User’s
Guide

DEVELOPMENT SYSTEM FOR
POWER MACINTOSH

VERSION 8

POWER MACINTOSH/
" MACINTOSH

Symantec C++
for Power Macintosh ,

User’s Guide and
Reference

*

Documentation

Development

Quality Assurance

Technical Support

Project Management

Product Management

Credits

Elizabeth Collins, John Minniti, Jeanne Munson, Stephen Raphel,
Susan Rona, and Cambridge Publications

David Bustin, Thomas Cardozo, Thomas Emerson, Bob Foster,
Udi Kalekin, Paul Kaplan, Doug Knowles, Jim Laskey, John Micco,
Pat Nelson, Mark Romano, Phil Shapiro, and Rob Vaterlaus

Celso Barriga, Colen Garoutte-Carson, Constantine Hantzopoulos,
Kevin Irlen, Yuen Li, and Christopher Prinos

Glenn Austin, Mark Baldwin, Craig Conner, Colen Garoutte-Carson,
Rick Hartmann, Michael Hopkins, Steve Howard, Scott Morison, and
Kevin Quah

Constantine Hantzopoulos, Doug Knowles, and David Neal
David Allcott

Copyright © 1989, 1993, 1994, 1995 Symantec Corporation.
All Rights Reserved. Printed in U.S.A.

Symantec Corporation Symantec C++, THINK C, THINK Reference, and

10201 Torre Avenue THINK Pascal are trademarks of Symantec

Cupertino, CA 95014 Corporation. Other brands and their products

408/253-9600 are trademarks of their respective holders and
should be noted as such.

The User’s Guide and Reference is copyrighted and all rights are reserved.
Information in this document is subject to change without notice and does
not represent a commitment on the part of Symantec Corporation. The
software described in this document is furnished under a license agreement.
The document may not, in whole or in part, be copied, photocopied,
reproduced, translated, or reduced to any electronic medium or machine-
readable form without prior consent, in writing, from Symantec Corporation.

SYMANTEC CORPORATION MAKES NO WARRANTIES, EITHER EXPRESS
OR IMPLIED, REGARDING THE ENCLOSED COMPUTER SOFTWARE
PACKAGE, ITS MERCHANTABILITY, OR ITS FITNESS FOR ANY
PARTICULAR PURPOSE. THE EXCLUSION OF IMPLIED WARRANTIES IS
NOT PERMITTED BY SOME STATES. THE ABOVE EXCLUSION MAY NOT
APPLY TO YOU. THIS WARRANTY PROVIDES YOU WITH SPECIFIC LEGAL
RIGHTS. THERE MAY BE OTHER RIGHTS THAT YOU MAY HAVE WHICH
VARY FROM STATE TO STATE.

SYMANTEC’S LICENSOR(S) MAKES NO WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE,

*

REGARDING THE SOFTWARE. SYMANTEC’S LICENSOR(S) DOES NOT
WARRANT, GUARANTEE OR MAKE ANY REPRESENTATIONS REGARDING
THE USE OR THE RESULTS OF THE USE OF THE SOFTWARE IN TERMS OF
ITS CORRECTNESS, ACCURACY, RELIABILITY, CURRENTNESS OR
OTHERWISE. THE ENTIRE RISK AS TO THE RESULTS AND PERFORMANCE
OF THE SOFTWARE IS ASSUMED BY YOU. THE EXCLUSION OF IMPLIED
WARRANTIES IS NOT PERMITTED BY SOME JURISDICTIONS. THE ABOVE
EXCLUSION MAY NOT APPLY TO YOU.

IN NO EVENT WILL SYMANTEC’S LICENSOR(S), AND THEIR DIRECTORS,
OFFICERS, EMPLOYEES OR AGENTS (COLLECTIVELY SYMANTEC'S
LICENSOR) BE LIABLE TO YOU FOR ANY CONSEQUENTIAL, INCIDENTAL
OR INDIRECT DAMAGES (INCLUDING DAMAGES FOR LOSS OF BUSINESS
PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION,
AND THE LIKE) ARISING OUT OF THE USE OR INABILITY TO USE THE
SOFTWARE EVEN IF SYMANTEC’S LICENSOR HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME JURISDICTIONS DO
NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY FOR
CONSEQUENTIAL OR INCIDENTAL DAMAGES, THE ABOVE LIMITATIONS
MAY NOT APPLY TO YOU.

SYMANTEC'S Licensor’s liability to you for actual damages from any cause
whatsoever, and regardless of the form of the action (whether in contract,
tort (including negligence), product liability or otherwise), will be limited to
$50.

Contents .

Part One: Welcome to Symantec C++ for Power Macintosh

—

1
1
—

1 Overview

Product Highlights.

PowerPC Compilers .

Project Management.

Project Window .

Class Browser .

Debugger .

New Editing Features

New Search Options

Scripting Support.

Worksheet Window .

Visual Architect (VA)

Online Documentation . .
Prerequisites for Using Symantec C++ .
About This Manual

Conventions in the User's Guide and Reference

Parts One through Three .

Parts Four through Six .

Electronic Supplemental Informatlon (ESI)
Installing Symantec C++ . o

Read the license agreement .

Send in the registration card .

Read the ReadMe Files . .

Installing All of Symantec C++
What To Do Next . .

Steps for the user new to Power Macintosh

development .

Steps for the user new to Symantec Ct .

Steps for the user new to the Macintosh .

] 1 1

R R RS S e e e e

'

= b
= e)

ks
=
W W

Symantec C++ User’s Guide and Reference v

Contents

N
L

2 Introducing Symantec C++ 8.0 .

Programming with Symantec C++.
Starting a project .
Editing application code
Building an application .
Viewing classes .
Testing an application . .
Constructing a user interface with Visual Architect.
Using additional tools . .

The THINK Class Library and Visual Architect
Overview of the THINK Class Library . .
Creating a THINK Class Library apphcatlon .
Overview of Visual Architect . .
Working with Visual Architect

[l *Re N BN NN XAV, I NN ONN S

[l\’..
—_

Part Two: Creating an Application

w
4

3 Starting a Project.

What Is a Project? .
Project contents .
Organizing files and folders

Models and Projects
Choosing the project model
Creating a new project . .
Adding and removing project entries .
Creating groups . R
Opening project entries. .
Working with multiple projects .
Project-specific commands.
Closing a project .

&»wuanl»ww
[© NV, RV, BN S NN RV, RV, ENNY O

o S G g Y

P
—

4 Editing a Project’s Code

Opening Files and Viewing Application Code
Viewing headers or function definitions .
Navigating in a text file .

Entering and Editing Text .

Adding and deleting text .
Scrolling and automatic 1ndent1ng .
Syntax highlighting . . e
Delimiter matching 410

Searching and Replacing Text 4-11
Finding and replacing strings 4-11
Searching through multiple files. 414
Using Grep to search for patterns 4-16

Saving Changes. 417

CompilingaFile 417

P b
OO\ W N =

-IA
—_
o

vi Symantec C++ User’s Guide and Reference

Contents

*

&
L

5 Viewing and Editing Classes .
Before Browsing .o
Opening the Class Browser . .
Navigating in the Class Browser Window .
Viewing the Class Hierarchy

List-based viewing

Hierarchical viewing.
Editing Class Information

Editing a class definition

\I\\II\J\\II\II\\I\\J\\I\\I\
RN AAANDWIN =

Editing a member function -9
Editing a data member . 5-10

6 Using the Debugger . 6-1
Updating the Project . . . 6-1
Starting a Debugging Session . . 6-3
Trouble-shooting . . 6-3
The Debugger Windows. . . 6-4
The Main debugger window . . 65
Debug Browser windows . 6-10
Stepping Through Code . 6-11
Setting Breakpoints 6-14
Simple breakpoints . 6-15
Temporary breakpoints. . R S b
Examining the Call Chain 616
Formatting 619
Analyzing Variables . . . e A |
Changing the values of variables 624
Evaluating expressions 06-24
Ending a Debugging Session 625
Preferences and Options. 625
7 Creating a User Interface with VA 7-1
Introduction . . .o . 7-1
When to use Visual Architect . . 7-2
Files produced. . .72
Launching Visual Architect . . 7-2
Constructing Views . 7-4
Types of views . 74
Creating a view . 76
Changing the attributes of 2 view78
Creating Panes . . . R A) |
Adding a panetoaview 7-12
Selecting a pane . . . Y S b
Deleting a pane fromaview. 7-15
Changing pane attributes 715
Trying out a view . . . A £

Symantec C++ User’s Guide and Reference vii

viii

Contents

Building Menus .
Creating a menu .
Deleting 2 menu .
Adding a menu to the menu bar.
Removing a menu from the menu bar .
Adding and removing menu items .
Setting a menu item’s command key
Creating a submenu . .

Attaching Commands .
The role of commands .
Defining 2 new command .

Defining Classes
Creating a new class.
Defining data members .
Changing classes .

Adding Balloon Help .

Generating Source Code . .
Visual Architect and the Symantec PrO]ect Manager
Source files created by Visual Architect
Macro files .
Generating source code and updaung a pro;ect
Customizing Visual Architect source files .

Advanced Topics

Creating Options Sets .
Defining a2 new options set
Modifying options sets .

Modifying the default options ‘set for empty prolects

Using Precompiled Headers. .
Checking extensions and compller Op[lOl’lS .
Precompiling a header file. .

Scripting the Project Manager .

Recording scripts .
Storing scripts .
Running scripts automatlcally

SourceServer . o
Key terms
Setting up a SourceServer database .
Checking files in and out .

Accessing revision information

Using ToolServer
Setting up ToolServer .

Using MPW tools with ToolServer .

Part Three: Learning by Example (Tutorials)

9 Tutorial Introduction

What You Will Learn .
Hello World .
MiniEdit

Symantec C++ User’s Guide and Reference

OIJODCDOOCIDCX)mOOGD

PPBPPPPPPPP
DD DN = e e e o e

NP R OOOVONAANAHRWINININRFL L OOVNO X

RNWWOWWIWWINDNNNNNNNNNNNDDNDN S ==

o)
1 .l_‘ I_\

] 1]]
oot (R N SRR NV RV U

9-1

. 9-2
.92

Contents

10

11

12

Object Bullseye .
Vector . .
Beeper.

Process Momtor

Tutorial: Hello World

Before You Begin . . .

Hello World C Appllcatlon .
Creating a Project.
Creating a source file

Compiling the source file and deahng with errors .

Adding the libraries . .

Building and running the apphcatlon .

Creating the application .o
Hello World C++ Application .

Creating a project.

Adding a source file .

Adding libraries

Updating the project.

Tutorial: MiniEdit.

Creating the Project

Adding the Source Files . .
Compiling and Running the Pro]ect .
Fixing a Bug. Lo
Running the Project Agaln .
Building the Application .

Using a Resource File.

Finishing Up.

Tutorial: Object Bullseye .

Before You Begin . .

Preparing to Use the Debugger

Starting a Debugging Session .
Control palette. .
Main debugging window .
Data window .

Controlling Execution Flow . .
Stepping through statements .
Stepping into functions.
Stepping out of functions .
Tracing every statement
Setting a breakpoint .

Letting the program run
Stopping the program .

Viewing Other Files .

Examining and Setting Variables .
Looking at the Data window .
Examining variables .
Changing the value of a variable

10-1
10-1
10-1
10-2
10-5
10-8

10-10

. 10-13

10-14
10-15

. 10-16

10-16
10-17

1017

11-1
11-1
11-4
11-6
11-8

. 11-12
. 11-13

11-15

. 11-15

12-1
12-1
12-1
12-3
12-4
12-5
12-5
12-5
12-6
12-6
12-8
12-9

12-10

. 12-13

12-14
12-14

1216

12-16
12-17
12-19

Symantec C++ User’s Guide and Reference

*

ix

Contents

13

14

15

Examining structs, classes, and arrays

Expressions and Contexts .
How and when the source Debugger
evaluates expressions
Display formats

Quitting the Debugger

Tutorial: Vector

About the Vector Project .

Debugging Inline Functions. .

Using and Debugging Templates .
Instantiating templates . .
Templates and debugging information.
Debugging simple templates .

Using template instantiation files.
Debugging with instantiation files .

What to Do Next
Create wrapping subscrlpts
Add new methods to myDate.

Write a new sort function .

Create a new class and sort it.
Change the vecMax() function into a
member function .

Create a template function.

Tutorial: Beeper .

About the Tutorial .

Getting Started .

Designing the User Interface
Starting Visual Architect.
Creating a view

Adding pane elements to the dlalog box .
Creating a command to execute a function .

Associating a command with a button .
Setting the default command .

Adding a push button to the Main view . .
Creating the command to call up the dlalog box

Previewing your view . .
Generating Code and Updating the Pro;ect
Modifying the Generated Code. .o
Updating and Running the Application .

Tutorial: Process Monitor .

About the Application.

Getting Started . . .
Looking at the prolect .
Opening the project and launchmg VA
Setting application information .

Symantec C++ User’s Guide and Reference

Contents

Part Four: Symantec Project Manager Reference

16

17

18

Building the User Interface .

Creating and previewing the main window .

Drawing rectangles .
Creating static text items
Creating push buttons .
Creating check boxes
Creating a subview .
Creating a scroll table
Setting the table command
Creating a derived class
Creating a pop-up menu

Trying out the completed main window .

Creating the alternative main window .
Creating the New... Dialog .
Adding OK and Cancel Buttons .
Editing menus . . .

Generating Code for Your Apphcatlon .
Customizing code .
Running the application

The File Menu.

Commands in the File Menu

Opening projects, Editor wmdows and files.

Saving files and closing windows
Printing . .
Modifying Project Models .
Creating Custom Project Models .

The Project Window

Introducing the Project Window .

Pop-up menus on the toolbar

Project window column headings
Selecting Project Entries . .o
Drag-and-Drop Operations .

Adding project entries from the Finder

Removing project entries .

Rearranging project entries

Copying project entries.

The Project Menu

Commands in the Project Menu
Switching projects

Adding and removing files from a pI‘O]eCt

Working with the Debugger .

Setting project-level options .
Project Options Page .

Build and Run settings .

15-5

15-5

15-8

15-9
15-10
15-21
15-23
15-25
15-27
15-28
15-30
15-34
15-35
15-38
15-40
15-41
15-43
15-45
15-46

16-1
16-1
16-2
16-7
16-9
16-9

16-10

17-1
17-1
17-2
17-3
17-4
17-5
17-5
17-5
17-5
17-6

18-1
18-1
18-2
18-2
18-3
18-4
18-9
18-9

Symantec C++ User’s Guide and Reference

*

Xi

Contents

19

20

21

22

Project Type Page . .
Application subpage .
Shared Library subpage .
Static Library subpage

Linker Page .

Incremental Linker subpage
PPCLink & MakePEF subpage.

Extensions Mapping Page

Project Window Page .
Typeface options .

Show options .

PowerPC C Options Page

PowerPC C++ Options Page

Symantec Rez Options Page.

The Editor Window .

Introducing the Editor Window
Window features . .
Text features

The Edit Menu

Commands in the Edit Menu
Editing and manipulating text.

Project Manager Page . .

Editor Options Pages . . .
Editor Options General Settmgs page .
Editor Options Syntax Formatting page
Editor Options Marker Pop-up page

The Search Menu

Commands in the Search Menu
Finding and replacing text strings .
Locating information in the THINK Reference
Going to lines or markers . .
Locating compiler errors within a source file.
Searching for a Pattern (Grep)
Patterns . .o
Replacing with Grep
Grep examples

The Class Browser Window

Components of the Window
Window icons and size bars .
Panes of the window .
Working in the Class Browser Window .
Configuring the window
Navigating the panes

xii Symantec C++ User’s Guide and Reference

. 18-10
. 18-10
. 18-14
. 18-15
. 1817
. 18-17
. 18-18
. 18-19
. 18-21
. 1821
. 18-21
. 18-23
. 18-24
. 18-24

19-1

19-1
19-3

. 1913

20-1
20-1
20-2
20-5
20-6
20-7
20-9

. 20-11

21-1
21-1
21-2
21-8
219

. 21-11
. 21-12
. 21-12
. 21-15
. 21-16

22-1
22-2
22-2
22-3
22-5
22-5
22-6

Contents

4

23 TheBuildMenu 23-1
Commands in the Build Menu. 231
Analyzingcode 232
Compiling code . . .o 233

Bringing your project up—to-date 236

Building the target 238

Build Errors Window 239

24 The Debugger Windows 24-1
The Main Debugging Window. 242
Code pane . . . e e ... 243

Stack Crawl pane. 244

Debug Browser Windows 244
Datapane 246

Data Window 247
Control Palette 247
Debugger Log Window 249

25 The Debugger Menus 251
File Menu. . . s S |

Edit Menu. 253
DebugMenu. 256
Source Menu. 257
Data Menu . . 3
Data fonnattmg commands 25-9
Windows Menu. 2512

26 The WindowsMenu. 26-1
Commands in the Windows Menu 26-1
Arranging windows 262
Opening windows 264

Part Five: TCL and VA Reference

27 TCL and VA: Basic Concepts e e 274
THINK Class Library . . . A |
TCL structures . . Lo 271

A sample interaction ‘between TCL structures . . . 27-7
Creating a THINK Class Library apphcatlon S . 279
Visual Architect. 2710
The role of Visual Architect 27-10
Starting Visual Architect 27-11
Creating and modifying classes 27-12
Working with Visual Architect views 27-12
Trying out an application interface . . . 27-18

Modifying the code generated by Visual Architect. . 27-18

Symantec C++ User’s Guide and Reference xiii

Contents

28 Programming with the THINK Class lerary

29

30

Introduction . .

Naming Conventions . .

Writing an Application with the TCL .
Creating the application class.
Creating the document class .
Creating the pane classes .

Working with Panes
Windows and panes.

Coordinate systems .
Drawing in a pane
Properties of panes .
Panoramas .
Scroll panes.
Cursor tracking
Working with Menus .
Using MENU resources .
Building menus on the fly . .
Enabling and checking menu items.

Handling Low-Memory Situations .

Undoing and Mouse Tracking .
Undoing . .

Mouse tracking .

Debugging and the THINK Class L1brary
Debugging aids in Symantec C++

THINK Class lerary Resources
Alerts .

Controls . .

Error message strmgs

Menus .o

Menu bars .

Small icon .

Strings and string lists

Window template. . .
Segmentation and the THINK Class L1brary
Modifying the THINK Class Library .

Visual Architect File Menu

Commands in the File Menu
Accessing files .
Closing and saving files.
Printing . .
Setting preferences

Visual Architect Edit Menu

Commands in the Edit Menu
Editing and manipulating code
Editing application macros.
Adding Balloon Help
Editing classes, commands, and menus

Symantec C++ User’s Guide and Reference

Contents

31

32

33

Classes Dialog Box -

Data Members Dialog Box .

Commands Dialog Box .

Menu Bar Dialog Box.

Menu Items Dialog Box .

Menus Dialog Box. .

Command Handling in Generated Code
AppCommands.h .
Chain of command . .
Commands from tear-off menus .
Commands in modal dialog boxes .

Visual Architect View Menu .

Commands in the View Menu .
Examining and editing attributes of views
Creating, opening, and deleting views.
Setting default commands .

Previewing views.

Types of View Info Dialog Boxes.

Dialog Info dialog box . .
Main Window Info dialog box .
Floating Window Info dialog box .
Subview Info dxalog box
View Types . .
Dialog
Floating Window .
Main Window .
Modal Dialog .
New Dialog.
Splash Screen .
Subview .
Tear-off Menu .
Window .

Visual Architect Pane Menu

Commands in the Pane Menu .
Editing data members in a class hlerarchy
Selecting classes for a pane .
Setting display options for a pane . .
Arranging panes in the View Edit window
Grouping radio button panes. .
Changing the identifiers for panes .

Visual Architect Options Menu .

Commands in the Options Menu .
Positioning and selecting panes .
Displaying pane and button information .

30-8
. 30-10
. 30-13
. 30-18
. 30-20
. 30-23
. 30-25
. 30-25
. 30-25
. 30-25
. 30-26

. 3141
31-1
31-2
31-3
31-5
31-6
31-7

. 317

. 31-10

. 31-11

. 31-13

. 31-14

. 31-14

. 31-14

. 31-15

. 31-15

. 31-15

. 31-15

. 31-16

. 31-16

. 31-16

. 3241
32-1
32-2
32-5
32-6
32-7
32-8
32-8

. 3341
33-1
33-2
33-3

Symantec C++ User’s Guide and Reference

L 4

XV

Contents

34 Visual Architect Tools Menu .

35

Introducing the Tools Menu.
Tool descriptions .
Creating panes. .
Using the Chpboard
Using arrow keys to adjust panes

VA: Symantec Project Manager Menu .

Commands in the Symantec Project Manager Menu .

Generating code . .
Updating projects and runnmg apphcatlons .
Code-Generating Process .o
Preserving code during regeneratlon
Structure of generated code
Files generated for an application
Inside Macro Files .
Visual Architect macro language
Statement macros . .o
Expression macros
Operators
Constants .
Predefined variables .
Record types

Part Six: Appendixes

A

B

Linker Error Messages .
Debugger Error Messages .
Index

Symantec Service and Support Solutions

xvi Symantec C++ User’s Guide and Reference

34-1
34-1
34-2
34-5
34-5
34-5

35-1
35-1
35-3
35-5
35-5
35-6
35-6
35-7
35-8
35-8
35-9

. 3513
. 35-14
. 35-14
. 35-14
. 35-16

A-1

B-1

Symantec C++

Welcome to
Symantec C++ for
Power Macintosh

Part One
1 Overview

2 Introducing
Symantec C++ 8.0

Symantec C++ User’s Guide and Reference

Symantec C++ User’s Guide and Reference

Overview .
1

S ymantec C++ is a complete development environment for creating
both C and C++ applications on Power Macintosh computers. This
chapter describes the features of Symantec’s C++ version 8.0. It
covers the requirements for using Symantec C++, provides
suggestions about using this book, and describes the typographic
conventions used throughout the text.

Product Highlights

This section highlights the product’s existing features and its more
recent enhancements over the last major release.

PowerPC Compilers

Symantec’s C++ version 8.0 includes PowerPC compilers for both C
and C++, which are 100% native on the PowerPC. These compilers
support the same kind of language features as the previous 68000-
based C and C++ compilers.

In version 8.0, the build error messages are persistent, that is, the
Build Errors window remains on the screen when a new compile or
search is started. Error messages for a project entry remain in the
window until deleted by the user, or until the project entry is
recompiled.

Project Management
The Symantec C++ for Power Macintosh provides a host of advanced
project management features. The highlights are provided below.

Project models

Project models are templates from which new projects are created.
They define the libraries, resources, and source code files that the
project contains and the project’s option settings. In addition to
letting you create your own project models, Symantec C++ provides
several predefined project models. Once created, any project file can

Symantec C++ User’s Guide and Reference 1-1

1-2

1

Overview

be edited by adding or removing files. Unlike previous versions,
project models can contain arbitrarily nested folders.

Precompiled headers

Symantec C++ lets you precompile header (# include) files and
track their dependencies. If files that contribute to the precompiled
header are modified, the precompiled header file is marked as
requiring a rebuild. Precompiled header files load significantly faster
than text header files.

Subgroups

Version 8.0 of the Symantec Project Manager now allows project
models to contain arbitrarily nested groups. This feature helps you
better structure your projects.

Multiple open projects
Version 8.0 supports multiple open projects. Each open project can
be run or compiled.

Option handling

The Project Manager provides access to all project- and translator-
specific options through a single menu command. The project
options include:

¢ Project. These options control general project behavior,
and build and run settings.

¢ Project type. These options control project type
(application, shared library, static library) and specify the
target name.

e Linker. These options control which linker to use when
building, and the various linker options.

e Compiler. These options control specific behaviors of the
C and C++ compilers.

Named sets of project and translator options

The Symantec Project Manager allows you to define multiple options
sets for each project. These sets can be used to group together
various option configurations. For example, you can define options
sets for the different stages of your project’s development.

Symantec C++ User’s Guide and Reference

Product Highlights

*

Project window

The Project window displays information about the project’s
organization, status, information, and so on. Now there is more
flexible control of this display. For example, file display can be
organized hierarchically in groups. Other highlights are described
below.

Drag and drop

The Symantec Project Manager fully supports drag and drop. Files
may be added to and removed from a project by dragging files and
folders to and from the Finder and other projects. For example, you
can add an entire hierarchy of sources to a project, while preserving
the Finder’s organization of the files.

New display options

These options control the display in the Project window. This display
includes debugging and make status, immediate group owner of
source file, source translator, type of each entry (for example, source
file, precompiled header source, group), full source path, last known
modification date, and code and data size.

Class Browser

Symantec C++ 8.0 provides a Class Browser and Editor designed for
object-oriented program development. These tools facilitate the
design and maintenance of C++ projects by allowing you to directly
view the project’s class hierarchy and data and function members.
The ability to browse in and edit pre-existing class hierarchies is
especially useful when attempting to understand the structure of
unfamiliar source code. The Class Browser has the following
features:

e Alphabetic or hierarchical display of classes
* Display of data members and member functions
¢ Display of source code for class and function definitions

e Full integration with the Symantec C++ for Power
Macintosh Editor

Symantec C++ User’s Guide and Reference 1-3

1-4

1

Overview

Debugger

Symantec C++ 8.0 includes a source-level debugger that can be used
to debug applications or shared libraries that are built using the
Symantec Project Manager. The debugger uses browser-style
windows to display information about the process currently being
debugged. One new feature is a Stack Crawl pane that contains a list
of all stack frames for the program counter location in your code.

New editing features
The Editor includes the following enhanced capabilities:

¢ Split window: Editor windows can be split to view
different parts of a source file in separate panes.

e Pop-up procedure list: This easily accessible listing of
user-defined symbols and markers from C/C++ sources,
including functions, class definitions, #pragma marks,
enun declarations, and typedef definitions. Selecting
an item in the pop-up menu takes you to the marker or
declaration of the symbol.

e Syntax highlighting: The Editor provides the ability to
configure color and style highlighting of language
elements. It supports syntax highlighting in C, C++,
AppleScript, MPW Shell Script, and Pascal.

e C/C++ mode: Automatic indenting is based on user
preferences.

Delimiter matching

The Editor supports delimiter matching. If you double-click on any
delimiter (parentheses, brackets, or braces), it finds a matching
delimiter. Similarly, if you double-click on a string constant, or
comment delimiter, the Editor finds the next instance of that
delimiter. :

Symantec C++ User’s Guide and Reference

Product Highlights

¢

New search options

The Symantec C++ Editor provides powerful multi-file search
support, including the ability to:

Search the front window or all open windows
Search selected or all files in the current project
Search within a current selection

Batch and incremental search

Search headers included in the precompiled header

Scripting support

The Symantec Project Manager is fully scriptable and recordable
under Apple’s Open Scripting Architecture (OSA). Scripts can be
specified on either an application-wide or project-specific level and
can be executed by selecting a single item from the Scripts menu.

Worksheet window

The Symantec Project Manager provides a generalized Worksheet
window that permits communication with ToolServer and
SourceServer. This communication allows you to use Macintosh
Programmer’s Workshop (MPW) tools and Projector services.

Visual Architect (VA)

Visual Architect, an improved version of Symantec’s visual interface
development tool, runs native on the PowerPC.

Online documentation

THINK Reference provides on-line hypertext reference for Toolbox
routines, language usage, and the THINK Class Library (TCL). You
can look up specific information in THINK Reference from within the
Symantec Project Manager.

Symantec C++ 8.0 includes the software for Symantec C++ 7.0.5. The
documentation for Symantec C++ 7.0 is included on the CD-ROM.

Symantec C++ User’s Guide and Reference 1-5

1 Overview

Prerequisites for Using Symantec C++

This book assumes that you know, or are learning how to program
in, C or C++. You should also be familiar with the Macintosh and its
operating system. If you are planning to write Macintosh
applications, you should be familiar with the Macintosh Toolbox as
described in Inside Macintosh.

About This Manual

This manual contains six parts: Welcome to Symantec C++ for Power
Macintosh, Creating an Application, Learning by Example (Tutorials),
Symantec Project Manager Reference, TCL and VA Reference, and
Appendixes. A chapter-by-chapter summary is provided below.

Conventions in the User's Guide and Reference
This book uses the following typographic conventions:

e Names of menus and commands are in boldface.

¢ Names of files, code fragments, resource names, function
names, variables, and information you type appear in
typewriter face. Metanames appear in #talic.

e All numbers are decimal numbers. Hexadecimal numbers
are written in C notation, that is, 0x3EFA, instead of in
Pascal notation ($3EFA).

¢ Keys you press at the same time are shown as follows:
Shift+F2, Option+F, or Ctrl+F3. Please note that even
though the letter keys are listed in uppercase, do not
hold down the Shift key when executing these key
combinations unless the Shift key is listed as part of the
combination.

Parts One through Three

Parts One through Three describe the basic process of programming
in the Symantec C++ environment.

1-6 Symantec C++ User’s Guide and Reference

About This Manual

*

Part One: Welcome to Symantec C++ for Power Macintosh
Part One provides an introduction to the book and product.

Chapter
1. Overview

2. Introducing
Symantec C++ 8.0

Description
This chapter.

Describes the basic concepts for
programming in the Symantec C++
environment. It describes the role
each tool plays in the process of
writing an application and gives a
preview of the steps involved in
creating a typical THINK Class
Library (TCL) application using
Visual Architect (VA).

Part Two: Creating an Application in Symantec C++

Part Two takes the user through the basic process of creating an
application with Symantec C++ and provides an overview of the
THINK Class Library and Visual Architect.

Chapter

3. Starting a Project

4. Editing a Project’s
Code

5. Viewing and

Editing Classes

6. Using the
Debugger

Description

Explains the fundamentals of working
with the Symantec Project Manager. It
describes the steps involved in creating
projects and performing basic
manipulations on project entries.

Covers the details of editing and
compiling application code.

Describes a tool for viewing and editing a
project’s class hierarchy, data members,
and function members.

Describes the process of compiling,
linking, and debugging an application
using the Symantec Project Manager and
the symbolic debugger.

Symantec C++ User’s Guide and Reference 1-7

1-8

1

Overview

Chapter

7. Creating a User
Interface with VA

8. Advanced Topics

Description

Describes the basic steps in creating an
application using Visual Architect.

Describes other development tools and
options including options sets,
precompiled headers, scripting, source
code control (SourceServer), and
ToolServer.

Part Three: Learning by Example (Tutorials)
Part Three provides a set of tutorials which, when completed,
demonstrate the steps necessary to produce a single application.

Chapter

9. Tutorial
Introduction

10. Tutorial: Hello
World

12. Tutorial: MiniEdit

13. Tutorial: Object
Bullseye
14. Tutorial: Vector

15. Tutorial: Beeper

16. Tutorial: Process
Monitor

Symantec C++ User’s Guide and Reference

Description

Describes learning opportunities in the
tutorials.

Shows how to build a simple application
in Symantec C++ that uses both the
ANSI C and IOStreams libraries.

Shows how to use more of the advanced
features of the Symantec Project
Manager.

Shows how to use the Symantec Project
Manager debugger.

Shows how to use templates with
Symantec C++.

Presents a basic tutorial for Visual
Architect.

Presents a more elaborate tutorial
demonstrating many of the features and
techniques involved in programming
with Visual Architect and the Symantec
Project Manager.

About This Manual

Parts Four through Six

*

Parts Four through Six contain reference information for Symantec

C++.

Part Four: Symantec Project Manager Reference
Part Four provides a complete reference for the Symantec Project
Manager, including windows, menus, commands and options.

Chapter

16. The File Menu

17. The Project
Window

18. The Project Menu

19. The Editor
Window

20. The Edit Menu
21. The Search Menu
22. The Class

Browser Window

23. The Build Menu

Description

Describes the commands that let you
create new projects and open existing
ones.

Describes the information that can be
displayed in the project window,
including project organization and status
information.

Describes all the commands and options
associated with a project.

Describes ways to customize editor
preferences, including general settings,
syntax formatting, and function pop-up.

Describes the commands for editing
project code.

Describes the commands that let you
find information in your project files.

Describes how to view and edit class
information.

Describes all the commands used to
create an application, including
compiling, linking, syntax checking,
and creating executable code.

Symantec C++ User’s Guide and Reference 1-9

1 Overview

Chapter Description

24. The Debugger Describes the windows for displaying

Windows debugging information, including the
Main debugging window, Debug
Browser window, Data window, Control
palette, Source window, and Log
window.

25. The Debugger Describes the commands associated with
Menus . the debugger File, Edit, Debug,
Source, Data, and Windows menus.

26. Windows Menu Describes the commands for configuring
Symantec Project Manager windows,
including size and position, and
commands to display the Build Errors,
Search Results, Class Browser, and
Worksheet windows.

Part Five: TCL and VA Reference

Part Five provides a full reference to Think Class Library (TCL) and
Visual Architect (VA). Basic concepts for TCL/VA are covered, as is
programming with TCL and using Object I/O. A full menu-by-menu
reference for VA is also included. This part does not include the TCL
class library description, global variables, or library routines. These
can be found in the online THINK Reference.

Chapter Description

27. TCL and VA: Describes the basic concepts of Visual

Basic Concepts Architect and the THINK Class Library
that are needed to create an application.

28. Programming Describes some of the basics of how the

with TCL THINK Class Library works and how to

use it to build an application.
29. Visual Architect Describes the commands for

File Menu manipulating Visual Architect resource
files.

1-10 Symantec C++ User’s Guide and Reference

About This Manual

Chapter

30. Visual Architect
Edit Menu

31. Visual Architect
View Menu

32. Visual Architect
Pane Menu

33. Visual Architect
Options Menu

34. Visual Architect
Tools Menu

35. VA Symantec
Project Manager
Menu

Part Six: Appendixes

4
Description

Describes the standard Macintosh editing
commands, as well as commands for
manipulating resource objects.

Describes the commands to manipulate
the views created in Visual Architect.

Describes the commands to change
characteristics of the panes in your
views.

Describes the commands for setting the
behavior of the View Editor in Visual
Architect.

Describes the commands to add panes
to your views.

Describes the commands to control the
generation of code by Visual Architect
for inclusion in your project.

This part contains appendixes to the User's Guide and Reference.

Appendixes

Appendix A: Linker
Error Messages

Appendix B:
Debugger Error
Messages

Description

Describes the error messages generated
by the Symantec Linker.

Describes the error messages generated
by the Symantec Debugger.

Symantec C++ User’s Guide and Reference ~ 1-11

1

Overview

1-12

Electronic supplemental information (ESI)

In addition to the material in this User’s Guide, several topics are
covered online. This presentation includes supplemental information
on such topics as porting applications to Symantec C++ 8.0, some
background information about programming for the Power
Macintosh, and information about other features.

Installing Symantec C++

This section describes the procedure for default installation. For
information about custom installation refer to the online electronic
supplemental information.

Read the license agreement
Before installing Symantec C++, you should read and become
familiar with the terms of the license agreement.

Send in the registration card

Remember to fill out and send in your registration card. To receive
technical support, information about upgrades or news about special
promotions, you must be a registered user.

Read the ReadMe files

Please make sure to read any files named ReadMe. These files
contain information that was not available at the time the manuals
were printed.

Installing all of Symantec C++

To load the default installation of Symantec C++ drag the folder
named Symantec C++ for Power Mac from the CD-ROM onto
your hard disk. For a custom installation of Symantec C++, consult
the online electronic supplemental information.

For information on installing Symantec C++ 7.0.5, see the online
documentation for this product on CD-ROM.

Symantec C++ User’s Guide and Reference

What To Do Next

2
What To Do Next

This section provides a guide to using this book according to your
level of knowledge.

Steps for the user new to Power Macintosh development

You should read “About Programming in C++ for the Power
Macintosh” in the online electronic supplemental information. You
should also read the chapters in Part Two.

Steps for the user new to Symantec C++

You should read the chapters in Part Two, and work through the
tutorial chapters in Part Three to become proficient with Symantec
Ct++,

Steps for the user new to the Macintosh

You should read “Macintosh Conventions” in the online electronic
supplemental information and all of the Symantec C++ 8.0
documentation.

Symantec C++ User’s Guide and Reference 1-13

1 Overview

*

1-14 Symantec C++ User’s Guide and Reference

Introducing

Symantec C++ 8.0 ,
2

Il:is chapter introduces the Symantec C++ programming environment.
It provides an overview of the THINK Class Library (TCL) and Visual
Architect (VA), as well as of the processes involved in creating an
application.

Programming with Symantec C++

The Symantec Project Manager is the crux of the Symantec C++
development environment. Unlike traditional, command-line
development environments, Symantec C++ provides integrated
components for accomplishing your development tasks, such as
editing, compiling, linking, class browsing, and debugging. The
Symantec Project Manager is the central location from which you
access the integrated tools that make up Symantec C++.

One particularly important component of Symantec C++ is Visual
Architect. Because Visual Architect is integrated into the THINK Class
Library, you can develop an application’s user interface along with
its underlying code in a graphical, interactive environment. The
Symantec Project Manager can compile files generated by Visual
Architect, even when Visual Architect is open.

The following sections outline the steps involved in using Symantec
C++ to create a typical application based on the THINK Class
Library. You may want to create something other than a standard
Macintosh application—for example, an IOStreams-based application
or a library. By reviewing the steps outlined here, you will become
familiar with the fundamental tasks you can perform with Symantec
C++.

Symantec C++ User’s Guide and Reference 2-1

2-2

2

Introducing Symantec C++ 8.0

Starting a project

The first step in application development with Symantec C++ is
creating a project using the Symantec Project Manager. A project is a
collection of files that, when built, creates a target application (or
library). A typical project contains source, header, resource, and
documentation files, as well as binary libraries and other projects.

The management information for a project is contained in the Project
file, which customarily has a .7 suffix. The information in the
Project file helps the Project Manager determine how to process each
of the project’s component files. Whenever a Project file is opened in
the Project Manager, a Project window showing the project
components is displayed (Figure 2-1).

v PPC TinyEdit.w

v] Runtime Libraries 31948 [}
o BRLib.o 8780
<& Interfacelib.xcoff 0
o MathLib xcoff 0
& 0ObjectSupportLib.xcoff u]
& PPCANSI|_small.o 19864
< PPCCPlusLib TCL.o 1184
o PPCRuntime.o 2120
b (] THINK Class Library 427936
< CEditApp.cp @ 1720
o CEditDoc.cp o| 1952
<& CEditPane.cp < 968
> E; TinyEdit Resources rsro u}
e TinyEdit.cp @ 160 7]
Totals 464684 (G

Figure 2-1 Project window

When you create a project, you have the option of basing it on a
pre-existing project model. Each model predefines a generic set of
capabilities for an application. Perhaps the most versatile of these
models is VA Application, which includes TCL resources as well as
Visual Architect. Other project models allow you to create
I0Streams- and ANSI-based applications.

Symantec C++ User’s Guide and Reference

Programming with Symantec C++

*

Editing application code

The Symantec Project Manager contains an integrated text editor that
is customized for working with C++ and C source code. Editor
windows are opened by double-clicking source files in the Project
window. To facilitate working with source files, you can customize
the Editor to provide a list of functions in the current file, as shown
in Figure 2-2.

CEditDoc.cp 1

J Markers w || Headers w
CEditDoc : :BuildWindow
CEditDoc : :DoSave
CEditDoc : :DoSaveds
CEditDoc ::[EditDoc
X ‘File

EXEXRFENEFRLEFEETERFERFENFERLIRELENL I DL FRLFRERXLXRHETH 4?

E tiny editor.

CEditDoc : :| 3
op antec Corporation. &11 rights reserved.

FRELXFERFEXF XS FRLERLXREXIFERXRFFXFIFIRLEXSERSIRFEXFSIXNSFXFEXRS XL R FEXXERFEXFEY

#include "Global .h"
#include "Commands.h"
#include "CApplication.h”
#include "CBartender.h”
#include "CDataFile.h"
#include "CDecorator.h”
#include “"CDesktop.h"
#include “CError.h"
#include "CPanorama.h”
#include "CScrol |IPane.h”
#include "TBUtilities.h"
#include "CEditDoc.h"
#include "CEditPane.h"
#include “"CWindow.h"

#define WINDcul ture 500 /¥ Resource ID for WIND template ¥/
extern CApplication *gApplication; /#* The application #/

extern CBartender *gBartender; /% The menu handling object */
extern CDecorator *gDecorator; £ ¥ Window dressing abjest 7

&

Figure 2-2 Editor window, showing the pop-up list of functions in the
current file

The Editor is tightly integrated with the Project Manager. For
example, when errors are encountered during compilation of your
source code, you can automatically choose to display an Editor
window with the offending line of code highlighted.

Symantec C++ User’s Guide and Reference 2-3

2 Introducing Symantec C++ 8.0

Building an application

While building an application, the Symantec Project Manager calls on
a battery of translators to process the various project components.
For example, the PowerPC C++ compiler processes the C++ source
files and Symantec Rez converts resource description files to
resource files. After all the components have been translated
successfully, the Symantec Project Manager calls on the appropriate
linker to produce the application file, which can then be run from
the Project Manager or from the Finder.

Because of the information kept in the Project file, the Project
Manager automatically is able to keep track of the files that have
changed and of any files that refer to changed files. As a result, the
Project Manager processes only those files that need updating.

Viewing classes

Once the source code files have been compiled, you can use the
Symantec Class Browser to examine an application’s class hierarchy
and to edit the contents of classes (Figure 2-3).

Class Browser
Functions

Classes Data

CAbstractText AccessObject appResFile
CéhppleEvent AddDirector cMaxSleepTime
ChppleEventObject AssignldleChore canFail
CAppleEventSender AssignUrgentChore criticalBalance
Cépplication BedVirtualGetClassinfo dEachFunc1
Chrray CApplication(C Application&) dTestFunci

Source

)
AsswgnUrgentChors
erTorm 35 500n a5 possible. Urgent

&, then auternstically disposed
e T e S

void CApplication: :AssignUrgentChore(
CChore *theChore) /7 Chore to perform

i tsUrgentChores->Add(theChore);
urgentsToDo = TRUE;
}

[E[&[TIP] [&|
Figure 2-3 Class Browser window

Work performed in the Class Browser is complementary to the class
viewing and editing performed with the text editor.

2-4 Symantec C++ User’s Guide and Reference

Programming with Symantec C++

*

Testing an application

Symantec C++ provides powerful source-level debugging capabilities
to help you test and debug applications. The Symantec Debugger,
shown in Figure 2-4, allows you to control execution of code as well
as to display and modify data values.

Go] [Step [th][Out][Trace

] [Ester €]

TinyEdit.cp Pata
Code
22?2 (68Kk| 0x00073848 < FEREEXXEEFECEERRERRLER RS Iedltﬁpp l
0x00988BBD8 ————
22? (PPC||0x0098C224 #include “CEditApp.h" 0x00R66C42
<~ main 0x00SFSDFC P itsProvi)
P edi tRpp|(0x00RG6C42 III void maine> 7 i tsDepende| 0x00000000
D i tsSupervi| 0x00000000
{ D i tsDirectol| OxOORBBE24
CEdi tRpp *edi tApp; active OxFE
o editApp = new CEdi tApp; b :ifem 1o ngOOOOOOD
R edi tApp~> IEdi tRpp();
4.4 edi tApp->Run(); Vprev 0x00RGEDFA
O edi tApp—2Exi t(); elementlfi1
D next 0x00RB6CSA
o) b prev OxO0RGBE?A
disposat]| 0x00
disposab|efl 0x00

b i tsSwi tehbl| 0x00RG6D28

&l b i ts1dleChol| 0x00RB6CCC

P i tsUrgentc|| OxCORG6CFA
urgentsToDj|0x00
running 0x01
phase 0
rainyDayFull 45000
eriticalBgl 40000
toolboxBal | 20000
tempAllocgllQ

PPC TinyEdit.w.pef Log

Figure 2-4 Symantec Debugger

The Symantec Debugger is tightly coupled with the Project Manager,
making it easy to cycle between debugging and editing of source
files.

Symantec C++ User’s Guide and Reference 2-5

2-6

2 Introducing Symantec C++ 8.0
Constructing a user interface with Visual Architect
Visual Architect provides a graphical, interactive environment for
simplifying the creation of resources and the use of THINK Class
Library classes. Visual Architect is illustrated in Figure 2-5.
Uisual ArchitecLrsre = Preferences Dialog
Column Width Dialog T T ,,,e
Matrix Info Dial .
M:t:: \;i:do:; % Default decimal point{i]
MbyN Document Window Grid st
Pt Windo Plotter Grid stefs]
Preferences Dialog
Rotation Dialog]
OKButn
Identifier: [0KButn | 198,108 243,128
Lett: Top: A
widtn:[59 | weighti[20] om
b CButton = B
I~ CControl
i:ﬂo:trlTitle: = =
contri¥alue: 0 + 0|o
contriMin: 0 ~|O X
contriMax: 1
P CPane
P C¥iew
Figure 2-5 Visual Architect
Visual Architect generates both resource and source files that are
automatically incorporated into a project. Because it is designed to
be a component in iterative development, you can use Visual
Architect at any stage in an application’s development. The following
section, “The THINK Class Library and Visual Architect,” provides a
brief introduction to Visual Architect, which you use to create the
application framework.
Using additional tools
Several additional tools are included with the Symantec Project
Manager, for use in creating an application.
AppleScript capability
The Symantec Project Manager lets you use AppleScript to record
and control complex operations.
Symantec C++ User’s Guide and Reference

The THINK Class Library and Visual Architect

*

SourceServer
Apple’s SourceServer application assists in version tracking with
large programming projects.

ToolServer
Apple’s ToolServer lets you access Macintosh Programmer’s
Workshop (MPW) tools from the Symantec Project Manager.

The THINK Class Library and Visual Architect

This section provides a conceptual overview of what is involved in
creating a typical THINK Class Library application using Visual
Architect. It discusses how the THINK Class Library and Visual
Architect interact and how Visual Architect streamlines the
application development process.

Overview of the THINK Class Library

The THINK Class Library is a collection of C++ classes designed to
implement standard Macintosh applications. These classes handle
Macintosh functions such as menu commands, window updates,
event dispatching, operating system calls, memory management,
Clipboard maintenance, and printing. To create an application, you
can use existing classes in the THINK Class Library in which these
lower-level interfaces have already been established, rather than
developing code from scratch using Macintosh Toolbox and
Operating System calls.

The THINK Class Library is organized into three distinct, interacting
structures: the class hierarchy, the visual hierarchy, and the chain of
command.

Class hierarchy

The class hierarchy is the set of all the classes that make up the
THINK Class Library. The class hierarchy is organized around the
concept of inheritance. It contains a set of base classes from which
other classes inherit their behavior (member functions) and attributes
(data members).

Symantec C++ User’s Guide and Reference 2-7

2 Introducing Symantec C++ 8.0

Visual hierarchy

The visual hierarchy describes the organization of all visible entities,
such as windows and buttons, in a given application. The visual
hierarchy describes all the views that the THINK Class Library
contains. A TCL view is an object descended from a class that is used
for implementing objects with visual representations. Views respond
to commands involving the mouse and can also be links in the chain
of command.

The visual hierarchy is based on the concept of enclosure.
Everything you see on the screen belongs to—is enclosed by—
another visual entity. This is in contrast to the class hierarchy, which
is based on derived class relationships.

Chain of command

The chain of command specifies both the objects in an application
that handle specific commands (such as menu item choices) and the
order in which those commands are handled. Because you are
responsible for choosing this assignment of objects, you need to
decide the level of abstraction at which you want to handle a
specific command. For example, the Save and Save As commands
are handled at the document level, whereas the New, Open, and
Quit commands are handled at the application level.

Interaction of the structures

The THINK Class Library converts Macintosh events into calls to
member functions defined by the classes in the class hierarchy. Some
member functions handle events that affect the visual hierarchy,
including mouse clicks, keyboard events, Activate events, and
Update events. Other member functions handle requests that affect
the chain of command, such as for an object to open a file. The latter
type of request typically is the result of a menu choice.

Creating a THINK Class Library application

To create an application that uses the THINK Class Library, you
derive new classes from existing library classes. These new classes
should implement only the unique parts of an application, because
generic application behavior is already handled by the base classes
in the library.

2-8 Symantec C++ User’s Guide and Reference

The THINK Class Library and Visual Architect

*

Typically, you derive a number of classes. You need a class for your
unique application object; a “document” class to manage windows
and files; and one or more classes for managing communication
between or among windows, panes, files, and menu commands.
These last classes, in other words, deal with the user interface.

In addition, you need to define both a menu structure to contain the
commands that the application implements and the linkage between
menu commands and actions. Actions are performed in response to
the user choosing a particular menu command.

Finally, virtually all Macintosh applications make use of resources.
TCL-based applications are no exception; they require standard
resources to function. These resources are found in the file TCL
Resources. You must add these resources to your project, either by
copying them into the .rsrc file that contains your own additional
application-specific resources, or by starting from a copy of one of
the TCL demos, or from one of the VA Application models. For more
details on the THINK Class Library, see Chapter 28, “Programming
with the THINK Class Library.” For a discussion of VA, see

Chapter 27, “TCL and VA: Basic Concepts.”

Overview of Visual Architect

Visual Architect is a powerful development tool that allows you to
rapidly create applications using the THINK Class Library. Visual
Architect streamlines the process of creating, editing, and connecting
the classes, menus, commands, and other resources needed by an
application. This section introduces this development tool.

The role of Visual Architect

Visual Architect automatically generates source code files and TCL
resources. The source code files contain definitions and declarations
for the classes created for an application. The resources contain
information needed to initialize window and pane classes according
to your specification, as well as the menus and their associated
commands. The source code files are standard C++ .cp and .h files
and, as such, can be opened and edited using the Symantec Project
Manager. The resources can be created and edited through Visual
Architect itself.

Symantec C++ User’s Guide and Reference 2-9

2 Introducing Symantec C++ 8.0

Visual Architect uses special files called macro files to generate
source code. A macro file is an ordinary text file that contains C++
source and macro expressions, which Visual Architect interprets to
produce one or more source code files as output. Macro files
supplied with Visual Architect can generate the source code for a
complete THINK Class Library application. Because macro files are
ordinary text files, you can, if necessary, modify them to suit your
programming needs or extend them with new capabilities.

Visual Architect is designed to work directly with the Symantec
Project Manager. When you use the Symantec Project Manager to
start a new VA project, it automatically creates a file named Visual
Architect.rsrc.

Note
A VA project also contains another resource file,
Project Resources.rsrc. This file initially
contains resources needed by the THINK Class
Library, but not by Visual Architect. You can add
more resources to either file using Symantec Rez or
ResEdit.

Creating and modifying classes

One of Visual Architect’s most powerful aspects is how it facilitates
the implementation of views and the classes constructed from these
views with the help of an interactive graphical environment. Visual
Architect automatically derives classes from views using the THINK
Class Library, as well as defining the classes’ data members and
member functions. Visual Architect also generates source code files
that contain these data and function members; thus, you do not need
to determine the class definitions required for a specific application.
Visual Architect adds these source files to your Symantec C++
project.

In general, the classes that you construct fall into one of two
categories:

¢ VA views (director or document classes)
* Panes

2-10 Symantec C++ User’s Guide and Reference

The THINK Class Library and Visual Architect .

You can add, delete, and modify derived classes in either of these
categories.

Visual Architect allows you to change the attributes of views and
panes through dialog boxes, thus enabling you to avoid time-
consuming hand coding.

Working with Visual Architect

This section briefly describes VA views, as well as how to add
commands and Balloon Help to views, trying out a view, and
modifying VA code.

Visual Architect provides several predefined views for implementing
common graphical representations, such as document windows,
dialog boxes, floating windows, splash screens, subviews, floating
tool palettes, and basic windows. The implementation of a specific
VA view is based on a particular THINK Class Library class.

The most important view defined by Visual Architect is the Main
Window view. A Main Window view typically is displayed in an
application when the user chooses New or Open from the File
menu. It displays the contents of an associated file and serves as the
focus of attention for a user.

Defining commands associated with views and menus

To process certain user actions (for example, mouse clicks or
keyboard events), the THINK Class Library predefines many frequent
actions, such as closing a window, saving a file, quitting an
application, and changing text attributes. Having these actions
predefined means you can focus on creating the commands that are
unique to your application. As a result, coding time is reduced.

To implement either a predefined action or a new action using
Visual Architect, you need to indicate the class or classes that will
handle the action. If the action is to open a view, you specify that
view and Visual Architect generates the necessary code. Otherwise,
you indicate those classes that need to respond to the action and
Visual Architect then generates an empty member function. Later,
you can insert code in the member function that handles the action.

Symantec C++ User’s Guide and Reference 2-11

2

Introducing Symantec C++ 8.0

2-12

3

Adding Balloon Help

Visual Architect provides a convenient way to add Balloon Help to
the visual elements of an application. Balloon Help can be added to
panes by opening the Balloon Help window and typing the text you
want in the balloon. Because user interface elements can exist in up
to four different states—such as enabled and disabled—when the
application is running, you can define up to four different balloons
for each element.

Trying out a view

With Visual Architect, you can examine how an interface works
before you generate source code, compile it, and run the
application. When you try out a view, it appears exactly as it would
in the running application. Furthermore, you can interact with the
view to a limited extent. For example, you can scroll, resize, and
reposition the view. All the view’s elements—such as pop-up and
tear-off menus, dialog text fields with type constraints, scrolling edit
text, custom buttons, and button groupings—are active as well.

Trying out views lets you see the final product of your work quickly
and conveniently. This enables the design process to proceed more
rapidly.

Modifying the code generated by Visual Architect

Programming is never accomplished in one step. Most often, you
design some of the user interface elements in Visual Architect, hand
code in the Symantec Project Manager, compile, run, and inspect the
project. At that point, you would return to Visual Architect to make
changes and start the cycle again.

Due to the interactive nature of programming, Visual Architect does
not force you to live with the code it generates “as is.” Most of the
code it generates is well-commented C++ skeleton code. Any
changes you make to this code by hand are not overwritten in
subsequent code-generation steps.

Visual Architect facilitates and protects hand-coding with a technique
known as split-level classes. Most classes defined in Visual Architect
are implemented as two types: a lower-level class, reserved for
Visual Architect, and an upper-level class, reserved for custom
programming. The first time Visual Architect generates source code
for a graphical element, it generates the code for both classes in
separate files.

Symantec C++ User’s Guide and Reference

The THINK Class Library and Visual Architect

*

The lower-level class contains code that Visual Architect generates
from scratch each time the element it defines is modified. Most of
Visual Architect’s generated code is displayed here. You should not
modify this code.

The upper-level class is derived from the lower-level class. To
customize the skeleton code, you add member functions, additional
data members, and so forth to this class. Member functions that you
add manually to the upper-level class often override or expand on
the corresponding lower-level class member functions. Visual
Architect writes to the upper-level class file only once, when it
generates the class files after you first define the class. After that, you
are responsible for maintaining the upper-level class file.

To summarize, if you plan to create an application that uses standard
Macintosh interface elements such as windows, menus, and so on,
you should use the Visual Architect/THINK Class Library (VA/TCL)
development environment. For further discussion of Visual Architect
and the THINK Class Library, see Chapter 27, “TCL and VA: Basic
Concepts” and Chapter 28, “Programming with the THINK Class
Library.”

Symantec C++ User’s Guide and Reference ~ 2-13

R 2 Introducing Symantec C++ 8.0

2-14 Symantec C++ User’s Guide and Reference

Symantec C++

Creating an
Application

Part Two
3 Starting a Project
4 Editing a Project’s
Code
5 Viewing and Editing
Classes
6 Using the Debugger

7 Creating a User
Interface with VA

8 Advanced Topics

Symantec C++ User’s Guide and Reference

Starting a

Project
2*

Creating an application or library in Symantec C++ is a multistep
process involving three primary tools: the Symantec Project Manager,
the Symantec Debugger, and Visual Architect. This part of the guide
explains the fundamentals of working with the Symantec Project
Manager.

Starting a new application or library with the Symantec Project
Manager begins with the creation of a project. This chapter describes
the steps involved in creating projects and performing some basic
manipulations on project entries.

What Is a Project?

A project is a set of files that, when assembled by the Symantec
Project Manager, produce an application or library. In a typical
project, these project entries consist of C and/or C++ source files and
their associated header files, object libraries, resources, other
projects, and documentation files. A single project generally is used
to create a single target.

Note
The application or library that the Symantec Project

Manager builds from a project is referred to as the
project’s target.

The central element of a project is the Project file. By convention,
the Project file has the suffix . (period, Option-P). The Project file
contains all information necessary for management of the project,
such as locations of the project entries, and additional information
such as compiler options and browser tables. The Project file also
contains the object code for the target and the Debugger symbol
tables.

Symantec C++ User’s Guide and Reference 3-1

3-2

3 Starting a Project

In general, most project entries specific to a project, together with
the Project file, are kept in a folder referred to as the project folder.
However, a project’s entries do not all have to reside in the project
folder. For example, only one copy of general-purpose libraries,
which all projects need, is kept in the folder. In addition, a project
may include project entries that are located in other project folders,
thus permitting sharing of code and resources.

By organizing a target’s files as a project in this manner, the
Symantec Project Manager can assume full management
responsibility. In contrast to traditional “make” systems, this strategy
frees you from the bookkeeping involved in accessing project entries
and building the target. Because the Project Manager keeps track of
all project entries in the project, the features of the Symantec Project
Manager are smoothly integrated. For example, if an error occurs
during compilation, you can open a window containing the source
code with the questionable line of code highlighted in a single step.

Also, the Symantec Project Manager automatically determines those
project entries that need to be rebuilt following changes to any
project entry(ies). After a header file is changed, for example, the
Symantec Project Manager knows to rebuild all source code files that
include the header file.

Project contents

The different types of entries that can be included in a project are
described in this section. Each type is handled differently by the
Symantec Project Manager when the target is built and when the
project entry is accessed from within the Project Manager. The
Project Manager uses filename extensions to identify the type of
project entry. You can change this mapping of extensions to entry
types in the Project Options dialog box, as described in Chapter 18,
“The Project Menu.”

Source files

The Symantec Project Manager can process C (.c), C++ (.cp or

. cpp), and resource directive or Rez (. r) source files. A single
project can contain both C and C++ source files. These files are all
text files.

Symantec C++ User’s Guide and Reference

What Is a Project?

2

Precompiled header files

The Symantec Project Manager allows you to create precompiled
headers and include them in your source files. Precompiled headers
are “processed” versions of header files and are in a format that the
Project Manager can load significantly faster than text header files.

Resource files

For your target to access resources, resource (. rsrc) files, such as
those created by ResEdit and Resorcerer, can be included in your
project. The resources from these files are added to the target when
it is built.

Libraries

The Symantec Project Manager allows you to include binary libraries
in your project. Some examples of libraries provided with the
Symantec Project Manager are C and C++ libraries (such as
PPCAnsi, PPCIOStreams, and PPCUnix) and Macintosh libraries
(such as InterfaceLib.xcoff, QuickTimeLib.xcoff, and
AppleScriptLib.xcoff). The Project Manager allows you to
create your own libraries, which can in turn be included in other
projects.

Projects

The Symantec Project Manager also allows you to include other
projects in a project. Including projects lets you group together sets
of related project entries and access all included projects’ entries
within the Project Manager. Included projects are built to completion
when the project containing them is built. Thus, you can develop a
suite of applications by having one project for each application and
one additional project that includes all the individual projects; the
entire suite of applications can be built with one command. Further,
if the target of an included project is a library, the library is linked
into your project.

Documentation files

You can add any documentation files to the project to make them
readily accessible during development. These files will neither,
however, be included in the final target nor be involved in any way
with building. By including these files directly in the project, you
make them always available for reference and modification. You can
use any application to create these files.

Symantec C++ User’s Guide and Reference 33

3-4

3 Starting a Project

Groups

To better organize project entries within your project, the Symantec
Project Manager allows you to create groups. Groups are similar in
concept to Finder folders. By placing your project entries into
groups, you make it easier to locate individual project entries,
especially with a large project. Like folders, groups can be nested.
The placement of project entries into groups has no effect on the
final target. Further, the location of a project entry in a group has no
bearing on the file’s location on the disk.

Organizing files and folders

When the Symantec environment is installed, a specific plan for
folder organization is followed. This folder plan is set up to allow the
Symantec Project Manager to quickly and unambiguously locate your
project’s entries. Specifically, the Project Manager looks for your
project’s entries in one of two locations, the system tree or the
project tree.

The system tree

The Symantec Project Manager folder, along with all the subfolders
within it, is called the system tree. The Symantec Project Manager
folder is the folder that contains the Symantec Project Manager
(usually the Symantec C++ for Power Mac folder). The
Symantec Project Manager treats all files in all folders within the
Symantec Project Manager folder as if they were in the same flat
folder.

The project tree

The project folder, along with all subfolders it contains, is called the
project tree. The project folder is the folder that contains the Project
file. The Symantec Project Manager treats all files in all folders within
a project folder as if they were in the same flat folder.

Typically, a Project file resides in a project folder along with all
project entries specific to the particular project. The folder may also
contain other folders so as to group together related resource files
and header files. Setting up your project entries in this way helps
reduce the time it takes the Symantec Project Manager to search for
files, and reduces the likelihood of confusion due to duplicate file
names. You can expect to have many project folders.

Symantec C++ User’s Guide and Reference

Models and Projects

Note
The project folders themselves must be placed
outside the system tree. Otherwise, file search times
are increased.

When you first add a file to a project, the Symantec Project Manager
notes the tree to which the file belongs. Thus, you can move files in
and out of folders and create and rename folders without having to
tell the Symantec Project Manager exactly where the files are located.
If you move files later on, the Symantec Project Manager first looks

in this tree.

To hide the contents of any folders within the system and project
trees from the Symantec Project Manager, you can enclose the name
of the folder in parentheses. The only exception occurs when the
name of the folder, excluding the parentheses, matches the project
name; in this case, the contents of the folder are visible. For
example, a folder named (Hidden.r) in the system tree would be
hidden from all projects except one named Hidden.T.

Models and Projects

This section describes the use of templates, or project models, in
creating a project. It discusses the different project models and how
to create projects based upon them.

This section assumes you've already correctly installed the Symantec
Project Manager. Before working with the Symantec Project Manager,
you should create a common folder to contain your specific project
folders. You can name this common folder anything you like, such
as My Projects, and you can place it anywhere you like as long
as it is outside of the system tree (see the previous section for more
information).

Choosing the project model

When creating a new project, you must determine a project model
for it. Project models are templates that determine those project
entries that are to be initially added to a project and those
configuration options that are to be initially provided. Using project
models reduces the amount of overhead involved with creating
projects. You can also create your own project models, as described
in Chapter 16, “The File Menu.”

Symantec C++ User’s Guide and Reference 3-5

3-6

3 Starting a Project

The project models supplied with Symantec C++ for Power Mac
include VA Application, VA App w/Shared TCL, ANSI C++
(IOStreams), and C++ Mac Application, ANSI C, C Mac Application,
and Native MPW Tool. These project models are only briefly
described here; see Chapter 16, “The File Menu,” for more details.

VA Application and VA App w/Shared TCL project models
These are the project models you choose if you are planning to use
Visual Architect and the THINK Class Library in the design and
construction of an application’s user interface.

Note
For projects created using Visual Architect and the
THINK Class Library, typically you use all of the
Symantec C++ for Power Macintosh development
tools. This discussion concentrates on projects
created with the VA Application project models.

ANSI C++ (I0Streams) project model

Use the ANSI C++ (IOStreams) project model if you are creating a
C++ application that uses the standard IOStreams environment for
input/output. You can code in this project model without having to
create an interface to the Macintosh Toolbox or a user interface.

C++ Mac Application project model

Use the C++ Mac Application project model if you are creating a
standard Macintosh C++ application without using the IOStreams
library or the THINK Class Library. You will have to manually create
all the Macintosh user interface elements, such as windows, menus,
and printing.

ANSI C project model

Use the ANSI C project model if you are creating a C application that
uses the standard ANSI environment for input/output. You can code
in this project without having to create an interface to the Macintosh
Toolbox or a user interface.

C Mac Application project model

Use the C Mac Application project model if you are creating a
standard Macintosh C application that does not use the ANSI library.
You will have to manually create all the Macintosh user interface
elements, such as windows, menus, and printing.

Symantec C++ User’s Guide and Reference

Models and Projects

2

Native MPW Tools

Use the Native MPW Tool project model if you are creating a tool to
use with the Macintosh Programmer’s Workshop. MPW tools can also
be used from the Symantec Project Manager with ToolServer.

Empty Project model

Use the Empty Project model when you are providing all the
necessary source code and project, library, and resource files for an
application. You will have to create all the Macintosh interface
elements.

Creating a new project
To create a new project:

1. Launch the Symantec Project Manager from the Finder by
double-clicking its icon or by selecting the icon and
choosing Open from the Finder’s File menu.

The File Open dialog box opens (Figure 3-1).

|fjl Symantec C++ for Power... VI =— Macintosh HD
&8 (AppleScripts)

Eject

Cancel

[(Project Models)

[(Projects)

[(Scripts Menu) — '
[(Tools) :

[(Translators)

Show: | Test Files |

Figure 3-1 File Open dialog box

2. Click New Project.

Symantec C++ User’s Guide and Reference 3-7

3-8

3 Starting a Project

The New Project dialog box opens (Figure 3-2).

|3 Projects v | = Macintosh HD

Eject

Desktop

i Cancel

Create New Project:

Project Model: | Empty Project |

Figure 3-2 New Project dialog box

Next, you must create a project folder for your Project
file.

3. Navigate to the common folder in which you want to put
the project folder.

4. Click New (folder).

The New Folder dialog box opens (Figure 3-3).

Name of new folder:

[untitied folder]

Figure 3-3 New Folder dialog box

5. Enter the name of the project folder and click Create.

A new folder is created. Its title is shown in the pop-up
menu at the top of the New Project dialog box.

Symantec C++ User’s Guide and Reference

Models and Projects

*

6. Choose the project model from the Project Model pop-
up menu at the bottom of the New Project dialog box.

Note
Use one of the VA Application project models if you
want to be able to follow all of the remaining
chapters in this part of the book.

You can now name and create the actual Project file:

7. Type the name of the project in the Create New Project
textbox. By convention, the file should end in . &
(period, Option-P).

8. Click Save in the New Project dialog box.

The Symantec Project Manager creates the Project file.
Depending on the project model, other files may be also
created in the project folder. In addition, the appropriate
project entries for that model are added to the Project
file. When the process is completed, the Project window
opens (Figure 3-4).

Efi=——— v First Project
[Headers ¥ | options [FirstProject ¥}
& _SMame : K Code
4 D Project Resources.rsrec o[t}
& E] Runtime Libraries 0
o [[] THINK Class Lib.1y o 0
o [] visual Architect.rsro s
Totals o ||

Figure 3-4 Project window

The Project window is the central element in managing a project. It
displays the status of all individual project entries included in your

project. The Name column lists the names of all project entries and
groups, and the Code column provides their compiled size in bytes.

Symantec C++ User’s Guide and Reference ~ 3-9

3 Starting a Project

Note
You can customize the format of the Project

window using the Project Window page of the
Project Options dialog box; see Chapter 18, “The
Project Menu,” for details.

Adding and removing project entries

The Project file contains various project entries that are added by
default when the project is created. The specific project model that
you choose determines the default entries that are added to the
Project file. To add new project entries to a Project file:

1. Choose Add Files from the Project menu.

The Add Files dialog box opens (Figure 3-5).

= Macintosh HD

& fourier.c Eject
integration.c

Desktop

Show: [Source Files]

Add ANl

Remove

Figure 3-5 Add Files dialog box

You use the Add Files dialog box to add any types of
files to your project. Note that only those files that have
not previously been added to the project are listed in the
upper scrolling list.

3-10 Symantec C++ User’s Guide and Reference

Models and Projects

¢

2. Choose either Source Files or All Files from the Show
pop-up menu.

If Source Files is chosen, only files that have an
established translator in the project (plus shared libraries
and Project files) are listed in the upper scrolling list. If
All Files is chosen, all files are listed.

Note
For information about specifying translators for
different files, see the Extensions Mapping page of
the Project Options dialog box in Chapter 18, “The
Project Menu.”

3. Navigate to the appropriate folder and either double-
click the name of the file in the upper scrolling list or
select the name and click Add.

The name of the file is added to the lower scrolling list.

4. Repeat step 3 for each additional file you want to add to
the project.

5. When you have specified all the files you want to add to
the project, click Done.

The files are added to the project and their names are
displayed in the Project window.

To remove a project entry:
1. Select the project entry name in the Project window.

2. Choose Remove “filename” from the Project menu,
where filename is the name of the selected project entry.
You can select multiple project entries in the Project
window, in which case the menu item is titled Remove
Selected Items.

The project entries are removed from the project and
their names are removed from the Project window.

Symantec C++ User’s Guide and Reference ~ 3-11

3 Starting a Project

3-12

You can also add project entries to a project using drag and drop. To
add only files for which a translator has been established (plus
shared libraries and Project files) to the project, drag the file icons
from the Finder to the Project window. You can also drag a project
entry from another Project window.

This is also what happens if you choose Source Files from the
Show pop-up menu in the Add Files dialog box. To eliminate this
filtering and allow you to add files to the project (as when you
choose All Files from the Show pop-up menu in the Add Files
dialog box), drag the file icon from the Finder to the Project window
while pressing the Command key.

To learn how to drag folders containing files to your project, see the
next section.

To remove project entries using drag and drop, drag the entries from
the Project window to the Trash.

Creating groups

A group has the same relation to the Symantec Project Manager as a
folder has to the Finder: it embraces a collection of related files. Like
folders, groups can be nested. For example, the project created using
the VA Application project model has several groups. Most of these
groups contain related elements of the THINK Class Library (for
example, Apple Event classes and control classes) and are located in
the THINK Class Library group. In addition, the group Source
contains source files generated by Visual Architect. As you add
project entries to a project, you should create new groups to help
keep these entries organized and help you locate individual entries.

Symantec C++ User’s Guide and Reference

Models and Projects

4
To create a new group:

1. Choose Add Group from the Project menu to open the
Add Group dialog box (Figure 3-6).

Add Group

New group name:

L |

Figure 3-6 Add Group dialog box

2. Enter the name of the new group and click OK.
The new group is displayed in the Project window.

If you are adding a file or set of files to the group using the Add
Files command in the Project menu, be sure the group is first
highlighted in the Project window.

To display the contents of a group, click the small triangle located to
the left of the group name (Figure 3-7).

I}

[E=—— v First Project
@ GName _
D Numericals

L4 fourier.c &
* integration.c +
L 4 Project Resources.rsra

2 [Runtime Libraries

& (@] THINK Class Lib.7 +

¢ Visual Architect rsrc

Totals

(%)
-]
-3
o

q
D]

=
i

Figure 3-7 Project window with contents of the group
Numericals displayed

2000 oo o @

To hide the contents of a group, click the small triangle again.

Symantec C++ User’s Guide and Reference ~ 3-13

3 Starting a Project

It is also possible to create groups by dragging folders to the Project
window. Entire group hierarchies can be added in this process. All

the files within a folder are added to the group corresponding to the
folder in which they are located. Note that the same rules of filtering
apply as when dragging and dropping individual files, as discussed
in the section “Adding and removing project entries” in this chapter.

To add a hierarchy of folders and files, drag the folder icon
containing the hierarchy from the Finder to the Project window.

Note
The folder hierarchy is used only as a template for
establishing groups and the locations of project
entries within these groups. Project entry files can
be located anywhere in the project tree, regardless
of the group in which the entry resides.

Opening project entries

To open a project entry and access its contents, double-click the
entry in the Project window.

If the project entry file is a text file, it is displayed in an Editor
window. If it is a Project file, the project is opened by the Symantec
Project Manager and its Project window is displayed. Otherwise, the
file is opened with the application used to create it. For example, if
o the entry is a ResEdit resource file, opening it launches ResEdit (or
switches to ResEdit if it’s already running) and opens that file.

Note

For all project entries except groups and shared
libraries, double-clicking is a shortcut for selecting
the entry and choosing Open “filename” from the
File menu. Double-clicking on a group lets you
rename the group. Double-clicking on a shared
library opens a dialog box that lets you set options
for it.

You can also open a project using the Switch Main Project
command; see the next section for details.

3-14 Symantec C++ User’s Guide and Reference

Models and Projects

*
Working with multiple projects

The Symantec Project Manager allows you to have multiple projects
open at the same time. One of the currently open projects is
designated as the main project. When only one project is open, it is
automatically designated as the main project. You can specify the
project that should be the main project using the Switch Main
Project submenu in the Project menu. This submenu lists all the
recently and currently open projects, as well as any project aliases in
the (Projects) folder in the Symantec C++ for Power Mac
folder. The main project’s name is listed with a checkmark. To
designate a project as the main project, choose its name from the
Switch Main Project submenu. If the project you choose is not
open, it is opened automatically.

When working with several projects at the same time, it is important
to know the project that will be affected by project-related
commands you might choose. The Symantec Project Manager applies
the following rules to determine the project that will be affected:

1. If the frontmost window is a Project window, the
command affects the project to which the window
belongs.

2. If the frontmost window is not a Project window, the
command affects the main project.

The following section lists the project-related commands that can be
chosen while a window other than the project window is frontmost.

Project-specific commands
The following project-specific commands are also available when the
frontmost window is not a Project window:

e Find, Find Next, and Find in Next File in the Search
menu (when performing multifile searches). See Chapter
21, “The Search Menu,” for details on this menu.

e Options, Add Files, Add Window, Add Group, and
Run in the Project menu. See Chapter 18, “The Project
Menu,” for details on this menu.

e All commands except Get Library Info in the Build
menu. See Chapter 23, “The Build Menu,” for details on
this menu.

Symantec C++ User’s Guide and Reference ~ 3-15

3 Starting a Project

e Build Errors, Search Results, and Class Browser in
the Windows menu. See Chapter 26, “The Windows
Menu,” for details on this menu.

Closing a project
To close a project, do either of the following:

e Choose Close from the File menu with the Project
window frontmost.

e Click the close box in the Project window title bar.

If any Build Error, Search Results, or Class Browser windows are
open for that project, they are closed along with the Project window.

3-16 Symantec C++ User’s Guide and Reference

Editing a

Project’s Code
4

]-:us chapter describes how to use the Editor. It outlines the
procedures for such tasks as viewing and moving around in text
files, splitting an Editor window into subpanes to view different parts
of a text file, and jumping to a specific place in your code. It also
describes auto-indenting and syntax highlighting, two of the special
features of the Editor. For more details, see Chapter 19, “The Editor
Window,” and Chapter 20, “The Edit Menu.”

Opening Files and Viewing Application Code

The Editor works similarly to other standard Macintosh editors, with
the addition of several special features. This section describes the
procedures for opening text files, as well as for viewing and moving
around in them. You can open any text file, including source files
that contain C, C++, and Symantec Rez code for a project.

To open a text file for editing:
1. Select the name of the file.
2. Choose Open from the File menu (Command-O).

3. Navigate to the file in the File Open dialog box and
click Open.

Symantec C++ User’s Guide and Reference 4-1

4-2

4 Editing a Project’s Code

The contents of the file are displayed in an Editor
window. An example of an Editor window for a source
file is shown in Figure 4-1.

Command-key equivalent

to Windows menu command
Changes-made bullet

Headers pop-up menu

Markers pop-up menu—l Changes-made indicator

Toolbar.

eCEditPane.cp %82 [

e—— . meeoe— o R A £ Srd
I e S i T e it Y
CEditPane.c

Methods for a text editing pane.

Copyright © 1989 Symantec Corporation. Al rights reserved.

#include "CEditPane.h”
#include "Commands.h"
#include "CDocument.h"
#include "CBartender.h"
#include “Constants.h"

extern CBartender *gBartender;

void CEditPane: : |Edi tPane(CView *anEnclosure, CBureaucrat *aSupervisor)

Rect margin;

CEditText: : |IEdi tText{(anEnclosure, aSupervisor, 1, 1, 0, 0,
sizELASTIC, sizELASTIC, 432);
FitToEnclosure(TRUE, TRUE)>;

7%%
*% Give the edit pane a little margin.

Figure 4-1 Editor window for a source file

Viewing headers or function definitions

You can also use the Editor to view classes, including a class’s own
definition and logically related class definitions and member
functions. Having this global view of related code simplifies the
process of examining unfamiliar source code.

Symantec C++ User’s Guide and Reference

Opening Files and Viewing Application Code

*

To view a set of class or member function definitions:

1. Click the Headers pop-up menu in the Project or Editor
window’s toolbar and select one of the header files.

The header file is shown in an Editor window.

Note
This works only if the file has been compiled.

2. Click the Markers pop-up menu in the Editor window’s
toolbar and select a class or function.

The Editor window displays the definition of the class or
function.

For more on the Markers pop-up menu, see “Moving to a specific

function” and “Using markers” later in this chapter. For more on the
Headers pop-up menu, see Chapter 19, “The Editor Window,” and
Chapter 20, “The Edit Menu.”

You can also access class or function definitions using the Search
menu. See “Searching and Replacing Text,” later in this chapter. If
you do not know a class name, you can still view its definition using
the Class Browser. To learn about that tool, see Chapter 5, “Viewing
and Editing Classes,” and Chapter 22, “The Class Browser Window.”

Symantec C++ User’s Guide and Reference 4-3

R 4 Editing a Project’s Code

4-4

Navigating in a text file

You can use standard Macintosh features to move around in a text
file you have opened. In addition, the Editor provides a number of
advanced features, such as splitting windows, moving to a function,
jumping to a marker or a specific line, and finding a selection.

Splitting windows and resizing panes
You can split windows to form subpanes for viewing different parts
of a source file, as shown in Figure 4-2.

[Markers v | [Headers

extern CBartender *gBartender; &

CEditPane.cp 32

Copyright © 1989 Symantec Corporation [E5
void CEditPane: : IEdi tPane(CView *q

Rect margin;

d #include "CEditPane.h"
#include "Commands.h"
il #include "CDocument.h”
#include "CBartender.h"
#include "Constants.h”

CEditText:: |Edi tText{(anEnclosur:
sizELASTIC,
FitToEnclosure(TRUE, TRUE);

7¥%

#% Give the edit pane a little mar extern CBartender *gBartender;

*¥% Each element of the margin re ki
*#% specifies by how much to chang < o

%% edge. Positive values are dow
*¥% right, negative values are up
¥ the left.

*%

*%7

void CEditPane: :DoCommand{long thelg

if (({(theCommand == cmdPaste>

1¢(CD t *)itsS i sof.
SetRect(&margin, 2, 2, -2, -2); acumant Tl isSuperviso

ChangeSize(&margin, FALSED; ((CDocument *)itsSupervisor

gBar tender—->Enab | eCmd{cmdSa
gBartender->Enab | eCmd{(cmdSa

void CEdi tPane: :DoCommand{ long th

inheri ted: :DoCommand< theComma

o))
PRE
Figure 4-2 Subpanes of an Editor window

Symantec C++ User’s Guide and Reference

Opening Files and Viewing Application Code

*

To split a window, you use the split bar, which is the black rectangle
next to the scroll bar (see Figure 4-3). Double-click or click and drag
the split bar. To remove a split bar, double-click its split mover,
which is represented by the double triangles next to the split bar.
Alternatively, click and drag the split mover to the edge of the

window.
Double-click here to split window horizontally
BB = CEditPane.cp %2 ﬁlg
i e L L L e
CEditPane.¢

Methods for a text editing pane.
Copyright @ 1922 Symantec Corporation. Al rights reserved.
B L R o T T
#include "CEditPane.h"
#include "Commands.h"
#jinclude "CDocument.h"
#include "CBartender.h”
#include "Constants.h"

extern CEartender #gBartender;

void CEditPane: : IEdi tPanedCliew *anEnclosure, CBureaucrat *aSupervisor)

{
Rect margin;
CEditText::|EditText{anEnclosure, aSupervisor, 1, 1, 0, 0O,
sizELASTIC, sizELASTIC, 432);
FitToEnclosure(TRUE, TRUE>;
SEE
*#% Give the edit pane a little margin.

Double-click here to split window vertically

Figure 4-3 Splitting a window

Symantec C++ User’s Guide and Reference 4-5

4 Editing a Project’s Code

Once the window is split, you can resize the window pane using the
split mover (see Figure 4-4). Click and drag the split mover as
desired. Note that you can scroll independently in each of the
subpanes you have created.

El=———————————— CEditPane.cp $2 mﬁa
[Markers w | [Headers w| - ' - &>
extern CBartender #*gBartender; P F3
void CEditPane:: |Edi tPaned(ClView *anEnclosure, include "CEditPane.h"
include “"Commands.h"
i include "CDocument.h”
Rect margin; include "CBartender . h'
i include "Constants.h"
CEditText:: |EditText{anEnclosure, aSupervi hid
sizELASTIC, sizELASTI P | NE Split

FitToEnc losure(TRUE, TRUEX;
' oid CEditPane:: |EditPdg THERIRT
X ’
#% Give the odit pane a little margin. e
#% Each elernent of the margin rectangle Rect margin;
#% specifies by how much to change that : . ’
** edge. Pogitive values are down and to CEdItText: : [RditTex

*¥#% pight, negative values are up and to FitToEnc|osuredTRU
*% the left.
e #% Give the edit

*#% Each el t
SetRectiZmargin, 2, 2, -2, -2 e s:sp:.i:;“;:h
ChangeSize(&margin, FALSE>; - edg; Pozitive

#% right, negativ

void CEditPane: :DoCommand¢ long theCommand? z: the left.
{ rry

Split mover

Figure 4-4 Resizing a window pane

4-6 Symantec C++ User’s Guide and Reference

Opening Files and Viewing Application Code

Markers
pop-up

*

Moving to a specific function

To move to a specific function in a file, select the function from
the Markers pop-up menu in the window’s toolbar, as shown in
Figure 4-5.

CEditPane.cp %2

B

?@"Maa\rke’l:s v | [Headers v j
® CEditPane: DodutoKey [

menu

CEditPane : :DoKeyDown
CEditPane : :IEditPane l..

#include "Constants.h”

extern CBartender *gBartender;

void CEditPane:: |Edi tPane(CView *anEnclosure, CBureaucrat *aSupervisor)

{

Rect margin;

CEdi tText:: |IEditText{anEnclosure, aSupervisor, 1, 1, 0, O,
sizELASTIC, sizELASTIC, 432);
FitToEnclosure(TRUE, TRUE)>;
JEE

*#¥ Give the edit pane a little margin.

Each element of the margin rectangle
¥ specifies by how rmuch to change that
*% edge. Posgitive values are down and to
*% right, negative values are up and to
¥% the left.

EX)

x%/

SetRect(&margin, 2, 2, -2, -2);

ChangeSize(&margin, FALSE);

&

Figure 4-5 Moving to a specific function

The Markers menu lists both user-defined and automatically
generated markers, including classes, enums, typedefs, pragma
marks, and functions.

You also can access this list by Command-clicking the title bar
(Command-Option-Comma). Command-clicking the title itself brings
up the File Path pop-up menu, which shows the path for the file.
See Chapter 19, “The Editor Window,” for details.

Symantec C++ User’s Guide and Reference 4-7

4 Editing a Project’s Code

Using markers
You can place a marker at any line in a file, as follows:

1. Choose Add Marker from the Search menu
(Command-M).

2. Type the name of the marker in the Add Marker dialog
box.

3. Click Add.

Your marker is now displayed in the Markers pop-up
menu.

To remove one or more markers:
1. Choose Remove Markers from the Search menu.

2. In the Remove Markers dialog box, click those markers
that you want to remove.

3. Click Remove.

Those markers are no longer shown on the Markers
pop-up menu.

To move to a specific marker in your file, select the marker from the
Markers pop-up menu.

Jumping to a specific line in a file
To move to a specific line in a file:

1. Choose the Go To Line command from the Search
menu (Command-Comma).

2. Type the desired line number in the Line field of the Go
To Line dialog box.

3. Click Go To.

Returning to the selected text
To go back to a highlighted portion of text (the current selection)
after scrolling to another part of the file, press Enter.

4-8 Symantec C++ User’s Guide and Reference

Entering and Editing Text

L 4

If you have scrolled so the current selection is not in view, pressing
the Enter key brings it back into view. If the entire selection cannot
be displayed, pressing the Enter key again toggles between viewing
the beginning and the end of the selection.

Entering and Editing Text

Some of the Editor’s features (such as syntax highlighting, delimiter
matching, and auto-indenting) simplify the task of writing legible
code and reading such code.

Adding and deleting text

You can add and delete text in the usual ways provided by
Macintosh text editors. Double-clicking a word selects the entire
word; triple-clicking a line selects the entire line.

Scrolling and automatic indenting

Because the Editor is a source code editor, it lacks the word-wrap
feature contained in other editors. If you type past the right edge of
the window, the window automatically scrolls horizontally so you
can still see the insertion point.

The Editor has an automatic indenting feature. When you press
Return to start a new line, the Editor indents the new line with the
same number of leading tabs and spaces as the previous line.

The Editor also has a block auto-indent feature. When you press
Return at the end of a line that starts a block of code (for example, a
line that ends with the left brace { character for C, C++, and Rez
files) the Editor adds an additional level of indentation. The Editor
also automatically outdents the ending line of the block as you type
the matching right brace } character.

To change the indentation for a particular line, backspace over the
indent with the Delete key.

To prevent the Editor from auto-indenting or outdenting a line, hold
down the Option key and press Return.

You may want to turn off these features in the Editor General
Settings page of the Project Manager Preferences dialog box, if
they conflict with your coding conventions. The block auto-indent
feature works only when the regular auto-indent feature is also
turned on.

Symantec C++ User’s Guide and Reference 4-9

4 Editing a Project’s Code

4-10

Syntax highlighting

The Editor helps ensure the legibility of code by highlighting
different kinds of words in different colors and styles. For example,
by default, preprocessor directives are in blue, language keywords
such as do and while are in bold, string literals are in red, and
comments are in gray.

The Editor supports syntax highlighting in the following languages:
C, C++, AppleScript, MPW Shell Script, Pascal, and Symantec Rez.
Untitled windows default to the C++ configuration.

To learn how to custom configure colors and styles, see Chapter 20,
“The Edit Menu.”

Delimiter matching

The delimiter matching feature of the Editor lets you check for
matching pairs of parentheses, square brackets, and braces. A
Parentheses and other delimiters generally appear in matched pairs,
which may be nested within each other to any depth. The Editor
warns you with a beep when you type a closing delimiter that has
no matching opener.

If you double-click on a bracketing delimiter (that is, a parenthesis
(), square bracket [], or brace {}), the Editor selects the text
between that delimiter and its matching delimiter.

This feature also works with the slash /, reverse slash \, double-
quote ", and single-quote ' characters. The Editor selects forward to
the next occurrence of the delimiter.

In addition, delimiter matching works dynamically. If you double-
click and drag within a pair of delimiters, the Editor selects the
delimiters and all text between them. Holding down the Option key
omits the delimiters from the selection.

After you type the closing element of a delimiter pair (that is, a right
parenthesis), square bracket], or brace }), the Editor briefly
highlights the matching delimiter.

The Editor beeps if the delimiters are improperly matched.

Symantec C++ User’s Guide and Reference

Searching and Replacing Text

*

To verify that all functions are properly balanced:
1. Place the insertion point at the beginning of a file.

2. Use the Find command on the Search menu
(Command-F) to search for the first opening code-block
delimiter (a left brace { in C or C++).

3. Use the Balance command on the Edit menu
(Command-B) and the Find Next command on the

Search menu (Command-G) repeatedly until you reach
the end of the file.

Searching and Replacing Text

A wide range of search and replace capabilities are available as
outlined in this section. For information on more advanced features,
see Chapter 21, “The Search Menu.”

Finding and replacing strings
To find the first instance of a string:

1. Choose the Find command from the Search menu
(Command-F). The Find dialog box opens (Figure 4-6).

Find
search for: |Byte keyCode J
Replace with: | I |
[Entire Word — [] Multi-file search
S:}g:;m Case Fite et Fronl indow wi
r
[Selection only [Exclude Subprojects (O Source & Headers
[] Wrap Around [Esclude System Files @ Source Only
[]Batch Search [J Exclude (...) Folders (O Headers Only
O Esclude Precompiled Header

(cancer) ((womtrind)

Figure 4-6 Find dialog box

Symantec C++ User’s Guide and Reference 4-11

4 Editing a Project’s Code

2. In the Search for and Replace with textboxes, enter the

search and replace

strings.

Either type the string or click on the arrow by the
textbox to open a pop-up menu (Figure 4-7). Each
pop-up menu contains the five strings most recently

entered in the field

Search for
pop-up menu

Find

Search for: |

Replace with: |

] Entire Word
[]1gnore Case
[] Grep

[Selection only
[J wrap Around
[JBatch Search

— [] Multi-file search

vdefault:'

keyCode
itsSupervisor
DoCommand

Fite Set0] Frond indow

v

[J Exciude Subprojects
[Exclude System Files
[Exclude (...) Folders

O source & Headers
@ Source Only
(O Headers Oniy

[Exciude Precompiled Header

(cancet] [Don’tFind |

4-12

Symantec C++ User’s Guide and Reference

Figure 4-7 Search for pop-up menu in the Find dialog box

Searching and Replacing Text

2
3. Click Find.

If the Editor cannot find the string, you hear a beep. If it
does find the string, it scrolls to and highlights the string,
as shown in Figure 4-8.

=| e EEditPane'cp agz

break;

default:
if (1((CDocument *)itsSupervisor)->dirty) {
((CDocument *>itsSupervisori->dirty = TRUE;
gBar tender->Enab | eCmd(cmdSave);
gBar tender->EnableCmd{cmdSavefs>;

break;

CEdi tPane: :DoAutoKey(char theChar, Byte keyCode, EventRecord gl

cEvant

nheri ted: :DoAutoKey(theChar, keyCode, macEvent?;
twi tch (keyCode) {

case KeyHome:
case KeyEnd:
case KeyPagelUp:
case KeyPageDown:
break;

default:
if (!1{(CDocument *)itsSupervisor)-:dirtyd {

Figure 4-8 Highlighted string found by Editor

You have four choices for finding and replacing further instances of
the search string. Click Cancel at any time to end the search.

e To go to the next instance of the search string without
replacing the current instance, choose Find Next from
the Search menu (Command-G). To reverse the
direction of search, press Shift as you open the Search
menu and choose Find Previous (Shift-Command-G).

Symantec C++ User’s Guide and Reference 4-13

. 4 Editing a Project’s Code

¢ To replace the current instance of the search string with a
replacement string, choose Replace from the Search
menu (Command-Equals sign).

¢ To replace the current instance of the search string and
proceed to the next one, press Option-Command-Equals
sign. To reverse the direction of the search, press Shift as
you open the menu and choose Replace & Find
Previous (Shift-Option-Command-Equals sign).

e Replace every instance of the search string in the
searched file with the replacement string, click Replace
All in the Find dialog box or choose Replace All from
the Search menu.

Warning
When you click Replace All, a dialog box warns you

that Replace All is not reversible. Be sure that you
want to replace all instances of the search string
before you click Continue. Also, before choosing a
Replace command, make sure you have entered
the replacement string you want in the Find dialog
box. Otherwise, the search string is replaced with
nothing, thus deleting every instance of the string in
the file.

Searching through multiple files

You can do both batch and nonbatch searches on one or more files.

Performing a nonbatch search
You can look for a string in more than one file. To find and replace a
string in all open windows or in all files in the current project:

1. Choose Find from the Search menu (Command-F).
2. Enter the string to find in the Search for field.
3. Enter the replacement string in the Replace with field.

4. Set the Multi-File Search option on in the Find dialog
box.

4-14 Symantec C++ User’s Guide and Reference

Searching and Replacing Text

*

5. Click one of the Source Only, Headers Only, or Source &
Headers radio buttons.

6. In the File Set pop-up menu, choose All Files in
Project to search all files in the current project.
Alternatively, choose Open Windows to search all open
windows (Figure 4-9).

search for: [#include

Replace with: |

] Front Window
Open Windows

gfntire llé:rd B Muit Selected Files in Project A
5 65:::"’ se FIEETIA -~ Al Files in Project
N Exclu
| 0 % Custom...

Figure 4-9 Multi-file search of all open windows

7. Make sure the Batch Search option is set off.
8. Click Find.
9. Replace the string as noted in the previous section.

10. Choose Find in Next File from the Search menu
(Command-T), after the Editor reaches the end of the
file.

When all the selected files have been searched, the
multi-file search turns off.

If the Wrap Around option is set on, the Editor continues the search
at the top of the same file, rather than beeping and stopping at the
end of the file. Choose Find in Next File from the Search menu
(Command-T), so that the search moves on to the next file.

Performing a batch search
To find all instances of a search string in one or more files:

1. Choose Find from the Search menu (Command-F).

2. Enter the search string in the Search for field.

Symantec C++ User’s Guide and Reference ~ 4-15

4 Editing a Project’s Code

3. Set on both the Batch Search option and the Multi-File
Search option in the Find dialog box.

4. Click one of the Source Only, Headers Only, or Source &
Headers radio buttons.

5. Choose the files to search in the File Set pop-up menu.
6. Click Find.

Instead of scrolling to the next instance of the search string when
you click Find, the Editor brings up a Search Results window that
lists all instances of the search string in the searched files, as shown
in Figure 4-10.

=== Search Results for PPI: ngEdlt nE—

“CEdithp.cp R Line 12: *lnclude “CEdithp.h“
File "CEditApp. cp g Line 13: #include "CEditDoc.h"
File "CEditApp.cp”; Line 14: #include "Global .h"
File "CEditPane.cp”; Line 11: #include “CEditPane.h"
File "CEditPane.cp”; Line 12: #include "Commands.h"
File "CEditPane.cp”; Line 13: #include “CDoeument.h"
"CEdi tPane.cp”; Line 14: #include "CBartender.h"
"CEdltPane " Llne 15:

lnclude Constunts h

Figure 4-10 Batch Search Results window

To go to a selected instance of the search string from the Batch
Search Results window, do one of the following:

* Click the Go To button in the window’s toolbar.
e Double-click the entry in the window.

To learn about other options available for searching multiple files,
see Chapter 21, “The Search Menu.”

Using Grep to search for patterns

You can use Grep to search for strings that match a general pattern,
rather than for a specific string. To use Grep, set the Grep option on
the Find dialog box. The Editor accepts all standard Grep-style
patterns. If you are not familiar with Grep, see Chapter 21, “The
Search Menu,” for details on how to specify patterns.

4-16 Symantec C++ User’s Guide and Reference

Saving Changes

¢
Saving Changes

To save a file without closing it, choose Save from the File menu
(Command-S).

The first time you save the file, its Editor window is untitled. A Save
dialog box opens that prompts you to name the file. Type the
filename and click Save.

To change the name of a file, choose Save As from the File menu.

The Save As command saves the contents of the Editor window in a
new file that you name in a Save As dialog box. If the file is part of
a project, the name of that file also changes in the Project window.

To save the contents of the current Editor window under a new
name while editing the original file under its original name, choose
Save A Copy As from the File menu.

The Project window remains unchanged. This feature allows you to
make backup copies without editing the backup by mistake.

Compiling a File

After you finish editing a file, you can immediately compile it as part
of the currently open project. To do so, choose Compile from the
Build menu. The Symantec Project Manager opens the Progress
dialog box (Figure 4-11), which displays the progress of the current
compilation.

== Progress for PPC TinyEdit.m

Writing TinyEdit.cp

File 1 of 1
Tool PowerPC C++

Processing TinyEdit.cp
Current Total
Lines: 43 43
Errors: 0 0
Warnings : 0 0

Figure 4-11 Progress dialog box

Symantec C++ User’s Guide and Reference ~ 4-17

4 Editing a Project’s Code

4-18

If the compilation is successful, the compiled file automatically is
added to the project (unless the file is in the project already). If
instead errors are generated, the file is not added to the project and
the Build Errors window opens (Figure 4-12).

Build Errors for PPC TinyEdit.n =————8

rror

Errior:

ile "TinyEdit

File "CEditRApp.cp®; Line 55

'CEditApp: :SetUpFi leParameters' is not a member of struct 'CEditApp’

=16

Figure 4-12 Build Errors window

The Build Errors window lists the errors found in a source file. How
many are listed depends on the setting of the Error Reporting option
on the Debugging subpage of the Power PC C or Power PC C++
page of the Project Options dialog. For every error, the Build Errors
window shows the following:

e The project entry containing the statement that generated
the error

e The location of the statement

e A brief message explaining the error

With Symantec C++, it is easy to correct the errors in your source file.
To go to the statement in the source file that generated the error,
select the error message and click Go To. Alternatively, double-click
the error message. An Editor window opens, with the statement line
in question selected.

After you fix all the errors in your code, compile the file again by
choosing Compile from the Build menu.

Symantec C++ User’s Guide and Reference

Viewing and

Editing Classes
5

Once you have created and compiled a project, you can analyze the
structure of the source code by viewing the classes and functions it
contains. Symantec C++ provides a Class Browser designed
specifically for this purpose. With this tool, you can examine a
project’s class hierarchy as well as the classes’ logically related data
and function members. The ability to browse and edit pre-existing
class hierarchies is especially useful when you are exploring the
structure of unfamiliar source code.

This chapter describes how to work with C++ classes in the Class
Browser. The first sections cover opening the Class Browser,
navigating in the window, and viewing classes. With the Class
Browser, you can also edit classes and their data members. The final
section in the chapter outlines how to edit a class definition, a
member function, and a data member.

For a more detailed discussion of editing operations, see Chapter 4,
“Editing a Project’s Code.” For a complete reference, see Chapter 22,
“The Class Browser Window,” Chapter 19, “The Editor Window,” and
Chapter 20, “The Edit Menu.”

Before Browsing

Before you can browse the classes of a project, you must either build
the whole project or compile a portion of it by selecting some of the
project’s files and compiling them, as described in the previous
chapter.

To build the whole project, select Bring Up To Date from the Build
menu. The Symantec Project Manager now checks the dependency
tables and file date information, then compiles and links the files that
have changed since the last time the project was built.

Symantec C++ User’s Guide and Reference 5-1

5-2

5 Viewing and Editing Classes

The Progress dialog box opens (Figure 5-1) to let you track the
build of your project.

Progress for PPC TinyEdit.w

Writing TinyEdit.cp

File 1 of 1
Tool PowerPC C++

Processing TinyEdit.cp
Current Total
Lines: 43 43
Errors: 1] 0
Warnings: 0 0

Figure 5-1 Progress dialog box

If the build generated errors, the Build Errors window opens to let
you identify and fix the problems in your code. Chapter 4, “Editing a
Project’s Code,” describes the process of fixing errors in your source
files.

When a project is built, you can use the Class Browser to view and
edit the classes.

Opening the Class Browser

The Class Browser displays a list-based or hierarchical view of a class
hierarchy. To open a Class Browser window (Figure 5-2), choose
Class Browser from the Windows menu (Command-]).

Once you have opened a Class Browser window for a project, you
cannot display another project’s classes in it. Instead, you must open
a second Class Browser window for the other project. To open a
Class Browser with a different project as the active project, hold
down the Option key and choose Class Browser from the
Windows menu.

Symantec C++ User’s Guide and Reference

Navigating in the Class Browser Window

Source pane Classes pane Functions pane Data pane
= Class Browser E=———+—01
| |l Functions | pata
CAbstractText 1|l | Accessobject callbackFlags
CAppleEvent AccessSelection disposable
PSRRI | | AdjustMarks elementID
CappleEventSender | | AppendDesc gAncestorOffsets]

Source

: .

1{:Iass CAppleEvent TCL_AUTO_DESTRUCT_OBJECT

public:

CApp leEvent();

CAppleEvent{const AppleEvent #*theEvent = NULL, ApH
long theRefCon = 0J;

virtual “CAppleEvent();

void : |App leEvent(const AppleEvs
AppleEvent #*theReply,

B

Figure 5-2 Class Browser window
The Class Browser window is divided into four panes:
e The Classes pane, which lists the classes.

¢ The Functions pane, which lists the member functions of
the current (highlighted) class.

¢ The Data pane, which lists the data members of the
current (highlighted) class.

¢ The Source pane, which displays function or data
member source code. You can edit the source code in
this pane or use the text editor (see Chapter 19, “The
Editor Window”).

Navigating in the Class Browser Window

Only one of the four panes in the Class Browser window can be
active at a time (Figure 5-3). The active pane, which has a black
border, receives menu commands and all keystrokes.

Symantec C++ User’s Guide and Reference 53

54

5 Viewing and Editing Classes

To make a pane active, do one of the following:

e Click on it.
e Press Command-Tab to cycle through the panes (to cycle
backward, use Command-Shift-Tab).

Depending on your working style, you may need to alter the layout
of the Class Browser window. One possible rearrangement is shown
in Figure 5-3.

Class Browser =————09]
Source

? lass CAppleEvent TCL_AUTO_DESTRY

public:

CAppleEvent();

C Application CAppleEvent(const AppleEvent
— long theRefCo
Functions virtual “CAppleEvent();
AccessObject void 1App | g
AccessSelection AR
AdjustMarks Dg
AppendDesc virtual DescType GetEvg
virtual DescType GetEvs
Data
virtual const AppleEvent *Gg
callbackFlags virtual AppleEvent *GatRg
disposable virtual long GetRef
elementID virtual Boolean Gg
gancestorOffsets
|E{Ea{ T | &
Zoom icon

Orientation icon

Titles icon

Toggle Class List icon

Figure 5-3 Class Browser window in a vertical orientation

Symantec C++ User’s Guide and Reference

][]

[~ =

Viewing the Class Hierarchy .

You can use any of the four icons at the bottom of the window to
alter the layout:

e Zoom: Expands the active pane to fill the entire window

¢ Orientation: Changes the orientation of the panes from
horizontal to vertical, and back again

» Titles: Toggles to display or hide pane titles

¢ Toggle Class List: Toggles the list of classes in the Classes
pane between an alphabetic class listing or a hierarchical
ordering

In addition, size bars are available for changing the relative sizes of
the panes. Adjust a pane’s size by clicking on and dragging the split
bars between the panes.

Note
Any customization made to the Class Browser

window is not saved when the window is closed.

Viewing the Class Hierarchy

You can view the class structure displayed in the Class Browser
window’s Classes pane either as an alphabetic list or a structured
hierarchy. Both options are described here.

Note
You could use the hierarchical view to check the

logical structure of a project and the list-based
alphabetic view to verify that nothing is missing.

Symantec C++ User’s Guide and Reference 55

5-6

5 Viewing and Editing Classes

List-based viewing
To display a class definition (which includes the class’s functions and
data members) in the Source pane, double-click on one of the

classes in the Classes pane. Alternatively, select a class in the Classes
pane by clicking on it and press Enter.

For example, the information displayed in the Source pane of
Figure 5-4 is displayed as the result of double-clicking the
CAppleEvent class in the Classes pane in Figure 5-4.

= ClassBrowser=————71
Classes Functions [rata
CAppleEventlcong caninteract
ChppleEvent CappleEvent(cons currentEvent
ChppleEventObject CAppleEventlvoid directlsToken
CappleEventSender CAppleEventi directObject
C Application DesclistTodrray eventClass
Carray ExtractFromDesc event|D
Cérray lterator FailMoreRequired| idleProc

Source

class CAppleEvent TCL_AUTO_DESTRUCT _OBJECT
{
public:

CApp | eEvent();

CApp |leEventi{const AppleEvent #*theEvent = HULL, Ap
long theRefCon = 03;

virtual "CAppleEventdl;

[E|=T[P] [

Figure 5-4 List-based view of a class hierarchy in the Classes pane

Hierarchical viewing

The list of classes in the Classes pane can also be displayed
hierarchically. A hierarchical class view shows a class’s substructure
(its subclasses, if it contains any). For example, Figure 5-5 shows the
subclass structure of one of the classes in the Classes pane.

Symantec C++ User’s Guide and Reference

Editing Class Information

*

==
Classes
¥ ChppleEventObject
I Capplication
= CClipboard
CStyleTECTipb

Class Browser
Functions || Data

P cDocument
CFileElement
CProperty

Source

class CAppleEvent TCL_AUTO_DESTRUCT-OBJECT
{
public:

CApp | eEvent();

CAppleEvent{const AppleEvent *theEvent = NULL, Ap|
long theRefCon = 0J;

virtual “CAppleEvent();

[EETI]
Figure 5-5 Classes pane displayed in hierarchical order

Note

The Class Browser does not fully support viewing of
functions and data members for classes contained in
subprojects. These classes cannot be expanded to
view these elements. Instead, these classes appear
as italicized entries in the Class Browser. To view
the elements of a class that is in a subproject, you
open up a second Class Browser for that subproject.

Editing Class Information

This section describes how to edit class definitions, member
functions, and data members. Such editing occurs in the Source
pane, which displays the text of the class, member function, or data
member that was double-clicked or entered in another pane of the
Class Browser. The Source pane limits the view to the class or
member being browsed, rather than displaying an entire file. All
editing operations available in the text editor are also available in the
Source pane of the browser.

Symantec C++ User’s Guide and Reference 57

5-8

Viewing and Editing Classes

Editing a class definition
You can select a class and edit its definition in the Source pane. To
do so:

1. Double-click the class’s name in the Classes pane.

The file containing the class’s source code opens for
editing in a Source pane (see Figure 5-6).

F Class Browser
Classes Functions Data
CAbstractText Add blockSize
CappleEvent BedVirtualGetClag elementSize
CaAppleEventObject Carray(Carray& gAncestorOffs
CappleEventSender Carray(long ,shoq ghAncestors
Céapplication Copy gClassinfo
Chrray CopyFromTempor| hitems
CArraylterator Copy ToTemporary itslterators
Source

class CArray : public CCollection

public:
TCL_DECLARE_CLASS

short blockSize;

slots;

Figure 5-6 Editing a class definition within a Class Browser
window

2. Make any changes to the code directly in the Source
pane.

3. Save these changes by choosing the Save command from
the File menu.

Symantec C++ User’s Guide and Reference

Editing Class Information

Editing a member function

The Functions pane lists all the member functions of the class
selected in the Classes pane. To view and edit one of these member
functions:

1. Double-click the name of the member function in the
Functions pane.

The file containing the member function’s source code
opens for editing in a Source pane (see Figure 5-7).

E = Class Browser
Classes - Functions Data
ChAbstractText ‘I }CopyFromTemporary blockSize
CéppleEvent Copy ToTemporary elementSize
CappleEventObjecy Deleteltern gAncestorOff:
CappleEventSendey GetArray ltem || |9Ancestors ‘ F
Chpplication GetFrom gClassinfo
CArray Getltems hltems
Chrray lterator | | 1Array | {itslterators
Source

[elete an item from the Array. Index must be within the array.

Sends dependents an arrayleleteElement message.
FFFEF P EAREEFER LA B L AR X FEF RS EXBLE SRR E X%

void CArray: :Deletel tem{(long index)>

TCL_ASSERT_INDEXC index>;
TCL_ASSERT(lockChanges == FALSE);

[EB[T]] &

Figure 5-7 Editing a member function
2. Edit the function as desired.

However, if you change function argument types or
return types, you have to manually modify or add the
function declarations in the header file as well.

3. Save your changes by choosihg Save from the File
menu.

Symantec C++ User’s Guide and Reference 5-9

° 5 Viewing and Editing Classes

Editing a data member

The Data pane lists the data members defined for the class selected
in the Classes pane. To view or edit a data member listed in the Data
pane:

1. Double-click the data member name in the Data pane.

The file containing the data member source code opens
for editing in a Source window (Figure 5-8).

Eli=—— Class Browser ===
Classes Functions . || Data
CAbstractText CopyFromTemporary blockSize
CaAppleEvent Copy ToTemporary elementSize
CappleEventObject Deleteltem gAncestorOffset
CAppleEventSendey Getarrayltem ghAncestors
Chpplication - || | GetFrom gClassinfo
CArray Getltems hlitems
CArraylterator 1Array litslterators
Source

CArrayl terator *ijtslterators;

El=R|T] P “ &
Figure 5-8 Editing a data member

2. Edit the source as desired.

3. Save your changes by choosing Save from the File
menu.

5-10 Symantec C++ User’s Guide and Reference

Using the

Debugger ,
6

I}')e Symantec Debugger is a powerful tool for testing your
application. The Debugger lets you step through your code line by
line as it runs. It also lets you set breakpoints at specific lines at
which you might want to examine the state of the code’s execution
or to examine or change the values of variables.

This chapter outlines the basic steps involved in building an
application as well as testing application code with the source-level
Debugger. First, the Main and Debug Browser windows are
described with their various panes. Then, procedures for stepping
through code, setting breakpoints, examining the call chain, and
formatting data are outlined. The final sections cover methods of
analyzing variables, changing values, and evaluating expressions.

For a description of more advanced features, including lower-level
debuggers that are available in the Symantec C++ environment, see
Chapter 24, “The Debugger Windows,” and Chapter 25, “The
Debugger Menus.”

Updating the Project

Before you can debug the project, you need to compile and link it.
When you attempt to run a program with the Debugger (as outlined
in the next section), the project may need to be updated due to
changes in the source code. If so, the Symantec Project Manager
prompts you to bring the project up-to-date (Figure 6-1).

Symantec C++ User’s Guide and Reference 6-1

6 Using the Debugger

f Bring the project “Hello World.w” up to date?

I]un’t llpdate - Update

Flgure 6-1 Update Project dlalog box

Click Update to bring your project up-to-date.

The Symantec Project Manager then compiles and links the
application. If errors occur during compilation, the Build Errors
window opens. For information on dealing with compilation errors,

refer to the section “Compiling a File,” in Chapter 4, “Editing a
Project’s Code.”

If errors are encountered during the linking process, a Linker Errors
window opens (Figure 6-2).

Elﬁ———g_‘ Linker errors for “PPC TmyEdlt 11” %1

ndefined ngbol: —ptrgl (TlngEdlt cp,CEdi tPane. cp,CEdltﬂpp cp, CE[{)
Undefined Sumbol: _next (PPCANS|_small.o) =)
Undefined Symbol: atexit (PPCANSI_small.o>
Undefined Symbol: _exiting (PPCANS|_small.o)
Undefined Symbol: _critical_atexit (PPCANS|_small.o)
Undefined Symbol: qd (CPopupPane.cp,ClconPane.cp, CPopupMenu.cp,CS

] G

Figure 6-2 Linker Errors window

The Linker Errors window shows the link errors and the source files
that generated the errors. To rectify link errors, you need to examine
the source files as well as which files are included in the project. For
example, two common problems resulting in Undefined Symbol link
errors are the failure to include a library or subproject and the failure
to define variables or procedures in source files. See Chapter 23,
“The Build Menu,” for more details on handling link errors.

6-2 Symantec C++ User’s Guide and Reference

Starting a Debugging Session

L 4
Starting a Debugging Session

You can launch the Debugger either from the Project Manager or
from the Finder. As a general rule, launching the Debugger from the
Project Manager is a good idea. If you have not changed any source
files or recompiled anything since the last time you built the
application, you can launch the Debugger from the Finder. Your
project must be open in the Project Manager, so the Debugger can
have access to symbolic debugger information.

To start a debugging session from the Project Manager:
1. Open the project that you want to debug.

2. Choose Run with Debugger from the Project menu
(Command-R).

If you have changed your source files since last running
your project, the Update Project dialog box prompts
you to update your project.

3. Click Update.

To start a debugging session from the Finder, drag a built application
onto the debugger.

Trouble-shooting

If you have problems launching the Debugger, be sure that the
project is built with the Incremental Linker and that the following
options are turned on:

e Enable Symbolic Debugging (on the Compiler Options
Debugging page of the Project Options dialog box)

¢ Run with Debugger (on the Project Options page of the
Project Options dialog box)

See Chapter 18, “The Project Menu,” to learn how to select a linker
and turn options on.

Symantec C++ User’s Guide and Reference 6-3

6-4

6

Using the Debugger

Also, be sure that the Debugging flag in the bug column of the
Project window is set on for all files that you want to view in the
Debugger. Be sure that the two-machine Debugger Nub is set off, if
you have that installed.

Note
Debugging optimized code may not give the results
you expect.

The Debugger Windows

The Debugger provides several kinds of windows for performing
various debugging tasks. Two of those windows are discussed in this
section: the Main debugger window and Debug Browser windows.
The Control palette is discussed in the section “Stepping Through
Code.” For more information on these and the other Debugger
windows, see Chapter 24, “The Debugger Windows.”

Symantec C++ User’s Guide and Reference

The Debugger Windows .

Pane
size

drag
bar

The Main debugger window
Starting a debugging session opens the Main debugger window,
shown in Figure 6-3.

Stack Crawl pane Code pane
F—— TinyEdit.cp = F
Stack Crawl Code |
?2?? (68k) 0x000733A8 FEEEEFRREERFRRFRFFRERRFERRRRERR R 22 x 20000
2?2?? (PPC]0x002B3068 TinyEdit.c
2??? (PPC)0x002B36B4
P main 0x003206B8 Main program for a tiny editor. “

Stack

Crawl

drag
bar

Copyright © 1929 Symantec Corporation. All rights resel

#include “CEditApp.h"

void main(>

{
CEdi tApp *adi tApp;

editApp = new CEditApp;
edi tRpp-* |Edi tApp();

edi tApp->Runc);
edi tApp->Exi t();

Zoom icon

Titles icon
Orientation icon

Figure 6-3 Main debugger window

Symantec C++ User’s Guide and Reference 6-5

6 Using the Debugger

Looking at the Main window panes

The Main debugger window has two scrollable panes: a Code pane
to examine the code and a Stack Crawl pane to examine the call
chain for the current program counter. The two panes can be
scrolled independently. Their relative sizes can be changed by
dragging the double bar that separates them, as shown in Figure 6-4.

Drag cursor

[Stack Crawl
2?22 (68k)
2?22 (PPC)
2?22 (PPC>

P main

= TinuyEdit.c P """"Fﬁg
0x000733A8 T rTrrrreree e
0x002B3068 TinyEdit.c
0x002B36B4

0x003206B8 Main program for a tiny editoy

Copyright © 1989 Symantec

#include "CEditApp.h"

void main()

{
CEdi tApp *adi tApp;

editRpp = new CEdi tApp|
editApp-> |Edi tApp<¢J;
edi tApp-*Runty;

edi tRpp—>Exit(;

Figure 6-4 Pane size drag bar

6-6 Symantec C++ User’s Guide and Reference

The Debugger Windows

The panes’ relative orientation can be controlled using the
Orientation icon at the lower left of the window, as shown in

Figure 6-5.
B ilditgpy e
Stack Crawl .
222 (68k) 0x000733A8
222 (PPC) 0x002B3068
222 (PPC) 0x002B36B4
P main 0x003206B8
Code

JEXFFXFEXFFXFFX IR FREFRFF R LT FFXFRRIRRFERF R RSN FFXF XSRS X FFRRFREEREXEH
TinyEdit.c

Main program for a tiny editor.

Copyright © 1989 Symaritec Corporation. All rights reserved.

FFPERFEFFXE R R EX IR I LR L X T L E TR F AT XTI U R LR T U RN AR F XXX ERRLRT X%

#include “"CEditRpp.h"

Figure 6-5 Effect of clicking the Orientation icon

Symantec C++ User’s Guide and Reference 6-7

6-8

6 Using the Debugger

You can hide either of the panes by using the Zoom icon, as shown
in Figure 6-6.

e

EE|

TinyEdit.cp
; T
Ry Y I I XTI T2
TinyEdit.c
Main prograrn for a tiny editor.

Copyright © 1939 Symantec Corporation. All rights reserved.

#include "CEditApp.h"

void main(>

{

CEdi tApp *edi tApp;

edi tApp = new CEditApp;
edi tApp-> 1Edi tApp();

edi tApp-*Run(>;

edi tApp—-*Exit();

Figure 6-6 Effect of clicking the Zoom icon

Symantec C++ User’s Guide and Reference

The Debugger Windows

You can hide the titles of the panes by using the Titles icon, as
shown in Figure 6-7.

*

=— — Al

272
222
222

P main

(ﬁak)
(PPC)>
{PPLC)

0x000733ﬂ3 FERFERREREERFRRFEFFERFREF XX ERF LR 2557
0x002B3068 TinyEdit.c

0x002B36B4

0x003206B8 Main program for a tiny editor.

Edit.cp

Copyright © 1989 Symantec Corporation. All right

EEFEFLFFEEXXFIFLREERFREFTEETEEXRXXRETERE

#include "CEditApp.h"

void main(>

{

CEdi tApp *aditApp;

» editApp = new CEdi tApp;
edi tApp-> |Edi tApp();
edi tApp—>Runt);

edi tApp->Exit();

Figure 6-7 Effect of clicking the Titles icon

Scrolling in the Main window
To scroll to a specific line in your code:

1. Choose Go To Line from the Debugger’s Source menu
(Command-Comma).

2. When the dialog box is displayed, type the number of
the line to which you want to go.

3. Click Go To.
To scroll to a marker in your code:

1. Choose Go To Marker from the Debugger’s Source
menu (Command-Option-Comma).

2. Click the marker you want when the dialog box appears.

Symantec C++ User’s Guide and Reference

6-9

6 Using the Debugger

6-10

3. Click Go To.

You can also choose a marker from the Markers pop-up
menu by Command-clicking the title bar.

To learn more about markers, see Chapter 19, “The
Editor Window.”

To print the file displayed in the Code pane, choose Print from the
Debugger’s File menu. To edit the file in the Code pane, choose
Edit from the Source menu (Command-E). The Project Manager
comes to the foreground and opens an Editor window for the file.

To open a different source file in the Code pane, click that source
file in the Project Manager, then choose Debug File from the Project
Manager’s Project menu (Command-I).

The current statement arrow in the Code pane always points at the
statement the Debugger is about to execute. Initially it points at the
first executable statement in the code. The current statement arrow is
hollow when there are instructions left to execute in a statement. A
single line in the source code may be compiled into several
assembly instructions. You may see hollow arrows when the
statement is making an assignment, in a for statement, or cleaning
up the stack after stepping out of a function. You may also see a
hollow right angle arrow next to a line that corresponds to an active
stack frame.

The Main debugger window contains no close box and remains
open throughout a debugging session.

Debug Browser windows

You can also open auxiliary Debug Browser windows using the
New Browser command in the Debugger’s File menu
(Command-N). An auxiliary Debug Browser window can contain up
to three panes: a Code pane to examine the code, a Stack Crawl
pane to examine the call chain of a function, and a Data pane to
examine the values of expressions, as shown in Figure 6-8.

Symantec C++ User’s Guide and Reference

Stepping Through Code

Code pane

Stack Crawl pane Data pane
EES=——— PPCTinykdit.npef 2=——"—————pn
Stack Crawl Data
222 (68k) 0x000733A8 =di tApp ~
2?? (PPC) 0Ox00A94868
2?2 (PPC)> 0x00A94EB4
P main 0x00BO 1FO0 urgentsToDo 0x00
running 0x01
phase 0
rainyDayFund -16843010
criticalBalance |-16843010
Cade

void maind>

CEdi tRApp

#include "CEditApp.h"

*edi tApp;

editApp = new CEdi tApp;

edi tApp-* |Edi tApp();

edi tApp—*Run();
edi tApp—sExit();

Figure 6-8 An auxiliary Debug Browser window with expressions

Except for the Data pane and the close box, an auxiliary Debug
Browser window is identical to the Main debugger window. The
purpose of having auxiliary windows is to give the user as much
flexibility as possible. Expressions can be examined only in an
auxiliary window.

For further details concerning the Debug Browser window, see
Chapter 24, “The Debugger Windows.”

Stepping Through Code

The Debugger uses six commands to control execution. To make it
easier to debug applications, you can invoke these commands in any
of three different ways: using the buttons in the Debugger’s Control
palette, choosing commands from the Debug menu, or using
Command-key equivalents.

Symantec C++ User’s Guide and Reference 6-11

6

Using the Debugger

6-12

The buttons in the Control palette also serve as status indicators.
When a program is running, the Go button is lit. When the
application is stopped, the Stop button is lit. Remember that an
application can still be running even if the Main or Debug Browser
window is frontmost.

To step through code, do any of the following:

e Use the buttons on the Debugger’s Control palette,
shown in Figure 6-9.

E_..I I:_S*.*l’__lL___Il_.‘lu_f._.lETrace

Figure 6-9 Debugger’s Control palette wnth the Stop button lit

e Use the commands in the Debugger’s Debug menu.
e Use the equivalent Command-keys listed in Table 6-1.

Table 6-1 Key combinations for Control palette buttons

Control palette button Command-key equivalent
Go Command-G

Step Command-S

In Command-I

Out Command-O

Trace Command-T

Stop Command-.

To have the Debugger run code, click Go in the Control palette.
Your code runs until it reaches a breakpoint, until it hits an
exception (such as an illegal instruction), or until you stop it. If your
application is already running, the Go command brings it to the
front. To stop execution of code, click Stop in the Control palette.

Symantec C++ User’s Guide and Reference

Stepping Through Code

*

To execute code line by line, click Trace in the Control palette. In all
but one case, the execution continues to the next statement, even if
the next statement is in another function. The exception occurs
when the program counter steps into some code for which the
Debugger does not have the source text. This typically happens
when the routine steps into a function that is implemented in a
library.

For a brief period, the execution is not really in the application but is
in the library instead. You will not see the current statement arrow,
but the name of the current function (if the Debugger can determine
it) will still be visible in the call chain in the Stack Crawl pane.

To have the Debugger remain in the current function after executing
the current statement, click Step in the Control palette. If you are at
the end of a function, Step returns to the calling function. Use Step
when you want to execute statements within a function without
falling into the function being called.

Note
Step will fall into the function being called if it
contains a breakpoint.

To have the Debugger execute Trace commands until the execution
falls into a function, click In in the Control palette. This command is
useful when you want to skip over a set of assignments to fall into

" the next function call. If Step In reaches the last statement of the
current function without falling into another function, it will stop
immediately after the function returns.

To have the Debugger execute Step commands until the execution
falls out of the current routine, click Out in the Control palette. This
operation can be slow if there is much to be done, but it is a sure
way of leaving the current routine.

To move through a block of code quickly:
1. Select a line.

2. Choose Go Until Here from the Debug menu
(Command-H).

Symantec C++ User’s Guide and Reference 6-13

. 6 Using the Debugger

6-14

The Debugger goes as soon as the command is selected.
This command has the same effect as setting a temporary
breakpoint at the selected line, that is, it starts execution
of your code and stops at the selected line.

To jump ahead to a selected line without executing any intervening
code, choose Skip To Here from the Debug menu. This allows you
to skip over code that you know contains bugs but that is not crucial
to the rest of the code’s operation.

Note
Use this feature with caution, especially when
debugging optimized code.

Setting Breakpoints

You set breakpoints in the Code pane. The empty diamonds that
appear to the left of each executable statement indicate the places in
the code at which you are permitted to set breakpoints, as shown in
Figure 6-10.

[E==— Tinykdit.cp =——p1

Code :
Current) o)
statement #include "CEditApp.h
indicator
void maindy
{
. CEdi tApp *aditApp;
A. breakpoint editApp = new CEditApp;
diamond ——— edi tApp-> IEdi tApp();
editApp->Runt);
editRpp—>Exit();

Bl ||
Figure 6-10 Initial state of the Debugger Code pane

Symantec C++ User’s Guide and Reference

Setting Breakpoints

*

When code is running, the Debugger stops just before executing the
first statement where a breakpoint has been set. A set breakpoint is
indicated by a filled diamond to the left of the statement. The current
statement arrow points at that statement, as shown in Figure 6-11.

#include "CEditApp.h"

void main(’

{
CEdi tApp *adi tApp;

Filled diamond showing editApp = new CEditApp;
a breakpoint has been set edi tApp~> |Edi tRpp(¥;

edi tApp-*Runt>;
editApp—>Exit();

Figure 6-11 Debugger Code pane stopped at a breakpoint

The Symantec Debugger lets you set two kinds of breakpoints:
simple breakpoints and temporary breakpoints.

The Debugger always stops execution at a simple breakpoint and a
temporary breakpoint. At a temporary breakpoint, it also clears the
breakpoint so execution will not stop there the next time.

Simple breakpoints
To set a simple breakpoint, do one of the following:

e (Click a statement marker diamond.

e Click in the line to select it, then choose Set Breakpoint
from the Source menu (Command-B).

The diamond changes from hollow to filled to indicate
that a breakpoint has been set.

The breakpoint remains set until you clear it.

Temporary breakpoints
To set a temporary breakpoint, do one of the following:

e Hold down the Option key as you set the breakpoint.

Symantec C++ User’s Guide and Reference 6-15

6 Using the Debugger

6-16

¢ Choose Go Until Here from the Debug menu
(Command-H).

The Debugger starts running the code and continues
execution until it hits a breakpoint. Temporary
breakpoints are cleared as soon as they are hit.

To clear a breakpoint, do one of the following:
¢ Click the filled diamond.

¢ Select the line and choose Clear Breakpoint from the
Debug menu (Command-B).

Clear Breakpoint is available for a selected line if a
breakpoint has been set. If one has not been set for a
selected line, this command is displayed as Set
Breakpoint.

The hollow diamond indicates that no breakpoint is set.

To clear every breakpoint in a project, choose Clear All
Breakpoints from the Source menu.

Going until the next breakpoint

To advance the execution of your code to the next breakpoint, click
the Go button in the Debugger’s Control palette. The Debugger
stops executing the code just before the next statement that is
marked with a breakpoint. If the breakpoint is a simple breakpoint,
it will remain set. If it is a temporary breakpoint, it will be cleared.

Examining the Call Chain

The call chain is the sequence of functions that were called to get to
the current function. You can access the functions in the call chain
through the Stack Crawl pane.

Symantec C++ User’s Guide and Reference

Examining the Call Chain

L 4

To examine the call chain of the current function, select the Main
debugger window or a Debug Browser window. To examine the
variables in a function in the call chain, click the triangle to the left
of the variable name, as shown in Figure 6-12.

Function

= TinyEdit.cp

Clicked triangle i 0x00B0 1FO0
0xD0BGED42

Variable

Figure 6-12 Displaying the variables in a function in the call chain

Symantec C++ User’s Guide and Reference 6-17

R 6 Using the Debugger

6-18

To examine the fields in a structure, class, or array in a function in
the call chain, click the triangle to the left of the structure, class, or
array name, as shown in Figure 6-13.

Stack Crawl
7 prev 0x00000000
element|D 1082195968
P next 0x0003C 1C6
b prev 0x0003C1C8
disposable 0x00
disposable 0x00
<7 itsSwi tchboard || 0x00000000
P mouseRgn 0x408 10000
P itsidleChores [0x00000000

P i tsUrgentChores || 0x00000000

urgentsToDo 0x00
runhing 0x01
phase 0
rainyDayFund -16843010

criticalBalance||-16843010
toolboxBalance [|-16843010
tempAl location ||-16843010
P rainybay 0x00000000
rainyDayUsed OxFE
memlarning | ssued| OXFE
canFai | OxFE
inCriticalOperall OXFE
newk i ndowOnS tar | 0x01
sfNumTypes -258
P sfFileTypes [1 OxO0BGED9A

Figure 6-13 Displaying structure or array fields in a function in the
call chain

To hide variables or fields, click the same triangle again.

To copy a selected structure, class, array, or field to the Data pane,
choose Copy to Data from the Data menu (Command-D).

To change the value of a selected expression, type the new value in
the entry field of the Data pane, and press Return or Enter.

Symantec C++ User’s Guide and Reference

Examining the Call Chain

Formatting

*

To change the format of a selected expression, choose a new format

from the Data menu.

The available formats are shown in Table 6-2.

Table 6-2 Display formats available

Type

integer

unsigned

pointer

array
struct
union
function
float

fixed

Formats available

(Default formats in italics)

Signed Decimal, Unsigned Decimal,
Hexadecimal, Character

Unsigned Decimal, Signed decimal,
Hexadecimal, Character

Pointer, Address, Hexadecimal, C String,
Pascal String

Addpress, C String, Pascal String
Address

Address

Address

Floating Point

Fixed Point

Symantec C++ User’s Guide and Reference ~ 6-19

. 6 Using the Debugger

6-20

Command-keys and samples of these formats are shown in

Table 6-3.

Table 6-3 Display format examples

Format Command-key Example

Signed decimal Command--

Unsigned decimal Command-U

Hexadecimal Command-\
Character Command-R
Pointer Command-P
Address Command-A
C string Command-
Pascal String Command-'
Floating Point Command-F
Fixed Command-;

4523345 or -1
4523345 or 65535
0xA09E1487

'C' or 'TEXT'
0x007A7000

[10x0009FE44
or struct
0x0008FC14

"abcdef\nghi\33"
"\pabcdef\nghi\33"
1961.0102

1961.0102

The C string and Pascal string formats display nonprinting characters
in backslash form. Whenever it can, the Debugger uses the built-in
escape characters (\n, \r, \b); otherwise, it uses \nn, where nn

is an octal value.

You can use typecasting to use formats that are not normally
available. For example, to see the integer i as a C string, type the

expression: (char *) i.

To see any pointer as an array, change its format to Address.

To set the bounds of an array:

1. Click the array and choose Set Array Bounds on the
Data menu or double-click the array.

Symantec C++ User’s Guide and Reference

Analyzing Variables

*

The Set Array Bounds dialog box in Figure 6-14 opens.

Set Array Bounds

Display Range:
Lower Bounds: D

Figure 6-14 Set Array Bounds dialog box

2. Enter the number of items in the array and the base
index of the array.

3. Click OK.

For more details on setting array bounds, see Chapter 25, “The
Debugger Menus.”

Analyzing Variables

You can examine and modify the values of variables in the Data
pane. Expressions themselves are displayed in the left column of the
pane and their values are displayed in the right column. You can
enter any legal expression for the compiler you are using. Statements
with side effects are locked by default.

For the Debugger to compile an expression that you want it to
evaluate, it must know the context in which the expression is to be
evaluated. The context of an expression is the block of code
surrounding the expression when it is evaluated during execution.

To enter an expression in the Data pane, select the expression in the
Code pane, then choose Copy to Data in the Debugger’s Edit menu
(Command-D). The Debugger compiles the expression in the
context of the selected line and displays its value.

Symantec C++ User’s Guide and Reference 6-21

6 Using the Debugger

To enter an expression in the Data pane in the current context, type
the expression in the entry field of the Data pane and press Enter or
Return, Pressing Enter places the expression in the Data column and
also leaves it selected in the entry field, as shown in Figure 6-15.

Data

edltﬂpp

P edi tRpp 0x00BGED42 .
-

Figure 6-15 Pressing Enter to enter an expression

Pressing Return places the expression in the Data column and
removes it from the entry field, as shown in Figure 6-16.

b edi tApp 0x00BGED42

Figure 6-16 Pressing Return to enter an expression
The Debugger evaluates the expression in the current context.

To set the context of a selected expression in the Data pane that you
want the Debugger to evaluate, do either of the following:

¢ Select the line in the Code pane that contains the
occurrence of the expression that you want evaluated.

e Select a line in the Code pane and choose Set Context
from the Data menu.

If you have not selected a line in the Code pane, the expression is
evaluated in the context of the current statement.

6-22 Symantec C++ User’s Guide and Reference

Analyzing Variables

*

To see the context of an expression selected in the Data pane,
choose Show Context from the Data menu. The statement that is
the context of the selected expression is highlighted in the Code
pane.

To edit an expression that you want to evaluate:
1. Type the expression in the entry field of the Data pane.
2. Press Enter.

To edit an expression that is already in the Data column of the Data
pane, select the expression in the Data column. The expression is
shown selected in the entry field, ready to be edited.

To change the context of an expression to the current context after
you edit it, press Option or Command while pressing Enter.

When you edit an expression in the Data pane, the context is the
same as when you first entered the expression. To enable you to
compare an expression’s value in different contexts, the Debugger
lets you have multiple copies of the same expression in the Data
pane, as shown in Figure 6-17.

Data

P edi tApp
P edi tApp

Figure 6-17 Multiple copies of an expression
in the Data pane

To remove an expression from the Data pane:
1. Select the expression you want to remove.

2. Choose Clear from the Edit menu. Alternatively, press
Clear or Esc.

To remove all of the expressions from the Data pane, choose Clear
All Expressions from the Data menu.

Symantec C++ User’s Guide and Reference 6-23

6

Using the Debugger

6-24

Changing the values of variables

The Debugger lets you change the value of any expression that
would be legal on the left side of an assignment statement. When
you enter an expression, it is displayed in the left column of the Data
pane and its value is shown in the right column. For information on
changing the value or format of a variable, see the section
“Examining the Call Chain,” earlier in this chapter.

Evaluating expressions

The Debugger re-evaluates the expressions in the Data pane every
time a program stops. An expression whose context is not in the
current function is not re-evaluated and its value is cleared from the
Data pane, unless it has global scope.

To examine the values of variables:
1. Set the contexts of the variables you want evaluated.
2. Enter the variables in the Data pane.

To prevent an expression from being evaluated:
1. Select the expression.

2. Choose Locked from the Data menu (Command-L). The
Debugger locks the expression with a lock icon.

Locked variables are always displayed, even if they are no longer in
context.

You can ensure that the Debugger always evaluates a variable in the
context of the current statement by making the variable context-free.

This is useful if you are using the same variable name in several
routines and you would like to see the value of the variable
whenever you enter one of those routines.

To make a selected variable context-free, choose Context-free from
the Data menu (Command-K). The Debugger marks the variable
with a small arrow.

Symantec C++ User’s Guide and Reference

Ending a Debugging Session .

Ending a Debugging Session

To end a debugging session, do one of the following:
e Quit the application.
e Choose Quit from the Debugger’s File menu.
e Choose ExitToShell from the Debugger’'s Debug menu.

Preferences and Options

Preferences apply to all projects. Options are project-specific. To
learn how to set preferences for the Debugger, see Chapter 25, “The
Debugger Menus.” To learn how to set options for the Debugger, see
Chapter 18, “The Project Menu.”

Symantec C++ User’s Guide and Reference ~ 6-25

. 6 Using the Debugger

6-26 Symantec C++ User’s Guide and Reference

Creating a User

Interface with VA .
V4

[isual Architect is the preferred platform for designing and
implementing the user interface for Symantec C++ applications. It
acts as a bridge between the programmer and the powerful and
diverse capabilities of the THINK Class Library, allowing you to
create a complete user interface with a minimal investment of time
and energy. This chapter describes the basic functions of Visual
Architect.

At this point, you should be comfortable with creating a project
using the VA Application project models, editing code, building and
debugging your project, and viewing classes. Visual Architect, in fact,
can be used at any point in the development cycle following
creation of a project.

This chapter describes how to launch Visual Architect and use it to
construct and edit views, panes, menus, commands, classes, and
Balloon Help. The generation of source code for a project is also
covered.

Introduction

You use Visual Architect in conjunction with other Symantec C++ for
Power Macintosh tools to construct an application’s user interface.
Visual Architect lets you develop code and resources using
interactive, visual tools, rather than by writing in C++. Using the
THINK Class Library, Visual Architect generates customizable source
code. Also, Visual Architect lets you test user interface elements
without having to build a project in the Symantec Project Manager.

Symantec C++ User’s Guide and Reference 7-1

7 Creating a User Interface with VA

When to use Visual Architect

You can use Visual Architect at any stage in the development of an
application—for example, when you are beginning a design or fine-
tuning an application’s user interface at the end of a project.
Typically, you work with Visual Architect throughout the
development of an application. You build the application
incrementally by going back and forth between Visual Architect and
the other Symantec Project Manager tools.

Files produced

Visual Architect maintains one resource file and a set of source files.
The resource file, by default named Visual Architect.rsrc,is
automatically added to a project when you create it with either of the
two VA Application project models. The source files are .cp and .h
files. They are written in C++ and automatically are added to a
project as they are created by Visual Architect. You are encouraged,
and typically will find it necessary, to edit these files in the course of
developing an application’s user interface.

Note
Studying the commented code generated by Visual
Architect helps you understand the structure and
implementation of classes in the THINK Class
Library.

Launching Visual Architect
To launch Visual Architect:
1. Create a project using either of the two VA Application

project models in the Symantec Project Manager, as
described in Chapter 3, “Starting a Project.”

Note
You can also choose any customized Visual
Architect project model. See Chapter 16, “The File
Menu,” for details on creating your own project
models.

7-2 Symantec C++ User’s Guide and Reference

Launching Visual Architect

Figure 7-1 shows the resource file named Visual
Architect.rsrc that is included in your project.

+ PPC Process Monitor.mw

. [_PPC Process Monitor 1 W)

&
&

Extra Sources
Runtime Libraries 1]
Source

0

TCL Resources.rsre u}
THIRK Class Library o
0

*

L 2
B0 B0 DD

Visual Architect.rsre

hid

Totals 1]

Figure 7-1 Project Manager Project window and selected

2. Double-click Visual Architect.rsrc in the Project

Visual Architect.rsrc entry

window.

Visual Architect launches and the View List window
opens (Figure 7-2).

= 5

Disual Architect.rsrc

Main

B

&

i

Figure 7-2 Visual Architect View List window

The View List window in Visual Architect shows a list of the views
defined in the Visual Architect.rsrc file. Whenever you
create a new project in the Symantec Project Manager using either of
the VA Application project models, the Visual Architect.rsrc

file contains

a default view called Main.

Symantec C++ User’s Guide and Reference

7-3

7-4

7 Creating a User Interface with VA

Constructing Views

Building an application’s user interface typically begins with
construction of its views. In general terms, a view can be thought of
as a window (although the type of view known as a Subview is not
actually a window).

Views implement an application’s windows, dialog boxes, floating
palettes, and tear-off menus. When you create a view in Visual
Architect, you base the view on one of several view types, such as
modal dialog or floating window, then customize it. When the
application runs, multiple instances of that view can be open
simultaneously.

Note
The term “view” has different meanings in the
THINK Class Library and in Visual Architect. In the
THINK Class Library, a view is an instance of a class
derived from CView. CView is the base class from
which all visual entity classes are derived.

In Visual Architect, however, “view” refers to the set
of elements (resources and THINK Class Library
classes) that together implement your window
(unless the view is a Subview). One of these
elements is an instance of a class derived from
CView. For more information on CView, see the
online THINK Reference.

The following section outlines the different view types and describes
the processes involved in constructing views.

Types of views

Visual Architect provides nine view types. All but the last view type
(Subview) implement windows.

Main Window

Main Window views implement windows that serve as the center of
the user’s attention. These views typically are used to display the
contents of a document, either text or graphics.

Symantec C++ User’s Guide and Reference

Constructing Views

Note
The Main view discussed earlier is an instance of a
Main Window view.

Window

Window views implement windows that are auxiliary to the
application’s Main Window views.

Floating Window

Floating Window views implement palettes containing drawing tools,
colors, patterns, and so on. These views are drawn in front of all
nonfloating windows.

Tear-off Menu

Tear-off Menu views are similar to Floating Window views except
that they implement menus that can be “torn off” from the menu bar
and placed anywhere on the screen.

Dialog
Dialog views are used to implement general-purpose modeless
dialog boxes.

Modal Dialog
Modal Dialog views are used to implement general-purpose modal
dialog boxes.

New... Dialog

New... Dialog views are used to implement a special type of modal
dialog box, with which the user specifies a document type. This
dialog box is displayed in response to a user choosing New from the
File menu when more than one document type is created by the
application.

Splash Screen

Splash Screen views are used to implement a special type of
modeless dialog box, which is only displayed when the application
is starting up.

Subview

Subview views are a special type of view used to implement
panoramas within other views. This view type does not implement a
window.

Symantec C++ User’s Guide and Reference 7-5

7 Creating a User Interface with VA

Most applications define one or more Main Window views, which
serve as the central windows for the application and can be modified
to suit your needs. In addition, you can create views to implement
additional windows, dialog boxes, palettes, and pop-up menus, and
modify them accordingly.

Creating a view

While the same general procedure is used to create all nine types of
views, the Dialog view is used as an example of the process in this
section.

To add a new Dialog view to an application:
1. Choose New View from the View menu.

The New View dialog box opens, as shown in
Figure 7-3, in which you are prompted to provide basic
information about the view.

Please name the new view

LETHUntitled

View Kind: |_Dialog _]

Figure 7-3 New View dialog box

2. Type a name for the new view in the Name field.

The name you specify must be unique within the
application.

7-6 Symantec C++ User’s Guide and Reference

Constructing Views .

3. Choose a type of view from the View Kind pop-up
menu (Figure 7-4).

Floating Window

Main Window
Modal Dialog
New... Dialog
Splash Screen
Subview
Tearoff Menu
Window

Figure 7-4 View Kind pop-up menu
4. Click OK.

The name of the new view is displayed in the View List
window (Figure 7-5).

[EEE visual Architect.rsrc

Main it
MyDialog
3
[&
Figure 7-5 View List window, with a new view

named MyDialog

Symantec C++ User’s Guide and Reference 7-7

7 Creating a User Interface with VA

In addition, a View Edit window for this new view opens
(Figure 7-6), using the title supplied in the New View
dialog box.

T———— Qo

Figure 7-6 View Edit window for the MyDialog Dialog view

The View Edit window resembles the MacDraw ™ drawing window.
You can construct the elements within a view using the View Edit
window. The section “Creating Panes,” later in this chapter, describes
this process.

Changing the attributes of a view

The general attributes of a view, such as its window type and size,
are set to default values when you create the view. To change these
attributes, use the view’s Info dialog box. The steps involved in
changing view attributes are similar for the different view types. The
following steps demonstrate how to edit Dialog views.

To open the Info dialog box for a view:

1. Open the view’s View Edit window by double-clicking
the view’s name in the View List window.

2. Choose View Info from the View menu.

7-8 Symantec C++ User’s Guide and Reference

Constructing Views

L 2

The Info dialog box opens, as shown in Figure 7-7, for a
Dialog view.

Dialog Info

Name: FiyDialog ID: 129 D modal

Title: |MyDialog] [use fite

Window Class: | CDialog w

oagLl

[0==] [[0==]
[%] [[®]

[vert. Serall [Horiz. Serall
Position| Centered vI

Width:

Min Width: Min Height:
Max Width: Max Height:

Figure 7-7 Dialog Info dialog box

Note
The format of the Info dialog box is identical for

Dialog, Modal Dialog, New... Dialog, Splash Screen,
and Window view types. The Info dialog boxes for
other view types differ. See Chapter 31, “Visual
Architect View Menu,” for details.

Naming the view

Views are named when they are created, but the name can be
changed. To change the name of a view, type the new name in the
Name textbox.

Naming the view’s window

By default, the title of the view’s window when the application runs
is the same as the view name. To change the view’s window title,
type the new name in the Title textbox.

Symantec C++ User’s Guide and Reference 7-9

7 Creating a User Interface with VA

7-10

Setting the window type
You can set the window type used for a view’s window in one of
two ways:

¢ Select one of the ten window type icons.
¢ Type the name of the window type in the procID
textbox.

Setting the window position

You can choose one of three positions for a view’s window when it
appears in the running application. If it should appear in a fixed
position, its position is determined by the values in the Left and Top
textboxes. If it should be centered, it is centered on the main screen.
If it should be staggered, it appears down and to the right of the
previous window. To set the positioning of the view’s window,
choose Fixed, Centered, or Staggered from the Position pop-up
menu.

Setting the window size

The size of the view’s window can be set numerically or graphically.
To set the window size numerically, type the appropriate numbers in
the Width and Height textboxes.

To set the size of a view’s window graphically, use the View Edit
window for that view:

1. Bring the View Edit window to the front.

2. Drag the sizing handle of the view’s portRect
(Figure 7-8).

Note
You may first need to increase the size of the View
Edit window.

Symantec C++ User’s Guide and Reference

Creating Panes

New portRect

¢

Original portRect Sizing handle

[IIIE]
[E5)

l

Mybialogg ==n--——— &9

734, 944

&

Figure 7-8 Resizing a view using the sizing handle

Creating Panes

You can now create the control and graphical elements to include in
the view. These elements are called panes.

Panes are graphical elements that provide visual information, control
capabilities, or both.

Note
Panes are implementations of the THINK Class
Library class CPane. All drawing performed by
classes in the THINK Class Library occurs within
panes, each of which has its own drawing
environment. CPane, a visual element class, is
derived from CView.

Without any panes, a view is only a blank window. A view must
have panes to have functionality. Panes get their functionality by
having commands attached to them. Commands are explained later
in this chapter.

Symantec C++ User’s Guide and Reference ~ 7-11

7 Creating a User Interface with VA

7-12

Twenty different pane classes are available in Visual Architect. These
allow you to display static text and graphic elements as well as
implement dialog (editable) text fields, buttons, radio buttons, check
boxes, scroll bars, pop-up menus, and scrolling text and graphics
fields. The individual panes’ classes are described in Chapter 34,
“Visual Architect Tools Menu.”

Adding a pane to a view
You add panes to views using the Tool palette shown in Figure 7-9.

LO|H|E |5 =|=

/0B E @
SHENENENL 4C

Figure 7-9 Tool palette
You access the Tool palette in either of two ways:
¢ Choose individual tools from the Tools menu.

¢ Click the Tools menu and tear off the Tool palette by
dragging it beyond the edge of the menu. An outline of
the Tool palette is displayed, which you can position
anywhere on the screen.

Note
You can reposition a pane after it is created by
dragging it to its new position.

All tools in the Tool palette except the Select tool, correspond to a
pane class. The Select tool is used to select one or more panes
already added to a view, as described in the section “Selecting a
pane” later in this chapter.

Symantec C++ User’s Guide and Reference

Creating Panes

You follow similar steps to create panes for the different pane
classes. The following directions describe the process for a few pane

classes.

Adding a text pane
Views can have two types of text panes: static text and dialog text.

Static text panes are used to provide information to the user. Dialog
text panes are used to obtain information from the user.

To add
1.

2.

4,
To add
1.

2.

a static text pane to a view:
Open the View Edit window for the view.

Choose the Static Text tool from the Tool palette.

. Click the cursor in the View Edit window to position the

static text pane.

A blinking insertion point indicates that you should enter
the text for the pane.

Type the text for the static text pane.
a dialog text pane to a view:
Open the View Edit window for the view.

Choose the Dialog Text tool from the Tool palette.

. Click the cursor in the View Edit window to position the

dialog text pane.

A dialog textbox opens.

Note

The default text for dialog text panes is specified in
the Pane Info window, described in the “Changing
pane attributes” section, later in this chapter.

Symantec C++ User’s Guide and Reference

7-13

7 Creating a User Interface with VA

Adding a button pane
Button panes implement the standard Macintosh push buttons. To
add a button pane to a view:

1. Open the View Edit window for the view.
2. Choose the Button tool from the Tool palette.

3. Click the cursor in the View Edit window to position the
button pane.

A button is displayed with some default text highlighted.

4. If you want to rename the button, type the text for the
name of the button.

Adding a graphic element pane

Views often contain graphic elements that divide the view’s window
into functional areas, direct attention, or serve as decoration. Visual
Architect provides six tools for creating basic graphics panes: Straight
Line, Unconstrained Line, Rectangle, Rounded Rectangle, Oval, and
Polygon. All these tools function in the standard fashion associated
with drawing programs such as MacDraw™.,

To add a line pane to a view:
1. Open the View Edit window for the view.

2. Choose either the Straight Line or the Unconstrained Line
tool from the Tool palette.

The Straight Line tool creates a line orientation as a
multiple of 45°; the Unconstrained Line tool permits any
line orientation.

3. Drag the cursor in the View Edit window to set the
starting and ending points for the line.

To add a rectangle or oval pane to a view:
1. Open the View Edit window for the view.

2. Choose the Rectangle, Rounded Rectangle, or Oval tool
from the Tool palette.

7-14 Symantec C++ User’s Guide and Reference

Creating Panes

*

3. Drag the cursor in the View Edit window to set two
opposing corners of the bounding box containing the
pane.

Selecting a pane

Once a pane has been added to a view, you need to select it to
change its location or its attributes. Select panes using the Select tool
from the Tool palette. To select a pane:

1. Open the View Edit window for the view.
2. Choose the Select tool from the Tool palette.

Choosing the Select tool changes the cursor to an arrow,
the standard Macintosh selection cursor.

3. Select the pane.

Depending on the number of panes you want to select, you can
select a pane in one of these ways: .

¢ For a single pane, click the pane.

¢ For multiple panes, click the panes while holding down
the Shift key. Alternatively, click an empty part of the
drawing area, hold the mouse button down, and drag the
cursor until the selection rectangle encompasses the
panes you want to select.

If the Lazy Select command is enabled in the Options menu, the
selection rectangle only has to touch a pane for it to be selected.

Deleting a pane from a view
To delete a pane from a view:

1. Open the View Edit window for the view.
2. Select the pane.
3. Click Delete.

Changing pane attributes

You can change many attributes that define a pane. This process
involves changing data members in the class hierarchy of the pane.
Use the Pane Info window to change attributes.

Symantec C++ User’s Guide and Reference ~ 7-15

7 Creating a User Interface with VA

7-16

To open the Pane Info window for a pane:
1. Open the View Edit window for the view.

2. Select the pane and choose Pane Info from the Pane
menu. Alternatively, double-click the pane in the View
Edit window.

Pane Info windows vary in appearance depending on the pane class.
All of them are organized similarly, however. The Pane Info window
for a static text pane is shown in Figure 7-10.

EE==————— statl
Identifier:
width:[87 | Height:[16 |
b £5tatieText I

7 CEditText
hText: Iﬁc pane 1
spacingCmd: [cmdSingleSpace w|
alignCmd: [cmdAlignLeft w]
P CAbstractText

Figure 7-10 Pane Info window

A Pane Info window is associated with a particular pane. You can
have multiple Pane Info windows open simultaneously, each
reflecting information about a different pane. When you close a
view, any Pane Info windows associated with panes in that view are
closed automatically.

Changes made in the Pane Info window are reflected immediately in
the target pane. For example, if you type a value in the Width or
Height textboxes for the CPane class, the size of the pane in the
View Edit window changes as you type.

Editing the pane identifier

The title of the Pane Info window is the identifier for the pane. To
edit a pane’s identifier, enter changes in the Identifier textbox at the
top of the Pane Info window.

Symantec C++ User’s Guide and Reference

Creating Panes

Setting the pane size and position

To set the position of the pane relative to the view’s window, type
an appropriate number in the Left and Top textboxes at the top of
the Pane Info window.

To set the size of the pane, type an appropriate number in the Width
and Height textboxes at the top of the Pane Info window.

You can also change the size and position of a pane graphically
within the View Edit window. To set the size of the pane graphically,
drag the sizing handle for the pane, located in the lower-right corner
of the pane. To set the position of the pane graphically, drag the
pane to the new location.

Setting other pane attributes

All other pane attributes are specific to each pane class, and are
changed using the lower portion of the Pane Info window. The
lower portion shows the pane’s class hierarchy, beginning with the
outermost derived class of the pane and ending with the CView
class.

The small triangles next to the class names let you access the
contents of each class, which are displayed in a subarea below the
class name, as shown in Figure 7-10. The triangles exist in two states:
closed, when they point to the right, and open, when they point
down. The class subarea contains the editable subset of the data
members for that class. (See the online THINK Reference for
definitions of these data members.)

To access the contents of a class, click the triangle next to the class
when it is in the closed state. An area below the class name opens,
revealing the contents of that class.

To hide the contents of a class, click the triangle next to the class
when it is in the open state. The subarea below the class closes,
hiding the contents of that class.

Editing the text in a dialog text pane
To edit the text in a dialog text pane:

1. Open the Pane Info window for the dialog text pane.

2. Click the triangle next to the CEditText class to display
the editable data members of that class.

Symantec C++ User’s Guide and Reference ~ 7-17

7 Creating a User Interface with VA

7-18

3. Make changes in the hText textbox.

Editing text in other panes

You can directly edit the text of static, edit, push button, radio
button, or check box panes without using the Pane Info dialog box.
Select the pane and press Return. You can edit or add any text in the
pane, up to 32K characters. When you are finished, click outside the
pane. Panes are resized automatically to fit the text.

Trying out a view

From within Visual Architect, you can try out a view to verify its look
and feel in the running application. This method allows you to test
the view without going through the complete development cycle
that involves generating code with Visual Architect, updating the
project and building the application in the Symantec Project
Manager, and running the application.

To try out a view:
1. Open the View Edit window for the view.
2. Choose Try Out from the View menu (Command-Y).

A window opens, which shows how the view’s window would look
in the running application. Controls, such as buttons and scroll bars,
and Balloon Help (described later in this chapter) are active in this
window.

To close the “try out” window, choose Close from the File menu.
Alternatively, click the window’s close box, or the OK or Cancel
button, if available.

Building Menus

Visual Architect lets you create an application’s menus. These menus
can appear in the menu bar as standard menus or tear-off menus, or
they can appear as submenus or pop-up menus.

As with ResEdit, you construct menus with Visual Architect using a
graphical interface. In addition, Visual Architect lets you set up the
commands that are sent by menu items. These commands are
described in the section “Attaching Commands” later in this chapter.

Symantec C++ User’s Guide and Reference

Building Menus

*

Creating a menu
To create a new menu:

1. Choose Menus from the Edit menu to open the Menus
dialog box (Figure 7-11).

Menus

@® % (Apple Menu)

[Edit Menu Items |

MENU 1D:

b]
MDEF [0 |

Figure 7-11 Menus dialog box

2. Choose New Menu from the Edit menu (Command-K)
or press Return.

The textbox at the top of the dialog box clears and
shows a blinking cursor.

3. Type the title of the new menu in the textbox.

The new menu title is introduced in the menu list on the
left side of the dialog box.

4. Click OK to close the Menus dialog box.

Deleting a menu
To delete a menu from the menu list:

1. Open the Menus dialog box by choosing Menus from
the Edit menu.

2. Select the menu by clicking its title in the menu list on
the left side of the dialog box.

Symantec C++ User’s Guide and Reference ~ 7-19

7 Creating a User Interface with VA

3. Press Delete to remove the menu title from the menu list.

4. Click OK to close the Menus dialog box.

Adding a menu to the menu bar
To add an existing menu to the menu bar:

1. Choose Menu Bar from the Edit menu to open the
Menu Bar dialog box (Figure 7-12).

Menu Bar

@ & (Apple Menu)
(Edit Menu Items |

MENU 1D: 1

MDEF ID: 0

Add

Figure 7-12 Menu Bar dialog box

Note
The Menus dialog box lists all menus defined in the
current Visual Architect.rsrc file, while the
Menu Bar dialog box lists only those menus that
have been placed in the menu bar. The two are
otherwise similar in functionality.

2. Choose the menu you want to add from the Add Menu
pop-up menu.

The menu title is displayed in the menu list on the left
side of the dialog box. You can reorder the menus within
the menu bar at any time by dragging their titles within
the menu list.

3. Click OK to close the Menu Bar dialog box.

7-20 Symantec C++ User’s Guide and Reference

Building Menus

*

Removing a menu from the menu bar
To remove a menu from the menu bar:

1. Open the Menu Bar dialog box by choosing Menu Bar
from the Edit menu.

2. Select the menu by clicking its title in the menu list on
the left side of the dialog box.

3. Press Delete.

The menu is removed from the menu bar, but it is not
deleted from the Visual Architect.rsrc file.

4. Click OK to close the Menu Bar dialog box.

Adding and removing menu items
To add a menu item to a menu:

1. Open the Menus dialog box by choosing Menus from
the Edit menu (or use the Menu Bar dialog box, if the
menu is in the menu bar).

2. Select the menu by clicking its title in the menu list on
the left side of the dialog box.

3. Click Edit Menu Items.

Symantec C++ User’s Guide and Reference ~ 7-21

7 Creating a User Interface with VA

The Menu Items dialog box opens (Figure 7-13).

Menu Items

File

NeL
Open...
- [] Has submenu
Close

Save

Save Rs...
Revert to Saved
Page Setup...
Print...

Quit

Command: [cmdNew

Figure 7-13 Menu ltems dialog box

4. Choose New Menu Item from the Edit menu
(Command-K) or press Return.

The textbox at the top of the dialog box clears and
shows a blinking cursor.

5. Type the name of the menu item in the textbox.

The new menu item is introduced in the menu item list
on the left side of the dialog box.

6. Click OK to close the Menu Items dialog box.
To remove an item from a menu:
1. Open the Menu Items dialog box.

2. Select the item in the menu item list on the left side of
the dialog box.

3. Press Delete to remove the item from the menu item list.

4. Click OK to close the Menu Items dialog box.

7-22 Symantec C++ User’s Guide and Reference

Attaching Commands

Setting a menu item’s command key
To assign a keyboard shortcut key to a menu item:

1.

2.

4.

Open the Menu Items dialog box.

Select the item in the menu item list on the left side of
the dialog box.

Type the shortcut character into the Command-key
textbox.

Click OK to close the Menu Items dialog box.

Creating a submenu
To create a submenu and attach it to a menu item:

1.

5.
6.

Create the menu using the Menus dialog box, as
described in the section “Deleting a menu,” earlier in this
chapter.

Create the hierarchical menu item in another menu using
the Menu Items dialog box, as previously described in
the section “Adding and removing menu items,” earlier in
this chapter.

In the Menu Items dialog box, select the menu item you
just created and set the Has Submenu option on.

. Choose the submenu you created in Step 1 from the

Submenu pop-up menu.
Click OK to close the Menu Items dialog box.

Click OK to close the Menus or Menu Bar dialog box.

Attaching Commands

After creating the user interface elements, you can assign
functionality by attaching commands to them.

The role of commands

For a user interface element to be functional, it must generate an
action within the application. In the THINK Class Library, this is

accomplished by attaching a command to the user interface item.

*

Symantec C++ User’s Guide and Reference ~ 7-23

7 Creating a User Interface with VA

Visual Architect automatically generates the necessary code for
establishing such attachments.

In Visual Architect, commands are attached to panes and menu
items. All panes derived from CButton (Push Button, Radio Button
and Check Box), CSwissArmyButton (Picture Button, Straight Line,
Unconstrained Line, Rectangle, Rounded Rectangle, Oval and
Polygon), ClconPane (Icon Button) and CTable (List/Table) can have
an associated command. Any menu item, whether accessed from the
menu bar or from a pop-up menu, can have an associated
command.

A command can have one of three actions in each class that
responds to it. It can call a function that you code yourself, open an
already defined view, or do nothing. If the action of the command is
to call a function, Visual Architect generates skeleton code into the
appropriate classes, into which you insert your code to handle the
command.

Note
The specific mechanisms by which commands are
sent and handled are dictated by the rules of the
chain of command (see the section “Chain of
command,” in Chapter 27, “TCL and VA: Basic
Concepts”).

Defining a new command
To define a new command:

1. Choose Commands from the Edit menu.

7-24 Symantec C++ User’s Guide and Reference

Attaching Commands

2

The Commands dialog box opens (Figure 7-14).

Commands
cmdlHalfSpace cmd1HalfSpace |
cdeh_out Number: 51
cmdAlignCenter Wiiorie:
cmdAlignLeft G s
In Class: | None]|

cmdAlignRight

cmdBold iii%:é Mpthing w

cmdCancel Braw | Noae - ;
cmdClear
cmdClose]
cmdCondense :
cmdC o 1

Figure 7-14 Commands dialog box

2. Choose New Command from the Edit menu
(Command-K), or press Return.

The textbox at the top of the dialog box is cleared and
displays a blinking cursor.

3. Type the name of the new command into the textbox.
The command name must be unique for the project.

The new command is introduced in the command list on
the left side of the dialog box.

4. Choose the classes you want to have respond to the
command in the In Class pop-up menu.

Multiple classes can respond to the command. Thus,
choosing a class from the pop-up menu does not
deselect any currently selected class. To deselect a class,
choose it a second time.

5. Choose the action of the command in the Do pop-up
menu.

6. If the action of the command is to open a view, choose
the view to open in the View pop-up menu.

Symantec C++ User’s Guide and Reference ~ 7-25

7-26

7 Creating a User Interface with VA

7. Click OK to close the Commands dialog box.

Defining Classes

The set of classes from which you define user interface elements in
Visual Architect is not limited to the THINK Class Library classes.
Visual Architect lets you define your own classes, which are directly
or indirectly derived from the THINK Class Library.

You may want to define new classes because the default THINK
Class Library classes that Visual Architect uses may not be as
complete as you need. For example, you may want to create a dialog
text pane that permits only the user to enter certain characters. In
such a case, you must derive your own class using the THINK Class
Library class CDialogText as a base class. Then, you must create a
pane as an instance of this new class.

Visual Architect provides mechanisms for deriving and implementing
your own classes. It also lets you define some of your class’s data
members. Once Visual Architect generates the skeleton code for
implementing a new class, you must write the code to support the
class’s member functions and any additional data members.

Creating a new class
To create a new class:

1. Choose Classes from the Edit menu to open the Classes
dialog box (Figure 7-15).

C'asses R S
CMain . g T
CMyDialog Haew finssr ! {8pplvation v

(Define Data Members |

Library class: I 1

Figure 7-15 Classes dialog box

Symantec C++ User’s Guide and Reference

Defining Classes

2. Choose New Class from the Edit menu (Command-K),
or press Return.

The textbox at the top of the dialog box clears and
displays a blinking cursor.

3. Type the name of the new class in the textbox. The class
name must be unique for the project.

The new class is introduced in the class list on the left
side of the dialog box.

4. Choose the THINK Class Library class from which to
derive your class from the Base Class pop-up menu.

Note
It is also possible to derive classes from your own
library classes, rather than directly from THINK
Class Library classes. Refer to “Library class
textbox,” in Chapter 30, “Visual Architect Edit
Menu,” for details.

Defining data members
To define data members for a class:

1. In the Classes dialog box, select the class and click the
Define Data Members button.

Symantec C++ User’s Guide and Reference ~ 7-27

7 Creating a User Interface with VA

The Data Members dialog box opens (Figure 7-16).

Data Members

class MyClass : CButton {

2l

fyper i shorl

[1 [JPascal

X GetFrom []PutTo

(cancet] [ok |

Figure 7-16 Data Members dialog box

2. Choose New Data Member (Command-K) from the Edit
menu, or press Return.

The textbox at the top of the dialog box clears and
displays a blinking cursor.

3. Type the name of the new data member in the textbox.
The data member name must be unique for the class.

The new data member is introduced in the data member
list on the left side of the dialog box.

4. Choose the data type for the data member from the Type
pop-up menu.

5. Click OK.

Changing classes
To change the class for which the pane is an instance:

1. Open the View Edit window for the view and select the
pane.

2. Choose the class from the Class submenu of the Pane
menu.

7-28 Symantec C++ User’s Guide and Reference

Adding Balloon Help .

Adding Balloon Help

Once your views, panes, and commands have been laid out, you
should add Balloon Help for your user interface elements.

Visual Architect lets you create Balloon Help for your views and
panes. It supports four different balloon types, corresponding to the
different states your views and panes can assume at run-time.

If you want to add Balloon Help to other user interface elements,
such as menus, use a resource editor such as ResEdit or Resorcerer.

To add Balloon Help to a view:
1. Open the View Edit window for the view.

2. Click in the window between the panes to confirm that
no pane is selected.

3. Choose Balloon Help from the Edit menu to open the
Balloon Help window (Figure 7-17).

E[E Balloon Help
For: main panorama {CPanorama)
Enabled: Dimmed:
TN Ny
A Y
L 7 \, ¥
Enabled and checked: Enabled and marked:

W

|

Ty

w

N

\

.‘

Figure 7-17 Balloon Help window

4. Click in the appropriate balloons and type the Balloon
Help text.

5. Close the Balloon Help window.

Symantec C++ User’s Guide and Reference ~ 7-29

7 Creating a User Interface with VA

7-30

Generating Source Code

After designing the user interface elements in Visual Architect, you
must generate the source code for the classes that define these
elements. Visual Architect accomplishes this by generating source
code files from the resources it created during the design of the user
interface. These source files are incorporated automatically into the
Symantec Project Manager project.

Next, you must expand the code generated by Visual Architect.
Because Visual Architect.rsrc is a project entry with a
resource file extension, the Symantec Project Manager copies its
resources into the application when the application is built.

Visual Architect and the Symantec Project Manager
Visual Architect is coupled with the Symantec Project Manager
through Apple events. As a result, it can notify the Project Manager
to add source files to a project, as well as to update and run the
project. This system simplifies project maintenance by letting you
take care of basic management tasks without switching out of Visual
Architect.

Note
The linkage between Visual Architect and the
Symantec Project Manager is maintained only while
the Project Manager is running and the project to
which the Visual Architect.rsrc file belongs
is open.

Source files created by Visual Architect

Visual Architect generates code that you can modify. More
importantly, those modifications are not overwritten the next time
Visual Architect generates code. For each class defined in a Visual
Architect project, an upper-level class and a lower-level class are
created. Two corresponding .cpand .h source files are generated.
One .cp/.h pair contains the upper-level class and one .cp/.h
pair contains the lower-level class.

Symantec C++ User’s Guide and Reference

Generating Source Code

L 4

The upper-level files are only generated once, while the lower-level
files are rewritten each time Visual Architect generates source code
for the class. All modifications must be made to the upper-level . cp
and .h files. These upper-level classes override the lower-level
classes.

Macro files

Visual Architect generates your project source files using a set of
macro files, that is, text files written in the Visual Architect macro
language. By default, the set of macro files used is the set provided
with Symantec C++ for Power Macintosh. You also can customize the
way in which Visual Architect generates code by supplying your
own macro files. For details on macro files, see “Inside Macro Files,”
in Chapter 35, “VA: Symantec Project Manager Menu.”

Generating source code and updating a project

To have Visual Architect generate source files for a project, choose
Generate (Command-G) or Generate All from the Symantec
Project Manager menu (Figure 7-18).

Note
The Symantec Project Manager menu title is the
Symantec Project Manager application icon.

Generate... 86

Generate All...

Bring Up To Date 38U
Run %R

Figure 7-18 Symantec Project Manager menu

Note
The first time you generate code from a Visual
Architect.rsrc file, you must choose Generate
All.

Symantec C++ User’s Guide and Reference ~ 7-31

7 Creating a User Interface with VA

7-32

A dialog box opens, showing the process of the code generation and
project updating. When the process is complete, the generated
source files are placed in the Source group in the Symantec Project
Manager project.

To update a Project Manager project from within Visual Architect,
choose Bring Up To Date from the Symantec Project Manager
menu (Command-U).

Customizing Visual Architect source files

Visual Architect does not generate all the code necessary to
implement your application’s user interface. You must perform hand
coding to supplement the code it generates. Examples of the types of
tasks you need to complete are listed below.

Enabling a menu item

By default, the code generated by Visual Architect disables all but a
core set of menu items. You must enable any menu items you create
at the appropriate places in your own code.

Handling commands

Code generated for a command is complete only when the
command opens a view. Otherwise, you must go to the classes that
handle the command and create a case statement to support its
desired action. When the action of the command is Call, the case
statement is generated for you, but it contains no code.

Initializing a view

When a view appears at run-time, some panes are activated, others
are deactivated, and some have default values defined for them. You
must write the code to set up the panes’ data members in the view’s
upper-level class.

Debriefing a view

When a view is closed, you often need to determine the state of the
panes and record information that the user entered. Once again, this
process must be coded by you.

Symantec C++ User’s Guide and Reference

Advanced Topics
/]

As you become proficient with the Symantec C++ for Power
Macintosh, you begin to undertake larger programming tasks. This
chapter looks at some of the advanced features of the Program
Manager designed to help you track programming development in
large projects.

The first section covers options sets, which you can use to establish
and then reuse groups of options intended for different stages of
development. The second section describes precompiled headers,
with which you can speed the compilation time of your projects.
AppleScript is introduced next; you can use this tool to automate
repetitive tasks by recording and running scripts of Symantec
Program Manager commands.

Communication with SourceServer and ToolServer is described in the
final two sections. For large projects, especially when a team of
programmers is involved, SourceServer can help keep track of
project source code, and, with ToolServer, programmers can access
tools written for Apple’s Macintosh Programmer’s Workshop (MPW).

Creating Options Sets

Options sets let you establish all the option page settings for your
project with one selection. A project can have several options sets,
and you select the one to apply to the project. At any time during
product development, you can change to another options set to
apply a set of options that better accommodate the needs of your
project.

Project-specific options are defined in the eight pages of the Project
Options dialog box. When you modify a project’s options through
this dialog box, you have the choice of saving those changes as an
options set.

Symantec C++ User’s Guide and Reference 8-1

8 Advanced Topics

For example, you could define one or more options sets for
development as well as one for the final release of the product. Each
of these options sets would have different options set on and off, as
appropriate to that particular stage in development. Then, depending
on where you are in the development process, you can apply the
appropriate options set easily.

By default, each project has one options set that has the same name
as the project. You can create as many options sets for each project
as you would like.

Defining a new options set
To define a new options set:

1. Choose Options from the Symantec Project Manager
Project menu to open the Project Options dialog box.

2. On the eight pages of the dialog box, set the appropriate
options on and off.

3. Choose Save Options As from the Options pop-up
menu at the top of the dialog box (Figure 8-1).

(TH - PPC TinyEdit.w

<Empty Project>

Edit Menu...
Save Options As...

Figure 8-1 Options pop-up menu

8-2 Symantec C++ User’s Guide and Reference

Creating Options Sets

*

The Save Options As dialog box opens (Figure 8-2).
Note that the default options set, with the same name as
the project, is always listed.

Save options as:

PPC TinyEdit.m

[PPC TinyEdit.m

e T 3 o T 2 T 2 T TS

Figure 8-2 Save Options As dialog box

4. In the textbox, type a name for the options set you are
defining.

5. Click Save.
The Project Options dialog box closes.

To apply an options set, first make sure that toolbars are enabled in
the Project window. Choose the options set you want from the
Options pop-up menu at the top of the Project window.

Modifying options sets

To modify an existing options set:

1. Choose Options from the Symantec Project Manager
Project menu to open the Project Options dialog box.

2. Select an options set to modify from the Options pop-up
menu.

3. Set up the appropriate options.

4. Click Save.

Symantec C++ User’s Guide and Reference 8-3

8-4

8 Advanced Topics

Modifying the default options set for empty projects
You can modify the options set that is automatically applied to all
new projects created with the Empty Project project model. You
should consider doing so if you find yourself changing the same
options in all new projects. To modify this default options set:

1. Choose Options from the Project menu to open the
Project Options dialog box.

2. Choose <Empty Project> from the Options pop-up
menu.

3. Set up the options as desired.
4. Click Save.

The options set you just saved is now applied to every project
created with an Empty Project project model.

Using Precompiled Headers

Using precompiled headers can greatly speed compilation time,
especially for large projects. Precompiled header files are compiled
before a project is built or updated. These files are in a format that
the compilers can use readily, and they load faster than text header
files. Precompiled headers can be included in source files as
standard text header files. Source files that are precompiled must
contain only declarations and preprocessor symbols.

Included with Symantec C++ for Power Macintosh are several
precompiled headers containing the most common declarations used
for writing Macintosh programs. Headers are provided for both C++
and C—for example, PPC MacHeaders++ (for C++) and

PPC MacHeaders (for C). These are precompiled versions of

Mac #includes.cp and Mac #includes.c, respectively.

Note
If you are using the Debugger, you should use
precompiled headers because they reduce the size
of the Debugger tables.

Symantec C++ User’s Guide and Reference

Using Precompiled Headers .

Checking extensions and compiler options

The same translator extension rules apply to precompiling source
files as to compiling them. Thus, any header file you want to
precompile as a C++ source file must end in .cp or .cpp, and any
header file you wish to precompile as a C source file must end in . c.
If your header files end in .h, you must do one of the following:

e Rename them to have a .cp, .cpp, or .c extension.

e Create a corresponding .cp, .cpp, or .c file that
includes the .h file(s), and then precompile.

¢ Change the extensions mapping on the Extensions
Mapping page of the Project Options dialog box.

You cannot use one compiler’s precompiled header in another
compiler’s source file. Check that the options in effect during the
precompilation of a header file are compatible with the ones you
expect to use when you are compiling a source file that includes the
precompiled header. Also, project prefix statements are not included
in your precompiled header (these are defined on the Prefix
subpages of the PowerPC C and PowerPC C++ Options pages of the
Project Options dialog box). Add them manually to the header file
before it is precompiled.

Precompiling a header file
To precompile a header file:

1. Select the name of a header file in the Project window,
or open a Symantec Project Manager Editor window for
the file and bring it to the front.

2. Choose Precompile As from the Build menu to open
the File Save dialog box.

3. Enter a name for the precompiled header file and
indicate its file path.

4. Click Save to close the dialog box and precompile the
header file.

Symantec C++ User’s Guide and Reference 8-5

8 Advanced Topics

The Symantec Project Manager automatically adds the text header
file to your project so that it becomes part of the project’s
dependency table. The Project Manager can keep track of changes
and automatically precompile header files the next time you build
the application.

To precompile a header file for which a header has been already
generated for a project:

1. Select the header file in the Project window.
2. Choose Precompile from the Build menu.

The precompiled header file is generated and saved with
the same filename.

To include a precompiled header in a source file, include it as you
would any text header file: #include filename.

Note
Only one precompiled header can be included per
source file.

Scripting the Project Manager

Using AppleScript, you can script such common tasks in the Project
Manager as opening projects, adding files, bringing projects up-to-
date, building targets, and making backups. You can record as a
script and run almost any action that can be performed by the
Project Manager. Even the Project Manager’s Editor windows are
scriptable; you can write scripts that examine or modify text within
files.

Note
Symantec C++ supplies AppleScript as the default
scripting system; however, you can use any other
scripting system (such as Frontier) as long as it is
compatible with the Open Scripting Architecture.

Recording scripts
You create scripts by recording your actions within the Project
Manager. To do this, open the Script Editor and begin recording,

8-6 Symantec C++ User’s Guide and Reference

Scripting the Project Manager

switch to the Project Manager to perform a series of actions, and
switch back to the Script Editor to turn off recording. The result is a
script that repeats the series of actions you have just performed. The
steps needed to record scripts are outlined in further detail in the rest
of this section.

Opening the Script Editor

You record, test, and manually run your scripts in the Script Editor
window, which you open from the Finder. Initially, an untitled Script
Editor window opens.

=[E untitled

4]

AppleScript - <a

Figure 8-3 Script Editor window

The top pane in the window describes the script. You can save
screen space by hiding this pane; click on the arrow to the left of the
Description text field’s title. The bottom pane displays the script as it
is recorded.

Opening the Project Manager dictionary

Your first task in the Script Editor is to open the Symantec Project
Manager’s dictionary. This dictionary includes a complete listing of
the available AppleScript commands that the Symantec Project
Manager understands, with brief comments explaining each
command and parameter. You should refer to this resource when
you have questions about the parameters to an AppleScript
command.

To open the Symantec Project Manager’s dictionary:

Symantec C++ User’s Guide and Reference 8-7

8-8

8 Advanced Topics

1. Choose Open Dictionary from the File menu in the
Script Editor.

2. In the File Open dialog box, select the Symantec
Project Manager.

The Symantec Project Manager dictionary opens. Selecting one of the
dictionary entries displays a description of the entry and, if the entry
is a command, its syntax and any required or optional parameters
(see Figure 8-4).

Bk = Symantec Project Manager Dictionary 5=————=4

lcreate: Create nev window, project, group, or project entry
create

new type class -- he class of the new element. Keyword ‘new’ is optional in AppleScript

as anything

[at location reference] — e location a¢ which % insert the element

[with record] -- The initial data for the properties of the element

[file_filter boolean] -- when cresting new groups from folders or other groups, filter files
Result: reference -- 2 the new object

2l

delete
exists
move
open
print
quit
save
application
file

Figure 8-4 Project Manager’s dictionary in Script Editor

Note
For more details on how to use the Script Editor, see
Apple’s reference manual on AppleScript.
Recording a script

Before you begin recording, make sure that the Symantec Project
Manager is open. You can record a script to perform almost any
action in the Symantec Project Manager. Experiment by turning
recording on and examining the AppleScript commands generated
when you add files, switch options sets, and type in an Editor
window.

To record a script:
1. Open the Script Editor from the Finder.
2. Start recording by clicking on the Record button.

3. Switch to the Project Manager.

Symantec C++ User’s Guide and Reference

Scripting the Project Manager

4. Choose one or more actions in the Project Manager
window, for example, “compile a file mini.print.c”.

5. Switch back to the Script Editor.

The Script Editor window displays the actions you have
recorded (Figure 8-5). In this example, the action
recorded was the compilation of a file called
mini.print.c.

activate
compile source “mini.print.c” of project document "MiniEdit.o”
end tell

<]

AppleScript « 48

Figure 8-5 Script Editor window with script recorded

6. Click the Stop button.

Note
Once a script is recorded and is being displayed in
a Script Editor window, you can play it back by
clicking Run.

Writing scripts

Once you have recorded a few scripts, you should try writing your
own. Start by making changes to a script that you have already
recorded. For example, you can try changing a parameter or
removing a command. Then try copying pieces from several
different scripts to create a script.

Symantec C++ User’s Guide and Reference 8-9

8 Advanced Topics

8-10

The next step would be to write scripts that mix commands to the
Project Manager with commands to other applications such as the
Finder. For example, you could create a script to make a compressed
backup of your current project by combining commands to the
Project Manager to prepare the project to be backed up, commands
to a compression application to compress the contents of your
project’s folder into an archive, and finally commands to the Finder
to copy the compressed archive to a backup device.

Storing scripts
After you have created a script, you can add it to the Scripts menu
of your project. To do so:

1. In the Script Editor, choose Save from the File menu.

2. In the File Save dialog box, choose Compiled Script
from the pop-up menu labeled Kind at the bottom.

3. To have the script appear in the Scripts menu for all
projects, save the compiled script (or an alias for it) in
the Project Manager’s (Scripts Menu) folder.

This folder is located in the same folder as Symantec
Project Manager.

4. To have the script appear only in the Scripts menu of a
single project, create a folder named (Script Menu)
in the same folder as the project’s Project file and then
place the compiled script (or an alias) in it.

Running scripts automatically

The Project Manager can run scripts automatically. You can, for
example, specify a script to run when the Project Manager first opens
and when it closes. Another option would be having a script that
runs when a particular project becomes active or inactive. Further
details on both of these options are provided in this section.

Running a script at startup or shutdown
To run scripts automatically when the Project Manager opens or
closes:

1. Record a script as described in the section “Recording a
script” earlier in this chapter.

Symantec C++ User’s Guide and Reference

Scripting the Project Manager .

2. Select File Save from the File menu in the Script Editor
window.

3. To have the script run when the Project Manager opens,
name the script Startup.

4. To have the script run when the Project Manager closes,
name the script Shutdown.

5. Place the scripts file in the system (Scripts) folder.

Running a script when a project is opened or closed

Scripts that run automatically when a project opens or closes must
be located in a project (Scripts) folder. You create this folder and
then place it in the folder with the Project file. You might create such
a script, for example, to set one or more of the Project Manager’s
preferences to a particular setting for a specific project. You could
run an “Activate” script to set the preference to that setting before a
project is started and a “Deactivate” script to reset the preference
after you are finished working with the project.

To run this type of script:

1. Create a folder named (Scripts) if one does not
already exist in the same folder as the Project file.

2. Record a script and select Save from the File menu.

3. To run the script when the project opens or becomes
active, name the file Activate and save the compiled
script in the (Scripts) folder.

4. To run the script when the project closes or becomes
inactive, save the compiled script as Deactivate and
place it in the (Scripts) folder.

Note
When you quit the Project Manager, a “Shutdown”
script for the Project Manager is run before a
“Deactivate” script for the active project.

Symantec C++ User’s Guide and Reference ~ 8-11

8 Advanced Topics

8-12

SourceServer

As projects grow to involve multiple programmers and numerous
files, project management of files becomes an important and
stabilizing component of product development. To help with the
complexity of tracking files and their versions, Symantec C++ for
Power Macintosh provides an interface to Apple’s SourceServer.

This section is an introduction to SourceServer, and covers such
topics as setting up SourceServer databases, storing files, checking
files in and out of a database, and retrieving information about the
current revision of a file.

SourceServer is a source code control system that stores, tracks
differences between, and allows access to versions of project files. It
can track any kind of file, including the Project file. It tracks source
files and Rez files in a space-efficient manner, but tracks nontext files
less efficiently.

Key terms

In order to understand SourceServer, it is important to know the
following terms:

Database
Checking in
Checking out
Revision
Revision tree
Branch

Database
A SourceServer file is called a database. A database file contains
information about one or more of the project’s files.

Checking in

The process of putting files in a SourceServer database is called
checking in. The initial check in adds the file to the database via the
Worksheet window. Thereafter, check ins are performed through a
command on the Revision menu.

Checking out
The process of getting a local copy (a file stored on your machine)
of a specific version of a file is called checking out.

Symantec C++ User’s Guide and Reference

SourceServer

Revision
A version of a file stored in a database is called a revision.

Revision tree
The database contains a log of all changes made to each file, and the

relationship of each change to the next. This log is called a revision
tree.

Branch

Each version of a file can have any number of revisions stemming
from it. Each one of these revisions can also have one or more
parallel levels of revisions stemming from it. This parallel sequence
of revisions is called a branch. Revision branches let you easily
recover from a revision sequence that does not work, thus allowing
you to return to a-prior revision of a file. They also let more than one
programmer work simultaneously from the same revision of the file,
perhaps on different parts of the code, and later have their revisions
converge at a subsequent revision.

Symantec C++ User’s Guide and Reference ~ 8-13

8 Advanced Topics

8-14

Figure 8-6 shows an example of a SourceServer database that
contains three revision trees with branches. The sequentially
numbered circles along a vertical path through this database
structure represent the revision numbers. For example, revision 2al
has one revision labeled 2a2. The numbered circles along a diagonal
path represent branch revisions. For example, revision 2a2 has one
branch labeled 2a2al.

L A Project }

Revision Tree
filename.a

Revision Tree Revision Tree
filename.b filename.c

Figure 8-6 SourceServer project database

Note
SourceServer uses the Owner Name field in the
Sharing Setup control panel to track who checks
what files into and out of the database.
SourceServer users must enter a name in the Owner
Name field and have the Sharing Setup control
panel in their Control Panels folders.

Symantec C++ User’s Guide and Reference

SourceServer

¢

Setting up a SourceServer database

To keep track of revisions, the first step is setting up a SourceServer
database and the second is mounting the database. Mounting
indicates to the Project Manager that files may be checked in and out
of the database. This step can be performed with the Mount
Database command from the Revision menu. You can also have
the Symantec Project Manager automatically mount databases when
the Project file is opened.

Databases can also be nested. This allows the hierarchy of
SourceServer databases to match the hierarchy of the folders
comprising your project. Nesting also speeds up the rate at which
SourceServer commands are performed.

Note
You can have multiple root-level databases
mounted at one time, but there is only one “current
database” active at a time.

Creating a database

When you create a database, a folder with the name of the database
is created and a database file named ProjectorDB is added to the
database folder. The ProjectorDB file is the file in which all
SourceServer information is stored.

To create a database in a project:

1. Open the project with which you want to use
SourceServer.

2. Choose New Database from the Revision menu.

Symantec C++ User’s Guide and Reference ~ 8-15

8 Advanced Topics

A standard File Save dialog box opens (Figure 8-7).

|3 ActiveProject § v | © Macintosh HD

ActiveProject.w

Database name:

3. Name the new database.
4. Click Save or press Return.

A database folder with the name you have chosen is
created and a file called ProjectorDB is placed within
that folder. The new database becomes the current
database (in other words, it is mounted automatically
when it is created).

Automating database mounting
To set up a database for automatic mounting:

1. Create an alias for the top-level Projector DB file named
ProjectorDB and move the alias into the project
folder. (The alias must be named “Project name.pdb” to
automatically mount the database. For example, if your
project is named MyProject . T the alias would be
MyProject.m.pdb.)

2. Double-click the Project file.

This launches the Symantec Project Manager (unless it is
already open), opens the Project file, and mounts the
database.

8-16 Symantec C++ User’s Guide and Reference

SourceServer

Note
To prevent automounting, hold down the Shift key
when opening the project. To mount a database
manually once the Project Manager is running, use
the Mount Database command in the Revision
menu to select the appropriate database.

Nesting databases

If your SourceServer database is large (containing 50 or more files),
the commands in the Revision menu may execute slowly. On a
server, even a 20-file database can start bogging down. A better
solution is to divide the database into nested databases. A nested
database is a database located within another database’s folder.

To nest a new database, you create it using the preceding procedure
and place it in the folder containing the appropriate top-level
database (Figure 8-8).

Efi=————— ToplevellB ==———0
3 items 330.4 MB in dizk 182.8 MB av

ProjectorDB Mested_1 Mested_2

& B

SE= Nested_1 =EEF EEEZ Nested_2 =@

1item 3304 MBin di 1itern 3230.5 MB in dis
ks

ProjectorDB ! |

T ProjectorDB s

< E2E el EE

Figure 8-8 Nested databases

Whenever you mount the top-level database, SourceServer
automatically mounts all of its nested databases.

Symantec C++ User’s Guide and Reference 8-17

8 Advanced Topics

8-18

Checking files in and out

Once a database is mounted, you can check files into and out of it.
You store files in a database when the file is first created or first
added to a project. After that, you check the file out to make changes
and check it back in when you are done making the changes.

To add new files to the database, you check them in through the
Worksheet window.

When someone checks files in or out, SourceServer records who
handled the file and when. SourceServer also provides two text
fields to aid in tracking versions: the task field and the comment
field. Although you can use these fields as you like, you should
consider using the following guidelines:

e Use the task field to keep track of the overall task or to
describe the goal of a set of modifications. All files
checked out for the same task, in other words, can be
assumed to have modifications made to them that are
aimed at achieving the same goal.

e Use the comment field to describe the changes that are
going to be made or have been made in the file.

Adding files to a database for the first time

When you check a file into a database for the first time, you must
first send a command to SourceServer from the Worksheet window.
Thereafter, team members can check the file in and out via the
Check In and Check Out commands on the Revision menu.

Note
Do not use commas in the names of files that you
expect to check into a SourceServer database. For
any filenames or pathnames that contain spaces,
you must add single quotes.

Symantec C++ User’s Guide and Reference

SourceServer

To add files to a SourceServer database:

1. In the Project window, open the file by double-clicking

on it or by pressing Return.

¢

Note

You can only use the Check In command with files
that have already been added via the Worksheet
window.

. Command-click on the filename in the title bar of the

Editor window to open the File Path pop-up menu
(Figure 8-9).

main.cp
Desktop Folder
Macintosh HD

Copy File Path
Figure 8-9 File Path pop-up menu

. Choose Copy File Path.
. Close the file.

. Choose Worksheet from the Windows menu to open

the Worksheet window. The pop-up menu at the top left
of the window lets you switch back and forth between
SourceServer and ToolServer.

6. Type CheckIn -p -new -cs “Initial check

inll

Optional parameters follow the command CheckIn. The
-new option indicates that the file is being added for the
first time to the database. The -p option tells
SourceServer to report progress information on the
execution of the command. The -cs option lets you
type in the comment field.

. Place the cursor at the end of the comment string and

paste (Command-V) the file path copied in Step 6.

Symantec C++ User’s Guide and Reference

8-19

8 Advanced Topics

The file path is pasted into the Worksheet window
(Figure 8-10).

it

= ————llorksheetl =——~———————77

Checkln -new -p -cs "lnitial check in" 'Macintosh HD:Desktop Folder:main.cp’ B

Figure 8-10 Worksheet window ready for checking in a new
file

8. Leaving the cursor at the end of the line, click on the
Send button or press Enter.

The cursor drops to the next line and the file is checked
into the database.

Checking files out for modification
Team members typically check files out for modification, though
sometimes they need the files only for reference.

To check a file out of the database:
1. Make sure the database is mounted.

2. In the Project window, select the file (or files) you want
to check out.

8-20 Symantec C++ User’s Guide and Reference

SourceServer

*

3. Choose Check Out from the Revision menu to open the
Check Out dialog box.

Check 0Out

(O Keep read-only [Verify
® Keep modifiable [JKeep History
[J Branch

Task: | |

Comment:

Initial check in

e e et e

Figure 8-11 Check Out dialog box

4. To make changes, click Keep Modifiable. To only read
the file, set the option Keep Read-Only on.

5. To verify that the file is undamaged before checking the
file out, set the Verify option on.

6. To store the author, check in date, task, and comments
with the file, set the Keep History option on.

7. Set Branch on to modify a file that is currently checked
out for modification by another team member or to split
off a version of the file for a parallel line of development.

8. Enter the task and comments in the respective fields.
9. Click Check Out.

The file is now checked out. SourceServer notes the date and the
name of the user as well as the name of the task and any comments.

Symantec C++ User’s Guide and Reference ~ 8-21

8 Advanced Topics

Checking files in
To check a file back in to a database:

1. Make sure the database is mounted.
2. Select the file from the Project window.

3. Choose the Check In command from the Revision
menu to open the Check In dialog box (Figure 8-12).

Check In

® Keep read-only X Touch mod date
O Keep modifiable [J verify

Task: |

Comment:
Initial check in

Revision: 1
Checked out: Wed, Feb8, 1995 11:11 PM

Figure 8-12 Check In dialog box

8-22 Symantec C++ User’s Guide and Reference

SourceServer

2

4. Set the Keep Read-Only option on to make your local
copy a read-only version of the file. To keep a
modifiable version, click Keep Modifiable instead. This
latter option checks the file in and then checks a new
modifiable revision back out.

5. To set the modification date of the file to the time it was
checked in (as opposed to the time it was last modified),
set the Touch Mod Date option on.

6. To verify that the file’s contents are not damaged, set the
Verify option on.

7. Modify the Task and Comment fields as appropriate for
the modifications you made.

8. Click Check In.

The file is checked back into the database, and
SourceServer notes the time and the name of the team
member as well as any comments added.

Accessing revision information

You can find out information about any version of a file that has
been checked into a SourceServer database using the Get Revision
Info command from the Revision menu. Revision information
includes the revision number that the file represents, the date the file
was checked out, the team member involved, the project, the task,
and any comments.

Whenever you open a source file, you can see whether it has been
checked into a database and whether it is a read-only or modifiable
file. The Editor window’s toolbar displays an icon (a pencil) if the
file is part of a SourceServer database. For a modifiable file, you see
only the pencil at the right edge on the toolbar. For read-only files,
the pencil has a line through it.

Symantec C++ User’s Guide and Reference ~ 8-23

8 Advanced Topics

8-24

To retrieve information about a file:

1. Open the file by double-clicking on the filename in the
Project window.

2. If the toolbar is not displayed, select Show Toolbar from
the Windows menu.

=F

Notice that the toolbar displays a pencil with a line through it. The
pencil can be in one of three states:

e Solid line means the source file is read-only.

¢ Dashed line means the source file is modifiable, but you
cannot check the changed file back in.

e No line means the source file is modifiable.

When you check a file in, SourceServer sets your local
copy to read-only so that you do not make any changes
without checking the file out again.

Symantec C++ User’s Guide and Reference

SourceServer

3. Choose Get Revision Info from the Revision menu to

open the Revision Info dialog box (Figure 8-14).

Revision Information

Revision: 2
Checked Out: ‘Wed, Feb8, 1995 11:12 PM
Owner: larry
Modified: ‘Wed, Feb8, 1995 11:12 PM

SourceServer Project:
ActiveProject database |

Task:

Comment:

Initial check in

8-14 Revision Info dialog box

Figure

This dialog box displays version information about the
file.

*

Note

The database to which the file belongs does not
have to be mounted before you choose the Get
Revision Info command. For more details about
using the Worksheet window and the Revision
menu with SourceServer, see the electronic
supplemental information.

Symantec C++ User’s Guide and Reference 8-25

8 Advanced Topics

8-26

Using ToolServer

Using ToolServer, you can access tools created for use in Apple’s
Macintosh Programmer’s Workshop. You communicate with
ToolServer using the Worksheet window, which you open by
choosing Worksheet from the Windows menu. This section covers
how to set up ToolServer for use with the Symantec Project Manager
and how to use ToolServer and MPW tools from the Worksheet
window.

Setting up ToolServer

To take advantage of ToolServer, you must first add an alias for
ToolServer to the folder in which Symantec Project Manager is
located. You must also add an alias for the MPW tools folder to the
ToolServer folder.

To set up ToolServer:

1. Select ToolServer in the Apple Tools folder and make
an alias for it.

2. Put the ToolServer alias in the (Tools) folder. The
(Tools) folder is in the Symantec C++ for Power
Mac folder. The alias must be called ToolServer.

You are now ready to use ToolServer and the MPW tools in
conjunction with Symantec C++.

Using MPW tools with ToolServer

Once you have set up ToolServer, you can make use of MPW tools
by opening the Worksheet window and sending commands to
ToolServer. The pop-up menu at the top left of the Worksheet
window lets you switch back and forth between ToolServer and
SourceServer.

Symantec C++ User’s Guide and Reference

Using ToolServer

*

Note
If the ToolServer option is disabled, the Project
Manager has been unable to locate ToolServer.
Close the Worksheet window and from the Finder
open the (Tools) folder located in the same
folder as Symantec Project Manager. The ToolServer
application or an alias to it should be located in that
folder. See the previous section, “Setting up
ToolServer.”

To use an MPW tool:
1. Open Worksheet window from the Windows menu.

2. If necessary, choose ToolServer from the pop-up menu
at the top left.

3. To check the current directory, type directory and
press Enter, Command-Return, or click Send Command.

Worksheet

EEH=
ToolServer hdl

directory s
'"Macintosh HD:Rainbow 34:Apple Tools:ToolServer 1.1.1:" 1

Figure 8-15 Results of Directory command

4. To change the current directory, type directory ‘<full
pathname>’ and press Return.

Note
If you do not specify a directory, ToolServer saves
results files in the current directory.

5. Type the command for the MPW tool you want to use,
type the arguments, and press Enter, Command-Return,
or click Send Command. For example, to use the
Compare tool, type compare <filel> <file2> and
press Return.

Symantec C++ User’s Guide and Reference ~ 8-27

8 Advanced Topics

You may also save the results of the comparison in a file.
Append “> <Filename>" at the end of the command line.
ToolServer creates a file in the current directory with the
filename you supply unless you include a pathname in
the file’s name. For example, to compare the contents of
filel.cp and file2.cp (both in the current
directory) and save the results in a file named
Files.diff, also in the current directory, type the
following:

Compare filel.cp file2.cp > Files.diff

8-28 Symantec C++ User’s Guide and Reference

Symantec C++
Learning by
Example (Tutorials)

Part Three
9 Tutorial Introduction
10 Hello World
11 MiniEdit
12 Object Bullseye
13 Vector
14 Beeper
15 Process Monitor

Symantec C++ User’s Guide and Reference

Symantec C++ User’s Guide and Reference

Tutorial

Introduction
9

T he six tutorial chapters in this part of the manual will help you
become familiar with the main features of the Symantec C++ for
Power Macintosh development environment. Each tutorial focuses
on a couple of key aspects of Symantec C++ for Power Macintosh
that you need for writing, compiling, and debugging applications for
the Power Macintosh.

What You Will Learn

By performing all the tutorials, you will learn how to:

Create a new project

Add source files and resource files to your project
Correct errors and debug your program

Use the THINK Class Library and Visual Architect as a
basis for full-featured Power Macintosh applications

This collection of six tutorials also demonstrates how Symantec C++
supports different user interfaces and programming styles within one
development environment. You can, for example, choose to write
your program in C or in C++. You can use a terminal window for I/O
or opt for a full-fledged Macintosh user interface. You also have the
option to write your program using the framework provided by the
THINK Class Library or to write your program entirely with your
own C++ code.

Depending on your needs, you may not need to work through every
tutorial. If you are only interested in writing programs that use a
simple terminal window interface, then complete the tutorial “Hello
World,” “MiniEdit,” and “Object Bullseye.” If you are planning to use
the THINK Class Library and Visual Architect, which is strongly
recommended for larger programs, you should go through all six
tutorial chapters and perform all the procedures in the sequence
provided.

Symantec C++ User’s Guide and Reference 9-1

9-2

9 Tutorial Introduction

Hello World

“Hello World” is the traditional example program for all C and C++
programmers. When you have completed this tutorial, you will have
a program that displays the words “Hello, World!” in a window on
your Power Macintosh. Source code is provided for both C and C++
versions of “Hello World.” First, you will create the C version of
“Hello World,” then the C++ version.

Writing these simple programs will introduce you to the Symantec
Project Manager, the main component of Symantec C++ for Power
Macintosh. In this tutorial you will create and edit projects, work
with source code, and compile and link your project.

The C version of “Hello World” uses the Standard ANSI library; the
C++ version uses IOStreams. Both versions simulate a console that
displays the message, “Hello, World!” Using these libraries, a
programmer can create applications with simple user interfaces that
can be ported easily to other systems, such as DOS or Unix.

MiniEdit
“MiniEdit” is a simple Macintosh text editor. It lets you open, read
and edit, and save text files to disk. It is a smaller, simpler version of

SimpleText, the word processor that is now distributed by Apple
with their new system software.

As “MiniEdit” contains much more code than “Hello World,” source
files are included as a convenience so that you need not type in the
entire program. “MiniEdit” introduces the use of Macintosh resource
files to your programming. In addition, a syntax error has been
inserted in one of the source files in case you want to see how
Symantec C++ for Power Macintosh helps you detect and fix syntax
errors.

“MiniEdit” is a full-fledged Macintosh application that goes beyond
the limitations of the “Hello World” tutorial. It responds to the many
kinds of events that most Macintosh programs respond to, including
mouse clicks, keystrokes, window update events, and other events.
It also has menus, windows, buttons, and additional controls.

Symantec C++ User’s Guide and Reference

Object Bullseye

L 4
Object Bullseye

“Object Bullseye” displays windows that contain circular, square, or
triangular bullseyes. By choosing different menu items, you can alter
the thickness of the bullseye’s concentric shapes.

This tutorial takes you through an introductory tour of the Symantec
Debugger. Using the Debugger, you can step through the execution
of your program one line at a time. You can examine and modify the
values of your variables. You can also trace how and when your
program’s functions interact and call each other.

“Object Bullseye” is the first tutorial in this series that uses C++
classes, but it purposely uses only a few classes in a simple,
straightforward way. The circular, square, and triangular bullseye
windows are examples of sibling classes that inherit their general
behavior from an abstract bullseye window class.

Vector

“Vector” demonstrates some of the more advanced aspects of both
C++ and the Symantec Debugger. The Vector application displays
sorted and unsorted lists of numbers, letters, and dates as well as the
maximum value of each list in a console window.

“Vector” uses the more complex aspects of C++ programming,
including C++ inline functions, templates, and operator overloading.
The tutorial shows you how to use the Debugger to debug C++
programs and how to instantiate templates.

Beeper

“Beeper” is a small program that is designed to introduce Visual
Architect and THINK Class Library (TCL). TCL contains classes for
implementing the Macintosh user interface. TCL is a complete source
code framework for developing standard Power Macintosh
applications. It is written as a set of C++ classes that can easily be
extended and customized for your particular needs.

Visual Architect is a tool for designing graphically your application’s
user interface. Visual Architect uses the TCL. “Beeper” brings you
through some basic steps for generating and building an application.
It presents a window with some graphics and a button. The button
opens a dialog box in which you enter a number. When you click
the Beep button, you computer beeps that number of times.

Symantec C++ User’s Guide and Reference 9-3

9-4

9 Tutorial Introduction

Process Monitor

Like “Beeper,” “Process Monitor” is built using Visual Architect. In
this final tutorial, you will explore more of the Visual Architect and
will see how a reasonably large program is organized.

“Process Monitor” displays a list of currently running processes
(programs). The application also displays three push buttons that let
the user enter the Debugger, kill a selected process, and bring a
selected process to the foreground. It is a full-fledged Macintosh
application that contains multiple windows, panes and subviews,
controls, and menus.

When you have completed the tutorials, you may go on to Part 2 for
more information on writing a program using Symantec C++, or you
may turn to the reference chapters in Parts 4 and 5 for detailed
information about specific features.

Symantec C++ User’s Guide and Reference

Tutorial:

Hello World
10

Ik:s chapter is a tutorial on building simple applications with
Symantec C++. The Symantec C++ Project Manager can be used to
create C and C++ Macintosh applications. You will create both types
in the course of finishing this tutorial.

Before You Begin

Make sure Symantec C++ for Power Macintosh is installed correctly
on your hard drive. Refer to the section “Installing Symantec C++,” in
Chapter 1, “Overview,” for instructions.

Before starting this tutorial, you should be familiar with the basics of
working with the Macintosh user interface, such as opening menus
and dialog boxes, as well as navigating between folders.

Hello World C Application

Both applications you create in this tutorial write “Hello, World!” to
the screen. The steps in creating the C version of the Hello World
application include:

Create a project

Create and add a source file to the project
Compile the source file

Add libraries to the project

Build and run the application

Save the application to disk

The following sections explain these steps in detail.

Symantec C++ User’s Guide and Reference 10-1

10 Tutorial: Hello World

B

Symantec
Project Manager

Creating a Project

In Symantec C++, a project is the cornerstone of application
development. The project keeps track of all your source files,
maintains the dependency information for a project, and contains the
object files. The first step in creating an application (or a library) is to
create a project. To do so:

1. Launch the Symantec Project Manager by double-clicking
its icon in the Symantec Project Manager folder (by

default, this is the Symantec C++ for Power Mac
folder).

The Open Project dialog box opens (Figure 10-1).

[symantec C++ for Power... ¥ | = Macintosh HD

B@ (AppleScripts)

[(Project Models) '

(3 (Projects)

CA(Scripts Menu) S —

(21 (Tools)

[(Translators)
Show: | Al Available |

Figure 10-1 Open Project dialog box

2. Click the New Project button.

10-2 Symantec C++ User’s Guide and Reference

Hello World C Application

¢

The New Project dialog box opens (Figure 10-2).

(AppleScripts)
A (Project Models)
(1 (Projects)

[(Scripts Menu)
(Scripts)

(1 (Tools)

[(Translators)

Desktop

Create New Project:

Project Model: | Empty Project

Figure 10-2 New Project dialog box

3. Navigate outside the Symantec Project Manager folder,
then click the New (folder) button to open the New
Folder dialog box (Figure 10-3).

Note
Do not store projects in the system tree (the folder
in which Symantec Project Manager and its
subfolders reside). The (Projects) folder in the
system tree is used only to store aliases to
frequently used projects.

Symantec C++ User’s Guide and Reference 10-3

10 Tutorial: Hello World

4. In the textbox, type Hello World f and press Return.
(Press Option-F to create the f symbol.)

The folder Hello World f is created for the project,
and you return to the New Project dialog box.

5. In the Create New Project textbox, type Hello
World.r as the project’s name. (Press Option-P to
create the T symbol.)

6. Check that Empty Project is chosen from the Project
Model pop-up menu (Figure 10-4).

You use this model to create empty projects that you will
then build from scratch.

|3 Hello World § ¥ | = Macintosh HD

Eject

Desktop

S

Create New Project:
Iﬂello World.w |

Project Model: | Empty Project |

Figure 10-4 New Project dialog box ready to create the
project

7. Click Save to create the new project Hello World.=w
and close the New Project dialog box.

10-4 Symantec C++ User’s Guide and Reference

Hello World C Application

Your new project is now created. The Symantec Project Manager
opens the project automatically after creating it, so you should see a
Project window, as shown in Figure 10-5.

Hello World.w

Totals 1] j'}-

=[]

Figure 10-5 Project window for the Hello World project

The Project window lists the names of all files included in a project.
Because you created an empty project, no filenames are now
displayed in this window.

Creating a source file

You are ready to create a source file and save it using the Symantec
Editor. This text editor works like most other text editors on the
Macintosh. You can double-click to select words, triple-click to select
an entire line, and drag to select a range of text. You can also use the
arrow keys to move around a file.

The text editor has an auto-indent feature. It automatically indents
and unindents after curly braces. It also does not wrap text when
you type past the right edge of the window. Use the horizontal scroll
bar at the bottom of the window to view any text that extends
beyond the right edge. For more information about the Symantec
Editor, see Chapter 4, “Editing a Project’s Code.”

Symantec C++ User’s Guide and Reference ~ 10-5

10 Tutorial: Hello World

To create a new source file:
1. Choose New from the File menu.

A new, untitled Editor window opens (Figure 10-6).

= ——= untitled %1

& bl

Figure 10-6 Empty Editor window

2. Type the following source code:

/*****

* Hello World.c
*
* The hello world C program for

* Symantec C++ for Power Macintosh
*

*****/
#include <stdio.h>
main ()

{
}

printf ("Hello, World!\n");

3. Choose Save As from the File menu to save this new
source file.

10-6 Symantec C++ User’s Guide and Reference

Hello World C Application

The File Save dialog box opens (Figure 10-7).

e Y s A N B D

Ig Hello World f ¥ |
Hello World.w

Save file as:

Figure 10-7 File Save dialog box

4. Type hello.c into the Save file as textbox and click
Save.

Note
Be sure to save the file to the Hello World f
folder.

The dialog box closes, and the file is saved as hello.c.
The title bar of the Editor window changes to reflect the
new name.

Warning
Be sure to name your file Hello. ¢, not

Hello.cp. The Symantec Project Manager uses
files extensions to identify file types. By default, the
C translator is used to compile .c files and the C++
translator to compile . cp and . cpp files.

Now that your source file is saved, the next step is to compile it and
add it to the project.

Symantec C++ User’s Guide and Reference 10-7

10 Tutorial: Hello World

Compiling the source file and dealing with errors
Using the Compile If you have followed the previous steps, you have an Editor window
command in the Symantec titled hello.c open on your screen. To compile the source file

Project Manager is similar displayed in the window:
to using the cc command in

UNIX. The Symantec 1. Choose Compile from the Build menu to open the
Project Manager, however, Progress dialog box (Figure 10-8).
adds the object code to
your project instead of Pr
creating a separate object ogress
file. o
Compiling hello.c
Tool PowerPC C
Processing stdio.h
Lines: 0
Errors: 0
Warnings: 0

Figure 10-8 Progress dialog box

2. Watch as the dialog box charts the progress of the
current compilation.

The dialog box shows the current file being compiled,
how many lines were processed, and how many errors
and warnings were found. If the compilation was
successful, then the hello. c file is added automatically
to the project.

10-8 Symantec C++ User’s Guide and Reference

Hello World C Application

*

The Project window now lists the hello.c file with its
code size (Figure 10-9).

+ Hello World.w

2% Code
o| 40 |4
40
]
5]

Figure 10-9 Project window listing the hello.c file
3. Close the Editor window by clicking its close box.

You can always bring the window up again by double-
clicking hello.c in the Project window.

Note that if errors occurred during the compilation, the Build Errors
window opens. This window lists all errors found in your file. For
example, if you omitted the semicolon from the end of the printf
statement, the window displays the error shown in Figure 10-10.

Build Errors for Hello World.w

Figure 10-10 Build Errors window

Symantec C++ User’s Guide and Reference 10-9

10 Tutorial: Hello World

In this case, you would double-click on the error message in the
window to open the Editor window with the offending line
highlighted. After you have resolved all the errors in your code,
compile the file again. Your source file is added to the project and
displayed in the Project window.

The next step is to add the libraries necessary to link your project.

Adding the libraries

At this point, your project cannot be linked properly because the
standard libraries used by it are not yet part of the project. To add
the necessary libraries:

1. Choose Add Files from the Project menu.

The Add Files dialog box opens (Figure 10-11).

{3 Hello World § ¥ | > Macintosh HD

| Done]

Show: | Source Files w|

Add All
Remouve

Figure 10-11 Add Files dialog box

10-10 Symantec C++ User’s Guide and Reference

Hello World C Application

At the top of this dialog box is a scrolling list that
contains the names of the files in the current directory
that are not part of your project. The bottom list contains
the files to be added to the project after you click the
Done button.

. Navigate to the Standard Libraries folder within
the Symantec Project Manager folder (by default, this is
the Symantec C++ for Power Mac folder).

. Select the PPCANST. o file in the top list and click Add.
Also select the PPCRunt ime. o file and click Add.

Notice how the names of the two object files,
PPCANSI .o and PPCRuntime. o, are listed at the
bottom of the dialog box.

. Navigate to the PPC Libraries folder within the
Macintosh Libraries folder in the Symantec Project
Manager folder, and add the InterfaceLib.xcoff
and MathLib.xcoff files in the same way as above.

*

Symantec C++ User’s Guide and Reference 10-11

10 Tutorial: Hello World

The Add Files dialog box should now be displayed as
shown in Figure 10-12.

[&2 PPC Libraries v |

[] AppleScriptLib

() AppleScriptLib.xucoff

[] Disassembler.o

() bragLib.xcoff

[] objectsupportLib

) objectSupportLib.xcoff
[) PPCToolLibs.0

Show: [Source Files w|

Interfacelib.x#coff _

MathLib.scoff et
PPCANSIl.0
PPCRuntime.o

Figure 10-12 Add Files dialog box with library files at the
bottom

5. Click the Done button to close the Add Files dialog box
and add the files to the project.

The Symantec Project Manager loads a library automatically when
you run the project. Alternatively, you can click the library’s name in
the Project window, then choose Compile from the Build menu.
For this example, let the Symantec Project Manager load it for you
when you run the project.

10-12 Symantec C++ User’s Guide and Reference

Hello World C Application

The Run command creates
an “instant run image” that
is very similar to an
application on disk, but is
not permanent. To save a
permanent copy of an
application, you would use
the Build Application
command, described later
in this tutorial.

When you bring your
project up to date, the
Symantec Project Manager
compiles your project’s files
and links the project.

Note

In this tutorial, you have manually added a source
file and several library files to an empty project to
learn how the Symantec Project Manager works.
The next time you write a similar application, base
the project on the ANSI C project model, which
automatically adds the correct libraries needed for
an application similar to Hello World.

Your project is complete. Now you need to build it and run it.

Building and running the application
To run the application without the Debugger:

1. Hold down the Option key and choose Run from the
Project menu.

Because you added libraries to your project, the project
needs to be updated. The Symantec Project Manager
prompts you to do so, as shown in Figure 10-13.

|
L
Figure 10-13 Update dialog box

2. Click Update.

Symantec C++ User’s Guide and Reference 10-13

10 Tutorial: Hello World

The Symantec Project Manager compiles and links the
necessary files, then runs the program in a console
window, as shown below:

press «return» to elit =c"ic"eleo e!’eoe—01

Hello, Horld!

Figure 10-14 Hello World running

This program uses the Standard library to send output to a console
window. A console window is a Macintosh window that behaves
like a simple display terminal. The words Hello, World! are
displayed at the bottom of this window.

To exit the program, press Return or choose Quit from the File
menu.

Creating the application

Now that you have seen your application run, you might want to
save the application to disk. To make your project into a stand-
alone, double-clickable Macintosh application:

1. Choose Build Application from the Build menu.

The File Save dialog box opens (Figure 10-15).

10-14 Symantec C++ User’s Guide and Reference

“Hello World C++ Application

*

Make sure to move to your Hello World f folder (the
default folder may be among the library files) before
clicking Save.

[Hello Worid § ¥ | > Macintosh HD
Hello World.cp m
Hello World. 7
43 Hello World.w.pef Desktop
5

Target File Name:

[Hello World |

Figure 10-15 File Save dialog box

2. Type Hello World into the Target File Name textbox.
This is the name of the application file.

3. Click Save.

A dialog box informs you that the Symantec Project
Manager is linking your application. When it is finished,
the built application is located in the folder you chose.

To run the built application, go to the Finder and open the
application’s folder. Double-click the application’s icon to see it run.

Hello World C++ Application

Now that you have completed the Hello World C application, you
can create the Hello World C++ application. Building the C++
application shows you certain aspects of project management that
differ slightly from the procedure for creating the C application.

The process needed to create the C and C++ Hello World
applications is similar. The steps outlined for the C application are
covered only briefly in this section.

Symantec C++ User’s Guide and Reference 10-15

10 Tutorial: Hello World

Creating a project

First, create an empty project, just as you did for the Hello World

C application. If the Symantec Project Manager is already running,
choose New from the File menu to create a new project. For this
project, name the folder Hello World++ f, and name the project
Hello World++.m. Make sure that in the New Project dialog box,
you select Empty Project as the project model.

Adding a source file
Now you are ready to create a source file. To do so:

1. Choose New from the File menu.

2. In the Editor window that opens, type the following
source code:

/*****

Hello World.cp

*
*
* The hello world program for

* Symantec C++ for Power Macintosh
*

*****/

#include <iostream.h>
void main()

{
}

cout << "hello world!" << endl;

3. Save the file as hello. cp by choosing Save As from the
Project menu, typing hello.cp in the Save file as
textbox, and clicking OK.

You compiled the source file for the C application. For
the C++ version, however, you add the file to your
project without compiling it. You will build your whole
project later.

4. From the Project menu, select Add “hello.cp”.

The hello.cp file is now listed in the Project window.

5. Close the hello.cp Editor window by clicking in its
close box.

Next, you add the standard libraries to the project.

10-16 Symantec C++ User’s Guide and Reference

Hello World C++ Application

Adding libraries

Follow the steps outlined for the Hello World C application to add
the following libraries to your C++ project:

e PPCANSI.oO

e PPCCPlusLib.o
e PPCIOStreams.o
e PPCRuntime.o

All of these libraries are located in the Standard Libraries
folder.

After those libraries are added to the project, you are ready to bring
the project up-to-date.

Updating the project

Generally, the most common way of checking for compile errors is
to use the incremental build feature of Symantec C++, in which the
Symantec Project Manager builds your project, translating only those
files that have changed since the last time your project was built. To
do this, choose Bring Up To Date from the Build menu. If files
need to be compiled, the Progress dialog box opens to show the
progress of the update.

When the update is finished, the Progress dialog box closes. If
there were errors in your files, the Build Errors window opens,
showing you the location of the errors. Double-click on any entry in
the Build Errors window to bring up the source file where the error
was found with the offending line highlighted. After you have
corrected the errors, save the file, and update the project again.

To run your project now, hold down the Option key and choose
Run from the Project menu.

You also can save your application to disk by choosing Make Target
from the Project menu.

Symantec C++ User’s Guide and Reference 10-17

10 Tutorial: Hello World

10-18° Symantec C++ User’s Guide and Reference

Tutorial:

MiniEdit
11

Tw MiniEdit tutorial shows you how to use some of the advanced
features of the Symantec Project Manager. You build a small text
editor based on a sample application described in Inside
Macintosh I.

In this tutorial you create and run a project, build an application, and
use a resource file. One of the source files has a small, intentional
bug, allowing you to practice fixing such errors.

Before You Begin

Make sure the MiniEdit f folder is on your hard disk, because it
contains all the files you need to follow this tutorial. If you followed
the installation directions in Chapter 1, “Overview” this folder should
be in the Demos folder, which is contained in the Demo Projects
folder. In addition, if you did not work through the Hello World
tutorial in the last chapter, you should consider doing so now. That
tutorial serves as a quick introduction to the features of the Symantec
Project Manager.

Creating the Project

Your first task in the MiniEdit tutorial is to create a project. To do so:

1. Open the folder containing the Symantec Project
Manager and double-click its icon.

Symantec C++ User’s Guide and Reference 11-1

11-2

11 Tutorial: MiniEdit

A standard File Open dialog box is displayed
(Figure 11-1).

[ﬁ] Symantec C++ for Power... VI = Macintosh HD
8@ (AppleScripts)

Figure 11-1 File Open dialog box

[(Project Models)

[(Projects)

[(Scripts Menu) -

[(Scripts)

(O (Tools) ‘ :

[(Translators)
Show: | Tesxt Files | l

2. Navigate to the MiniEdit f folder and click the New

Project button to open the standard New Project dialog
box (Figure 11-2).

[=2 MiniEdit § ¥ | = Macintosh HD
| [Busgutait.co
mini.file.cp
mini.file.h Desktop
=] mint.print.cp
mini.print.h
E| mini.windows.cp
=) mini.windows. h
Create New Project:

Project Model: | Empty Project vl

Figure 11-2 New Project dialog box

Symantec C++ User’s Guide and Reference

Creating the Project

¢

3. Choose C++ Mac Application from the Project Model
pop-up menu.

4. Type MiniEdit.x in the Create New Project textbox
and click Save.

The Symantec Project Manager creates a new project in
the MiniEdit f folder named MiniEdit.=w and
displays a Project window (Figure 11-3).

;2 Libraries (1] ﬁ
4 D main.cp L3
Totals o
A%

Figure 11-3 Project window for a new Project file

Because all the source files for this application are already written,
you need to remove main.cp from the project:

1. Click main. cp in the Project window.
2. Choose Remove “main.cp” from the Project menu.

This removes the file from the project; as a result, the
main.cp file is no longer listed in the Project window.
The file, however, is still in your project folder.

Note
Another option is to drag main. cp from the Project
window to the Trash. This does not delete the file
from your disk. To do that, use the Finder in the
standard manner.

Symantec C++ User’s Guide and Reference 11-3

11 Tutorial: MiniEdit

Adding the Source Files

The second task is to add source files to the new project. All the
source files for MiniEdit .® are in the MiniEdit f folder.

1. Choose Add Files from the Project menu to open the
Add dialog box (Figure 11-4).

[MiniEdit § ¥ | = Macintosh HD

main.cp
mini.file.cp Desktop
mini.print.cp
mini.windows.cp Cancel
MiniEdit.rsrc
pleasewait.cp ‘ Done

Show: | Source Files w|

‘Add Al

Figure 11-4 Add dialog box

The top list displays the source files and libraries in the
current folder. The bottom list indicates those files that
will be added to the project when you click Done.

2. Click Add All to move all the source files in the
MiniEdit f folder into the bottom list.

3. Select main.cp in the bottom list and click Remove.

Because main. cp is still located in the project folder, it
was added to the bottom list along with all the other files
in the directory. Because including this file in your
project would cause link errors, you should be sure not
to re-add it to the project.

11-4 Symantec C++ User’s Guide and Reference

Adding the Source Files

¢

Note
If you are willing to select each file in the directory
individually, you could click the Add button rather
than Add All. With this approach, you do not have
to remember to remove the main. cp file from the
bottom list.

Figure 11-5 shows the Add dialog box with the source
files displayed in the lower list.

{23 MiniEdit § v | > Macintosh HD
main.cp Eject

Desktop

Show: | Source Files w|

BuggyEdit.cp ‘]
mini.file.cp e

mini.print.cp
mini.windows.cp

Minikdit.rsrc

Figure 11-5 MiniEdit source files ready to be added to the
project

Symantec C++ User’s Guide and Reference 11-5

11 Tutorial: MiniEdit

11-6

4. Click Done. The Project window changes to look like the
one in Figure 11-6.

=H _v MiniEdit.m
7 8Name L T
N BuggyEdit.cp ® o4
> D Libraries 0
¢ mini.file.cp L4 0
& mini.print.cp @ u}
@ mini.windows.cp A4 0
R MiniEdit.rsrc 0
& pleasewait.cp & 0
Totals 1]
o
5]

Figure 11-6 MiniEdit.r Project window with appropriate files

Note that the Code column displays the object size in bytes for each
file. The sizes currently are zero because you have not compiled any
files or loaded any libraries.

Compiling and Running the Project

For your project to run, the source files must be compiled and the
necessary libraries must be loaded. You can use the Compile or
Bring Up To Date commands from the Build menu or the Run
command from the Project menu to compile the files. The Symantec
Project Manager uses the Project file to keep track of the files that
need to be compiled and performs that task automatically when you
run the project.

The Debugger is explored in the next tutorial. For now, you run the
project without it. To set your application to run without the
Debugger:

1. Choose Options from the Project menu.

2. On the Project Options page of the Project Options
dialog box, set the option Run with Debugger off.

3. Click Save.

Symantec C++ User’s Guide and Reference

Compiling and Running the Project

*

Now run the application:

1. Choose Run from the Project menu.

None of the files in the project has been compiled,
so you are prompted to bring the project up-to-date
(Figure 11-7).

B P

Figure 11-7 Prompt to update the project

m— —

2. Click Update.

The Symantec Project Manager starts compiling the first
file in the project. The Progress dialog box indicates the
number of lines that have been compiled.

Note
The Symantec Project Manager adds the number of
lines in #include files in the line count.

Because BuggyEdit.cp has a small intentional bug, the Symantec
Project Manager opens a Build Errors window, and your application
is not run. Fixing the bug is discussed in the next section.

Symantec C++ User’s Guide and Reference 11-7

11 Tutorial: MiniEdit

Fixing a Bug
When the Symantec Project Manager finds an error in a source file, it
opens a Build Errors window and displays an error message. The

compiler continues compiling the rest of the files in the project. To
fix the bug, recompile the program, and run it:

1. Read the error message displayed in the Build Errors
window (Figure 11-8).

=E[fI=—————— Build Errors for MiniEdit.w

Figure 11-8 Build Errors window

2. Double-click the error message in the Build Errors
window to open the Editor window with the line causing
the error highlighted.

11-8 Symantec C++ User’s Guide and Reference

Fixing a Bug .

As you see in Figure 11-9, a semicolon is missing.

Edit.cp 31

extern Str235 theFi leMame;

#define oursiw) ({mylindow != NULL> && <w == myWindow’>

#if 1{defined(THINKL> || defined(THINKC_PLUS>>
extern ODGlobalis qd;
#endif

l;{oid maing)

int myRsrc;

InitGraf(&qd. thePort);
Ini tFonts¢) ¢/ BUG : missing ;'

Ini tlindows<¢);
InitMenus();
TEInit();
InitDialogs<OL);
Ini tCursor();
MaxApp | Zone();

/®
% The following statement is included as 3 check to see if we can
*# access our program's resources. When the projest is run from

¥ THIMK C, the resource file <project namer.rarc iz automatically

¥ gpened. When an application iz built, these resources are

¥ autematically merged with the application.

* H
&

& &

Figure 11-9 BuggyEdit file with a syntax error

In this example, the C++ compiler wants a semicolon
before the statement of line 45, but stylistically it is
preferable to place one at the end of line 44.

3. Add the missing semicolon.

Symantec C++ User’s Guide and Reference 11-9

11 Tutorial: MiniEdit

4. Compile the file BuggyEdit . cp using the Compile
command from the Build menu.

The source file compiles without errors this time. Note
that you do not have to save a file to recompile it.

Because the BuggyEdit . cp file no longer contains a
bug, you should save it with a different name.

5. Choose Save As from the File menu and save the
corrected file as MiniEdit .cp (Figure 11-10).

Note
Make sure you save the file in the MiniEdit f

folder.

Iﬁ MiniEdit § ¥ I = Macintosh HD
BuggyEdit.cp Eject
main.cp
Z| mini.file.cp
mini.file.h
mini.print.cp

Desktop

Save file as:
[MiniEdit.cp

Figure 11-10 File Save dialog box

11-10 Symantec C++ User’s Guide and Reference

Fixing a Bug .

6. Now click the Project window.

When you save a file that is already in the project using
Save As, the file’s name is also changed in the Project

window.

To save a file with a
different name without
affecting the project, use

The file’s object code is now associated with the new
name (Figure 11-11).

the Save A Copy As
command.

4 Libraries 2%324
o mini.file.cp o| 253
< mini.print.cp < 1320
o mini.windows.cp o| 2440
® MiniEdit.cp * o
o MiniEdit.rsre o
< pleasewait.cp ¢ 40
Totals 29660
5
i}

Figure 11-11 MiniEdit.n Project window with a new filename

Symantec C++ User’s Guide and Reference

11-11

11 Tutorial: MiniEdit

Running the Project Again

Now that you’ve fixed the bug, you can try running the project
again.

1. Choose Run from the Project menu.
You are prompted to bring the project up-to-date.
2. Click Update.

The Symantec Project Manager compiles the project and
launches it (Figure 11-12).

Min ~ MiniEdit.y

Hame Code
Libraries 23324
2536
1320
mini.windows.cp 2440
MiniEdit.cp 2920
MiniEdit.rsrc 0
pleasewait.cp < 40
Totals 32580

extern Str255 theF i leName; 4

N
3

#define ours(w) CmyMindow != NULL)> mini.file.cp

X mini.print.cp
#if 1(defined(THINK.L) || defined(THINK
extern QDGlobals qd;

#endi f

LR 2R N 4

void main()
{

O 00000

BEBBBW0

int myRsre;

Ini tGraf(&qd. thePort);
InitFonts();}
FlushEvents(e [E
Initlindows();
InitMenus();
TEIni t();
InitDialogs(OL)
Ini tCursor();
MaxApp | Zone();

Untitled

I

1%

* The fellowing statemeq
¥ a0CESS U program
* THINK C, the resour:
* opened. When an appli
* automatically merge|
*

ot

Figure 11-12 Running MiniEdit
3. Test the MiniEdit application.

You might want to experiment with program code. When you are
satisfied with how the project runs, you're ready to turn it into a
double-clickable application.

11-12 Symantec C++ User’s Guide and Reference

Building the Application

CEMS8 doesn'’t stand for
anything. It was chosen
because it is unlikely that
any other application on
your disk has that
signature.

¢
Building the Application

Now you are ready to turn the project into an application:

1. Choose Options from the Project menu to open the
Project Options dialog box.

This dialog box has eight pages. You move among the
pages by clicking the appropriate icon to the left.

2. Click the Project Type icon to open the Project Type
page of the dialog box (Figure 11-13).

Project Options for “MiniEdit.n” E=——==——=mmm—
Options: [MiniEdit.w b |

Fite Type[[EZMI] Creator [7777 |

- Project Type

X Riways ask for destination
Set destination [i

r~ SIZE r cfrg

28 [seco | !
| Custom stack size [0 |

Minimum size (1024
Preferred size (1024

=

b

r [Merge 680x0 Applicati
(setect appiication...) | |

r Help
Select the Options category that you wish to change by clicking its icon.

[Cancel [FactorgSettings | Save '

Figure 11-13 Project Type page
3. In the Creator textbox, type CEMS.

This ensures that your application has the correct icon
when you build it.

4. In the Minimum Size and Preferred Size textboxes,
change the default values to 256K.

The Power Macintosh uses these values to determine
how much memory to give to an application. Because
MiniEdit is so small, it does not need the default 1024K
size.

Symantec C++ User’s Guide and Reference 11-13

11 Tutorial: MiniEdit

5. Use the Flags pop-up menu to turn off all of the flags
except 32-bit Compatible.

MiniEdit is a simple program that does not take
advantage of the advanced features of System 7.5.

Warning
Do not turn off these flags with any project with
which you want to use the Symantec Debugger.

6. Click Save.

7. Choose Build Application from the Build menu
(Figure 11-14).

— Macintosh HD

BuggyEdit.cp
main.cp

Z] mini.file.cp
mini.file.h
mini.print.cp

Z] mini.print.h
mini.windows.cp

Eject

Desktop

Build “MiniEdit.w” as:

Figure 11-14 Building the MiniEdit application
8. Name the application MiniEdit and click Save.

You now have a new application in the MiniEdit f
folder.

11-14 Symantec C++ User’s Guide and Reference

Using a Resource File

For more information on
resource files, see “Using
Symantec Rez” in the
Symantec C++ Compiler
Guide.

¢

Using a Resource File

The MiniEdit f folder now contains a file called
MiniEdit.®.rsrc. This file contains the resources that the
MiniEdit project uses.

When the Symantec Project Manager runs your project, it looks for a
file named projectname. rsxrc (that is, the name of your project plus
the characters . rsrc appended to it). This file should contain the

resources (such as menus, alerts, and dialogs) that your project uses.

In this case the file is named MiniEdit .n.rsrc. During updates,
the Symantec Project Manager builds this file from all of the resource
files (. rsrc files) and resource description files (. r files) that are
included in your project. MiniEdit .m only includes one resource
file, MiniEdit.rsrc. Thus MiniEdit.rsrc and
MiniEdit.m.rsrc are identical. If you decide to edit any of the
resources used by MiniEdit, be sure to edit them in
MiniEdit.rsrc and not in MiniEdit.m.rsrc, because
MiniEdit.m.rsrc is rebuilt every time your project is updated.

To create a resource file, you can use Symantec Rez or ResEdit. Both
are included in your package. MiniEdit .rsrc was created with
ResEdit, so there is no resource description (. r) file for it.

Finishing Up

When you’re finished working on a project, you can either close the
project or quit the Symantec Project Manager by choosing Quit from
the File menu.

Symantec C++ User’s Guide and Reference 11-15

11 Tutorial: MiniEdit

11-16 Symantec C++ User’s Guide and Reference

Tutorial:

Object Bullseye
12

Object Bullseye shows you how to use the Symantec Project Manager’s
source-level Debugger. In the process, you build a simple
application that draws a series of concentric shapes in a small
window. With the Width menu you create as part of the application,
you can select the width of each of the shapes.

Before You Begin

Make sure the Object Bullseye f folder is on your hard disk. If
you followed the directions in the section “Installing Symantec C++,”
in Chapter 1, “Overview,” this folder should be inside the Demos
folder, which is inside the Project Demos folder. Also make sure
that the Symantec Debugger is in the same folder as the Symantec
Project Manager and that Power Mac DebugServices is in the
(Tools) folder.

This tutorial assumes you understand the basic mechanics of the
Symantec Project Manager. You should know how to open a project,
edit source files, and run a project. If you are not familiar with any of
these operations, review the previous two tutorials.

Preparing to Use the Debugger

When you are ready to start the Object Bullseye tutorial, you should
take the following two preparatory steps:

1. Open the project by double-clicking Object
Bullseye.m in the Object Bullseye folder.
Alternatively, select the file and choose Open from the
Symantec Project Manager’s File menu.

Symantec C++ User’s Guide and Reference ~ 12-1

12 Tutorial: Object Bullseye

Object Bullseye consists of four source files, one
resource file, and a few libraries (Figure 12-1).

v Object Bullseye.nw

Object Bullseye 7 W

<& Bullseye Resources.rsrc u] i}_
p (] vLibraries 23324
<& objBullMenus.cp ¢ 2208
< ObjectBullseye.cp 4 944
o TBullWindow op ® 968
o TWindow .cp o] el
Totals 29908 E

Figure 12-1 Object Bullseye.r Project window

Note that none of the files has been compiled (the Code
field indicates that the code size of each file is 0 bytes).

2. Choose Options from the Project menu to open the
Project Options dialog box.

3. On the Project Options page of the Project Options
dialog box, set on the option Run with Debugger.

To be able to use the Debugger, your compiled code
must contain debug information. By default, the
generation of debug information is enabled for this
tutorial.

Note
The generation of debug information is controlled
from two locations. First is the Project Options
dialog box (the Debugging subpage of the Power
PC C++ Options page). Second is the Debug
column in the Project window. As you can see in
Figure 12-1, the diamonds in this column are filled
by default, indicating that the Symantec Project
Manager will generate debugging information for
the source files.

12-2 Symantec C++ User’s Guide and Reference

Starting a Debugging Session

L 4
Starting a Debugging Session
To start a debugging session:

1. Choose Run with Debugger from the Project menu.

The Symantec Project Manager now compiles and loads
all the files in the Object Bullseye project. It launches the
Symantec Debugger, which opens the Main debugging
window and Control palette by default.

Note
If you had not selected Run with Debugger from the
Project Options dialog box, the command on the
Project menu would be titled Run. You can use the
Option key to toggle between Run and Run with
Debugger. ~

2. Position the debugging windows on the screen as
desired (Figure 12-2).

The Main debugging window contains two panes, the
Code pane and the Stack Crawl pane. The Control
palette contains buttons that both control the current
process and reflect the state of that process. The Control
palette is free-floating.

Symantec C++ User’s Guide and Reference 12-3

12 Tutorial: Object Bullseye

3. If the Data window is not displayed, open the window
by selecting Data from the Windows menu.

=0 Data == Data window Control palette
Data
[Go | [Step J[In }| Out || Trace | [3 Stop |
2B T i
= ObjectBullseyeqp =7
Stack Crawl Code
??? (68k) || 0x00093298 o}
2??? (PPC) ||Ox01EZ8EDS8 /% end HandleEvent */
2??? (PPC) ||Ox01E29524
b main — 0x01E29A80
JERFER
* main()
>
% Thiz iz where everything happens
¥
FXEEXYS
void main({void>
& — InitMacintosh();
& SetUpMenus();
for (;;>
& Hand | eEvent();
&}
W
A[E[T] |
Current Statement Current statement
function markers arrows

Figure 12-2 Debugger windows

Control palette

The Control palette provides an interactive mechanism for
controlling the execution of your program. The names of its buttons
match the commands in the Debugger’s Debug menu. In Figure
12-2, the Stop button is highlighted, which indicates that the
program is stopped.

12-4 Symantec C++ User’s Guide and Reference

Controlling Execution Flow

*

Main debugging window

This window displays information about the process currently being
debugged. Individual panes are printable. This window contains no
close box and remains open throughout a debugging session.

Stack Crawl pane

The Stack Crawl pane displays your program’s call chain: the name
of the current function and the names of the functions that were
called to get to the current function. To the right of the function
names, it displays the hex location of the function in memory. You
can use this pane to examine the variables in any function by
clicking on the triangle next to the function name.

Code pane

The Code pane shows the source text of your program. When you
start the Debugger, this pane shows the file that contains the

main () routine of your application. The black arrow to the left of
the first line of the program is the current statement arrow. This
indicator shows you the current statement, the one the Debugger is
about to execute.

The column of diamonds running along the left side of the Source
text contains statement markers. Every line of your program that
generates code gets a statement marker. Later, you will use the
statement markers to set breakpoints.

Data window

The Data window is used to examine the value of any expression.
These may be constants or function results, but the most common
use of the Data window is to examine the value of your program’s
variables.

Controlling Execution Flow

With the Debugger windows open, you are ready to experiment
with execution flow by clicking the Control palette buttons and
setting breakpoints.

Symantec C++ User’s Guide and Reference ~ 12-5

12 Tutorial: Object Bullseye

Stepping through statements

Click Step in the Control palette (Figure 12-3).

B
[T Go] [Step [In || Out || Trace | |3 Stop ¢]
ObjectBullseye.cp SE|
Stack Crawl Code
2?? (68k) | 0x00093208 2% end HandleEvent */
2?2 (PPC) [|Ox01E28EDS
2??2? (PPC> |Ox01E29524
D main 0x01E29A84 FERERRE
raainil
*
This is where everything happens
*
XEXEES
void main(void?
InitMacintosh();
o SetUpMenus();
for (;;)
Hand | eEvent();
}
£ # end rnain ¥4
=T

Instead of clicking In, you
can also choose Step In

Figure 12-3 Stepping through the program

The Step button lights up for a moment, the current statement arrow

moves to the second statement, and the program stops again.

The Step button lets you execute your program line by line. You can

also choose Step from the Debug menu or press Command-S.

Stepping into functions

Now the current statement arrow is pointing to the call to

SetupMenus () . This function sets up the menus for Object
Bullseye. To see how SetUpMenus () works, click In on the
Control palette.

from the Debug menu or

press Command-1.

12-6 Symantec C++ User’s Guide and Reference

Controlling Execution Flow

Now the current statement arrow points to the first line of the
SetUpMenus () function (see Figure 12-4).

[Go | [_Step [In J|_Out J[Trece | [2Stop¢]

objBullMenus.cp %‘—“——_“—'—'5
Stack Crawl Code
??? (68k> [|0x00093298 * SetUpMenus()
2?2 (PPC) (|OxD1E28EDS8 *
??? (PPC) |Ox01E29524 * Set up the menus.
P main 0x01E29A84 %
P SetUpHenus) 0x01E23144 FXEE]
void SetUpMenus(void>
{
3 InsertMenulappleMenu = GetMenulapplelD)>, 0>;
<& AddResMenulappleMenu, 'DRUR');
< InsertMenu(fileMenu = GetMenu(filelD>, 0);
<& InsertMenuedi tMenu = GetMenuleditliD>, 0);
< InsertMenulwidthMenu = GetMenudwidthID>, 0);
< InsertMenul foreMenu = GetMenu(forelD>, 0);
<& InsertMenu(backMenu = GetMenulbackl|D>, 0);
< DrawMenuBar();
<
ET]

Figure 12-4 Inside SetUpMenus()

Note

The current statement arrow does not have to be
right before a function call for the In button to
work. The Step In command executes every
statement until the program counter is no longer in
the current function. Another way to think of the
Step In command is: “Keep going until you fall into
a function.” Step In also stops execution if you fall
out of the current function.

Symantec C++ User’s Guide and Reference 12-7

12 Tutorial: Object Bullseye

Stepping out of functions

Click Out to leave the SetUpMenus () function. The Code Pane
now shows that the Debugger has just finished executing the
function SetUpMenus (). The hollow arrow indicates this (see
Figure 12-5). Sometimes you will also see a down-pointing arrow
indicating that the line contains a function call that has not yet
returned.

]
[Go] [Step J[In J|_ Out f| Trace | [:3Stop ¢]

e ul_)jectBullsege.cp Eee———————h
Stack Crawl : Code | -

7277 (68k) | 0x00093208 7% and HandleEvent %/
222 (PPC) |0x01E28ED8
222 (PPC) |0x01E20524

P main 0x01E29A88 frrxxs
* roain()
*

This is where everything happenz
%
ERERES

void main{void)

InitMacintosh(>;
SetUpMenus();

for (;;)
Hand | eEvent(>;

}

/% and rain ¥/

Figure 12-5 Outside SetUpMenus()

The Out button steps through each statement in the current function
until the execution leaves the function.

12-8 Symantec C++ User’s Guide and Reference

Controlling Execution Flow

Tracing every statement

Click Step once so the current statement arrow points to the call to
HandleEvent () (Figure 12-6).

£

6o | [Step |[i [Out [Trace | [3Stop &]

L 4

%_“_“—__— l]bjectBullsege.cp lﬁg
Stack Crawl Code .
??? (68k) [[0x00093298 7% end HandleEvent ¥/
??? (PPC) (|0x01E28EDS
22?7 (PPC) | 0OxD1E29524
P main 0x01E29A8C fEEERE
* main()
#
This is where 2verything happens
*
EXT X2 N
void mainvoid>
InitMacintosh();
SetUpMenus();
for (;;)
Hand | eEvent();
}
/% erd main ¥/
=TT

Figure 12-6 Current statement arrow points to HandleEvent()

Symantec C++ User’s Guide and Reference

12-9

12 Tutorial: Object Bullseye

Instead of clicking Trace,
you can choose Trace from
the Debug menu or press

Now click Trace. The current statement arrow points to the first
statement of the HandleEvent () function (Figure 12-7).

Command-T. He— [
[Go | [Step J[W |[Out][Trace | [3 Stop &]
ObjectBullseye.cp W'__m_*‘"“_‘_@a
Stack Crawl Code
2?2 (68k) | 0x00093298 * repeatedly (it handles only one event).
2?77 (PPC) |OxD1E28EDS E3
2?7 (PPC) |OxD1E29524 EEBEES
P main 0x01E29A8C
b Hand | eEven| 0x0 1E2996C ?tatic void HandleEvent(void>
short ok ;
EventRecord theEvent;
Hi li teMenuc0>;
SystemTask ¢>; /¥ Handle desk accessaries ¥/
AdjustMenus<);
ok = GetNextEvent (everyEvent, &theEvent);
if Cok)
{
swi teh (theEvent.what)
{
case mouseDown:
Hand | eMouseDown(&theEvent);
EEN

Figure 12-7 Inside HandleEvent()

Tracing takes you to the next statement even if it has to step into a
function. If you were to continue tracing, you would stop at every
statement. Stepping, on the other hand, never dives into a function.

Note
The In button actually does a trace until the current
statement arrow leaves the current function.
Setting a breakpoint

When a new window is created, the program gets an Activate event
the first time through the event loop. In Object Bullseye, all the
program does on Activate events is call InvalRect () on the whole
window, so the second time through the event loop, it gets an
Update event.

12-10 Symantec C++ User’s Guide and Reference

Controlling Execution Flow

You could Step or Trace to verify that this is what really happens. A
faster way is to set a breakpoint at the function that redraws the
window:

1. Scroll down in the Code pane until you get to the code
that handles Update events.

2. Click the statement marker to the left of the call to the
Update function (see Figure 12-8).

Eﬁmﬁ_
[Go | [st |[W |} Out J[Trace | [= Stop &]

ObjectBullseye.cp =—————— I

Code

case updateEut:
if (((HindowPeek) theEvent. message)-rwindowkind == TWINDOWK IMD>
OBJ(theEvent . message)-*Updated »;
break;

case activateEuvt:
if (({WindowPeek) theEvent.message)-rwindowkind == TWINDOWK IND 2>
OBJ¢ theEvent . message)-*Activated theEvent modifiers & O0x013;
break;

Figure 12-8 Setting a breakpoint

The hollow diamond fills in to indicate that you have set
a breakpoint. You can set as many breakpoints as you
like this way. When your program is about to execute a
statement that has a breakpoint, it will stop. To remove a
breakpoint, click the filled diamond.

3. To start your program running, click Go.

4. Now select New Circle from the File menu to open a
new window. The Debugger is brought forward with the
current statement arrow at your breakpoint.

Symantec C++ User’s Guide and Reference 12-11

12 Tutorial: Object Bullseye

5. Click In to step into the Update () function
(Figure 12-9).

e |
| Go | | Step | tn || Out }| Trace | |[-3Stop &}

EeEeEe=e=————— Windowegyp=———— 5

void THindow: :Updatedvoid>
{

WindowPtr savePort;

GetPort(&savePort);
SetPort(thelindow);
BeginUpdate(thelindow);
Draw();
EndUpdate(thelindow);
SetPort{savePort’;

LOOCC S

Figure 12-9 Inside Update() function

6. Before continuing, make sure that the new Object
Bullseye window (“Bullseye 1”) is completely visible.
Drag the Debugger windows so that they do not hide the
new window.

7. Click Step three times to watch how the program draws
a bullseye in the window.

8. When the current statement arrow is pointing to the
window’s Draw () function, click In to step into the
Draw () function, then use Step to see how Draw ()
works.

12-12 Symantec C++ User’s Guide and Reference

Controlling Execution Flow

L 4

To stop, click Out. Whether you Step, Trace, or step
Out, you eventually end back at the call to Update() .
If you were inside Draw (), you will have to click the
Out button twice; once to exit Draw () and a second
time to exit Update () (Figure 12-10).

e —————————-
| Go | [Step ||'In ml[i OQut || Trace | |3 Stop &

43
s

== DDjectBullsege.CD =———-m7

Code

HandleMenu(MenuKey({char» (theEvent. .message & charCodeMask))>);
break;

case updateEvt:
if (((HindowPeek) theEvent.message)->windowKind == TWINDOWKIND>
0BJ(theEvent . message »->Update();
break;

case activateEvt:
if (((WindowPeek) theEvent.message)-*windowKind == TWINDOWKIND>
0BJ(theEvent.message)-rActivate(theEvent modifiers & Ox01);

Figure 12-10 Outside Update() function

Note that the current statement arrow is hollow. This means that
there are still some instructions left to execute in the statement. You
see right-pointing hollow arrows when the statement is making an
assignment or cleaning up the stack after stepping out of a function.
You see down-pointing hollow arrows when the line contains a
function call that has not returned yet.

Before you go on, clear the breakpoint. Just click the diamond.

Letting the program run
Click Go to let the program run. You can set and clear breakpoints
while your program is running.

When you click in the Main debugger window to set breakpoints,
your application goes to the background and the Debugger comes to
the foreground. If you click Go when your program is running, the
Debugger brings it to the foreground.

Symantec C++ User’s Guide and Reference 12-13

12 Tutorial: Object Bullseye

Instead of clicking a file in
the Project window, you
can select a line in an open
source text window and
then use Debug File (or
Command-).

Stopping the program

To stop your program:

1. Click a Debugger window.

2. Click Stop or press Command-Period.

Your program stops as it'’s coming out of one of the

event-fetching routines (GetNextEvent () or

WaitNextEvent ()).

Viewing Other Files

The Code pane usually shows the file that contains the current
statement. To look at another file in the Debugger (to set
breakpoints in it, for example), you tell the Symantec Project
Manager to send the text to the Debugger:

1. Bring the Project Manager to the front (Figure 12-11).

2. Click the name of a file.

E

v Object Bullseye.m E

R T
<& Bullseye Resources.rsrc) 1] _{;}_
b D Libraries 23324
< objBullMenus.cp 4 2208
| ObjectBullseye.cp ® 944
TEUTTW indioow iz % 968
< Twindow .cp & 2464 T
Totals 29908 g

Figure 12-11 Click the name of a file

12-14 Symantec C++ User’s Guide and Reference

Viewing Other Files

¢

3. Choose Debug File from the Symantec Project Manager’s
Project menu (Figure 12-12).

Options... 3;

Switch Main Project 2

Add Files...

Add Window

Add Group...

Remove “TBullllindow.cp”

Debug File

Run with Debugger #R

Figure 12-12 Debug File command

The file that you chose appears in a Code pane of a new
Debugger window.

= TRullllindowcp=————Pp;7|

Code

EX T
¥ TBullWindow .c
E3

Copyright € 1991 Symantec Corporation. All rights reserved.

The window methods for the Dbject Bullseys dema.

TBullw'indow inherits its Draw rethod firors Th'indaw.
TSquareBull and TlircleBull averride DrawShape to draw their own kind of bullseye.

*
*
*
*
*
*
*

Figure 12-13 Viewing another file in the Project window
4. Examine the file and set breakpoints in it.

Once you have set breakpoints, you may close this new
window. When you run the program, the Debugger
stops at your breakpoint and displays it in the Code pane
of the Main debugging window.

Symantec C++ User’s Guide and Reference 12-15

12 Tutorial: Object Bullseye

Examining and Setting Variables

Tracing your program’s execution lets you see what your program is
doing. But to really fix bugs, you need to be able to examine the
variables. You use the Data window for this task or expand the stack
frame.

Before you begin:

‘1. Quit the current debugging session by choosing Quit
from the Debugger’s File menu.

2. Choose Run with Debugger to begin a new session.

Looking at the Data window

The Data window appears to the right of the Code pane. If it is
hidden, you can select it by choosing Data from the Windows
menu.

= Data —=————m]
Data

Entry field

it
Expression column——

Value column

=

Figure 12-14 Debugger’s Data window

Expressions you type into the entry field appear in the left column
when you press Return or Enter. (Pressing Enter leaves the
expression selected. Pressing Return leaves the entry field empty so
you can type the next expression.)

You can drag the horizontal or vertical bars to make a subpane larger
or smaller.

To remove an expression from the Data window, select it and
choose Clear from the Edit menu or press Clear.

12-16 Symantec C++ User’s Guide and Reference

Examining and Setting Variables .

Examining variables
Suppose you want to watch the value of the menuID variable in the
HandleMenu () function. To do so:

1. Make sure the objBullMenus. cp file is displayed in
the Code pane.

If it is not, bring the Project window to the front, click
the name objBullMenus.cp, and choose Debug File
from the Project menu.

2. Scroll down until you see the HandleMenu () function.
Alternatively, choose Go To Marker from the Source
menu and select HandleMenu () from the Markers
dialog box.

3. Set a breakpoint at the switch statement (Figure 12-15).

Remember that you can set breakpoints even while your
program is running.

ob jBullMenus.cp -

Code

switech (menulD?

case applelD:
if (menultem == 12

Alertd128, OL);
break;

+

GetPorti&sauePortl;

P_lleI [
Figure 12-15 Selecting the context for the Debugger

4. Click once on the line that contains the switch
statement to select it.

You select a line to give the Debugger a context for
evaluating menuID. In this case, you are saying you
want to know the value of menuID right before the
switch statement.

Symantec C++ User’s Guide and Reference 12-17

12 Tutorial: Object Bullseye

Expressions in the Data window have either local scope
or global scope. An expression has local scope if it refers
to variables with dynamic storage—in other words, if it
refers to nonstatic variables local to a function. All other
expressions have global scope.

5. Click the Data window.

You will see the insertion point blinking in the entry
field.

6. Type menulID in the entry field and press Return
(Figure 12-16).

The Debugger compiles the expression (it may take a
moment) in the context of the selected line. Right now,
the Data window does not show a value for menuID
because the program is not stopped there.

EE=—— pata =———p7
Data

menu | D

EE &

Figure 12-16 Entering menulD into the Data window

7. Click Go in the Control palette (or press Command-G) to
run Object Bullseye.

8. Create a new window by choosing New Triangle from
the File menu.

12-18 Symantec C++ User’s Guide and Reference

Examining and Setting Variables

*

Your program stops at the breakpoint when you release
the mouse button, and the value of menuID appears in
the value column (Figure 12-17).

EH=——=— Data =———19
Data
menu-l.D 2 i".
&
AE[T |@

Figure 12-17 Examining the value of menulD

Any time your program stops, the Debugger displays the values of
expressions that have global scope. It displays the values of
expressions with local scope whose context is the same as the
current function and it clears the values of local expressions whose
context is not the current function.

Changing the value of a variable

You can also use the Data window to change the value of a variable,
as follows:

1. Click in the Data window again and type menuItem.

This variable contains the number of the selected menu
item.

Symantec C++ User’s Guide and Reference 12-19

12 Tutorial: Object Bullseye

2. Press Return to have the Debugger show you its value
(Figure 12-18).

Si=——— Data ———=[F3

Data

menulD
menul tem 3

&l

E[E[T] [&

Figure 12-18 Entering menultem in the Data window

To change the value of a variable, click its value and type a new one
in the entry field. When you click Enter, the value of the variable
changes. Here’s an example:

1. Click the value of menuItem (the right column) to select
it. Its value, 3, appears in the entry field as well. Now
type 2 as a new value for menuItem.

=[]

Data

menulD

menul tem

E[&[T] [&

Figure 12-19 Changing the value of menultem

2. Click Enter to assign the new value to the variable.

12-20 Symantec C++ User’s Guide and Reference

Examining structs, classes, and arrays .

3. Click Go to have the Object Bullseye program resume,
behaving as if you had chosen New Square from the
File menu.

Note
You can enter the same expression more than once
in the Data window. You might want to do this to
lock one of the expressions so you can compare it
to the same expression later in the program. See the
section “How and when the source Debugger
evaluates expressions” later in this chapter.

4. Click in a Debugger window to switch back to the
Debugger.

5. Now choose Clear All Breakpoints from the Source
menu to make sure no breakpoints are set before you go
on to the next section.

6. Click Go to start the program running again.

Examining structs, classes, and arrays

The Data window lets you examine and modify structures, classes,
and arrays, not just simple variables. When you display a structure or
union in the Data window, its value appears as struct
Oxnnnnnn or union Oxmnnnnn. Arrays appear as

[1 Oxmnnnnn.

When you click on the triangle next to a structure’s name, the
Debugger expands the structure and displays all of its fields.

Note
Any information presented here about structures
applies to unions and classes as well.

Symantec C++ User’s Guide and Reference 12-21

12 Tutorial: Object Bullseye

1. Make sure the Object Bullseye program is still running.

2. Display the file ObjectBullseye.cp in the Code
pane, and set a breakpoint on the line right after the call
to GetNextEvent () in the function HandleEvent ()
(Figure 12-20).

EE————— (pjecthulisegecp 35

Code

ok = GetNextEvent (everyEvent, &theEvent);
if Cok>
{

switch (theEvent.what>
{

case mouseDown:
Hand | eMouseDown(&theEvent);
break;

case keyDown:

ElENE o ; E|
Figure 12-20 Setting a breakpoint in HandleEvent()

3. Click the Object Bullseye window.
The program stops at the breakpoint.

4. Type theEvent in the entry field of the Data window
and press Return. Alternatively, select theEvent in the
Code pane and then choose Copy to Data from the Edit
menu.

12-22 Symantec C++ User’s Guide and Reference

Examining structs, classes, and arrays

The Debugger displays the word struct and the
address of the structure (Figure 12-21). If you cannot see
the entire value, click the center separator bar and drag it
to the left. Alternatively, you can make the window
larger.

Date ==——=

Data

menulD 1
menul tem 15
P theEvent struct 0x00D343BC

El=[T] |
Figure 12-21 Entering theEvent in the Data window

L 4

Note
If you do not select a line to give a variable a
context, the Debugger uses the current statement as
the control.

5. Click the triangle to the left of theEvent, The Debugger
expands theEvent record structure and displays all of
its fields (Figure 12-22).

EN==——— Data =——5
Data

menulD 1
menul tem 15

<7 theEvent struct 0x00D343BC

what 15
message 16777217
when 80298
P where struct 0x00D343C6

modifiers 128
A[=[T] &

Figure 12-22 Looking at fields in a structure

Symantec C++ User’s Guide and Reference 12-23

12 Tutorial: Object Bullseye

You can edit the values of the fields, but you cannot edit
the names.

The what field indicates that you’re looking at a Resume
event (what = 15).

6. Click Go once more and the event will be an Update
event (what = 6).

In Update events, the message field points to the
window record that gets the Activate event.

7. Double-click the message field in the Data window.

The Debugger enters a new expression in the main Data
window: theEvent .message. Edit the expression to
read (WindowPeek) theEvent .message so you can
look at the Window Record (Figure 12-23).

Note
Double-clicking any item in the left column of the

Data window creates a new entry in the Data
window.

EE=—— nate =———115]
Data

(WindowPeek >theEvent . message

menulD 1
menu | tem 15
W theEvent struct 0x00D343BC
what 6

message 16777218
when 213916

P where struct 0x00D343C6
modifiers 0

Figure 12-23 Entering (WindowPeek)theEvent.message

8. Press Return so that the structure is evaluated and added
to the list of expressions in the Data window.

12-24 Symantec C++ User’s Guide and Reference

Examining structs, classes, and arrays

9. Now click on its triangle to expand the structure.
You will need to scroll to see the entire structure, since
the window record is too large to fit in the window
(Figure 12-24).
Sfie=—m——— lhth =—————
[rata
= (HindowPeek >theEvent messar 0x006CECBO
[port struct 0x00BCECED
windowk ind 21591
visible 001
hilited 001
goAwayF | ag 001
spareF lag Ox01
> struckRgn 0x006BEESS
[» contRgn 0x006EEES4
[» updateRgn 0x006BEESO
J» windowDe fProc 0x0000SE74
P dataHand e 0x00EBEE44
P titleHandle 0x006BEE4C
titledidth 67
P controllist 0200000000
=& T] |

Figure 12-24 Examining the fields of (WindowPeek)theEvent.message

Scroll down to the titlehandle field and click on its
triangle.

When you double-click the value of a pointer variable, the Debugger
inserts a dereferenced expression in the Data window and displays

its value. To see a pointer as an array, change its format to Address,
as explained in the next section, “Expressions and Contexts.”

C and C++ compilers do not enforce array bounds. If the array was
declared with array bounds, those bounds are used. Otherwise, the
Debugger uses default array bounds of ten elements. You can
change array bounds by using Set Array Bounds on the Data
menu.

Symantec C++ User’s Guide and Reference 12-25

12 Tutorial: Object Bullseye

Expressions and Contexts

You can enter any expression that does not have a potential side
effect. That means you cannot enter assignment statements or
expressions involving ++, —-, or +=.

‘Every expression you type in the entry field is compiled in a context.
The context is the selected line of the Code pane. If no line is
selected, the context is the line to which the current statement arrow
points.

To see the context of an expression, click the expression in the left
column of the Data window and choose Show Context from the
Data menu. The Debugger highlights the context in the Code pane.

To change the context of an expression, click the Code pane at the
line you want to use as a context. Then select an expression in the
Data window and choose Set Context from the Data menu. A
shortcut is to hold down the Option key as you press Enter.

If you edit an expression, its context will be that of the original
expression. You can change its context by pressing Option-Enter, as
described above.