point to some ran
dom spot in memory; if the pointer is "followed" (by referring to it in a statement), very
strange program behavior can result. In fact, depending upon what part of memory you
happen to have entered, a Macintosh could even reboot itself!

After we dispose of what First points to, what we should do is set First to a value
indicating it no longer poin,ts to anything. By assigning a pointer the predefined constant nil,
we indicate that a pointer variable is not pointing to a valid data item. This provides a
convenient test for validity of data, as we will see. Nil conforms to all pointer types and can
be used for comparison purposes. Therefore, we can initialize First with the statement

First := nil

598 POINTERS CHAP. 9

We often illustrate this situation by placing a diagonal line or a dot in the pointer variable;
we use the former approach:

First

We can check if First refers to any valid data with the comparisons

if First = nil then . . .

if First <> nil then . . .

We can now look at a small example of the use of pointers. Suppose that we have two stores
in which we shop, Ace Drugs and King Groceries. We may wish to buy an item at either or
both stores. We use the two pointers AceFirst and KingFirst to refer to the items for Ace
Drugs and King Groceries, respectively. The user is asked how many items are intended for
each store and enters the items, if any. We restrict the user to either one item or no items for
each store for now because we just want to become more comfortable with using pointers.

The code for the program appears in Figure 9-1. Note the manner in which we man-
age our use of the data items for the pointers:

1. We initialize both pointers to nil.

2. We call New for a data item when we are sure that we are going to use it.

3. We call Dispose to return a data item when we are through with it.

4. After we call Dispose for a pointer, we set it to nil.

(Try drawing pictures to help you get a clear understanding of how pointers are adjusted by
these four steps.)

Managing Dynamic Memory Resources

The example of Figure 9-1 shows more disadvantages than advantages of using pointers. We
now extend the example to achieve a more realistic and useful result.

We start with one of the most important features of the pointer type: there can be
fields of the pointer type within the record structure that is pointed to. That is, we can
enhance our shopping list item to include a pointer to the next item on the list. Our declara
tions become

type

ItemType_Ptr = AitemType;

ItemType = record
Quantity: integer;

Item: string[20];

Next: ItemType_Ptr

end;

{Number to buy}

{Item to buy}

{Pointer to next item}

We can now organire a shopping list as a structure containing many items, each of which
points to the next. To summarire the organization of the list:

9-1 POINTER VARIABLES 599

program BuyOne;

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To maintain two small shopping lists}

{Procedures used: New - (built-in) gets a new data item}

Dispose - (built-in) returns a data item}

type

ItemType_Ptr = AitemType;

ItemType = record

Quantity: integer;

Item: string[20]

end;

var
AceFirst: ItemType_Ptr;

KingFirst: ItemType_Ptr;

N: integer;

I: integer;
None: Boolean;

begin {BuyOne}

{*** Initialize}

AceFirst := nil;
KingFirst := nil;

{Number to buy}

{Item to buy}

{Pointer to Ace list}

{Pointer to King list}

{Number of items at store}
{Loop index}

{Indicator for empty lists}

{*** Get and print lists in a loop}

repeat

Writeln;

None : = true;
Write('How many items for Ace Drugs: ');
Readln(N);

if N <> O then

N := l;

for I := 1 to N do
begin

New(AceFirst);
with AceFirstA do

begin

Write('Enter the item: ');

Readln(Item);

Write('Enter the quantity: ');

Readln(Quantity)

end {with}
end; {for}

Figure 9-1 First use of pointers (continues next page).

600 POINTERS CHAP. 9

Write('How many items for King Groceries: ');

Readln(N);

if N <> 0 then
N := 1;

for I := 1 to N do
begin

New(KingFirst);

with KingFirstA do
begin

Write('Enter the item: ');

Readln (I tern) ;

Write('Enter the quantity: ');

Readln(Quantity)

end {with}

end; {for}

Writeln;

Writeln('Here is your shopping list: ');

if AceFirst <> nil then
with AceFirstA do

begin
None := false;

Wri teln (' From Ace Drugs: ') ;

Writeln(' You want ', Quantity,

Dispose(AceFirst);

AceFirst := nil
end;

if KingFirst <> nil then
with KingFirstA do

begin
None := false;

Writeln('From King Groceries: ');

Item, '.');

Writeln('You want', Quantity, ' ' Item, ' ');

Dispose(KingFirst);

KingFirst .- nil

end;
until None;

Writeln(' ***Shopping list is empty');

{***Print message and terminate program.}

Writeln;

Writeln('End of list')

end.

Figure 9-1 (continued)

A pointer First points to the first item on the list. Within each Item, a pointer Next
points to the next item on the list. For the last item on the list, Next is set to nil (to indicate
it does not point to anything).

9-1 POINTER VARIABLES 601

This variety of data structure is called a linked list. To enhance the example of Figure
9-1, we keep the logic of building the lists similar to what is already there. One addition we
require is a temporary pointer variable for each list We refer to this as Temp in our algo
rithm, which is as follows:

get the number of elements, N, from the user
loop for I going from 1 to N:

New(Temp)
set Temp".Next to First
set First to Temp
with First" do the following:

get the data for the item

[get a new data item]
[link new item to first on list]
[put new one first on list]

Before we discuss more details, let us note some points about the dynamic use of
memory. When we must predetermine the size of our data structures, as in the case of
arrays, we are making static use of memory. Using pointers allows us more flexible use of
memory.· In our example of the two shopping lists, we can use available memory with one
large list and one small list or we can have two equal-size lists. The main idea is that we do
not have to decide the memory needs for each list in advance. We note a similarity with the
way that Macintosh disk files use the available space on a disk; each file uses as much space
as it needs within the limits of the total space available.

The previous algorithm builds a list of any length. As each new node (that is, data
item for the list) is created, its Next pointer is set to point to what was the first item on the
list. For example, suppose the user enters 3 as N for the King Groceries list and that the
three items are entered in this order: 12 apples, 1 newspaper, and 5 candy bars. As the items
are added, the list appears as follows.

At first, the list is empty:

Kingfirst IZI

Then, the node for 12 apples is added to the front:

Kingfirst D •._I _1_2__._l __ a_P_P_le_s _ __.IZIL-__.

Next, the node for 1 newspaper is added to the front:

King First D >I 1 I newspaper I • ... I _1_2 ____ a_pp-le_s __ IZI.__.

Finally, the node for 5 candy bars is added to the front:

KingFirst ~ 5 I candybars I ~ 1 I newspaper I ~ 12 I apples I/I
602 POINTERS CHAP. 9

In this visual representation of the list, arrows represent pointer variables, both as named
variables and as parts of records. Note the Next pointer is nil for the last item in the list.

As you can see from this example, the lists we are building have the property that the
most recently added items are placed at the front of the list. If we were to also remove items
from the list starting at the front, then the most recently added item would be the first to be
deleted. A data structure with this approach for adding and deleting items is said to have the
last-in, first-out (LIFO) property, and is often called a stack.

Using the LIFO approach, we give an algorithm for printing and disposing of each
list:

while First is not equal to nil:
print the item
set Temp to First
set First to FirstA. Next

Dispose(Temp)

[hold onto for disposal]
[delete the first item from list]
[dispose of the unneeded item]

This algorithm works for printing and disposing of a list of any length. Note that we
do not have any idea how long the list is before we print; we just print until the list is
exhausted. See Figure 9-2.

program BuyLots;

{Written by: XXXXXXXXX XX/XX/XX}
{Purpose: To maintain two small shopping lists}
{Procedures used: New - (built-in) gets a data item}

Dispose - (built-in) returns a data item}

type
ItemType_Ptr = AitemType;
ItemType = record

Quantity: integer;
Item: string[20];
Next: ItemType_Ptr

end;
var

{Number to buy}
{Item to buy}
{Pointer to list next}

AceFirst: ItemType_Ptr; {Pointer to Ace list}
AceTemp: ItemType_Ptr; {Working pointer for Ace}
KingFirst: ItemType_Ptr; {Pointer to King list}
KingTemp: ItemType_Ptr; {Working pointer for King}
N: integer; {Number of items at store}
I: integer; {Loop index}
None: Boolean; {Indicator for empty lists}

begin {BuyLots}

{*** Initialize}

AceFirst .- nil;
KingFirst .- nil;

Figure 9-2 Two linked lists (continues next page).

9-1 POINTER VARIABLES 603

{*** Get and print lists in a loop}

repeat

Writeln;

None : = true;

{*** Build the list for Ace Drugs}

Write('How many items for Ace Drugs: ');

Readln(N);

if N < 0 then
N := O;

for I := 1 to N do
begin

None := false;

New(AceTemp); {get a data item to use}
AceTempA.Next := AceFirst; {link the new ·item to list}

AceFirst := AceTemp;
with AceFirstA do

begin

{new item is now first}

Write('Enter the item: ');

Readln (Item);

Write('Enter the quantity: ');

Readln(Quantity)

end {with}
end; {for}

{*** Build the list for King Groceries}

Write('How many items for King Groceries: ');

Readln(N);

if N < 0 then

N := O;

for I := 1 to N do
begin

None := false;

New(KingTemp);

KingTemp.Next := KingFirst;
KingFirstA := KingTemp;

with KingFirstA do
begin

{get a data item to use}

{link the new item to list}

{new item is now first}

Write('Enter the item: ');

Readln(Item);

Write('Enter the quantity: ');
Readln(Quantity)

end {with}
end; {for}

Figure 9-2 (continues next page)

604 POINTERS CHAP. 9

Writeln;

{*** Print the shopping lists}

Writeln('Here is your shopping list: ');

{*** Print the list for Ace Drugs}

Writeln('From Ace Drugs: ');
while AceFirst <> nil do

begin

with AceFirstA do

begin

Writeln(' You want ', Quantity, ' ', Item, • ');
AceTemp := AceFirst; {save for later disposal}
AceFirst := Next; {delete from list}
Dispose(AceTemp) {dispose of item}

end; {with}
end; {while} {*** Print the list for King Groceries}

Writeln('From King Groceries: ');

while KingFirst <> nil do
begin

with KingFirstA do

begin

Writeln(' You want ' Quantity, ' ', Item, ' ');
KingTemp := KingFirst; {save for later disposal}
KingFirst := Next; {delete from list}
Dispose(KingTemp) {dispose of item}

end; {with}
end {while}

until None;

Writeln(' ***Shopping list is empty');

{*** Terminate program}

end.

Figure 9-2 (continued)

Advantages of Pointers

In the previous examples, we introduced the concept of pointer variables and to one fre
quently used application, linked lists. We trust you have a feel for how they can be useful in
programs and why learning more details is worthwhile. Some of the advantages of using
pointers are as follows:

Efficiency. By appropriate use of pointers, we can sometimes make our programs
run faster and use less storage space. It is rare to find a technique that features both of these
advantages.

9-1 POINTER VARIABLES 605

' I

Flexibility. We find that the use of pointers allows us more flexibility in planning
data storage. You have already encountered some situations with arrays where you had to
make some guesses for array sizes without knowing with confidence how big the arrays
should be.

Higher-Level Programming. Pointers allow us to build data structures that often
more closely reflect the real-world task we are tackling. Having the appropriate data struc
ture makes the task of programming more enjoyable and makes it easier for us to write
correct programs.

Disadvantages of Pointers

Pointers provide us with a powerful mechanism that can be used to make our programs
better or worse. The are major advantages but disadvantages as well:

Conceptual Difficulty. Pointers are difficult to understand, and the context in which
they are used is usually complex. So at times, it may be difficult to keep our algorithms and
data structures under control and the program may be more difficult to understand (than a
similar one that does not employ pointers).

Reduced Readability. Our programs that use pointers are difficult to read because of
the notation and the indirectness of reference. We should attempt to choose names wisely
and use comments to help alleviate this problem.

Lower-Level Programming. If we are not careful, we may allow pointers to lead us
into lower-level rather than higher-level programming. Pointers allow us to build useful data
structures, but pointers also allow us to think in terms of memory addresses instead of
structures. Anyone who has programmed a computer in machine or assembler language
realizes the essential harshness of a low-level programming environment.

Hidden Side Effects. If we use pointers incorrectly or unwisely, we may find hid
den side effects due to complicated data dependencies in our programs. Some nasty sur
prises can lurk in hidden side effects.

Using Pointers to Advantage

As programmers, we cannot afford to ignore any technique that can be useful. If a technique
can be misused (and most can), then we must strive to discover the circumstances in which
the technique is most beneficial and let those circumstances serve as a cue as to when to use
the technique. It is important to keep in mind that there are usually many alternative ways to
handle a programming situation, ranging from perfectly appropriate to grossly inappropriate.
The hallmark of a good programmer is the ability to select the best technique for the job. In
view of the possible bad effects that pointers can have on our programming, we offer some
advice on their use:

li.mit the Use of Pointers. Do not overuse pointers in your programs. Make sure
that you can justify every one of the pointers that you use.

Use Pointers Appropriately. The inappropriate use of pointers can confuse you and
can cause your programs to behave unpredictably.

606 POINTERS CHAP. 9

Learn About Data Structures. To really make effective use of pointers, you should
know about the important types of data structures and when and how to use them. There are
several different levels of textbooks (and computer science courses) dedicated to data struc
tures.

DPT

1. We should use pointers only when they are appropriate to the problem at hand. As
with any powerful concept, we have the tendency to overuse pointers in situations where
standard variables would do the task as effectively.

2. Avoid low-level programming if the nature of the task indicates that you should be
operating on a higher level of abstraction. There are tasks closely related to a computer's
hardware that are best done with low-level techniques, but most programs should operate as
closely as possible to the context in which the problem is stated rather than in terms of the
machine being used to solve it.

3. The use of pointers can cause a phenomenon known as aliasing, a situation where
a single data item has two or more different references. The danger is that any of the
references can modify the data item and the others will encounter a hidden side effect. This
situation can happen in the sequence

New(First);
{put some data into FirstA}
Temp := First;
Dispose(First)

The assignment Temp := First makes the pointers aliases; they both refer to the same data
item. Therefore, when we execute the statement Dispose(First), we also lose the data item
associated with Temp. One can easily forget that Temp no longer points to a valid data item;
in fact, Temp has become a dangling pointer, and any use of it results in a (perhaps major)
unwanted side effect.

4. Never use a pointer variable until it is assigned a value by an assignment statement
or by the New procedure. An uninitialized pointer points to some chance place in memory,
and its use causes unpredictable results.

5. Never use a pointer variable after use of the Dispose procedure; the pointer is now
dangling.

6. Declare a pointer type before the type declaration for the "pointed-to" data items.
This order of declaration is always valid, whereas the other order is illegal if the pointer
type is used within the declaration of the other type.

7. Avoid reference to what a pointer points to when that pointer is nil. This is similar,
in many ways, to avoiding references to arrays using subscripts that are out of range. For
example, suppose we chose to use a repeat loop to print the list for King Groceries. We
might write

9-1 POINTER VARIABLES 607

Writeln('From King Groceries: ');
repeat

with KingFirstA do
begin

Writeln(' You want ', Quantity, ' ', Item, '.');
KingTemp := KingFirst; {save for later disposal}

KingFirst := Next; {delete from list}
Dispose(KingTemp) {dispose of item}

end; {with}
until KingFirst = nil

This works unless the list is empty. If the list is empty, the first reference to
KingFirstA.Quantity (in the Writeln statement) causes a run-time error.

REVIEW

Terms and Concepts

aliasing
caret (A)
dangling pointer
dynamic
last in, first out (LIFO)
linked list
(memory) address

Pascal Syntax

1. Declare a pointer type:

type
SomeType_Ptr = ASomeType;

SomeType = definition of the type;

2. Declare a pointer variable:

var

pointername: SomeType_Ptr;

3. Assign a value to a pointer:

nil
New
node
pointers
stack
static

(a) To indicate that it is not pointing at any data item:

pointername := nil

(b) To get a newly allocated data item:

New{pointername)

(c) To have it refer to an existing data item:

pointername := another pointer name

608 POINTERS CHAP. 9

or

pointername := @variable of type pointer can point to

4. Access the information of the data item:

pointernameA

PointernameA is used as we would use a variable name for the data item

5. Dispose of an unneeded data item:

Dispose(pointername)

DPT

1. Use pointers only when appropriate to the problem.
2. Avoid low-level programming.
3. Be wary of aliasing.
4. Don't use a pointer until it is assigned a value.
5. Don't use a pointer after it has been disposed of.
6. Declare the pointer type before the pointed-to type.
7. Avoid reference to what a pointer points to when the pointer is nil.

EXERCISES

1. Write declarations for the following:
(a) A named type for strings of maximum length 30.
(b) A named pointer type to the string type of part (a).
(c) Two variables of the string type.
(d) Two pointer variables to items of the string type of part (a).

2. Suppose that we have a data structure for students set up as follows:

type

StudentType_Ptr = AStudentType;

StudentType = record

var

Name: string[50];

SSN: string[9];

Roommate: StudentType_Ptr

end;

Anyone: StudentType_Ptr;

Studentl: StudentType;

Assume that a program has been processing some student information.
(a) How could you test to find if Studentl has a roommate?
(b) How could you test to find if the student referred to by AnyOne has a roommate?

EXERCISES 609

(c) Print the name of Studentl.
(d) Print the name of the student referred to by AnyOne.
(e) Assign the student referred to by AnyOne as the roommate of Student I.

3. Define a data structure for members of a gourmet club that includes the following information
for each member: name, favorite dessert, and spouse.

4. Suppose that we have a data structure for books defined as

610

type

BookType_Ptr = ABookType;

BookType = record

var

Author: string[SOJ;

Title: string[80J;

Year: string[4];

Comment: string[80];

Next: BookType_Ptr

end;

Head: BookType_Ptr; {Pointer to first book}

Temp: BookType_Ptr; {Working pointer to book}

Suppose that a program has built a list of books so that the first book on the list is referred to by
the pointer Head, the last book on the list has its pointer Next set to nil, and each of the other
books on the list has the pointer Next set to the next book on the list. (This is similar to the
examples in this section.)
(a) Write a condition to test if the list is empty.
(b) Write a condition to test ifthere is exactly one book on the list.
(c) Suppose that the pointer Temp refers to a book not on the list. Write a Pascal code frag

ment that puts that book at the front of the list.
(d) Suppose that the pointer Temp does not refer to any data item. Write code to obtain a data

item for Temp and put that data item at the front of the list. Record the following informa
tion for the new book:

author: Douglas Master

title: The World of Imagined Worlds

year: 1977

comment: a book about role-playing games

(e) Write a THINK code fragment to delete the first book from the list if the list is not empty;
if the list is empty, do nothing.

(t) Assume that there are at least two books on the list. Write a Pascal fragment to delete the
second book from the list.

(g) Assume that there are at least two books on the list. Write a Pascal fragment to move the
second book to the first position on the list.

(b) Write a Pascal fragment to count the number of books on the list.
(i) Write a Pascal fragment to print the information for the first book on the list. Assume that

the list is not empty.
(j) Write a Pascal fragment to print the information for the last book on the list. Assume that

the list is not empty.
(k) Write a Pascal fragment to delete the last book on the list. Assume that the list has at least

two books.

POINTERS CHAP. 9

(I) Write a Pascal fragment to delete the last book on the list. Assume that the list has at least
one book.

(m) Write a Pascal fragment to delete the last book on the list, if any; handle the case where the
list might be empty.

5. Modify the shopping-list data structure discussed in this section so that there are two different
data types for the two different stores. Add a unit price field to the Ace Drugs record and add
unit price and coupon discount fields to the King Groceries record.
(a) Make all modifications that are necessary to the program of Figure 9-2 to reflect the new

data structures.
(b) Add code to your program of part (a) to obtain a total cost of the shopping list at each

store. Assume that the coupon discount is subtracted from the price of one item only.
(c) Modify your program for part (b) so that no item is added to the shopping list if the

quantity is less than 1.

6. Use the data structure of the program of Figure 9-2 to write a program with the following body:

begin

repeat

New(AceFirst)

until false

end.

Predict what happens when you run the program. Run the program and see what happens. What
would happen if you added the statement "Dispose(AceFirst)" after "New(AceFirst)" in the
loop?

7. (a) Use the data structure of the program of Figure 9-2 to write a program that creates an
empty list, and then tries to print the first node. Predict what happens when you run the
program. Run the program and see what happens.

(b) Modify the program to create a list with one node, and then try to print two nodes.

8. Predict the behavior of the following program and then run it to see what happens:

program Aliases;

var

X: "integer;
Y: "integer;

begin
y := 2;

x := 5;
Writeln(X", Y")

end.

9. Run both of the following programs below and check the execution times with a stopwatch.

program Transfers;

var
X, Y: string;

I: integer;

EXERCISES 611

begin
x :~ '**';

for I := 1 to 30000 do

y := x
end.

program Transfers;

var
X, Y: "string;

I: integer;

begin

New(X);

XA ·- '**';

for I .- 1 to 30000 do
y := x

end.

Which is faster? Why, do you think?

9-2 USING POINTER VARIABLES

In this section, we use examples to illustrate pointer use in more detail. In the first example,
we refine the sample program of the previous section that dealt with linked lists. The second
example gives an application involving sorting that illustrates a somewhat different use of
pointers. This serves only as an introduction to the topic; a course in data structures and
algorithms typically goes into much more detail.

Linked Lists

The example of the previous section introduced some techniques for representing a list
using pointers to link the individual list items. Specifically, the program in Figure 9-2
initialized two lists, read values for them, and printed them (disposing of the nodes at the
same time). In this subsection, we rewrite the program with a few changes.

As you read the program in Figure 9-2, you may have said to yourself, "This program
does exactly the same things for the two lists. Wouldn't it be possible to generalize the
program by using subprograms?" That is exactly what we do in this section.

There are two obvious candidates for subprograms in that program:

Reading a list

Printing and deleting a list

However, we can visualize programs where printing and deleting would be totally separate
activities. We, therefore, separate those activities.

In addition to these three subprograms, which apply specifically to the program at
hand, we develop some ''utility" modules. They are

612 POINTERS CHAP. 9

a module to create an empty list

a module to see if a list is empty

a module to create a node with the values filled in

These modules can be used as they are, or modified slightly, for inclusion in almost any
program that deals with linked lists. At first glance, they may seem to be too trivial to be
worthy of submodules. (The first two are one line each.) However, they do hide information
about the details of the data structure from the main program. This is part of what we mean
when we talk about programming at a high level rather than a low level.

Before we write the submodules, let us see what the main program declarations and
body look like using these modules. Refer to Figure 9-3. As you can see, it is much
"cleaner" than the previous version. It deals with the "what" of the program, delegating the
details to its submodules. Moreover, if the exact form used to represent the lists is modified
in the future, we need to make only minor changes to the main module, mostly in the
declarations.

Notice the use of Empty to set the variable None used for loop control.

program BuyLots;

{Written by: XXXXXXXXX XX/XX/XX}
{Purpose: To maintain two small shopping lists}

{Procedures used: ReadList - to read a linked list}
PrintList - to print the values of a linked list}

DeleteList - to delete a list, disposing of the nodes}

NewList - to create an empty linked list}

Empty - to see if a list is empty}

type

String20 = string[20];

ItemType_Ptr = AitemType;

ItemType = record

var

Quantity: integer;

Item: String20;

Next: ItemType_Ptr

end;

{Number to buy}

{Item to buy}

{Pointer to list next}

AceFirst: ItemType_Ptr; {Pointer to Ace list}
KingFirst: ItemType_Ptr; {Pointer to King list}

None: Boolean;

{Submodules are declared here}

begin {BuyLots}

{*** Initialize}

NewList(AceFirst);

NewList(KingFirst);

{Indicator for empty lists}

Figure 9-3 Pointers and procedures: first cut (continues next page).

9-2 USING POINTER VARIABLES 613

{*** Get and print lists in a loop}

repeat
Writeln;

{*** Build the lists and see if both are empty}

ReadList('Ace Drugs•, AceFirst);
ReadList('King Groceries•, KingFirst);
None := Empty(AceFirst) and Empty(KingFirst);

{*** Print the shopping lists}

Writeln('Here is your shopping list: ');
PrintList('Ace Drugs', AceFirst);
PrintList('King Groceries', KingFirst);

{*** Delete the shopping lists}

DeleteList(AceFirst);
DeleteList(KingFirst)

until None;

Writeln(' ***Shopping list is empty');

{*** Terminate program}

end.

Figure 9-3 (continued)

Now let us write the subprograms, beginning with the utilities. The function to see if a
list is empty needs one parameter: the list to check. If we call that ListHead, then the body is
simply

Empty := (ListHead = nil)

Using the same name for the parameter for the NewList procedure, we have the procedure
body:

ListHead := nil

Notice that ListHead is an output parameter and is, therefore, defined as a var parameter.
Finally, the Create function is of the pointer type. Given the values for the record that will
be the new node, it calls New to create the node, and then fills in the values. We choose
NewQuant, Newltem, and NewNext for the three parameters and write the body as

New(Temp);
with TempA do

begin
Quantity .- NewQuant;
Item : = Newitem;
Next := NewNext

end; {With}
Create := Temp

Temp is a local pointer variable used to build up the answer; the last step assigns the answer
to the function name.

614 POINTERS CHAP. 9

The ReadList procedure is generalized from the two segments of code that were used
to read the two separate lists. We use an output parameter ListHead to represent the pointer
to the beginning of the list that is being read. In addition, we have an input parameter that
contains the list name for use in the prompt. The body of the procedure is

Write('How many items for', ListName, ': ');

Readln (N);

if N < 0 then

N : = O;

for I := 1 to N do
begin

Write('Enter the item: ');

Readln (Newitem) ;

Write('Enter the quantity: ');

Readln(NewQuant);

Temp := Create(NewQuant, Newltem, nil);

TempA.Next := ListHead; {link the new item to list}

ListHead := Temp; {new item is now first}

end {for}

The variables N, I, and Temp are local variables that play roles analogous to similar vari
ables in the original program. Specifically, Temp is a pointer to the new node (obtained by
using the Create function). This new node is placed on the front of the list by making its
Next field point to what was the list head, and then having the list head point to it. PrintList
is similar; we adapted it from the printing portions of the previous program. The parameters
are the list name and the pointer to the first node in the list (both are input). The body is

Writeln('From ', ListName, ': ');

NodeToPrint := ListHead;

while NodeToPrint <> nil do

begin
with NodeToPrintA do

Writeln(' You want ', Quantity, '

NodeToPrint .- NodeToPrintA.Next

end {while}

Item, '. ');

Notice the use of the pointer variable NodeToPrint to traverse the list. The step

NodeToPrint := NodeToPrintA.Next

represents a standard way to move on to the next node in a list. It is similar in intent to the
step I := I + 1 to move on to the next item in an array. (Likewise, NodeToPrint := ListHead,
which starts at the front of the list, is similar in intent to I := 1, which starts at the front of
the array.)

Finally, the code to delete the list is extracted from the loops that deleted and printed
in the original program:

while ListHead <> nil do
begin

NodeToDelete := ListHead;
ListHead := ListHeadA.Next;

Dispose(NodeToDelete)

end; {while}

9-2 USING POINTER VARIABLES

{Save for later disposal}

{Delete from list}

{Dispose of item}

615

ListHead is an update parameter that points to the first node in the list to be deleted, and
NodeToDelete is a local pointer used to keep track of the node to be disposed when
ListHead is advanced to the next node. Figure 9-4 contains the complete program.

Saving Both Space and Time with Pointers

In this section, we present an example that shows how the use of pointers can provide
dramatic savings of both space and time. The context of the example is that we are to read a
list of an unknown number of students, with the relevant information for each student
including the name, section number, and grade. We wish to sort the list by name and print
the list. We organize the data for an individual student in a standard manner:

NameType = string[50];
SectionType = integer;

GradeType = char;

StudentType = record
Name: NameType;

Section: SectionType;

Grade: GradeType
end;

Now, in this example, we do not know the number of students, so it is difficult to
guess an accurate size for the list of students. We do not wish to use the linked-list tech
niques because of the requirement that we must sort the data by name, which requires fast
access to the various elements of the list. An array appears to be the appropriate data
structure for the student list. However, if we use an array of StudentType, then each unused
array element is costing us about 24 memory locations. To play it safe, we set the array size
to some large number such as 5000. We will be requiring approximately 120,000 memory
locations for our student list even if we only have 25 students in the list for some particular
run of the program. To save space, we use an array of pointers for the student list. We
declare the list as follows:

616

const

MaxNumber 5000; {Maximum size for list}

type

NameType = string[50];

SectionType = integer;
GradeType = char;

StudentType_Ptr = ~studentType;

StudentType = record

Name: NameType;

Section: SectionType;

Grade: GradeType
end;

StudentArray =array [l .. MaxNumber] of StudentType_Ptr;

var

Student: StudentArray; {Array of pointers}

POINTERS CHAP. 9

program BuyLots;

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To maintain two small shopping lists}

{Procedures used: ReadList - to read a linked list}

PrintList - to print the values of a linked list}

DeleteList - to delete a list, disposing of the nodes}
NewList - to create an empty linked list}
Empty - to see if a list is empty}

type

String20 = string[20J;
ItemType_Ptr = AitemType;

ItemType = record

var

Quantity: integer;

Item: String20;

Next: ItemType_Ptr

end;

AceFirst: ItemType_Ptr;

KingFirst: ItemType_Ptr;

None: Boolean;

{Number to buy}

{Item to buy}

{Pointer to next item}

{Pointer to Ace list}

{Pointer to King list}

{Indicator for empty lists}

function Create (NewQuant: integer; Newitem: String20; NewNext:
ItemType_Ptr): ItemType_Ptr;

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To create a new node and fill in the values}

{Parameters: NewQuant - input, the quantity for the new node}

Newitem - input, the item name for the new node}

NewNext - input, the pointer field for the new node}

{Procedures used: New - (built-in) gets a data item}

var
Temp: ItemType_Ptr;

begin {Create}
New(Temp);
with TempA do

begin

{Temporary copy of answer}

Quantity := NewQuant;

Item := Newitem;

Next : = NewNext
end; {With}

Create := Temp
end; {Create}

Figure 9-4 Pointers and procedures: refined (continues next page).

9-2 USING POINTER VARIABLES 617

function Empty (ListHead: ItemType_Ptr) : boolean;

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To see if a list is empty}

{Parameters: ListHead - input, the list to check (that is, a}

pointer to the list's first item)}

begin
Empty := (ListHead nil)

end; {Empty}

procedure NewList (var ListHead: ItemType_Ptr);

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To create an empty list}

{Parameters: ListHead - output, the list created}

begin {NewList}

ListHead := nil
end; {NewList}

procedure ReadList (ListName: string; var ListHead: ItemType_Ptr);

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To create a list by reading from the terminal}

{Parameters: ListName - input, the "name" of the list}

ListHead - update, the list created (assumed to be nil}

when ReadList is invoked)}

{Functions used: Create - to create one node for the list}

var

N: integer;

I: integer;
Temp: ItemType_Ptr;

Newitem: String20;

NewQuant: integer;

begin {ReadList}

(Number of items for list}
{Loop index}

(Pointer to temporary node}

(Item to add to list}

{Quantity to add to list}

Write('How many items for' ListName, ': ');

Readln(N);

if N < 0 then
N := O;

for I := 1 to N do
begin

Write('Enter the item: ');
Readln(Newitem);

Write('Enter the quantity: ');

Readln(NewQuant);

Temp:= Create(NewQuant, Newitem, nil);
TempA.Next := ListHead;

ListHead .- Temp;
end {for}

end; {ReadList}

{link the new item to list}
(new item is now first}

Figure9-4 (continues next page).

618 POINTERS CHAP. 9

procedure PrintList (ListName: string; ListHead: ItemType_Ptr);

{Written by: XXXXXXXXX XX/XX/XX}
{Purpose: To print a list}

{Parameters: ListName - input, the "name" of the list}

ListHead input, the list to be printed (that is, a}

pointer to the first node)}

var

NodeToPrint: ItemType_Ptr; {traverses the list}

begin {PrintList}

Writeln;

Writeln(' From' ListName, ': ');

NodeToPrint := ListHead;

while NodeToPrint <> nil do
begin

with NodeToPrintA do
Writeln(' You want ' Quantity,

NodeToPrint .- NodeToPrintA.Next

end {while}

end; {PrintList}

Item, '.');

procedure DeleteList (var ListHead: ItemType_Ptr);

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To delete a list by disposing of all its nodes}

{Parameters: ListHead - update, the list to be deleted (its value}

is nil when deletion is completed}

{Procedures used: Dispose - (built-in) to dispose of one node}

var
NodeToDelete: ItemType_Ptr;

begin

while ListHead <> nil do
begin

NodeToDelete := ListHead;
ListHead := ListHeadA.Next;

Dispose(NodeToDelete)
end {while}

end; {DeleteList}

begin {BuyLots}

{*** Initialize}

NewList(AceFirst);
NewList(KingFirst);

{Traverses the list}

{save for later disposal}

{delete from list}

{dispose of item}

{*** Get and print lists in a loop}

repeat
Writeln;

Figure 9-4 (continues next page).

9-2 USING POINTER VARIABLES 619

{*** Build the lists and see if both are empty}

ReadList('Ace Drugs', AceFirst);

ReadList{'King Groceries', KingFirst);

None := Empty{AceFirst) and Empty(KingFirst);

{*** Print the shopping lists}

Writeln{'Here is your shopping list: ');

PrintList{'Ace Drugs', AceFirst);

PrintList{'King Groceries', KingFirst);

{*** Delete the shopping lists}

DeleteList(AceFirst);

DeleteList{KingFirst)

until None;

Writeln{' ***Shopping list is empty')

{*** Terminate program}

end.

Figure 9-4 (continued)

If there are no students on the list, the array of pointers occupies approximately
20,000 memory locations. If we run the program with 25 students on the list, then, using
pointers, we utilize approximately 20,000 memory locations as compared to 265,000 mem
ory locations using a standard array. (And since THINK allows only 64,000 locations for all
of static storage, we could not use a standard array approach with more than about 1200
students.)

Now that we have seen the space savings of the technique, we look at the time
savings. We intend to sort names by using a version of the quicksort algorithm discussed in
Chapter 6. Computer runs have shown that assignment statements using pointers to Student
Type records are faster than assignment statements using StudentType records directly.
Since quicksort uses assignment statements for swapping data items, we can expect signifi
cant time savings by using pointers.

We now discuss each of the modules of the example and indicate where the use of
pointers has made a difference in the program.

620

The main program has the steps:

initialize the number of students to 0
while still students to read in

add the student to the list using AddStudent
while not in sorted order

sort the student list by name using NameSort

POINTERS CHAP. 9

loop for I going from 1 to the number of students
print the student record for Ith student using PrintStudent

We see that the three major modules of the program are AddStudent, NameSort, and
PrintStudent.

The AddStudent procedure has the single parameter Done, a Boolean type, which
indicates when the user is finished. The procedure has the steps:

set number of students to number plus 1
get a new data item using New
read student name from the user
if the name is empty then:

set Done to true
return the data item using Dispose
set number of students to number minus 1

otherwise:
set Done to false
read the section and grade from the user

Notice that, by using pointers, we have need of the New and Dispose procedures. In the
actual procedure, we refer to the record as Student[Number]A instead of as Student[Num
ber]; we would use the latter if the array contained student data directly, rather than pointers
to student data.

The NameSort procedure is an adaptation of the QuickSort procedure presented in
Chapter 6. We have made very few changes, which are as follows:

1. We have called the sort NameSort and the partitioning procedure NamePartition.

2. We have eliminated the first parameter of both procedures.

3. We have used the global type NameType for the Pivot variable.

4. We have changed all references of the form A[expression] to the form Student[expres
sion] A .Name.

5. We have declared the variable Temp to be a pointer for use in swapping.

6. We have replaced the use of the Swap procedure with the three-statement swapping
logic.

These few changes allow quicksort to be used in a very different context than that of
Chapter 6.

The procedure PrintStudent simply prints the information for the J1h student on one
line. The only evidence of the use of pointers is in the one statement that refers to the record
as Student[Number]A instead of as Student[Number], which we would use were it not for
the pointers.

The example program is presented in Figure 9-5 with the changes given before in
italics.

9-2 USING POINTER VARIABLES 621

program Efficiency;

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To illustrate the use of arrays of pointers}

{Procedures used: AddStudent - adds a student to the list}
NameSort - sorts by student name}

PrintStudent - prints a student record}

const
MaxNumber 5000; {Maximum list size}

type
NameType = string[50];

SectionType = integer;

GradeType = char;
StudentType_Ptr = AStudentType;

StudentType = record
Name: NameType;
Section: SectionType;

Grade: GradeType

end;
StudentArray = array[l .. MaxNumber] of StudentType_Ptr;

var

Student: StudentArray;

Number: integer;

{Array of pointers}

{Actual number of students}

{Loop index} I: integer;

Done: Boolean; {Indicator for finished}

procedure AddStudent (var Done: Boolean);

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To get student information and add to list}

{Parameters: Done - output, indicates finished when true}

{Procedures used: New - (built-in) gets new data item}

{Globals used:
{

const

Dispose - (built-in) returns data item}

Number - actual number of data items, updated}

MaxNumber - maximum number for list, used}

EndOfData = ' ' ; {Terminating value}

Figure9-5 Array of pointers (continues next page).

622 POINTERS CHAP. 9

begin {AddStudent}

if Number >= MaxNumber then
Done := true

else
begin

Number := Number + l;

New(Student[Number]);
with Student[Number]A do

begin

{Get new data item}

Write(' Name (Empty to quit): ');

Readln (Name);

if Name = EndOfData then
begin

Done := true;

Dispose(Student[Number]); {Return data item}

Number .- Number - 1

end
else

begin

Done := false;

Write(' Section: ');
Readln(Section);

Write(' Grade (A,B,C,D,E): ');

Readln(Grade)

end

end {with}

end

end; {AddStudent}

procedure NamePartition (Low, High: integer; var PivotLocation:

integer);

{Written by: XXXXXXXXXX XX/XX/XX}

{Purpose: To partition an array into three parts:}

1. values less or equal to the pivotal element}

2. the pivotal element}
3. values greater than or equal to the pivotal element}

{Parameters: Low, High - the portion of the array to partition}

PivotLocation - the location for the pivotal element}

(sent back to the calling module)}

var

Figure 9-5

I: integer;
J: integer;
Pivot: NameType;

Temp: StudentType_Ptr;

(continues next page).

9-2 USING POINTER VARIABLES

{used to locate large values}

{used to locate small values}
{the pivotal element}

{for swapping}

623

begin {Partition}

I := Low;

J := High + 1;

Pivot := Student[Low]A.Name;

repeat

{*** Move 1 to right looking for value >= the pivot}

repeat

I := I + 1

until (I High) or (Student[IJA.Name >=Pivot);

{*** Move J to left looking for value <= the pivot}

repeat

J := J - 1

until Student[J]A.Name <= Pivot;

{*** Swap if the values are out of order}

if I < J then

begin

Temp := Student[I];

Student[I] .- Student[J];

Student[J] .- Temp

end {if}

until I >= J;

{*** Put pivotal element in the proper place and return the value of }

its subscript to calling module}

Temp := Student[Low];

Student[Low] := Student[J];

Student[J] := Temp;

PivotLocation .- J

end; {Partition}

procedure NameSort (Low, High: integer);

{Written by: XXXXXXXXXX XX/XX/XX}

{Purpose: To sort students by names, using quicksort}

{Parameters: Low, High - the portion of the array to sort}

var

PivotSub: integer; {location of pivotal element}

begin {NameSort}

if Low < High then
begin

NamePartition(Low, High, PivotSub);

NameSort(Low, PivotSub - 1);

NameSort(PivotSub + 1, High)

end {if}

end; {NameSort}

Figure 9-5 (continues next page)

624 POINTERS CHAP. 9

procedure PrintStudent (I: integer);

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To print the student record for one student}

{Parameters: I - input, index of student to print}

begin {PrintStudent}

with Student[I]A do

begin

Writeln{Section

end {with}

6, ' ' Name, ' ' 50 - Length(Name), Grade)

end; {PrintStudent}

begin {Efficiency}

{*** Initialize}

Number := O;

{*** Get students}

repeat

AddStudent(Done)

until Done;

{*** Sort the data}

NameSort(l, Number);

{*** Print the student records}

Writeln;

Writeln(•

Writeln('

Writeln{'Section

Student Records');

---------------');

Name', ' ' : 40, ' Grade ');

for I := 1 to Number do

PrintStudent{I)

(*** Terminate}

end.

Figure 9-5 (continued)

EXERCISES

1. For the program of Figure 9-4, revise the ReadList procedure to read an unknown number of list
items, terminated by an appropriate terminal value.

2. Modify the program of Figure 9-4 to create IO lists. Use an array of list names and an array of
pointers to the first item in each list.

3. Why does the Create function in Figure 9-4 need the Temp variable? Why not just write

New(Create);

with CreateA do . . .

EXERCISES 625

4. In the ReadList procedure of Figure 9-4, we use Create to fill in the quantity and item portion of
the new record, but we fill in the Next portion ourselves. Tell how to modify the steps so that
the Create call completes the entire record.

5. The comments for the ReadList procedure in Figure 9-4 say that it assumes the list is empty
when the procedure is called. By hand-tracing the procedure with a non-empty list, find what
happens if the list is not empty upon entry to the procedure.

6. (a) Given is a segment of code for searching in an array. By examining the intent of each step
of that code, write a segment of code for searching in a linked list. (Use the linked-list
structure of the program of Figure 9-4.)

Found := false;
while (not Found) and (I <= N) do

begin
if A[I] = Key then

Found .- true
else

I := I + 1

end; {while}

if Found then
Locate .- I

else
Locate .- O;

(b) Write the code of part (a) as a function that returns a pointer to the node that contains the
desired value or nil if there is no such node.

(c) In linked-list applications, it is often useful to obtain a pointer to the node just before the
one that contains the desired value. Assuming that there is such a node and that it is not the
first node, write a segment of code to accomplish this. Hint: Modify part (b).

(d) Write a procedure with the parameters that follow, using the linked list structure from the
program of Figure 9-4. The procedure's purpose is to report the position of a given item in
a list and establish a pointer to the list entry before the given item.

A pointer to the first node of a list - input.

A value to look for - input.

An indication of the result (either NotFound, First, or NotFirst - use a
user-defined type) - output.

A pointer to the node before the one with the value (only defined if
NotFirst is the result) - output.

(e) By using the procedure of part (d), write a segment of code to insert a new node containing
the entry "2 toothpaste" in the list right before the entry for vegetable soup. Assume that
vegetable soup is in the list.

(0 Repeat part (e), but put the new entry in the front of the list if vegetable soup is not in the
list.

7. Write procedures or functions for each of the parts of Exercise 4 of Section 9- l .

8. Modify the program of Figure 9-5 by using a Create procedure in the AddStudent procedure.

9. Modify the program of Figure 9-5 by using the selection sort of Chapter 6 in place of the
NameSort procedure that is shown. Use the discussion of the changes that were made to
quicksort for NameSort to guide your modifications.

626 POINTERS CHAP. 9

10. Redo the program of Figure 9-5 by using a linked list as the data structure. You will want to
perform a simpler sort, such as one of the selection sorts, rather than quicksort. Compare the
performance of your program with that of the program of Figure 9-5.

11. Write a function that returns a pointer to the Nth record on the student list using the data
structure of Figure 9-5.

12. Write a function that returns a pointer to the N1h record of the data structure for your program of
Exercise 10.

13. Modify the program of Figure 9-5 so that it prints the students in reverse order.

14. What would be needed to print the students in reverse order in your program of Exercise 10?

15. Modify the program of Figure 9-5 so it prints only the students who have received a particular
user-specified grade.

16. Modify your program of Exercise IO so that it prints only the students who have received a
particular user-specified grade.

17. Modify the program of Figure 9-5 so that instead of printing all of the students, it asks the user
for a student name and prints the information for that student. Use a binary search (see Chapter
6) to locate the correct student.

18. Modify the program of Figure 9-5 so that it obtains the student information from a text file with
three lines per student. Offer a menu of options for the user that includes the following:

Displaying all students

Printing all students on the printer

Displaying a specified student (by binary search)

Changing a grade for a specified student (by binary search)

Calculating the average grade for the students (using 4 for A, 3 for B, 2 for C, 1 for D,
and 0 for F)

EXERCISES 627

10 Recursion

OBJECTIVES

We were introduced to recursion in Chapter 4 and used it with arrays in Chapter 6. In this
chapter, we take a more in-depth and focused look at the topic. By the end of the chapter,
you will be able to:

•use recursion as a problem-solving strategy

•implement recursive solutions as recursive subprograms in Pascal

• analyze the running time and storage use of THINK Pascal routines

•determine when to choose recursion or some other method when alternative solutions
to a problem exist

10-1 THINKING RECURSIVELY

Problem-Solving Tools

One way to view computer programming is in the broader context of problem solving.
When we are presented with a problem in the "real world," it is not often obvious which
line of attack leads most fruitfully to a solution. Problem solvers through the ages have
developed strategies and techniques that can be helpful aids for any problem-solving effort.
We have already discussed some of these tools in the text; a list of some useful tools is as
follows:

628

•Historical Approach. If someone has already solved the problem, why reinvent the
solution? Classical algorithms, such as the Euclidean Algorithm for the greatest com
mon divisor and quicksort, are often well-done algorithms that can be used with few
or no changes.

• Reasoning by Analogy. Many problems are analogous to problems that we or others
have solved. With the proper changes, we can find that an old solution solves a new
problem.

• Divide and Conquer. We have continually emphasized the advantages of simplifying
a problem by cutting it into "bite-size" pieces. We have used the concept of modularity
to utilize this problem-solving tool.

• Geometric Methodology. When appropriate, the theory and techniques of geometry
can provide leverage for solving problems.

•Algebraic Methodology. When appropriate, the theory and techniques of algebra pro
vide powerful tools for dealing with problems.

•Analytic Methodology. When appropriate, the theory and techniques of mathematical
analysis, as commonly encountered in calculus courses, prove to be an effective tool
for solving problems.

• Statistical Methodology. When appropriate, the methods of probability and statistics
can provide quick, effective solutions to a wide class of problems.

•Simulations. Often, the best way to solve a real-world problem is to simulate it in a
simpler computerized environment. Simulating the situation allows the possibility of
testing the proposed solution thousands or millions of times in order to test the behav
ior of the solution repeatedly.

• Recursion. When applicable, recursion can provide a solution that is almost magical
in its simplicity and effectiveness.

A good problem solver will become fluent with all of these tools. It is as important to
know which tools are inappropriate as it is to know which tools are appropriate for a given
problem. We should not remain ignorant of any area of problem-solving methodology; there
may be times when a particular method is the only one that works. In addition, as we will
see, it is better to have two solutions to a problem than just one because we can now choose
the better solution for our context. Also, having two solutions to a problem means that we
can use each method to test the other for correctness. There are many times when we can be
confident that having two different solutions for a problem that provide the same results
means that both solutions are correct. So recursion is an important problem-solving tech
nique when it provides an alternate solution to a problem, even if the recursive solution is
not the one that is finally selected as the better of the two.

The Templates of Recursion

Recursion is often seen in the context of problems that depend on one or more positive
integers that in some way measure the size of the problem. A classical example is provided
by the factorial function Factorial(N), which is recursively defined (and solved) by

Factorial(N) = N * Factorial(N - 1), for N > 0

= 1, for N=O

An algorithm for the factorial of N is

10-1 THINKING RECURSIVELY 629

if N = 0 then
Factorial := 1

else
Factorial := N * Factorial(N - 1)

The simple factorial example provides evidence for the general recursive strategy:

1. Solve the previous problem in terms of smaller instances of the same problem. For the
previous problem, Factorial(N) := N * Factorial(N - 1).

2. Decide what to do with the base case(s) of the problem. For the previous problem,
Factorial(O) := 1.

Observe that "smaller" means "closer to the base case(s)."
This strategy also applies for problems that deal with more than one measure of size.

For example, the coefficient of the mth term of the binomial raised to a power, (a+ b)", is
given by the combinatorial coefficient C(n, m), which is defined by

C(n, m)= 1, ifm=O orm=n

= C(n - 1, m) + C(n -1, m-1), otherwise

These numbers are often presented via a device called Pascal's Triangle; it is named after
Blaise Pascal, the same person for which the Pascal programming language is named.

2

3
4

5

1

1 2 1
1 3 3 1

1 4 6 4 1
5101051

6 1 6 15 20 15 6 1

7 1 7 21 35 35 21 7 1
8 8 28 56 70 56 28 8 1

9 1 9 36 84 126 126 84 36 9 1
10 1 10 45 120 210 252 210 120 45 10

For each line of the triangle, the value of m begins with 0 on the left and moves to 1, 2,
Thus, the fifth row of the triangle has values of m as shown:

m
n 012 3 45
5 15101051

Thus, we can see from the table that

C(5, 2) = C(4, 1) + C(4, 2)

10=4+6

Note that our concept of a "smaller case" when we are dependent on two integers is inter
preted as "either (or both) of the integers is smaller." This moves us closer to the base cases.

630 RECURSION CHAP. 10

Reversing a String

We tum to the problem of reversing a string, making the last character first and so on. If the
given string is "Joan Smith", then the reversed string is "htimS naoJ". The main point of this
example is that the size of a case is not always directly available. In this case, the measure
of size is the number of characters in the string. Let us denote the reversed form of a string
S by Reversed(S). Then our recursive formulation is

to calculate Reversed(S):
let x be the first character of S
let T be S with the first character removed
Reversed(S) is Reversed(T) + x

Thus, if S is "plum", then x is "p", Tis "lum", Reversed(T) is "mul", and Reversed(T) + x
is "mulp". What is the basis case for this example? There are two choices that naturally
present themselves:

If S is null, then Reversed(S) is S.

If S has exactly one character, then Reversed(S) is S.

We choose the former alternative to provide a slightly more general algorithm for
reversing the string S. We use the built-in Copy function of THINK Pascal to extract sub
strings of a string. The substring of a string S, which consists of all of S except the first
character, is thus Copy(S, 2, Length(S) - 1), where the built-in function Length provides the
number of characters of S. You can refer to Chapter 8 for more details of string handling.
The algorithm is

if S is null, then
Reversed := S

else
S := Reversed(Copy(S, 2, Length(S) - 1)) + S[l]

We saw an example of sorting numbers recursively in Chapter 6 with the quicksort
algorithm. In this subsection, we consider two other sorting techniques that can be done
recursively. For each example, we assume that an array X has been passed to the sorting
routine Sort, along with the lower and upper limits of the array to be sorted (in that order).
For example, suppose the first several members of the array X have values as shown:

subscript 1

value 33

2 3 4

10 50 -8
5
5

6

8

7 8
9 44

Then, after invoking Sort(X, 3, 7), X would appear as follows:

subscript 1 2 3

value 33 10 -8

4
5

5

8

6 7 8
9 50 44

9
3

9
3

The first example is a variation of the selection sort algorithm presented in Chapter 6 in
which we repeatedly move the larger elements of the array to the right. The recursive idea is
to move the largest element to the right and then call ourselves recursively to deal with all

10-1 THINKING RECURSIVELY 631

but the last element in the specified range. The algorithm for the selection sort version of
Sort(X, First, Last) is as follows:

if First >= Last then
return without doing anything

else
interchange the largest of X[First] . .X[Last] into position X[Last]
invoke Sort(X, First, Last-I)

The only redeeming virtue of this selection sort is that it can be so simply described. The
process of exchanging the largest value to position X[Last] is accomplished via the follow
ing algorithm:

set Large to X[First] and set Place to First
loop for I going from First + 1 to Last

if X[I] > Large, then set Large to X[I] and set Place to I
set X[Place] to X[Last] and set X[Last] to Large

The second example is called the merge sort and is slightly more complex than the selec
tion sort. The basic idea is to divide the range of X to be sorted into roughly half, to sort
each half, and to merge the two results. Suppose we want to sort the numbers

50 -8 5 8 9

Our procedure is to divide the numbers into two parts:

50 -8 5 and 8 9

Then, we sort the two parts into:

-8 5 50 and 8 9

Finally, we merge the two parts into:

-8 5 8 9 50

Of the two basic tasks to be done, sorting the parts and merging the results, the easier
of the two is the sorting because we simply call ourselves recursively to do that. If we
assume for the moment that the merging of the results is already defined, then our algorithm
for the merge sort invocation of Sort(X, First, Last) is:

if First >= Last then
return

else
set Middle to (First + Last) div 2
invoke Sort(X, First, Middle)
invoke Sort(X, Middle + I, Last)
merge the results

Actually, the merging process is not too difficult if we use an auxiliary array Temp to
merge into. The algorithm for merging the sorted parts X[First], ... , X[Middle] with
X[Middle + 1], ... , X[Last] is as follows:

632

set LPlace to First
set RPlace to Middle + 1
set I to First

RECURSION CHAP. 10

[work with both halves, while neither exhausted]
while LPlace <= Middle and RPlace <= Last do

if X[LPlace] <= X[RPlace] then
set Temp[l] to X[LPlace] and set LPlace to LPlace + 1

else
set Temp[l] to X[RPlace] and set RPlace to RPlace + 1

setltoI+l

[work with one half, when other exhausted]
if LPlace > Middle, then

set Start to RPlace and set Finish to Last
else

set Start to LPlace and set Finish to Middle
loop for XPlace from Start to Finish

set Temp[I] to X[XPlace] and set I to I+ 1

[copy from Temp to X]
loop for I going from First to Last

set X[I] to Temp[l]

This algorithm is a bit heavy with notation, but the concept is an example of a "two
finger" algorithm: set the left finger to the first element of the first part and set the right
finger to the first element of the second part; then, whichever element is smaller is moved to
Temp and that finger moves; when either part is exhausted, then the other part moves to
Temp one by one. We suggest that the reader try the two-finger version of the algorithm on
a small example and then try to see that the more formal algorithm accomplishes the same
task.

Note that in both sorting examples that we have discussed, the base case is reached
when the range of the array to be sorted contains at most one element and then we do
nothing but return.

Subsequences and Substrings of a String

In this section, we consider two routines that are of the general class that is sometimes
called predicates. In each case, the routine simply reports whether a situation is true or
false.

For our first case study, we are interested in whether a given string is a subsequence
of another given string. We consider one string to be a subsequence of another if all the
characters of the first string appear in the second string in the same order. It is not necessary
that the characters of the first string appear consecutively in the second string. Here are
some examples of subsequences of strings:

STRING

abcdefghijkl

apple

banana

house

abc

SUBSEQUENCE OF THE STRING

bdgl

pl

ann

house
(empty string)

10-1 THINKING RECURSIVELY 633

The recursive idea in determining if one string is a subsequence of another is to locate
the first character of the first string within the second, and then ask recursively if the rest of
the first string is a subsequence of the rest of the second string. The base cases are as
follows:

1. If the first string is null, the predicate is true.

2. If the first string is not null and the second string is null, the predicate is false.

The reason the empty string is a subsequence of any other string is that it must be true that
"all of the characters of the empty string appear in the second string and in the same order."
An algorithm for determining if the string InSeq is a subsequence of the string lnString is:

To calculate the predicate SubSeq(InSeq, InString):
if InSeq is null then

set SubSeq to true
else if InString is null then set SubSeq to false
else

set Place to the leftmost location oflnSeq[l] in InString
if Place is 0 (not found), then

set SubSeq to false
else

set SubSeq to SubSeq(Right(InSeq, 2), Right(InString, Place+ 1))

In this algorithm, we are assuming the existence of the string-valued function Right that is
given a string and a position and returns all the characters of the string that come after that
position.

We tum now to a related problem of recognizing whether a string is a substring of
another string. We note that the built-in THINK Pascal function Pos accomplishes this task
and more because it identifies the starting location of the substring within the string. How
ever, we discuss this problem without using the Pos function in order to explore a recursive
solution.

The recursive approach is: If the first string is not the same as the leading several
characters of the second string, then we check to see if the first string is a substring of the
second string from its second character onward. The base cases are as follows:

1. If the first string is null, the predicate is true.

2. If the length of second string is less than the length of first string, the predicate is
false.

An algorithm for determining if the string InSub is a substring of the string InString is
as follows:

634

To calculate SubString(lnSub, lnString):
if InSub is null, then set SubString to true
else if Length(lnString) <Length (lnSub), then

set SubString to false
else iflnSub is equal to Left(lnString, Length(InSub)) then

set SubString to true
else

set SubString to SubString(InSub, Right(lnString, 2))

RECURSION CHAP. 10

In this algorithm, we assume the availability of the string function Right as discussed earlier
and we also assume the existence of the string function Left, which is given a string and a
position and returns all the characters of the string up to and including the specified posi
tion.

Some Counting Problems

In this section, we consider a few counting problems of varying degrees of difficulty.
For our first problem, we attempt to count the number of strings of length N that can

be made by an alphabet of M letters. For example, if we use the alphabet consisting of 'a'
and 'b' (M = 2) and ask for strings of length 3, then we have the following complete list:

aaa

bbb

aab

aba

baa

abb

bab

bba

The recursive idea for this problem is that we can produce all strings of length N
using M letters by first producing all strings of length N - 1 using M letters and then
prefixing each of them with each of the M letters. If we use the notation StringsNM(p, q) to
denote the number of strings of length p using q letters, then the recursive counting formula
is

StringsNM(n, m) = m * StringsNM(n -1, m)

The basis case is that StringsNM(l, m) = m. Therefore, the algorithm for counting strings of
length N using M letters is

To calculate StringsNM(n, m):
if n is equal to 1 then

set StringsNM to m
else

set StringsNM tom times StringsNM(n - 1, m)

Let us tum next to the problem of counting the number of divisors of an integer N.
First, we consider some examples:

N DIVISORS NUMBER OF DIVISORS

1

2 1, 2 2

3 1, 3 3

4 1, 2, 4 3

5 1,5 2

6 1, 2, 3, 6 4

7 1, 7 2

10-1 THINKING RECURSIVELY 635

8 1, 2, 4, 8 4

9 1, 3, 9 3

10 1, 2, 5, 10 4

11 1, 11 2

12 1, 2, 3, 4, 6, 12 6

How do we approach this problem recursively? An obvious choice for measuring the
size of the problem is to use the magnitude of the number itself. So, to use recursion, we
must decide on a method of meaningfully reducing the size of the number. When dealing
with divisors of a number, it is not a good idea to reduce the size by subtracting 1 because
the divisors of a number N and the number N - 1 do not relate to one another. A better
choice for reducing size is to divide the number by one of its factors. The resulting number
is smaller in magnitude and shares some of the same divisors as the original number. This
observation provides the crucial insight into this problem.

Our approach is to find the smallest divisor of the number and divide by it. The
question is: How do we relate the divisors of the smaller number with the divisors of the
larger number? If we study the previous table of divisors, we do not see an easy relationship
between the divisors of 6 (12 divided by 2) and 12. However, if we look at the divisors of 3
and the divisors of 4, we see that the number of divisors of 12 is equal to the number of
divisors of 3 times the number of divisors of 4. So our procedure is as follows:

To calculate the number of di visors of N:

1. Let S be the smallest divisor of N (note that Sis prime).

2. Let SK be the highest power of S that divides into N evenly.

3. The number of divisors of N is equal to (K + 1) times the number of divisors of N
divided by SK (note that K + 1 is the number of divisors of SK because Sis prime).

The basis case for this process is the number 1 because the number of divisors of the
number 1 is 1. According to our procedure, we see that the number of divisors of 72 is 12
because, using the previous notation, N is 72, S is 2, and K is 3.

Our next problem is to calculate the number of ways to express a positive integer as a
sum of positive integers where we don't distinguish different orderings (that is, we consider
2 + 1 and 1 + 2 to be the same). For example, the number 6 can be expressed in the
following ways:

636

6

1+5

2+4

3+3

1+1+4

1+2+3

2+2+2

1+1+1+3

1+1+2+2

1+1+1+1+2

l+l+l+l+l+l

RECURSION CHAP. 10

Note that we include 6 itself as a degenerate form of a sum. The way we choose to organize
the sums in this problem is by the lowest factor that appears in the sum. This organization
for the number 6 appears as follows:

Lowest factor = 1:

Lowest factor = 2:

Lowest factor= 3:

Lowest factor = 6:

l+l+l+l+l+l
1+1+1+1+2

1+1+2+2
1+2+3
1+1+4

1+5
2+2+2

2+4
3+3

6

Our procedure for counting the number of ways to express N as a sum is to count the
number of ways to express N as a sum using I as the lowest factor for I= 1, 2, 3, ... , N. So
far, we haven't used any recursive ideas. Let us use the notation AddendsAux(N, I) to
represent the number of ways to express N as a sum using I as the lowest factor. The
recursive idea is to recognize that

AddendsAux(N, I) = AddendsAux(N - I, I) +
AddendsAux(N - I, I + 1) +
AddendsAux(N - I, I + 2) +

AddendsAux(N - I, N - I)

The basis for our procedure has two cases:

1. If N = 1, then AddendsAux is 1.

2. Otherwise, if I > N div 2, then AddendsAux is 0.

Let us use the notation Addends(N) to denote the number of ways to express N as a sum of
positive integers. Then our algorithms are as follows:

To calculate Addends(N):
set Total to 0
loop for I going from 1 to N

set Total to Total + AddendsAux(N, I)

To calculate AddendsAux(N, I):
if N is equal to I then

set AddendsAux to I
else if I is greater than N div 2 then

set AddendsAux to 0

10-1 THINKING RECURSIVELY 637

else
set Total to 0 loop for J going from I to N-1
set Total to Total + AddendsAux(N-1, J)

A Power Set of a Set

A mathematical set is an unordered collection of distinct objects often presented as a list
using notation such as

{a,b, c}

{I, O}

{b,a,c}

Since order is not important, the two sets {a, b, c} and {b, a, c} are the same. A set may
have no elements; in this case, it is referred to as the empty set and we can denote it as { } .
A subset of a set is any second set, all of whose elements are members of the first set. Thus,
some subsets of {a, b, c} are

{ }

{a}

{b,c}

{a,b,c}

A problem sometimes arises that involves the consideration of all subsets of a given
set. Let us begin with the question: How many subsets does a given set have? A recursive
solution to this counting problem can be formulated as follows (we use {a, b, c} as an
example):

To calculate the number of subsets of S, Subs(S):
suppose that S is the given set
let x be any member of S
let A be S with x removed
note that any subset of S is either a

subset of A or can be derived from a
subset of A by adding x to the subset of A

Thus, Subs(S) = 2 * Subs(A)

[S ={a, b, c}]
[x = b, for example]
[A= {a, c}]
[{a} is of the first kind]
[{ b, a} is of the second kind]

The basic recursive idea here is illustrated by listing all of the subsets of {a, c}:

{ }

{a}

{c}

{a, c}

If we augment each of these by adding the element b, we get the following list:

{b}

{b, a}

{b, c}

{b,a,c}

638 RECURSION CHAP. 10

Together, these two lists of subsets contain all of the subsets of the original set {a, b, c}:

{ }

{a}

{b}

{c}

{a, b}

{a, c}

{b, c}

{a,b,c}

What is the basis case for counting subsets? The natural choice is the empty set, which has
exactly one subset (itself). Thus, an algorithm for counting subsets of a set can be presented
as follows:

To calculate the number of subsets of a set of n elements, NSubs(n):

ifn = 0 then
NSubs := 1

else
NSubs := 2 * NSubs(n - 1)

Our discussion has provided us with the means of solving a slightly more difficult
problem: that of collecting all of the subsets of a set S. The algorithm for collecting the
subsets of S is

if S is empty then just collect { }
else

choose any element x from S
let A be S with x removed
let Cl be the collection of all of the subsets of A
let C2 be the collection of all of the subsets of A with x added to each
our answer is the union of Cl with C2

An interesting exercise in recursion is to trace this algorithm to see in what order the
subsets of S appear in the final collection. Suppose that the following scenario is followed in
choosing x at each level of recursion:

Levell: S ={a, b, c}, choose x =a

Level 2: S = {b, c}, choose x = b
Level 3: S = {c}, choose x = c
Level 4: S = { } , collection is { { } }

Level 3: Collection is { { } , { c} }

Level 2: Collection is { { }, {c}, {b}, {b, c}}

Level l: Collection is { { } , { c}, { b}, { b, c}, {a}, {a, c}, {a, b}, {a, b, c}}

10-1 THINKING RECURSIVELY 639

Mutual Recursion

We now illustrate the idea of two mutually recursive subprograms, that is, each subpro
gram invokes the other. We use as the context of our discussion the concept of prefix
arithmetic expressions.

When we symbolically represent the arithmetic expression for the sum of the numbers
2 and 3, we usually write

2+3

This form is known as the infix form of the expression. The prefix form of the expression is

+23

We keep all of our numbers as single digits for simplicity in this discussion and offer
extensions in the exercises. We allow for two arithmetic operations, "+" and "*", represent
ing addition and multiplication, respectively. One advantage of the prefix form is that paren
theses are unnecessary. In the infix form, with the usual notions of precedence and associa
tivity, we must use parentheses to denote "the product of 2 with the sum of 3 and 4," as
shown:

2 * (3 + 4)

Without parentheses, the expression 2 * 3 + 4 has the value of 10, not the value of 14.
However, we can represent our expression in prefix notation as

*2+34

The table shows some more examples of the prefix form:

INFIX FORM PREFIX FORM VALUE

2 * (3 + 4) *2+34 14

2*3+4 +*234 10
(2 + 3) * (4 + 5) *+23 + 45 45

2+3+4+5 +++2345 14

2 + (3 + (4 + 5)) +2+3+45 14

4 4 4

Our intention is to write an algorithm for the evaluation of prefix expressions. We use three
main routines to accomplish the evaluation process.

The first routine, called Eval, accepts a prefix expression and returns its value. At first
thought, this seems to be no more than the top-level routine, until we realize that there are
often several prefix subexpressions to evaluate during the evaluation of the whole expres
sion. Eval must be able to handle the simplest prefix expression that contains a single

640 RECURSION CHAP. 10

number with no operators. If we look at the second and third columns of the table, we see
some examples of the behavior of Eval.

The second routine, called Apply, accepts an operator and an expression that can be
split into the two operands for the operator. Apply returns the value attained by applying the
operator to the operands. Some examples of the behavior of Apply are shown in the table:

Op lnString Apply(Op, lnString)

+ 23 5
+ *234 10

* 45 20

* 2+34 14

* +23+45 45

The third main routine, called Split, accepts an expression and splits it into two oper
ands. Let us refer to the two operands as First and Second. The behavior of Split is shown
with some examples in the following table:

In String First Second

23 2 3

*234 *23 4

45 4 5
2+34 2 +34

+23+45 +23 +45

The Eval routine has two cases: Either it is dealing with a single number or it has an
expression whose first character is an operator. The algorithm for Eval is as follows:

if the expression is a number then
return the numeric value

else
call Apply with the leading operator and the rest of the expression

So we see that Eval leaves the hard work for Apply.
The Apply routine must divide the expression into the two parts and then apply the

operator to the two parts after they are evaluated. The algorithm for Apply is as follows:

use the Split routine to divide the expression into the two parts, First
and Second, depending on the operator:

'+':return Eval(First) + Eval(Second)
'*':return Eval(First) * Eval(Second)

We will see that the Split routine is not really very difficult, so that Apply leaves the hard
work for Eval to do (it's only fair).

The Split routine must find the point at which the expression is to be divided into two
operands. By studying a few examples, we see that the dividing point comes just after there

10-1 THINKING RECURSIVELY 641

is exactly one more number than operators as we view the expression from left to right.
Review the previous table to see that this idea is correct. The algorithm for Split is as
follows:

set the variable Count to 0
scan the expression from left to right, looking at single characters:

if the character is an operator then
set Count to Count - 1

if the character is a number then
set Count to Count + 1

when Count becomes equal to 1, divide the expression into two parts
just after the current character

Let us now trace these algorithms through an example. We begin with attempting to
evaluate the expression +2*34. We explicitly trace only the Eval and Apply calls, assuming
that Split works properly.

Level 1:

Level 2:

Level 3:

Level 2:

Level 3:

Level 4:

Level 5:

Level 4:

Level 5:

Level 4:

Level 3:

Level 2:

Level 1:

We invoke Eval with the parameter +2*34.
Eval sees that the first character is the operation + and

invokes Apply with the parameters + and 2*34. Apply invokes Split with
the parameter 2*34 and receives back the two parts 2 and *34.
Apply

invokes Eval with the parameter 2.
Eval sees the character '2' and returns the number 2.

Apply

invokes Eval with the parameter *34. Eval sees that the first character
is the operation * and

invokes Apply with the parameters * and 34. Apply invokes Split with
the parameter 34 and receives back the two parts 3 and 4.
Apply

invokes Eval with the parameter 3. Eval sees the character '3' and
returns the number 3.

Apply

invokes Eval with the parameter 4. Eval sees the character '4' and
returns the number 4.

Apply applies the operation'*' to the numbers 3 and 4 and returns
the number 12.

Eval receives the number 12 from Apply and returns the number 12.

Apply applies the operation '+'to the numbers 2 and 12 and returns the
number 14.

Eval receives the number 14 from Apply and returns the number 14 to us.

The following diagram may help you follow the tracing. This diagram was constructed
during the hand-tracing and represents the entire execution of the algorithm for the given
input.

642 RECURSION CHAP. 10

Main Program

I
Eval('+2*34')

I
Apply('+', '2*34')

---------- I ------------Split('2*34') Eval('2') Eval('*34')

I
Apply('*','34')

---------- I ------------Split('34') Eva1('3') Eval('4')

After tracing such a simple example and seeing the complexity of the behavior of the
process, we may be mystified by the simplicity of the algorithms for Eval, Apply, and Split
as compared to their synergistic behavior. The answer to the paradox of simplicity produc
ing complexity is that the recursive process itself takes care of a substantial amount of
bookkeeping, thus relieving the programmer of the easy but error-fraught steps of keeping
track of who is invoking whom and who returns what to whom. We trust the example
presented here dramatically illustrates the power of recursive thinking.

REVIEW

EXERCISES

Terms and Concepts

algebraic methodology
analytic methodology
combinatorial coefficient
divide and conquer
empty set
geometric methodology
historical approach
infix
merge sort
mutually recursive

Pascal's Triangle
predicates
prefix
reasonig by analogy
recursion
selection sort
simulations
statistical methodology
subsequence
subset

1. For each of the problem-solving strategies listed at the beginning of this section, find a problem
that is best solved using the particular strategy.

2. Evaluate each of the following:
(a) Factorial(8)
(b) Factorial(O)

EXERCISES 643

(c) C(5, 3)
(d) C(IOOO, 0)

3. Write the eleventh row of Pascal's Triangle.

4. Hand-trace the execution of the algorithm for Reversed on the input string "fun".

5. Hand-trace the execution of the algorithm for merge sort on the array 3, 5, 7, 2, 1, 8, 6, 5.

6. Which of the following are subsequences of the string "abcdefg"?
(a) abcdefg
(b) gfedcba
(c) a
(d) (empty)
(e) aa
(0 beg
(g) ach

7. Which of the following are substrings of the string "abcdefg"?
(a) abcdefg
(b) a
(c) (empty)
(d) aa
(e) beg
(0 def

8. (a) For the string InString, write an expression for Right(InString, 3) in terms of the built-in
function Copy.

(b) Write an expression for Right(InString, N).

9. (a) For the string InString, write an expression for Left(lnString, 3) in terms of the built-in
function Copy.

(b) Write an expression for Left(InString, N).

10. Write all strings of length 2 using the three-letter alphabet {a, b, c}.

11. Write all of the divisors of 72.

12. Use the algorithm for counting divisors to calculate the number of divisors of72.

13. Write all of the ways to represent the number 7 as a sum of positive integers.

14. Hand-trace the function Addends(?).

15. Write all of the subsets of {a, b, c, d}.

16. Hand-trace the function NSubs(3).

17. Translate the following infix expressions into prefix form:
(a) 4 + 5 + 6
(b) 4 * 3 + 2
(c) (3 + 3) * (2 + 1)
(d) 1 +2*3+4
(e) 1 + ((2 + 3) + 4)

18. Evaluate the following prefix expressions:
(a) ++123
(b) +*123
(c) *+123
(d) **123

644 RECURSION CHAP. 10

(e) +1*23
(t) *1+23
(g) +*1+2*3+456

19. Hand-trace the Eval-Apply-Split algorithms on the expressions +1 *23 and +*1+2*3+456.

20. Enhance the set of valid prefix expressions by including the unary operator $, which means to
square the biggest prefix subexpression that lies to the right. Some examples:

$+23 is equal to 25

+$23 is equal to 7

+2$3 is equal to 11

*2$+ 12 is equal to 18

21. Write a recursive algorithm to count the number of ways to divide a string of length N into
pieces. For example, the divisions for the string "aaa" are

aaa

a aa

a a a

aa a

22. Write a recursive algorithm to generate r-digit binary sequences (strings of O's and l's) with no
adjacent O's. For example, the sequences for r = 4 are

1111
lllO

1101

1011

0111

1010

0101

0110

23. Think of ways to represent some of the data objects that we have discussed in this section:
(a) Sets of letters a, b, c, ...
(b) Collections of sets of letters a, b, c, ...
(c) Prefix expressions
(d) N-by-N chessboards
(e) N-by-N chessboards containing at most one queen per column
(t) Collections of N-by-N chessboards

24. There are three basic ingredients to a backtracking algorithm:

• a way to order the possible actions at each stage, so you do not keep trying the same one

• a way to record the actions taken, and to "back up" the action after the recursive call returns

• a way to know when a successful solution is reached

A classic group of problems amenable to solution by backtracking involves graph traversal. For
example, suppose you want to list all the paths from node 1 to node 5 in the following diagram,

EXERCISES 645

where the arrows indicate one-way streets. You do not want to revisit any node on the way.
(One possible path is l ~ 4 ~ 5.)

2

JI
,~I

4

(a) Describe ways to handle the three basic ingredients mentioned before for a backtracking
solution.

(b) Carry out a backtracking solution by hand.
(c) Repeat part (b) for this graph. You want to get from node l to node 7.

(d) Describe a general algorithm for solving the problem of traversing from node I to node Jin
a graph using backtracking.

10-2 RECURSIVE PROGRAMMING

We move in this section from the theory of recursive program design to the practice of using
recursion in our programs. We find that it takes more than algorithms for effective recursive
programming; we have concerns about data types and scope of variables and we discuss
some data representation ideas. We present Pascal code for several examples discussed in
the previous section. Only the most important ideas in the code are explicitly discussed; in
many cases, the code stands on its own.

646 RECURSION CHAP. 10

Factorial

We expect the code for the Factorial function to be short and simple, and it is; we present it
in Figure 10-1. You may be surprised at the type that we have chosen for the Factorial
function. The reason for the choice of real as the type is that even 8 factorial is larger than
maxint. By using the real type, we extend our range to 20 factorial before we begin to
experience round-off error. We have a suggestion in the exercises of a way to extend the
range further.

The combinatorial coefficients can be calculated by the integer function Combinato
rial, as is shown in Figure 10-2. Note that here, as in the case of the Factorial function, the
use of var parameters is not only inappropriate, but illegal, because we use expressions in
the recursive calls. It is legal to have both recursive calls to Combinatorial appear in the
same expression.

function Factorial(N: integer): real;

{Written by: XXXXXXXXX XX/XX/XX}
{Purpose: To calculate N factorial}
{Parameters: N - input, number for computation}

begin {Factorial}
if N = 0 then

Factorial .- 1
else

Factorial .- N * Factorial(N - 1)
end; {Factorial}

Figure 10-1 Recursive Factorial function.

function Combinatorial(N, M: integer): integer;

{Written by: XXXXXXXXX XX/XX/XX}
{Purpose: To calculate a combinatorial coefficient, recursively}
{Parameters: N - input, row of Pascal's Triangle}

M - input, term in the row}

begin {Combinatorial}

{*** See if we're done}

if (N = M) or (M = O) then
Combinatorial := 1

{*** If not done, get lower-level values}

else
Combinatorial := Combinatorial(N-1, M) + Combinatorial(N-1, M-1)

end; {Combinatorial}

Figure 10-2 Recursive Combinatorial function.

10-2 RECURSIVE PROGRAMMING 647

function Right (InString: string; Position: integer): string;

{Written by: xxxxxxxxx XX/XX/XX}

{Purpose: To return a cofinal substring of InString}

{Parameters: InString - input, string for substring extraction}

Position - input, position to begin substring}

{Functions used: Copy - (built-in) to extract a substring}
Length - (built-in) to find the length of a string}

begin {Right}

if Position < 1 then

Right := InString
else if Position > Length(InString) then

Right .-

else
Right .- Copy(InString, Position, Length(InString) - Position + 1)

end; {Right}

function Reversed (InString: string): string;

{Written by: xxxxxxxxx XX/XX/XX}

{Purpose: To reverse a string}

{Parameters: InString - input string to reverse}

{Functions used: Right - to extract a cofinal substring}

const

Null= '';

begin {Reversed}

{Empty string}

if InString = Null then

Reversed .- InString

else

Reversed.- Concat(Reversed(Right(InString, 2)), InString[l])
end; {Reversed}

Figure 10-3 Recursive string reversing function.

Reversing a String

The function Reversed uses the function Right, which extracts a cofinal substring of a
string. That is, Right returns a substring that starts in some specified position and extends all
the way to the end of the string. See Figure 10-3.

Recursive Sorting

In this section, we present two versions of the procedure Sort. For both, we rely on the
following set of global declarations:

648

const

MaxSize 1000; {Highest subscript}

RECURSION CHAP. 10

type

BaseType integer;

ArrayType = array[l .. MaxSize] of BaseType;

By using this set of declarations, we can utilize the Sort procedures to sort different types of
data by adjusting the definition of BaseType. We can also modify the maximum size of the
array to be sorted by adjusting the value of the constant MaxSize.

We show the recursive selection sort in Figure 10-4. Note that the array X is a var
parameter and that the procedure does not work otherwise. Another feature worthy of note is
that the procedure as presented is not stable. A sorting technique is stable if two elements of
equal value maintain their order relative to each other. For example, if we were to use our
sort of Figure 10-4 on a hypothetical array consisting of a blue 2 followed by a red 2, then
the resulting array would consist of the red 2 followed by the blue 2. To remedy this
situation, we could change the comparison X[I] >Large to X[I] >=Large. Alternatively, we
could change the for loop to the form:

for I := Last downto First do

For the second alternative, we would also want to initialize Large to X[Last] and Place to
Last.

We show the recursive merge sort in Figure 10-5. Note that the merge sort procedure
is stable because our merge algorithm is stable.

Subsequences and Substrings of a String

Recall that a subsequence of a string consists of zero or more characters of the string in the
same order as they appear in the string. It is not required that the characters be consecutive
in the string. A substring of a string is a subsequence consisting of consecutive characters of
the string. In Figure 10-6, we present code for the Boolean function SubSeq, which deter
mines if one string is a subsequence of another.

In Figure 10-7, we present code for the Boolean function SubString, which determines
if one string is a substring of another. In addition to the function Right discussed before, we
also use the function Left for extracting a coinitial substring of a string. That is, Left returns
a substring that starts at the beginning of the string and extends to some specified position.

Strings of Length N Using M Letters

We continue to discuss programs dealing with strings. We show how to count the number of
possible three-letter words in the English language (including lots of nonwords). We also
illustrate how you might print all of those words, but we do not suggest that you try it.
(Think about how many there are.) In Figure 10-8, we show the code for the function
StringsNM(P, Q), which counts the number of strings of length P using Q letters. Because
these values tend to be large, we use the type real for the function.

In the spirit of considering some interesting programming techniques, suppose that we
do not just want to count all of the strings, but that we want to print a list of the strings. One
way to accomplish this is to use a technique of building the recursive answers from the top

10-2 RECURSIVE PROGRAMMING 649

procedure Sort{var X: IntArray; First, Last: integer);

{Written by: XXXXXXXXX XX/XX/XX}
{Purpose: To sort an array with a recursive selection sort}

{Parameters: X - update, array to sort}

var

First - input, left limit of portion of array}

Last - input, right limit of portion of array}

I: integer; {Loop index}

Large: ArrayType; {Largest element}

Place: integer; {Place largest element found}

begin {Sort}

{*** Check to see if done}

if First < Last then

begin

{*** Find largest element}

Large .- X[First];

Place .- First;

for I .- First + 1 to Last do
if X[I] > Large then

begin
Large := X[I];

Place := I
end; {if}

{***Exchange largest value with X[Last]}

X[Place] := X[Last];

X[Last] := Large;

{*** Call upon Sort to do the rest}

Sort{X, First, Last - 1)
end {if}

end; {Sort}

Figure 10-4 Recursive selection sort.

to the bottom, rather than from the bottom to the top (as we do in building factorials, for
example). For simplicity, suppose that we restrict the alphabet of letters to a, b, and c. We
design a procedure PrintStrings to print all of the strings of length N using the letters a, b,
and c by specifying the parameters:

650 RECURSION CHAP. 10

procedure Sort(var X: IntArray; First, Last: integer);}

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To sort an array with a recursive merge sort}

{Parameters: X - update, array to sort}

var

First - input, left limit or portion}

Last - input, right limit or portion}

{Loop index}

{Largest element}

{Place largest element

{Midpoint of First and

{Place on left half of

found}

Last}

array}

I: integer;

Large: ArrayType;

Place: integer;

Middle: integer;

LPlace: integer;

RPlace: integer;

XPlace: integer;

Start: integer;

Finish: integer;

Temp: ArrayType;

{Place on right half of array}

{Place in X array}

{Marks the rest of the }

{ ... array X to copy to Temp}

{Where array parts are merged}

begin {Sort}

{*** Check to see if done}

if First < Last then
begin

{*** Sort the bottom and top halves, if necessary}

Middle := (First + Last) div 2;

if First < Middle then
Sort(X, First, Middle);

if Middle + 1 < Last then
Sort(X, Middle+ 1, Last);

{*** Merge the two halves}

LPlace := First;

RPlace := Middle + 1;

I := First;

while (LPlace <= Middle) and (RPlace <= Last) do
begin

if X[LPlace] <= X[RPlace] then
begin

Temp[I] .- X[LPlace];

LPlace .- LPlace + 1

end
else

begin
Temp[I] := X[RPlace];

RPlace := RPlace + 1

end; {if}

I := I + 1

end; {while}

Figure 10-5 Recursive merge sort (continues next page).

10-2 RECURSIVE PROGRAMMING 651

if LPlace > Middle then

begin

Start .- RPlace;

Finish .- Last

end

else

begin

Start := LPlace;

Finish := Middle

end; {if}

for XPlace := Start to Finish do

begin

Temp[I] := X[XPlace];

I := I + 1

end; {for}

for I := First to Last do

X [I] . - Temp [I]

end {if}

end; {Sort}

Figure 10-5 (continued)

StringSoFar - one of the strings still being formed

MoreToAdd - number of letters to be added to StringSoFar

We invoke the procedure to print all of the strings of length N by the call

PrintStrings('', N)

The algorithm is as follows:

if MoreToAdd is equal to 0 then
print StringSoFar

else
PrintStrings('a' + StringSoFar, MoreToAdd - 1)
PrintStrings('b' + StringSoFar, MoreToAdd - 1)
PrintStrings('c' + StringSoFar, MoreToAdd - 1)

We can see that the algorithm causes the strings to grow as they are passed downward by
the recursive calls until there are no more characters to add to the string.

We show the code for the PrintStrings procedure in Figure 10-9.

Number of Divisors of an Integer

In order to implement the algorithm presented in the previous section, we need some help
from a few small subprograms. First, we need an integer function Power for raising one
integer to the power of the other. This function was discussed earlier in the book and is
simply shown as part of Figure 10-10. For example, Power(2, 3) is 8.

652 RECURSION CHAP. 10

function SubSeq(InSeq, InString: string): Boolean;

{Written by: xxxxxxxxx XX/XX/XX}

{Purpose: To determine if InSeq is a {subsequence of InString}

{Parameters: InSeq - input, candidate for subsequence}

InString - input, string to check for subsequence}

{Functions used: Right - to extract a cofinal substring}

Pos - (built-in) to find a substring of a string}

const

Null

var

11 i

Place: integer;

begin {SubSeq}

{Empty string}

{Position of character}

{*** First, take care of empty sequence or string}

if InSeq = Null then

SubSeq := true
else if InString = Null then

SubSeq := false

{*** Take care of non-empty sequence and string}

else
begin

Place := Pos(InSeq[l], InString);

if Place = 0 then

SubSeq .- false
else

SubSeq .- SubSeq(Right(InSeq, 2), Right(InString, Place+l))

end {if}

end; {SubSeq}

Figure 10-6 Subsequence of a string.

Second. we need an integer function SmallDivisor that finds the smallest divisor
(greater than 1) of a number. This function was discussed in Chapter 4 and is also located
within Figure 10-10. For example, SmallDivisor(15) is 3.

Third, we use the integer function Degree that tells us the highest power of a factor
that divides into a number. This function can also be found within Figure 10-10. For exam
ple, Degree(2, 24) is 3.

Finally, we also present our recursive function in Figure 10-10.

Obtaining a Number as a Sum

In this example, shown coded in Figure 10-11, we use an auxiliary function to provide a
more straightforward interface to the calling program. We are ultimately interested in the
number of ways that we can sum to a specified number. So at the top level, we want to
simply call the integer function Addends, perhaps in a write statement such as

10-2 RECURSIVE PROGRAMMING 653

function Left(InString: string; Position: integer): string;

{Written by: XXXXXXXXX XX/XX/XX}
{Purpose: To return a coinitial substring of InString}
{Parameters: InString - input, string for extraction of substring}

Position - input, last position for substring}
{Functions used: Copy - (built-in) to extract a substring}
{Length - (built-in) to find the length of a string}

begin {Left}
if Position < 1 then

Left:=''
else if Position > Length(InString) then

Left .- InString
else

Left .- Copy(InString, 1, Position)
end; {Left}

function SubString(InSub, InString: string): Boolean;

{Written by: XXXXXXXXX XX/XX/XX}
{Purpose: To determine if Substring is a substring of InString}
{Parameters: InSub - input, candidate for substring}

InString - input, string to check for substring}
{Functions used: Length - (built-in) to find length of a string}

con st
Null - I I• - '

Left - to extract a coinitial substring of a string}
Right - to extract a cof inal substring of a sting}

{Empty string}

begin {Substring}
if InSub = Null then

Substring := true
else if Length(InString) < Length(InSub) then

Substring := false
else if InSub = Left(InString, Length(InSub)) then

Substring .- true
else

Substring .- SubString(InSub, Right(InString, 2))
end; {Substring}

Figure 10-7 Substring of a string.

Writeln('The number of ways to add to', N, 'is:', Addends(N))

Once inside of Addends, we set up the loop of calls to the Auxiliary function AddendsAux.

The Power Set of a Set

The data structures involved in programming the algorithm as presented in the previous
section are beyond the scope of this book. However, in this section, we present a procedure
that performs a similar activity. The procedure, WriteSeq, prints all subsequences of a string

654 RECURSION CHAP. 10

function StringsNM(N, M: integer): real;

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To count the number of strings of length N}

using M letters}

{Parameters: N - input, length of strings}

M - input, number of letters in alphabet}

begin {StringsNM}

if N = 1 then
StringsNM .- M

else
StringsNM .- M * StringsNM(N - 1, M)

end; {StringsNM}

Figure 10-8 Number of strings of a given length.

procedure PrintStrings(StringSoFar: string; MoreToAdd: integer);

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To print strings from the alphabet: a, b, c}

{Parameters: StringSoFar - input, string building up}

MoreToAdd - input, number of characters left to add}

begin {PrintStrings}

if MoreToAdd = 0 then
Writeln(StringSoFar)

else
begin

PrintStrings('a' + StringSoFar, MoreToAdd - 1);

PrintStrings('b' + StringSoFar, MoreToAdd - l);

PrintStrings('c' + StringSoFar, MoreToAdd - 1)

end {if}

end; {PrintStrings}

SAMPLE INPUT AND OUTPUT

<dialogue that supplies the value of MoreToAdd 2>

aa

ba

ca

ab

bb

cb

ac

be

cc

Figure 10-9 Printing substrings.

10-2 RECURSIVE PROGRAMMING 655

function Power (N, K: integer): integer;

begin
if K = 0 then

Power .- 1

else
Power.- Round(Exp(K * Ln(N)))

end; {Power}

function SmallDivisor (N: integer) : integer;

{Written by:
{Purpose:

{Parameters:

XXXXXXXXX XX/XX/XX}
To find the smallest divisor of N > l}
N - input, number for smallest divisor}

var
Test: integer;

begin {SmallDivisor}

Test := 2;
while (N mod Test) <> 0 do

Test := Test + l;
SmallDivisor := Test

end; {SmallDivisor}

{Used to check for divisor}

function Degree (Factor, Number: integer): integer;

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To find the highest power of Factor that divides Number}

{Parameters: Factor - input}

Number - input}

var
Total: integer;

begin {Degree}

Total := O;

while Number mod Factor
begin

Total := Total + l;

0 do

Number := Number div Factor
end; {while}

Degree := Total

end; {Degree}

Figure 10-10 Number of divisors of an integer (continues next page).

656 RECURSION CHAP. 10

function NumDivisors (N: integer): integer;

{Written by: XXXXXXXXX XX/XX/XX}
{Purpose: To count the number of divisors of N, recursively}
{Parameters: N - input}
{Functions used: SmallDivisor - to get the smallest divisor of N}

Degree - to get the highest power of a factor}
Power - to raise an integer to an integer power}

var
Factor: integer;
Multiplicity: integer;

begin {NumDivisors}

{*** See if we're done}

if N = 1 then
NumDivisors .- 1

else
begin

{*** Get smallest divisor of N}

Factor := SmallDivisor(N);

{*** Use it for recursive call}

Multiplicity := Degree(Factor, N);

{Smallest divisor of N}

NumDivisors .- (Multiplicity + 1) * NumDivisors(N div
Power(Factor, Multiplicity))

end {if}

end; {NumDivisors}

Figure 10-10 (continued)

and is shown in Figure 10-12. If we begin with the string 'abc', then the list of subsequences
of the string is

10-2 RECURSIVE PROGRAMMING

(empty)
c
b
be
a
ac
ab
abc

657

function AddendsAux(N, M: integer): integer;

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To provide the recursive calculation for Addends:}

number of ways to add to N using M as the lowest factor)

{Parameters: N - input, number to sum to}

M - input, lowest factor in sum}

var

I: integer;

Total: integer;

begin {AddendsAux}

if M = N then

AddendsAux . - 1
else if M > N div 2 then

AddendsAux . - 0

else

begin

Total .- O;
for I .- M to N - M do

Total :=Total+ AddendsAux(N - M, I);

AddendsAux .- Total
end {if}

end; {AddendsAux}

function Addends(N: integer): integer;

{Written by: xxxxxxxxx XX/XX/XX)

{Purpose: To calculate the number of ways to sum to N}

{Parameters: N - input, number to sum to}

{Functions used: AddendsAux - to find sums with lowest factor}

var
I: integer;

Total: integer;

begin (Addends}

Total := O;

for I := 1 to N do

Total :=Total+ AddendsAux(N, I);
Addends : = Total

end; (Addends}

Figure 10-11 Obtaining sums to a number.

Compare this list of subsequences to the list of subsets of the set {a, b, c} that we discussed
in the previous section. We use the basic idea of the algorithm for power sets, but we use the
top-down method that we used earlier in this section for printing strings.

The procedure WriteSeq has two parameters:

658 RECURSION CHAP. 10

Prefix: a subsequence in formation

Rest: the remainder of the original string that can be used for further building of
subsequences

If our original string is called InString, then at the top level we invoke WriteSeq with
the command

WriteSeq('', InString)

to indicate that no work on subsequences has been done yet, and all of the original string is
left to process. At the bottom level, Rest is the null string; at this point, the subsequence that
is contained in Prefix can be printed. To see how WriteSeq works "in the middle," suppose
that it has been invoked by

WriteSeq('ac•, 'efg')

somewhere in the process of trying to print all the subsequences of the string 'abcdefg'. The
recursion consists of making the two recursive calls:

WriteSeq('ac', •fg')

WriteSeq('ace', •fg')

The first call is for subsequences that do not involve 'e', and the second call is for subse
quences that do involve 'e'. In both cases, the length of the parameter Rest is reduced by 1.

procedure WriteSeq(Prefix, Rest : string);

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To print subsequences of a string}

{Parameters: Prefix - input, building string}

Rest - input, rest of string}

{Functions used: Right - extracts cofinal substring}

const

Null = ''; {Empty string}

begin {WriteSeq}

if Rest = Null then

if Prefix = Null then

Writeln(' (empty)')

else

Writeln(Prefix)

else

begin

WriteSeq(Prefix, Right(Rest, 2));

WriteSeq(Prefix + Rest[l], Right(Rest,2))

end {if}

end; {Wri teSeq}

Figure 10-12 All subsequences of a string.

10-2 RECURSIVE PROGRAMMING 659

Mutual Recursion

The main issue of this section is how to reconcile the two conflicting ideas of defining
procedures before using them and mutual recursion. From what we have discussed so far, it
seems as though we are stuck with one of the two procedures calling the other before the
other has been defined, and we know how the compiler deals with that situation-it gives a
compile time error message. The solution to the quandary is provided by a mode of declara
tion known as forward reference. The idea is that we let the compiler know about the
heading of the subprogram in advance, and present the body of the subprogram later on. For
our situation, the order in which we present Apply and Eval to the compiler is

Declare Apply as a forward reference.

Define Eval (which uses Apply).

Define the body of Apply (which uses Eval).

Thus, forward referencing allows us to achieve mutual recursion.
A complete program for the evaluation of prefix expressions is shown in Figure 10-13.

We note two points about the syntax of the forward reference:

1. After the normal heading line of any subprogram that is declared as a forward refer
ence, use the suffix "; forward".

2. When the body of the subprogram is defined, we must use an abbreviated form of the
heading; we do not list parameters nor specify the type of a function.

We introduce the Code function to help the procedure Split to divide an expression
into two pieces. The Code function provides the means for generalizing the program along
the lines explored in the exercises.

DPT

1. Recursive algorithms have a good chance of "going off to never-never land" during
the early stages of development and testing. Good design heads off most problems, but to be
safe, you should save a version of any recursive program before running any test of it.

2. Be careful when using var parameters and global variables from within recursive
subprograms. Quite often, you will find the lower levels of the recursion are having undesir
able side effects on the upper levels. For example, if you change the loop indices I of
Addends and AddendsAux of Figure 10-11 to a single global variable I, you find the pro
gram still runs, but produces erroneous results.

Testing

1. We must always test each of the base cases in a recursive solution. Because these
cases are the building blocks for all the other cases, it is essential they function correctly.

2. The next level above the base case should be tested to be sure that the reduction to
smaller cases is functioning correctly.

660 RECURSION CHAP. 10

program PreFix;

{Written by: xxxxxxxxx XX/XX/XX}

{Purpose: To evaluate prefix expressions}

{Functions used: Eval - evaluates the expression}

const
EndOfData

var

I I; {Terminating value}

Expression: string; {Input expression}

function Code (InChar: char): integer;

{Written by: xxxxxxxxx XX/XX/XX}

{Purpose: To return a code depending on the character}

{Parameters: InChar - input, character to encode}

begin {Code}

if InChar in ['1' .. '9'] then

Code := 1
else if InChar in['+', '*']then

Code .- -1

else

Code .- 0
end; {Code}

procedure Split (InString: string; var Left, Right: string);

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To split a string into two parts}
{Parameters: InString - input, string to split up}

Left - output, left part of split string}

Right - output, right part of split string}

{Functions used:

const

Null

var

, , ;

Count: integer;
I: integer;

begin {Split}

Count := 0;
I := 0;

Code - to get code for character}

Length - (built-in) gets length of string}

Copy - (built-in) extracts substring}

{Empty string}

{For operators and numbers}
{Loop index}

while (Count<> 1) and (I< Length(InString)) do
begin

I := I + 1;

Count:= Count+ Code(InString[I])
end; {while}

Figure 10-13 Mutual recursion and forward reference (continues next page).

10-2 RECURSIVE PROGRAMMING 661

if Count 1 then
begin

Left := Copy(InString, l, I);

Right .- Copy(InString, I + l, Length(InString) - I + 1)

end
else

begin

Left : = Null;

Right := Null
end {if}

end; {Split}

function Apply (Op: char; InString: string): integer;

forward;

function Eval (InString: string): integer;

{Written by: XXXXXXXX XX/XX/XX}

{Purpose: To evaluate a prefix expression}

{Parameters: InString - input, expression to evaluate}
{Functions Used: Apply - to apply an operator}

Length - (built-in) gets length of string}

Ord (built-in) position of character in set}

Copy - (built-in) extracts substring}

const

Null

var

I I j {Empty string}

FirstChar: char; {First character of InString}

begin {Eval}

if InString = Null then
begin

Writeln('*** error in expression');

Eval .- 0
end

else
begin

FirstChar := InString[l];

if Firstchar in ['0' .. '9'] then
if Length(InString) = 1 then

Eval := Ord(FirstChar) - Ord('O')

else
begin

Writeln('*** error in expression');

Eval .- 0
end

else
Eval .- Apply(FirstChar, Copy(InString, 2, Length(InString) - 1))

end {if}

end; {Eval}

Figure 10-13 (continues next page)

662 RECURSION CHAP. 10

function Apply;

{Written by: XXXXXXXX XX/XX/XX}

{Purpose: To apply an operator to two operands}

{Parameters: Op - input, operator to apply}

InString - input, contains operands for operator}

{Procedures Used: Split - to split InString into operands}

{Functions Used: Eval - to evaluate operands}

var

First: string;

Second: string;

begin {Apply}

Split(InString, First, Second);
case Op of

'+':

Apply.- Eval(First) + Eval(Second};
I* I!

Apply.- Eval(First} * Eval(Second);

otherwise

Writeln('*** Invalid operator'}
end {case}

end; {Apply}

begin {PreFix}

{*** Get user input until EndofData}

repeat

Write('Enter the expression (RETURN to exit): '};

Readln(Expression);

if Expression <> EndofData then

Writeln('The answer is: ', Eval(Expression)}

until Expression = EndofData;

{*** Terminate}

end.

Figure 10-13 (continued)

3. When the reduction to smaller cases is different from the simple moving from N to
N - 1, we should perform some error-guessing tests to see if we can cause the algorithm to
skip over the bottom-level cases and plunge into an inescapable abyss.

4. Recursive programs are particularly vulnerable to stress testing. It is a good idea to
attack a recursive routine with many tests involving maximum-size data.

10-2 RECURSIVE PROGRAMMING 663

REVIEW

Terms and Concepts

cofinal
coinitial
error guessing

Pascal Syntax

Forward Reference

header line for subprogram A; forward;

other declarations

forward reference
stable
stress testing

abbreviated header line for subprogram A
body of subprogram A

DPT

1. Save work before testing.
2. Be careful of var parameters and global variables.

Testing

1. Test each bottom-level case.

2. Test the next level up from the bottom.

3. Practice error guessing.

4. Perform stress testing.

EXERCISES

1. Write a Pascal program that discovers the lowest-numbered factorial that is calculated incor
rectly by the function of Figure 10-1.

2. We can extend the range of the factorial function by defining a data structure for representing
large integer values. One possibility is to declare the record structure:

664

const

MaxSize = 1000;

type

Biginteger = record

Positive: Boolean;
NumDigits: integer;

Digits: array[l .. MaxSize] of integer
end;

RECURSION CHAP. 10

The array Digits is intended to contain the decimal digits of a number. For example, the number
1024 would be represented in the data structure as

Positive: true

NumDigits: 4

Digits : ... , 1, 0, 2, 4 (digits are right-justified in the array)

In order to use this new data type to assist in calculating factorials, we need three subprograms:

(1) procedure Init (var Bigint: Biginteger; Value: integer);

The task for Init is to assign an initial value to a large integer.

(2) procedure Mul t (Int: integer; Bigint: Biginteger;
var Product: Biginteger);

The task for Mult is to allow us to multiply an integer by a large integer in order to
perform the step:

(k factorial) = k times (k - l factorial)

(3) procedure PrintBig (Bigint: Biginteger);

The task for PrintBig is to display a large integer on the screen.

Use these ideas just sketched to write a factorial procedure that allows the calculation of large
factorials.

3. Suppose that we had a data structure defined as

Student= array [1 .. 1000) of record

Name: string[SOJ;

Major: string[lSJ
end;

If we wanted a list of students grouped within their majors and alphabetically by name within
each major, then we might sort the Student array first by Name and then by Major.

(a) Discuss the desirability of having a stable sorting algorithm for accomplishing the job.
(b) Write a Pascal program to read in the students and print them out in the order suggested.

4. Use an unstable sort for the program of Exercise 3(b) to observe the effects.

5. Enhance the PrintStrings procedure of Figure 10-9 by adding the letter "d" to the alphabet.

6. Enhance the PrintStrings procedure of Figure 10-9 by allowing the user to input the alphabet
into an array.

7. Modify the code of Figure 10-11 so that each of the sums is printed as in this example:

1 + 1 + 1

1 + 2
3

8. Remove error checking from the function Right and cause it to have a run-time error.

9. Remove error checking from the function Left and cause it to have a run-time error.

10. Change the WriteSeq procedure so it maintains a global variable Count that can be printed after
all subsequences have been printed.

EXERCISES 665

11. Generalize the program of Figure 10-13 as suggested in Exercise 21 of Section 10-1.

12. Write a program to print 10 rows of Pascal's Triangle.

13. Write a program to perform the algorithm of Exercise 22 of Section 10-1.

14. Write a program to perform the algorithm of Exercise 23 of Section 10-1.

15. Write a program to perform the algorithm of Exercise 25 of Section 10-1.

10-3 RECURSION, ITERATION, OR ... 7

In this section, we consider questions of efficiency in the design and coding of our pro
grams. We present tools for measuring the space and time our programs use and consider
alternative methods for the solution of several of the examples we discussed in the previous
two sections. We close the section with a list of points to summarize our discussion of
recursion.

Program Measurements

When we are comparing alternative ways to solve a problem with a computer, we should
consider the following categories:

1. Use of processing time

2. Use of memory space

3. Time to develop the program

4. Time to debug the program

5. Time to maintain the program

As a general rule, recursive solutions tend to do well in categories 3, 4, and 5.
Because recursive solutions tend to be simple and small, the time needed to develop the
programs, remove their bugs, and to modify the programs later usually is less than the time
needed for nonrecursive solutions of the same problems.

However, recursive solutions do not tend to do very well in their use of computer
processing time and the amount of computer memory space that they require (although there
are exceptions). When we are writing and running programs on our own computer, we often
do not care about the time that a program takes to run as long as it gets finished in "a
reasonable amount of time." We usually do not care about memory utilization if the program
does not require more than the amount of memory that we have in the computer. However,
when we are programming for an environment that allows several programs to execute
concurrently (multitasking) or that also allows several users to work concurrently (multi
user), we should be conservative in our use of shared processor time and computer memory
resources.

There is no simple formula for obtaining the answer to the question of which one of
several solutions for a problem is the best. Even if we have accurate statistics for each of the
previous categories, it is not obvious how to compare the sets of numbers. Factors such as
the predicted life span of the program, frequency of usage, relative importance of the pro
gram, and costs of programming and processing must enter into the decision procedure. The
field of software engineering attempts to address categories 3, 4, and 5. The field of

666 RECURSION CHAP. 10

algorithm analysis attempts to address the theoretical aspects of categories 1 and 2. We
attempt to address some practical aspects of categories 1 and 2 in this section.

Measuring Time and Space

We use a tool that we call "StatPack" to aid in the measurement our programs' use of time
and space. The StatPack package consists of a few subprograms that can be merged into a
Pascal program.

Three Areas of Memory. Knowing how much static space a routine requires is
helpful when determining how big a problem it can solve, or what other activities can be
placed in a program with it and not exceed THINK's static space limit. Unfortunately,
THINK Pascal has no easy way to measure how much static space is in use. You can
estimate how much static space is used by adding up how much memory each static struc
ture takes.

Another area of memory on the Mac is the run-time stack. Its major purpose is keep
ing track of the "state of the program" when a subroutine is called. All the information
THINK needs to "pick up where it left off' once the subprogram completes is placed onto
the stack. If we are deep into procedure calls (such as when processing recursively), we can
run out of room on this stack, causing a run-time error. There is a function in the OSintf unit
called StackSpace, which returns the amount of free stack space. By subtracting the mini
mum amount of stack space free during the program's run from the amount that was free at
the program's start, we can calculate the maximum amount of stack memory used.

StatPack uses the predefined function MemAvail to tell us, at any point during a
program's execution, how much space is left in the heap, the place from which dynamic
storage is allocated. By subtracting the minimum amount free during the program's run from
what was free at the start, we can determine the largest amount of dynamic memory used.
Since we use arrays in the examples that follow, there is no dynamic memory employed;
StatPack returns zero as the amount used. We include dynamic memory measurement in
StatPack for completeness; we can use StatPack to obtain information about heap space
usage when we run programs that do use dynamic memory.

Timing a Routine. StatPack also employs TickCount, a long integer function
defined in the Toollntf unit. TickCount returns the number of ticks that have occurred since
you turned on the machine; a tick is 1/60th of a second. When TickCount reaches the largest
long integer it can hold, it goes back to zero and keeps counting. TickCount only counts
ticks when it is active - it can be suspended for a small amount of time during some
Macintosh operations; TickCount can be "jumpy" in its behavior. Even so, since TickCount
has almost the highest priority of execution of routines the Macintosh uses, our measure
ment will not be off by more than a tick or two. By subtracting the number of ticks at the
end of a task from the number that had elapsed before its start, we obtain the time the task
required.

In the interest of clarity and brevity, we only test each of the routines that follow for
one or a few test cases. Such limited testing doers not prove that one approach is speedier
than another in all cases. To test thoroughly for a routine's behavior requires a test plan
similar to that used for testing program correctness: several cases are required, especially
those that represent boundary conditions.

10-3 RECURSION, ITERATION, OR ... ? 667

The code for StatPack is shown in Figure 10-15.

Notes

1. We do not need a uses clause to give StatPack access to the units in which MemAvail,
StackFree, and TickCount are found. THINK Pascal has the access to those units built
in.

2. THINK has a profiler that can measure, among other things, the amount of time each
routine in a program takes. So we could have used it to time our routines. But the
profiler does not measure space usage, so we would have needed to write code for that
purpose anyway. We decided to incorporate in StatPack the code to do timings so we
would not increase our program's complexity by including both StatPack and the
interfaces to the profiler's routines to obtain the space and time measurements we
seek.

var
BeginTime: longint;

HeapMostFree: longint;

HeapLeastFree: longint;

StackMostFree: longint;

StackLeastFree: longint;

procedure InitStat;

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To initialize the run-time statistics}

{Functions used: MemAvail - to get available heap memory}

begin {InitStat}

StackFree - to get free stack memory}

TickCount - to get the system time in ticks (1/60}

sec)}

{*** Get the available memory}

HeapMostFree := MemAvail;
HeapLeastFree := HeapMostFree;

StackMostFree := StackSpace;
StackLeastFree := StackMostFree;

{*** Get the time l/60ths of a second}

BeginTime := TickCount

end; {InitStat}

Figure 10-15 The StatPack package (continues next page).

668 RECURSION CHAP. 10

procedure DisplayStat;

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To display elapsed time and space used}

var
EndTime: longint;

ElapsedTime: longint;

begin {Displaystat}

{*** Display elapsed time}

EndTime := TickCount;

{time at end of task in ticks}

{elapsed time in ticks}

if EndTime >= BeginTime then

ElapsedTime .- EndTime - BeginTime

else
ElapsedTime := (EndTime - BeginTime} + maxlongint;

Writeln('The elapsed time is: ', ElapsedTime I 60.0 : 1 3,

' seconds.');

{*** Display maximum space used}

Writeln('The maximum amount of dynamic memory used was: '

HeapMostFree - HeapLeastFree : l};

Writeln ('The maximum amount of stack memory used was: '
StackMostFree - StackLeastFree : 1)

end; {DisplayStat}

procedure CheckSpace;

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To check space utilization}

var
HeapFree: longint;

StackFree: longint;

begin {CheckSpace}

HeapFree := MemAvail;

if HeapFree < HeapLeastFree then

HeapLeastFree := HeapFree;
StackFree := StackSpace;
if StackFree < StackLeastFree then

StackLeastFree .- StackFree
end; {CheckSpace}

{*** StatPack ends here}

Figure 10-15 (continued)

10-3 RECURSION, ITERATION, OR ... ? 669

To use this tool in your own programs, insert the code for StatPack just before the
declarations of your subprograms. Be sure that your program does not have any name
conflicts with the global variables and subprograms of StatPack. In particular, avoid the use
of the following names:

Global variables: BeginTime

HeapLeastFree

HeapMostFree

StackLeastFree

StackMostFree

Subprograms: InitStat

DisplayStat

CheckSpace

In order to use the StatPack, do the following:

1. Place the following statement at the beginning of the executable part of each subpro
: gram whose space usage you wish to measure:

CheckSpace

(You need not include this call if you only wish to measure time.)

2. After any user input to the program, place the following statement in the main pro
gram:

InitStat

3. Place the following statement in the main program immediately after the tasks you
want to measure:

DisplayStat

It is important for you to note that the time and space statistics that StatPack reports
are to be used for comparisons only, since the use of StatPack in a program increases the
program's time and space requirements. (This is sometimes known as the observer effect.)
When using this technique to compare your programs, be sure the numbers compared have
been generated by the same computer model; memory configuration and processor speed
vary from one model of computer to another.

A First Comparison

One technique for removing recursion from a program is to attempt to replace the recursion
with iteration (the use of loops). It often occurs that a recursive solution is the easiest to
produce, yet it might be an inefficient one, and an iterative approach runs much faster or
uses less memory.

Subprograms that contain only one recursive call at the end of the code (called tail
recursion) are the easiest to transform into iterative alternatives. To illustrate, consider the
recursive algorithm for computing a factorial:

670 RECURSION CHAP. 10

ifN = 0 then
Factorial := 1

else
Factorial := n * Factorial(n - 1)

We can easily change this algorithm into one that uses a loop:

Total := 1;
loop for I going from 1 to N

Total := Total * I
Factorial := Total;

Note that this nonrecursive algorithm still works for N = 0, but it is not as obvious an
observation as it is with the recursive version of the algorithm. When we gather the time and
space statistics for factorial functions employing these two algorithms (run on a Macintosh
Plus with 1 Megabyte of memory), we obtain the following results:

ALGORITHM

Recursive Factorial (N = 16)

Iterative Factorial (N = 16)

MAXIMUM STACK SPACE

756

56

TIME

0.050

0.017

Since TickCount might be off by a few ticks (at worst about 0.33 seconds), these
figures are not conclusive evidence that one approach is better than the other. We can obtain
much better evidence by obtaining the factorial several times and comparing results. For N
= 16, calculating factorial of N 1000 times in a loop produces a time of 28.617 for the
recursive approach and a time of 21.083 seconds for the iterative one. Because the iterative
solution is so much faster, and uses a smaller amount of stack space, we prefer it over the
recursive one.

This result is far from universal. For instance, the same algorithms run using a differ
ent version of Pascal on the same Macintosh resulted in the recursive approach being about
one-and-a-half times faster than the iterative one! The reasons one approach is faster than
another has to do with how well the programming language converts recursive calls into
assembly language for machine execution. The only way to be absolutely sure eliminating
recursion will improve program performance is to try both the recursive and nonrecursive
algorithms and compare the results.

The Fibonacci Numbers

The Fibonacci sequence introduced in the exercises of Section 4-2 provides an excellent
example for comparison of solution techniques. In Figure 10-16, we show a recursive func
tion that generates the Nth Fibonacci number.

The recursion the Fibonacci number function uses is not tail recursion, but a simple
example of tree recursion. The transformation of the recursive algorithm into an iterative
one is a bit more difficult in this case. Figure 10-17 shows an iterative version of the
function.

The iterative function has a more complicated algorithm and uses more variables than
the recursive function. The time to develop and debug the iterative solution is certainly
greater than for the recursive one.

10-3 RECURSION, ITERATION, OR ... ? 671

function Fibo(N: integer): real;

{Written by: XXXXXXXX XX/XX/XX}

{Purpose: To generate the Nth Fibonacci number}

{Parameters: N - input, which number to calculate}

begin {Fibo}

if N < 3 then

Fibo .- 1

else

Fibo .- Fibo(N - 1) + Fibo(N - 2)

end; {Fibo}

Figure 10-16 Fibonacci numbers: by recursion.

function Fibo(N: integer): real;

{Written by: XXXXXXXX XX/XX/XX)

{Purpose: To generate the Nth Fibonacci number)

{Parameters: N - input, which number to calculate}

var

First: real;

Second: real;

Temp: real;

I: integer;

begin {Fibo}

First := 1;

Second := l;

for I := 1 to N - 2 do

begin

Temp := First;

First := First + Second;

Second : = Temp

end; {for}

Fibo := First

end; {Fibo}

Figure 10-17 Fibonacci numbers: by iteration

In this case, there is another approach: a formula. It happens that we can calculate the
Nth Fibonacci number directly by the formula:

The number 1 + ../5 is related to a venerable problem in geometry called the golden
section, so we choose to call this constant by the name Golden in our third version of the

672 RECURSION CHAP. 10

function Power(X: real; N: integer): real;

{Written by: XXXXXXXXX XX/XX/XX}
{Purpose: To calculate X to the N}

{Parameters: X - input, base for the calculation}

N - input, exponent for the calculation}
{Functions used: Exp - (built-in) exponential}

Ln - (built-in) natural logarithm}

begin {Power}

Power := Exp(N * Ln(X))

end; {Power}

function Fibo(N: integer): real;

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To generate the Nth Fibonacci number}

{Parameters: N - input, which number to calculate}
{Functions used: Power - exponentiation}

const

Golden 1.6180339887;

Root5 = 2.2360679775;

begin {Fibo}
Fibo := Power(Golden, N) I Root5

end; {Fibo}

Figure 10-18 Fibonacci number: by formula.

Fibo function, as shown in Figure 10-18. Also included in Figure 10-18 is a version of the
Power function that is needed in the calculation.

We show the time and space results for the calculation of Fibo(20) in the table:

ALGORITHM

Recursive Fibo(20)

Iterative Fibo(20)

Formula Fibo(20)

MAXIMUM STACK SPACE

924

64

56

TIME

34.983

O.Q17

0.033

We see a dramatic example of the potential inefficiency of a recursive function. We
would certainly not choose the recursive function as the best way to produce Fibonacci
numbers even though it has the easiest formulation. How do we choose between the other
two possible solutions? The fact that the iterative version only uses the addition of numbers
with no fractional part means that the results are exact up to the degree of precision of the
representation of real numbers. Because the formula uses the exponential and logarithm
functions, we do not have the same level of confidence in the accuracy of the values. On
this basis, we choose the iterative approach for the computation of Fibonacci numbers as the
best in this case.

10-3 RECURSION, ITERATION, OR ... ? 673

function Combinatorial(N, M: integer): integer;

{Written by: xxxxxxxxx XX/XX/XX}

{Purpose: To calculate a combinatorial coefficient, iteratively}

{Parameters: N - input, the row of Pascal's Triangle}
M - input, the entry in the row}

var

Triangle: array [1 .. 21, 0 .. 22] of integer;

Row: integer;

Column: integer;

begin {Combinatorial}

if (M = 0) or (M = N) then

Combinatorial .- 1
else

begin

end

Triangle[l,O] .- 1;

Triangle[l,ll .- l;

for Row := 2 to N - 1 do

begin
Triangle[Row, OJ .- 1;

Triangle[Row, Row] := 1;

for Column := 1 to Row - 1 do

Triangle[Row, Column] .

Triangle[Row - 1, Column - 1] +

Triangle[Row - 1, Column]

end; {for}

Combinatorial .- Triangle[N - 1, M - 1] + Triangle[N - 1, Ml

end; {Combinatorial}

Figure 10-19 Combinatorial coefficients: by iteration

Combinatorial Coefficients

One way to calculate the combinatorial coefficients iteratively is to use an array to hold the
rows of Pascal's Triangle. We choose to use a rectangular array with rows ranging from 1 to
21 and columns ranging from 0 to 21. (See Section 7-1 for any desired details on the syntax
for dealing with these types of array.) Our strategy for calculating Combinatorial(N, M) is to
fill in the triangle for rows 1, 2, ... , N - 1, and then to use the recursive formula (once) to
get our result.

We have already shown the recursive version of Combinatorial as Figure 10-2 in
Section 10-2. We show the iterative version of the function as Figure 10-19.

Another approach is to use the mathematical formula for the combinatorial coefficient
Combinatorial(N, M) given by

N!
M!(N-M)!

674 RECURSION CHAP. 10

function Combinatorial(N, M: integer): integer;

{Written by: XXXXXXXX XX/XX/XX}

{Purpose: To calculate a combinatorial coefficient, by formula}
{Parameters: N - input, row of Pascal's Triangle}

M - input, entry in the row}

var
Num: integer;
Denom: integer;
Prod: real;

begin {Combinatorial}
if N - M < M then

M := N - M;

Prod := 1;
Denom := M;

for Num := N downto N - M + 1 do
begin

Prod:= Prod* (Num I Denom);
Denom := Denom - 1

end; (for}

Combinatorial := Round(Prod)
end; {Combinatorial}

Figure 10-20 Combinatorial coefficients: by formula

(where N! is the factorial of N). This formula is best used in an equivalent form, obtained
after some algebraic transformations of the formula. Assuming M is not greater than N - M,
then this formula is equivalent to the previous one:

N N-1 N-2 N-3 N-M+l ------- ...
M M-1 M-2 M-3 1

The fact that Combinatorial(N, M) = Combinatorial(N, N - M) means that we can use the
above formula in every case by changing M to N - M, if necessary.

We show the code for the formula version of the Combinatorial function in Figure
10-20.

The results of running the three different solt;tions for the combinatorial coefficient for
the case of Combinatorial(17, 8) are as follows:

ALGORITHM

Recursive

Iterative

Formula

MAXIMUM STACK SPACE

564

1012

58

10-3 RECURSION, ITERATION, OR ... ?

TIME

242.883

0.017

0.017

675

function Reversed(InString: string): string;

{Written by: XXXXXXXXX XX/XX/XX}
{Purpose: To reverse a string iteratively}
{Parameters: InString - input, string to reverse}
{Functions used: Length - (built-in) gets length of a string}

var
I: integer;
WorkString: string;

begin {Reversed}
WorkString := '';

for I := 1 to Length(InString) do
WorkString := InString[I] + WorkString;

Reversed := WorkString
end; {Reversed}

Figure 10-21 Reversing a string: by iteration.

In this case, we can't be sure of the time comparison of the iterative and formula approaches
(because of the "graininess" of TickCount's results) so we run each 1000 times. The result is
17.817 seconds for the iterative approach and 22.433 seconds for the formula approach, so
the former is our preferred choice. (A thousand units of stack memory is still well within
reason.)

Reversing a String

The recursive form of the Reversed function was shown in Figure 10-3 of Section 10-2. This
provides another example of tail recursion that can be easily transformed into iterative form.
We show the iterative form in Figure 10-21.

For the purposes of the comparison we use the string

abcdefghijklmnopqrstuvwxyz

The time and space statistics are as follows:

ALGORITHM

Recursive

Iterative

MAXIMUM STACK SPACE

28678

814

TIME

0.083

0.017

The timings are not informative; within the accuracy of TickCount, the numbers are
virtually equal. So, we run each algorithm 1000 times in a loop. The recursive approach
takes 92.000 seconds, and the iterative approach takes 10.333 seconds. Since it takes much
less time, and significantly less stack space as well, we prefer the iterative approach.

There is another iterative algorithm that may have occurred to you as you considered
the reversal problem. The alternative solution is to do a character by character replacement
and avoid the concatenation. The alternative function is presented in Figure 10-22.

676 RECURSION CHAP. 10

function Reversed(InString: string}: string;

{Written by xxxxxxxxx XX/XX/XX}

{Purpose: To reverse a string iteratively}

{Parameters: InString - input, string to reverse}

{Functions used: Length - {built-in) gets length of a string}

var
N : integer;

I : integer;

begin {Reversed}

Reversed := InString;

N := Length{InString};

for I := 1 to N do

Reversed[I] .- InString[N - I + 1]

end; {Reversed}

Figure 10-22 Reversing a string: character replacement

When the alternative iterative algorithm is run on the test string, its stack space is 302
and its time is 0.17 seconds. Because we cannot tell which of the iterative algorithms is
better, we run both with the test strings 1000 times. The algorithm that uses concatenation
had a time of 10.333 seconds and the algorithm that uses character replacement has a
reported time of 4.167 seconds.

We conclude that the best way to reverse a string is to use the character replacement
form shown in Figure 10-22.

Sorting

We compare quicksort and iterative selection sort from Section 6-3 with the merge sort and
recursive selection sort from Section 10-2.

We have run timings of each sort with different sets of data. The results are shown in
the following series of tables. (We leave stack space measurements for the exercises.)

Test Set 1: Array of 1000 randomly generated integers in the range from 1 to 10000.

ALGORITHM

Quicksort

Iterative selection sort

Recursive selection sort

Merge sort

TIME

3.767

53.150

31.833

3.700

In the context of random data, quicksort and merge sort show their superiority. Note that
recursive selection sort is significantly faster than iterative seleciton sort.

Test Set 2: Array of 500 randomly generated integers in the range from 1 to 10000.

10-3 RECURSION, ITERATION, OR ... ? 677

ALGORITHM

Quicksort

Iterative selection sort

Recursive selection sort

Merge sort

TIME

1.717

13.467

8.233

1.717

The tables for Test Sets 1 and 2 make it seem likely that the two selection sorts are O(n2),

and quicksort and the merge sort are both O(n log n). (The "O" notation was introduced in
Section 6-3.)

Test Set 3: Array of 1000 distinct integers in the range from 1 to 1000 in ascending
order.

ALGORITHM

Quicksort

Iterative selection sort

Recursive selection sort

Merge sort

TIME

40.317

52.950

74.883

3.333

In this context, quicksort is at its worst. If the data are already sorted, or nearly so, then
quicksort is not the sorting method of choice; merge sort seems best.

Test Set 4: Array of 1000 randomly generated integers in the range from 1 to 10.

ALGORITHM

Quicksort

Iterative selection sort

Recursive selection sort

Merge sort

TIME

3.900

53.067

31.583

3.700

Once again, we see that random data (even in a small range of values) are the context in
which quicksort and merge sort show their superiority.

Test Set 5: Array of 1000 integers in the range from 1 to 10 in ascending order.

ALGORITHM

Quicksort

Iterative selection sort

Recursive selection sort

Merge sort

TIME

5.317

59.950

31.700

3.333

We see that quicksort is not slowed as much by sorted data in a small numeric range.

Test Set 6: Array of 1000 integers all with the same value.

678 RECURSION CHAP. 10

ALGORITHM TIME

Quicksort 4.417

Iterative selection sort 53.017

Recursive selection sort 31.350

Merge sort 3.400

The context wherein all data have the same value is one of the boundary conditions of
sorting. Quicksort and merge sort do well in this context.

Test Set 7: Array of 1000 distinct integers in descending order.

ALGORITHM

Quicksort

Iterative selection sort

Recursive selection sort

Merge sort

TIME

43.150

58.483

53.233

3.300

Quicksort also does not do well when its data are sorted in reverse order.
Our conclusions are as follows: If you are sure that you have nearly random data, or if

the range of values of the data is small, then use either merge sort or quicksort. If you think
that the data are almost sorted, then use merge sort. Do not use either selection sort.

Prefix Expressions

We do not attempt to transform our algorithms into iterative form in this case. It is certainly
possible to accomplish the task, but the development and debugging time do not warrant the
effort. We analyze the performance of the program shown in Figure 10-14 of Section 10-2.
The basis for our comparisons are differing prefix expressions. The following is a table of
some examples:

EXPRESSION

+++++++++++++++ 1111111111111111

+1+1+1+1+1+1+1+1+1+1+1+1+1+1+11

++++ 11+11++11+11+++11+11++11+11

MAXIMUM STACK SPACE

20728

20756

5950

TIME

0.367

0.200

0.217

Since this prefix-evaluation expression has a number of recursive calls active at once,
its stack-space requirements can vary significantly, depending upon the level of recursion
that is attained while the program runs. To show the depth of calls, let us modify the Eval
and Apply functions so that they add 1 to a global count when invoked and subtract 1 from
the global count when they end. In addition, we have both Eval and Apply check if the
global count is larger than a global variable that represents the largest count so far. If we
begin the process by setting the largest value and the count both to 0, then we have a
strategy for checking levels of recursion. The following table shows the results of the level
checking on the expressions shown previously (all of which evaluate to 16):

10-3 RECURSION, ITERATION, OR ... ? 679

EXPRESSION

+++++++++++++++ 1111111111111111

+1+1+1+1+1+1+1+1+1+1+1+1+1+1+11

++++ 11+11++11+11+++11+ 11++11+11

HIGHEST LEVEL OF RECURSION

31

31

9

Notice how closely stack usage parallels the highest recursion level.
Another influence on the space requirements is that we used 255 as the maximum size

for all strings in the program. By changing the maximum size from 255 to 80, we free up
static space and use less stack memory when the Eval and Apply procedures are called. The
maximum size chosen for all strings in a program can have a significant influence on that
program's memory requirements.

Some Final Thoughts on Recursion

The discussion and examples of this chapter have pointed toward some conclusions that can
be usefully applied to our programming efforts.

REVIEW

1. A recursive algorithm is often the first solution that we discover.

2. A recursive algorithm can be transformable to a nonrecursive, usually iterative, form.

3. Trying more than one solution to a problem is an advantage when we want to find the
best (fastest, easiest to understand, least using of memory, etc.) solution.

4. Recursive solutions may have the smallest development, debugging, and maintenance
times, but they may use more computer time and memory resources than nonrecursive
solutions.

5. It is more likely that a recursive solution is best if the problem is complex (sorting,
prefix notation).

6. There are techniques for analyzing the behavior of programs that can be used for
judging program efficiency.

· 7. Recursion is indispensable as one of a programmer's tools.

Terms and Concepts

algorithm analysis
golden section
iteration
multitasking
multiuser

observer effect
software engineering
tail recursion
tree recursion

EXERCISES

1. (a) Modify the Factorial function so that it works by means of a "lookup table" embodied in a
case structure. Put in the factorials from 0 to 16. Measure the performance against the
iterative factorial. Which method of factorials do you recommend as best?

680 RECURSION CHAP. 10

(b) Modify the Combinatorial function so that it references a global array containing the facto
rials from 0 to 16. Build the array iteratively in the main program before invoking Combi
natorial. Measure the performance against the other Combinatorial functions. (Be sure to
include the time to build the factorial array.)

(c) Repeat part (b) for 1000 calls to the combinatorial function. Only build the factorial array
once. What conclusions can you draw?

2. If you wrote the extended range Factorial procedure as suggested in the exercises of Section
10-2, do the following:
(a) Write an iterative version.
(b) Measure the performance of the two forms.

3. Show that Fibo(50) is accurately calculated by the iterative approach, but not accurately calcu
lated by the formula approach. What is the smallest number N for which the iterative approach
fails? The formula approach?

4. Use a calculator to compute Fibo(N) for N = 2, 3, and 4 using the formula approach.

5. Draw a picture of the recursive levels of the calculation of Fibo(5) in the following manner:

Fibo(5)

Fibo(3) Fibo(4)

A A
Turn it upside down. Now you see why this kind of recursion is called tree recursion.

6. (a) Modify the Power function that is used for the calculation of Fibonacci numbers so that it
calculates by iteration instead of using the exponential and logarithm functions. Measure
the performance of this method of calculation for Fibo(25).

(b) Repeat part (a), but use the recursive Power function presented in Section 4-2.

7. By hand, calculate Combinatorial(5, 3) by the first formula given.

8. Repeat the picture drawing activities of Exercise 5 for the recursive calculation of Combinato
rial(5, 3).

9. Find what size of string, if any, exhausts the run-time stack memory available by default when
the recursive form of the Reversed function is used.

10. Write a nonrecursive merge sort for the special case when the number of elements in the array is
a power of 2. Hint: Start at the bottom level with subarrays of size 1 and work upward to size 2,
4, ... , merging the two subarrays on the level below. Test the performance of this sort against
the recursive merge sort for 512 randomly generated numbers in the range from l to 10,000.

11. How might you remove the restriction to arrays of the size of a power of 2 in Exercise 1 O?

12. Write an iterative version of the SubSeq function in Figure 10-6 of Section 10-2. Measure the
performance against the recursive form.

13. Write an iterative version of the SubString function in Figure 10-7 of Section 10-2. Measure the
performance against the recursive form.

14. Write a simple looping version of the NumDivisors function in Figure 10-10 of Section 10-2. Is
it a good approach to solve this problem? Why or why not?

EXERCISES 681

15. Write an iterative version of the Addends function in Figure 10-11 of Section 10-2. Measure the
performance against the recursive form.

16. Write an iterative version of the WriteSeq function in Figure 10-13 of Section 10-2.

17. What would be some necessary ingredients of a nonrecursive solution of the PreFix program in
Figure 10-14 of Section 10-2? Formulate a rough algorithm.

18. Write a Pascal program for a nonrecursive solution of the PreFix program in Figure 10-14 of
Section 10-2. Measure the performance against the recursive version.

19. Find the maximum levels of recursion for the sorting procedures discussed in this section for all
the test sets listed, and use StatPack to determine the run-time stack usage. What conclusions
can you draw from these figures?

682 RECURSION CHAP. 10

I I File 1/0

OBJECTIVES

In this chapter, we explore files in some depth. Files were introduced in Chapter 5, and you
have probably written some programs that used files. By the end of this chapter, you should
be able to:

• use control break logic to use file data to produce reports

• merge two sequential files together

• update sequential files
• manipulate and update random-access files

11-1 INTRODUCTION

In this chapter, we pull together and review information about files with which you are
already familiar. We then build on that knowledge by showing applications based on control
break logic and sequential file merging and update strategies. In addition, we give a brief
introduction to the concept of random-access files.

The presentation is not intended to be a complete discussion of file-processing tech
niques. Indeed, whole textbooks have been written on that subject. Nor do we give an
exhaustive description of the Pascal file-processing commands. Our purpose is to indicate
some methods for working with files using the Pascal language, expanding on what we
learned in Chapter 5.

We begin with a brief review.

683

File Terminology

A file consists of a number of records. (Pascal has borrowed and generalized on the concept
of record.) A record contains one or more values, frequently relating to one given entity. For
example, we might have a record that contains the following fields:

Name

Social security number

Date of birth

Marital status

(and so on)

In this case, the record refers to a particular individual. Files can appear in many
forms. For many years, punched cards were an important medium for input files. Data are
encoded on a punched card by a pattern of holes that can be interpreted as character data by
a card reader. In such a file, each data card might be a single record of the file. Another
example of a file is a printed report. In this case, each line printed is considered to be one
record of the file.

It is frequently desirable to store and maintain data in a more convenient form. For
example, we might want to have one program put some information on a file and later use
that information as input to some other program. A printed report is not appropriate in this
application. We could have the first program create a set of punched cards to be read by the
second program. However, this would require maintaining the deck of cards (which could be
sizable) over an extended period of time.

Fortunately, today there are more convenient (and still economical) storage media for
files. Two of the most commonly used are magnetic tape and magnetic disk. (In addition,
optical disk systems are now on the market, and will probably be increasingly common as
time goes on.)

The magnetic tape used by the computer to store a data file is analogous to the tape
used for sound recording. Indeed, some (older) microcomputers use ordinary audio cassettes
as a storage medium. The records of the file are placed on the tape, one after another, from
first to last, as shown in Figure 11-1. In reading a file that has been written on tape, the
computer has to read the records in order (sequentially). As a result, a magnetic tape is
referred to as a sequential-access storage medium. A file stored on tape is accessed sequen
tially.

Likewise, a magnetic disk is analogous to the compact disk (CD) used to store sound.
One form of magnetic disk you are familiar with is the diskette, or floppy disk, commonly
used by microcomputers. In addition, you may be familiar with microcomputer hard disk
devices, or perhaps with the disk devices used by minicomputers or mainframe computers.
These devices all have the fundamental strategy for storing data in common, as shown in
Figure 11-2. The data are stored on a series of concentric rings, rather than on one continu
ous spiral, as is true for a phonograph record. The disk is rotated at a high rate of speed by a
device called a disk drive. The disk drive mechanism includes a read/write head on an arm
that can be moved to any of the concentric rings, or tracks, of the disk. Again, this is
somewhat analogous to the audio record player arm, which can be moved to any groove on
the record.

684 FILE 1/0 CHAP. 11

record *1 record *2 reco rd *3 record *4 record *5 record *6 rec

Figure 11-1 Tape file.

Figure 11-2 Disk file.

read/write
head on
access arm

A magnetic disk is called a direct-access storage medium. In order to access a particu
lar record (perhaps record 735), it is not necessary to read all the records up to the record.
The read/write head can be moved directly to the track (concentric ring) on which the
desired record is located. Since the disk is rotated by the disk drive, the desired record
passes under the read/write head soon after the head is in place. This direct-access capability
of the magnetic disk and disk drive does not, however, mean that the records of the file
cannot be processed in order. If a file is stored on a disk, then it can be accessed either
sequentially or directly.

Pascal Files

Pascal supports two types of sequential-access type files (and one type of direct-access file).
The sequential types were introduced in Chapter 5; we discuss the direct-access type in
Section ll -4.

The first sequential type we discussed was a text fJ.le, declared as type text in the var
section of the program. A text file is a file of characters organized into lines. Although it is
possible to read such a file one character at a time, we have preferred to read one line at a
time. We have done so by making extensive use of THINK Pascal's string data types.

Text files in which a line contains several data items can be more difficult to use when
not all the data are numeric. As a simple example, suppose that two programs each contain
these declarations:

11-1 INTRODUCTION 685

var
LastName: string[25];
FirstName: string[20];

Suppose programl writes the data to a text file:

Writeln(FriendFile, LastName, FirstName);

and that later program2 reads the data:

Readln(FriendFile, LastName, FirstName);

Will this work properly? Probably not, unless the last name that was written was 25 charac
ters long. For example, suppose that we have assigned

LastName := 'Frederickson'
FirstName := 'Arthur•

When the record is written, it contains the characters

FredericksonArthur

Now when the next program reads the data, there is nothing to tell it where LastName ends,
so it reads the first 25 characters because LastName is string[25]. As a result, LastName
becomes 'FredericksonArthur 'and First Name contains the null string.

We could avoid this problem by padding the output of the last name with blanks to
achieve a length of 25. However, the name we read in would then have the extra blanks at
the end.

As another example, consider

Readln(Age, Sex)

where Age is integer and Sex is char. To enter the values 25 and 'F', what should the input
line be? If we use

25 F

then Age would be 25 and Sex would be a blank. If we try

25F

THINK Pascal gives us an 1/0 error because THINK insists that numeric data be terminated
by a blank or a return.

Again, we could get around this, perhaps, by issuing a Readln as

Readln(Age, Sex, Sex)

and using an input line

25 F

This would read 25 for Age, the blank for Sex, and then the F for Sex. However, this is not
very satisfactory.

686 FILE 1/0 CHAP. 11

Because of these subtleties, we have tended to read one data item per record when
reading from a text file or from the keyboard. This is a matter of defensive programming:
avoid known pitfall areas.

The second type of file is the binary file. These are declared using a declaration
similar to

type

PersonFile file of PersonRecord;

var
FriendFile: PersonFile;

This illustrates the most common use. However, we can declare types such as

file of integer

In this case, the file's "records" are not Pascal records, but rather a single integer.
Binary files can be treated as sequential files (the way we have been using them) or as

random-access files (which we consider in Section 3).
There are trade-offs to be considered in choosing between text files and binary files:

1. A text file can be processed in a text editor. Therefore, text files are frequently used as
original input to a program or set of programs.

2. A text file is readable by humans. Files meant to be printed as reports are definitely
text files.

3. As we have mentioned, there are certain subtleties to be avoided in reading text files.
It may be desirable to arrange the input file with one value per line.

4. 1/0 is faster on binary files. The data are stored on the file in precisely the form in
which they are stored in the computer. No conversion routines are needed to translate
back and forth to text form.

5. One disadvantage of binary files is that they can require special protocols when trans
mitted over phone lines to remote computers. Typically, transmitting text files is eas
ier.

Before we discuss new material, let us remind you very briefly of the file-handling
features we have studied. For more information, review Chapter 5.

1. Type can be "text" or ''file of component type"

2. Reset (Pascal name, disk file name)

Rewrite (Pascal name, disk file name): removes any previous data
3. Read (Pascal name, ...)

Write (Pascal name, ...)

4. Readln (Pascal name, . ..): these are for text files only

Writeln (Pascal name, ...)

5. Eof (Pascal name): becomes true as the last record is read

6. Close (Pascal name)

11-1 INTRODUCTION 687

REVIEW

7. Error trapping. We have used this to trap the error that occurs when a file does not
exist. It can, however, be used to trap an error in any 110 statement, as shown here.
(See also Exercise 1.)

IOCheck (false) ;

some I/0 statement
IOCheck (true) ;

ErrorOccurred := (IOResult <> 0)

Terms and Concepts

binary file
control break logic
direct access
disk drive
file
field
magnetic disk
magnetic tape
merging

{Turn off error messages}

{Reset, Read, etc}

{Turn on error messages}

{Check for error}

optical disk
random access
read/write head
record
sequential access
text file
track
update

EXERCISES

1. To demonstrate the use of error trapping in other than a file context, write a procedure GetScore
as described here. This procedure obtains a valid test score between 0 and l 00. There should be
three possible error messages: "too low", "too high", and "not valid integer input". Use
IOCheck and IOResult to trap this third error type.

Exercises 2 to 5 refer to a binary file that contains inventory figures for a chain of drugstores.
Each record of the file contains these fields:

DESCRIPTION

Item number

Item name

Department code

Inventory at each of nine locations

TYPE

Numeric

Character

Character

Numeric array

The file is in ascending order by item number.

NUMBER OF CHARACTERS/DIGITS

5
Maximum20

3
4 digits each

2. Write a program to create this file. In order to create the file, you read a set of input records.

688

Each has exactly the information that will be put on the file and an additional field that contains
the total inventory for the entire chain (numeric, five digits). The input file is a text file that is
created by the user with a text editor. It is up to you to describe the exact layout of the input
file.

Your program is to perform the following correctness checks:

FILE 1/0 CHAP. 11

• The item name field must begin with a nonblank character.

•The department code must be one of the following eight codes: COS, DRU, TOY, CRD, PRE,
HHG, CLO, or BKS.

•The sum of the individual inventory amounts must equal the total inventory (this helps catch
data-entry errors).

• The item numbers must be in order.

In addition, perform the following "reasonableness" check:

• Each inventory amount must be between 0 and 3000, inclusive. Records with no errors are
placed in the file; records with errors are not. All errors are listed on a text file, as illustrated:

12345 BLANK ITEM NAME

12345 BAD DEPT CODE

12345 BAD INVENTORY AMT (STORE 2)

12345 BAD INVENTORY AMT (STORE 9)

12345 INCORRECT TOTAL

12479 BAD INVENTORY AMT (STORE 6)

13780 OUT OF ORDER (PREVIOUS ITEM = 13792)

3. This exercise is exactly the same as Exercise 2 except for the error-report form. In this case, it
should be listed on a printed exception report, as illustrated:

ITEM NUMBER

12345

12479

13780

EXCEPTION REPORT PAGE 1

TYPE OF ERROR

BLANK ITEM NAME

BAD DEPT CODE

BAD INVENTORY AMT (STORE 2)

BAD INVENTORY AMT (STORE 9)
INCORRECT TOTAL

BAD INVENTORY AMT (STORE 6)

OUT OF ORDER (PREVIOUS ITEM = 13792)

Notice that you should continue checking for further errors even after finding one error. Also,
notice that the output is "group indicated" by item number. If the list for a single item spans two
pages, print the item number in a form such as "19345(cont.)" on the new page.

4. Write programs to create partial files containing the following:
(a) All TOY items.
(b) All items whose item number is between 10,000 and 30,000, inclusive.
(c) All items where any single inventory amount is less than 30. The output record should

contain only the item number, name, and department.

EXERCISES 689

S. Write a program to create a file where each record contains an item number and the total
inventory for the entire chain.

11-2 SEQUENTIAL FILES: CONTROL BREAKS

In the next two sections, we examine two classical categories of algorithms for working
with sequential files. Either can be used with text files or with binary files (used sequen
tially). In fact, for the programs of this section, we could even obtain input from the termi
nal. The only differences occur in the details of reading the fields of the input record. For
simplicity, we assume that the input is a binary file.

The first algorithm category we consider is that of control breaks. Although we
cannot claim that this is the most exciting class of algorithm to learn, it can certainly be
argued that it is one of the most widely used. In any case, it should be in every
professional's "toolbox," along with other problem-solving methods.

There are many instances, especially in business applications of the computer, where
the data to be processed occur in groups. If there are special tasks to be performed when one
group ends and another begins, we have the structure frequently referred to as a control
break structure. In this type of application, information contained within the data items
themselves is generally used to determine when to move from one group to another.

An important consideration for this type of problem is that the records being pro
cessed must be prearranged into the groups involved.

An Example

Each data record contains a department number (integer), a salesperson number (integer),
and an expense amount (real). The records are arranged with the salespersons for each
department grouped together in the file. Write a program to create a summary listing, as
illustrated in Figure 11-3.

We start with the realization that a loop is needed to process the data. We need at least
the following variables:

690

Input: Department Integer Employee department

ID Number Integer Employee number

Expense Real Employee expense

Output: DeptTotal Real Total for department

GrandTotal Real Total for entire file

Many file-processing problems follow this general pattern:

initialization
while not Eof(file-designator) do

begin
read a record
process the record
print information

end

FILE 1/0 CHAP. 11

EXPENSE TOTALS

Department Salesperson Expenses

---------- ----------- --------

100 5000 1000.00
100 5001 1000.00

Department Total: 2000.00

200 8907 500.00
200 3798 1603.45
200 4359 1000.75

Department Total: 3104.20

300 2987 984.50

Department Total: 984.50

1800

1800

1800

1800

2050

3871

8340

8469

8307

Department Total:

3498

Department Total:

Grand Total:

Figure 11-3 Control break: desired output format.

1500.00

390.25

50.75

500.00

2441.00

35.50

35.50

8565.20

However, the control-break logic requires a somewhat more complex algorithm because
there are special tasks to be performed when we finish one group and start another. Some
where after the read step, we insert a step that is something like this:

if this is a new department then
perform 'change of department' steps

The "change of department" steps include, among other things, printing the total for the
previous department. In general, we must perform some "cleanup" steps for the old depart
ment and some "setup" steps to get ready for the new department. These general categories
can overlap somewhat.

Note. In many programs, the test to check whether we have a new group comes
immediately after the read step. However, there are instances when some preliminary pro
cessing must be done prior to determining whether a new group has occurred.

11-2 SEQUENTIAL FILES: CONTROL BREAKS 691

If we ask, "How can we tell if this is a new department?" the answer might be to
compare the department number just read with the previous department number; we might,
therefore, make an addition to our variable list:

Other: OldDept Integer Previous department number

With a little more thought, we might conclude that the first data record should be
treated separately because there is no "old department number" with which to compare the
first department number. We might be led to read and process that first record before we
enter the loop because it will be treated differently from the rest. If so, we would come up
with an algorithm something like this:

print headings
set GrandTotal to 0
read the first record
do 'setup' steps for the first department
ptjnt the first record
add the first record's expense to DeptTotal
as long as there is any data left

read a record
if Department is different from OldDept then

perform 'change of department' steps ('cleanup' and 'setup')
print the record
add the record's expense to DeptTotal

perform 'cleanup' for the last department
print GrandTotal

We perform the setup for the first department prior to the loop. This is sometimes referred to
as priming. In addition, we must perform the cleanup for the last department after the loop,
when we have run out of data.

To complete the algorithm, we must determine what is involved in setting up for a
new department and cleaning up after an old department. To do so, we should review the
required output. If we concentrate on the "department change," we should be able to deter
mine most of what is required. Each step is labeled as "cleanup" or "setup".

This step should be obvious:

1. Print DeptTotal (cleanup).

Some others are not quite as obvious:

2. Add DeptTotal to GrandTotal. GrandTotal represents the sum of the individual depart
ment totals (cleanup).

3. Set DeptTotal back to 0 to prepare to accumulate a new total for the new department
(setup).

4. Give OldDept the value of this record's department (setup).

Note. As "cleanup" for the last department, we must perform steps 1 and 2. The
"setup" for the first department consists of steps 3 and 4.

692 FILE 1/0 CHAP. 11

Adding these refinements to our algorithm, we obtain the program in Figure 11-4.
This program reads its data from a text file. It also sends its report to a text file. The text file
can then be printed (as often as needed) using the Print command. As we mentioned in
Chapter 5, this is a handy method both for obtaining multiple copies of the report and for
the situation where several microcomputers are sharing the same printer. (Another important
reason is that it reduces the development time because output to a disk file is faster than
output to a printer.) We use the OpenRead and Open Write procedures discussed in Chapter
5.

Control Breaks: General

The preceding example illustrates the control-break concept. There are some general com
ments we can make about planning this type of algorithm, which usually involves a loop
that terminates at end of file. We discuss in some detail what types of steps generally appear
before, in the body of, and after this loop.

Keep in mind that the underlying feature of the control-break structure is that the data
are arranged in groups based on some field of the individual records. In addition to the usual
analysis of the steps to be performed for each individual data record, we must determine the
steps required because of the grouping. As a general rule, these steps fall into two catego
ries:

1. Those steps used in starting a new group, such as initializing (or reinitializing) count
ers or accumulators or printing special lines of information.

2. Those steps used in finishing up an old group, such as printing summary information.

Whenever we encounter a new group, we must perform all these steps. The principal
features of the algorithm are as follows:

1. Before the loop:

(a) Initialize for the entire file (for example, GrandTotal := 0).

(b) Read the first record.

(c) Set up for the first group.

(d) Process the first record.

2. In the loop:

(a) Read the new record.

(b) If a new group, finish the previous group and set up for the new group.

(c) Process the record.

3. After the loop:

(a) Finish the last group.

(b) Print summary information for the entire file.

Most control-break problems fit fairly well into this general outline. For some applica
tions, steps 2(b) and 2(c) must be modified slightly because the first record of each new
group is processed slightly differently from the subsequent records in that group. However,

11-2 SEQUENTIAL FILES: CONTROL BREAKS 693

I

\

program ControlBreak;

{Written by: xxxxxxxxx XX/XX/XX}
{Purpose: To print a report for input data grouped by department}
{Procedures used: Header - to print headings}

var
DeptFile: text;
ListFile: text;
Department: integer;
IDNumber: integer;
Expense: real;

{input file}
{report file}
{department #}
{employee #}
{employee expense}

DeptTotal: real;
GrandTotal: real;

{total expense for dept.}
{total expense for company}

OldDept: integer; {previous employee's dept. #}

{function Exists as shown in Appendix C is inserted here}

{procedure OpenRead as shown in Appendix C is inserted here}

{procedure OpenWrite as shown in Appendix C is inserted here}

procedure Header;

{Written by: XXXXXXXXX XX/XX/XX}
{Purpose: To print headings}

begin {Header}
Writeln(ListFile, ' '
Writeln(ListFile, ' '
Writeln(ListFile);

20, 'EXPENSE TOTALS');
20' '--------------');

Writeln(ListFile, ' ' : 14, 'Department',
' ' : 14, 'Expenses');

Writeln (ListFile, ' ' : 14, '----------',
I I : 14, '--------');

Writeln(ListFile)
end; {Header}

begin {ControlBreak}

{*** Preliminary setup and initialization}

OpenWrite(ListFile);
Header;
GrandTotal : = 0;

9, 'Salesperson',

9 I I-----------

Figure 11-4 Control breaks (continues next page)

694 FILE 1/0 CHAP. 11

{*** Handle first employee}

Readln(DeptFile, Department, IDNumber, Expense);
Dept Total : = O;

OldDept := Department;
Writeln(ListFile, Department : 10, ' ' : 14,

IDNumber: 5, ' ' : 15, Expense: 10 2);
DeptTotal := DeptTotal + Expense;

{*** Handle other employees in loop}

while not Eof(DeptFile) do
begin

Readln(DeptFile, Department, IDNumber, Expense);
if OldDept <> Department then

begin

Writeln(ListFile);
Writeln(ListFile, ' ' : 21, 'Department Total:',

DeptTotal : 16 : 2);
Writeln(ListFile);
Writeln(ListFile);
Writeln(ListFile);
GrandTotal := GrandTotal + DeptTotal;
DeptTotal := O;
OldDept .- Department

end; {if}

Writeln(ListFile, Department : 10, ' ' : 14,
IDNumber : 5, ' ' : 15, Expense : 10 2);

DeptTotal := DeptTotal + Expense;
end; {while}

{*** Finish last department and print grand total}

Writeln(ListFile);
Wri teln (ListFi le, ' '
Writeln(ListFile);

21, 'Department Total:', DeptTotal

Writeln(ListFile);
Writeln(ListFile);
GrandTotal := GrandTotal + DeptTotal;
Writeln(ListFile, ' ' : 26, 'Grand Total:', GrandTotal

{*** Close files and print terminating message}

Close(DeptFile);
Close(ListFile);

16

Writeln('Report complete; it is in the file ExpenseReport')
end.

Figure 11-4 (continued)

11-2 SEQUENTIAL FILES: CONTROL BREAKS

16 2);

2);

695

this outline should help us obtain a good algorithm for any control-break problem we may
encounter.

Using Subprograms with Control Breaks

In the preceding discussion, we have not indicated how subprograms fit into the control
break program logic. We have at least these four possibilities:

1. We can use a procedure for reading the data. This might be especially useful in two
instances. First, we could use it to validate the input. Second, if the input file is a text
file containing data for one record spread over several lines of text, it could be used to
hide the details of reading the data. In either case, it would enable us always to
translate the algorithm step "read a record" into a single line of Pascal code.

2. We can use a procedure for printing detail lines. In this way, we can proceed to a new
page of output when we reach the bottom of each page. It is frequently helpful to pass,
as an input parameter for this procedure, a Boolean flag indicating whether or not this
is the first record in a new group. We might use a variable NewGroup for this purpose.
(The first record in each group is frequently handled differently in the detail line
printing routine.)

3. The processing of the record can very well involve complicated logic that warrants
one or more subprograms.

4. The setup and cleanup steps themselves can be placed in subprograms. We discuss this
possibility in what follows.

There are several possible reasons for placing the setup and the cleanup steps in
subprograms. First of all, each one is generally used twice. For example, the setup steps are
performed before the loop for the first record and in the loop whenever a new group is
encountered. In addition, these steps could be fairly complex. The more complex they
become, the more likely it becomes that we choose to place them in subprograms. Finally,
using subprograms emphasizes the similar structure of the various control-break programs
we write.

We reexamine our sample control-break algorithm to illustrate these ideas. For exam
ple, the algorithm for a SetUp subprogram is

set DeptTotal to 0
set OldDept equal to this record's department

This requires a procedure; the parameters are the department total (output), the current
record's department (input), and the old department number (output).

For a Cleanup subprogram, we have

print DeptTotal line and three blank lines
add department total to grand total

The department total is an input parameter and the grand total is an update parameter for
this procedure.

For the detail line routine, we have input parameters for the record to print together
with the Boolean variable NewGroup discussed earlier. We write

696 FILE 1/0 CHAP. 11

if this is a new group
add 5 to LineCount
if LineCount > 45

print headings
set LineCount to 6

print the record
add 1 to LineCount

Note. This procedure is somewhat different from some earlier ones in its handling
of the LineCount variable. This is to adjust to the fact that this program prints lines other
than detail lines. If we simply count detail lines, we are unable to judge when we are near
the bottom of the page. Rather than merely counting detail lines, we count all lines of
output.

As a result, LineCount is set to 6 after printing headings. In addition, for a new group,
we add 5 to LineCount. This counts the department total line we have printed and the one
blank line before and three blank lines after that line.

Using these ideas, we develop the main program as shown in Figure 11-5.

Note. With the use of the NewGroup parameter for the detail line procedure, it is a
simple matter to group indicate the output. For example, this output is not group indicated:

REVIEW

100 5.43

100 6.17

150 0.41

150 1.23

150 0.61

The same output group indicated would be

100 5.43

6.17

150 0.41

1.23

0.61

Terms and Concepts

control break
group indicate
priming

REVIEW 697

program ControlBreak;

{Written by: XXXXXXXXX XX/XX/XX}
{Purpose: To print a report for input data grouped by department}
{Procedures used: Header - to print headings}

Setup - to initialize a new department}
Cleanup - to perform final actions for a department}
GetData - to obtain data}
DetailLine - to print detail lines, with headings}

const

MaxLines

var

45;

DeptFile: text;
ListFile: text;
Department: integer;
IDNumber: integer;
Expense: real;

{maximum lines per page}

{input file}
{report file}
{department #}
(employee #}

{employee expense}

DeptTotal: real;
GrandTotal: real;

{total expense for dept}
{total expense for company}

OldDept: integer; {previous employee's dept. #}

LineCount: integer;
NewGroup: boolean;

{counts report lines on page}
{for use by detail line printer}

{function Exists, as shown in Appendix C, is inserted here}

{procedure OpenRead, as shown in Appendix C, is inserted here}

{procedure OpenWrite, as shown in Appendix C, is inserted here}

procedure Header;

{Written by: XXXXXXXXX XX/XX/XX}
{Purpose: To print headings}

begin {Header}
Writeln(ListFile,
Writeln(ListFile,
Writeln(ListFile);

20, 'EXPENSE TOTALS');
20, '--------------');

Writeln(ListFile, ' ' : 2, 'Department',
' ' : 14, 'Expenses');

Writeln (ListFile, ' ' : 2, '----------',
I I : 14, '--------');

Writeln(ListFile)
end; {Header}

9, 'Salesperson' ,

9, '-----------

Figure 11-5 Control breaks with procedures (continues next page).

698 FILE 1/0 CHAP. 11

procedure Setup (var DeptTotal: real; Department: integer;

var OldDept: integer);

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To initialize a new group}

{Parameters: DeptTotal - output, set to 0}

Department - input, current record's department}

OldDept - output, set equal to Department}

begin {Setup}

DeptTotal := O;
OldDept := Department

end; {Setup}

procedure Cleanup (DeptTotal: real; var Grand: real);

XXXXXXXXX XX/XX/XX} {Written by:

{Purpose: To perform final actions for a department that is}

finished}

{Parameters: DeptTotal - input, total for the department}

Grand - update, total for the company}

{Globals used: ListFile - the Pascal name for the report file}

begin {Cleanup}

Writeln(ListFile);

Writeln(ListFile, ' '

Writeln(ListFile);

Writeln(ListFile);

Writeln(ListFile);

21, 'Department Total:', DeptTotal

Grand := Grand + DeptTotal

end; {Cleanup}

16

procedure GetData (var Department, ID: integer; var Expense: real);

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To read one person's data}

{Parameters: Department - output, the department}

ID - output, the employee number}

Expense - output, the expense amount}

{Globals used: DeptFile - the handle for the input file}

begin {GetData}

Readln(DeptFile, Department, IDNumber, Expense)

end; {GetData}

Figure 11-5 (continues next page).

2) ;

REVIEW 699

procedure DetailLine (Department, ID: integer; Expense: real;

NewGroup: boolean);

{Written by: xxxxxxxxx XX/XX/XX}

{Purpose: To print a line of data, with headings when needed)

{Parameters: Department - input, the department)
ID - input, the employee number)

Expense - input, the expense amount)

NewGroup - input, is this a new department?)

{Globals used: ListFile - the handle for the report file)

{Globals modified: Linecount - the detail line counter)

{Procedures used: Header, to print headings}

begin {DetailLine)

if NewGroup then
LineCount := LineCount + 5;

if LineCount >= MaxLines then
begin

Header;
LineCount := 6

end; {if)

Writeln(ListFile, Department : 10, ' ' : 14,

IDNumber: 5, ' ' : 15, Expense: 10 2);
LineCount := Linecount + 1

end; {DetailLine)

begin {ControlBreak}

{*** Preliminary setup and initialization}

OpenRead(DeptFile);

OpenWrite(ListFile);
Header;

Linecount := 6;

GrandTotal : = 0;

{*** Handle first employee}

GetData(Department, IDNumber, Expense);

Setup(DeptTotal, Department, OldDept);

DetailLine(Department, IDNumber, Expense, true);
DeptTotal := DeptTotal + Expense;

{*** Handle other employees in loop}

while not Eof(DeptFile) do
begin

GetData(Department, IDNumber, Expense);

NewGroup := false;

if OldDept <> Department then

Figure 11-5 (continues next page)

700 FILE 1/0 CHAP. 11

begin

NewGroup := true;

Cleanup(DeptTotal, GrandTotal);

Setup(DeptTotal, Department, OldDept)
end; {if}

DetailLine(Department, IDNumber, Expense, NewGroup);

DeptTotal := DeptTotal + Expense;

end; {while}

{*** Finish last department and print grand total}

Cleanup(DeptTotal, GrandTotal);

Writeln(ListFile, ' ' : 26, 'Grand Total:', GrandTotal

{*** Close files and print terminating message}

Close(DeptFile);

Close(ListFile);

16

Writeln('Report complete; it is in the file ExpenseReport')

end.

Figure 11-5 (continued)

Program Logic: Control Break

1. Before the loop:

(a) Initialize for the entire file (for example, GrandTotal := 0).

(b) Read the first record.

(c) Set up for the first group.

(d) Process the first record.

2. In the loop:

(a) Read the new record.

2);

(b) If a new group, finish the prior group and set up for the new group.

(c) Process the record.

3. After the loop:

(a) Finish the last group.

(b) Print summary information for the entire file.

EXERCISES

1. There are several possible revisions to the output indicated in Figure 11-3. In general, it should
be possible to make these revisions by modifying only the detail line routine, provided the totals
are still printed in the same manner. Make the necessary changes for each of the following:

EXERCISES 701

Department Number 100

Department Number 200

Department Number 300

Department Number 1800

Department Number 2050

EXPENSE TOTALS

Salesperson

5000

5001

Expenses

1000.00

1000.00

Department Total: 2000.00

Salesperson

8907
3798

4359

Expenses

500.00

1603.45

1000.75

Department Total: 3104.20

Salesperson

2987

Department Total:

Salesperson

3871

8340

8469

8307

Expenses

984.50

984.50

Expenses

1500.00

390.25

50.75

500.00

Department Total: 2441.00

Salesperson

3498

Department Total:

Grand Total:

Expenses

35.50

35.50

8565.20

Figure 11-6 Report format for Exercise 1.

(a) Group indicate the data by department.
(b) Group indicate by department; when a page break occurs in the middle of a department,

the first line on the next page should look something like this:

4157 (CONTINUED) 16141 945.30

(c) Obtain output in the format illustrated in Figure 11-6.

2. Write algorithms and variable lists for each of the following:

702

(a) Each data record has a name, course number, and letter grade. Records are grouped by
name. Output should be group indicated by name. For each person, print the number of
courses taken and the number of courses failed.

(b) Each data record has a department (six characters), name, rank (four characters), and sal
ary. Records are grouped by department. Output should be similar to that in Figure 11-3.

FILE 1/0 CHAP. 11

Grade

F

D

Name

xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx

Course

xxx
xxx

xxxxxxxxxxxxxxxxxxxxxxxxx xxx

xxxxxxxxxxxxxxxxxxxxxxxxx xxx
xxxxxxxxxxxxxxxxxxxxxxxxx xxx

xxxxxxxxxxxxxxxxxxxxxxxxx xxx

(and so on through C, B, and A)

Figure 11-7 Report format for Exercise 4.

For each department, print the number of full professors (rank= 'PROF') and the average
salary. Also count the departments.

(c) Modify the algorithm of part (b) to also find the department with the highest average
salary.

(d) Each record contains a state abbreviation (two characters), a city name (20 characters), and
a population figure to the nearest 1000. For example, 253 would denote 253,000. Records
are grouped by state. Output should be similar to that of Figure 11-6. For each state, print
the total population of the cities given and count the cities with population over 500,000.

(e) Modify the algorithm of part (d) to also find the total number of cities listed with popula
tion over 500,000 and the average population of all the cities listed (for the entire file).

(t) Each data record has a department number, employee number, and hourly wage. Use
output similar to that in Figure 11-3. For each department, print the number of the person
with the lowest hourly wage; also print the number of the employee in the entire company
with the lowest hourly wage.

3. Write Pascal programs for each of the algorithms of Exercise 2.

4. Each record contains a numerical grade, course number, and name. The records are in ascending
order based on the numerical grade. The letter grade is calculated by the rule: 0 to 59.99, F; 60
to 69.99, D; 70 to 79.99, C; 80 to 89.99, B; and 90 to 100, A. Write an algorithm to generate the
report illustrated in Figure 11-7. Hint: Some preliminary processing of the data may be needed
prior to determining if you have a new group.

5. Write the program for the algorithm of Exercise 4.

6. Each data record contains an ID number for a sample steel rod and the measured length of that
particular sample. The records are arranged in ascending order based on the length of the
samples. The report format of Figure 11-8 groups the samples; for example, the heading "l-2
inches" means "between 1 and 2, but not including 2 inches." Give an algorithm to generate this
report. See the hint of Exercise 4. Notice that there can be "gaps" in the groups. After "16-17
inches" might come "23-24 inches."

7. Write the program for the algorithm of Exercise 6.

EXERCISES 703

Group Sample # Length

1-2 inches xx xx xxx.xxx
xxxx xxx.xxx

xxx Samples In This Group

2-3 inches xx xx xxx.xxx
xx xx xxx.xxx

xxx Samples In This Group

(and so on)

Figure 11-8 Report format for Exercise 6.

Division

xx xx

Department Employee

xx xx

xxxx

xxxxx
xxxxx
xxxxx
xxxxx

xxxxx Employees In Dept xxxx

xxxxx
xxxxx
xxxxx
xxxxx

xxxxx Employees In Dept xxxx

xxxxx Employees in xxx Departments in Division xxxx

xxxx xx xx

xxxx

(and so on)

xxxxx
xxxxx
xxxxx
xxxxx

xxxxx Employees In Dept xxxx

xxxxx
xxxxx

Figure 11-9 Report format for Exercise 8.

8. Each data record contains a division number, department number, and employee number. The
records are grouped by division and by department within each division. Give an algorithm to
generate the report illustrated in Figure 11-9. This is an example of a multiple-level control
break. Hint: Each new record could be the start of a new division; also, it could be the first
record of a new department within the same division.

704 FILE 1/0 CHAP. 11

9. Each of these exercises refers to Exercise 2. State what assumptions you make on the order of
the data.

(a) Modify Exercise 2(b) to print a report group indicated by department and by rank within
departments.

(b) For Exercise 2(d), create a report group indicated by state, which lists cities group indi
cated by size, as shown here

xx 0- 49

50-100

xxxxx ... xxx

xxxxx ... xxx

(and so on in steps of 50,000)

11-3 SEQUENTIAL FILES - MERGE AND UPDATE

Sequential files are most useful for applications that require all, or most of, the file's
records. For applications that require only a small portion of the file, a direct file might be
more useful. However, sequential files are frequently more efficient, both in terms of the
actual space occupied on the storage medium and in the time required to process the entire
file.

The Merge Algorithm

Because of these savings, sequential files are widely used. As a result, a number of tech
niques have been developed for efficient modification and utilization of this type of file. The
merge algorithm discussed here is one example. Others are indicated in the next section and
in the exercises.

Suppose we have two non-empty binary files, each of which contains records where
the first field is an indentification number, and the remaining fields contain other informa
tion. Assume each of these files is known to be in ascending (low to high) order based on
the ID number, and, moreover, that neither file contains any duplicates.

Our goal is to create a combined file with these same properties: in order by ID
number and with no duplicates. The technique we use is called "merging" the files and is
similar to the action when two lanes of traffic merge into one.

The basic idea is to compare IDs from the two files repeatedly, always placing the
lower one into the output file. Here is a very rough algorithm. (Record 1 and ID 1 refer to
the data from the first file. Record 2 and ID2 refer to the second file.)

read a record from each file (to get started)
repeat

take action based on comparing ID 1 to ID2:
a. (IDl < ID2) put record IDl into the output file

read another record from file 1
b. (ID 1 > ID2) put record 2 into the output file

read another record from file 2
c. (ID 1 = ID2) process a "duplicate" error

read another record from file 1
read another record from file 2

perform???

11-3 SEQUENTIAL FILES - MERGE AND UPDATE 705

Because we have not discussed how to terminate the loop, it is not yet clear what steps
might follow it.

There are a number of options for processing a duplicate record. For this example, we
choose to place the record from the first file on the output file and print an error message.
Because both records have then been processed, we read a new record from each of the two
files.

There are several ways to handle loop termination. For example, we might use a while
loop with the condition

while (not Eof(Filel) and (not Eof(File2)) do

When the loop terminates, then Eof(Filel) is true, or Eof(File2) is true, or possibly both. We
could write a decision structure based on these conditions.

This method is complicated because in Pascal, the end-of-file condition becomes true
as the last record is read. Thus, for example, the code for the case where Eof(Filel) is true
but Eof(File2) is not has to do two things: process the remaining record from file l and then
copy the rest of file 2 (if any) to the output file. To simplify matters, we might use Boolean
variables FilelDone and File2Done. FilelDone signifies that we have attempted a read
when no more records are in file 1, and similarly for File2Done. The step "read record from
file l" in the algorithm could be written similar to this:

if Eof(Filel) then

FilelDone := true

else

Read(Filel, Recordl)

{Previous read got last record}

A third possibility uses sentinel records on the input files. These are records whose
ID number field is +oo. By +oo, we mean a value larger than any ID existing on either input
file. For example, maxint would probably be appropriate for our integer IDs, because it is
probably larger than any legal ID number.

Note. If we use this "plus infinity" technique, then the sentinel value "+oo" must
be chosen carefully. It must not be possible to use this value for actual data.

How does the sentinel record help us? Suppose that we reach the end of file 1 first.
Then IDI is maxint and the condition (IDI > ID2) is true for each record of the second file
until it also reaches its sentinel record. This causes the remaining records of file 2 to be
copied to the output file. We terminate the loop when both sentinel records are reached.

In Figure 11-10, we present a procedure to accomplish the merge using this technique.
The main program is to handle the file open and close operations. The types DataRecord
and Datafile are defined in the main program. For the purpose of our procedure, we need
only know that the data record contains an ID field. Likewise, we use a constant "Infinity"
defined in the main program. Thus, this procedure could be used in a variety of contexts.

An important question for this procedure is: How did the sentinel record get into the
input files? The answer is: Because these are binary files, a program created them. If they
were text files created by a user, then that person would have had to put them there.

706 FILE 1/0 CHAP. 11

procedure MergeFiles (var Filel, File2, MergedFile: DataFile);

{Written by: xxxxxxxx, xx/xx/xx}

{Purpose: To merge files}

{Globals used: Infinity - a constant larger than any ID}

{Parameters: Filel - the first file to merge}

var

File2 - the second file to merge}
MergedFile - the resulting merged file}

Recordl: DataRecord;

Record2: DataRecord;

{first file record}

{second file record}

begin {MergeFiles}

{*** Prime the loop by reading from both files}

Read(Filel, Recordl);

Read(File2, Record2);

{*** Repeatedly put the smaller on the output}

while (Recordl.ID <> Infinity) or (Record2.ID <> Infinity) do
begin

if Recordl.ID < Record2.ID then
begin

Write(MergedFile, Recordl);

Read(Filel, Recordl)

end
else if Recordl.ID > Record2.ID then

begin
Write(MergedFile, Record2);
Read(File2, Record2)

end
else

begin
Writeln('Duplicate ID: ', Recordl.ID);

Writeln('Tap <RETURN> to continue ');

Readln;
Write(MergedFile, Recordl);

Read(Filel, Recordl);

Read(File2, Record2)

end {if}
end; {while}

{*** Put a sentinel record on the output file}

Write(MergedFile, Recordl)

end; {MergeFiles}

Figure 11-10 Merging sequential files.

11-3 SEQUENTIAL FILES - MERGE AND UPDATE 707

Observe that the procedure puts a sentinel record at the end of the output file. Thus,
the output file is suitable as input to the merge at some later date.

This raises an important point. If this technique is to be used for merging, then all the
sequential files maintained by the organization must have a sentinel record. This affects
every program that accesses those files. Perhaps a better approach is not to use an actual
sentinel record, but to write the program to simulate the existence of a sentinel record. For
example, rather than Read(Filel, Record!), we could use

if Eof(Filel) then

Recordl.ID := Infinity

else

Read(Filel, Recordl)

{last record has been read}

Efficiency Note. Suppose that one of the files reaches the end long before the
other. For example, suppose file 2 reaches the end of file with approximately I 000 records
remaining in file I. Then this procedure compares Recordl.ID to "infinity" 1000 times in
order to copy the rest of file I. Isn't this inefficient? Couldn't we simply terminate the loop
when either file is done and copy the rest of the other file?

The answer is partially yes and partially no. It is inefficient, and we could terminate
the loop as suggested. (This would make the procedure slightly more complicated.) How
ever, in a file merge, the inefficiency is very minor. The time it takes to do the 1000
comparisons is miniscule in comparison to the 2000 accesses to the disk (or to tape) used to
copy the records. (In an array merge, on the other hand, the inefficiency is more significant.)

This basic merge algorithm is one of the most important in computer science. In
addition to being the basis for various file-update algorithms, it appears in many contexts.
For example, it is the basis for merge sort, discussed in Chapter 10. It finds application in
some forms of data structure used to represent polynomials. And it appears in handling
"sparse matrices," matrices most of whose entries are 0.

Sequential-File Update

In this subsection, we give some indication of how the merge algorithm can be used to build
procedures for sequential tile update. The exercises develop the theme further.

First, consider this situation. A master file contains a list of employees and their
year-to-date earnings. A transaction file contains a list of transactions to be processed
against the master file. In this case, the transaction file represents a weekly payroll. The
transactions records contain employee number and this week's pay. Provided both files are
in increasing order, we can write an algorithm similar to our first merge algorithm:

708

read the first record from each file (to get started)
repeat

take action based on comparing master ID (MID) to transaction
ID (TID):
(a) (MID< TID). This means that this employee had no check this week. Write the

master record to the output file, and read a new master record.
(b) (MID> TID). This is an error situation-a check was issued for an employee

number not on the master file. Report the error, and read another transaction
record.

FILE 1/0 CHAP. 11

(c) (MID= TIO). Add the week's pay to the year-to-date figure. Write the modified
master record to the output file, and read a new record from both files.

after the loop, perform any necessary final steps

As for the merge algorithm itself, there are a variety of ways to accomplish the loop
control. Depending on the method used, there may have to be some action taken after the
loop terminates.

In this example, the resulting output file becomes the input master file when the
program is run the following week. Exactly how this is handled is up to the organization.
Here are two possibilities at opposite extremes:

1. Start with a master Masterln with all figures 0. Run this with a file Weekl, creating
MasterOut. Use a file copy to copy this to MasterOut for the second week, and so on.

2. Start as before, but call the output Masterl. Use this as input for the second week,
creating Master2. By the end of the year, you would have 52 files containing a com
plete record of the year.

For our final example, suppose that the transaction file contains a list of items to be
deleted from the master file. A deletion is accomplished by simply not writing the record to
the output. Thus, in the decision structure of the basic merge algorithm, we have

REVIEW

(a) (IDl < ID2) same as merge

(b) (IDl > ID2) error; read transaction file

(c) (IDl = ID2) just read both files

Terms and Concepts

infinity (+oo)
master file
merge
sentinel record

Algorithms

Basic Method

read a record from each file to get started

sentinel value
sequential-file value
transaction file

repeat these take action based on comparing ID 1 to 102:
(a) (101 < ID2) put record 1 on output file

read another record from file 1
(b) (101 > ID2) put record 2 on output file

read another record from file 2
(c) (IDl = ID2) process a duplicate error

read another record from file 1
read another record from file 2

after the loop, perform???

REVIEW 709

Loops

1. Terminate when Eof is true for either file.

2. Terminate when an attempt is made to read past the end of file for either file.

3. Use initial records and terminate when both values are +oo.

4. Same as item 3, but terminate when either is +oo.

5. Simulate the sentinel record.

Sequential-File Updates. Sequential-file updates can be based on the fundamental
merge algorithm; differences occur in what is done for each of the three branches in the
decision structure.

EXERCISES

1. Write a procedure similar to the one in Figure 11-10, but not using sentinel records. The loop
should be tenninated as soon as Eof is true for either file. Be careful to write the portion
following the loop correctly.

2. Repeat Exercise 1 using Boolean variables FilelDone and File2Done as suggested in this sec
tion. Terminate the loop when either is true.

3. Repeat Exercise 1, "simulating" the sentinel record as suggested in this section. Tenninate when
both ID values are infinity.

4. Repeat Exercise 3, tenninating when either ID value is infinity.

5. Comment on the pros and cons of the approaches in Figure 11-10 and in Exercises 1 to 4.

6. Two files containing names and other data are to be merged based on the names. What is an
appropriate value for "plus infinity" in this case?

7. Suppose files that are in order from high to low are to be merged. How would this affect the
algorithm? What type of sentinel value is appropriate?

8. Write a procedure that, for a master file, accepts from the tenninal a list of numbers to be
deleted, as shown in Figure 11-10. It should warn the user if the number entered is lower than
the previous entry.

9. (a) Write a procedure to merge three files rather than two.
(b) Write a procedure to expand this to merge 10 files. Can you suggest a way to merge 10

files without writing a new program?

10. Sometimes students try to write the decision structure of the merge algorithm using three if
statements:

if Recordl.ID < Record2.ID then
{code for< as in Figure 11-10};

if Recordl.ID > Record2.ID then
{code for> as in Figure 11-10};

if Recordl.ID = Record2.ID then
{code for= as in Figure 11-10};

Criticize this by finding a pair of files for which it would not work properly.

11. Suppose we modify the third branch of the merge algorithm (IDl = ID2) to the following: print
the error message, and read a new record from file 2. Does this work? Justify your answer.

12. Write procedures similar to Figure 11-10 for the following:

710 FILE 1/0 CHAP. 11

(a) A master file has records consisting of an item number, department, and quantity. A trans
action file has records containing only an item number. Each record in the transaction file
represents a record to be removed from the master file. Both files are in order by item
number and have no duplicates.

Create an output file consisting of the records in the master file with the indicated records
removed. Print an error message for any faulty transaction item numbers.
(b) The master file is the same as for part (a). The transaction file contains a list of changes to

be made. Each transaction record contains an item number and a new quantity for that
item. Both files are in order by item number and have no duplicates.

Create an output file consisting of the records in the master file with the new quantity for
each of the indicated items. Print an error message for any faulty transaction item numbers.

13. Combine the merge (which adds records) with the delete and change procedures of Exercise 12.
The master file is the same as for Exercise 12. Each transaction record contains:

Transaction code (A= add, D =delete, C =change)

Item number

Department (blank for codes D or C)

Quantity (blank for code D)

Both files are in order by item number and have no duplicates.Write a procedure to create an
output file consisting of the records in the master file with the indicated additions, deletions, and
changes.

14. Write a program to update the drugstore inventory file created in Exercise 2, Section 11- l.

You have a transaction file containing this information: an item number, an item name, a depart
ment code, an inventory for each of nine locations (an array), and a transaction code. Except for
the transaction code, the information is precisely the same as that on the master file. The
transaction code has the same meaning as in Exercise 13. The transaction record can leave
blank (or 0) any of the fields not actually being used in that type of transaction. You can assume
that the information on the transaction record has been edited.

The following are to be done for a change transaction:

• If the item name on the transaction record is not blank, then change the item name.

• If the department code on the transaction record is not blank, then change the department code.

• Add each element in the inventory array to the corresponding element in the master record.

Instead of printing errors on the terminal, create an exception file. This file has records contain
ing all the fields of the transaction record and a code for the type of error:

• Trying to add a record already there.

• Trying to delete a record not there.

• Trying to change a record not there.

• A resulting inventory amount that is less than 0 or more than 5000. (For this error, leave the
master record with the faulty inventories; assume the error will be corrected later.)

15. Update algorithms based on the file-merge algorithm have one serious drawback. They do not
handle multiple transactions for a single master record. Computer scientists have devised an
algorithm, known as the balance line algorithm, which does handle multiple transactions.

EXERCISES 711

The basic idea is this: Rather than putting master records directly to the output file, put them in
a new master record. Apply the transactions to this new master record. After all transactions
have been applied, write the record to the output. In rough form, the algorithm can be described
as follows:

read a record from each file (to get started)
repeat these four steps :

I. ActiveKey := lower of MasterKey, TransactionKey
2. if the MasterKey is equal to the ActiveKey

copy the master record to new master record
read another master record

else
set the new master record empty

3. as long as the TransactionKey equals the ActiveKey
apply 0 or more transactions to the new master record

4. if the new master record is not empty, write it to the output file

after the outer loop, do any necessary final steps

(a) By tracing the algorithm for some sample files, determine what the phrase "apply a trans
action" means for the six possible combinations:

TYPE OF TRANSACTION

Add

Add

Delete

Delete

Change

Change

NEW MASTER RECORD

Empty

Not empty

Empty

Not empty

Empty

Not empty

(b) Refine the algorithm to write a procedure to update a master file, as outlined in Exercise
13.

(c) Refine the algorithm to write a procedure to update a checking account master file. Each
master record has an account number and balance. Each transaction record has an account
number, type (check or deposit), and amount. The output file has an account number and
the resulting balance. Record all error situations in an error file.

11·4 RANDOM-ACCESS-FILE TECHNIQUES

Files are convenient for the long-term storage of data. As long as a file is updated fairly
infrequently, sequential access can be adequate. For example, a mailing list for an organiza
tion might be treated as a sequential file. Generally, this information is used in its entirety
to generate a set of mailing labels. Updating might occur only once a month or even less
frequently.

Even when a file is updated frequently, sequential access can be appropriate. For
example, the "hours worked" and other fields on a file used to generate payroll checks
might change every week. However, in this case, most records in the file are modified. An
algorithm that goes through the file sequentially making the changes is fairly efficient.

712 FILE 1/0 CHAP. 11

Sequential files become inadequate in situations where frequent changes occur to
records scattered throughout the file. As we discussed in Section 11-3, each batch of
changes to a sequential file requires going completely through the file. In addition, if we are
using the file to look up records that are scattered throughout the file, we want a random
access file, a file in which records can be accessed directly in a random order. Even in
applications where a sequential file is adequate, a random-access file may be more conven
ient. For example, consider an interactive payroll system. Using a sequential file, a payroll
clerk could enter the hours for each person on the file. However, the clerk would have to do
so in the same order as the records were listed on the file. With a random-access file, the
values could be entered in any desired order, perhaps by several payroll clerks, one per
department.

As a result of these and similar considerations, random-access files have become more
and more important in computing. As a result, THINK Pascal has included facilities for
using this type of file, although some versions of Pascal do not.

Note. These files go under a variety of names. The term direct file signifies the
ability to access the desired record directly, without having had to access all the preceding
records. The term random-access file, similarly, signifies the ability to access the records in
"random" order. The term relative file signifies the fact that, in order to access a record, the
program supplies the relative record number (or just record number). We generally refer to
the files as random-access files, but we are free to use the terms interchangeably.

Random-Access-File Commands

We already know quite a bit about THINK Pascal random-access files. For THINK Pascal, a
random-access file is any type of file, but opened differently than a sequential file. There are
also a few additional procedural functions that allow us to use these files in a random
fashion.

First, two useful concepts. Each record in a binary file has a record number. The
records are numbered starting at 0. As a simple example, suppose we have a file containing
five records (fields of name and major):

Sue

Sam

Joe

Mary

Eileen

CPS

MAT

MGT

ENG

HIS

We will soon learn how to read record 3. If we do so, we obtain the record (Mary, ENG)
because the record numbers start at 0.

The file-management system maintains a file pointer, which is initialized to 0 when
the file is opened. After any read or write, the file pointer points to (contains the record
number of) the next record. For example, after we read record 3, the file pointer's value is 4.
At this point, unless we do something to modify the file pointer, another Read reads record
4 (and a Write replaces the current value of record 4).

11-4 RANDOM-ACCESS-FILE TECHNIQUES 713

With these concepts in mind, let us describe various capabilities THINK Pascal pro
vides. The first five are procedures and the last two are functions.

1. Open(jile designator, file name). Connects the program's name for the file (the file
designator variable) and the file's name on the disk (the disk file name string), then
opens the file for random access and sets the file pointer to 0 (that is, the first record
of the file). Unlike a file opened with Reset or Rewrite, a file opened with Open can
be both read from and written to.

2. Read(jile designator, variable). Reads the record indicated by the file pointer, and
advances the file pointer to the next record (adds 1 to the file pointer). In a text file, a
"record" is taken to be 1 character, so a Read of a random text file works the same as
a Read of a sequential text file - the next character is read, and the file pointer moves
to the next character. (Readln can also be used on random text files, and works the
same as when used on sequential text files.)

3. Write(jile designator, variable). Writes the record indicated by the file pointer, and
adds 1 to the file pointer. This replaces the previous data (if any) stored in that record.
Write and Writeln of random text files works the same as when used on sequential text
files.

4. Seek(jile designator, N). Sets the file pointer to the N1' record, where N is a longint
expression. The value of N should lie between 0 and the file size.

5. Close(jile designator). Closes the file. This is necessary to make sure that all changes
are reflected in the file on the disk. Your program should close all the files it opens.

6. Eof(jile designator). This Boolean function's value is true if the file pointer is posi
tioned beyond the end of file, otherwise false.

7. FilePos(jile designator). This longint function supplies the current value of the file
pointer (0 for the first record, and so on).

To illustrate these ideas, we show some segments of Pascal code. In each, we assume
that the files are opened and closed by other portions of the program. We work with the
direct file described previously; each record has a name and an age. We assume these
declarations for the files and records involved.

type

StudentRecord = record
Name: StringSO;
Major: String3

end;
StudentFile = file of StudentRecord;

var
Person: StudentRecord;
ClassFile: StudentFile;

We assume that a procedure GetData(Person) prompts the user for a person's name and
major.

The first segment writes 25 records to the file, numbered 0 to 24. (The file was
opened usiqg Rewrite.)

714 FILE 1/0 CHAP. 11

for I := 1 to 25 do

begin

Get Data (Person) ;

Write(ClassFile, Person)

end {for}

The second segment illustrates how we can add a record to the end of an existing file:

GetData(Person);

NewPosition := FileSize(ClassFile);

Seek(ClassFile, NewPosition);

Write(ClassFile, Person)

Suppose, for example, that the file size is 23. Then there are currently 23 records numbered
0 to 22. The Seek sets the file pointer to record 23, so that the Write puts the new record
right after record 22.

Our third segment reads a series of record numbers from the user and prints the
corresponding data from the file. For record numbers equal to the file size or larger, an error
message is printed.

repeat

Write('Enter a record number (negative to quit): ');

Readln (RecNum) ;

if RecNum >= FileSize(ClassFile) then

Writeln('Too High')

else

if RecNum >= 0 then

begin

Seek(ClassFile, RecNum);

Read(ClassFile, Person);

with Person do

Writeln('Name: ', Name, ' Major: ' Major)

end (if}

until RecNum < 0

Finally, we present a segment that changes all 'CPS' majors to 'CSC'. (The file has
just been Reset.)

while not Eof(ClassFile) do

begin

Read(ClassFile, Person);

if Person.Major

begin

'CPS' then

Person.Major := 'CSC';
Seek(ClassFile, FilePos(ClassFile) - 1));

Write(ClassFile, Person)

end {if}

end {while}

Notice that, if we did not use a Seek to "back up one," we would have overwritten the
wrong record.

11-4 RANDOM-ACCESS-FILE TECHNIQUES 715

Random-Access-File Algorithms

The examples that follow illustrate some basic techniques for working with random-access
files. The major difficulty with these files is that the program must know the proper record
number. If this number is read from some other file or from the user, as in the previous
example, then the user must know the record numbers of the records to be processed. There
are a number of techniques that have been devised for this purpose. Studying them in detail
typically occupies a major portion of a course in file processing. We just touch on some of
the issues.

Here is an example that illustrates a simple technique for determining record number:
A small liberal arts college maintains a student data file. Among other things, the file

contains a four-digit student number, the total number of credits attempted to date, and the
number of grade points earned to date. When the file was originally created, it was decided
to use the student number itself as the record number. A file was created containing records
0 to 9999, where each record contained a flag telling whether that student number was
active.

The student number can be viewed as a key to the record; given the student number,
we know which student's record we wish to see. In this case, we have the record number
equal to the key.

The procedure in Figure l l- l l updates this file. To do so, it reads a sequential file
containing a series of student numbers, credit hours attempted during one semester, and
grade points earned during that semester. Using the given student number, it retrieves the
student's record, updates the record, and writes it back onto the file.

Notes

1. It would not be necessary to include the student number on the record because this
number is the same as the record number.

2. A field of the record indicates whether that record number is active. Requests to
update an inactive record are logged on an error file. (The record number is, however,
assumed to be valid, that is, between 0 and (file size - l).

3. We assume that the main program handles opening and closing the file.

Using the record number as the key can be a problem. When the record number is the
key, then we must know the key to obtain the record. Moreover, this key must be numeric,
and the number of digits allowed in the key is limited. There are many applications where it
is more convenient to use an alphabetic key. For example, when students come in to check
their records, they may not remember their student numbers. Their names might be a more
convenient key.

As a similar example, consider a file that lists the local tax rate for the cities, towns,
and so forth in a given state. For such a file, a convenient key would be the locality name or
perhaps an abbreviation of its name. If the file is set up with this alphabetical key, then some
means must be provided in the program to determine the desired record number, given the
locality name.

716 FILE 1/0 CHAP. 11

procedure UpdateQP (var StudentFile: MasterFile; var UpdateList:

TransactionFile; var ErrorLog: text);

{Written by: XXXXXXXXX XX/XX/XX}

{Purpose: To read a sequential transaction file, and add data to}

the records of a master student file}

{Parameters: StudentFile - the file of student records}

UpdateList - the file of transactions}

Error Log - a text file for error messages}

var

Semester: UpdateRecord;

Student: StudentRecord;

RecNum: integer;

{figures for this semester}

{master record}

{record number}

begin

while not Eof(UpdateList) do

begin

Read(UpdateList, Semester);

RecNum := Semester.StudentNumber;

Seek(StudentFile, RecNum);

Read(StudentFile, Student);

with Student do

begin

if not Active then

Writeln(ErrorLog, 'Inactive record:

else
begin

Hours := Hours + Semester.Hours;

QP := QP + Semester.QP;

Seek(StudentFile, RecNum);

Write(StudentFile, Student)
end {if}

end {with}

end {while}
end; {UpdateQP}

Figure 11-11 Updating a random access file.

RecNum)

{back up}

A number of techniques have been devised to handle these and other considerations
when working with random-access files. These techniques are beyond the scope of this text
(although we do indicate some possibilities in the exercises). However, keep in mind that
once the record number is calculated, the Seek, Read, or Write is identical in form to those
presented in our examples.

Inactive Records

The example in Figure 11-11 illustrates one important aspect of working with random
access files. It is possible that there can be "gaps" in the file. In THINK Pascal files, those

11-4 RANDOM-ACCESS-FILE TECHNIQUES 717

gaps are logical rather than physical gaps. That is, if a file contains record 200, it also
contains records 0 through 199. However, some of those records may not contain meaning
ful information.

One way to deal with this is indicated in Figure 11-11. A Boolean field of the record
can indicate that the record is inactive. Another possibility is to set some field of the record
to a specific "dummy" value. For example, a name field that is null might signify an
inactive record.

Whatever technique is used, all programs that access the file will have to apply the
technique consistently. We would, perhaps, have a program to create the original file con
taining nothing but inactive records. Later, other programs would change some records to
active status. We might also have a procedure to delete a record. For the file used in Figure
11-11, it could do so by setting

Student.Active := false

and then writing the record. Notice that a "deleted record," as used here, is one that is
logically deleted, not physically deleted. The record is still there; it has just been marked
inactive.

REVIEW

Terms and Concepts

direct file
file pointer
key
random-access number

File Operations

record number
relative file
relative record number
sequential file

1. Read, Readln, Write, Writeln, Close, Eof: Same as for sequential files.

2. Open: Opens a file for random access.

3. Seek(jile designator, N): sets the file pointer to the Nth record (generally, N is in the
range 0 ~ N ~file size).

4. Function FilePos(file designator): shows the current value of the file pointer (record
number).

Random-Access File Algorithms

1. Need to know desired record number.

2. Can mark records as inactive (deleted) in a variety of ways.

EXERCISES

1. Rewrite Case Study No. 9 (Section 6-4) to use random-access files rather than arrays. Use the
items number as the key to the item file and the customer number as the key to the customer
file.

718 FILE 1/0 CHAP. 11

2. A direct file contains a list of persons and companies to whom a church typically writes checks.
Write the following set of routines for the church treasurer.

Note: Each record contains the account name (25 characters) as it is to appear on the checks. If
the name is '*', the account has been deleted.
(a) Lookup. Given an account number (record number), display the account name.
(b) Addition. Given a new account name, add it to the end of file. (Make sure it isn't a

duplicate.)
(c) Printout. Print a list of the current contents of the file: record number and account name.

Ignore deleted records.
(d) Deletion. Given a record number, mark it as deleted. (First display the name on the screen

and verify that this is the one the user wanted to delete.)
(e) Compression. Remove all deleted records by copying the valid records to a temporary file,

reopening the account file, and then recopying the valid records.

3. A direct file keeps a list of checks written by a church. A control file contains one record with
three fields: the first check number in the file, the last check number in the file, and the last
check number printed and sent. For the other records, the check number is the record number,
and the records contain these fields:

DESCRIPTION

Date (yymmdd): 870407 is April 7, 1987

Payee (three-digit code)

Budget category (two-digit code)

Amount (dollars, cents): 1013,45 is $1,013.45

TYPE

String

Integer

Integer

Record with two integer fields

The "payee" code refers to the file of Exercise 2. The "budget category" code refers to a similar
file that lists budget category items.

Give subprograms for the following. Assume the main program has opened the files.

(a) New Check. Given a date, "paid to" code, "category" code, and amount, add a check to the
end of the file. First, however, make sure that the given date is after the date of the last
check written and that both codes are valid. Set a Boolean parameter OK to indicate
success or failure.

(b) Check List. Create a printed list of the checks on the file with these columns: date, number,
paid to (name, not code), budget category (name), and amount. As an optional extra, group
indicate by date; that is, print the date only when it changes. Print the dates in the form
mm/dd/yy.

(c) Partial List. Modify part (b) to print only those checks whose dates lie between two given
dates, inclusive.

(d) Check Print. Print all checks that have not yet been printed. Devise a reasonable check
layout. Print the date in the form "January 16, 1988". Print the amount preceded by aster
isks, as in "***35.49". Also print the amount in the form "EXACTLY 35 DOLLARS AND
49CENTS".

(e) Budget Summary. Create a printed report showing how much was spent in each budget
category between two given dates. You can assume that the budget category file records
contain a field for use as an accumulator.

4. How would you modify the program of Exercise 3 so that the first check written in the year
would be record 0, the next record l, and so on? (For a church whose first check was 1927, this
would save almost 2000 empty records.)

EXERCISES 719

5. An employee file contains records 0 to 999. Among the fields is a LastName field set to '*'for
unused records. For several applications, we wish to access the records in alphabetical order by
last name. Write the following collection of program segments to accomplish this (see also
Exercise 6).
(a) Write code to set up an array of records with fields RecNum and Name. For record I in the

array, RecNum is the record number and Name is the name of the Ith active record on the
file. (Skip unused records.)

(b) Sort the array into alphabetical order by name.
(c) Create a sequential file that contains the record number field from the sorted array, one

number per file record.

6. See Exercise 5. If we are given a list of record numbers to be processed, we can easily process a
direct file in that order. Use the file created in Exercise 5(c) to display a printed list of the name,
hourly rate, department, clock number, marital status, and number of dependents in alphabetical
order by last name. Make reasonable assumptions about the structure of the master file.

7. See Exercise 5. Rather than creating a separate file to get an alphabetical listing, we could have
each record in the master file show which record is next in alphabetical order. Each record
might contain these fields:

DESCRIPTION

Name

"Next": a three-digit number showing which
record number comes next in alphabetical order

Other data

TYPE

String

Integer

Miscellaneous

Suppose that a control file contains only a single number ("First") that tells which record is first
in alphabetical order. Also, suppose that the "Next" field for the person who is last contains the
number-1.

(a) Write a program to print the file as in Exercise 6, using the control file to get started and
using the "Next" field to move through the file.

(b) Write algorithms for inserting a new employee and for deleting an employee. Each
involves changing some of the "Next" fields in the file (and, perhaps, the "First" field in
the control file).

8. In this exercise, we explore simple hashing and collision-handling strategies for determining
where a record should be placed in a direct-access file.

720

(a) Suppose we want to place some records in a file that we have set up to have 10 empty
records, numbered from 0 to 9. The records have keys that are four digit numbers. Let us
follow the rule: Try to place the record in the location (that is, record number) indicated by
the last digit of the key. (This rule is an example of a simple hashing fanction.) What
record would that rule have us use for the following keys: 1403, 1695, 1138, 5689, 4122,
and 8904?

(b) These records ran well. There were no collisions, that is, no two records yielded the same
output from the hashing function. (We might put it as "no two records hashed to the same
location.") In the more general case, we must use some collision-handling strategy. One
approach has a number of names, including the very descriptive "consecutive spill." For
example, "if the record hashes to location 4 and that is full, put it in 5; if that is full, put it
in 6; and so on." Using this strategy to handle collisions and the same empty file and
hashing function as in part (a), show where these records would go: 1403, 1795, 1138,

FILE 1/0 CHAP. 11

2014, ll83, 8998, and 3ll4. (Notice that locations can be full because of collisions or due
to records that have already spilled out of their hash location.)

(c) What should you do with a record that "spills" past location 9, which is the last location in
the file? The usual method is to treat the file as if it were circular, so that location 0 follows
location 9. Continuing with the file in part (b), add these records: 9000, 8615, and 4029.

(d) A probe is the act of examining a location to see whether it is empty. For example, putting
in 1403 required one probe because location 3 was empty. How many probes did each of
the other records require?

(e) Write a program to create a file containing 10 empty records, numbered 0 to 9. Each record
contains a key and a name. Read data from the user to be placed into the file. By using the
hashing function (hint: use the mod function) and the collision-handling method described
previously, the program should insert the records. At the end, it should print the file in
order by record number to verify that it worked correctly. Note: The loop that examines
locations to see if they are empty should have three ways to terminate: an empty location is
found, a duplicate key is found, or all 10 locations have been examined and none is empty
(file is full).

(f) Modify part (e) to handle more keys by setting up a file of size 100. Modify your hashing
function appropriately.

(g) If you placed 75 records into a file of size 100 using the program of part (f), about how
many total probes would you expect it to take? (See part (d).) To answer the question,
write a program that does the steps described in what follows in a loop and reports the
statistics. The steps are initialize the file to contain 100 empty records; generate random
keys and place them into the file, counting the probes for nonduplicate keys; and terminate
the loop when 75 different keys have been inserted.

EXERCISES 721

Appendix

A Additional THINK Pascal
Features

In this appendix, we describe a few features of THINK Pascal that were not covered in the
body of the text. These topics are "extra" in the sense that it is possible to get by quite
adequately without them. (yVe have done so in all the program examples in the text.) How
ever, there are instances in which some of these additional capabilities prove useful in
designing and writing (especially larger) THINK Pascal programs; we discuss those here.

THINK Pascal also has several other advanced features, which include those that
allow us to take full advantage of the Mac's built-in windowing, graphics, and sound gener
ating capabilities. Since these are advanced features, we leave them for programming
courses that follow the first, introductory one for which this book is intended.

A-1 TRANSFER STATEMENTS (LABELS, GOTO, EXIT)

Pascal permits us to define a label and use a goto statement. In THINK Pascal, labels are
strings of digits between 0 and 9999, and must be declared in a label declaration of the form

label 10, 100, 200;

for example. The label declaration precedes the constant declaration in a program or proce
dure. A label is attached to a statement by writing the label, a colon, and then the statement,
such as

10: if X = Y then

A := B + C;

100: Y := X + Z;

200: for i := 1 to 10 do ...

900 ;

Notice in the last example that the label is attached to a null statement. The statement

goto 900

722

causes the program to start executing statements at (transfers control to) the statement
labeled 900.

Generally, a goto can be used to transfer into, within, or out of the body of a loop, the
true or false part of an if-then-else, the body of a with block, or even into or out of a
procedure or function.

For example, the following code is valid:

label 10;

begin

while do
begin

if ... then goto 10;

end;

10: ;

end.

Transferring into the middle of a statement from outside of it (such as jumping to one
of the statements within the begin and end of a for loop) is legal, but definitely not recom
mended-the effects of such a jump are often unpredictable. For example:

label 10;

begin

if then goto 10;

for I := 1 to 100 do
begin

10: ;

end;

If the jump to statement 10 is made, we have no idea how many times the for loop executes,
nor that the value I has during each pass through the loop. Writing a program with unpre
dictable behavior is not a good idea.

The goto statement is very controversial. Historically, it has been used in ways that
have made programs extremely difficult to understand. As a result, some individuals (and
some companies) completely forbid its use. Others use it only in a few well-defined situa
tions. For example, some might use the goto to leave a nested loop when an error is discov
ered.

A-1 TRANSFER STATEMENTS (LABELS, GOTO, EXIT) 723

Note. THINK Pascal does place some restrictions on how a goto can be used. For
example, it is illegal to branch out of the then part of an if statement into the else part of the
same statement, or out of a procedure into a statement that is nested within another proce
dure. The exact rules are somewhat cumbersome to remember; perhaps it is best just to
remember to use a goto only in a situation where it will always have predictable behavior.

As an example of the controlled use of the goto, consider the procedure XXXX
(which follows) that does some unspecified process. During the course of this process, two
error conditions could be detected. The procedure is to quit processing upon discovering an
error. Here are two solutions:

procedure XXXX(...) ;

label 900
begin

if error #1 exists then

begin

Error := l;

goto 900

end;

if error #2 exists then

begin

Error := 2;

goto 900

end;

900: end;

procedure XXXX(...);

begin

if error #1 exists then

Error .- 1

else
begin

if error #2 exists then

Error .- 2
else

begin

end
end;

The use of the goto avoids nesting decisions. You might want to ponder the form of the two
solutions if there were, say, five possible errors instead of only two.

Many programmers use the goto statement to terminate the execution of a procedure.
However, because of the tendency to abuse the goto, those who use it in this fashion may

724 ADDITIONAL TURBO PASCAL FEATURES APPEND. A

feel uncomfortable doing so. THINK Pascal provides an alternative that achieves the same
result but without opening the Pandora's box of the unrestricted use of the goto. This alter
native is the Exit procedure. Exit (ProcName) means "leave the procedure (or function)
called ProcName." It is equivalent to a goto that branches to the end of the given procedure.
In the previous example, the statement Exit (XXXX) could replace each "goto 900" state
ment. We would not declare or use the label 900 in this case.

Notes

1. Even the use of the Exit is somewhat controversial. If you are programming for some
one else, find out if it is allowed.

2. The Exit procedure is not available in standard Pascal.

A-2 VARIANT RECORDS

Records were first introduced in Chapter 5 and used extensively in the following chapters.
The Pascal record structure is useful both as a way to organize our data in a program and as
an implementation of the record concept for files.

The Pascal record data type includes a capability not discussed in the body of the text:
the ability to contain what is called a variant part. (The records we have used previously
contained only a fixed part.) As an example of a record structure with a variant part,
suppose we want to store data on various people associated with a college. These people are
in three categories, with the following associated data to be stored:

Faculty:

Name

Permanent address

Position (faculty)

Highest earned degree

University awarding this degree

Student:

Name

Permanent address

Position (student)

High school graduated

Combined SAT score

Staff:

Name

Permanent address

Position (staff)

Job description

One approach would be to define data types as follows:

A-2 VARIANT RECORDS 725

type

PositionType = (Faculty, Staff, Student);

PersonalData = record

Name: string[50];

PermAddress: string[lSO];

Position: PositionType;

Degree: string[S];

University: string[25];

HighSchool: string[20];

SAT: integer;

Job: string[l5]

end;

For each person, the data that did not apply would be left as null, or zero. But it would
waste storage, as inapplicable fields would still be present in each instance of the record.

The alternative is to define a record with both a fixed part and a variant part:

type

PositionType = (Faculty, Staff, Student);

PersonalData = record

Name: string[SO];

PermAddress: string[150];

case Position: PositionType of
Faculty: (Degree: string[S];

University: string[25]);

Student: (HighSchool: string[20];

SAT: integer);

Staff: (Job: string[15])

end;

Notes

1. The fields Name and PermAddress form the fixed part of the record. Every record of
this type contains these fields.

2. The Position field is called the tag field. It determines whether the remainder of the
record consists of a degree and university, or a high school and SAT score, or a job
description.

3. The remainder of the record is the variant part. It consists of a list of fields for each
value of the tag field. This list is enclosed in parentheses. It can be empty, but the
parentheses are required in any case.

4. The variant part of a record must follow its fixed part.

With a variable Person of type PersonalData, we can write code similar to these
examples:

726

Person.Name := 'Joe Smith'

Person.Position := Staff

Readln(Person.SAT)

ADDITIONAL TURBO PASCAL FEATURES APPEND. A

with Person do Job := 'President'
if Person.SAT > 1000 then ...

Note. It is up to the programmer to maintain consistency. For example, the assign-
ment

Person.SAT := 1215

is allowed even if Person.Position were Faculty. The results are unpredictable.

As an example of how the variant record concept might be used, consider the program
of Figure 6-10. In that program, we used two files, a control file and a data file. The control
file contained a single record that gave the number of students, tests, and programs repre
sented in the data file. An alternate approach is to place this count as the first record in the
data file. To do so, we would redefine the StudentRecord type as

type
RecordType = (ControlRec, StudentRec);
StudentRecord = record

case Indicator: RecordType of
Control: (NStudents: integer;

NTests: integer;
NPrograms: integer);

end;

Student: (Name: String20;
TestList: TestArray;
Exam: integer;
ProgList: ProgramArray;
Average: real;
Letter: char)

We would do away with the control file, with the variable Control declared to be of type
StudentRecord. (Control.Indicator would have the value ControlRec.)

What are the advantages and disadvantages of using variant records? They allow us to
store data when the records share some information but have some information that is
different. In doing so, they save space. In the PersonalData example, each record using the
original form is about 95 bytes, but only about 56 with the variant record form. (Space is
allotted for the fixed part and the longest of the alternatives in the variant part.)

Another advantage is that they can remove the need for control files. On the other
hand, the syntax is more difficult and can lead to confusion on the part of the programmer or
the reader of the program.

As a final comment, we note that the tag field variable can be omitted. This is an
advanced topic that we do not pursue in this text.

A-3 NESTED PROCEDURES

You have seen many examples of procedures and functions in this book. For the rest of this
section, we use the word procedure, but what we discuss here applies equally to functions.

A-3 NESTED PROCEDURES 727

We have declared user-defined procedures within a program unit after the variables have
been declared and before the program's executable statements. Variables referenced within
these procedures have been one of the following:

1. arguments of the procedure

2. local variables, accessible only within the procedure

3. global variables, accessible everywhere within the program (unless the name was as in
I or 2)

In Pascal, we can define a procedure within another procedure (and in tum define a
procedure within that procedure, to as many levels of nesting as we like). Such procedures
are called nested procedures. The effects are to limit access to the procedures nested within
another, and to create variables whose scopes lie between local variables and the global
variables discussed previously.

Consider, for example, the program in Figure A-I.

program Nested;

var

I, J, K: integer;

procedure Pl(Xl, X2: integer);
var

L, M, N: integer;

procedure P2(Yl, Y2: integer);

var

0, P, Q: integer;

begin {P2}

end; {P2}

procedure P3(Zl, Z2: integer);

var

R, S, T: integer;

begin {P3}

end; {P3}

begin {Pl}

end; {Pl}

begin {Nested}

end.

FigureA-1 Nested procedures.

728 ADDITIONAL TURBO PASCAL FEATURES APPEND. A

FigureA-2.

Nested
variables: I, J, K

P1
parameters: X1, X2
variables: L, M, N

P2
parameters: Y1, Y2
variables: 0, P, Q

P3
parameters: Z1, Z2
variables: R, S, T

In this example, procedures P2 and P3 are defined within procedure Pl. They are said
to be nested within Pl. This has implications concerning the scope of the program's vari
ables. For the discussion that follows, it may be helpful to refer to Figure A-2, which shows
P2 and P3 defined within Pl, and Pl defined within the main program Nested.

The variables I, J, and K are global, as before. They can be referenced in any of the
procedures Pl, P2, and P3, or in the main program. The variables 0, P, and Q and the
parameters Yl and Y2 are local to P2 and can only be referenced there. Likewise, R, S, T,
Zl, and Z2 can be used only within the body of P3. The variables L, M, and N and the
parameters Xl and X2 can be referenced within the body of Pl. Moreover, they can also be
referenced within the bodies of P2 and P3 because P2 and P3 are declared within Pl.
Visualize the boxes in Figure A-2 as one-way mirrors that allow us to look out from (but not
into) a procedure, and imagine being inside the body of a procedure. The variables you can
see as you look out are those variables this procedure can reference.

The portion of a program in which a variable can be referenced is called that
variable's scope. Thus, the scope of the variable Lin the example consists of the bodies of
procedures Pl, P2, and P3. In general, the scope of a variable is the procedure in which it is
declared and any procedure nested within that procedure. However, declaring a variable
within a procedure "masks" or "hides" variables of the same name that were declared
outside of that procedure. For example, suppose that procedure P3 declared a variable L.
Then the scope of the variable L defined in Pl would no longer include P3; any reference to
L within P3 would refer to the L declared in P3.

What are the disadvantages and advantages of nested-procedure definitions? The pri
mary disadvantage is obvious: They considerably complicate determining a variable's scope.
They also make it less likely that the compiler will detect the failure to declare a variable.
As a result, nested procedures should be used with some care.

There are, however, at least two important advantages. One is found with a package of
programs a developer might supply. The person writing the package may want to place

A-3 NESTED PROCEDURES 729

subprograms within the modules that use them. These modules are not visible to the user of
the package, so he or she do not have to avoid the module names in choosing identifiers .

A second advantage is illustrated by the QuickSort procedure of Figure A-3. This
procedure is a modification of Figure 6-14 (page 490); the changes are in italics.

procedure QuickSort (var A: IntegerArray; N: integer);

{Written by: xxxxxxxxxx XX/XX/XX}

{Purpose: To sort an array, using the quicksort technique}
{Parameters: A - update, the array to sort}

N - input, the upper bound of the portion of the array}

to sort}

{Procedures used: QSort, to perform the actual sort}

730

procedure Partition (Low, High: integer; var PivotLocation: integer);

{Written by:
{ Purpose:

XXXXXXXXXX XX/XX/XX}
To partition an array into three parts:}

1. values less or equal to the pivotal element}

2. the pivotal element}

3. values greater than or equal to the pivotal element}

{Parameters: Low, High - input, the portion of the array to partition}

PivotLocation - output, the location for the pivot}

element}

{Procedures used: Swap, to swap two elements of the array}

{Globals modified: A (from QuickSort), the array being partitioned}

var
I: integer;

J: integer;

Pivot: integer;

{used to locate large values}

{used to locate small values}

{the pivotal element}

procedure Swap (var I, J: integer);

{Written by: XXXXXXXX XX/XX/XX}

{Purpose: To swap two integers}

{Parameters: I, J - update, the integers to switch}

var
Temp: integer;

begin
Temp := I;
I := J;

J := Temp
end;

begin {Partition}

I := Low;
J := High + l;

Pivot := A[Low];

repeat

{holding variable}

ADDITIONAL TURBO PASCAL FEATURES APPEND. A

{*** Move I to right looking for a value >= the pivot}

repeat

I := I + 1

until (I High) or (A[I] >=Pivot);

{*** Move J to left looking for a <= the pivot}

repeat

J := J - 1

until A[J] <= Pivot;

{*** Swap if the values are out of order}

if I < J then
Swap(A[I], A[J])

until I >= J;

{*** Put the pivotal element in the proper place, and return the value}
of its subscript to the calling module}

Swap(A[Low], A[J]);
PivotLocation := J

end; {Partition}

procedure QSort (Low, High: integer);

{Written by: XXXXXXXXXX XX/XX/XX}
{Purpose: To sort an array, using the quicksort technique}
{Parameters: Low, High - input, the portion of the array to sort}
{Procedures used: Partition, to partition the array into two}

subarrays QSort, called recursively to sort the two}
subarrays}

{Globals modified: A (from QuickSort), the array being sorted}

var

PivotSub: integer; {Location of pivotal element)

begin {QSort}
if Low < High then

begin
Partition(Low, High, PivotSub);
QSort(Low, PivotSub - l);
QSort(PivotSub + l, High)

end {if}

end; {QSort}

begin {QuickSort}
QSort (1, NJ

end; {QuickSort}

FigureA-3 (continued)

A-3 NESTED PROCEDURES 731

The advantages to this arrangement are as follows:

1. The main program can invoke QuickSort using

QuickSort(TestArray, TestSize)

rather than

QuickSort(TestArray, l, Testsize)

Having to supply the parameter 1 seems unnatural.

2. The recursive calls do not have to pass the parameter A; Partition and QSort are
defined within QuickSort, so the scope of its parameter A includes those procedures.
This speeds up the program only slightly, as A was a var parameter. If the array A had
been a value parameter, the improvement would be quite significant. (For example, try
writing a recursive binary search using the two approaches. If the array to be searched
is passed as a value parameter, as one would do to avoid inadvertently changing the
array's values, the difference in speed is significant.)

3. The procedure Partition is a specialized procedure that only seems useful within the
context of the quicksort algorithm. Defining it within QuickSort thus seems reason
able.

4. The procedure Swap could be defined inside of any one of several places: Partition,
QuickSort, QSort, or the main program. It has been placed inside Partition because
that is where it is used. However, it is a utility procedure, so we might reasonably
have chosen to define it in the main program. In this way, a main program that needed
to do some swapping could reference the procedure.

A-4 UNITS

Introduction

We have used predefined units throughout the text to take advantage of built-in Macintosh
features. For example, rather than spending time writing our own random-number generator,
we used the Random function in the QuickDraw unit (which THINK automatically accesses
for us).

THINK allows us to define our own units. Units have several advantages:

1. They are self-contained blocks of Pascal that can be compiled separately from the
main program (or other units) that employ them. This feature allows us to write, test,
and then use these modules in any program. Developing large programs is also faster:
if we make a change to a unit, we only need to recompile its several lines - not all
20,000 or 50,000 lines of the program.

2. They help promote information hiding. The structure of units is such that the user of
the unit is only allowed to use the constants, types, variables, functions, and proce
dures the writer of the unit explicitly makes available. These items are often called
public. All the lower-level details of how these items are defined are hidden from the
program using the unit; these details are private. If the private part of a unit needs to
be changed, the program employing the unit does not require modification; only the
unit itself is affected.

732 ADDITIONAL TURBO PASCAL FEATURES APPEND. A

3. They promote software reuse. You have seen how easy it is to employ a unit in a
program; this ease makes units an attractive alternative to rewriting code.

4. Units speed the development of large program projects involving several program
mers. Once the public objects of the units are defined, a programmer can write the
unit with minimal communication with colleagues. The private details of the unit are
hidden from all users of that unit; the programmer need not worry that how she
implements the unit will have side effects when used in a program. Since communica
tion among programs is one of the most time-intensive activities during a large proj
ect, reducing the need for programmers to communicate speeds program development.

Defining a Unit

A unit has three parts: a header that names the unit; an interface part, which declares the
public objects; and an implementation part, which declares the private objects and contains
the details of the procedures and functions in the interface part. The header, interface part,
and implementation part appear in the unit in that order; the unit's definition ends with an
end followed by a period.

The header has the form

unit unit name;

where the unit name is a name we give to the unit (such as SortRoutines).
The interface part begins with the word interface and can contain constant, type, and

variable declarations, written the same way as we did for a THINK program. It also contains
the heading lines of procedures and functions we wish to make public.

The implementation part begins with the word implementation and can contain con
stant. type, variable, procedure, and function declarations. These objects and routines cannot
be employed by a program using the function. Their usual purpose is to serve as aids to the
public procedures and functions. The implementation part also contains the full declarations
of the public procedures and functions, except that their header lines do not need to list
parameters or the function result type; only the word procedure or function need appear,
followed by the routine's name and a semicolon.

An Example

Suppose we placed several sorts into one unit called SortRoutines. We could include
quicksort, selection sort, merge sort, and so on; the user then could call the sorting proce
dure that worked best with the data at hand. In Figure A-3, we present the beginnings of
defining SortRoutines by including the QuickSort procedure from the previous section. To
include this procedure in a unit, we do the following:

1. Define type lntegerArray and the QuickSort procedure in the interface part of the unit
to make them available to the program using the unit.

2. Place the procedure Swap into the implementation part of the unit, since we only want
our sort routines to have access to it; although potentially useful to a user, it is not the
purpose of this unit to swap variables.

The resulting unit definition is shown in Figure A-4.

A-4 UNITS 733

unit SortRoutines;

interface

type

IntegerArray = array[l .. 1000] of integer;

procedure Quicksort (var A: IntegerArray; N: integer);

implementation

procedure Swap (var I, J: integer);

{Written by: XXXXXXXX XX/XX/XX}

{Purpose: To swap two integers}

{Parameters: I, J - update, the integers to switch}

var

Temp: integer; {holding variable}

begin
Temp := I;

I := J;

J := Temp

end;

procedure Quicksort; {(var A: IntegerArray; N: integer)}

{Written by: XXXXXXXXXX XX/XX/XX}

{Purpose: To sort an array, using the Quicksort technique}

{Parameters: A - update, the array to sort}

N - input, the upper bound of the portion of the}

array to sort}

{Procedures used: QSort, to perform the actual sort}

procedure Partition (Low, High: integer; var PivotLocation:

integer);

{Written by: XXXXXXXXXX XX/XX/XX}

{Purpose: To partition an array into three parts:}

1. values less or equal to the pivotal element}

2. the pivotal element}

3. values greater than or equal to the pivotal element}

{Parameters: Low, High - input, the portion of the array to}

partition}
PivotLocation - output, the location for the pivot}

element}
{Procedures used: Swap, to swap two elements of the array}

{Globals modified: A (from Quicksort), the array being partitioned}

var
I: integer;

J: integer;

Pivot: integer;

{used to locate large values}

{used to locate small values}
{the pivotal element}

Figure A-4 Quicksort defined in a unit (continues next page).

734 ADDITIONAL TURBO PASCAL FEATURES APPEND. A

begin {Partition}
I := Low;
J := High + l;
Pivot : = A [Low];

repeat

{*** Move I to right looking for a value >= the pivot}

repeat

I := I + 1
until (I High) or (A[IJ >=Pivot);

{*** Move J to left looking for a value <= the pivot}

repeat

J := J - 1

until A[J] <= Pivot;

{*** Swap if the values are out of order}

if I < J then

Swap(A[I], A[J])

until I >= J;

{*** Put the pivotal element in the proper place, and return the}
value of its subscript to the calling module}

Swap(A[Low], A[J]);
PivotLocation := J

end; {Partition}

procedure QSort (Low, High: integer);

{Written by: xxxxxxxxxx XX/XX/XX}
{Purpose: To sort an array, using the quick sort technique)
{Parameters: Low, High - input, the portion of the array to sort}
{Procedures used: Partition, to partition the array into two}

subarrays}
QSort, called recursively to sort the two subarrays}

var
PivotSub: integer; {Location of pivotal element}

begin {QSort}
if Low < High then

begin
Partition(Low, High, PivotSub);
QSort(Low, PivotSub - 1);
QSort(PivotSub + 1, High)

end {if}
end; {QSort}

FigureA-4 (continues next page)

A-4 UNITS 735

begin {Quicksort}

QSort(l, N)

end; {Quicksort}

end. {unit SortRoutines}

FigureA-4 (continued)

Notes

1. IntegerArray must be defined in this unit (or in another unit that appears before this
one in the uses list). Since unit definitions are the first declarations of a program,
defining Integer Array in the program using the unit results in its declaration appearing
after its use, something THINK does not permit.

2. The array A is still global to Partition and QSort, since they are defined within the
QuickSort procedure. We have left Partition and QSort nested inside QuickSort
because they are procedures unlikely to be needed by any other sorting method we
might add to the unit. The user of the unit cannot call Partition and QSort because
they are "hidden" within QuickSort. We could have hidden the routines by placing
them in SortRoutine's implementation part, but, since they would no longer nested, we
would need to pass A as a parameter.

3. THINK allows us to restate the parameter list in the implementation of the QuickSort
procedure, but only if it is exactly as it appears in the interface part of the future. We
relist it but also commented it out. This approach allows us to remind ourselves of the
parameter definitions without referring back to the header line in the interface section,
and also prevents us from inadvertently changing them.

Compiling and Using a Unit

For a unit to be ready for use, it must be added to the project using it. To compile a unit, use
the Compile to Disk selection under the Compile menu. THINK will know you are compil
ing a unit because of the word unit (instead of program) in the header. THINK will flag any
compilation errors it discovers. Once your unit is compiled error-free, it is not recompiled
when you compile and run the program that uses it.

To use a unit, we need only include its name in the uses clause after the program
header and add the name of the disk file in which it is stored to the project.

As an example, suppose we wanted to use the SortRoutines unit. The start of the
program would look something like this:

program SortAList;

uses

SortRoutines;

If the disk file in which SortRoutines is located is called SortUnit, we would add this
file to the project (using the "Add File ... "command from the Project menu.)

Once the SortRoutines file is located and the unit "used," we can now use any of the
public constants, types, variables, procedures, or functions SortRoutines contains as if they

736 ADDITIONAL TURBO PASCAL FEATURES APPEND. A

program SortAList;

{Written by: XXXXXXXX XX/XX/XX}

{Purpose: To demonstrate the use of the programmer-defined unit}

{Units used: SortRoutines, to use QuickSort}

uses

SortRoutines;

const

Numltems

var

500;

I, J: integer;

A: IntegerArray;

{number of items to be sorted}

(index into array A}

{array to be sorted}

begin {SortAList}

GetDateTime(RandSeed);

for I := 1 to Numltems do

A[I] := Random;

(Seed the random number generator}

{Generate the numbers}

QuickSort(A, Numltems);
for I := 1 to Numltems div 10 do

begin

for J := 1 to 10 do

{Sort them}
{Print them}

Write(A[lO * (I - 1) + J], ' ');

Writeln

end

end. {SortAList}

Figure A-5 Using a unit to sort a list.

were defined directly within our program. We close this section with Figure A-5, which
shows a simple program that uses the SortRoutines unit to quicksort a list of 500 random
integers.

A-4 UNITS 737

Appendix

B Syntax Diagrams

In this appendix, we use syntax diagrams to describe the syntax of the THINK Pascal
language components we have discussed. This provides a handy visual way to determine
what form each construct of the language must follow in order to be syntactically correct. In
reading the diagrams, take verbatim those items in ovals or circles. Items in rectangles are to
be filled in by specific instances of the concept described. For example, the diagram

identifier constant

indicates "any identifier," followed by the := operator, followed by "any constant," followed
by a semicolon. Valid instances of this diagram might be

A := 3;
CutOffPoint := 155.27;

(For items enclosed in rectangles, you will find the concepts further explained in other
diagrams or in the notes.)

Along with some of the diagrams, we include some semantic notes (comments about
the meaning of the construct). These notes should be considered as general guidelines, rather
than as an exhaustive reference. For additional information, you can refer to the index entry
for the item being described.

738

B-1 BASIC PROGRAM LAYOUT

Program

program heading

program
heading

program

program ~d •t· 1• t 1 ent1 1er 1st
parame ers

uses
clause

1. The identifier is the program name.

compound statement

program parameters

2. The program parameters can be only input and output, are optional, and are ignored
by the compiler.

3. The compound statement is called the body of the program.

4. The uses clause is a list of all units to be incorporated in this program.

Comment

comment-text

comment

comment-text

1. The comment-text can be any text not containing the character "}" [if the comment
started with a " { "] or a "*)" [if it started with "(*"].

2. Comments can be placed in the program at any spot where a blank space is allowed
(although THINK will move comments embedded in a line of code to the end of that
line).

3. Comments do not affect the program's meaning.

B-1 BASIC PROGRAM LAYOUT 739

Declarations

label
declaration

constant
declaration

type
declaration

identifier constant

identifier

wriablo ~d .f.
di . w'~ ec arat1on

'

procedure/function
declaration --~----1

procedure declaration

function declaration

1. In standard Pascal, this order must be followed; THINK relaxes the rule.

2. Const defines named constants that the program cannot modify.

3. Type gives names to user-defined types. This is frequently useful; it is mandatory if
variables of that type are to be passed as parameters.

4. Var declares variables whose scope is the module in which this declaration occurs.

5. Function and procedure declarations can be mixed. The general rule is that a sub
module must be declared before it is used.

740 SYNTAX DIAGRAMS APPEND. B

Function Declaration

function
declaration

function

type identifier

identifier

1. The identifier is the function name.

2. The parameter list is optional.

parameter list

declarations compound statement

3. The type identifier is the type of the function's returned value. It must be a named
type: a built-in type (real, integer, char, boolean, string), a named pointer type, a
named scalar or subrange type or a named string type. It cannot be a record, array, file,
or set type.

4. The compound statement is the body of the function. It should include at least one
statement assigning a value to the identifier that is the function name. (This causes the
answer to be sent back to the module using the function.)

Procedure Declaration

procedure
declaration

procedure

declarations

identifier parameter list

compound statement

1. The identifier is the procedure name.

2. The parameter list is optional.

3. The compound statement is the body of the procedure. It should not attempt to assign
a value to the procedure name identifier.

Parameter List

parameter
list

B-1 BASIC PROGRAM LAYOUT

type identifier

741

1. The parameters in the list are called formal parameters.

2. The effect of the var is to make the identifier(s) that immediately follow it variable
parameters. Its effect ends at the end of that list (at the colon).

3. If the var is omitted, the identifiers in the list (up to the colon) are value parameters.

4. For a variable parameter, the corresponding actual parameter must be a variable. Any
reference to the formal parameter is directed to the corresponding actual parameter.

S. For a value parameter, the corresponding actual parameter can be any expression. Its
value is passed in when the module is invoked; no value is ever passed back with a
value parameter.

6. The parameters must be named types (built-in or user-defined).

Forward Declarations

function identifier parameter list type identifier

procedure identifier parameter list

procedure

identifier declarations compound statement

function

1. Forward declarations allow the body of a procedure or function to be separated from
its declaration. This is useful in cases of mutual recursion or in a large program where
submodules are alphabetized.

2. The module is first declared using the directive forward to notify the compiler that the
body is found later. This declaration includes all the usual parameter and function-type
information.

3. Later, the declarations and body of the module are supplied. That module is identified
by an abbreviated declaration of the module: just the word procedure or function
followed by the module name (no parameter or function type information need be
supplied here).

742 SYNTAX DIAGRAMS APPEND. B

B-2 PROGRAM STRUCTURES

null statement

assignment stmt

procedure stmt

goto statement

compound statement

if statement

case statement

repeat statement

while statement

for statement

with statement

1. The label is the statement label. It must have been defined in the label part of the
declarations of the module in which it appears.

2. Statement labels are needed only when a goto statement is used. Use of the goto
statement is discouraged.

3. The null statement consists of nothing. For example, the compound statement

begin

T .- 5;

x ·- 3;
end

contains two assignment statements followed by a null statement.

Assignment Statement

identifier expression

B-2 PROGRAM STRUCTURES 743

1. The identifier is either a function or variable name.

2. A function name is assigned a value inside the function body to pass back the answer
to the calling module.

3. The specific variable referred to by identifier is determined by using the scope rules.
Look first for any local definition of the identifier. If there is none, look in the succes
sive surrounding modules, going back to the main program.

4. The types of the identifier and of the expression must be the same, with some excep
tions. For example:

(a) Integer values can be assigned to real variables.

(b) Any two string types are considered compatible (truncation might occur).

(c) Subtypes (of the same base types) are considered compatible.

5. Expressions are described in detail in what follows.

Procedure Statement (Call)

procedure identifier argument list

1. The argument list is optional.

2. The named procedure is invoked. When it terminates, execution continues at the next
statement following the call.

Argument List

variable

1. Arguments are also called actual parameters.

2. The argument list must match the parameter list for the module being invoked:

(a) Correct number of arguments.

(b) Correct types for each argument.

(c) Must be a variable for a "var" parameter.

3. For var parameters, the subprogram works directly with the variable in the argument
list.

4. For value parameters, the value of the expression in the argument list is calculated and
sent to the matching parameter in the subprogram; no value is ever returned.

744 SYNTAX DIAGRAMS APPEND. B

Goto Statement

Compound Statement

statement

1. This is Pascal's way of allowing multiple statements where the syntax calls for one
(for example, as the body of a while loop).

2. The statements are executed in order from first to last.

If Statement

expression

1. The expression must be of type boolean.

2. If the value of the expression is true, the statement following the then is executed.

3. If the value of the expression is false, the statement following the else is executed. (If
there is no else, nothing is done.)

4. In either case, execution continues with the statement following.

5. In case of ambiguity, as in

if X > 5 then if Y > 10 then T := 5 else T := 10;

the "dangling else" goes with the closest unmatched if. The meaning of this example
is "if X > 5 then perform the if-then-else statement 'if Y > 10 then T := 5 else T :=
10'."

B-2 PROGRAM STRUCTURES 745

Case Statement

case
statement

case constant

expression case

otherwise

constant statement

1. The semicolons just before the otherwise and just before the end are optional.

2. The type of the expression and those of the constants must be the same; they must be
integer, char, boolean, or a user-defined scalar.

3. The values indicated by the constants and by the ranges constant..constant must be
unique. For example, having 3 and also 1..4 is illegal.

4. The expression is evaluated and its value compared to the lists of constants and
ranges. If a match is found, the corresponding statement is executed.

5. If no match is found, the statement following otherwise is executed. (If there is no
otherwise, it is an error.)

Repeat Statement

statement expression

1. The expression is of type boolean (i.e., a condition).

2. The list of statements is called the body of the repeat loop.

3. The body is executed, and then the expression is evaluated. If the condition is false,
the process is repeated.

4. When the condition is true, execution proceeds to the next statement of the program.

746 SYNTAX DIAGRAMS APPEND. B

While Statement

expression statement

1. The expression should be of type boolean (i.e., a condition).

2. The statement is called the body of the while loop.

3. The expression is evaluated; if it is true, the body is executed. This process is repeated
as long as the condition remains true.

4. When the expression is false, execution proceeds to the next statement of the program.

For Statement

identifier expression expression statement

1. The statement is called the body of the for loop.

2. The identifier must be a variable of type integer, char, boolean, or a user-defined
scalar. Its type must match that of the expressions.

3. The identifier is called the loop-control variable.

4. If the form expression] to expression2 is used, the loop-control variable successively
takes on the values in the range expressionl..expression2. For each value, the loop
body is executed. (If the range is empty, the body is not executed.)

5. If the form expression! downto expression2 is used, the control variable takes on the
value in the range expression2 .. expression 1, in decreasing order. (If the range is
empty, the body is not executed.)

6. The loop-control variable can be used but not modified within the loop body.

7. After the body has been executed the indicated number of times, execution proceeds
to the next statement in the program. At this point, the loop-control variable's value is
undefined.

With Statement

variable statement

1. The variable must be of a record type.

2. Within the statement following do, references to fields of the indicated variable can be
made without the prefix variable. For example,

with Student do Readln(Name)

B-2 PROGRAM STRUCTURES 747

in place of

Readln(Student.Name)

B-3 UNIT STRUCTURE

unit unit heading interface part implementation part

unit heading~

uses clause type declarations

variable declarations

procedure and function headings

implementation
part ---~..- constant declarations

type declarations

variable declarations

procedure and function declarations

1. The order of constants, types, variables, and procedure and function headings and
declarations can be intermixed, provided all items are defined prior to their use.

748 SYNTAX DIAGRAMS APPEND. B

B-4 DATA STRUCTURES

Type

pointer type

structured type

string type

type identifier

1. Type identifier refers to a type that has been defined in the type portion of the declara
tions.

Simple Type

---......... ~ subrange type

enumerated type

ordinal-type identifier

real type

1. Ordinal-type identifier is the identifier naming a user-defined ordinal type.

2. Ordinal types include the subrange and enumerated types, and user-defined versions of
these types; they do not include type real.

Subrange Type

constant constant

1. The constants must be of the same type. That type must be integer, boolean, char, or a
user-defined scalar.

2. The Ord value of the first constant must be less than or equal to that of the second
constant.

3. The legal values for entities of this type are values lying between and including the
two constants.

B-4 DATA STRUCTURES 749

Enumerated (Scalar) Type

1. The identifiers form a list of legal values for the type.

2. The order in which they are listed is significant. (It is used by the Ord, Pred, and Succ
functions, and for determining the meaning of for loops. The first item in the list is
numberO.)

3. The identifiers must be unique.

Pointer Type

type identifier

1. The type identifier can be defined after it is used to define the pointer type.

2. There is a predefined constant nil that is a possible value for any variable of any
pointer type.

Structured Type

set type

file type

record type

1. The word packed relates to how the data are stored in the computer memory; packed
items are compressed, allowing them to occupy less memory, but often at the cost of
slowing down access to them (perhaps making a program run more slowly).

2. The components of packed data types cannot be used as actual var parameters.

String Type

unsigned integer

750 SYNTAX DIAGRAMS APPEND. B

1. The unsigned integer must be an integer in the range 1 to 255. It indicates the maxi
mum length of the string. If no length is given, a length of 255 is assumed.

2. The type string (without a specified size) is considered to be a named type.

3. As the program is running, the current actual length of the string is automatically
maintained.

Array Type

index type

1. The index type must be an ordinal type, that is, a subrange type or enumerated type,
either predefined or user-defined.

2. The notation using several index types is a shorthand notation. For example,

array[l .. 3, 5 .. 17] of integer

is shorthand for

array[l .. 3] of array (5 .. 17] of integer

3. Array elements are referenced by indicating indexes (subscripts) in the given range.
For example,

A[2,10] orA[2] (10]

Set Type

type identifier

1. The type identifier must indicate a boolean, char, string, or user-defined enumerated
or subrange type.

2. Sets size defaults to at most 256 items; the Ord values of the set elements must lie
from 0 to 255. (So a set of the subrange 100 .. 200 is illegal.) In THINK, set can
contain up to 65536 items by changing the setting in the "compile options" menu
selection.

3. Every set type includes the value [], the empty set.

File Type

type identifier

B-4 DATA STRUCTURES 751

1. The predefined type identifier text denotes "packed file of char." Moreover, for this
type of file, the procedures Readln and Writeln can be used.

2. For all other file types, only Read and Write can be used.

3. A common use involves having the type be a record type.

4. In addition to the standard 1/0 operations, THINK Pascal provides facilities that allow
random access to the values in the file.

Record Type

field list

variant part r--------~~

1. The identifier denotes a field of the record.

2. Field values within a variable of record type are denoted by indicating the variable
name, a period, and the field name. For example,

Student.Name

(But also see the with statement diagram.)

3. The fields of the record, in turn, can be structured types, including arrays and records.

Variant Part

identifier type identifier

field list

1. This feature allows the list of fields within the record to depend upon the value of a
field within the record.

752 SYNTAX DIAGRAMS APPEND. B

2. It is the programmer's responsibility to ensure consistency.

3. The identifier determining which list of fields is to occur can be omitted.

B-5 EXPRESSIONS

It is possible to give syntax diagrams for expressions. However, they are probably more
useful to a compiler writer than to a person who is writing programs in Pascal. Instead, we
summarize some of the important points concerning expressions.

1. Expressions can contain combinations of

constants

variables

fields of records

array elements

pointer references

function invocations (syntax is the same as procedure invocation)

sets

strings

(Any use of a function name in an expression is interpreted as an invocation of that
function.)

2. Subject to rules involving compatibility, these can be combined using the following
operations to form simple expressions:

parentheses for grouping

+, -, *, I, div, mod

not, and, or

There cannot be two operators in a row. For example, A* - Bis illegal; use A* (-B)
or-A* B.

3. Simple expressions can be combined, using

<, =, >, <=, >=, <>, in

The result will be Boolean.

4. The precedence is

not

*,/,div, mod, and

+,-,or

<,=,>,<=,>=,<>,in

Within each list, the order is "left to right." (Parentheses can be used for grouping.)

B-5 EXPRESSIONS 753

5. The operators +, -, *, and I can be applied to integers or reals. The result is real,
except that the sum, difference, or product of two integers is integer.

6. The operators div and mod can only apply to integers. The results are truncated divi
sion and remainder, respectively.

7. The operators not, and, and or apply only to Boolean values. The result is Boolean.

8. The comparisons <, <=, >, >=, =, and <> apply to any real, integer, string, char,
boolean, or user-defined scalar type. For char, boolean, and user-defined scalars, the
result is based on the Ord value of the operand. String comparisons generally yield
alphabetical comparisons.

10. The operators +, -, and * when applied to sets are set union, difference, and intersec
tion, respectively. The operators <, >, <=, >=, =, and <> denote set inclusion and set
equality tests. The operator in determines if a value is an element of a set.

11. Among the functions available are

Sqr Round Ord Odd

Sqrt Trunc Chr Eof

Abs Cos Succ Random

Exp Sin Pred

Ln Arc tan

Copy Tan

Pos Con cat

Length

12. Constants can be signed or unsigned numbers, or constant identifiers and strings, or
the predefined constants nil or maxint.

13. Identifiers begin with a letter, followed by zero or more letters, digits, or underscores
(in any order). Identifiers can be as long as 255 characters.

14. Sets can be denoted by a list of expressions enclosed in square brackets. The expres
sions can be ranges (for example, ['A' .. 'Z', 'a' .. 'z']) and they can be variables (for
example, [O, 1, Sum]).

15. Fields of records are denoted by the record name, a period, and the field name (for
example, Student.Age).

16. Array elements are denoted by the array name and a list of subscripts enclosed in
square brackets (for example, A[5], B[7,2], and B[7][2]).

17. Pointer references consist of the pointer variable name followed by "A" (for example
ListHeadA). Very frequently, pointers point to records, whose fields can be indicated
using the usual field notation (for example, ListHeadA.Name).

18. Integer constants consist of sequences of digits (the value must lie between -maxint
and maxint).

19. Real constants contain either a decimal point, an exponent part, or both. The syntax
diagram is

754 SYNTAX DIAGRAMS APPEND. B

integer

The exponent part indicates a power of 10. For example, 1.2E3 means 1.2 times 103•

20. String constants consist of any string enclosed in single quotes (i.e., apostrophes). The
character for apostrophe is represented by two consecutive apostrophes, as in

'don' 't'

Character constants have the same form as string constants of length 1.

B-5 EXPRESSIONS 755

Appendix

c File Utilities

In this appendix, we present some utility subprograms that are useful in dealing with files.

C-1 EXISTS

Here is a Boolean function that can be used to determine the existence of a file.

function Exists (FileName: string): boolean;

{*** Corrunents}

var
DurrunyFile: text;

begin {Exists}
IOCheck(false);
Reset(DurrunyFile, FileName);
IOCheck (true) ;
Exists := IOResult = O;
Close(DurrunyFile)

end; {Exists}

C-2 OPENREAD

{used to check file name}

{turn off error messages}
{try to open for input}
{turn them back on}
{return true if ok, false otherwise}
{don't leave files lying around open}

The following is a general-purpose procedure for obtaining the name of an existing file from
the user and opening the file for reading. Note that the type of the file is specified by the
global type FileType, so that the procedure can be used in different contexts.

756

procedure OpenRead (var InputFile: FileType);

{*** Comments}

var
FileName: string;

ValidName: boolean;

begin {OpenRead}

repeat

{file name on disk}

{entered name exists?}

Write('Enter the name of the input file: ');

Readln(FileName);
ValidName := Exists(FileName);

if not ValidName then
Writeln('***File does not exist.')

until ValidName;

Reset(InputFile, FileName)
end; {OpenRead}

C-3 OPENWRITE

{open the file for input}

Here is a procedure for obtaining the name of a file and opening the file for writing. There
are two issues to deal with: "Does the file already exist?" and "Is the filename valid?"

procedure OpenWrite (var FileVar: FileType);

{*** Comments}

var
FileName: string;

ValidName: boolean;

Answer: char;

begin {OpenWrite}

{Name of the file}

{Indicator for file name}

{User response}

{*** Ask the user for the filename}

ValidName := false;

while not ValidName do
begin

Write('Enter the filename: ');

Readln(FileName);

if Exists(FileName) then
begin

Write('File already exists. Delete (Y, N)? ');

Readln(Answer);
if Answer in ['Y', 'y' l then

C-3 OPENWRITE 757

begin

ValidName := true;

Rewrite(FileVar, FileName)

end {if}

end
else

begin

IOCheck(false);

Rewrite(FileVar, FileName);

IOCheck (true) ;
if IOResult = 0 then

ValidName := true

else

Writeln('Invalid filename. Re-enter.')

end {if}

end {while}

end; {OpenWrite}

C-4 FILEBUILD

When writing a program to deal with files of records, it is convenient to have an easy
method of building samples for testing. The following is a utility that can be easily
customized for any such file. To customize FileBuild, you must modify the declaration of
RecordType and the fields used in the ReadRecord procedure. (These portions are in italics.)

758

program FileBuild;

{*** Comments}

type

RecordType = record

{Fill in the field definitions}
end;

FileType file of RecordType;

var

FileVar: FileType; {File designator}

RecordVar: RecordType; {Record variable}
Quit: boolean; {User wants to quit?}

{function Exists is inserted here}

(procedure OpenWrite is inserted here}

procedure ReadRecord (var RecordOut: RecordType; var Quit: Boolean);

{*** Comments}

const
EndOfData ???; {Give appropriate terminating value}

FILE UTILITIES APPEND. C

begin {ReadRecord}

with RecordOut do
begin

Writeln;

Writeln('Enter fields of record: ');
Write('???: ');

Readln(???);

Quit := ??? = EndOfData
end {with}

end; {ReadRecord}

begin {FileBuild}

{*** Open the file}

OpenWrite(FileVar);

{*** Process the file}

repeat

ReadRecord(RecordVar, Quit);

if not Quit then

Write(FileVar, Recordvar)
until Quit;

{*** Close the file}

Close(FileVar);

{ *** Print message and terminate}

Writeln(message)

end.

C-5 FILELIST

Our last file utility is a program to display the contents of a file of records. FileList asks for
a Return after each record of the file is displayed. Once again, you can easily customize this
utility by modifying the declaration of RecordType and the fields used in the WriteRecord
procedure. (The portions to customize are in italics.)

program FileList;

{*** Comments}

type

RecordType = record

{Fill in the field definitions}
end;

FileType = file of RecordType;

C-5 FILELIST 759

760

var
FileVar: FileType; {File designator}

RecordVar: RecordType; {Record variable}

procedure Pause;

{*** Comments}

begin {Pause}

Writeln;

Writeln(' '

Readln;

Page

23, '<Tap Return to continue>'};

end; {Pause}

{function Exists is inserted here}

{procedure OpenRead is inserted here}

procedure WriteRecord (Recordln: RecordType};

{*** Comments}

begin {WriteRecord}

with Recordln do
begin

Writeln;
Writeln('Fields of record: ');

Write(' ???: ');

Writeln (? ? ?) ;

end; {with}

Pause

end; {WriteRecord}

begin {FileList}

{*** Open the file}

OpenRead(FileVar);

{*** Process the file}

while not Eof(FileVar} do
begin

Read(FileVar, RecordVar);

WriteRecord(RecordVar)

end; {while}

{*** Close the file}

Close(FileVar);

{*** Print message and terminate}

Writeln;
Writeln('End of file reached.')

end.

FILE UTILITIES APPEND. C

Appendix

D The ASCII Characters

In a few places in the text, we have used features specific to ASCII, the underlying code set
that represents character data in the Macintosh. ASCII is an acronym for the longer phrase
"American Standard Code for Information Interchange." The code is ancient history com
pared with the short time line of the computer field and thus contains some codes that have
lost or changed their original meanings. When the ASCII code appeared (circa 1963), the
teletype terminal was a predominant input/output device; thus, some of the codes specific
ally relate to that artifact.

There are code sets other than ASCII that are used with computers. The major alterna
tive is the EBCDIC code set found on mainframe computers manufactured by the IBM
Corporation. The name EBCDIC is an acronym for "Extended Binary-Coded Decimal Inter
change Code."

The purpose of having standard code sets is to ease communications among various
computers and devices so that, for example, an 'A' tapped on a keyboard, processed by a
computer, communicated to another computer via a modem, processed by the second com
puter, and printed by a printer still appears as an 'A'.

There are two main ways in which the particular code set can affect Pascal programs.
The first way has to do with the particular values of various "control characters" that pro
duce effects such as beeping, backspace, top of form, and so on. The second, more subtle
way, is the inherent order of characters enforced by the particular code set used. This
collating sequence has a direct effect on programs that sort string or character data. For
example, the order of the three strings:

Elephant

e. e. cumrnings
E4

would be in ASCII:

761

E4
Elephant
e. e. curnmings

and in EBCDIC:

e. e. curnmings
Elephant
E4

The behavior of an individual character code varies not only with the code set the
computer uses but may also depend on a particular brand of printer, plotter, or modem that
is being used. Not all printers advance to the top of a new page when an ASCII form feed
character is sent (most do, however). And on the Macintosh, different character fonts have
different symbols that correspond to an ASCII code. For instance, ASCII 65 [chr(65)] is
normally the character 'A'. But in Macintosh fonts that do not use standard characters sets,
ASCII 65 can be quite different:

FONT ASCII 65.

Monaco A
Times A

Symbol A

Cairo J
Mobile • To be in complete control of the environment, the programmer may need to study

manuals for the computer, printer, modem, etc., being used. The possible combinations are
almost endless, but there is common adherence to standards (official or de facto) for several
classes of devices; for example, ASCII or EBCDIC code sets for computers, Hayes-compati
ble codes for modems, and PostScript-compatible codes for laser printers.

The following is the standard ASCII code set, giving the decimal codes, the standard
mnemonic abbreviation, and the Monaco characters (THINK's default character font for
program output). Remember, these often change for a particular font (but for most character,
rather than graphic, fonts, the characters adhere quite closely).

762 THE ASCII CHARACTERS APPEND. D

Monaco Font
Ord Standard Character Comments

0 NUL The null character

SOH

2 STX

3 ETX End of text

4 EOT End of transmission

5 ENQ

6 ACK \ Acknowledgment

7 BEL Beep (or bell)

8 BS Backspace

9 HT Tab

lO LF Linefeed

II VT Vertical tab

12 FF Form feed (top of form)

13 CR Carriage return (Return key)

14 so
15 SI

16 DLE

17 DCI

18 DC2

19 DC3

20 ·oc4

21 NAK Negative acknowledgment

22 SYN Communications synchronization

23 ETB

24 CAN Cancel

25 EM

26 SUB End of file

27 ESC Escape (Option key)

28 FS

29 GS

30 RS

31 us Unit separator

32 SPC Blank space (space bar)

33 Exclamation point

34 II (double quote)

APPEND. D THE ASCII CHARACTERS 763

Monaco Font
Ord Standard Character Comments

35 # # (pound sign)

36 $ $ Dollar sign

37 % % Percent sign

38 & 8. Ampersand

39 Single quote (apostrophe)

40 ((left parenthesis)

41) (right parenthesis)

42 * * (asterisk)

43 + + Plus sign

44 Comma

45 Hyphen (minus sign)

46 Period (decimal point)

47 I Slash (division sign)

48 0 0 Zero

49 1 One

50 2 2 Two

51 3 3 Three

52 4 4 Four

53 5 5 Five

54 6 6 Six

55 7 7 Seven

56 8 8 Eight

57 9 9 Nine

58 (colon)

59 (semicolon)

60 < < (less than)

61 = Equal sign

62 > > Greater than

63 ? ? (question mark)

64 @ @ ("at" sign)

65 A A First uppercase letter

66 B B
67 c c
68 D D
69 E E

764 THE ASCII CHARACTERS APPEND. D

Monaco Font
Ord Standard Character Comments

70 F F
71 G G
72 H H
73 I
74 J
75 K K
76 L L
77 M M
78 N N
79 0 0
80 p p
81 Q Q
82 R R
83 s s
84 T T
85 u u
86 v u
87 w 1J
88 x x
89 y y
90 z 2 Last uppercase letter

91 [Left bracket

92 \ \ (back slash)

93] (right bracket)

94 II
A

Caret

95 Underscore

96 Back quote

97 a a First lowercase letter

98 b b
99 c c
100 d d
IOI e e
102 f f
103 g g
104 h h

APPEND. D THE ASCII CHARACTERS 765

Monaco Font
Ord Standard Character Comments

105

106 j j
107 k k
108 I
109 m m
110 n n
Ill 0 0

112 p p
113 q q
114 r
115 s
116 t
117 u u
118 v v
119 w w
120 x x
121 y y
122 z z Last lowercase letter

123 { I (left brace)

124 I I (vertical bar)

125 } Right brace

126 Tilde

127 DEL Delete (rubout)

128 R
129 ~
130 c
131 ~
132 R
133 0
134 0
135 6
136 d
137 a
138 ti
139 a

766 THE ASCII CHARACTERS APPEND. D

Monaco Font
Ord Standard Character Comments

140 8
141 y
142 . e
143 e
144 " e
145 e
146

147

148 i
149 "i
150 "' n
151

.
0

152 0
153 a
154 0
155 "' 0

156 u
157 u
158 a
159 a
160 t

161 0

162 ¢

163 £
164 §

165 •
166 qi

167 B
168 ~

169 ~

170 ..
>

171

172

173 -174 IE

APPEND. D THE ASCII CHARACTERS 767

Monaco Font
Ord Standard Character Comments

175 0
176 ..
177 ±
178 ~

179 ~

180 ¥
181 µ
182 ()

183 I
184 1T

185 11'

186 I
187

g

188 Q

189 g
190 e
191 0

192 l
193

194 ...
195 ..r
196 f-
197 "'
198 .6.

199 «
200 >
201

202

203 A
204 R
205 0
206 IE
207 •
208

209

768 THE ASCII CHARACTERS APPEND. D

Ord

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

Standard
Monaco Font

Character

•• ..

+

APPEND. D THE ASCII CHARACTERS

Comments

769

,.-

Ord

245

246

247

248

249

250

251

252

253

254

255

Standard
Monaco Font

Character Comments

127 to 255 are not official ASCII codes; these are used for various characters, depend
ing upon the font. As you can see, Monaco does not use some of these ASCII values.

770 THE ASCII CHARACTERS APPEND. D

References

The following are sources where you can obtain additional details about the Macintosh
computer and the THINK Pascal for the Macintosh programming environment.

Chernicoff, Stephen. Macintosh Revealed Volume One: Unlocking the Too/Box, second edi
tion. Hayden Books, 1985.

Rose, Caroline, et. al. Inside Macintosh: Volumes I, II, and ll/, IV, and V. Addison-Wesley
Publishing Company, Inc., 1985, 1986, 1988. © Apple Computer, Inc., 1985, 1986,
1988.

Symantek Corporation. THINK Pascal User Manual.© Symantek Corporation, 1988, 1990,
1991.

771

Index

A

Accumulator. See Loops.
Actual parameters. See Parameters.
Algorithm, 2
Algorithm analysis, 667
Aliasing. See Pointers.
and (operator), 106--08
Antibugging, 258--Ql
Arguments. See Parameters.
Arrays:

algorithms:
condition-controlled, 440-43
count-controlled, 436-40

copying portions, 444-45
declaring,203-04,434-35
indexing, 456-51
initializing, 443-44
introductionto,200--03,206--07
limits for storage of, 449
out-of-bounds conditions, 204, 243
parallel, 458-59
of pointers, 616-25
processing elements of, 445-47
ofrecords,48,378-79,460-62
referencing, 435-36
searching, 441-43
shifting elements of, 445

syntax diagram, 751
testing algorithms using, 447-48, 467, 470
three or more dimensions, 544
two dimensional:

computing with, 537-38
file 1/0 with, 536-37
interactive 1/0 with, 534-36
introduction to, 531-34
used for matrices, 538-44

when to use, 432-34
ASCII character set, 395, 761-70
Assertion, 240
Assignment statement:

B

general, 37-38
numeric, 38-45
string, 45-47
syntax diagram, 743-44

Backus-Naur form (BNF), 67
Balance line algorithm, 711-12
Base case. See Recursion
Base type. See Sets
Big oh of N. See Order N notation
Big strings. See Strings
Binary file. See Files
Binary search. See Searching

773

Boolean expressions. See Expressions
Boolean operators. See Logical Operators
Boolean variables, 125-27
Bottom-up testing. See Testing
Boundary conditions, 29, 263
Boundary testing, 79
Bubble sort. See Sorting
Bugs, 27, 258

c
Calling program, 147
Caret (A operator), 595
Case structure, 112-14, 127-29

syntax diagram, 746
Case study:

no. l, 30-33
no. l continued, 76-79
no.2, 129-34
no. 3, 151-60
no. 3 continued, 176-80
no. 4, 313-23
no. 5,324-26
no.6,326-40
no. 7, 413-19
no.8,419-28
no.9,499-14
no. 10, 514-25

Character conversions (in strings). See Strings
Character strings. See Strings
Character variables, 10, 11, 45
Chr. See Functions
Class testing. See Testing
Close. See Procedures
Cofinal substring. See Strings
Coinitial substring. See Strings
Collisions (when hashing). See Hashing
Combinatorial coefficients, 630-31, 674-76
Comments, l 0
Compile-time errors. See Errors
Compiler, 4
Compiler directive, 44
Compound statement, 67
Concatenation. See Functions, 46
Conditions. See Expressions
Constants, 8
Control breaks (of a report), 690-97

example using, 690-95
multiple level, 704

774

D

programming with, 693, 696
using subprograms with, 696-0 l

Dangling else pitfall, 124-25
Dangling pointer. See Pointers
Data structures, 457. See also Arrays, Files,

Records, Sets, Types
Debugging, 258-61
Debugging aids, 30
Decision structures, 66-76, 124-29
Declarations, 8, 10-12

syntax diagrams, 740-72
Defaults, 23
DeMorgan's Laws, 108
Design (of a program), 18, 63-64

modular, 150-51
top-down, 154, 271

Diagnostic prints. See Trace prints.
Direct access storage medium, 685
Direct file. See Files
Disk name (of a file), 348
Disk:

disk drive, 684
magnetic, 684-85
optical, 684

Dispose. See Functions
div (integer division), 91-92
Division by zero pitfall, 119
Documentation, 3, 156, 428, 524-25
Driver program, 151
Dummy value. See Terminating value
Dynamic memory. See Memory

E

EBCDIC, 761-62
Editing input. See Input.
Editor, 3
Empty string. See Null string.
Enumerated type, syntax diagram, 750
Enumerated types. See Types.
Errors:

compile time, 28
logic, 28
run-time, 28

Executable file, 4
exit (statement), 725

INDEX

Expressions:
conditional, 69-70
logical, 105-08
relational, 69-70
rules for forming, 753-55

F

Factorial, 629-30, 647-48, 671
Fibonacci sequence, 671-73
Field (of a record), 372, 386
File pointer, 713
Files:

binary, 373-76, 687
error trapping with, 402-04
I/O with, 683-21
master, 708-09
random-access (direct access, relative),

713-18
examples using, 714-17

searching, 407-09
sequential, 712

merging, 705-08
updating, 708-09

syntax diagram, 751-52
text, 347-66, 685-86

adding lines to, 354-56
basic operations, 348-49
closing, 348-49
displaying, 350-53
interactive processing of, 356-58
modifying, 360-63
opening, 348-49
printing, 350-53
reading, 348-49

searching in, 358-60, 365-66
used as standard I/O, 363-64
writing, 348-49
trade-offs between binary and text, 687
transaction, 708-09
utilities. See Functions, Procedures

Flag, 244
Formal parameters. See Parameters
Functions

calling (invoking), 91
file utilities

Exists (check if file present), 756
FileBuild (build a test file), 758-59

INDEX

FileList (print a file's contents), 759-60
OpenRead (open file for input), 756-57
Open Write (open file for output), 757-

58
from the OSintf unit:

GetDateTime (time in seconds), 191
MemAvail (heap space available), 667
StackSpace (stack space available), 667

from the SANE unit:
Str2Num (string to number), 564-65
Str2Num example, 566-69

from the Toollntf unit:
TickCount, 667

standard:
Abs (absolute value), 88, 90, 100
ArcTan (arctangent), 100
Chr (character), 45
Concat (concatenate), 46, 554
Copy (substring), 554
Cos (cosine), 100
Dispose (release memory being pointed

to), 598-99
Eof (end offile?), 714
Exp (ex), 100
FilePos (current position in a file), 714
Include (add substring into string), 555
Int (integer part of real), 100
Length (of a string), 553-54
Ln (natural logarithm), 100
New (obtain storage for item pointed

to), 597-98
Odd (is number odd?), 164
Omit (string with a substring removed),

555
Pos (substring's position in a string),

554-55
Round (round), 95, 100
Sin (sine), 100
Sqr (square root), 88-89, 100
Sqrt (square root), 100
Trunc (truncate), 94-95, 100

string example, 556-59
user defined, 139-46

example, 139-42
form, 143-45
parameters with, 143-44
steps in writing, 144-46

when to use, 289-91

775

/

\

G

Global variables, 277-81
Golden se.ction, 672-73
goto (statement), 722-25
Graph traversal, 645-46
Group indicate (in a report), 697

H

Hand-tracing (a program), 28, 259
Hashing, 720-21
Heap. See Memory.
Hierarchy chart, 152-53
High-level language, 2

I

1/0. See Input/Output. See also Files
Identifiers, 8
If -then, if-then-else structure, 22, 67, 70-73

syntax diagram, 745
Implementation, 20
In (set operator). See Sets
Inactive records (of a random-access file),

717-18
Incremental testing. See Testing
Indentation (of program statements), 68
Index (of an array), 434
Infix expressions, 640
Information hiding, 585
Input device, 2
Input parameter. See Parameter
Input, validation of, 244-48
Input/Output, 13
Insertion sort, 497
Instant window, 30
Integer expressions, 42-44
Integer overflow. See Numeric overflow.
Integer-to-real conversion, 95-96
Integers, 8-9

number of divisors, 635-36, 652-53, 656-
57

ways to represent as sum, 636-38, 653-
54, 658

Interpreter, 4
IOCheck function, 402-03
IOResult, 402
Iteration, 670

776

L

label (statement), 722
Laptop computer, 2
Library, 4
Life, Conway's Game of, 549-50
LIFO (last in, first out), 603
Linear search. See Searching.
Linked lists, 601-02, 612-16
Linker, 4
Literal, 45
Local variables, 277-81
Logic errors. See Errors
Logical expression. See Expressions
Logical file name, 348
Logical operators, I 06-08
longint, 12
Loops:

accumulating, 164, 167-71
controlling, 19
counting, 164, 166
finding largest, 164, 171-75
finding smallest, 164, 175-76
for-do, 188-89, 191-92, 194, 197-99

syntax diagram, 747
initialization of, 164
inner, 235
multiple termination conditions, 237-44
nested, 234-37

examples, 238-40
off by 1/2 errors, 241-43
off by one errors, 241-43
outer, 235
planning, 213-17

examples, 220-27
repeat-until, 185-86, 188, 194-99, 217-20

syntax diagram, 747
termination of, 164
testing, 178-82
used when searching. See Searching
while-do, 186-88, 197-99, 217-20

syntax diagram, 747

M

Machinelanguage,2
Mainframe computer, 2
Master file. See Files
Matrices. See Arrays

INDEX

max.int (predefined identifier), 92-93
Measuring program performance, 666-82
MemAvail. See Functions
Memory:

dynamic,602
heap, 667
run-time stack, 667
static, 602, 667

Merge sort. See Sorting
Merging files. See Files
Microcomputer, 2
Minicomputer, 2
Mixed-mode computation, 93
mod (remainder of integer division), 91-92
Modular design. See Design
Modules. See Functions, Procedures
Multiple-way branches, 66, 108-12
Multitasking, 666
Multiuser, 666
Mutual recursion. See Recursion

N

Named type, 275
Nested decision structures, 114-17

testing, 117-18
Nested procedures. See Procedures
New. See Functions
nil (pointer constant), 598-99
Node (of a list), 602
not (operator), 106--08
Null string. See Strings
Numeric operators, 38-40
Numeric overflow, 44

0

Object file, 4
Observe window, 30
Operating system, 3
Operator precedence, numeric, 39-42
or (operator), 106--08
Ord. See Functions
Order N notation, 480
Ordinal types. See Types
Output device, 2
Output parameter. See Parameter
Output position, 83

INDEX

Output:
formatting, 82-88
of integers, 83-85
of reals, 84-85
to the printer, 86-87

Overflow (numeric). See Numeric overflow

p

Page. See Procedures
Parallel arrays. See Arrays
Parameters:

actual, 270
formal, 270
input, 276-77
introduction, 91
matching types, 273-76
output, 276-77
reference, 277
update, 276-77
value, 246, 271-73
var, 246-47, 271-73

Pascal's triangle, 630
Pascal, Blaise, 4
Pascal, versions of, 5
Path name, 351
Path testing. See Testing.
Physical file name, 348
Pointers:

advantages of, 605--06
aliasing, 607
assigning value to, 596-97
dangling,598
declaring, 595-96
disadvantages of, 606
example of use, 599--05
introduction,594-627
obtaining data for, 597-99
saving time and space with, 616-25
syntax diagram, 7 50
using appropriately, 606--07

Portability (of programs), 93
Power set. See Sets
Pred. See Functions
Predicates. See Strings
Prefix expressions, 640, 679-80
Probe. See Hashing
Problem-solving approaches, 628-29

777

I

\

Procedures:
advantages of, 59-60
introduction, 54-63
nested, 727-32
from SANE unit:

example of, 566-69
Num2Str (number to string), 563-64

standard, 57, 59
Close (close a file), 348, 714
Delete (delete substring), 559--60
Insert (insert substring), 560--61
Open (open a random-access file), 714
Page (go to top of new page), 87
Read (read an item), 714
Readln (read a line), 13, 59
Reset (prepare to read a file), 348
Rewrite (prepare to write a file), 348
Seek (go to a record of a random-access

file), 714
Write (write an item), 12, 714
Writeln (write a line), 12, 57, 84-85

syntax diagram, 744
user defined, 54-65
value parameters with, 192-93
when to use, 289-91

Processing unit, 2
Profiler, 668
Program,2

syntax diagrams, 739
Program flow structures, 18-19
Program performance. See Measuring pro-

gram performance
Programming environment, 4, 6
Programminglanguage,2
Programming style, 23
Prompt, 12

a
Quicksort. See Sorting

R

R option (in Project menu), 204
Random numbers, 190-92
Random-access files. See Files
Range Checking, 204, 401-02
Read/Write head (of a disk), 684-85
Readln. See Procedures
Real (type), 8-9

778

fractional part of, 96
inaccuracy of, 90, 93
integer part of, 96

Real expressions, 42-44
Real-to-integer conversion, 93-95
Real-to-real conversion, 96
Record number (of a random-access file), 713
Records, 165, 372-79

arrays of, 378-79
assignment with, 376
containing arrays, 462--65
files of, 373-76
files with, 404-09
ordinal types with, 404-09
as parameters, 377-78
processing, 376-77
structure, 372-73
syntax diagrams, 752-53
tag field, 726-27
variant, 725-27

Recursion,287,302-05,628-82
mutual recursion, 640-43, 660--63
problems involving, 629-43
programming, 646--66
tail recursion, 670-71
tree recursion, 671

Reference parameter. See Parameter
References, 771
Refinement (of program design), 18
Relational operators, 105
Relative file. See Files
Repeat-until loop. See Loops, 20
Reset. See Procedures
Retyping. See Types
Rewrite. See Procedures
Rightjustification,83
Run-time errors. See Errors
Run-time stack. See Memory
Running a program, 4

s
SANE. See Units, Functions, Procedures
Scope (of variables), 277-81, 729
Searching, 244. See also Arrays

binary search, 481-83
linear search, 478-80
loops used with, 244

Selection sort. See Sorting
Semantics, 110

INDEX

Semicolon, use of, 23, 73
Sentinel. See Tenninating value
Sequential access storage medium, 684
Sets, 107, 379-83

assignment with, 380
base type, 379
declaring,379-80,382
difference of, 380
empty, 379
example, 383-85
UO of, 381-82
inclusion (subsets), 381
intersection of, 380
membership (in), 379
power set, 638-39, 654, 657-59
syntax diagram, 751
union of, 380
used as parameters, 382-83

Sieve of Eratosthenes, 529
Software engineering, 666
Sorting:

bubble sort, 497
comparing various methods, 677-79
merge sort, 632-33, 649, 651-52, 677-79
quicksort, 487-92, 677-79

defined in a unit, 733-36
used from a unit, 736-37
using nested procedures, 730-32

selection sort, 484-87, 648-50, 677-79
stable, 649

Specification, 17
Stack,475-76,602--03
StackSpace. See Functions
Statements, 8
Static use of memory. See Memory
StatPack (program performance package),

667-70
Step into/Step over, 30
Storage, 2
Strings, 10-11, 45-46, 551-93. See also

Functions, Procedures
accessing individual characters, 552
big strings (greater than 255 characters),

583-88
testing, 588, 590

cofinal substring, 648
coinitial substring, 649
comparison of, 552-53
null,46
number of length N from M letters, 635,

649, 653-54

INDEX

reversing, 631-33, 649, 676-77
routines:

BigConcat (concatenate two big
strings), 587-88

BigCopy (get substring of big string),
585-88

BigLength (obtain length of big string),
585-86

BigReadln (read in big string), 585-86
BigWriteln (write out big string), 584-

85
LowCase (convert characters to lower

case), 582-84
LowtoUp (convert characters to upper

case), 581-83
Pad (pad string with spaces to given

size), 578-79
Replace (replace substring with

another), 579-81
RunOf (make string of repeated charac

ter), 577-78
Trim (remove trailing spaces), 576-77

subsequences and substrings of (predi
cates), 633-35, 649, 653-54

syntax diagram, 750
Stub (for subprogram), 151
Subprograms. See also Functions, Procedures

nested invocation, 287-89
planning, 291-92

examples, 292-302
reasons to use, 270-71

Subrange. See Types
Subscript (of an array), 434
Succ. See Functions
Supercomputer, 2
Syntax diagrams, 67, 738-55
Syntax rules, 18

T

Tag field. See Record
Tail recursion. See Recursion
Tape (magnetic), 684
Tenninating value, 19, 706
Testing, 28-30, 261-67

bottom-up, 151, 266-67
class, 262
error-guessing, 663
incremental, 150-51
path, 264
stress testing, 663

779

Testing (continued)
top-down, 151, 266-67
unit, 155

Text files. See Files
Text window, 26, 60, 63
THINK Pascal, running THINK programs, 5
TickCount. See Functions
Top of form, 83
Top-down design. See Design
Top-down testing. See Testing
Trace prints, 259-61
Tracks (of a disk), 684-85
Trailer value. See Terminating value
Transaction file. See Files
Translator, 4
Tree recursion. See Recursion
Truncation of strings. See Strings
Two dimensional arrays. See Arrays
Type checking, 4~2
Types:

u

ordinal, 107
retyping, 397
scalar, 393-98

Chr function with, 394
Ord function with, 393-97
Pred function with, 394-95, 397
Succ function with, 394-97

subrange,399-400
syntax diagrams, 749-53
user-defined, 393-410
user-defined ordinal, 396-99

as indices of arrays, 398-99
as indices of for loops, 398
assignment with, 396
comparisons with, 396-97
1/0 of, 397-98

Unit testing. See Testing
Units, 561, 563, 733-37

OSlntf, 667
SANE, 561, 563

780

syntax diagrams, 748
Toollntf, 667
user-defined, 732-37

compiling, 736-37
header, 733
implementation part, 733
interface part, 733
private part, 732-33
public part, 732-33
using, 736-37

Update parameter. See Parameter
Utility, 4

v
V option (of Project menu). See Numeric

overflow
Validating input. See Input
Value parameter. See Parameters
Var parameter. See Parameters
Variable list, 19
Variables, 8
Variant records. See Records

w
While-do loop. See Loops
Wirth, Niklaus, 4
With statement, syntax diagram, 747-48
Write. See Procedures
Writeln. See Procedures
{$R+}, {$R-}. See Range checking
{$V+}, {$V-}. See Numeric overflow

A See Caret
*(multiplication), 39-41
+(addition), 39-41
- (subtraction), 39-41
- (unary minus), 39-41
I (real division), 39-43

@ (pointer operator), 597

INDEX

STRUCTURED
PROGRAMMING
USING THINK™ PASCAL
ON THE MACINTOSH
J. Winston Crawley· William G. McArthur·
Norman M. Jacobson

Intended as an introduction to computer problem-solving using structured
programming methodologies, this volume implements the THINK Pascal
language as the vehicle for discussion and illustration of text material.

Throughout, problems and solutions are approached systematically using
well-known techniques. The authors use numerous examples and thorough
explanations, and emphasize program design. In addition, most sections
include Defensive Programming Tips, and Crawley, McArthur, and Jacobson
offer suggestions throughout the text on how to properly test the program.

Also available from Prentice Hall:

• Structuring Data with Pascal: A Practical Introduction to Abstract Data
Types, by William G. McArthur and J. Winston Crawley

• Structuring Data with Turbo Pascal: A Practical Introduction to Abstract
Data Types, by William G. McArthur and J. Winston Crawley

• Structured Approach to FORTRAN, Second Edition, by William
G. McArthur and J. Winston Crawley

ISBN D-13-853037-8

PRENTICE HALL
Englewood Cliffs, NJ 07632

9 0 0 0 O>

