
S . EC.

DEVELOPMENT SYSTEM FOR
POWER MACINTOSH

®

User's
Guide

VERSION 8

POWER MACINTOSH/
' MACINTOSH

Symantec C++
for Power Macintosh.

User's Guide and
Reference

•
Documentation

Development

Quality Assurance

Technical Support

Project Management

Product Management

Credits
Elizabeth Collins, John Minniti, Jeanne Munson, Stephen Raphel,
Susan Rona, and Cambridge Publications

David Bustin, Thomas Cardozo, Thomas Emerson, Bob Foster,
Udi Kalekin, Paul Kaplan, Doug Knowles, Jim Laskey, John Micco,
Pat Nelson, Mark Romano, Phil Shapiro, and Rob Vaterlaus

Celso Barriga, Colen Garoutte-Carson, Constantine Hantzopoulos,
Kevin Irlen, Yuen Li, and Christopher Prinos

Glenn Austin, Mark Baldwin, Craig Conner, Colen Garoutte-Carson,
Rick Hartmann, Michael Hopkins, Steve Howard, Scott Morison, and
Kevin Quah

Constantine Hantzopoulos, Doug Knowles, and David Neal

David Allcott

Copyright© 1989, 1993, 1994, 1995 Symantec Corporation.
All Rights Reserved. Printed in U.S.A.

Symantec Corporation
10201 Torre Avenue
Cupertino, CA 95014
408/253-9600

Symantec C++, THINK C, THINK Reference, and
THINK Pascal are trademarks of Symantec
Corporation. Other brands and their products
are trademarks of their respective holders and
should be noted as such.

The User's Guide and Reference is copyrighted and all rights are reserved.
Information in this document is subject to change without notice and does
not represent a commitment on the part of Symantec Corporation. The
software described in this document is furnished under a license agreement.
The document may not, in whole or in part, be copied, photocopied,
reproduced, translated, or reduced to any electronic medium or machine­
readable form without prior consent, in writing, from Symantec Corporation.

SYMANTEC CORPORATION MAKES NO WARRANTIES, EITHER EXPRESS
OR IMPLIED, REGARDING THE ENCLOSED COMPUTER SOFTWARE
PACKAGE, ITS MERCHANTABILITY, OR ITS FITNESS FOR ANY
PARTICULAR PURPOSE. THE EXCLUSION OF IMPLIED WARRANTIES IS
NOT PERMITTED BY SOME STATES. THE ABOVE EXCLUSION MAY NOT
APPLY TO YOU. THIS WARRANTY PROVIDES YOU WITH SPECIFIC LEGAL
RIGHTS. THERE MAY BE OTHER RIGHTS THAT YOU MAY HAVE WHICH
VARY FROM STATE TO STATE.

SYMANTEC'S LICENSOR(S) MAKES NO WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE,

•
REGARDING 1BE SOFTWARE. SYMANTEC'S LICENSOR(S) DOES NOT
WARRANT, GUARANTEE OR MAKE ANY REPRESENTATIONS REGARDING
THE USE OR 1BE RESULTS OF THE USE OF THE SOFTWARE IN TERMS OF
ITS CORRECTNESS, ACCURACY, RELIABILITY, CURRENTNESS OR
OTHERWISE. THE ENTIRE RISK AS TO THE RESULTS AND PERFORMANCE
OF THE SOFTWARE IS ASSUMED BY YOU. THE EXCLUSION OF IMPLIED
WARRANTIES IS NOT PERMITTED BY SOME JURISDICTIONS. THE ABOVE
EXCLUSION MAY NOT APPLY TO YOU.

IN NO EVENT WILL SYMANTEC'S LICENSOR(S), AND THEIR DIRECTORS,
OFFICERS, EMPLOYEES OR AGENTS (COLLECTIVELY SYMANTEC'S
LICENSOR) BE LIABLE TO YOU FOR ANY CONSEQUENTIAL, INCIDENTAL
OR INDIRECT DAMAGES (INCLUDING DAMAGES FOR LOSS OF BUSINESS
PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION,
AND THE LIKE) ARISING OUT OF THE USE OR INABILITY TO USE THE
SOFTWARE EVEN IF SYMANTEC'S LICENSOR HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME JURISDICTIONS DO
NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY FOR
CONSEQUENTIAL OR INCIDENTAL DAMAGES, THE ABOVE LIMITATIONS
MAY NOT APPLY TO YOU.

SYMANTEC'S Licensor's liability to you for actual damages from any cause
whatsoever, and regardless of the form of the action (whether in contract,
tort (including negligence), product liability or otherwise), will be limited to
$50.

Contents•

Part One: Welcome to Symantec C++ for Power Macintosh

1 Overview . 1-1
Product Highlights . . . 1-1

PowerPC Compilers . 1-1
Project Management. 1-1
Project Window . . 1-3
Class Browser . 1-3
Debugger . 1-4
New Editing Features 1-4
New Search Options 1-5
Scripting Support. . 1-5
Worksheet Window. 1-5
Visual Architect (VA) . 1-5
Online Documentation. . . . 1-5

Prerequisites for Using Symantec C++ 1-6
About This Manual 1-6

Conventions in the User's Guide and Reference 1-6
Parts One through Three . 1-6
Parts Four through Six 1-9
Electronic Supplemental Information (ESI) .1-12

Installing Symantec C++. . . .1-12
Read the license agreement . .1-12
Send in the registration card . .1-12
Read the ReadMe Files. . . .1-12
Installing All of Symantec C++ .1-12

What To Do Next1-13
Steps for the user new to Power Macintosh
development1-13
Steps for the user new to Symantec C++ . . .1-13
Steps for the user new to the Macintosh . . .1-13

Symantec C++ User's Guide and Reference v

• Contents

2 Introducing Symantec C++ 8.0 .2-1
Programming with Symantec C++. . 2-1

Starting a project 2-2
Editing application code . 2-3
Building an application . . 2-4
Viewing classes 2-4
Testing an application 2-5
Constructing a user interface with Visual Architect. . 2-6
Using additional tools 2-6

The THINK Class Library and Visual Architect . 2-7
Overview of the THINK Class Library . . . 2-7
Creating a THINK Class Library application . 2-8
Overview of Visual Architect . . 2-9
Working with Visual Architect 2-11

Part Two: Creating an Application

3 Starting a Project. .3-1
. 3-1
. 3-2
. 3-4
. 3-5
. 3-5
. 3-7
3-10
3-12
3-14
3-15
3-15
3-16

What Is a Project? .
Project contents
Organizing files and folders

Models and Projects
Choosing the project model
Creating a new project
Adding and removing project entries
Creating groups . .
Opening project entries.
Working with multiple projects
Project-specific commands.
Closing a project . .

4 Editing a Project's Code
Opening Files and Viewing Application Code.

Viewing headers or function definitions
Navigating in a text file .

Entering and Editing Text . .
Adding and deleting text . . .
Scrolling and automatic indenting
Syntax highlighting .
Delimiter matching . . .

Searching and Replacing Text . .
Finding and replacing strings . .
Searching through multiple files .
Using Grep to search for patterns

Saving Changes.
Compiling a File

.4-1
. 4-1
. 4-2
. 4-4
. 4-9
. 4-9
. 4-9
4-10
4-10
4-11
4-11
4-14
4-16
4-17
4-17

vi Symantec C++ User's Guide and Reference

Contents •
5 Viewing and Editing Classes 5-1

Before Browsing 5-1
Opening the Class Browser . 5-2
Navigating in the Class Browser Window 5-3
Viewing the Class Hierarchy 5-5

List-based viewing 5-6
Hierarchical viewing. 5-6

Editing Class Information . ,. 5-7
Editing a class definition 5-8
Editing a member function 5-9
Editing a data member . 5-10

6 Using the Debugger. 6-1
Updating the Project . 6-1
Starting a Debugging Session 6-3

Trouble-shooting . 6-3
The Debugger Windows . 6-4

The Main debugger window . 6-5
Debug Browser windows 6-10

Stepping Through Code . 6-11
Setting Breakpoints 6-14

Simple breakpoints 6-15
Temporary breakpoints. 6-15

Examining the Call Chain 6-16
Formatting . 6-19

Analyzing Variables 6-21
Changing the values of variables 6-24
Evaluating expressions . 6-24

Ending a Debugging Session 6-25
Preferences and Options. 6-25

7 Creating a User Interface with VA 7-1
Introduction . . 7-1

When to use Visual Architect . . 7-2
Files produced. . 7-2

Launching Visual Architect 7-2
Constructing Views . 7-4

Types of views . 7-4
Creating a view . 7-6
Changing the attributes of a view . 7-8

Creating Panes . 7-11
Adding a pane to a view 7-12
Selecting a pane . 7-15
Deleting a pane from a view . 7-15
Changing pane attributes 7-15

Trying out a view . 7-18

Symantec C++ User's Guide and Reference vii

• Contents

Building Menus. 7-18
Creating a menu 7-19
Deleting a menu 7-19
Adding a menu to the menu bar. . . 7-20
Removing a menu from the menu bar. 7-21
Adding and removing menu items . 7-21
Setting a menu item's command key 7-23
Creating a submenu . 7-23

Attaching Commands . 7-23
The role of commands . . 7-23
Defining a new command. 7-24

Defining Classes 7-26
Creating a new class. 7-26
Defining data members. 7-27
Changing classes . . 7-28

Adding Balloon Help . . 7-29
Generating Source Code. 7-30

Visual Architect and the Symantec Project Manager 7-30
Source files created by Visual Architect 7-30
Macro files 7-31
Generating source code and updating a project 7-31
Customizing Visual Architect source files . 7-32

8 Advanced Topics .8-1
Creating Options Sets . . 8-1

Defining a new options set . 8-2
Modifying options sets 8-3
Modifying the default options set for empty projects . . 8-4

Using Precompiled Headers. 8-4
Checking extensions and compiler options . 8-5
Precompiling a header file. . 8-5

Scripting the Project Manager . . 8-6
Recording scripts . . . 8-6
Storing scripts 8-10
Running scripts automatically. 8-10

SourceServer. 8-12
Key terms . . . 8-12
Setting up a SourceServer database. 8-15
Checking files in and out . . . 8-18
Accessing revision information . 8-23

Using ToolServer . . 8-26
Setting up ToolServer ·8-26
Using MPW tools with ToolServer 8-26

Part Three: Learning by Example (Tutorials)

9 Tutorial Introduction
What You Will Learn
Hello World
MiniEdit .

.9-1
. 9-1
. 9-2
. 9-2

viii Symantec C++ User's Guide.and Reference

Contents +

Object Bullseye . 9-3
Vector. 9-3
Beeper. 9-3
Process Monitor. 9-4

10 Tutorial: Hello World 10-1
Before You Begin . 10-1
Hello World C Application 10-1

Creating a Project. 10-2
Creating a source file 10-5
Compiling the source file and dealing with errors . 10-8
Adding the libraries . 10-10
Building and running the application 10-13
Creating the application 10-14

Hello World C++ Application 10-15
Creating a project. 10-16
Adding a source file . 10-16
Adding libraries 10-17
Updating the project. 10-17

11 Tutorial: MiniEdit. 11-1
Creating the Project . . 11-1
Adding the Source Files . 11-4
Compiling and Running the Project 11-6
Fixing a Bug . 11-8
Running the Project Again 11-12
Building the Application . 11-13
Using a Resource File. 11-15
Finishing Up . 11-15

12 Tutorial: Object Bullseye 12-1
Before You Begin . 12-1
Preparing to Use the Debugger 12-1
Starting a Debugging Session 12-3

Control palette. 12-4
Main debugging window 12-5
Data window . 12-5

Controlling Execution Flow . 12-5
Stepping through statements . 12-6
Stepping into functions . 12-6
Stepping out of functions 12-8
Tracing every statement 12-9
Setting a breakpoint . 12-10
Letting the program run 12-13
Stopping the program 12-14

Viewing Other Files 12-14
Examining and Setting Variables 12-16

Looking at the Data window . 12-16
Examining variables . 12-17
Changing the value of a variable 12-19

Symantec C++ User's Guide and Reference ix

Contents •
Examining structs, classes, and arrays 12-21
Expressions and Contexts 12-26

How and when the source Debugger
evaluates expressions 12-26
Display formats 12-27

Quitting the Debugger 12-28

13 Tutorial: Vector 13-1
About the Vector Project. 13-2
Debugging Inline Functions. 13-3
Using and Debugging Templates . 13-7

Instantiating templates . 13-7
Templates and debugging information. 13-9
Debugging simple templates . 13-10
Using template instantiation files. 13-13
Debugging with instantiation files 13-16

What to Do Next 13-21
Create wrapping subscripts 13-21
Add new methods to my Date. 13-21
Write a new sort function . 13-22
Create a new class and sort it . 13-22
Change the vecMax() function into a
member function . 13-22
Create a template function. 13-22

14 Tutorial: Beeper 14-1
About the Tutorial . 14-1
Getting Started 14-1
Designing the User Interface 14-4

Starting Visual Architect. 14-4
Creating a view 14-5
Adding pane elements to the dialog box . 14-6
Creating a command to execute a function 14-9
Associating a command with a button . 14-11
Setting the default command . 14-12
Adding a push button to the Main view 14-13
Creating the command to call up the dialog box 14-15
Previewing your view 14-17

Generating Code and Updating the Project. 14-18
Modifying the Generated Code. 14-20
Updating and Running the Application . 14-22

15 Tutorial: Process Monitor . 15-1
About the Application. 15-1
Getting Started 15-2

Looking at the project 15-2
Opening the project and launching VA 15-3
Setting application information 15-4

x Symantec C++ User's Guide and Reference

Building the User Interface
Creating and previewing the main window
Drawing rectangles .
Creating static text items
Creating push buttons
Creating check boxes .
Creating a subview . .
Creating a scroll table . .
Setting the table command
Creating a derived class
Creating a pop-up menu
Trying out the completed main window
Creating the alternative main window .
Creating the New ... Dialog . .
Adding OK and Cancel Buttons .
Editing menus

Generating Code for Your Application
Customizing code . .
Running the application

Part Four: Symantec Project Manager Reference

16 The Fi le Menu.
Commands in the File Menu

Opening projects, Editor windows, and files.
Saving files and closing windows
Printing .

Modifying Project Models
Creating Custom Project Models

17 The Project Window
Introducing the Project Window

Pop-up menus on the toolbar
Project window column headings

Selecting Project Entries .
Drag-and-Drop Operations .

Adding project entries from the Finder
Removing project entries .
Rearranging project entries
Copying project entries .

18 The Project Menu
Commands in the Project Menu

Switching projects
Adding and removing files from a project
Working with the Debugger
Setting project-level options

Project Options Page .
Build and Run settings .

Contents •
15-5
15-5
15-8
15-9

15-10
15-21
15-23
15-25
15-27
15-28
15-30
15-34
15-35
15-38
15-40
15-41
15-43
15-45
15-46

16-1
16-1
16-2
16-7
16-9
16-9

16-10

17-1
17-1
17-2
17-3
17-4
17-5
17-5
17-5
17-5
17-6

18-1
18-1
18-2
18-2
18-3
18-4
18-9
18-9

Symantec C++ User's Guide and Reference xi

Contents •
Project Type Page . 18-10

Application subpage . 18-10
Shared Library subpage . 18-14
Static Library subpage 18-15

Linker Page 18-17
Incremental Linker subpage 18-17
PPCLink & MakePEF subpage. 18-18

Extensions Mapping Page 18-19
Project Window Page . 18-21

Typeface options . 18-21
Show options . 18-21

PowerPC C Options Page 18-23
PowerPC C++ Options Page 18-24
Symantec Rez Options Page. 18-24

19 The Editor Window. 19-1
Introducing the Editor Window 19-1

Window features . 19-3
Text features 19-13

20 The Edit Menu 20-1
Commands in the Edit Menu 20-1

Editing and manipulating text. 20-2
Project Manager Page . 20-5
Editor Options Pages . 20-6

Editor Options General Settings page 20-7
Editor Options Syntax Formatting page 20-9
Editor Options Marker Pop-up page 20-11

21 The Search Menu 21-1
Commands in the Search Menu 21-1

Finding and replacing text strings 21-2
Locating information in the THINK Reference 21-8
Going to lines or markers . 21-9
Locating compiler errors within a source file. 21-11

Searching for a Pattern (Grep) . 21-12
Patterns . 21-12
Replacing with Grep . 21-15
Grep examples 21-16

22 The Class Browser Window 22-1
Components of the Window 22-2

Window icons and size bars . 22-2
Panes of the window 22-3

Working in the Class Browser Window . 22-5
Configuring the window 22-5
Navigating the panes 22-6

xii Symantec C++ User's Guide and Reference

Contents •
23 The Build Menu 23-1

Commands in the Build Menu . 23-1
Analyzing code 23-2
Compiling code 23-3
Bringing your project up-to-date 23-6
Building the target 23-8

Build Errors Window . 23-9

24 The Debugger Windows 24-1
The Main Debugging Window . 24-2

Code pane . 24-3
Stack Crawl pane . . 24-4

Debug Browser Windows 24-4
Data pane 24-6

Data Window 24-7
Control Palette . 24-7
Debugger Log Window . 24-9

25 The Debugger Menus 25-1
File Menu. 25-1
Edit Menu. 25-3
Debug Menu. 25-6
Source Menu. 25-7
Data Menu 25-9

Data formatting commands 25-9
Windows Menu. 25-12

26 The Windows Menu. 26-1
Commands in the Windows Menu 26-1

Arranging windows . 26-2
Opening windows 26-4

Part Five: TCL and VA Reference

2 7 TCL and VA: Basic Concepts . 2 7-1
THINK Class Library 27-1

TCL structures 27-1
A sample interaction between TCL structures 27-7
Creating a THINK Class Library application . 27-9

Visual Architect 27-10
The role of Visual Architect . . . 27-10
Starting Visual Architect 27-11
Creating and modifying classes . . 27-12
Working with Visual Architect views 27-12
Trying out an application interface. 27-18
Modifying the code generated by Visual Architect. 27-18

Symantec C++ User's Guide and Reference xiii

Contents •
28 Programming with the THINK Class Library. 28-1

Introduction . 28-1
Naming Conventions . 28-1
Writing an Application with the TCL. 28-2

Creating the application class . 28-3
Creating the document class 28-4
Creating the pane classes 28-6

Working with Panes 28-7
Windows and panes . 28-7
Coordinate systems 28-8
Drawing in a pane 28-10
Properties of panes 28-12
Panoramas . 28-14
Scroll panes. 28-17
Cursor tracking 28-17

Working with Menus . 28-18
Using MENU resources . 28-18
Building menus on the fly . 28-20
Enabling and checking menu items. 28-21

Handling Low-Memory Situations . 28-22
Undoing and Mouse Tracking . 28-24

Undoing. 28-24
Mouse tracking 28-25

Debugging and the THINK Class Library 28-25
Debugging aids in Symantec C++ 28-25

THINK Class Library Resources 28-26
Alerts. 28-26
Controls . 28-27
Error message strings 28-27
Menus 28-28
Menu bars 28-28
Small icon 28-28
Strings and string lists 28-29
Window template. 28-30

Segmentation and the THINK Class Library 28-30
Modifying the THINK Class Library 28-30

29 Visual Architect File Menu 29-1
Commands in the File Menu 29-1

Accessing files . 29-2
Closing and saving files. 29-3
Printing . 29-4
Setting preferences 29-4

30 Visual Architect Edit Menu 30-1
Commands in the Edit Menu 30-1

Editing and manipulating code 30-2
Editing application macros. 30-5
Adding Balloon Help 30-6
Editing classes, commands, and menus 30-7

xiv Symantec C++ User's Guide and Reference

Contents •
Classes Dialog Box 30-8
Data Members Dialog Box 30-10
Commands Dialog Box 30-13
Menu Bar Dialog Box. 30-18
Menu Items Dialog Box . 30-20
Menus Dialog Box . 30-23
Command Handling in Generated Code 30-25

AppCommands.h . 30-25
Chain of command . 30-25
Commands from tear-off menus . 30-25
Commands in modal dialog boxes . 30-26

31 Visual Architect View Menu 31-1
Commands in the View Menu . 31-1

Examining and editing attributes of views 31-2
Creating, opening, and deleting views. 31-3
Setting default commands . 31-5
Previewing views. 31-6

Types of View Info Dialog Boxes. 31-7
Dialog Info dialog box . . . 31-7
Main Window Info dialog box 31-10
Floating Window Info dialog box 31-11
Subview Info dialog box 31-13

ViewTypes 31-14
Dialog 31-14
Floating Window . 31-14
Main Window . 31-15
Modal Dialog . 31-15
New Dialog. 31-15
Splash Screen . 31-15
Subview. 31-16
Tear-off Menu . 31-16
Window. 31-16

32 Visual Architect Pane Menu 32-1
Commands in the Pane Menu . 32-1

Editing data members in a class hierarchy 32-2
Selecting classes for a pane 32-5
Setting display options for a pane 32-6
Arranging panes in the View Edit window 32-7
Grouping radio button panes. . 32-8
Changing the identifiers for panes 32-8

33 Visual Architect Options Menu . 33-1
Commands in the Options Menu . 33-1

Positioning and selecting panes . 33-2
Displaying pane and button information . 33-3

Symantec C++ User's Guide and Reference xv

• Contents

34 Visual Architect Tools Menu . 34-1
34-1
34-2
34-5
34-5
34-5

Introducing the Tools Menu. . .
Tool descriptions
Creating panes.
Using the Clipboard
Using arrow keys to adjust panes

35 VA: Symantec Project Manager Menu . 35-1
Commands in the Symantec Project Manager Menu . 35-1

Generating code 35-3
Updating projects and running applications . 35-5

Code-Generating Process 35-5
Preserving code during regeneration 35-6
Structure of generated code . . 35-6
Files generated for an application 35-7

Inside Macro Files 35-8
Visual Architect macro language . 35-8
Statement macros . 35-9
Expression macros . 35-13
Operators 35-14
Constants 35-14
Predefined variables . 35-14
Record types 35-16

Part Six: Appendixes

A Linker Error Messages A-1

B Debugger Error Messages . B-1

Index

Symantec Service and Support Solutions

xvi Symantec C++ User's Guide and Reference

Symantec C++ •
Welcome to
Symantec C++ for
Power Macintosh
Part One

1 Overview
2 Introducing

Symantec C++ 8.0

Symantec C++ User's Guide and Reference

•

Symantec C++ User's Guide and Reference

Overview•
1

Symantec C++ is a complete development environment for creating
both C and C++ applications on Power Macintosh computers. This
chapter describes the features of Symantec's C++ version 8.0. It
covers the requirements for using Symantec C++, provides
suggestions about using this book, and describes the typographic
conventions used throughout the text.

Product Highlights
This section highlights the product's existing features and its more
recent enhancements over the last major release.

PowerPC Compilers
Symantec's C++ version 8.0 includes PowerPC compilers for both C
and C++, which are 100% native on the PowerPC. These compilers
support the same kind of language features as the previous 68000-
based C and C++ compilers.

In version 8.0, the build error messages are persistent, that is, the
Build Errors window remains on the screen when a new compile or
search is started. Error messages for a project entry remain in the
window until deleted by the user, or until the project entry is
recompiled.

Project Management
The Symantec C++ for Power Macintosh provides a host of advanced
project management features. The highlights are provided below.

Project models
Project models are templates from which new projects are created.
They define the libraries, resources, and source code files that the
project contains and the project's option settings. In addition to
letting you create your own project models, Symantec C++ provides
several predefined project models. Once created, any project file can

Symantec C++ User's Guide and Reference 1-1

1 Overview •
be edited by adding or removing files. Unlike previous versions,
project models can contain arbitrarily nested folders.

Precompiled headers
Symantec C++ lets you precompile header (#include) files and
track their dependencies. If files that contribute to the precompiled
header are modified, the precompiled header file is marked as
requiring a rebuild. Precompiled header files load significantly faster
than text header files.

Subgroups
Version 8.0 of the Symantec Project Manager now allows project
models to contain arbitrarily nested groups. This feature helps you
better structure your projects.

Multiple open projects
Version 8.0 supports multiple open projects. Each open project can
be run or compiled.

Option handling
The Project Manager provides access to all project- and translator­
specific options through a single menu command. The project
options include:

• Project. These options control general project behavior,
and build and run settings.

• Project type. These options control project type
(application, shared library, static library) and specify the
target name.

• Linker. These options control which linker to use when
building, and the various linker options.

• Compiler. These options control specific behaviors of the
C and C++ compilers.

Named sets of project and translator options
The Symantec Project Manager allows you to define multiple options
sets for each project. These sets can be used to group together
various option configurations. For example, you can define options
sets for the different stages of your project's development.

1-2 Symantec C++ User's Guide and Reference

Product Highlights +

Project window
The Project window displays information about the project's
organization, status, information, and so on. Now there is more
flexible control of this display. For example, file display can be
organized hierarchically in groups. Other highlights are described
below.

Drag and drop
The Symantec Project Manager fully supports drag and drop. Files
may be added to and removed from a project by dragging files and
folders to and from the Finder and other projects. For example, you
can add an entire hierarchy of sources to a project, while preserving
the Finder's organization of the files.

New display options
These options control the display in the Project window. This display
includes debugging and make status, immediate group owner of
source file, source translator, type of each entry (for example, source
file, precompiled header source, group), full source path, last known
modification date, and code and data size.

Class Browser
Symantec C++ 8.0 provides a Class Browser and Editor designed for
object-oriented program development. These tools facilitate the
design and maintenance of C++ projects by allowing you to directly
view the project's class hierarchy and data and function members.
The ability to browse in and edit pre-existing class hierarchies is
especially useful when attempting to understand the structure of
unfamiliar source code. The Class Browser has the following
features:

• Alphabetic or hierarchical display of classes

• Display of data members and member functions

• Display of source code for class and function definitions

• Full integration with the Symantec C++ for Power
Macintosh Editor

Symantec C++ User's Guide and Reference 1 ~3

1 Overview •
Debugger
Symantec C++ 8.0 includes a source-level debugger that can be used
to debug applications or shared libraries that are built using the
Symantec Project Manager. The debugger uses browser-style
windows to display information about the process currently being
debugged. One new feature is a Stack Crawl pane that contains a list
of all stack frames for the program counter location in your code.

New editing features
The Editor includes the following enhanced capabilities:

• Split window: Editor windows can be split to view
different parts of a source file in separate panes.

• Pop-up procedure list: This easily accessible listing of
user-defined symbols and markers from CIC++ sources,
including functions, class definitions, #pragrna marks,
enum declarations, and typedef definitions. Selecting
an item in the pop-up menu takes you to the marker or
declaration of the symbol.

• Syntax highlighting: The Editor provides the ability to
configure color and style highlighting of language
elements. It supports syntax highlighting in C, C++,
AppleScript, MPW Shell Script, and Pascal.

• CIC++ mode: Automatic indenting is based on user
preferences.

Delimiter matching
The Editor supports delimiter matching. If you double-dick on any
delimiter (parentheses, brackets, or braces), it finds a matching
delimiter. Similarly, if you double-dick on a string constant, or
comment delimiter, the Editor finds the next instance of that
delimiter.

1-4 Symantec C++ User's Guide and Reference

Product Highlights +

New search options
The Symantec C++ Editor provides powerful multi-file search
support, including the ability to:

• Search the front window or all open windows
• Search selected or all files in the current project
• Search within a current selection
• Batch and incremental search
• Search headers included in the precompiled header

Scripting support
The Symantec Project Manager is fully scriptable and recordable
under Apple's Open Scripting Architecture (OSA). Scripts can be
specified on either an application-wide or project-specific level and
can be executed by selecting a single item from the Scripts menu.

Worksheet window
The Symantec Project Manager provides a generalized Worksheet
window that permits communication with ToolServer and
SourceServer. This communication allows you to use Macintosh
Programmer's Workshop (MPW) tools and Projector services.

Visual Architect (VA)
Visual Architect, an improved version of Symantec's visual interface
development tool, runs native on the PowerPC.

Online documentation
1HINK Reference provides on-line hypertext reference for Toolbox
routines, language usage, and the 1HINK Class Library (TCL). You
can look up specific information in 1HINK Reference from within the
Symantec Project Manager.

Symantec C++ 8.0 includes the software for Symantec C++ 7.0.5. The
documentation for Symantec C++ 7.0 is included on the CD-ROM.

Symantec C++ User's Guide and Reference 1-5

1 Overview •
Prerequisites for Using Symantec C++
This book assumes that you know, or are learning how to program
in, C or C++. You should also be familiar with the Macintosh and its
operating system. If you are planning to write Macintosh
applications, you should be familiar with the Macintosh Toolbox as
described in Inside Macintosh.

About This Manual
This manual contains six parts: Welcome to Symantec C++ for Power
Macintosh, Creating an Application, Learning by Example (Tutorials),
Symantec Project Manager Reference, TCL and VA Reference, and
Appendixes. A chapter-by-chapter summary is provided below.

Conventions in the User1s Guide and Reference
This book uses the following typographic conventions:

• Names of menus and commands are in boldface.

• Names of files, code fragments, resource names, function
names, variables, and information you type appear in
typewriter face. Metanames appear in italic.

• All numbers are decimal numbers. Hexadecimal numbers
are written in C notation, that is, Ox3EFA, instead of in
Pascal notation ($3EFA).

• Keys you press at the same time are shown as follows:
Shift+F2, Option+F, or Ctrl+F3. Please note that even
though the letter keys are listed in uppercase, do not
hold down the Shift key when executing these key
combinations unless the Shift key is listed as part of the
combination.

Parts One through Three
Parts One through Three describe the basic process of programming
in the Symantec C++ environment.

1-6 Symantec C++ User's Guide and Reference

About This Manual +

Part One: Welcome to Symantec C++ for Power Macintosh
Part One provides an introduction to the book and product.

Chapter

1. Overview

2. Introducing
Symantec C++ 8.0

Description

This chapter.

Describes the basic concepts for
programming in the Symantec C++
environment. It describes the role
each tool plays in the process of
writing an application and gives a
preview of the steps involved in
creating a typical THINK Class
Library (TCL) application using
Visual Architect (VA).

Part Two: Creating an Application in Symantec C++
Part Two takes the user through the basic process of creating an
application with Symantec C++ and provides an overview of the
THINK Class Library and Visual Architect.

Chapter Description

3. Starting a Project Explains the fundamentals of working
with the Symantec Project Manager. It
describes the steps involved in creating
projects and performing basic
manipulations on project entries.

4. Editing a Project's Covers the details of editing and
Code compiling application code.

5. Viewing and
Editing Classes

6. Using the
Debugger

Describes a tool for viewing and editing a
project's class hierarchy, data members,
and function members.

Describes the process of compiling,
linking, and debugging an application
using the Symantec Project Manager and
the symbolic debugger.

Symantec C++ User's Guide and Reference 1-7

1 Overview •
Chapter

7. Creating a User
Interface with VA

8. Advanced Topics

Description

Describes the basic steps in creating an
application using Visual Architect.

Describes other development tools and
options including options sets,
precompiled headers, scripting, source
code control (SourceServer), and
ToolServer.

Part Three: Learning by Example (Tutorials)
Part Three provides a set of tutorials which, when completed,
demonstrate the steps necessary to produce a single application.

Chapter

9. Tutorial
Introduction

10. Tutorial: Hello
World

Description

Describes learning opportunities in the
tutorials.

Shows how to build a simple application
in Symantec C++ that uses both the
ANSI C and IOStreams libraries.

12. Tutorial: MiniEdit Shows how to use more of the advanced
features of the Symantec Project
Manager.

13. Tutorial: Object
Bullseye

14. Tutorial: Vector

15. Tutorial: Beeper

16. Tutorial: Process
Monitor

Shows how to use the Symantec Project
Manager debugger.

Shows how to use templates with
Symantec C++.

Presents a basic tutorial for Visual
Architect.

Presents a more elaborate tutorial
demonstrating many of the features and
techniques involved in programming
with Visual Architect and the Symantec
Project Manager.

1-8 Symantec C++ User's Guide and Reference

About This Manual +

Parts Four through Six
Parts Four through Six contain reference information for Symantec
C++.

Part Four: Symantec Project Manager Reference
Part Four provides a complete reference for the Symantec Project
Manager, including windows, menus, commands and options.

Chapter

16. The File Menu

17. The Project
Window

Description

Describes the commands that let you
create new projects and open existing
ones.

Describes the information that can be
displayed in the project window,
including project organization and status
information.

18. The Project Menu Describes all the commands and options
associated with a project.

19. The Editor
Window

20. The Edit Menu

Describes ways to customize editor
preferences, including general settings,
syntax formatting, and function pop-up.

Describes the commands for editing
project code.

21. The Search Menu Describes the commands that let you
find information in your project files.

22. The Class Describes how to view and edit class
Browser Window information.

23. The Build Menu Describes all the commands used to
create an application, including
compiling, linking, syntax checking,
and creating executable code.

Symantec C++ User's Guide and Reference 1-9

1 Overview •
Chapter

24. The Debugger
Windows

25. The Debugger
Menus

26. Windows Menu

Description

Describes the windows for displaying
debugging information, including the
Main debugging window, Debug
Browser window, Data window, Control
palette, Source window, and Log
window.

Describes the commands associated with
the debugger File, Edit, Debug,
Source, Data, and Windows menus.

Describes the commands for configuring
Symantec Project Manager windows,
including size and position, and
commands to display the Build Errors,
Search Results, Class Browser, and
Worksheet windows.

Part Five: TCL and VA Reference
Part Five provides a full reference to Think Class Library (TCL) and
Visual Architect (VA). Basic concepts for TCL/VA are covered, as is
programming with TCL and using Object I/0. A full menu-by-menu
reference for VA is also included. This part does not include the TCL
class library description, global variables, or library routines. These
can be found in the online THINK Reference.

Chapter

27. TCL and VA:
Basic Concepts

28. Programming
with TCL

29. Visual Architect
File Menu

Description

Describes the basic concepts of Visual
Architect and the THINK Class Library
that are needed to create an application.

Describes some of the basics of how the
THINK Class Library works and how to
use it to build an application.

Describes the commands for
manipulating Visual Architect resource
files.

1-10 Symantec C++ User's Guide and Reference

Chapter

30. Visual Architect
Edit Menu

31. Visual Architect
View Menu

32. Visual Architect
Pane Menu

33. Visual Architect
Options Menu

34. Visual Architect
Tools Menu

35. VA Symantec
Project Manager
Menu

Part Six: Appendixes

About This Manual +

Description

Describes the standard Macintosh editing
commands, as well as commands for
manipulating resource objects.

Describes the commands to manipulate
the views created in Visual Architect.

Describes the commands to change
characteristics of the panes in your
views.

Describes the commands for setting the
behavior of the View Editor in Visual
Architect.

Describes the commands to add panes
to your views.

Describes the commands to control the
generation of code by Visual Architect
for inclusion in your project.

This part contains appendixes to the User's Guide and Reference.

Appendixes

Appendix A: Linker
Error Messages

Appendix B:
Debugger Error
Messages

Description

Describes the error messages generated
by the Symantec Linker.

Describes the error messages generated
by the Symantec Debugger.

Symantec C++ User's Guide and Reference 1-11

1 Overview •
Electronic supplemental information (ESI)
In addition to the material in this User's Guide, several topics are
covered online. This presentation includes supplemental information
on such topics as porting applications to Symantec C++ 8.0, some
background information about programming for the Power
Macintosh, and information about other features.

Installing Symantec C++
This section describes the procedure for default installation. For
information about custom installation refer to the online electronic
supplemental information.

Read the license agreement
Before installing Symantec C++, you should read and become
familiar with the terms of the license agreement.

Send in the registration card
Remember to fill out and send in your registration card. To receive
technical support, information about upgrades or news about special
promotions, you must be a registered user.

Read the ReadMe files
Please make sure to read any files named Read.Me. These files
contain information that was not available at the time the manuals
were printed.

Installing all of Symantec C++
To load the default installation of Symantec C++ drag the folder
named Symantec C++ for Power Mac from the CD-ROM onto
your hard disk. For a custom installation of Symantec C++, consult
the online electronic supplemental information.

For information on installing Symantec C++ 7.0.5, see the online
documentation for this product on CD-ROM.

1-12 Symantec C++ User's Guide and Reference

What To Do Next +

What To Do Next
This section provides a guide to using this book according to your
level of knowledge.

Steps for the user new to Power Macintosh development
You should read "About Programming in C++ for the Power
Macintosh" in the online electronic supplemental information. You
should also read the chapters in Part Two.

Steps for the user new to Symantec C++
You should read the chapters in Part Two, and work through the
tutorial chapters in Part Three to become proficient with Symantec
C++.

Steps for the user new to the Macintosh
You should read "Macintosh Conventions" in the online electronic
supplemental information and all of the Symantec C++ 8.0
documentation.

Symantec C++ User's Guide and Reference 1-13

1 Overview •

1-14 Symantec C++ User's Guide and Reference

Introducing
Symantec C++ 8.0 •

2
bs chapter introduces the Symantec C++ programming environment.

It provides an overview of the THINK Class Library (TCL) and Visual
Architect (VA), as well as of the processes involved in creating an
application.

Programming with Symantec C++
The Symantec Project Manager is the crux of the Symantec C++
development environment. Unlike traditional, command-line
development environments, Symantec C++ provides integrated
components for accomplishing your development tasks, such as
editing, compiling, linking, class browsing, and debugging. The
Symantec Project Manager is the central location from which you
access the integrated tools that make up Symantec C++.

One particularly important component of Symantec C++ is Visual
Architect. Because Visual Architect is integrated into the THINK Class
Library, you can develop an application's user interface along with
its underlying code in a graphical, interactive environment. The
Symantec Project Manager can compile files generated by Visual
Architect, even when Visual Architect is open.

The following sections outline the steps involved in using Symantec
C++ to create a typical application based on the THINK Class
Library. You may want to create something other than a standard
Macintosh application-for example, an IOStreams-based application
or a library. By reviewing the steps outlined here, you will become
familiar with the fundamental tasks you can perform with Symantec
C++.

Symantec C++ User's Guide and Reference 2-1

2 • Introducing Symantec C++ 8.0

Starting a project
The first step in application development with Symantec C++ is
creating a project using the Symantec Project Manager. A project is a
collection of files that, when built, creates a target application (or
library). A typical project contains source, header, resource, and
documentation files, as well as binary libraries and other projects.

The management information for a project is contained in the Project
file, which customarily has a . 7t suffix. The information in the
Project file helps the Project Manager determine how to process each
of the project's component files. Whenever a Project file is opened in
the Project Manager, a Project window showing the project
components is displayed (Figure 2-1).

~ ./ PPC Tin_y_Edit.11

v CJ Runtime Libraries 31948~
<> filtl . BRLib.o 8780

<> filtl . lnterfacel ib .xcoff 0

<> filtl . Mathl ib .xcoff 0

<> filtl . Ob jectSupportL ib .xcoff 0

<> filtl . PPC ANS l...sma 11.o 19864

<> filtl . PPCCPlusL ib TCL.o 1184

<> filtl . PPCRuntime .o 2120

l> CJ TH INK Class Library 427936

<> ~ CEdit App .op • 1720

<> ~ CEditDoo .op • 1952

<> ~ CEditP ane .op • 968

<> ~ Tiny Edit Resources .rsro 0

<> ~ Tiny Edit.op • 160 ':n:
464684 ti! Totals

Figure 2-1 Project window

When you create a project, you have the option of basing it on a
pre-existing project model. Each model predefines a generic set of
capabilities for an application. Perhaps the most versatile of these
models is VA Application, which includes TCL resources as well as
Visual Architect. Other project models allow you to create
IOStreams- and ANSI-based applications.

2-2 Symantec C++ User's Guide and Reference

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

Programming with Symantec C++ +

Editing application code
The Symantec Project Manager contains an integrated text editor that
is customized for working with C++ and C source code. Editor
windows are opened by double-clicking source files in the Project
window. To facilitate working with source files, you can customize
the Editor to provide a list of functions in the current file, as shown
in Figure 2-2.

"Global .h"
"Commands.h"
"CApp I i cation. h"
"CBartender.h"
"CDataF i I e. h"
"CDecorator.h"
"CDesktop.h"
"CError.h"
"CPanorama.h"
"CScro 11 Pane. h"
"TBUti Ii ties.h"
"CEditDoc.h"
"CEditPane.h"
"CWindow.h"

#define WINDculture 500 I* Resource ID foi- 1~" IND temp late *I

I ex tern CApp I i cat i on *gApp I i cat i on; / * The application *I
ex tern CBar tender *gBar tender; / * Th<.> menu h.andling ob j<.>ct * l
ex tern CDecora tor *gDecora tor; / * 'l/indo\v dressing ob jeot * l

mm1m1m1rn11mmmm:m1mmmmmmm1mmmmmmmmmmmmmmmmmmm1:mmmm:m:m::mm::mmmmmmm::m1mm1rnmmmm1rnmm::m:mmmm: $ •

Figure 2-2 Editor window, showing the pop-up list of functions in the
current file

The Editor is tightly integrated with the Project Manager. For
example, when errors are encountered during compilation of your
source code, you can automatically choose to display an Editor
window with the offending line of code highlighted.

Symantec C++ User's Guide and Reference 2-3

2 • Introducing Symantec C++ 8.0

Building an application
While building an application, the Symantec Project Manager calls on
a battery of translators to process the various project components.
For example, the PowerPC C++ compiler processes the C++ source
files and Symantec Rez converts resource description fi les to
resource files. After all the components have been translated
successfully, the Symantec Project Manager calls on the appropriate
linker to produce the application file, which can then be run from
the Project Manager or from the Finder.

Because of the information kept in the Project file, the Project
Manager automatically is able to keep track of the files that have
changed and of any files that refer to changed files. As a result, the
Project Manager processes only those files that need updating.

Viewing classes
Once the source code files have been compiled , you can use the
Symantec Class Browser to examine an application's class hierarchy
and to edit the contents of classes (Figure 2-3).

-~~~~~~~~~~..,.....,~ass Browser
; 1asses II~

CAbstractText AccessObject

CAppleoEvent AddDirector
CAppleEventObject AssignldleChore
C App leEventSender
C~ica t ion

CArray

Source

BedVirtualGetClass lnfo
CApplication(CApplication&)

Data

appResFile
cMaxSleepTime
canFall
criticalBalance
dEachFuncl
dTestFuncl

v * '.t+ ¥-'"" * -i: *"' * * *,. * '.t ** "!- * * *..r; **'Jo"'"***,.* ... *¥-"*** ***" 'f '.t +,. * * * ;i:. * * * ;r. * * * ;i:. * * £ ¥- * * * * ..r; * * * :r. * '.t * ;i:. ~
. A$$1gnUr<Jo;inlCh1Jro;i

G1vo:.- Applic<1tiM a chcrE' fo pe-r-form ls soon .:.s posslbl~. 1JrgE-nt
choro?.:> ar-e perforrMd onl1,1 ur1<.t-, tho?n autc.r.-o.:.tfoally disposed.

-J-4- *.,; * * +,.. * '1- + '.t -f: * + * T ** *** * * .;;.** * '.t 1f 'I* T t * * 11< ***tie- '1r T **TT** i- T of* li-" if*+:;...;,:** 'i- T ** *:;. T +*:;..,.'I-* ,,,.T * /

void CAppl iccition: :Ass ignUrgentChore(
CChore ,.. theChore) // Chore to perform

i tsUrgentChores->Add(theChore);
urgentsToDo = TRUE;

Figure 2-3 Class Browser window

Work performed in the Class Browser is complementary to the class
viewing and editing performed w ith the text editor.

2-4 Symantec C++ User's Guide and Reference

Programming with Symantec C++ •
Testing an application
Symantec C++ provides powerful source-level debugging capabilities
to help you test and debug applications. The Symantec Debugger,
shown in Figure 2-4, allows you to control execution of code as well
as to display and modify data values.

l''li'''''"''"'''''''''''""''''''"'''l;'''''''''''''''''"''''"'""""'"''''''''''''·'';;!''''''''''''"''"'''''"'"''l c::EJ c::::§:]CE:J~~ I~ Slop~ I
Ti lgEdlt.cp Mn•--n• rm- Dtlla

Stack_ Crawl _,;. Cod>

·······-??? (68k
~:~~~~=::: ~ ** *' **"* * f>·);·:f * **•); *'* *** f- ** **

ll•di lApp

??? <PPC Ox0098C224 =include "CEditApp.h" Vedi~ OxOOA66C42
V•ain OxOOQFQDFC I> i tsProv ~=: OxOOOOOOOO

~ edi lApp OxOOA66C42
void main<) Vi tsDepen OxOOOOOOOO

; t> i tsSupel""v i OxOOOOOOOO
{ I> i tsOirec:to OxOOA66E24

CEdi tApp *edi tApp; c:ictive OxFE

oi
element ID 0

ed i tApp = ne• CEd i tApp; I> next OxOOOOOOOO oi ed i tApp-> I Edi tApp<);
+it ed i tApp->Run(); vprev OxOOA66DFA
(>! ed i tApp->Ex it<); element 1

<>I
I> next OxOOA66CSA

} f>prev OxOOA66E7A

lo
disposa~ Ox OD

disposable OxOO
I> i tssw i tc:hb OxOOA66028

\i!j ~ i tsldleCho OxOOA66CCC

PPC Tioyfdit. n.pef Log t> i tsUrgent~ Ox00A66CFA
urgentsToO OxOO
running Ox01
phase 0
rainyDayFu 45000
crHicatBci 40000
toolboxBal 20000

nAI In

III J_

Figure 2-4 Symantec Debugger

The Symantec Debugger is tightly coupled with the Project Manager,
making it easy to cycle between debugging and editing of source
files.

Symantec C++ User's Guide and Reference 2-5

2 • Introducing Symantec C++ 8.0

Constructing a user interface with Visual Architect
Visual Architect provides a graphical, interactive environment for
simplifying the creation of resources and the use of 1BINK Class
Library classes. Visual Architeq is illustrated in Figure 2-5.

,__ ___ l_•is_u_a_I A_r_ch_it_e_tl_.r_st_·c ___ .,_, iSl!!i~ Preferences Dialog ~wrn
Column Width Dialog (deco @ "
Matrix Info Dialog "'"' "" 7 Iii
Matrix Window Default decimal point{!] LJ :::n

r~-~-~-!.-~-~-~~~=~=~=,:=:=~=B=u1="====::::;------t1-Q•~~E~~·~~tt:er:G~~~~5.'.~:Ea~:c:e®]3itltt:::1i:it]1i~~~i}~~!-:!~!l!~~I
;;a;;;;m;;m"'""'""""'

Left: ::=J 1=84==:::: Top: ::=J 1=03==:::: 1111 A ~
Width: J 59 Height: J 20 @ ® IZI

~ CButton 8 IJll ~
f' CControl ~ !ID @

contrlTitle:
~ J ~~g
contrlValue: JO + D 0

~===:
contrlMin: Jo '-- 0 c1

~===:
contrlMax: ._I 1 __ ___,

~ CPone

~ CYiev

Figure 2-5 Visual Architect

Visual Architect generates both resource and source files that are
automatically incorporated into a project. Because it is designed to
be a component in iterative development, you can use Visual
Architect at any stage in an application's development. The following
section, "The THINK Class Library and Visual Architect," provides a
brief introduction to Visual Architect, which you use to create the
application framework.

Using additional tools
Several additional tools are included with the Symantec Project
Manager, for use in creating an application.

AppleScript capability
The Symantec Project Manager lets you use AppleScript to record
and control complex operations.

2-6 Symantec C++ User's Guide and Reference

The THINK Class Library and Visual Architect +

SourceServer
Apple's SourceServer application assists in version tracking with
large programming projects.

ToolServer
Apple's ToolServer lets you access Macintosh Programmer's
Workshop (MPW) tools from the Symantec Project Manager.

The THINK Class Library and Visual Architect
This section provides a conceptual overview of what is involved in
creating a typical THINK Class Library application using Visual
Architect. It discusses how the THINK Class Library and Visual
Architect interact and how Visual Architect streamlines the
application development process.

Overview of the TH INK Class Library
The THINK Class Library is a collection of C++ classes designed to
implement standard Macintosh applications. These classes handle
Macintosh functions such as menu commands, window updates,
event dispatching, operating system calls, memory management,
Clipboard maintenance, and printing. To create an application, you
can use existing classes in the THINK Class Library in which these
lower-level interfaces have already been established, rather than
developing code from scratch using Macintosh Toolbox and
Operating System calls.

The THINK Class Library is organized into three distinct, interacting
structures: the class hierarchy, the visual hierarchy, and the chain of
command.

Class hierarchy
The class hierarchy is the set of all the classes that make up the
THINK Class Library. The class hierarchy is organized around the
concept of inheritance. It contains a set of base classes from which
other classes inherit their behavior (member functions) and attributes
(data members).

Symantec C++ User's Guide and Reference 2-7

2 • Introducing Symantec C++ 8.0

Visual hierarchy
The visual hierarchy describes the organization of all visible entities,
such as windows and buttons, in a given application. The visual
hierarchy describes all the views that the THINK Class Library
contains. A TCL view is an object descended from a class that is used
for implementing objects with visual representations. Views respond
to commands involving the mouse and can also be links in the chain
of command.

The visual hierarchy is based on the concept of enclosure.
Everything you see on the screen belongs to--is enclosed by­
another visual entity. This is in contrast to the class hierarchy, which
is based on derived class relationships.

Chain of command
The chain of command specifies both the objects in an application
that handle specific commands (such as menu item choices) and the
order in which those commands are handled. Because you are
responsible for choosing this assignment of objects, you need to
decide the level of abstraction at which you want to handle a
specific command. For example, the Save and Save As commands
are handled at the document level, whereas the New, Open, and
Quit commands are handled at the application level.

Interaction of the structures
The THINK Class Library converts Macintosh events into calls to
member functions defined by the classes in the class hierarchy. Some
member functions handle events that affect the visual hierarchy,
including mouse clicks, keyboard events, Activate events, and
Update events. Other member functions handle requests that affect
the chain of command, such as for an object to open a file. The latter
type of request typically is the result of a menu choice.

Creating a THINK Class Library application
To create an application that uses the THINK Class Library, you
derive new classes from existing library classes. These new classes
should implement only the unique parts of an application, because
generic application behavior is already handled by the base classes
in the library.

2-8 Symantec C++ User's Guide and Reference

The THINK Class Library and Visual Architect +

Typically, you derive a number of classes. You need a class for your
unique application object; a "document" class to manage windows
and files; and one or more classes for managing communication
between or among windows, panes, files, and menu commands.
These last classes, in other words, deal with the user interface.

In addition, you need to define both a menu structure to contain the
commands that the application implements and the linkage between
menu commands and actions. Actions are performed in response to
the user choosing a particular menu command.

Finally, virtually all Macintosh applications make use of resources.
TCL-based applications are no exception; they require standard
resources to function. These resources are found in the file TCL
Resources. You must add these resources to your project, either by
copying them into the . rsrc file that contains your own additional
application-specific resources, or by starting from a copy of one of
the TCL demos, or from one of the VA Application models. For more
details on the THINK Class Library, see Chapter 28, "Programming
with the THINK Class Library." For a discussion of VA, see
Chapter 27, "TCL and VA: Basic Concepts."

Overview of Visual Architect
Visual Architect is a powerful development tool that allows you to
rapidly create applications using the THINK Class Library. Visual
Architect streamlines the process of creating, editing, and connecting
the classes, menus, commands, and other resources needed by an
application. This section introduces this development tool.

The role of Visual Architect
Visual Architect automatically generates source code files and TCL
resources. The source code files contain definitions and declarations
for the classes created for an application. The resources contain
information needed to initialize window and pane classes according
to your specification, as well as the menus and their associated
commands. The source code files are standard C++ . cp and . h files
and, as such, can be opened and edited using the Symantec Project
Manager. The resources can be created and edited through Visual
Architect itself.

Symantec C++ User's Guide and Reference 2-9

2 • Introducing Symantec C++ 8.0

Visual Architect uses special files called macro files to generate
source code. A macro file is an ordinary text file that contains C++
source and macro expressions, which Visual Architect interprets to
produce one or more source code files as output. Macro files
supplied with Visual Architect can generate the source code for a
complete THINK Class Library application. Because macro files are
ordinary text files, you can, if necessary, modify them to suit your
programming needs or extend them with new capabilities.

Visual Architect is designed to work directly with the Symantec
Project Manager. When you use the Symantec Project Manager to
start a new VA project, it automatically creates a file named Visual
Architect. rsrc.

Note
A VA project also contains another resource file,
Project Resources. rsrc. This file initially
contains resources needed by the THINK Class
Library, but not by Visual Architect. You can add
more resources to either file using Symantec Rez or
ResEdit.

Creating and modifying classes
One of Visual Architect's most powerful aspects is how it facilitates
the implementation of views and the classes constructed from these
views with the help of an interactive graphical environment. Visual
Architect automatically derives classes from views using the THINK
Class Library, as well as defining the classes' data members and
member functions. Visual Architect also generates source code files
that contain these data and function members; thus, you do not need
to determine the class definitions required for a specific application.
Visual Architect adds these source files to your Symantec C++
project.

In general, the classes that you construct fall into one of two
categories:

• VA views (director or document classes)
• Panes

2-10 Symantec C++ User's Guide and Reference

The THINK Class Library and Visual Architect +

You can add, delete, and modify derived classes in either of these
categories.

Visual Architect allows you to change the attributes of views and
panes through dialog boxes, thus enabling you to avoid time­
consuming hand coding.

Working with Visual Architect
This section briefly describes VA views, as well as how to add
commands and Balloon Help to views, trying out a view, and
modifying VA code.

Visual Architect provides several predefined views for implementing
common graphical representations, such as document windows,
dialog boxes, floating windows, splash screens, subviews, floating
tool palettes, and basic windows. The implementation of a specific
VA view is based on a particular TIHNK Class Library class.

The most important view defined by Visual Architect is the Main
Window view. A Main Window view typically is displayed in an
application when the user chooses New or Open from the File
menu. It displays the .contents of an associated file and serves as the
focus of attention for a user.

Defining commands associated with views and menus
To process certain user actions (for example, mouse clicks or
keyboard events), the THINK Class Library predefines many frequent
actions, such as closing a window, saving a file, quitting an
application, and changing text attributes. Having these actions
predefined means you can focus on creating the commands that are
unique to your application. As a result, coding time is reduced.

To implement either a predefined action or a new action using
Visual Architect, you need to indicate the class or classes that will
handle the action. If the action is to open a view, you specify that
view and Visual Architect generates the necessary code. Otherwise,
you indicate those classes that need to respond to the action and
Visual Architect then generates an empty member function. Later,
you can insert code in the member function that handles the action.

Symantec C++ User's Guide and Reference 2-11

2 • Introducing Symantec C++ 8.0

Adding Balloon Help
Visual Architect provides a convenient way to add Balloon Help to
the visual elements of an application. Balloon Help can be added to
panes by opening the Balloon Help window and typing the text you
want in the balloon. Because user interface elements can exist in up
to four different states-such as enabled and disabled-when the
application is running, you can define up to four different balloons
for each element.

Trying out a view
With Visual Architect, you can examine how an interface works
before you generate source code, compile it, and run the
application. When you try out a view, it appears exactly as it would
in the running application. Furthermore, you can interact with the
view to a limited extent. For example, you can scroll, resize, and
reposition the view. All the view's elements-such as pop-up and
tear-off menus, dialog text fields with type constraints, scrolling edit
text, custom buttons, and button groupings-are active as well.

Trying out views lets you see the final product of your work quickly
and conveniently. This enables the design process to proceed more
rapidly.

Modifying the code generated by Visual Architect
Programming is never accomplished in one step. Most often, you
design some of the user interface elements in Visual Architect, hand
code in the Symantec Project Manager, compile, run, and inspect the
project. At that point, you would return to Visual Architect to make
changes and start the cycle again.

Due to the interactive nature of programming, Visual Architect does
not force you to live with the code it generates "as is." Most of the
code it generates is well-commented C++ skeleton code. Any
changes you make to this code by hand are not overwritten in
subsequent code-generation steps.

Visual Architect facilitates and protects hand-coding with a technique
known as split-level classes. Most classes defined in Visual Architect
are implemented as two types: a lower-level class, reserved for
Visual Architect, and an upper-level class, reserved for custom
programming. The first time Visual Architect generates source code
for a graphical element, it generates the code for both classes in
separate files.

2-12 Symantec C++ User's Guide and Reference

The THINK Class Library and Visual Architect +

The lower-level class contains code that Visual Architect generates
from scratch each time the element it defines is modified. Most of
Visual Architect's generated code is displayed here. You should not
modify this code.

The upper-level class is derived from the lower-level class. To
customize the skeleton code, you add member functions, additional
data members, and so forth to this class. Member functions that you
add manually to the upper-level class often override or expand on
the corresponding lower-level class member functions. Visual
Architect writes to the upper-level class file only once, when it
generates the class files after you first define the class. After that, you
are responsible for maintaining the upper-level class file.

To summarize, if you plan to create an application that uses standard
Macintosh interface elements such as windows, menus, and so on,
you should use the Visual Architect/THINK Class Library (VA/TCL)
development environment. For further discussion of Visual Architect
and the THINK Class Library, see Chapter 27, "TCL and VA: Basic
Concepts" and Chapter 28, "Programming with the THINK Class
Library."

Symantec C++ User's Guide and Reference 2-13

2 Introducing Symantec C++ 8.0 •

2-14 Symantec C++ User's Guide and Reference

Symantec C++ •
Creating an
Application

Part Two
3 Starting a Project
4 Editing a Project's

Code
5 Viewing and Editing

Classes
6 Using the Debugger
7 Creating a User

Interface with VA
8 Advanced Topics

Symantec C++ User's Guide and Reference

Starting a
Project•

3
Creating an application or library in Symantec C++ is a multistep

process involving three primary tools: the Symantec Project Manager,
the Symantec Debugger, and Visual Architect. This part of the guide
explains the fundamentals of working with the Symantec Project
Manager.

Starting a new application or library with the Symantec Project
Manager begins with the creation of a project. This chapter describes
the steps involved in creating projects and performing some basic
manipulations on project entries.

What Is a Project?
A project is a set of files that, when assembled by the Symantec
Project Manager, produce an application or library. In a typical
project, these project entries consist of C and/or C++ source files and
their associated header files, object libraries, resources, other
projects, and documentation files. A single project generally is used
to create a single target.

Note
The application or library that the Symantec Project
Manager builds from a project is referred to as the
project's target.

The central element of a project is the Project file. By convention,
the Project file has the suffix . 7t (period, Option-P). The Project file
contains all information necessary for management of the project,
such as locations of the project entries, and additional information
such as compiler options and browser tables. The Project file also
contains the object code for the target and the Debugger symbol
tables.

Symantec C++ User's Guide and Reference 3-1

3 • Starting a Project

In general, most project entries specific to a project, together with
the Project file, are kept in a folder referred to as the project folder.
However, a project's entries do not all have to reside in the project
folder. For example, only one copy of general-purpose libraries,
which all projects need, is kept in the folder. In addition, a project
may include project entries that are located in other project folders,
thus permitting sharing of code and resources.

By organizing a target's files as a project in this manner, the
Symantec Project Manager can assume full management
responsibility. In contrast to traditional "make" systems, this strategy
frees you from the bookkeeping involved in accessing project entries
and building the target. Because the Project Manager keeps track of
all project entries in the project, the features of the Symantec Project
Manager are smoothly integrated. For example, if an error occurs
during compilation, you can open a window containing the source
code with the questionable line of code highlighted in a single step.

Also, the Symantec Project Manager automatically determines those
project entries that need to be rebuilt following changes to any
project entry(ies). After a header file is changed, for example, the
Symantec Project Manager knows to rebuild all source code files that
include the header file.

Project contents
The different types of entries that can be included in a project are
described in this section. Each type is handled differently by the
Symantec Project Manager when the target is built and when the
project entry is accessed from within the Project Manager. The
Project Manager uses filename extensions to identify the type of
project entry. You can change this mapping of extensions to entry
types in the Project Options dialog box, as described in Chapter 18,
"The Project Menu."

Source files
The Symantec Project Manager can process C (. c), C++ (. cp or
. cpp), and resource directive or Rez (. r) source files. A single
project can contain both C and C++ source files. These files are all
text files.

3-2 Symantec C++ User's Guide and Reference

What Is a Project? +

Precompiled header files
The Symantec Project Manager allows you to create precompiled
headers and include them in your source files. Precompiled headers
are "processed" versions of header files and are in a format that the
Project Manager can load significantly faster than text header files.

Resource files
For your target to access resources, resource (. rsrc) files, such as
those created by ResEdit and Resorcerer, can be included in your
project. The resources from these files are added to the target when
it is built.

Libraries
The Symantec Project Manager allows you to include binary libraries
in your project. Some examples of libraries provided with the
Symantec Project Manager are C and C++ libraries (such as
PPCAnsi, PPCIOStreams, and PPCUnix) and Macintosh libraries
(such as InterfaceLib.xcoff, QuickTimeLib.xcoff, and
AppleScriptLib.xcoff). The Project Manager allows you to
create your own libraries, which can in turn be included in other
projects.

Projects
The Symantec Project Manager also allows you to include other
projects in a project. Including projects lets you group together sets
of related project entries and access all included projects' entries
within the Project Manager. Included projects are built to completion
when the project containing them is built. Thus, you can develop a
suite of applications by having one project for each application and
one additional project that includes all the individual projects; the
entire suite of applications can be built with one command. Further,
if the target of an included project is a library, the library is linked
into your project.

Documentation files
You can add any documentation files to the project to make them
readily accessible during development. These files will neither,
however, be included in the final target nor be involved in any way
with building. By including these files directly in the project, you
make them always available for reference and modification. You can
use any application to create these files.

Symantec C++ User's Guide and Reference 3-3

3 • Starting a Project

Groups
To better organize project entries within your project, the Symantec
Project Manager allows you to create groups. Groups are similar in
concept to Finder folders. By placing your project entries into
groups, you make it easier to locate individual project entries,
especially with a large project. Like folders, groups can be nested.
The placement of project entries into groups has no effect on the
final target. Further, the location of a project entry in a group has no
bearing on the file's location on the disk.

Organizing files and folders
When the Symantec environment is installed, a specific plan for
folder organization is followed. This folder plan is set up to allow the
Symantec Project Manager to quickly and unambiguously locate your
project's entries. Specifically, the Project Manager looks for your
project's entries in one of two locations, the system tree or the
project tree.

The system tree
The Symantec Project Manager folder, along with all the subfolders
within it, is called the system tree. The Symantec Project Manager
folder is the folder that contains the Symantec Project Manager
(usually the Symantec C++ for Power Mac folder). The
Symantec Project Manager treats all files in all folders within the
Symantec Project Manager folder as if they were in the same flat
folder.

The project tree
The project folder, along with all subfolders it contains, is called the
project tree. The project folder is the folder that contains the Project
file. The Symantec Project Manager treats all files in all folders within
a project folder as if they were in the same flat folder.

Typically, a Project file resides in a project folder along with all
project entries specific to the particular project. The folder may also
contain other folders so as to group together related resource files
and header files. Setting up your project entries in this way helps
reduce the time it takes the Symantec Project Manager to search for
files, and reduces the likelihood of confusion due to duplicate file
names. You can expect to have many project folders.

3-4 Symantec C++ User's Guide and Reference

Note

Models and Projects +

The project folders themselves must be placed
outside the system tree. Otherwise, file search times
are increased.

When you first add a file to a project, the Symantec Project Manager
notes the tree to which the file belongs. Thus, you can move files in
and out of folders and create and rename folders without having to
tell the Symantec Project Manager exactly where the files are located.
If you move files later on, the Symantec Project Manager first looks
in this tree.

To hide the contents of any folders within the system and project
trees from the Symantec Project Manager, you can enclose the name
of the folder in parentheses. The only exception occurs when the
name of the folder, excluding the parentheses, matches the project
name; in this case, the contents of the folder are visible. For
example, a folder named (Hidden.1t) in the system tree would be
hidden from all projects except one named Hidden .1t.

Models and Projects
This section describes the use of templates, or project models, in
creating a project. It discusses the different project models and how
to create projects based upon them.

This section assumes you've already correctly installed the Symantec
Project Manager. Before working with the Symantec Project Manager,
you should create a common folder to contain your specific project
folders. You can name this common folder anything you like, such
as My Projects, and you can place it anywhere you like as long
as it is outside of the system tree (see the previous section for more
information).

Choosing the project model
When creating a new project, you must determine a project model
for it. Project models are templates that determine those project
entries that are to be initially added to a project and those
configuration options that are to be initially provided. Using project
models reduces the amount of overhead involved with creating
projects. You can also create your own project models, as described
in Chapter 16, "The File Menu."

Symantec C++ User's Guide and Reference 3-5

3 • Starting a Project

The project models supplied with Symantec C++ for Power Mac
include VA Application, VA App w/Shared TCL, ANSI C++
(IOStreams), and C++ Mac Application, ANSI C, C Mac Application,
and Native MPW Tool. These project models are only briefly
described here; see Chapter 16, "The File Menu," for more details.

VA Application and VA App w/Shared TCL project models
These are the project models you choose if you are planning to use
Visual Architect and the THINK Class Library in the design and
construction of an application's user interface.

Note
For projects created using Visual Architect and the
THINK Class Library, typically you use all of the
Symantec C++ for Power Macintosh development
tools. This discussion concentrates on projects
created with the VA Application project models.

ANSI C++ (IOStreams) project model
Use the ANSI C++ (IOStreams) project model if you are creating a
C++ application that uses the standard IOStreams environment for
input/output. You can code in this project model without having to
create an interface to the Macintosh Toolbox or a user interface.

C++ Mac Application project model
Use the C++ Mac Application project model if you are creating a
standard Macintosh C++ application without using the IOStreams
library or the THINK Class Library. You will have to manually create
all the Macintosh user interface elements, such as windows, menus,
and printing.

ANSI C project model
Use the ANSI C project model if you are creating a C application that
uses the standard ANSI environment for input/output. You can code
in this project without having to create an interface to the Macintosh
Toolbox or a user interface.

C Mac Application project model
Use the C Mac Application project model if you are creating a
standard Macintosh C application that does not use the ANSI library.
You will have to manually create all the Macintosh user interface
elements, such as windows, menus, and printing.

3-6 Symantec C++ User's Guide and Reference

Models and Projects +

Native MPW Tools
Use the Native MPW Tool project model if you are creating a tool to
use with the Macintosh Programmer's Workshop. MPW tools can also
be used from the Symantec Project Manager with ToolServer.

Empty Project model
Use the Empty Project model when you are providing all the
necessa1y source code and project, libraty, and resource files for an
application. You will have to create all the Macintosh interface
elements.

Creating a new project
To create a new project:

1. Launch the Symantec Project Manager from the Finder by
double-clicking its icon or by selecting the icon and
choosing Open from the Finder's File menu .

The File Open dialog box opens (Figure 3-1).

I a Symantec C++ for Power ... TI =Macintosh HO

0) (Project Models)

ID (Projects)
ID (Scripts Menu)
D (Scripts)
CJ (Tools)
@j (Translators)

Show: I TeHt Files

Figure 3-1 Fi le Open dialog box

2. Click New Project.

-0- Eject

Desktop

Open

(New Project)

Cancel

Symantec C++ User's Guide and Reference 3-7

3 • Starting a Project

The New Project dialog box opens (Figure 3-2).

I a Projects ..,. I G::::::1 Macintosh HD

Create New Project:

iit Eject

Desktop

New L:l)

1-=- Cancel
{}

Project Model: I Empty Project ..,. I

Figure 3-2 New Project dialog box

Next, you must create a project folder for your Project
file.

3. Navigate to the common folder in which you want to put
the project folder.

4. Click New (folder).

The New Folder dialog box opens (Figure 3-3).

Name of new folder:

Figure 3-3 New Folder dialog box

5. Enter the name of the project folder and click Create.

A new folder is created. Its title is shown in the pop-up
menu at the top of the New Project dialog box.

3-8 Symantec C++ User's Guide and Reference

Note

Models and Projects +

6. Choose the project model from the Project Model pop­
up menu at the bottom of the New Project dialog box.

Use one of the VA Application project models if you
want to be able to follow all of the remaining
chapters in this part of the book.

You can now name and create the actual Project file:

7. Type the name of the project in the Create New Project
textbox. By convention, the file should end in . 7t

(period, Option-P).

8. Click Save in the New Project dialog box.

The Symantec Project Manager creates the Project file.
Depending on the project model, other files may be also
created in the project folder. In addition, the appropriate
project entries for that model are added to the Project
file. When the process is completed, the Project window
opens (Figure 3-4).

Project Resources.rsrc oO
~ Runtime Libraries 0

THINK Class Lib.11 ~ 0

Visua 1 Architect .rsrc 00

Totals 0 Iii

Figure 3-4 Project window

The Project window is the central element in managing a project. It
displays the status of all individual project entries included in your
project. The Name column lists the names of all project entries and
groups, and the Code column provides their compiled size in bytes.

Symantec C++ User's Guide and Reference 3-9

3 • Starting a Project

Note
You can customize the format of the Project
window using the Project Window page of the
Project Options dialog box; see Chapter 18, "The
Project Menu," for details.

Adding and removing project entries
The Project file contains various project entries that are added by
default when the project is created. The specific project model that
you choose determines the default entries that are added to the
Project file. To add new project entries to a Project file:

1. Choose Add Files from the Project menu.

The Add Files dialog box opens (Figure 3-5).

I a Sources 1 C::J Macintosh HD

~ fourier.c m
[ii integration.c

Eject

Desktop

Cancel

0 Done
~~~~~~~~~~~~~~ 

Show: I Source Files .... I 
0 tt Rdd l 

Rdd Rll 

Re moue 
0 

Figure 3-5 Add Files dialog box 

You use the Add Files dialog box to add any types of 
files to your project. Note that only those files that have 
not previously been added to the project are listed in the 
upper scrolling list. 

3-10 Symantec C++ User's Guide and Reference 



Note 

Models and Projects + 

2. Choose either Source Files or All Files from the Show 
pop-up menu. 

If Source Files is chosen, only files that have an 
established translator in the project (plus shared libraries 
and Project files) are listed in the upper scrolling list. If 
All Files is chosen, all files are listed. 

For information about specifying translators for 
different files, see the Extensions Mapping page of 
the Project Options dialog box in Chapter 18, "The 
Project Menu." 

3. Navigate to the appropriate folder and either double­
click the name of the file in the upper scrolling list or 
select the name and click Add. 

The name of the file is added to the lower scrolling list. 

4. Repeat step 3 for each additional file you want to add to 
the project. 

5. When you have specified all the files you want to add to 
the project, click Done. 

The files are added to the project and their names are 
displayed in the Project window. 

To remove a project entry: 

1. Select the project entry name in the Project window. 

2. Choose Remove "filename" from the Project menu, 
where filename is the name of the selected project entry. 
You can select multiple project entries in the Project 
window, in which case the menu item is titled Remove 
Selected Items. 

The project entries are removed from the project and 
their names are removed from the Project window. 

Symantec C++ User's Guide and Reference 3-11 



3 • Starting a Project 

You can also add project entries to a project using drag and drop. To 
add only files for which a translator has been established (plus 
shared libraries and Project files) to the project, drag the file icons 
from the Finder to the Project window. You can also drag a project 
entry from another Project window. 

This is also what happens if you choose Source Files from the 
Show pop-up menu in the Add Files dialog box. To eliminate this 
filtering and allow you to add files to the project (as when you 
choose All Files from the Show pop-up menu in the Add Files 
dialog box), drag the file icon from the Finder to the Project window 
while pressing the Command key. 

To learn how to drag folders containing files to your project, see the 
next section. 

To remove project entries using drag and drop, drag the entries from 
the Project window to the Trash. 

Creating groups 
A group has the same relation to the Symantec Project Manager as a 
folder has to the Finder: it embraces a collection of related files. Like 
folders, groups can be nested. For example, the project created using 
the VA Application project model has several groups. Most of these 
groups contain related elements of the THINK Class Library (for 
example, Apple Event classes and control classes) and are located in 
the THINK Class Library group. In addition, the group Source 
contains source files generated by Visual Architect. As you add 
project entries to a project, you should create new groups to help 
keep these entries organized and help you locate individual entries. 

3-12 Symantec C++ User's Guide and Reference 



Models and Projects + 

To create a new group: 

1. Choose Add Group from the Project menu to open the 
Add Group dialog box (Figure 3-6) . 

Add Group 

New group name: 

( Cancel ) ( OK J 

Figure 3-6 Add Group dia log box 

2. Enter the name of the new group and click OK. 

The new group is displayed in the Project window . 

If you are adding a file or set of files to the group using the Add 
Files command in the Project menu, be sure the group is first 
highlighted in the Project window. 

To display the contents of a group, click the small triangle located to 
the left of the group name (Figure 3-7). 

~· ../ First Project 
~ ~Name ~ Code 

v D Numer'ica ls o ~ 

• ~ four ier .c • 0 

• ~ integration .c • 0 

· ~ Project Resources .rsn 0 

~ D Runtime Libraries 0 

• lil TH INK Class Lib .11 • 0 

· ~ Visual Architect .rsrc 0 -0 

Totals 0 Ii!] 

Figure 3-7 Project window with contents of the group 
Numericals displayed 

To hide the contents of a group, click the small triangle again. 

Symantec C++ User's Guide and Reference 3-13 



3 • Starting a Project 

It is also possible to create groups by dragging folders to the Project 
window. Entire group hierarchies can be added in this process. All 
the files within a folder are added to the group corresponding to the 
folder in which they are located. Note that the same rules of filtering 
apply as when dragging and dropping individual files, as discussed 
in the section "Adding and removing project entries" in this chapter. 

To add a hierarchy of folders and files, drag the folder icon 
containing the hierarchy from the Finder to the Project window. 

Note 
The folder hierarchy is used only as a template for 
establishing groups and the locations of project 
entries within these groups. Project entry files can 
be located anywhere in the project tree, regardless 
of the group in which the entry resides. 

Opening project entries 
To open a project entry and access its contents, double-dick the 
entry in the Project window. 

If the project entry file is a text file, it is displayed in an Editor 
window. If it is a Project file, the project is opened by the Symantec 
Project Manager and its Project window is displayed. Otherwise, the 
file is opened with the application used to create it. For example, if 
the entry is a ResEdit resource file, opening it launches ResEdit (or 
switches to ResEdit if it's already running) and opens that file. 

Note 
For all project entries except groups and shared 
libraries, double-clicking is a shortcut for selecting 
the entry and choosing Open "filenamif' from the 
File menu. Double-clicking on a group lets you 
rename the group. Double-clicking on a shared 
library opens a dialog box that lets you set options 
for it. 

You can also open a project using the Switch Main Project 
command; see the next section for details. 

3-14 Symantec C++ User's Guide and Reference 



Models and Projects + 

Working with multiple projects 
The Symantec Project Manager allows you to have multiple projects 
open at the same time. One of the currently open projects is 
designated as the main project. When only one project is open, it is 
automatically designated as the main project. You can specify the 
project that should be the main project using the Switch Main 
Project submenu in the Project menu. This submenu lists all the 
recently and currently open projects, as well as any project aliases in 
the (Projects) folder in the Symantec C++ for Power Mac 
folder. The main project's name is listed with a checkmark. To 
designate a project as the main project, choose its name from the 
Switch Main Project submenu. If the project you choose is not 
open, it is opened automatically. 

When working with several projects at the same time, it is important 
to know the project that will be affected by project-related 
commands you might choose. The Symantec Project Manager applies 
the following rules to determine the project that will be affected: 

1. If the frontmost window is a Project window, the 
command affects the project to which the window 
belongs. 

2. If the frontmost window is not a Project window, the 
command affects the main project. 

The following section lists the project-related commands that can be 
chosen while a window other than the project window is frontmost. 

Project-specific commands 
The following project-specific commands are also available when the 
frontmost window is not a Project window: 

• Find, Find Next, and Find in Next File in the Search 
menu (when performing multifile searches). See Chapter 
21, "The Search Menu," for details on this menu. 

• Options, Add Files, Add Window, Add Group, and 
Run in the Project menu. See Chapter 18, "The Project 
Menu," for details on this menu. 

• All commands except Get Library Info in the Build 
menu. See Chapter 23, "The Build Menu," for details on 
this menu. 

Symantec C++ User's Guide and Reference 3-15 



3 • Starting a Project 

• Build Errors, Search Results, and Class Browser in 
the Windows menu. See Chapter 26, "The Windows 
Menu," for details on this menu. 

Closing a project 
To close a project, do either of the following: 

• Choose Close from the File menu with the Project 
window frontmost. 

• Click the close box in the Project window title bar. 

If any Build Error, Search Results, or Class Browser windows are 
open for that project, they are closed along with the Project window. 

3-16 Symantec C++ User's Guide and Reference 



Editing a 
Project's Code • 

4 
Triis chapter describes how to use the Editor. It outlines the 

procedures for such tasks as viewing. and moving around in text 
files, splitting an Editor window into subpanes to view different parts 
of a text file, and jumping to a specific place in your code. It also 
describes auto-indenting and syntax highlighting, two of the special 
features of the Editor. For more details, see Chapter 19, "The Editor 
Window," and Chapter 20, "The Edit Menu." 

Opening Files and Viewing Application Code 
The Editor works similarly to other standard Macintosh editors, with 
the addition of several special features. This section describes the 
procedures for opening text files, as well as for viewing and moving 
around in them. You can open any text file, including source files 
that contain C, C++, and Symantec Rez code for a project. 

To open a text file for editing: 

1. Select the name of the file. 

2. Choose Open from the File menu (Command-0). 

3. Navigate to the file in the File Open dialog box and 
click Open. 

Symantec C++ User's Guide and Reference 4-1 



4 • Editing a Project's Code 

The contents of the file are displayed in an Editor 
window. An example of an Editor window for a source 
file is shown in Figure 4-1. 

Command-key equivalent 
to Windows menu command--------------~ 

Changes-made bullet---------..., 

Headers pop-up menu-----..., 

Markers pop-up menu Changes-made indicator 

!••··························································· CEditP ane .c 

Methods for a text editing pane. i!lll! 
Copy right © 1989 Symantec Corporation. A 11 rights n?se-rved. mm 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 11 
#include 
#include 
#include 
#include 
#include 

"CEditPane.h" 
"Commands.h" 
"CDocument.h" 
"CBartender.h" 
"Constants. h" 

extern CBartender *gBartender; 

void CEditPane:: IEditPane<CUiew *anEnclosure, CBureaucrat *aSupervisor) 

Rect margin; 

CEditText: :IEditText<anEnclosure, aSupervisor, 1, 
sizELASTIC, sizELASTIC, 432); 

FitToEnclosure<TRUE, TRUE); 

I•• 
** Give the edit pane a little margin. 

Figure 4-1 Editor window for a source file 

1, 0, 0, 

Viewing headers or function definitions 
You can also use the Editor to view classes, including a class's own 
definition and logically related class definitions and member 
functions. Having this global view of related code simplifies the 
process of examining unfamiliar source code. 

4-2 Symantec C++ User's Guide and Reference 



Opening Files and Viewing Application Code + 

To view a set of class or member function definitions: 

Note 

1. Click the Headers pop-up menu in the Project or Editor 
window's toolbar and select one of the header files. 

The header file is shown in an Editor window. 

This works only if the file has been compiled. 

2. Click the Markers pop-up menu in the Editor window's 
toolbar and select a class or function. 

The Editor window displays the definition of the class or 
function. 

For more on the Markers pop-up menu, see "Moving to a specific 
function" and "Using markers" later in this chapter. For more on the 
Headers pop-up menu, see Chapter 19, "The Editor Window," and 
Chapter 20, "The Edit Menu." 

You can also access class or function definitions using the Search 
menu. See "Searching and Replacing Text," later in this chapter. If 
you do not know a class name, you can still view its definition using 
the Class Browser. To learn about that tool, see Chapter 5, "Viewing 
and Editing Classes," and Chapter 22, "The Class Browser Window." 

Symantec C++ User's Guide and Reference 4-3 



4 • Editing a Project's Code 

Navigating in a text file 
You can use standard Macintosh features to move around in a text 
file you have opened. In addition, the Editor provides a number of 
advanced features, such as splitting windows, moving to a function, 
jumping to a marker or a specific line, and finding a selection. 

Splitting windows and resizing panes 
You can split windows to form subpanes for viewing different parts 
of a source file, as shown in Figure 4-2. 

extern CBartender 

vo; ::i :.,~~di teo~<cvi- •o 1.~::::·:::~,-.:::•:mmHm 
1111 

CEd i tT ext : : I Ed i tT ext <c:in~~~~~~~r # i nc I ude .. Commands . h.. . .. ···········'l.·::···········'1_ ... ··········'i, .. ···········'! .... ··········'1 ... ···········''.· 

F i t T oEnc I osure <TRUE, s ~~UE ) ; , llliii : i ~~ i ~~: :: g~~~~~~~=~:; .. 
/**** Give the edit pane a little mar9 llllll extern CBartender *gBartender; 
** Each element of the margin rec :j!!i[ + 
** specifies by how much to chan9 i~!ll1 + mmillilliilliiii1il!!lllllml1mmmmmmmm1~1m1mliil!iilili! $ ~ * * edge. Positive v a lue:s: are down j!j!jj • . 
** right, negative values are up a iJ!!i! VOid CEd1 tPane: :DoCommand( long 

** 
** 
**I 

SetRect<&margin, 2, 2, -2, -2); 
ChangeSize<&margin, FALSE>; 

void CEditPane: :DoCommand<long 

if 

< < CDocumen t * ) i tsSuperv i sor '*'' 
gBartender->Enab I eCmd<cmdSa lmli 
gBartender->Enab I eCmd<cmdSa itl1i! 

inherited: : DoCommand< theComma 111111 

+ 

Figure 4-2 Subpanes of an Editor window 

4-4 Symantec C++ User's Guide and Reference 



I 

Opening Files and Viewing Application Code + 

To split a window, you use the split bar, which is the black rectangle 
next to the scroll bar (see Figure 4-3) . Double-click or click and drag 
the split bar. To remove a split bar, double-click its split mover, 
which is represented by the double triangles next to the split bar. 
Alternatively, click and drag the split mover to the edge of the 
window. 

Double-click here to split window horizontally 

CEditfan_e.cp a€2 
I Markers T 11 Headers T I 

/**************************************************************· 
CEditP ane .c 

Methods for a text editing pane . 

Copy right © 1 989 Symantec Cot·por ation. A 11 t·ights t·esffved. 

*************************************************************** 

#include "CEditPane.h" 
#include "Commands .h" 
#include "CDocument.h" 
#include "CBartender. h" 
#include "Constants.h" 

extern CBartender *gBartender; 

void CEditPane:: IEditPane <CView *anEnclosure, CBureaucrat *aSupervisor ) 

Reel margin ; 

CEditText :: IEditText<anEnclosure, aSupervisor, 1, 1, D, D, 
sizELASTIC, sizELASTIC, 432); 

FitToEnc losure<TRUE, TRUE); 

l** 
* * Give the edit pane a little margin. 

Double-click here to split window vertically 

Figure 4-3 Splitting a window 

Symantec C++ User's Guide and Reference 4-5 



4 • Editing a Project's Code 

Once the window is split, you can resize the window pane using the 
split mover (see Figure 4-4). Click and drag the split mover as 
desired. Note that you can scroll independently in each of the 
subpanes you have created. 

CEditPane.cp 3€2 

I Markers T 11 Headers T I 

extern CBartender *gBartender; 

void CEditPane:: IEditPane<CUiew *anEnclosure, 

Rect margin; 

CEditText:: IEditText<anEnclosure , aSupervi il§ 
sizELASTIC, sizELASTI 

FitToEnclosure<TRUE, TRUE) ; 

/** 
* * Give the edit pane a little margin . 
* * Each element of the rnat·gin rectangle 
* * specifies by ho\v much to change that 
** edge. Positive values are do"1m and to 
* * right, negative values are up and to 
** the left . 

** 
**I 

SetRect<&margin, 2, 2, -2 , - 2); 
ChangeSize<&margin, FALSE ); 

void CEditPane: :DoCommand ( long theCommand) 

#include "CEditPane.h" 
#include "Commands.h" 
#include "CDocument.h" 
#include "CBartender.h" 
#inc I ude "Constants. h" 

Rect margin; 

CEd i tText: 

I** 
** 
** * * specifies b1J ho 
* * edge. Positive 
* * right, negative 
** the left. 

** 
**/ 

Split mover 

Figure 4-4 Resizing a window pane 

1'5'-t--- Split 
mover 

4-6 Symantec C++ User's Guide and Reference 



Opening Files and Viewing Application Code + 

Moving to a specific function 
To move to a specific function in a file, select the function from 
the Markers pop-up menu in the window's toolbar, as shown in 
Figure 4-5. 

Markers 
pop-up 
menu ---+t- CEditPane: :DoKeyDown 

CEditPane: : IEditPane 

extern CBartender *gBartender; 

void CEditPane:: IEditPane<CUiew *anEnclosure, CBureaucrat *aSupervisor) 

Reel margin; 

CEditText:: IEditText<anEnclosure, aSupervisor, 1, 1, 0, 0, 
sizELASTIC, sizELASTIC, 432>; 

FitToEnclosure<TRUE, TRUE>; 

I** 
* * Give the edit pane a little margin. 
** Each element of the margin rectangle 
* * specifies by how much to change that 
* * edge. Positive values are do'tfn and to 
* * right, negative values are up and to 
** the left. 

** 
**I 

SetRect<&margin, 2, 2, -2, -2>; 
ChangeSize<&margin, FALSE>; 

Figure 4-5 Moving to a specific function 

The Markers menu lists both user-defined and automatically 
generated markers, including classes, enums, typedefs, pragma 
marks, and functions. 

You also can access this list by Command-clicking the title bar 
(Command-Option-Comma). Command-clicking the title itself brings 
up the File Path pop-up menu, which shows the path for the file. 
See Chapter 19, "The Editor Window," for details. 

Symantec C++ User's Guide and Reference 4-7 



4 • Editing a Project's Code 

Using markers 
You can place a marker at any line in a file, as follows: 

1. Choose Add Marker from the Search menu 
(Command-M). 

2. Type the name of the marker in the Add Marker dialog 
box. 

3. Click Add. 

Your marker is now displayed in the Markers pop-up 
menu. 

To remove one or more markers: 

1. Choose Remove Markers from the Search menu. 

2. In the Remove Markers dialog box, click those markers 
that you want to remove. 

3. Click Remove. 

Those markers are no longer shown on the Markers 
pop-up menu. 

To move to a specific marker in your file, select the marker from the 
Markers pop-up menu. 

Jumping to a specific line in a me 
To move to a specific line in a file: 

1. Choose the Go To line command from the Search 
menu (Command-Comma). 

2. Type the desired line number in the Line field of the Go 
To line dialog box. 

3. Click Go To. 

Returning to the selected text 
To go back to a highlighted portion of text (the current selection) 
after scrolling to another part of the file, press Enter. 

4-8 Symantec C++ User's Guide and Reference 



Entering and Editing Text + 

If you have scrolled so the current selection is not in view, pressing 
the Enter key brings it back into view. If the entire selection cannot 
be displayed, pressing the Enter key again toggles between viewing 
the beginning and the end of the selection. 

Entering and Editing Text 
Some of the Editor's features (such as syntax highlighting, delimiter 
matching, and auto-indenting) simplify the task of writing legible 
code and reading such code. 

Adding and deleting text 
You can add and delete text in the usual ways provided by 
Macintosh text editors. Double-clicking a word selects the entire 
word; triple-clicking a line selects the entire line. 

Scrolling and automatic indenting 
Because the Editor is a source code editor, it lacks the word-wrap 
feature contained in other editors. If you type past the right edge of 
the window, the window automatically scrolls horizontally so you 
can still see the insertion point. 

The Editor has an automatic indenting feature. When you press 
Return to start a new line, the Editor indents the new line with the 
same number of leading tabs and spaces as the previous line. 

The Editor also has a block auto-indent feature. When you press 
Return at the end of a line that starts a block of code (for example, a 
line that ends with the left brace { character for C, C++, and Rez 
files) the Editor adds an additional level of indentation. The Editor 
also automatically outdents the ending line of the block as you type 
the matching right brace } character. 

To change the indentation for a particular line, backspace over the 
indent with the Delete key. 

To prevent the Editor from auto-indenting or outdenting a line, hold 
down the Option key and press Return. 

You may want to turn off these features in the Editor General 
Settings page of the Project Manager Preferences dialog box, if 
they conflict with your coding conventions. The block auto-indent 
feature works only when the regular auto-indent feature is also 
turned on. 

Symantec C++ User's Guide and Reference 4-9 



4 • Editing a Project's Code 

Syntax highlighting 
The Editor helps ensure the legibility of code by highlighting 
different kinds of words in different colors and styles. For example, 
by default, preprocessor directives are in blue, language keywords 
such as do and while are in bold, string literals are in red, and 
comments are in gray. 

The Editor supports syntax highlighting in the following languages: 
C, C++, AppleScript, MPW Shell Script, Pascal, and Symantec Rez. 
Untitled windows default to the C++ configuration. 

To learn how to custom configure colors and styles, see Chapter 20, 
"The Edit Menu." 

Delimiter matching 
The delimiter matching feature of the Editor lets you check for 
matching pairs of parentheses, square brackets, and braces. 
Parentheses and other delimiters generally appear in matched pairs, 
which may be nested within each other to any depth. The Editor 
warns you with a beep when you type a closing delimiter that has 
no matching opener. 

If you double-dick on a bracketing delimiter (that is, a parenthesis 
(), square bracket [], or brace {} ), the Editor selects the text 
between that delimiter and its matching delimiter. 

This feature also works with the slash I, reverse slash \, double­
quote ", and single-quote ' characters. The Editor selects forward to 
the next occurrence of the delimiter. 

In addition, delimiter matching works dynamically. If you double­
click and drag within a pair of delimiters, the Editor selects the 
delimiters and all text between them. Holding down the Option key 
omits the delimiters from the selection. 

After you type the closing element of a delimiter pair (that is, a right 
parenthesis ) , square bracket ] , or brace } ), the Editor briefly 
highlights the matching delimiter. 

The Editor beeps if the delimiters are improperly matched. 

4-10 Symantec C++ User's Guide and Reference 



Searching and Replacing Text + 

To verify that all functions are properly balanced: 

1. Place the insertion point at the beginning of a file. 

2. Use the Find command on the Search menu 
(Command-F) to search for the first opening code-block 
delimiter (a left brace { in C or C++ ). 

3. Use the Balance command on the Edit menu 
(Command-B) and the Find Next command on the 
Search menu (Command-G) repeatedly until you reach 
the end of the file. 

Searching and Replacing Text 
A wide range of search and replace capabilities are available as 
outlined in this sectioh. For information on more advanced features, 
see Chapter 21, "The Search Menu." 

Finding and replacing strings 
To find the first instance of a string: 

1. Choose the Find command from the Search menu 
(Command-F). The Find dialog box opens (Figure 4-6). 

Find 

Search for: I Byte keyCode lc:J ' 
Replace with: ~ 

'--~~~~~~~~~~~~~~~----'L.:..J 

D Entire Word 
D Ignore Case 
OGrep 
D Selection only 
D Wrap Rround 
D Batch Search 

D Multi-file search -----------~ 
, ................................................................................................ '] 

fih> Sd: l frnnt U.linihw v 

D EHclude Subprojects 0 Source o· Headers 
D EHc:lm::le System Files @ Sourc:e Only 
D EHclude (. .. )Folders O Headers Only 
D EHc:lude Precompiled Header 

Cancel ) ( Don't Find ( Replace Rll ) fi._..( ;;;;;;;;;;;;;F .. in;;;;;;;d;;;;;;;;;;;;;of#J 

Figure 4-6 Find dialog box 

Symantec C++ User's Guide and Reference 4-11 



• 4 Editing a Project's Code 

Search for: 

Replace with: 

D Entire Word 
D Ignore Case 
OGrep 
D Selection only 
D Wrap nround 
D Batch Search 

2. In the Search for and Replace with textboxes, enter the 
search and replace strings. 

Either type the string or click on the arrow by the 
textbox to open a pop-up menu (Figure 4-7). Each 
pop-up menu contains the five strings most recently 
entered in the field. 

Find 

, ................................................................................................. ] 
rn~~ §(~1: i rrnnt Win1iow v 

D Em::lucle Subprojec:ts O Sourc:e & Headers 
D E1ulude System Files @ Source Only 
D EHclude (. .. )folders O Headers Only 
D EHclucle Prec:ompiled Header 

Search for 
pop-up menu 

Cancel ) ( Don't find ( Rep I a c e Al I ) fi~[ iiiiiiif;;;;;;i n;;;;;;diiiiiii'i{,/~ 

Figure 4-7 Search for pop-up menu in the Find dialog box 

4-12 Symantec C++ User's Guide and Reference 



Searching and Replacing Text + 

3. Click Find. 

If the Editor cannot find the string, you hear a beep. If it 
does find the string, it scrolls to and highlights the string, 
as shown in Figure 4-8. 

case KeyPageDown: 
break; 

default: 
if <!<<CDocument *)itsSupervisor)->dirty) { 

<<CDocument *)itsSupervisor)->dirty =TRUE; 
gBartender->EnableCmd(cmdSave); 
gBartender->EnableCmd(cmdSaveAs); 

break; 

CEditPane: :DoAutoKey<char theChar, Byte keyCode, 

nherited::DoAutoKey<theChar, keyCode, macEvent); 

•itch <keyCode) { 

case KeyHome : 
case KeyEnd : 
case KeyPageUp : 
case KeyPageDown: 

break; 

default: 
if <!<<CDocument *)itsSupervisor)->dirty) 

Figure 4-8 Highlighted string found by Editor 

111111 

You have four choices for finding and replacing further instances of 
the search string. Click Cancel at any time to end the search. 

• To go to the next instance of the search string without 
replacing the current instance, choose Find Next from 
the Search menu (Command-G). To reverse the 
direction of search, press Shift as you open the Search 
menu and choose Find Previous (Shift-Command-G). 

Symantec C++ User's Guide and Reference 4-13 



4 • Editing a Project's Code 

• To replace the current instance of the search string with a 
replacement string, choose Replace from the Search 
menu (Command-Equals sign). 

• To replace the current instance of the search string and 
proceed to the next one, press Option-Command-Equals 
sign. To reverse the direction of the search, press Shift as 
you open the menu and choose Replace & Find 
Previous (Shift-Option-Command-Equals sign). 

• Replace every instance of the search string in the 
searched file with the replacement string, click Replace 
All in the Find dialog box or choose Replace All from 
the Search menu. 

Warning 
When you click Replace All, a dialog box warns you 
that Replace All is not reversible. Be sure that you 
want to replace all instances of the search string 
before you click Continue. Also, before choosing a 
Replace command, make sure you have entered 
the replacement string you want in the Find dialog 
box. Otherwise, the search string is replaced with 
nothing, thus deleting every instance of the string in 
the file. 

Searching through multiple files 
You can do both batch and nonbatch searches on one or more files. 

Performing a nonbatch search 
You can look for a string in more than one file. To find and replace a 
string in all open windows or in all files in the current project: 

1. Choose Find from the Search menu (Command-F). 

2. Enter the string to find in the Search for field. 

3. Enter the replacement string in the Replace with field. 

4. Set the Multi-File Search option on in the Find dialog 
box. 

4-14 Symantec C++ User's Guide and Reference 



Searching and Replacing Text + 

5. Click one of the Source Only, Headers Only, or Source & 
Headers radio buttons. 

6. In the File Set pop-up menu, choose All Files in 
Project to search all files in the current project. 
Alternatively, choose Open Windows to search all open 
windows (Figure 4-9). 

Find 

Search for: .._l#_ln_cl_u_de ____________ _,IB 
Replace with: B 

Front Window 

Figure 4-9 Multi-file search of all open windows 

7. Make sure the Batch Search option is set off. 

8. Click Find. 

9. Replace the string as noted in the previous section. 

10. Choose Find in Next File from the Search menu 
(Command-T), after the Editor reaches the end of the 
file. 

When all the selected files have been searched, the 
multi-file search turns off. 

If the Wrap Around option is set on, the Editor continues the search 
at the top of the same file, rather than beeping and stopping at the 
end of the file. Choose Find in Next File from the Search menu 
(Command-T), so that the search moves on to the next file. 

Performing a batch search 
To find all instances of a search string in one or more files: 

1. Choose Find from the Search menu (Command-F). 

2. Enter the search string in the Search for field. 

Symantec C++ User's Guide and Reference 4-15 



4 • Editing a Project's Code 

3. Set on both the Batch Search option and the Multi-File 
Search option in the Find dialog box. 

4. Click one of the Source Only, Headers Only, or Source & 
Headers radio buttons. 

5. Choose the files to search in the File Set pop-up menu. 

6. Click Find. 

Instead of scrolling to the next instance of the search string when 
you click Find, the Editor brings up a Search Results window that 
lists all instances of the search string in the searched files, as shown 
in Figure 4-10. 

Go To Delete All 

Fi le "CEditApp.cp"; Line 12: •include "CEditApp.h" 
Fi le "CEdi tApp.cp"; Line 13: •include "CEdi tDoc.h" '''* 

~: : : ::g~~: ~~~~~ ~~~ i.; L ~ 7~e 1 i; : • ~ 7~~ ~~~e .. ~~~~~ ip~~e . h" ...• ~_.'I·······'·:' ... ·:'·······'····';_:'.; __ .·'' Fi le "CEdi tPane.cp"; Line 12: •include "Commands.h" 
File "CEditPane.cp"; Line 13: •include "CDocument.h" 
File "CEditPane.cp"; Line 14: •include "CBartender.h" 
Fi le "CEdi tPane.c "· Line 15: •include "Constants.h" 

Figure 4-10 Batch Search Results window 

To go to a selected instance of the search string from the Batch 
Search Results window, do one of the following: 

• Click the Go To button in the window's toolbar. 
• Double-click the entry in the window. 

To learn about other options available for searching multiple files, 
see Chapter 21, "The Search Menu." 

Using Grep to search for patterns 
You can use Grep to search for strings that match a general pattern, 
rather than for a specific string. To use Grep, set the Grep option on 
the Find dialog box. The Editor accepts all standard Grep-style 
patterns. If you are not familiar with Grep, see Chapter 21, "The 
Search Menu," for details on how to specify patterns. 

4-16 Symantec C++ User's Guide and Reference 



Saving Changes + 

Saving Changes 
To save a file without closing it, choose Save from the File menu 
(Command-S). 

The first time you save the file, its Editor window is untitled. A Save 
dialog box opens that prompts you to name the file. Type the 
filename and click Save. 

To change the name of a file, choose Save As from the File menu. 

The Save As command saves the contents of the Editor window in a 
new file that you name in a Save As dialog box. If the file is part of 
a project, the name of that file also changes in the Project window. 

To save the contents of the current Editor window under a new 
name while editing the original file under its original name, choose 
Save A Copy As from the File menu. 

The Project window remains unchanged. This feature allows you to 
make backup copies without editing the backup by mistake. 

Compiling a File 
After you finish editing a file, you can immediately compile it as part 
of the currently open project. To do so, choose Compile from the 
Build menu. The Symantec Project Manager opens the Progress 
dialog box (Figure 4-11), which displays the progress of the current 
compilation. 

Pro ress for PPC Tin 

Writing 

Tool 
Processing 

Lines: 

Errors: 
Warnings: 

Tiny Edit .op 

File 1 of 
PowerPC C++ 
Tiny Edit .cp 

Current Tota 1 

43 
0 
0 

43 
0 

0 

Stop 

Figure 4-11 Progress dialog box 

Symantec C++ User's Guide and Reference 4-17 



4 • Editing a Project's Code 

If the compilation is successful, the compiled file automatically is 
added to the project (unless the file is in the project already). If 
instead errors are generated, the file is not added to the project and 
the Build Errors window opens (Figure 4-12). 

Build Errors for PPC Tin Edit.11 

File «CEditApp . cp» ; Line 55 
Error : ' CEd i tApp : : Se tupF i I eParame ters ' i s not a member of s true t ' CEd i tApp ' 

Figure 4-12 Build Errors window 

The Build Errors window lists the errors found in a source file. How 
many are listed depends on the setting of the Error Rep011ing option 
on the Debugging subpage of the Power PC C or Power PC C++ 
page of the Project Options dialog. For eve1y error, the Build Errors 
window shows the following: 

• The project ent1y containing the statement that generated 
the error 

• The location of the statement 
• A brief message explaining the error 

With Symantec C++ , it is easy to correct the errors in your source file. 
To go to the statement in the source file that generated the error, 
select the error message and click Go To. Alternatively, double-click 
the error message. An Editor window opens, with the statement line 
in question selected. 

After you fix all the errors in your code, compile the file again by 
choosing Compile from the Build menu. 

4-18 Symantec C++ User's Guide and Reference 



Viewing and 
Editing Classes• 

5 
0 nee you have created and compiled a project, you can analyze the 

structure of the source code by viewing the classes and functions it 
contains. Symantec C++ provides a Class Browser designed 
specifically for this purpose. With this tool, you can examine a 
project's class hierarchy as well as the classes' logically related data 
and function members. The ability to browse and edit pre-existing 
class hierarchies is especially useful when you are exploring the 
structure of unfamiliar source code. 

This chapter describes how to work with C++ classes in the Class 
Browser. The first sections cover opening the Class Browser, 
navigating in the window, and viewing classes. With the Class 
Browser, you can also edit classes and their data members. The final 
section in the chapter outlines how to edit a class definition, a 
member function, and a data member. 

For a more detailed discussion of editing operations, see Chapter 4, 
"Editing a Project's Code." For a complete reference, see Chapter 22, 
"The Class Browser Window," Chapter 19, "The Editor Window," and 
Chapter 20, "The Edit Menu." 

Before Browsing 
Before you can browse the classes of a project, you must either build 
the whole project or compile a portion of it by selecting some of the 
project's files and compiling them, as described in the previous 
chapter. 

To build the whole project, select Bring Up To Date from the Build 
menu. The Symantec Project Manager now checks the dependency 
tables and file date information, then compiles and links the files that 
have changed since the last time the project was built. 

Symantec C++ User's Guide and Reference 5-1 



5 • Viewing and Editing Classes 

The Progress dialog box opens (Figure 5-1) to let you track the 
build of your project. 

'Writing 

Tool 
Processing 

ress for PPC Tin 

Tiny Edit .op 

File 1 of 
PowerPC C++ 
Tiny Edit .op 

Current Total 

Lines: 

Errors: 
'Warnings: 

43 
0 
0 

Figure 5-1 Progress dialog box 

43 
0 
0 

Stop 

If the build generated errors, the Build Errors window opens to let 
you identify and fix the problems in your code. Chapter 4, "Editing a 
Project's Code," describes the process of fixing errors in your source 
files. 

When a project is built, you can use the Class Browser to view and 
edit the classes. 

Opening the Class Browser 
The Class Browser displays a list-based or hierarchical view of a class 
hierarchy. To open a Class Browser window (Figure 5-2), choose 
Class Browser from the Windows menu (Command-]). 

Once you have opened a Class Browser window for a project, you 
cannot display another project's classes in it. Instead, you must open 
a second Class Browser window for the other project. To open a 
Class Browser with a different project as the active project, hold 
down the Option key and choose Class Browser from the 
Windows menu. 

5-2 Symantec C++ User's Guide and Reference 



Source pane 

Navigating in the Class Browser Window + 

Classes pane Functions pane Data pane 

Data 

ca llbackFlags 
disposable 
element ID 
g AncestorOffsets 

class CAppleEvent TCL...AUTO-DESTRUCT....OBJECT 
{ 
public: 

CApp I eEvent< ) ; 
CAppleEvent(const AppleEvent *theEvent = NULL, Ap 

long theRefCon = 0); 
virtual -cAppleEventO; 

void IAppleEvent(const AppleEv 
AppleEvent *theReply, 

Figure 5-2 Class Browser window 

The Class Browser window is divided into four panes: 

• The Classes pane, which lists the classes. 

• The Functions pane, which lists the member functions of 
the current (highlighted) class. 

• The Data pane, which lists the data members of the 
current (highlighted) class. 

• The Source pane, which displays function or data 
member source code. You can edit the source code in 
this pane or use the text editor (see Chapter 19, "The 
Editor Window"). 

Navigating in the Class Browser Window 
Only one of the four panes in the Class Browser window can be 
active at a time (Figure 5-3). The active pane, which has a black 
border, receives menu commands and all keystrokes. 

Symantec C++ User's Guide and Reference 5-3 



5 • Viewing and Editing Classes 

To make a pane active, do one of the following: 

• Click on it. 
• Press Command-Tab to cycle through the panes (to cycle 

backward, use Command-Shift-Tab). 

Depending on your working style, you may need to alter the layout 
of the Class Browser window. One possible rearrangement is shown 
in Figure 5-3. 

C Application 

Functi.ons 

AccessOb ject 

AccessSe lection 

AdjustMarks 

AppendDesc 

Data 

ca llbackFlags 
disposable 

element ID 
g AncestorOffsets 

Zoom icon--~ 
Orientation icon 

Class Browser 
Source 

class CAppleEvent TCL....AUTO....DESTR 
{ 
pub I ic: 

CApp I eEven t( ) ; 
CAppleEvent(const AppleEvent 

I ong theRe fCo 
.., i rtua I NCApp I eEvent<); 

..,oid 

..,irtual DescType 

..,irtual DescType 

I Appl 
A 
D 

GetEv 
GetEv 

..,irtual const AppleEvent *G 

..,irtual AppleEvent *GetR 

..,irtual long GetRe 

..,irtual Boolean G 

Titles icon------

Toggle Class List icon 

Figure 5-3 Class Browser window in a vertical orientation 

5-4 Symantec C++ User's Guide and Reference 



m 
00 

Viewing the Class Hierarchy + 

You can use any of the four icons at the bottom of the window to 
alter the layout: 

• Zoom: Expands the active pane to fill the entire window 

• Orientation: Changes the orientation of the panes from 
horizontal to vertical, and back again 

• Titles: Toggles to display or hide pane titles 

• Toggle Class List: Toggles the list of classes in the Classes 
pane between an alphabetic class listing or a hierarchical 
ordering 

In addition, size bars are available for changing the relative sizes of 
the panes. Adjust a pane's size by clicking on and dragging the split 
bars between the panes. 

Note 
Any customization made to the Class Browser 
window is not saved when the window is closed. 

Viewing the Class Hierarchy 
You can view the class structure displayed in the Class Browser 
window's Classes pane either as an alphabetic list or a structured 
hierarchy. ,Both options are described here. 

Note 
You could use the hierarchical view to check the 
logical structure of a project and the list-based 
alphabetic view to verify that nothing is missing. 

Symantec C++ User's Guide and Reference 5-5 



5 • Viewing and Editing Classes 

List-based viewing 
To display a class definition (which includes the class's functions and 
data members) in the Source pane, double-click on one of the 
classes in the Classes pane. Alternatively, select a class in the Classes 
pane by clicking on it and press Enter. 

For example, the information displayed in the Source pane of 
Figure 5-4 is displayed as the result of double-clicking the 
CAppleEvent class in the Classes pane in Figure 5-4. 

D Class Browser 0 
Classes Functions Data 

C Abstr actT ext 1+ C App leEvent(con~ can Inter act 

= CApp leEvent(con~ currentEvent 

C App leEventObject C App leEvent( void direct ls Token 

C App leEventSender C App leEventX directOb ject 

C Application Descl istT o Array eventClass 

CArray Extr actFromDesc event ID 

C Array lter a tor -0- F ai lMoreRequired idleProc 

Source 

class CAppleEvent. TCL...JlUTO....DESTRUCT_DBJECT 
{ 
pub I ic : 

CApp I eEven t.< ) ; 
CAppleEvent.<const AppleEvent. *theEvent. = NULL, Ap 

long t.heRefCon = 0); 
virtual ~cAppleEvent. <) ; 

10I@ITI~I }0 
Figure 5-4 List-based view of a class hierarchy in the Classes pane 

Hierarchical viewing 
The list of classes in the Classes pane can also be displayed 
hierarchically. A hierarchical class view shows a class's substructure 
(its subclasses, if it contains any). For example, Figure 5-5 shows the 
subclass structure of one of the classes in the Classes pane. 

5-6 Symantec C++ User's Guide and Reference 



Editing Class Information + 

~· Class Browser [!I 
Classes 

-:.,,- ~-;: Functions 
.... ~ ... l).ata ..•.. 

V' CilppleEventObject I I 
~ C ilpp lication 

V CClipboard !iii!! 1<1 

CSty le TEClipbo mm r 
~ CDocument mm 

CFileElement ~ 
CProperty + 

Source _30 
closs CAppleEvent TCL....AUTO...DESTRUCT....OBJECT 
{ 
pub I ic: 

CApp I eEvent< ) ; 
CApp I eEvent<const AppleEvent *theEvent = NULL, Ap 

long theRefCon = 0); 
virtuol -cAppleEvent<); 

~I~ITH 
- Jll!i 

Figure 5-5 Classes pane displayed in hierarchical order 

Note 
The Class Browser does not fully support viewing of 
functions and data members for classes contained in 
subprojects. These classes cannot be expanded to 
view these elements. Instead, these classes appear 
as italicized entries in the Class Browser. To view 
the elements of a class that is in a subproject, you 
open up a second Class Browser for that subproject. 

Editing Class Information 
This section describes how to edit class definitions, member 
functions, and data members. Such editing occurs in the Source 
pane, which displays the text of the class, member function, or data 
member that was double-clicked or entered in another pane of the 
Class Browser. The Source pane limits the view to the class or 
member being browsed, rather than displaying an entire file. All 
editing operations available in the text editor are also available in the 
Source pane of the browser. 

Symantec C++ User's Guide and Reference 5-7 



5 • Viewing and Editing Classes 

Editing a class definition 
You can select a class and edit its definition in the Source pane. To 
do so: 

1. Double-dick the class's name in the Classes pane. 

The file containing the class's source code opens for 
editing in a Source pane (see Figure 5-6). 

Class Browser 
Functions 

Add 

class CArray : pub I ic CCol lection 
{ 
pub I ic: 

TCL....DECLAAE_GLASS 

short blockSize; 

long slots; 

I 111111 , I Numb"?r of slot iii!!! 
/I mor€' spaoE> is !!!iii 
/I Total number o i 

Figure 5-6 Editing a class definition within a Class Browser 
window 

2. Make any changes to the code directly in the Source 
pane. 

3. Save these changes by choosing the Save command from 
the File menu. 

5-8 Symantec C++ User's Guide and Reference 



Editing Class Information + 

Editing a member function 
The Functions pane lists all the member functions of the class 
selected in the Classes pane. To view and edit one of these member 
functions: 

1. Double-dick the name of the member function in the 
Functions pane. 

The file containing the member function's source code 
opens for editing in a Source pane (see Figure 5-7). 

C Abstr actT ext 
C App leEvent 
C App leEventOb jec 
C App leEventSende 
C Application 
CArra 

Source 

Class Browser 

Copy From Temporary 
CopyToTemporary 
Delete Item 
Get Array Item 
GetFrom 
Get Items 

Delete an item from the AFr ay . Index must be within the art" a•J . 
Sends dependents an an-ay De leteElement message. 

********************************************* 

void CArray: :Deleteltem(long index) 
{ 

TCL....ASSEAT-INDEX<index); 
TCL....ASSERT<lockChanges ==FALSE); 

Figure 5-7 Editing a member function 

2. Edit the function as desired. 

However, if you change function argument types or 
return types, you have to manually modify or add the 
function declarations in the header file as well. 

3. Save your changes by choosing Save from the File 
menu. 

Symantec C++ User's Guide and Reference 5-9 



5 • Viewing and Editing Classes 

Editing a data member 
The Data pane lists the data members defined for the class selected 
in the Classes pane. To view or edit a data member listed in the Data 
pane: 

1. Double-dick the data member name in the Data pane. 

The file containing the data member source code opens 
for editing in a Source window (Figure 5-8). 

CAppleEvent 
C App leEventOb jec 

C App leEventSende 
C Application 

Figure 5-8 Editing a data member 

2. Edit the source as desired. 

3. Save your changes by choosing Save from the File 
menu. 

5-10 Symantec C++ User's Guide and Reference 



Using the 
Debugger• 

6 
~e Symantec Debugger is a powerful tool for testing your 

application. The Debugger lets you step through your code line by 
line as it runs. It also lets you set breakpoints at specific lines at 
which you might want to examine the state of the code's execution 
or to examine or change the values of variables. 

This chapter outlines the basic steps involved in building an 
application as well as testing application code with the source-level 
Debugger. First, the Main and Debug Browser windows are 
described with their various panes. Then, procedures for stepping 
through code, setting breakpoints, examining the call chain, and 
formatting data are outlined. The final sections cover methods of 
analyzing variables, changing values, and evaluating expressions. 

For a description of more advanced features, including lower-level 
debuggers that are available in the Symantec C++ environment, see 
Chapter 24, "The Debugger Windows," and Chapter 25, "The 
Debugger Menus." 

Updating the Project 
Before you can debug the project, you need to compile and link it. 
When you attempt to run a program with the Debugger (as outlined 
in the next section), the project may need to be updated due to 
changes in the source code. If so, the Symantec Project Manager 
prompts you to bring the project up-to-date (Figure 6-1). 

Symantec C++ User's Guide and Reference 6-1 



6 • Using the Debugger 

Bring the project "Hello World. n"' up to date? 

(Don't Update) Cancel ) ( Update , 

Figure 6-1 Update Project dialog box 

Click Update to bring your project up-to-date. 

The Symantec Project Manager then compiles and links the 
application. If errors occur during compilation, the Build Errors 
window opens. For information on dealing with compilation errors, 
refer to the section "Compiling a File," in Chapter 4, "Editing a 
Project's Code." 

If errors are encountered during the linking process, a Linker Errors 
window opens (Figure 6-2). 

~ndefined Symbol: _ptrgl (TinyEdit.cp,CEditPane.cp,CEditApp.cp,CE{} 
Undefined Symbol: ____next <PPCANSL . ..smal I .o) 
Undefined Symbol: atexit <PPCANSl....smal I .o) 
Undefined Symbol: _exiting <PPCANSl....smal I .o) 
Undefined Symbol: ....critical....atexit <PPCANSl....smal I .o) 
Undefined Symbol: qd (CPopupPane.cp,ClconPane.cp,CPopupMenu.cp,CS 

im::mmrnmmmmrnmmmm:1rnmrnmmmmmmmmmm:mrnH1mmmmmmmm1:m:mmmm:m:mmmmm:mrmm: + Iii 
Figure 6-2 Linker Errors window 

The Linker Errors window shows the link errors and the source files 
that generated the errors. To rectify link errors, you need to examine 
the source files as well as which files are included in the project. For 
example, two common problems resulting in Undefined Symbol link 
errors are the failure to include a library or subproject and the failure 
to define variables or procedures in source files. See Chapter 23, 
"The Build Menu," for more details on handling link errors. 

6-2 Symantec C++ User's Guide and Reference 



Starting a Debugging Session + 

Starting a Debugging Session 
You can launch the Debugger either from the Project Manager or 
from the Finder. As a general rule, launching the Debugger from the 
Project Manager is a good idea. If you have not changed any source 
files or recompiled anything since the last time you built the 
application, you can launch the Debugger from the Finder. Your 
project must be open in the Project Manager, so the Debugger can 
have access to symbolic debugger information. 

To start a debugging session from the Project Manager: 

1. Open the project that you want to debug. 

2. Choose Run with Debugger from the Project menu 
(Command-R). 

If you have changed your source files since last running 
your project, the Update Project dialog box prompts 
you to update your project. 

3. Click Update. 

To start a debugging session from the Finder, drag a built application 
onto the debugger. 

Trouble-shooting 
If you have problems launching the Debugger, be sure that the 
project is built with the Incremental Linker and that the following 
options are turned on: 

• Enable Symbolic Debugging (on the Compiler Options 
Debugging page of the Project Options dialog box) 

• Run with Debugger (on the Project Options page of the 
Project Options dialog box) 

See Chapter 18, "The Project Menu," to learn how to select a linker 
and turn options on. 

Symantec C++ User's Guide and Reference 6-3 



6 • Using the Debugger 

Also, be sure that the Debugging flag in the bug column of the 
Project window is set on for all files that you want to view in the 
Debugger. Be sure that the two-machine Debugger Nub is set off, if 
you have that installed. 

Note 
Debugging optimized code may not give the results 
you expect. 

The Debugger Windows 
The Debugger provides several kinds of windows for performing 
various debugging tasks. Two of those windows are discussed in this 
section: the Main debugger window and Debug Browser windows. 
The Control palette is discussed in the section "Stepping Through 
Code." For more information on these and the other Debugger 
windows, see Chapter 24, "The Debugger Windows." 

6-4 Symantec C++ User's Guide and Reference 



The Debugger Windows + 

The Main debugger window 
Starting a debugging session opens the Main debugger window, 
shown in Figure 6-3. 

Pane 
size 

Stack Crawl pane 

Stack Crawl 

??? C68k Ox000733A8 
??? CPPC Ox002B3068 
??? CPPC Ox002B36B4 

I> •a i n Ox003206B8 

Code 

drag 
bar~--H~~~~~-tt--~~~~~--t-;-1111 

Stack 
Crawl 
drag 
bar~--H~~~~~-11 

Titles icon 
Orientation icon 

Zoom icon 

Code pane 

Tin Edit.cp 

/*************************************** 
TinyEdit.o 

Main program for a tiny editor. 

Copy right © 1989 Sy manteo Corporation. A 11 rights rese 

**************************************** 

#include "CEditApp.h" 

"'oid main<) 

CEdi tApp *editApp; 

editApp = ne• CEditApp; 
editApp->IEditApp(); 
editApp->Run(); 
editApp->Exit(); 

Figure 6-3 Main debugger window 

Symantec C++ User's Guide and Reference 6-5 



6 • Using the Debugger 

stack Qr aw] 

??? CPPC> 
??? CPPC> 

~•ain 

Looking at the Main window panes 
The Main debugger window has two scrollable panes: a Code pane 
to examine the code and a Stack Crawl pane to examine the call 
chain for the current program counter. The two panes can be 
scrolled independently. Their relative sizes can be changed by 
dragging the double bar that separates them, as shown in Figure 6-4. 

Drag cursor 

Ox002B3068 
Ox002B36B4 
Ox003206B8 

' 
Main program for a tiny edito 

I 
i 

Copyright© 1989 Symant,;.c 

'--------+--!~ i #~::~:d*:~:;;i*t:::~:.~**** 

1 ~·~:~~;:~, .:~7.:,, 
<>i ed i tApp-> I Edi tApp(); 
<>i ed i tApp->Run<); 
<>I edi tApp->Exi t( ); 

<>I 

Figure 6-4 Pane size drag bar 

6-6 Symantec C++ User's Guide and Reference 



??? (68k) 
??? CPPC> 
??? <PPC> 

... ain 

Cod~ 

The Debugger Windows + 

The panes' relative orientation can be controlled using the 
Orientation icon at the lower left of the window, as shown in 
Figure 6-5. 

Ox000733A8 
Ox002B3068 
Ox002B36B4 
Ox003206B8 

/******************************************************************** 
TinyEdit.c 

Main program for a tiny editor. 

Copyright© 1989 Symantec Corporation. All rights reserved. 

•include "CEditApp.h" 

Figure 6-5 Effect of clicking the Orientation icon 

Symantec C++ User's Guide and Reference 6-7 



6 • Using the Debugger 

Code 

You can hide either of the panes by using the Zoom icon, as shown 
in Figure 6-6. 

l********************************************************************'i} 
TinyEdit.c 

Main program for a tiny editor. 

Copy right © 1989 Sy man tee Corporation. A 11 rights reserved. 

******************************************************************** 

•include "CEditApp.h" 

1·; ~:~~~:~: ... ~::~~; 
<>! ed i tApp-> I Edi tApp<); 
<>i editApp->RunO; 
<>i ed i tApp->Ex it<); 

<>i 

Figure 6-6 Effect of clicking the Zoom icon 

6-8 Symantec C++ User's Guide and Reference 



??? CPPC> 

The Debugger Windows + 

You can hide the titles of the panes by using the Titles icon, as 
shown in Figure 6-7. 

Edit.cp 

/*********************************** -{} 
TinyEdit.c 

??? CPPC > Ox002B36B4 
I> aa i n Ox003206B8 Main program for a tiny editor. 

Copy right © 1989 Sy man tee Corporation. A 11 right 

*********************************** 

•include "CEditApp.h" 

void mc:iin<) 

CEdi tApp *edi tApp; 

editApp = ne• CEditApp; 
editApp->IEditApp<); 
ed i tApp->Run<); 
editApp->Exit<); 

Figure 6-7 Effect of clicking the Titles icon 

Scrolling in the Main window 
To scroll to a specific line in your code: 

1. Choose Go To Line from the Debugger's Source menu 
(Command-Comma). 

2. When the dialog box is displayed, type the number of 
the line to which you want to go. 

3. Click Go To. 

To scroll to a marker in your code: 

1. Choose Go To Marker from the Debugger's Source 
menu (Command-Option-Comma). 

2. Click the marker you want when the dialog box appears. 

Symantec C++ User's Guide and Reference 6-9 



6 • Using the Debugger 

3. Click Go To. 

You can also choose a marker from the Markers pop-up 
menu by Command-clicking the title bar. 

To learn more about markers, see Chapter 19, "The 
Editor Window." 

To print the file displayed in the Code pane, choose Print from the 
Debugger's File menu. To edit the file in the Code pane, choose 
Edit from the Source menu (Command-E). The Project Manager 
comes to the foreground and opens an Editor window for the file. 

To open a different source file in the Code pane, click that source 
file in the Project Manager, then choose Debug File from the Project 
Manager's Project menu (Command-I). 

The current statement arrow in the Code pane always points at the 
statement the Debugger is about to execute. Initially it points at the 
first executable statement in the code. The current statement arrow is 
hollow when there are instructions left to execute in a statement. A 
single line in the source code may be compiled into several 
assembly instructions. You may see hollow arrows when the 
statement is making an assignment, in a for statement, or cleaning 
up the stack after stepping out of a function. You may also see a 
hollow right angle arrow next to a line that corresponds to an active 
stack frame. 

The Main debugger window contains no close box and remains 
open throughout a debugging session. 

Debug Browser windows 
You can also open auxiliary Debug Browser windows using the 
New Browser command in the Debugger's File menu 
(Command-N). An auxiliary Debug Browser window can contain up 
to three panes: a Code pane to examine the code, a Stack Crawl 
pane to examine the call chain of a function, and a Data pane to 
examine the values of expressions, as shown in Figure 6-8. 

6-10 Symantec C++ User's Guide and Reference 



Stepping Through Code + 

Stack Crawl pane Data pane 

PPC Tin_y_Edit.11.pef 2 
StaOkCrawl 

??? (68k) 
??? <PPC> 
??? <PPC> 

~•ain 

Cgd~/•· 

Ox000733R8 
OxOOR94868 
OxOOR94EB4 
OxOOB01FOO 

editApp 

urgentsToDo 
running 
phase 
rainyDayFund 
criticalBalance 

OxOO 
Ox01 
0 
-15843010 
-15843010 

•include "CEdi tApp.h" 'iii' 

11oid main() 

Code pane CEd i tApp *ed i tApp; 

<>. ed i tApp = ne• CEd i tApp; +• ed i tApp-> I Edi tApp(); 
<>! edi tApp->RunO; 
<>i editApp->Exit(); 

<>i } : . 
•mmm:mmmmm:m:mmmmm:i:mmmiii~~~1imrn1m~1i1iii111mmmmmmmmmmm::::m11111~1m:1:m::m111::111i11m:m:mmm:mmmmmm:mmr+ 

EiJl!llTl .· ... -::::- l~ 

Figure 6-8 An auxiliary Debug Browser window with expressions 

Except for the Data pane and the close box, an auxiliary Debug 
Browser window is identical to the Main debugger window. The 
purpose of having auxiliary windows is to give the user as much 
flexibility as possible. Expressions can be examined only in an 
auxiliary window. 

For further details concerning the Debug Browser window, see 
Chapter 24, "The Debugger Windows." 

Stepping Through Code 
The Debugger uses six commands to control execution. To make it 
easier to debug applications, you can invoke these commands in any 
of three different ways: using the buttons in the Debugger's Control 
palette, choosing commands from the Debug menu, or using 
Command-key equivalents. 

Symantec C++ User's Guide and Reference 6-11 



6 • Using the Debugger 

The buttons in the Control palette also serve as status indicators. 
When a program is running, the Go button is lit. When the 
application is stopped, the Stop button is lit. Remember that an 
application can still be running even if the Main or Debug Browser 
window is frontmost. 

To step through code, do any of the following: 

• Use the buttons on the Debugger's Control palette, 
shown in Figure 6-9. 

ii Iii :::m:mmm:mi!iiii!i!im!immm::i!i!iim!imimimmmiiiimmmmiimmm!ii!iiiiiiiiiimmmmmmmm::::iiiiiiiiiiiii 

. J:;i;J. ,~,;&~~~ .. l!~~~ l ··~kTrace. Stop E·· 

Figure 6-9 Debugger's Control palette with the Stop button I it 

• Use the commands in the Debugger's Debug menu. 

• Use the equivalent Command-keys listed in Table 6-1. 

Table 6-1 Key combinations for Control palette buttons 

Control palette button Command-key equivalent 
Go Command-G 

Step 

In 

Out 

Trace 

Stop 

Command-S 

Command-I 

Command-0 

Command-T 

Command-. 

To have the Debugger run code, click Go in the Control palette. 
Your code runs until it reaches a breakpoint, until it hits an 
exception (such as an illegal instruction), or until you stop it. If your 
application is already running, the Go command brings it to the 
front. To stop execution of code, click Stop in the Control palette. 

6-12 Symantec C++ User's Guide and Reference 



Stepping Through Code + 

To execute code line by line, click Trace in the Control palette. In all 
but one case, the execution continues to the next statement, even if 
the next statement is in another function. The exception occurs 
when the program counter steps into some code for which the 
Debugger does not have the source text. This typically happens 
when the routine steps into a function that is implemented in a 
library. 

For a brief period, the execution is not really in the application but is 
in the library instead. You will not see the current statement arrow, 
but the name of the current function (if the Debugger can determine 
it) will still be visible in the call chain in the Stack Crawl pane. 

To have the Debugger remain in the current function after executing 
the current statement, click Step in the Control palette. If you are at 
the end of a function, Step returns to the calling function. Use Step 
when you want to execute statements within a function without 
falling into the function being called. 

Note 
Step will fall into the function being called if it 
contains a breakpoint. 

To have the Debugger execute Trace commands until the execution 
falls into a function, click In in the Control palette. This command is 
useful when you want to skip over a set of assignments to fall into 
the next function call. If Step In reaches the last statement of the 
current function without falling into another function, it will stop 
immediately after the function returns. 

To have the Debugger execute Step commands until the execution 
falls out of the current routine, click Out in the Control palette. This 
operation can be slow if there is much to be done, but it is a sure 
way of leaving the current routine. 

To move through a block of code quickly: 

1. Select a line. 

2. Choose Go Until Here from the Debug menu 
(Command-H). 

Symantec C++ User's Guide and Reference 6-13 



6 • Using the Debugger 

The Debugger goes as soon as the command is selected. 
This command has the same effect as setting a temporary 
breakpoint at the selected line, that is, it starts execution 
of your code and stops at the selected line. 

To jump ahead to a selected line without executing any intervening 
code, choose Skip To Here from the Debug menu. This allows you 
to skip over code that you know contains bugs but that is not crucial 
to the rest of the code's operation. 

Note 
Use this feature with caution, especially when 
debugging optimized code. 

Setting Breakpoints 
You set breakpoints in the Code pane. The empty diamonds that 
appear to the left of each executable statement indicate the places in 
the code at which you are permitted to set breakpoints, as shown in 
Figure 6-10. 

Current 
statement 

Code 

indicator -------1-;-, 

A b.eakpo;nt J 
diamond------;*<>:. 

<>i 
<>i 

<>I 

•include "CEditApp.h" 

..,oid main() 

CEditApp *editApp; 

editApp = ne• CEditApp; 
editApp->IEditApp(); 
ed i tApp->Run(); 
editApp->Exit(); 

Figure 6-10 Initial state of the Debugger Code pane 

Ii-

6-14 Symantec C++ User's Guide and Reference 



Setting Breakpoints + 

When code is running, the Debugger stops just before executing the 
first statement where a breakpoint has been set. A set breakpoint is 
indicated by a filled diamond to the left of the statement. The current 
statement arrow points at that statement, as shown in Figure 6-11. 

Filled diamond showing 
a breakpoint has been set 

Code 

•include "CEditApp.h" 

void main() 

CEdi tApp *edi tApp; 

editApp = ne• CEditApp; 
editApp->IEditApp<>; 
ed i tApp->Run<); 
editApp->Exit<>; 

Figure 6-11 Debugger Code pane stopped at a breakpoint 

The Symantec Debugger lets you set two kinds of breakpoints: 
simple breakpoints and temporary breakpoints. 

The Debugger always stops execution at a simple breakpoint and a 
temporary breakpoint. At a temporary breakpoint, it also dears the 
breakpoint so execution will not stop there the next time. 

Simple breakpoints 
To set a simple breakpoint, do one of the following: 

• Click a statement marker diamond. 

• Click in the line to select it, then choose Set Breakpoint 
from the Source menu (Command-B). 

The diamond changes from hollow to filled to indicate 
that a breakpoint has been set. 

The breakpoint remains set until you clear it. 

Temporary breakpoints 
To set a temporary breakpoint, do one of the following: 

• Hold down the Option key as you set the breakpoint. 

Symantec C++ User's Guide and Reference 6-15 



6 • Using the Debugger 

• Choose Go Until Here from the Debug menu 
(Command-H). 

The Debugger starts running the code and continues 
execution until it hits a breakpoint. Temporary 
breakpoints are cleared as soon as they are hit. 

To clear a breakpoint, do one of the following: 

• Click the filled diamond. 

• Select the line and choose Clear Breakpoint from the 
Debug menu (Command-B). 

Clear Breakpoint is available for a selected line if a 
breakpoint has been set. If one has not been set for a 
selected line, this command is displayed as Set 
Breakpoint. 

The hollow diamond indicates that no breakpoint is set. 

To clear every breakpoint in a project, choose Clear All 
Breakpoints from the Source menu. 

Going until the next breakpoint 
To advance the execution of your code to the next breakpoint, click 
the Go button in the Debugger's Control palette. The Debugger 
stops executing the code just before the next statement that is 
marked with a breakpoint. If the breakpoint is a simple breakpoint, 
it will remain set. If it is a temporary breakpoint, it will be cleared. 

Examining the Call Chain 
The call chain is the sequence of functions that were called to get to 
the current function. You can access the functions in the call chain 
through the Stack Crawl pane. 

6-16 Symantec C++ User's Guide and Reference 



Examining the Call Chain + 

To examine the call chain of the current function, select the Main 
debugger window or a Debug Browser window. To examine the 
variables in a function in the call chain, click the triangle to the left 
of the variable name, as shown in Figure 6-12. 

Function 

Variable-------~ 

Figure 6-12 Displaying the variables in a function in the call chain 

Symantec C++ User's Guide and Reference 6-17 



6 • Using the Debugger 

To examine the fields in a structure, class, or array in a function in 
the call chain, click the triangle to the left of the structure, class, or 
array name, as shown in Figure 6-13. 

Stack Crawl 

Vprev OxOOOOOOOO 
elementlD 1082195968 

I> next Ox0003C1C6 
I> prev Ox0003C1C8 

disposable OxOO 
disposable OxOO 

V itsSwitchboard OxOOOOOOOO 
I> mouseRgn Ox40810000 

I> i ts I d I eChores OxOOOOOOOO 
I> i tsUrgen tChores OxOOOOOOOO 

urgentsToDo OxOO 
running Ox01 
phase 0 
rainyDayFund -16843010 
criticalBalance -16843010 
toolboxBalance -16843010 
tempAI location -16843010 

I> ra i nyDay OxOOOOOOOO 
rainyDayUsed OxFE 
memWarninglssue( OxFE 
canFai I OxFE 
inCriticalOpera OxFE 
newWindowOnStar Ox01 
sfNumTypes -258 

I> sfF i I eTypes I I OxOOB6ED9A + 
Figure 6-13 Displaying structure or array fields in a function in the 

call chain 

To hide variables or fields, click the same triangle again. 

To copy a selected structure, class, array, or field to the Data pane, 
choose Copy to Data from the Data menu (Command-D). 

To change the value of a selected expression, type the new value in 
the entry field of the Data pane, and press Return or Enter. 

6-18 Symantec C++ User's Guide and Reference 



Examining the Call Chain + 

Formatting 
To change the format of a selected expression, choose a new format 
from the Data menu. 

The available formats are shown in Table 6-2. 

Table 6-2 Display formats available 

Type Formats available 

integer 

unsigned 

pointer 

array 

struct 

union 

function 

float 

fixed 

(Default formats in italics) 
Signed Decimal, Unsigned Decimal, 
Hexadecimal, Character 

Unsigned Decimal, Signed decimal, 
Hexadecimal, Character 

Pointer, Address, Hexadecimal, C String, 
Pascal String 

Address, C String, Pascal String 

Address 

Address 

Address 

Floating Point 

Fixed Point 

Symantec C++ User's Guide and Reference 6-19 



6 • Using the Debugger 

Command-keys and samples of these formats are shown in 
Table 6-3. 

Table 6-3 Display format examples 

Format Command-key Example 
Signed decimal Command-- 4523345 or -1 

Unsigned decimal Command-U 4523345 or 65535 

Hexadecimal Command-\ OxA09E1487 

Character Command-R 'C' or 'TEXT' 

Pointer Command-P Ox007A7000 

Address Command-A []Ox0009FE44 
or struct 
Ox0008FC14 

C string Command-' "abcdef\nghi\33" 

Pascal String Command-' "\pabcdef\nghi\33" 

Floating Point Command-F 1961. 0102 

Fixed Command-; 1961.0102 

The C string and Pascal string formats display nonprinting characters 
in backslash form. Whenever it can, the Debugger uses the built-in 
escape characters (\n, \r, \b); otherwise, it uses \nn, where nn 
is an octal value. 

You can use typecasting to use formats that are not normally 
available. For example, to see the integer i as a C string, type the 
expression: (char * ) i. 

To see any pointer as an array, change its format to Address. 

To set the bounds of an array: 

1. Click the array and choose Set Array Bounds on the 
Data menu or double-dick the array. 

6-20 Symantec C++ User's Guide and Reference 



Analyzing Variables + 

The Set Array Bounds dialog box in Figure 6-14 opens. 

Display Range: 1-1 
Lower Bounds: IO I 

( Cancel ) n OK D 

Figure 6-14 Set Array Bounds dialog box 

2. Enter the number of items in the array and the base 
index of the array. 

3. Click OK. 

For more details on setting array bounds, see Chapter 25, "The 
Debugger Menus." 

Analyzing Variables 
You can examine and m<?dify the values of variables in the Data 
pane. Expressions themselves are displayed in the left column of the 
pane and their values are displayed in the right column. You can 
enter any legal expression for the compiler you are using. Statements 
with side effects are locked by default. 

For the Debugger to compile an expression that you want it to 
evaluate, it must know the context in which the expression is to be 
evaluated. The context of an expression is the block of code 
surrounding the expression when it is evaluated during execution. 

To enter an expression in the Data pane, select the expression in the 
Code pane, then choose Copy to Data in the Debugger's Edit menu 
(Command-D). The Debugger compiles the expression in the 
context of the selected line and displays its value. 

Symantec C++ User's Guide and Reference 6-21 



6 • Using the Debugger 

To enter an expression in the Data pane in the current context, type 
the expression in the entry field of the Data pane and press Enter or 
Return. Pressing Enter places the expression in the Data column and 
also leaves it selected in the entry field, as shown in Figure 6-15. 

Data i: ·c: 

ledi lApp I 
I> edi lApp OxOOB6ED42 ~ 

-0 
Figure 6-15 Pressing Enter to enter an expression 

Pressing Return places the expression in the Data column and 
removes it from the entry field, as shown in Figure 6-16. 

Data ·.: " ·:· 

I I 
I> edi lApp OxOOB6ED42 ~ 

-0 
Figure 6-16 Pressing Return to enter an expression 

The Debugger evaluates the expression in the current context. 

To set the context of a selected expression in the Data pane that you 
want the Debugger to evaluate, do either of the following: 

• Select the line in the Code pane that contains the 
occurrence of the expression that you want evaluated. 

• Select a line in the Code pane and choose Set Context 
from the Data menu. 

If you have not selected a line in the Code pane, the expression is 
evaluated in the context of the current statement. 

6-22 Symantec C++ User's Guide and Reference 



Analyzing Variables + 

To see the context of an expression selected in the Data pane, 
choose Show Context from the Data menu. The statement that is 
the context of the selected expression is highlighted in the Code 
pane. 

To edit an expression that you want to evaluate: 

1. Type the expression in the entry field of the Data pane. 

2. Press Enter. 

To edit an expression that is already in the Data column of the Data 
pane, select the expression in the Data column. The expression is 
shown selected in the entry field, ready to be edited. 

To change the context of an expression to the current context after 
you edit it, press Option or Command while pressing Enter. 

When you edit an expression in the Data pane, the context is the 
same as when you first entered the expression. To enable you to 
compare an expression's value in different contexts, the Debugger 
lets you have multiple copies of the same expression in the Data 
pane, as shown in Figure 6-17. 

Da'tia _l _Ji ~; 
,,,, 

I I 
.. editApp ll Ox4200000C Jo 
~ edi tApp 

1 _IQ 

Figure 6-17 Multiple copies of an expression 
in the Data pane 

To remove an expression from the Data pane: 

1. Select the expression you want to remove. 

2. Choose Clear from the Edit menu. Alternatively, press 
Clear or Esc. 

To remove all of the expressions from the Data pane, choose Clear 
All Expressions from the Data menu. 

Symantec C++ User's Guide and Reference 6-23 



6 • Using the Debugger 

Changing the values of variables 
The Debugger lets you change the value of any expression that 
would be legal on the left side of an assignment statement. When 
you enter an expression, it is displayed in the left column of the Data 
pane and its value is shown in the right column. For information on 
changing the value or format of a variable, see the section 
"Examining the Call Chain," earlier in this chapter. 

Evaluating expressions 
The Debugger re-evaluates the expressions in the Data pane every 
time a program stops. An expression whose context is not in the 
current function is not re-evaluated and its value is cleared from the 
Data pane, unless it has global scope. 

To examine the values of variables: 

1. Set the contexts of the variables you want evaluated. 

2. Enter the variables in the Data pane. 

To prevent an expression from being evaluated: 

1. Select the expression. 

2. Choose Locked from the Data menu (Command-L). The 
Debugger locks the expression with a lock icon. 

Locked variables are always displayed, even if they are no longer in 
context. 

You can ensure that the Debugger always evaluates a variable in the 
context of the current statement by making the variable context-free. 

This is useful if you are using the same variable name in several 
routines and you would like to see the value of the variable 
whenever you enter one of those routines. 

To make a selected variable context-free, choose Context-free from 
the Data menu (Command-K). The Debugger marks the variable 
with a small arrow. 

6-24 Symantec C++ User's Guide and Reference 



Ending a Debugging Session + 

Ending a Debugging Session 
To end a debugging session, do one of the following: 

• Quit the application. 

• Choose Quit from the Debugger's File menu. 

• Choose ExitToShell from the Debugger's Debug menu. 

Preferences and Options 
Preferences apply to all projects. Options are project-specific. To 
learn how to set preferences for the Debugger, see Chapter 25, "The 
Debugger Menus." To learn how to set options for the Debugger, see 
Chapter 18, "The Project Menu." 

Symantec C++ User's Guide and Reference 6-25 



6 Using the Debugger • 

6-26 Symantec C++ User's Guide and Reference 



Creating a User 
Interface with VA• 

7 
~ual Architect is the preferred platform for designing and 

implementing the user interface for Symantec C++ applications. It 
acts as a bridge between the programmer and the powerful and 
diverse capabilities of the THINK Class Library, allowing you to 
create a complete user interface with a minimal investment of time 
and energy. This chapter describes the basic functions of Visual 
Architect. 

At this point, you should be comfortable with creating a project 
using the VA Application project models, editing code, building and 
debugging your project, and viewing classes. Visual Architect, in fact, 
can be used at any point in the development cycle following 
creation of a project. 

This chapter describes how to launch Visual Architect and use it to 
construct and edit views, panes, menus, commands, classes, and 
Balloon Help. The generation of source code for a project is also 
covered. 

Introduction 
You use Visual Architect in conjunction with other Symantec C++ for 
Power Macintosh tools to construct an application's user interface. 
Visual Architect lets you develop code and resources using 
interactive, visual tools, rather than by writing in C++. Using the 
THINK Class Library, Visual Architect generates customizable source 
code. Also, Visual Architect lets you test user interface elements 
without having to build a project in the Symantec Project Manager. 

Symantec C++ User's Guide and Reference 7-1 



7 • Creating a User Interface with VA 

When to use Visual Architect 
You can use Visual Architect at any stage in the development of an 
application-for example, when you are beginning a design or fine­
tuning an application's user interface at the end of a project. 
Typically, you work with Visual Architect throughout the 
development of an application. You build the application 
incrementally by going back and forth between Visual Architect and 
the other Symantec Project Manager tools. 

Files produced 
Visual Architect maintains one resource file and a set of source files. 
The resource file, by default named Visual Architect. rsrc, is 
automatically added to a project when you create it with either of the 
two VA Application project models. The source files are . cp and . h 
files. They are written in C++ and automatically are added to a 
project as they are created by Visual Architect. You are encouraged, 
and typically will find it necessary, to edit these files in the course of 
developing an application's user interface. 

Note 
Studying the commented code generated by Visual 
Architect helps you understand the structure and 
implementation of classes in the THINK Class 
Library. 

Launching Visual Architect 
To launch Visual Architect: 

Note 

1. Create a project using either of the two VA Application 
project models in the Symantec Project Manager, as 
described in Chapter 3, "Starting a Project." 

You can also choose any customized Visual 
Architect project model. See Chapter 16, "The File 
Menu," for details on creating your own project 
models. 

7-2 Symantec C++ User's Guide and Reference 



Launching Visual Architect + 

Figure 7-1 shows the resource file named Visual 
Architect. rsrc that is included in your project. 

I Headers • I Options I PPC Process Monitor .11 .,.. I 
& ./}.Name ~ 

I> ~ Extra Sources 

I> ~ Runtime Libraries 0 

I> ~ Source 0 

+ j5Q TCL Resources .rsrc 0 

~ THINK Class Library 

+ [2iJ Visua 1 Architect .rsr c 

Totals 

0 

o~ 

0 ldii 

Figure 7-1 Project Manager Project window and selected 
Visual Architect.rsrc entry 

2. Double-click Visual Architect . rsrc in the Project 
window. 

Visual Architect launches and the View List window 
opens (Figure 7-2). 

~Iii~ Uisual Rrchitect.rsrc §§~ 

Main ~ 

I-=-

~ 
Iii 

Figure 7-2 Visual Architect View List window 

The View List window in Visual Architect shows a list of the views 
defined in the Visual Architect . rsrc file . Whenever you 
create a new project in the Symantec Project Manager using either of 
the VA Application project models, the Visual Architect. rsrc 
file contains a default view called Main. 

Symantec C++ User's Guide and Reference 7-3 



7 • Creating a User Interface with VA 

Constructing Views 
Building an application's user interface typically begins with 
construction of its views. In general terms, a view can be thought of 
as a window (although the type of view known as a Subview is not 
actually a window). 

Views implement an application's windows, dialog boxes, floating 
palettes, and tear-off menus. When you create a view in Visual 
Architect, you base the view on one of several view types, such as 
modal dialog or floating window, then customize it. When the 
application runs, multiple instances of that view can be open 
simultaneously. 

Note 
The term "view" has different meanings in the 
THINK Class Library and in Visual Architect. In the 
THINK Class Library, a view is an instance of a class 
derived from CView. CView is the base class from 
which all visual entity classes are derived. 

In Visual Architect, however, "view" refers to the set 
of elements (resources and THINK Class Library 
classes) that together implement your window 
(unless the view is a Subview). One of these 
elements is an instance of a class derived from 
CView. For more information on CView, see the 
online THINK Reference. 

The following section outlines the different view types and describes 
the processes involved in constructing views. 

Types of views 
Visual Architect provides nine view types. All but the last view type 
(Subview) implement windows. 

Main Window 
Main Window views implement windows that serve as the center of 
the user's attention. These views typically are used to display the 
contents of a document, either text or graphics. 

7-4 Symantec C++ User's Guide and Reference 



Constructing Views + 

Note 
The Main view discussed earlier is an instance of a 
Main Window view. 

Window 
Window views implement windows that are auxiliary to the 
application's Main Window views. 

Floating Window 
Floating Window views implement palettes containing drawing tools, 
colors, patterns, and so on. These views are drawn in front of all 
nonfloating windows. 

Tear-off Menu 
Tear-off Menu views are similar to Floating Window views except 
that they implement menus that can be "torn off' from the menu bar 
and placed anywhere on the screen. 

Dialog 
Dialog views are used to implement general-purpose modeless 
dialog boxes. 

Modal Dialog 
Modal Dialog views are used to implement general-purpose modal 
dialog boxes. 

New ... Dialog 
New ... Dialog views are used to implement a special type of modal 
dialog box, with which the user specifies a document type. This 
dialog box is displayed in response to a user choosing New from the 
File menu when more than one document type is created by the 
application. 

Splash Screen 
Splash Screen views are used to implement a special type of 
modeless dialog box, which is only displayed when the application 
is starting up. 

Subview 
Subview views are a special type of view used to implement 
panoramas within other views. This view type does not implement a 
window. 

Symantec C++ User's Guide and Reference 7-5 



7 • Creating a User Interface with VA 

Most applications define one or more Main Window views, which 
serve as the central windows for the application and can be modified 
to suit your needs. In addition, you can create views to implement 
additional windows, dialog boxes, palettes, and pop-up menus, and 
modify them accordingly. 

Creating a view 
While the same general procedure is used to create all nine types of 
views, the Dialog view is used as an example of the process in this 
section. 

To add a new Dialog view to an application: 

1. Choose New View from the View menu. 

The New View dialog box opens, as shown in 
Figure 7-3, in which you are prompted to provide basic 
information about the view. 

Please name the new uiew 

Name: l~~~!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!J 
Uiew Kind: ._I _D_i_a_lo..l;g"------....... 1 

( Cancel ) ( OK D 

Figure 7-3 New View dialog box 

2. Type a name for the new view in the Name field. 

The name you specify must be unique within the 
application. 

7-6 Symantec C++ User's Guide and Reference 



Constructing Views + 

3. Choose a type of view from the View Kind pop-up 
menu (Figure 7-4) . 

../Dialog 
Floating Window 
Main Window 
Modal Dialog 
New ... Dialog 
Splash Screen 
Subuiew 
Tearoff Menu 
Window 

Figure 7-4 View Kind pop-up menu 

4. Click OK. 

The name of the new view is displayed in the View List 
window (Figure 7-5). 

~!ii§i Uisual Architect.rsrc 
Main 

MyDialog 

0 

Figure 7-5 View List window, with a new view 
named MyDialog 

Symantec C++ User's Guide and Reference 7-7 



7 • Creating a User Interface with VA 

In addition, a View Edit window for this new view opens 
(Figure 7-6), using the title supplied in the New View 
dialog box. 

1...-------.......... • :i:mm:mmm:mmmmmmmmmmmmmHmm:mmmmmm:mmm:m: + Iii 
Figure 7-6 View Edit window for the MyDialog Dialog view 

The View Edit window resembles the MacDraw™ drawing window. 
You can construct the elements within a view using the View Edit 
window. The section "Creating Panes," later in this chapter, describes 
this process. 

Changing the attributes of a view 
The general attributes of a view, such as its window type and size, 
are set to default values when you create the view. To change these 
attributes, use the view's Info dialog box. The steps involved in 
changing view attributes are similar for the different view types. The 
following steps demonstrate how to edit Dialog views. 

To open the Info dialog box for a view: 

1. Open the view's View Edit window by double-clicking 
the view's name in the View List window. 

2. Choose View Info from the View menu. 

7-8 Symantec C++ User's Guide and Reference 



Name: 

Constructing Views + 

The Info dialog box opens, as shown in Figure 7-7, for a 
Dialog view. 

ID: 129 

Title: I MyDialog 

D modal 
D Use file 
D Print 

Wi ndo\o/ Class: I CDialog • l 

gj(LJ]~LJDDLJD 
D Vert. Scroll D Horiz. Scroll D Size Box D goA\o/ayFlag D actClick 

Position I Centered • l L~i"l L::::::::::::::::::::::::::::J ; ''P i:::::::::::::::::::::::::::::::::J 

Width: ._I 4_o_o ____ _. Height: ._I 2_0_0 ____ _. procl D: ._I 4 __ _. 

Min Width: ._I 4_o ____ __, Min Height: ._I 4_o ____ __, 

Max Width: ._I s_1_2 ____ _. Max Height: ._I 3_4_2 ____ _. 

Figure 7-7 Dialog Info dialog box 

Note 
The format of the Info dialog box is identical for 
Dialog, Modal Dialog, New ... Dialog, Splash Screen, 
and Window view types. The Info dialog boxes for 
other view types differ. See Chapter 31, "Visual 
Architect View Menu," for details. 

Naming the view 
Views are named when they are created, but the name can be 
changed. To change the name of a view, type the new name in the 
Name textbox. 

Naming the view's window 
By default, the title of the view's window when the application runs 
is the same as the view name. To change the view's window title, 
type the new name in the Title textbox. 

Symantec C++ User's Guide and Reference 7-9 



7 • Creating a User Interface with VA 

Setting the window type 
You can set the window type used for a view's window in one of 
two ways: 

• Select one of the ten window type icons. 
• Type the name of the window type in the procID 

textbox. 

Setting the window position 
You can choose one of three positions for a view's window when it 
appears in the running application. If it should appear in a fixed 
position, its position is determined by the values in the Left and Top 
textboxes. If it should be centered, it is centered on the main screen. 
If it should be staggered, it appears down and to the right of the 
previous window. To set the positioning of the view's window, 
choose Fixed, Centered, or Staggered from the Position pop-up 
menu. 

Setting the window size 
The size of the view's window can be set numerically or graphically. 
To set the window size numerically, type the appropriate numbers in 
the Width and Height textboxes. 

To set the size of a view's window graphically, use the View Edit 
window for that view: 

Note 

1. Bring the View Edit window to the front. 

2. Drag the sizing handle of the view's portRect 
(Figure 7-8). 

You may first need to increase the size of the View 
Edit window. 

7-10 Symantec C++ User's Guide and Reference 



Creating Panes + 

New portRect Original portRect Sizing handle 

M _y_ Di a I o_g_ 
+ 

····································································································· ................................................................................................................. ----++.~--! 

0,0 734,944 

Figure 7-8 Resizing a view using the sizing handle 

Creating Panes 
You can now create the control and graphical elements to include in 
the view. These elements are called panes. 

Panes are graphical elements that provide visual information, control 
capabilities, or both. 

Note 
Panes are implementations of the THINK Class 
Library class CPane. All drawing performed by 
classes in the THINK Class Library occurs within 
panes, each of which has its own drawing 
environment. CPane, a visual element class, is 
derived from CView. 

Without any panes, a view is only a blank window. A view must 
have panes to have functionality. Panes get their functionality by 
having commands attached to them. Commands are explained later 
in this chapter. 

Symantec C++ User's Guide and Reference 7-11 



7 • Creating a User Interface with VA 

Twenty different pane classes are available in Visual Architect. These 
allow you to display static text and graphic elements as well as 
implement dialog (editable) text fields, buttons, radio buttons, check 
boxes, scroll bars, pop-up menus, and scrolling text and graphics 
fields. The individual panes' classes are described in Chapter 34, 
"Visual Architect Tools Menu." 

Adding a pane to a view 
You add panes to views using the Tool palette shown in Figure 7-9. 

g ommmmmmmmmm 

~A Im 
@ ® IZI 

~II~ 
~00~ 
~~g 

+oo 
"-0 d. 

Figure 7-9 Tool palette 

You access the Tool palette in either of two ways: 

Note 

• Choose individual tools from the Tools menu. 

• Click the Tools menu and tear off the Tool palette by 
dragging it beyond the edge of the menu. An outline of 
the Tool palette is displayed, which you can position 
anywhere on the screen. 

You can reposition a pane after it is created by 
dragging it to its new position. 

All tools in the Tool palette except the Select tool, correspond to a 
pane class. The Select tool is used to select one or more panes 
already added to a view, as described in the section "Selecting a 
pane" later in this chapter. 

7-12 Symantec C++ User's Guide and Reference 



Creating Panes + 

You follow similar steps to create panes for the different pane 
classes. The following directions describe the process for a few pane 
classes. 

Adding a text pane 
Views can have two types of text panes: static text and dialog text. 
Static text panes are used to provide information to the user. Dialog 
text panes are used to obtain information from the user. 

To add a static text pane to a view: 

1. Open the View Edit window for the view. 

2. Choose the Static Text tool from the Tool palette. 

3. Click the cursor in the View Edit window to position the 
static text pane. 

A blinking insertion point indicates that you should enter 
the text for the pane. 

4. Type the text for the static text pane. 

To add a dialog text pane to a view: 

Note 

1. Open the View Edit window for the view. 

2. Choose the Dialog Text tool from the Tool palette. 

3. Click the cursor in the View Edit window to position the 
dialog text pane. 

A dialog textbox opens. 

The default text for dialog text panes is specified in 
the Pane Info window, described in the "Changing 
pane attributes" section, later in this chapter. 

Symantec C++ User's Guide and Reference 7-13 



7 • Creating a User Interface with VA 

Adding a button pane 
Button panes implement the standard Macintosh push buttons. To 
add a button pane to a view: 

1. Open the View Edit window for the view. 

2. Choose the Button tool from the Tool palette. 

3. Click the cursor in the View Edit window to position the 
button pane. 

A button is displayed with some default text highlighted. 

4. If you want to rename the button, type the text for the 
name of the button. 

Adding a graphic element pane 
Views often contain graphic elements that divide the view's window 
into functional areas, direct attention, or serve as decoration. Visual 
Architect provides six tools for creating basic graphics panes: Straight 
Line, Unconstrained Line, Rectangle, Rounded Rectangle, Oval, and 
Polygon. All these tools function in the standard fashion associated 
with drawing programs such as MacDraw™. 

To add a line pane to a view: 

1. Open the View Edit window for the view. 

2. Choose either the Straight Line or the Unconstrained Line 
tool from the Tool palette. 

The Straight Line tool creates a line orientation as a 
multiple of 45°; the Unconstrained Line tool permits any 
line orientation. 

3. Drag the cursor in the View Edit window to set the 
starting and ending points for the line. 

To add a rectangle or oval pane to a view: 

1. Open the View Edit window for the view. 

2. Choose the Rectangle, Rounded Rectangle, or Oval tool 
from the Tool palette. 

7-14 Symantec C++ User's Guide and Reference 



Creating Panes + 

3. Drag the cursor in the View Edit window to set two 
opposing corners of the bounding box containing the 
pane. 

Selecting a pane 
Once a pane has been added to a view, you need to select it to 
change its location or its attributes. Select panes using the Select tool 
from the Tool palette. To select a pane: 

1. Open the View Edit window for the view. 

2. Choose the Select tool from the Tool palette. 

Choosing the Select tool changes the cursor to an arrow, 
the standard Macintosh selection cursor. 

3. Select the pane. 

Depending on the number of panes you want to select, you can 
select a pane in one of these ways: 

• For a single pane, click the pane. 

• For multiple panes, click the panes while holding down 
the Shift key. Alternatively, click an empty part of the 
drawing area, hold the mouse button down, and drag the 
cursor until the selection rectangle encompasses the 
panes you want to select. 

If the Lazy Select command is enabled in the Options menu, the 
selection rectangle only has to touch a pane for it to be selected. 

Deleting a pane from a view 
To delete a pane from a view: 

1. Open the View Edit window for the view. 

2. Select the pane. 

3. Click Delete. 

Changing pane attributes 
You can change many attributes that define a pane. This process 
involves changing data members in the class hierarchy of the pane. 
Use the Pane Info window to change attributes. 

Symantec C++ User's Guide and Reference 7-15 



7 • Creating a User Interface with VA 

To open the Pane Info window for a pane: 

1. Open the View Edit window for the view. 

2. Select the pane and choose Pane Info from the Pane 
menu. Alternatively, double-click the pane in the View 
Edit window. 

Pane Info windows vary in appearance depending on the pane class. 
All of them are organized similarly, however. The Pane Info window 
for a static text pane is shown in Figure 7-10. 

Identifier: I 
Left: 1~2-0-8--~ Top: 

Width: l._8_7 __ __. Height: l._1_6 __ __, 

I> CStatie'f~xi. 
CEditText 

hText: I static pane 1 

spaci ngCmd: l~c-m_d_S_i n-g-1 e-S-pa_c_e-....-~, 

alignCmd: I cmdAlignleft 

I> CA bst ractT ext 

..... , 

Figure 7-10 Pane Info window 

I 
A Pane Info window is associated with a particular pane. You can 
have multiple Pane Info windows open simultaneously, each 
reflecting information about a different pane. When you close a 
view, any Pane Info windows associated with panes in that view are 
closed automatically. 

Changes made in the Pane Info window are reflected immediately in 
the target pane. For example, if you type a value in the Width or 
Height textboxes for the CPane class, the size of the pane in the 
View Edit window changes as you type. 

Editing the pane identifier 
The title of the Pane Info window is the identifier for the pane. To 
edit a pane's identifier, enter changes in the Identifier textbox at the 
top of the Pane Info window. 

7-16 Symantec C++ User's Guide and Reference 

J 



Creating Panes + 

Setting the pane size and position 
To set the position of the pane relative to the view's window, type 
an appropriate number in the Left and Top textboxes at the top of 
the Pane Info window. 

To set the size of the pane, type an appropriate number in the Width 
and Height textboxes at the top of the Pane Info window. 

You can also change the size and position of a pane graphically 
within the View Edit window. To set the size of the pane graphically, 
drag the sizing handle for the pane, located in the lower-right corner 
of the pane. To set the position of the pane graphically, drag the 
pane to the new location. 

Setting other pane attributes 
All other pane attributes are specific to each pane class, and are 
changed using the lower portion of the Pane Info window. The 
lower portion shows the pane's class hierarchy, beginning with the 
outermost derived class of the pane and ending with the CView 
class. 

The small triangles next to the class names let you access the 
contents of each class, which are displayed in a subarea below the 
class name, as shown in Figure 7-10. The triangles exist in two states: 
closed, when they point to the right, and open, when they point 
down. The class subarea contains the editable subset of the data 
members for that class. (See the online lli/NK Reference for 
definitions of these data members.) 

To access the contents of a class, click the triangle next to the class 
when it is in the closed state. An area below the class name opens, 
revealing the contents of that class. 

To hide the contents of a class, click the triangle next to the class 
when it is in the open state. The subarea below the class closes, 
hiding the contents of that class. 

Editing the text in a dialog text pane 
To edit the text in a dialog text pane: 

1. Open the Pane Info window for the dialog text pane. 

2. Click the triangle next to the CEditText class to display 
the editable data members of that class. 

Symantec C++ User's Guide and Reference 7-17 



7 • Creating a User Interface with VA 

3. Make changes in the hText textbox. 

Editing t~xt in other panes 
You can directly edit the text of static, edit, push button, radio 
button, or check box panes without using the Pane Info dialog box. 
Select the pane and press Return. You can edit or add any text in the 
pane, up to 32K characters. When you are finished, click outside the 
pane. Panes are resized automatically to fit the text. 

Trying out a view 
From within Visual Architect, you can try out a view to verify its look 
and feel in the running application. This method allows you to test 
the view without going through the complete development cycle 
that involves generating code with Visual Architect, updating the 
project and building the application in the Symantec Project 
Manager, and running the application. 

To try out a view: 

1. Open the View Edit window for the view. 

2. Choose Try Out from the View menu (Command-Y). 

A window opens, which shows how the view's window would look 
in the running application. Controls, such as buttons and scroll bars, 
and Balloon Help (described later in this chapter) are active in this 
window. 

To close the "try out" window, choose Close from the File menu. 
Alternatively, click the window's close box, or the OK or Cancel 
button, if available. 

Building Menus 
Visual Architect lets you create an application's menus. These menus 
can appear in the menu bar as standard menus or tear-off menus, or 
they can appear as submenus or pop-up menus. 

As with ResEdit, you construct menus with Visual Architect using a 
graphical interface. In addition, Visual Architect lets you set up the 
commands that are sent by menu items. These commands are 
described in the section "Attaching Commands" later in this chapter. 

7-1 B Symantec C++ User's Guide and Reference 



Building Menus + 

Creating a menu 
To create a new menu: 

1. Choose Menus from the Edit menu to open the Menus 
dialog box (Figure 7-11). 

@ s (Rpple Menu) File 
Font 
Size 
Style 

( Edit Menu Items ) 

MENU ID: I 1 
:::::====::::::::! 

MOH l..._o _ ___, 

Figure 7-11 Menus dialog box 

(Cancel) 

OK 

2. Choose New Menu from the Edit menu (Command-K) 
or press Return. 

The textbox at the top of the dialog box clears and 
shows a blinking cursor. 

3. Type the title of the new menu in the textbox. 

The new menu title is introduced in the menu list on the 
left side of the dialog box. 

4. Click OK to close the Menus dialog box. 

Deleting a menu 
To delete a menu from the menu list: 

1. Open the Menus dialog box by choosing Menus from 
the Edit menu. 

2. Select the menu by clicking its title in the menu list on 
the left side of the dialog box. 

Symantec C++ User's Guide and Reference 7-19 



7 • Creating a User Interface with VA 

3. Press Delete to remove the menu title from the menu list. 

4. Click OK to close the Menus dialog box. 

Adding a menu to the menu bar 
To add an existing menu to the menu bar: 

1. Choose Menu Bar from the Edit menu to open the 
Menu Bar dialog box (Figure 7-12). 

Menu Bar 

® s (Apple Menu) 

( Edit Menu I terns ) 

MENU ID: 1 

MDEF ID: 0 

Rdd (Cancel) 

OK 

Figure 7-12 Menu Bar dialog box 

Note 
The Menus dialog box lists all menus defined in the 
current Visual Architect. rsrc file, while the 
Menu Bar dialog box lists only those menus that 
have been placed in the menu bar. The two are 
otherwise similar in functionality. 

2. Choose the menu you want to add from the Add Menu 
pop-up menu. 

The menu title is displayed in the menu list on the left 
side of the dialog box. You can reorder the menus within 
the menu bar at any time by dragging their titles within 
the menu list. 

3. Click OK to close the Menu Bar dialog box. 

7-20 Symantec C++ User's Guide and Reference 



Removing a menu from the menu bar 
To remove a menu from the menu bar: 

Building Menus + 

1. Open the Menu Bar dialog box by choosing Menu Bar 
from the Edit menu. 

2. Select the menu by clicking its title in the menu list on 
the left side of the dialog box. 

3. Press Delete. 

The menu is removed from the menu bar, but it is not 
deleted from the Visual Architect. rsrc file. 

4. Click OK to close the Menu Bar dialog box. 

Adding and removing menu items 
To add a menu item to a menu: 

1. Open the Menus dialog box by choosing Menus from 
the Edit menu (or use the Menu Bar dialog box, if the 
menu is in the menu bar). 

2. Select the menu by clicking its title in the menu list on 
the left side of the dialog box. 

3. Click Edit Menu Items. 

Symantec C++ User's Guide and Reference 7-21 



7 • Creating a User Interface with VA 

The Menu Items dialog box opens (Figure 7-13). 

Menu Items 

File 

New 5J 
Open ... 

D Has submenu 

~ubnu~nu !!): c::::::::::::::::::::::::J c:J Close 
Saue 

Cmd-key:~ Saue Rs ... 
Reuert to Saued 

Page Setup ... 
Print ... 

Icon: Ii!: I Mark: I None ~I 

Quit 

Command: I cmdNew 

Figure 7-13 Menu Items dialog box 

4. Choose New Menu Item from the Edit menu 
(Command-K) or press Return. 

(Cancel) 

OK 

The textbox at the top of the dialog box clears and 
shows a blinking cursor. 

5. Type the name of the menu item in the textbox. 

The new menu item is introduced in the menu item list 
on the left side of the dialog box. 

6. Click OK to close the Menu Items dialog box. 

To remove an item from a menu: 

1. Open the Menu Items dialog box. 

2. Select the item in the menu item list on the left side of 
the dialog box. 

3. Press Delete to remove the item from the menu item list. 

4. Click OK to close the Menu Items dialog box. 

7-22 Symantec C++ User's Guide and Reference 



Attaching Commands + 

Setting a menu item's command key 
To assign a keyboard shortcut key to a menu item: 

1. Open the Menu Items dialog box. 

2. Select the item in the menu item list on the left side of 
the dialog box. 

3. Type the shortcut character into the Command-key 
textbox. 

4. Click OK to close the Menu Items dialog box. 

Creating a submenu 
To create a submenu and attach it to a menu item: 

1. Create the menu using the Menus dialog box, as 
described in the section "Deleting a menu," earlier in this 
chapter. 

2. Create the hierarchical menu item in another menu using 
the Menu Items dialog box, as previously described in 
the section "Adding and removing menu items," earlier in 
this chapter. 

3. In the Menu Items dialog box, select the menu item you 
just created and set the Has Submenu option on. 

4. Choose the submenu you created in Step 1 from the 
Submenu pop-up menu. 

5. Click OK to close the Menu Items dialog box. 

6. Click OK to close the Menus or Menu Bar dialog box. 

Attaching Commands 
After creating the user interface elements, you can assign 
functionality by attaching commands to them. 

The role of commands 
For a user interface element to be functional, it must generate an 
action within the application. In the THINK Class Library, this is 
accomplished by attaching a command to the user interface item. 

Symantec C++ User's Guide and Reference 7-23 



7 • Creating a User Interface with VA 

Visual Architect automatically generates the necessary code for 
establishing such attachments. 

In Visual Architect, commands are attached to panes and menu 
items. All panes derived from CButton (Push Button, Radio Button 
and Check Box), CSwissArmyButton (Picture Button, Straight Line, 
Unconstrained Line, Rectangle, Rounded Rectangle, Oval and 
Polygon), CiconPane (Icon Button) and CTable (List/Table) can have 
an associated command. Any menu item, whether accessed from the 
menu bar or from a pop-up menu, can have an associated 
command. 

A command can have one of three actions in each class that 
responds to it. It can call a function that you code yourself, open an 
already defined view, or do nothing. If the action of the command is 
to call a function, Visual Architect generates skeleton code into the 
appropriate classes, into which you insert your code to handle the 
command. 

Note 
The specific mechanisms by which commands are 
sent and handled are dictated by the rules of the 
chain of command (see the section "Chain of 
command," in Chapter 27, "TCL and VA: Basic 
Concepts"). 

Defining a new command 
To define a new command: 

1. Choose Commands from the Edit menu. 

7-24 Symantec C++ User's Guide and Reference 



cmdRlignCenter 
cmdRlignleft 
cmdRlignRight 
cmdBold 
cmdCancel 
cmdClear 
cmdClose 
cmdCondense 

Attaching Commands + 

The Commands dialog box opens (Figure 7-14). 

Number: 51 
Rctions:---------------~ 

In Class: ._I _N_o_n_e ___ ... __.I 

no: [ ....... N·i·; .. t·i";·i·i·;·ii ..... :V] 
Hew: [ ...... N. i·;·;·;·;~................. . ... :,; .. } 

Figure 7-14 Commands dialog box 

( Cancel ) 

OK 

2. Choose New Command from the Edit menu 
(Command-K), or press Return. 

The textbox at the top of the dialog box is cleared and 
displays a blinking cursor. 

3. Type the name of the new command into the textbox . 
The command name must be unique for the project. 

The new command is introduced in the command list on 
the left side of the dialog box. 

4. Choose the classes you want to have respond to the 
command in the In Class pop-up menu. 

Multiple classes can respond to the command. Thus, 
choosing a class from the pop-up menu does not 
deselect any currently selected class. To deselect a class, 
choose it a second time. 

5. Choose the action of the command in the Do pop-up 
menu. 

6. If the action of the command is to open a view, choose 
the view to open in the View pop-up menu . 

Symantec C++ User's Guide and Reference 7-25 



7 • Creating a User Interface with VA 

7. Click OK to close the Commands dialog box. 

Defining Classes 
The set of classes from which you define user interface elements in 
Visual Architect is not limited to the THINK Class Library classes. 
Visual Architect lets you define your own classes, which are directly 
or indirectly derived from the THINK Class Library. 

You may want to define new classes because the default THINK 
Class Library classes that Visual Architect uses may not be as 
complete as you need. For example, you may want to create a dialog 
text pane that permits only the user to enter certain characters. In 
such a case, you must derive your own class using the THINK Class 
Library class CDialogText as a base class. Then, you must create a 
pane as an instance of this new class. 

Visual Architect provides mechanisms for deriving and implementing 
your own classes. It also lets you define some of your class's data 
members. Once Visual Architect generates the skeleton code for 
implementing a new class, you must write the code to support the 
class's member functions and any additional data members. 

Creating a new class 
To create a new class: 

1. Choose Classes from the Edit menu to open the Classes 
dialog box (Figure 7-15). 

(App f!l 
CM a in 
CMyDialog 

H <Ii- f~ [ l n Si-: ["°''i:"i'~'j')'j')'j'j'j';·~j'i'j(j'i'j""""""""""""";;;] 

( Define Data Members ) 

Library class: 
~~~~~~~~~~ 

(Cancel)

OK

Figure 7-15 Classes dialog box

7-26 Symantec C++ User's Guide and Reference

Note

Defining Classes +

2. Choose New Class from the Edit menu (Command-K),
or press Return.

The textbox at the top of the dialog box clears and
displays a blinking cursor.

3. Type the name of the new class in the textbox. The class
name must be unique for the project.

The new class is introduced in the class list on the left
side of the dialog box.

4. Choose the THINK Class Library class from which to
derive your class from the Base Class pop-up menu.

It is also possible to derive classes from your own
library classes, rather than directly from THINK
Class Library classes. Refer to "Library class
textbox," in Chapter 30, "Visual Architect Edit
Menu," for details.

Defining data members
To define data members for a class:

1. In the Classes dialog box, select the class and click the
Define Data Members button.

Symantec C++ User's Guide and Reference 7-27

7 • Creating a User Interface with VA

The Data Members dialog box opens (Figure 7-16).

Data Members

class MyClass : CButton {

};

i}
t--1~~~~~~~~~~~~~

] D Pascal

181 Getfrom D PutTo

(Cancel) OK

Figure 7-16 Data Members dialog box

2. Choose NewDataMember(Command-K) from the Edit
menu, or press Return.

The textbox at the top of the dialog box clears and
displays a blinking cursor.

3. Type the name of the new data member in the textbox.
The data member name must be unique for the class.

The new data member is introduced in the data member
list on the left side of the dialog box.

4. Choose the data type for the data member from the Type
pop-up menu.

5. Click OK.

Changing classes
To change the class for which the pane is an instance:

1. Open the View Edit window for the view and select the
pane.

2. Choose the class from the Class submenu of the Pane
menu.

7-28 Symantec C++ User's Guide and Reference

Adding Balloon Help +

Adding Balloon Help
Once your views, panes, and commands have been laid out, you
should add Balloon Help for your user interface elements.

Visual Architect lets you create Balloon Help for your views and
panes. It supports four different balloon types, corresponding to the
different states your views and panes can assume at run-time.

If you want to add Balloon Help to other user interface elements,
such as menus, use a resource editor such as ResEdit or Resorcerer.

To add Balloon Help to a view:

1. Open the View Edit window for the view.

2. Click in the window between the panes to confirm that
no pane is selected.

3. Choose Balloon Help from the Edit menu to open the
Balloon Help window (Figure 7-17).

Balloon Help

For: main panorama (CPanorama)
Enabled: Dimmed:

Figure 7-17 Balloon Help window

4. Click in the appropriate balloons and type the Balloon
Help text.

5. Close the Balloon Help window.

Symantec C++ User's Guide and Reference 7-29

7 • Creating a User Interface with VA

Generating Source Code
After designing the user interface elements in Visual Architect, you
must generate the source code for the classes that define these
elements. Visual Architect accomplishes this by generating source
code files from the resources it created during the design of the user
interface. These source files are incorporated automatically into the
Symantec Project Manager project.

Next, you must expand the code generated by Visual Architect.
Because Visual Architect. rsrc is a project entry with a
resource file extension, the Symantec Project Manager copies its
resources into the application when the application is built.

Visual Architect and the Symantec Project Manager
Visual Architect is coupled with the Symantec Project Manager
through Apple events. As a result, it can notify the Project Manager
to add source files to a project, as well as to update and run the
project. This system simplifies project maintenance by letting you
take care of basic management tasks without switching out of Visual
Architect.

Note
The linkage between Visual Architect and the
Symantec Project Manager is maintained only while
the Project Manager is running and the project to
which the Visual Architect. rsrc file belongs
is open.

Source files created by Visual Architect
Visual Architect generates code that you can modify. More
importantly, those modifications are not overwritten the next time
Visual Architect generates code. For each class defined in a Visual
Architect project, an upper-level class and a lower-level class are
created. Two corresponding . cp and . h source files are generated.
One . cpl. h pair contains the upper-level class and one . cpl. h
pair contains the lower-level class.

7-30 Symantec C++ User's Guide and Reference

Generating Source Code +

The upper-level files are only generated once, while the lower-level
files are rewritten each time Visual Architect generates source code
for the class. All modifications must be made to the upper-level . cp
and . h files. These upper-level classes override the lower-level
classes.

Macro files
Visual Architect generates your project source files using a set of
macro files, that is, text files written in the Visual Architect macro
language. By default, the set of macro files used is the set provided
with Symantec C++ for Power Macintosh. You also can customize the
way in which Visual Architect generates code by supplying your
own macro files. For details on macro files, see "Inside Macro Files,"
in Chapter 35, "VA: Symantec Project Manager Menu."

Generating source code and updating a project
To have Visual Architect generate source files for a project, choose
Generate (Command-G) or Generate All from the Symantec
Project Manager menu (Figure 7-18).

Note
The Symantec Project Manager menu title is the
Symantec Project Manager application icon.

Generate... S€G
Generate Hll ...

Bring Up To Date S€U
Run S€R

Figure 7-18 Symantec Project Manager menu

Note
The first time you generate code from a Visual
Architect. rsrc file, you must choose Generate
All.

Symantec C++ User's Guide and Reference 7-31

7 • Creating a User Interface with VA

A dialog box opens, showing the process of the code generation and
project updating. When the process is complete, the generated
source files are placed in the Source group in the Symantec Project
Manager project.

To update a Project Manager project from within Visual Architect,
choose Bring Up To Date from the Symantec Project Manager
menu (Command-U).

Customizing Visual Architect source files
Visual Architect does not generate all the code necessary to
implement your application's user interface. You must perform hand
coding to supplement the code it generates. Examples of the types of
tasks you need to complete are listed below.

Enabling a menu item
By default, the code generated by Visual Architect disables all but a
core set of menu items. You must enable any menu items you create
at the appropriate places in your own code.

Handling commands
Code generated for a command is complete only when the
command opens a view. Otherwise, you must go to the classes that
handle the command and create a case statement to support its
desired action. When the action of the command is Call, the case
statement is generated for you, but it contains no code.

Initializing a view
When a view appears at run-time, some panes are activated, others
are deactivated, and some have default values defined for them. You
must write the code to set up the panes' data members in the view's
upper-level class.

Debriefing a view
When a view is closed, you often need to determine the state of the
panes and record information that the user entered. Once again, this
process must be coded by you.

7-32 Symantec C++ User's Guide and Reference

Advanced Topics•
8

As you become proficient with the Symantec C++ for Power
Macintosh, you begin to undertake larger programming tasks. This
chapter looks at some of the advanced features of the Program
Manager designed to help you track programming development in
large projects.

The first section covers options sets, which you can use to establish
and then reuse groups of options intended for different stages of
development. The second section describes precompiled headers,
with which you can speed the compilation time of your projects.
AppleScript is introduced next; you can use this tool to automate
repetitive tasks by recording and running scripts of Symantec
Program Manager commands.

Communication with SourceServer and ToolServer is described in the
final two sections. For large projects, especially when a team of
programmers is involved, SourceServer can help keep track of
project source code, and, with ToolServer, programmers can access
tools written for Apple's Macintosh Programmer's Workshop (MPW).

Creating Options Sets
Options sets let you establish all the option page settings for your
project with one selection. A project can have several options sets,
and you select the one to apply to the project. At any time during
product development, you can change to another options set to
apply a set of options that better accommodate the needs of your
project.

Project-specific options are defined in the eight pages of the Project
Options dialog box. When you modify a project's options through
this dialog box, you have the choice of saving those changes as an
options set.

Symantec C++ User's Guide and Reference 8-1

8 • Advanced Topics

For example, you could define one or more options sets for
development as well as one for the final release of the product. Each
of these options sets would have different options set on and off, as
appropriate to that particular stage in development. Then, depending
on where you are in the development process, you can apply the
appropriate options set easily.

By default, each project has one options set that has the same name
as the project. You can create as many options sets for each project
as you would like.

Defining a new options set
To define a new options set:

1. Choose Options from the Symantec Project Manager
Project menu to open the Project Options dialog box.

2. On the eight pages of the dialog box, set the appropriate
options on and off.

3. Choose Save Options As from the Options pop-up
menu at the top of the dialog box (Figure 8-1) .

./ PPC TinyEdit. ff

<Empty Project>

Edit Menu ...
Saue Options Rs ...

Figure 8-1 Options pop-up menu

8-2 Symantec C++ User's Guide and Reference

Creating Options Sets +

The Save Options As dialog box opens (Figure 8-2).
Note that the default options set, with the same name as
the project, is always listed.

Saue options as:

PP(TinyEdit. n l:!1

J PPC TinyEdit.11

(Cancel) [Saue H

Figure 8-2 Save Options As dialog box

4. In the textbox, type a name for the options set you are
defining.

5. Click Save.

The Project Options dialog box closes.

To apply an options set, first make sure that toolbars are enabled in
the Project window. Choose the options set you want from the
Options pop-up menu at the top of the Project window.

Modifying options sets
To modify an existing options set:

1. Choose Options from the Symantec Project Manager
Project menu to open the Project Options dialog box.

2. Select an options set to modify from the Options pop-up
menu.

3. Set up the appropriate options.

4. Click Save.

Symantec C++ User's Guide and Reference 8-3

8 • Advanced Topics

Modifying the default options set for empty projects
You can modify the options set that is automatically applied to all
new projects created with the Empty Project project model. You
should consider doing so if you find yourself changing the same
options in all new projects. To modify this default options set:

1. Choose Options from the Project menu to open the
Project Options dialog box.

2. Choose <Empty Project> from the Options pop-up
menu.

3. Set up the options as desired.

4. Click Save.

The options set you just saved is now applied to every project
created with an Empty Project project model.

Using Precompiled Headers
Using precompiled headers can greatly speed compilation time,
especially for large projects. Precompiled header files are compiled
before a project is built or updated. These files are in a format that
the compilers can use readily, and they load faster than text header
files. Precompiled headers can be included in source files as
standard text header files. Source files that are precompiled must
contain only declarations and preprocessor symbols.

Included with Symantec C++ for Power Maeintosh are several
precompiled headers containing the most common declarations used
for writing Macintosh programs. Headers are provided for both C++
and C-for example, PFC MacHeaders++ (for C++) and
PFC MacHeaders (for C). These are precompiled versions of
Mac #includes. cp and Mac #includes. c, respectively.

Note
If you are using the Debugger, you should use
precompiled headers because they reduce the size
of the Debugger tables.

8-4 Symantec C++ User's Guide and Reference

Using Precompiled Headers +

Checking extensions and compiler options
The same translator extension rules apply to precompiling source
files as to compiling them. Thus, any header file you want to
precompile as a C++ source file must end in . cp or . cpp, and any
header file you wish to precompile as a C source file must end in . c.
If your header files end in . h, you must do one of the following:

• Rename them to have a . cp, . cpp, or . c extension.

• Create a corresponding . cp, . cpp, or . c file that
includes the . h file(s), and then precompile.

• Change the extensions mapping on the Extensions
Mapping page of the Project Options dialog box.

You cannot use one compiler's precompiled header in another
compiler's source file. Check that the options in effect during the
precompilation of a header file are compatible with the ones you
expect to use when you are compiling a source file that includes the
precompiled header. Also, project prefix statements are not included
in your precompiled header (these are defined on the Prefix
subpages of the PowerPC C and PowerPC C++ Options pages of the
Project Options dialog box). Add them manually to the header file
before it is precompiled.

Precompiling a header file
To precompile a header file:

1. Select the name of a header file in the Project window,
or open a Symantec Project Manager Editor window for
the file and bring it to the front.

2. Choose Precompile As from the Build menu to open
the File Save dialog box.

3. Enter a name for the precompiled header file and
indicate its file path.

4. Click Save to close the dialog box and precompile the
header file.

Symantec C++ User's Guide and Reference 8-5

8 • Advanced Topics

The Symantec Project Manager automatically adds the text header
file to your project so that it becomes part of the project's
dependency table. The Project Manager can keep track of changes
and automatically precompile header files the next time you build
the application.

To precompile a header file for which a header has been already
generated for a project:

1. Select the header file in the Project window.

2. Choose Precompile from the Build menu.

The precompiled header file is generated and saved with
the same filename.

To include a precompiled header in a source file, include it as you
would any text header file: #include filename.

Note
Only one precompiled header can be included per
source file.

Scripting the Project Manager
Using AppleScript, you can script such common tasks in the Project
Manager as opening projects, adding files, bringing projects up-to­
date, building targets, and making backups. You can record as a
script and run almost any action that can be performed by the
Project Manager. Even the Project Manager's Editor windows are
scriptable; you can write scripts that examine or modify text within
files.

Note
Symantec C++ supplies AppleScript as the default
scripting system; however, you can use any other
scripting system (such as Frontier) as long as it is
compatible with the Open Scripting Architecture.

Recording scripts
You create scripts by recording your actions within the Project
Manager. To do this, open the Script Editor and begin recording,

8-6 Symantec C++ User's Guide and Reference

Scripting the Project Manager +

switch to the Project Manager to perform a series of actions, and
switch back to the Script Editor to turn off recording. The result is a
script that repeats the series of actions you have just performed. The
steps needed to record scripts are outlined in further detail in the rest
of this section.

Opening the Script Editor
You record, test, and manually run your scripts in the Script Editor
window, which you open from the Finder. Initially, an untitled Script
Editor window opens.

untitled
V Description :

0
Check Syntax

Figure 8-3 Script Editor window

The top pane in the window describes the script. You can save
screen space by hiding this pane; click on the arrow to the left of the
Description text field 's title. The bottom pane displays the script as it
is recorded.

Opening the Project Manager dictionary
Your first task in Lhe Script Editor is to open the Symantec Project
Manager's dictionary. This dictionary includes a complete listing of
the available AppleScript commands that the Symantec Project
Manager understands, with brief comments explaining each
command and parameter. You should refer to this resource when
you have questions about the parameters to an AppleScript
command.

To open the Symantec Project Manager's dictionary:

Symantec C++ User's Guide and Reference 8-7

8 • Advanced Topics

1. Choose Open Dictionary from the File menu in the
Script Editor.

2. In the File Open dialog box, select the Symantec
Project Manager.

The Symantec Project Manager dictionary opens. Selecting one of the
dictionary entries displays a description of the entry and, if the entry
is a command, its syntax and any required or optional parameters
(see Figure 8-4).

§!iii ~mantec Prl!,iect Mani!.ll_er Oictional]I_
Stan1dard Suit• i-0- ~reate: Create new window,_p.!Qj~,_grOUP.,.QLP.!Qject entry

0 ose create
count Hin! ne'w' type class -- ~ c1qss of 'ihe M'lr' elerMnt. Keyv~d 'Mv' ls optioM1 In App"leSCl'"'lf>t

d t . wm as anything
d:l:t:lze ![il~ [at location reference] -- ttte loc<it1on .?t vhich to inswt the e"lerMnt

~ I ..1'~"!:'2'~~;1::£::.:::::::.::::.:=.----
""''"·lion """ to
file> +1.~m ii~Hrnm'.ii~~m~i~m~~l11i11wmmmnnHIB~~;~~~i~JH~i[ii[;ifiH1li\ii~m11iu11l~;l1im1w1i111iwi1:i~i!1~1w1m~im~tu~iwmmlliill1;i1Ji;mmii ·~1m~1lilll.+ Iii

Figure 8-4 Project Manager's dictionary in Script Editor

Note
For more details on how to use the Script Editor, see
Apple's reference manual on AppleScript.

Recording a script
Before you begin recording, make sure that the Symantec Project
Manager is open. You can record a script to perform almost any
action in the Symantec Project Manager. Experiment by turning
recording on and examining the AppleScript commands generated
when you add files, switch options sets, and type in an Editor
window.

To record a script:

1. Open the Script Editor from the Finder.

2. Start recording by clicking on the Record button.

3. Switch to the Project Manager.

8-8 Symantec C++ User's Guide and Reference

Note

Scripting the Project Manager +

4. Choose one or more actions in the Project Manager
window, for example, "compile a file mini.print.c".

5. Switch back to the Script Editor.

The Script Editor window displays the actions you have
recorded (Figure 8-5). In this example, the action
recorded was the compilation of a file called
mini. print. c.

tell application "Symantec Project Manager"
activate
compile source "mini .pri nt.c" of project document "Mini Edit .11"

end tell

App leScript • ;$ mru

Figure 8-5 Script Editor window with script recorded

6. Click the Stop button.

Once a script is recorded and is being displayed in
a Script Editor window, you can play it back by
clicking Run.

Writing scripts
Once you have recorded a few scripts, you should try writing your
own. Start by making changes to a script that you have already
recorded. For example, you can try changing a parameter or
removing a command. Then try copying pieces from several
different scripts to create a script".

Symantec C++ User's Guide and Reference 8-9

8 • Advanced Topics

The next step would be to write scripts that mix commands to the
Project Manager with commands to other applications such as the
Finder. For example, you could create a script to make a compressed
backup of your current project by combining commands to the
Project Manager to prepare the project to be backed up, commands
to a compression application to compress the contents of your
project's folder into an archive, and finally commands to the Finder
to copy the compressed archive to a backup device.

Storing scripts
After you have created a script, you can add it to the Scripts menu
of your project. To do so:

1. In the Script Editor, choose Save from the File menu.

2. In the File Save dialog box, choose Compiled Script
from the pop-up menu labeled Kind at the bottom.

3. To have the script appear in the Scripts menu for all
projects, save the compiled script (or an alias for it) in
the Project Manager's (Scripts Menu) folder.

This folder is located in the same folder as Symantec
Project Manager.

4. To have the script appear only in the Scripts menu of a
single project, create a folder named (Script Menu)
in the same folder as the project's Project file and then
place the compiled script (or an alias) in it.

Running scripts automatically
The Project Manager can run scripts automatically. You can, for
example, specify a script to run when the Project Manager first opens
and when it closes. Another option would be having a script that
runs when a particular project becomes active or inactive. Further
details on both of these options are provided in this section.

Running a script at startup or shutdown
To run scripts automatically when the Project Manager opens or
closes:

1. Record a script as described in the section "Recording a
script" earlier in this chapter.

8-10 Symantec C++ User's Guide and Reference

Scripting the Project Manager +

2. Select File Save from the File menu in the Script Editor
window.

3. To have the script run when the Project Manager opens,
name the script Startup.

4. To have the script run when the Project Manager closes,
name the script Shutdown.

5. Place the scripts file in the system (Scripts) folder.

Running a script when a project is opened or closed
Scripts that run automatically when a project opens or closes must
be located in a project (Scripts) folder. You create this folder and
then place it in the folder with the Project file. You might create such
a script, for example, to set one or more of the Project Manager's
preferences to a particular setting for a specific project. You could
run an "Activate" script to set the preference to that setting before a
project is started and a "Deactivate" script to reset the preference
after you are finished working with the project.

To run this type of script:

Note

1. Create a folder named (Scripts) if one does not
already exist in the same folder as the Project file.

2. Record a script and select Save from the File menu.

3. To run the script when the project opens or becomes
active, name the file Activate and save the compiled
scriptinthe (Scripts) folder.

4. To run the script when the project closes or becomes
inactive, save the compiled script as Deactivate and
place it in the (Scripts) folder.

When you quit the Project Manager, a "Shutdown"
script for the Project Manager is run before a
"Deactivate" script for the active project.

Symantec C++ User's Guide and Reference 8-11

8 • Advanced Topics

SourceServer
As projects grow to involve multiple programmers and numerous
files, project management of files becomes an important and
stabilizing component of product development. To help with the
complexity of tracking files and their versions, Symantec C++ for
Power Macintosh provides an interface to Apple's SourceServer.

This section is an introduction to SourceServer, and covers such
topics as setting up SourceServer databases, storing files, checking
files in and out of a database, and retrieving information about the
current revision of a file.

SourceServer is a source code control system that stores, tracks
differences between, and allows access to versions of project files. It
can track any kind of file, including the Project file. It tracks source
files and Rez files in a space-efficient manner, but tracks nontext files
less efficiently.

Key terms
In order to understand SourceServer, it is important to know the
following terms:

• Database
• Checking in
• Checking out
• Revision
• Revision tree
• Branch

Database
A SourceServer file is called a database. A database file contains
information about one or more of the project's files.

Checking in
The process of putting files in a SourceServer database is called
checking in. The initial check in adds the file to the database via the
Worksheet window. Thereafter, check ins are performed through a
command on the Revision menu.

Checking out
The process of getting a local copy (a file stored on your machine)
of a specific version of a file is called checking out.

8-12 Symantec C++ User's Guide and Reference

SourceServer +

Revision
A version of a file stored in a database is called a revision.

Revision tree
The database contains a log of all changes made to each file, and the
relationship of each change to the next. This log is called a revision
tree.

Branch
Each version of a file can have any number of revisions stemming
from it. Each one of these revisions can also have one or more
parallel levels of revisions stemming from it. This parallel sequence
of revisions is called a branch. Revision branches let you easily
recover from a revision sequence that does not work, thus allowing
you to return to a prior revision of a file. They also let more than one
programmer work simultaneously from the same revision of the file,
perhaps on different parts of the code, and later have their revisions
converge at a subsequent revision.

Symantec C++ User's Guide and Reference 8-13

8 • Advanced Topics

Revision Tree
filename.a

Figure 8-6 shows an example of a SourceServer database that
contains three revision trees with branches. The sequentially
numbered circles along a vertical path through this database
structure represent the revision numbers. For example, revision 2al
has one revision labeled 2a2. The numbered circles along a diagonal
path represent branch revisions. For example, revision 2a2 has one
branch labeled 2a2al.

A Project

Revision Tree
filename.b

Revision Tree
filename.c

Figure 8-6 SourceServer project database

Note
SourceServer uses the Owner Name field in the
Sharing Setup control panel to track who checks
what files into and out of the database.
SourceServer users must enter a name in the Owner
Name field and have the Sharing Setup control
panel in their Control Panels folders.

8-14 Symantec C++ User's Guide and Reference

SourceServer +

Setting up a SourceServer database
To keep track of revisions, the first step is setting up a SourceServer
database and the second is mounting the database. Mounting
indicates to the Project Manager that files may be checked in and out
of the database. This step can be performed with the Mount
Database command from the Revision menu. You can also have
the Symantec Project Manager automatically mount databases when
the Project file is opened.

Databases can also be nested. This allows the hierarchy of
SourceServer databases to match the hierarchy of the folders
comprising your project. Nesting also speeds up the rate at which
SourceServer commands are performed.

Note
You can have multiple root-level databases
mounted at one time, but there is only one "current
database" active at a time.

Creating a database
When you create a database, a folder with the name of the database
is created and a database file named Proj ectorDB is added to the
database folder. The Proj ectorDB file is the file in which all
SourceServer information is stored.

To create a database in a project:

1. Open the project with which you want to use
SourceServer.

2. Choose New Database from the Revision menu.

Symantec C++ User's Guide and Reference 8-15

B • Advanced Topics

A standard File Save dialog box opens (Figure 8-7).

I e HctiueProject f, I
iJ HctiueProject.11

Database name:

Figure 8-7 New Database dialog box

3. Name the new database.

4. Click Save or press Return.

{}
H

~ Macintosh HD

Eject

Desktop

(New LJ)

Cancel

A database folder with the name you have chosen is
created and a file called Proj ectorDB is placed within
that folder. The new database becomes the current
database (in other words, it is mounted automatically
when it is created).

Automating database mounting
To set up a database for automatic mounting:

1. Create an alias for the top-level Projector DB file named
Proj ectorDB and move the alias into the project
folder. (The alias must be named "Project name.pdb" to
automatically mount the database. For example, if your
project is named MyProj ect .1t the alias would be
MyProj ect .1t. pdb.)

2. Double-dick the Project file.

This launches the Symantec Project Manager (unless it is
already open), opens the Project file, and mounts the
database.

8-16 Symantec C++ User's Guide and Reference

Note

SourceServer +

To prevent automounting, hold down the Shift key
when opening the project. To mount a database
manually once the Project Manager is running, use
the Mount Database command in the Revision
menu to select the appropriate database.

Nesting databases
If your SourceServer database is large (containing 50 or more files),
the commands in the Revision menu may execute slowly. On a
server, even a 20-file database can start bogging down. A better
solution is to divide the database into nested databases. A nested
database is a database located within another database's folder.

To nest a new database, you create it using the preceding procedure
and place it in the folder containing the appropriate top-level
database (Figure 8-8).

TopLeuelDB

3 items 330.4 MB in disk

Projector DB

~Ill§ Nested_l

1 item

Figure 8-8 Nested databases

Whenever you mount the top-level database , SourceServer
automatically mounts all of its nested databases.

Symantec C++ User's Guide and Reference 8-17

8 • Advanced Topics

Checking files in and out
Once a database is mounted, you can check files into and out of it.
You store files in a database when the file is first created or first
added to a project. After that, you check the file out to make changes
and check it back in when you are done making the changes.

To add new files to the database, you check them in through the
Worksheet window.

When someone checks files in or out, SourceServer records who
handled the file and when. SourceServer also provides two text
fields to aid in tracking versions: the task field and the comment
field. Although you can use these fields as you like, you should
consider using the following guidelines:

• Use the task field to keep track of the overall task or to
describe the goal of a set of modifications. All files
checked out for the same task, in other words, can be
assumed to have modifications made to them that are
aimed at achieving the same goal.

• Use the comment field to describe the changes that are
going to be made or have been made in the file.

Adding files to a database for the first time
When you check a file into a database for the first time, you must
first send a command to SourceServer from the Worksheet window.
Thereafter, team members can check the file in and out via the
Check In and Check Out commands on the Revision menu.

Note
Do not use commas in the names of files that you
expect to check into a SourceServer database. For
any filenames or pathnames that contain spaces,
you must add single quotes.

8-18 Symantec C++ User's Guide and Reference

SourceServer +

To add files to a SourceServer database:

Note

1. In the Project window, open the file by double-clicking
on it or by pressing Return.

You can only use the Check In command with files
that have already been added via the Worksheet
window.

2. Command-dick on the filename in the title bar of the
Editor window to open the File Path pop-up menu
(Figure 8-9).

main.cp
Desktop Folder
Macintosh HD

Copy File Path

Figure 8-9 File Path pop-up menu

3. Choose Copy File Path.

4. Close the file.

5. Choose Worksheet from the Windows menu to open
the Worksheet window. The pop-up menu at the top left
of the window lets you switch back and forth between
SourceServer and ToolServer.

6. Type Checkin -p -new -cs "Initial check
in 11

Optional parameters follow the command Checkin. The
-new option indicates that the file is being added for the
first time to the database. The -p option tells
SourceServer to report progress information on the
execution of the command. The - cs option lets you
type in the comment field.

7. Place the cursor at the end of the comment string and
paste (Command-V) the file path copied in Step 6.

Symantec C++ User's Guide and Reference 8-19

8 • Advanced Topics

I SourceServer .,... ,

The file path is pasted into the Worksheet window
(Figure 8-10).

Worksheet
Send II

Checkln -new -p -cs "Initial check in" 'Macintosh HD:Desktop Folder:main.cp' 0

Figure 8-10 Worksheet window ready for checking in a new
file

8. Leaving the cursor at the end of the line, click on the
Send button or press Enter.

The cursor drops to the next line and the file is checked
into the database.

Checking files out for modification
Team members typically check files out for modification, though
sometimes they need the files only for reference.

To check a file out of the database:

1. Make sure the database is mounted.

2. In the Project window, select the file (or files) you want
to check out.

8-20 Symantec C++ User's Guide and Reference

Source Server •
3. Choose Check Out from the Revision menu to open the

Check Out dialog box.

O Keep read-only
@ Keep modifiable

D Branch

Task:

Comment:

Initial check in

Check Out

D Uerify
D Keep History

Cancel) n Check Out ,

Figure 8-11 Check Out dialog box

4. To make changes, click Keep Modifiable. To only read
the file, set the option Keep Read-Only on.

5. To verify that the file is undamaged before checking the
file out, set the Verify option on.

6. To store the author, check in date, task, and comments
with the file, set the Keep History option on.

7. Set Branch on to modify a file that is currently checked
out for modification by another team member or to split
off a version of the file for a parallel line of development.

8. Enter the task and comments in the respective fields.

9. Click Check Out.

The file is now checked out. SourceServer notes the date and the
name of the user as well as the name of the task and any comments.

Symantec C++ User's Guide and Reference 8-21

8 • Advanced Topics

Checking files in
To check a file back in to a database:

1. Make sure the database is mounted.

2. Select the file from the Project window.

3. Choose the Check In command from the Revision
menu to open the Check In dialog box (Figure 8-12).

@ Keep read-only
O Keep modifiable

Task:

Check In

IZI Touch mod date
D Uerify

I--~~~~~~~~~~~~~~~~~~~

Comment:

Initial check in

Reuision: 1
Checked out: Wed, Feb8, 1995 11 :11 PM

Cancel Check In

Figure 8-12 Check In dialog box

8-22 Symantec C++ User's Guide and Reference

Source Server •
4. Set the Keep Read-Only option on to make your local

copy a read-only version of the file. To keep a
modifiable version, click Keep Modifiable instead. This
latter option checks the file in and then checks a new
modifiable revision back out.

5. To set the modification date of the file to the time it was
checked in (as opposed to the time it was last modified),
set the Touch Mod Date option on.

6. To verify that the file's contents are not damaged, set the
Verify option on.

7. Modify the Task and Comment fields as appropriate for
the modifications you made.

8. Click Check In.

The file is checked back into the database, and
SourceServer notes the time and the name of the team
member as well as any comments added.

Accessing revision information
You can find out information about any version of a file that has
been checked into a SourceServer database using the Get Revision
Info command from the Revision menu. Revision information
includes the revision number that the file represents, the date the file
was checked out, the team member involved, the project, the task,
and any comments.

Whenever you open a source file, you can see whether it has been
checked into a database and whether it is a read-only or modifiable
file. The Editor window's toolbar displays an icon (a pencil) if the
file is part of a SourceServer database. For a modifiable file, you see
only the pencil at the right edge on the toolbar. For read-only files,
the pencil has a line through it.

Symantec C++ User's Guide and Reference 8-23

8 • Advanced Topics

To retrieve information about a file:

1. Open the file by double-clicking on the filename in the
Project window.

2. If the toolbar is not displayed, select Show Toolbar from
the Windows menu.

main.cp 3€1

I· Markers T 11 Headers "" I

Figure 8-13 Toolbar displaying read-only file icon

Notice that the toolbar displays a pencil with a line through it. The
pencil can be in one of three states:

• Solid line means the source file is read-only.

• Dashed line means the source file is modifiable, but you
cannot check the changed file back in.

• No line means the source file is modifiable.

When you check a file in, SourceServer sets your local
copy to read-only so that you do not make any changes
without checking the file out again.

8-24 Symantec C++ User's Guide and Reference

Note

SourceServer +

3. Choose Get Revision Info from the Revision menu to
open the Revision Info dialog box (Figure 8-14).

Reuision Information

Revision: 2 .':J..
Checked Out: 'w'ed, Feb8, 199511 :12 PM

Owner: larry
Modified: 'w'ed, Feb8, 1995 11 :12 PM

SourceServer Project:

AotivePro jeot database J

Task:

Comment:

lnitia l oheok in

Cancel

Figure 8-14 Revision Info dialog box

This dialog box displays version information about the
file.

The database to which the file belongs does not
have to be mounted before you choose the Get
Revision Info command. For more details about
using the Worksheet window and the Revision
menu with SourceServer, see the electronic
supplemental information.

Symantec C++ User's Guide and Reference 8-25

8 • Advanced Topics

Using ToolServer
Using ToolServer, you can access tools created for use in Apple's
Macintosh Programmer's Workshop. You communicate with
ToolServer using the Worksheet window, which you open by
choosing Worksheet from the Windows menu. This section covers
how to set up ToolServer for use with the Symantec Project Manager
and how to use ToolServer and MPW tools from the Worksheet
window.

Setting up ToolServer
To take advantage of ToolServer, you must first add an alias for
ToolServer to the folder in which Symantec Project Manager is
located. You must also add an alias for the MPW tools folder to the
ToolServer folder.

To set up ToolServer:

1. Select ToolServer in the Apple Tools folder and make
an alias for it.

2. Put the ToolServer alias in the (Tools) folder. The
(Tools) folder is in the Symantec C++ for Power

Mac folder. The alias must be called ToolServer.

You are now ready to use ToolServer and the MPW tools in
conjunction with Symantec C++.

Using MPW tools with ToolServer
Once you have set up ToolServer, you can make use of MPW tools
by opening the Worksheet window and sending commands to
ToolServer. The pop-up menu at the top left of the Worksheet
window lets you switch back and forth between ToolServer and
SourceServer.

8-26 Symantec C++ User's Guide and Reference

Note

Using Too/Server +

If the ToolServer option is disabled, the Project
Manager has been unable to locate ToolServer.
Close the Worksheet window and from the Finder
open the (Tools) folder located in the same
folder as Symantec Project Manager. The ToolServer
application or an alias to it should be located in that
folder. See the previous section, "Setting up
ToolServer."

To use an MPW tool:

1. Open Worksheet window from the Windows menu.

2. If necessary, choose ToolServer from the pop-up menu
at the top left.

3. To check the current directory, type directory and
press Enter, Command-Return, or click Send Command.

I ToolServer ..-l~S Send

directory {}
'Macintosh HD:Rainbow ~4:Apple Tools:ToolServer 1. 1. 1: ·
I

im:m1mm:mmmm:11:1::1:mimm:mmm1:m:1mmm1:1mmm:mmmmmmmm:mmmmm:mm:mmmmm: + Iii
Figure 8-15 Results of Directory command

Note

4. To change the current directory, type directory '<full
pathname>' and press Return.

If you do not specify a directory, ToolServer saves
results files in the current directory.

5. Type the command for the MPW tool you want to use,
type the arguments, and press Enter, Command-Return,
or click Send Command. For example, to use the
Compare tool, type compare <filel> <file2> and
press Return.

Symantec C++ User's Guide and Reference 8-27

8 • Advanced Topics

You may also save the results of the comparison in a file.
Append "> <Filename>" at the end of the command line.
ToolServer creates a file in the current directory with the
filename you supply unless you include a pathname in
the file's name. For example, to compare the contents of
filel. cp and file2. cp (both in the current
directory) and save the results in a file named
Files. di ff, also in the current directory, type the
following:

Compare filel.cp file2.cp > Files.diff

8-28 Symantec C++ User's Guide and Reference

Symantec C++ •
Learning by
Example (Tutorials)

Part Three
9 Tutorial Introduction

10 Hello World
11 MiniEdit
12 Object Bullseye
13 Vector
14 Beeper
1 5 Process Monitor

Symantec C++ User's Guide and Reference

•

Symantec C++ User's Guide and Reference

Tutorial
Introduction•

9
The six tutorial chapters in this part of the manual will help you

become familiar with the main features of the Symantec C++ for
Power Macintosh development environment. Each tutorial focuses
on a couple of key aspects of Symantec C++ for Power Macintosh
that you need for writing, compiling, and debugging applications for
the Power Macintosh.

What You Will Learn
By performing all the tutorials, you will learn how to:

• Create a new project
• Add source files and resource files to your project
• Correct errors and debug your program
• Use the THINK Class Library and Visual Architect as a

basis for full-featured Power Macintosh applications

This collection of six tutorials also demonstrates how Symantec C++
supports different user interfaces and programming styles within one
development environment. You can, for example, choose to write
your program in Corin C++. You can use a terminal window for 1/0
or opt for a full-fledged Macintosh user interface. You also have the
option to write your program using the framework provided by the
THINK Class Library or to write your program entirely with your
own C++ code.

Depending on your needs, you may not need to work through every
tutorial. If you are only interested in writing programs that use a
simple terminal window interface, then complete the tutorial "Hello
World," "MiniEdit," and "Object Bullseye." If you are planning to use
the THINK Class Library and Visual Architect, which is strongly
recommended for larger programs, you should go through all six
tutorial chapters and perform all the procedures in the sequence
provided.

Symantec C++ User's Guide and Reference 9-1

• 9 Tutorial Introduction

Hello World
"Hello World" is the traditional example program for all C and C++
programmers. When you have completed this tutorial, you will have
a program that displays the words "Hello, World!" in a window on
your Power Macintosh. Source code is provided for both C and C++
versions of "Hello World." First, you will create the C version of
"Hello World," then the C++ version.

Writing these simple programs will introduce you to the Symantec
Project Manager, the main component of Symantec C++ for Power
Macintosh. In this tutorial you will create and edit projects, work
with source code, and compile and link your project.

The C version of "Hello World" uses the Standard ANSI library; the
C++ version uses IOStreams. Both versions simulate a console that
displays the message, "Hello, World!" Using these libraries, a
programmer can create applications with simple user interfaces that
can be ported easily to other systems, such as DOS or Unix.

Mini Edit
"MiniEdit" is a simple Macintosh text editor. It lets you open, read
and edit, and save text files to disk. It is a smaller, simpler version of
SimpleText, the word processor that is now distributed by Apple
with their new system software.

As "MiniEdit" contains much more code than "Hello World," source
files are included as a convenience so that you need not type in the
entire program. "MiniEdit" introduces the use of Macintosh resource
files to your programming. In addition, a syntax error has been
inserted in one of the source files in case you want to see how
Symantec C++ for Power Macintosh helps you detect and fix syntax
errors.

"MiniEdit" is a full-fledged Macintosh application that goes beyond
the limitations of the "Hello World" tutorial. It responds to the many
kinds of events that most Macintosh programs respond to, including
mouse clicks, keystrokes, window update events, and other events.
It also has menus, windows, buttons, and additional controls.

9-2 Symantec C++ User's Guide and Reference

Object Bullseye •
Object Bullseye
"Object Bullseye" displays windows that contain circular, square, or
triangular bullseyes. By choosing different menu items, you can alter
the thickness of the bullseye's concentric shapes.

This tutorial takes you through an introductory tour of the Symantec
Debugger. Using the Debugger, you can step through the execution
of your program one line at a time. You can examine and modify the
values of your variables. You can also trace how and when your
program's functions interact and call each other.

"Object Bullseye" is the first tutorial in this series that uses C++
classes, but it purposely uses only a few classes in a simple,
straightforward way. The circular, square, and triangular bullseye
windows are examples of sibling classes that inherit their general
behavior from an abstract bullseye window class.

Vector
"Vector" demonstrates some of the more advanced aspects of both
C++ and the Symantec Debugger. The Vector application displays
sorted and unsorted lists of numbers, letters, and dates as well as the
maximum value of each list in a console window.

"Vector" uses the more complex aspects of C++ programming,
including C++ inline functions, templates, and operator overloading.
The tutorial shows you how to use the Debugger to debug C++
programs and how to instantiate templates.

Beeper
"Beeper" is a small program that is designed to introduce Visual
Architect and THINK Class Library (TCL). TCL contains classes for
implementing the Macintosh user interface. TCL is a complete source
code framework for developing standard Power Macintosh
applications. It is written as a set of C++ classes that can easily be
extended and customized for your particular needs.

Visual Architect is a tool for designing graphically your application's
user interface. Visual Architect uses the TCL. "Beeper" brings you
through some basic steps for generating and building an application.
It presents a window with some graphics and a button. The button
opens a dialog box in which you enter a number. When you click
the Beep button, you computer beeps that number of times.

Symantec C++ User's Guide and Reference 9-3

• 9 Tutorial Introduction

Process Monitor
Like "Beeper," "Process Monitor" is built using Visual Architect. In
this final tutorial, you will explore more of the Visual Architect and
will see how a reasonably large program is organized.

"Process Monitor" displays a list of currently running processes
(programs). The application also displays three push buttons that let
the user enter the Debugger, kill a selected process, and bring a
selected process to the foreground. It is a full-fledged Macintosh
application that contains multiple windows, panes and subviews,
controls, and menus.

When you have completed the tutorials, you may go on to Part 2 for
more information on writing a program using Symantec C++, or you
may turn to the reference chapters in Parts 4 and 5 for detailed
information about specific features.

9-4 Symantec C++ User's Guide and Reference

Tutorial:
Hello World•

10
T:s chapter is a tutorial on building simple applications with

Symantec C++. The Symantec C++ Project Manager can be used to
create C and C++ Macintosh applications. You will create both types
in the course of finishing this tutorial.

Before You Begin
Make sure Symantec C++ for Power Macintosh is installed correctly
on your hard drive. Refer to the section "Installing Symantec C++," in
Chapter 1, "Overview," for instructions.

Before starting this tutorial, you should be familiar with the basics of
working with the Macintosh user interface, such as opening menus
and dialog boxes, as well as navigating between folders.

Hello World C Application
Both applications you create in this tutorial write "Hello, World!" to
the screen. The steps in creating the C version of the Hello World
application include:

• Create a project
• Create and add a source file to the project
• Compile the source file
• Add libraries to the project
• Build and run the application
• Save the application to disk

The following sections explain these steps in detail.

Symantec C++ User's Guide and Reference 10-1

10 Tutorial: Hello World •

Symantec
Project Manager

Creating a Project
In Symantec C++, a project is the cornerstone of application
development. The project keeps track of all your source files,
maintains the dependency information for a project, and contains the
object files. The first step in creating an application (or a libra1y) is to
create a project. To do so:

1. Launch the Symantec Project Manager by double-clicking
its icon in the Symantec Project Manager folder (by
default, this is the Symantec C++ for Power Mac
folder).

The Open Project dialog box opens (Figure 10-1).

la Symantec C++ for Power. .. ,.. I i=i Macintosh HD

[Ehl (Project Models)
If§} (Projects)
~ (Scripts Menu)
~ (Scripts)

· [)] (Tools)

~ (Translators)

Show: I All Auailable

Figure 10-1 Open Project dialog box

2. Click the New Project button.

Eject

Desktop

Open

(New Project)

Cancel

10-2 Symantec C++ User's Guide and Reference

Note

Hello World C Application +

The New Project dialog box opens (Figure 10-2).

I GI Symantec C++ for Power-1 E::J Macintosh HD

~ (RppleScripts) Eject
D (Project Models)
CJ (Projects)
CJ (Scripts Menu)
CJ(Scripts)
CJ(Tools)
CJ (Translators)

Create New Project:

Desktop

New LJ)

Cancel

Project Model: I Empty Project ..-1

Figure 10-2 New Project dialog box

3. Navigate outside the Symantec Project Manager folder,
then click the New (folder) button to open the New
Folder dialog box (Figure 10-3).

Name of new folder:

Figure 10-3 New Folder dialog box

Do not store projects in the system tree (the folder
in which Symantec Project Manager and its
subfolders reside). The (Projects) folder in the
system tree is used only to store aliases to
frequently used projects.

Symantec C++ User's Guide and Reference 10-3

• 10 Tutorial: Hello World

4. In the textbox, type Hello World f and press Return.
(Press Option-F to create the f symbol.)

The folder Hello World f is created for the project,
and you return to the New Project dialog box.

5. In the Create New Project textbox, type Hello
World .1t as the project's name. (Press Option-P to
create the 1t symbol.)

6. Check that Empty Project is chosen from the Project
Model pop-up menu (Figure 10-4).

You use this model to create empty projects that you will
then build from scratch.

I a Hello World f ..-1 c::J Macintosh HD

P9 Eject

Desktop

New L:l)

'{} (Cancel)

~C-r_e_a-te_N_e_w_P_r_o_j_e-ct-:---~~ (Saue J
I Hello World. fl'

Project Model: I Empty Project ..-1

Figure 10-4 New Project dialog box ready to create the
project

7. Click Save to create the new project Hello World.1t
and close the New Project dialog box.

10-4 Symantec C++ User's Guide and Reference

Hello World C Application +

Your new project is now created. The Symantec Project Manager
opens the project automatically after creating it, so you should see a
Project window, as shown in Figure 10-5.

Ii ../ Hello World. ti
...? •Name ~ Code

Totals 0 .Q.

tzy
lii

Figure 10-5 Project window for the Hello World project

The Project window lists the names of all files included in a project.
Because you created an empty project, no filenames are now
displayed in this window.

Creating a source file
You are ready to create a source file and save it using the Symantec
Editor. This text editor works like most other text editors on the
Macintosh. You can double-click to select words, triple-click to select
an entire line, and drag to select a range of text. You can also use the
arrow keys to move around a file .

The text editor has an auto-indent feature . It automatically indents
and unindents after curly braces. It also does not wrap text when
you type past the right edge of the window. Use the horizontal scroll
bar at the bottom of the window to view any text that extends
beyond the right edge. For more information about the Symantec
Editor, see Chapter 4, "Editing a Project's Code."

Symantec C++ User's Guide and Reference 10-5

10 Tutorial: Hello World •
To create a new source file:

1. Choose New from the File menu.

A new, untitled Editor window opens (Figure 10-6).

untitled 3€ 1

tzy
"Jllli":Hi:U:::::;n:;;·1J:?H:tllil.¢ lli

Figure 10-6 Empty Editor window

2. Type the following source code:

/*****
* Hello World.c
*
* The hello world C program for
* Symantec C++ for Power Macintosh
*
***** /
#include <stdio.h>
main()
{

printf ("Hello, World! \n ") ;

3. Choose Save As from the File menu to save this new
source file.

10-6 Symantec C++ User's Guide and Reference

Note

Hello World C Application +

The File Save dialog box opens (Figure 10-7).

la Hello World f • l c:::i Macintosh HD
r=--____'.:==========~-.-:-i
i} Hello World. n titi Eject

Saue file as:

Figure 10-7 File Save dialog box

Desktop

New LJ)

(Cancel)

(Saue J

4. Type hello. c into the Save file as textbox and click
Save.

Be sure to save the file to the Hello World f
folder.

The dialog box closes, and the file is saved as hello. c.
The title bar of the Editor window changes to reflect the
new name.

Warning
Be sure to name your file Hello. c, not
Hello. cp. The Symantec Project Manager uses
files extensions to identify file types. By default, the
C translator is used to compile .c files and the C++
translator to compile . cp and . cpp files.

Now that your source file is saved, the next step is to compile it and
add it to the project. ·

Symantec C++ User's Guide and Reference 10-7

10 Tutorial: Hello World •
Using the Compile
command in the Symantec
Project Manager is similar
to using the cc command in
UNIX. The Symantec
Project Manager, however,
adds the object code to
your project instead of
creating a separate object
file.

Compiling the source file and dealing with errors
If you have followed the previous steps, you have an Editor window
titled hello. c open on your screen. To compile the source file
displayed in the window:

1. Choose Compile from the Build menu to open the
Progress dialog box (Figure 10-8).

Pro ress

Compiling hello .c

Tool PowerPC C
Processing stdio .h

Lines: 0
Errors: 0
Warnings: 0

Stop

Figure 10-8 Progress dialog box

2. Watch as the dialog box charts the progress of the
current compilation.

The dialog box shows the current file being compiled,
how many lines were processed, and how many errors
and warnings were found. If the compilation was
successful, then the hello. c file is added automatically
to the project.

10-8 Symantec C++ User's Guide and Reference

Hello World C Application +

The Project window now lists the hello. c file with its
code size (Figure 10-9).

Totals

40 {}

40

Figure 10-9 Project window listing the hello.c file

3. Close the Editor window by clicking its close box.

You can always bring the window up again by double­
clicking hello. c in the Project window.

Note that if errors occurred during the compilation, the Build Errors
window opens. This window lists all errors found in your file. For
example, if you omitted the semicolon from the end of the printf
statement, the window displays the error shown in Figure 10-10.

Figure 10-10 Build Errors window

Symantec C++ User's Guide and Reference 10-9

• 10 Tutorial: Hello World

In this case, you would double-dick on the error message in the
window to open the Editor window with the offending line
highlighted. After you have resolved all the errors in your code,
compile the file again. Your source file is added to the project and
displayed in the Project window.

The next step is to add the libraries necessary to link your project.

Adding the libraries
At this point, your project cannot be linked properly because the
standard libraries used by it are not yet part of the project. To add
the necessary libraries:

1. Choose Add Files from the Project menu.

The Add Files dialog box opens (Figure 10-11).

I 'DI Hello World f • I c:i Macintosh HD

~ Eject

Desktop

Cancel

'{}1 Done
~~~~~~~~~~~~....__, 

Show: I Source Files •I 

Odd 811 

Remoue 

Figure 10-11 Add Files dialog box 

10-10 Symantec C++ User's Guide and Reference 



Hello World C Application + 

At the top of this dialog box is a scrolling list that 
contains the names of the files in the current directory 
that are not part of your project. The bottom list contains 
the files to be added to the project after you click the 
Done button. 

2. Navigate to the Standard Libraries folder within 
the Symantec Project Manager folder (by default, this is 
the Symantec C++ for Power Mac folder). 

3. Select the PPCANSI. o file in the top list and click Add. 
Also select the PPCRuntime. o file and click Add. 

Notice how the names of the two object files, 
PPCANSI . o and PPCRunt ime. o, are listed at the 
bottom of the dialog box. 

4. Navigate to the PPC Libraries folder within the 
Macintosh Libraries folder in the Symantec Project 
Manager folder, and add the InterfaceLib. xcoff 
and MathLib.xcoff files in the same way as above. 

Symantec C++ User's Guide and Reference 10-11 



• 10 Tutorial: Hello World 

The Add Files dialog box should now be displayed as 
shown in Figure 10-12. 

I a PPC Libraries ... 1 G:::l Macintosh HD 
r=--___:::::::::::::=::::::=::::::=::::::=:~~ D RppleScriptlib 
D RppleScriptlib.Hcoff 
D Disassembler.a 
D Draglib.Hcoff 
D ObjectSupportlib 
D ObjectSupportlib.Hcoff 
D PPCToollibs.o 

Show: I Source Files ,.. I 
lnterfacelib.Hcoff 
Mathlib.HCOff 
PPCRNSl.o 
PPCRuntime.o 

Eject 

Desktop 

Cancel 

Done 

~ 

Rdd Rll 

-0 Remoue 

Figure 10-12 Add Files dialog box with library files at the 
bottom 

5. Click the Done button to close the Add Files dialog box 
and add the files to the project. 

The Symantec Project Manager loads a library automatically when 
you run the project. Alternatively, you can click the library's name in 
the Project window, then choose Compile from the Build menu. 
For this example, let the Symantec Project Manager load it for you 
when you run the project. 

10-12 Symantec C++ User's Guide and Reference 



The Run command creates 
an "instant run image" that 
is very similar to an 
application on disk, but is 
not permanent. To save a 
permanent copy of an 
application, you would use 
the Build Application 
command, described later 
in this tutorial. 

When you bring your 
project up to date, the 
Symantec Project Manager 
compiles your project's files 
and links the project. 

Note 

Hello World C Application + 

In this tutorial, you have manually added a source 
file and several library files to an empty project to 
learn how the Symantec Project Manager works. 
The next time you write a similar application, base 
the project on the ANSI C project model, which 
automatically adds the correct libraries needed for 
an application similar to Hello World. 

Your project is complete. Now you need to build it and run it. 

Building and running the application 
To run the application without the Debugger: 

1. Hold down the Option key and choose Run from the 
Project menu. 

Because you added libraries to your project, the project 
needs to be updated. The Symantec Project Manager 
prompts you to do so, as shown in Figure 10-13. 

Bring the project "Hello World. Tr" up to date? 

(Don't Update ) Cancel J ( Update J 

Figure 10-13 Update dialog box 

2. Click Update. 

Symantec C++ User's Guide and Reference 10-13 



• 10 Tutorial: Hello World 

He I I o , Wor I d ! 

The Symantec Project Manager compiles and links the 
necessary files, then runs the program in a console 
window, as shown below: 

press «return» to eHit 

Figure 10-14 Hello World running 

This program uses the Standard library to send output to a console 
window. A console window is a Macintosh window that behaves 
like a simple display terminal. The words Hello , World! are 
displayed at the bottom of this window. 

To exit the program, press Return or choose Quit from the File 
menu. 

Creating the application 
Now that you have seen your application run, you might want to 
save the application to disk. To make your project into a stand­
alone, double-clickable Macintosh application: 

1. Choose Build Application from the Build menu. 

The File Save dialog box opens (Figure 10-15). 

10-14 Symantec C++ User's Guide and Reference 



Hello World C++ Application + 

Make sure to move to your Hello Worldf folder (the 
default folder may be among the library files) before 
clicking Save. 

I a Hello World f ... 1 i= Macintosh HD 
=-----=======::::=:::::==----.~ Bil Hello World.cp ~ 
Iii Hello World. 'fl 
~ Hello World. n .pef 

Target File Name: 

I Hello World 

Figure 10-15 File Save dialog box 

Eject 

Desktop 

( New LJ J 

( Cancel J 

([ Saue J) 

2. Type Hello World into the Target File Name textbox. 
This is the name of the application file. 

3. Click Save. 

A dialog box informs you that the Symantec Project 
Manager is linking your application. When it is finished, 
the built application is located in the folder you chose. 

To run the built application, go to the Finder and open the 
application's folder. Double-dick the application's icon to see it run. 

Hello World C++ Application 
Now that you have completed the Hello World C application, you 
can create the Hello World C++ application. Building the C++ 
application shows you certain aspects of project management that 
differ slightly from the procedure for creating the C application. 

The process needed to create the C and C++ Hello World 
applications is similar. The steps outlined for the C application are 
covered only briefly in this section. 

Symantec C++ User's Guide and Reference 10-15 



• 10 Tutorial: Hello World 

Creating a project 
First, create an empty project, just as you did for the Hello World 
C application. If the Symantec Project Manager is already running, 
choose New from the File menu to create a new project. For this 
project, name the folder Hello World++ f, and name the project 
Hello World++ .1t. Make sure that in the New Project dialog box, 
you select Empty Project as the project model. 

Adding a source file 
Now you are ready to create a source file. To do so: 

1. Choose New from the File menu. 

2. In the Editor window that opens, type the following 
source code: 

!***** 
* Hello World.cp 
* 
* The hello world program for 
* Symantec C++ for Power Macintosh 
* 
*****/ 
#include <iostream.h> 
void main() 
{ 

cout << "hello world!"<< endl; 

3. Save the file as hello. cp by choosing Save As from the 
Project menu, typing hello. cp in the Save file as 
textbox, and clicking OK. 

You compiled the source file for the C application. For 
the C++ version, however, you add the file to your 
project without compiling it. You will build your whole 
project later. 

4. From the Project menu, select Add "hello.cp". 

The hello. cp file is now listed in the Project window. 

5. Close the hello. cp Editor window by clicking in its 
close box. 

Next, you add the standard libraries to the project. 

10-16 Symantec C++ User's Guide and Reference 



Hello World C++ Application + 

Adding libraries 
Follow the steps outlined for the Hello World C application to add 
the following libraries to your C++ project: 

• PPCANSI.o 
• PPCCPlusLib.o 
• PPCIOStreams.o 
• PPCRuntime.o 

All of these libraries are located in the Standard Libraries 
folder. 

After those libraries are added to the project, you are ready to bring 
the project up-to-date. 

Updating the project 
Generally, the most common way of checking for compile errors is 
to use the incremental build feature of Symantec C++, in which the 
Symantec Project Manager builds your project, translating only those 
files that have changed since the last time your project was built. To 
do this, choose Bring Up To Date from the Build menu. If files 
need to be compiled, the Progress dialog box opens to show the 
progress of the update. 

When the update is finished, the Progress dialog box closes. If 
there were errors in your files, the Build Errors window opens, 
showing you the location of the errors. Double-dick on any entry in 
the Build Errors window to bring up the source file where the error 
was found with the offending line highlighted. After you have 
corrected the errors, save the file, and update the project again. 

To run your project now, hold down the Option key and choose 
Run from the Project menu. 

You also can save your application to disk by choosing Make Target 
from the Project menu. 

Symantec C++ User's Guide and Reference 10-17 



10 Tutorial: Hello World • 

10-18 · Symantec C++ User's Guide and Reference 



Tutorial: 
MiniEdit+ 

11 
~e MiniEdit tutorial shows you how to use some of the advanced 

features of the Symantec Project Manager. You build a small text 
editor based on a sample application described in Inside 
Macintosh I. 

In this tutorial you create and run a project, build an application, and 
use a resource file. One of the source files has a small, intentional 
bug, allowing you to practice fixing such errors. 

Before You Begin 
Make sure the Mini Edit f folder is on your hard disk, because it 
contains all the files you need to follow this tutorial. If you followed 
the installation directions in Chapter 1, "Overview" this folder should 
be in the Demos folder, which is contained in the Demo Projects 
folder. In addition, if you did not work through the Hello World 
tutorial in the last chapter, you should consider doing so now. That 
tutorial serves as a quick introduction to the features of the Symantec 
Project Manager. 

Creating the Project 
Your first task in the MiniEdit tutorial is to create a project. To do so: 

1. Open the folder containing the Symantec Project 
Manager and double-click its icon. 

Symantec C++ User's Guide and Reference 11-1 



• 11 Tutorial: MiniEdit 

A standard File Open dialog box is displayed 
(Figure 11-1). 

la Symantec C++ for Power ... TI= Macintosh HD 

D (Project Models) 
D (Projects) 
D (Scripts Menu) 
D (Scripts) 
D (Tools) 
[!)(Translators) 

Show: I Te1d Files 

Figure 11-1 File Open dialog box 

Ejec:t 

Desktop 

Open 

[ New Project ) 

Cancel 

2. Navigate to the Mini Edit f folder and click the New 
Project button to open the standard New Project dialog 
box (Figure 11-2). 

I a MiniEdit f T I = Macintosh HD 
~~-==========-~~ ~ BuggyEdit.cp -0--
~ mini.file.c:p 
~ mini.file.h 
~ mini.print.cp 
~ mini.print.h 
~ mini.windows.cp 
~ mini.windows.h 

Create New Project: 

Eject 

Desktop 

New L:J ) 

( Cancel ) 

( Saue J 

Project Model: I Empty Project TI 

Figure 11-2 New Project dialog box 

11-2 Symantec C++ User's Guide and Reference 



Creating the Project + 

3. Choose C++ Mac Application from the Project Model 
pop-up menu. 

4. Type Mini Edit .1t in the Create New Project textbox 
and click Save. 

The Symantec Project Manager creates a new project in 
the MiniEdi t f folder named Mini Edit .1t and 
displays a Project window (Figure 11-3). 

fl> Wl Libraries 

• D main.cp • 0 

Totals 0 

Figure 11-3 Project window for a new Project file 

Because all the source files for this application are already written, 
you need to remove main. cp from the project: 

Note 

1. Click main. cp in the Project window. 

2. Choose Remove "main.cp" from the Project menu. 

This removes the file from the project; as a result, the 
main. cp file is no longer listed in the Project window. 
The file, however, is still in your project folder. 

Another option is to drag main. cp from the Project 
window to the Trash. This does not delete the file 
from your disk. To do that, use the Finder in the 
standard manner. 

Symantec C++ User's Guide and Reference 11-3 



• 11 Tutorial: MiniEdit 

Adding the Source Files 
The second task is to add source files to the new project. All the 
source files for Mini Edit .1t are in the Mini Edit f folder. 

1. Choose Add Files from the Project menu to open the 
Add dialog box (Figure 11-4). 

le MiniEdit f,.. I ~ Macintosh HD 

~ BuggyEdit.cp &1 
~ main.cp 
~ mini. file.cp 
~ mini.print.cp 
~ mini.windows.cp 
~ MiniEdit.rsrc 
~ pleasewait.cp 

Show: I Source Files ,.., 

Figure 11-4 Add dialog box 

-0 

./.} 

K 

Eject 

Desktop 

Cancel 

llone 

Rdd 

.Rdd Rll 

Remoue 

The top list displays the source files and libraries in the 
current folder. The bottom list indicates those files that 
will be added to the project when. you click Done. 

2. Click Add All to move all the source files in the 
Mini Edit f folder into the bottom list. 

3. Select main. cp in the bottom list and click Remove. 

l 

Because main. cp is still located in the project folder, it 
was added to the bottom list along with all the other files 
in the directory. Because including this file in your 
project would cause link errors, you should be sure not 
to re-add it to the project. 

11-4 Symantec C++ User's Guide and Reference 



Note 

Adding the Source Files + 

If you are willing to select each file in the directory 
individually, you could click the Add button rather 
than Add All. With this approach, you do not have 
to remember to remove the main. cp file from the 
bottom list. 

Figure 11-5 shows the Add dialog box with the source 
files displayed in the lower list. 

la MiniEdit f ... I ~Macintosh HD 
~~--==========---~~ 
~ main.cp ~ Eject 

Show: I Source Files ... I 
BuggyEdit.cp 
mini. file.cp 
mini.print.cp 
mini.windows.cp 
MiniEdit.rsrc 

Desktop 

Cancel 

Rdd Rll 

Remoue 

Figure 11-5 MiniEdit source files ready to be added to the 
project 

Symantec C++ User's Guide and Reference 11-5 



• 11 Tutorial: MiniEdit 

4. Click Done. The Project window changes to look like the 
one in Figure 11-6. 

• ~ Buggy Edit .cp • 0 'i} 

~ £':] Libraries 0 

• ~ mini. file .cp • 0 

• ~ mini .print .cp • 0 

• ~ mini .windows.cp • 0 

• It MiniEdit .rsrc 0 

+ ~ p leasewait.cp • 0 

Totals 0 

-0-
Ill 

Figure 11-6 MiniEdit.n Project window with appropriate files 

Note that the Code column displays the object size in bytes for each 
file. The sizes currently are zero because you have not compiled any 
files or loaded any libraries. 

Compiling and Running the Project 
For your project to run, the source files must be compiled and the 
necessary libraries must be loaded. You can use the Compile or 
Bring Up To Date commands from the Build menu or the Run 
command from the Project menu to compile the files. The Symantec 
Project Manager uses the Project file to keep track of the files that 
need to be compiled and performs that task automatically when you 
run the project. 

The Debugger is explored in the next tutorial. For now, you run the 
project without it. To set your application to run without the 
Debugger: 

1. Choose Options from the Project menu. 

2. On the Project Options page of the Project Options 
dialog box, set the option Run with Debugger off. 

3. Click Save. 

11-6 Symantec C++ User's Guide and Reference 



Compiling and Running the Project + 

Now run the application: 

1. Choose Run from the Project menu. 

None of the files in the project has been compiled, 
so you are prompted to bring the project up-to-date 
(Figure 11-7). 

Bring the project "MiniEdit. TI"' up to date? 

(Don't Update) Cancel ) [ Update ) 

Figure 11-7 Prompt to update the project 

2. Click Update. 

Note 

The Symantec Project Manager starts compiling the first 
file in the project. The Progress dialog box indicates the 
number of lines that have been compiled. 

The Symantec Project Manager adds the number of 
lines in #include files in the line count. 

Because BuggyEdi t . cp has a small intentional bug, the Symantec 
Project Manager opens a Build Errors window, and your application 
is not run. Fixing the bug is discussed in the next section. 

Symantec C++ User's Guide and Reference 11-7 



• 11 Tutorial: MiniEdit 

Fixing a Bug 
When the Symantec Project Manager finds an error in a source file , it 
opens a Build Errors window and displays an error message. The 
compiler continues compiling the rest of the files in the project. To 
fix the bug, recompile the program, and run it: 

¢ 1111 

1. Read the error message displayed in the Build Errors 
window (Figure 11-8). 

Figure 11-8 Build Errors window 

2. Double-click the error message in the Build Errors 
w indow to open the Editor window w ith the line causing 
the error highlighted. 

11-8 Symantec C++ User's Guide and Reference 



Fixing a Bug + 

As you see in Figure 11-9, a semicolon is missing. 

I Markers ..,. f I Heade~s ..,. I 
extern Str255 

#define ours<w) <<myWindow != NULL) && <w == myWindow)) 

#jf !(defined<THINK.....C> I I defined<THINKC_FLUS)) 
extern QDGlobals qd; 
#endif 

void main() 
{ 

I* 

int myRsrc; 

lnitGraf<&qd.thePort); 
In i tFonts() //BUG· mis~inq '·' 

In i tW i ndows(); 
lni tMenus< ); 
TElni t< ); 
lnitDialogs<OL); 
In i tCursor<); 
MaxApp I Zone<); 

* The fo llowin9 stato?mo?nt is ino luded .as a check to see if we o.an 
* access our progr .am 's FE-sources. '1ihen the project is run from 
* THINK C, the resouro& fil<? <project narn.->.rsrc is .a•Jtom.atic.ally 
* opened. \ihen an app lio.ation is built, thes12 rE>soun~es are 
* .automatic.ally rn.;rged vtith the .app lfo.atfon. 

* + 
:mimmm:m:mmm:mm:m:rn:mm:::::::mm:mm:m:mmmm:mm::mrnmmmm:mmmm:::Hm::::::::::::::::::::::mmmmmmmm:rnmm:mmmwmrnm::mm:::~ EtH1 

Figure 11-9 Buggy Edit file with a syntax error 

In this example, the C++ compiler wants a semicolon 
before the statement of line 45, but stylistically it is 
preferable to place one at the end of line 44. 

3. Add the missing semicolon. 

Symantec C++ User's Guide and Reference 11-9 



• 11 Tutorial: MiniEdit 

Note 

4. Compile the file BuggyEdi t. cp using the Compile 
command from the Build menu. 

The source file compiles without errors this time. Note 
that you do not have to save a file to recompile it. 

Because the BuggyEdi t . cp file no longer contains· a 
bug, you should save it with a different name. 

5. Choose Save As from the File menu and save the 
corrected file as Mini Edit. cp (Figure 11-10). 

Make sure you save the file in the Mini Edit f 
folder. 

la MiniEdit f ...,. I c::J Macintosh HD 
n;:;:--~==========~-r=1 
~ BuggyEdit.cp 
~ main.cp 
~ mini. file.cp 
~ mini.file.h 
~ mini.print.cp 

Saue file as: 

I MiniEdit.cp 

Figure 11-10 File Save dialog box 

Eject 

Desktop 

New LJ ) 

( Cancel ) 

[ Saue J 

11-10 Symantec C++ User's Guide and Reference 



To save a file with a 
different name without 
affecting the project, use 
the Save A Copy As 
command. 

Fixing a Bug + 

6. Now click the Project window. 

When you save a file that is already in the project using 
Save As, the file's name is also changed in the Project 
window. 

The file's object code is now associated with the new 
name (Figure 11-11). 

I> [21 Libraries 23324 {} 

<) ~ mini.file.op • 2536 

<) ~ mini.print.op • 1320 

<) ~ mini.windows .op • 2440 

+ ~ MiniEdit .op • 0 

<) ~ MiniEdit .rsro 0 

<) ~ p leasew ait .op + 40 

Totals 29660 

{}-

'Ii 

Figure 11-11 MiniEdit.n Project window with a new filename 

Symantec C++ User's Guide and Reference 11-11 



• 11 Tutorial: MiniEdit 

Running the Project Again 
Now that you've fixed the bug, you can try running the project 
again. 

1. Choose Run from the Project menu. 

You are prompted to bring the project up-to-date. 

2. Click Update. 

The Symantec Project Manager compiles the project and 
launches it (Figure 11-12). 

Min ./ MiniEdit.·Jl 
I Markers ..,. 11 Headers ..,. I <9 Name A Code 

extern Slr255 theF 1 I eName; I> CJ Libraries 23324 

#define ours(w) ((myi.lindow != NULL> Q 1§1 m;n;,fnt.op • 2536 

01 f I <deflned<THINK-C) 11 definedCTHINKl 
Q 1§1 mini.print.op • 1320 

extern QDGlobals qd; Q 1§1 mini. windows .op • 2440 
•endi f Q 1§1 MiniEdtt.cp • 2920 

void main() Q Iii MiniEdtt .rsrc 0 
{ 

Q 1§1 pleasewatt.op • 40 Int myRsrc; 

In i tGraf<&qd_. thePort>; Totals 32580 

lni tFonts< >;! """"" FlushEvents< Untitled 
lnitl.lindows<>; dot lnl tMenus< >; 
TElnit<>; 
lni tDialogs<OL> 
In I tCursor< >; 
MaKApp I Zone( ) ; 

I• 
*' The following st.ateme 
• access our program . THINK c' the reStJIJr' 

* ~· wt.er. an appl' 
• iutoma~ic.ally merge 
• 

ll 
tzy 
'!II 

Figure 11-12 Running MiniEdit 

3. Test the MiniEdit application. 

I-

You might want to experiment with program code. When you are 
satisfied with how the project runs, you're ready to turn it into a 
double-clickable application. 

11-12 Symantec C++ User's Guide and Reference 



CEM8 doesn't stand for 
anything. It was chosen 
because it is unlikely that 
any other application on 
your disk has that 
signature. 

Building the Application + 

Building the Application 
Now you are ready to turn the project into an application: 

1. Choose Options from the Project menu to open the 
Project Options dialog box. 

This dialog box has eight pages. You move among the 
pages by clicking the appropriate icon to the left. 

2. Click the Project Type icon to open the Project Type 
page of the dialog box (Figure 11-13). 

Pro ·ect Options for "MiniEdlt. Tl" 

Options: J MiniEdit.TI ... j 

File TypelJ;iPPMI Creator!???? I 

11sk for destination 

Figure 11-13 ProjectT ype page 

3. In the Creator textbox, type CEM8. 

This ensures that your application has the correct icon 
when you build it. 

4. In the Minimum Size and Preferred Size textboxes, 
change the default values to 256K. 

The Power Macintosh uses these values to determine 
how much memory to give to an application. Because 
MiniEdit is so small, it does not need the default 1024K 
size. 

Symantec C++ User's Guide and Reference 11-13 



• 11 Tutorial: MiniEdit 

5. Use the Flags pop-up menu to turn off all of the flags 
except 32-bit Compatible. 

MiniEdit is a simple program that does not take 
advantage of the advanced features of System 7.5. 

Warning 
Do not turn off these flags with any project with 
which you want to use the Symantec Debugger. 

6. Click Save. 

7. Choose Build Application from the Build menu 
(Figure 11-14). 

la MiniEdit f ,.. I 
~ BuggyEdit.cp 
~main.cp 
~ mini. file.cp 
~ mini.file.h 
~ mini.print.c:p 
~ mini.print.h 
~ mini.windows.c:p 

Build "MiniEdit. Tf" as: 

c:::i Macintosh HD 

Eject 

Desktop 

New LJ ) 

( Cancel ) 

( Saue J 

Figure 11-14 Building the MiniEdit application 

8. Name the application MiniEdit and click Save. 

You now have a new application in the Mini Edit f 
folder. 

11-14 Symantec C++ User's Guide and Reference 



For more information on 
resource files, see "Using 
Symantec Rez" in the 
Symantec C++ Compiler 
Guide. 

Using a Resource File + 

Using a Resource File 
The MiniEdit f folder now contains a file called 
Mini Edit .1t. rsrc. This file contains the resources that the 
MiniEdit project uses. 

When the Symantec Project Manager runs your project, it looks for a 
file named projectname. rsrc (that is, the name of your project plus 
the characters . rsrc appended to it). This file should contain the 
resources (such as menus, alerts, and dialogs) that your project uses. 

In this case the file is named Mini Edit .1t. rsrc. During updates, 
the Symantec Project Manager builds this file from all of the resource 
files (. rsrc files) and resource description files (. r files) that are 
included in your project. Mini Edit .1t only includes one resource 
file, Mini Edit. rsrc. Thus Mini Edit. rsrc and 
Mini Edit .1t. rsrc are identical. If you decide to edit any of the 
resources used by MiniEdit, be sure to edit them in 
MiniEdit. rsrc and not in MiniEdit .1t. rsrc, because 
Mini Edit .1t. rsrc is rebuilt every time your project is updated. 

To create a resource file, you can use Symantec Rez or ResEdit. Both 
are included in your package. Mini Edit. rsrc was created with 
ResEdit, so there is no resource description (. r) file for it. 

Finishing Up 
When you're finished working on a project, you can either close the 
project or quit the Symantec Project Manager by choosing Quit from 
the File menu. 

Symantec C++ User's Guide and Reference 17-15 



11 Tutorial: MiniEdit • 

11-16 Symantec C++ User's Guide and Reference 



Tutorial: 
Object Bullseye• 

12 
object Bullseye shows you how to use the Symantec Project Manager's 

source-level Debugger. In the process, you build a simple 
application that draws a series of concentric shapes in a small 
window. With the Width menu you create as part of the application, 
you can select the width of each of the shapes. 

Before You Begin 
Make sure the Object Bullseye f folder is on your hard disk. If 
you followed the directions in the section "Installing Symantec C++," 
in Chapter 1, "Overview," this folder should be inside the Demos 
folder, which is inside the Project Demos folder. Also make sure 
that the Symantec Debugger is in the same folder as the Symantec 
Project Manager and that Power Mac DebugServices is in the 
(Tools) folder. 

This tutorial assumes you underst~nd the basic mechanics of the 
Symantec Project Manager. You should know how to open a project, 
edit source files, and run a project. If you are not familiar with any of 
these operations, review the previous two tutorials. 

Preparing to Use the Debugger 
When you are ready to start the Object Bullseye tutorial, you should 
take the following two preparatory steps: 

1. Open the project by double-clicking Object 
Bullseye.7t in the Object Bullseye folder. 
Alternatively, select the file and choose Open from the 
Symantec Project Manager's File menu. 

Symantec C++ User's Guide and Reference 12-1 



12 • Tutorial: Object Bullseye 

Note 

Object Bullseye consists of four source files, one 
resource file, and a few libraries (Figure 12-1). 

0 ~ Bullseye Resources .rsrc 0 {} 

I> CJ Libraries 23324 

0 ~ ob jBu llMenus .cp • 2208 

0 ~ Ob jectBu llsey e .cp • 944 

<> ~ TBu ll'vlindow .cp .. 968 

0 ~ T'vlindow.cp • 2464 
-0-

Totals 29908 

Figure 12-1 Object Bullseye.1t Project window 

Note that none of the files has been compiled (the Code 
field indicates that the code size of each file is 0 bytes). 

2. Choose Options from the Project menu to open the 
Project Options dialog box. 

3. On the Project Options page of the Project Options 
dialog box, set on the option Run with Debugger. 

To be able to use the Debugger, your compiled code 
must contain debug information. By default, the 
generation of debug information is enabled for this 
tutorial. 

The generation of debug information is controlled 
from two locations. First is the Project Options 
dialog box (the Debugging subpage of the Power 
PC C++ Options page). Second is the Debug 
column in the Project window. As you can see in 
Figure 12-1, the diamonds in this column are filled 
by default, indicating that the Symantec Project 
Manager will generate debugging information for 
the source files. 

~ 

12-2 Symantec C++ User's Guide and Reference 



Starting a Debugging Session + 

Starting a Debugging Session 
To start a debugging session: 

Note 

1. Choose Run with Debugger from the Project menu. 

The Symantec Project Manager now compiles and loads 
all the files in the Object Bullseye project. It launches the 
Symantec Debugger, which opens the Main debugging 
window and Control palette by default. 

If you had not selected Run with Debugger from the 
Project Options dialog box, the command on the 
Project menu would be titled Run. You can use the 
Option key to toggle between Run and Run with 
Debugger. 

2. Position the debugging windows on the screen as 
desired (Figure 12-2). 

The Main debugging window contains two panes, the 
Code pane and the Stack Crawl pane. The Control 
palette contains buttons that both control the current 
process and reflect the state of that process. The Control 
palette is free-floating. 

Symantec C++ User's Guide and Reference 12-3 



12 • Tutorial: Object Bullseye 

3. If the Data window is not displayed, open the window 
by selecting Data from the Windows menu. 

i;;§;;;;;lii==;;;...;;D;..;a;..;t..;;;a..,;;;;;;=;;;;;lii:;;;;l1!ll~----- Data window Control palette 
Data 

I 

Step IEEJI Out II Traoe j)stop H 

ObjectBullseye.cp 

r.:S=ta=ok=C=r=aw=l=·· =· ·=····•··>·;:::·C..:...==···= •.L=··:i:...=2..::::::::'"'"°'":::::;:=iln Code '"'- ······.···.·• ··•• _ ·--- _ 2 ][ 

;;; ~::~~ ~=~~~~:~:: ~ 0 ! ~*end HandleEvent*/ 
??? <PPC> Ox01E29524 

"'"aain - Ox01E29A80 
/***** 
*main() 

I< 

Current 
function 

* * This is vrhere every thing happens 

* 
*****/ 

void mQ i n<void) 
{ 

O!t'----i In i tMm:: i ntosh<); 
---+---+Hi-+<-0> !,_ Se tupMenus < ) ; 

for<;;> 

Statement 
markers 

Oi HQndleEvent< ); o: } 

Current statement 
arrows 

Figure 12-2 Debugger windows 

Control palette 

.. 

The Control palette provides an interactive mechanism for 
controlling the execution of your program. The names of its buttons 
match the commands in the Debugger's Debug menu. In Figure 
12-2, the Stop button is highlighted, which indicates that the 
program is stopped. 

12-4 Symantec C++ User's Guide and Reference 



Controlling Execution Flow + 

Main debugging window 
This window displays information about the process currently being 
debugged. Individual panes are printable. This window contains no 
close box and remains open throughout a debugging session. 

Stack Crawl pane 
The Stack Crawl pane displays your program's call chain: the name 
of the current function and the names of the functions that were 
called to get to the current function. To the right of the function 
names, it displays the hex location of the function in memory. You 
can use this pane to examine the variables in any function by 
clicking on the triangle next to the function name. 

Code pane 
The Code pane shows the source text of your program. When you 
start the Debugger, this pane shows the file that contains the 
main () routine of your application. The black arrow to the left of 
the first line of the program is the current statement arrow. This 
indicator shows you the current statement, the one the Debugger is 
about to execute. 

The column of diamonds running along the left side of the Source 
text contains statement markers. Every line of your program that 
generates code gets a statement marker. Later, you will use the 
statement markers to set breakpoints. 

Data window 
The Data window is used to examine the value of any expression. 
These may be constants or function results, but the most common 
use of the Data window is to examine the value of your program's 
variables. 

Controlling Execution Flow 
With the Debugger windows open, you are ready to experiment 
with execution flow by clicking the Control palette buttons and 
setting breakpoints. 

Symantec C++ User's Guide and Reference 12-5 



• 12 Tutorial: Object Bullseye 

Stepping through statements 
Click Step in the Control palette (Figure 12-3). 

Stack Crawl 

??? C68k > Ox00093298 
??? <PPC> Ox01E28ED8 
??? <PPC > OxO 1E29524 

I> •a in OxO 1E29R84 

Step I CE] I Out II Trace I·~ Stop q 

OblectBullse_y_e.cp 
Code 

l* €'nd Handl€'Event */ 'iit-

/***** 
*main() 

* 
* This is \1'here <?V<?l"IJ thing happens 

* 
*****/ 

Yoid main<Yoid) 
{ 

~ •,, ~~ ~0~~~~~!~~~ ( ) ; 
for<;;) 

Hand I eEvent<); ill 
0 j ~·*end main*/ !ill 
~:m:m:mm:mmmmmmmmmmmmmmmmmmm:;mrnmmm:mmmm:m::1::i::mm:m:mmm+:1 J 

~0]~~~[T~1~~~~~~~=~= I~ 

Instead of clicking In, you 
can also choose Step In 
from the Debug menu or 
press Command-I. 

Figure 12-3 Stepping through the program 

The Step button lights up for a moment, the current statement arrow 
moves to the second statement, and the program stops again. 

The Step button lets you execute your program line by line. You can 
also choose Step from the Debug menu or press Command-S. 

Stepping into functions 
Now the current statement arrow is pointing to the call to 
SetupMenus () . This function sets up the menus for Object 
Bullseye. To see how SetUpMenus () works, click In on the 
Control palette. 

12-6 Symantec C++ User's Guide and Reference 



stack er.a~1 .. 

??? (68k) 
??? <PPC> 
??? <PPC> 

~•ain 
~SelUpnenu 

Controlling Execution Flow + 

Now the current statement arrow points to the first line of the 
SetUpMenus () function (see Figure 12-4). 

Ox00093298 
Ox01E28ED8 
Ox01E29524 
Ox01E29A84 
Ox01E23144 

ob ·euUMenus.cp 

* SetUpMenus() 

* Set up the menus. 

* 
****/ 

void SetUpMenus<void) 

i { 
oi. 
Oi 

I nsertMenu(app.I eMenu = GetMenu<app I e ID), 0); 
AddResMenu(appleMenu, 'DAVR' ); 

ol 
oi 
o! 
oi 
oi 

ol 
oj 

lnsertMenu(fileMenu = GetMenu(filelD), 0); 
lnsertMenu(editMenu = GetMenu(editlD), 0); 
lnsertMenu(widthMenu = GetMenu(widthlD), 0); 
lnsertMenu(foreMenu = GetMenu(forelD), 0); 
lnsertMenu(backMenu = GetMenu(backlD), 0); 

DrawMenuBar(); 

Figure 12-4 Inside SetUpMenus() 

Note 
The current statement arrow does not have to be 
right before a function call for the In button to 
work. The Step In command executes every 
statement until the program counter is no longer in 
the current function. Another way to think of the 
Step In command is: "Keep going until you fall into 
a function." Step In also stops execution if you fall 
out of the current function. 

Symantec C++ User's Guide and Reference 12-7 



• 12 Tutorial: Object Bullseye 

Stack Crawl 

Stepping out of functions 
Click Out to leave the SetUpMenus () function. The Code Pane 
now shows that the Debugger has just finished executing the 
function SetUpMenus ().The hollow arrow indicates this (see 
Figure 12-5). Sometimes you will also see a down-pointing arrow 
indicating that the line contains a function call that has not yet 
returned. 

Step llI]I Out H Traoe J I·~ Stop E· I 

OblectBullseJLe.cp 
Code 

??? (68k > Ox00093298 
??? <PPC> Ox01E28ED8 
??? <PPC> Ox01E29524 

I* end HandleEvent */ + 

!> •a i n OxO 1 E29R88 /***** 
* m.ain() 

* * This is where every thing happims 

* 
*****/ 

void main(void) 
{ 

<>! lni tMacintosh< ); 
<>F,,· setupMenus<); 

for<;;) 
<>~ Hand I eEventO · J]!;!;!;I 
<>! } ' 
l /*end main*/ + 

-~m::mmm:m:mmmmm:mm::mmm::mmmmm:m::mmm::rnmm:mmmmmmmmmm:mm_+ J 
.· 

Figure 12-5 Outside SetUpMenus() 

The Out button steps through each statement in the current function 
until the execution leaves the function. 

12-8 Symantec C++ User's Guide and Reference 



??? (68k) 
??? <PPC> 
??? <PPC> 

~•ain 

Eil!T 

Controlling Execution Flow + 

Tracing every statement 
Click Step once so the current statement arrow points to the call to 
HandleEvent () (Figure 12-6). 

Ox00093298 
Ox01E28ED8 
Ox01E29524 
Ox01E29R8C 

<>. 
<>i 

(>~ 

/***** 
*main() 

* * This is where e-..•ery thing happens 

* 
*****/ 

void main(void) 
{ 

In i tMac i ntosh< >; 
SetupMenus<); 

for<··) 
Hdri°dleEventO; 

<>! } 
! /*end main*/ 
: 

Figure 12-6 Current statement arrow points to HandleEvent() 

Symantec C++ User's Guide and Reference 12-9 



12 Tutorial: Object Bullseye • 
Instead of clicking Trace, 
you can choose Trace from 
the Debug menu or press 
Command-T. 

Now click Trace. The current statement arrow points to the first 
statement of the HandleEvent () function (Figure 12-7). 

CE:] Step 

Ob ·ectBullse 
Stack Crawl Code 

??? <68k > Ox00093298 
??? <PPC> Ox01E28ED8 
??? <PPC > OxO 1E29524 

I> •ain Ox01E29A8C 
ll> Hand I eEuen OxO 1E2996C 

Figure 12-7 Inside HandleEvent() 

I* Handle desk accessories *I 

Tracing takes you to the next statement even if it has to step into a 
function. If you were to continue tracing, you would stop at every 
statement. Stepping, on the other hand, never dives into a function. 

Note 
The In button actually does a trace until the current 
statement arrow leaves the current function. 

Setting a breakpoint 
When a new window is created, the program gets an Activate event 
the first time through the event loop. In Object Bullseye, all the 
program does on Activate events is call InvalRect ( ) on the whole 
window, so the second time through the event loop, it gets an 
Update event. 

12-10 Symantec C++ User's Guide and Reference 



Code 

Controlling Execution Flow + 

You could Step or Trace to verify that this is what really happens. A 
faster way is to set a breakpoint at the function that redraws the 
window: 

1. Scroll down in the Code pane until you get to the code 
that handles Update events. 

2. Click the statement marker to the left of the call to the 
Update function (see Figure 12-8). 

Step ll:::::EJ I Out 11 Trace I I ·~ Stop E· I 

case updateEvt: 
if <<< WindowPeek ) theEvent .message )- >windowKind == TWINDOWKINO ) 

OBJ <theEvent.message )- >Update <); 
break; 

case act i vateEvt : 
if ((( WindowPeek) theEvent .mess age )- >windowK ind == TWINDOWKINO) 

OBJ<theEvent.message)- >Acti vate<theEven t.modifiers & Ox01 ); 
break ; 

Figure 12-8 Setting a breakpoint 

The hollow diamond fi lls in to indicate that you have set 
a breakpoint. You can set as many breakpoints as you 
like this way. When your program is about to execute a 
statement that has a breakpoint, it will stop. To remove a 
breakpoint, click the filled diamond. 

3. To start your program running, click Go. 

4. Now select New Circle from the File menu to open a 
new window. The Debugger is brought forward with the 
current statement arrow at your breakpoint. 

Symantec C++ User's Guide and Reference 7 2 - 7 7 



12 • Tutorial: Object Bullseye 

Code 

5. Click In to step into the Update () function 
(Figure 12-9). 

p Stop H 

TWindow.cp 

• 
~f ,.;k~j~~~E;;d) I 
<>i EndUpdate<theWindow); ~ 
<>! SetPort<savePort); ""' 

•11~m1ii!}1mm~111m11mmh1mmmmrnmmmmmmmmmmmmmmmmm1mmJmmm1nmim,im~1~i~!!tm~~~~~~~~~1~~~11~l!~lli1~~~i~~~~~~1~~mmmmnmmmi1ii!Iti§m!ill. + 
im : >·;.;.;.··. ·. . Jlli 

Figure 12-9 Inside Update() function 

6. Before continuing, make sure that the new Object 
Bullseye window ("Bullseye 1") is completely visible. 
Drag the Debugger windows so that they do not hide the 
new window. 

7. Click Step three times to watch how the program draws 
a bullseye in the window. 

8. When the current statement arrow is pointing to the 
window's Draw () function, click In to step into the 
Draw () function, then use Step to see how Draw () 
works. 

12-12 Symantec C++ User's Guide and Reference 



Code 

Controlling Execution Flow + 

To stop, click Out. Whether you Step, Trace, or step 
Out, you eventually end back at the call to Update () . 
If you were inside Draw (), you will have to click the 
Out button twice; once to exit Draw () and a second 
time to exit Update () (Figure 12-10). 

Step II 1ri'1J[ out 11 Trace I·~ Stop ~·I 

e.cp 

HandleMenu<MenuKey<<char) <theEvent.message & charCodeMask))); 
break; 

case updateEvt: 
if <<<WindowPeek) theEvent.message)->windowKind == TWINDOWKIND) 

OBJ<theEvent.message)->Update<); 
break; 

case act i vateEvt: 
if <<<WindowPeek) theEvent.message)->windowKind == TWINDOWKIND) 

OBJ<theEvent.message)->Activate<theEvent.modifiers & Ox01); 

Figure 12-10 Outside Update() function 

I 
Note that the current statement arrow is hollow. This means that 
there are still some instructions left to execute in the statement. You 
see right-pointing hollow arrows when the statement is making an 
assignment or cleaning up the stack after stepping out of a function. 
You see down-pointing hollow arrows when the line contains a 
function call that has not returned yet. 

Before you go on, clear the breakpoint. Just click the diamond. 

Letting the program run 
Click Go to let the program run. You can set and clear breakpoints 
while your program is running. 

When you click in the Main debugger window to set breakpoints, 
your application goes to the background and the Debugger comes to 
the foreground. If you click Go when your program is running, the 
Debugger brings it to the foreground. 

Symantec C++ User's Guide and Reference 12-13 



12 Tutorial: Object Bullseye • 

Instead of clicking a file in 
the Project window, you 
can select a line in an open 
source text window and 
then use Debug File (or 
Command-I). 

Stopping the program 
To stop your program: 

1. Click a Debugger window. 

2. Click Stop or press Command-Period. 

Your program stops as it's coming out of one of the 
event-fetching routines (GetNextEvent () or 
Wai tNextEvent ( ) ). 

Viewing Other Files 
The Code pane usually shows the file that contains the current 
statement. To look at another file in the Debugger (to set 
breakpoints in it, for example), you tell the Symantec Project 
Manager to send the text to the Debugger: 

1. Bring the Project Manager to the front (Figure 12-11). 

2. Click the name of a file. 

Code 

Bullseye Resources .rsrc 

Libraries 

oO 

ob jBullMenus .op 

Ob jectBullsey e .op 

ii@IU&Z 
T'w'indow.cp 

Totals 

Figure 12-11 Click the name of a file 

12-14 Symantec C++ User's Guide and Reference 

• 
+ 
+ 

• 

23324 

2208 

944 

968 

2464 
zi. 

29908 \ilii 



Viewing Other Files + 

/***** 
* TBull\l"indo'I/ .c 

* 

3. Choose Debug File from the Symantec Project Manager's 
Project menu (Figure 12-12). 

Options... 38; 

Switch Main Project ._ 

Rdd Files ... 
Rdd lllindow 
Rdd Group ... 
Remoue "TBullWindow.cp" 

Debug File :* I 

Run with Debugger 38 R 

Figure 12-12 Debug File command 

The file that you chose appears in a Code pane of a new 
Debugger window. 

TBullWindow.cp 

* Copyright© 1991 Symantec Corporation. All rights rese-rved. 

* * The 'llindow methods for the Objeot Bullseye demo. 

* * )Bu ll'w'indow inherits its Dr aw method from T'w'indow. 
* TSquareBull and TCiro leBull override Dr a'l/Shape to draw their own kind of bullseye. 

Figure 12-13 Viewing another file in the Project window 

4. Examine the file and set breakpoints in it. 

Once you have set breakpoints, you may close this new 
window. When you run the program, the Debugger 
stops at your breakpoint and displays it in the Code pane 
of the Main debugging window. 

I 

Symantec C++ User's Guide and Reference 12-15 



12 • Tutorial: Object Bullseye 

Examining and Setting Variables 
Tracing your program's execution lets you see what your program is 
doing. But to really fix bugs, you need to be able to examine the 
variables. You use the Data window for this task or expand the stack 
frame. 

Before you begin: 

1. Quit the current debugging session by choosing Quit 
from the Debugger's File menu. 

2. Choose Run with Debugger to begin a new session. 

Looking at the Data window 
The Data window appears to the right of the Code pane. If it is 
hidden, you can select it by choosing Data from the Windows 
menu. 

Data 
Data 

Entry field ----H+t--

Expression column-->---

Value columni----+11----------11--

Figure 12-14 Debugger's Data window 

Expressions you type into the entry field appear in the left column 
when you press Return or Enter. (Pressing Enter leaves the 
expression selected. Pressing Return leaves the entry field empty so 
you can type the next expression.) 

You can drag the horizontal or vertical bars to make a subpane larger 
or smaller. 

To remove an expression from the Data window, select it and 
choose Clear from the Edit menu or press Clear. 

12-16 Symantec C++ User's Guide and Reference 



Code 

Examining and Setting Variables + 

Examining variables 
Suppose you want to watch the value of the menuID variable in the 
Handl eMenu ( ) function. To do so: 

l. Make sure the obj BullMenus. cp file is displayed in 
the Code pane. 

If it is not, bring the Project window to the front, click 
the name objBullMenus. cp, and choose Debug File 
from the Project menu. 

2. Scroll down until you see the HandleMenu () function. 
Alternatively, choose Go To Marker from the Source 
menu and select HandleMenu () from the Markers 
dialog box. 

3. Set a breakpoint at the switch statement (Figure 12-15). 

Remember that you can set breakpoints even while your 
program is running. 

obj_BullMenl!s_.c_p_ __ 

s•i tch (menu ID ) 
{ 
case applelD : 

if <menultem == 1) 
{ 
Alert< 128, OU ; 
break; 
} 

GetPort<&savePort ); 

Figure 12-15 Selecting the context for the Debugger 

4. Click once on the line that contains the switch 
statement to select it. 

You select a line to give the Debugger a context for 
evaluating menuID. In this case, you are saying you 
want to know the value of menu ID right before the 
switch statement. 

Symantec C++ User's Guide and Reference 12-17 



12 • Tutorial: Object Bullseye 

Expressions in the Data window have either local scope 
or global scope. An expression has local scope if it refers 
to variables with dynamic storage-in other words, if it 
refers to nonstatic variables local to a function. All other 
expressions have global scope. 

5. Click the Data window. 

You will see the insertion point blinking in the entry 
field. 

6. Type menuID in the entry field and press Return 
(Figure 12-16). 

The Debugger compiles the expression (it may take a 
moment) in the context of the selected line. Right now, 
the Data window does not show a value for menu ID 
because the program is not stopped there. 

=lil Data Iii 
Data · .. ·~ --22__ £_ 

I I 
menu ID ~ 

'-0" 
EiJ@JTl 2 ~ Jlilii 
Figure 12-16 Entering menulD into the Data window 

7. Click Go in the Control palette (or press Command-G) to 
run Object Bullseye. 

8. Create a new window by choosing New Triangle from 
the File menu. 

12-18 Symantec C++ User's Guide and Reference 



Examining and Setting Variables + 

Your program stops at the breakpoint when you release 
the mouse button, and the value of menu ID appears in 
the value column (Figure 12-17). 

ii Data Iii 
Data 7 ~ 

I' I 
menu ID 2 .Q, 

~ 
0l[iJITl "'7" <> Tlii 
Figure 12-17 Examining the value of menulD 

Any time your program stops, the Debugger displays the values of 
expressions that have global scope. It displays the values of 
expressions with local scope whose context is the same as the 
current function and it clears the values of local expressions whose 
context is not the current function. 

Changing the value of a variable 
You can also use the Data window to change the value of a variable, 
as follows: 

1. Click in the Data window again and type menuitem. 

This variable contains the number of the selected menu 
item. 

Symantec C++ User's Guide and Reference 12-19 



12 • Tutorial: Object Bullseye 

2. Press Return to have the Debugger show you its value 
(Figure 12-18). 

Iii Data ~ 
Data 

I I 
menu ID 2 ~ menultem 3 

~ 
Ei]?JITI J_ }Ii 
Figure 12-18 Entering menultem in the Data window 

To change the value of a variable, click its value and type a new one 
in the entry field. When you click Enter, the value of the variable 
changes. Here's an example: 

1. Click the value of menu Item (the right column) to select 
it. Its value, 3, appears in the entry field as well. Now 
type 2 as a new value for menuitem. 

menu ID 
menultem 

2 

Figure 12-19 Changing the value of menultem 

2. Click Enter to assign the new value to the variable. 

12-20 Symantec C++ User's Guide and Reference 



Note 

Examining structs, classes, and arrays + 

3. Click Go to have the Object Bullseye program resume, 
behaving as if you had chosen New Square from the 
File menu. 

You can enter the same expression more than once 
in the Data window. You might want to do this to 
lock one of the expressions so you can compare it 
to the same expression later in the program. See the 
section "How and when the source Debugger 
evaluates expressions" later in this chapter. 

4. Click in a Debugger window to switch back to the 
Debugger. 

5. Now choose Clear All Breakpoints from the Source 
menu to make sure no breakpoints are set before you go 
on to the next section. 

6. Click Go to start the program running again. 

Examining structs, classes, and arrays 
The Data window lets you examine and modify structures, classes, 
and arrays, not just simple variables. When you display a structure or 
union in the Data window, its value appears as struct 
Oxnnnnnn or union Oxnnnnnn. Arrays appear as 
[ J Oxnnnnnn. 

When you click on the triangle next to a structure's name, the 
Debugger expands the structure and displays all of its fields. 

Note 
Any information presented here about structures 
applies to unions and classes as well. 

Symantec C++ User's Guide and Reference 12-21 



12 • Tutorial: Object Bullseye 

Code 

1. Make sure the Object Bullseye program is still running. 

2. Display the file Obj ectBullseye. cp in the Code 
pane, and set a breakpoint on the line right after the call 
to GetNextEvent ( ) in the function HandleEvent ( ) 
(Figure 12-20). 

Ob ·ectBullse 

ok = GetNextEvent (everyEvent, &theEvent); 
if (ok) 

{ 
s• i tch ( theEven t . whci t ) 

{ 
case mouseDown: 

HcindleMouseDown<&theEvent); 
break; 

case keyDown : + 

Figure 12-20 Setting a breakpoint in HandleEvent() 

3. Click the Object Bullseye window. 

The program stops at the breakpoint. 

4. Type theEvent in the entry field of the Data window 
and press Return. Alternatively, select theEvent in the 
Code pane and then choose Copy to Data from the Edit 
menu. 

12-22 Symantec C++ User's Guide and Reference 



Note 

Examining structs, classes, and arrays + 

The Debugger displays the word struct and the 
address of the structure (Figure 12-21). If you cannot see 
the entire value, click the center separator bar and drag it 
to the left. Alternatively, you can make the window 
larger. 

Iii Data ~ 
Data-- == . 

11 I 
menu ID 1 0 
menultem 15 t=1 

I> theEvent struct Ox000343BC 

-01 
0JrgiITE··· Illi 
Figure 12-21 Entering theEvent in the Data window 

If you do not select a line to give a variable a 
context, the Debugger uses the current statement as 
the control. 

5. Click the triangle to the left of theEvent, The Debugger 
expands theEvent record structure and displays all of 
its fields (Figure 12-22). 

I iii Data Iii 
Data 

--,,-

I I 
menu ID 1 0 
menultem 15 Fl 

v theEvent struct Ox000343BC 
what 15 
message 16777217 
when 80298 

I> where struct Ox000343C6 
modifiers 128 f:(y 

0lrgiJTJ ,;;· Jlli 
Figure 12-22 Looking at fields in a structure 

Symantec C++ User's Guide and Reference 12-23 



12 • Tutorial: Object Bullseye 

Note 

You can edit the values of the fields, but you cannot edit 
the names. 

The what field indicates that you're looking at a Resume 
event (what = 15). 

6. Click Go once more and the event will be an Update 
event (what = 6). 

In Update events, the message field points to the 
window record that gets the Activate event. 

7. Double-dick the message field in the Data window. 

The Debugger enters a new expression in the main Data 
window: theEvent .message. Edit the expression to 
read (WindowPeek) theEvent .message so you can 
look at the Window Record (Figure 12-23). 

Double-clicking any item in the left column of the 
Data window creates a new entry in the Data 
window. 

menu ID 1 {} 
menultem 15 

v theEvent struct OxOOD343BC 
what 6 
message 16777218 
when 213916 

~where struct OxOOD343C6 
modifiers 0 

0~~ ~ 

Figure 12-23 Entering (WindowPeek)theEvent.message 

8. Press Return so that the structure is evaluated and added 
to the list of expressions in the Data window. 

12-24 Symantec C++ User's Guide and Reference 



Examining structs, classes, and arrays + 

9. Now click on its triangle to expand the structure. 

You will need to scroll to see the entire structure, since 
the window record is too large to fit in the window 
(Figure 12-24). 

windowKind 
v isible 
hi Ii ted 
goAwayFlag 
spareFlag 

I> strucRgn 
I> contRgn 
I> upda teRgn 
I> w i ndowDe f Proc 
I> da taHand I e 
I> tit I eHand I e 

titleWidth 
I> contro IL i st 

Data 

Ox006CECBO 
struct Ox006CECBO 
21591 
Ox01 
Ox01 
Ox01 
Ox01 
Ox006B6E58 
Ox006B6E54 
Ox006B6E50 
Ox00005B74 
Ox006B6E44 
Ox006B6E4C 
67 
OxOOOOOOOO 

Figure 12-24 Examining the fields of (WindowPeek)theEvent.message 

Scroll down to the t it 1 ehandl e fie ld and click on its 
triangle. 

When you double-click the value of a pointer variable, the Debugger 
inserts a dereferenced expression in the Data window and displays 
its value. To see a pointer as an array, change its format to Address, 
as explained in the next section , "Expressions and Contexts. " 

C and C++ compilers do not enforce array bounds. If the array was 
declared with array bounds, those bounds are used. Otherwise, the 
Debugger uses default array bounds of ten elements . You can 
change array bounds by using Set Array Bounds on the Data 
menu. 

Symantec C++ User's Guide and Reference 72-25 



12 • Tutorial: Object Bullseye 

Expressions and Contexts 
You can enter any expression that does not have a potential side 
effect. That means you cannot enter assignment statements or 
expressions involving + +, - - , or + =. 

Every expression you type in the entry field is compiled in a context. 
The context is the selected line of the Code pane. If no line is 
selected, the context is the line to which the current statement arrow 
points. 

To see the context of an expression, click the expression in the left 
column of the Data window and choose Show Context from the 
Data menu. The Debugger highlights the context in the Code pane. 

To change the context of an expression, click the Code pane at the 
line you want to use as a context. Then select an expression in the 
Data window and choose Set Context from the Data menu. A 
shortcut is to hold down the Option key as you press Enter. 

If you edit an expression, its context will be that of the original 
expression. You can change its context by pressing Option-Enter, as 
described above. 

How and when the source Debugger evaluates 
expressions 
Every time your program stops, the Debugger evaluates the 
expressions in the Data window. It displays the values for 
expressions with both global and local scope. The values of 
expressions that do not have a global or local context are cleared to 
make the window less cluttered. 

If you want to make sure that the Debugger does not clear or re­
evaluate a value, select it and choose Locked from the Data menu. 
A small lock icon appears next to the expression. This command is 
useful if you want to compare the value of the same expression at 
different times. You can also lock expressions to keep their values 
from being cleared when they go out of scope. 

12-26 Symantec C++ User's Guide and Reference 



Expressions and Contexts + 

Display formats 
The way the Debugger displays an expression depends on the 
expression's type. You can change the format with the formatting 
commands in the Data menu. To change a format, select an 
expression from the Data window. Then choose the format from the 
Debugger's Data menu. 

Not all formats are available for all types, as shown in Table 12-1. 
Defaults are in italics. 

Table 12-1 Display formats avai I able 

Type Formats Available 
integers Signed Decimal, Unsigned Decimal, 

Hexadecimal, Character 

unsigned 

pointers 

arrays 

structures 

unions 

classes 

functions 

floating point 

fixed point 

Unsigned Decimal, Signed Decimal, 
Hexadecimal, Character 

Pointer, Address, Hexadecimal, C String, 
Pascal String 

Address, C String, Pascal String 

Address 

Address 

Address 

Address 

Floating Point 

Fixed Point 

The display formats look like this: 

Table 12-2 Display format examples 

Format 
signed decimal 
unsigned decimal 
hex 
char 

Examples 
4523345, -1 
4523345, 65535 
OxA09E1487 
I c ', 'TEXT' 

Symantec C++ User's Guide and Reference 12-27 



12 • Tutorial: Object Bullseye 

Table 12-2 Display format examples (Continued) 

Format 
C string 
Pascal string 
pointer 
address 

floating point 
fixed point 

Examples 
"abcdef\nghi\33" 
"\pabcdef\nghi\33" 
Ox007A7000 
[] Ox0009FE44, 
struct Ox0008FC14 
1961.0102 
1961.0102 

The C string and Pascal string formats display nonprinting characters 
in backslash form. Whenever it can, the Debugger uses the built-in 
escape characters (\n, \r, \a); otherwise, it uses \nn, where nn is 
an octal value. 

Of course, you can use typecasting to use formats that are not 
normally available. For example, if you really wanted to see the 
integer i as a C string, you would type this expression: ( char * ) i. 

To see any pointer as an array, just change its format to Address. 
Then, when you use the triangle to expand it, you see an array of 
elements instead of just the value of what the pointer points to. 

Quitting the Debugger 
To quit the Debugger, quit your application. If for some reason you 
cannot use your application's Quit command, choose ExiffoShell 
from the Debugger's Debug menu. However, do not do this 
routinely, because ExiffoShell can by-pass clean-up operations in 
some applications. 

12-28 Symantec C++ User's Guide and Reference 



Tutorial: 
Vector• 

13 
Trus tutorial highlights some of the unique features of Symantec C++. 

Vector is a small application that uses C++ templates to implement 
vectors and a sorting function. Vector displays how to: 

• Debug inline functions 
• Use, debug, and instantiate templates 
• Use and debug instantiation files 

During this tutorial, you will use templates with Symantec C++, but 
no effort is made to provide a general reference on the subject. For 
more information on templates, see Tbe Annotated C++ Reference 
Manual by Margaret Ellis and Bjarne Stroustrup and Tbe C++ 
Programming Language, Second Edition by Bjarne Stroustrup. 

What You Should Know 
Before you try this tutorial, you should know how to use the 
Symantec Project Manager and the Symantec Debugger. 

How to Proceed 
Before you proceed with this tutorial, run the Vector project without 
the Debugger to familiarize yourself with the way the application 
works. If Run with Debugger is displayed on the Project menu 
instead of Run, hold down the Option key to toggle to Run, then 
choose Run. 

Symantec C++ User's Guide and Reference 13-1 



• 13 Tutorial: Vector 

When you have observed Vector in action, choose Run with 
Debugger from the Project menu. If Run is displayed on the 
Project menu instead of Run with Debugger: 

1. Set the option Run with Debugger on (found on the 
Project Options page of the Project Options dialog 
box). 

2. With the Debugger running, choose Preferences from 
the Debugger's Edit menu. 

3. On the Debugger's Preferences dialog box, set the Save 
Expressions and Breakpoints preference off. 

Because you will be running the project several times, 
you will find it more convenient if you do not have 
breakpoints left over from previous runs. 

About the Vector Project 
The Vector project is an application that uses inline functions and 
templates to demonstrate how these features work in Symantec C++. 
The project uses templates to implement a vector (array) class of any 
type, finds the maximum value in a vector, and sorts any kind of 
vector. Vector displays its output, including the results of two inline 
functions, on the console (Figure 13-1). 

press «return» to eHit 
inl ineMax<8419, 19263): 19263 
nextLet ter<H): I 

vecMax<vi ): 83 
Unsorted: 41 74 75 83 36 64 3 
Sorted: 3 36 41 64 74 75 83 

vecMax ( vc ) : W 
Unsorted: W L I P R U I 
Sorted: I I L P R U W 

vecMax(vf): 9. 7 
Unsorted: 9.7 4.2 7.7 6.5 9. 1 4.8 5.5 
Sorted: 4.2 4.8 5.5 6.5 7.79.1 9.7 

vecMax<vd): 4/1/93 
Unsorted: 4/1/93 9/15/12 8/18/73 3/20/41 11/23/17 4/26/42 9/22/17 
Sorted: 9/15/12 9/22/17 11/23/17 3/20/41 4/26/42 8/18/73 4/1/93 

Figure 13-1 Vector's console window 

7 3-2 Symantec C++ User's Guide and Reference 



Debugging ln/ine Functions + 

In this tutorial, you run the Vector application several times. After it 
runs, notice that the title of the window changes from "console" to 
"press «return» to exit." To exit Vector, press Return, or choose Quit 
from the application's File menu when the console window is 
active. If the Debugger is active, you can choose Quit from the 
Debugger's File menu or ExitToShell from the Debugger's Debug 
menu. 

Most of the procedures in this tutorial start from the file main. cp, 
so you may want to look at that file before you continue. 

Debugging lnline Functions 
To cut down on the overhead of function calls for small functions, 
C++ allows you to specify "inline" functions. Instead of generating 
code for a function call, Symantec C++ generates the code for the 
function in which the function call would otherwise be displayed. 

In C++ there are two ways to declare inline functions. One way, for 
global functions, is to use the inline specifier. The second way is 
to provide the definition (not just a declaration) for a member 
function in a class declaration. 

In Vector, the function inlineMax () in the file main. cp and the 
function nextLetter () in the file next.hare global inline 
functions. In the template class vector in the file vector. h, the 
constructor, destructor, and member function size ( ) are inline 
functions because the definitions are provided in the class 
declaration. 

Although inline functions behave syntactically like normal functions, 
you cannot debug them because the compiler does not generate a 
function call for them. That means you cannot set a breakpoint in an 
inline function and you cannot step into an inline function. 

To debug inline functions, turn on the Use Function Calls for Inlines 
option on the Debugging subpage of the PowerPC C++ Options 
page of the Project Options dialog box. When this option is set on, 
Symantec C++ generates normal function calls for inline functions. 

Symantec C++ User's Guide and Reference 13-3 



• 13 Tutorial: Vector 

Note 
The inline specifier is an indicator to the compiler 
that it should try to generate the code directly 
instead of creating a function. Just as not every 
variable declared register necessarily ends up in 
a register, a function declared inline may not 
actually be an inline function. 

1. If the function is in a source file, set a breakpoint in the 
inline function as you would for any other function. 
Choose Run with Debugger from the Project menu. 
When the Main debugger window is displayed, 
Command-click the title bar to open the Markers pop­
up menu, then choose inl ineMax . The Code pane 
scrolls to the inlineMax () function and you can then 
set a breakpoint by clicking a diamond (Command-B), as 
shown in Figure 13-2. 

Code 

??? <6 Ox000733 
??? <P OxOOR9RB 
??? <P OxOOR9B1 

! inl ine int llftMitill< int x) 
i { 

~~',,, } return x > y ? x : y; f> •a i n OxOOR9BB 

te•plate <class T> T vecMax<vector<T>& v) 
{ 

<>! int n = v.size< ); 
T max= v!Ol; <>I 

<>i 
<>! 
<>I 
<>! 

qi 

for (int i = 1; i < n; i++) 
if (v Ii I > max) 

max= vii l; 

return max; 

#pragma template....access pub I ic 
#pragma template vecMax(vector<int>&) 
#pragma template vecMax<vector<char>&) 
#pragma template vecMax<vector<float>&) ~ 

m:mmmmmmmmmmmmmmmmmmmmmmm:mmmmmmi:mm:mmmmmmm + 

Figure 13-2 Setting a breakpoint in inlineMax() 

13-4 Symantec C++ User's Guide and Reference 



Stack Crawl 

??? 
??? 

Debugging lnline Functions + 

2. If the inline function is in a header file, Option-click the 
window's title bar to open the Headers pop-up menu 
and choose the header file that contains the function you 
want. 

For example, to set a breakpoint in the function 
next Letter ( ) , choose next.h from the Headers 
pop-up menu (Figure 13-3). 

Ox000733 
OxOOR9RB 

Code 

main.cp 

inl ine int inl ineMa 
{ 

main.op 

iostream.h 
m Date.h 

y) 

??? <P OxOOR9B1 
~ •a in OxOOR9BB 

<>! 

QI 
return x > y ? 

veotor.h 

<>i 
<>I 
<>! 
<>i 
<>I 
<>! 

QI 

te•plate <class T> T vecMax<vector<T>& v) 
{ 

int n = v.size( ); 
T max= vlOJ; 

for (int i = 1; i < n; i++) 
if <vii J > max) 

max = vii J; 

re turn max; 

template_access public #pragma 
#pragma 
#pragma 
#pragma 

template vecMax<vector<int>&) 
template vecMax<vector<char>&) 
template vecMax(vector<float>&) + 

m1Mmmmmmmmmmmmmimmmmmm1mimimmmmmm1mmmwmmm11mmm:m: $ 

Figure 13-3 Opening a header file in the Code pane 

Symantec C++ User's Guide and Reference 13-5 



• 13 Tutorial: Vector 

Stack Crawl 

??? (6~ 
??? <P~ 
??? <P~ 

I> •a in 

0l~lT1 

The header file is displayed in the Code pane. You can now set a 
breakpoint in the nextLetter () function (Figure 13-4). 

neHt.h 
Code 

Ox000733 /*** ** 
OxOOA9AB * next.h 
OxOOA9B1 * 
OxOOA9BB * An in line function for the Vector tutoria 1. 

* 
*****/ 

inl ine char nextlet ter <char c) 
{ 

~~ 
if ( c -- 'z') 

return 'a'; 
<> i if ( c -- 'z') 
<>i return 'A'; 
<>! return c+l ; 

<>I 
} 

~ 1)19 

Figure 13-4 Setting a breakpoint in nextletter() 

Note 
If the Use Function Calls for Inlines option is set off, 
you w ill not see any breakpoint diamonds next to 
the inl ineMax ( ) function, and the next . h file 
isn't available in the pop-up menu because it does 
not generate any code. This is illustrated in 
Figure 13-5. 

!2I=' 

~ 

-0 

l li!:i 

13-6 Symantec C++ User's Guide and Reference 



Using and Debugging Templates + 

III 
Stack Crawl 

~main.cp 
Code main.op 

??? OxOOOo .Q, ' •pragma template vecMax( >&) 
! mJ1_Date.h 

??? Ox009E •pragma template vecMax ( '"" ,..,, ..,, t > & ) 
??? Ox009~ •pragma template vecMax(vector<myDate>&) 

t> •ain Ox009E 
void main() 
{ 

inti ,r1,r2; 
char cl, c2; 
int mxi; 
char mxc; 
float mxf; 

<>+ myDate mxd; 
< vector< int> vi (vectors i ze); 
<>i vector<char> vc(vectorSize); 
<>! vector< f I oat> vf(vectorSize); 

<)I vector<myDate> vd(vectorSize); 

II Set up the oonso le window 
<>i console....options.nrows = 20; 

<)' 
ios::sync....with...stdio(); 

I/ in line functions: 

~ 
<)l rl = rand()· 

~l~lTl Ii 

The file instance. cp, 
which is located in the 
same folder as the Vector 
project, contains the code 
from this section, so you 
can experiment with it. 

Figure 13-5 Pane with Setting Function Calls for lnlines option off 

Using and Debugging Templates 
The template mechanism in C++ lets you define "container classes" 
and "generic functions" without giving up type checking. Vector 
provides examples of both a container class (the vector class) and a 
generic function (the sorting routine). 

As the names imply, template functions and template classes are not 
actual functions and classes. Rather, they are schematics for building 
real functions and classes for types that you specify. This section 
introduces some useful techniques for using and debugging 
templates in Symantec C++. 

Instantiating templates 
The compiler never generates code for template definitions. 
Consider this trivial function template: 

template<class T> T sq(T v) 
{ 

return v * v; 

Symantec C++ User's Guide and Reference 13-7 



• 13 Tutorial: Vector 

Symantec C++ compiles the template, but it does not generate code 
for it. To generate code, you need to instantiate the function. There 
are two ways to do this: By using the template itself or through a 
#pragma directive. 

You can instantiate a template function by using it as follows: 

void byUse () 
{ 

int i = 5; 
float f = 3.14; 

i = sq (i); 
f sq ( f); 

In this example, the compiler instantiates two versions of the 
function sq ().One version takes an int argument and the other 
takes a f 1 oat argument. 

You use the #p:tagma directive as follows: 

#pragma template sq(int) 
#pragma template sq(float) 

These two directives instantiate the int and float versions of the 
function sq ( ) . 

Instantiation is similar for class templates. The only difference is the 
syntax of the #pragma directive: 

#pragma template tVector<int> II instantiate an 
II int version of 
II tVector 

This tutorial shows you two ways to use templates. The first, called 
simple templates, is a straightforward instantiation by use. The 
second employs instantiation files and the template pragma to 
instantiate specific versions of template functions. 

A simple template is one that you include through a header file or 
that you write in your code. The advantage of this type of template is 
that you do not have to create special files for each instance of a 
template function. The disadvantage is that you cannot debug every 
instance of a template function or class. 

13-8 Symantec C++ User's Guide and Reference 



Using and Debugging Templates + 

Instantiation files use a more elaborate arrangement of header and 
source files. This produces one file in the project for each instance of 
a template function or class, each of which you can debug. 

Templates and debugging information 
Knowing how the Symantec C++ compiler generates debugging 
information for template functions and member functions is key to 
understanding the difference between simple templates and 
instantiation files. 

For source files, Symantec C++ generates debugging information for 
each function or member function for which source code is 
available. This works well for normal functions and member 
functions, because there is always a one-to-one correspondence 
between the source code and the object code, even for overloaded 
functions. Consider these two functions: 

int max(int a, int b) 
{ 

return a > b ? a : b; 
} 

char max(char a, char b) 
{ 

return a > b ? a : b; 

The Symantec C++ compiler generates object code and debugging 
information for the function max (int, int) and for the function 
max (char, char) . 

Now consider this template function: 

template<class T> T tMax(T a, T b) 
{ 

return a > b ? a b; 

void foo(int i, int j, char x, chary) 
{ 

} 

int n; 
char c; 

n tMax(i, j) 
c = tMax ( x, y) ; 

Symantec C++ User's Guide and Reference 13-9 



13 Tutorial: Vector • 

You can use the 
Disassemble command in 
the Build menu to examine 
the code that Symantec 
C++ generates for each 
version. 

The Symantec C++ compiler does not generate object code or 
debugging information for the template itself. It generates code only 
when the function is instantiated. In the example above, Symantec 
C++ generates object code for the functions tMax (int, int) and 
tMax (char, char) . 

Because source code is available, the compiler also generates 
debugging information. Because the debugger requires a one-to-one 
correspondence between source code and object code, however, the 
debugging information applies to only one instance of the tMax ( ) 
function. Unfortunately, you cannot tell the instance that has 
debugging information. If you set a breakpoint in tMax ( ) , you 
might stop in tMax (char, char) or in tMax (int, int). 

Debugging simple templates 
In Vector, the template function vecMax ( ) in the file main. cp uses 
the simple template approach. This is how vecMax ( ) appears in 
main.cp: 

template <class T> T vecMax(vector<T>& v) 
{ 

int n 
T max 

v.size(); 
v [ 0 l ; 

for (int i = 1; i < n; i++) 
if (v[i) > max) 

max = v[i); 

return max; 

The function takes a vector of a particular type T as an argument and 
returns the largest element in the vector. This function works for any 
type for which the greater than operator is defined. 

In the function main (), there are four calls to vecMax () for the 
built-in types int, char, and float, and the user-defined type 
myDate. The appearance of each call to vecMax () creates a new 
instance of the function. When you compile the file main. cp, 
Symantec C++ generates code for four different versions of 
vecMax ( ) . As explained above, the compiler generates debugging 
information for only one of those instances. 

13-10 Symantec C++ User's Guide and Reference 



Using and Debugging Templates + 

To see what that looks like, make sure that the Run with Debugger 
option is set on, and choose Run with Debugger from the Project 
Manager's Project menu . 

Command-click the title bar to get the Markers pop-up menu and 
choose vecMax. The code pane scrolls to the definition of 
vecMax () near the beginning of the file main. cp. Set a breakpoint 
in the template function vecMax ()(Figure 13-6). 

St<ick Cr<iwl 

??? Cf Ox00073 
??? CF Ox009E2 
??? CF Ox009E2 

~•ain Ox009E3 

Code 

main.cp 

te•p I ate <c I ass T> T nml!<vector< T>& 
{ 

<>) int n = v.size() ; 
<>j T max = vCOJ; 

•.l for ( int i = 1; i < n; i ++ ) 
~~ i f ( v [ i l > max ) 
<> ! max = v [ i l ; 

<>! return max; 
<>! 

#pragma templa te_access pub I ic 
#pragma template vecMax( vector <int >&) 
#pragma template vecMax(vector <char >&) 
#pragma template vecMax(vec tor<f loat>&) 
#pragma template vecMax(vector <myDate >& ) 

void ma in<) 

Figure 13-6 Setting a breakpoint in vecMax() 

Symantec C++ User's Guide and Reference 13-11 



• 13 Tutorial: Vector 

Now click Go and notice where execution stops (Figure 13-7). 

1n==:=:::==============n=:::==:==~=iill ,.;c ... od!•.~' ... ";;"._;· ..._.._.._ ...... .._...._....__...._.._ ...... .._..__.....,,...... 

<>I { return x > y ? x : y; ??? <PPC> 
??? <PPC> 

fl>•ain 
fl> vecnax<vector< int>&> 
fl> vecnax<vector< i nl>& > 

: '<>I :e•plate <class T> T vecMax(veclor<T>& v) 

<>I < 
<>~ 

int n = v.sizeO; 
T max = v[OJ; 

>:!~ 
<>i 
<>l 
<>i 

for (int i = 1; i < n; i++) 
if (v[i I > max) 

max= v[i I; 

return max; 

•pragma lemplale....access pub I ic 
•pragma lemplale vecMax<veclor<inl>&) 
•pragma lemplale vecMax<veclor<char>&) 
•pragma lemplale vecMax<veclor<floal>&) 
•pragma lemplale vecMax(veclor<myDale>&) 

void main() 

Figure 13-7 Breaking inside vecMax() 

You can see from the Stack Crawl pane of the Debugging window 
that the debugger stopped execution at the 
vecMax (vector< int>&) instance of the template function. Click 
Go again, and notice that the program does not stop this time. 

Note 
The current version of Symantec C++ generates 
debugging information for the first instantiation of a 
template function. However, you should not rely on 
this behavior; it may change in the future. 

As you can tell from the output in the console window, even though 
Symantec C++ generated debugging information for only one 
instance of the vecMax ( ) function, it did generate code for the 
other three versions. 

13-12 Symantec C++ User's Guide and Reference 



Using and Debugging Templates + 

If you are writing an uncomplicated template function such as 
vecMax ( ) , there is nothing wrong with using the simple template 
technique. For such functions, you probably will not need the 
Symantec Debugger at all. But if you are writing a more complex 
template function or a template class, you may need to be able to 
debug every instance or a particular instance of the template. To do 
so, you need to use the instantiation file technique. 

Using template instantiation files 
The template instantiation file technique forces the Symantec C++ 
compiler to generate debugging information for each instance of a 
template function or class. The Vector application uses this technique 
for the vector class and for the selection () function, which 
implements a selection sort. 

To use this technique, you must use the #pragma template­
access directive. This directive instructs the compiler how to 
instantiate templates and whether the templates should be public or 
private. There are three options: · 

Note 

• #pragma template-access static: This is the 
default setting. Each template is instantiated every time it 
is referenced. Multiple files that ref er to the same template 
each produce an instantiation. Template functions or 
classes instantiated this way have local linkage (as the 
name static implies). 

For restrictions regarding template use and this 
#pragma, see the Symantec C++ Compiler Guide. 

For example, in main. cp the vecMax ( ) function could 
be instantiated in this manner. If this function appeared 
in a header file, it would be instantiated in each source 
file that referred to it. Each such instantiation generates a 
static copy of the function. 

Symantec C++ User's Guide and Reference 13-13 



• 13 Tutorial: Vector 

• #pragma template-access extern: This #pragma 
informs the compiler that no templates should be 
instantiated under any circumstances. Instantiation refers 
to the generation of code/data for a template class. The 
template class body is always parsed by the compiler 
whenever it is referenced. 

Note 

This template-access directive appears in vector. h 
and selection. h to inform the compiler that no code/ 
data should be generated for these templates. This 
#pragma must be used in conjunction with template­
access public because otherwise undefined symbol 
errors would be generated for template classes and 
functions. 

Inline template functions are always inlined (if they 
can be), regardless of the #pragma template­
access directive that is in effect. 

• #pragma template-access public: This #pragma 
informs the compiler that any templates explicitly 
expanded with the #pragma template directive should 
be generated as externally defined symbols in this 
translation unit. It is used in conjunction with #pragma 
template-access extern when explicit instantiation 
files are created. vector<x>. cp uses this technique to 
generate the code/ data for specific instances of the 
template class. 

Using this technique, you first create a file for the template class 
declaration or the template function declaration. In the Vector 
project, the vector class declaration is in the file vector. h. 
Include this file in any other source file that needs the declaration of 
your template class. The selection () template function 
declaration is in the file select ion. h. Include this file in any 
source file that calls for the template function to provide a function 
prototype for selection (). 

73-14 Symantec C++ User's Guide and Reference 



Using and Debugging Templates + 

Next, you create an implementation file for the definitions of the 
template member functions and the template function. By 
convention, the name of this file is the name of the class or function. 
For the vector class, the implementation file is the file 
vector. cp. It contains the definitions of all the template functions 
that are not defined as inline functions. For the selection () 
function, the implementation file is the file selection. cp. As you 
will see, you do not add the implementation file to the project. 

Instead you create an instantiation file for each instance of the 
template class or template function. By convention, the name of this 
file follows the same format as #pragma template directive. The 
instantiation file for the int version of the vector class is named 
vector< int>. cp. The instantiation fi1e for the float version of 
the selection () function is named selection (float) . cp. 
The contents of the instantiation file look like this: 

#include "vector.cp" 
#pragma template_access public 
#pragma template vector<char> 

The #include statement brings in the implementation file. The 
#pragma template_access public directive ensures that the 
scope of the instantiation of the class and its member functions is 
public. If you leave out this directive, the template_access 
extern directive in the header files prevents any templates from 
being expanded, and the class and its member functions are not 
available to other files in the project. As you read earlier, the 
directive #pragma template vector<char> asks the Symantec 
C++ for Power Macintosh compiler to instantiate a char version of 
the vector class. 

The instantiation file for template functions looks the same. The only 
difference is the function syntax for #pragma template: 

#include "selection.cp" 
#pragma template_access public 
#pragma template selection(vector<float>) 

Add the instantiation file to the project. 

Symantec C++ User's Guide and Reference 13-15 



• 13 Tutorial: Vector 

Note 
The other files in the project must be compiled with 
the #pragma template_access externfor 
this technique to work. 

As you can see in the Vector Project window, there are four 
instantiation files for the vector class and four instantiation files for 
the selection function. 

Debugging with instantiation files 
When you use the template instantiation file technique, Symantec 
C++ generates object code for only one instance of the template per 
file. When the debugging option is set on, it generates debugging 
information only for that instance, so the Debugger is able to 
maintain a one-to-one relationship between object code and source 
code. 

Because the instantiation file in the project doesn't contain code, use 
a pop-up menu from a Debugger window's title bar to reach the 
implementation file that the instantiation file includes. 

Here's how to set a breakpoint in the char version of the 
selection () function. 

Choose Run or Run from Debugger from the Project Manager's 
Project menu to run Vector. Click the Project window to make it 
active or choose Vector.1t from the Debugger's Windows menu. 

13-16 Symantec C++ User's Guide and Reference 



Using and Debugging Templates + 

Click the filename selec tion (char). cp in the Project window, 
and choose Debug File from the Project Manager's Project menu . 
The file is displayed in the Code pane of a Debug Browser window, 
as shown in Figure 13-8. 

selec tion(char).cp 

<> i #inc I ude '"se I ect ion . cp'" 
#pragma template_access public 
#pragma templa te select ion <vector <char >) 

<> ! 
<> ! 

Figure 13-8 Instantiation file in the Code pane 

Symantec C++ User's Guide and Reference 13-1 7 



• 13 Tutorial: Vector 

To see the code in the included implementation file 
selection. cp, Option-dick the Debugger window's title bar to 
open the pop-up menu. Choose the implementation file from the 
pop-up menu, as shown in Figure 13-9. 

selection(char).cp 

<>l',,, #include "selection.cp" 
#pragma template_access pub I ic 
#pragma template selection<vector<char>) 

<:>! 
<>_ 

Figure 13-9 Choosing the implementation file 

13-18 Symantec C++ User's Guide and Reference 



Using and Debugging Templates + 

Now the implementation source code is displayed in the Code pane 
of a Debug Browser window. Set a breakpoint in the function 
selection (), as shown in Figure 13-10. 

selection.cp 

/***** 
* select ion .cp 

* 
i * A selection sort function fot· illustrating templates. i : This algorithm comes from _Algorithms_, Second Edition_. by Robert Sedge\vick. 

*****/ 

#include "vector.h" 
#include "selection h" 
#pragma template_access pub I ic 

te•plate <class T> void selection(vector<T>& v) 
{ 

inti, j, min, n; 
T t; 

+~ n = v . s i ze < >; 

<> i for ( i = O; i < n ; i ++ ) { 

<> ! min= i ; 
<> i for ( j = i +1; j < n ; j++) 
<> ! if <v Cj l < v Cminl ) 
<> i min=j; 
<> ! t = v[minl; 
<> i v[minl = v [ i l ; 
o i vc i J = t ; 

Figure 13-10 Setting a breakpoint in the implementation file 

Symantec C++ User's Guide and Reference 13-19 



• 13 Tutorial: Vector 

' /***** 
* selection .cp 

* 

Click the Control palette's Go button (Command-G). Note that 
execution does not stop in the int version of selection (). It 
stops only for the char version of selection (),as shown in 
Figure 13-11. 

selection.cp 

i * A se leotion sort function for illustrating templates. 

l .~::::.•l~=~oo~~ from _AJ~rilhm•-, ~ooOO '"""' ~ ROOwt ~~M~ 

!',,,',,,',,, =~~~~~~et~:~::~!~~~~~s public 

te•plate<class T> uoid selection<vector<T>& v) 
{ 

inti, j, min, n; 
T t; 

·~ o: 
<>i o: 
<>i o: 
<>l 
(>~ 
(>~ 

ol 
+ 

n = v.size( ); 

for ( i = O; i < n; i++) { 
min = i · 
for <j '= i+1; j < n; j++) 

if <vlj l < vlminl) 
min = j; 

t = vlminl · 
vlminl = vC i l; 
vii l = t; 

Figure 13-11 Stopping in the char version of selection() 

You can use the same steps to set breakpoints for other instantiations 
of selection () or to set breakpoints in the vector class member 
functions for specific types. 

13-20 Symantec C++ User's Guide and Reference 



What to Do Next + 

What to Do Next 
This tutorial showed you some basic techniques for working with 
inline functions and templates in Symantec C++. If you are just 
learning C++, you might find Vector useful for trying out different 
things. 

Create wrapping subscripts 
The vector class shows how to write a subscript operator. Rewrite it 
so that the subscripts wrap around when they're out of range. For 
example, if the vector object foo contains ten items, the in-range 
subscript references are foo [ 0 J to foo [ 9 J. If you use any out-of­
range subscript, like f oo [ 10 J , the current subscript operator always 
returns the first element in the vector, foo [ 0 J. But if the subscript 
operator wrapped, it would return f oo [ 0 J for f oo [ 10 J , f oo [ 1 J 
for f oo [ 11 J , f oo [ 2 J for f oo [ 12 J , and so on. 

Add new methods to myDate 
• A > > operator that reads in a date from the console or a 

file. First, write the function to read dates written such as 
0 5 I 0 4 I 9 5. Then, extend it to read dates written such as 
Apr . 2 8 , 19 9 6. Declare the function this way: 

friend ostream& operator>> 

(ostream& s, const myDate& d); 

• A > operator that returns whether one date is later than 
another. For example, June 30, 1995 is later than 
December 13, 1994. Declare the function this way: 

friend int operator> 

(canst myDate& dl, canst myDate& d2); 

• A + operator that adds a number of days to a date and 
returns a new date. For example, 21 days +December 12, 
1994 =January 2, 1995. You have to write two functions: 
one that takes the date first and the number of days 
second, and another that takes the number of days first 

Symantec C++ User's Guide and Reference 13-21 



• 13 Tutorial: Vector 

and the date second. These functions need to take into 
account leap years and the number of days in each 
month. Declare one of the functions this way: 

friend rnyDate operator+ 

(const rnyDate& date, 

canst int& days); 

• A - operator that subtracts one date from another and 
returns a number of days. For example, March 15, 1995 -
January 25, 1995 = 49 days, and July 6, 1995 - August 10, 
1995 = -35 days. This function needs to take into account 
leap years and the number of days in each month. 
Declare the function this way: 

friend int operator-

(const rnyDate& dl, const rnyDate& d2); 

Write a new sort function 
Use the selection () function in the file selection. cp as a 
starting point for a different kind of sort. You can find sorting 
algorithms in many computer science textbooks and tutorials. 

Create a new class and sort it 
Write your own class; for example, classes for strings, times, or 
people's addresses. Create a vector from it and sort it. 

Change the vecMaxO function into a member function 
Make the vecMax ( ) function a member function of vector. 
Remember, the new member function won't take a vector object as 
an argument. Instead, call the function in this way: 

i = rnyVector.rnax(); 

Create a template function 
The code that prints out the vector maximum, the unsorted vector, 
and the sorted vector is repeated four times in main ().Write a 
template function that does its work. 

13-22 Symantec C++ User's Guide and Reference 



Tutorial: 
Beeper• 

14 
Ti.is tutorial demonstrates some of the basic properties of Visual 

Architect. It shows you how to create a simple application called 
Beeper using the THINK Class Library. Visual Architect helps you 
build the user interface portion of Beeper. 

About the Tutorial 
This tutorial serves as an introduction to Visual Architect. The 
application you build, called Beeper, calls up a dialog box 
containing an edit text field. This field can be used to indicate the 
number of times a Macintosh beeps. The dialog box also_ contains a 
push button that starts the beeping. 

Getting Started 
Before you can build the user interface portion of Beeper using 
Visual Architect, you need to create a Beeper project. You are 
probably familiar with these steps from other tutorials in this 
manual-for example, the Hello World tutorial in Chapter 10. As a 
reminder, the steps for creating a project are also included here: 

1. From the Finder, launch the Symantec Project Manager, 
which resides in the Symantec C++ for Power Mac 
folder. 

The File Open dialog box opens. 

2. Choose New Project to open the File Save dialog box. 

Symantec C++ User's Guide and Reference 14-1 



14 • Tutorial: Beeper 

3. Navigate to a location outside the Symantec C++ for 
Power Mac folder (in other words, outside the system 
tree), and click New. 

The New Folder dialog box opens (Figure 14-1). 

Name of new folder: 

leeeper f 

( Cancel ) [Create ] 

Figure 14-1 New Folder dialog box 

4. Type Beeper f and click Create. (Press Option-F for f.) 

You have now created a folder named Beeper f. The 
File Save dialog box becomes frontmost again. 

5. Type Beeper. 7t in the Create New Project textbox. 
(Press Option-P for 7t.) 

6. Choose VA Application from the Project Model pop-up 
menu, and click Save. 

14-2 Symantec C++ User's Guide and Reference 



Getting Started + 

le Beeper f ....-1 =Macintosh HD 
~~--==========~~~ 

Eject 

Desktop 

New LJ ) 

-0 
( 

Create New Project: ' loeeper.n 

Project Model: ./Empty Project 

ANSI C 
ANSI C++ (IOStreams) 
C Mac Application 
C++ Mac Application 
Natiue MPW Tool 
UR App w/Shared TCL 
LIA Application 

Cancel 

Saue 

Figure 14-2 Project Model pop-up menu in the File Save 
dialog box 

The Project file Beeper .1t is created in the folder 
Beeper f, and a window titled Beeper.1t is displayed. 

) , 

With the Beeper project created, you are now ready to build an 
application with the functionality required for this tutorial. Doing so 
involves the following steps: 

• Designing the user interface 
• Generating the code and upgrading the project 
• Modifying the generated code 
• Updating and running the application 

Symantec C++ User's Guide and Reference 14-3 



14 • Tutorial: Beeper 

Designing the User Interface 
To design Beeper's user interface, you must first launch Visual 
Architect. Using this tool, you can then create the appropriate dialog 
box, push buttons, and menus. 

Starting Visual Architect 
Visual Architect can be launched directly from the Symantec Project 
Manager. In the Beeper.1t Project window, shown in Figure 14-3, 
double-dick the Visua l Architect. rsrc file to launch Visual 
Architect with this file. 

IC ../ Beeper. n . . . . -----
~-->< 

I Headers ..- j Options I Bee~er .11 .... , 
& -&Name fr 'll! ~ Code 

• ~ Project Resources .rsrc o,Q 
t;:> ~ Runtime Ub..-a..-1es 0 

~ ~ THINK Class Ub..-a..-y 0 

• ~ \lisua 1 Architect .rsrc 0 

Totals 0 

-0 
~ 

Figure 14-3 Beeper.n Project window 

14-4 Symantec C++ User's Guide and Reference 



Designing the User Interface + 

The Views List window is displayed, showing a list of the defined 
views in Visual Architect. rsrc (Figure 14-4). 

;;;11§ Uisual Rrchitect.rsrc 
Main 

Figure 14-4 Visual Architect.rsrcViews List window 

Creating a view 
As you can see in Figure 14-4, Main is the only view defined in 
Visual Architect. rsrc. To add a new view: 

1. Choose New View from the View menu to open the 
New View dialog box (Figure 14-5). 

Please name the new uiew 

Uiew Kind: ._I _D_i_a_lo...;g~------' 

( Cancel ) ( OK J 
Figure 14-5 New View dialog box 

Symantec C++ User's Guide and Reference 14-5 



14 • Tutorial: Beeper 

2. Type BeeperDialog in the Name textbox, choose 
Modal Dialog from the View Kind pop-up menu, and 
click OK. 

A new window titled BeeperDialog opens. This is the 
BeeperDialog View Edit window, in which you construct 
the BeeperDialog view. 

Adding pane elements to the dialog box 
To add pane elements to the BeeperDialog dialog box, first add a 
static text pane: 

Note 

1. Click the Tools menu and tear off the Tool palette 
(Figure 14-6). Put the Tool palette off to the side of the 
screen. 

Static Text 
l 

llommlliiillllmmmmm 
Select.-----;-~ A ~t--DialogText 
Push Button - @ @ 181 

8 II~ 
~(I)~ 

~~g 

+oo 
"'-0 c1 

Figure 14-6 Tool palette 

Before you start adding panes, you may 
want to look ahead to the finished dialog 
box (Figure 14-12). 

2. Click the Static Text tool on the Tool palette. 

Note that the cursor changes to an I-beam when it is 
over the BeeperDialog View Edit window. 

14-6 Symantec C++ User's Guide and Reference 



Note 

Designing the User Interface + 

3. Click the cursor near the left side of the dialog box to 
position the static text pane. 

A blinking insertion point appears, indicating that you 
should enter the text for the item. 

4. Type Number of beeps: and click elsewhere in the 
window to end the typing task. 

You can reposition any panes you add to a view by 
dragging them within the window. 

Next, add a dialog text pane: 

1. Choose the Dialog Text tool from the Tool palette. Note 
that the cursor changes to a crosshair when it is over the 
dialog box. Click the cursor to the right of the static text 
pane you just added to position the dialog text pane. An 
edit textbox is displayed. 

2. Choose Class from the Pane menu and choose 
ClntegerText from the pop-up menu (Figure 14-7). 

Size 
Style 
Color. .. 

Hlign ~ 
Bring To Front 
Send To Back 

Set Button Group 

Identifier... 3€J 

Figure 14-7 Setting the class of the dialog text pane 

Symantec C++ User's Guide and Reference 14-7 



14 • Tutorial: Beeper 

You can constrain the type of text the user is allowed to 
enter into the dialog text pane by selecting a special 
THINK Class Library class. In this example, you 
constrained the text to integers. The dialog text pane 
then becomes an instance of the class you selected. 

The next item to add is an OK button: 

1. Choose the Push Button tool from the Tool palette. 

2. Click below the dialog text pane you just added. 

A push button named OK is displayed. By default, the 
first push button added to a view is named OK. 

The last item to add to the dialog box is the button that calls the 
beep function: 

1. Choose the Push Button tool from the Tool palette. 

2. Click to the right of the dialog text pane. 

A push button named Cancel is displayed. By default, the 
second push button added to a view is named Cancel. 

3. Type Beep to rename it. 

14-8 Symantec C++ User's Guide and Reference 



Designing the User Interface + 

Your dialog box should now look like the one displayed 
in Figure 14-8. 

BeeperDialog 

Number of beeps: Beep 

Figure 14-8 BeeperDialog dialog box 

Creating a command to execute a function 
By default, a cmdOK command is sent by the OK button when the 
button is clicked. The cmdOK command is a predefined THINK Class 
Library command for closing dialog boxes in response to clicks on 
the OK button. However, the command that the Beep button sends 
when it is clicked has not yet been defined. This command will call 
the beep function, and you must define it yourself: 

1. Choose Commands from the Edit menu. 

The Commands dialog box opens (see Figure 14-9), 
which lets you add commands to those already defined 
in the THINK Class Library. 

2. Choose New Command from the Edit menu 
(Command-K) or press Return to activate the edit text 
field. Type cmdBeep to name the command. 

This step adds a new command item named cmdBeep. 

Symantec C++ User's Guide and Reference 14-9 



14 • Tutorial: Beeper 

3. Choose CBeeperDialog from the In Class pop-up menu 
to indicate that the cmdBeep command should be 
handled by the class CBeeperDialog. 

Commands 

cmdl HalfSpace 
cmdHbout 
cmdHlignCenter 
cmdHlignleft 
cmdHlignRight 

I cmdBeep 

cmdBeep 
cmdBold 
cmdCancel 
cmdClear 
cmdClose 

Figure 14-9 Using the Commands dialog box 

(Cancel) 

OK 

4. Choose Call from the Do pop-up menu to indicate that 
cmdBeep calls a function, namely the one that causes 
the beeps. 

Visual Architect later generates skeleton code for the 
member function, into which you hand code your 
CBeeperDialog class. Note that a command number 
(512, in this case) is generated automatically for this 
command. This is the number that THINK Class Library 
routines use to identify the command. 

5. Click OK to close the Commands dialog box. 

14-10 Symantec C++ User's Guide and Reference 



Designing the User Interface + 

Associating a command with a button 
To have the Beep button send a cmdBeep command when it is 
clicked: 

1. Choose Pane Info from the Pane menu (Command-L). 

The Pane Info window for the push button opens. You 
can then manipulate the values of many of the class 
variables in the selected pane's class as well as in its base 
classes up through CView. 

2. Click the small triangle next to CButton to access the data 
members of the CButton class (Figure 14-10). 

ldentlfiel": I Butn4 

Left: 1270 
:::::=====: 

Width: 160 
~--~ 

CButton 

Butn4 

Top: ~I s_o __ ~ 

Height: ~I 2_0 __ ~ 

Command: I cmdCancel TI 
~ CContnl 

~ CPane 

~ CYiev 

Figure 14-10 Opening the CButton class in the Pane Info window 

3. Choose cmd.Beep from the Command pop-up menu, 
which lists available commands. 

4. Close the Pane Info window by clicking its close box. 

Now a cmdBeep command is sent when the Beep 
button is clicked. 

Symantec C++ User's Guide and Reference 14-11 



14 • Tutorial: Beeper 

Setting the default command 
Next, you should specify that cmdBeep is the default command for 
the BeeperDialog dialog box. The default command is the one sent 
when the user presses Return or Enter. 

1. Choose Set Default Command from the View menu to 
open the Default Command dialog box (Figure 14-11). 
As you can see, cmdOK is currently defined as the default 
command. 

Default Command 

Command: l._c_m_d_O_K _____ T_.I 

( Cancel) [ OK , 

Figure 14-11 Default Command dialog box 

2. Choose cmdBeep from the Command pop-up menu 
and click OK. 

Note that the Beep button has now been outlined in the 
BeeperDialog View Edit window and that the OK button 
has lost its outline. 

The BeeperDialog dialog box should resemble the one shown in 
Figure 14-12. 

14-12 Symantec C++ User's Guide and Reference 



Designing the User Interface + 

BeeperDialo 

Number of beeps: 

Figure 14-12 Completed BeeperDialog dialog box 

3. Close the BeeperDialog View Edit window by clicking its 
close box. You have now finished constructing the 
BeeperDialog dialog box. 

Adding a push button to the Main view 
The Visual Architect . rsrc file has a default view called Main, 
as you saw when you first started Visual Architect. To add a push 
button to this view that opens the BeeperDialog dialog box: 

I. Double-dick Main in the Views List window. 

The Main View Edit window opens. The Main view 
already contains two panes, a picture of class CPicture 
(the group of circles) and a static text pane of class 
CStaticText ("hello, world!"). You can better visualize 
these items by displaying their item numbers, as shown 
in the next step. 

2. Choose Show Item Numbers from the Options menu 
to display the item numbers in the Main View Edit 
window. 

The Main window currently is too small to display a new 
button without the user having to scroll. You need to 
increase the size of the window. 

Symantec C++ User's Guide and Reference 14-13 



14 • Tutorial: Beeper 

3. Drag the size box in the Main View Edit window to 
extend the window's size downward by approximately 
one inch. 

4. Resize the gray rectangle (the window's portRect) to fit 
snugly within the window using the sizing handle at its 
lower-right corner, as shown in Figure 14-13. 

Main : ................................................................................................ .. ...... .... .. ........................ .... ..... fa! 

,~.-­

• 

l ~ 

.............................................................................. + . ............................................................................................................................................ L.\ 

0,0 305, 290 

Figure 14-13 Resizing the Main View Edit window's portRect 

5. Now add the push button that opens the BeeperDialog 
dialog box. Choose the Push Button tool from the Tool 
palette. 

74-74 Symantec C++ User's Guide and Reference 



Designing the User Interface + 

6. Click just below the circles to position the button and 
type Beeper ... to name it, as shown in Figure 14-14. 

Main 

103, 240 181, 260 

Figure 14-14 Creating the Beeper button 

Creating the command to call up the dialog box 
Earlier in the tutorial, you created a command to be performed when 
the user clicked the Beep button in the BeeperDialog dialog box. 
Now you need to create a command to call up the BeeperDialog 
dialog box. This time, however, you do it in a slightly different way. 

1. Choose Pane Info from the Pane menu (Command-L) to 
bring up the Pane Info window for the push button. 

2. Click the small triangle next to CButton to access its 
data members. 

Symantec C++ User's Guide and Reference 7 4- 7 5 



14 • Tutorial: Beeper 

3. Choose Other from the top of the Commands pop-up 
menu. 

The Commands dialog box opens, in which you can 
now create a command. 

4. Choose New Command from the Edit menu 
(Command-K) or press Return to activate the edit text 
field. Type cmdBeeperDialog in the text field. 

5. Choose CMain from the In class pop-up menu to 
indicate the class that handles the command. 

6. Choose Open from the Do pop-up menu to indicate that 
the command should open a view. 

Now you are ready to indicate that you want this 
command to open the CBeeperDialog view. 

7. Choose CBeeperDialog from the View pop-up menu 
(Figure 14-15), to indicate that the command should 
open a view of class CBeeperDialog. Visual Architect 
later generates the code needed to open the 
BeeperDialog dialog box. 

Commands 

cmd 1 HalfSpace 
cmdRbout 
cmdRlignCenter 
cmdRlignleft 
cmdRlignRight 
cmdBeep 

I cmdBeeperDialog 

Number: 513 

Rctions:--------------~ 

In Class: I CMain ... 1 

Do: I ,..I 
c mdBeeperOialog 
cmdBold 
cmdCancel 
cmdClear 

(Cancel ) 

OK 

Figure 14-15 Setting the view that the cmdBeeperDialog 
command opens 

14-16 Symantec C++ User's Guide and Reference 



Designing the User Interface + 

8. Close the Commands dialog box by clicking OK. 

As you can see in the Pane Info window, 
cmdBeeperDialog is now set as the command the 
Beeper button sends when it is clicked. 

9. Close the Pane Info window. 

You are now finished designing the user interface using Visual 
Architect. 

Previewing your view 
Visual Architect lets you try out how the view will look and feel in 
your application. All the graphical elements in a preview are active. 
To preview the view you just created: 

1. Choose Try Out from the View menu (Command-Y). 

The Main View Edit window opens exactly as it opens in 
the running application. 

2. Verify that the Beeper button is highlighted when 
clicked, and that the scroll bars and size box function 
properly. 

3. Close the Main preview window by clicking its close 
box. 

You should now save your work. Choose Save from the File menu 
(Command-S). 

Symantec C++ User's Guide and Reference 14-17 



14 • Tutorial: Beeper 

Generating Code and Updating the Project 
Visual Architect must now generate the code to implement all the 
classes associated with the user interface you designed. To have it do 
this: 

Note 

Note 

1. Choose Generate All from the Symantec Project 
Manager menu (Figure 14-16). The menu title is the 
Symantec Project Manager application icon. 

The Main window must be selected from Visual 
Architect. rsrc for this to work. 

Bring Up To Date 3€0 
Run 3€8 

Figure 14-16 Symantec Project Manager menu 

Because you are using Visual Architect for the first 
time to generate code for this project, you need to 
choose Generate All. For subsequent code 
generation, choose Generate. Using the latter 
command, code is generated only for those classes 
that have changed since the last code generation. 

2. Check the progress of the code generation in the 
message box that opens (Figure 14-17). 

~ 
~ 

" 

Writing ... 

H_CBeeperDialog.h 

Figure 14-17 Code Generation message box 

14-18 Symantec C++ User's Guide and Reference 



Generating Code and Updating the Project + 

By default, Visual Architect uses the macro file 
GenerateTCLApp to generate code to a folder named 
Source in the Beeper f folder. After Visual Architect 
generates the files, it automatically adds them to your 
project into a group it creates named Source. 

3. Switch to Symantec Project Manager and open the 
Source group in the Beeper. 7t Project window if it is 
not already open. Click the small triangle to the left of 
the group's name. 

Visual Architect has added the new source files to your 
project in the Source group (Figure 14-18). 

, ~" ;' 

<,'~, 

• It Project Resources .rsrc oO 

El Runtime Libraries 0 

El Source 0 

• ~ CApp.op • 0 

• ~ CBeeperDia log .cp • 0 

• ~ CMain.cp • 0 

• ~ CSaver ....CMain.opp • 0 

+ ~ main.op • 0 

+ ~ References .cp • 0 

• ~ x....CApp.cp • 0 

• ~ x....CBeeperDia log .cp • 0 

• ~ x....CMain.op • 0 

El THINK Class Library 0 

• Ii Visua 1 Architect .rsrc 0 

Totals 0 {7 

Iii 

Figure 14-18 Beeper.7t Project window showing the Source 
group 

Symantec C++ User's Guide and Reference 14-19 



14 • Tutorial: Beeper 

Modifying the Generated Code 
To modify code generated by Visual Architect so you can write the 
beep function: 

Note 

Note 

1. Open the x_CBeeperDialog. cp file in the Project 
window by double-clicking its name. 

The x_ prefix of the x_CBeeperDialog. cp 
filename identifies it as containing the lower-level 
class description for the BeeperDialog view. This 
file has an associated header file 
x_CBeeperDialog. h. These lower-level files are 
regenerated from scratch each time you make 
changes to the BeeperDialog view and generate 
code in Visual Architect. 

2. Find the member function 
x_CBeeperDialog: : DoCmdBeep ( ) and copy it to the 
Clipboard. 

3. Open the file CBeeperDialog. cp. 

The CBeeperDialog. cp file has no prefix; thus it 
contains the upper-level class description for the 
BeeperDialog view. This file has an associated 
header file CBeeperDialog. h. Visual Architect 
generates these two files only once, so any hand 
coding in these files will not be overwritten. 

4. Paste the copied function at the end of 
CBeeperDialog. cp and rename it 
CBeeperDialog: :DoCmdBeep(). 

Because the class CBeeperDialog is derived from 
x_CBeeperDialog, the member function 
DoCmdBeep ( ) in CBeeperDialog. cp overrides the 
one in x_CBeeperDialog. cp. 

14-20 Symantec C++ User's Guide and Reference 



Modifying the Generated Code + 

5. As is, CBeeperDialog: :DoCmdBeep () doesn't do 
anything, so you need to modify it to look like this: 

I********************************************* 
DoCmdBeep {OVERRIDE} 

Respond to cmdBeep command. 
*********************************************I 

void CBeeperDialog::DoCmdBeep() 

long n; 
n = fBeeperDialog_Edit2->GetintValue(); 
for (long i = O; i < n; i++) 

SysBeep(l); 

The expression: 

Note 

fBeeperDialog_Edit2->GetintValue() 

calls the function GetintValue (),which is a member 
of the class ClntegerText from which fBeeperDialog 
is derived. The function returns the value in the edit text 
field as an integer. 

6. Near the top of the CBeeperDialog. cp file, remove 
the I I comment characters from the line: 

II #include "AppCommands.h" 

This step is necessary because cmdBeep is defined in 
AppCommands . h. 

By default, the inclusion of the AppCommands . h 
header file is commented out to prevent 
unnecessary compilation of files whenever the 
AppCommands . h file is changed. 

Symantec C++ User's Guide and Reference 14-21 



14 • Tutorial: Beeper 

7. Open the file CBeeperDialog. h by selecting its name 
in CBeeperDialog. c and choosing Open Selection 
from the File menu (Command-D). As a public member 
function of the CBeeperDialog class, add the 
definition: 

void DoCmdBeep(); 

You have now completed the necessary code modifications. 

Updating and Running the Application 
With the design and coding of the Beeper application complete, you 
can compile and link the Beeper.1t project: 

1. Choose Bring Up To Date from the Project menu 
(Command-CT) in the Symantec Project Manager. 

Allow time for the compilation to occur, because the 
project contains many files. 

If you receive any compile or link errors, be sure that the 
code was entered exactly as written in the previous 
section. 

2. Choose Run from the Project menu. 

When Beeper starts, the Main view opens with the Beeper button. 
Clicking this button makes the BeeperDialog dialog box open. You 
can enter an integer value into the edit text field and click Beep, and 
your Macintosh beeps that number of times. 

14-22 Symantec C++ User's Guide and Reference 



Tutorial: 
Process Monitor• 

15 
In this tutorial, you use Visual Architect to create the user interface for 

an application you create, then generate code for it. The application 
contains more user interface elements than does the Beeper 
application you worked with in Chapter 14. For the Process Monitor 
application, you need to create two main windows, a dialog box, a 
subview, push buttons, check boxes, scroll bars, text fields, and 
menus. 

About the Application 
The Process Monitor application displays a list of all processes 
currently running on your Macintosh. When you first launch the 
application, you are presented with a dialog that lets you select 
between two views: Process List and Process List and Information. 

The first of these shows the list of the processes, while the second 
view also allows the user to 

• Enter the debugger 
• Kill the selected process 
• Bring the selected process to the front 

The Process List and Information view also includes a group of 
check boxes that show the current settings of the 'SIZE' resource 
flags for the selected process. 

Note that the key piece of information displayed by these views­
the list of running processes-is the same. You do not create this 
component twice; instead you set it up once, then reuse it in the 
second view. The subview you create during the tutorial thus works 
as a time-saving device. 

Symantec C++ User's Guide and Reference 15-1 



• 15 Tutorial: Process Monitor 

Note 
Throughout this tutorial, you are asked to give 
names (identifiers) to various visual elements. The 
names you type must match, in spelling and case, 
those given in the tutorial. Otherwise, the pre-edited 
source files provided for you will not compile 
properly. 

Getting Started 
In most of the tutorials in this manual, you start out by creating the 
project with which you are going to work. In this tutorial, however, 
you are adding interface elements to an existing project. This section 
outlines some of the characteristics of the Process Monitor 
application and explains how to open the application as well as how 
to specify its top-level characteristics. 

Looking at the project 
The PPC Process Monitor .1t project was created with the VA 
Application project model. The following additions were then made 
to facilitate your work with the application: 

• The project has source files from the folder Source that 
are pre-edited versions of files created by Visual 
Architect. 

• The project has source files from the folder Extra 
Sources. 

• The Visual Architect. rsrc file has icon resources 
that you will use later for custom buttons. 

Resources for the icons you want to use must be in the form of 
compiled 'cicn' and 'ICON' resources resident in the Visual 
Architect. rsrc file. You can use ResEdit or Resorcerer to cut 
and paste icons from a resource file into any Visual 
Architect. rsrc file. To save time in the setup of this tutorial, 
these resources have already been copied into the Visual 
Architect.rsrcfik. 

15-2 Symantec C++ User's Guide and Reference 



Getting Started + 

Opening the project and launching VA 
To get started, you need to open the PPC Process Monitor.7t 
project. In Finder, double-click the project's name, which you can 
find in Process Monitor f, inside the TCL Demos folder. 

At this point, the Symantec Project Manager is launched, and the PPC 
Process Moni tor.7t Project window opens on the right side of 
your screen (Figure 15-1). 

ID ../ PPC Process Monitor. n 
I Headers T I Options I PPC Process Monitor .11 .... , 

<:? -&Name ~ Code 

~ lLl Extra Sources 0 ii£ 
t> ~ Runtime Libraries 0 

~ §11 Source 0 

• ~ TCL Resources .rsrc 0 

~ ~ ' THINK Class Library 0 

• ~ Visual Architect .r src 0 

Totals 0 

tzy 
~ 

Figure 15-1 PPC Process Monitorn Project window 

You now need to launch Visual Architect. Double-click the Visual 
Architect. rsrc file at the bottom of the list in the Project 
window. 

A Visual Architect View List window opens (Figure 15-2). As you 
create new views in the project, their names are displayed in this 
window. A view can be a dialog box, a window, or a subview. 
These resources are stored in the Visual Architect . rsrc file . 
Every Visual Architect project you create with the Symantec Project 
Manager has its own folder and unique version of the Visua l 

Symantec C++ User's Guide and Reference 15-3 



• 15 Tutorial: Process Monitor 

Architect. rsrc file within that folder, to maintain the special 
view resources for the project. 

The View List window currently contains a sample view called Main 
(Figure 15-2), which displays the message "Hello, World!" You will 
change the characteristics of this view as you create the Process 
Monitor application. 

siii"i!E Uisual Rrchitect.rsrc §~ 
Main ~ 

tzy • 
Figure 15-2 View List window 

Setting application information 
Now, you need to specify the top-level characteristics of the Process 
Monitor application. 

1. Choose Application from the Edit menu to open the 
Application Info dialog box (Figure 15-3). 

I 
Copyright: I 
Signature: I cRpp 

File Ids: I dRpp I ~I ~I .___I ___.I .___I ____. 
( Cancel ) 

Figure 15-3 Application Info dialog box 

15-4 Symantec C++ User's Guide and Reference 



Building the User Interface + 

2. Type your name and company, or fictional ones, in the 
Copyright field. 

3. Type a four-letter signature, PrMo, in the signature field. 

4. Type PrMl and PrM2 for the file IDs. File IDs are used 
by the Finder to associate your application with its 
particular document types. 

5. Click OK to close the Application Info dialog box. 

Do not change the application information after generating source 
files for the project. Doing so will result in some of your files being 
regenerated. 

Building the User Interface 
The focus of the Process Monitor tutorial is building the interface for 
the application. In this section, you create the various elements 
required, such as windows and scroll tables. 

Creating and previewing the main window 
To create a main window, you start by opening the default Main 
view and clearing it. 

1. Double-click Main in the View List window. 

The Main View Edit window is displayed. You should 
empty it in preparation for other additions. 

2. Choose Select All (Command-A), then Clear from the 
Edit menu. 

Symantec C++ User's Guide and Reference 15-5 



• 15 Tutorial: Process Monitor 

Now change the characteristics of the main window. 

1. Choose View Info from the View menu. 

The View Info dialog box opens (Figure 15-4). 

Name: ID: 128 

Title: '-I M_a_i n ____________ ___, 

0 modal 
[Zl Use file 
[Zl Print 

( OK , 

(Cancel J 
Windo'w' Class: I CWindo'w' ,..I 

LJ~LJDDLJ 
[Zl Vert. Scroll [Zl Horiz. Scroll [Zl Size Box [Zl goA'w'ayFlag 0 actClick 

Position Staggered ,.. I 1.<•E°l L:::::::::::::::::::::: ... :::J T,,~, i:::::::::::::::::::::::::::::::::J 

Width: 1254 Height: 234 procl D: ._Io __ ~ 

Min Width: 140 Min Height: 40 

Max Width: Is 1 2 Max Height: 342 

Figure 15-4 Main View Info dialog box 

2. In the Name textbox, type Processinfo (no space) 
and type Process Info in the Title textbox. 

3. Set the Use File option off. 

4. Click the second window type icon from the left to make 
the view's window a non-scrollable, non-resizable type 
(procID 4). 

You can leave the rest of the default values as they are. 

5. Click OK to close the View Info dialog box. 

7 5-6 Symantec C++ User's Guide and Reference 



Building the User Interface + 

You can now see how the window will look when the application is 
run and size it appropriately. Choose Try Out from the View menu 
(Command-Y). The window should look similiar to the one in 
Figure 15-5. 

Process Info 

Figure 15-5 Previewing the Process Info view window 

As you can see, at this point you have a small, empty window with 
no scroll bars or size box. Now you need to make the window large 
enough to accommodate the necessary information: 

1. Close the window by either clicking its close box or 
choosing Close from the File menu (Command-W). 

2. Use the size box in the Main View Edit window to 
extend the window's size to approximately a six-inch 
square. 

3. Resize the gray rectangle (the window's portRect) to fit 
snugly within the window using the sizing handle at the 
rectangle's lower-right corner. If you drag the size box to 
the edges of the window, the view scrolls automatically. 

Symantec C++ User's Guide and Reference 15-7 



• 15 Tutorial: Process Monitor 

Note 
You use the size box to increase or decrease the 
working area of the window. The portRect, on the 
other hand, demarks the portion of the window that 
appears in the built application. 

Drawing rectangles 
Choosing tools is easier if you tear off the Tool palette and place it 
next to the Main View Edit window. To do so, click the Tools menu 
and drag it away from the menu bar. 

ii o mmmmmmmmmm 
Select --...- 1\- A-i-~t1"1Hr1--- Static Text 

Push Button 

Pop-up Menu 

----i-@ @, IZl"t"--- Check Box 

----r-~ ll I ~111r1H--- Radio Button 

~ 001tt~t11et"t---- Icon Button 

List/Table ----..~ ~lr-n 
1= Subview 

Rectangle + D ...Cl. -
Od 

Figure 15-6 Tool palette 

Now you are ready to create three rectangles to serve as decorative 
elements and delineate functional areas in the main window. They 
can also be made to serve as buttons or used to shield certain active 
controls from the user. 

1. Choose the Rectangle tool from the Tool palette. Double­
clicking the tool causes it to stay selected until you 
choose a different tool. 

2. Create three rectangles in your Main View Edit window 
by clicking to place the upper-left corner of each 
rectangle and then dragging. 

15-8 Symantec C++ User's Guide and Reference 



Building the User Interface + 

3. Size and position the rectangles so the View Edit window 
resembles the one in Figure 15-7. 

Process Info 

Figure 15-7 Main View Edit window with three functional areas 

Creating static text items 

Note 
As you work through this part of the tutorial, you 
may want to look ahead to Figure 15-26, which 
shows how the finished window appears. 

You use static text items to give the rectangles titles. Begin with the 
upper-right rectangle: 

1. Select the Static Text tool from the Tool palette, click 
near the top of the upper-right rectangle , and type the 
words Process Control. 

2. Click anywhere in the window to end the typing task. 

Symantec C++ User's Guide and Reference 15-9 



• 15 Tutorial: Process Monitor 

To edit the text after ending the typing task: 

1. Select the text and press Return. 

2. Edit the text using standard editing procedures. 

3. Click anywhere outside the static text box to end the 
editing task. 

To position the text, click on the static text and drag it to .the desired 
location. 

Rather than resize or move the text using the mouse, you can choose 
Pane Info (Command-L) from the Pane menu and edit the values in 
the Left and Top textboxes at the top of the dialog box. 

You create static; text items for the other rectangles later in the 
process. 

Creating push buttons 
The upper-right rectangle is intended for three push buttons of the 
CiconBut ton class. This button type supports multiple activation 
states. You are going to set up the first push button to cause the 
program to drop into the Debugger. 

1. Select the Icon Button tool from the Tool palette and 
click toward the upper-left edge of the upper-right 
rectangle. 

The button appears with a default icon. More interesting 
icons, however, have been copied into the resource file 
for this purpose. 

2. Choose Pane Info from the Pane menu (Command-L). 

15-70 Symantec C++ User's Guide and Reference 



Building the User Interface + 

The Pane Info window opens (Figure 15-8). Note that the 
value in the Identifier field may vary. 

I> ClconButton 

I> ClconPane 

I> CPane 

I> CYie._. 

1But15 

Top: 148 I 
Height: 132 I 

Figure 15-8 Pane Info window for the Debugger button 

I 
3. Open the ClconButton class by clicking the triangle to 

the left of ClconButton. The ClconButton class is shown 
(Figure 15-9). 

Top: 

Width: ~13_2 __ ~ Height: ~13_2 __ ~ 

ClconButton 

Off Off Hi On On Hi 

w•a• I button Kind: I Check Box -... I 
D colorHilite D outli neon 

va 1 ue: @=::=J 

Figure 15-9 Pane Info window showing ClconButton class 

Symantec C++ User's Guide and Reference 7 5-11 



• 15 Tutorial: Process Monitor 

As you can see, there are four possible states for a 
CiconButton: Off, Off Hi, On, and On Hi, and each of 
these can have its own icon. 

4. Click the icon representing the Off position. 

An Icon Pick dialog box opens, displaying the icons that 
are in the Visual Architect. rsrc file and thus 
available for use, as shown in Figure 15-10. 

con Pick 

ID: 

K OK J 
(Cancel) 

Figure 15-10 Icon Pick dialog box 

5. Click the bomb symbol with the fuse unlit (ID #128) and 
click OK. 

6. Repeat the previous two steps for the Off Hi button state 
using the icon of the bomb with the lit fuse (ID #129). 
The On and On Hi states are not used for this type of 
push button. 

Define the behavior of the button by setting the value of 
the buttonKind data member. 

15-12 Symantec C++ User's Guide and Reference 



Building the User Interface + 

7. On the Pane Info window, choose PushButton from the 
buttonKind pop-up menu. 

8. Close the ClconButton class by clicking the triangle to 
the left of it. 

Now it's time to give the button something to do. 

Note 
After you finish working with the first push button, 
you will repeat these steps for the second and third 
push buttons. 

Associating commands with buttons 
First, set the current command associated with the Debugger button. 

1. On the Pane Info window, open the ClconPane class by 
clicking the triangle to the left of the CiconPane. Note 
that the Command field currently is set to cmdNul 1. 

The command to be performed by the Debugger button 
is not currently displayed on the list. It is a custom 
command called cmdEnterDebugger that invokes the 
Debugger. 

Later, code will be provided for this command. You can 
still add the command name to the project, however, so 
that a framework can be generated for the code. 

Symantec C++ User's Guide and Reference 15-13 



• 15 Tutorial: Process Monitor 

2. Choose Other from the Command pop-up menu (the 
Other item is located at the top of the pop-up menu), as 
shown in Figure 15-11. 

Other 

cmd 1 HalfSpace 
cmdAbout 
cmdAlignCenter 
cmdAlignLeft 
cmdAlignRight 
cmdBold 

§ii cmdCancel ~t0t~5~~~~~~~~~~i 
cmdClear 

ldentifie cmdClose 

Left: 

Width: 

cmdCondense 
cmdCopy 
cmdCut 
cmdDoubleSpace 
cmdExtend 
cmdltalic 
cmdJustify 
cmdNew 

llill!la-1 cmdNull 

~ CPane 

~ CYiev 

cmdOK 
cmdOpen 
cmdOutline 
c md PageSet up 
cmdPaste 
cmdPlai n 
.... 

48 

32 

Figure 15-11 Choosing Other from the Command pop-up menu 

15-14 Symantec C++ User's Guide and Reference 



cmdAlignCenter 
cmdAlignleft 
cmdAlignRight 
cmdBold 
cmdCancel 
cmdClear 
cmdClose 
cmdCondense 

Building the User Interface + 

The Commands dialog box opens (Figure 15-12) . 

Number: 51 
Actions:---------------~ 

In Class: I None .,.. I 
, ............................ .. .. ........... ~ 

nn: ~ No thinq v ! 
WGW: 1 NnnP 'W j 

( Cancel ) 

OK 

Figure 15-12 Commands dialog box 

3. Choose New Command from the Edit menu 
(Command-K) or press Return to activate the edit text 
field, then type the name of the new command: 
c mdEnterDebugger. 

You now need to set up a command handler to be 
generated in the class CMain for the 
cmdEnterDebugger command. 

4. Choose CMain from the In Class pop-up menu . 

5. Choose Call from the Do pop-up menu . 

Symantec C++ User's Guide and Reference 15-15 



• 15 Tutorial: Process Monitor 

6. When the Commands dialog box displays similar 
choices to those shown in Figure 15-13, click OK to close 
the dialog box. 

cmdCancel 
cmdClear 
cmdClose 
cmdCondense 
cmdCopy 
cmdCut 
cmdDoubleSpace 

Commands 

I cmdEnterDebugger 

Number: 512 

Rctions:-----------------, 

I n Class: I CMain .... I 
Do: I Call .... I 
vi(~ w: f" ..... N·i·;·i·~·~~ .......... ; .. j 

c mdEnterOebugger m 
(Cancel) 

OK 

Figure 15-13 Commands dialog box with appropriate choices 

Back in the Pane Info window, verify that the 
Command pop-up for ClconPane is set to 
cmdEnterDebugger. 

7. Click the close box to leave the Pane Info window. 

Assigning identifiers 
By default, Visual Architect gives all the user interface elements you 
create a unique name. Keeping track of these elements, however, is 
easier if you give them more meaningful names. Name the button 
you just created DebuggerButton: 

1. Choose Identifier from the Pane menu (Command-]) to 
open the Identifier dialog box. 

15-76 Symantec C++ User's Guide and Reference 



Note 

Building the User Interface + 

2. Type DebuggerButton in the Identifier textbox 
(Figure 15-14). 

Identifier 

Identifier: I DebuggerButton 

( Cancel ) n OK ' 

Figure 15-14 Identifier dialog box 

3. Click OK to close the Identifier dialog box. 

You can also set the identifier of a pane directly in 
the Pane Info dialog box. 

You should follow these same steps for the rest of the elements you 
create, with the exception of simple components such as decorative 
rectangles and static text items. As a result, names in the code that 
you generate will match the names in the source files provided in 
the tutorial folder. 

Creating the other push buttons 
Now you need to repeat the steps you have just performed to create 
the next two push buttons. 

The second push button in the group terminates the currently 
selected process in the process list. To create this button, repeat the 
earlier steps in this section, with the following changes: 

• "Creating push buttons," step 1: Position this button just 
under the first button. 

• "Creating push buttons," step 5: Click the resting gun 
icon (ID #131) for the Off state. 

• "Creating push buttons," step 6: Click the shooting gun 
icon (ID #130) for the Off Hi state. 

Symantec C++ User's Guide and Reference 15-17 



• 15 Tutorial: Process Monitor 

• "Associating commands with buttons," step 3: Name the 
new command crndKillProcess. 

• "Assigning identifiers," step 2: Set the identifier to 
KillButton. 

The third push button in the group brings the selected process 
window to the front. To create this button, you follow the same steps 
again, with these changes: 

• "Creating push buttons," step 1: Position this button just 
under the second button. 

• "Creating push buttons," step 5: Click the smiling sun 
face behind the square icon (ID #132) for the Off state. 

• "Creating push buttons," step 6: Click the smiling sun 
face in front of the square icon (ID #133) for the Off Hi 
state. 

• "Associating commands with buttons," step 3: Name the 
new command crndBringToFront. 

• "Associating commands with buttons," step 4: Choose 
CApp (not CMain) from the In Class pop-up menu. 

You need the cmdBringtoFront command to be 
handled by the application (CApp), because windows 
other than CMain (Process Info) support 
cmdBringToFront. (This is not true of the first two 
commands.) 

• "Assigning identifiers," step 2: Set the identifier to 
BringToFrontButton. 

In contrast to a check box or radio button, this CiconButton class has 
no associated text. You need to create a static text element to be 
placed next to each of the icon buttons. Using the Static Text tool, 
create a static text pane next to each of the three buttons, and type 
the names Enter Debugger, Kill Process, and Bring to 
Front, respectively. 

15-1 B Symantec C++ User's Guide and Reference 



Building the User Interface + 

To try out the buttons you have just created, choose Try Out 
(Command-Y) from the View menu. A preview window is displayed 
as before, but now there are active buttons. 

When you are finished previewing, close the window. Either click 
the window's close box or choose Close (Command-W) from the 
File menu. 

Positioning objects 
You are ready to position the user interface elements you created 
within the Process Control section of the view. A constraint grid has 
been activated by default to help you align objects in straight rows 
and columns. Try to position the buttons to look like the ones shown 
in Figure 15-15. 

1. Verify that Honor Grid in the Options menu is enabled. 

2. Using the Select tool, select each of the three buttons and 
static objects in turn. 

3. Move the object to the appropriate locations. 

You have three options for moving objects: 

• Move the selected element one grid step in any direction 
by pressing the appropriate arrow key (up, down, left, or 
right). 

• Drag the object. 

• Position and resize the selected element by editing its 
data members directly in the Pane Info window, which is 
opened by choosing Pane Info from the Pane menu 
(Command-L). The Left, Top, Width, and Height 
textboxes control the position and size of the element 
within its enclosing pane. 

Changes made graphically are reflected in the values of 
the data members, and vice versa. 

Symantec C++ User's Guide and Reference 15-19 



• 15 Tutorial: Process Monitor 

As a further refinement of the objects' placements, you can align 
them as a group: 

1. Select the three buttons by clicking one button, then 
shift-clicking the other two. 

2. Choose Left from the Align hierarchical menu in the 
Pane menu. 

Your view should now look like the one shown in Figure 15-15. 

Process Info 

Process Control--~ 

f)'- Enter Debugger 

r Kill Process 

• Bring to Front 

12, 28 228, 184 

Figure 15-15 Main view with push buttons created 

7 5-20 Symantec C++ User's Guide and Reference 



Building the User Interface + 

Creating check boxes 
In the bottom rectangular section of the main window, you will 
create 11 checkboxes, each showing the setting of a particular flag in 
the 'SIZE' resource of the currently selected process. These 
checkboxes should not be clickable because these flags cannot be 
changed by the Process Monitor application. 

First provide a title for the bottom rectangle, as you did for the 
upper-right rectangle. Using the Static Text tool, create a static text 
object at the top-left corner of the bottom rectangle and name it 
Size Resource. 

To create check boxes similar to those pictured in Figure 15-16. 

Note 

1. Double-dick the Check Box tool so the tool remains 
selected. 

Repeat the following three steps for each check 
box. 

2. Click the cursor near the location at which the check box 
should be positioned. 

The text field for the button is opened automatically 
when you place the check box. 

Size Resource--------------------. 

D TeHtEdit Seruices 
D Stationery Rware 
D Local & Remote HL Euent 
D 32 Bit Compatible 
D Child-Died Euents 
D High Leuel Euent Rware 

D Get Front Clicks 

D Background Only 

D Multifinder Rware 

D Runs in Background 

D Suspend/Resume Euents 

Figure 15-16 Size Resource check boxes 

Symantec C++ User's Guide and Reference 15-21 



• 15 Tutorial: Process Monitor 

3. Type the appropriate label for the check box. Use the 
labels in Table 15-1. 

4. Set the identifier for the check box by choosing 
Identifier from the Pane menu (Command-]), 
typing the appropriate identifier from Table 15-1, 
and clicking OK. 

Table 15-1 Check box labels and identifiers 

Check box label Identifier 
TextEdit Services 
Stationery Aware 
Local & Remote HL Event 
32 Bit Compatible 
Child-Died Events 
High Level Event Aware 
Get Front Clicks 
Background Only 
Multifinder Aware 
Runs in Background 
Suspend/Resume Events 

TE Services 
Stationery 
Loca!RemoteHL 
Is32Bit 
ChildDied 
HighLevelAware 
FrontClicks 
BOnly 
Multifinder 
RunsinBackground 
SuspendResume 

Now you need to make sure that the check boxes do not respond to 
users' clicks. However, by default, the wantsClicks attribute (in 
the CView part of the class) is set to TRUE. These particular check 
boxes are for display only; you do not want a user to be able to click 
them and change the state of the check box. 

One way to prevent the check boxes from receiving clicks is to open 
the Pane Info window for each of the 11 check box items and 
change wantsClicks to FALSE. A quicker way, however, is to 
place the rectangle surrounding the check boxes on top of them and 
set it to ignore mouse clicks. To do so: 

1. Select the rectangle surrounding the check boxes. 

2. Choose Bring To Front from the Pane menu. 

3. Choose Pane Info from the Pane menu (Command-L) to 
open the Pane Info window. 

4. Open the CView class and verify that the check box for 
the data member wantsClicks is not checked. 

15-22 Symantec C++ User's Guide and Reference 



Building the User Interface + 

5. Close the Pane Info window. 

Now the rectangle acts like a sheet of glass over the 
check boxes, allowing them to be seen but not clicked. 

As a final step, bring the rectangle's label in front of the 
rectangle. 

6. Select the static text item "Size Resource." 

7. Choose Bring To Front from the Pane menu. 

Creating a subview 
The remaining rectangular area in the main window is intended for a 
subview. First, give the display area a title. Using the Static Text tool, 
create a static text object at the top-left corner of the upper-left 
rectangle and type Process List to name it. 

Now, create the subview: 

1. Select the Subview tool and create a subview just inside 
the rectangle's border, as shown in Figure 15-17. 

Process List-------~ 
!"?'??"'''"""""""""'"'''"''''''''""""""""""""''''''"''''''''''''"'''" 

1 ..................................................................................................... .. 

Figure 15-17 Creating the Process List subview 

You can verify that the subview has been created 
correctly by examining the Pane Info window for the 
subview. 

Symantec C++ User's Guide and Reference 15-23 



• 15 Tutorial: Process Monitor 

2. Choose Pane Info from the Pane menu (Command-L) to 
open the Pane Info window and open the 
CSubviewDisplayer class. 

The Subview pop-up for CSubviewDisplayer contains 
question marks (???) because no subview has yet been 
instantiated. A subview is an entirely new view, so you 
must first create the view. 

3. Close the Pane Info window. 

To create the new view, which will become the subview: 

1. Choose New View from the View menu to open the 
New View dialog box. 

2. Name the subview ProcessListSubview and 
choose Subview from the View Kind pop-up menu 
(Figure 15-18). 

Please name the new uiew 

Name: I ProcesslistSubuiew 

• ./Dialog 
Floating Window 
Main Window 
Modal Dialog 
New ... Dialog 
Splash Screen 

Window 

Figure 15-18 Creating a subview using the New View 
dialog box 

3. Click OK to close the New View dialog box. 

A new View Edit window opens, into which you can add 
the subview's elements. 

15-24 Symantec C++ User's Guide and Reference 



Building the User Interface + 

First, however, you'll want to have CMain's subview pane refer to 
this new subview: 

1. Choose Processlnfo from the Windows menu. 

2. Select the subview (the pane with the three question 
marks) in the Process List area. 

3. Choose Identifier from the Pane menu (Command-]), 
name the subview ProcListSubview, and click OK. 

4. Once again, choose Pane Info from the Pane menu 
(Command-L) to open the Pane Info window and open 
the CSubViewDisplayer class. 

5. Even though the Subview pop-up already shows 
ProcesslistSubview, choose ProcesslistSubview from 
the Subview pop-up menu. 

Notice how the three question marks change to 
ProcessListSubview. 

6. Close the Pane Info window by clicking in its close box 
or pressing Command-W. 

The subview is now properly incorporated into the Main view. 

Creating a scroll table 
This subview will contain a list of processes in a scrolling table. 
Below the table is a pop-up menu, to allow a user to choose how to 
display the processes. 

To continue the process, first return to the subview's own View Edit 
window, and then add the scrolling table to the subview: 

1. Choose ProcesslistSubview from the Windows menu. 

Symantec C++ User's Guide and Reference 15-25 



• 15 Tutorial: Process Monitor 

2. Select the List/Table tool and click in the left side of the 
Subview window. Drag diagonally to create a scroll table 
pane, as shown in Figure 15-19. Make sure to leave some 
space at the bottom for the pop-up menu. 

ProcesslistSubuiew 
.:·······················································································:c;:: 

'····················································································Q\ 

8,8 200, 172 

Figure 15-19 Creating a scroll table in the 
ProcesslistSubview view 

3. Choose Identifier from the Pane menu (Command-]) 
and type ProcessTable. 

When the scroll table pane is selected, the Scrollpane 
Info command in the Pane menu becomes enabled. 
Although you do not need to change any of the values in 
CScrollPane now, you can verify that the Scrollpane 
item is enabled. 

4. Select ScrollPane from the Pane menu to open the 
Scrollpane Info dialog box, and open the CScrollPane 
class. 

Notice how this CScrollPane has the vertical scroll 
enabled and horizontal scroll disabled. 

5. Close the Scrollpane Info dialog box. 

15-26 Symantec C++ User's Guide and Reference 



Building the User Interface + 

Setting the table command 
The Pane Info window for the scroll table shows you the 
information on the data members for the CTable class contained 
within the scroll pane, not to the scroll pane. 

1. Choose Pane Info from the Pane menu (Command-L) to 
open the Pane Info window, and open the CTable class. 

You can set the double-click command for the table; this 
is the command that executes whenever a user double­
clicks an item in the table. 

2. Scroll down to the Command pop-up menu and choose 
cmd.BringToFront from the list (Figure 15-20). 

ProcessTable 

Identifier: l~~~liiiii~~~~~ 
Left: ._Is ___ _. Top: 

Width: ._I 1_9_2 __ _. Height: ._I 1_6_4 __ _. 

CTable 

top Left Indent: h: ~ v: ~ 
dra'vl order I tblCol ,.. , 

defRo'v!Height: i 1 8 
:::::====::::::::: 

defColWidth: ._I s_o ___ ___. 
selectionflags: D se10n1 yOne 

D sel NoDisjoi nt 
D sel Extend Drag 
D se 1 Drag Rects 

indent: h:~V:~ 
Command: I cmdBri ngToFront ,.-1 
D dra'v!ActiveBorder 
D cli pToCells 
ro'v/Borders: thickness: I 0 

llilll 

:::::====::::::::: 
penMode: IO + 

Figure 15-20 Pane Info window for the ProcessTable scroll pane 

3. Close the Pane Info window. 

Symantec C++ User's Guide and Reference 15-27 



• 15 Tutorial: Process Monitor 

CA pp 

Now, when the user double-clicks a process in the process list, that 
process becomes the foreground application. 

Creating a derived class 
To give the table pane the necessary functionality to display a list of 
processes, you need to make it a derived class of CArrayPane. To do 
SO: 

1. Choose Classes from the Edit menu to open the Classes 
dialog box. 

2. Enter a new class either by choosing New Class from the 
Edit menu (Command-K) or by clicking under the list of 
existing classes and typing CProcessArrayPane as the 
name of the class (Figure 15-21). 

Classes 

0 I CProcessArrayPane 

Base Class: ~, -CA_r_r_a_y_P_a_n_e----~--..1 

( Define Data Members ) 

Library class: 

Figure 15-21 Classes dialog box 

'------------~ 

(Cancel ) 

OK 

3. Choose CArrayPane from the Base Class pop-up and 
click OK to close the Classes dialog box. 

You now need to set the scroll table pane to be an 
instance of the CProcessArrayPane class. 

7 5-28 Symantec C++ User's Guide and Reference 



Building the User Interface + 

4. Choose CProcessArrayPane from the Class submenu 
in the Pane menu (Figure 15-22). 

Pane Info... ~L 

ScrollPane Info ... 

Class ~ 

Font ~ 
Size ~ 
Style ~ 
Color ... 

Rlign ~ 
Bring To Front 
Send To Back 

Set Button Group 

Identifier... ~J 

../CRrrayPane 

LrC Proc essArrnyPane 

Figure 15-22 Setting the class of the scroll table pane 

Now, when you open the Pane Info window for the 
table pane, CProcessArrayPane appears in the class 
hierarchy. 

You also may want to extend the functionality of the whole 
subview-for example, to handle certain commands from a pop-up 
menu. To do this, you must create a new subview class derived from 
CPanorama: 

1. Choose Classes from the Edit menu. 

2. Enter a new class either by choosing New Class from the 
Edit menu (Command-K), or by clicking under the list of 
existing classes, and typing the name 
CProcListSubviewPanorarna. 

3. Choose CPanorama from the Base Class pop-up and 
click OK to close the Classes dialog box. 

4. Click somewhere outside the scroll pane on the 
ProcessListSubview view. 

Symantec C++ User's Guide and Reference 15-29 



• 15 Tutorial: Process Monitor 

5. Choose CProcListSubviewPanorama from the Class 
submenu in the Pane menu. 

Now, the entire subview is a CProcListSubviewPanorama into which 
you can add functionality. 

Creating a pop-up menu 
To create a pop-up menu in the subview: 

1. Select the Pop-up Menu tool and click beneath the table 
pane, on the left side. 

Note that the pop-up menu displays default values. You 
need to enter your own values in the menu. 

2. Choose Menus from the Edit menu to bring up the 
Menus dialog box (Figure 15-23). 

File 
Font 

@ s (Rpple Menu) 

Popup menu 128: 
( Edit Menu Items ) 

Size 
Style 

MENU I 1 
:::===::::: 

MDEF ID: ~lo_~ 

Figure 15-23 Menus dialog box 

( Cancel ) 

OK 

Note that the normal default menus (for example, File 
and Edit) already exist, as does the pop-up menu you 
just added, generically titled Popup Menu. You should 
now name this menu, as well as the items within it. 

3. Click the Popup Menu item and type View By: into the 
textbox as the name of the menu. 

4. Click the Edit Menu Items button to open the Menu 
Items dialog box. 

15-30 Symantec C++ User's Guide and Reference 



Building the User Interface + 

5. Change the three item names to Name, Serial 
Number, and Signature by clicking them, then typing 
the text. 

6. Select Name from the menu item list and choose 
the checkmark item in the Mark pop-up menu 
(Figure 15-24). 

Menu Items 

Uiew By: 

Name CE 
Serial Number 
Signature D Has submenu . 

Subm•~nu lO: [."."."."."."."."."."."."."."."."."."."."."."."."."] [!] 
Cmd-key:D 

Icon:~ 
L!:J 

Command: ,_I _c_m_dN_u1_1 _____ ..,.....1I 

Figure 15-24 Menu Items dialog box 

Mark: v' v' 

• 
<> 
• 
None 

This last step ensures that Name appears as the default choice in the 
View By pop-up menu. 

Associating commands with a menu 
To associate commands with pop-up menu choices, the commands 
must be created: 

1. Click the Name item to select it. 

2. Choose Other from the Command pop-up menu to 
open the Commands dialog box. 

3. Press Return to create a new command and type 
cmdVi ewByName to name it. Choose 
CProclistSubviewPanorama from the In Class pop-up 
menu, and choose Call from the Do pop-up menu. 

Symantec C++ User's Guide and Reference 15-31 



• 15 Tutorial: Process Monitor 

4. Click OK to close the Commands dialog box. 

5. Repeat steps 1 through 4 for the Serial Number and 
Signature items, naming their commands 
cmdViewByPSN and cmdViewBySignature, 
respectively. 

6. Click OK to close the Menu Items dialog box. 

7. Click OK to close the Menus dialog box. 

Now the CProcListSubviewPanorama can handle any of the three 
menu selections. 

Finishing the pop-up menu 
You are virtually finished with the pop-up menu. To ensure that only 
one of the three menu items can be selected at a time: 

1. Choose Pane Info from the Pane menu (Command-L) to 
open the Pane Info window, and open the CPopupPane 
class. 

15-32 Symantec C++ User's Guide and Reference 



Building the User Interface + 

2. Click the radioGroup radio button (Figure 15-25) and 
close the CPopupPaneClass. 

Width: ._I 1_9_4 __ _. 

._ CSMPov11vi1une 

CPopupPane 

itsMenu-> 
CPopupMenu: 

Top: .._I 1_6_4 __ _, 

Height: .._I 1_9 __ __, 

itsMark: l~-./---... -1 
@ radioGroup 
D autoSelect 
D multiSelect 
itsMenu: ~I -V-ie_'vl_B_y_: -,..-1 
fi rstSelection: l,_1 ___ __. 

._ CPane 

._ CYiev 
-0-

.; .:1. Jt 9 

Figure 15-25 Clicking radioGroup in the Pane Info window 

3. In the Identifier field at the top of the window, type 
ViewByMenu and close the Pane Info window. 

4. Close the ProcessListSubview View Edit window. 

Symantec C++ User's Guide and Reference 15-33 



• 15 Tutorial: Process Monitor 

Trying out the completed main window 
Your Main view should now appear as shown in Figure 15-26. 

Process Info 

.--Process List---------. .-Process Control-----.11 

• 

rr'OCOSSLiSiSUiiYiOW --1 
Enter Debugger 

Kill Process 

- - _J • Bring to Front 

.-Size Resource!--------------------. 

D TeHtEdit Seruices 
D Stationery Rware 
D Local & Remote HL Euent 
D 32 Bit Compatible 
D Child-Died Euents 
D High Leuel Euent Rware 

12,28 228, 184 T+ 

D Get Front Clicks 

D Background Only 

D Multifinder Rware 

D Runs in Background 

D Suspend/Resume Euents 

Figure 15-26 Completed Main view 

To preview the appearance of the Main view in the running 
application: 

1. Choose Try Out from the View menu (Command-Y) to 
open the window. 

7 5-34 Symantec C++ User's Guide and Reference 



=• 

Building the User Interface + 

2. Verify that the controls function properly. One such test 
is shown in Figure 15-27. 

Process Info 

Process List Process Control 

.Q "- Enter Debugger 

r Kill Process 

-0 

• Bring to Front 

Size Resot.r._. _____ __.L_ __________ ~ 

D TeHtEdit Seruices 
D Stationery Aware 
D Local & Remote HL Euent 
D 32 Bit Compatible 
D Child-Died Euents 
D High Leuel Euent Aware 

D Get Front Clicks 

D Background Only 

D Multifinder Aware 

D Runs in Background 

D Suspend/Resume Euents 

Figure 15-27 Previewing the Main view 

3. Click on the close box to close the preview window. 

Creating the alternative main window 
The main window you just finished shows several kinds of process 
information, in addition to a subview containing a list of processes. 
The next view you create is an alternative window containing only 
the process list. It will be another main window. 

1. Choose New View from the View menu to open the 
New View dialog box. 

Symantec C++ User's Guide and Reference 15-35 



• 15 Tutorial: Process Monitor 

2. Type ProcessListOnly as the view name and choose 
Main Window from the View Kind pop-up menu 
(Figure 15-28). 

Please name the new uiew 

Name: I Processlistonly 

1 ./Dialog 
Floating Window 

Modal Dialog 
New ... Dialog 
Splash Screen 
Subuiew 
Tearoff Menu 
Window 

Figure 15-28 Creating a Main view 

3. Click OK to close the New View dialog box to open the 
ProcessListOnly View Edit window. 

4. Choose View Info from the View menu to bring up the 
View Info dialog box. 

5. Set the Use File option off. 

6. Type Process List as the view window title. (Leave 
the view's name as is.) 

7. Make the view's window the same kind of window as 
the Processlnfo window-that is, a window with no 
scroll bars or size box (the second window type from the 
left). Click OK. 

15-36 Symantec C++ User's Guide and Reference 



Building the User Interface + 

This view is going to contain the same subview as the main window. 
As before, you should create a subview in the window. 

1. Select the Subview tool and create a subview just inside 
the gray-outlined rectangle within the window (Figure 
15-29). 

ProcesslistOnl 

< ..................................................................................................................................................................................... . 

Figure 15-29 Creating the subview in the ProcesslistOnly 
view 

2. Choose Pane Info from the Pane menu (Command-L) to 
open the Pane Info window. Open the 
CSubviewDisplayer class and choose 
ProcessListSubview from the subview pop-up menu. 

3. Type ProcListSubview in the Identifier field and 
close the Pane Info window. 

Because the subview handles its own commands, you do 
not need to assign command handlers for this window. 

Now the alternative main window, 
CProcessListOnly, is complete. You are ready to 
create the final view. 

4. Close the ProcessListOnly View Edit window. 

Symantec C++ User's Guide and Reference 15-37 



• 15 Tutorial: Process Monitor 

Creating the New ... Dialog 
The dialog box that opens when a user chooses New from the 
application's File menu is called a New dialog box. 

1. Choose New View from the View menu to open the 
New View dialog box. 

2. Type WindowChooser as the view's name and choose 
New ... Dialog from the View Kind pop-up menu 
(Figure 15-30). 

Please name the new uiew 

Name: I WindowChooser 

./Dialog 
Floating Window 
Main Window 
Modal Dialog 

Splash Screen 
Subuiew 
Tearoff Menu 
Window 

Figure 15-30 Creating a New ... Dialog view 

3. Click OK to close the New View dialog box. 

The WindowChooser View Edit window opens. By default, the 
dialog is a double-bordered modal dialog window. 

Adding radio buttons 
You need to add two radio buttons that let the users choose a view 
to create. 

1. With the Static Text tool, create a static text item at the 
top of the dialog and type Create a window 
showing:. 

2. With the Radio Button tool, create two radio buttons 
underneath the static text item, one above the other, and 
give them the labels Process List and 
Information and Process List Only. 

15-38 Symantec C++ User's Guide and Reference 



Building the User Interface + 

3. Select each radio button in turn, choose Identifier from 
the Pane menu (Command-]), type ProcListAndinfo 
and ProcListOnly, respectively, as identifiers, and 
click OK. 

4. Select the Process List and Information radio button, 
choose Pane Info from the Pane menu (Command-L) to 
open the Pane Info window, and open the CControl 
class. 

5. Set contrlValue to 1, as shown in Figure 15-31, so this 
button will be selected by default, and close the Pane 
Info window. 

ProclistHnd Info 

Identifier: I 
Left: .-I 1_1_2 __ ..., Top: 

Width: ._I 2_0_9 __ _. Height: ._I 1_6 __ __, 

• CRMl"ietantre! 

• CButton 

CControl 

contrlTitle: 
I Process List and Information 

contrlVal ue: I 1 
:======: 

contrl Min: I 0 
:======: 

contrl Max: '--I 1 ____ _, 

• CPane 

•m~ • 
+ mmmmmm:::mm1!m1:mm11~1mmmmmmm:mmmm:mmmmmmmmmmmmm:m:mrn:mmmwm::mm:mm + Iii 

Figure 15-31 Pane Info window for the radio button 

Symantec C++ User's Guide and Reference 15-39 



• 15 Tutorial: Process Monitor 

Adding OK and Cancel Buttons 
1. Select the Button tool and click the lower-right corner of 

the dialog to create an OK button. 

2. Choose Identifier from the Pane menu (Command-]), 
type OK, and click OK. 

By default, the first button you add to a view is named 
OK and has cmdOK as its command. 

3. Select the Button tool again and click to the left of the 
first button to create a Cancel button. 

4. Choose Identifier from the Pane menu (Command-]), 
type Cancel, and click OK. 

By default, the second button you add to a view is named Cancel 
and has cmdCancel as its command. 

When you are finished with the buttons, the View Edit window 
should resemble that shown in Figure 15-32. 

WindowChooser 

Create a window showing: 

@ Process List and Information 

O Process List Only 

( Cancel ) [ OK D 

._ _______ ..... ~ m~:~:mmmmmmmmmmm:m:m::mm:::::i~~::::mmm:mrnm:m:mm + \ljj 
Figure 15-32 The New ... Dialog View Edit window 

15-40 Symantec C++ User's Guide and Reference 

\ 



Building the User Interface + 

Editing menus 
Before saving the project, you have one final user interface task: 
customizing the menu bar for the application. This tutorial did not 
attempt to build a complete menu; therefore, you need to remove 
menu choices that are not currently supported. 

1. Choose Menu Bar from the Edit menu to open the 
Menu Bar dialog box (Figure 15-33). 

Edit ® s (Apple Menu) 

( Edit Menu I terns J 

MENU ID: 

MOH ID: 0 

Rdd Menu:~ (Cancel) 

OK 

Figure 15-33 Menu Bar dialog box 

Symantec C++ User's Guide and Reference 15-41 



• 15 Tutorial: Process Monitor 

2. Select the File menu from the list and click the Edit 
Menu Items button to open the Menu Items dialog box 
(Figure 15-34). 

Menu Items 

File 

New ft] 
Open ... 

Close 
Saue 
Saue Rs ... 
Reuert to Saued 

D Has submenu 

Cmd-key:~ 

Page Setup ... 
Print ... 

I con: 1 1~: I Mark: I None ,.. I 

Quit 

Command: ._I _c_m_d_N_e_w _____ ,.._.I 

Figure 15-34 Menu Items dialog box 

[ Cancel J 

OK 

3. Delete all menu items except New, Close, and Quit by 
selecting them from the list and pressing Delete. Leave 
the dividers between the three menu items in place. 

4. Click OK to close the Menu Items dialog box. 

5. Select the Apple menu in the menu list and click the Edit 
Menu Items button to bring up the Menu Items dialog 
box. 

6. Choose the top menu item in the list, type About 
Process Monitor ... to rename it, and click OK. 

7. Click OK in the Menu Bar dialog box to close it. 

8. Choose Save from the File menu (Cornmand-S) to save 
the Visual Architect . rsrc file. 

15-42 Symantec C++ User's Guide and Reference 



Generating Code for Your Application + 

Generating Code for Your Application 
With the user interface for the application built, you are ready to 
generate the code that enables it to run. This code falls into two 
categories: support of the application's function (the display and 
manipulation of running processes) and support of the user 
interface. Visual Architect generates the latter type of code; typically, 
you would still need to write the functional code. For this tutorial, 
however, the functional code is provided for you in the Extra 
Sources folder and in the pre-edited files of the Source folder. 

1. Choose Generate All from Visual Architect's Symantec 
Project Manager menu. The title of the menu is 
the Symantec Project Manager application icon 
(Figure 15-35). 

Bring Up To Date 38U 
Run OOH 

Figure 15-35 Symantec Project Manager menu 

A message box is displayed showing the progress of the 
code generation (Figure 15-36). 

Writing ... 

H_CProcessRrrayPane.cp 

Figure 15-36 Code Generation Progress message box 

Symantec C++ User's Guide and Reference 15-43 



• 15 Tutorial: Process Monitor 

By default, Visual Architect generates code to the 
Source folder within the Process Mani tor folder, 
using standard macro files. After Visual Architect creates 
the files, it adds them automatically to your project. 
When generation is complete, the folder called Source 
in your Process Mani tor folder contains the 
generated code. 

2. Switch to the Symantec Project Manager application and 
open the Source group by clicking the small triangle to 
the left of its name. 

Look at the Project window to verify that Visual Architect has 
added the new source files to your project in the Source group 
(Figure 15-37). 

15-44 Symantec C++ User's Guide and Reference 



Cd 
Cd 
Cd 

• 
• 
• 
• 
• 
• 
• 
• 
+ 

• 
• 
+ 

• 
• 
• ~ 

Cd 
+ ~ 

Generating Code for Your Application + 

Extra Sources 

Runtime Libraries 

Source 

~ CApp.op 

~ CMain.op 

~ CProoessArrayPane.op 

~ CProoesslistOn ly .op 

~ CProolistSubviewP anorama .op 

~ C'w'indowChooser .op 

~ main.op 

~ References .op 

~ x....CApp.op 

~ x....CMain.op 

~ x....CProoess Array Pane .op 

~ x....CProoessl istOn ly .op 

~ x....CProolistSubviewP anorama .op 

~ x....C'w'indowChooser .op 

TCL Resouroes.rsro 

TH INK Class Library 

Visual Architect .rsro 

Totals 

+ 

• 
• 
• 
• 
• 
• 
• 
+ 

• .. 
• 
• 
• 

oO 
0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Figure 15-37 PPC Process Monitor.1t Project window 

Customizing code 
At this point, Visual Architect has generated the user interface code. 
This typically is the time at which you would add your functional 
code. As mentioned earlier, however, the functional part already has 
been created. 

To understand the changes made, you can look at the source files 
directly. Edited portions of changed source files are marked clearly 
so you can distinguish easily between generated and customized 
code. 

Symantec C++ User's Guide and Reference 15-45 



• 15 Tutorial: Process Monitor 

The edits are preceded and followed by the comments shown as 
follows: 

II ••••• Visual Architect Tutorial Code Change Begin 

< modified code goes here> 

II ••••• Visual Architect Tutorial Code Change End ••••• 

In addition, all files in the Extra Sources folder were created for 
the tutorial. These files implement classes that do not have any visual 
elements, so they cannot be specified by Visual Architect. These files 
have already been added to the project. 

Running the application 
To run the Process Monitor application: 

1. Choose Bring Up to Date from the Project menu. 

2. Choose Run from the Project menu. 

If you receive compilation errors, you have probably misspelled or 
forgotten to set one of the identifiers. Launch Visual Architect to 
correct the mistake, then choose Run from Visual Architect's 
Symantec Project Manager menu. Files are regenerated 
automatically, as necessary. 

Once the program is running, you are free to experiment with it. 
However, keep in mind the following: 

• Processes with the Runs in Background option set off 
cannot be killed until those processes are brought to the 
foreground. The application will not process the Quit 
event until it executes its event loop. Try killing Visual 
Architect to test this rule. 

• Some processes in the list may not respond to clicking 
the Bring to Front button. Look at the Background Only 
bit in the Size Resource section. If it is set on, then the 
selected process does not have a user interface and 
cannot be queued as the foreground application. 

• If you have not installed a low-level debugger such as 
MacsBug, be sure you run the tutorial under the 
Symantec Debugger before clicking the Enter Debugger 
button. 

15-46 Symantec C++ User's Guide and Reference 



Symantec C++ • 
Symantec 
Project Manager 
Reference 

Part Four 
16 The File Menu 
17 The Project Window 
18 The Project Menu 
19 The Editor Window 
20 The Edit Menu 
21 The Search Menu 
22 The Class Browser 

Window 
23 The Build Menu 

Symantec C++ User's Guide and Reference 



24 The Debugger 
Windows 

25 The Debugger Menus 
26 The Windows Menu 

Symantec C++ User's Guide and Reference 



The File Menu• 
16 

Tt.is reference chapter provides a detailed explanation of all 
commands in the Symantec Project Manager File menu. The project 
models and options available from the New Project dialog box are 
described, along with the options in the File Open dialog box. The 
final sections of the chapter cover creating and modifying project 
models. 

Commands in the File Menu 
You use the Symantec Project Manager File menu to create new 
source code files and to open existing ones. You also use this menu 
to save and print your source code and to create new project files as 
you need them. Figure 16-1 shows the File menu. 

New Project ... 
New KN 
Open ... KO 
Open Selection KO 
Close KW 

Saue KS 
Saue Rs ... 
Saue R Copy Rs ... 
Reuert to Saued 

Page Setup ... 
Print ... KP 

Quit KQ 

Figure 16-1 File menu 

Symantec C++ User's Guide and Reference 16-1 



16 The File Menu • 

New Project 

These commands primarily are used to perform the following 
functions: 

• Open or create projects, Editor windows, and files 
• Save files and close windows 
• Print 

This chapter discusses the File menu commands by function in the 
order listed above. 

Opening projects, Editor windows, and files 
The first four commands in the menu let you create new projects and 
empty Editor windows, as well as open files. 

Opens the New Project dialog box (Figure 16-2), from which you 
can create a project. 

' 

I a Symantec C++ for Power ... ...-1 ~Macintosh HD 

D (RppleScripts) ( Eject ) 
D (Project Models) 

( D (Projects) - Desktop ) 
D (Scripts Menu) ( New LJ ) 
D (Scripts) 
[LlJ(Tools) 

D (Translators) + ( Cancel ) 

Create New Project: I Saue , 
j Hello u.iorld.11 I 
Project Model: I Empty Project .... , ' 

! 

~ 

Figure 16-2 New Project dialog box 

To create a new project, you set options in this dialog box and click 
Save. First type a name for the project and choose a project model 
from the pop-up menu. You also have the option to create a new 
folder for the project. 

16-2 Symantec C++ User's Guide and Reference 



Commands in the File Menu + 

Project Model pop-up menu 
Use the Project Model pop-up menu to choose a project model for 
a project. 

Project models are templates from which new projects are created. 
They define the libraries, resources, and source code files that the 
project initially contains, as well as the project's options settings. 
Symantec provides models for many common project types. You can 
create your own project models and display them in the Project 
Model pop-up menu. 

Note 
Once a project is created from a project model, you 
can add files, remove files, and change settings as 
needed. For details, see the section "Modifying 
Project Models," later in this chapter. 

The project models displayed in Figure 16-3 are included with 
Symantec C++ for Power Macintosh . 

Project Model: ./Empty Project 

RNSI C 
RNSI C++ (IOStreams) 
C Mac Rpplication 
C++ Mac Rpplication 
Natiue MPW Tool 
UR Rpp w/Shared TCL 
UR Rpplication 

Figure 16-3 Project Model pop-up menu 

Empty Project. Creates an empty Project file with no source files. 
This model is built into the Symantec Project Manager and is always 
available. The Empty Project is the only project model that you 
cannot change. 

ANSI C. Builds an application in C that makes use of the console 
package for input and display of text instead of calling the Toolbox 
directly. 

Symantec C++ User's Guide and Reference 16-3 



• 16 The File Menu 

The ANSI library included with Symantec C++ for Power Macintosh 
lets you create programs that perform input and output using only 
functions in the ANSI libraries. Calls to functions such as print f 
display text in a window and calls to scanf read input from the 
keyboard. Being able to create applications that do not call the 
Macintosh Toolbox directly is helpful if you are porting a program 
from another platform or working with examples from books 
designed for other operating systems. 

The console package also includes some functions not found in the 
standard ANSI library. These include commands that open a dialog 
box to allow the entry of command line arguments and 
cecho2printer and cecho2 file, which echo the output of a 
given console window to a printer or file respectively. 

ANSI C++ (IOStreams). Builds an application in C++ if you do not 
want to call the Toolbox directly. The model is the same as the ANSI 
C model, except that it includes the libraries required to support 
programming in C++ and to use the IOStreams package. 

C Mac Application. Builds an application in C that calls the 
Macintosh Toolbox directly. Choose this if you already have some 
Toolbox-based code written in C that you want to include in your 
project. 

C++ Mac Application. Builds an application in C++ that calls the 
Macintosh Toolbox directly. Choose this if you want to use a 
Toolbox-based class library other than the THINK Class Library. 

Native MPW Tool. Builds a tool to use with the Macintosh 
Programmer's Workshop. You may also use MPW tools from the 
Symantec Program Manager with ToolServer. For more information 
on ToolServer, see the section "Using ToolServer," in Chapter 8, 
"Advanced Topics." 

VA Project Models. Builds an application using the THINK Class 
Library and Visual Architect. These are the most powerful of the 
project models and the best choice for starting a new application, 
unless you want to use a different class library or have existing code 
handle Toolbox functions. 

A project built with either of the VA project models will contain all 
the source code for the Think Class Library and all the resources the 

16-4 Symantec C++ User's Guide and Reference 



New XN 

Commands in the File Menu + 

class library requires. A project built from either one will be ready to 
interface with Visual Architect. 

VA App w/Shared TCL Includes the THINK Class Library as a 
shared library; all projects built from this model share a copy of the 
TCL's object code and debugging information. Also, after the first 
time you compile the TCL's library, you do not have to recompile it 
each time you start a new project. Therefore, use this model if you 
are developing more than one project based on the THINK Class 
Library and would like to save disk space and compilation time. 

The disadvantage of using this model is that the resulting application 
consists of two files, the application itself and the TCL's shared 
library. This may not be suitable for some applications because users 
could receive multiple (possibly differing) copies of the TCL library 
from different products. 

VA Application. Includes the source code to the TCL as part of the 
project. When built, the application consists of a single application 
file. Therefore, use this model when you are working on a single 
project based on the THINK Class Library, as well as for the final 
versions of projects that you will be distributing. 

Create New Project textbox 
In this textbox, enter the name of a project with the extension .7t 

(press Option-P to type 7t). 

New Project Folder button 
Click this button to create a new folder for a project. 

Opens an empty and untitled Editor window. You must save the 
contents of the new window before you can add it to a project. 
Once the file has been saved, you can add it to the active project by 
choosing Add "filename' or Add Files from the Project menu. 

Note 
For the translators to work on contents of the file, 
you must give it an appropriate extension (such as 
". c" for C files). The extensions for each translator 
are listed on the Extensions Mapping page of the 
Project Manager's Project Options dialog box. For 
further information, see the section "Project Options 
Page,'' in Chapter 18, "The Project Menu." 

Symantec C++ User's Guide and Reference 16-5 



16 The File Menu • 
Open 3€0 Opens a File Open dialog box (Figure 16-4), which you can use to 

open text and project files. 

la Symantec C++ for Power ........ I= Macintosh HD 

CJ (Project Models) 
CJ (Projects) 
CJ (Scripts Menu) 
CJ (Scripts) 
CJ (Tools) 
CJ (Translators) 

Show: I TeHt Files 

Figure 16-4 File Open dialog box 

+ Eject 

I 
Desktop 

..... 1 
Cancel 

The File Open dialog box is similar to a standard File Open dialog 
box with the addition of two controls: the New Project button and a 
pop-up menu to control the kind of files displayed in the dialog box. 

Note 
Any project opened with the Open command 
becomes the active project. 

The Project Manager lets you have more than one project open at a 
time. However, only one project at a time is considered to be active. 
You can make any open project-or any project that you have 
opened since you opened the Project Manager-the active project by 
choosing its name from the Switch Main Project submenu of the 
Project menu. If you choose a project that is not currently open 
from the Switch Main Project submenu, the Project Manager opens 
that project and makes it the active project. 

16-6 Symantec C++ User's Guide and Reference 



Open Selection X D 

Open In Editor ---=XD 

Save XS 

SaveAll ---=XS 

Commands in the File Menu + 

Show pop-up menu 
The Show pop-up menu, located at the bottom of the File Open 
dialog box, is used to set a file filter for displaying files (Figure 16-5) . 

../ Hll Huailable OOH 
TeHt Files 38T 
Project Files 38P 

Figure 16-5 Show pop-up menu 

You have three alternatives: 

All Available. Displays folders, text files, Symantec Project Manager 
project files, and Think Project Manager project files. 

Text Files. Displays only folders and text files. 

Project Files. Displays only folders and Symantec Project Manager 
project files. 

New Project button 
Click this button to open a new project. This has the same effect as 
choosing New Project from the File menu. 

Opens the currently selected file(s) if the frontmost window is the 
Project window. If the frontmost window is an Editor window, 
selecting this command opens the currently selected file and extends 
the selection to the right to include the file's extension (such as 
" . h"), if appropriate. You can use this command to open a header 
file by selecting the name from an #include statement. 

If you hold down the Option key while the File menu is selected, 
this command becomes Open In Editor. If you select Open In 
Editor when a Class Browser window is frontmost, an Editor 
window opens that contains the source file currently displayed in the 
Class Browser's source pane. 

Saving files and closing windows 
These commands let you save files, revert to the last-saved version, 
and close windows. 

Saves the contents of the frontmost Editor window to disk. If the file 
has not yet been saved to disk, a standard File Save dialog box 
opens for naming and placing the file. 

Symantec C++ User's Guide and Reference 16-7 



16 The File Menu • 

Save As 

Save A Copy As 

Revert to Saved 

Close :J:f:W 
Close All -=:J:f:W 

Quit :J:f:Q 

If you hold down the Option key with the File menu selected, this 
command toggles to Save All Choosing the Save All command 
saves the contents of all open windows that have unsaved 
modifications. This includes any text in the Worksheet window (if 
open) and any changes made to source code in Class Browser 
windows. 

Saves a copy of the contents of the frontmost Editor window with a 
new name. If the file has been added to the project, the version of 
the file with the new name replaces the older version in the Project 
file. 

Note 
If you don't want the new version of the file to 
replace the older one in the project, use the Save A 
Copy As command instead of Save As to save the 
file. 

Saves a copy of a file without changing the project. If the frontmost 
window contains text, a copy of the text file is made. If the frontmost 
window is a Project window, a copy of the Project file is made, 
minus any object code from the original. This is a good way to make 
a temporary backup of a file. A standard File Save dialog box opens 
to let you name and place the file. 

Replaces the contents of the frontmost Editor window with the most 
recently saved version of the file. 

Closes the frontmost window. You can perform the same function by 
clicking the close box on the left side of the window's title bar. 

If you hold down the Option key with the File menu selected, this 
item toggles to Close All, which closes all open windows. 

If you have modified text in an Editor window since the last save 
and have checked the Confirm Saves option on the Editor Options 
General Settings page of the Project Manager Preferences dialog 
box, you are prompted to save your changes. Otherwise, any 
changes are automatically saved. 

Closes the Symantec Project Manager and all open windows. If any 
of these windows contain unsaved changes, you are prompted to 
save them. 

7 6-8 Symantec C++ User's Guide and Reference 



Page Setup 

Print ~p 

Modifying Project Models + 

Printing 
These commands cover page setup and printing. 

Opens the standard Page Setup dialog box for your printer. See the 
manuals that came with your Macintosh for more details. 

Prints the contents of the frontmost window. You can print the 
following types of windows: Editor windows, the active pane of a 
Class Browser window, Project windows, Search Results windows, 
Build Errors windows, and Link Errors windows. 

Modifying Project Models 
You can modify any of the project models included with Symantec 
C++ for Power Macintosh except the Empty Project. You can change, 
add, or remove any file or change any setting, once a project is 
created. You can change one kind of project to another in this way. 
If you want to change the basic settings of a project model that 
Symantec provides, you should make a copy of the project model, 
make the necessary modifications, and add the new project model to 
the models folder. 

To change a project's initial options, open the project named @1 in 
the folder with the name of the project model you want to modify. 
This folder is located in the (Project Models) folder, which is 
located in the same folder as the Symantec Project Manager 
application. You might want to do this if you repeatedly change 
options each time you create a new project from a given project 
model. 

For example, you might add named option sets for debugging and 
nondebugging versions of applications. You can create two new 
models by modifying the model you use to start projects with so 
each model contains one of the two option sets. 

When the Project Manager creates a new project from a project 
model, it copies the project file named @1 from the project model's 
folder into the new project's folder and gives it the name the user 
enters in the New Project dialog box. The Project Manager then 
copies all files and folders (including their contents) in the project 
model's folder to the location of the new project. 

Symantec C++ User's Guide and Reference 16-9 



• 16 The File Menu 

Creating Custom Project Models 
You can add your own project models to the Project Model pop-up 
menu. This is useful if you have a standard Project file from which 
you always start new projects. If you turn it into a project model, you 
can create copies of it without ever having to leave the Project 
Manager. 

Note 
The project list in the Project Model pop-up menu 
is sorted alphabetically. If you want a model to 
appear at the top of the list, add a space at the 
beginning of the project's folder's name. 

To turn an existing project into a project model, you need to 
complete tasks in both the Project Manager and the Finder. 

Note 
You should complete these steps with a duplicate of 
the project. 

The following steps are performed in the Project Manager: 

1. Open the project in the Project Manager. 

2. From the Project file, remove any source code files you 
do not want to include in the project model by choosing 
Remove from the Project menu. 

3. Add any source code files that you want to add. 

4. Choose Remove Objects from the Build menu. 

5. Quit the Project Manager. 

The following steps are performed in the Finder: 

1. From the project folder, delete any source code files that 
you do not want to include in the project model. 

2. Change the primary Project file's name to @l. 

16-10 Symantec C++ User's Guide and Reference 



Creating Custom Project Models + 

3. Rename the project's folder with the name you would 
like displayed in th~ Project Model pop-up menu ("My 
Project Model" for example). 

4. Move the project's folder and its contents into the folder 
named (Project Models). The (Project 
Models) folder is located in the same folder as the 
Symantec Project Manager (that is, the Symantec Project 
Manager's program file). 

Symantec C++ User's Guide and Reference 16-11 



16 The File Menu • 

16-12 Symantec C++ User's Guide and Reference 



The Project 
Window• 

17 
~is reference chapter describes both how to display information in 

the Project window and what project information can be displayed. 
The information the Project window can display includes make and 
debug status, file location and last modification date, code and data 
size, and project organization. 

Introducing the Project Window 
The Project window shows the contents of your Project file as well 
as the status of each component. Any time you open a project, 
whether through the File menu or Project menu, you open a 
Project window. Figure 17-1 shows the default Project window for 
a project. 

• ~ Buggy Edit .c • 
~ CJ Libraries 2120 

<> ~ mini. file .c • 2544 

<> ~ mini .print .c • 1304 

<> ~ mini.windows.c • 2424 

<> ~ MiniEdit .rsrc 0 

<> ~ p leasew ait .c • 40 
{} 

Totals 11344 Iii 

Figure 17-1 Project window 

You use the Project menu and the Windows menu to configure the 
components displayed in the Project window. The Windows menu 
controls general window characteristics and the Project menu 
controls the arrangement of files. Selecting the Show Toolbar 
command from the Windows menu, for example, adds the Header 
and Options pop-up menus to the Project window toolbar. 

Symantec C++ User's Guide and Reference 17-1 



17 • The Project Window 

In addition, you can control what and how the Project window 
displays information by setting options in the Project Window page 
of the Project Options dialog box. For information about Project 
window options, see Chapter 18, "The Project Menu." 

The following sections describe all the kinds of information that can 
be displayed in the Project window. To display every information 
type, set all options on the Project Window page of the Project 
Options dialog box and set the Show Toolbar command on. 

Pop-up menus on the toolbar 
If you choose the Show Toolbar command from the Windows 
menu, the Project window displays two pop-up menus: Headers 
and Options. These two menus are described next. 

Headers pop-up menu 
The Headers menu lists the include files for the source files in the 
project (Figure 17-2). To view a header file, choose its name from 
the pop-up menu. A text Editor window is opened containing the 
selected file. See section "Window features," in Chapter 19, "The 
Editor Window" for more information on the Headers pop-up 
menu. 

Headers T j 
mini.file.h 
mini .print .h 
mini. windows .h 
MiniEdit.h 
p leasew ait .h 
Printil}_g_.h 

Figure 17-2 Headers pop-up menu 

Options pop-up menu 
The Options pop-up menu lists the option sets established for a 
project-for example, a development build options set or a ship 
build options set. To make an options set active, choose its name 
from the Options pop-up menu (Figure 17-3). For more information 
on options sets, see Chapter 18, "The Project Menu," and Chapter 8, 
"Advanced Topics." 

w""• ... 1-... 
!MirliEdit :J1 

Figure 17-3 Options pop-up menu 

17-2 Symantec C++ User's Guide and Reference 



~ E:3 Libraries 

0 ~ mini.file.o 

0 ~ mini.print.o 

0 ~ mini.windows.o 

0 ~ MiniEdit .rsro 

0 ~ p leasew ait .o 

Totals 

Introducing the Project Window + 

Project window column headings 
Each column heading provides a specific kind of information 
regarding the project (Figure 17-4). This section describes the 
column headings in order, from left to right. 

Group 2120 121 

• PowerPC C Macintosh HD ... :MiniEdit f: 8/30/94 4 :53 PM 2544 328 

• PowerPC C Macintosh HD .:MiniEdit f: 8/30/94 5 :00 PM 1304 88 

• PowerPC C Macintosh HD .:MiniEdit f: 9/02/94 12:15 PM 2424 160 

Resource Copier Macintosh HD .:MiniEdit f: 3/22/94 757 PM 

• PowerPC C Macintosh HD .:MiniEdit f: 3/22/94 757 PM 40 16 

11344 945 

Figure 17-4 Project window column headings 

Make status 

mm 

I 
~ 
l!il 

The Make status column indicates whether a source file needs to be 
rebuilt. A filled diamond indicates that the project entry is not up-to­
date; an empty diamond indicates that the project entry is up-to-date. 

Icon 
The Icon column displays the Finder icon for each source file or the 
folder icon for each group. 

Name 
The Name column displays the name of each file or group in the 
project. The name is always displayed. 

Debug status 
The Debug status column shows whether the debug status for each 
source file is on or off. A filled diamond (under the bug icon) 
indicates that debugging information is generated for the file; an 
empty diamond indicates that debugging information is not 
generated for the file. 

Group 
The Group column displays the project group hierarchy. 

The Group column shows the immediate group owner of each 
source file. This option is useful when the Group Hierarchy option 
on the Project Window page of the Project Options dialog box is 
set off. 

Symantec C++ User's Guide and Reference 17-3 



17 • The Project Window 

Translator 
The Translator column shows the name of the translator that is used 
for each source file. 

Kind 
The Kind column shows the kind of each entry: Group, Source, 
Precompile Source, Project, Library (hard import), Library (soft 
import). 

Location 
The Location column shows the full path of each source file. 

Modification 
The Modification column shows the last modification date of each 
source file. 

Code 
The Code column shows the code size of each file in bytes. 

Data 
The Data column shows each file's data contribution in bytes. 

Projector status 
The Projector status column shows the projector checkout status of 
each source file. If the pencil icon has a line through it, the source 
file is read-only; no line, the file is modifiable; and a dashed line, the 
user has selected the Modify Read Only command from the 
Revision menu. That command allows you to change the file, but 
you cannot check the changed file back in. 

Selecting Project Entries 
Any of the column headings can be used as a criterion for sorting the 
files or groups listed in the window. You can choose, for example, to 
sort by file name (by selecting the Name heading) or by modification 
date (by selecting the Modification heading). Depending on the field, 
the ·sort would display the project entries in alphabetic or numeric 
order. 

To select a heading as a sort criterion, click it. Once the heading is 
selected, a directional arrow is displayed adjacent to the heading or 
icon (Figure 17-5). Note that the project files listed in Figure 17-4 
have been sorted by name. The directional arrow next to the Name 
column heading shows that the alphabetic sort ordered the filenames 
from A to Z. 

17-4 Symantec C++ User's Guide and Reference 



Drag-and-Drop Operations + 

Click the arrow next to a selected column heading to reverse the sort 
(from ascending to descending, for example). 

:!n:ii.iii;;;!WiliJi, 
1il!i!llQ~'H·· .. <1 

Figure 17-5 Name heading with directional arrow 

Drag-and-Drop Operations 
In the Project window, you can use a number of drag-and-drop 
operations. You can, for example, add, remove, arrange, or copy 
project entries and groups by moving entries in, or between, Project 
windows. 

Adding project entries from the Finder 
To add project entries and groups from the Finder, select them in the 
Finder and drag their outlines into a Project window. You can only 
add files that have the correct file extensions (or are shared libraries 
or projects) and that are not already in the project. 

If any of the selected files cannot be added, the entire drag is refused 
(the window does not draw the drag highlight). If you do not want 
to do type checking (for example, you may want to add some 
documentation files), hold down the Command key as you drag 
items into the Project window. This has the same effect as selecting 
All Files from the Show pop-up menu in the Add Files dialog box. 

If you drag a folder from the Finder, a group is created with the 
name of the folder and its contents are added to the group. By 
dragging folders, you can create a group hierarchy that reflects your 
source code hierarchy. 

Removing project entries 
You can remove project entries and groups. For example, you can 
select a number of project entries and groups and drag them to the 
trash icon on the desktop. 

Rearranging project entries 
You can rearrange project entries and groups. For example, you can 
select a number of project entries and groups and drag them to other 
group locations in the Project window. The group destination is 
highlighted to show where the dragged items will go. Note that you 
cannot reorder items within a group by dragging because items are 
always sorted. 

Symantec C++ User's Guide and Reference 17-5 



17 • The Project Window 

Copying project entries 
To copy project entries and groups to other projects, first select 
them, then drag them to another Project window. This adds these 
project entries and groups at the drop location (if you dropped on a 
group entry). Note that the project entries and groups are not 
removed from the project from which you dragged them. 

17-6 Symantec C++ User's Guide and Reference 



The Project Menu• 
18 

Tws chapter describes how you control project behavior. This 
includes options for building and running an application, for 
configuring applications and libraries, for linking, for compiling, and 
for project display. 

Commands in the Project Menu 
The commands in the Project menu are used to perform the 
following functions: 

• Switch projects 
• Add and remove files from a project 
• Work with the Debugger 
• Set project-level options 

Figure 18-1 shows the Project menu. This chapter discusses the 
Project menu commands by function in the order listed above. 
Because of the complexity of the Options command, establishing 
project-level options is covered last. 

Options ... 38; 

Switch Main Project ~ 

Rdd Files ... 
Rdd Window 
Rdd Group ... 
Remoue 

Debug File 38 I 

Run with Debugger 38R 

Figure 18-1 Project menu 

Symantec C++ User's Guide and Reference 78-1 



18 The Project Menu • 

Switch Main Project 

Add Files 

Switching projects 
One command lets you switch to any open project or any project 
that you just closed. 

Opens a submenu containing the names of all projects that have 
been opened during the current session, even if they are closed 
(Figure 18-2). This menu also contains projects that have aliases in 
the (Projects) folder in the Symantec tree. You use this submenu 
to choose a different project as the target of a build command. 

I I • 

Options ... 8€. 
' 

Switch Main Project ~ 

Rdd Files ... 
Reid Windom 
Rdd Group ... 
Remoue 

Debug File 8€ I 

Run with Debugger 8€R 

Object Bullseye. n 
../ Sillyballs. n 

Figure 18-2 Switch Main Project submenu 

Adding and removing files from a project 
The following four menu commands let you add and delete files 
from a project. 

Opens a dialog box that lists all extension-mapped files. You use this 
dialog box to add files to the Project window, in the selected group 
(if any). You can add any type of file to a project; only those files 
that map to translators will be built. For example, you can add word 
processing files without tacking on extensions. To show all files, 
select All Files from the Show pop-up menu. 

18-2 Symantec C++ User's Guide and Reference 



Add filename 

Add Group 

Remove filename 

Debug File 3€ I 

Commands in the Project Menu + 

I e Sillyballs f T I = Macintosh HD 

~ Sillyballs.c p t1 Eject 
ill Sillyballs.11' 

Desktop 

Cancel 

{7 Done 
~~~~~~~~~~~~~~ 

Show: I Source Files TI

Add All

Remo1Je

Figure 18-3 Add File dialog box

Navigate to a file that you want to add, click to select it, then click
Add. When you have added all the files you want, click Done.

Adds the file that is opep in the current Editor window to the main
project.

Creates a new group in the project within the currently selected
group. Group names must be unique within the same enclosing
group.

Removes selected files or groups from the project. Multiple files or
groups can be selected.

Working with the Debugger
The next two commands describe how to launch the Debugger and
how to run an application with the Debugger on.

Launches the Debugger, if necessary, and opens the selected file for
debugging. In the Debugger, the Main window opens with the same
line selected that you selected earlier in the Editor window.

Symantec C++ User's Guide and Reference 18-3

18 The Project Menu •
Run with Debugger
Run ~R

Option ~;

Builds a version of an application without linker optimizations and
runs it or sends it to the Debugger. If changes have been made since
the last time you ran the project, you are prompted to update the
project. You can toggle between Run and Run with Debugger
mode by holding down the Option key while clicking this
command.

Setting project-level options
The most complex command in the Project menu is Options.
Choosing this command opens a multipage dialog box.

Opens the Project Options dialog box, in which you configure the
options settings for the current project (or if no project is current, a
project that you select). Options are project specific, unlike the
preferences you set using the Project Manager Preferences dialog
box. Options settings remain bound to a project even when you
close and later reopen the project. They control general project
behavior, including build and run settings.

Note
The preferences in the Project Manager
Preferences dialog box affect all projects.

The Project Options dialog box has eight options pages:

• Project Options
• Project Type
• Linker
• Extensions Mapping
• Project Window
• PowerPC C Compiler Options
• PowerPC C++ Compiler Options
• Symantec Rez Compiler Options

Each options page is represented by an icon in the scrolling list at
the left side of the dialog box. By default, the Project Options
dialog box opens to the Project Options page. Clicking a page's icon
selects the page. Some options pages, such as Project Type, have
multiple subpages. You can move freely between options pages as

18-4 Symantec C++ User's Guide and Reference

Commands in the Project Menu +

you configure options. Table 18-1 shows the keyboard substitutes for
moving in the icon list.

Table 18-1 Keyboard substitutes for page icons

Press this
Command-Option-Up Arrow

Command-Option-Down Arrow

Command-Option-Page Up

Command-Option-Page Down

Command-Option-Home

Command-Option-End

To select
Preceding icon

Following icon

Preceding icon

Following icon

First icon

Last icon

Each options page contains Cancel, Save, and Factory Settings
buttons. Cancel performs its standard Macintosh operation. Clicking
Save saves the options settings for the current editing session. These
options settings are then available for selection-for example, in
another editing session or from the Project window. The Factory
Settings button resets all options to their default settings.

Other common elements on all options pages include the Help area
and the Options pop-up menu.

Help
The Help area provides information for each option displayed. To
view the information for an option, click the option.

Note
To receive help on an option without changing its
value, move the cursor away from the option before
releasing the mouse.

Options pop-up menu
The Symantec Project Manager allows you to define multiple options
sets for each project. These sets can be used to group various option
configurations. For example, you can define options sets for the
different stages of a project's development (such as development
build, beta build, and ship build).

Symantec C++ User's Guide and Reference 18-5

18 The Project Menu •

<Empty Project>

By default, each project has one options set that is created when the
project is created; this options set has the same name as the project.
Note that any changes made on any of the five pages of the Project
Options dialog box are made in relation to the options set currently
selected in this pop-up menu.

Clicking Options opens the Options pop-up menu.

<Empty Project>

Edit Menu .•.
Saue Options Rs ...

Figure 18-4 Options pop-up menu

You use the pop-up menu to create and select options sets. As you
define new options sets, their names are added to the project.

Note
Any changes you make to options sets through the
Options pop-up menu affect only the current
editing session. To save those changes, click Save.
To switch options sets for the project for later use,
use the Options pop-up menu in the Project
window.

When a project is created with the Empty Project template, its default
options set contains the options defined in the <Empty Project>
options set. You can change the settings in this options set by
choosing <Empty Project> from the Options pop-up menu,
configuring the options pages appropriately, and clicking Save.

18-6 Symantec C++ User's Guide and Reference

Edit Menu

Commands in the Project Menu +

Opens the Edit Options Menu dialog box, in which you can select
an options set to delete or rename (Figure 18-5).

Options:

Ship build ft1
MiniEdit. 11

Delete

Done Rename

Figure 18-5 Edit Options Menu dialog box

To delete an options set, select its name from the list and click
Delete. This removes the options set for the current editing session
only. To delete the options set permanently, click Save after you
have deleted the options set and closed the dialog box. Note that
you cannot delete the options set currently _selected in the Project
window.

To rename an options set, select its name from the list, type the new
name in the textbox, and click Rename. This renames the options set
for the current session. To permanently save the new name, click
Save after you have renamed the option and closed the dialog box.

Symantec C++ User's Guide and Reference 18-7

18 The Project Menu •
Save Options As Opens an Options Save dialog box, in which you can create a new

options set from an existing one. This is the last command on the
Options pop-up menu (Figure 18-6).

Saue options as:

Ship build rft
MiniEdit.11

Figure 18-6 Options Save dialog box

The scrolling pane lists the names of current options sets. You
select an options set to copy, then type a new name in the textbox.
Figure 18-6 shows the creation of a ship build setting. Remember to
click Save on the options page after you close the dialog box to
permanently save the options set you just created.

18-8 Symantec C++ User's Guide and Reference

Project

Options pages

Project Options Page +

Project Options Page
Clicking the Project Options page icon displays a set of options for
building and running a project (see Figure 18-7).

Name of current options page

Proj_ect Options for "Silly_balls. 'IT"

Options: I Silly balls. 'IT ,.. ,

Project Options---------------------,

Al
. . liliiJ D Compact project when closing

~ 111111

Project Type !Ill!

~- !Ill!
Build and Run-·-------·-········--··········--···························--·--··-·-----------,

list -------Hf-+- f@ :ij1ii
Linker 'iiW

!81 Confirm project updates
!81 Update nested projects

i!!i.i.· D Rlways check file dates
~------_· ___ • .. ""'Run with debugger ~ 1111~ IOI

~f I [=;;;=~;~-~"~~.;=.;::i
PowerPC c ~ [Cancel J [Fartory Settings J ([Saue JJ

Help area

Figure 18-7 Project options page

Compact Project When Closing
Setting on the option Compact Project When Closing causes the
Project Manager to compact the project whenever you close it.

Build and Run settings
There are four options in this group.

Confirm Project Updates
When you try to run or build a project, you are prompted to make
any necessary updates. If this option is not set on, the project is
updated without a confirmation prompt.

Update Nested Projects
Whenever the project is brought up-to-date, the Project Manager
builds the target from all included projects.

Symantec C++ User's Guide and Reference 18-9

• 18 The Project Menu

Project Type

Always Check File Dates
Whenever you try to run or build a project, the Project Manager
checks the modification date for each file in the project. Outdated
files are flagged for compilation.

Run with Debugger
When you select Run, the Project Manager launches the application
through the Symantec Debugger.

Project Type Page
Clicking the Project Type page icon displays a set of options for
configuring various aspects of the target application or library
produced from a project. The Project Type page has three subpages,
one for each entry in the Project Type pop-up menu.

Application subpage
Choosing Application from the Project Type pop-up menu
specifies that the target is an application. The Application subpage
lets you configure options for that application (Figure 18-8).

Pro ·ect Options for "Sill bolls. n"

Options: I Slllyballs. n •I

Figure 18-8 Application subpage of the ProjectType page

Application identifiers
These textboxes specify the file type and creator of the application
file you are creating.

7 8-7 0 Symantec C++ User's Guide and Reference

Project Type Page +

File Type. Displays the file type ID for the application file. By
default, the ID is set to ' APPL ' .

Creator. Displays the creator ID for the application file. Type the
four-character ID in the textbox.

Destination
These options govern whether your target application has a default
location associated with it.

Set Destination. Opens a standard File Save dialog box, in which
you define the default location for the target file application. Once
you specify the target's filename and folder, its name is displayed in
the textbox below the Always Ask for Destination check box.

Always Ask for Destination. Causes the project system to prompt
you for the destination of the application file each time the
application is built.

SIZE
The SIZE options let you set the bits of the SIZE resource, which
specify the system services your application uses or is compatible
with (Figure 18-9). You can either use the pop-up menu to set the
bits individually or type a hexadecimal value in the textbox.

Flags. Opens the SIZE Flags pop-up menu. Each entry in the menu
is a flag, or bit, that can be set on or off. For more information, see
the SIZE resource page in the THINK Reference.

Suspend &· Resume EL•ents

../Background Null Euents

../ MultiFinder-Aware

Background Only
Get FrontClicks
Accept ChildDiedEuents

../ 32-Bit Compatible

../ HighleuelEuent-Aware
Accept Remote HighLe'uelEuents
Stationery-Aware
Use TeHtEdit Seruices

Figure 18-9 SIZE Flags pop-up menu

Symantec C++ User's Guide and Reference 18-11

18 The Project Menu •
Suspend & Resume
Events

Background Null Events

Multi Finder-Aware

The first three flags indicate the compatibility of the application with
System 7 and MultiFinder.

Specifies that the application gets these events as it shifts from the
foreground to the background layers, in addition to the Activate and
Deactivate events it normally receives.

Specifies that the application gets regular Null events when it is in
the background. Otherwise, the application gets only Update events.
Note that the Debugger can only debug applications that have this
flag set.

Indicates that the Finder expects you to conform to the guidelines
for shifting from the foreground to the background layers. The
application gets Suspend and Resume events as it shifts from
foreground to background, but it does not get Activate/Deactivate
events. If you check this flag, you spould also check the Suspend &
Resume flag.

The next three flags indicate those extra features of System 7 and
MultiFinder that an application uses.

Background Only Specifies that the application runs only in the background. Set this
flag if the application has no interface and cannot run in the
foreground. Note, however, that because the Debugger cannot
debug background-only applications, you should turn off this flag
while you are debugging this kind of application.

Get FrontClicks Specifies that the application receives the Mouse-Down and Mouse­
Up events that bring the application to the foreground.

Accept ChildDiedEvents Specifies that the application is notified when an application that it
launched quit or crashed.

32-Bit Compatible

High Level Event-Aware

The last five flags indicate to the Finder which System 7 features an
application supports.

Sets the application to run under the 32-bit version of Memory
Manager. Do not set this flag unless you have tested the application
on a 32-bit system.

Sets the application to receive all high-level events, including Apple
events, when it calls WaitNextEvent.

18-72 Symantec C++ User's Guide and Reference

Accept Remote
H ighlevelEvents

Stationary-Aware

Use TextEdit Services

Project Type Page +

Specifies that the application receives high-level events, including
Apple events, from your computer and other computers on your
network. If this flag is not set, the application receives high-level
events from your computer only.

Indicates that the Finder expects the application to handle stationary
documents. If this flag is not set, the Finder handles stationary
documents for you by duplicating the document and asking the user
for a name for the duplicate.

Indicates that your application can use the inline text services that
TextEdit provides for multi-byte script systems (such as those for
Japan and China). See. Inside Macintosh 117 for more information
about these services.

The remaining options on the Application subpage of the Project
Type page include the following check boxes:

Minimum Size. Lets you define the minimum memory partition to
allocate to an application.

Preferred Size. Lets you define the application's default memory
partition.

cfrg resource setting
You use this setting to specify the application's cfrg resource settings.
This resource type describes characteristics of code fragments on the
Power Macintosh. See Inside Macintosh: PowerPC System Software
for more information.

Custom Stack Size. Allows you to change the stack size in bytes for
an application. A value of 0 indicates that the default size should be
used. The default size varies depending on the machine
configuration; see Inside Macintosh: PowerPC System Software for
more information on default stack sizes.

Merge 680x0 Application
To create a "fat app" that contains both PowerPC and 680x0 code,
check this option and then click Select Application. A standard
Open dialog box opens, in which you specify the 68K application
whose code is to be merged into the target application. Once you
specify an application, its name is shown to the right of the button.

Symantec C++ User's Guide and Reference 18-13

18 • The Project Menu

Shared Library subpage
Choosing Shared Library from the Project Type pop-up menu
specifies that the project target is to be a shared library. This subpage
(see Figure 18-10) lets you configure options for a shared library.

Pro ·ect Options for "Sill balls. 'JI"

Options: I Sillyballs. 'JI .., I

File Typeltl!mMI

D EHport all symbols

[
cfrg -··-3 Current uersion ~
Implementation uersion ~

.. --·······························-························

···········-··-1

(Factory Settings)

l

([Sa~ B
1

Figure 18-10 Shared Library subpage of the Project Type page

Shared library identifiers
These textboxes specify the file type and creator of the shared
libraries you are creating.

File Type. Displays the file type ID for the shared library file. ·By
default, the ID is set to ' shlb' .

Creator. Displays the creator ID for the shared library file. Type the
four-character ID into the textbox.

Destination
These options govern whether the target library has a default
location associated with it.

Set Destination. Opens a standard File Save dialog box in which
you can define the default location for the target library. Once you
specify the library's filename and its folder, the library's name is
shown in the textbox below the Always Ask for Destination check
box.

18-14 Symantec C++ User's Guide and Reference

Project Type Page +

Always Ask for Destination. Causes the project system to always
prompt you for the destination of the library each time the shared
library is built.

Export All Symbols
Setting this option on includes all nonstatic symbols in the export
section of the shared library. Otherwise, only those symbols
explicitly compiled as exports are included (see the #pragma
lib_export in the Symantec C++ Compiler Guide).

cfrg resource setting
You use this option to specify the shared library's cfrg resource
settings. This resource type describes characteristics of code
fragments on the Power Macintosh. See Inside Macintosh: PowerPC
System Software for more information.

Current Version. Lets you specify the current version of the shared
library. For information about this topic, see Inside Macintosh:
PowerPC System Software.

Implementation Version. Lets you specify the shared library's
oldest supported implementation version.

Static Library subpage
Choosing Static library from the Project Type pop-up menu
specifies that the project target is to be a static library. The subpage
that opens (Figure 18-11) lets you configure options for a static
library.

Note
To create static libraries, you must use PPCLINK &
MakePEF.

Symantec C++ User's Guide and Reference 18-15

18 • The Project Menu

Pro "ect Options for "Sill balls:n"'

Options: I Sillyb11lls:ir ... j

Figure 18-11 Static Library subpage of the Project Type page

Static library identifiers
These textboxes specify the file type and creator of the static libraries
you are creating.

File Type. Defines the file type ID for the static library file. By
default, the ID is set to ' XCOF ' .

Creator. Defines the creator ID for the static library file. Type the
four-character ID into the textbox.

Destination
These options govern whether the target library has a default
location associated with it.

Set Destination. Opens a standard File Save dialog box in which
you can define the default location for the target library. Once you
specify the target library's filename and folder, its name is displayed
in the textbox below the Always Ask for Destination check box.

Always Ask for Destination. Causes the project system to always
prompt you for the destination of the library each time the static
library is built.

18-16 Symantec C++ User's Guide and Reference

Linker

Linker Page +

Linker Page
Clicking the Linker page icon displays a set of options for
configuring how the Symantec Project Manager builds your target.
The Linker page has two subpages, one for each entry in the Linker
pop-up menu.

Incremental Linker subpage
This subpage lets you choose options for the Incremental Linker
(Figure 18-12). Choosing Incremental Linker from the Linker
pop-up menu specifies that the Symantec Incremental Linker is to be
used to link your application's code.

Pro ·ect Options for "Sill balls:n"'

Options: I Sillyballs.11 .., I

ill Incremental Linker ... I I linker

Proje~t l!i
~ i;1!!

~ !lill1 l!·•,f
Project Typ..- l~/U

:a ~!!
w ~mi
~ ~mi~

Building---------·-----

r D Generate a link map

L.. IZI Generate cross reference\

D Smart link

Pr:~1::.w iii ·· Help ·· --------------·-·:---------············· :· .. ·········-
J ~:!.~! [Use this pop-up menu to select the hnkel" that you vlsh to use for bu1ldmg your target.

~ 1r:11 ·······································---------·-··-··------------···-·---·-··--····-··· j

PowerPCC ' (Cancel J [Factory Settings) ([Saue)J

Figure 18-12 Incremental Linker subpage of the Linker page

Generate a Link Map
Setting Generate a Link Map causes the Symantec Incremental
Linker, during a project build, to generate a link map for the target
application.

Generate Cross References. Causes the linker to put cross­
reference information in the link map. Generate a Link Map must be
set before changing the setting on this option. You can then turn
Generate a Link Map off if you want.

Symantec C++ User's Guide and Reference 18-17

18 • The Project Menu

Smart Link
Setting Smart Li(lk causes the Symantec Incremental Linker, during a
project build, to remove unreferenced code from the target
application.

Note
Each of the options Generate a Link Map, Generate
Cross References, and Smart Link can be turned on
independently of the other options.

PPCLink & MakePEF subpage
Choosing PPCLink & MakePEF from the Linker pop-up menu
specifies that PPCLink & MakePEF are to be used to link your
application's code (Figure 18-13).

Pro'ect Options for "Sill balls.1'1" ·----'o-----

Options: I Sillyballs.1'1 ,.. I

Figure 18-13 PPCLink & MakePEF subpage of the Linker page

Note
To use these tools, you need to have placed an alias
for Toolserver into your (Too 1 s) folder at
installation. (See the section "Using ToolServer" in
Chapter 8, "Advanced Topics.")

18-18 Symantec C++ User's Guide and Reference

Extensions

Extensions Mapping Page +

PPCLink Settings
Use this text field to type the PPCLink options you want to send
PPCLink.

UseMakeSYM
Setting this option on causes the linker to create a .SYM file for the
PPCLink output file.

Use the textbox to the right of the Use MakeSYM check box to type
the options that you want to provide MakeSYM.

MakePEF Settings
Use this edit area to type in the MakePEF options you want to send
MakePEF.

Extensions Mapping Page
Clicking the Extensions icon provides access to the extensions
mapping options, including a list of recognized file extensions
(Figure 18-14).

Fi le Extension-to-Translator I ist

J
ProJ_ect Options for "Sil!!l_balls.11"

Options: I Sillyballs.11 ""I
~~~n_s_io_n __ --+-

1
-+._n.,,.;:=,r-· -;;;;I,,.,, +--Ext--.onston• M•PPin9 _________ , ______ , _______ , 

·~ iliil FilJHtension ~~~-:•_Ex_t•_•_sio_•-~:-:n-;;~:~~og-+'"-i-~~~ 

Translator Project Type l~I ~ J ::PP ~~~£:~;:':~••• 

~O~-~:_P __ +t---i~~ink~er;'.-~ifi~jftETr::a=ns=la=t=or===:JJ :~:::, :~~~~~:E:;:;. ~ 

{1~-=-H;i~-==_ ========,:=.~=:,=. w=;,=:=,,:~,'.:=,,9=:=:~=:~=i:k=~n=g ;=:,:i:::oo='.==O=el=e=te===) ====~ 
PowerPC c ® [ Cancel [Factory Settings ) ([ Saue JJ 

Figure 18-14 Extensions Mapping page 

When you build a project, individual project entries are processed 
differently at build time according to their type. Each project 
maintains a table that determines how each type of project entry is 

Symantec C++ User's Guide and Reference 18-19 



18 • The Project Menu 

handled when the project is built. Using this page, you can redefine 
default extensions mappings, or define new extensions and the tools 
used to translate them. 

File Extension 
Use this field to type a file extension to add to the extensions list. 

Translator 
Use this menu to associate a translator with a file extension that you 
are adding. 

File Extension/Translator list 
This scrolling list contains all the recognized file extensions. As long 
as your project files have any of these extensions, the project will 
compile. You can add to the File Extension/Translator list. 

Add, Replace, and Delete buttons 
These buttons let you add, replace, or delete associations between 
file extensions and translators. 

Add. Adds to the File Extension/Translator list the association 
between a file extension and translator that you have chosen. 

Replace. Deletes and adds an association between a file extension 
and a translator in one step. Before clicking this button, you must 
choose the association to delete and specify the one to add. 

Delete. Deletes from the File Extension/Translator list the 
association you have chosen. 

18-20 Symantec C++ User's Guide and Reference 



Project Window 

Project Window Page + 

Project Window Page 
Clicking the Project Window page icon displays options that control 
the contents of the Project window and how those contents are 
displayed (Figure 18-15). 

Pro ·ect Options for "Sill balls.TT" -

Options: I Sillyballs. 11 ... l 
{} r- Project Windo\'/ .... *--·-··························· 

11 Font: l.,,=G=en=e=u,.....a ___ ... _.l 
:m~I size:~ 

Ii 
Project 

. ! 

~ ;m~ i -Show ---·-··--·--·· ...... _ ...................................................................... - ---·----------- ··1! 
Project Type [8] Group hierarchy Order by: ._I _N_a_m_e _____ ... _.l 

' linkeor 

[8] Icons [8] nscending 

[8] Make status D Location 

[i 
[8] Debugging status D Modification date 

Extensions 

PowerPC c i; ( Cancel J (Factory ~ettings J l( Saue JJ 

Figure 18-15 Project Window page 

Typeface options 
These options identify the font and type size that will be used. 

Font 
Clicking the arrow opens a pop-up menu for changing the font. 

Size 
Clicking the arrow opens a pop-up menu for changing font size. 

Show options 
These options establish those columns that appear in the 
application's Project window and how the entries are displayed in 
them. Most of these options represent column headings on the 
window. 

Group Hierarchy 
Setting this option on includes a column for displaying the project 
group hierarchy in the Project window. 

Symantec C++ User's Guide and Reference 18-21 



18 • The Project Menu 

Icons 
Setting this option on includes an icons column for displaying the 
Finder icon for each source file or the folder icon for each group. 

Order by 
This pop-up menu determines the order in which files are displayed 
in the Project window. Your selection in this menu serves as the sort 
criterion. 

Ascending 
Setting this option on causes the items selected for display through 
the Order by pop-up menu to be displayed in ascending rather than 
descending order. 

For example, in Figure 18-15, Name is selected in the Order by pop­
up menu as the sort criterion for displaying project files. Because this 
is an alphabetic attribute, setting the Ascending option on sorts the 
project files from A to Z; otherwise, the files would be sorted from Z 
to A. For a numeric attribute, an ascending sort would display items 
from the smallest to the largest numbers. 

Make Status 
Setting the Make Status option on includes a column used to indicate 
whether a source file needs to be rebuilt. In the Project window, a 
filled diamond next to the file's name indicates that the project entry 
is not up-to-date; an empty diamond indicates the project entry is 
up-to-date. 

Debugging Status 
Setting this option on displays the bug column in the Project 
window. In the window, a filled diamond (under the bug icon) 
indicates that debugging information is generated for the file; an 
empty diamond indicates that debugging information is not 
generated for the file. 

Group 
Setting this option on shows the immediate group owner of each 
source file in the window. This option is useful when the Group 
Hierarchy option is set off. 

18-22 Symantec C++ User's Guide and Reference 



PowerPC C 

PowerPC C Options Page + 

Translator 
Setting this option on includes a Translator column in the window, 
which is used to show the name of the translator for each source file. 

Kind 
Setting this option on includes a Kind column in the window, which 
is used to show the kind of each entry: Group, Source, Precompile 
Source, Project, Library (hard import), and Library (soft import). 

Location 
Setting this option on includes a Location column in the window, 
which is used to show the full path of each source file. 

Modification Date 
Setting this option on includes a Modification column in the window, 
which is used to show the last modification date of each source file. 

Code Size 
The Code column, if you include it in the window, shows the code 
size of each file in bytes. 

Data Size 
The Data column, if you include it in the window, shows each file's 
data contribution in bytes. 

Projector Status 
The Projector Status column, if you include it in the window, shows 
the projector checkout status of each source file. 

PowerPC C Options Page 
Click the PowerPC C icon to select the PowerPC C options page. 
There are six basic sets of PowerPC C options: language settings, 
compiler settings, code optimization, debugging, warning 
messages, and prefix settings. See the Symantec C++ Compiler 
Guide for further information regarding each of these sets of 
options. 

Symantec C++ User's Guide and Reference 18-23 



• 18 The Project Menu 

PowerPC C++ 

~ 
Symantec Rez 

PowerPC C++ Options Page 
Click the PowerPC C++ icon to select the PowerPC C++ options 
page. There are six basic sets of PowerPC C++ options: language 
settings, compiler settings, code optimization, debugging, warning 
messages, and prefix settings. See the Symantec C++ Compiler Guide 
for further information regarding each of these sets of options. 

Symantec Rez Options Page 
The Symantec Rez options page lets you configure the Symantec Rez 
resource compiler. See the Symantec C++ Compiler Guide for further 
information. 

18-24 Symantec C++ User's Guide and Reference 



The Editor 
Window• 

19 
~is reference chapter provides a detailed description of the 

Editor window. The Symantec Editor offers integrated full-featured 
editing. You can set preferences for the Editor window using the 
Edit menu, described in Chapter 26, "The Windows Menu." Search 
commands are located in the Editor's Search menu, which is 
described in Chapter 21, "The Search Menu." · 

Introducing the Editor Window 
The Editor window has all the functionality of the THINK Editor's 
editing window, plus new features such as syntax highlighting, auto­
indenting, delimiter matching, Markers and Headers pop-up 
menus, and the ability to .split a window into subpanes. An Editor 
window opens when you open a source or other text file. 

Symantec C++ User's Guide and Reference 19-1 



19 The Editor Window • 
Figure 19-1 shows an example of an Editor window. 

Headers pop-up---~ Changes-made bullet Command-key for window Changes-made 
indicator menu 

Markers pop-up 
menu 

Tool bar 1-====:t.;:====-----__.,__.. ...... __..__., ...... .._ ____ .._.;.:....,~--- Split 
/************************************************************* + bar 

CEditP ane .c 

Methods for a text editing pane. 

Copy right © 1989 Symantec Corporation. A 11 rights reserved. 

#include "CEditPane.h" 
#include "Commands.h" 
#include "CDocument.h" 
#include "CBartender.h" 
#include "Constants.h" 

extern CBartender *gBartender; 

void CEditPane:: IEditPane<CView *anEnclosure, CBureaucrat *aSupervisor) 

Rect margin; 

CEditText:: IEditText<anEnclosure, aSupervisor, 1, 1, 0, 0, 
sizELASTIC, sizELASTIC, 432); 

FitToEnclosure<TRUE, TRUE); 

/** 
* * Gi>te the edit pane a little margin. + 

mrnrnm1mi111m1mm:rnmrn:m1mm:mmmmmm:mmmmm:mm1m1111:1111mmrni:mmm:rnrnrnmmm1mm1mmmmm1mmmmm11rnm1 + Iii 
Figure 19-1 Editor window 

The features of the Editor window can be divided into window 
features and text features. Examples of window features include 
closing windows, thumb scrolling, and editor independence. 
Examples of text features include syntax highlighting and auto­
indenting. Window features are discussed first in this chapter. 

19-2 Symantec C++ User's Guide and Reference 



Introducing the Editor Window + 

Window features 
There are ten window features of the Editor window. 

Changes-made, Command-key, and file path indicators 
In the window's title box, you can choose to display the following: 

• A bullet ( •) before the filename if the contents of the file 
have been changed 

• The Command-key used to bring the window to the 
front (using the key combination has the same effect as 
selecting the Editor window's name from the Windows 
menu) 

• The file's path 

To enable these features, use the Preferences command from the 
Edit menu .. For details, see Chapter 20, "The Edit Menu." 

File Path pop-up menu 
The File Path pop-up menu shows the path for the file (similar to 
the Finder), as shown in Figure 19-2. 

l Marker;~·IF~;~d;~;· .;11€ 
#inc I ude "CEd i tPcme. h" 
#include "Commands.h" 
#include "COocument.h" 
#include "CBartender.h" 
#include "Constants.h" 

Demo Projects 
Macintosh HD 

Copy File Path 
extern CBartender *gBartl!!l'ltl'l!!I"":"..._ ____ _. 

uoid CEditPane:: IEditPane<CUiew *anEnclosure, 

Rect margin; 

CEditText:: IEditText<anEnclosure, aSupervisor, 1, 1, 0, 0, 
sizELASTIC, sizELASTIC, 432); 

FitToEnclosure<TRUE, TRUE); 

I** 
** Give the edit pane a little margin. 
** Each element of the margin rectangle 
* * specifies by how much to change that 
* * edge. Positive values are down and to 

right, ative values are up and to 

Figure 19-2 File Path pop-up menu 

Symantec C++ User's Guide and Reference 19-3 



• 19 The Editor Window 

You access the File Path pop-up menu by Command-clicking the 
title in the title bar. Selecting the bottom menu item, Copy File Path, 
copies the full path to the Clipboard. 

If the preference Show Full Path is set in the Editor Options General 
Settings page of the Project Manager Preferences dialog box, the 
file path is displayed in the title bar, as shown in Figure 19-3. For 
details, see Chapter 20, "The Edit Menu." 

File path in title bar 

I 

#inc hide "CEd i tPcme. h" 
#include "Commands.h" 
#include "CDocument.h" 
#include "CBartender.h" 
#include "Constants.h" 

extern CBartender *gBartender; 

void CEditPane: :IEditPane(CUiew *anEnclosure, CBureaucrat *aSupervisor) 

Rect margin; 

CEditText:: IEditText(anEnclosure, aSupervisor, 1, 1, 0, 0, 
sizELASTIC, sizELASTIC, 432); 

FitToEnclosure(TRUE, TRUE); 

Figure 19-3 File path in title bar 

Scroll rate control 
You have some control over the rate at which scrolling occurs in a 
window. Holding down the Option key while scrolling doubles the 
scroll rate. Holding down the Command key while scrolling triples 
the scroll rate. Holding down both the Command and Option keys 
while scrolling multiplies the scroll rate by six. This also works when 
auto-scrolling, when you are dragging to extend a selection. 

Live thumb scrolling 
To prevent jerky scrolling, the Editor smoothes the scrolling motion 
as you drag the thumb. Text scrolls continuously, rather than 
snapping into place when you release the mouse button. To disable 
the smoothing, hold down the Command key; to disable the live 
scrolling, hold down the Option key before clicking on the thumb. 

19-4 Symantec C++ User's Guide and Reference 



Introducing the Editor Window + 

To return to the point from which you started live thumb scrolling, 
hold down the Option key and release the mouse button. 

Saving window features 
If the preferences Honor Saved View Settings and Honor Saved Font 
Settings are set in the Editor Options General Settings page of the 
Project Manager Preferences dialog box, the Editor saves and 
restores font, size, tabs, window position, selection, and scroll 
position. For details, see Chapter 20, "The Edit Menu." 

Closing all windows· 
Option-clicking in a close box closes all open windows. 

Editor independence 
You can open an Editor window without first opening a project, and 
you can edit files while a project is building in the background. 

Symantec C++ User's Guide and Reference 19-5 



19 The Editor Window • 
Split windows 
An Editor window can be split to view different parts of a source file, 
as shown in Figure 19-4. 

Horizontal sp li t bars 

CEditf'_i'lne.cp ~2 

I Markers T 11 Headers T l 

Methods for a text editing pane. extern CBartender *gBartender; 

A subpane ---+-- Copy right © 1 '389 Sy rnantec Corpor atio : IEditPane <CUiew 

A vertical 
split bar ----

***************************** 

#include "CEditPane.h" 
#include "Commands .h" 
#inc I ude "COoc1Jment. h" 
#include "CBartender .h" 
#include "Constants.h" 

vo i d CEd i tPane : : Do Au toKey ( char 

i nher i ted : : Do Au toKey ( theChar, 

s• i tch < keyCode ) 

case KeyHome : 
case KeyEnd : 
case KeyPageUp : 
case KeyPageOown : 

break; 

Rect margin; 

CEd itText:: IEditTex t (anEnclosu 
sizELASTIC, 

FitToEnclosure<TRUE, TRUE>; 

/** 
* * Give the edit pane a little mat· 
* * E.ach e lernent of the mar9in r 
* * specifies by ho\1' much to cha 
* * edge. Positive values are dovr 
* * right .. ne·~ative values are up 
** the left. 

** 
**I 

SetRect <&margin , 2, 
ChangeSize<&margin , 

CEditPane: : OoCommand < long 

A sp lit mover __________________ ~ 

Figure 19-4 A split window 

The subpanes can be scrolled independently to bring different 
portions of the code into view. 

You split a window using a split bar. This is the black rectangle 
located between the arrow on the horizontal or ve1tical scroll bar 
and the edge of the pane. Clicking and dragging a split bar splits a 
window. Double-clicking a split bar splits a window into two equal 
subpanes. 

7 9-6 Symantec C++ User's Guide and Reference 



Introducing the Editor Window + 

You move a split point using a so-called split mover. This is the 
double triangle located next to the split bar on horizontal and 
vertical scroll bars. Clicking and dragging on the split mover for a 
split point moves the split point. Dragging the split point all the way 
to the edge cancels the split, as does double-clicking the split mover. 

Event suites 
You can create and record scripts automatically using AppleScript. 
To learn how to use this feature, see Chapter 8, "Advanced Topics." 

Symantec C++ User's Guide and Reference 79-7 



• 19 The Editor Window 

Headers 

Window toolbar 
The toolbar at the top of the Editor window contains the Markers 
and Headers pop-up menus (Figure 19-5). You can hide the toolbar 
using Show Toolbar in the Windows menu. 

pop-up menu --------~ 

Markers 
pop-up menu ---~ 

Title bar---~~i~~~~i~~ijiJ~~~~~~~ijijijijijij~ijijii~ 
Toolbar ---~====!..!::::===::!;.,.._..,-'-'~~ 

!••••••••****************************************************** 
CEditP ane .o 

#include 
#include 
#include 
#include 
#include 

"'CEditPane.h"' 
.. Commands . h ·· 
"'CDocument.h"' 
"'CBartender.h"' 
"'Constants. h"' 

extern CBartender *gBartender; 

void CEditPane:: IEditPane<CUiew *anEnclosure, CBureaucrat *aSupervisor) 

Rect margin; 

CEditText:: IEditText<anEnclosure, aSupervisor, 1, 
sizELASTIC, sizELASTIC, 432); 

FitToEnclosure<TAUE, TRUE); 

!•• 
** Gh"? the edit pane a little mar-gin. 

Figure 19-5 Editor window's toolbar 

1, 0, 0, 

19-8 Symantec C++ User's Guide and Reference 



Introducing the Editor Window + 

The toolbar also contains a diamond displayed to the right. This 
diamond is filled if the window's contents have changed since the 
file was saved. Note that you can choose to hide the changes-made 
bullet (see Figure 19-1), but the diamond indicator is always 
displayed. 

If the file is locked, a lock icon is displayed in the toolbar. If the file 
is under source control with Projector/SourceServer, the Projector 
status is shown in the toolbar. These items are shown in Figure 19-6. 

~------ Locked indicator 

~---- Projector-status 
indicator 

void CEditPane: :DoCommand<long theCommand) 

if 

~i~~~=~~=~~~i~~~:=g~~~~:~!~~=~: ~~ty = .r .. r.1 .. r.1 .. 1 

i nher i ted : : DoCommand < theCommand ) ; 

im:mimmmmmmmmmmmmmmim:mmmmm:imm:mmmm::mi:mmmm:: + Iii 

Changes-made 
indicator 

Figure 19-6 Changes-made, locked, and projector-status indicators in 
the window toolbar 

See the electronic supplementary information for details on 
Projector/Source Server control. Also see Chapter 8, "Advanced 
Topics." 

Markers and Headers pop-up menus 
The Markers pop-up menu displays user-defined markers and 
symbols parsed from CIC++ source code. The Headers pop-up 
menu lists the headers for your source file. 

Symantec C++ User's Guide and Reference 19-9 



• 19 The Editor Window 

Markers pop-up menu. The Markers pop-up menu lists instances 
of the following kinds of items: 

• Functions 
• Class/struct definitions 
• #pragma marks 
• enum declarations 
• typedef declarations 
• User markers 

To see a list of these items in a file, click the Markers pop-up menu, 
as shown in Figure 19-7. 

extern CBartender *gBartender; 

Yoid CEditPane:: IEditPane<CUiew *anEnclosure, CBureaucrat *aSupervisor) 

Rect margin; 

CEditText:: IEditText<anEnclosure, aSupervisor, 1, 1, 0, 0, 
sizELASTIC, sizELASTIC, 432); 

FitToEnclosure<TRUE, TRUE); 

I** 
* * Give the edit pane a little margin. 
** Each element of the margin rectangle 
* * specifies by how much to change that 
* * edge. Positive values are down and to 
** ri ht ne ative values are u and to 

Figure 19-7 Markers pop-up menu accessed from the toolbar 

19-10 Symantec C++ User's Guide and Reference 



Introducing the Editor Window + 

You can also access that list by holding down the Command key and 
clicking the title bar (not the title itselO, as shown in Figure 19-8. 

Markers pop-up menu 

§ID ~ CEditPane.cp ~2 
I Markers ..... , , Headers ..... , utoKey 

#inc I ude "CEd i tPcme h" • DoCommand 
#include "Commands.h" DoKeyDown -+--------~ 
#include "CDocument.h" IEditPane 
#include "CBartender .h" ._ ______ _. 
#inc I ude "Constants h" 

extern CBartender *gBartender; 

void CEditPane:: IEditPane<CV iew *anEnclosure , CBureaucrat *aSuperv isor) 

Rect margin; 

CEditText:: IEditText CanEnclosure, aSupervisor, 1, 1, D, 0, 
sizELASTIC, sizELASTIC, 432 ); 

FitToEnclosure CTRUE , TRUE ); 

I** 
* * Give the edit p.ane .a little mat'gin. 
* * Each element of the margin rectangle 
* * specifies by ho\I' much to change that 
* * edge. PositiYe values are down .and to 

ri ht neqative values at·e u and to 

Figure 19-8 Marke~s pop-up menu accessed from the title bar 

Accessing the list in this way is useful if you prefer to work with the 
toolbar hidden. 

The item preceding (and closest to) the current insertion point is 
marked on the pop-up menu with a bullet ( • ). Selecting an item in 
the Markers pop-up menu scrolls to the marker or to the declaration 
of the item. 

Symantec C++ User's Guide and Reference 79-7 7 



• 19 The Editor Window 

The marker or item is also selected if the Change Selection option on 
the Editor Options Marker Pop-up page of the Project Manager 
Preferences dialog box is set. On this same page of the dialog box, 
you can indicate whether you want items to appear in the Markers 
pop-up menu in alphabetic order or in the order in which their 
definitions appear in the source file, as shown in Figure 19-9. 

See Chapter 20, "The Edit Menu," for details. Use the Option key to 
toggle between these two sorting preferences. 

extern CBartender *gBartender; 

void CEditPane:: IEditPane(CUiew *anEnclosure, CBureaucrat *aSupervisor) 

Rect margin; 

CEditText:: IEditText(anEnclosure, aSupervisor, 1, 1, 0, 0, 
sizELASTIC, sizELASTIC, 432); 

FitToEnclosure(TRUE, TRUE); 

/** 
* * Give the edit pane a little margin. 
** Each element of the margin rectangle 
* * specifies by how much to change that 
** edge. Positive values are down and to 

ne ative values are u and to 

Figure 19-9 Markers pop-up menu with sorted list 

The items displayed in the Markers pop-up menu can be drawn in 
different styles or tagged with different characters. For more 
information, see the description of the Editor Options Marker Pop-up 
page of the Project Manager Preferences dialog box in Chapter 
20, "The Edit Menu." 

Note that the Go To Marker dialog box, which is accessible from 
the Search menu, provides the same list of markers as the Markers 
pop-up menu. By displaying this dialog box, you can navigate to a 
marker without using the mouse. For details, see Chapter 21, "The 
Search Menu." 

19-12 Symantec C++ User's Guide and Reference 



Introducing the Editor Window + 

Headers pop-up menu. The Headers pop-up menu works the 
same way as the Markers pop-up menu. You can access the 
Headers pop-up menu either by clicking Headers on the toolbar or 
by holding down the Option key and clicking the title bar (not the 
title itse!D. Holding down the Shift key and clicking on Headers sorts 
the headers by the order in which they were included in the source 
file. 

Holding down the Control key and clicking on Headers displays all 
headers included by the source file, including those used to build 
the precompiled header (if any, and if the header files can be 
found). Holding down the Control and Shift keys and clicking on 
Headers displays the expanded list in the order in which the headers 
were included. 

Note 
Headers do not appear until a file is compiled. If a 
file is not compiled, the words "Not compiled yet" 
are displayed. If the file is compiled but no headers 
exist, the word "None" is displayed. 

Text features 
The four text features of the Editor window are described in this 
section. 

Text-entry features 
In the Editor window, you have access to all of the standard text­
entry features of other Macintosh editors, as well as to some special 
features. Double-clicking and dragging anywhere in an Editor 
window selects the first and last whole words that you drag through, 
as well as all text in between. Triple-clicking and dragging selects 
entire lines. 

Symantec C++ User's Guide and Reference 19-13 



• 19 The Editor Window 

Table 19-1 describes deletion options in the Editor window. 

Table 19-1 Deletion options in the Editor window 

Press this 
Delete 

Option-Delete 

Command-Delete 

To delete 
The character to the left of the 
insertion point 

To the beginning of a word 

To the beginning of a line 

Table 19-2 describes options for moving the insertion point in text. 

Table 19-2 Moving the insertion point in the Editor window 

Press this 
Up Arrow 

Down Arrow 

Left Arrow 

Right Arrow 

Option-Up Arrow 

Option-Down Arrow 

Option-Left Arrow 

Option-Right Arrow 

Command-Up Arrow 

Command-Down Arrow 

Command-Left Arrow 

Command-Right Arrow 

To move the insertion point 
Up one line 

Down one line 

Left one character 

Right one character 

To the top of the page 

To the bottom of the page 

Left one word 

Right one word 

To the beginning of the file 

To the end of the file 

To the beginning of the line 

To the end of the line 

19-14 Symantec C++ User's Guide and Reference 



Introducing the Editor Window + 

If you have an Apple Extended keyboard, the keys above the arrow 
keys can be used as described Table 19-3. 

Table 19-3 Using the editing keys 

Note 

Press this To do this 
Forward Delete Delete the character to the right 

of the insertion point 

Home Scroll to the beginning of the 
file 

End Scroll to the end of the file 

Page Up Scroll to the previous screen 

Page Down Scroll to the next screen 

Option-Forward Delete Delete to the end of a word 

Option-Home Scroll all the way to the left 

Option-End Scroll all the way to the right 

Option-Page Up Scroll to the left 

Option-Page Down Scroll to the right 

Command-Forward Delete to the end of a line 
Delete 

The Home, End, Page Up, and Page Down keys just 
scroll the file. They do not move the insertion point. 

Symantec C++ User's Guide and Reference 19-15 



• 19 The Editor Window 

Syntax highlighting 
The Editor lets you highlight five categories of language elements in 
different colors and styles. The default colors and styles are as 
follows: 

• Comments: gray, plain 
• Keywords: black, bold 
• Preprocessor directives: blue, plain 
• String literals: red, plain 
• Character constants: red, plain 

These defaults can be overridden by setting options in the Editor 
Options Syntax Formatting page of the Project Manager 
Preferences dialog box. See Chapter 20, "The Edit Menu." 

The Editor supports syntax highlighting in the following languages: 

• c 
• C++ 
• AppleScript 
• MPW Shell Script 
• Pascal 
• Symantec Rez 

The Editor determines the language to use by looking at the 
filename extension. You can set the mapping between filename 
extensions and languages in the Extensions Mapping page of the 
Project Options dialog box. See Chapter 18, "The Project Menu," 
for details. The default mappings are summarized in Table 19-4. 

Table 19-4 Default mapped languages 

Filename Extension 
.c 
.cp, .h, .cpp, .tern 
.se 
.SS, .ts 
.p 
.r 

Mapped Language 
c 
C++ 
AppleScript 
MPW Shell Script 
Pascal 
Symantec Rez 

19-16 Symantec C++ User's Guide and Reference 



Introducing the Editor Window + 

Auto-indenting 
The Editor auto-indents a line to the tab setting of the preceding line. 
In addition, the Editor can add an extra level of indenting after you 
type an opening code-block delimiter, then press Return. For 
example, this would be a left brace { in C or C++ or begin in 
Pascal. This is shown for C++ in Figure 19-10. 

CEditPane.cp 3€2 

I Markers T 11 Headers -.' I 
void CEditPane: :DoKeyDown(char theChar, Byte keyCode, 

inherited: : DoKeyDown( theChar, keyCode, macEvent); 

s• i tch ( keyCode ) { 

case KeyHome : 
case KeyEnd : 
case KeyPageUp : 
case KeyPageDown: 

break; 

def au It: 
if ( ! ( <CDocument *) i tsSuperv i sor )- >dirty) 

((COocument *>itsSupervisor)->dirty =TRUE; 
gBartender->EnableCmd(cmdSave>; 
gBartender- >EnableCmd(cmdSaveAs); 

break; 

Figure 19-10 CIC++ auto-indenting 

Block auto-indenting is available on a language-specific basis for all 
languages listed in the section "Syntax highlighting" earlier in this 
chapter. Plain auto-indenting works on all text files. 

The Editor can also automatically outdent a level after typing a 
return after the closing code-block delimiter, such as a right brace 
in C or C++ or end in Pascal (that is, it outdents the line containing 
the closing delimiter). 

If this feature is not appropriate for your coding style, you can turn it 
off in the Editor Options General Settings page of the Project 
Manager Preferences dialog box. For details, see Chapter 20, "The 
Edit Menu." For a specific line, you can override indenting or 
outdenting modes by using Option-Return. 

Symantec C++ User's Guide and Reference 19-17 



• 19 The Editor Window 

Delimiter matching 
Matching is provided for matched delimiters , including parentheses 
( ) , brackets [ J , or braces { } and for string, character constant, or 
comment delimiters, including single quote ' , double quote ", or 
slash I . 

Double-clicking either of a pair of matched delimiters selects the text 
that is encompassed within them, as shown in Figure 19-11. Holding 
down the Option key also selects the delimiters. 

I Markers ""' ! I Headers ""' I <> 
void CEditPane: :DoCommand ( long theCommand) 

if 

i nher i ted : : Do Command ( theCommand ) ; 

Figure 19-11 Text selected by double-clicking a matched delimiter 

Double-clicking and dragging anywhere between two matching 
delimiters selects all the text between those delimiters. 

19-18 Symantec C++ User's Guide and Reference 



Introducing the Editor Window + 

Double-clicking a string, character constant, or comment delimiter 
selects forward to the next instance of such a delimiter, as shown in 
Figure 19-12. 

#include "CEditPane.h" 
#include "Commands.h" 
#inc I ude ~Wu@GM" 

~~~:~::~~~:::: ·~~oloo"co, I 
+

Figure 19-12 Text selected forward by double-clicking
a string delimiter

By default, the selection includes only the text. Holding down the
Option key while double-clicking the delimiter also selects the
delimiter.

Symantec C++ User's Guide and Reference 79-19

19 The Editor Window •

19-20 Symantec C++ User's Guide and Reference

The Edit Menu •
20

Trus reference chapter provides detailed descriptions of the
commands on the Symantec Project Manager Edit meriu. The four
pages of the Project Manager Preferences dialog box are also
covered. See Chapter 19, "The Editor Window," and Chapter 21,
"The Search Menu," for further features available for editing text files.

Commands in the Edit Menu
The Edit menu contains the standard Macintosh editing commands
(Cut, Copy, Paste), as well as other commands for manipulating
text in source files. The Edit menu also contains the Preferences
command, which lets you set preferences for the Symantec Project
Manager and the text editor. The commands in the Edit menu are
shown in Figure 20-1.

Undo Paste SCZ

Cut SCH
copy sec
Paste SCU
Clear
Select 811 SCH

Shift Left SC[
Shift Right SC]
Balance SCB

Preferences ...

Figure 20-1 Edit menu

Symantec C++ User's Guide and Reference 20-1

20 The Edit Menu •

Cut XH

Copy XC

Paste XU

Clear

Select All X R

Shift Left X [

The commands in the Edit menu are used to perform the following
functions:

• Edit and manipulate text in source files
• Set preferences

This chapter discusses the Edit menu commands by function in the
order listed in Figure 20-1.

Editing and manipulating text
Most of the commands in the Edit menu are used to work with or
select text in a source pane.

Reverses the most recent edit operation. The name of this command
changes to reflect the operation you are undoing. After a paste, for
example, this command changes to Undo Paste. Once you have
undone something, the name of this command changes to Redo.

If you have not performed a command that can be undone, this
command is disabled.

Removes selected text and places it on the Clipboard. The command
replaces the current contents, if any, of the Clipboard.

Copies selected text and places it on the Clipboard. This command
replaces the current contents, if any, of the Clipboard.

Copies the contents of the Clipboard into the file being edited at the
insertion point. If text is currently selected, it is replaced by the
Clipboard contents.

Clears the selected text, but does not place it on the Clipboard.
Pressing the Clear key has the same effect as choosing the Clear
command. You can also use the Delete key to clear selected text.

Selects all the text in the current Editor window, if the Editor
window is frontmost. The command selects all project entries and
groups, if the Project window is frontmost.

Shifts the selected range of lines to the left. If a line begins with a
tab, the tab is deleted. If the line begins with spaces, enough spaces
to equal a tab are deleted. The command has no effect on a line that
does not begin with spaces or a tab.

20-2 Symantec C++ User's Guide and Reference

Shift Right :!€ l

Balance :!€ B

Preferences

Commands in the Edit Menu +

Shifts the selected range of lines to the right. The command inserts a
tab at the start of each line.

Extends the currently selec.ted text in both directions until opening
and closing parentheses () , square brackets [] , or braces { } are
reached . Successive invocations select larger sequences of text.

Note
Balance is a textual operation. The search includes
comments and strings. For example, if you have a
lone brace, square bracket, or parenthesis in a
comment, Balance tries to find a match for it.

Opens the Project Manager Preferences dialog box, in which you
set options for how the Symantec Project Manager and the text editor
behave (Figure 20-2).

Project Manager Preferences

----·- Project Manager -------------------~

.LI
~ i
Editor I

D Use eHternal editor

I
During startup

0 Do nothing
@ Ask for project
O Reopen projects from last session

I
I IXI Do nothing if launched into the background L.::::: _____________________________ ,_., _____________ _

u~~:S th .. :y~_.:t•_c P~OJeC~:an .. ge~ ~ref:r :~:-.S dlalog :l>ck :~ ·~: •t:: to f>n:::t::r•:::~~ th:1
I Cance l J I Factory Settings] OK Jl

Figure 20-2 Project Manager Preferences dialog box

Symantec C++ User's Guide and Reference 20-3

• 20 The Edit Menu

There are four pages in the Project Manager Preferences dialog
box, one Project Manager page and three Editor Options pages. The
four pages are:

• Project Manager, for specifying those projects that be
opened when you launch the Symantec Project Manager

• Editor Options General Settings, for specifying general
editing characteristics, such as fonts and indenting

• Editor Options Syntax Formatting, for specifying the
colors, fonts, and styles to be used in syntax highlighting

• Editor Options Marker Pop-up, for specifying the items
to be shown in the Editor window's Markers pop-up
menu

By default, the Preferences dialog box opens to the Project
Manager page.

Note that both the Help area and the Factory Settings button appear
on all four pages.

Help area
The Help area near the bottom displays information about a
preference when you click that preference. To receive help on a
preference without changing its setting, click it without releasing the
mouse button, move the mouse off the preference, then release the
button.

Factory Settings button
This button sets all the preferences on the page to their factory
settings, the same ones as when you first installed the Symantec
Project Manager.

20-4 Symantec C++ User's Guide and Reference

Project Manager Page +

Project Manager Page
Use this page (Figure 20-3) to enable an external editor and to set
launch preferences. This section describes the options on this page.

Project Man1!9..er Preferences

~~---· Project Manager ------------------

£ I D Use eHternal editor

~ - During startup ---··-----·-··-----······---··------·--

Editor · 0 Do nothing
® Ask for project
O Reopen projects from last session

[8J Do nothing if launched into the background

~1' ··-------------·----·---·--·-----------·--·----------------
.- Help I Specify general Symantec Project Manager- settings here .

L
[--Ca-n-ce-1 ~ [Factory Settings) ([DK JI

Figure 20-3 Project Manager page

Use External Editor
This preference lets you use an external (third-party) editor in place
of the Symantec editor. An alias named "Editor," which refers to the
external editor application, must exist in the (Tools) folder. The
factory setting is off.

Note
Third-party editors for the THINK Project Manager
need to be upgraded to take full advantage of the
Symantec Project Manager. Check with the company
that wrote your editor for more information .

During Startup preferences
You can choose the following four launch preferences for start-up:
Do Nothing, Ask for Project, Reopen Projects from Last Session, or
Do Nothing If Launched into the Background.

Ask for Project. Prompts you to open a project when you start the
Symantec Project Manager. The facto1y setting is off.

Symantec C++ User's Guide and Reference 20-5

• 20 The Edit Menu

Do Nothing. Does not prompt you to open a project when you start
the Symantec Project Manager. The factory setting is on.

Reopen Projects from Last Session. Opens all projects, when you
start the Symantec Project Manager, that were open at the time you
quit the last session. The factory setting is off.

Do Nothing If Launched into the Background. Does not open
projects when the Symantec Project Manager is launched from
programs other than the Finder-for example, if it is launched from
an AppleScript. When the option is not selected, the Symantec
Project Manager performs as specified by the During Startup
preferences. The factory setting is on.

Editor Options Pages
To access the Editor Options pages from the Project Manager page,
click the editor icon at the left of the page. The Editor Options
General Settings page opens (Figure 20-4).

Pro ect Mana er Preferences

..--==-~rEditorOptions --·-------·---Ii] l;J I General Settings ..-1
Project Manager Ir Defau1t font ------~

I 11 Font: I Monaco ,..j
·1s1ze:~ !

I Tabs: II I --······· ... _!I l D Show lnuisibles _

D Honor saued font settings

JILi
181 Honor saued uiew settings
181 C:onfinn saues
181 Projector aware

'------'

r :~~ify Editor preferences here.

I
Cancel

r 181 Auto indent

1181 Block auto-Indent I
'-···-·-·······-·-··-·-····-····-·-·-·-·--·-·····------------·--·-·--·-····-·_] I D•limiW.- matching - -

1

I ~ Double-click !
L~-~~~~~-~~-~'.~-~-------------·----J I i~::::d~~~:~;~~:---------1
! D Show full path
L-·--·-·----,=·-··-·-·7·--··-·--··--·-··-----------=!

(Factory Settings J ([OK]J

Figure 20-4 Editor Options General Settings page

To access the other two Editor Options pages, do one of the
following:

• Click the Editor Options pop-up menu and select a
page from the list.

20-6 Symantec C++ User's Guide and Reference

Editor Options Pages +

• Scroll through the entries on the pop-up menu with the
arrow buttons to the left of the menu.

• Press Command-Up Arrow or Command-Down Arrow to
open a page.

To return to the Project Manager page, click the Project Manager
icon at the left of the page.

Editor Options General Settings page
Use this page to set general settings such as text font, tab settings,
and whether you are prompted to save your work.

[i]
Project Manager

I

Pro ·ect Mana er Preferences

eral Settings

! Default font-·--­

j Font: I Monaco

I Size: c:!:3
I Tabs: II I
! D Show inuisibles
;

[8J Auto indent ----------~

181 Block auto-indent

1
- Delimiter matching ---·--........... ..

! 181 Double-click
! 181 While typing

;- Window titles-------~ D Honor saued font settings

! 181 Honor saued uiew settings 181 Use '•' for dirty files ,II

i 181 Confirm saues 181 Rppend 38-key
I 181 Projector aware D Show full path
!

Cancel) [Factory Settings)

Figure 20-5 Editor Options General Settings page

Default Font
Use the Default Font area to specify the default font characteristics of
text.

Font. Opens a pop-up menu for selecting the default font used for
new Editor windows. The factory setting is Monaco.

Size. Opens a pop-up menu for selecting the default font size used
for new Editor windows. The factory setting is 9.

Tabs. Specifies the default number of spaces per tab used for new
Editor windows. The factory setting is 4.

Symantec C++ User's Guide and Reference 20-1

• 20 The Edit Menu

Show Invisibles. Displays nonprinting characters with glyphs in
new Editor windows. The factory setting is off.

Honor Saved Font Settings
When this preference is set on, the saved font settings in text files
are used instead of the global font settings. The factory setting is on.

Honor Saved View Settings
When this preference is set on, windows are reopened to their last
screen positions. The factory setting is on.

Confirm Saves
When this preference is set on, the Symantec Project Manager
prompts you to save files when you close them or when you try to
run a project. If this preference is off, the Symantec Project Manager
saves files without asking. The factory setting is on.

Projector Aware
When this preference is set on, the Symantec Project Manager
honors the 'ckid' resource in every file it opens. This is the resource
used by SourceServer and MPW's SourceServer. The factory setting is
on.

To learn about MPW, see the electronic supplemental information.

Auto indent. Tabs to the indent position of the current line when
you type a carriage return. The factory setting is on.

Block auto-indent. Indents an extra tab when you press Return
after a left code block delimiter (for example, a left brace I). This
option outdents when you press Return after a right code block
delimiter. The factory setting is on.

Delimiter Matching
Use the Delimiter Matching area to specify matching features.

Double-Click. Highlights the enclosed text when a matched
delimiter is double-clicked. The factory setting is on.

While Typing. Flashes the opening delimiter that matches the
closing delimiter that was just typed. The factory setting is on.

Window Titles
Use the Window Titles area to specify additional information to be
displayed in Editor window titles.

20-8 Symantec C++ User's Guide and Reference

Editor Options Pages +

Use '•' for Dirty Files. A'•' is prepended to the window titles of
files that have been changed. The factory setting is on.

Append Command-Key. When this preference is set, the
numbered Command-key equivalents (if any) for windows are
appended to the window titles. The factory setting is on.

Show Full Path. Displays each source file's full pathname in its
window's title. The factory setting is off.

Editor Options Syntax Formatting page
Use this page (Figure 20-6) to set font style and color preferences for
syntax highlighting.

Pro ·ect Mana er Preferences

~~~~rEditorOptions --------------------~ 

Ii] ~ I SyntaH Formatting ,.. I 
Project Manager ... 18] Use syntax formatting ··-··--" 

I Commen1s 
Language Keywords 
Preprocessor Directiues 
String Literals 
Character Constants 

Font: I 6eneua 

Size: I 9 ,..I 
Color I-I 

·- Sty le --····-········································, 
OBold 

D Italic 

D Underline 

on, source files are displayed in varying formats based on syntax 
settings. 

( Cancel (Factory Settings ) [( OK )J 

Figure 20-6 Editor Options Syntax Formatting page 

Use Syntax Formatting 
This group of preferences lets you display source files in various 
highlighting formats based on syntax settings that you specify on this 
page. You can choose a font, size, color, and style for highlighting 
each of the following syntax categories: 

• Comments 
• Language keywords 
• Preprocessor directives 
• String literals 
• Character constants 

The factory setting is on. 

Symantec C++ User's Guide and Reference 20-9 



• 20 The Edit Menu 

To specify a highlighting format for a syntax category: 

1. Select a syntax category in the menu from the Use Syntax -
Formatting area. 

2. Select a font, size, color, and style. 

Font 
Use this pop-up menu to select the font to be used when displaying 
the selected syntax category. 

Size 
Use this pop-up menu to select the default font size to be used when 
displaying the selected syntax category. 

Color 
Use this field to select the color to be used when displaying 
characters of the selected syntax category. You select colors using 
the standard Macintosh color picker. 

Style 
Use the Style area to specify the styles to be used when displaying 
characters of the selected syntax category. You may choose any 
combination of bold, italic, and underline. 

Bold. Displays the characters of the selected syntax category in 
boldface. 

Italic. Displays the characters of the selected syntax category in 
italic. 

Underline. Underlines the characters of the selected syntax 
category. 

20-10 Symantec C++ User's Guide and Reference 



Editor Options Pages + 

Editor Options Marker Pop-up page 
Use this page (Figure 20-7) to set preferences for the items in the 
Markers pop-up menu of a Source window. 

Pro_j_ect Manl!!l_er Preferences 

[j] 
( ... Editor Options --·---·-·-·----·-·----···-······-··--··-···-·-·····-·-·------·····-

! !;J I Marker Pop-up .., I 
Project Manager 

I 1"1::~:· 
181 typedefs 

Mark Ill Style: Bold ..,I l 
Mark D Style: Bold ..,I 
Mark D Style: Bold ..,I I 

181 functions Mark EJ Style: Plain ..,I 

L .. ::::~::::~:s_.~;~;El :::::~ :;;:_:~ _____ ;: ___ J 
181 Show class names 181 Change selection 
181 Hlphabetize items 181 Show leading comment 

------·--------·----------·--------' r Help 
I Specify Editor preferences hel"e. 

I, ____ ---------·------=====---;;;;~~ 
Cancel ) [ Factory Settings J ([ OK JJ 

Figure 20-7 Editor Options Marker Pop-up page 

Include area 
Use the Include area to specify the types of items to be included in a 
Source window's Markers pop-up menu. 

Classes. Includes set, dass, struct, and union declarations in the 
Markers pop-up menu. The factory setting is on. 

Enums. Includes enum definitions in the Markers pop-up menu. 
The factory setting is on. 

Typedefs. Includes typedef statements in the Markers pop-up 
menu. The factory setting is on. 

Functions. Includes function definitions in the Markers pop-up 
menu. The factory setting is on. 

Pragma Marks. Includes #pragma mark statements in the 
Markers pop-up menu. The factory setting is on. 

User Markers. Includes user-defined markers in the Markers 
pop-up menu. The factory setting is on. 

Symantec C++ User's Guide and Reference 20-11 



• 20 The Edit Menu 

Mark areas. Specify the mark characters, if any, for class 
declaration, en um definition, typedef statement, function 
definition, #pragma statement, and user-defined markers. 

To specify a mark character, double-dick the respective Mark field to 
select it, and type the character. 

Style pop-up menus. Specify the styles, if any, for class declaration, 
enum definition, typedef statement, function definition, #pragma 
statement, and user-defined markers. 

The factory settings are bold for class declarations, enum definitiops, 
and typedef statements; plain for functions; and italic for 
#pragma marks and user markers. 

Show Class Names 
Setting this preference on includes the class names in the menu 
items for class declarations, enum definitions, typedef statements, 
and member functions. The factory setting is on. 

Alphabetize Items 
When this preference is set, the entries in the Markers pop-up 
menu are alphabetized. The factory setting is on. 

Change Selection 
Setting this option on moves the edit selection when a Markers 
pop-up menu item is selected. Otherwise, the selected item is 
scrolled into view. The factory setting is on. 

Show Leading Comment 
Setting this option on shows the comment, if any, that precedes a 
selected pop-up menu item when the item is selected. The factory 
setting is on. 

20-12 Symantec C++ User's Guide and Reference 



The Search 
Menu• 

21 
This reference chapter provides detailed descriptions of the 

commands on the Symantec Project Manager Search menu. In 
addition, the options on the Find dialog box, which opens when 
you choose Find from the menu, are outlined. The final section 
covers the Grep pattern search capability. 

Commands in the Search Menu 
You use the commands in the Search menu to go to a specific string 
or marker in a text file and to locate reference information or errors. 
The commands in the Search menu are shown in Figure 21-1. 

Find ... 3CF 
Find Selection OOH 
Enter Search String WE 
Find NeHt 3CG 
Replace 3€= 
Replace All 

Find in NeHt File WT 

Find in Doc Seruer 3€-
Get Prototype ~3€-

Go To Line ... 3€, 
Add Marker ... WM 
Remoue Markers ... 

Go to NeHt Error 3€' 
Go to Preuious Error 3€' 

Figure 21-1 Search menu 

Symantec C++ User's Guide and Reference 21-1 



21 The Search Menu • 

Find :J:€F 

Note 
By holding down some combination of the Shift and 
Option keys, you can toggle several of the 
commands in the Search menu between two or 
more commands. 

The commands in the Search menu can be used to perform the 
following functions: 

• Find and replace text strings, including multi-file 
searching and sophisticated pattern-matching searching 

• Locate information in the Symantec THINK Reference, 
including finding function prototypes 

• Add or remove markers in a file 

• Locate compiler errors within a source file 

This chapter covers the Search menu commands by function in the 
order listed above. 

Finding and replacing text strings 
You use these commands to find and replace strings in text files. 

Opens the Find dialog box, which you use to specify a search string 
as well as an optional replacement string (Figure 21-2). You can type 
the search and replacement strings in the textboxes, or choose from 
the last five strings you have entered since launching the Project 
Manager. 

27-2 Symantec C++ User's Guide and Reference 



Commands in the Search Menu + 

If the search string is found, it is highlighted. If not, the editor beeps. 

Search for: 

Replace with: 

D Entire Word 
D Ignore Case 
DGrep 

D Multi-file search -----------
, ................................................................................................ "] 

rn~~ §(~1: i HI! fik:-. in Pro j(~( t v 

D EHclude Subprojects O Source G· Headers 
D EHclude System Files @ Source Only 

D Selection only 
D Wrap Around 
D Batch Search D EHclude (. .. )folders O Headers Only 

D EHclude Precompiled Header 

Cancel ( Don't Find ) ( Rep I a c e A 11 ) -~( iiiiiiiif;;;;;;;i n .. diiiiiiiimlt'J 

Figure 21-2 Find dialog box 

Entire Word 
The Editor searches on the basis of whole words only. For example, 
a search for "stream" does not find the word "streams." 

Ignore Case 
The Editor disregards case during a search. This option does not 
affect the search for diacritical characters. 

Grep 
The Editor uses a powerful pattern-matching feature based on the 
Unix grep command. See "Searching for a Pattern (Grep)" later in 
this chapter. 

Selection 
The search is limited to the currently selected text. 

Wrap Around 
For a forward search, the Editor reaches the end of the file and then 
wraps around to the beginning. When this option is set off, a 
forward search proceeds only from the current position to the end of 
the file. If the option is set on for a reverse search, the Editor reaches 
the beginning of the file and wraps to the end. 

Symantec C++ User's Guide and Reference 21-3 



• 21 The Search Menu 

Batch Search 
Instead of stopping at the first occurrence of a search string, the 
Editor finds all occurrences and displays them in a Search Results 
window (Figure 21-3). Each project has its own Search Results 
window. 

Each Search Results window displays the results of the last batched 
Find operation for its own project. 

File "mini .fi le.c"; Line 68: 
Fi le "mini .fi le.c"; Line 108: 

Figure 21-3 Search Results window 

SetWTitle<myWindo 
SetWTitle<myWindow, theFi 

Go To. Clicking Go To in the Search Results window brings you to 
the selected line in the source file. Double-clicking any entry in the 
window achieves the same effect. 

Delete All. Clicking on Delete All clears the persistent storage of the 
batch search results from the Search Results window. If the project is 
opened again, the results from the previous search no longer appear 
in the window. 

Multi-File Search 
When this option in the Find dialog box is set on, the Editor's 
search-and-replace functions search multiple files. The collection of 
files that are searched depends on which multi-file search options 
are checked. 

21-4 Symantec C++ User's Guide and Reference 



Search for: 

Commands in the Search Menu + 

File Set. Clicking the arrow opens the File Set pop-up menu 
(Figure 21-4). 

'---~~~~~~~~~~~~~~~--'c:J 
Replace with: r:;1 

'---~~~~~~~~~~~~~~~--'L..:..J 

D Entire lllord 
D Ignore Case 
DGrep 

IZI Multi-file search -----------..., 

D Selection only 
D lllrap Around 
IZI Batch Search 

Selected Files in Project 
All Files in Project 

1---------------1 
Custom ... 

eaders 
y 
ly 

Cancel J ( Don't Find ( Re p I a c:e fm ) ("Iii( iiiiiiiFiiiii niiiidiiiiiii~J 

Figure 21-4 File Set pop-up menu 

Front Window Limits the search to the frontmost window. If the Project window, 
Search Results window, or Build Errors window is in front, then this 
command is disabled. 

Open Windows Limits the search to all open text windows. Search Results, Build 
Errors, Worksheet, and Browsers windows are not included in the 
search. 

Selected Files in Project Limits the search to the currently selected items in the Project 
window. For groups and subprojects, this means that every file in the 
group (and its subgroups) is added to the search list. 

All Files in Project Includes each file in the project in the file set. 

Custom Allows you to specify a folder to be used as the root for building the 
search list. The folder is searched recursively, and each text file is 
added to the file set. 

Besides making a choice from the File Set pop-up menu, you have a 
number of other multi-file search options on the File dialog box, as 
follows: 

Symantec C++ User's Guide and Reference 21-5 



• 21 The Search Menu 

Exclude Subprojects. Indicates that files contained by subprojects 
will not be searched. 

Exclude System Files. Indicates that system files in the Symantec 
Project Manager tree will not be searched. 

Exclude ( ... ) Folders. Determines whether, during a custom search, 
shielded folders are examined. (This option is only enabled for 
custom file sets.) For further details, see the discussion of shielded 
folders in Chapter 3, "Starting a Project." 

Exclude Precompiled Header. Indicates that the files in the 
project's precompiled header will not be searched. 

Source & Headers. Includes both source files and header files in 
the search. 

Source Only. Searches only source files. 

Headers Only. Searches only header files included by source files in 
the current file set. 

There are four buttons in the Find dialog box (see Figure 21-2). 

Cancel 
Click Cancel to stop the operation. 

Don't Find 
Click Don't Find to accept the new string and option settings, but not 
initiate a search. This is a useful option if you want to set values for 
a replace operation without executing the first find. 

Replace All 
Click Replace All to replace all occurrences of the current selection 
with the replacement string. 

Find 
Click Find to go ahead with the search. 

21-6 Symantec C++ User's Guide and Reference 



Find Selection 3€H 

Find Selection Previous 

Enter Search String 3€E 

Commands in the Search Menu • 
Table 21-1 Search dialog box Command key equivalents 

Command Key 
E 

w 

G 

B 

M 

F 

D 

R 

,(comma) 

N 

L 

s 

H 

Function 
Entire word 

Wrap around 

Ignore case 

Grep 

Batch 

Toggles multi-file search 

Find 

Don't find 

Replace all 

Exclude precompiled header 

Turns off multi-file search 

Multi-file, source and headers 
(Command-A in the THINK Project 
Manager) 

Multi-file, Source 

Multi-file, Headers 

Other than Find, the Search menu contains a number of other find­
and-replace commands, as described here (see Figure 21-1). 

Limits the search to the next occurrence of the selected text. Holding 
down the Shift key changes Find Selection to Find Selection 
Previous. The latter command limits the search to the previous 
occurrence of the selected text. 

Sets the search string to the current selection. Use Find Next to 
begin searching, or Find to set search options. Holding down the 
Option key changes Enter Search String to Enter Replace String. 

Symantec C++ User's Guide and Reference 21-7 



21 The Search Menu • 
Enter Re~lace 
String --.:3€E 

Find Next 3€6 

Find Previous -0-3€6 

Replace 3€= 

Replace & 
Find Next --.:3€= 

Replace & 
Find Previous -0---.:3€= 

Replace All 

Find in Next File 3€1 

Use this command to set the replacement string for the current 
operation. 

Searches for the next occurrence of the search string. Holding down 
the Shift key changes Find Next to Find Previous. Use this 
command to search backwards for the next occurrence of the 
selected string. 

Replaces the current selection with the replacement string. If you do 
not designate a replacement string, choosing this command deletes 
the found string. Holding down the Option key changes Replace to 
Replace & Find Next. This command replaces the current selection 
with the replacement string. It then finds the next instance of the 
search string, but does not replace it. 

Use Replace & Find Next to step through a series of replacements. 
After each replacement, you see the next instance of the search 
string. If you choose to replace the string, use either the Replace or 
Replace & Find Next command. To skip to the next instance of the 
string, use the Find Next command. Holding down the Shift key 
changes Replace & Find Next to Replace & Find Previous. This 
command replaces the current selection and finds the nearest 
instance of the string working in the opposite direction. 

Replaces every instance of the search string. If the Wrap Around 
option is set on, this command replaces every instance in the file. If 
it is set off, this command replaces every instance from the current 
position to the end of the file. If you have not provided a 
replacement string, this command deletes the string that has been 
found. 

During a multi-file search, continues the search in the file set. This 
command also continues an interrupted batch search. 

When this command is chosen, a string search is executed. If the 
search string is found in a given file, an Editor window is opened 
with the selected string highlighted. At this point, you can edit the 
string. If you want to search further in the current file, use the Fin4, 
Find Next, Replace, or Replace All commands, which work within 
the current file. When you are ready to continue with the multi-file 
search, use the Find in Next File command. 

Locating information in the THINK Reference 
Use these commands to locate reference information. 

21-8 Symantec C++ User's Guide and Reference 



Find in Doc Server :l:t:-

Get Prototype ---=3€-

Go To Line 3€, 

Go To Marker ---=3€, 

Commands in the Search Menu + 

Looks up the current selection in the lli!NK Reference or other 
external documentation viewer. 

Calls lli!NK Reference or other external documentation viewer to 
replace the current selection with its prototype. 

Going to lines or markers 
Use these commands to go to specific lines or markers. 

Opens the Go to Line dialog box, which you use to move to a 
specific line in your file (Figure 21-5). You need to know the line's 
number. Lines are numbered consecutively from 1. 

~GoToline~ 

Line: 1-1 
( Cancel ) ( Go To J 

Figure 21-5 Go To Line dialog box 

The default line is the one that contains the insertion point. To 
change the line, type a different number and click Go To. The Editor 
moves the insertion point to the beginning of the line with the 
number you typed. Click Cancel to cancel the operation. 

Holding down the Option key changes Go To Line to Go To 
Marker. Selecting a marker in the Go To Marker dialog box is 
equivalent to choosing an entry from the Markers pop-up menu. 

Symantec C++ User's Guide and Reference 21-9 



21 The Search Menu • 

Add Marker 3€M 

Note 
All preferences set for the Markers pop-up menu 
apply also to the Go To Marker dialog box. 

CantOpen 

DoCommand 

main 

MainEvent 

MaintainCursor 

MaintainMenus 

SetUpCursors 

Go To Marker 

Cancel Go 

Figure 21-6 Go To Marker dialog box 

Opens the Add Marker dialog box, which you use to place a new 
marker in a file (Figure 21-7). Place the insertion point at the line 
you want to mark, or select some text in that line. 

Rdd Marker 

Name: I 
"----~~~~~~~~~~~~~~~--' 

( Cancel J ( Reid 

Figure 21-7 Add Marker dialog box 

Type the marker name you want, and click Add. 

21-10 Symantec C++ User's Guide and Reference 



Remove Markers 

Go to Next Result :!€ 1 

Commands in the Search Menu + 

Opens the Remove Markers dialog box, which you use to delete 
markers from a file (Figure 21-8). 

Select the markers to delete and click Remove. 

Remoue Markers 

Cancel 

Figure 21-8 Remove Markers dialog box 

Locating compiler errors within a source file 
Use these commands to locate errors. 

Note 
If you are in the Search Results window, the Search 
menu displays the commands Go to Next Result 
and Go to Previous Result. If you are in the Build 
Errors window, the Search menu displays the 
commands Go to Next Error and Go to Previous 
Error. 

Locates the next search result from the Search Results window. 

Go to Previous Result :!€' Locates the previous search result from the Search Results window. 

Go to Next Error :!€' Locates the next error from the Build Errors window. See Chapter 23, 
"The Build Menu" for discussion of this window. 

Go to Previous Error :!€' Locates the previous error from the Build Errors window. 

Symantec C++ User's Guide and Reference 21-11 



• 21 The Search Menu 

Searching for a Pattern (Grep) 
In addition to the search and replace functions described in the 
previous sections, the Editor also provides a powerful pattern search 
capability called Grep. The Grep search option is based on the Unix 
Grep utility. The Editor looks for patterns only when the Grep 
option is set on in the Find dialog box. 

Patterns 
A pattern describes a characteristic (or characteristics) that could 
apply to many strings. For example, you can build a pattern that 
means "any word that begins with P." Alternatively, the pattern could 
mean "any function call with &event as an argument." 

Note, however, that patterns cannot span lines, so you cannot define 
a pattern that means "three consecutive lines that begin with a, b, 
and c." 

Simple patterns 
The simplest patterns match a single character during a search. 
Special conventions define the use of the following characters in 
Grep patterns: 

• Use the period to designate any character. 

For example, if you've set Ignore Case on in the Find 
dialog box, any letter matches both its uppercase and 
lowercase equivalent. So . matches both a and A, both b 
and B, and so on. 

• The reverse slash \ followed by any character-except 
(, ) , <, >, or one of the digits 1 through 9-defines a 
pattern that matches that character. For example, \ . 
matches . and also \ \ matches \ (backslash). 

• A string of characters s surrounded by left [ and right 
brackets is a pattern [ s] that matches any one of the 
characters in the string s. The pattern [ "s] matches any 
character not in the string s. Using s as a string of three 
characters in the form a - z represents all of the 
characters from a to z inclusive. All other characters in s 
are taken literally. To include the right bracket ] ins, you 
must use it as the first character. To include the hyphen -
in s, you must use it at the beginning or end of s. 

21-12 Symantec C++ User's Guide and Reference 



Searching for a Pattern (Grep) + 

For example, the pattern [A-Za-z0-9] matches any 
alphanumeric character. The pattern [" ! -- l matches 
any nonprinting ASCII character. The Ignore Case option 
has no effect on anything between brackets. 

Complex patterns 
To match strings, not just individual characters, you need patterns 
that match consecutive sequences of characters. One way of doing 
this is to append an asterisk * to the end of one of the simple 
patterns. 

• A pattern x followed by a * is a pattern x* that matches 
zero or more consecutive occurrences of characters 
matched by x. 

For example, the pattern @ * matches a string containing 
any number of at-signs. If the string does not begin with 
an at-sign, or if it contains only characters other than 
at-sign, then the pattern is not found. 

You can put patterns together to form more complex patterns. 

• A pattern x followed by a pattern y forms a pattern xy 
that matches any string ab, where a matches x and b 
matches y. 

For example, the pattern P. matches any two-letter 
string consisting of P and any other character. 

• You can concatenate the compound pattern ~with 
another pattern z, forming the pattern ~z. 

To put all this together, consider the pattern ( . * ) . This pattern 
matches any string enclosed in parentheses. This includes the string 
( ) , since the subpattern . * matches the empty string between the 
left parenthesis ( and the right parenthesis ) . 

Does the pattern ( . * ) match the string ( ( ) ) ? Because the 
subpattern . * matches any number of occurrences of all characters, 
it might seem that the pattern matches just the ( ( ) and not the very 
last ) . This is not the case. In matching ( ( ) ) against the pattern 
( . * ) , the inner pair of parentheses matches the subpattern . *, so 
the whole pattern matches ( ( ) ) . 

Symantec C++ User's Guide and Reference 21-13 



• 21 The Search Menu 

Subpatterns 
A subpattern is any component of a pattern that is surrounded by 
reverse slash left parenthesis and reverse slash plus right parenthesis. 
You can refer to and reuse subpatterns while writing complex 
patterns. The string \n accesses the nth subpattern of a given 
pattern. The combination of grouping subpatterns can become 
somewhat complicated. 

• A pattern surrounded by \ ( and \ ) matches whatever 
the subpattern matches. 

For example, \(a [b-y] z \) matches the same thing as 
a [b-y] z. 

• A \ followed by n, where n is one of the digits 1 
through 9, matches whatever the nth \ ( \ ) 
subpattern matched. You can add a * to a \ n pattern to 
form a pattern \ n* that matches zero or more 
occurrences of whatever \n matched. 

For example, to find two repeated words (like "the the"), 
you might use a pattern such as this: 

\ ( [a-z] [a-z] *\} \1 

This pattern matches any string that contains the 
following: a space, any sequence of letters, a space, and 
the same sequence of letters. Note that \ 1 is not a 
reapplication of the pattern. Instead it becomes whatever 
the first \ ( \ ) pair matched. 

Constraining patterns 
Finally, you can limit patterns so that they match only if they meet 
certain conditions in the context outside the string. 

• A pattern surrounded by \ < and \ > matches whatever 
the pattern matches, provided that the first and last 
characters of the matched string match [ A-Z a - z 0- 9 _ J 

and that the characters immediately surrounding the 
matched string don't match [A-Za-z0-9_]. In other 
words, the pattern matches only if the string begins and 
ends on a word boundary. If you've set Entire Word on 
in the Find dialog box, the entire pattern that you enter 
is treated as though it were surrounded by \ < and \ >. 

21-14 Symantec C++ User's Guide and Reference 



Searching for a Pattern (Grep) + 

For example, to find occurrences of repeated words, 
even words not surrounded by spaces, use the pattern 
\(\<[a-z) [a-z]*\>\) ["'a-z]*\l. 

• A pattern x preceded by a "' forms a pattern "'x. If "'x is 
not preceded by any other pattern, it matches whatever x 
matches as long as the first character x matches occurs at 
the beginning of a line. 

• A pattern x followed by a $ forms a pattern x$. If the 
pattern x$ is not followed by any other pattern, it 
matches whatever x matches as long as the last character 
that x matches is at the end of a line. If the pattern x$ is 
followed by another pattern, then the $ is taken literally. 

Because of these last two items, pattern matches must begin or end 
at line boundaries. They can be combined to form a pattern that 
matches an entire line only. 

Note 
You can not perform reverse searches in Grep. 

Replacing with Grep 
You can use Grep to search for strings, and also to replace them. The 
following special characters let you alter the replacement string: 

• Each occurrence of the character & is replaced with 
whatever the entire pattern matched. 

For example, if you wanted to add a P to the beginning 
of every word that ended with ptr, you would search 
for \<. *ptr\> and replace it with P&. 

• Each occurrence of \ n, where n is one of the digits 1 
through 9, is replaced by whatever the nth occurrence of 
\n matched. 

For example, to change all strings such as #define 
FOO 1 to FOO = 1, search for 

#define \ ( \< [A-Za-z0-9] [A-Za-z0-9] *\>\) 
\(\<.*\>\) 

Symantec C++ User's Guide and Reference 21-15 



• 21 The Search Menu 

and replace it with 

\1 = \2 

• Each occurrence of a string \x, where xis not one of the 
digits 1 through 9, is replaced by x. 

Grep examples 
Grep is not easy to learn. Following are some typical examples to 
help you get started. 

Suppose that you have written a Macintosh application and have 
forgotten to put a \p at the beginning of your strings to signal to the 
compiler to make them Pascal strings rather than C strings. You can 
change all your C strings to Pascal strings by specifying 

"\ ( ['"']*\)II 

as the search pattern and 

"\\p\1" 

as the replacement string. 

To convert 

sym equ (expr+4) a comment 

to 

#define sym (expr+4) /* a comment */ 

search for 

\ ( \<. *\>\) [space tab] *\<equ\>\ ( [""; J *\) \ (. *\) 

and replace with 

#define \1 \2 /* \3 */ 

Explanation: 

• \ < . * \ > matches a symbol. 

• The surrounding \ ( and \ ) lets you use the symbol in 
the replacement string as \ 1. 

21-16 Symantec C++ User's Guide and Reference 



Searching for a Pattern (Grep) + 

• The [space tab] * matches any number of spaces or tabs 
between the symbol and the key word equ. (The words 
space and tab stand for the characters here, because you 
can't see them on paper. To enter a Tab, press 
Command-Tab in the dialog box.) 

• \ <equ \ > matches the word equ. It does not match equ 
if it is part of another word, for example, equal. 
\ <equ \ > is not surrounded by \ ( and \) because it is 
thrown away in the replacement string. 

• [ "' ; J * matches an expression formed by any number of 
characters up to but not including a semicolon (; ). 

• The surrounding \ ( and \ ) lets you use the expression 
in the replacement string as \ 2. 

• The . * matches the comment that is the rest of the line. 

• The surrounding \ ( and \ ) stores the comment as \ 3. 

• If there is no semicolon (;) in the line, then \ 2 consists 
of everything after the equ to the end of the line, and \ 3 
is an empty string. 

To convert $HHHH to OxHHHH, where His a hexadecimal digit, 
search for 

$\ ( [0-9A-Fa-f] [0-9A-Fa-f] *\} 

and replace it with 

Ox\1 

Explanation: 

• $ matches a $. 

• [ 0 - 9 A - Fa - f J matches one hexadecimal digit. 

• [0-9A-Fa-f] [0-9A-Fa-f] *matches one or more 
hexadecimal digits. The pattern [ 0 - 9 A-Fa - f J * 
matches zero or more hexadecimal digits. 

• The surrounding \ ( and \ ) lets you remember the 
hexadecimal digits in the replacement string as \ 1. 

Symantec C++ User's Guide and Reference 21-17 



21 The Search Menu • 

21-18 Symantec C++ User's Guide and Reference 



Active pane 

Si ze bars 
L 

The Class 
Browser Window• 

22 
Trie Class Browser displays a list of the classes in a project. You can 

view the list of your classes in either alphabetic or hierarchical order. 
You can use the Class Browser to view and edit each class's 
definition, and the source code for its data members and member 
functions. 

To open a Class Browser window, choose Class Browser from the 
Symantec Project Manager's Windows menu (Command-]). If you 
choose this command w ith a Class Browser window already open, 
the window becomes the frontmost window. 

fEi 
I_ Classes 

TCircleBull 

TSquareBull 

TTr iangleBull 

Source 

11***'* 
*Draw 

* 
C'ra• .. t tho;- bullseyO? f19ur1?s . 

Class Browser 
Functions 

0 Draw 
DrawShape 

GetWidth 

Hit 

SetWidth 

.(} TBullWindow(const TBu11Windo~ 

Repeah·dly call DrawShc.pE- w i th o smallff dr.;,w'iny art>a 
Thf< drawing area get :r smalkr by 2 ~the Y.'1dth 

vo i d TBul !Window : :Oraw< void ) 

PenState pen; 
RgnHc:ind I e saveC I i p = NewRgn ( ) ; 
Re c t draw i ngRec t; 

ll!i,, 
Data 

CJ 

Zoom ~~~~~~~~~~3§~ij0~~TOIT!~I~~~~~~~~~~~~~~~~~=ii!J~ 
O ri entat ion ----------~} 
Ti t les - -------------

Toggle Class List 

Figure 22-1 Cl ass Browser w indow 

Symantec C++ User's Guide and Reference 22-1 



• 22 The Class Browser Window 

Note 
To open a new Class Browser window when one or 
more Class Browser windows are already open for a 
project, hold down the Option key when choosing 
Class Browser from the Windows menu. 

The Class Browser displays the classes for the active project at the 
time the browser is first opened. You cannot switch a Class Browser 
window to a different project after it has been opened. To examine 
the classes of a different project, make the other project the active 
project, then open a new Class Browser window. 

This chapter discusses the components of the Class Browser window 
and how to use these components to examine the classes of a 
project. The first section describes the components of the window, 
covering the icons first and then the panes. The second section 
covers configuring the window and navigating the panes. 

Components of the Window 
The Class Browser window consists of the following four panes: 
Classes, Functions, Data, and Source. The double bars between the 
panes are used to resize the panes. At the bottom of the window are 
four icons. From left to right, these icons include Zoom, Orientation, 
Titles, and Toggle Class List. 

Window icons and size bars 
This section describes the four icons at the bottom of the window as 
well as the size bars. 

Zoom icon 
When you click the Zoom icon, the active pane expands to fill the 
entire window. If the window already contains a zoomed pane, 
clicking the Zoom icon restores the original four panes. You may 
also perform this function by double-clicking in the border around 
the pane. 

Orientation icon 
When you click the Orientation icon, the orientation of the panes in 
the window changes from horizontal (with the Classes, Functions, 
and Data panes along the top) to vertical with the panes along the 
left side of the window. If the window already is vertically aligned, 
clicking the Orientation icon returns it to the horizontal state. 

22-2 Symantec C++ User's Guide and Reference 



Components of the Window + 

Titles icon 
You can toggle the display of the pane title on and off by clicking 
the Titles icon. 

Toggle Class List icon 
You can toggle the list of classes in the Classes pane between an 
alphabetic and a hierarchical order by clicking the Toggle Class List 
icon. Note that if the display is in hierarchical order, the derived 
classes are indented and listed after the class from which they are 
derived. 

Note 
When a class is derived from more than one base 
class, the hierarchical class list displays that class 
under each base class from which it is derived. 

Size bars 
You may change the relative size of the panes by dragging the size 
bars. Once you have established a new relative size for a pane, it is 
maintained when the window is resized. 

Panes of the window 
The active pane, which has a black border around it, receives all 
menu commands and keystrokes. You may change the active pane 
by clicking in a different pane, or you may cycle through the four 
panes using Command-Tab to go forward and Command-Shift-Tab 
to go backward. 

Classes pane 
All the classes defined within the active project are listed in the 
Classes pane. 

If you select a class in the Classes pane, the member functions it 
implements are displayed in the Functions pane. The data members 
it defines are displayed in the Data pane. Inherited member 
functions and data members are not displayed. You may display a 
class declaration in the Source pane by double-clicking its name in 
the Classes pane. To toggle the class list between alphabetic and 
hierarchical order, click the Toggle Class List icon at the bottom of 
the window. 

Symantec C++ User's Guide and Reference 22-3 



• 22 The Class Browser Window 

When the display in the Classes pane is in hierarchical order, you 
can collapse and expand the derived classes using the following key 
combinations (Table 22-1). 

Table 22-1 Key combinations for Classes pane hierarchical view 

Command-Left Arrow 

Command-Right Arrow 

Command-Option-Left Arrow 

Command-Option-Right Arrow 

Collapse selected class 

Expand selected class 

Collapse all derived classes 

Expand all derived classes 

Note 
Classes do not appear in the Classes pane until the 
source code file that contains their definition has 
been compiled at least once. 

Classes defined in subprojects are not displayed in a 
project's Class Browser window-except for base 
classes from which one or more classes in a project 
are derived. These base classes are listed in italic in 
the Classes pane. You cannot examine these classes 
in the Functions, Data, or Source panes. To browse 
classes defined in a subproject, make the subproject 
the frontmost project, then open a new Class 
Browser window. 

Function pane 
The Function pane displays an alphabetical list of the member 
functions defined by the class currently selected in the Classes pane. 
If you double-dick a member function's name, its definition is 
displayed in the Source pane. · 

Data pane 
The Data pane displays an alphabetic list of the data members of the 
class currently selected in the Classes pane. If you double-dick a 
data member's name, its definition is displayed in the Source pane. 

22-4 Symantec C++ User's Guide and Reference 



Working in the Class Browser Window + 

Source pane 
The Source pane displays the source code for a class declaration, a 
member function definition, or a data member definition. All editing 
operations available in source file Editor windows are available in 
the Source pane. Any editing operation done within the Source pane 
is synchronized with all open source file Editor windows. 

When the Source pane displays code, you can open the file that 
contains that code in an Editor window. Hold down the Option key 
and choose Open in Editor from the File menu or press Command­
Option-D. 

Warning 
The Class Browser window does not automatically 
keep member function's declarations synchronized 
with their definitions. If you change a member 
function's declaration or definition in the Source 
pane, you must manually update the other part to 
match. 

Working in the Class Browser Window 
This section lists customization options for the Class Browser 
window and discusses the selection of items from lists in the Classes, 
Functions, and Data panes. 

Configuring the window 
You may configure the Class Browser window through the following 
actions: 

• Zoom one pane to fill the whole window. 

• Toggle the layout between horizontal and vertical. 

• Toggle the display of pane titles on and off. 

• Toggle the class list between alphabetic and hierarchical 
order. 

• Change the relative size of the panes. 

Symantec C++ User's Guide and Reference 22-5 



• 22 The Class Browser Window 

Note 
Customizations, such as pane splits, are not saved 
when you close the Class Browser window. 

Navigating the panes 
The Classes, Functions, and Data panes are all lists. You scroll a list 
until an item is visible. You can also type the first few letters of the 
item's name and the list automatically scrolls to the first item that 
begins with those letters. After selecting an item in this manner, you 
can cycle the selection among all items in the list that begin with 
these letters using the Tab key (to move down the list) and Shift-Tab 
(to move up the list). You may also use the arrow keys to navigate 
the lists. 

22-6 Symantec C++ User's Guide and Reference 



The Build Menu• 
23 

Lis reference chapter documents the commands of the Program 
Manager's Build menu. The final section of this chapter describes 
the use of the Build Errors window. 

Many of the commands in this menu, such as Compile, operate on 
the currently selected file or files. If the frontmost window is an 
Editor window, the selected file is the source file in that window. If 
the frontmost window is a Project window, all files currently selected 
in that Project window will be affected. 

Commands in the Build Menu 
The Build menu contains all the commands that t\,Jrn source code 
into object code. You use the commands in this menu to precompile 
header files to allow for faster builds, to turn source code into object 
code, and to link the object code in a project into an application or 
library. 

Symantec C++ User's Guide and Reference 23-1 



23 The Build Menu • 

Check Syntax :J:€Y 

Figure 23-1 shows the commands available from this menu. 

m.!l!JJ.l!.m 
Check SyntaH 8€Y 
Preprocess 
Disassemble 

Precompile Hs ... 
Compile 8€K 

Get Library Info ... 

Check Dependencies ... 88\ 
Bring Up To Date 8€U 
Remoue Objects ... 
Check Link 8€L 

Build Hpplication ... 

Figure 23-1 Build menu commands 

You use the Build menu cpmmands to perform the following 
primary functions: 

• Analyze code 
• Compile code 
• Bring a project up-to-date 
• Build the target 

This chapter discusses the Build menu commands by function, as 
noted above. The final section covers the Build Errors window. 

Analyzing code 
These commands give you the ability to evaluate how the compiler 
sees your code as well as how it sees the assembly language code 
generated by the compiler. 

Lets you check the syntax of a file without generating code. This 
command processes the source code of a file as if it were being 
compiled but does not generate any object code and does not add 
the file to the project. 

23-2 Symantec C++ User's Guide and Reference 



Preprocess 

Disassemble 

Commands in the Build Menu + 

If errors are detected while the file's syntax is being checked, they 
are displayed in the project's Build Errors window. If the project's 
Build Errors window is not already open, the Program Manager 
opens it when an error is detected. For more ir:i.formation on the 
Build Errors window, see the last section of this chapter. 

Processes the selected file's source code through the translator's 
preprocessor and displays the result in a new window. This 
command is useful for resolving problems with macros. The 
preprocessor expands your macros, adds the contents of the 
#include files, and evaluates the #ifdef statements. You can save 
and print the contents of this window as you would any other. 

If the frontmost window is an Editor window, the command operates 
on the source code in that window. If the Project window is 
frontmost, this command operates on the currently selected file in 
the Project window. 

If errors are detected while preprocessing the file, the project's Build 
Errors window opens to display them. For more information on the 
Build Errors window, see the last section of this chapter. 

Opens a window displaying the assembly language code that the 
compiler is generating from the code in the frontmost window (or 
the currently selected file in the Project window, if that is frontmost). 
You can use this command to see the code that the compiler is 
generating. You can save and print the contents of this window as 
you would any other. If the Project window is frontmost, this 
command operates on the currently selected file in the Project 
window. 

If errors are detected while disassembling the file, the project's Build 
Errors window opens to display them. For more information on the 
Build Errors window, see the last section of this chapter. 

Compiling code 
These commands deal with turning the elements of your project file 
into object code and turning the object code into an application or 
library. They all operate on the currently selected file if the frontmost 
window is a Project window or on the source code in the frontmost 
Editor window. 

Symantec C++ User's Guide and Reference 23-3 



23 The Build Menu • 
Precompile As 

Compile 
Precompile 
Load 
Update 

Opens the Precompile dialog box, which you use to process a 
source file to produce a precompiled header. 

I a TinyEdit ~ I 
CS] (TinyEdit. 'IT HSYMs) 

~ CEditRpp.c:p 
~ CEditRpp.h 
~ CEditOoc:.c:p 
~ CEditOoc:.h 
~ CEditPane.c:p 
~ CEditPane.h 

I 
Precompile "Mac #includes.cpp" as: 

Figure 23-2 Precompile dialog box 

c::J Macintosh HD 

Eject 

Desktop 

New L.J ) 

( Cancel ) 

[ Saue , 

If you enter the name for your compiled header file and click Save, 
the source file is added to the project and the Project Manager 
registers that this source file produces the precompiled header file as 
well as the header files on which it depends. If one of the header 
files changes, the Project Manager automatically rebuilds the 
precompiled header file and updates build information for the 
project accordingly. Precompiled headers cannot contain code or 
data definitions. For more details on precompiled headers, see the 
Symantec C++ Compiler Guide. 

If errors are detected while precompiling the file, the project's Build 
Errors window is opened to display them. For more information on 
the Build Errors window, see the last section in this chapter. 

Brings the currently selected file or files up-to-date. Depending on 
the kind of file selected, this command can take one of four different 
names. 

Compile 
If the frontmost window is an Editor window or a Project window 
with one or more source files selected, this command is named 
Compile. Selecting it compiles the file (or files, if more than one 
source file is selected in the Project window). If the frontmost 
window is an Editor window containing a file that is not already in 

23-4 Symantec C++ User's Guide and Reference 



Get Library Info 

Commands in the Build Menu + 

the Project window, the file is added to the project if it is successfully 
compiled. 

Precompile 
If a precompiled header file is selected in the Project window, this 
command is named Precompile. Selecting it precompiles the 
header file. 

Load 
If a shared library file is selected in the Project window, this 
command is named Load. Selecting it loads the library's object code 
into the Project file. 

Update 
If a subproject is selected in the Project window, this command is 
named Update. Selecting it causes the subproject to be brought 
up-to-date. 

If errors are detected while updating a file, the project's Build Errors 
window opens to display them. For more information on the Build 
Errors window, see the last section of this chapter. 

Opens the Library Information dialog box (Figure 23-3), which 
you use to set the link parameters for the shared libraries in a 
project. 

Librar Information 

Link the shared library 
"I nterfacelib.Hcoff" with 

@ Hard import binding 

O Soft import binding 

D Initialize before main fragment 

( Cancel J n OK , 

Figure 23-3 Library Information dialog box 

Binding options 
You have two binding options: hard import and soft import. 

Symantec C++ User's Guide and Reference 23-5 



23 The Build Menu • 

Check 
Dependencies 3€ \ 

Hard Import Binding. Generates a run-time error, thus preventing 
the application from running if the application attempts to link to a 
library that does not export one or more of the symbols (functions 
and variables) the application is expecting. 

Soft Import Binding. If you select soft import binding, no run-time 
error is generated if your application attempts to link to a library that 
does not export all of the symbols your application is expecting. 
When you choose this option, testing all entry points (functions and 
globals) before using them becomes your responsibility. 

For example, if your application calls the function LibFunc from 
the library, you might do something like this: 

if ( &LibFunc != 0 )II test function address 
{ II function is in library, ok to call 
result= LibFunc(); 
} 
else { II function is not in library 

II work around absence of function 

If you soft-link with a shared library that does not export one or 
more of the symbols imported by your application, the address of 
those symbols in the application will be set to zero. As a result, the 
application crashes if you call a function that the library does not 
export. 

Initialize Before. Main Fragment 
If this option is on, the initialization code for the shared library is 
called before it is linked with an application at run-time. 

Bringing your project up-to-date 
The commands described in this section operate on all the elements 
of a project. They are used to prepare the project for linking as well 
as for building the target. 

Opens the Check Dependencies dialog box (Figure 23-4), which 
operates on the active project. This command examines the 
modification date of each file in the project to determine if the file 
needs to be updated. When finished, the make information for all 
files in the project is current, but no files have actually been brought 
up-to-date. 

23-6 Symantec C++ User's Guide and Reference 



Bring Up To Date 3€U 

Remove Objects 

Commands in the Build Menu + 

This is an appropriate step if you are sharing a file between projects 
and have edited it while the current project was closed. 

Check Dependencies 

Uerify all file modification dates? 

l:8l Quick Scan 

D Update nested projects 

( Cancel ) K OK J 
Figure 23-4 Check Dependencies dialog box 

Quick Scan 
The modification dates of all files are rapidly checked. Enabling this 
option does not display any progress information, but you may 
interrupt the checking process with Command-Period. If Quick Scan 
is not checked, a dialog box displays the progress of the command 
as it does a slower check of the project's contents. 

Update Nested Project 
All nested projects are updated and their targets are built. 

Brings all files in the active project up-to-date, as determined by their 
make status, and links them. This includes precompiling all 
precompiled headers, compiling all source code, and loading 
all libraries. 

If the included project has debugging enabled (as indicated in the 
Project window), a special version of the library is built to permit 
debugging of code within the included project. Otherwise, the actual 
target specified in the included library's options is built. 

If errors are detected while the project is being brought up-to-date, 
they are displayed in the project's Build Errors window. See the last 
section in this chapter. 

Operates on the active project. This command removes all object 
code and debug information generated by the compiler for each file 
in the project. This reduces the size of the Project file; every file in 
the project will need to be rebuilt. 

Symantec C++ User's Guide and Reference 23-7 



23 The Build Menu • 

Check Link 3€L 

Build Application 
Build Library 

When you select Remove Objects, the dialog box shown in 
Figure 23-5 opens. 

This will require all project files to be 
recompiled or reloaded. Continue? 

D Remoue all build information 

( Cancel ) ( OK J 

Figure 23-5 Remove Objects dialog box 

Remove All Build Information 
Removes all information recorded for each file in the active project, 
including browser records and header file dependency information. 
Selecting this option saves space in the Project file, but features such 
as the Headers pop-up menu of the Class Browser and Editor 
windows are unavailable until the files are recompiled, and the 
rebuilding will be slightly slower. 

Brings the active project up-to-date, then checks for link errors. If 
any errors are found, the Link Errors window for the project is 
opened to display them. This window contains all the unresolved 
references and multiple definitions for files in the project. 

Building the target 
The Build Application and Build Library commands are used to build 
your project's target. 

Brings the active project up-to-date and links it. If any errors are 
found during this process, they are displayed in the Build Errors 
window (see the next section). If there are no errors, the target is 
built. 

This command is titled Build Application if the project type is an 
application, or Build library if the project type is either a static 
library or a shared library. 

23-8 Symantec C++ User's Guide and Reference 



Build Errors Window + 

If the Always Ask for Destination option on the Project Type page of 
the Project Options dialog box is set off, the target is named and 
placed automatically. If the option is set on, the user is prompted for 
the name and destination for the target with a standard File Save 
dialog box (Figure 23-6). 

I e TinyEdit ,.. I ~ Macintosh HD 

I OJ (TinyEdit. 11 HSYMs) ( Eject ) 
~ UditRpp.cp 
~ CEditApp.h 

I 
( Desktop ) 

~ CEditDoc.cp ( New LJ ) 
~ C:EditDoc.h 
~ CEditPane.cp 

( Cancel ) ~ CEditPane.h + 
Build "PPC TinyEdit. 11" as: K Saue J 
lrinyEdit I 

Figure 23-6 Build Application dialog box 

You should name the application in the textbox provided. When you 
click Save, the Project Manager builds your double-clickable 
application and saves it with the name you entered in the dialog 
box. 

Build Errors Window 
When an error (or warning) occurs while a compiler compiles or 
precompiles a source code file, the Symantec Project Manager 
displays the compiler's message in the Build Errors window for that 
file's project. The Build Errors window opens automatically any time 
errors are detected during compilation. You can also open the 
window by choosing Build Errors from the Windows menu. 

Symantec C++ User's Guide and Reference 23-9 



• 23 The Build Menu 

The contents of the Build Errors window are saved when the 
window is closed and are displayed again when the window is next 
opened. 

Fi le "CEditApp.cp»; Line 55 
Error : ' CEd i tApp : : Se tupF i I eParame ters ' i s not a member of s true t ' CEd i tApp ' 

¢ 1111 

Figure 23-7 Build Errors window 

The Build Errors window displays compilation errors and warnings 
for all files in the project. Each error or warning is displayed on two 
lines: the first lists the file and line number where the error or 
warning occurred and the second gives the message itself. 

Error messages and warning messages for all files in the project are 
listed in the Build Errors window. The most recent messages are 
displayed at the bottom of the list. If a file for which the Build Errors 
window was displaying errors or warning messages is recompiled, 
the existing messages are deleted from the window and any new 
messages are added at the end of the list. 

The Build Errors window displays three buttons on its toolbar that 
initiate actions on error messages: 

• GoTo 
• Hide/ Show Warnings 
• Delete All 

Go To 
Clicking this button takes you to the source code for the currently 
selected message. It opens the source file and scrolls the display to 
show the line that contains the error or warning. You can also go to 
the source fi le for any message in the Build Errors window by 
double-clicking on the message. 

23-10 Symantec C++ User's Guide and Reference 



Build Errors Window + 

Hide/Show Warnings 
This button is named Hide Warnings if warnings currently are being 
displayed in the Build Errors window. It is named Show Warnings if 
they are hidden. 

Clicking on Hide Warnings causes the Build Errors window to hide 
all compiler warning messages. The messages are still stored and 
may be shown at any time by clicking on Show Warnings. 

Delete All 
Clicking this button permanently erases all messages in the Build 
Errors window. 

Symantec C++ User's Guide and Reference 23-11 



23 The Build Menu • 

23-12 Symantec C++ User's Guide and Reference 



The Debugger 
Windows• 

24 
Tiiis chapter describes the Symantec Debugger's windows. With these 

windows, you can browse through source code as it runs, set 
breakpoints, and examine the values of variables. 

The Debugger provides five different kinds of windows: the Main 
debugging window, Debug Browser windows, the Data window, the 
Control palette, and the Debugger Log window. Between debugging 
sessions, the Debugger retains the location and arrangement of any 
open windows. 

Note that the Debugger windows and menus are separate from those 
of the Symantec Project Manager. For details on the menus, see 
Chapter 25, "The Debugger Menus." 

Symantec C++ User's Guide and Reference 24-1 



24 • 

Drag bar 

The Debugger Windows 

The Main Debugging Window 
Starting a debugging session opens the Main debugging window. 
This window is shown in Figure 24-1. 

Stack Crawl pane 

Stack Crawl 

??? (68k) 
??? <PPC> 
??? <PPC> 

Ox000733A8 
OxOOA94868 
Ox00A94EB4 

v •a in OxOOBO 1FOO 
v ed i tApp OxOOB6ED42 

I> i tsProv i der OxOOOOOOOO 
I> i tsDepender OxOOOOOOOO 
I> i tsSuperv i s OxOOOOOOOO 

v itsDirecto_d OxOOOOOOOO 
I> i tsProv i ~ Ox40810000 
I> i tsDepen~ Ox0003C 1 C6 

num I tems 246216 
blockSiz~ 12 
s I ots 246220 

I> h I tems Ox40802638 
elements 1082140218 
I ockChan~ OxO 1 
us i ngTem~ Ox6B 

I> i ts I tera Ox4080263E 
vitems Ox40814650 

I>*«*« Ox2FOA2F02 
active OxFE 
elementlD 0 

I> next OxOOOOOOOO 
I> prev OxOOOOOOOO 

disposable OxOO 

Code pane 

Tin 1_Edit.cp 
Code 

I 

l•I 

• m 
Copyright© 1989 Symantec Corpora ii!!ii 

#include "CEditApp.h" 

void main() 

CEditApp 

editApp = ne• CEditApp; 
editApp->IEditApp(); 
edi tApp->Run( ); 
editApp->Exit(); 

Zoom icon --1;;;;0 .. [~;;;;;;1"'M.,,;T,..[...._ _________ ....._ __________ ~ .............. J=.ilii 

Orientation icon _J I 
Titles icon 

Figure 24-1 Main debugging window 

This window is a multipaned window such as those used by the 
Class Browser in the Project Manager. This window contains two 
panes, the Code pane and the Stack Crawl pane, that display 
information about the process currently being debugged. Individual 
panes are printable. This window contains no close box and remains 
open throughout a debugging session. 

24-2 Symantec C++ User's Guide and Reference 



The Main Debugging Window + 

To change the relative sizes of the panes, drag on the bar that 
separates the·panes. To hide either of the panes, select the other 
pane and click the Zoom icon at the lower left of the window. To 
change the relative orientation of the panes, click the Orientation 
icon. To hide the titles of the panes, click the Titles icon. For more 
information, see Chapter 6, "Using the Debugger." 

Code pane 
This pane is used to browse through code as it runs. The current 
statement indicator shows the location of the program counter in the 
execution of the code. It always points at the next statement that will 
be executed. 

Note 
If you launch the Debugger without having a 
project open, the Code pane displays the message 
"No debugging information available," instead of 
the application's source code. In addition, the 
window title bar displays the word "Source," rather 
than your source file's name. 

This also happens if execution steps into a file for 
which no debugging information is available. 

You can set a breakpoint by clicking on the diamond to the left of 
the line or by selecting the line and choosing Set Breakpoint from 
the Source menu (Command-B). 

If you hold down the Option key while clicking on a diamond, the 
Debugger sets a temporary breakpoint, then begins executing the 
code. 

You can use the Go To Line and Go To Marker dialog boxes with 
this pane, just as you would in the Project Manager. You can also 
open the Markers pop-up menu by Command-clicking on the title 
bar and the Headers pop-up menu by Option-clicking on the title 
bar, just as you would in an Editor window. This works only when a 
Code pane is visible. Only debuggable functions are listed in the 
Markers pop-up menu. 

Symantec C++ User's Guide and Reference 24-3 



24 • The Debugger Windows 

Stack Crawl pane 
This pane contains a list of all active stack frames for the current 
execution point in the code. Stack frames are expandable items that 
contain all of the local variables for the frame being displayed. Each 
stack frame is described by the name of the function at that frame (if 
known) and the location (in hexadecimal) of the program counter 
for the selected frame. You can use the Stack Crawl pane to look at 
variables that are not in the current frame. 

Double-clicking on a stack frame causes its location to be displayed 
in any Code panes that are displayed in the same Main or Debug 
Browser window. 

Holding down the Option key while clicking on the triangle adjacent 
to a variable's name expands all of the variable's subitems. These are 
shown immediately below the stack frame itself. 

Note 
Expanding all of the variable's subitems can be a 
time-consuming operation. 

If the Debugger cannot find a corresponding source file for a stack 
frame in the project, it tries to map it to a name using other low-level 
information. If this doesn't succeed, the Debugger identifies the 
frame as either a 6SK or Power Macintosh frame with a name 
displayed as either??? (68K) or??? (PPC). 

Arrays are displayed using the declared array bounds, if bounds are 
present. If no bounds are present, the Debugger uses a default array 
size of ten elements. You can change the array size and starting 
index by double-clicking on the array's name or by using the Set 
Array Bounds command from the Data menu. See Set Array 
Bounds in the section "Data Menu," in Chapter 25, "The Debugger 
Menus." 

Debug Browser Windows 
The Debugger lets you open auxiliary Debug Browser windows to 
give you maximum flexibility when debugging. You open a Debug 
Browser window by choosing New Browser from the Debugger's 
File menu (Command-N). 

24-4 Symantec C++ User's Guide and Reference 



Code 
pane 

Debug Browser Windows + 

A sample Debug Browser window is shown in Figure 24-2. 

Stack Crawl Data pane Drag bar par 
Iii PPC TinyEdit.11.pef Iii 
Stack Crawl I : ' 

',.,,,',','' Data ~ 

??? C68k> Ox000733R8 disposable 

J ??? CPPC> OxOOR94868 
??? CPPC> OxOOR94EB4 

V•ain OxOOB01FOO phase 0 + 
Vedi tApp Ox00B6ED42 rainyDayFund -16843010 

II I> i tsProv i de~ OxOOOOOOOO criticalBalan -16843010 
I> i tsDepende~ OxOOOOOOOO toolboxBalanc -16843010 

V i tsSuperv i ~ OxOOOOOOOO tempA 11 ocat i o -16843010 
I> i tsProvi Ox40810000 I> rainyDay OxOOOOOOOO 
I> i tsDepen Ox0003C1C6 rainyDayUsed Ox FE 
I> i tsSuper Ox0003C1C8 memWarninglss Ox FE 

I> i tsD i rector OxOOOOOOOO canFai I Ox FE 
active OxFE inCriticalOpe Ox FE + 
~~ --::c -~·"""' L.o....o.. 

- Code ,. 

void main() 

{ 
CEditApp *editApp; 1:1 

<> . editApp = ne• CEd i tApp; •• editApp->IEditApp<); 
<>i edi tApp->Run( ); 

0l~ITI = --- ,,: < : _l:··•.' 11.• 
y 

Zoom, Orientation, and 
Titles icons 

Figure 24-2 Debug Browser window 

These windows contain three panes: Code and Stack Crawl panes 
(as does the Main debugging window) and a Data pane. You can use 
the drag bars and the Zoom, Orientation, and Titles icons as in the 
Main debugging window. 

Symantec C++ User's Guide and Reference 24-5 



24 • The Debugger Windows 

Data pane 
This pane is used to browse through variables. A sample Data pane 
is shown in Figure 24-3. 

PPC Tin Edit.11.pef 

disposable 
Entry pane ____ ....,_ 

Jl~;;;;;;;;p~ha~s~e;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;~O;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;~-t-~11 

rainyDayFund -16843010 
criticalBalance -16843010 
toolboxBalance -16843010 Variables pane __ ___.,_ 

Drag bar 

tempAI location -16843010 
~ ra i nyDay OxOOOOOOOO 

rainyDayUsed OxFE 
memWarninglssued OxFE 

-------Ht---c-an~F~a~i~l~~-----nOxFE 

inCriticalOperation OxFE 
newWindowOnStartup Ox01 
sfNumTypes -258 

~ sfF i I eTypes I l Ox0086ED9A 
~ s fF i I eF i I ter OxOOOOOOOO 
~ s fGe tDLOGHook OxOOOOOOOO 

sfGetDLOGid -258 
~ sfGetDLOGF i I ter OxOOOOOOOO 
~ I astTask OxOOOOOOOO 

:!l 01 T 

Figure 24-3 Data pane 

This pane is subdivided into three smaller units: an entry pane at the 
top, a variables pane at the bottom left, and a values pane at the 
bottom right. You can change the relative sizes of these panes by 
dragging on the drag bars. 

To enter expressions in the current line's or a selected line's context, 
type them in the entry pane and press Return or Enter. The 
expression itself is shown in the variables pane and its value is 
shown in the values pane. 

To copy an expression selected in the Code pane or Stack Crawl 
pane into the Data pane, choose Copy To Data from the Debugger's 
Edit menu (Comrnand-D). 

24-6 Symantec C++ User's Guide and Reference 



Data Window + 

Choosing Show Context in the Debugger's Data menu when an 
expression is selected in the Data pane selects the expression's 
context in the Code pane. This is the line of code in which the 
Debugger evaluates the expression. 

Use the Clear or Esc key to remove expressions from the Data pane. 

Data Window 
This window works like the Debug Browser window except that it 
contains only a Data pane. A Data pane is used to evaluate any 
expression-for example, to find the value of a variable, an array 
element, or an element in a record. 

To copy a selected expression into the Data window and bring the 
Data window to the foreground, choose Copy To Data from the 
Debugger's Edit menu (Command-D). You can do this from the 
Code pane or Stack Crawl pane of any Main or Debug Browser 
window that does not have a Data pane. 

Choosing Show Context from the Debugger's Data menu when an 
expression is selected in the Data window brings the Main 
debugging window to the foreground and selects the expression's 
context. This is the line of code in which the Debugger evaluates the 
expression. 

Use the Clear or Esc key to remove expressions from the Data 
window. 

Control Palette 
The Control palette contains buttons that both control the current 
process and reflect the state of that process. The Go button is lit 
when the process is running and the Stop button is lit when the 
process is stopped. You can hide the Control palette by choosing 
Hide Control Palette from the Windows menu. The Control palette 
is shown in Figure 24-4. 

Figure 24-4 Control palette with the Stop button lit 

Symantec C++ User's Guide and Reference 24-7 



24 • 
Go 

Step 

In 

Out 

The Debugger Windows 

Starts execution of the code, if it was stopped, or brings your 
application to the foreground, if the application was already running. 
Execution continues until a breakpoint or exception (such as an 
illegal instruction) is reached or until you stop it. 

Choosing Go from the Debugger's Debug menu (Command-G) also 
executes this command. 

Executes the current statement. Execution goes on to the next 
statement in the current function. (See Trace if you want execution 
to go on to the next statement regardless of the function it is in.) If 
you are at the end of a function, Step returns to the calling function. 
The first time you step through a for loop, for example, execution 
jumps to the end of the loop, as that's where the test is done in the 
generated code. 

Use this button when you want to follow the execution within a 
function without falling into a different function. Choosing Step from 
the Debugger's Debug menu (Command-S) also executes this 
command. 

Executes Trace commands until execution falls into a function. This 
is useful when you want to skip over a set of assignments to fall into 
the next function. If execution reaches the last statement of the 
current function without falling into another function, it stops 
immediately after the function returns. 

Choosing Step In from the Debugger's Debug menu (Command-I) 
also executes this command. 

Executes Step commands until execution falls out of the current 
function. You can also leave the current routine by choosing Go 
Until Here from the Debugger's Debug menu (Command-H). 

Choosing Step Out from the Debugger's Debug menu (Command-
0) also executes this command. 

Trace Executes the current statement. In most cases, execution will go on 
to the next statement, even if the next statement is in a different 
function. (See Step if you want execution to remain within the same 
function.) The exception is when execution steps into code for 
which the Debugger does not have the source text. This happens 
when you step into a function that has no corresponding Project file; 
for a brief period, execution is somewhere in that library, rather than 
in your code. 

24-8 Symantec C++ User's Guide and Reference 



Stop 

Debugger Log Window + 

Choosing Trace from the Debugger's Debug menu (Command-T) 
also executes this command. 

Stops execution of code. Choosing Stop from the Debugger's Debug 
menu (Command-Period) also executes this command. 

Debugger Log Window 
The Debugger Log window contains a list of DebugStr () messages 
from the current process. DebugStr () is a function that causes the 
execution of code to stop and drop into the Debugger just as if you 
had set a breakpoint. You can use it in conditional statements to 
report as well as to avoid situations in which you would generate an 
exception, such as dereferencing an illegal address. DebugStr () 
takes a Pascal string as an argument. 

A sample Debugger Log window is shown in Figure 24-5. 

=· SmallEdit.11.pef Log 
Ready to loop. ~ Finished looping. 
Ready to loop. 
Finished looping. 
Ready to loop. 
Finished looping. 

~ 
¢} 1¢ \iii 
Figure 24-5 Debugger Log window 

You can save the Debugger Log window's contents to a file. If the 
last two characters in the string passed to DebugStr () are either 
; g or ; G, then the Debugger logs the message and automatically 
continues executing the current process. 

Symantec C++ User's Guide and Reference 24-9 



24 The Debugger Windows • 

24-10 Symantec C++ User's Guide and Reference 



New Browser ~N 

The Debugger 
Menus• 

25 
Triis chapter describes the six menus of the Symantec Debugger. You 

use the menus listed below to test and debug applications: 

• File 
• Edit 
• Debug 
• Sourte 
• Data 
• Windows 

The Debugger's windows are described in Chapter 24, "The 
Debugger Windows." 

File Menu 

New Browser 88N 
launch ... 

Close 
Saue Hll 
Saue log Hs ... 

Page Setup ... 
Print ... 

Quit 

Figure 25-1 File menu 

Opens a new Debug Browser window. See Chapter 24, "The 
Debugger Windows," for details. 

Symantec C++ User's Guide and Reference 25-1 



25 The Debugger Menus • 
Launch 

Close 3:€W 

Save All 

Save Log As 

Opens the Launch dialog box in which you can choose an 
application to be launched from the Debugger (Figure 25-2). 

I e TinyEdit ,.. I 
!JE mnyEdit. n HSYMsl II 
~ PPC TinyEdit. ff .pef 

£'.81 screenshots 

Figure 25-2 Launch dialog box 

~ Macintosh HD 

Desktop 

( Launch j 
( Cancel ) 

Click Launch to launch an application. The Debugger automatically 
stops execution at the beginning of the application. 

Because only one project can be debugged at a time, you can 
choose this command only when you are not debugging another 
project. Launch is enabled if you launch the Debugger from the 
Finder and click Cancel in the File Open dialog box. It is also 
enabled if an application that you are debugging quits and you have 
not selected the Quit Debugger When Application Quits option on 
the Debugger Preferences dialog box. See the section "Edit Menu" 
later in this chapter for details on how to set preferences. 

Closes the frontmost window. You can also close a window by 
clicking its close box, if it has one. 

Saves your current debugging session, including the breakpoints and 
the contents of the Data window and Data pane, so the Debugger 
can restore the session when you next use it. If you set the Save 
Expressions and Breakpoints option on the Debugger Preferences 
dialog box, the Debugger saves the session whenever you quit. See 
the section "Edit Menu" later in this chapter for details on how to set 
preferences. 

Saves the Debugger Log window. See Chapter 24, "The Debugger 
Windows," for details on that window. 

25-2 Symantec C++ User's Guide and Reference 



Page Setup 

Print 

Quit ~Q 

Undo ~2 

Cut ~H 

Copy ~c 

Paste ~U 

Clear 

EditMenu + 

Opens a standard Page Setup dialog box, in which you set up ,pages 
for printing. 

Opens a standard Print dialog box for printing a source file. 

Quits the Debugger. If you quit the Debugger while debugging, the 
Debugger quits the application by calling Exit To Shell ( ) . 

Edit Menu 

IUill• 
Undo Paste ooz 

Cut OOH 
Copy ooc 
Paste oou 
Clear 

Copy To Data fig[) 

Preferences ... 

Show Clipboard 

Figure 25-3 Edit menu 

Removes the effect of the most recent edit operation in the Data 
window or a Data pane. The name of this command changes to 
Redo after you choose it and remains Redo until you perform 
another editing operation. 

Deletes the selected text from the entry field of a Data window or 
Data pane and copies it to the Clipboard. Note that you cannot cut 
text out of a Code pane. 

Copies the selected text to the Clipboard. 

Pastes the text in the Clipboard into the entry field of a Data window 
or Data pane. You cannot paste into a Code pane. 

Removes the selected expression from a Data window or Data pane 
without placing it on the Clipboard. You cannot clear text from 
a Code pane. You can also execute this command by pressing Clear 
or Esc. 

Symantec C++ User's Guide and Reference 25-3 



25 The Debugger Menus • 
Copy to Data ~? 

Preferences 

Copies a selected expression from a Code pane or a Stack Crawl 
pane, compiles and evaluates the expression, then pastes the 
expression and its value directly into a Data window or Data pane. If 
the selected expression is in the Code pane or the Stack Crawl pane 
of a Debug Browser window, the command pastes it into the Data 
pane of the same window. 

If the selected expression is in the Code pane or the Stack Crawl 
pane of the Main debugging window, the command opens the Data 
window, if it is not yet open, and pastes the expression into that 
window. If the Data window is open, the window is brought to the 
foreground before pasting occurs. This command does not affect the 
Clipboard. 

Opens the Debugger Preferences dialog box (Figure 25-4). 

Debu erPr~ferences 

IZI Stop for DebugStrs 

IZI Skip static constructors on launch 

IZI Quit Debugger when application quits 

IZI Saue eHpressions and breakpoints 

D Put opened source files in main window 

( Cancel ) [ OK J 

Figure 25-4 Debugger Preferences dialog box 

Stop for DebugStrs 
The Debugger stops whenever a DebugStr () call is hit and 
displays the message passed to DebugStr () in the Debugger Log 
window. See Chapter 24, "The Debugger Windows," for details on 
the Debugger Log window. The default setting for this option is on. 

When this option is set off, the Debugger logs the message, leaves 
the window hidden or displayed (depending on whether the 
command Show Log Window has been chosen in the Debugger's 
Windows menu), then automatically continues executing the code. 
You may want to set the option off if you are using DebugStr () to 
collect a large amount of information and do not want to see each 
message. 

25-4 Symantec C++ User's Guide and Reference 



Show Clipboard 

EditMenu + 

Skip Static Constructors on Launch 
The Debugger automatically sets a breakpoint in your main ( ) 
routine, and executes a Go command past your static constructors. 
The default setting is on. 

When the option is set off, the Debugger stops the application on 
loading before any code (including any initialization code) has been 
executed. You may want to leave the option off if you need to 
debug your static constructors or if you want to debug the loader 
code that starts up the application. If you have any Debugger ( ) or 
DebugStr () calls in static constructors or if the application crashes 
before reaching main (),the debugger comes up at that point 
instead of at main () . 

Quit Debugger When Application Quits 
The Debugger quits when the application quits. The default setting is 
on. 

When the option is set off, the Debugger remains running even after 
the target application exits. You may want to leave the option off if 
you need more memory for compiling when you have finished 
running your target. 

Save Expressions and Breakpoints 
The Debugger saves the expressions and breakpoints in active 
windows whenever it quits. The default setting is on. 

When the option is set off, the expressions and breakpoints are not 
saved. The current set of breakpoints and expressions can be saved 
at any time by using the Save All command in the File menu. 

Put Opened Source Files in Main Window 
The Debugger puts files that are opened with the Symantec Project 
Manager's Debug File command into the Main debugging window. 

When the option is set off, the Debugger opens a new debugging 
window for each source file that you open. The default setting is off. 

Displays the current contents of the Clipboard. 

Symantec C++ User's Guide and Reference 25-5 



25 The Debugger Menus • 

Go Until Here 3f:H 

Skip To Here 

Monitor 3f:M 

Debug Menu 

~ 
Go 3€G 
Step 3€S 
Step In 3€1 
Step Out 3€0 
Trace 3€T 
Stop 00. 

Go Until Here 3€H 
Skip To Here 

Monitor 3€M 
hcitToShell 

Figure 25-5 Debug menu 

You can access the first six commands on this menu from the 
Debugger's Control palette. See Chapter 24, "The Debugger 
Windows," for details. 

Starts execution of code and stops at the selected line. Choosing this 
command has the same effect as setting a temporary breakpoint at 
the selected line. Use this command when you want to move 
through a block of code quickly. Option-dicking a breakpoint also 
executes this command. 

Jumps ahead or back to the selected line without executing any 
intervening code. Use the command when you want to skip over 
code that you know contains bugs but that is not crucial to the rest 
of the code's operation. 

Note 
Skip To Here is potentially dangerous, especially 
when debugging optimized code. 

Drops you into a low-level debugger (such as MacsBug) in the 
context of your application. At this point, you can use the debugger 
to examine memory or heap structures for your application. The 
application's heap will be the current heap, and low-memory globals 
will be correct. When you are using the low-level debugger, exit the 
debugger normally (in MacsBug, use Command-G). 

25-6 Symantec C++ User's Guide and Reference 



ExitToShell 

Set Breakpoint XB 

Clear Breakpoint 

Clear All Breakpoints 

Edit filename XE 

Source Menu + 

Note 
You can use the Monitor command only if you 
have a low-level debugger installed. 

Quits the debugger. This command may bypass clean-up operations 
in some applications. Use it only when you cannot use your 
application's Quit command. 

Source Menu 

Set Breakpoint 38B 
C:lear 811 Breakpoints 

Edit 'BuggyEdit.c' 38 E 

Go To Line... 38, 
Go To Marker... l:\':C38, 

Figure 25-6 Source menu 

Clears or sets a breakpoint at the selected statement in a Code pane. 
If you have not set a breakpoint at the selected line, the command 
reads as Set Breakpoint. If you have set a breakpoint, you see 
Clear Breakpoint. Another option for setting or clearing a 
breakpoint is to click the diamond to the left of the line. 

Clears all breakpoints in a project. 

Brings the Symantec Project Manager to the foreground and opens 
an Editor window for the file in the Code pane. That file's name 
appears in the command. This command is the inverse of the Debug 
File command in the Symantec Project Manager's Project menu. See 
Chapter 18, "The Project Menu," for details on that command. 

Symantec C++ User's Guide and Reference 25-7 



25 The Debugger Menus • 
Go To Line X, 

Go To Marker ~x, 

Opens the Go To Line dialog box (Figure 25-7), which you use to 
scroll to a line in your code. 

~GoToline~ 

line: I-I 
( Cancel ) ll Go To J 

Figure 25-7 Go To Line dialog box 

Opens the Go To Marker dialog box (Figure 25-8), which you use 
to scroll to a marker in the code. Click the marker you want, then 
click Go To. Alternatively, double-dick the marker's name in the 
dialog box. 

CantOpen 
DoCommand 
DoMou:s:eDown 
main 
MainEvent 
MaintainCur:s:or 
MaintainMenu:s: 
SetUpCur:s:or:s: 

Go To Marker 

I 
ll Cancel )) [~_G_o_To___, 

Figure 25-8 Go To Marker dialog box 

25-8 Symantec C++ User's Guide and Reference 



Clear All Expressions 

Set Context 

Show Context 

Data Menu + 

Data Menu 

11.mll!:m 
Clear Rll EHpressions 

Set ConteHt 
Show ConteHt 

Signed Decimal a{:-

Unsigned Dec:imal a€U 
HeHadecimal a{:\ 

Character WR 
Pointer WP 

./Rddress OOH 
C String 00' 
Pascal String 00' 
Floating Point OOF 
fiHed w· 

' 
Locked OOL 
ConteHt Free OOK 

Set Rrray Bounds ... 

Figure 25-9 Data menu 

Clears the contents of the Data window or a Data pane. This 
command is especially useful if you do not want the Debugger to 
restore the contents of your Data window or Data panes the next 
time you use the Debugger. 

Makes the selected statement in a Code pane the context of the 
selected expression in the Data window or Data pane. 

Highlights the statement in a Code pane that is the context of an 
expression that is selected in the Data window or a Data pane. 

Data formatting commands 
The next ten commands control how expressions are displayed in 
the Data window or a Data pane. The default format depends on the 
data type of the expression. The type of the expression also 
determines the other formats you can use. The format for the 
currently selected expression has a checkmark next to it in the 
menu. Only those formats that can be used with the selected 
expression are available in the Data menu. 

Symantec C++ User's Guide and Reference 25-9 



25 The Debugger Menus • 
Signed Decimal ~ -

Unsigned Decimal ~U 

Hexadecimal ~\ 

Character 3€R 

Pointer 3€P 

Address 3€R 

C String 3€' 

Pascal String 3€' 

Floating Point 3€F 

Fixed 3€; 

Displays a selected expression's value in signed decimal format, in 
other words, as a positive or negative integer. Examples of this 
format include 4 5 2 3 3 4 5 and -1. This is the default format for 
integer-type expressions. 

Displays a selected expression's value in unsigned decimal format, in 
other words, as a positive integer. Examples of this format include 
4 5 2 3 3 4 5 and 6 5 5 3 5. This is the default format for unsigned-type 
expressions. 

Displays a selected expression's value in hexadecimal format. An 
example of this format is OxA09E1487. This is not a default format 
for any standard type. 

Displays a selected expression's value in character format. Examples 
of this format are ' c ' and ' TEXT ' . This is not a default format for 
any standard type. 

Displays a selected expression's value in pointer format. An example 
of this format is OxO 0 7 A 7 0 0 0. This is the default format for pointer­
type expressions. 

Displays a selected expression's value in address format. Examples 
of this format are [ l Ox0009FE44 and struct Ox0008FC14. 
This is the default format for array-, structure-, union-, and address­
type expressions. 

Displays a selected expression's value in C string format. An example 
of this format is "hello\n". This is not a default format for any 
standard type. 

Displays a selected expression's value in Pascal string format. An 
example of this format is " \ phe 11 o \ n" . This is not a default format 
for any standard type. 

Displays a selected expression's value in floating-point format. An 
example of this format is 1961 . 010 2. This is the default format for 
floating-type expressions. 

Displays a selected expression's value in fixed format. An example 
of this format is 19 61 . 010 2. This is the default format for fixed-type 
expressions. 

25-10 Symantec C++ User's Guide and Reference 



Locked XL 

Context Free XK 

Set Array Bounds 

Data Menu • 
Re-evaluates all expressions in the Data window or a Data pane 
every time execution stops. To keep an expression from being re­
evaluated, select it, then choose this command. A small lock icon is 
displayed next to the expression. 

To unlock a locked expression, select the expression, then choose 
Locked again. 

Note 
You cannot lock fields of expanded items without 
explicitly adding them to the Data pane. For 
example, to lock the top field of Rect r, enter 
r. top into the Data pane and lock it. 

Makes an expression context free. For example, if you are using the 
same variable name in several routines and you would like to see 
the value of the variable whenever you enter one of those routines, 
select the variable in the Data window or a Data pane, then choose 
this command. The Debugger marks the variable with a small arrow 
to tell you that the variable's context is the same as that of the 
current statement. 

Opens the Set Array Bounds dialog box, which you use to set the 
bounds of an array. 

Set Arra Bounds 

Display Range: 1-1 
Lower Bounds: I 0 I 

( Cancel ) I OK J 

Figure 25-10 Set Array Bounds dialog box 

Enter the number of items in the array and the base index of the 
array and click OK. 

Symantec C++ User's Guide and Reference 25-11 



25 The Debugger Menus • 

Filename.n 3€0 

Source file 3€ 1 

Data 3€2 

Show Log Window 
Close Log Window 

You can also access this dialog box by double-clicking the array. 
Arrays are displayed using the declared array bounds, if bounds are 
present. If no bounds are present, the Debugger uses a default array 
size of ten elements. Array size changes do not take place until the 
array is closed and reopened. 

Set Array Bounds is available only when you have selected an 
expression that is formatted as an array in a Data or Stack Crawl 
pane. Double-clicking on the expression or choosing the command 
has the same effect. Note that you can use this command for pointer 
expressions that have been formatted as arrays. An expression 
displayed as an "address" can also be expanded as an array. 

Windows Menu 

MiniEdit. n 3€0 

BuggyEdit.c 3€1 
Data 3€2 

Show Log Window 
Show Control Palette 

MiniEdit. n .pef 3€3 
MiniEdit. n .pef 2 3€4 
MiniEdit. n .pef 3 3€5 

Figure 25-11 Windows menu 

Brings the Symantec Project Manager to the foreground and makes 
the Project window that is listed in the menu active. 

Makes the Main debugging window active. The Main window 
contains the source file listed in the menu. 

Makes the Data window active. 

Opens or hides the Debugger Log window. When you choose Show 
Log Window, the Debugger Log window is displayed and the 
command changes to Close Log Window. See Chapter 24, "The 
Debugger Windows," for details on that window. 

25-12 Symantec C++ User's Guide and Reference 



Show Control Palette 
Hide Control Palette 

Debug browsers 

Windows Menu + 

Opens or hides the Control palette. When you choose Show Control 
Palette, the Control palette is shown and the command changes to 
Hide Control Palette. See Chapter 24, "The Debugger Windows," 
for details on the Control palette. 

Makes a Debug Browser window active for the project you are 
debugging. A debug browser entry is added to the menu each time 
you open a Debug Browser window, and an entry is deleted each 
time you close such a window. These windows are assigned 
Command-keys 3 through 9, as needed. 

Symantec C++ User's Guide and Reference 25-13 



25 The Debugger Menus • 

25-74 Symantec C++ User's Guide and Reference 



The Windows 
Menu• 

26 
~is reference chapter provides detailed descriptions of the 

commands in the Symantec Project Manager's Windows menu. The 
Windows menu contains commands to help manage the windows 
you open in the Symantec Project Manager. 

Commands in the Windows Menu 
You use the commands in the Windows menu to size, order, and 
arrange open windows. You also use these commands to open the 
Build Errors, Search Results, Class Browser, and Worksheet windows. 
Figure 26-1 displays the commands in the Windows menu. 

Arrange ... 
Zoom 00/ 
Swap 
Bring Back To Front 

./Show Toolbar 

Build Errors 
Search Results 
Class Browser 
Worksheet 

OOJ 

PPC Process Monitor. Tr 00 O 

CProcess.cp 
main.cp 

PPC Uector.11 

001 
002 

Figure 26-1 Windows menu 

Symantec C++ User's Guide and Reference 26-1 



26 The Windows Menu • 

Arrange 

Current 
selection 

These commands primarily are used to perform the following 
functions: 

• Arrange windows 
• Open windows 

This chapter discusses the Windows menu commands by function 
in the above order. 

Arranging windows 
These five commands determine the arrangement and size of open 
windows and let you choose to hide or display the toolbar of the 
frontmost window. 

Opens the Arrange Windows dialog box (Figure 26-2), in which 
you can rearrange open Editor windows on the screen. 

omrno []Dl~ 
~ lDDJUJ 
D Top two windows 

Cancel E Arrange J 
Figure 26-2 Arrange Windows dialog box 

The four pictures in the dialog box represent possible arrangements 
for open Editor windows. To select an option, double-dick on its 
picture. Alternatively, click once on a picture, then press Return (or 
click the Arrange button). To exit the dialog box without rearranging 
any windows, click Cancel. 

You can use the Arrange command to resize and reposition only 
Editor windows and the Worksheet window. It cannot be used on a 
Project window, a Class Browser window, or special windows such 
as Build Errors or Search Results. 

26-2 Symantec C++ User's Guide and Reference 



I[ ] 

DD 
001 
lDCJJ 

Zoom~/ 

Swap 

Send Frontlo Back 

Bring Back To Front 

Commands in the Windows Menu + 

Top to bottom 
This option tiles all open Editor windows vertically. If the Top Two 
Windows option is set on, only the frontmost two Editor windows 
are resized and repositioned. The window order (front io back) is 
unchanged. 

Left to right 
This option tiles all open Editor windows horizontally. If the Top 
Two Windows option is set on, only the frontmost two Editor 
windows are resized and repositioned. The window order (front to 
back) is unchanged. 

Tiled 
This option organizes the display into enough rows and columns (to 
a maximum of 6 rows and 4 columns) to display all Editor windows 
without overlap. The windows are placed from left to right and top 
to bottom. (For more than 24 windows, extra windows are arranged 
in the same rows and columns under the frontmost 24.) The Top 
Two Windows option is set off when this arrangement is selected. 

Stacked 
This is the only arrangement that changes the window order. All 
open Editor windows are placed in front of all other windows. They 
are then resized and positioned with the frontmost window on the 
bottom left, with each following window slightly above and to the 
right of the window in front of it. The window order between Editor 
windows is not changed by this arrangement. The Top Two 
Windows option is set off when this is selected. 

Performs the same action as clicking in the zoom box of the 
frontmost window. A zoomed window resizes to fill the screen. For a 
window that already fills the screen, the window is reset to its 
prezoom size and location. 

Switches the frontmost window with the one just behind it. 

Sends the frontmost window behind all other open windows. If you 
hold down the Option key while opening the menu, this command 
changes to Bring Back To Front. Selecting this command brings the 
rear window to the front. 

Symantec C++ User's Guide and Reference 26-3 



26 The Windows Menu • 
Show Toolbar 

Build Errors 

Search Results 

Class Browser ~J 
New Class Browser 

Worksheet 

active project 
.filename ~O 

Hides the toolbar of the frontmost window. If that toolbar is already 
hidden, selecting this command displays the toolbar. You can find 
more information about each type of window and their toolbars in 
the reference chapters for the windows. 

Opening windows 
These commands are used to open various windows in the Symantec 
Project Manager, such as the Build Errors and Class Browser · 
windows. 

Opens the Build Errors window to display the current list of build 
errors for the active project. If the Build Errors window is already 
open, selecting this command brings it to the front. For more 
information on the Build Errors window, see Chapter 23, "The Build 
Menu." 

Opens the Search Results window to display the results of the last 
batched Find operation in the active project. If the Search Results 
window is already open, selecting this command brings it to the 
front. For more information on the Search Results window, see 
Chapter 21, "The Search Menu." 

When no Class Browser windows are open, a new Class Browser 
window displays the classes defined within the active project. When 
one or more Class Browser windows are open, selecting this 
command brings one to the front. If you hold down the Option key 
while opening the menu, this command changes to New Class 
Browser. Selecting this command opens an additional Class Browser 
window, regardless of the number that are currently open. For more 
information on Class Browser windows, see Chapter 22, "The Class 
Browser Window." 

Opens the Worksheet window for communicating with ToolServer 
and SourceServer. If the Worksheet window is already open, 
selecting this command brings it to the front. For more information 
on the Worksheet window, see the electronic supplemental 
information. 

Opens the Project window of the active project if it was closed, or 
brings the window to the front if it was open. 

26-4 Symantec C++ User's Guide and Reference 



source files 

other project .filenames 

Commands in the Windows Menu + 

Makes the window you select from the list of open Editor windows 
the frontmost window on the screen. This list includes all open 
Editor windows regardless of the project (if any) to which they 
belong. These windows are listed in alphabetical order. 

Editor windows can be accessed using key combinations. A key 
combination, which is assigned to an Editor window when the 
window is first opened, takes the form Command-number (where 
number is a number in the range from 1 to 9). Note that if nine 
Editor windows are already open, any new Editor windows you 
open will not be assigned key combinations. 

Key combinations, which do not change as long as the file remains 
open, are used to bring a window to the front. The effect is the same 
as selecting the file's name from the Windows menu. 

Any open Project windows for projects other than the active one are 
listed at the bottom of the Windows menu. Selecting one of these 
projects brings its window to the front of the screen but does not 
make it the active project. To make a project active, you must choose 
Switch Main Project from the Project menu. 

Symantec C++ User's Guide and Reference 26-5 



26 The Windows Menu • 

26-6 Symantec C++ User's Guide and Reference 



Symantec C ++ • 
TCL and VA 
Reference 

Part Five 
27 TCL and VA: Basic 

Concepts 
28 Programming with the 

THINK Class Library 
29 Visual Architect File 

Menu 
30 Visual Architect Edit 

Menu 
31 Visual Architect View 

Menu 

Symantec C++ User's Guide and Reference 



32 Visual Architect Pane 
Menu 

33 Visual Architect 
Options Menu 

34 Visual Architect Tools 
Menu 

35 VA Symantec Project 
Manager Menu 

Symantec C++ User's Guide and Reference 



TCL and VA: 
Basic Concepts• 

27 
~is chapter expands on the description of the THINK Class Library 

(TCL) and Visual Architect (VA) presented in Chapter 2, "Introducing 
Symantec C++ 8.0." The chapter briefly reviews the basic structures 
of the THINK Class Library, as well as how these structures interact 
and the part they play in an application. This chapter also more fully 
describes Visual Architect, a development tool for constructing the 
user interface for applications using the THINK Class Library. 

This chapter discusses both TCL and VA in more detail than in 
Chapter 2 and contains many examples and illustrations. For more 
reference information on TCL, see Chapter 28, "Programming with 
the THINK Class Library." For more reference information on VA, see 
Chapters 29 to 35. 

THINK Class Library 
The THINK Class Library is a collection of C++ classes that help you 
implement standard Macintosh applications, I/OStreams-based 
applications, and even libraries for custom applications. These TCL 
classes handle basic Macintosh functions. 

This section describes TCL structures, outlines their interactions, and 
explains how to create a THINK Class Library application. 

TCL structures 
The THINK Class Library is organized into three distinct, interacting 
structures: the class hierarchy, the visual hierarchy, and the chain of 
command. This section provides detail on these structures, 
particularly the chain of command by which actions are handled. 

Symantec C++ User's Guide and Reference 27-1 



27 • TCL and VA: Basic Concepts 

Class hierarchy 
The class hierarchy is the set of classes that make up the THINK 
Class Library. The hierarchy is organized around the concept of 
inheritance. It contains a set of base classes from which other classes 
inherit their behavior (member functions) and attributes (data 
members). 

Visual hierarchy 
The visual hierarchy describes the organization of all visible entities, 
such as windows and buttons, that could be included in a given 
application. The hierarchy describes all the views that the THINK 
Class Library contains. A TCL view is an object of a class descended 
from the class CView. CView is an abstract class that is used for 
implementing objects with visual representations. Views respond to 
commands involving the mouse, and they can be links in the chain 
of command. 

The visual hierarchy is based on the concept of enclosure. 
Everything you see on the screen belongs to-is enclosed by­
another visual entity. This is in contrast to the class hierarchy, which 
is based on derived class relationships. In the visual hierarchy, 
because Activate and Update events can be processed in a modular 
fashion, each visual entity can process information locally, 
delegating the processing of enclosed views to their respective 
objects in turn. 

Views and the visual hierarchy. Three kinds of views make up the 
visual hierarchy: the desktop, the windows, and the panes. These 
views are derived from the class CView. Abstract classes such as 
CView impart common behaviors to their derived classes. At the top 
of the hierarchy is the desktop, an object of class CDesktop. Every 
THINK Class Library application has a unique desktop object. The 
desktop encapsulates many of the properties and behavior of the 
Macintosh Window Manager, and it is the only view that does not 
have an enclosure. Instead, it encloses all the windows in an 
application. Every other view has an enclosure that specifies its place 
in the hierarchy. 

Windows are objects of class CWindow. Each window encloses one 
or more panes-the most important kind of views because all 
drawing takes place in them. Panes are objects of class CPane and 
each may enclose other panes. 

27-2 Symantec C++ User's Guide and Reference 



THINK Class Library + 

The THINK Class Library defines different kinds of panes for 
displaying various standard visual interface elements. Every pane has 
its own drawing environment (coordinate system, font, line width, 
and so on), so you can draw in a pane without being concerned 
about where it is on the screen. Because many objects that you want 
to display are bigger than can fit in a pane, the THINK Class Library 
has a CPanorama class that you can use to implement scrollable 
panes. Such panes have logical dimensions that exceed the physical 
size of the enclosures in which they are displayed. 

Figure 27-1 illustrates a typical visual hierarchy. The desktop 
encloses three different windows, each of which encloses at least 
one pane. Two of the panes, in turn, enclose additional panes. 

Pane C1 

Figure 27-1 Typical visual hierarchy 

Unlike the class hierarchy, the visual hierarchy is dynamic. The 
relationship of visible components changes as your program runs. 
For example, when you open a new document, you add another 
window to the desktop, and you add another set of panes to the 
new window. 

Chain of command 
The chain of command specifies those objects in an application that 
can handle certain commands and in what order. Because you are 
responsible for choosing this assignment of objects in an application, 
you also need to decide the level of abstraction at which to handle 
an action in the chain of command. A glossary of basic terminology 

Symantec C++ User's Guide and Reference 27-3 



27 • TCL and VA: Basic Concepts 

for this section is provided in Table 27-1. Note that some of 
definitions there are defined by terms that appear later in the table. 

Table 27-1 Basic terminology 

Application 

Bartender 

Bureaucrat 

Desktop 

Director 

Document 

Gopher 

Pane 

The application is the object at the end 
of the chain of command. It is the only 
bureaucrat without a supervisor. 

The bartender is the object that manages 
the menu bar, menus, and menu items. 

A bureaucrat is any object in the THINK 
Class Library that is able to respond to 
menu commands or keystrokes. A 
bureaucrat can either respond to a 
command or a keystroke, or it can pass 
the responsibility for doing so to its 
supervisor. 

The desktop is the object that manages 
window layering. It encloses all of the 
windows in an application and is the 
root of the visual hierarchy. 

A director is a bureaucrat that manages a 
specific window. To interact with any 
element within a window, the window 
must be supervised by a director. The 
supervisor of a director must be the 
application or another director. 

A document is a director that manages a 
window and an associated file. 

The gopher is the first bureaucrat that 
has an opportunity to handle a 
command. 

A pane is a view in which drawing takes 
place. Panes are enclosed by windows 
or other panes. 

27-4 Symantec C++ User's Guide and Reference 



THINK Class Library + 

Table 27-1 Basic terminology (Continued) 

Supervisor 

Switchboard 

Window 

A supervisor is a bureaucrat to which 
another bureaucrat passes commands or 
keystrokes that it cannot handle. 

The switchboard is the object that 
converts Macintosh events to THINK 
Class Library member function calls that 
affect either the visual hierarchy or the 
chain of command. Every program 
creates one instance of the class 
CSwitchboard. 

A window is an object that encapsulates 
the behavior of a Macintosh window. 
Windows enclose panes. 

Processing of commands. A bureaucrat can respond to either a 
command or a keystroke. When it does not know how to handle a 
particular command, it defers to its supervisor by calling the 
supervisor's DoComrnand function with that command as its 
argument. When a bureaucrat does not know how to handle a 
particular keystroke, it again defers to its supervisor by calling the 
supervisor's DoKeyDown command with that keystroke as its 
argument. The supervisor of a bureaucrat is itself a bureaucrat. 

A bureaucrat is an instance of a class derived from CBureaucrat. 
When a bureaucrat is constructed, its supervisor is specified as an 
argument to the CBureaucrat constructor. The default DoComrnand 
function, as implemented in class CBureaucrat, calls the DoComrnand 
function of its supervisor. Thus, a generic bureaucrat takes no 
responsibility for anything. To handle commands specific to an 
application, you must override the DoComrnand function in any 
derived class of CBureaucrat. 

Every TCL program has a unique application object, an instance of 
class CApplication. The application object is the only bureaucrat that 
does not have a supervisor. Every bureaucrat is either directly or 
indirectly supervised by the application object. 

Symantec C++ User's Guide and Reference 27-5 



27 • TCL and VA: Basic Concepts 

Views and the chain of command. As previously stated, the chain 
of command specifies those objects that handle specific actions. But 
how do events in the visual hierarchy get processed? TCL has a 
special class to deal with such situations. 

A bureaucrat that supervises a window is called a director. This kind 
of bureaucrat is important enough to merit a class, CDirector, derived 
from CBureaucrat. Directors handle communication between the 
visual hierarchy and the chain of command. Because a view is also a 
bureaucrat, the director bureaucrat can process events in the visual 
hierarchy. 

For example, when a window gets an Activate event, it calls the 
ActivateWind function of its supervisor, which is a director. This 
director can then take some action as a result of the window 
becoming active. 

Note 
The chain of command can contain more than one 
director-for example, 
... ~director~ director~ application. This 
type of chain can handle such cases as documents 
needing more than one window. The director 
highest in the chain is the "owner" of directors 
further down the chain. This nesting is determined 
when the object is created. 

The gopher and the chain of command. The first bureaucrat that 
has the chance to handle a command is called the gopher. You are 
responsible for appointing the bureaucrats that act as gophers in 
your application. The identity of the gopher is dynamic, changing 
during execution in response to events. 

Usually, the gopher is a pane in the active window. For example, a 
dialog text pane must become the gopher in order to receive the 
commands generated by keystrokes and by menu choices. Objects 
further up in the visual hierarchy are seldom gophers. Windows are 
not made the gopher by THINK Class Library objects, and you are 
unlikely to find a reason to do so yourself. The application object is 
made the gopher when no documents or windows are open, or 
when the application is in the background. 

27-6 Symantec C++ User's Guide and Reference 



THINK Class Library + 

If the gopher cannot handle a command, it passes the command on 
to its supervisor. If its supervisor can handle the command, it returns; 
otherwise it defers to its own supervisor. Eventually, some 
bureaucrat takes action-or each one in the chain defers to its 
supervisor until ultimately the command reaches the application 
object. If the application object doesn't handle the command, no 
object does, and the command is ignored. 

In summary, the chain of command is the list of bureaucrats starting 
with the gopher and ending with the application object. 

A sample interaction between TCL structures 
To illustrate the interaction between the chain of comilland and 
visual hierarchy, this section presents two sample scenarios, each 
based on a typical application-a snapshot of the initial setup of the 
chain of command is shown in Figure 27-2. A typical flow of control 
between the chain of command and the visual hierarchy based on 
this setup is shown in Figure 27-3. 

The Chain of Command 

~ 
"' "'C 
0 
::I 
0.. 

8' 
n 
0 
3 
3 
II> 
::I 
0.. 

Application 

Document 

Supervisor 

Supervisor 

Supervisor 

Window 

Pane 1 

The Gopher 

Pane 2 

Supervisor 

Button 

Pane 3 

(Arrows Point to Supervisor) 

Figure 27-2 Initial setup of a chain of command 

Symantec C++ User's Guide and Reference 27-7 



27 • TCL and VA: Basic Concepts 

In the first scenario, Pane 3 is a button within Pane 1. What happens 
when it is pressed? In the second scenario, a command is chosen 
from the menu bar with Pane 2 as the gopher. Pane 2's supervisor is 
a document, which also supervises the other two panes (Panes 1 and 
3) and the window. A document is a director that manages the 
communication between windows and files. 

Switchboard 

The Chain of Command 

;:o 

m 
""O 
0 
:::; 
c.. 
0 
bl 
3 
3 
Po> 
:::; 
c.. 

Application 

Document 

Supervisor 

Supervisor 

Supervisor 

Window 

Pane 1 

The Gopher 

Pane 2 

The Visual Hierarchy 

r-
0 
(") 

Supervisor ft 

Button 

Pane 3 

< ;:;;· 
c 
~ 
('!) 

< 
('!) 

~ 

(Arrows Point to Supervisor) 

Figure 27-3 Gopher, chain of command (black lines), visual hierarchy 
(gray lines), and typical flow of control 

Scenario 1 
A button, Pane 3, is pressed. In this case, because the event is a 
button press, the switchboard directs this event to the visual 
hierarchy. Visual events work their way down the hierarchy, starting 
from the desktop view, following that view's pointer relationships 
until the switchboard determines in which view the mouse was 
positioned. In this case, it determines that the mouse click occurred 
in Pane 3 and calls that pane's DoClick function. Pane 3 responds 
to the mouse click by calling its supervisor's (the document's) 
DoCornmand function. Note that neither Pane 2 nor Pane 1 ever 
responds to this command. 

27-8 Symantec C++ User's Guide and Reference 



THINK Class Library + 

If the document cannot handle the command, it passes the 
command to the application. Thus, the visual hierarchy is used to 
locate visual events, such as mouse clicks, and the chain of 
command is used to respond to the commands associated with these 
events. 

Scenario 2 
Pane 2 is the gopher when a command is chosen from the menu bar. 
In this case, because the event is a command, the switchboard 
directs the request to the chain of command. Menu commands go 
through the gopher and up the chain of command. Thus, if Pane 2 
cannot handle the command, it passes the command to its 
supervisor, the document. 

In Figure 27-3, the enclosure relationships of the visual hierarchy are 
drawn in gray; the supervisory relationships are drawn in black. 
Notice that the chain of command and the visual hierarchy overlap-­
the panes and the window (located in the visual hierarchy) have the 
document (located in the chain of command) as their supervisor. 
Nevertheless, the visual hierarchy and chain of command are 
distinct. 

Creating a THINK Class Library application 
To create an application that uses the THINK Class Library, you 
derive classes from existing classes that the library provides. At a 
minimum, you need to derive classes from CApplication, 
CDocument, and CPane. The application classes you choose 
determine the overall structure of the application. The document 
class implements file handling for the application, and the pane 
classes respond to user interaction and implement how the 
information in files is shown in the document windows. 

In addition, you need to define both a menu structure to contain the 
commands that the application implements and the linkage between 
menu commands and actions (that is, the action is performed in 
response to a specific command). Finally, virtually all Macintosh 
applications make use of resources, and a TCL-based application is 
no exception. In fact, a TCL application requires standard resources 
to function. 

Symantec C++ User's Guide and Reference 27-9 



27 • TCL and VA: Basic Concepts 

These resources are found in the file TCL Resources. You must 
add these resources to your project, either by copying them into the 
. rsrc file that contains additional application-specific resources of 
your own, or by creating a project using one of the VA Application 
project models. For a more detailed discussion concerning the 
creation of a TCL application, see the section "Writing an Application 
with the TCL," in Chapter 28, "Programming with the THINK Class 
Library." 

Visual Architect 
Visual Architect is a powerful development tool with which you can 
rapidly create applications that are constructed from the THINK Class 
Library. Visual Architect streamlines the process of creating, editing, 
and connecting the classes, menus, commands, and supporting 
resources needed by an application. 

The role of Visual Architect 
Visual Architect automatically generates C++ source code files and 
lets you maintain relationships between the TCL resources that make 
up an application. The source code files contain definitions and 
declarations for the classes created for an application. The resources 
contain information needed to initialize window and pane classes 
according to your specification, as well as the menus and their 
associated commands. When you use the Symantec Project Manager 
to start a new Visual Architect project, it automatically creates a file 
called Visual Architect. rsrc. Visual Architect works with this 
resource file. 

The source code files are standard C++ . cp and . h files, and as 
such can be opened and edited using the Symantec Project Manager. 
The resources typically are edited only with Visual Architect; 
however, you can add resources to existing TCL resources using a 
standard resource editor such as ResEdit. 

Although it can be used on its own, Visual Architect is designed to 
work with Symantec Project Manager. Because Visual Architect is 
tightly integrated with the TCL and the Symantec Project Manager, 
you can develop an application's user interface at the same time as 
you develop its underlying code. The Symantec Project Manager 
compiles files generated by Visual Architect even when Visual 
Architect is open. 

27-10 Symantec C++ User's Guide and Reference 



Visual Architect + 

Visual Architect uses special files called macros to generate source 
code. A macro file is an ordinary text file that contains C++ source 
and macro expressions, which Visual Architect interprets to produce 
one or more source code files as output. The macro files supplied 
with Visual Architect can generate the source code for a complete 
THINK Class Library application. Because macro files are ordinary 
text files, you can, if necessary, modify them to suit your 
programming needs or extend them with new capabilities. 

Note 
A Visual Architect project also contains another 
resource file, Project Resources. rsrc. This 
file initially contains resources needed by the 
THINK Class Library, but not used by Visual 
Architect. You can add more resources to either file 
using Symantec Rez or ResEdit. 

Starting Visual Architect 
You begin a Visual Architect application from the Symantec Project 
Manager by choosing a VA Application project model. (See "Opening 
projects, Editor windows, and files," in Chapter 16, "The File Menu.") 
If you have created your application with one of these project 
models, a file named Visual Architect. rsrc is listed in the 
Project window. 

To launch Visual Architect from the Project window, double-dick the 
Visual Architect. rsrc icon. The View List window opens, 
displaying a list of the views defined in the Visual 
Arc hit ec t . rs re file. The window initially contains a view called 
Main. This view is the graphical equivalent of the familiar "Hello 
World." You can generate all files and run the project without 
changing the Visual Architect. rsrc file. 

Symantec C++ User's Guide and Reference 27-11 



27 • TCL and VA: Basic Concepts 

Creating and modifying classes 
One of Visual Architect's most powerful features is how it facilitates 
the implementation of views and the classes constructed from these 
views with the help of an interactive graphical environment. Visual 
Architect automatically derives classes from views using the THINK 
Class Library, as well as defining the classes, data members, and 
member functions. Visual Architect also generates source code files 
that contain these data and function members; thus, you do not need 
to determine the class definitions that are required for a specific 
application. Visual Architect adds these source files to a Symantec 
C++ project. 

Typically, the classes you construct fall into one of two categories: 

• VA views (director or document classes) 
• Panes 

You can add, delete, and modify derived classes in either of the 
categories. If a derived class is currently in use, any change to that 
class necessitates a corresponding change in all VA views containing 
objects of that class. Visual Architect makes these changes 
automatically. Visual Architect allows you to change the attributes of 
a VA view through dialog boxes, instead of the more time­
consuming method of writing the code by hand. 

Because the implementation of a specific VA view is based on a 
particular THINK Class Library class, the classes you create in Visual 
Architect must be derived from the set of TCL base classes that Visual 
Architect recognizes (or from a class derived from one of these). 

Working with Visual Architect views 
With Visual Architect, you have predefined views available for 
implementing common graphical representations, such as document 
windows (which are used to view the contents of a file), dialog 
boxes, floating windows, splash screens, subviews, floating tool 
palettes, and basic windows. 

27-12 Symantec C++ User's Guide and Reference 



Note 

Visual Architect + 

A view in the THINK Class Library is an object 
whose class is derived from CView. In contrast, a 
"view" in Visual Architect refers to the windows, 
dialogs, tear-off menus, floating windows, and 
modular "subviews" that contribute to the interface 
you are designing. In other words, all Visual 
Architect views are THINK Class Library views, but 
the converse is not true. 

All VA views, except for subviews, consist of at least two objects: a 
window and a director. (In the case of subviews, only a panorama is 
involved.) The window object is responsible for display; it contains 
the panes the user sees. The director object is responsible for 
control; it supervises the window and receives all commands 
generated by or for that window. 

The director serves as the intermediary between objects inside and 
outside the window, and often helps coordinate the actions of 
multiple objects within the window. For example, when the value of 
a control changes, the director receives a ProviderChanged call 
with a control Val ueChanged reason code. If another control 
dims as a result of this change, the director-derived class is 
responsible for carrying out the change. 

When you add a VA view to a project, Visual Architect generates the 
director class necessary for proper functioning of the view, as well as 
the associated resources. The default name given to the director class 
is Cviewname, where viewname is the name you give the view. 

Note 
You can change the class name of a view's director 
class in the Classes dialog box, but you cannot 
delete the class or change the base class. 

The most important view defined by Visual Architect is the Main 
Window view. Main Window views typically are displayed in an 
application when the user chooses New or Open from the File 
menu. They display the contents of an associated file, serving as the 
focus of attention for a user. 

Symantec C++ User's Guide an~ Reference 27-13 



27 • TCL and VA: Basic Concepts 

Adding graphical elements 
Visual Architect's Tool palette (Figure 27-4) contains tools for quickly 
creating the different interface elements displayed in a view. Each 
interface element is a pane object. You can add pane elements­
buttons, check boxes, static and editable text fields, scrollable text 
fields, and pictures as well as more complex and user-definable 
elements. Visual Architect then generates the necessary classes and 
supporting resources. 

Dialog Text 

Check Box 

Select 
Icon 

Button 
Picture 

Icon Button 

Panorama 

Straight Line ___ ___,_ 
Subview 

Unconstrained Line 
Rounded Rectangle 

Polygon 

Oval 

Figure 27-4 Tool palette 

For a detailed discussion on each of the tools, see Chapter 34, 
"Visual Architect Tools Menu." 

27-14 Symantec C++ User's Guide and Reference 



Visual Architect + 

Changing data member values 
You can easily change data member values in each pane object you 
create with the Tool palette. For example, if you are constrncting a 
dialog box and want to initialize its OK button, you access the 
relevant data members from the button's CButton, CControl, CPane, 
and CView classes. Clicking a right-pointing triangle to the left of a 
class name opens a subarea that contains the editable subset of the 
data members for that class. 

In Figure 27-5, the left window shows the dialog box MyDialog 
under constrnction. The right window shows access to data 
members for classes in the OK button's class hierarchy. Changes 
made here are reflected immediately in the target pane. 

MyOialog Butn4 

Identifier: J 

Enter some teHt: ._I ___ __. 

-----
Left: J._~_s __ --1 

Width: ._J 5_9 __ --1 

Top: 

Height: ._J 2_0 __ --1 

t OK D CButton 

Command: l.__c...;m...;d..;.O_K ____ T__.I 

CContro1 

contrlTitle: 
OK 

co ntrlVal ue : JO 
~=====::! 

contrlMin: JO 
~=====::! 

contrlMax: ._J 1 ____ _, 

!> CPane 

Figure 27-5 Accessing the OK button's class hierarchy 

Symantec C++ User's Guide and Reference 2 7-15 



27 • TCL and VA: Basic Concepts 

Defining and associating commands with views and menus 
Visual Architect lets you assemble menus and link menu commands 
with actions. The interface for constructing menus is similar to that 
of other resource editors such as ResEdit. Visual Architect, however, 
shields you from many of the details required to construct menus. 
Linking a menu command with an action, for example, is as simple 
as selecting the action from a list in the Menu Items dialog box (see 
Figure 27-6). 

File 

New 
Open ... 

Close 

Quit 

..... 
cmdCut 
cmdDoubleSpace 
cmdEHtend 
cmdltalic 
cmdJustify 
cmdNew 
cmdNull 
cmdOK 
cmdOpen 
cmdOutline 
cmdPageSetup 
cmdPaste 
cmdPlain 
cmdPrint 
cmdQuit 
cmdReuert 

( ommand: ./ c mdSaue 
cmdSaueAs 
cmdSelectAll 
cmdShadow 
cmdSingleSpace 
cmdToggleClip 
cmdUnderline 
cmdUndo 

No 
lcor1 Mark: I None ....-1 

(Cancel) 

OK 

Figure 27-6 Linking commands via the Menu Items dialog box 

To process various user actions-for example, mouse clicks or 
keyboard events-the THINK Class Library predefines many 
commonly occurring actions such as closing a window, saving a file, 
quitting an application, and changing text attributes. With these 
actions predefined, you can focus on creating the commands that are 
unique to your application. 

27-76 Symantec C++ User's Guide and Reference 



Visual Architect + 

When you want to implement a predefined action or a new action 
using Visual Architect, you need to indicate the class or classes that 
will handle the action. If the action of a command is to open a view, 
you specify that view and Visual Architect generates the necessary 
code. Otherwise, you indicate those classes that need to respond to 
the action and Visual Architect then generates an empty member 
function. Later, you can insert code in the member function that 
handles the action. 

For example, Figure 27-7 illustrates how you would add a handler 
for the command cmdOpenMyDialog to class CMain. When 
cmdOpenMyDialog is handled by CMain, CMain opens the view 
defined by the class CMyDialog. Notice some of the predefined 
commands available in the scrolling list. Visual Architect also lets you 
associate commands with other elements that send them, such as 
buttons and ArrayPanes. 

Commands 

cmdCut 
cmdDoubleSpace 
cmdEHtend 
cmdltalic 
cmdJustify 
cmdNew 
cmdNull 

+ I cmdOpenMyDialog Ii N.::;:::,:_s_1_2 _____________ ...., 
In Class: l CMain •I 
Do: l Open •I 

I Uiew: None 

cmdO 
cmdOpe 

CMain 
CMyDialog 

cmdOpenMyOialog m 
( Cancel) 

OK 

Figure 27-7 Adding a command using the Commands dialog box 

Note that the chain of command affects the use of Visual Architect. 
For example, if you specify that a button should send a particular 
command and that command cannot be handled by any object in the 
button's chain of command, then the button command does not get 
executed. No object can receive its message. Thus, knowing what 
objects are in an object's chain of command can help prevent you 
from introducing bugs into your code. 

Symantec C++ User's Guide and Reference 27-17 



27 • TCL and VA: Basic Concepts 

Trying out an application interface 
With Visual Architect, you can see how the interface works before 
you generate source code, compile it, and run the application. When 
you try out a view, it is displayed exactly as it would be in a running 
application. Further, you can interact with the view-for example, by 
scrolling, resizing, and repositioning it. All the view's elements, such 
as pop-up and custom buttons, are active as well. 

Trying o~t views lets you glimpse the final product of your work 
quickly and conveniently. AB a result, the design process can 
proceed more rapidly. 

Modifying the code generated by Visual Architect 
Programming is never accomplished in one step. Typically, you 
design some user interface elements in Visual Architect, hand code 
in the Symantec Project Manager, compile, run, and inspect your 
project. At that point, you would return to Visual-Architect to make 
changes and start the cycle again. 

Visual Architect does not force you to live with the code it generates 
"as is." Much of the code it generates is well-commented C++ 
skeleton code. Visual Architect will not, in subsequent 
code-generation steps, overwrite changes you make to your code by 
hand. 

Visual Architect facilitates and protects hand coding with an 
architecture based on split-level classes. Most classes defined in 
Visual Architect are implemented as two classes: a lower-level class, 
reserved for Visual Architect, and an upper-level class, reserved for 
custom programming. The first time Visual Architect generates 
source code for a graphical element, it generates code for both 
classes in separate files. 

The lower-level class contains code that Visual Architect generates 
from scratch each time the element it defines is modified. Most of 
Visual Architect's generated code is shown here. You should not 
modify this code. 

The upper-level class is derived from the lower-level class. To 
customize the skeleton code, you add member functions, additional 
data members, and so forth to this class. Member functions that you 
manually add to the upper-level class often override or expand on 
the corresponding lower-level class member functions. Visual 
Architect writes to the upper-level class file only once, when it 

27-18 Symantec C++ User's Guide and Reference 



Visual Architect + 

generates the class files after you first define the class. After that, you 
are responsible for maintaining the upper-level class file. 

Visual Architect employs a specific naming convention to distinguish 
levels. If you create a class named MyDialog in Visual Architect, 
Visual Architect creates four files: x_MyDialog. cp, 
MyDialog. cp, x_MyDialog. h, and MyDialog. h. Files with the 
x_ prefix contain the lower-level class; those without the prefix 
contain the upper-level class. 

Symantec C++ User's Guide and Reference 27-19 



27 TCL and VA: Basic Concepts • 

27-20 Symantec C++ User's Guide and Reference 



Programming with the 
THINK Class Library+ 

28 
~is chapter explores aspects of the THINK Class Library (TCL) that 

you encounter in the course of building an application. No topic is 
covered exhaustively here; the class descriptions in the online 
documentation provide the definitive reference. Nevertheless, the 
discussion in this chapter is sufficiently detailed to give you a sound 
understanding of how the library works and of how you can use it to 
build a robust application. The chapter assumes that you have read 
Chapter 27, "TCL and VA: Basic Concepts," and that you have 
worked through the tutorials. 

Introduction 
This chapter discusses the essential features of the THINK Class 
Library and covers some of the general topics in application 
building. After you have read this chapter, you should try running 
and modifying the demonstration applications. 

Naming Conventions 
The THINK Class Library adheres to the following naming 
conventions: 

Table 28-1 Naming conventions 

Name 
CName 

aName 

cName 

£Name 

gName 

Description 
Name of a class 

Formal parameter 

Static data member 

Flag, usually a Boolean data member 

Global variable 

Symantec C++ User's Guide and Reference 28-1 



28 • Programming with the THINK Class Library 

Table 28-1 Naming conventions (Continued) 

Name 
kName 

itsName 

theName 

mac Name 

Description 
Constant, defined with #define, enum, or const 

Data member 

Variable, usually a local variable or data member; 
sometimes used for formal parameters 

Macintosh data structure, used either as a data 
member or as a local variable 

You should give names to classes names that begin with letters other 
than uppercase "C". Adhering to this practice avoids conflicts with 
names of classes in future versions of the THINK Class Library. 

Previous versions of the IBINK Class Library were designed to be 
implemented in both Symantec C++ and THINK C with Object 
Extensions. IBINK Class Library classes still contain explicit 
initialization and destruction member functions to maintain 
backward compatibility with IBINK C with Object Extensions. 

The old initialization function for a class CName is denoted by 
IName-, the old destruction member function is always named 
Dispose. These member functions are now anachronisms, 
superseded by genuine C++ constructors and destructors. Their 
continued presence guarantees that existing code written for 
earlier versions of the THINK Class Library does not require 
extensive rewriting. 

Writing an Application with the TCL 
To create an application with the THINK Class Library, you derive 
classes from existing classes. The classes you need to derive from are 
CApplication, CDocument, and various classes derived from CPane. 
Your application class determines the overall structure of the 
application. The document class implements file handling for the 
application, and the pane classes implement the way in which 
information in files is displayed in document windows. 

28-2 Symantec C++ User's Guide and Reference 



Note 

Writing an Application with the TCL + 

Many THINK Class Library pane classes already 
supply the functionality needed for an application. 
Typically, you derive new pane classes to customize 
or add to the behavior of existing classes. You can 
also derive pane classes that implement completely 
original user interfaces. 

In addition to the derived classes, you also must create a resource 
file for a project. This resource file is intended to contain the 
standard THINK Class Library .resources as well as any resources you 
add to the project. The standard resources are located in the file TCL 
Resources. When you use the THINK Class Library, make a copy 
of this resource file and name it project. rsrc, where project is the 
name of your project. Then add your own resources to the file. 

Note 
For more information about resource files and the 
THINK Class Library, see the section "THINK Class 
Library Resources," later in this chapter. 

Creating the application class 
For standard Macintosh applications, you must derive an application 
class from CApplication. Your class must define a constructor and 
override the following member functions: 

SetUpFileParameters 
CreateDocument 
OpenDocument 
DoCommand 

Your application class constructor should initialize any new data 
members declared by your derived class. It must call CApplication's 
constructor with the appropriate arguments. Among the many 
initializations it performs, CApplication's constructor sets the global 
variable gApplication to point to your unique application object. 

SetUpFileParameters sets up the standard file parameters that 
specify the files that will be visible in the standard File Open dialog 
box when the user chooses Open from the File menu. 

Symantec C++ User's Guide and Reference 28-3 



28 • Programming with the THINK Class Library 

CreateDocument creates a new, untitled document when you 
choose New from the File menu . You derive the class of the 
document it creates from CDocument. After creating the document, 
your CreateDocument function calls the document's NewFile 
function. 

OpenDocument is similar to CreateDocument. Instead of calling 
the newly created document's NewFile function, your 
OpenDocument calls its OpenFile function. The OpenDocument 
function takes one parameter, an SFReply record, which contains 
information about the file the user has chosen to open. 

DoCommand handles all application-specific commands. Typically, 
most commands specific to your program are best handled at the 
document level. Some commands, such as New, Open, and Quit, 
are already handled by the default application class, CApplication. 

Creating the document class 
Applications draw and display data in documents. All documents 
have associated windows. Most documents also have an associated 
file. Neither the window nor the file is created automatically. 

The document class must derive from CDocument. It must define a 
constructor and override the following member functions: 

Do Command 
NewFile 
OpenFile 
Do Save 
DoSaveAs 
Revert 

If your document class defines new data members, its constructor 
must initialize them. Make sure that your constructor calls the 
CDocument constructor. The supervisor of a document is always 
gApplication. 

If your document allocates memory, you should also define a 
destructor to deallocate it. 

28-4 Symantec C++ User's Guide and Reference 



Note 

Writing an Application with the TCL + 

You delete the data members itsWindow or 
itsFile. The virtual destructor -CDocument 
does that for you. 

The DoCommand functions of your document classes do most of the 
work in an application. When a window is active, one of its panes is 
the gopher, and the pane's supervisor is the same as the window's­
namely, the document. Thus, the switchboard calls the pane's 
DoCommand function first. But typically, a pane passes a direct 
command to its supervisor. Your document class should handle all 
the commands it knows about, and call CDocument's DoCommand 
when it cannot handle the commands. CDocument's DoCommand 
function will process all the commands it understands and will pass 
any commands that it does not understand to the application object's 
DoCommand function. 

Your document classes's NewFile function is called when the user 
chooses New from the File menu. This function creates a window 
and attaches its panes. The NewFile function does not have to 
create a file until the user tries to save the document. 

Your document's OpenFile function is called when the user 
chooses Open from the File menu. The OpenFile function has 
one argument: a pointer to a Macintosh SFReply record. Calling the 
OpenFile function confirms that the SFReply record is properly 
filled in. Your OpenFile function needs to create a file object 
(usually of class CDataFile). You can call any one of several 
CDataFile reading functions to obtain the file's contents. Your 
OpenF i 1 e function also needs to create a window and its attached 
panes to display the contents of the file, just as your NewFile 
function does. 

When the user chooses Save from the File menu, the document's 
DoSave function is called. The DoSave function should write the 
contents of its file to disk. The file object is stored in the data 
member itsFile. 

When the user chooses Save As from the File menu, the document's 
DoSaveAs function is called. This function takes an SFReply 
record as argument, which is guaranteed to be properly filled in. 
Your document class must override this function to write its data to a 
file. 

Symantec C++ User's Guide and Reference 28-5 



28 • Programming with the THINK Class Library 

If the application supports the Revert command, you should 
implement it in the DoRevert function. Your implementation might 
do something like closing a file without saving, then opening it 
again. 

Make sure that your DoConunand function itself, or one of the 
functions it calls, sets the flag data member dirty to TRUE when 
the document is changed. Your document class's DoSave, 
DoSaveAs, and DoRevert functions should clear the dirty flag 
after successfully performing their roles. 

Creating the pane classes 
Once you have created your windows and opened files, you need to 
display them somewhere. In the TCL, you do not write directly onto 
the window. Instead, you create pane classes-classes derived, not 
necessarily directly, from CPane. 

A pane class should define a constructor and override these member 
functions: 

Draw 
DoClick 

If a pane class defines new data members, its constructor should 
initialize them. Your constructor should also call the constructor of 
its base class. The supervisor of a pane should be either the pane 
that encloses it or the director to which its window belongs. 

The pane constructor sets the pane's location in its enclosure and its 
characteristics. If you want the pane to receive clicks, be sure to call 
SetWantsClicks (TRUE); otherwise, mouse clicks in the pane are 
ignored. 

If your pane allocates memory, you must also define a destructor to 
deallocate it. 

The Draw function always draws its contents in a pane. You can 
assume that the port, clip region, and coordinate systems are set up 
correctly when Draw is called. See the section "Drawing in a pane" 
later in this chapter to learn about the drawing environment. 

28-6 Symantec C++ User's Guide and Reference 



Working with Panes + 

When you click a pane, its DoClick function is called. DoClick 
can either perform actions (such as drawing in a pane) or initiate 
processes (such as dragging an object). Some panes, such as the 
dialog text pane implemented by CEditText, have built-in DoClick 
functions that may already implement the behavior needed by your 
pane class. 

If you want a mouse action to be undoable, you need to create a 
derived class of CMouseTask and call its TrackMouse function. The 
section "Undoing and Mouse Tracking" later in this chapter discusses 
undoable mouse actions in detail. 

Working with Panes 
In the TCL, all drawing takes place in a pane. A pane is a rectangular 
region of the screen completely enclosed by a window. A window 
may have several panes, and each pane may have several subpanes. 
A pane can receive mouse clicks and events that affect its display 
such as Activate and Deactivate events. 

Every pane has an enclosure that completely surrounds the pane. A 
pane also has a supervisor, which is an object in the chain of 
command. A pane's enclosure and supervisor can be the same 
object, particularly if the pane belongs to another pane. Typically, 
the supervisor is the director that owns the window or the pane. 

Every pane has its own drawing environment. The rectangle that 
defines the edges of a pane is the frame. The frame defines a local 
coordinate system for the pane. In most cases, the upper-left corner 
of the pane is the point (0, 0). 

Windows and panes 
Every pane is an object of some class derived from the abstract class 
CView, which defines the behavior of visual entities. CView is the 
base class of CPane. A window is a view, but not a pane; likewise, 
the global desktop object, gDesktop, is a view but not a pane. All 
other visual entities are panes; they include such objects as controls, 
borders, pictures, and size boxes. 

Symantec C++ User's Guide and Reference 28-7 



28 • Programming with the THINK Class Library 

Eve1y view has a single enclosure. For example, in the window in 
Figure 28-1, there are eight views and seven panes (the window is 
not a pane): 

Untitled 

(Picture-----+--

CCheckBox ---+D Shrink to Fit 

CEditText L_....:.2~s1!..'.K~_....J. _________ .L!;;;~--- CSizeBox 

Figure 28-1 Panes in a window 

The size box, the check box, the text, and the scroll pane are 
enclosed by the window. The two scroll bars belong to the scroll 
pane. The picture is enclosed by the scroll pane. 

Coordinate systems 
When you're working with panes in the THINK Class Library, you 
need to know about four coordinate systems: 

• Global 
• Window 
• Frame 
• QuickDraw 

The desktop, some of the internal member functions, and some of 
the Toolbox routines use global coordinates. In this coordinate 
system, all units are in pixels, and (0, 0) is at the top-left corner of 
the main screen. You rarely use global coordinates in the THINK 
Class Library. 

28-8 Symantec C++ User's Guide and Reference 



Working with Panes + 

With window coordinates, the top-left corner of the window's 
content region is also (0, O), and each unit is a pixel. You will need 
the window coordinates to set the position of a pane whose 
enclosure is a window. Window coordinates are also useful as a 
common point of reference when there are two panes in the same 
window. 

Frame coordinates provide a local coordinate system for a pane. 
Units in frame coordinates are in pixels, and the point (0, O) is 
usually the upper-left corner of the pane. The coordinate system 
does not change if the pane moves within its enclosure; the upper­
left corner is still (0, 0). The only time the origin point changes is 
when a panorama, which is a special kind of pane, is scrollable. For 
each pane, you can choose at run-time a coordinate system, long 
(32-bit) or short (16-bit), by calling the inherited CView function 
UseLongCoordinates(fUseLong). 

All drawing and mouse tracking is done in QuickDraw coordinates. 
QuickDraw is the coordinate system that the Macintosh Toolbox 
uses for its drawing operations. QuickDraw coordinates are valid 
only following a call to Prepare. The relationship between 
QuickDraw coordinates and any of the other coordinate systems 
changes, depending on whether a pane is using long-frame or short­
frame coordinates. 

Short coordinates map directly to QuickDraw coordinates. Each 
element in a short coordinate uses 16-bit values, which limit a pane 
using short coordinates to the rectangle 
(-32768, -32768, 32767, 32767). Long coordinates layer a 32-bit 
coordinate system on top of QuickDraw 16-bit coordinates. The long 
coordinate system lets you use a much larger coordinate area for a 
pane. Because all drawing takes place in QuickDraw coordinates, 
you have to map the long coordinates to QuickDraw coordinates 
when you draw in a pane. 

The CPane class defines several functions that transform coordinates 
from one system to another. 

Symantec C++ User's Guide and Reference 28-9 



28 • Programming with the THINK Class Library 

Drawing in a pane 
Every pane has its own drawing environment. The rectangle that 
describes the edges of a pane is the pane's frame. The frame defines 
a local coordinate system for the pane. 

To draw in a pane, typically you override its Draw function. The 
THINK Class Library calls the pane's Draw function whenever the 
pane needs to be updated. 

Note 
Update events are given low priority by 
WaitNextEvent (and GetNextEvent). If you 
want to redraw a pane immediately, you can call 
your own Refresh function to force an Update 
event. 

To draw directly in a pane as a result of a mouse click, override the 
pane's DoClick function and do the drawing in your DoClick 
function. 

Use the standard QuickDraw routines to draw. The pane's Prepare 
function sets up the QuickDraw port. If the pane uses short 
coordinates, the coordinate system is set up correctly. If your pane 
uses long coordinates, you need to transform the frame coordinates 
to QuickDraw coordinates before drawing. You can also use the 
CPane functions FrameToQD and FrameToQDR to convert frame 
points and rectangles to QuickDraw points and rectangles. 

The THINK Class Library uses the types LongRect and LongPt for 
both long and short coordinates: Most of the descendants of CView 
that work with points and rectangles use these types. 

28-10 Symantec C++ User's Guide and Reference 



Working with Panes + 

Note 
If you have worked with earlier versions of the TCL, 
this uniform use of LongRect and LongPt is the 
biggest and most noticeable change because it 
necessitates that you make some changes to your 
programs. 

These types are defined as follows in LongCoordinates. h: 

typedef struct LongPt 
{ 

long v, h; 
LongPt; 

typedef struct LongRect 
{ 

long top, left, bottom, right; 

LongRect; 

If the pane uses short coordinates, the frame coordinates and the 
QuickDraw coordinates are identical, and the values stored in a 
LongRect or in a LongPt will already be in QuickDraw 
coordinates. To use LongRect and LongPt with QuickDraw 
routines, however, you need to convert those structures to the 
QuickDraw types Rect and Point. The THINK Class Library 
provides several utility routines to perform these conversions. For a 
complete list, see the online THINK Reference. 

Symantec C++ User's Guide and Reference 28-11 



28 • Programming with the THINK Class Library 

Properties of panes 
When a pane moves or changes size, all of the panes that it ·encloses 
change as well. The way that a pane changes depends on its sizing 
characteristics. When you create a pane, you specify its horizontal 
and vertical sizing characteristics. 

The horizontal sizing characteristics table specifies how the pane's 
left and right edges change. 

Table 28-2 Horizontal sizing characteristics 

Horizontal sizing 
sizFIXEDLEFT 

sizFIXEDRIGHT 

sizFIXEDSTICKY 

sizELASTIC 

Meaning 
The left edge of the pane is always the same 
number of pixels from the left edge of the 
enclosing pane as it was when originally 
placed. 

The right edge of the pane is always the 
same number of pixels from the right edge 
of the enclosing pane as it was when 
originally placed. 

The left and right edges are anchored to 
their original locations in the enclosing pane. 
If the enclosure scrolls horizontally, the pane 
scrolls with it. 

The width of the pane grows or shrinks by 
the same amount as the width of the 
enclosing pane. 

28-12 Symantec C++ User's Guide and Reference 



Working with Panes + 

The vertical sizing characteristics table specifies how the pane's top 
and bottom edges change. 

Table 28-3 Vertical sizing characteristics 

Vertical sizing Meaning 
sizFIXEDTOP The top edge of the pane is always the same 

number of pixels from the top edge of the 
enclosing pane as it was when originally 
placed. 

sizFIXEDBOTTOM The bottom edge of the pane is always the 
same number of pixels from the bottom edge 
of the enclosing pane as it was when 
originally placed. 

sizFIXEDSTICKY The top and bottom edges are anchored to 
their original locations in the enclosing pane. 
If the enclosure scrolls vertically, the pane 
scrolls with it. 

sizELASTIC The height of the pane grows or shrinks by 
the same amount as the height of the 
enclosing pane. 

Following are a couple of examples. A vertical scroll bar in a 
window has the horizontal characteristic sizFIXEDRIGHT, so that it 
has a fixed horizontal length and remains anchored to the right edge 
of the window, Vertically, it changes with the height of the window 
because it has the characteristic sizELASTIC. A status box in the 
lower-lef): corner of a window has the horizontal characteristic 
sizFIXEDLEFT and the vertical characteristic sizFIXEDBOTTOM. 
As a result, it has a constant size and remains anchored to the lower­
left corner of the window. 

In Figure 28-2, the box with the thick outline represents the window. 
It contains a main pane, which takes up most of the window, and 
several other panes. The two panes that hold the scroll bars are fixed 
to the edges of the window. When the window is resized, each 
grows or shrinks in one dimension by the same amount as the 
window. The panes that hold the grow box and the status box are 
anchored to the bottom corners of the window. 

Symantec C++ User's Guide and Reference· 28-13 



28 Programming with the THINK Class Library • 

H: sizELASTIC 
V: sizELASTIC 

H: sizFIXEDLEFT 
V: sizFIXEDBOTT OM 

The square pane in the upper-left portion of the main pane is always 
present, regardless of how the window changes. Its dimensions do 
not change automatically. 

J l 

I 
H: sizELASTIC 

H: sizFIXEDSTICKY 
V: sizFIXEDSTICKY 

H: sizFIXEDRIGHT 
V: sizELASTIC 

i 
V: sizFIXEDBOTTOM 

H: sizFIXEDRIGHT 
V: sizFIXEDBOTTOM 

Figure 28-2 Horizontal and vertical sizing 

Panoramas 
Almost everything you want to display is bigger than a pane. 
Graphics and text, for instance, frequently take up more room than a 
pane contains. The THINK Class Library provides a panorama class, 
CPanorama, that lets you display varying portions of a large graphic 
in a pane. 

28-14 Symantec C++ User's Guide and Reference 



Working with Panes + 

For example, imagine that the only part of the sailfish in Figure 28-3 
that you can see is the portion inside the frame. Currently, the frame 
displays the sailfish's tail; but you could also move, or scroll, the 
frame to include other parts, such as the head. 

Bounds 
(0,0) 

(400, 380) 

Figure 28-3 Graphic panorama and its scales 

The rectangle that encloses the entire panorama is called the bounds 
rectangle. It defines the size and coordinate system of the panorama. 
Usually, the upper-left corner of the bounds rectangle is the point 
(O, O), and its coordinate system uses pixels as units. 

The coordinate system of the bounds rectangle specifies how the 
frame moves over the panorama as you scroll. Usually, the frame 
moves one pixel at a time. In some applications, though, scrolling by 
a different measure is more natural. For instance, in a text editor, 
scrolling vertically one line at a time probably makes the most sense; 
in a spreadsheet, rows provide the most natural unit of vertical 
scrolling. 

You can specify a scale to indicate how many pixels make up a 
single panorama unit. You can set one scale for the horizontal units 
and another scale for vertical units. In a graphics application, each 
unit might be one pixel. In a spreadsheet, a vertical unit might be 
12 pixels, and a horizontal unit might be 60 pixels. 

Symantec C++ User's Guide and Reference 28-15 



28 • Programming with the THINK Class Library 

The units of the panorama bounds rectangle are for scrolling only. 
Drawing uses the frame coordinates, which are always single-pixel 
units. 

There are two ways to talk about the upper-left corner of a frame. 
Expressed in panorama units, the corner designates the position of 
the frame in the panorama. The same corner, expressed in frame 
coordinates, designates the origin of the frame. 

Remember that scrolling always occurs in terms of panorama units, 
and drawing in terms of frame coordinates. As you scroll, the origin 
of the frame changes. The following examples help clarify these 
concepts. 

In Figure 28-3, both the horizontal and vertical scales are set to one 
pixel per panorama unit. The bounds rectangle of the panorama is 
(0, 0, 400, 380). The frame's position in the panorama is (165, 210). 

Because the panorama units match the frame units, the position of 
the frame in the panorama and the origin of the frame are the same. 

In Figure 28-4, which shows a panorama with text, the horizontal 
scale is 6 pixels per unit and the vertical scale is 12 pixels per unit. 
The bounds rectangle of the panorama is (O, 0, 40, 9). In the 
panorama scale, this means 8 lines of 40 characters each. The 
position of the frame in the panorama is (0, 3), the beginning of the 
fourth line. The origin of the frame, however, is at (O, 36). Thus, if 
you wanted to draw a line to strike out the word "And," you would 
draw it from (0, 42) to (18, 42). 

28-16 Symantec C++ User's Guide and Reference 



(0, 0 

Position (0, 3) 

Origin (0, 36) 

) 

Working with Panes + 

Bounds 

I 
'Twas b ri 11 i g and the s 1 it h y to v es 
Did gyre and gi mbl e through the wabe. Panorama 

All mimsey were the borogove~, 
And the mome raths outgrabe. I-- Frame 

"Beware the Jabberwock, my son, 
The jaws that bite_L the claws that catch 
Beware the Jub j ub bi rd and shun 
the frumi ous Bandersnatch!" 

(40, 9) 

Figure 28-4 Text panorama and its scales 

Scroll panes 
To make it easy to use panoramas, the TCL provides a class called 
CScrollPane that implements a scroll pane. Scroll panes let you 
attach scroll bars to your panorama. 

Create a scroll pane the same way you would any other pane. First, 
request a vertical scroll bar, a horizontal scroll bar, and a size box. 
Then use the InstallPanorama function to associate a panorama 
with the scroll pane. The scroll pane examines the panorama and 
adjusts the scroll bars appropriately. 

The scroll bars and the panorama communicate through the scroll 
pane. When you click a scroll bar, it informs the scroll pane, which 
tells the panorama how many panorama units to scroll, depending 
on which part of the scroll bar you clicked. 

Cursor tracking 
The AdjustCursor function that all panes inherit from CView lets 
you change the cursor when it moves into your pane. When you 
need only one cursor for a pane, which is the usual case, all you 
have to do is set the cursor with the Toolbox routine SetCursor. 
An example would be the AdjustCursor function in CEditText. 

Symantec C++ User's Guide and Reference 28-17 



28 • Programming with the THINK Class Library 

Sometimes, you might want to use different cursors in the same 
pane. The AdjustCursor function lets you do this, but at the cost 
of a little more work. See the description of the CView class in the 
online THINK Reference. 

Working with Menus 
The THINK Class Library lets you identify menu items by assigning 
them unique command numbers. Command numbers are positive 
long integers in the range 0 to 2,147,483,647. Those in the range 1 to 
1023 are reserved for the THINK Class Library. Command number 0 
is reserved for cmdNull, the null command. All other command 
numbers (1024 to 2,147,483,647) are available for your application. 

The reserved command numbers are for the most common 
Macintosh application commands, such as Open, Save, Quit, and 
Page Setup. Be sure to use the appropriate reserved number to 
invoke the associated application command implemented by the 
THINK Class Library. For a list of all the reserved commands, see the 
class CBartender in the online THINK Reference. 

When you choose a command from a menu, the desktop calls the 
FindCmdNumber function of the bartender. The bartender matches 
the menu ID and the item number to a command number and calls 
the gopher's DoCommand function. Remember, the gopher is the first 
object in the chain of command and is therefore the first object given 
the chance to handle a command. 

Using MENU resources 
To create menus with ResEdit, you must append the command 
number to the menu item. The menu item and the command 
number are separated by the character #. For example, Figure 28-5 
shows the File menu as viewed in ResEdit. 

28-18 Symantec C++ User's Guide and Reference 



New#2 
Open ... #3 

Close#4 
Saue#5 

Working with Menus + 

MENU "File" ID = 2 from TCL Resources 

3CN 
3CO 

Entire Menu: 181 Enabled 

Title: @.._I F_i_le _________ __. 

0 s (Apple menu) 

Saue As ... #6 
Reuert to Saued#7 

Color 

Title: l•I 
I tern TeHt Default: l•I 
Menu Background: D 

Page Setup ... #8 
Print ... #9 

The ' MENU ' resources for 
these menus are in the 
file TCL Resources. 

Figure 28-5 File menu viewed in Res Edit 

Note 
If you do not append a command number to a 
menu item, the bartender automatically assigns that 
item to the command cmdNull. 

You can use any menu ID for your application's menus. The THINK 
Class Library reserves the following menu IDs for certain menus: 

Table 28-4 Menu IDs 

Menu title Menu ID Mnemonic 
Apple 1 MENUapple 
File 2 MENUfile 
Edit 3 MENUedit 
Font 10 MENUf ont 
Size 11 MENUsize 

After you create all the inenus that an application needs, create a 
resource of type ' MBAR ' with an ID of 1 to contain the IDs of these 
menus. The application's SetUpMenus function creates the 
bartender (stored in the global variable gBartender) to read the 
' MBAR ' 1 resource. The bartender creates the tables that match 
command numbers to menu items. 

Symantec C++ User's Guide and Reference 28-19 



28 • Programming with the THINK Class Library 

Note 
The application's menus must be in 'MBAR' 1 
unless you change the definition of MBARapp in 
Constants. h. 

If you want the bartender to return the menu ID and item number of 
a particular menu item, use the special command number -1 in your 
' MENU ' resource. The bartender returns the negative of the long 
integer that contains the menu ID in the high word and the menu 
item number in the low word. 

Building menus on the fly 
Menus created while a program is running, such as font menus, lack 
command numbers associated with the items. Instead, the 
bartender's FindCmdNumber function returns the negative of the 
long integer that contains the menu ID in the high word and the item 
ID in the low word. When your DoCommand function gets a negative 
command number as argument, you have to determine the 
command from the menu ID and item number. 

For example, if DoCommand gets a command -655369 
(OxFFFSFFF7), the sign of the argument indicates that no command 
number defined at design time is associated with the menu item. To 
extract the menu ID and the item number, negate the value and split 
it into two words. The negative of the sample argument is 655369 
(Ox000A0009), so the menu ID is 10 and the item number is 9. 

~ (~I ~~-m_e_n_u_I_D~~--L~~-m_e_n_u_I_t_e_m~__,I) 
Figure 28-6 FindCmdNumber building command numbers 

You can add menu items to existing menus. Menu items must be 
added at the end of an existing menu; otherwise, the bartender does 
not work properly. 

28-20 Symantec C++ User's Guide and Reference 



Working with Menus + 

Enabling and checking menu items 
The bartender includes functions for enabling and disabling, as well 
as checking and unchecking, menu items. When you click the menu 
bar, the bartender calls the gopher's UpdateMenus function. 
Typically, this results in the UpdateMenus function being called for 
every bureaucrat in the chain of command. All items in the menu 
usually start out disabled and unchecked. Then each bureaucrat 
enables the menu items that pertain to it. Once the appropriate items 
have been enabled and checked, the Toolbox routine MenuSelect 
is called to display all the menus. 

Note 
This process of enabling, disabling, checking, and 
unchecking takes little time. No noticeable delay 
occurs between clicking the menu bar and the 
display of the menu. 

Suppose you click the menu bar of a text-processing application. 
First, the bartender disables all the menu items. Then, the application 
enables the application-related menu items such as New, Open, and 
Quit. The document enables the document-related items, such as 
Save, Save As, and Revert (if the document has been changed). A 
pane might check the current font and size in the Font menu. 
Finally, the menu is displayed on the screen with the correct items 
checked and enabled. 

The UpdateMenus functions of your application, document, and 
pane need to enable each item. To ensure that item-enabling 
proceeds from the general (application) to the specific (pane), call 
the base class function first in your own UpdateMenus function. 

You can use the bureaucrat functions SetDimOption and 
SetUnchecking in your application SetUpMenus function to 
modify the preliminary disabling (or "dimming") and unchecking 
process. SetDimOption lets you specify whether the bartender 
should dim all, some, or none of the items when you click the menu 
bar. 

Symantec C++ User's Guide and Reference 28-21 



28 • Programming with the THINK Class Library 

For Font menus, for instance, dimming all the font names, then 
enabling them again makes little sense. 

Table 28-5 Menu dimming options 

Dim Option 
dimNONE 

dimSOME 

dimALL 

Meaning 
Never dim any of the menu items. 

Dim only the menu items that have 
command numbers associated with them. 

Dim all of the menu items. Each 
bureaucrat's UpdateMenus function 
must enable the items for the commands it 
handles. This is the default. 

SetUnchecking lets you specify whether the bartender unchecks 
all menu items. 

Table 28-6 Menu unchecking options 

Unchecking option 
TRUE 

Meaning 
Uncheck all the menu items at menu 
selection. Your UpdateMenus function 
should check the appropriate items. Use 
this option for menus, such as Font or 
Style menus, whose items are mutually 
exclusive. 

FALSE Don't uncheck any menu items at menu 
selection. This is the default, because most 
menu items never need to be checked. 

Handling Low-Memory Situations 
The CApplication class provides several functions that deal with low­
memory situations. These functions use a memory reserve called the 
rainy day fund. 

Note 
For details about the functions and data members 
described in this section, see CApplication in the 
online 'lll/NK Reference. 

28-22 Symantec C++ User's Guide and Reference 



Handling Low-Memory Situations + 

When you create a CApplication object, you supply arguments to its 
constructor specifying how much memory your application should 
allocate for the rainy day fund. You also specify how many bytes 
should be available to satisfy Toolbox routine memory requests, and 
how many bytes of that fund should be available to satisfy critical 
operation requests. These values are stored in the data members 
toolboxBalance and criticalBalance. 

If the Macintosh Memory Manager gets a request for more memory 
than is available, it calls a grow zone function. In the THINK Class 
Library, the grow zone function calls the application's GrowMemory 
function. 

The GrowMemory function tries several strategies to free memory in 
the heap. First, it calls the application's MemoryShortage function. 
Your application class should override this function to release 
memory that is not crucial to execution. For example, your 
MemoryShortage function could delete a buffer it no longer 
needs. If the Memory Shortage function cannot release enough 
memory, GrowMemory starts using the rainy day fund. 

GrowMemory looks first at the inCriticalOperation data 
member to release memory from the rainy day fund. 

Table 28-7 Reserve memory 

If inCriticalOperation is 
TRUE 

FALSE 

Leave this much in reserve 
toolboxBalance 
criticalBalance 

A critical operation is one that occurs in response to a single 
Macintosh event and that cannot fail-even though it might require a 
large amount of memory. For example, saving a file is a critical 
operation. You can use the routine SetCriticalOperation 
to set the inCriticalOperation flag. 

If GrowMemory still cannot release enough memory, and the 
canFail flag is TRUE, the function (or GrowMemory) returns 
without trying to allocate any more memory. Setting the canFail 
flag to TRUE indicates that the application can deal with a failing 
memory request. 

Symantec C++ User's Guide and Reference 28-23 



28 • Programming with the THINK Class Library 

If the_ canFail flag is FALSE, GrowMemory tries to release all the 
memory left in the rainy day fund, because the application is not 
prepared to deal with a failing memory request. If you have 
insufficient memory, even after using the rainy day fund, the 
application usually crashes. 

You can use the routine SetAllocation to set and reset the 
canF ai 1 flag. In general, an application should be prepared to 
handle failing memory requests. 

Undoing and Mouse Tracking 
The THINK Class Library provides a class that lets you implement the 
Undo command easily. In the default implementation, each 
document has its own undo history. 

Undoing 
The THINK Class Library uses the abstract class CTask to implement 
undoable actions. For every undoable action in an application, you 
need to create a derived class of CTask. 

After you perform an action, you store enough information to undo 
it in the task's data members. Then you call the supervisor's 
Notify function with the task as an argument. The CDocument 
class implements the Notify function to store a task in one of the 
document's data members. When you choose Undo from the Edit 
menu, the document's DoCommand function calls the Undo function 
of the task it stored. 

Following is an example. Suppose you have derived a class from 
CTask to change the font in an dialog text pane. Before calling the 
dialog text pane's DoCommand function to change the font, you 
create a task and store the current font in a data member that you 
have previously defined. After you pass the font command to the 
dialog text pane, you call the document's Notify function with the 
task as an argument. 

The Undo function calls the document's DoCommand function to 
change the font back to the saved, previous one. Because the 
command goes through the regular command chain, the 
DoCommand function creates a task to let you undo what you were 
undoing. 

28-24 Symantec C++ User's Guide and Reference 



Debugging and the THINK Class Library + 

Mouse tracking 
The lHINK Class Library uses the undo mechanism to make mouse 
tracking easier and undoable. The CMouseTask class is an abstract 
class that defines functions specifically for mouse tracking. 

To implement a mouse tracking task, define a derived class of 
CMouseTask and override the KeepTracking and EndTracking 
functions. The KeepTracking function implements whatever 
action you want taken when the mouse is down. The 
EndTracking function implements whatever action you want 
taken when the mouse is released. 

For example, if you are moving a rectangle from one place in a pane 
to another, KeepTracking might draw a gray outline that moves as 
you move the mouse. The EndTracking function, meanwhile, 
would erase the rectangle from its old location and redraw it in the 
new location. 

To make the mouse task undoable, you need to store enough 
information in the task object to undo the effects of mouse tracking. 
You must also override Undo (inherited from CTask) to use this 
information to undo the effects of the mouse task. 

After tracking the mouse, you can call the document's Notify 
function with the task as an argument. When you choose Undo from 
the Edit menu, the document calls Undo to undo the effects of 
mouse tracking. 

Debugging and the THINK Class Library 
The lHINK Class Library incorporates features that help you debug 
TCL programs. 

Debugging aids in Symantec C++ 
If the preprocessor symbol _TCL_DEBUG_ is defined, various 
error-checking functions, such as the TCL_ASSERT macro, are 
enabled. The TCL_ASSERT macro takes a Boolean expression as an 
argument and displays an alert if the assertion is FALSE. 

In Symantec C++, the global variables gBreakFailure and 
gAskFailure let you examine and simulate exceptions. If 
gBreakFailure is TRUE, the THINK Class Library calls the 
Toolbox routine Debugger when Failure is called, and it calls 
DebugStr when the ASSERT macro is called with an argument that 
evaluates to FALSE. If gAskFailure is TRUE, the lHINK Class 

Symantec C++ User's Guide and Reference 28-25 



28 • Programming with the THINK Class Library 

Library calls Debugger when the utility routines such as 
FailOSErr are called that may raise exceptions. You can then 
change the arguments to the utility routine to simulate an exception. 

There is an underscore at the beginning and end of _TCL_DEBUG_. 
You can set the value of _TCL_DEBUG_ in the TCL precompiled 
header source file TCL #include. cpp. 

THINK Class Library Resources 
The THINK Class Library requires that certain resources be present in 
your project's resource file. All of the resources described in this 
section are in the file TCL Resources. The mnemonic constants 
for all these resources are in the file Constants. h, which resides 
in the Core Headers folder within the Core Sources subfolder 
of the Class Library folder. 

Alerts 
The 'ALRT' and 'DITL' resources always have matching IDs. You 
can change these resources to suit your application. 

Table 28-8 Alert and dialog resources 

ALRT /Dill ID Used for 
128 

150 

151 

200 

250 

251 

252 

General. A handy, all-purpose alert box. The 
'DITL' contains only '"'O" so you can use the 

Toolbox routine ParamText to set up the text. 

Confirm to revert to last saved version. 

Confirm to save changes before closing or quitting. 

Severe Macintosh error. 

No printer selected. 

Error alert. The 'DITL' message is "Couldn't 
complete the last command because 
I\ 0 • " 

Error alert. The 'DITL' message is "Couldn't 
successfully startup or quit the 
application because "O." 

28-26 Symantec C++ User's Guide and Reference 



THINK Class Library Resources + 

Table 28-8 Alert and dialog resources (Continued) 

ALRT /Dill ID Used for 
253 

300 

Controls 

Assertion failed. Used by assertion in exception 
handling. 

Macintosh OS error alert. 

The THINK Class Library uses this ' CNTL ' template for all the scroll 
bars it creates. 

Table 28-9 Control resources 

CNTL 
300 

Used for 
Scroll bar 

Error message strings 
The THINK Class Library uses a resource of type 'Es tr' to report 
Macintosh errors. 'Es tr' resources have exactly the same format as 
'STR' resources. You can use the ResEdit command Open as 

Template from the File menu to open and edit an 'Es tr' resource 
as an 'STR'. 

The ID of the 'Es tr' resource is the error code you want to 
identify. The file TCL Resources includes 'Es tr' resources. 
The error-handling class CError uses 'Es tr' resources to display 
messages. You should create an 'Es tr' resource for every error 
an application reports to the user. 

Table 28-10 Error string resources 

Estr Used for 
-1O8 Out of memory 
-19 2 Tried to get nonexistent resource 

Symantec C++ User's Guide and Reference 28-27 



28 • Programming with the THINK Class Library 

Menus 
The THINK Class Library reserves the menu IDs shown in Table 
28-11 for the standard menus. The File and Edit menus contain all 
the standard items. You can remove those that do not apply to your 
application. The bartender builds the desk accessory menu for you 
automatically, but you have to build the Font and Size menus 
yourself in the SetUpMenus function of the application. For sample 
Font and Size menus, see the TinyEdit project in the TCL Demos 
folder. 

Table 28-11 Menu resources 

Menu Used for 
1 Apple 
2 File 
3 Edit 
10 Font 
11 Size 

Note 
The mnemonics for these menus are in 
Commands.h,notConstants.h. 

Menu bars 
The THINK Class Library uses the ' MBAR ' resource to install all the 
menus in your application. This resource automatically includes the 
Apple, File, and Edit menus. 

Table 28-12 Menu bar resource 

MBAR Used for 
1 List of all menus to install at application startup 

Small icon 
Earlier versions of THINK Class Library used a small icon instead of 
the Toolbox routine DrawGrowicon to draw a grow box. If your 
application uses 'SICN' resources, you can use the routine 
DrawSICN to draw it in a pane. See the online lli!NK Reference. 

Table 28-13 Sm al I icon resource 

SICN Used for 
200 Grow box 

28-28 Symantec C++ User's Guide and Reference 



THINK Class Library Resources + 

Strings and string lists 
The THINK Class Library uses these strings for various prompts and 
messages. You can modify them to suit your application. The string 
resources are listed in Table 28-14. 

Table 28-14 String resources 

STR Used for 
150 

300 

301 

Prompt for the Save As dialog box 

Generic operating system error message used 
when no 'Es tr' resource is available 

Generic error suffix, "of a Mac OS Error" 

The string list resources listed are in Table 28-15. 

Table 28-15 String list resources 

STR# Used for 
128 

129 

130 

131 

133 

List of common Macintosh words and phrases. This 
list includes quitting, closing, Undo, Redo, 
Untitled, Show Clipboard, and Hide 
Clipboard. 

Strings used for low-memory warnings. 

Task names for changing the wording of the Undo 
menu item text. This resource has no strings. An 
application should add strings to this list if it 
supports Undo. See the descriptions of CTask and 
CMouseTask. 

Strings used by exception handler. 

Strings used for dialog entry validation. 

Symantec C++ User's Guide and Reference 28-29 



28 • Programming with the THINK Class Library 

Window template 
The THINK Class Library requires only one window template for the 
Clipboard window. An application usually defines one or more 
additional ' WIND ' templates. 

Table 28-16 Window resource 

WIND Used for 
200 Clipboard. Window template used for displaying 

the clipboard. 

Segmentation and the THINK Class Library 
You can segment your application in any manner. Remember, 
however, that certain files and libraries must be in a resident 
segment-that is, a segment that is never purged. 

The following files and libraries must be in a resident segment: 

• CApplication.cp 
• Exceptions.cp 
• LongCoordinates.cp 
• TCLpstring.cp 
• TCLUtilities.cp 
• CPlusLib 
• MacTraps 
• MacTraps2 

Modifying the THINK Class Library 
In general, to change the behavior of one of the THINK Class Library 
classes, create a derived class of the class you want to modify, and 
add new member functions, or override the existing ones you need 
to change. Almost all member functions in the THINK Class Library 
are virtual. 

In rarer cases, you might decide to change the source code for a 
THINK Class Library class. However, two dangers are inherent in this 
approach. First, making changes in the source code may make it 
difficult to take advantage of future releases of the THINK Class 
Library from Symantec. If you do make changes to a class's source 
code, make sure to keep an archival copy of the original files and to 
mark your changes clearly. 

28-30 Symantec C++ User's Guide and Reference 



Modifying the THINK Class Library + 

The second danger is somewhat more subtle. As you use the TCL, 
you may want to create general-purpose, reusable classes derived 
from TCL classes. Neither you nor anyone else can use these classes 
in other programs if, in creating these classes, you relied on features 
of THINK Class Library classes that you introduced by changing 
source code. 

Note 
Under your license agreement, you may distribute 
new classes derived from the classes in the TCL. 
You may not, however, distribute modified sources 
of TCL classes. 

Symantec C++ User's Guide and Reference 28-31 



28 Programming with the THINK Class Library • 

28-32 Symantec C++ User's Guide and Reference 



Visual Architect 
File Menu• 

29 
Tws chapter is the reference for the File menu of the Visual Architect. 

It describes all commands on the menu as well as the preferences in 
the Preferences dialog box. 

Commands in the File Menu 
You use the File menu to manipulate Visual Architect resource files. 
This menu contains commands for printing open windows, setting 
preferences, and quitting Visual Architect. 

New ... 38N 
Open ... 380 

Close 38W 
saue ws 
Saue Rs ... 
Reuert to Saued .•. 

Page Setup ... 
Print... XP 

Preferences ... 
Set Generate File ... 

Quit XQ 

Figure 29-1 File menu 

The File mentt commands are used to perform these functions: 

• Access files 
• Close and save files 
• Print 
• Set preferences 

Symantec C++ User's Guide and Reference 29-1 



29 Visual Architect File Menu • 

New 3CN 

Open 31:0 

This chapter discusses the File menu items by function. The Quit 
command is covered under the section on closing and saving files. 

Accessing files 
Two commands cover creating new files or opening existing ones. 

Creates a new Visual Architect resource file. This command is only 
functional when the Update Project on Generate preference in the 
Preferences dialog box is set off. 

If that preference is set on, the Unable to Create New File dialog 
box opens when you choose New (Figure 29-2). 

Use the Project Manager to create a new Uisual 
Architect project, then double-click on the 
"Uisual Rrchitect.rsrc" file to edit your new 
project . 

.Figure 29-2 Unable to Create New File dialog box 

Opens an existing Visual Architect resource file. Choosing this 
command opens a standard File Open dialog box, in which you can 
select the file. 

You typically open the Visual Architect resource file when Visual 
Architect is launched, by double-clicking the resource file's icon in 
the Project List window in the Symantec Project Manager. However, 
you may want to open a Visual Architect resource file manually, for 
example, when you are copying resources from one Visual Architect 
resource file to another. 

Multiple resource files can be open simultaneously in Visual 
Architect. The resource file that owns the frontmost window is the 
active resource file. This file is the one affected by commands in the 
Visual Architect's Symantec Project Manager menu. 

29-2 Symantec C++ User's Guide and Reference 



Close xw 

Save XS 

Save As 

Revert to Saved 

Quit XQ 

Note 

Commands in the File Menu + 

Visual Architect lets you open any resource file 
(those with file extension . rsrc). However, Visual 
Architect is designed to work with resource files 
created in Visual Architect or in the Symantec 
Project Manager using a Visual Architect project 
model. 

Closing and saving files 
You use this group of commands on the File menu to close a file, 
quit Visual Architect, or save a file. You can also choose to revert to 
the last-saved version of a file. 

Closes the active window. Choosing this command has the same 
effect as clicking on the active window's close box. If you try to 
close a resource file and the file has been modified since it was last 
saved, a dialog box is displayed, prompting you to save the changes, 
discard them, or cancel the Close command. 

Saves the active resource file. 

Saves the active resource file under another name. You may want, 
for example, to experiment with the new resource file while still 
using the original file to build applications. 

Note 
By convention, the Visual Architect resource file is 
named Visual Architect.rsrc. If you use 
Save As to create a resource file for 
experimentation, you must save it as Visual 
Architect. rsrc to include it in a Symantec 
Project Manager project. At that time, the original 
resource file is overwritten. 

Restores the last-saved version of the active resource file and 
discards any edits made since the last save. You are prompted to 
confirm the operation. 

Quits Visual Architect. If Confirm Save is set on the Preferences 
dialog box, you are prompted to save any changes made to open 
resource files. Otherwise, changes are saved automatically. 

Symantec C++ User's Guide and Reference 29-3 



29 Visual Architect File Menu • 
Page Setup 

Print al: P 

Preferences 

Printing 
These two commands cover page setup and printing. 

Displays the standard Page Setup dialog box that lets you specify 
the size of the paper used for printing, whether the file should be 
printed landscape or portrait mode on the page, and other page 
setup options. See your Macintosh owner's manual for details. 

Displays the standard Print dialog box that lets you print the active 
window. You can set the number of copies to print and other print 
options. See your Macintosh owner's manual for details. 

Setting preferences 
You set preferences through the Preferences dialog box. You can 
also choose to control code generation for the active resource file. 
The preferences settings are saved automatically when you quit 
Visual Architect. 

Displays the Preferences dialog box. 

Preferences 

Options-------. 
181 Honor Grid 

Grid step: I• 11111 
181 Lazy Select 
181 Show Position 
D Show Item Numbers 

D New Screen On Startup 
D Sticky Cursor 
181 Update Project on Generate 
181 Confirm Saue 

(Cancel) ( OK J 
Figure 29-3 Preferences dialog box 

Options area 
The preferences in the Options area of the Preferences dialog box 
allow you to set the default values of the corresponding options in 
Visual Architect's Options menu. See Chapter 33, "Visual Architect 
Options Menu," for details. 

New Screen on Startup 
When this preference is set on and Update Project on Generate is set 
off, Visual Architect opens a new resource file on startup. 

29-4 Symantec C++ User's Guide and Reference 



Set Generate File 

Commands in the File Menu + 

Sticky Cursor 
When this preference is set on, any tool selected from the Tool 
palette remains "stuck" to the cursor until another tool is selected. 
This "sticky cursor" function is useful when you are creating multiple 
panes of the same type. With the preference set off, you can achieve 
the same effect by double-clicking tool items. (You must first drag 
the Tools menu off the menu bar to be able to do this.) If instead 
you single-dick a tool, the cursor returns to pointer mode after the 
tool has been used once. 

Update Project on Generate 
When the preference is set on, Visual Architect sends Apple events 
to the Symantec Project Manager to add files, compile, and perform 
project maintenance. 

Confirm Save 
When this preference is set on, Visual Architect prompts you to save 
a resource file when closing it after modifications have been made. 
Otherwise, Visual Architect automatically saves modified resource 
files on closing and on generating code. 

Lets you set the macro file Visual Architect uses to control code 
generation for the active resource file. By default, Visual Architect 
uses the file GenerateTCLApp, which it looks for first in the 
Symantec tree and then in your project tree. The Set Generate File 
command lets you override this default use of GenerateTCLApp. 

Note 
Chapter 35, "VA: Symantec Project Manager Menu," 
contains details on the use of macro files. 

Symantec C++ User's Guide and Reference 29-5 



29 Visual Architect File Menu • 

29-6 Symantec C++ User's Guide and Reference 



Visual Architect 
Edit Menu• 

30 
~is reference chapter provides a detailed description of the 

commands in the Visual Architect Edit menu. Descriptions are also 
provided of the dialog boxes opened from commands on this menu, 
including the Classes, Data Members, Commands, and Menu Bar 
dialog boxes. 

Commands in the Edit Menu 
The Edit menu contains standard editing commands (Undo, Cut, 
Copy, Paste, Clear). In addition, it contains commands for 
manipulating many of an application's Visual Architect objects. 
Figure 30-1 displays the commands on the Edit menu. 

mJID.• 
Undo Copy 3€2 

Cut 3CH 
Copy ace 
Paste 3CU 
Clear 

Duplicate 3CD 
Select All 3CA 
New Item 3CK 

Application ... 
Balloon Help ... 
Classes ... 
Commands ... 
Menu Bar ... 
Menus ... 

Figure 30-1 Edit menu 

Symantec C++ User's Guide and Reference 30-1 



30 Visual Architect Edit Menu • 

Undo 3€2 

Cut 3€H 

Copy 3€C 

You can use the commands on the Edit menu to perform the 
following functions: 

• Edit and manipulate code 

• Edit application macros 

• Add Balloon Help 

• Edit classes, commands, and menus 

These commands are covered in the order shown in Figure 30-1. 

Editing and manipulating code 
Use these commands to edit text and views. 

Reverses the last edit operation. The command's name changes to 
reflect the operation you are undoing, for example, Undo Paste. 
Once you have undone an operation, the name of this command 
changes to Redo, allowing you to redo the operation that was just 
undone. 

If there is nothing to undo in the frontmost window, this command 
is disabled. 

Removes the selected item and copies it to the Clipboard. This 
command replaces any previous contents of the Clipboard. 

Visual Architect lets you cut an individual pane, a set of panes, or 
text. Only text can be pasted into other applications. 

Copies the selected item to the Clipboard. This command replaces 
any existing contents of the Clipboard. 

Visual Architect lets you copy an individual pane, a set of panes, or 
text. Only text can be pasted into other applications. 

Note 
A Cut or Copy operation applied to a CPicture or 
CStaticText pane places the entire pane (not just the 
picture or text contained in the pane) on the 
Clipboard. 

30-2 Symantec C++ User's Guide and Reference 



Paste :1:€U 

Clear 

Duplicate :1:€0 

Commands in the Edit Menu • 
Pastes the contents of the Clipboard into Visual Architect. If the 
contents of the Clipboard were cut or copied from Visual Architect, 
you can paste any pane, set of panes, or text. If the contents of the 
Clipboard were cut or copied from another application, only text 
and pictures can be pasted into Visual Architect. 

The following rules determine the outcome of a paste operation. If a 
given set of conditions is not covered by one of these rules, 
choosing this command has no effect. 

• If the Clipboard contains text and the frontmost window 
contains an active textbox, the Clipboard contents are 
pasted into that textbox. 

• If the Clipboard contains text, the frontmost window is a 
View Edit window, and a CStaticText pane is selected, 
the text in the pane is replaced with the Clipboard 
contents. 

• If the Clipboard contains text, the frontmost window is a 
View Edit window, and no pane is selected, a new 
CStaticText pane is created and the contents of the 
Clipboard becomes the pane's text. 

• If the Clipboard contains a picture, the frontmost 
window is a View Edit window, and a CPicture pane is 
selected, the picture in the pane is replaced with the 
Clipboard contents. 

• If the Clipboard contains a picture, the frontmost 
window is a View Edit window, and no pane is selected, 
a new CPicture pane is created and the contents of the 
Clipboard become the pane's picture. 

Removes the selected text, pane, or set of panes, without affecting 
the contents of the Clipboard. You can also execute this command 
by pressing Clear or Delete. 

Creates a copy of the selected pane or panes in the frontmost View 
Edit window and pastes them into the same window. The new panes 
are positioned downward and to the right of the original pane. If no 
panes are selected, this command is disabled. 

Symantec C++ User's Guide and Reference 30-3 



30 Visual Architect Edit Menu • 
Select All XA 

New Item 

Selects all text in an active textbox in the frontmost window. If that 
window is a View Edit window without an active text field, this 
command selects all panes in the window. Otherwise, the command 
is disabled. 

Adds a new command, class, data member, menu, or menu item. 
The name of the command changes depending on the type of dialog 
box that is frontmost. 

• If the Commands dialog box is frontmost, the command 
is named New Command. Choosing it enables you to 
define a new command to be added to your command 
list. 

• If the Classes dialog box is frontmost, the command is 
named New Class. Choosing it enables you to define a 
new class to be added to your class command list. 

• If the Define Data Members dialog box is frontmost, 
the command is named New Data Member. Choosing it 
defines a new data member to be added to your derived 
class. 

• If the Menus or Menu Bar dialog box is frontmost, the 
command is named New Menu. Choosing it enables you 
to define a new menu to be added to your menu list. If 
the frontmost window is a Menu Bar dialog box, the 
new menu is also added to your menu bar. 

These dialog boxes are discussed in greater detail later in this 
chapter. 

If none of these dialog boxes is frontmost, the command is disabled. 

30-4 Symantec C++ User's Guide and Reference 



Application 

Commands in the Edit Menu • 
Editing application macros 
You can specify values for three kinds of application macros. 

Opens the Application Info dialog box, which you use to edit 
values of the copyright, signature, and docType application 
macros. 

Application Info 

Copyright: IM Software Inc 

Signature: I cApp I 
File Ids: ldApp ,-, --, , I .__I _ __, 

( Cancel ) [ OK D 

Figure 30-2 Application Info dialog box 

Note 
These values should be set before generating code 
for the first time, because Visual Architect sets the 
values for the macros only once. 

Copyright 
You use this textbox to specify the value of the copyright macro 
during code generation, and to define the application copyright as it 
appears in the comments of generated code. 

Signature 
You can enter up to four characters in this textbox to specify the 
value of the signature macro during code generation. This macro 
is currently not used in the Visual Architect macro files. To define the 
application signature, you must change the upper-level application 
header file manually. 

File IDs 
The dialog box contains four text boxes, each holding a four­
character string, for specifying the values of the docTypel , 
docType2, docType3, and docType4 macros during code 
generation. These macros are currently not used in the Visual 
Architect macro files. To define the file IDs, you must change the 
upper-level application header file manually. 

Symantec C++ User's Guide and Reference 30-5 



30 Visual Architect Edit Menu • 

Balloon Help 

Adding Balloon Help 
Use this command to add Balloon Help to your application. 

Opens the Balloon Help window, which you can use to add help 
balloons to a view's panes (Figure 30-3). The command is available 
only when a View Edit window is frontmost; otherwise, it is 
disabled. 

Balloon Help 

For: main panorama (CPanorama) 
Enabled: Dimmed: 

Figure 30-3 Balloon Help window 

The four balloons correspond to the four possible states of a pane at 
run-time. In each balloon, you enter the text you want to appear 
when the user points to a pane in that state. (Note that, for Balloon 
Help to be displayed, the user must also have the Show Balloons 
command selected on the Balloon Help menu.) Refer to Inside 
Macintosh for details on the four balloon states. 

The Balloon Help window is associated with the selected pane in the 
active View Edit window-or with the window itself, if no pane is 
selected. If you leave the window open and select another pane, the 
window is updated to reflect this new pane. The current pane or 
window object is noted at the top of the Balloon Help window. 

Note 
This command cannot be used to define Balloon 
Help for menus created with Visual Architect. You 
must do this using a resource editor such as ResEdit. 

30-6 Symantec C++ User's Guide and Reference 



Classes 

Commands 

Menu Bar 

Menus 

Commands in the Edit Menu • 
Editing classes, commands, and menus 
Use these commands to create and edit classes, commands, and 
menus. 

Opens the Classes dialog box, which you use to create and define 
new derived classes as well as to delete and edit existing ones. As 
part of the process, you can specify the base class from which a new 
class is derived and define the class's data members. Visual Architect 
later generates C++ code for these classes. 

The Classes dialog box is discussed in detail in the section "Classes 
Dialog Box" later in this chapter. 

Opens the Commands dialog box, which you use to add, delete, 
and rename commands, as well as to change the handlers and 
actions associated with each command. 

This dialog box is covered in detail in the "Commands Dialog Box" 
later in the chapter. 

Opens the Menu Bar dialog box, which you use to manipulate the 
menus in an application's menu bar. You can create menus and add 
menus to and remove them from a menu bar, as well as change the 
titles and relative positions of menus in the menu bar. 

The Menu Bar and Menu Items dialog boxes are discussed in detail 
in the section "Menu Bar Dialog Box" later in this chapter. 

Opens the Menus dialog box, which you use to work with the 
menus in an application. You can create and delete menus and 
change their titles, menu IDs and MDEF IDs. In addition, you can 
edit the commands on a menu. 

The Menus dialog box is discussed in detail in the section "Menus 
Dialog Box" later in this chapter. 

Symantec C++ User's Guide and Reference 30-7 



• 

Clas 
list 

30 Visual Architect Edit Menu 

CA pp 

CDoubleleHt 
Cltem_l nfo 

s CMain 
- I- CMyArrayPane 

CMyDateClass 
CMyMatriH 
CPlotter 
CPreferences 
Clheltem 

Classes Dialog Box 
The Classes dialog box opens when you choose Classes from the 
Edit menu. The Classes dialog box is shown in Figure 30-4. Note 
that you can open the Data Members dialog box from this dialog 
box by clicking on the Define Data Members button. The latter 
dialog box is discussed in the section "Data Members Dialog Box," 
later in this chapter. 

Cl asses 

~ l l£El~y~teClass 11 
Class Base Class: I CDialogTeHt ,..I 
textb 

I 
name 

ox 

( De fine Data Members ) 

Library class: l J 

( Cancel ) 

-0- ( OK ) 

Figure 30-4 Classes d ia log box 

Class list 
At the left of the dialog box is a scrolling alphabetic list of derived 
classes. 

By selecting a class from this list, you can either delete it or change 
its name. To delete a class, press Delete. Note that application and 
view director classes that Visual Architect creates automatically 
cannot be deleted. To change a name, type the new name in the 
class name textbox. 

Class name textbox 
Any class you select from the class list is displayed in the class name 
textbox. 

Press Return to clear the textbox before entering the name of a new 
class. (Alternatively, choose New Class from the Edit menu with the 
Classes dialog box open.) Select a base class from the pop-up menu 
and click OK to create the new class. 

30-8 Symantec C++ User's Guide and Reference 



Note 

Classes Dialog Box + 

If a derived class is in use, any change you make to 
it requires a corresponding change in all views 
containing objects of that class. Visual Architect 
makes these changes automatically. 

If you change a class name, the new name replaces 
the old in the affected views. If you delete a class or 
change its base class, current objects of that class 
revert to the former base class. For example, if you 
define a class MyButtonClass with base class 
CButton and use several MyButtonClass objects in 
views, the objects revert to CButton class when you 
delete MyButtonClass. 

Base Class pop-up menu 
This pop-up menu displays available THINK Class Library classes; 
you use the menu to select a base class for one of your derived 
classes. 

Depending on your selection from the class list, the Base Class pop­
up menu is disabled. You cannot use the menu for the application 
class or one of the director classes automatically created for views. 
Further, you cannot select one of these classes from the menu as a 
base class for a derived class. These classes are shown as disabled in 
the menu. 

Unless you specify a library in the Library Class textbox, Visual 
Architect derives the lower-level class from the base class specified 
in this menu. (For more information on lower- and higher-level 
classes, see Chapter 35, "VA: Symantec Project Manager Menu.") The 
base class is used to select the appropriate macro file for code 
generation. 

Define Data Members 
Click this button to open the Data Members dialog box. 

Library class textbox 
Use this textbox to derive a class from one of your own library 
classes. After you type the name of the library class into this textbox, 
remember to add the source file for the library class to the project. 

Symantec C++ User's Guide and Reference 30-9 



30 • Visual Architect Edit Menu 

Visual Architect assumes that the library class displayed in this 
textbox is derived either directly or indirectly from the base class 
shown in the Base Class pop-up menu. The library name is 
assumed to be valid and not in conflict with any other class names. 

Note 
Library classes and intermediate classes derived 
from the THINK Class Library base classes must not 
attempt to read Get From stream data members. See 
the electronic supplemental information for more 
information. 

Data Members Dialog Box 
From within Visual Architect, you can define data members for all 
derived classes (except application and director classes). Clicking the 
Define Data Members button in the Classes dialog box opens the 
Data Members dialog box (Figure 30-5). 

This dialog box is not intended to provide a general-purpose data 
design capability. Rather, it lets you quickly parameterize user 
interface classes and assign preset values. 

30-10 Symantec C++ User's Guide and Reference 



Data Members Dialog Box + 

The values of data members of pane-derived classes can be 
set within Visual Architect through the Pane Info window (see 
Chapter 32, "Visual Architect Pane Menu"). 

Data member textbox 

Data Members 

class CMyDateClass : CDialogleHt { 
long date; 0 r;:;d=::a;;-,t=e=====~====:;i 

Data short formatCode ; 
Type: I Tl member list 

}; 

long 

] D Pascal 

~ Getfrom D Putlo 

{} 
( Cancel ) OK 

Figure 30-5 Data Members dialog box 

Data member list 
The scrolling list to the left shows the data members defined in the 
class, preceded by their respective types. Any data member you 
select from this list is displayed in the data member textbox. Data 
members are displayed in the list in the order in which you add 
them. 

By selecting a data member from this list, you can either delete it or 
move it within the list. To delete a class , press Delete. To reorder the 
data members, drag the selected data member to a different position. 

Data member textbox 
This textbox displays the data member that is selected in the data 
member list. 

Press Return to clear the textbox before entering the name of a new 
data member. (Alternatively, choose New Data Member from the 
Edit menu with the Classes dialog box open.) Select a type from the 
Type pop-up menu and click OK to create the new data member. 

Symantec C++ User's Guide and Reference 30- 11 



• 30 Visual Architect Edit Menu 

Type pop-up menu 
This pop-up menu displays some of the types of data members 
possible (Figure 30-6). 

Boolean 
char 
double 
float 

./long 
short 
Str31 
Str255 
Str63 
unsigned char 
unsigned long 
unsigned short 

Figure 30-6 Type pop-up menu 

Array brackets [ ] 
The bracketed area is enabled if you select a data member of type 
char (or unsigned char). Use this area to define an array by 
typing a number between the brackets. This number indicates the 
length of the array. 

Pascal 
Set the Pascal option on if you want an unsigned char array to 
be interpreted as a Pascal string (beginning with a length byte) rather 
than a C string (ending with a zero byte). 

Note 
Visual Architect only supports arrays of type char 
and unsigned char in the Data Members dialog 
box. See the introduction to the section for 
information on defining other data member types. 

GetFrom and PutTo 
Visual Architect automatically generates the Object I/0 functions 
GetFrom and Put To in derived classes. Views and subviews you 
define in Visual Architect are read as resources and interpreted by 
Object I/O. Object I/0 input works by defining a Get From function 
in each derived class for which data members appear in the view 
resources. Object I/0 output works by defining a Put To function in 

30-12 Symantec C++ User's Guide and Reference 



Commands Dialog Box + 

each derived class. See the electronic supplemental information for 
more information on Object I/0. 

To have Visual Architect include the currently selected data member 
in the GetFrom and Put To streams, set on either the GetFrom or 
PutTo options. 

Note 
If you add or delete a data member or change its 
type, the old values of user-defined data members 
in existing objects of that class are discarded and 
the new values are initialized to binary zeros. 

Commands Dialog Box 
The Commands dialog box (Figure 30-7) opens when you choose 
Commands from the Edit menu. 

Command l ist Command name textbox 

Commands~ 
l 

-~~ cmdEHtend i}- lrfmdlnuert 
cmdlnuert 

Number: 513 
cmdltalic 

cmdJustify 
Actions: 

cmdNew In Class: I CA pp 
,.., 

cmdNull = Do: I Call Tl 
cmdOK 

~· ... ........... . ....................... 
Pkw : ~ N !HW wJ 

cmdOpen 

cmdOutline ( Cancel ) 
cmdPageSetup 

( OK ..c:.m..d.E!..a -0-

Figure 30-7 Commands dia log box 

Command list 
The command list shows all the predefined and user-defined 
commands. 

By selecting a command from this list, you can either delete it or 
change its name. To delete a class, press Delete. To change a 

) 

Symantec C++ User's Guide and Reference 30-13 



• 30 Visual Architect Edit Menu 

command's name, type the new name in the command name 
textbox. You cannot change the names of commands predefined by 
TCL. 

Command name te:xtbox 
The command name textbox displays the name of the currently 
selected command from the commands list. 

Press Return to clear the textbox before entering the name of a new 
command. (Alternatively, choose New Command from the Edit 
menu with the Commands dialog box open.) 

Number 
The value shown next to the Number item is the number associated 
with the command. Visual Architect automatically assigns numbers 
beginning with 512 to new commands. You never need to deal with 
command numbers directly. 

In Class pop-up menu 
To select the derived class or classes that handle a selected 
command, choose that class from the In Class pop-up menu. The 
classes you choose are marked with a bullet in the pop-up menu. 

If a class should not handle a particular command, select the marked 
class again in the pop-up menu. A dialog box appears, prompting 
you to confirm the action; if you confirm, the bullet disappears. 

Do pop-up menu 
To specify the action taken by the selected command's handler 
(defined by your choice from the In Class pop-up menu), choose 
one of the three actions included in the Do pop-up menu: Open, 
Call, and Nothing. These actions can be specified separately for 
each class that handles a command. 

Open. Generates a case statement for the command. This statement 
is in the switch block of the DoComrrunand member function of the 
specified class. This case statement calls a function named 
DoCommandname. The DoCommandname function is generated 
into the lower-level of the specified class. Code generated for this 
function opens and selects the specified dialog box or window. 
Typically, you do not need to override this function in the upper­
level of the specified classes. 

30-14 Symantec C++ User's Guide and Reference 



Commands Dialog Box + 

The following is an example of the code generated into the lower­
level class when you choose the Open action: 

I************************************************ 
DoCommand {OVERRIDE} 

Dispatch Visual Architect-specified actions. 

************************************************I 

void x_CMyDialog: :DoCommand(long theCommand) 

switch (theCommand) 
{ 

case cmdMyCommand: 
DoCmdMyCommand(); 
break; 

default: 
CDialogDirector::DoCommand(theCommand); 

I************************************************ 
DoCmdMyCommand 

Respond to cmdMyCommand command. 

************************************************I 

void x_CMyDialog: :DoCmdMyCommand() 

CMyDialog*dialog; 

II Respond to command by opening a dialog 

dialog= TCL_NEW(CMyDialog, ()); 
dialog->ICMyDialog(this); 

Call. Generates a case statement for the command. This command 
is in the switch block of the DoComrnand member function of the 
specified class. This case statement calls a function named 
DoCommandname. The DoCommandname function is generated 
into the lower-level of the specified classes. Unlike the Open action, 
the DoCommandname function is empty; you must override it in the 
upper-level of the specified classes if you want it to do something. 

Symantec C++ User's Guide and Reference 30-15 



• 30 Visual Architect Edit Menu 

The following is an example of the code generated into the lower­
level class when the Call action is chosen: 

I************************************************ 
DoCommand {OVERRIDE} 

Dispatch Visual Architect-specified actions. 

************************************************/ 

void x_CMyDialog::DoCommand(long theCommand) 

switch (theCommand) 
{ 

case cmdMyCommand: 
DoCmdMyCommand(); 
break; 

default: 
CDialogDirector::DoCommand(theCommand); 

I************************************************ 
DoCmdMyCommand 

Respond to cmdMyCommand command. 

************************************************I 

void x_CMyDialog: :DoCmdMyCommand() 

Note 

II Subclass must override this function to 
II handle the command 

You may find it just as convenient to leave the 
action of a command unspecified, and enter the 
code yourself as a DoCommand case in an upper­
level class, thus avoiding an extra level of 
indirection. 

30-16 Symantec C++ User's Guide and Reference 



Commands Dialog Box + 

Nothing. Generates a case statement for the command. This 
statement is in the switch block of the DoCommand member 
function of the specified class. Unlike the Open or Call actions, no 
statement is added to the case. This case only prevents 
supervisors from receiving the command. In order for the command 
to have any action, you must create a case for it in the switch 
block of the DoCommand member function of the upper-level of the 
specified class. 

The following is an example of the code generated into the lower­
level class when you choose Nothing: 

/************************************************ 
DoCommand {OVERRIDE} 

Dispatch Visual Architect-specified actions. 

************************************************/ 

void x_CMyDialog::DoCommand(long theCommand) 

} 

switch (theCommand) 
{ 

case cmdMyCommand: 
break; 

default: 
CDialogDirector: :DoCommand(theCommand); 

View pop-up menu 
This menu becomes available when you choose Open from the Do 
pop-up menu. Choose the view that you want the command to 
open. 

For information on command handling, see the section on this topic 
at the end of the chapter. 

Symantec C++ User's Guide and Reference 30-17 



• 30 Visual Architect Edit Menu 

Menu li st 

Menu Bar Dialog Box 
Choose Menu Bar from the Edit menu to open the Menu Bar 
dialog box (Figure 30-8) . 

Menu tit le textbox 

M enu Bar 

• ·"''•·· .0 l~=* ..'1_ ~,~~@011~1 -File 
@ s (A pple M enu) Edit 

( Edit Menu Items ) 

MENU ID: 1 

MOH ID: 0 

Rdd Menu: [3 ( Cancel ) 

to ( OK ) 

Figure 30-8 Menu Bar dia log box 

Menu list 
The scrolling menu list shows the menus in the order they appear in 
the menu bar. 

By selecting a menu from this list, you can either delete it or change 
its position in the menu bar. To delete a menu from the menu bar, 
press Delete. (The menu is not deleted, just removed from the menu 
bar.) To change a menu's position in the menu bar, drag the selected 
menu to a new position. To change the name of a selected menu, 
type the new title in the menu title textbox. 

Note 
The top-to-bottom position of menu titles in the 
menu list corresponds to the left-to-right position of 
the menus in the application's menu bar. 

30-1 B Symantec C++ User's Guide and Reference 



Menu Bar Dialog Box + 

Menu title textbox 
The menu title textbox displays the name of the currently selected 
menu from the menu list. 

Press Return to clear the textbox before entering the name of a menu 
you want to create. (Alternatively, choose New Menu from the Edit 
menu with the Menu Bar dialog box open.) 

Apple Menu radio button 
To specify the Apple menu, click the "9 (Apple Menu)" radio button. 

Edit Menu Items 
Click this button to open the Menu Items dialog box, which is 
discussed in the subsequent section. 

MENU ID 
When you create or import a menu, Visual Architect automatically 
assigns that menu a unique menu and resource ID. You can change 
the menu ID for the selected menu by entering a different value in 
this textbox. Visual Architect automatically sets the resource ID to be 
the same as the specified menu ID. In this way, Visual Architect does 
not let you create a menu whose resource ID and menu ID are 
different. (This is the most common programming mistake associated 
with menus.) You seldom need to change this field. 

MDEFID 
The MDEF ID field lets you use a custom menu definition procedure 
(MDEF) for the selected menu. The system default value is 0. You 
need to change this field only if you want to use a custom menu 
definition procedure. Refer to Inside Macintosh for details on 
creating a custom MDEF. 

Add Menu pop-up menu 
Use this pop-up menu to add an existing menu to the menu bar. Any 
menu you add in this way is displayed in the menu list. 

Symantec C++ User's Guide and Reference 30-19 



• 30 Visual Architect Edit Menu 

Menu Items Dialog Box 
Clicking on the Edit Menu Items button in the Menu Bar or Menus 
dialog box opens the Menu Items dialog box (Figure 30-9). 

Menu item l ist Menu item edit box 

-- Menu I terns 

File 

Close 
Saue 
Saue Rs ... 
Reuert to Saued 

Page Setup ... 
Print ... 

Quit 

Command: I cmdNew 

D Has submenu , ................................ , 
'>uhmrnu ; n: ~ 

'""'"'""""""'"""""' L.:..J 
Cmd-key:EJ 

I con: ~ Mark: I 
~ . 

None .... I 

( Cancel J 

OK 

Figure 30-9 Menu Items dialog box 

Menu item list 
The scrolling menu item list shows the menu items in order of their 
appearance in the menu. 

By selecting a menu item from this list, you can either delete it or 
change its position in the menu. To delete a menu item from the 
menu, press Delete. To change a menu item's position in the menu, 
drag the selected menu item to a new position in the list. 

Menu title te:xtbox 
The menu item textbox displays the name of the currently selected 
menu item from the menu items list. 

Press Return to clear the textbox before entering the name of a menu 
item you want to create. (Alternatively, choose New Menu Item 
from the Edit menu with the Menus or Menu Bar dialog box open.) 
The menu item you created is added to the menu and its name is 
added to the menu item list. 

30-20 Symantec C++ User's Guide and Reference 



Menu Items Dialog Box + 

Has Submenu and Submenu ID pop-up menu 
You use the Has Submenu option to designate the selected menu 
item as a submenu. Setting this option on enables the Submenu ID 
textbox and pop-up menu , in which you specify the submenu. You 
can either enter a valid menu ID in the textbox or choose a menu 
from the pop-up menu. 

Cmd-key 
Enter a value in the Cmd-key textbox to specify a command key 
equivalent for the selected menu item. This textbox is disabled if the 
menu item is a submenu. 

Note 

Icon 

Do not use Command-key equivalents in pop-up 
menus. For a Command-key in a CPopupPane to be 
recognized as a menu command, the pane must be 
the gopher or a supervisor of the gopher. Because a 
pop-up pane is not a candidate for the gopher and 
pop-up panes seldom supervise anything, these 
conditions cannot be met. 

Click the Icon button to open the Icon Pick dialog box 
(Figure 30-10) . You can use this dialog box to place an icon 
next to a menu item. 

Icon Pick 

ID: 32000 

' OK Il 
[Cancel) 

Figure 30-10 Icon Pick dialog box 

Symantec C++ User's Guide and Reference 30-21 



• 30 Visual Architect Edit Menu 

The Icon Pick dialog box shows all icon resources that have both 
'ICON' and 'cicn' (color icon) resources in the active resource 
file. Choose an icon from the list and click OK. You can place 
'ICON' and 'cicn' resources into the resource file using a 
standard resource editor, such as ResEdit or Resorceror. 

Mark pop-up menu 
Choose a marker from the Mark pop-up menu to specify a default 
mark to be placed next to the selected menu item (Figure 30-11) . 

• 
<> 

• 
None 

Figure 30-11 Mark pop-up menu 

Note 
Only the Chicago font provides all the characters 
listed in the Mark pop-up menu. For pop-up menus 
in other fonts, be sure to select a marker that exists 
in that font. The • (bullet) character, for example, 
exists in all fonts. 

Command pop-up menu 
Choose a command from the Command pop-up menu to identify 
which command is sent when a user chooses the menu item from 
the menu. To create a command without closing the Menu Items 
dialog box, choose Other from the list. The Commands dialog box 
opens, which you can use to define new commands as well as to 
change the attributes of existing commands. When you dismiss this 
dialog box by clicking OK or Cancel, you return to the Menu Items 
dialog box. 

See the section "Commands Dialog Box" earlier in this chapter for 
more information. 

30-22 Symantec C++ User's Guide and Reference 



Menus Dialog Box + 

Note 
To define color menu items, use a standard resource 
editor such as ResEdit. Note that the Macintosh 
Human Interface Guidelines recommend coloring 
menus sparingly or not at all. 

Menus Dialog Box 
Clicking on Menus in the Edit menu opens the Menus dialog box 
(Figure 30-12). 

Menu title list Menu title textbox 

~ Menus 

• 0 , ll 
Edit 

@ • (Apple Menu) File 
Font ( Edit Menu Items ) 
Popup menu 128: 
Size MENU I 1 I 
Style 

MOH lo I 
( Cancel ) 

75 ( OK ) 

Figure 30-12 Men us dialog box 

Menu list 
The scrolling menu list shows the menus in alphabetic order. 

By selecting a menu item from this list, you can either delete it or 
edit its title (name). To delete a menu from the resource file , press 
Delete. To change a menu's title in the menu list, type the new title 
in the menu title textbox. 

Symantec C++ User's Guide and Reference 30-23 



• 30 Visual Architect Edit Menu 

Menu tide textbox 
The menu title textbox displays the name of the currently selected 
class from the menu list. 

Press Return to clear the textbox before entering the name of a menu 
you want to create. (Alternatively, choose New Menu from the Edit 
menu with the Menus dialog box open.) 

Apple Menu 
To specify the Apple menu, click the "S (Apple Menu)" radio button. 

Edit Menu Items 
Click this button to open the Menu Items dialog box, discussed in 
the previous section 

MENU ID 
When you create or import a menu, Visual Architect automatically 
assigns that menu a unique menu and resource ID. You can change 
the menu ID for the selected menu by entering a different value in 
this textbox. Visual Architect automatically sets the resource ID to be 
the same as the specified menu ID. In this way, Visual Architect does 
not let you create a menu whose resource ID and menu ID are 
different. (This is the most common programming mistake associated 
with menus.) You seldom need to change this field. 

MDEFID 
The MDEF ID field lets you use a custom menu definition procedure 
(MDEF) for the selected menu. The system default value is 0. You 
need to change this field only if you want to use a custom menu 
definition procedure. Refer to Inside Macintosh for details on 
creating a custom MDEF. 

30-24 Symantec C++ User's Guide and Reference 



Command Handling in Generated Code + 

Command Handling in Generated Code 
This section provides information about the code you write in 
addition to the code generated by Visual Architect to handle 
commands. 

AppCommands.h 
Symbols for commands you define in Visual Architect are generated 
to the file AppCommands. h. You should include this file in the 
source file of upper-level classes that need to refer to your 
commands. In fact, an inc 1 ude statement is generated by Visual 
Architect into all upper-level class files, as shown here: 

//#include "AppCommands.h" 
II Remove comments if DoCommand overridden 

It is commented out by default to prevent unnecessary compilation 
whenever AppCommands . h is changed. If you want 
AppCommands . h included, remove the comments. 

Chain of command 
The object that handles a command must normally be located at a 
higher position in the chain of command than the object that sends 
the command. For example, commands sent by menu bar menus can 
be handled by the gopher or any object higher than the gopher in 
the chain of command. 

The exception to the chain of command rule is a floating window. 
The floating window director relays to the gopher all commands it 
receives and does not handle (unless the gopher is inside the 
floating window). This starts the command up the gopher's chain of 
command, so commands from floating windows can behave like 
menu commands. 

Commands from tear-off menus 
For a tear-off menu, the grid selector sends a command that 
ultimately gets directed to the gopher. The command sent is the 
generic form of a menu command: a negative long integer whose 
absolute value has the menu ID in the high-order word and the 
ordinal of the selected item, starting from 1, in the low-order word. 
This means that you do not have to specify commands for menu 
items in tear-off menus. A tear-off menu sends the same command, 
whether or not the menu is torn off. 

Symantec C++ User's Guide and Reference 30-25 



• 30 Visual Architect Edit Menu 

Commands in modal dialog boxes 
In modal dialog boxes, the convention is to assign crndOK to the OK 
button and cmdCancel to the Cancel button. When the dialog 
director receives either command, it returns from DoModalDialog. 
Visual Architect generated code always calls DoModalDialog with 
crndOK as the default command. 

Typically, you want to take one action if the users close a modal 
dialog with the OK button and another if they use the Cancel button. 
The simplest way to do this is to override the EndDialog member 
function in your director class. Let CDialogDirector decide whether 
the command should dismiss the dialog box, then have your code 
take the appropriate actions. For example: 

void MyDialog: :EndDialog(long withCmd, 
Boolean fValidate) 

Boolean dismiss 

if (dismiss ) { 

CDialogDirector: :EndDialog( 
withCrnd, fValidate); 

if (withCmd crndOK) 
II response to OK 
} 
else if (withCmd == cmdCancel) { 
II response to Cancel 
} 

return dismiss; 

Buttons or other objects in modal dialog boxes should not send a 
crndClose command. 

Closing a modeless dialog box 
The Macintosh Human Interface Guidelines recommend that a 
modeless dialog box be closed only by choosing the Close 
command or clicking the close box. (A modeless dialog box should 
always have a close box.) Therefore, just as in modal dialog boxes, 
buttons or other objects should not send a cmdClose command. 

30-26 Symantec C++ User's Guide and Reference 



Visual Architect 
View Menu• 

31 
Trus reference chapter provides detailed explanations of the 

commands on the Visual Architect View menu. In addition, the four 
types of dialog boxes you can open by choosing View Info from the 
menu-Dialog Info, Main Window Info, Floating Window Info, and 
Subview Info-are described. 

Commands in the View Menu 
You use the View menu commands to manipulate the views you 
create in Visual Architect. These commands let you create, edit, and 
try out your views. Figure 31-1 displays the commands in the View 
menu. 

munnm 
mew Info ... 

New mew ... 
Open Uiew 
Delete Uiew ... 

Set Default Command ... 

Try Out sgy 

Figure 31-1 View menu 

You can use these commands to perform the following functions: 

• Examine and edit attributes of views 
• Create, open, and delete views 
• Set default commands 
• Preview views 

Symantec C++ User's Guide and Reference 31-1 



31 Visual Architect View Menu • 

View Info 

This chapter discusses the View menu commands by function in the 
order shown above. The four types of views opened using the View 
Info command are described in detail at the end of the chapter, as 
are the different types of views you can insert using Visual Architect. 

Examining and editing attributes of views 
This command allows you to change the fixed set of attribute values 
of an existing view. 

Opens a View Info dialog box, which you use to examine and edit 
the general attributes of the view whose View Edit window is 
frontmost. If no View Edit window is frontmost, the command is 
disabled. To open a View Edit window for a view, choose Open 
View. 

There are four different types of View Info dialog boxes. The one 
that opens depends on the type of view. 

Table 31-1 View Info dialog boxes 

Dialog box type View type 

Dialog Info Dialog, Modal Dialog, New ... Dialog, 
Splash Screen, Window 

Main Window Info Main Window 

Floating Window Floating Window, Tear-off Menu 
Info 

Subview Info Subview 

Note 
Although some view types share a common View 
Info dialog box, the title for each View Info dialog 
box displays the name of the view it represents. For 
example, the View Info dialog box for Modal 
Dialog views is titled Modal Dialog Info. 

These four types of dialog box are described later in the chapter. 

31-2 Symantec C++ User's Guide and Reference 



New View 

Commands in the View Menu + 

Creating, opening, and deleting views 
This set of commands lets you create a new view, delete an existing 
view, or display an existing view and change its visual components. 

Opens the New View dialog box, which you use to create a new 
view for an application. In this dialog box, you are prompted to 
name the new view and specify the view's type (Figure 31-2). 

Please name the new uiew 

Name: I Untitled 

Uiew Kind: ._I _D_i_a_lo_,g..._ _____ ..... _.I 

( Cancel ) [ OK D 

Figure 31-2 New View dialog box 

Name 
The name you specify in this textbox becomes the name of the 
'CVue ' resource created for the view. Visual Architect requires that 
the view name be unique within the project, so it can be used to 
construct identifiers that are also guaranteed to be unique. If you 
specify a name already in the project, you will be prompted to 
specify another name. 

View Kind pop-up menu 
You choose the view type from the View Kind pop-up menu, as 
shown in Figure 31-3. 

Modal Dialog 
New ... Dialog 
Splash Screen 
Subuiew 
Tearoff Menu 
Window 

Figure 31-3 View Kind pop-up menu 

Symantec C++ User's Guide and Reference 31-3 



31 Visual Architect View Menu • 

Open View 

D 

Position area ---+-

Choose the view type that best fits the role of the window or 
subview you want to design. Then click OK to create the new view. 
A View Edit window is displayed for the view, and the view's name 
is added to the Windows menu. See the Open View command for 
information on the View Edit window. See the section "View Types" 
at the end of the chapter for more information on view types. 

Opens a View Edit w indow for the view selected in the Views List 
window. (The Views List window opens when you click on Vi sual 
Archi t ect. rsrc.) Double-clicking the view's name in the Views 
List window also opens the View Edit window for that view. 

You use this window to design the view's appearance and 
functionality. Figure 31-4 shows the name of the view as the title of 
the View Edit window. Note that the view name is not necessarily 
the same as the title of the user window. The view name is set when 
the view is created and can be changed in the View Info dialog box, 
as described earlier in this chapter. 

Main 

portRect ----i 

Figure 31-4 Empty View Edit window 

Panes are added to the View Edit window using the Tool palette, 
described in Chapter 34, "Visual Architect Tools Menu ." 

3 1-4 Symantec C++ User's Guide and Reference 



Delete View 

Commands in the View Menu + 

portRect 
The thick gray rectangle outline extending from the upper-left corner 
to the lower-right corner of the View Edit window is the portRect. 
The portRect defines the size of the user window or subview you are 
editing. You can make the user window larger or smaller by 
dragging the sizing handle in the lower-right corner. To see a 
window exactly as it will look to the user, choose Try Out from the 
View menu (Command-Y) at any time. 

Note that the drawing area extends beyond the portRect; as a result, 
you can edit objects that are outside the user window. This is useful 
for editing panes that are only visible under certain conditions in the 
running application and are kept offscreen until needed. 

If the user window has scroll bars, an additional one or two gray 
lines are displayed inside the portRect, showing the space occupied 
by these scroll bars. 

Position area 
The white rectangle in the lower-left corner of the View Edit window 
is the Position area, as shown in Figure 31-4. When the Show 
Position option is set on (see Chapter 33, "Visual Architect Options 
Menu"), the coordinates of the currently selected object or objects 
are shown in this area. These coordinates are useful for resizing the 
portRect. 

Lets you delete the view associated with the frontmost window. If 
the frontmost window does not belong to a view, the view whose 
name is selected in the Views List window is deleted. A dialog box 
opens, prompting you to confirm the delete operation. 

Setting default commands 
This command determines the outcome of Enter or Return being 
pressed. 

Symantec C++ User's Guide and Reference 31-5 



31 Visual Architect View Menu • 
Set Default Command 

Try Out :J:€Y 

Opens the Default Command dialog box, which you use to set the 
default command for the view whose View Edit window is frontmost 
(Figure 31-5). The default command for a view is the command sent 
when the user presses Return or Enter-that is, the command sent 
by the CButton item with the double border. 

Default Command 

Command: ._I _c_m_d_OK _____ ..-_.l 

(Cancel) 

Figure 31-5 Default Command dialog box 

Choose the default command from the Command pop-up menu 
and click OK. 

Previewing views 
This command lets you display the visual structure of a created view. 

Opens a preview window for the view associated with the frontmost 
window. There, you can preview a view to verify its look and feel in 
the running application. All panes in the preview window are active 
and function in the same way as in the application. For example, 
radio buttons obey button group assignments, pop-up menus work, 
and scrolling text panes allow text entry and scrolling. 

With this feature, you can test a view without having to go through a 
complete development cycle of generating code with Visual 
Architect, updating the project and building the application in the 
Symantec Project Manager, and running the application. 

Note 
Although panes are active, no commands other than 
cmdOK and cmdCancel are handled in Try Out 
mode. 

31-6 Symantec C++ User's Guide and Reference 



Window 
types 

Types of View Info Dialog Boxes + 

To close the preview window, do one of the following: 

• Click the close box for the window, if one exists. 

• Click a button that, in the running application, closes the 
window. 

• Choose Close from the File menu (Command-W). 

Types of View Info Dialog Boxes 
Choosing the View Info command opens one of four types of dialog 
boxes. The type of dialog box that opens depends on the type of 
view whose View Edit window is frontmost. 

Dialog Info dialog box 
The Dialog Info type of dialog box (Figure 31-6) is used for Modal 
Dialog Info, New ... Dialog Info, Splash Screen Info, and Window 
Info views. 

Dialo Info 

Name: l~I ID: 129 

Title: I MyDialog 

Wi ndo'w' Class: I CDialog ....-1 

D modal 
D Use file 
D Print 

K OK D 
(Cancel ) 

~LJDDLJD[j]c:J 
D Vert. Scroll D Horiz. Sc:roll D Size Box D goA'w'a y Flag D actClick 

Position Centered ....-1 L ,. ;"\ L:::::::::::::::::::::::::::J ; ,, l' i:::::::::::::::::::::::::::::::::J 

Width: 1400 
~----~ 

Height: I 200 
-----~ 

proclD: 14 
--~ 

Min Width: ,....14-0----~ Min Height: I 40 
-----~ 

Max Width: ~I s_1_2 ___ ~ Max Height: ,....13_4_2 ____ _, 

Figure 31-6 Dialog Info dialog box 

Symantec C++ User's Guide and Reference 31-7 



• 31 Visual Architect View Menu 

Name 
This textbox displays the name of the view, which is also the name 
of the view resource in the Visual Architect resource file. Note that if 
you change the view name displayed: 

• The names of all the data members that represent the 
view's panes change, because their names are 
constructed using the view name (for example, 
CButton *MyView_Buttonl). 

• A new viewnamei t ems . h file is generated because this 
file's name incorporates the view name. The old file, 
rendered obsolete, should be discarded. 

• New upper- and lower-layer class files are generated for 
the view because the files' names incorporate the view 
name. The old files, rendered obsolete, should be 
discarded. 

As a result of a change in view name, any upper-layer files that refer 
to the view's panes by name or include the old items file no longer 
compile. You must change these references manually. 

ID 
The view's resource ID in the Visual Architect resource file is 
displayed next to the Name textbox. This ID is set automatically by 
Visual Architect when the view is created; you cannot change the ID. 

You can use the procID field to identify a 'WDEF ' window 
definition resource that you have added to the active resource file 
manually, using a standard resource editor, such as ResEdit or 
Resorceror. Refer to Inside Macintosh for details on 'WDEF ' and 
procID. 

Title 
This textbox displays the title of the window or dialog box as it is 
shown in the application. 

Modal 
When this option is set on, the view is modal. This option only 
applies to Dialog views. 

31-8 Symantec C++ User's Guide and Reference 



Types of View Info Dialog Boxes + 

Window Class 
Use this pop-up menu to specify the CWindow- or CDialog-derived 
class for the view. You can choose CWindow, CDialog, or any 
CWindow-derived class you have defined through the Classes 
dialog box. 

Window Types 
Icons for the ten window types are displayed below the Window 
Class pop-up menu. Numeric procIDs, which are used to define 
these types, can be set using these icons. Refer to Inside Macintosh 
for details on procIDs. 

Note that if you select the icon with the question mark, you must 
supply the proclD. 

Vert. Scroll 
Setting this option on provides the view with a vertical scroll bar. In 
this case, the main panorama of the view is enclosed in a 
CScrollPane. 

Horiz. Scroll 
When this option is set on, the view has a horizontal scroll bar. In 
this case, the main panorama of the view is enclosed in a 
CScrollPane. 

Size Box 
When this option is set on, the view has a size box. In this case, the 
main panorama of the view is enclosed in a CScrollPane. 

goAwayFlag 
When this option is set on, the view has a goAwayFlag. This flag is 
not relevant if the view is a modal dialog box. 

actClick 
Typically, if the user clicks a view in the background, the view is 
activated (brought to the foreground) but the pane that was clicked 
does not receive the click message. If actClick is set on, the pane 
does receive the click message. 

Position 
Use this pop-up menu to determine whether the view initially is 
centered, staggered, or placed with its upper-left corner at a fixed 
position. 

Symantec C++ User's Guide and Reference 31-9 



• 31 Visual Architect View Menu 

Left, Top 
These textboxes are enabled if you choose Fixed from the Position 
pop-up menu. Type in values for the upper-left corner of the view. 

Width, Height 
Use these textboxes to establish the initial width and height of the 
view. 

Min Width, Min Height, Max Width, Max Height 
Use these textboxes to determine the dimensions for the view's 
sizeRect. 

Main Window Info dialog box 
The Main Window Info type of dialog box is used for a single type 
of view: Main Window. An example of the Main Window Info 
dialog box is shown in Figure 31-7. 

Main (Document) Info 

Name: i;f]f;ll:J!Jll\l8'1t(tl!!lfiiiK I ID: 1 28 

Title: I My Mai nWi ndo'W 

Wi ndo"W Class: I CWi ndo"W .,.. I 

D modal 
[SJ Use file 
[SJ Print 

LJ~LJDDLJ 

K OK D 
( Cancel ) 

[SJ Vert. Scroll [SJ Horiz. Scroll [SJ Size Box [SJ goA"WayFlag D actClick 

Position Staggered .,.. I !. ,, ;'l c:::::::::::::::::::::::::::::J ' ,, ;' ::::::::::::::::::::::::::::::::::! 

Width: ._I 4_o_o ____ _. Height: ._I 2_0_0 ____ _. proc ID: ._I o __ _, 

Min Width: ._I 4_0 ____ ~ Min Height: 1~4_o ____ ~ 

Max Width: ~I s_1_2 ____ ~ Max Height: 1~3_4_2 ____ ~ 

Figure 31-7 Main Window Info dialog box 

Most of the options in this dialog box are the same as those 
displayed in the Dialog Info dialog box (see the previous section). 
The options that are different or are used differently are described in 
the following sections. 

Modal 
Because the Main Window view typically should be modeless, set 
this box option off. 

31-10 Symantec C++ User's Guide and Reference 



Types of View Info Dialog Boxes + 

Use File 
Setting this option on allows the Main Window view to support 
open, save, and revert file functions. In this case, the director class is 
derived from CSaver. When it is set off, the Main Window view has 
no associated file and the director class is derived from CDocument. 

Note 

Print 

You can derive your document class from a lHINK 
Class Library class named CSimpleSaver. AB its name 
suggests, this class is easier to use than CSaver; it 
does not use Object 1/0. To use CSimpleSaver, 
leave the Use File option off, and, in the Classes 
dialog box, set the library class of your document 
class to CSimpleSaver. 

When this option is set on, the document is initialized as printable. 
Refer to the information on the classes CDocument and CPrinter in 
the online THINK Reference for details. 

Window Class 
Typically, a Main Window view's window object is derived from 
CWindow. Use the Window Class pop-up when you have defined a 
CWindow-derived class you want to use for a view. A Main Window 
view can also use a CDialog-derived window, but its director class is 
always derived from CDocument, not from CDialogDirector. 

Floating Window Info dialog box 
The Floating Window Info dialog box type is used for Floating 
Window and Tear-off Menu views. The difference in dialog box 
layout for the two views is the Menu pop-up menu. This menu is 
present only in the Tear-off Menu Info dialog box, as shown in 
Figure 31-8. 

Symantec C++ User's Guide and Reference 31-11 



• 31 Visual Architect View Menu 

Window 
type icons 

Tearoff Menu Info 

Name: I~------~ MyTearoffMenu ID: 132 

Title : I MyTearoffMe nu 

Wi ndo'w' Cl ass: I CWi ndo'v1 T I 

I 1""'"'"1 I 1 ~1 I c:J Menu : I Tearoff 1 30 TI 
D \•'ert. Scroll D Horiz Scroll [ZJ actcl ick 

proclD: I ~ 3_2_oo __ ~I WDEF ID: 2~?. ..................... , 
Position I Centered TI :,,>;'\ < ............................. , T,,;, 

r·····························: 
:. ............................. : 

Height: ~I 1_s_o __ ~ 

Mi n Height: ~14_0 ___ ~ 

Max Height: ~13_4_2 __ ~ 

Width : l 2so 

MinWidth: 140 

MaxWidth: ls12 

( Cancel ) 

( OK Il 

Figure 31-8 Tear-off Menu Info dia log box 

Most of the options in these dialog boxes are the same as those in 
the Dialog Info dialog box discussed previously. Following is a 
discussion of the items that are different. 

Window Type 
The window type icons represent the procID for the window. The 
standard floating window • WDEF • supports a drag bar at the top of 
the left side of the window. Click one of the first two icons to select 
the floating window · WDEF • . The procID corresponding to that 
window is then displayed in the procID box. 'V<Then you click the 
icon with the question mark, you must supply the procID yourself. 

Menu 
The Menu pop-up menu lets you choose the menu that will be 
displayed in the Tear-off Menu view. 

WDEFID 
The resource ID of the • WDEF • is displayed next to the procID 
textbox. This value is set automatically according to the following 
formula: 

WDEF ID (procID - variation code) I 16 

3 7 -7 2 Symantec C++ User's Guide and Reference 



Types of View Info Dialog Boxes + 

Refer to Window Manager documentation in Inside Macintosh for 
more information on the 'WDEF' ID. 

Because the Floating Window and Tear-off Menu views cannot use 
files, be modal, or print, the check boxes for these options are not 
present in these View Info dialog boxes. 

Subview Info dialog box 
The Subview Info type of dialog box is only used for Subviews. An 
example of this dialog box is shown in Figure 31-9. 

Subuiew Info 

Name: l ft!YStilivfeial~.t. . · ~~'-! I ID : 1 31 

O Vert. Sc roll 0 Horiz. Scroll O Size Box 

Frame: 'Width: 1400 height: 1200 

Bounds: right: I s12 bottom: 1342 

Step: hStep: 11 6 vStep: 116 

Figure 31-9 Subview Info dialog box 

( Cancel ) 

(( OK J) 

The subview is not a window but a panorama (with an optional 
scroll pane). (Refer to Chapter 28, "Programming with the THINK 
Class Library," for a description of panoramas.) The options in the 
dialog box are described in this section. 

Name 
This textbox displays the name of the subview. See the description 
of the Name option in the section "Dialog Info dialog box" earlier in 
this chapter for general notes on changing a view name. 

ID 
The unique ID for this view is shown next to the Name textbox. 

Vert. Scroll 
When this option is set on, the subview has a vertical scroll bar. In 
this case, the subview's main panorama is enclosed in a CScrollPane. 

Horiz. Scroll 
When this option is set on, the subview has a horizontal scroll bar. In 
this case, the subview's main panorama is enclosed in a CScrollPane. 

Symantec C++ User's Guide and Reference 31-13 



• 31 Visual Architect View Menu 

Size Box 
When this option is set on, the subview has a size box. In this case, 
the subview's main panorama is enclosed in a CScrollPane. 

Frame Width and Height 
Use these textboxes to determine the width and height of the 
subview. 

Bounds Right and Bottom 
Indicate the bottom-right corner of the panorama's bounds rectangle 
in these textboxes. The top-left value is always (0,0). 

Note 
You can set the bounds of the Subview's panorama 
directly in the Subview Info dialog box. This 
method is particularly useful for a scrolling 
Subview. 

Step hSetp and vStep 
Use these textboxes to determine the horizontal and vertical step 
values (number of pixels the panorama scrolls in a single step). 

View Types 
You can choose from nine types of views from the View Kind pop­
up menu. 

Dialog 
A Dialog view may be used in any context, but typically it is used to 
present and gather information. Dialog views are preset to modeless. 
These views use a CDialog window and are implemented using a 
CDialogDirector-derived director. 

Floating Window 
A Floating Window view is drawn in front of all nonfloating views. 
This type of view is often used as a palette-for example, as a 
collection of drawing tools, colors, or patterns from which the user 
can select. A Floating Window view is never activated or deactivated. 
A CSelector-derived panorama displays the palette and monitors 
selections. At run-time, all Floating Window views are created during 
initialization and hidden offscreen until needed. A Floating Window 
view uses a CWindow window and is implemented using a 
CFloatDirector-derived director. 

31-14 Symantec C++ User's Guide and Reference 



View Types + 

Note 
Do not use the Floating Window view to implement 
a tear-off menu. Instead, you should use the Tear­
off Menu view described later in this chapter. 

Main Window 
A Main Window view serves as the center of the user's attention. It 
displays the document in a document-editing application, or serves 
as a home display in a utility or database-type application. By 
default, a Main Window view is created when the user chooses New 
from the application's File menu. 

A document-based application typically defines just one Main 
Window view, but it may define more if it edits more than one 
document type. In any case, multiple Main Window views can be 
open simultaneously, for example, when the user has multiple 
documents open. A Main Window view uses a CWindow window by 
default, but can instead use a CWindow-derived or CDialog-derived 
window. A Main Window view is always implemented using a 
CDocument-derived director. If you set the Use File option on in the 
Main Window Info dialog box for the view, the document class is 
derived from CSaver. 

Modal Dialog 
A Modal Dialog view is essentially the same as a Dialog view, but it 
is preset as modal. As with a Dialog view, a Modal Dialog view uses 
a CDialog window and is implemented using a CDialogDirector­
derived director. 

New Dialog 
You use a New Dialog view when you have more than one Main 
Window view. A New Dialog view (which appears as New ... Dialog 
on the View Kind pop-up menu) is a Modal Dialog view used to 
select the type of document to create when New is chosen from the 
File menu. The New Dialog view uses a CDialog-derived window 
and is implemented using a CDialogDirector-derived director. 

Splash Screen 
A Splash Screen view is essentially the same as a Dialog view, but it 
is displayed as soon as possible after the application launches and is 
removed as soon as initialization completes. A Splash Screen view is 

Symantec C++ User's Guide and Reference 31-15 



• 31 Visual Architect View Menu 

modeless. A Splash Screen view uses a CDialog-derived window and 
is implemented using a CDialogDirector-derived director. 

Subview 
A subview is the only kind of Visual Architect view that is not a 
window. Instead, it is a panorama. Using a subview, you can define 
a pane independently from the windows that display it. This is a 
useful option when you want to use the same pane in more than 
one window or edit a window with a deeply nested View hierarchy. 
A subview can scroll and can contain any other pane types, 
including other subviews. 

Creating a subview does not automatically define a derived class 
because a panorama-derived class is not strictly necessary in order to 
use a subview if the panes in the panorama provide an essential part 
of the user interface. 

This is in contrast to other views, for which derived classes are 
defined automatically. However, if you want a subview's panorama 
to play an active role in the user interface (for example, receive 
commands), then you must derive your own panorama class and use 
it for the subview's panorama. To do so: 

1. Use the Classes dialog box to define your own derived 
class of CPanorama, as described in Chapter 30, "Visual 
Architect Edit Menu." 

2. In the View Edit window for the subview, with no panes 
selected, choose Class from the Pane menu and choose 
your derived class from the submenu, as described in 
Chapter 32, "Visual Architect Pane Menu." 

Tear-off Menu 
A Tear-off Menu view is essentially the same as a Floating Window · 
view, but it is used to implement a tear-off menu. A Tear-off Menu 
view uses a CWindow window and is implemented using a 
CTearOffMenu-derived director. 

Window 
A Window view is a plain director view, as distingu~shed from the 
Main Window view, which is a document view. A Window view is 
used when a document needs more than one window to display its 
contents. The primary document view is designated as a Main 
Window view, while all other document-related views are Window 

31-16 Symantec C++ User's Guide and Reference 



View Types + 

views. For this arrangement to work, the Window view must be 
supervised by the Main Window view. A Window view uses a 
CWindow window and is implemented using a CDirector-derived 
director. 

Symantec C++ User's Guide and Reference 31-17 



31 Visual Architect View Menu • 

31-18 Symantec C++ User's Guide and Reference 



Visual Architect· 
Pane Menu• 

32 
Triis chapter provides a detailed explanation of the commands in the 

Visual Architect Pane menu. You use these commands to change the 
characteristics of panes in your views. In addition, the options on the 
Pane Info window and ScrollPane Info window are described. 

Commands in the Pane Menu 
The Pane menu commands let you create and edit the panes in 
Visual Architect views. You can examine and change data members 
in a class hierarchy; specify font, size, and style for displayed text; 
and set a color for displaying a pane. You can also specify the 
arrangement of panes on the screen. Figure 32-1 displays the 
commands on the Pane menu. 

Pane Info... OOL 
ScrollPane Info ... 

Class ~ 

Font ~ 
Size ~ 
Style ~ 
Color ... 

Rlign ~ 
Bring To Front 
Send To Back 

Set Button Group 

Identifier... OOJ 

Figure 32-1 Pane menu 

Symantec C++ User's Guide and Reference 32-1 



32 Visual Architect Pane Menu • 

Pane Info :!€ L 

The Pane menu commands are used to perform the following 
functions: 

• Edit data members in a class hierarchy 
• Select classes for a pane 
• Set display options for a pane 
• Arrange panes in the View Edit window 
• Group radio button panes 
• Change the identifiers for panes 

This chapter discusses the Pane menu commands by function in the 
order listed above. 

Editing data members in a class hierarchy 
The following two commands open the Pane Info and the ScrollPane 
Info windows. 

Opens a Pane Info window for the currently selected pane in the 
frontmost View Edit window. In this window, you can examine and 
edit data members in the class hierarchy. If no View Edit window is 
frontmost or if no pane is selected, the command is disabled. The 
Pane Info windows are different for each pane class, but are 
organized similarly for all pane classes (Figure 32-2). 

Note 
You can also open the Pane Info window by 
double-clicking a pane in the View Edit window. 

32-2 Symantec C++ User's Guide and Reference 



Commands in the Pane Menu + 

Stan 

Identifier: !!!I =t=at~=======~ 
Left: ._I 2_6_a __ _, 

Width: ._I 3_0 __ ___. 

f> CStf<ti f,l ext 

CEditText 

hText: I Time of day 

Top: ._I z_6_0 __ _, 

Height:!._ 1_6 __ ___. 

spaci ngCmd: [ cmdSi ngl eSpace TI 
alignCmd: I cmdAlignLeft TI 

f> CAbstractText 

f> CPanorama 

f> CPane 

f> CViev 
·~ (011 

Figure 32-2 Pane Info window 

Class 
subarea 

The title of the Pane Info window identifies the pane. You can edit a 
pane's identifier in the Identifier textbox at the top of the Pane Info 
window or with the Identifier dialog box, as described in the 
section "Changing the identifiers for panes, " later in the chapter. 

The Left, Top, Width, and Height textboxes at the top of the Pane 
Info window let you change the position and size of the pane in 
relation to the view's main panorama (that is , the enclosing 
window). 

The remainder of the Pane Info window shows the pane 's class 
hierarchy, beginning with the most deeply derived class of the pane 
and ending with the CView class. (Base classes of CView are not 
shown because they do not have any data members that can be 
edited in Visual Architect.) 

The small triangles next to the class names let you access the 
contents of each class. The triangles exist in two states: closed, when 
they point to the right, and open, when they point down. Clicking a 
closed triangle opens a subarea below the class name and reveals 
the contents of that class. Clicking an open triangle closes the 
subarea and hides the contents of that class. 

Symantec C++ User's Guide and Reference 32-3 



• 32 Visual Architect Pane Menu 

Each class subarea contains the editable subset of the data members 
for that class. The online THINK Reference contains definitions of 
these data members. The labels shown in the Pane Info window 
generally are the same as the data member names in the THINK 
Class Library. Data members that do not appear in the subarea are 
given default values when the view is run. 

Changes made in the Pane Info window are reflected immediately in 
the target pane. For example, if you type a value in a CPane class 
data member's Width or Height textbox, the size of your pane in the 
View Edit window changes while you are typing. 

A Pane Info window is specific to a pane, so you can have multiple 
Pane Info windows open simultaneously. When you close a view, 
Pane Info windows associated with panes in that view are 
automatically closed. 

You can directly edit the text of static text, edit text, push button, 
radio button, or check box panes without using the Pane Info 
dialog box. Simply select the pane and press Return or Enter. 

You can edit or type text in the pane, up to 32K characters. Press 
Return to add new lines. When you are finished editing, click outside 
the pane. Panes are resized automatically to fit the text. 

Text in control panes is automatically centered vertically when you 
enter multiple lines of text. Push button text is centered both 
vertically and horizontally. Static text panes more than one line high 
retain their original shape. To change the shape, reselect the pane 
and drag the knob in the lower-right corner to the desired shape. 
Dialog text panes of any size retain their shape unless you extend 
the pane by typing more text than the box can hold. You can make a 
dialog text pane larger by entering text in it. 

Static and dialog text panes are edited with the wholeLines attribute 
on (in the CAbstractText subarea), so there is no extra space at the 
bottom of the pane. 

32-4 Symantec C++ User's Guide and Reference 



ScrollPane Info 

Class 

Commands in the Pane Menu + 

Opens a ScrollPane Info window for the currently selected pane in 
the frontmost View Edit window. If the pane is not a List/Table or a 
Panorama pane, it does not have an associated scroll pane. In this 
case, the command is disabled. The ScrollPane Info window (Figure 
32-3) is similar to the Pane Info window described above. 

Pano3 

Identifier: i.:1 P=a=no=3========::!.l 

Left: l~~_o_s __ ~ 
Width: 1~1_5_6 __ ~ 

Top: 1~1_0_4 __ ~ 

Height: In 
~---~ 

CScrollPane 

rgi Vertical Scroll 
D Horizontal Scroll 
D Size Box 

D Use Sim 
rgi Border 

Figure 32-3 ScrollPane Info window 

Only CScrollPane class data members can be edited in the ScrollPane 
Info window. Refer to online THINK Reference for definitions of 
these data members. 

Selecting classes for a pane 
You select a class for a pane by choosing from among the options 
presented in the Class submenu. 

Opens a submenu containing the classes available either for the 
currently selected pane in the frontmost View Edit window or for the 
View Edit window itself, if no pane is selected (Figure 32-4) . You can 
then select from the options provided. 

CDialogleHt 
CI ntegerleHt 

../ CFiHedPointEditleHt 
CFloatingPointEditleHt 

Figure 32-4 Class submenu 

Symantec C++ User's Guide and Reference 32-5 



32 Visual Architect Pane Menu • 

Font 

Classes listed above the divider are the appropriate THINK Class 
Library classes for the pane. Classes listed below the divider are your 
own classes for which the classes shown above the divider are the 
base classes. A checkmark, placed next to the class when you 
choose it from the submenu, indicates the class from which the pane 
is derived. 

To change a view's class from CPanorama to one of your own 
CPanorama-derived classes, make sure that no panes are selected in 
the View Edit window and then choose the new class from the Class 
submenu. 

Setting display options for a pane 
You can determine the appearance of the text in a selected pane by 
selecting a font, size, style, and color. 

Opens a submenu containing all available fonts. You can choose a 
font for displaying text in the selected pane in the frontmost View 
Edit window. 

Note 
Font changes apply to push buttons, check boxes, 
and radio buttons, as well as to text panes. 

Size Opens a submenu containing the available sizes for the current font. 
You can choose a font size for displaying text in the selected pane in 
the frontmost View Edit window. 

Style Opens a submenu containing the available font styles. You can 
choose a font style for displaying text in the selected pane in the 
frontmost View Edit window. 

Color Opens the standard Macintosh Color Picker dialog box, in which 
you choose a color for displaying text in the selected pane in the 
frontmost View Edit window. Consult your Macintosh documentation 
for details on using this dialog box. 

32-6 Symantec C++ User's Guide and Reference 



Align 

Left, Right, Top, Bottom 

Left-Right Center 
Top-Bottom Center 

Text Baselines 

With Grid 

Center L-R In View 
Center T-8 In View 

Commands in the Pane Menu • 
Arranging panes in the View Edit window 
The following commands let you position panes as well as place 
them at the beginning or end of the drawing order. 

Opens the Align submenu (Figure 32-5). The commands on this 
menu let you align the selected panes in the frontmost View Edit 
window. 

Left 
Right 
Top 
Bottom 
Left-Right Center 
Top-Bottom Center 

TeHt Baselines 
With Grid 

Center L-R In Uiew 
Center T-B In Uiew 

Figure 32-5 Align submenu 

Reposition the selected panes so that their left, right, top, or bottom 
sides, respectively, are aligned. 

Reposition the selected panes so that their horizontal or vertical 
midlines, respectively, are aligned. 

Repositions static text and dialog text panes so that the baselines of 
the first lines of text are aligned. 

Repositions the panes onto a grid whose size is defined in the 
Preferences dialog box. See Chapter 33, "Visual Architect Options 
Menu," for details on using a grid to position panes. 

Reposition the panes so that their horizontal or vertical midpoints, 
respectively, are centered horizontally or vertically in the view. 

Besides Align, the other two commands on the Pane menu for 
arranging panes are Bring To Front and Send To Back. 

Symantec C++ User's Guide and Reference 32-7 



32 Visual Architect Pane Menu • 
Bring To Front 

Send To Back · 

Set Button Croup 

Identifier :l€ J 

Brings the selected pane to the end of the drawing order in the 
frontmost view. The drawing order of overlapping panes is the order 
in which they are drawn by the computer, even if the panes 
currently overlap as a result of dragging or using this command. The 
frontmost pane is thus the one that was last drawn or last dragged 
over the others by the user. 

Sends the selected pane to the beginning of the drawing order in the 
frontmost view. See the preceding discussion of Bring To Front for 
a definition of drawing order. 

Note 
The drawing order of panes affects not only their 
appearance in the view, but also w hether they 
receive mouse clicks. For example, if a check box 
pane is behind a rectangle pane, it is not possible 
for the user to change the check box pane's value in 
the running application. 

Grouping radio button panes 
You can group radio buttons in views with this command. 

Lets you associate the selected radio button panes into a single 
group. Only one radio button in a group can be on at a time; 
clicking a button turns the currently selected button off. You can 
define as many button groups in a view as you want. 

Changing the identifiers for panes 
You can change the identifier for panes with this command. 

Opens the Identifier dialog box (Figure 32-6). Here, you can 
change the identifier for the selected pane in the frontmost View Edit 
window. 

Identifier 

Identifier: L'!I R~e~c~t~3==========~ 

( Cancel ) ( OK J 

Figure 32-6 Identifier dialog box 

32-8 Symantec C++ User's Guide and Reference 



Commands in the Pane Menu + 

Type the new identifier for the pane in the Identifier textbox and 
click OK. You can also change the identifier for a pane in the Pane 
Info window, as described in the section "Editing data members in a 
class hierarchy," earlier in this chapter. 

Symantec C++ User's Guide and Reference 32-9 



32 Visual Architect Pane Menu • 

32-10 Symantec C++ User's Guide and Reference 



Visual Architect 
Options Menu• 

33 
Trus chapter explains the commands in the Visual Architect Options 

menu. These commands are used to customize the Visual Architect's 
View Editor. 

Commands in the Options Menu 
You use the Options menu commands to set the behavior of the 
View Editor in Visual Architect. Customization options include grid 
size, pane positioning, display button groups, and pane item 
numbers. Commands in the Options menu are shown in 
Figure 33-1. 

../Honor Grid 
..,.1 Lazy Select 

Show I tern Numbers 
Show Button Groups 

..,.1 Show Position 

Figure 33-1 Options menu 

These commands are used to perform the following functions: 

• Position and select frames 
• Display pane and button information 

This chapter discusses the Options menu commands by function in 
the order listed above. 

Symantec C++ User's Guide and Reference 33-1 



33 Visual Architect Options Menu • 

Honor Grid 

Lazy Select 

When you launch Visual Architect, all options are set to default 
settings. Most of these can be set in the Preferences dialog box, 
which is accessed by choosing Preferences from the File menu. 
After launch, you can use the Options menu to change the values 
from those set by default to other values suitable to the specific 
project. 

Positioning and selecting panes 
You can choose to have panes snap automatically to positions on a 
grid. You can also choose options for selecting panes. 

Forces the top-left and bottom-right coordinates of newly drawn or 
resized panes in the View Edit window to be even multiples of the 
grid step size. When the command is disabled, panes can be placed 
at any pixel position in the window. 

You can set the grid step size to any positive power of two using the 
Preferences dialog box. 

Even when Honor Grid is enabled, a pane can be positioned off the 
grid in any of the following ways: 

• Creating the pane before enabling Honor Grid. 

• Using the arrow keys with the Command key held down 
to move a pane in single-pixel steps. 

• Entering numeric values in either the hEnc 1 or the 
vEncl data member textbox of a pane in the Pane Info 
window. This moves the pane to that exact position. (See 
Chapter 32, "Visual Architect Pane Menu.") 

When a pane is moved by dragging, it maintains its relative offset 
from the grid. When multiple panes are moved at the same time, 
they maintain their positions relative to each other. 

Allows you to select a pane by dragging the selection rectangle so it 
intersects the pane's frame. If the command is disabled, you can 
select a pane only if the selection rectangle completely encloses the 
pane's frame (similar to selecting in MacDraw™). 

One reason to use Lazy Select is that a pane's frame size is not 
always obvious-the frame may be larger than the drawing inside. 
However, it is easier to select small panes inside large panes with 
Lazy Select disabled. 

33-2 Symantec C++ User's Guide and Reference 



Show Item Numbers 

Show Button Groups 

Show Position 

Commands in the Options Menu + 

Displaying pane and button information 
Use these three commands to display pane and button information 
in the View Edit window. 

Displays the number of each pane in the drawing order in a small 
box in the upper-right corner of the pane's frame. If the command is 
disabled, pane numbers are not shown. 

Panes with lower numbers are drawn earlier than panes with higher 
numbers. This makes them appear behind panes that are drawn 
later. The drawing order is the same as the tab order in Dialog views. 
The tab order is the order in which panes are selected when you 
press the Tab key to move between them. 

To change a pane's drawing order number, choose the Bring To 
Front or Move To Back commands from the Pane menu. Newly 
created or pasted panes always appear at the end of the drawing 
order, that is, with the highest item numbers. Enabling Show Item 
Numbers disables Show Button Groups. 

Displays the button group of each button in a small box in the 
upper-right corner of the pane's frame. For buttons that are not a 
part of a button group, or non-button panes, the button group is 
shown as 0. Enabling Show Button Groups disables Show Item 
Numbers. 

Displays the coordinates and color of the currently selected pane or 
panes, or the coordinates of the portRect. (The portRect is the 
rectangle that surrounds the portion of the View Edit window that 
will appear in the window of the built application. See Chapter 14, 
"Tutorial: Beeper," for an example.) The coordinates are shown in 
the Position area in the lower-left corner of the View Edit window. 

Symantec C++ User's Guide and Reference 33-3 



33 Visual Architect Options Menu • 

33-4 Symantec C++ User's Guide and Reference 



Visual Architect 
Tools Menu• 

34 
Tnis reference chapter provides detailed descriptions of the tools on 

the Tool palette, which is displayed by clicking on the Tools menu 
in Visual Architect. You use these tools to add different types of 
panes to views-including text, pop-up menu, multistate button, 
scrollable, and graphic panes as well as subpanes. 

Introducing the Tools Menu 
You use the Tool palette to add panes to the view whose View Edit 
window is frontmost. (See Chapter 31, "Visual Architect View Menu," 
for information on the View Edit window.) Whenever the frontmost 
window is not a View Edit window, the palette is temporarily hidden 
(and the Tools menu is disabled). 

By selecting a tool from the Tool palette, you can drop or draw a 
pane object of the corresponding type into a view. The palette is a 
tear-off menu, so you can drag it to another position on the screen, 
and it remains visible unless you close it using the close box. 

ii o mmmmmmmmmm 

~Alm 
@ ® IZI 

~II~ 
~00~ 
~~g 

+oo 
"--Od 

Figure 34-1 Tool palette 

Symantec C++ User's Guide and Reference 34-1 



• 34 Visual Architect Tools Menu 

This chapter begins with descriptions of the palette tools, starting 
with the Select tool at the upper left. The following sections discuss 
three things: using these tools to create panes, pasting to the 
Clipboard, and adjusting panes. 

Tool descriptions 
The class of the pane each tool creates is indicated in parentheses. 

Select 
Choosing the Select tool changes the cursor to an arrow, the 
standard Macintosh selection cursor. To select a single pane, click on 
it. To select multiple panes, click them while holding down the Shift 
key. Alternatively, click an empty part of the drawing area and, 
holding down the mouse button, drag the cursor until the selection 
rectangle encompasses the panes you want to select. 

As described in Chapter 33, "Visual Architect Options Menu," Visual 
Architect offers two selection modes: Normal and Lazy Select. 

Static Text and Dialog Text 
The Static Text and Dialog Text tools create static (CStaticText) and 
editable (CDialogText) text panes. When using the Static Text tool, 
click in the View Edit window to position the page. A blinking 
insertion point appears, letting you enter the text. When using the 
Dialog Text tool, click or click and drag in the View Edit window to 
create the pane. For both types, you can edit the pane once it has 
been created by selecting it and pressing Enter (Return). This 
changes the cursor to an I-beam, which you then click within the 
text to position the cursor. 

Terminate text editing by either pressing Enter or clicking outside 
the pane. You can set the font, size, style, and color of text panes 
with the appropriate items in the Pane menu, as described in 
Chapter 32, "Visual Architect Pane Menu." 

Push Button, Radio Button, Check Box, and Scroll Bar 
The Push Button, Radio Button, Check Box, and Scroll Bar tools 
create standard control pane objects with push button, radio button, 
check box, and scroll bar behavior ( CButton, CRadioControl, 
CCheckBox, and CScrollBar classes). 

34-2 Symantec C++ User's Guide and Reference 



Note 

Introducing the Tools Menu + 

The CScrollBar class is specialized to deal with 
Apple's standard scroll bar control, which behaves 
rather idiosyncratically. You probably will have to 
override one or more CScrollBar member functions 
to create another kind of slider. 

Pop-up Menu 
The Pop-up Menu tool creates standard pop-up menu panes 
(CStdPopupPane), which are used to display menus. See Chapter 30, 
"Visual Architect Edit Menu," for information on using menus. 

Icon and Picture 
The Icon and Picture tools create standard THINK Class Library icon 
(CiconPane) and picture (CPicture) pane objects in black-and-white 
or in color. You can utilize any 'PICT, 'ICON', or 'cicn' 
resources that are in the active resource file. Place these resources 
into the resource file using a standard resource editor, such as 
ResEdit or Resorceror. . 

Icon Button and Picture Button 
The Icon Button and Picture Button tools create icon (CiconButton) 
and picture (CPictureButton) multi-state button panes. These buttons 
can have a different appearance for on, off, and highlight states, or 
they can be color-highlighted or framed. Icon and picture buttons 
can be configured to act as push buttons, radio buttons, or check 
boxes. You can display any 'PICT, 'ICON', or 'cicn' resources 
that are in the active resource file. Place these resources into the 
resource file using a standard resource editor, such as ResEdit or 
Resorceror. 

List/Table 
The List/Table tool creates scrollable lists or tables (CArrayPane). 
You can easily create lists of text, icons, or pictures. 

Subview 
The Subview tool creates panes (CSubviewDisplayer) that refer to 
subviews displayed in this pane at run-time. The Subview itself is a 
separate view and is edited in its own View Edit window. Subviews 
are scrollable and can contain any number of other panes. 

Symantec C++ User's Guide and Reference 34-3 



• 34 Visual Architect Tools Menu 

Panorama 
The Panorama tool creates generic scrollable panoramas 
(CPanorama). You use this tool to set aside subareas within your 
view's main panorama for special purposes, such as text editing or 
drawing. Unlike a subview pane object, a panorama object is not 
dynamic. It consists of only one pane, whose type is specified using 
the Pane Info dialog box described in Chapter 32, "Visual Architect 
Pane Menu." By default, a CEditText panorama is used. 

Panoramas (panes of class CArrayPane, CPanorama, CEditText, or 
any class you derive from these classes) are implicitly enclosed in a 
CScrollPane whenever they have a horizontal or vertical scroll bar or 
a size box. You can change the attributes of a pane's scroll pane 
using the Pane Info window, described in Chapter. 32, "Visual 
Architect Pane Menu." If a panorama has no scroll bars or size box, 
the CScrollPane is not present in the view resource or in the view at 
run-time. 

Straight Line and Unconstrained Line 
The Straight Line and Unconstrained Line tools create "straight" or 
unconstrained line graphic panes (both of the CLine class). The 
slope of a straight line is restricted to be a multiple of 45 degrees. 
Line pane objects can have any pen size, mode, color, or pattern. 

Rectangle, Rounded Rectangle, Oval, and Polygon 
The Rectangle, Rounded Rectangle, Oval, and Polygon tools create 
graphic panes-rectangle (CRectOva!Button), rounded rectangle 
(CRoundRectButton), oval (CRectOva!Button), or polygon 
(CPolyButton) objects, respectively. 

Graphic panes are not just drawings; any one can act as a button of 
any kind. One good way to use these graphic buttons is by drawing 
them over picture panes and making them invisible by setting the 
pen size to 0. You can choose any arbitrary size and shape for these 
buttons, thus making different parts of a picture clickable. By setting 
the clickCmd for shape buttons using the Pane Info dialog box 
(described in Chapter 32, "Visual Architect Pane Menu"), each 
different picture part can respond differently to user clicks. 

34-4 Symantec C++ User's Guide and Reference 



r 

+ 

Introducing the Tools Menu + 

Creating panes 
Typically, after you use a tool once, the tool reverts to the Select 
tool. If you double-dick a tool, however, the tool "sticks on," 
meaning that you can use it multiple times without reselecting. 
When a tool is stuck on, you unstick it by selecting another tool. Use 
the Options menu to have tools stick on after only single-clicking 
them. (See Chapter 33, "Visual Architect Options Menu," for details.) 

Except for the Static Text tool, you create panes of arbitrary size by 
selecting the appropriate tool and clicking and dragging in the View 
Edit window. Alternatively, you can create a new pane of a default 
size by clicking the mouse in the window. 

When you position the Static Text tool over an activated View Edit 
window, Visual Architect displays the I-beam cursor. You can type in 
as much text as you like; the new static text pane is always sized to 
the amount of the text created. 

With any other tool, Visual Architect displays the crosshair cursor. 

You can use the Honor Grid option to constrain the positioning of 
panes in the View Edit window. Enabling this option makes 
alignment of panes much easier. See Chapter 33, "Visual Architect 
Options Menu," for details. 

The drawing and tab order of panes initially is set to the order in 
which they were created. To change the relative order of panes, 
choose Bring To Front or Send To Back from the Pane menu. To 
view the relative order of panes, choose Show Item Numbers from 
the Options menu. 

Using the Clipboard 
In addition to using the Tool palette, you can create static text or 
picture panes by pasting PICT or TEXT data from the Clipboard. See 
Chapter 30, "Visual Architect Edit Menu," for details. 

Using arrow keys to adjust panes 
The arrow keys provide a quick way to move or resize a pane in 
small increments. 

• The arrow keys move a pane one grid step in the desired 
direction, whether or not the grid is on. 

Symantec C++ User's Guide and Reference 34-5 



• 34 Visual Architect Tools Menu 

• With the Command key held down, the arrow keys move 
a pane one pixel in the desired direction. 

• With the Option key depressed, the arrow keys resize a 
pane by moving the corresponding edge one grid step in 
the desired direction, whether or not the grid is on. For 
example, pressing Option-Left Arrow moves the left side 
of the selected pane(s) one grid step to the left, leaving 
all other sides in their original positions. 

• With the Command and Option keys held down, the 
arrow keys resize a pane by moving the corresponding 
edge one pixel in the desired direction. 

34-6 Symantec C++ User's Guide and Reference 



VA: Symantec Project 
Manager Menu• 

35 
Programming means generating code. The Symantec Project Manager 

provides powerful menus, macros, and macro development tools to 
help you generate code in a manner that suits your work process. 

This chapter looks at the Symantec Project Manager menu, as well 
as such subjects as how to preserve manually edited code through 
generation cycles and how to customize the code generation macros. 
This chapter also contains information on the structure of generated 
code and the macro files used by Visual Architect for generating 
code. 

Commands in the Symantec Project Manager 
Menu 
The Symantec Project Manager menu commands let you generate 
your Visual Architect source code files. In addition, you can control 
some functions of the Symantec Project Manager from within Visual 
Architect using this menu. 

The Symantec Project Manager menu in Visual Architect contains 
commands that directly affect the Symantec C++ project to which 
your Visual Architect resource file belongs. This linking of Visual 
Architect and the Symantec Project Manager, which occurs through 
Apple events, only works properly if: 

• The Update Project on Generate preference in the Visual 
Architect Preferences dialog box is set on. 

• The Symantec Project Manager is running and the project 
to which the Visual Architect resource file belongs is 
open. 

Symantec C++ User's Guide and Reference 35-1 



35 • VA: Symantec Project Manager Menu 

Note 
Do not use the commands in the Visual Architect 
Symantec Project Manager menu unless these 
two conditions are met. If you do, your Symantec 
Project Manager project will not be updated 
properly. 

If the update preference is set on but the project you need is not 
open, the Update Project Warning dialog box opens (Figure 35-1) 
when you choose a command from the Symantec Project Manager 
menu. 

A\ The wrong Project Manager project is currently open. 
ffi It does not contain the Uisual Rrchitect resource file 

you are generating. If you Generate now, this project 
file will not be updated. Do you wish to Generate? 

n Cancel, OK 

Figure 35-1 Update Project Warning dialog box 

Click OK to proceed with code generation, though using Visual 
Architect in this mode is not recommended. 

Figure 35-2 displays the commands on the Symantec Project 
Manager menu. 

Generate... 3CG 
Generate Rll ... 

Bring Up To Date 3CU 
Run 3CR 

Figure 35-2 Symantec Project Manager menu 

You use the commands on the Symantec Project Manager menu to 
perform the following functions: 

• Generate code 
• Update a project and run an application 

35-2 Symantec C++ User's Guide and Reference 



Generate 

Commands in the Symantec Project Manager Menu + 

This chapter covers the Symantec Project Manager menu 
commands by function in the order listed in Figure 35-2. 

Generating code 
Code generation in Visual Architect is controlled by a macro file. By 
default, Visual Architect looks for a macro file named 
GenerateTCLApp in the Symantec Project Manager tree and then 
in your project tree. 

GenerateTCLApp contains macros that indicate to Visual Architect 
the code files to generate. The code files are generated to a folder 
named Source, located inside the folder that contains your Visual 
Architect. rsrc file. 

To change the macro file Visual Architect uses to generate code, 
choose Set Generate File from the File menu, then select the macro 
file with the standard File Open dialog box, as described in Chapter 
29, "Visual Architect File Menu." 

If the Update Project on Generate preference is not set in the 
Preferences dialog box or if the project that owns the resource file 
is not currently open in the Symantec Project Manager, you are 
prompted to provide the macro file to use for generating code each 
time you choose Generate. 

Generates the necessary C++ code to implement the user interface 
elements in the resource file that owns the frontmost window. 
Generate is disabled if no changes have been made to the resource 
file since the last Generate or Generate All. 

This command generates code only for those files that need 
updating as a result of changes made to the Visual Architect resource 
file. Generate does not affect generate-once files that have already 
been generated; see the section "Code-Generating Process," later in 
this chapter for information on generate-once files. 

Symantec C++ User's Guide and Reference 35-3 



35 • VA: Symantec Project Manager Menu 

If you have set the Confirm Saves preference on in the Preferences 
dialog box and there are unsaved changes to your resource file, the 
Save Now dialog box opens (Figure 35-3) when you choose this 
command. 

Project must be saued to Generate. Do 
you want to Saue now? 

(Cancel) ~ OK J 
Figure 35-3 Save Now dialog box 

Click OK to have Visual Architect save the resource file and continue 
with the Generate command or click Cancel to cancel Generate. If 
the Confirm Saves preference is not set on and there are unsaved 
changes to your resource file, Visual Architect saves the resource file 
automatically, then proceeds with code generation. 

While code generation is underway, you are informed of its progress 
in the Code Generation Progress message box (Figure 35-4). 

Writing ... 

H_CRpp.cp 

Figure 35-4 Code Generation Progress message box 

This dialog box shows the name of each file as it is being processed, 
as well as the action being applied to the file. To stop generation in 
progress, press Command-Period. Stopping generation does not 
remove files already generated. 

If the Update Project on Generate preference is set in the 
Preferences dialog box and the project that the resource file owns 
is currently open in the Symantec Project Manager, the project is 
updated after code generation is complete. Generated files not 
already in the Symantec Project Manager project are added to the 
project, and generated files already in the project are marked for 
recompilation. 

35-4 Symantec C++ User's Guide and Reference 



Generate All 

Bring Up To Date 

Run 

Code-Generating Process + 

Generates code for all source files, not only those that need updating 
as a result of changes made in Visual Architect. As with Generate, 
no code is generated for generate-once files that have already been 
generated. You should choose Generate All the first time you 
generate code for a resource file. 

If you need to regenerate any generate-once files, remove them from 
the Source folder in your project folder, then choose Generate All. 

Updating projects and running applications 
In addition to generating code, you can use the Symantec Project 
Manager menu to update your project and run your application. 

Performs the same functions as the Generate command, then sends 
a Bring Up To Date command to the Symantec Project Manager. 
This command lets you generate source code and bring a project 
up-to-date without having to switch to the Symantec Project 
Manager. 

Bring Up To Date is disabled if the Update Project on Generate 
preference in the Visual Architect Preferences dialog box is set off. 

Performs the same functions as the Generate command, then sends 
a Run command to the Symantec Project Manager. This command 
lets you run a project's application without having to switch to the 
Symantec Project Manager. 

Run is disabled if the Update Project on Generate preference in the 
Preferences dialog box is set off. 

Code-Generating Process 
Visual Architect supplies a set of macro files capable of generating a 
complete THINK Class Library-based application. Before you 
generate code, the copyright field of the Application Info dialog 
box should be filled out and a Main view defined. To do this, select 
the Application command from the Edit menu. 

The following sections explain the code generation strategy followed 
by GenerateTCLApp and the other macro files in the Macros 
folder supplied with Visual Architect. See the section "Generating 
code," earlier in this chapter. 

Symantec C++ User's Guide and Reference 35-5 



35 • VA: Symantec Project Manager Menu 

Preserving code during regeneration 
Each time you make changes to views, classes, and commands in 
Visual Architect, new files must be generated and previously 
generated files must be regenerated. For each class you define, 
Visual Architect generates files defining the class and implementing 
the behavior you specified in Visual Architect. You can then 
manually modify these files to add additional behavior. 

To preserve code added by hand through multiple passes of code 
generation, the standard macro files generate two kinds of files: 
lower-level and upper-level. The terminology comes from visualizing 
the class tree with the base class at the bottom, the lower-level class 
above it, and the upper-level class on top. 

Structure of generated code 
For every derived class you define, Visual Architect produces an 
upper-level file defining the derived class and a lower-level file 
defining the immediate base class of that class. The THINK Class 
Library base class of the derived class, the lower-level derived class, 
and the upper-level derived class form a three-tier hierarchy, as 
shown in Figure 35-5. 

CMyButton Upper-level class 

x_CMyButton Lower-level class 

CButton THINK Class Library base class 

Figure 35-5 Example of a multi-level class hierarchy 

Lower-level files are rewritten each time Visual Architect generates 
source code for a class. Upper-level files are generate-once files and 
are written when Visual Architect generates source code for a class. 
Subsequent generation does not touch upper-level files. 

You fill in the upper-level files with your own code. You can add or 
remove member functions or data members and add your own code 
to the generated functions. This split-level approach adds only a few 
bytes to program size with minimal execution overhead, but it 
protects the generated code from subsequent changes that you make 
in Visual Architect. 

35-6 Symantec C++ User's Guide and Reference 



Code-Generating Process + 

Lower-level files are not restricted to files defining derived classes. 
Visual Architect also generates header files as lower-level files to 
define symbols. An example is the viewnameitems. h file, which 
contains symbolic names for the panes in a view. 

Lower-level files contain as much of the information that might 
change as a result of editing in Visual Architect as possible. While 
this technique shields code from the effects of most iterative design 
changes, you should note the following: 

• If your handwritten code uses a symbolic name for a 
pane, and you rename or delete the pane without 
making the appropriate changes in your code, an error 
results. Typically, the compiler warns you of this type of 
error. 

• If you change the name of one of your derived classes, 
an entirely new set of upper- and lower-level files is 
generated for the class, and you must copy your code 
from the old upper-level files to the new ones. 

Files generated for an application 
The files in the table below are generated for every application, 
regardless of size. The name of a lower-level file for a derived class 
consists of x_ (x underscore) followed by the name of the 
corresponding upper-level files. 

Table 35-1 Code files generated by Visual Architect 

File name Description 
x_appclass. cp Lower-level source code for the application 

class 
x_appclass. h Header file for the lower-level application 

class 
appclass. cp Upper-l~vel source code for the application 

class 
appclass. h Header file for the upper-level application 

class 
viewnameI t ems . h Header files defining symbols for panes in 

each view 

Symantec C++ User's Guide and Reference 35-7 



35 • VA: Symantec Project Manager Menu 

Table 35-1 Code files generated by Visual Architect (Continued) 

File name 
AppCommands.h 

References.cp 
References.h 

Description 
Header file that defines symbols for the 
commands defined in Visual Architect and 
that is regenerated each time 
Files defining a ReferenceStdClasses 
function that force a reference to every 
THINK Class Library class that can do 
Object 1/0 

Inside Macro Files 
This section describes how to modify and write macro generation 
files. If you use only the macro files supplied with Visual Architect, 
you can skip this section. 

Macro files that drive code generation are text files. The macro files 
shipped with Visual Architect were created in Symantec Project 
Manager. You can use any text editor that can create files of the file 
type TEXT. 

Because generated macro files are ordinary text files, they are easy to 
customize. To customize them, you need to know the Visual 
Architect macro language, which is described in the remainder of 
this section. 

Visual Architect macro language 
The Visual Architect macro language embeds macro processing 
statements in ordinary C++ source text. Visual Architect uses the $ 
character to indicate the start and end of a Visual Architect macro. 
When a macro file is used to generate source code, all text outside a 
macro is copied to the output file without change. Text inside a 
macro, including the $ delimiters, is replaced with zero or more 
characters that depend on the current value of the macro. 

There are two kinds of macros: statement and expression. A 
statement macro begins with the first non-whitespace.character on a 
line and occupies the entire line. The line does not appear in the 
output file; the macro and its line are replaced by a null string. An 
example of a statement macro is: 

$do windows$ 

35-8 Symantec C++ User's Guide and Reference 



Inside Macro Files + 

An expression macro can appear anywhere on a line. Visual 
Architect evaluates the expression, computes a character string 
value, and replaces the macro with the value. An example of an 
expression macro in a source code line is: 

itsWindow->SetTitle("$window.title$"); 

Expression macros can appear anywhere in any line, including 
within statement macros. In the latter case, expression macros are 
evaluated and replaced before the statement macro is interpreted. 

To use the $ character as ordinary text, you must double it, as 
follows: 

CopyPString ( "\p$$2. 99", str); 

This line copies the Pascal string 11 $2. 99 11 • Note that doubling 
works inside C++ macros as well. 

Statement macros 
Each statement macro begins with a keyword immediately following 
the leading $,which identifies the type of statement. You must use 
one of the keywords listed below: 

define 
do 
else 
elseif 
end 
generate 
if 
pop 
push 

Each statement type is described below. 

define statement 
Use define to set the value of a macro variable to a desired value. 
The format of a define statement is: 

$define variablename expression$ 

The variable name must begin with an alphabetic character and must 
have fewer than 31 alphabetic or numeric characters. The 
underscore character 11 _ 11 is considered an alphabetic character. 

Symantec C++ User's Guide and Reference 35-9 



35 • VA: Symantec Project Manager Menu 

The expression can consist of any combination of variable names, 
constants, and operators that are permissible in an expression macro. 
Visual Architect evaluates the expression as if it were an expression 
macro and assigns the result to the macro variable. See the section 
"Expression macros,'' later in this chapter. 

Once a variable is defined, it holds that value until it is redefined in 
another define statement or until the variable is removed by a pop 
statement. The use of pop statements is described at the end of this 
section. 

Certain variables are predefined by Visual Architect to hold character 
strings, records, or arrays. If you define a variable with the same 
name as a predefined variable, that predefined variable is hidden 
(and is inaccessible) until the variable you defined is popped. In 
general, you should choose variable names that do not conflict with 
those listed in the section "Predefined variables," later in this chapter. 

do statement 
Use a do statement to iterate over each element in an array. The 
format of a do statement is: 

$do arrayvariablename$ 

The array variable name must be one of those predefined by Visual 
Architect. 

The do statement operates by repeatedly scanning the text between 
the do statement and the closest matching end statement, once for 
each array element. If there are no elements in the array or the array 
variable is undefined, the text between the do and end statements is 
skipped. 

Before starting each iteration, two variables are automatically 
defined: the array element name and the variable i. The variable i is 
assigned the index of the current array element, from 1 through the 
number of elements in the array. 

All array variable names defined by Visual Architect-for example, 
windows-are plural. For each array variable, the array element 
name (such as window) is singular. Usually, an array element is a 
record, which means it has subvalues. Subvalues can be accessed by 
placing a period after the element name, followed by the name of 
the record item. For example, window. title is the title of the 
"current window," that is, the current value of the window variable. 

35-10 Symantec C++ User's Guide and Reference 



Inside Macro Files • 
The following example shows a do loop, which generates a C++ 
macro for every window: 

$do windows$ 
#define WIND$window.id$ $window.resid$ 
$end$ 

else statement 
Use an else statement to negate the sense of a preceding if or 
elseif statement and to conditionally expand one or more lines. 
The format of the else statement is: 

$else$ 

If the value of the preceding if or elseif expression is TRUE, the 
else statement causes lines between it and the nearest matching 
end statement to be skipped. If the value is FALSE, the lines 
following else are expanded. 

elseif statement 
Use an elseif statement to negate the sense of a preceding if or 
elseif statement and conditionally expand one or more lines. The 
format of the else statement is: 

$else if expression$ 

If the value of the preceding if or else if expression is TRUE, the 
elseif expression is not evaluated; statements between elseif 
and the nearest matching end statement are skipped. If the value is 
FALSE, the expression is evaluated and the elseif statement 
behaves like an i f statement. 

end statement 
Use an end statement to end the scope of a do, if, else, or 
e 1 s e if statement. The format of the end statement is: 

$end comment$ 

If a comment appears in the end statement, there must be at least 
one whitespace character after the end keyword. 

Symantec C++ User's Guide and Reference 35-11 



35 • VA: Symantec Project Manager Menu 

generate statement 
Use a generate statement to create a new output file. The format 
of the generate statement is: 

$generate outputfilename macrofilename 
[once] [keep] $ 

The generate statement creates a new output file with the 
specified name and fills it with text produced by expanding the 
specified macro file. 

The output file name can contain a folder name. If no folder by that 
name exists in the Source folder, a folder is created inside the 
Source folder. If a folder with that name already exists, the file is 
placed inside that folder. 

If the keyword once is specified, the file is not generated if a file 
with the same name already exists in the specified folder. Use once 
for files you want to modify by hand, so they will not be overwritten 
the next time code is generated. If you want to regenerate a once 
file, move the previously generated file out of its folder. 

If the keyword keep is specified, variables defined while the file is 
being generated are retained. By default, these variables are popped 
automatically. The use of the push and pop statements is described 
at the end of this section. 

if statement 
Use an if statement to conditionally expand one or more 
subsequent lines. The format of the if statement is: 

$ i f expression$ 

If the evaluation of the expression results in a value other than zero 
or an empty string, the expression is considered to be TRUE and the 
lines following the if statement until the next matching else, 
elseif, or end statement are expanded. Otherwise, the expression 
is FALSE, and all text between the if statement and the next 
matching else, elseif, or end is skipped. You can nest if 
statements. 

35-12 Symantec C++ User's Guide and Reference 



Inside Macro Files + 

pop statement 
A pop statement discards all variables defined since the last push 
statement. The format of the pop statement is: 

$pop$ 

The variables defined automatically by a do statement are popped 
automatically when the matching end statement is processed. 
Similarly, variables defined during processing of a generate 
statement without a keep keyword are popped automatically as 
soon as the file is generated. Otherwise, variables you define remain 
defined until you explicitly pop them. You rarely need to use push 
and pop, but sometimes the two are used to prevent inactive 
variables from wasting memory. 

push statement 
Use a push statement to establish the context for a subsequent pop 
statement. The format of the push statement is: 

$push$ 

Expression macros 
An expression macro evaluates an expression, producing a character 
string whose contents replace the macro in the output text. 

The result of an expression macro is not rescanned for macros; it 
goes directly to the output (or statement macro) without being 
interpreted further. 

An expression is composed of variable names, constants, and 
operators. The value of any expression or subexpression is a 
character string. Certain operators may cause string operands to be 
converted to long integers; the numerical result of the operation is 
then converted back to a string. 

An undefined variable is interpreted as a null string. 

Symantec C++ User's Guide and Reference 35-13 



35 • VA: Symantec Project Manager Menu 

Operators 
Macros may contain operators that, except for automatic string-to­
long coercion, are defined like their C and C++ language 
counterparts. These operators include: 

+ - * I << >> - & I A && I I < <= > >= == ! = ! 

In addition, the dot operator (. operator) is used to select a record 
item. 

Expressions may be placed in parentheses. 

Constants 
String, character, and integer constants are permitted in expressions. 
Long integer and hexadecimal forms are also allowed. Octal 
constants are not supported. 

Predefined variables 
Visual Architect predefines the variables listed in the table below. For 
definitions of records or arrays that have record elements, see the 
section "Record types," later in this chapter. 

Table 35-2 Predefined variables 

Variable name 
abbrevDate 

app 

barmen us 

classes 

classeschanged 

commands 

Predefined as 
The current date as an abbreviated date 
string 

The application record 

An array with one menu record element for 
each menu you define to be part of the 
application's menu bar 

An array with one class record for each class 
displayed in the Classes dialog box 

1 if Generate All is chosen or if any 
classes changed since the last generate; 
otherwise, 0 

An array with one command record for each 
command you define in the Commands 
dialog box 

35-14 Symantec C++ User's Guide and Reference 



Inside Macro Files • 
Table 35-2 Predefined variables (Continued) 

Variable name Predefined as 
commands changed 1 if Generate All is chosen or if any 

commands changed since the last generate; 
otherwise, 0 

copyright The copyright text you specify in the 
Application Info dialog box 

date The ·current date as a date string 

dialogs An array with one view record for each 
modal or modeless Dialog view you define 

documents An array with one view record for each 
document (Main) view you define 

floats An array with one view record for each 
Floating Window view you define 

longDate The current date as a long date string 

menus An array with one menu record for each 
menu you define 

newdialog A view record for the New ... Dialog, if any 

popmenus An array with one menu record for each 
pop-up menu you define 

shortDate The current date as a short date string 

splash A view record for the splash screen 

submenus An array with one menu record for each 
hierarchical submenu you define 

subviews An array with one view record for each 
subview you define 

tearoffs An array with one view record for each tear­
off menu you define (the menu associated 
with the view is in the record variable 
menu) 

Symantec C++ User's Guide and Reference 35-15 



35 • VA: Symantec Project Manager Menu 

Table 35-2 Predefined variables (Continued) 

Variable name 
time 

views 

views changed 

windows 

year 

Record types 

Predefined as 
The current time 

An array with one view record for each 
view you define (all window views and 
subviews) 

1 if Generate All is chosen or if any 
views changed since the last generate; 
otherwise, 0 

An array with one element for each window 
view you define 

The current year 

A macro record is a variable with named elements. Like a C or C++ 
struct, a record element always has a record name with a period, 
followed by an element name. For example: 

view.changed 

A do statement implicitly defines a record on each iteration that 
corresponds to the ith element of the array controlling the do. For 
example, $do views$ defines a record variable named view 
within the scope of the do. 

On each iteration, view is set to a different view record. Elements of 
this record are referred to within the do as, for example, 
view. actions. 

35-16 Symantec C++ User's Guide and Reference 



Inside Macro Files • 
The following subsections define .each record type separately: 

App record 
An app record contains application information identified in the 
Application Info dialog box. 

Table 35-3 Application record description 

Record element 
changed 

class 
copyright 
docTypel 

docType2 

docType3 

docType4 

filetypes 

name 
Name 

numfiletypes 

signature 

Action record 

Description 
1 if application changed since the last 
generate; otherwise, 0 
A class record for the application class 
The value of the copyright string 
The first document type the application can 
create 
The second document type the application 
can create 
The third document type the application 
can create 
The fourth document type the application 
can create 
An array of filetype records for the 
application's document types; same values 
as docTypel-docType4 
The application name 
Application name, with the first character 
capitalized 
The number of file (document) types 
defined 
The application signature (creator code) 

An action record describes a command action defined in the 
Commands dialog box. Each action defines a handler class, what 
effect the command brings about when called and, in the case of an 
Open action, the class of the view that is opened. 

Table 35-4 Action record description 

Record element 
class 

className 

Description 
A class record for the class of the view 
created as a result of Open; NULL if not an 
Open action 
The name of the class that handles this 
action 

Symantec C++ User's Guide and Reference 35-17 



35 • VA: Symantec Project Manager Menu 

Table 35-4 Action record description (Continued) 

Record element 
command 

view 

what 

Class record 

Description 
A command record for the command that 
causes the action 
A view record for the view created as a 
result of an Open action; NULL if not an 
Open action 
Which action: None, Call, or Open 

A class record describes each class displayed in the Classes dialog 
box. 

Table 35-5 Class record description 

Record element 
actions 

basename 

changed 

kind 

members 

nactions 
name 
nmembers 

supername 

view 

Description 
An array of action records for each action 
handled by this class 
Name of nominal base class or base of 
library class, if defined 
1 if class changed since the last generate; 
otherwise, 0 
An ordinal denoting the kind of class; class 
kinds are defined in the GenerateTCLApp 
macro file 
An array of member records describing the 
data members defined in Visual Architect 
The number of actions handled by this class 
The name of the class 
The number of data members defined in 
Visual Architect 
The name of the base class; either a user or 
a THINK Class Library class 
A view record for the class; NULL if the 
class is not the director class of a view 

35-18 Symantec C++ User's Guide and Reference 



Inside Macro Files + 

Command record 
A command record describes each command you define in the 
Commands dialog box. 

Table 35-6 Command record description 

Record element 
actions 
nactions 

name 
Name 

num 

File type record 

Description 
An array of action records for the command 
The number of actions caused by the 
command 
The command name 
The command name with the first letter 
capitalized 
The command number 

A file type record contains a single, four-character file type, for 
example, TEXT • 

Table 35-7 File type record description 

Record element 
type 

Menu record 

Description 
The four-character type 

A menu record describes each menu you define in the Menus or 
Menu Bar dialog box. 

Table 35-8 Menu record description 

Record element 
ID 
mdef ID 
menu ID 

menuitems 
name 
nMenuitems 
title 

Description 
The ' MENU ' resource ID 
The ID of the menu definition procedure 
The menu ID inside the 'MENU' resource 
(Visual Architect always sets this the same 
as the ' MENU ' resource ID) 
An array of menu item records for this menu 
The name of the ' MENU ' resource 
The number of items in this menu 
The menu title 

Symantec C++ User's Guide and Reference 35-19 



35 • VA: Symantec Project Manager Menu 

Member record 
A member record describes each data member you define in the 
Define Data Members dialog box. A data member declaration can 
be generated from the macros: 

$member.type$ $member.name$ $member.elem$; 

Table 35-9 Member record description 

Record element 
elem 

get from 

ispascal 
name 
nelements 

put to 

type 

type code 

Menu item record 

Description 
The number of elements in an array data 
member as a string enclosed in brackets, for 
example, [ 15] ; NULL if not an array 
TRUE if the member to be included is 
generated in the GetFrom function 
(Object I/0) 
1 if a Pascal string; 0 if a C string 
The name of the data member 
The number of elements in an array data 
member, for example, 15; 0 if not an array 
TRUE if the member is to be included in the 
generated Put To function (Object I/O) 
The type of the data member as a character 
string 
A numeric code indicating the type of the 
data member, numbered from 1 through 
12:Boolean, char, double, float, 
long, short, Str31, Str255, Str63, 
unsigned char, unsigned long, 
unsigned short 

A menu item record describes each menu item you define in the 
Menu Items dialog box. 

Table 35-10 Menu item record description 

Record element 
command 

icon 

key 

Description 
A command record for the command sent 
by the menu item; NULL if no command 
The resource ID of the ' I CON ' , reduced 
icon, or ' s i en ' resource 
The key character if nonzero and outside 
the range OxlB through OxlF; otherwise, 
NULL 

35-20 Symantec C++ User's Guide and Reference 



Inside Macro Files • 
Table 35-10 Menu item record description (Continued) 

Record element Description 
mark The mark character if nonzero and outside 

the range OxlB through OxlF; otherwise, 
NULL 

name 
reduced 
sicn 
submenu 

submenuID 

title 

Pane record 

The name (string value) of the item 
1 if reduced; 0 if not 
1 if icon is a ' s i en ' resource; 0 if not 
A menu record for the submenu if the item 
has a hierarchical menu; otherwise, NULL 
The resource ID of the submenu if the item 
has a hierarchical menu; otherwise, NULL 
The title of the menu 

A pane record describes each pane in a view. 

Table 35-11 Pane record description 

Record element 
active 
autoRefresh 

baseclass 

canBeGopher 
classname 
height 
helpResindex 
hEncl 
hSizing 
ID 
identifier 

Identifier 
kind 

usingLongCoord 
vEncl 

Description 
1 if pane is initially active; 0 if not 
1 if autoRefresh is set for the pane; 0 if 
not 
The name of the standard THINK Class 
Library or user library class that is the 
immediate base of the (lower-level) pane 
class 
1 if canBeGopher set for pane; 0 if not 
The name of the pane class 
The pane's height value 
The pane's helpResindex value 
The pane's hEncl value 
The pane's hSizing value 
The pane's ID value 
The identifier of the pane as defined in the 
Identifier dialog box or defined 
automatically by Visual Architect 
The identifier with the first letter capitalized 
An ordinal that identifies the superclass 
category of the pane; the ordinals are 
defined in the GenerateTCLApp macro 
file 
The pane's us ingLongCoord value 
The pane's vEncl value 

Symantec C++ User's Guide and Reference 35-21 



35 • VA: Symantec Project Manager Menu 

Table 35-11 Pane record description (Continued) 

Record element 
visible 
vSizing 
wantsClicks 
width 

Point record 

Description 
The pane's visible value 
The pane's vSizing value 
The pane's wantsClicks value 
The pane's width value 

A point record contains a point. 

Table 35-12 Point record description 

Record element 
h 
v 

Rectangle record 

Description 
Horizontal coordinate 
Vertical coordinate 

A rectangle record contains a rectangle. 

Table 35-13 Rectangle record description 

Record element 
bottom 
left 
right 
top 

View record 

Description 
Lower vertical coordinate 
Upper horizontal coordinate 
Lower horizontal coordinate 
Upper vertical coordinate 

A view record contains information about a view defined in Visual 
Architect. Record elements indicated as "windows only" are defined 
only for views that are windows, not subviews. 

Table 35-14 View record description 

Record element 
actClick 

actions 

centered 
changed 

directorclass 

Description 
1 if the view's panes see the click that 
activates the window (windows only) 
An array of action records with one element 
for each action performed by this view, as 
set up in the Commands dialog box 
1 if the view is centered; O if not 
1 if the view has been changed since the 
last generate; 0 if not 
The class name of the view's director 
(windows only) 

35-22 Symantec C++ User's Guide and Reference 



Inside Macro Files • 
Table 35-14 View record description (Continued) 

Record element 
director kind 

fixedPosition 

floating 

goaway 

height 
helpResID 

horizscroll 

ID 
isdialog 

isdocument 

ismodal 

issubview 
iswindow 
items 

maxHeight 
maxWidth 
menu 

minHeight 
minWidth 
modal 

nactions 

name 

Name 

Description 
A numeric code indicating the kind of 
director that supervises the view; director 
kinds are defined in the GenerateTCLApp 
macro file (windows only) 
1 if the view's window is to be opened at a 
fixed position on the screen; 0 if not 
(windows only) 
1 if the view is a floating window; 0 if not 
(windows only) 
1 if the view's window has a goAway box; 0 
if not (windows only) 
The window height (windows only) 
The resource ID of the ' hmnu ' resource for 
this view (windows only) 
1 if the view's panorama is enclosed in a 
scrollpane with horizontal scroll bars 
The view's ' CVue ' resource ID 
1 if the view is a modeless dialog; 0 if not 
(windows only) 
1 if the view is a document (Main view); 0 
if not (windows only) 
1 if the view is a modal dialog; 0 if not 
(windows only) 
1 if the view is a subview; 0 if a window 
1 if the view is a window; 0 if a subview 
An array of pane records for the items in 
this view; same as panes 
The maximum height (windows only) 
The maximum width (windows only) 
The ' MENU ' resource ID; 0 unless view is a 
tear-off menu 
The minimum height (windows only) 
The minimum width (windows only) 
1 if the view is modal; 0 if not (windows 
only) 
The number of actions performed by this 
view; 0 if none 
The view name as defined in Visual 
Architect 
The view name with the first letter 
capitalized 

Symantec C++ User's Guide and Reference 35-23 



35 • VA: Symantec Project Manager Menu 

Table 35-14 View record description (Continued) 

Record element 
nit ems 

npanes 

panes 

panorama 

position 

print 

procID 
scrollpane 

sizebox 

staggered 

title 
usef ile 

vertscroll 

view kind 

WDEFid 

width 
windowclass 

window kind 

Description 
The number of items in this view; same as 
npanes 
The number of panes in this view; same as 
nitems 
An array of pane records for the panes in 
this view; same as it ems 
A pane record for the view's main 
panorama 
A point record containing the view's initial 
position; the value of position is only 
meaningful if fixed is TRUE 
1 if the view is printable; 0 if not (windows 
only) 
The window's procID (windows only) 
1 if the view's main panorama is enclosed 
in a scrollpane; 0 if not 
1 if the view's panorama is enclosed in a 
scrollpane with a size box; 0 if not 
1 if the view's window is initially staggered; 
0 if not (windows only) 
The view's window title (windows only) 
1 if the view uses a file; O if not (windows 
only) 
1 if the view's panorama is enclosed in a 
scrollpane with a vertical scroll bar; 0 if not 
A numeric code indicating the kind of view; 
view kinds are defined in the 
GenerateTCLApp macro file 
The view's window definition procedure 
'WDEF' ID (procID I 16) (windows only) 

The window width (windows only) 
The class name of the view's window 
(windows only) 
A numeric code indicating the view's 
window kind; window kinds are defined in 
the GenerateTCLApp macro file 
(windows only) 

35-24 Symantec C++ User's Guide and Reference 



Symantec C++ • 
Appendixes 

Part Six 
A Linker Error Messages 
B Debugger Error 

Messages 

Symantec C++ User's Guide and Reference 



• 

Symantec C++ User's Guide and Reference 



Linker Error 
Messages• 

A 
Tiis appendix is a guide to the error messages that can be generated 

by the Symantec Linker. Error messages that can occur when using 
the Debugger are documented in Appendix B, "Debugger Error 
Messages." Error messages generated by Symantec C, C++, or Rez are 
documented in the Symantec C++ Compiler Guide. 

An error message typically consists of the filename and line number 
followed by a description of the error: 

File "Sillyballs. cp"; Line 86 
Error: function 'NexBall~F' has no prototype 

The following Linker error messages are arranged in alphabetic 
order. 

Entry point (main) not found 
You have not defined a main ( ) anywhere in your project. Make 
sure that you have included the PPCRuntime library in your project 
and have defined a main () in your project. 

Error creating or writing output file 
There was a system error with the output file. Make sure that you 
have enough disk space and you have write access to the target 
folder. 

Error opening or processing input file 
There was a system error with the input file. Make sure that the file 
was created without errors and is not corrupt. 

Internal error 
There is a bug in the Linker. Report this to Technical Support. 

Symantec C++ User's Guide and Reference A-1 



A • Linker Error Messages 

Invalid input file format 
There is an error in the format of the input file. Make sure that it is 
the correct file type, was created without any errors, and is not 
corrupt. 

Invalid parameter 
There is a bug in the Linker. Report this to Technical Support. 

Linker database version doesn't match code 
You are using an old project. This project should have been 
converted automatically. Report this to Technical Support. 

Memory error 
There is not enough memory to continue. Increase the size of the 
partition for the Symantec Project Manager or quit other applications. 

Module not found 
This is an internal return code used by the Debugger. 

Multiply defined symbol: x (file 1, ... ,file n) 
A function, class object, or global data item is defined in more than 
one source file or library. 

Project database error 
The Project file is corrupt. Try choosing Remove Objects, then 
Build Project in the Build menu to rebuild. Report this to Technical 
Support. 

Recovery error 
The Linker discovered some corruption of its database while 
attempting to recover from an error (usually a memory error). Try 
choosing Remove Objects, then Build Project in the Build menu 
to rebuild. You also may want to increase the partition size of the 
Symantec Project Manager before rebuilding. 

Required TOC is larger than 64K bytes 
The application or shared library has too many functions or global 
variables to fit in the TOC. This is a limitation of the PowerPC 
architecture. Split the application or shared library into shared 
libraries. 

Routine not found at address 
This is an internal return code used by the Debugger. 

A-2 Symantec C++ User's Guide and Reference 



Segment not found 
This is an internal return code used by the Debugger. 

Shared library has no 'cfrg' 
A shared library in your project lacks an essential resource. Make 
sure that you are linking to a properly constructed shared library. 

Symbol not found 

• 

This could be the result of a corrupt Linker database. Try choosing 
Remove Objects, then Build Project in the Build menu to rebuild. 
Report this to Technical Support. 

Undefined symbol: x (file 1, ... ,file n) 
There is an undefined symbol. A function, class object, or global 
data item is missing. Make sure that the project has all the necessary 
libraries. If it does, either there is a missing source file or the 
program is incomplete and the missing symbol should be defined. 
The name of the missing symbol is a good clue, that is, missing 
symbol 'printf' means PPCANSI. o is not in the project. 

Symantec C++ User's Guide and Reference A-3 



A Linker Error Messages • 

A-4 Symantec C++ User's Guide and Reference 



Debugger Error 
Messages• 

B 
Tri.is appendix is a guide to the error messages that can occur when 

using the Symantec Debugger. Error messages generated by the 
Linker are documented in Appendix A, "Linker Error Messages." 
Error messages generated by Symantec C, C++, or Rez are 
documented in the Symantec C++ Compiler Guide. 

The Debugger can report errors in three different places. 

• In the Data pane, errors may result from entering an 
expression. 

Messages that appear in the Data pane appear bracketed 
by two hollow diamonds 00 on each side: 

00 expression expected 00 

• In the Control palette, errors may result when an 
exception occurs. 

The Debugger uses the Control palette for exception 
messages; if the Control palette is closed, then it will use 
a dialog box. For more information about machine 
exceptions, see the description of exceptions in the 
manual for the 601 processor (Motorola press document 
MPC601 UM/ AD). 

• In a modal dialog box, errors may result when an 
exception occurs. 

The messages that occur while debugging can be generated by the 
compiler or Linker, or they can be exception errors. 

The following Debugger error messages are arranged in alphabetic 
order. 

Symantec C++ User's Guide and Reference 8-1 



B • Debugger Error Messages 

Exception access fault 
Your program attempted to write to or read from an address that 
doesn't exist or is in a protected memory space. 

Floating point exception 
Your program attempted to execute an invalid floating point 
operation when floating point exceptions are enabled. Under the 
Macintosh operating system, they are disabled by default. 

Illegal instruction 
Your program attempted to execute an unknown instruction. This 
can happen if you try to call a member function of an invalid C++ 
object. 

Note 
Unlike the 68000 microprocessor, the 601 
microprocessor doesn't report a divide by zero 
error. 

8-2 Symantec C++ User's Guide and Reference 



Index• 

Entries in boldface are menu commands or dialog boxes. Entries in 
typewriter face are functions, methods, variables, keywords, or 
files. 

A 
Alias 18-3 
Apple events 3-12, 7-30, 18-15, 35-3 
AppleScript 2-6, 8-1, 8-6 - 8-11 

see also Scripts 
Applications 3-1 

background, runs in 18-12 
bringing to foreground 18-12 
building 2-4, 23-8 
creating TCL 2-8, 27-9, 28-7 
creator of 18-11 
debugging 2-5 
destination for 18-11 
events, receiving, 18-12 - 18-13 
file type 18-11 
files used to produce 3-1 
inline text services, using 18-13 
launching from Debugger 25-2 
object 27-4 
options for 18-10 
resources required for 2-9 
specifying target as 18-10 
testing 2-5 
trying out the interface 2-12 
suite of 3-3 
using TCL for generic behavior 2-8, 

27-9 - 27-10, 28-2 - 28-7 
see also Projects 

Arrays 24-4 
seeing pointer as 6-20 
set bounds of 6-20 - 6-21 

Arrow keys 19-14 
Assembly language 23-3 
Auto-indenting 19-17 

B 
Balloon Help 2-12 

adding 7-29, 30-6 
Bartender 27-4 
Binding 

hard import 23-6 
soft import 23-6 

Breakpoints 
diamond indicators 6-14, 6-15 
saving 25-5 
setting in Code pane 6-14 - 6-16, 

25-7 
Browser. See Class Browser window, 

Debugger 
Build Errors window 4-18, 5-2, 21-11, 

23-9 - 23-11, 26-4 
Build menu (Project Manager) 

Bring Up To Date 23-7 
Build Application 23-8 
Build Library 23-8 
Check Dependencies 23-6 - 23-7 
Check Link 23-8 
Check Syntax 23-2 
Compile 23-4 
Disassemble 23-3 
Get Library Info 23-5 
Load 23-5 
Precompile 8-6, 23-5 
Precompile As 8-5, 23-4 
Preprocess 23-3 
Remove Objects 23-7 
Update 23-5 
see also Build Errors window 

Bureaucrat 27-4, 27-5 

Symantec C++ User's Guide and Reference 1-1 



Index • 
c 
Call chain 6-6 

examining 6-16 - 6-21 
cfrg resource setting 18-15 
Chain of command 2-8, 27-3 - 27-7, 

27-17, 28-5, 30-25 
interaction with visual hierarchy 

27-7 - 27-9 
Class Browser window 22-1 - 22-6 

active pane in 5-3, 5-4, 22-3 
changing layout of 5-4 
configuring 22-5 - 22-6 
examining class hierarchy with 2-4, 

5-1 
icons in 5-5, 22-2 - 22-3 
multiple 5-2 
navigating 5-3 - 5-5, 22-6 
opening 5-2, 26-4 
panes in 5-3, 22-3 - 22-5 

Class hierarchy 27-2 
examining 5-1 
viewing 5-5 - 5-7 

Classes 
accessing contents of 7-17 
application 2-9, 28-8 
automatic generation of 27-13 
base 2-7 
categories created by VA 2-10 
changing 7-28 
commands, responding to 7-25 
creating 2-10, 7-26 - 7-27, 27-12 
defining data members 2-10, 7-27 
definitions 4-2, 4-3, 5-8 
derived 2-9, 35-7 
displaying in Class Browser 

window 22-2 
document 2-9, 27-8, 28-9, 28-4 
hiding contents of 7-17 
hierarchy 2-7, 27-2 
implementing actions with 2-11 
modifying 2-10 
pane 28-6 
panorama 28-14 - 28-16 
selecting in Class Browser 5-8 
split-level 2-12, 7-30, 27-18- 27-19, 

35-7 
viewing 2-4, 4-2, 5-5 - 5-7 
see also Class hierarchy 

Classes pane (Class Browser 
window) 

alphabetic listing in 5-6 

/-2 Symantec C++ User's Guide and Reference 

hierarchical viewing in 5-6 - 5-7 
Code 

analyzing 23-2 - 23-3 
assembly language 23-3 
browsing 24-3 
compiling 23-3 - 23-6 
generating 35-5 - 35-8 
preserving 35-6 
skeleton 2-13, 27-18 
modifying 7-30 
source generated by VA 7-30- 7-32, 

35-3 - 35-8 
stepping through 6-11 - 6-14 
structure of generated 35-6 - 35-7 
see also Source code, Files 

Commands 
attaching 7-23 - 7-26 
default 31-6 
handling in generated code 30-25 -

30-26 
processing 27-5 

Control palette. See Debugger 
Coordinate systems in TCL 28-8 - 28-9 
Current statement arrow (Debugger) 

6-10, 6-15 

D 
Data members. See Member 
Data menu (Debugger) 

Address 25-10 
C String 25-10 
Character 25-10 
Clear All Expressions 6-23, 25-9 
Context-free 6-24, 25-11 
Copy to Data 6-18 
Fixed 25-10 
Floating Point 25-10 
Hexadecimal 25-10 
Locked 25-11 
Pascal String 25-10 
Pointer 25-10 
Set Array Bounds 6-20, 25-11 
Set Context 6-22, 25-9 
Show Context 24-7, 25-9 
Signed Decimal 25-10 
Unsigned Decimal 25-10 

Database 8-9 
adding files to 8-13 
automatically mounting 8-15 - 8-17 
checking in files 8-9, 8-12 - 8-18 
checking out files 8-9, 8-12 - 8-18 
creating for SourceServer 8-10 



mounting 8-11 
nesting 8-12 
revision 8-9, 8-19 

Data members 
defining of 2-10 

Debug menu (Debugger) 
Clear Breakpoint 6-16 
ExitToShell 6-25, 25-7 
Go 24-8 
Go Until Here 6-13, 6-16, 25-6 
Monitor 25-6 
Skip To Here 6-14, 25-6 
Step In 24-8 
Step Out 24-8 
stepping through code 6-11 - 6-14 
Trace 24-9 
see also Debugger, Breakpoints 

Debug status 6-4, 17-3, 18-22 
Debugger 2-5, 6-1 - 6-16 

analyzing variables 6-21 - 6-24 
and TCL 28-25 - 28-26 
auxiliary windows 24-4 
breakpoints 6-14 - 6-16, 25-5, 25-7 
call chain 6-16 
changing values of variables 6-24 
Code pane 6-6, 6-10, 6-14, 6-22, 

24-3 
Command-key equivalents 6-12 
Control palette 6-12 - 6-14, 24-7 -

24-9 
current statement arrow 6-10, 6-15 
Data pane 6-10, 6-18, 6-21, 6-23 
Data window 24-7, 25-9 - 25-12 
Debug Browser windows 6-10 -

6-11, 24-4 - 24-7 
ending debug session 6-25 
error messages B-1 - B-2 
evaluating expressions 6-24 
formatting expressions 6-19 
launching 6-3, 18-3 
Log window 24-9 
low-level 25-6 
Main window 6-5 - 6-10, 18-3, 24-2 

- 24-4 
menus 25-1 - 25-13 
opening auxiliary browsers 6-10 
options 6-25 
preferences 6-25 
printing file in 6-10 
quitting when application 

quits 25-5 
scrolling in 6-9 

setting breakpoints 6-14 - 6-16 
Stack Crawl pane 6-6, 6-10, 6-16, 

24-4 
starting session 6-3 
stepping 6-11, 24-7 - 24-9 
symbol files 3-1, 6-3 
trouble-shooting 6-3 
variables 6-21 - 6-24, 24-6 
see also individual debugging 

menus 
Debugger windows. See Debugger 
Delimiter matching 4-10, 19-18 -

19-19 
Dependency tables 5-1 
Desktop object 27-2, 27-4 
Dialog boxes 

Add Files 3-10, 18-5 
Add Marker 21-9 
Application Info (VA) 30-5 
Arrange Windows 26-2 
Build Application 23-9 
Check Dependencies 23-7 
Check In 8-18 
Check Out 8-18 
Classes (VA) 7-26, 7-27, 30-8 -

30-10 
Commands (VA) 7-25, 30-13 -

30-17 
Data Members 7-28, 30-10 - 30-13 
Debugger Preferences 25-4 
Default Command (VA) 31-17 
Define Data Members (VA) 30-10 
Dialog Info (VA) 7-8 - 7-10, 31-7 -

31-10 
Edit Options Menu 18-7 
File Open 3-7 
Find 4-11, 21-3 
Floating Window Info 31-11 -

31-13 
Go To Line 21-9, 25-8 
Go To Marker 19-12, 21-10, 25-8 
Icon Pick (VA) 30-21 - 30-22 
Info 7-8, 7-9 
Launch 25-2 
Library Information 23-5 
Main Window Info (VA) 31-10 -

31-11 
Menu Bar (VA) 7-20, 30-18 - 30-19 
Menu Items (VA) 7-22, 27-16, 

30-20 - 30-23 
Menus (VA) 7-19, 30-23 - 30-24 
New Database 8-10 

Symantec C++ User's Guide and Reference 1-3 



Index • 
New Folder 3-8 
Add Group 3-13 
New Project 3-8, 16-2 
New View (VA) 7-6, 31-12 
Open 16-6 
Page Setup 16-9 
Pane Identifier (VA) 32-8 
Pane Info 7-16, 7-18 
Precompile 23-4 
Preferences(VA)29-4 
Project Manager Preferences 

4-9, 20-3 
Project Options 8-3 
Remove Markers 21-11 
Save Options As 8-3 
Save Now (VA) 35-4 
Set Array Bounds 6-21, 25-11 
Subview Info (VA) 31-13 - 31-14 
TearoffMenu Info (VA) 31-9 
Update Project 6-2 
View Info 31-2 

Dialog view 7-5, 7-6, 31-13 
Director object 27-4, 27-6, 27-13 
Do pop-up menu 7-25 
Document object 27-4, 27-8, 28-4 

E 
Edit menu (Debugger) 

Clear 25-3 
Copy 25-3 
Copy To Data 24-6, 25-4 
Cut 25-3 
Paste 25-3 
Preferences 25-4 
Show Clipboard 25-5 
Undo 25-3 

Edit menu (Project Manager) 
Balance 20-3 
Oear 20-2 
Copy 20-2 
Cut 20-2 
Paste 20-2 
Preferences 19-3, 20-3 
Select All 20-2 
Shift Left 20-2 
Shift Right 20-3 
Undo 20-2 

Edit menu CV A) 
Application 30-5 
Balloon Help 30-6 
Oasses 7-26, 30-7 
Oear 30-3 

1-4 Symantec C++ User's Guide and Reference 

Commands 7-24, 30-7 
Copy 30-2 
Cut 30-2 
Duplicate 30-3 
Menu Bar 30-7 
Menus 7-19, 7-21, 30-7 
New Class 7-27 
New Command 7-25 
New Data Member 7-28 
New Item 30-4 
New Menu 7-19 
New Menu Item 7-22 
Paste 30-2 
Select All 30-4 
Undo 30-2 

Editor 4-1 - 4-18 
arrow keys 19-14 
automatic indenting 4-9 
beeping 4-10, 4-13 
block auto-indenting 4-9 
delimiter matching 4-10 
editing keys 19-14 
editing text with 4-9 
entering text with 4-9 
resizing panes 4-4 
turning features off 4-9 
saving changes 4-17 
scrolling 4-6, 4-9, 19-6 
search/replace text 4-11 - 4-16 
search multiple files 4-15 
splitting windows 4-4 
syntax highlighting 4-10 
using grep 4-16 
viewing functions 4-2 
viewing headers 4-2 

Editor window 2-3, 6-10 
changes-made indicator 19-3 
displaying text files in 3-14, 4-2 
Command-dicking title 4-7, 19-4 
Command-clicking title bar 4-7, 

19-11 
Command-key indicator 19-3 
file path indicator 19-3 
hiding toolbar 19-8 
illustration of 19-2 
lock icon in 19-9 
live thumb scrolling in 19-4 - 19-5 
opening empty 16-5 
opening without opening project 

19-5 
rearranging 26-2 
scroll rate control 19-4 



splitting 4-5, 19-6 - 19-7 
text features available in 19-13 -

19-19 
see also Edit menu (Project 

Manager) 
Electronic supplemental information 

(ESI) 
Enclosure 2-8, 27-2 
enums 4-7, 19-10, 20-11 
Error messages 23-10 

Debugger B-1 - B-2 
Linker A-1 - A-3 

Events 
Activate 27-2 
Null 18-12 
Resume 18-12 
Suspend 18-12 
Update 27-2 

Expressions 
changing format of 6-19 
changing value of 6-24 
compiling 6-21 
displaying 25-9 - 25-12 
editing 6-21 
evaluating values of 6-10, 6-24 
saving 25-5 
setting context of 6-23 

Extensions, filename 8-5, 19-16 
changing mapping 3-2 
used to identify file type 3-2 

F 
Factory settings 20-4 
File menu (Debugger) 

Close 25-2 
Launch 25-2 
New Browser 6-10, 24-4, 25-1 
Page Setup 25-3 
Print 25-3 
Quit 6-25 
Save All 25-2 
Save Log As 25-2 

File menu (Project Manager) 
Close 16-8 
Close All 16-8 
New 16-5 
New Project 16-2 
Open 16-6 - 16-7 
Open in Editor 16-7 
Open Selection 16-7 
Page Setup 16-9 
Print 16-9 

Revert to Saved 16-8 
Save 16-7 
Save A Copy As 16-8 
Save All 16-7 - 16-8 
Save As 16-8 

File menu (VA) 
Close 7-18, 29-3 
New 29-2 
Open 29-2 
Page Setup 29-4 
Preferences 29-4 
Print 29-4 
Revert to Saved 29-3 
Save 29-3 
Set Generate File 29-5 

File Path pop-up menu 19-3 - 19-4 
File Set pop-up menu 

All Files in Project 21-5 
CUstom 21-5 
Front Window 21-5 
Open Windows 21-5 
Selected Files in Project 21-5 

Files 
adding to projects 3-10, 18-2 - 18-3 
AppCornmands. h 30-25 
. c 3-2, 7-2, 16-5 
compiling 4-17 
. cp 2-9, 3-2, 7-2, 7-30, 35-7 
.cpp 3-2 
dirty 20-9 
documentation 3-3 
editing in Code pane 6-10 
extension mapped 18-4, 18-20 
filter 16-7 
GenerateTCLApp 35-3, 35-5 
. h 2-9, 7-2, 7-30, 35-7 
jumping to specific line in 4-8, 6-9, 

21-9 
macro 2-10, 7-31, 27-11, 35-8 -

35-13 
opening project 16-6 
opening text 4-1, 16-6 
Project Resources.rsrc 

2-10, 27-11 
.r 3-2 
removing from projects 3-11, 18-3 
resource (. rsrc) 2-9, 3-3, 35-4 
saving 16-7 
source 2-3, 3-2, 4-1, 7-30 - 7-32 
. sym 18-19 
syntax of 23-2 
updating 23-4 

Symantec C++ User's Guide and Reference 1-5 



Index • 
VA generated 35-8 
Visual Architect. rsrc 2-10, 

7-2 
see also Project file, Headers, 

Source files, Code 
Floating window view 7-5, 31-13 
Folders 

containing other folders 3-4 
hidden 3-5 
hierarchy 3-14 
macros 35-5 
organizing files in 3-4 
(Project Models) 16-9, 16-11 
(Projects) 3-15 
(Scripts) 8-7 
Source 35-5 
(Scripts) 8-11 
Symantec C++ for Power Mac 

3-4, 3-15 
(Tools) 8-22, 18-18 
see also Project folder, System tree, 

Project tree 
Functions 28-5 

call chain of 6-16 - 6-21 
examining fields in structure, class, 

array 6-18 
member 2-7, 2-11, 28-2 
moving to a specific 4-7 
variables in 6-17 
verify balance of 4-11 

G 
Gopher 27-4, 27-6, 28-5 
Grep 4-16, 21-11 
Groups 3-3, 17-3, 18-21 

H 

adding files to 3-4, 3-13 
creating 3-13 - 3-14 
displaying contents of 3-13 
folder hierarchy as template for 

creating 3-14 
hiding contents of 3-13 
nested 3-4, 3-12 
renaming 3-14 
Source 3-12 

Hard import binding 23-6 
Headers 

changing 3-2 
excluding from searches 21-6 
precompiled 3-3, 8-4 - 8-6, 23-4 
viewing 4-2, 17-2 

1-6 Symantec C++ User's Guide and Reference 

Headers pop-up menu 4-3, 17-2, 
19-13 

Hierarchy 
class 2-7, 5-1, 27-2 
visual 2-8, 27-2 

Import binding 23-5 - 23-6 
In Class pop-up menu 
Indenting 19-16 
Inheritance 2-7, 27-2 
Interface, creating. See Visual 

Architect 

L 
Libraries 3-1, 23-8 

c 3-3 
C++ 3-3 
creating your own 3-3 
destination for 18-14, 18-16 
file type 18-14, 18-16 
Macintosh 3-3 
object 3-1 
shared 3-14, 18-14 - 18-15, 23-6 
static 18-15 - 18-16 

Linker 
application file produced by 2-4 
fixing link errors 6-2 
incremental 18-17 
MakePEF 18-18 - 18-19 
PPCLink 18-18 - 18-19 

Linker Errors window 6-2, 23-8 
Link map 18-17 
Link parameters 23-5 
Low memory situations 28-22 - 28-24 

M 
Macintosh Programmer's Workshop 

(MPW) 8-1 
ToolServer with 8-20 

Macros 35-8 - 35-14 
constants 35-15 
editing 30-5 
expression 35-10, 35-14 
file 2-10, 7-31 
operators 35-14 
predefined variables 35-15 - 35-17 
record types 35-17 - 35-25 
statement 35-10 - 35-14 

Main debugger window. See 
Debugger, Panes 



Main window (default included in 
Visual Architect. rsrc c) 
7-4, 31-13 

Main Window view 2-11, 7-4 
MakePEF 18-22 
Make status 3-2, 17-3, 18-22 
Markers pop-up menu 4-7, 6-10, 

19-8, 19-9 - 19-10 
Markers 

automatically generated 4-7 
jumping to specific 4-8, 6-9 
placing 4-8 
removing 4-8 
user-defined 4-7, 20-11 

Member 
data 2-7, 2-10, 5-3, 5-10, 7-15, 7-27 

- 7-28, 27-15 
functions 2-7, 2-10, 2-11, 4-2, 5-3, 

5-9 
Menus 28-18 - 28-24 

adding menu item 7-.21 
adding to menu bar 7-20 
attaching commands 7-23 - 7-26 
constructing 7-19 
creating 7-19 
creating submenu 7-23 
deleting 7-19 
removing from menu bar 7-21 
removing menu item 7-21 
setting item command key 7-23 
see names of specific menus and 

dialog boxes 
Modal Dialog view 7-5, 30-26, 31-14 
Multi-file search 4-14 - 4-16 

N 
New ... Dialog view 7-5, 31-14 

0 
Options menu (VA) 

Honor Grid 33-2 
Lazy Select 7-15, 33-2 
Show Button Groups 33-3 
Show Item Numbers 33-3 
Show Position 33-3 

Options pop-up menu 17-2, 18-5 -
18-6 

Edit Menu 18-7 
<Empty Project> 18-6 
Save Options As 18-8 

Options sets 8-1 - 8-4, 16-9, 18-5 -
18-6 

and precompiling headers 8-5 
deleting 18-7 
modifying default for Empty 

Project model 8-4 
renaming 18-7 

Origin, frame 28-16 

p 
Pane Info window 7-16, 32-3 

displaying pane class's hierarchy 
7-17 

title as pane identifier 7-16 
triangles in 7-17 

Pane menu (VA) 
Align 32-7 
Bring To Front 32-8 
Class 32-5 
Color 32-6 
Font 32-6 
Identifier 32-8 
Pane Info 7-16, 32-2 
ScrollPane Info 32-5 
Send To Back 32-8 
Set Button Group 32-8 
Size 32-6 
Style 32-6 
Text Baselines 32-7 
With Grid 32-7 

Panes 2-10, 7-11, 27-3 
adding to view 7-12 
and Pane Info windows 7-16 
button pane 7-14 
changing attributes of 2-11, 7-15 -

7-18 
Classes (Class Browser window) 

5-3, 5-8, 7-17, 22-3 - 22-4 
classes of 28-6, 32-5 
Code (Debugger windows) 6-6, 

6-10, 6-14, 6-22, 24-2, 24-3 
created by VA 2-10, 7-11 - 7-18 
CView class 7-4, 7-17, 27-2 
Data (Class Browser window, 

Debug Browser window) 5-3, 
5-10, 6-10, 6-18, 6-21, 6-23, 
22-4, 24-6, 25-9 - 25-12 

defined 7-11 
deleting from view 7-15 
dialog text 7-13, 7-17 
display options for 32-6 
drawing in 28-10 - 28-11 
drawing order 32-8 
editing text 7-17 

Symantec C++ User's Guide and Reference 1-7 



Index • 
Functions (Class Browser window) 

5-3, 22-4 
graphic element pane 7-14 
identifier 7-16 
Info window 7-16, 32-3 
orientation in Debugger windows 

6-7 
properties of 28-12 - 28-14 
resizing 4-4 
scrolling 6-6, 6-9, 28-17 
selecting 7-15 
Source (Class Browser window) 

5-3, 5-7, 5-9, 5-10, 22-5 
Stack Crawl (Debugger windows) 

6-6, 6-10, 6-16, 24-2, 24-4, 24-5 
static text 7-13 
working with 28-7 - 28-18 

Panorama 28-14 - 28-16 
Patterns (grep) 22-12 

complex 21-12 
constraining 21-14 
simple 21-12 
subpattern 21-13 

portRect 7-11, 31-5 
PPCLink 18-22 
pragma marks 4-7, 19-10, 20-11 
Precompiled headers. See Headers 
Preferences 

Debugger 6-25, 25-2 
Editor 4-9 
see also Project Manager 

Preferences dialog box 
Prefixes 8-5 
Printing 16-9 
Program counter 6-6 
Project file 

adding files to 3-10 
as contained in project folder 3-4 
contents displayed in Project 

window 17-1 
defined, 2-2 
files included in 3-2, 17-1 
suffix of 3-1 

Project folder 
creating 3-8 
defined 3-4 
files automatically added to 3-9, 

3-10 
placing outside the system tree 3-5 

Project Manager 2-1 
closing windows 16-8 
compiling VA files 2-1 

1-8 Symantec C++ User's Guide and Reference 

creating custom project models 
16-10 

creating new folder 16-5 
creating project textbox 16-5 
designating the main project 3-15 
dictionary 8-2 
displaying files 16-7 
handling of different file types 3-2 
keeping track of files 2-4 
launch preferences 20-5 
launching Debugger from 6-3 
modifying project models 16-9 
opening Editor windows 16-2 
opening files 16-2 
opening project 16-2, 16-7 
printing files 16-9 
recording 8-1 
saving files 16-7 

Project Manager Preferences 
dialog box 

Editor Options General Settings 
page 4-9, 19-5, 19-17, 20-4, 
20-7 - 20-9 

Editor Options Marker Popup page 
19-12, 20-4, 20-11 - 20-12 

Editor Options Syntax Formatting 
page 20-4, 20-9 - 20-10 

Factory Settings button 20-4 
Help area on pages 20-4 
Project Manager page 20-4, 

20-5 - 20-6 
Project menu (Project Manager) 

Add filename 18-3 
Add Files 18-2 
Add Group 18-3 
Debug File 18-3 
Options 8-2, 18-4 
Remove filename 18-3 
Run 18-4 
Run with Debugger 18-4 
Switch Main Project 16-6, 18-2 
see also Project Options dialog 

box, Options sets 
Project Model pop-up menu 16-3 -

16-5, 16-10 
Project models 3-5 - 3-9, 7-2 

ANSI C 3-6, 16-3 
ANSI C++ IOStreams 3-6, 16-4 
choosing 3-5, 3-9 
creating custom 16-10 - 16-11 
C Mac 3-6, 16-4 
C++ Mac 3-6, 16-4 



model type determining files 
added by default to Project file 
3-10 

Empty Project 3-7, 8-4, 16-3, 18-6 
modifying 16-9 
Native MPW Tools 3-6, 16-4 
VA Application 2-2, 3-6, 3-12, 16-5 
VA App with Shared TCL 3-6, 16-5 

Project Options dialog box 
Extensions Mapping 18-4, 18-19 -

18-20 
Help area on pages 18-5 
keyboard substitutes for icons 18-5 
Linker page 18-4, 18-17 - 18-19 
Options pop-up menu 17-2, 18-5 -

18-6 
PowerPC C Compiler Options page 

4-18, 6-3, 18-23 
PowerPC C++ Compiler Options 

page 4-18, 18-24 
Project Options page 6-3, 18-4, 

18-9 - 18-10 
Project Type page 18-4, 18-10 -

18-16 
Project Window page 17-2, 18-4, 

18-21 - 18-23 
Symantec Rez Compiler Options 

18-4, 18-24 
Project Resources.rsrc2~0 
Project tree 

as containing the Project file 3-4 
Project window 17-1 - 17-6 

adding entries to 3-10, 17-5 
column headings 17-3 - 17-4 
Debugging flag in bug column 6-4 
defined 3-9 
directional arrow in 17-4 
displaying Visual Architect . 

rsrc 7-3 
drag/drop operations 17-5 
dragging folders to 3-14 
opening 26-4 
opening Editor windows from 2-3 
options for 18-21 - 18-23 
removing entries from 3-11, 17-5 
selecting entries 17-4 - 17-5 
sorting 17-4 
when window is opened, 2-2 

Projector A ware preference 20-8 
Projector status 17-4, 19-9 
Projects 2-2, 3-1, 3-3 

active 16-6, 23-8 

R 

adding files to 3-10, 4-18, 18-2 -
18-3 

and project windows 17-1 
building 5-1 
closing 3-16 
compacting 18-9 
creating 3-1, 3-5 - 3-9, 16-2 - 16-5 
defined, 2-2, 3-1 
headings 17-3-17-4 
grouping related files in 3-3 
including other projects in 3-3 
locating files of 3-4 
main 3-15 
nested 18-9 
opening multiple 3-15 
opening files of 3-14 
prompting to open 20-5 
removing files from 3-10 
sharing files with other projects 3-2 
source files, automatically included 

7-30 - 7-31 
starting 2-2, 3-1 - 3-16 
switching to open 18-2 
updating 6-1 - 6-2, 18-9, 23-6 -

23-7, 35-5 
see also Project file, Project folder, 

Project models, Project 
window 

Rainy day fund 28-23, 28-24 
ResEdit 3-3, 3-14 
Resorcerer 3-3 
Resources 

as created by VA 2-9, 7-2 
menus 7-18 - 7-23, 28-18 - 28-22 
SIZE 18-11 
TCL 2-9, 28-18 - 28-20, 28-26 -

28-30 
Visual Architect. rsrc 2-10, 

7-2, 7-3, 27-10 
Run-time error 23-6 

s 
Scripts 

opening Project Manager 
dictionary 8-7 

opening Script Editor 8-7 
recording 8-6 - 8-7, 8-8 - 8-9 
running 8-10 - 8-11 
storing 8-10 
writing 8-9 - 8-10 

Symantec C++ User's Guide and Reference 1-9 



Index • 
Scrolling 

live thumb 19-4 
rate in Editor window 19-4 
see also Debugger 

Searches 
batch 4-15 - 4-16, 21-4 
multi-file 4-14, 21-4 
pattern (grep) 4-16, 21-12 - 21-17 
shielded folders 21-6 
strings 4-11 - 4-14, 21-2 - 21-8 
using grep 4-16, 21-12 - 21-17 

Search menu (Project Manager) 
Add Marker 21-10 
command keys 21-7 
Enter Replace String 21-8 
Enter Search String 21-7 
Find 21-2 
Find in Doc Server 21-9 
Find in Next File 21-8 
Find Next 21-8 
Find Previous 21-8 
Find Selection 21-7 
Find Selection Previous 21-7 
Get Prototype 21-9 
Go To Line 21-9 
Go To Marker 21-9 
Go to Next Error 21-11 
Go.to Next Result 21-11 
Go to Previous Error 21-11 
Go to Previous Result 21-11 
grep 21-12 - 21-17 
multi-file search 21-4 
patterns 21-11 - 21-18 
Remove Markers 21-11 
Replace 21-8 
Replace All 21-8 
Replace & Find Next 21-8 
Replace & Find Previous 21-8 

Search Results window 21-11 
listing of search strings found 4-16, 

21-4 
SIZE Flags pop-up menu 18-11 -

18-13 
Skeleton code 2-13, 27-18 
Smart link 18-18 
Soft import binding 23-6 
Source files 

analyzing structure of 5-1 
code size of 17-4 
customizing 7-32 
displayed in Source pane 5-3 
extensions of 8-5, 16-5, 18-19 

1-10 Symantec C++ User's Guide and Reference 

highlighting errors in 2-3 
jumping to specific line in Build 

Errors window 23-10 
modification date of 17-4, 18-10, 

18-23 
opening 4-1 
path of 17-4 
preprocessing 23-3 
produced by VA 7-2, 7-30 - 7-32 
types processed by Project 

Manager 3-2, 4-1 
viewing different parts of 4-4 
working within Editor windows 

2-3 
Source menu (Debugger) 

Clear All Breakpoints 6-16, 25-7 
Clear Breakpoint 25-7 
Edit, 6-10, 25-7 
Go To line 6-9, 25-8 
Go To Marker 6-9, 25-8 
Set Breakpoint 6-15, 25-7 

Source pane (Class Browser window) 
displaying class definition in 5-6 
editing class information 5-7 - 5-10 

Source-level debugger. See Debugger 
SourceServer 2-7, 8-12 - 8-25 

accessing revision information 8-23 
- 8-25 

branches defined 8-13 
checking files in and out 8-12, 8-18 

8-23 
creating database 8-10 
nesting databases 8-17 
revision tree defined 8-13 
setting up database 8-15 - 8-17 

Splash Screen view 7-5, 31-14 
Split-level classes, 2-13, 7-30, 27-18 -

27-19, 35-7 
Stack Crawl pane. See Panes 
Stack frames 24-4 
Static constructors 25-5 
Stationary document 18-16 
Sticky cursor 29-4 
Strings 

finding and replacing 4-11 - 4-14, 
21-2 - 21-8 

formats 6-20 
searching for in multiple files 4-14 

- 4-16 
Style pop-up menus 20-12 
Subview 7-5, 31-14 
Supervisor object 27-5 



Switchboard object 27-5 
Symantec Project Manager. See 

Project Manager 
Symantec Project Manager dictionary 

8-7 - 8-8 
Symantec Project Manager menu 

Bring Up To Date 7-32, 35-5 
Generate 7-31, 35-3 
Generate All 7-31, 35-5 
Run 35-5 

Symantec Rez 
converting resource description 

files 2-4 
Syntax highlighting 4-10, 19-16 
System tree 

T 

as containing the Symantec Project 
Manager folder 3-4 

Target 
building 23-8 - 23-9 
defined 3-1 

TCL Resources 2-9 
Tear-off Menu view 7-5, 31-15 
Templates. See Project models 
Text files 

navigating in 4-4 - 4-9 
opening 3-14, 4-1 
types of 3-2 

Text panes 
dialog text 7-13, 7-17, 34-2 
static text 7-13, 34-2 

THINK Class Library (TCL) 2-7, 
28-1 - 28-31 

basic concepts 27-1 - 27-10 
defined 2-7, 27-1 
resources 28-26 - 28-27 
Visual Architect, interaction with 

2-7 - 2-13 
visual hierarchy 2-8, 27-2, 28-5 

THINK Reference 21-8 - 21-9 
Toolbox 2-7 
Tool palette 7-12, 27-14, 34-1 
ToolServer 2-7, 8-26 - 8-28 

setting up 8-26 
using MPW 8-26 - 8-28 

Tools menu 7-12, 34-1 - 34-5 
Translators 2-4, 3-11, 17-4 
Trees 

project 3-4 
revision 8-9 
system 3-4 

Typechecking 17-5 
typedefs 4-7, 20-11 

u 
Undefined Symbol link error 6-2 

v 
Variables 

analyzing 6-21 - 6-24 
browsing through 24-6 
in functions 6-17 
predefined 35-15 - 35-17 

Version control. See SourceServer. 
View Edit window 7-8, 7-14 

Arranging panes in 32-7 
View Kind pop-up menu 7-7, 7-25 
View List window 7-3, 7-7 
View menu (VA) 

Delete View 31-5 
New View 31-3 
Open View 31-4 
Set Default Command 31-6 
Try Out 7-18, 31-6 
View Info 7-8, 31-2 

Views 2-8, 2-10, 7-4, 27-2 
and chain of command 27-6 
and visual hierarchy 27-2 - 27-3 
changing attributes of 2-11, 

7-8 - 7-11 
constructing with VA 2-10, 

7-4 - 7-10 
creating 31-3 - 31-4 
creating panes 7-11 - 7-18 
CView (TCL), 7-4, 27-2 
debriefing 7-32 
defined VA vs. TCL views 2-8, 7-4 
initializing 7-32 
list of in Visual 

Architect. rsrc file 7-3, 
27-11 

Main (contained by default in 
Visual Architect. rsrc) 
7-3, 27-11 

Main Window 2-11, 7-4, 27-13 
naming 7-9 
naming the window 7-9 
opening 31-4 
text panes for 7-13 
trying out 2-12, 7-18, 31-6 
types of in VA 2-11, 7-4 - 7-5, 31-14 

- 31-17 
working with VA 27-12 - 27-18 

Symantec C++ User's Guide and Reference 1-11 



Index • 
Visual Architect 2-1, 2-6, 27-10 - 27-19 

adding Balloon Help 7-29 
adding button pane 7-14 
adding graphic element 7-14 
adding menu 7-21 
adding menu items 7-21 
adding pane to view 7-12 
adding text pane 7-13 
Apple events 7-30 
attaching commands 7-23 
automatic derivation of classes 2-1 O 
basic concepts 27-10 - 27-19 
building menus 7-18 
changing attributes 7-8, 7-15 - 7-18 
changing classes 7-28 
commands 7-23 
creating panes 7-11 
creating new class 7-26, 27-12 
creating submenu 7-23 
constructing views 7-4 
customizing source files 7-32 
defining classes 7-26 
defining data members 7-27 
defining new command 7-24 
files produced by 2-6, 7-2, 7-30 
implementing actions 2-11 
interpreting of macro files 2-10 
launching 7-2 
macro files 2-10, 7-31 
modifying classes 27-12 
modifying code of 2-12, 27-18 
overview 2-9 
panes 7-11 - 7-18 
pasting content of Clipboard into 

30-3 
removing menu 7-19 
removing menu items 7-21 
resources 2-10 
selecting pane 7-15 
setting menu item's command key 

7-23 
source code 2-9 - 2-10, 7-30 
TCL, interaction with 2-7 - 2-13 
trying interface 27-18 
trying view 7-18 
updating project 7-31 
when to use 7-2 
window position 7-10 
window size 7-10 
views 7-4 - 7-10, 27-12 - 27-17 
see names of individual VA menus 

Visual hierarchy 2-8, 27-2 - 27-3 

1-12 Symantec C++ User's Guide and Reference 

w 
Warning messages 23-11 
Windows 27-2 - 27-3 

see names of individual windows 
Debugger ' 

Windows menu (Debugger) 
Close Log Window 25-12 
Data 25-12 
Debug browsers 25-13 
Filename 25-12 
Hide Control Palette 25-13 
Show Control Palette 25-13 
Show Log Wmdow 25-12 
Source file 25-12 

Windows menu (Project Manager) 
active project name 26-4 
Arrange 26-2 
Bring Back To Front 26-3 
Build Errors 23-9, 26-4 
Class Browser 22-1, 26-4 
New Class Browser 26-4 
other project filenames 26-5 
Search Results 26-4 
Send Front To Back 26-3 
ShowToolbar 17-1, 26-4 
source files 26-5 
Swap 26-3 
Worksheet 26-4 
Zoom 26-3 

Worksheet window 8-27 
opening 26-4 

x 
XCOFF Convertor 5-3 



Symantec Service and 
Support Solutions• 

Symantec offers a variety of technical support and customer services 
to meet your needs. Our Technical Support department offers several 
different levels of support to assist you with specific questions you 
may have in using our software. Our Customer Service department 
will inform you what Symantec has to offer and how to get what's 
available. 

Registering Your Symantec Product 
To register your Symantec product, complete the registration card 
included with your package and drop the card in the mail. You can 
also register via your modem during the installation process if your 
Symantec software offers this feature. In addition, you can use the 
toll-free fax number listed below to register your product. 

If your address changes, you can mail or fax your new address to 
Customer Service. Please send it to the attention of the Registration 
Department. 

Symantec Corporation 
Attn: Registration Dept. 
175 W. Broadway · 
Eugene, OR 97401 

(800) 800-1438 Fax 

Technical Support 
Symantec's Technical Support department offers expanded support 
options designed for your individual needs and to help you get the 
most out of your software investment. 

The phone numbers listed on the back of this manual are for support 
in North America. If you are outside of the United States or Canada, 

Symantec C++ User's Guide and Reference 5-1 



• Symantec Service and Support Solutions 

please call the local Symantec office or distributor in your area, or 
refer to the international offices provided at the end of this section. 

Symantec now offers different types of technical support services for 
you to choose from, which are described below. You are given 
StandardCare Support by purchasing the product and then can 
choose from Symantec's PriorityCare and PremiumCare services to 
extend your level of support. 

StandardCare Support 
All registered users of Symantec products are entitled to these 
services at no charge: 

• Unlimited calls for 90 days (from the date of the first call) 
for installation assistance, configuration, and general 
usage questions. 

• Unlimited technical assistance via CompuServe and 
America Online. These forums offer electronic access to 
our technical support staff, libraries of sample files, 
technical notes, and bulletins. You will also find a rich 
interaction and information exchange with other users of 
Symantec software. 

• Unlimited use of Symantec's Bulletin Board System 
(BBS). This download BBS is kept updated with sample 
files and product technical notes for quick and easy 
electronic access. 

• Unlimited access to company information via the 
Internet. With an Internet browser program such as 
Mosaic, Cello, or Netscape, you get the latest company 
news by entering Symantec's Internet address: 
HTTP:/ !WWW.SYMANTEC.COM. 

• Unlimited use of Symantec's automated fax retrieval 
system for instant printouts of technical notes, bulletins, 
product literature, and general information by fax. 

• StandardCare Support is available Monday through 
Friday, 7:00 a.m. to 4:00 p.m. Pacific Time. 

For your first 90 days of free technical support, refer to the (503) 
phone number on the back of this manual. 

5-2 Symantec C++ User's Guide and Reference 



Technical Support + 

PriorityCare Support 
All registered users of Symantec products are entitled to these 
services on a "pay-as-you-go" basis: 

• The PriorityCare 800-number is charged to your VISA, 
MasterCard, or American Express on a per incident basis. 

• The PriorityC:are 900-number is charged to your 
telephone bill on a per minute basis. (As of this writing, 
the equivalent 900-number service is not available in 
Canada.) 

• Average hold time will be kept to a minimum. 

• PriorityCare Support is available Monday through Friday, 
6:00 a.m. to 5:00 p.m. Pacific Time. 

To use the PriorityCare 800- and 900-number services, refer to those 
numbers on the back of this manual. 

PremiumCare Support 
All registered users of Symantec products are entitled to these 
services on an annual subscription basis: 

PremiumCare Gold Support provides: 
• Unlimited calls on a toll-free 800 line. 

• Average hold time will be kept to a minimum. 

• PremiumCare Gold Support is charged on an annual 
subscription basis. 

• PremiumCare Gold Support is available Monday through 
Friday, 
6:00 a.m. to 5:00 p.m. Pacific Time. 

PremiumCare Platinum Support provides: 
• Unlimited calls on a toll-free 800 line. 

• Average hold time will be kept to a minimum. 

• A Support Center Manual with troubleshooting, 
installation, configuration, and usage information. 

• Quarterly updates of technical notes and bulletins. 

Symantec C++ User's Guide and Reference 5-3 



• Symantec Service and Support Solutions 

• Instant access to senior support staff. 

• Automatic updates of inline software revisions. Online 
software revisions do not include version upgrades.) 

• After hours and weekend support is also available to 
PremiumCare Platinum customers for an additional fee. 

• PremiumCare Platinum Support is charged on an annual 
subscription basis per product family. The annual fee is 
for two subscribers; other subscribers can be added on a 
per person basis. 

• PremiumCare Platinum Support is available Monday 
through Friday, 6:00 a.m. to 6:00 p.m. Pacific Time. 

To order PremiumCare Gold or Platinum support, please contact 
Customer Service or your Symantec sales representative. 

Electronic Support 
Technical information is available 24 hours a day on electronic 
bulletin board systems. Symantec provides access to its own 
Symantec bulletin board system (BBS), and maintains the Symantec 
forums on CompuServe, America Online, and Applelink. 

Symantec BBS 
The Symantec BBS provides a Customer Service forum, shareware 
and public-domain software, "Frequently Asked Questions" (FAQs), 
and support forums where you can exchange tips and information 
with other end users. Settings for the Symantec bulletin board are: 8 
data bits, 1 stop bit; no parity. 

300-, 1200-, and 2400-baud modems 
9600-, and 14,400-baud modems 

CompuServe 

(503) 484-6699 (24 hrs.) 
(503) 484-6669 (24 hrs.) 

To access the Symantec forums on CompuServe, type: 

GO SYMANTEC at any ! prompt. 

For additional information, or to subscribe in the United States and 
Canada, call CompuServe at (800) 848-8199. Check with 
CompuServe for data communications settings. 

5-4 Symantec C++ User's Guide and Reference 



Technical Support + 

America Online 
To access the Symantec bulletin board on America Online, type 
keyword: 

SYMANTEC 

For additional information, or to subscribe in the United States and 
Canada, call America Online at (800) 227-6364. Check with America 
Online for data communications settings. 

In other regions, contact them directly for information on how to 
obtain an account. 

Applelink 
You can exchange information and ideas with other users of 
Symantec products on the Applelink bulletin board. You can also ask 
technical support questions and report bugs. To send us email, use 
the address: d0152. 

You can download product updates from the software library. Our 
forum is located in "Third Parties:Third Parties (P-Z):Symantec 
Solutions". 

Internet 
To ask technical support questions or to report a possible bug, send 
email to: 

support@devtools.symantec.com 

Automated Fax Retrieval System 
Symantec's automated fax retrieval system can be used 24 hours a 
day to receive product information on your fax machine. You can 
call from any touch tone phone to receive an index listing of both 
Technical Support and Customer Service documents available, then 
have any of these specific documents faxed to you. 

To receive technical application notes and samples of "how tos," call 
our Technical Support fax retrieval number. 

Symantec C++ User's Guide and Reference 5-5 



• Symantec Service and Support Solutions 

You can receive general product information, data sheets, and 
product upgrade order forms from our Customer Service fax retrieval 
number. 

Technical Support: 

Customer Service: 

Customer Service 

(503) 984-2490 

(800) 554-4403 

Symantec's Customer Service department builds and maintains long­
lasting customer relations through consistent, expert service. Our 
Customer Service department is available to help you: 

• Order an upgrade. 

• Subscribe to the technical support solution of your 
choice. 

• Fulfill your request for product literature or 
demonstration disks. 

• Find out about dealers and consultants in your area. 

• Replace missing or defective pieces (disks, manuals, etc.) 
from your package. 

• Let us know if the address on your registration card has 
changed. 

Replacing a CD-ROM 
If you need to replace a defective CD-ROM that is still under 
warranty, please use the CD-ROM Replacement form at the end of 
this manual, or contact Customer Service. 

To receive a refund for a product purchased through a reseller, 
please visit or contact the authorized dealer from whom you 
purchased the product. · 

If you ordered the product or upgrade directly from Symantec and 
wish to receive a refund in accordance with our own 60-day money 
back guarantee, please contact our Customer Service department 
within 60 days of purchase, at 1-800-441-7234. One of our Customer 
Service Representatives will be happy to give you a return 
authorization number and instructions for returning the product. 

5-6 Symantec C++ User's Guide and Reference 



Technical Support + 

For specific questions about how to use your Symantec software, 
please contact Technical Support. 

Customer Service Locations 

USA Symantec C orporation 
175 W. Broadway 
Eugene, OR 97401 

International Locations 

(800) 441-7234 (USA & Canada) 
(503) 334-6054 (all other locations) 
Fax (503) 334-7400 

Symantec provides technical support and customer service 
worldwide. If you're in a country outside of the United States or 
Canada, please contact the local distributor or Symantec office 
nearest to you, or our world headquarters. 

World Headquarters 
Symantec Corporation 
10201 Torre Avenue 
Cupertino, CA 95014 
U.S.A. 

European Headquarters 
Symantec Europe 
Kanaalpark 145 
2321 JV Leiden 
The Netherlands 

Technical Support - Dutch 

French 

German 

English 

BBS 
Automated fax retrieval 

Australia 

Tel. 1 ( 408) 253-9600 

Tel. (31) (71) 353 111 
Fax (31) (71) 353 150 

Tel. (31) (71) 353 184 

Tel. (31) (71) 353 180 

Tel. (31) (71) 353 181 

Tel. (31) (71) 353 182 
Fax (31) (71) 353 153 

Tel. (31) (71) 353 169 
Tel. (31) (71) 353 255 

Symantec Australia Pty. Ltd. Tel. (61) (2) 879 6577 
408 Victoria Road Fax (61) (2) 879 6805 

Symantec C++ User's Guide and Reference 5-7 



• Symantec Service and Support Solutions 

Gladesville, NSW 2111 
Australia 

Technical Support Tel. (61) (2) 879 6577 
Fax (61) (2) 879 6594 

BBS Tel. (61) (2) 879 6322 
DOS/Win Antivirus recording Tel. (61) (2) 879 7362 
Mac Antivirus recording Tel. (61) (2) 879 6968 

5-8 Symantec C++ User's Guide and Reference 



Symantec C++ 8.0 for Power Macintosh 
CD-ROM Replacement 

CD-ROM REPLACEMENT: After your 60-Day Limited Warranty, if your CD-ROM 
becomes unusable, fill out Sections A & B and return 1) this form, 2) your damaged 
CD-ROM, and 3) your payment (see pricing below, add sales tax if applicable), to 
the address below to receive a replacement CD-ROM. DURING THE 60-DAY LIM­
nED WARRAN1Y PERIOD, THIS SERVICE IS FREE. You must be a registered cus­
tomer in order to receive a CD-ROM replacement. 

SECTION A- CUSTOMER INFORMATION 

Company Name------------------------------------

Street Address (No P.O. Boxes, Please) ___________________________ _ 

City _______________________ State ___ Zip/Postal Code ______ _ 

Country* Daytime Phone ___________ _ 

Software Purchase Date ______________ _ Version ---------------
'This offer limited to U.S. and Canada. Outside North America, contact your local Symantec office or distributor. 

SECTION B-CD-ROM INFORMATION 

Briefly Describe the Problem:-------------------------------

CD-ROM Replacement Price 

Sales Tax (See Table) 

Shipping & Handling 

TOTAL DUE 

FORM OF PAYMENT** (Check One) 

Please add sales/use tax for the following states: AZ, CA, CO, 
CT, DC, FL, GA, IL, IN, IA, KS, LA, ME, MD, MA, MI, MN, 
MO, NC, NJ, NY, OH, PA, SC, TN, TX, VA, WA, WI, and 
Canada (GST) 

D Check (Payable to Symantec) Amount Enclosed $ 0 Visa 0 MasterCard 0 American Express 

Credit Card Number Expires ______________ _ 

Name on Card (Please Print) Signature ________________ _ 

"U.S. Dollars. Payment must be made in U.S. dollars drawn on a U.S. bank. 

MAIL YOUR CD-ROM REPLACEMENT ORDER TO: 
Symantec Corporation 
Attention: CD-ROM Replacement 
P.O BOX 10849 
Eugene, OR 97440-2849 
Please allow 2-3 weeks for delivery. 
Symantec C++, Symantec, and the Symantec logo are U.S. registered trademarks of Symantec Corporation. 
Other brands and products are trademarks of their respective holder/s. © 1995 Symantec Corporation. All rights reserved. Printed in the U.S.A. 



• Symantec Service and Support Solutions 

5-10 Symantec C++ User's Guide and Reference 



0;.30·00139 

' 

s~c. 

Technical Support 
For specific teclmical questions about Symantec C++, 

please call our technical experts by choosing one of the three support options below. 
For information on Symantec's broad range of service and support programs, 

see the Service and Support Solutions section ii\ this manual. 

StandardCare Support 
503-465-84 70 (No charge for 90 days from date of first call.) 

PriorityCare 800 or PremiumCare 800 Support 
800-927-4014 (Charged on a per-incident or per-year basis.) 

PriorityCare 900 Service 
;. 

900-646-0004 (Charged on a per-minute or per-incident basis.) 

Customer Service 
For general questions about Symantec products, please call 

800-441-7234 (U.S. and Canada) or 503-334-6054. 

Symantec Corporation Headquarters 
10201 Torre Avenue 

Cupertino, California 95014 
408-253-9600 

S}lll:Ultcc :md the Symant<.'C logo arc U.S. registered trademarks of Sym•ullec Corporation. Other brands and products are 
tmdemarks of dicir respect ive holder/s. © 199; S)m:uttec Corporation. All Riglt~ Resen« l. J'Iinted in dte U.S.A. 436-0; 17-12 JI<); ll 9493JR 4195 

Made from 100 
Recycled A~'teri 


