
,S EC.

DEVELOPMENT SYSTEM FOR
POWER MACINTOSH

• .. e· ...

Compiler
Guide

VERSION 8

POWER MACINTOSH/
MACINTOSH

Symantec C++
for Power Macintosh.

Compiler Guide

•
Documentation

Development

Quality Assurance

Technical Support

Project Management

Product Management

Credits
John Minniti, Jeanne Munson, Stephen Raphel, and Susan Rona

David Bustin, Thomas Cardozo, Thomas Emerson, Bob Foster,
Udi Kalekin, Paul Kaplan, Doug Knowles, Jim Laskey, John Micco,
Pat Nelson, Mark Romano, Phil Shapiro, and Rob Vaterlaus

Celso Barriga, Colen Garoutte-Carson, Constantine Hantzopoulos,
Kevin Irlen, Yuen Li, and Christopher Prinos

Glenn Austin, Mark Baldwin, Craig Conner, Colen Garoutte-Carson,
Rick Hartmann, Michael Hopkins, Steve Howard, Scott Morison, and
Kevin Quah

Constantine Hantzopoulos, Doug Knowles, and David Neal

David Allcott

Copyright© 1989, 1993, 1994, 1995 Symantec Corporation.
All Rights Reserved. Printed in U.S.A.

Symantec Corporation
10201 Torre Avenue
Cupertino, CA 95014
408/253-9600

Symantec C++, THINK C, THINK Reference, and
THINK Pascal are trademarks of Symantec
Corporation. Other brands and their products
are trademarks of their respective holders and
should be noted as such.

The Compiler Guide is copyrighted and all rights are reserved. Information in
this document is subject to change without notice and does not represent a
commitment on the part of Symantec Corporation. The software described in
this document is furnished under a license agreement. The document may
not, in whole or in part, be copied, photocopied, reproduced, translated, or
reduced to any electronic medium or machine-readable form without prior
consent, in writing, from Symantec Corporation.

SYMANTEC CORPORATION MAKES NO WARRANTIES, EITHER EXPRESS
OR IMPLIED, REGARDING THE ENCLOSED COMPUTER SOFTWARE
PACKAGE, ITS MERCHANTABILITY, OR ITS FITNESS FOR ANY
PARTICULAR PURPOSE. THE EXCLUSION OF IMPLIED WARRANTIES IS
NOT PERMITTED BY SOME STATES. THE ABOVE EXCLUSION MAY NOT
APPLY TO YOU. THIS WARRANTY PROVIDES YOU WITH SPECIFIC LEGAL
RIGHTS. THERE MAY BE OTHER RIGHTS THAT YOU MAY HAVE WHICH
VARY FROM STATE TO STATE.

SYMANTEC'S LICENSOR(S) MAKES NO WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE,
REGARDING THE SOFTWARE. SYMANTEC'S LICENSOR(S) DOES NOT

•
WARRANT, GUARANTEE OR MAKE ANY REPRESENTATIONS REGARDING
THE USE OR THE RESULTS OF THE USE OF THE SOFTWARE IN TERMS OF
ITS CORRECTNESS, ACCURACY, RELIABILITY, CURRENTNESS OR
OTHERWISE. THE ENTIRE RISK AS TO THE RESULTS AND PERFORMANCE
OF THE SOFTWARE IS ASSUMED BY YOU. THE EXCLUSION OF IMPLIED
WARRANTIES IS NOT PERMITTED BY SOME JURISDICTIONS. THE ABOVE
EXCLUSION MAY NOT APPLY TO YOU.

IN NO EVENT WILL SYMANTEC'S LICENSOR(S), AND THEIR DIRECTORS,
OFFICERS, EMPLOYEES OR AGENTS (COLLECTIVELY SYMANTEC'S
LICENSOR) BE LIABLE TO YOU FOR ANY CONSEQUENTIAL, INCIDENTAL
OR INDIRECT DAMAGES (INCLUDING DAMAGES FOR LOSS OF BUSINESS
PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION,
AND THE LIKE) ARISING OUT OF THE USE OR INABILITY TO USE THE
SOFTWARE EVEN IF SYMANTEC'S LICENSOR HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME JURISDICTIONS DO
NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY FOR
CONSEQUENTIAL OR INCIDENTAL DAMAGES, THE ABOVE LIMITATIONS
MAY NOT APPLY TO YOU.

SYMANTEC'S Licensor's liability to you for actual damages from any cause
whatsoever, and regardless of the form of the action (whether in contract,
tort (including negligence), product liability or otherwise), will be limited to
$50.

Contents•

1 Welcome. 1
If You Are New to the Symantec Environment .3
If You Are Leaming C or C++. .3
What Is Symantec C++ for Power Macintosh. .3

What you need . .4
What Your Package Contains . . 5
What's in This Manual . 5
Conventions Used in This Manual .6
What You Should Know .7

Leaming CIC++ . .7

2 Using the Symantec Compilers 11
Compiling Source Files . 13

Choosing a compiler 13
Compiling files not in the project . 13
Compiling files already in the project. 14
Checking files without compiling 14
Fixing errors in source files 14
Error reporting 15

Precompiled Headers 15
Customizing the
PPC MacHeaders/PPC MacHeaders++ files . 15
Creating your own precompiled header . 16

Symantec C++ Reports . 17
Viewing the preprocessor output 18
Disassembling your code . 18
Generating a link map. 18

Symantec C++ Optimizer 23
Why use an optimizer . 23
When not to use an optimizer 23

3 Calling Toolbox Routines. 25
Calling Toolbox Routines 27

Passing arguments to Toolbox routines 28
Working with Pascal strings . 29
Using PPC MacHeaders/PPC MacHeaders++ 30

The Macintosh Header Files 32
The Mac #includes folder . 33

Symantec C++ Compiler Guide v

•
4 Compiler Reference. . 35

How Symantec Compilers Implement C and C++ 39
Identifier length and capitalization . . 39

How Symantec Compilers Look for Header Files. 39
Once-only headers . 39
Shielded folders . . 40
Project-specific folders 40
Using aliases . 41
Using the trees. 41

Using Registers 42
Alignment of Structure or Array Members 43
Integer Representation 44

Short integers . 44
Long integers . 45
Integer limits . 45

Floating-Point Representation . 46
Floating-point parameters and limits 47

Unordered Comparisons . 49
Dimensionless Arrays . 50
The _new _handler . 50
The Inherited Keyword . 51
Internal Limits 52
Symantec C++ for Power Macintosh Extensions 52

Strict ANSI C conformance. . . 53
Relaxed ANSI C conformance. . 55
Strict ANSI C++ conformance . . 55
Relaxed ANSI C++ conformance . 58

Predefined Macros 59
SC, SYMANTEC_C, SYMANTEC_CPLUS, _ZTC_,
SC PLUS SYMANTEC . . 59
macintosh, MC601, mc601 . 59
_cplusplus . 59
LINE 59
FILE 59
DATE 59
STDC 59
TIME 59
_POWERC, powerc, _powerc . 59
FPCE, _FPCE_IEEE_ 60

v1 Symantec C++ Compiler Guide

•
#pragma Directives 60

#pragma [SC] align 60
#pragma [SC] export . 61
#pragma [SC] external 61
#pragma [SC] import. 61
#pragma [SC] internal 62
#pragma [SC] lib_export 62
#pragma [SC] message . 63
#pragma [SC] noreturn(function-name) 63
#pragma [SC] once 63
#pragma [SC] options 63
#pragma [SC] options align 64
#pragma [SC] parameter 64
#pragma [SC] segment . 64
#pragma [SC] template . 64
#pragma [SC] template_access 65
#pragma [SC] trace on 66
#pragma [SC] trace off . 66

Accessing Option Settings in Your Code 67
Options not applicable to Symantec C++ . 68
Language extension options 68
Enumerated type option 69
Include header once option 69
Treat chars unsigned option 69
Map carriage returns option 70
Type-checking options . 70
Debugging options . 71
Global optimizer options . 71
Warning options . 72

5 Compiler Options Reference . . 75
Symantec C++ for Power Macintosh Compiler Options 77

The Options Menu 77
AppleScript. 78
pragmas. 78

C++ Language Settings 79
C Language Settings 83
Compiler settings 87
Code optimization . 89

Optimizations . 90
Debugging . . . 95
Warning Messages. 99
Prefix . . 108

6 Porting Code 111
Porting from 68K 113

Porting steps performed on the 68K machine . . . 113
Porting steps performed on the Power Macintosh . . 118

Symantec C++ Compiler Guide vii

•
Porting from MPW C++ .

Include file search path .
enum prototyping
Structure definition .
Static member functions
const violations
Data definitions in precompiled headers
Instantiating abstract base classes

PowerPC Calling Conventions
Parameter passing
Assigning parameters

7 Using the Standard Libraries .
Headers and Libraries .

Apple vs. Symantec standard libraries
Standard libraries
Using the Apple standard libraries .
Macintosh libraries .

Symantec ANSI Libraries
Special versions of the standard libraries
Customizing the PPCANSI library . . .

Using the Online Standard Libraries Reference
Looking up a topic . . .
Moving around THINK Reference
Reading a function reference page
Using the tables of contents
Finding lost databases

8 Using Symantec Rez
The Resource Compiler .

Using a resource compiler . .
Standard type declaration files . .

Structure of a Resource Description File.
Sample resource description file .

Resource Description Statements
Syntax notation
Special terms . . .
Data-specify raw data . .
Type-declare resource type . .
Resource-specify resource data.

Labels
Built-in functions to access resource data.
Declaring labels within arrays.
Label limitations .
Using labels: two examples

Preprocessor Directives .
Variable definitions .
Header file processing
If-then-else processing

viii Symantec C++ Compiler Guide

.120

.120

. 120

. 120

.121

.121

. 121

.122

.122

.122

.123

129
. 131
.131
.131
.133
.134
.136
.137
.137
. 138
. 140
. 140
.141
.143
.144

147
.149
.149
.149
.151
. 152
.153
.153
. 154
. 154
.154
.165
.169
. 169
.170
.171
.172
.175
. 176
.177
.178

Resource Description Syntax
Numbers and literals.
Expressions. . .
Variables and functions.
Strings . .

Setting Symantec Rez Options .
Resource alignment . .
Redeclared types are ok
Prefix String
Language Support

Differences from MPW Rez .

A Language Reference .
Part I - Symantec C Language Reference

Introduction
Implementation-defined behavior
Undefined behavior . . .
Setting ANSI conformance .
About the standard libraries

C Language Reference
2.1.1.3 Diagnostics .
2.1.2.2.1 Program startup
2.1.2.3 Program execution .
2.2.1 Character sets . . .
2.2.1.2 Multibyte characters
2.2.4.2.1 Sizes of integral types <limits.h>
3.1.2 Identifiers . . .
3.1.2.2 Linkages of identifiers.
3.1.2.5 Types .
3.1.3.4 Character constants
3.1.7 Header names
3.2.1.2 Signed and unsigned integers
3.2.1.3 Floating and integral .
3.2.1.4 Floating types .
3.3 Expressions . . .
3.3.2.3 Structure and union members
3.3.3.4 The sizeof operator
3.3.4 Cast operators .
3.3.5 Multiplicative operators .
3.3.6 Additive operators . .
3.3.7 Bitwise shift operators .
3.3.8 Relational operators . .
3.5.1 Storage-class specifiers . . .
3.5.2.1 Structure and union specifiers
3.5.2.2 Enumeration specifiers
3.5.3 Type qualifiers .

. 179

. 179

. 180

. 181

. 184

. 186

. 187

. 187

. 187

. 187

. 188

189
. 193
. 193
. 193
. 193
. 193
. 194
. 194
. 194
. 194
. 194
. 194
. 194
. 194
. 195
. 195
. 195
. 196
. 196
. 197
. 197
. 197
. 197
. 197
. 197
. 197
. 198
. 198
. 198
. 198
. 198
. 198
. 199
. 199

•

Symantec C++ Compiler Guide 1x

•
3.5.4 Declarators . .
3.6.4.2 The switch statement
3.8.1 Conditional inclusion.
3.8.2 Source file inclusion .
3.8.3 Macro replacement .
3.8.6 Pragma directives . . .
3.8.8 Predefined macro names . .
4.1.5 Common definitions <stddef.h>
4.2 Diagnostics <assert.h> .
4.3.1 Character-testing functions . .
4.5.1 Treatment of error conditions .
4.5.6.4 The fmod function .
4. 7 .1.1 The signal function .
4.9.2 Streams .
4.9.3 Files
4.9.4.1 The remove function
4.9.4.2 The rename function
4.9.5.2 The fflush function.
4.9.6.1 The fprintf function.
4.9.6.2 The fscanf function.
4.9.9.1 The fgetpos function
4.9.9.4 The ftell function .
4.9.10.4 The perror function
4.10.3 Memory management functions.
4.10.4.1 The abort function .
4.10.4.3 The exit function . .
4.10.4.4 The getenv function .
4.10.4.5 The system function .
4.11.6.2 The strerror function.
4.12.1 Components of time
4.12.2.1 The clock function

Symantec C Extensions .
pascal keyword . . .
C++ style comments.
Identifiers after #else and #endif.
Function prototypes . . .
Dimensionless arrays allowed. .
void*. . . .
Predefined symbols

Part II - Symantec C++ Language Reference
Introduction

Lexical Conventions . .
§2.3 Identifiers . . .
§2.5.2 Character Constants .
§2.5.4 String Literals .

Basic Concepts . . .
§3.4 Start and Termination .
§3.6.1 Fundamental Types .

x Symantec C++ Compiler Guide

.199

.199

.200

.200

.200

.200

.200

. 201

. 201

. 201

. 201

. 201

. 201

. 202

.202

.202

.202

. 202

. 202

. 203

. 203

. 203

.203

.203

. 203

. 203

. 203

. 203

.203

.204

.204

.204

.204

.204

.204

. 204

.204

. 204

. 205

.206

.206

.206

.206

. 207

. 207

. 207

. 207

.208

•
Standard Conversions. . . . 213

§4.1 Integral Promotions . 213
§4.2 Integral Conversions . 213
§4.3 Float and Double . . 213
§4.4 Floating and Integral . 213
§5.0 Expressions 213
§5.2.4 Class Member Access . 214
§5.3.2 Sizeof . 214
§5.3.3 New . . . 214
§5.4 Explicit Type Conversion . 215
§5.6 Multiplicative Operators . . 215
§5.7 Additive Operators. . 215
§5.8 Shift Operators . . 216

Declarations 216
§7.1.6 Type Specifiers 216
§7.2 Enumeration Declarations . 216
§7.3 Asm Declarations . . 217
§7.4 Linkage Specifications . 217

Classes. 217
§9.2 Class Members . . 217
§9.6 Bit-Fields . . 217

Special Member Functions . . 218
§12.2 Temporary Objects . 218

Templates. . 218
§14.1 Templates 218
§14.4 Function Templates . 221
§14.7 Friends . . 224

Exceptions 225
§15 Exception Handling . 225

Preprocessing 225
§16.4 File Inclusion 225
§16.5 Conditional Compilation . 225
§16.8 Pragmas 226
§16.10 Predefined Names . 226

B Error Messages 227
Recognizing Compiler Error Messages . 229
Error Message Types . . 230

Lexical errors . . 230
Preprocessor errors . 230
Syntax errors . . 230
Warnings . 230
Fatal errors . . 230
Internal errors 230

Symantec C++ for Power Macintosh Error Messages . 231

Index. 289

Symantec C++ Compiler Guide xi

Welcome•
1

~come to Symantec C++ for Power Macintosh. This manual contains
the reference information for the compilers included with Symantec
C++ for Power Macintosh. The Symantec C++ package includes the
Symantec C and C++ compilers and libraries as well as the entire
Symantec development environment.

Contents
If You Are New to the Symantec Environment

If You Are Leaming C or C++ .

What Is Symantec C++ for Power Macintosh .
What you need .

What Your Package Contains

What's in This Manual

Conventions Used in This Manual

What You Should Know.
Leaming CIC++ .

Symantec C++ Compiler Guide

3

3

3
4

5

5

6

7
7

If You Are New to the Symantec Environment +

If You Are New to the Symantec Environment
The Symantec C++ User's Guide and Reference describes how to use
the powerful Symantec development environment. It is a procedure
oriented book that takes you step-by-step through the process of
developing an application on the Power Macintosh.

The User's Guide and Reference also contains tutorials that can help
you learn how to use Symantec C++ for Power Macintosh. Working
through the tutorials is a good way to get started with Symantec C++.

If You Are Learning C or C++
The documentation included with Symantec C++ for Power
Macintosh does not attempt to teach C or C++. Rather it explains the
Symantec development environment, its compilers, and other
associated tools.

If you are relatively new to C or C++, you might find the following
suggestions useful in gaining proficiency with Symantec C++ for
Power Macintosh. Read the tutorials in the Symantec C++ User's
Guide and Reference to learn how to run simple programs using
Symantec C and C++.

If you're learning C or C++ from a book written for UNIX or MS-DOS
computers, you'll want to use THINK Reference (in the Online
Documentation folder) to look at the:

• "Standard Libraries Intro" in the Standard Libraries
Reference database

• "Console Package Intro" in the Standard Libraries
Reference database

• "Introduction to Streams" in the IOStreams Reference
database

What Is Symantec C++ for Power Macintosh
Symantec C++ for Power Macintosh is a unique development
environment for the Power Macintosh. It features very fast C and
C++ compilers, powerful optimizers, a resource compiler, a fast
linker, an integrated debugger, a full-featured text editor, an auto
make facility, an object-oriented GUI builder, and a project organizer
that holds the pieces together. Because the editor, the compilers, and
the linker are components of the same application, Symantec C++

Symantec C++ Compiler Guide 3

1 Welcome •
knows when edited source files need to be recompiled. If you edit a
header file, the auto-make facility recompiles the source files that
depend on it for declarations.

With Symantec C++, you can build Power Macintosh applications.
The standard C libraries include the functions specified in the ANSI C
standard, as well as some additional UNIX operating system
functions. The C++ libraries include IOStreams, a flexible extensible
class library for doing input and output, Complex, a library that lets
you do mathematical operations with complex numbers, and a
version of STL, the C++ standard template library that contains many
classes usable in a variety of contexts.

Symantec C++ for Power Macintosh also contains separate tools to
create 68K applications and code resources. Refer to the online
documentation for additional information on these tools.

You can run your program from the Symantec development
environment as you work on it. Your program runs exactly as if you
had opened it from the Finder, not under a simulated environment.
Your program runs in its own partition while the Symantec Project
Manager remains active, so you can examine and edit your source
files as you watch your program run.

The Symantec development environment includes a source-level
debugger that lets you debug your code exactly as you wrote it;
there's no need to translate assembly language back into source
code. The debugger lets you set breakpoints, step through your
code, debug objects, examine variables, and change their values
while your program is running. And because the debugger works
together with the development environment, you can edit your
source files while you're debugging.

What you need
Symantec C++ for Power Macintosh requires a Power Macintosh and
at least 16 megabytes (16MB) of RAM. Large projects require more
memory.

The complete Symantec C++ system including Apple Tools, the full
68K native environment, and online documentation takes up about
llOMB on your disk, not including your own files. The actual size of
your system can be considerably smaller depending on the kinds of

4 Symantec C++ Compiler Guide

What Your Package Contains +

programs you develop. You can customize your installation to use
less disk space. Refer to the Symantec C++ User's Guide and
Reference for information on custom install options.

What Your Package Contains
Your Symantec C++ for Power Macintosh package consists of a
CD-ROM, this manual, and the Symantec C++ u~er's Guide and
Reference.

What's in This Manual
The chapters in this manual are: "Using the Symantec Compilers,"
"Calling Toolbox Routines,'' "Compiler Reference," "Compiler
Options Reference," "Porting Code,'' "Using the Standard Libraries,''
"Using Symantec Rez," and the appendixes "Language Reference"
and "Error Messages." Each chapter begins with an introduction that
describes what's in the chapter.

Welcome

Using the Symantec
Compilers

Calling Toolbox
Routines

Compiler Reference

Compiler Options
Reference

This is the section you're reading.
It describes the Compiler Guide.

How Symantec C++ for Power
Macintosh compiles your source
files. It also tells you how to
change language settings, choose C
or C++ compilers, and use the
global optimizer.

How to call the Macintosh Toolbox
routines from your programs. It
also explains how to write Pascal
callback routines.

Aspects of the Symantec C and C++
implementations that are not part
of the C and C++ language
definitions.

Special features and extensions in
the Symantec C and C++
implementations. It discusses
special object types, pragmas, and
Macintosh-specific extensions to
the C and C++ languages.

Symantec C++ Compiler Guide 5

1 Welcome •
Porting Code

Using the Standard
Libraries

Using Symantec Rez

Language Reference

Error Messages

How to port code from 68K and
MPW CIC++ to Symantec CIC++. It
also contains hints on how to port
from other CIC++ implementations.

The standard libraries that come
with Symantec C++ for Power
Macintosh, and how to use them
with your project. The chapter also
explains how to modify them for
your own purposes, how to use
the standard libraries supplied by
Apple, and how to use THINK
Reference.

How to write text files that compile
with Symantec Rez to produce
resource files.

This appendix describes
Symantec's implementation of the
C and C++ languages.

This appendix describes all the
error messages generated by
Symantec C, Symantec C++, and
Symantec Rez.

Conventions Used in This Manual
The names of menus, commands, and dialog boxes are in boldface.

Names of files, code fragments, resource names, function names,
folders, and variables appear in typewriter face.

All numbers are decimal. Hexadecimal numbers are written in C
notation: Ox3EFA.

Library and window names appear with the first letter capitalized.

Metanames are italicized.

In this manual, the term "Toolbox routine" means any routine
described in Inside Macintosh.

6 Symantec C++ Compiler Guide

What You Should Know +

What You Should Know
This manual assumes you already know, or are learning, how to
program in C or C++. If you're just getting started in C or C++, the
Symantec development environment is a great platform.

If you're planning to write Macintosh applications, you should be
familiar with the Macintosh Toolbox as described in THINK
Reference or in Inside Macintosh, the official reference that describes
the many Macintosh Toolbox routines. The Toolbox is the set of
operating system and user interface routines that make a Macintosh a
Macintosh. THINK Reference, included with Symantec C++ for Power
Macintosh, is an invaluable tool for learning about the Macintosh
Toolbox and the libraries provided by Symantec C++. It's beyond the
scope of this manual to show you how the different parts of the
Toolbox work together.

Learning CIC++
As the popularity of C and C++ grow, more and more introductory
level books appear on the shelves. Most books assume that you
already know how to program in another language. Some books
spend time telling you how to use components of a development
environment: an editor, a linker, a make facility. If your book
discusses a particular development environment, make sure it's
tailored to Symantec C++ for Power Macintosh, or at a minimum, the
THINK development environment.

Investigating C
Many introductory-level books are available to help you learn C.
Some books assume that you're just learning how to program; others
assume that you already know how to program in another language.

The standard references for the C programming language are
Kernighan & Ritchie's The C Programming Language, Second Edition
(Prentice Hall) and Harbison & Steele's C: A Reference Manual
(Prentice Hall). The C Programming Language, Second Edition is an
update to The C Programming Language that incorporates
information from the ANSI standard. These books assume that you're
already an experienced programmer.

Standard C (Microsoft Press) by P.]. Plauger and Jim Brodie is a
guide to writing C programs that conform to the ANSI C standard.
Both of the authors were officers of the committee that drafted the
ANSI standard.

Symantec C++ Compiler Guide 7

1 Welcome •
Software Engineering in C(Springer-Verlag) by Peter Darnell and
Philip Margolis is an excellent introduction to the C programming
language. This book is ideal for new C programmers who have
programmed in other languages.

C Traps and Piifalls (Addison-Wesley) by Andrew Koenig is a good
book for intermediate and advanced C programmers. It contains a
detailed discussion of common C programming problems.

Numerical Recipes in C (Cambridge University Press) by Press,
Flannery, Teukolsky, and Vetterling is a detailed technical
description of numerical methods with implementation examples
in C.

Portability and the C Language (Hayden Books) by Rex Jaeschke is a
good book on writing portable C programs for advanced C
programmers. It gives guidelines on writing programs that can be
compiled with different compilers and run on multiple platforms. It
points out changes introduced with ANSI C. You'll find it useful if
you port code from one platform to another or from an old (pre
ANSI) version of THINK C.

Portable C Software (Prentice Hall) by Mark R. Horton is also about
writing portable C programs, but emphasizes porting among C
compilers for Unix and MS-DOS.

At the time of this writing, the ANSI standard is described in the
ANSI/ISO 9899-1990, Information Technology-Programming
Language C The cost is $130, plus 7% for shipping and handling. To
order a copy, write or call:

American National Standards Institute (ANSI)
Sales Dept.
11 West 42nd Street
New York, NY 10036
(212) 642-4900

Investigating C++
The standard references for the C++ programming language are Ibe
Annotated C++ Reference Manual by Margaret Ellis and Bjarne
Stroustrup (Addison-Wesley, 1990) and The C++ Programming
Language, Second Edition by Bjarne Stroustrup (Addison-Wesley,

8 Symantec C++ Compiler Guide

What You Should Know •
1992). These books assume that you're already an experienced
programmer. Tbe C++ Programming Language includes a ten
chapter tutorial introduction to C++.

When the ANSI/ISO C++ standard becomes a draft, Symantec will
compare this implementation to that standard.

Other books for learning C++ include:

Learn C++ on the Macintosh by Dave Mark (Addison-Wesley, 1993)
is for beginning C++ programmers. It was written specifically for use
with Symantec C++ for 68K, which is similar to the Power Macintosh
version.

Tbe C++ Primer, 2nd Edition by Stanley Lippman (Addison-Wesley,
1992) is a solid, easy-to-read introduction to C++. It does not assume
knowledge of C, but does assume knowledge of some modern
block-structured language.

Object-Oriented Programming in C++ by Ira Pohl
(Benjamin/Cummings Publishing, 1993) teaches both C++ and
object-oriented programming techniques.

Tbe C++ Answer Book by Tony L. Hansen (Addison-Wesley, 1990)
contains useful examples, questions, and answers. Although it was
written as a companion book to the first edition of Tbe C++
Programming Language, it is still current and informative.

C++ for C Programmers by Ira Pohl (Benjamin/Cummings
Publishing, 1989) is for experienced C programmers who want to
learn C++. It introduces the C++ features that C programmers can put
into immediate practice.

Tbe IOStreams Handbook by Steve Teale (Addison-Wesley, 1993) is a
comprehensive, detailed explanation of the standard input and
output library used in C++. Teale shows programmers how to use
IOStreams, provides reference material for the IOStreams classes,
illustrates how to provide input-output facilities for user-defined
types, and explains how to extend the IOStreams system. This book
will help programmers, both novice or experienced, to expand and
manipulate IOStreams, and to make more sophisticated use of
facilities in their own programs.

Symantec C++ Compiler Guide 9

1 Welcome •
Advanced C++ Programming Styles and Idioms by James 0. Coplien
(Addison-Wesley, 1993) is for programmers, already knowledgeable
in C++, to help develop their expertise. It provides a feel for the
styles and idioms of C++.

To stay on the cutting edge of object-oriented technology and C++
programming, you may want to subscribe to the following
magazines:

Tbe C++ Report: Tbe International Newsletter for C++ Programmers,
]PAM SIGS Publication Group, 310 Madison Ave., Suite 503, New
York, New York 10017.

Tbe journal of Object-Oriented Programming,]PAM SIGS Publication
Group, 310 Madison Ave., Suite 503, New York, New York 10017.

10 Symantec C++ Compiler Guide

Using the
Symantec Compilers•

2
Different compilers implement C differently, even if they conform to

the ANSI standard. Similarly, C++ compilers can differ in the way
they implement C++. This chapter explains how to use the unique
features of the Symantec C and C++ compilers, including how to
compile source files, how to use precompiled headers, and how to
set options that affect the way your source files are compiled. In
addition, this chapter discusses code optimization, and lightly
touches on how Symantec C++ complies with the draft ANSI
standard for the C++ language.

Contents
Compiling Source Files . 13

Choosing a compiler . 13
Compiling files not in the project . 13
Compiling files already in the project . . 14
Checking files without compiling . 14
Fixing errors in source files . 14
Error reporting . 15

Precompiled Headers. . 15 ·
Customizing the PPC MacHeaders/PPC MacHeaders++ files . 15
Creating your own precompiled header . 16

Symantec C++ Reports . . 17
Viewing the preprocessor output . 18
Disassembling your code . 18
Generating a link map . . 18

Symantec C ++ Optimizer . 23
Why use an optimizer . . 23
When not to use an optimizer . 23

Symantec C++ Compiler Guide 11

Compiling Source Files +

Compiling Source Files
Unlike traditional compilers, Symantec C++ for Power Macintosh
doesn't generate separate object files from your source files. Instead,
the Symantec C and C++ compilers put all the object code into the
project document. Although you can compile files manually, most of
the time you use the auto-make facility to compile your files.

Note
When compiling for the external linker (PPCLink),
Symantec C++ for Power Macintosh produces object
files, which are standard object format for the
Power Macintosh, that are not placed in the project
document. For more information on the external
linker, see the Symantec C++ User's Guide and
Reference.

Choosing a compiler
Prior to creating your source files, you should determine if you will
be using C, C++, or a combination of the two compilers. If you are
not sure which language to use, you can use the following
information as a guide.

Create your source in C if your procedure is highly algorithmic or
computationally intensive. Create your source in C++ to take
advantage of strong type checking for function arguments and
variable assignments. C++ is more conducive to large programming
projects where strict guidelines must be maintained amongst
multiple programmers.

Even though C++ is mostly a superset of C, there are some C
constructs that will not compile under C++. In cases where you have
a considerable amount of previous C code that does not compile
under C++, use both C and C++.

Compiling files not in the project
You can add a source file to your project and compile it in one step.
First, create your source file with the Symantec Editor. Save your file
in the same folder as the project document. Make sure that your
Symantec C++ file name ends in . cp or . cpp, and your Symantec C

Symantec C++ Compiler Guide 13

2 • Using the Symantec Compilers

file name ends in . c. By default, the Symantec C++ compiler only
compiles files that end in . cp or . cpp, and the Symantec C
compiler only compiles files that end in . c.

Note
You can use the Extensions options in the Project
Options dialog to change the file extensions that
the Symantec Project Manager uses to determine
which compiler (C, C++, Rez, etc.) to use to compile
source files ending in a given extension.

Next, choose Compile from the Build menu. A dialog shows you
how many lines Symantec C or C++ has compiled. If there are no
errors in the source file, the project manager adds the file and its
object code to the project.

Note
The Symantec Project Manager in Symantec C++ for
Power Macintosh uses PowerPC C as the name of
the Symantec C compiler and PowerPC C++ as the
name of the Symantec C++ compiler.

Compiling files already in the project
If you want to compile a file that is already in the project, click its
name in the project window and choose Compile from the Build
menu. Once a file is in the project, you don't need to open it to
compile it.

Checking files without compiling
You may want to check that your source file will compile without
actually compiling it. First, save the file (using the extension . c,
. cp, or . cpp). Next, choose Check Syntax from the Build menu.
The compiler checks the syntax of the contents of the frontmost
Editor window without generating code or adding the file to the
Project window. If it's in the project, you don't need to open it to
check syntax.

Fixing errors in source files
When Symantec C or C++ detects an error in your source file, it
opens the Build Errors window. If there is more than one error, the
Symantec Project Manager reacts according to the settings you chose
in the Options dialog. One setting you can choose is to have all

14 Symantec C++ Compiler Guide

"Calling Toolbox Routines"
describes which files are
included in the PPC
MacHeaders and PPC
MacHeaders++ files.

Precompiled Headers +

errors listed in the Build Errors window. If you double-dick an error
in this window, the source file that contains the error opens in an
Editor window and the line that contains the error is highlighted.

Error reporting
The Error Reporting radio button cluster in the Debugging page of
the PowerPC C or PowerPC C++ Project Options dialog lets you
choose how the compilers report errors to you. The choices are Stop
at first error, Report the first few errors, and Report all errors in a file.
See "Debugging" in Chapter 5 for more information on error
reporting.

Note
If you are using the auto-make facility, the compiler
will honor the Error Reporting setting (described in
the previous section) for that file, report the
error(s), and then move on to the next file.

Precompiled Headers
Symantec C++ for Power Macintosh lets you precompile header
(#include) files. Precompiled headers may contain only
declarations and preprocessor symbols. Since precompiled headers
are in a format Symantec C++ can use readily, they load significantly
faster than text header files.

Another benefit of precompiled headers is that they make the size of
the debugging information· smaller.

Usually, you use the built-in PPC MacHeaders or
PPC MacHeaders++ that are included with Symantec C++ for
Power Macintosh. Symantec C uses PPC MacHeaders and
Symantec C++ uses PPC MacHeaders++. These two precompiled
header files differ because the information maintained by the
compiler is different for C and C++. For example, a template
declaration can appear in a C++ precompiled header, but not in a C
precompiled header.

Customizing the PPC MacHeaders/PPC MacHeaders++ files
You can change the default files or make your own precompiled
headers. For example, you might find that programs you write
frequently refer to a header file that is not already in

Symantec C++ Compiler Guide 15

2 • Using the Symantec Compilers

PPC MacHeaders or PPC MacHeaders++; or they might include
some files you never use. You can customize these files to suit the
programs you write in the fr- 'lowing way:

1. Find the file Mac #includes. c in the Mac
#includes folder. (The file Mac #includes. cpp
merely includes Mac #includes. c.) Duplicate
Mac #includes. c and give it a new name with the
proper extension. For example, use My #includes. c
with the C compiler, and My #includes. cpp with the
C++ compiler. Open the duplicate with the Symantec
Project Manager.

2. Search for the files you want to add or remove. The
#include statements are enclosed in conditional
compilation directives. To add a file, change the #if 0
directive to #if 1. To remove a file, change the #if 1
directive to #if 0. Some files can't be used together. For
more information, see below.

3. Choose Precompile As ••• from the Build menu. Save the
file as PPC MacHeaders++. The best place for

Note

PPC MacHeaders++ is in the Mac #includes folder,
but you can save it anywhere in the system tree.

System tree refers to the folder containing the
Symantec Project Manager application and all
folders that are not shielded within it. See "Shielded
folders" in Chapter 4 for more information.

The auto-make facility marks the files in the current project for
recompilation if you change PPC MacHeaders++ or any other
include file that it depends on. To let other projects know that
PPC MacHeaders++ has changed, use Check Dependencies ... in
the Build menu, and click OK when the dialog appears.

Creating your own precompiled header
If you want to use your own precompiled header, follow these steps:

1. Create a file containing the desired series of #include
statements and symbol definitions.

16 Symantec C++ Compiler Guide

Symantec C++ Reports +

2. Verify that the current project's compiler settings are the
ones you want to use to build your precompiled header.

Note
A prefix isn't used when precompiling.

3. Choose Precompile As ••• from the Build menu. Name
the file and click Save.

You use a precompiled header the same way you use any other
header file. Use the #include statement to load your precompiled
header into your source file. The #include statement must be the
first noncomment line of your source file.

You can use only one precompiled header per source file. If you
#include <PPC MacHeaders++> in the project prefix, you can't
explicitly include any other precompiled header.

If you don't #inc 1 ude any precompiled headers in the project
prefix, you can use several different precompiled headers for
different source files in your program. You can still explicitly include
PPC MacHeaders++ if you want to use it in particular files.

Note
You can use only one precompiled header per
source file.

You can use your custom-precompiled headers for your own files.
You can #inc 1 ude them explicitly in your source files as long as
you don't #include <PPC MacHeaders++> or
<PPC MacHeaders> in your prefix. Judicious use of precompiled
headers can significantly reduce compilation time and debugger
table size.

Symantec C++ Reports
Symantec C++ lets you look at your source code and finished
applications in three different ways: you can see the preprocessor
output of a source file, the assembly code a source file produces,
and a link map of a finished application.

Symantec C++ Compiler Guide 17

2 Using the Symantec Compilers •

For more information
about PEF, refer to the
Inside Macintosh PowerPC
System Software Manual,
(Addison-Wesley).

Viewing the preprocessor output
If you think you have a bug in one of your macros, use the
Preprocess command in the Build menu. It runs the code in the
frontmost window through the Symantec preprocessor and displays
the result in a new window. The preprocessor expands your macros
and includes the contents of your #include files. It evaluates your
#if or #ifdef statements. You can save and print the contents of
this window as you would any other file.

Note
The preprocessing directives that control
conditional compilation are included in the output.
This allows you to debug file-inclusion errors as
well as macros.

Source in precompiled headers is not included
inline in the preprocessed output.

Disassembling your code
Looking at the assembly code that the compiler produces helps you
debug your code and assess its efficiency. The Disassemble
command in the Build menu disassembles the code in the frontmost
window and displays the result in a new window. You can save and
print the contents of this window as you would any other file.

Note
You can only disassemble code that you can compile.

Generating a link map
The Symantec Project Manager's Internal Linker can generate a link
map of your build results. The link map lists information about the
content of your built application's or shared library's PEF (Preferred
Executable Format) container, including import information and a
layout of each of the PEF container's three executable sections.

Note
Since an application file or shared library file can
contain one or more PEF containers, this section
uses container to mean a single build unit, either
application or shared library.

18 Symantec C++ Compiler Guide

Symantec C++ Reports +

To generate a link map, turn on the Generate a link map option in
the Linker's Project Options dialog. The Internal Linker creates the
link map only when you use Build Application or Build Library
from the Build menu. The name of the map text file is the
application or fragment name with . map appended. For example,
the link map for the Test application is Test .map. The Symantec
Project Manager places the link map in the same folder as the
application and overwrites any pre-existing link map.

The first portion of the link map contains general information about
the container including the name of the container, the time and date
the container was built, and each of the shared libraries required to
execute the container. In the following example, the application's
name is test, it was built on November 7, 1994 at 9: 22 AM
and requires the presence of the InterfaceLib and MathLib
shared libraries in order to execute:

File: Test
Date: Monday, November 7, 1994 9:22 AM

Import: InterfaceLib
Import: MathLib

Note
InterfaceLib and MathLib are automatically
provided by the Macintosh operating system in
ROM.

The next three portions of the link map contain layout information
about the container's three executable sections: code, data, and
uninitialized data.

The format of each section is generally the same, a section header
followed by a table of section content. Each entry in the content
table contains an entry point's base address, a TOC offset, a routine
descriptor address, a routine glue address, and the entry point's
unmangled symbol name. The table is sorted by base address. All
values are in hexadecimal. Data sections do not have the descriptor
or glue columns. The link map is designed so that it can be read by
analysis tools.

Symantec C++ Compiler Guide 19

2 • Using the Symantec Compilers

For debugging purposes, the base addresses of each section of the
link map are set so that an address in the PEF can be mentally
mapped to its correct section. Addresses in the code section are in
the form OXXXXXXX, addresses in the data section are in the form
2 XXXXXXX, and addresses in uninitialized data are in the form
4XXXXXXX.

Note
TOC offsets are not addresses but offsets from TOC.
To compute a TOC address, add the TOC offset to
the TOC base address (in the data section).

The code section contains executable code, primarily from the
compiled routines generated by the Symantec Project Manager's
translators. The code section also contains (although hidden in the
link map) glue generated by the Internal Linker that is used by the
PowerPC runtime to handle cross-fragment calls. For example:

Section: '.text'
Address TOC Desc Glue Symbol

00000004 00000000 NewPtr
00000008 00000018 NewPtrClear
oooooooc 00000030 GetPtrSize
00000010 00000048 SetPtrSize

OOOOOF60 00000028 20000760 00000118 rnalloc
00001010 0000002C 20000768 calloc
00001120 00000030 20000770 realloc
00001404 00000034 20000778 OOOOOlCO free
00001464 00000038 20000780 alloc
000016A4 0000003C 20000788 rnalloc_cleanup

In this example, the first column is blank for the first few entries
because they are imported from another container. The C function
rnalloc is at base address F60, calloc is at 1010, and so on.

A routine descriptor is an 8- or 12-byte structure that contains the
routine's base address and the address of the TOC that should be
used with that routine. A routine descriptor may be blank if the
address of the function is not taken and it is not exported from the
fragment, or the routine is imported.

20 Symantec C++ Compiler Guide

Symantec C++ Reports +

For TOC-based calls, the container uses TOC offset 4 to get the
address of the routine descriptor for NewPtr and TOC offset 28 for
malloc. The routine descriptor for malloc is at address 20000760
in the data section.

The routine glue for malloc is at 118. This glue routine is used to
call malloc with the appropriate TOC. Glue may be blank if the
address of the function is not taken.

The data section contains initialized global data values such as
initialized global variables, initialized static member variables, C++
vtables, strings, floating-point constants, and routine descriptors. The
data section also contains the content of the runtime TOC. For
example:

Section:
Address

'.data'
TOC Symbol

·20000000 TOC

20001270 00000490 ftype
20001274 00000494 fcreator

In this example the first entry is TOC (don't rely on the TOC being
the first entry in the data section because this may change). The base
address of ftype is 20001270 or 1270 bytes from the beginning of
the data section. The TOC entry at offset 4 9 4 contains the address of
fcreator. For obvious reasons, TOC doesn't need a TOC offset.

The uninitialized data section contains global data values such as
uninitialized global variables and uninitialized static member
variables. All entries in the uninitialized data section a·re preset to
zero by the PEF fragment loader. For example:

Section: ' . bss'
Address TOC Symbol

40000000 00000024 ~alloc.c_O

400001E9 00000134 errno

400003AB 00000728 qd

Symantec C++ Compiler Guide 21

2 • Using the Symantec Compilers

In this example the statics contained in the file alloc. c reside at
base address 4 0 0 0 0 0 0 0 . The TOC entry at offset 7 2 8 contains the
address of qd.

If Generate cross references is turned on in the Symantec Project
Manager's Linker Project Options dialog, then each entry in a
section's content will be followed by a table of references to other
entry points in the container. The format of the entry is: address of
the reference followed by name of the reference. For example:

0000DE40 00000718 20001818 00000000 main
OOOODE4C InitManagers(void)
OOOODE56 _main.cp_O
OOOODE7E _main.cp_O
OOOODE8C NeWCWindow
OOOODE98 SetPort
0000DEB6 _main.cp_O
OOOODECE _main.cp_O
0000DF40 HSV2RGB
OOOODF4C RGBForeColor
OOOODF80 PaintRect
OOOODFB8 WaitNextEvent

In this example the main routine calls Set Port from address DE9 8
and accesses statics (_main. cp_O) from addresses DES 6, DE7E,
DEB6, and DECE.

Most symbols in the link map have obvious origins. Various
translators create special symbols (usually prefixed by'_') that
appear in the link map.

Names in the form _file. c_n and _file. cp_n contain static
data such as strings, floating-points, and routine descriptor values
that are contained in the specified source file and user-declared static
variables.

The name _ptrgl refers to the code that dispatches a routine via its
routine descriptor. The names _cplusstart, _cplusterm,
_start, and _term refer to initialization and termination
routines.

Names in the form _sinit_file. cp_ct~ and
_sterm_file. cp_ct_ refer to static constructors and
destructors associated with the file. The names _ct ors and _dtors

22 Symantec C++ Compiler Guide

For more information, see
the Symantec C++ User's
Guide and Reference.

Symantec C++ Optimizer +

are generated by the linker to handle constructors and destructors. A
name in the form _vtbl_class is the virtual function dispatch
table for the specified class.

Symantec C++ Optimizer
An optimizer makes your code more efficient. The Symantec C++
optimizer can speed up your program considerably while making
your program smaller.

Symantec C++ for Power Macintosh uses a global optimizer. When
you compile your program, the compiler produces an internal
representation. The optimizer edits the internal representation to
make it quicker and smaller. The optimizer then passes this revised
internal representation to the code generator, which actually
produces machine instructions.

Why use an optimizer
Although you might be able to edit your own program, and you
might even make it as efficient as an optimizer, by letting the
optimizer edit it instead has these advantages:

• Time savings. Tuning up old code takes time away from
writing new code.

• Legible code. To make code more efficient, you might
need to rewrite it in a way that is hard to read.

• Portable code. Code that's tuned for one type of
computer (such as a Macintosh) may be inefficient on
another (such as an IBM PC).

When not to use an optimizer
Use an optimizer when you're making the final build of a program
you plan to use several times. Here are some programs you don't
want to optimize:

• A program used only a couple times. Using an optimizer
may double your compilation time. It doesn't make sense
to spend more time optimizing it than you'll spend using
it.

• A program you're debugging. An optimizer generates
machine code that differs significantly from your source
code in execution order.

Symantec C++ Compiler Guide 23

Calling Toolbox
Routines•

3
Xe Macintosh Toolbox is the set of over one thousand routines that

give Macintosh applications a consistent interface. This chapter
outlines what you have to do to call the routines described in Inside
Macintosh.

Contents
Calling Toolbox Routines . 27

Passing arguments to Toolbox routines . 28
Working with Pascal strings . . 29
Using PPC MacHeaders/PPC MacHeaders++ . 30

The Macintosh Header Files . 32
The Mac #includes folder . . 33

Symantec C++ Compiler Guide 25

For documentation on
HyperCard XCMDs and the
Communications
Too/box, contact APDA.

Calling Toolbox Routines +

Calling Toolbox Routines
With Symantec C++ for Power Macintosh, you can use all of the
Macintosh Toolbox interfaces. To use the Toolbox interfaces, call
them exactly as they appear in Inside Macintosh. The only thing you
need to know is how to convert the Pascal declarations into C
declarations.

Most Macintosh routines are implemented as calls that take Pascal
typed arguments.

To use a Macintosh Toolbox routine, you must be using the correct
library and headers. If you're using PPC MacHeaders or
PPC MacHeaders++, you don't have to include header files for the
most common Toolbox routines.

Table 3-1 lists the Macintosh Toolbox libraries.

This library ...
AppleScriptLib
AppleScriptLib.xcoff

DragLib.xcoff

InterfaceLib.xcoff

MathLib.xcoff

Contains ...
AppleScript shared library
Stub for AppleScript shared library

Drag Manager interface

Toolbox calls

Low-level floating-point math (required for
PPCANSl.o library)

ObjectSupportLib Apple event interface
ObjectSupportLib.xcoff Apple event interface

PPCToolLibs.o MPW tool library (includes a PowerPC
disassembler)

QuickTimeLib.xcoff Quick Time movie calls

Table 3-1 Macintosh Toolbox libraries

Note
The Symantec Linker allows you to add either the
. xcoff stubs file or the equivalent shared library
into your project.

Symantec C++ Compiler Guide 27

3 • Calling Toolbox Routines

Passing arguments to Toolbox routines
Since argument declarations in Inside Macintosh are given in Pascal,
you need to know how to convert them to C. Table 3-2 gives you the
general rule for converting argument declarations from Pascal to C:

If the object is ...
a var parameter
4 bytes or smaller
larger than 4 bytes

Pass ...
a pointer to the object
the object
a pointer to the object

Table 3-2 Rules for converting Pascal declarations

Table 3-3 lists some examples of Pascal declarations and their C and
C++ counterparts:

Pascal type
integer

long int

char

Boolean

Byte

var Byte

ProcPtr

Handle

var Handle

Ptr

var Ptr

OSType, ResType

packed array
[1 .. 4] of char

Str255

var Str255

StringPtr

var StringPtr

Rect

var Rect

CIC++ type
short

long

short

Boolean or char

Byte in struct declarations, short
when passed as an argument

short *
See "Working with Pascal strings" later in
this chapter.

Handle

Handle *
Ptr

Ptr *
OSType, ResType, long

long

Str255 or unsigned char *
Str255 or unsigned char *
StringPtr or unsigned char *
StringPtr * or
unsigned char **
Rect *
Rect *

Table 3-3 Examples of converting Pascal declarations

28 Symantec C++ Compiler Guide

Pascal type
Point
var Point

Extended

Calling Toolbox Routines +

CIC++ type
Point

Point *

double

Table 3-3 Examples of converting Pascal declarations (Continued)

Working with Pascal strings
Toolbox routines that take strings as arguments expect them to be
Pascal strings. Unlike null-terminated C strings, Pascal strings begin
with a length byte. To write a Pascal string constant, start the string
with " \p". This is how you would call the QuickDraw routine
Drawstring ():

DrawString("\pThis is a Pascal string");

Because Pascal strings start with a length byte, they cannot be longer.
than 255 bytes. They are not generally null terminated. By default,
Pascal string literals are of type unsigned char [] to agree with
the definition of St r 2 5 5.

Note
The Symantec compilers always null terminate
string constants.

You can use the routines in Table 3-4 to convert strings from one
form to the other:

To convert a ... Use the function ...
CIC++ string to a Pascal string CtoPstr ()
Pascal string to a C/C++ string PtoCstr ()

Table 3-4 Functions that convert strings

These routines convert the strings in place and return the converted
string. Their function prototypes are:

unsigned char *CtoPstr(char *s);
char *PtoCstr(unsigned char *s);

Note
If you're not using PPC MacHeaders or
PFC MacHeaders++, include pascal. h to use
these functions.

Symantec C++ Compiler Guide 29

3 • Calling Toolbox Routines

Using PPC · MacHeaders/PPC MacHeaders++
PFC MacHeaders++ is a precompiled header containing the most
common declarations for writing Macintosh C++ programs. Symantec
C++ also includes PFC MacHeaders, which is the equivalent
precompiled header for use with the C compiler.

Both precompiled headers can be found in the Mac #includes
folder. If you include <PFC MacHeaders++> in the project prefix
for Symantec C++, Symantec C++ includes PFC MacHeaders++ in
the files in your project by default. Likewise, including <PFC
MacHeaders> in the project prefix for Symantec C, places the
definitions from PFC MacHeaders in your project's files. As a
result, you never have to explicitly include common header files like
QuickDraw. h. (It doesn't hurt if you do-the #pragma once
directive prevents header files from being included more than once.)

Note
By default, the project prefix for Symantec C++ contains
the line #include <PFC MacHeaders++> and the
project prefix for Symantec G contains the line
#include <PFC MacHeaders>.

To edit the project prefix, see "Creating your own precompiled
header" in Chapter 2.

30 Symantec C++ Compiler Guide

Calling Toolbox Routines +

The PPC MacHeaders++ file and the PPC MacHeaders file
contain these files:

AEObjects.h
AERegistry.h
AppleTalk.h
Components.h
Controls.h
Devices.h
Diskinit.h
Errors.h
Files.h
Fonts.h
IntlResources.h
LowMem.h
Menus.h
Notification.h
OSUtils.h
pascal.h
Processes.h
QuickDrawtext.h
Scrap.h
SegLoad.h
Strings.h
TextServices.h
THINK.h
ToolUtils.h
Types.h

AEPackObject.h
AppleEvents.h
BDC.h
ConditionalMacros.h
Desk.h
Dialogs.h
EPPC.h
Events.h
FixMath.h
GestaltEqu.h
Lists.h
Memory.h
MixedMode.h
OSEvents.h
Packages.h
PPCToolBox.h
QuickDraw.h
Resources.h
Script.h
StandardFile.h
TextEdit.h
TextUtils.h
Timer.h
Traps .h
Windows.h

The following files aren't used as often, so they're not included in
either PPC MacHeaders++ or PPC MacHeaders. You can
include them yourself, or make a custom version of

Symantec C++ Compiler Guide 31

3 . Calling Toolbox Routines •
PPC MacHeaders++ or PPC MacHeaders, as described in
"Precompiled Headers" on page 15.

ActionAtomlntf.h
AIFF.h
AppleScript.h
CommResources.h
ConnectionTools.h
CTBUtilities.h
DeskBus.h
Disks.h
ENET.h
FileTransferTools.h
Folders.h
HyperXCmd.h
ImageCodec.h
Language.h
MIDI.h
MoviesFormats.h
OSAComp.h
Palette.h
Picker.h
Power.h
PrintTraps.h
QuickTimeComponents.h
ROMDefs.h
SCSI.h
ShutDown.h
Sound.h
Start.h
Terminals.h
Values.h

ADSP.h
Aliases.h
Balloons.h
Connections.h
CRMSerialDevices.h
DatabaseAccess.h
Dictionary.h
Editions.h
FileTransfers.h
Finder.h
Graf3D.h
Icons.h
ImageCompression.h
MediaHandlers.h
Movies.h
OSA.h
OSAGeneric.h
Palettes.h
PictUtil.h
Printing.h
QDOffScreen.h
Retrace.h
SANE.h
Serial.h
Slots.h
Soundlnput.h
SysEqu.h
TerminalTools.h
Video.h

The Macintosh Header Files
Symantec C gets its information about the Toolbox routines from the
header files in the Mac #includes folder. The header files contain
C prototypes for all Toolbox routines.

32 Symantec C++ Compiler Guide

The Macintosh Header Files +

The Mac #includes folder
The Mac #includes folder contains the folders and files described
in Table 3-5:

Item Description
Universal Headers This folder contains all of the Macintosh

header files from Apple.

Mac #includes. c This file is the "source file" for
PPC MacHeaders, the default
precompiled header for Symantec C.
Instructions in this file explain how to
modify it to create a customized
precompiled header.

Mac #includes. cpp This file is the "source file" for

PPC MacHeaders

PPC MacHeaders++, the default
precompiled header for Symantec C++. It is
used to select the compiler (C++) only and
#includes Mac #includes. c for the
definitions. See the "Customizing the PPC
MacHeaders/PPC MacHeaders++ files" on
page 15 for information on modifying this
file.

This is the default precompiled header for
Symantec C. It contains the symbols from
the most commonly used Toolbox
managers.

PPC MacHeaders++ This is the default precompiled header for
Symantec C++. It contains the symbols from
the most commonly used Toolbox manager.

THINK #includes This folder contains header files unique to
Symantec CIC++.

Rez #includes This folder contains include files required
by the resource compiler for building
Macintosh resources.

Table 3-5 Files in the Mac #includes folder

Symantec C++ Compiler Guide 33

Compiler Reference•
4

Trus chapter describes in detail aspects of the Symantec C and C++
implementations that are not part of the C and C++ language
definitions.

Contents
How Symantec Compilers Implement C and C++ . 39

Identifier length and capitalization . . . 39

How Symantec Compilers· Look for Header Files . 39
Once-only headers . . . 39
Shielded folders 40
Project-specific folders . . 40
Using aliases . . 41
Using the trees . 41

Using Registers . . . 42

Alignment of Structure or Array Members . . 43

Integer Representation . 44
Short integers . . 44
Long integers . . . 45
Integer limits . . . 45

Floating-Point Representation . . 46
Floating-point parameters and limits . 47

Unordered Comparisons. . 49

Dimensionless Arrays. . 50

The _new_handler. . 50

The Inherited Keyword . 51

Internal Limits . . . 52

Symantec C++ for Power Macintosh Extensions . . 52
Strict ANSI C conformance . 53
Relaxed ANSI C conformance . 55

Symantec C++ Compiler Guide 35

4 Compiler Reference •
Strict ANSI C++ conformance . 55
Relaxed ANSI C++ conformance 58

Predefined Macros . 59
SC, SYMANTEC_C, SYMANTEC_CPLUS, _ZTC_,
SC_PLUS_SYMANTEC 59
macintosh, MC601, mc601 59
_cplusplus 59
LINE 59
FILE 59
DATE 59
STDC 59
TIME 59
_POWERC, powerc, _powerc 59
FPCE, _FPCE_IEEE_ .. 60

#pragma Directives . 60
#pragma [SC] align 60
#pragma [SC] export 61
#pragma [SC] external 61
#pragma [SC] import . 61
#pragma [SC] internal 62
#pragma [SC] lib_export 62
#pragma [SC] message . 63

. #pragma [SC] noreturn(function-name) . 63
#pragma [SC] once 63
#pragma [SC] options 63
#pragma [SC] options align . 64
#pragma [SC] parameter . 64
#pragma [SC] segment 64
#pragma [SC] template . 64
#pragma [SC] template_access 65
#pragma [SC] trace on 66
#pragma [SC] trace off . 66

Accessing Option Settings in Your Code . 67
Options not applicable to Symantec C++ 68
Language extension options 68
Enumerated type option 69
Include header once option 69
Treat chars unsigned option 69
Map carriage returns option 70
Type-checking options . · 70
Debugging options 71
Global optimizer options 71

36 Symantec C++ Compiler Guide

•
Warning.options 72

Symantec C++ Compiler Guide 37

How Symantec Compilers Implement C and C++ +

How Symantec Compilers Implement C and C++
Symantec C and C++ support the enhanced language features of
version 3.0 of the C++ language including templates, nested classes,
and nested types. Exception handling is not yet implemented.

Symantec C is very similar to earlier versions of THINK C. This
section describes how Symantec C implements certain parts of the C
language, including how it represents integers and floating-point
numbers.

Identifier length and capitalization
Symantec C and C++ allow up to 1024 significant characters in an
identifier. If you exceed this maximum, the compiler flags the
identifier as a syntax error. Underscores, letters, and digits are
allowed, and case is significant.

How Symantec Compilers Look for Header Files
These are the rules Symantec C and C++ use to find header files:

#include statement
<filename.h>

"filename.h"

Symantec Compilers ...
Look first in the referencing folder,
then in the system tree.

Look first in the referencing folder,
then in the project tree, and finally
in the system tree.

System tree refers to the folder containing the Symantec Project
Manager application and all folders contained within it. Project tree
refers to the folder containing the project file and all folders
contained within it.

The referencing folder is the folder that contains the file that has the
#include preprocessor directive. For example, if a source file
references a header file MyUt i 1 s . h, and that file in turn has the
line #include "MyUtil Types. h", Symantec C and C++ look for
MyUtil Types .h first in the folder that contains MyUtils. h.

Once-only headers
You can create a header file that you want included in several places
but that should define its symbols only once in a project. Use the
#pragma once directive to do this.

Symantec C++ Compiler Guide 39

4 • Compiler Reference

For example, if you have the directive:

#pragma SC once

in your header file, Symantec C and C++ include that file only once.
If another file tries to include that header file, the compilers know
that the symbols in that file have already been defined, so the file is
not processed again.

Note
Placing the SC in the directive forces the compilers
to produce an error if the directive is not recognized
and is not required.

Keep the following restrictions in mind when you use
#pragma once:

• It doesn't distinguish between files included with < . . . >
and 11 ••• 11 • For example, suppose you have two header
files named xyz. h: one in the system tree and one in the
project tree. If you include one with #include
<xyz .h> and another with #include 11 xyz .h 11 , the
compiler will not include the second file.

• It ignores characters after the first 32. If you include two
files with names that start with the same 32 characters,
neither compiler will include the second file.

Shielded folders
To shield a folder from either search tree, enclose its name in
parentheses. For example, you might have a folder in the project
folder named (Backups) . Symantec C and C++ ignore all files and
subfolders in shielded folders. You can use shielded folders to store
old versions of source or header files or to keep Symantec C and
C++ from wasting time looking in folders that contain other kinds of
documents such as development notes.

Project-specific folders
There is one exception to the shielding rule. If the folder your
project is in contains a folder that has exactly the same name as your
project surrounded by parentheses, Symantec C and C++ will search
that folder.

40 Symantec C++ Compiler Guide

How Symantec Compilers Look for Header Files +

You can use this feature if you're working on two projects that share
files. For example, if you're working on tWo projects, INITProject
and cdevProject, that share some source files and are in the same
folder, create two folders, (INITProj ect) and (cdevProj ect).
Both folders should contain a version of the header file config. h
tailored to control conditional compilation of the common source
files.

Using aliases
Symantec C and C++ let you work with the alias of a project file. The
project tree begins where the original project is located. Also, you
can place aliases to folders in your project and system trees, and
those folders will be searched as though they exist within the tree
containing the alias. Aliases to files are ignored.

Symantec C++ for Power Macintosh does not support aliases when:

• Putting aliases in a project
• Including aliases in an #include statement
• Using an alias as a project's resource (. rsrc) file

Using the trees
Symantec C++ for Power Macintosh lets you organize your files the
way you like without having to specify full path names. There are a
few points you should remember about using Symantec C++ and
project trees.

Don't put project folders in the system tree
This is the most common mistake. It seems natural to put all your
Symantec C or C++ files in one folder, then put your project folders
in the folder as well. However, if you set up your disk this way,
Symantec C++ searches all your other project trees every time it
searches the system tree. Therefore, setting up your project folders
this way not only increases search time, it increases the likelihood of
duplicate names within trees.

Avoid duplicate file names in trees
You shouldn't have duplicate file names in different folders within
the project or system tree. If you do, Symantec C++ won't know
which file to use. Duplicate file names won't lead to any explicit
errors, but you may end up using the wrong file.

Symantec C++ Compiler Guide 41

4 • Compiler Reference

It's okay to have the same file name in both the project and system
trees. Symantec C++ resolves the conflict by search order.

Using Registers
Symantec C and Symantec C++ assign local variables to registers
whenever possible. The PowerPC registers include 32 integer, 32
floating-point, and a few special purpose registers. Table 4-1 shows
the usage conventions for these registers and their names.

Note
Registers designated as volatile in the table indicate
the value is not preserved across function calls.

Register
GPRO

GPRl

GPR2

GPR3 - GPRlO

GPRll, GPR12

GPR13 - GPR31

FPRO

FPRl - FPR13

FPR14 - FPR31

CR

LR

CTR

Defined to be
Scratch register (volatile)

Stack pointer (SP) (non-volatile)

TOC register (non-volatile)

First 8 parameter words; also scratch
registers; GPR3 is used for non-float results.
(volatile)

Scratch registers; GPRll is used for a
function indirect call. (volatile)

(non-volatile) registers

Scratch register (volatile)

First 13 floating-point parameters; also
scratch registers; FPl and FP2 are used for
float results. (volatile)

(non-volatile) floating-point registers

Condition code register contains 8 fields,
CRO - CR7. CRO is set by default by some
integer operations. CRl is set by default by
some floating-point operations. The others
could be used at the code generator's
discretion. (volatile)

Link register

Counter register, (loops, computed
branches) (volatile)

Table 4-1 Register assignments

42 Symantec C++ Compiler Guide

For a detailed description of
the #pragma align directive,
see "#pragma Directives,"
later in this chapter.

Alignment of Structure or Array Members +

The compilers do not place register variables into any of the special
purpose registers. The policy used to allocate variables to registers
depends on whether or not the function is a leaf routine.

Leaf routines are routines that do not contain any function calls. In a
leaf routine, any register can be used to contain register variables. In
a non-leaf routine, non-volatile registers are preferred for register
variables. However, variables that are needed only before or after a
function call can also be placed into volatile registers.

Alignment of Structure or Array Members
Each data object has a type and a preferred alignment. An object's
type is defined by the language, Symantec C or C++. Alignment
mode, used to determine preferred alignment, defines how the
members of an aggregate type reside in memory. Mode influences
the size of an aggregate type and the offset of its members in
memory. The current alignment modes are:

• powerpc
• mac68k

The default alignment mode for the PowerPC is Align to 4 byte
boundary, and is controlled by the Compiler Settings page of the
Project Options dialog. To change the alignment mode, use the
pragma:

#pragma options align=alignment-specifier

The preferred alignment of a data object is determined by the type
and alignment mode in effect at the point in the source code where
the aggregate type is defined. The alignment is determined by the
byte boundary where the type is accessed most efficiently. On 68K
machines the alignment is on 2-byte boundaries; on the PowerPC the
alignment is on 4-byte boundaries and sometimes 8-byte boundaries.

Note
8-byte alignment boundaries are required when
using double precision floating-point.

Symantec C++ Compiler Guide 43

4 • Compiler Reference

Table 4-2 shows the preferred alignment of aggregate data types for
both powerpc and mac68k modes.

Data Type
char
short
int
pointer
float
double
long double
enumeration

array

union

struct

powerpc Mode
1
2
4
4
4
4
4
Preferred alignment of
same sized integer type

Pref erred alignment of
member type

8, if any member is a
double or long double,
or largest of
preferred alignments
of the member types
8, if first member is
a double or long
double or an aggregate
with preferred
alignment of 8, or 4,
if largest preferred
alignment of remaining
member types is 4, or
largest of preferred
alignments of the
member types

mac68k Mode
1
2
4
4
4
4
4
Preferred
alignment of
same sized
integer type
Preferred
alignment of
member type
2

2

Table 4-2 Preferred alignment of aggregate data types

Integer Representation
Integers are represented as two's complement binary numbers. The
size of an int is 4 bytes. In C and C++, an int is signed by default.

Short integers
A short int is 2 bytes. The int in the declaration short int is
optional and is usually omitted. In C And C++ a short is signed by
default.

44 Symantec C++ Compiler Guide

Integer Representation +

Long integers
A long int is 4 bytes. The int in the declaration long int is
optional and is usually omitted. In C And C++ a long is signed by
default.

Integer limits
This section describes limits for the Symantec C and C++
implementation of integers: the largest and smallest values for each
integer type. These parameters are defined as macros in 1 imi ts . h.
Other implementations of C and C++ could have different values.

Changing the values of the macros won't change the way
Symantec C or C++ represents integers. The values are listed in Table
4-3 to indicate the limits of the Symantec C and C++ integers.

Warning

Note

Don't use the value of a macro in your source code.
The value might change in future versions of
Symantec C and C++. Use the macro's name instead.

The natural integer type for the PowerPC is 4 bytes
(int or long). Use this whenever possible since it
will result in better code generation. Use shorter
types only when space is very important or 68K
and/or Toolbox compatibility is required.

Macro
CHAR_BIT

Value
8

Description
Number of bits for the
smallest object that
is not a bit-field

MB_LEN_MAX 1

SCHAR_MIN -128

The maximum number of
characters that can be
in a multi-byte
character

Minimum value for a
signed char

Table 4-3 Integer parameters and limits

Symantec C++ Compiler Guide 45

4 • Compiler Reference

Macro Value Description
SCHAR_MAX 127 Maximum value for a

signed char

UC HAR_ MAX 255 Maximum value for an
unsigned char

CHAR_MIN -128 Minimum value for a
char

CHAR_MAX 127 Maximum value for a
char

SHRT_MIN -32,768 Minimum value for a
short int

SHRT_MAX 32,767 Maximum value for a
short int

USHRT_MAX 65,535 Maximum value for an
unsigned short int

INT_MIN -2,147,483,648 Minimum value for an int

LONG_MIN -2,147,483,648 Minimum value for a
long int

INT_MAX 2,147,483,647 Maximum value for an int

LONG_MAX 2,147,483,647 Maximum value for a
long int

UINT_MAX 4,294,967,295 Maximum value for an
unsigned int

ULONG_MAX 4,294,967,295 Maximum value for an
unsigned long int

Table 4-3 Integer parameters and limits (Continued)

Floating-Point Representation
Use floating-point variables to store numbers that may have a
fractional part. A floating-point number has two parts, a mantissa
and an exponent. The size of the mantissa determines the number of
digits of accuracy of the values you can store; the size of the
exponent determines their range. Both of these are system
dependent. The size limits for the floating-point types are declared in
the header file <float. h> and are documented in the online
Standard Libraries Reference.

46 Symantec C++ Compiler Guide

For more information on
how the Macintosh
represents floating-point
numbers on 68K
machines, see the Apple
Numerics Manual, Second
Edition (Addison-Wesley).
For information on how
the Macintosh represents
floating-point numbers on
the PowerPC, see the
Inside Macintosh
PowerPC Numerics
Manual, (Addison
Wesley).

Floating-Point Representation +

Symantec C++ for Power Macintosh gives you two types of floating
point numbers:

• double (8-byte IEEE double precision) is the fastest
floating-point type. Use this type most of the time.
Currently, double is the same size as a long double,
however, that may change in future releases.

• float. (4-byte IEEE single precision) is smaller than
double. Use this type when you need to save space and
can sacrifice some accuracy. It may also sacrifice code
generation quality in some cases.

Floating-point parameters and limits
This section describes some limits and parameters for Symantec C
and C++ floating-point numbers, such as the largest possible value
and the smallest possible fraction. These parameters are defined as
macros in the header file float. h.

Changing the values of the macros doesn't change the way Symantec
C and C++ represent floating-point numbers. The values are listed in
the following tables to let you know the limits and attributes of the
numbers in Symantec C and C++.

Warning
Don't use the value of a macro in your source code.
The value might change in future versions of
Symantec C and C++. Use the macro instead.

The macros in Table 4-4 define attributes for the Symantec
implementation of floating-point numbers.

Macro
FLT_RADIX

FLT_ROUNDS

Description
The radix for exponent representation. Symantec C
and C++ use 2.

Specifies how floating-point functions round the
results of addition. Symantec C and C++ round to
the nearest floating-point value.

Table 4-4 Attributes of Symant~c C and C++ floating-point numbers

Symantec C++ Compiler Guide 47

4 • Compiler Reference

The macros in Table 4-6 define limits and parameters for the
Symantec C and C++ implementation of floating-point numbers. The
first few letters of the macro indicate the type of numbers for which
the macro is used, as in Table 4-5.

Macro
FLT_MANT_DIG
DBL_MANT_DIG
LDBL_MANT_DIG

FLT_DIG
DBL_DIG
LDBL_DIG

FLT_MIN_EXP
DBL_MIN_EXP
LDBL_MIN_EXP

Value
24
53
53

6
15
15

-125
-1021
-1021

FLT_MIN_lO_EXP -125
DBL_MIN_lO_EXP -307
LDBL_MIN_lO_EXP -307

FLT_MAX_EXP
DBL_MAX_EXP
LDBL_MAX_EXP

128
1024
1024

FLT_MAX_lO_EXP 38
DBL_MAX_lO_EXP 308
LDBL_MAX_lO_EXP 308

FLT_MAX
DBL_MAX
LDBL_MAX

FLT_EPSILON
DBL_EPSILON
LDBL_EPSILON

FLT_MIN
DBL_MIN
LDBL_MIN

3.40282E+38
1.79769E+308
1.79769E+308

1.19209E-7
2.22045E-16
2.22045E-16

l.17549E-38
2.22507E-308
2.22507E-308

Description
The number of base
FLT_RADIX digits in
the floating-point
significand

Decimal digits of
precision

The largest integer that
can be a negative
exponent when the
radix is FLT_RADIX

The largest integer that
can be a negative
exponent when the
radix is FLT_RADIX

The largest integer that
can be a positive
exponent when the
radix is FLT_RADIX

The largest integer that
can be a positive
exponent when the
radix is FLT_RADIX

The largest
representable floating
point number

The smallest fraction
that can be represented
in floating-point
notation

The smallest
normalized positive
floating-point number

Table 4-5 Floating-point parameters and limits

48 Symantec C++ Compiler Guide

For more information on
NaNs and unordered
comparisons, see the
Inside Macintosh
PowerPC Numerics
Manual, (Addison
Wes/ey).

Unordered Comparisons +

Macros starting with ...
FLT

Describe limits for ...
float

DBL double
LDBL long double

Table 4-6 Floating-point macro prefixes

Unordered Comparisons
The Symantec C and C++ compilers allow the use of the unordered,
floating comparisons operators defined as:

! <>= Unordered
< > Less than or greater than
<>= Not unordered (less than, equal to, or greater than)

! <= Not less than or equal to (unordered or greater than)
! < Not less than (unordered, greater than, or equal to)

!>=
!>

!<>

Not greater than or equal to (unordered or less than)
Not greater than (unordered, less than, or equal to)
Unordered or equal

These unordered comparison operators allow for either or both
operands to be a NaN (Not-a-Number). For example, taking the
square root of a negative number yields a NaN. Other numbers
cannot be compared successfully with this NaN for any of the
ordered comparison operators(<, <=, >, >=).

The unordered comparison operators allow control over the case
when a number is compared to a NaN. In general, a NaN yields a
FALSE result for any of the normal comparison operators (although
this depends on the specific NaN and the other number). To test
whether two numbers can be compared using<, <=, >,or>=, use
the <>= operator as in:

X = f(Y);
if (Y <>= X) {

if (Y < X)
//neither is a NaN

In general, to yield TRUE if one operand is unordered, use
(! (X ! < Y) instead of X < Y, and so on.

Symantec C++ Compiler Guide 49

4 • Compiler Reference

Dimensionless Arrays
You can use dimensionless arrays as the last member of struct
definitions. The member does not contribute to the size of the
struct. For example:

struct {
int count;
char data [J ;

} CountData; /* sizeof(CountData) is 4*/

The _new _handler
(C++ only) The _new_handler variable lets you call one of your
functions if a call to new fails due to lack of memory. The program
can then use the function to free up more memory. If you use
_new_handler, you don't always need to check the return value of
new for failure.

_new_handler is a pointer to a function. It is declared in the
CPlusLib library, and is set to NULL by default. Its declaration is:

void (*_new_handler) (void);

When new fails, it tests if _new_handler points to a function or if
_new_handler is NULL. If _new_handler contains a value, the
function it points to is called. If _new_handler is NULL, new
returns a NULL pointer. You must set _new_handler explicitly.
You can set _new_handler directly as:

void newfailed_handler(void);
II prototype of handler

_new_handler = newfailed_handler;
//set _new_handler

or through the set_new_handler library function:

Note

set_new_handler(newfailed_handler);

You must #include <new.h> to make these
declarations.

50 Symantec C++ Compiler Guide

The Inherited Keyword +

The Inherited Keyword
(C++ only) Use the inherited keyword to access a base-class
version of a member function without explicitly naming the base
class. For example:

inherited: :fanctionname

refers to the instance of functionname that the compiler would have
found if functionname had not been declared in the current class.

The inherited keyword is not a portable language extension.

Note
If there is more than one direct base class, the first
one declared is used.

Symantec C++ Compiler Guide 51

4 • Compiler Reference

Internal Limits
Table 4-7 specifies how big you can make certain aspects of your
code.

Description
Characters in a line
Characters in an identifier
Characters in an external identifier
Characters in a string
Number of cases in a switch
Characters in an argument to a macro
Number of arguments to a macro
Number of arguments to a function
Length of macro replacement text
Number of subscripts in an array
Complexity of a declaration
Number of #includes that can be nested
Number of #include paths
Number of #ifs that can be nested
Number of command line arguments

Limit
No limit
1024t
1024t
No limit
No limit
No limit
No limit
No limit
No limit
No limit
No limit
No limit
No limit
No limit
No limit

Table 4-7 Internal limits of Symantec C and C++ implementations

t In C++, the 1024 limit applies to the object's full signature
including the type.

Note
"No limit" means that the compiler establishes no
limit. The operating system or the amount of
memory available to the compiler may impose a
practical limit.

Symantec C++ for Power Macintosh Extensions
The Symantec C and C++ compilers contain language extensions that
let you program the Macintosh more easily. The compilers also have
extensions that let you compile code written for less strict language
implementations. These extensions do not conform to ANSI
restrictions on the C or C++ languages. This section describes these
extensions and how you can. remove them to make your code more
portable.

52 Symantec C++ Compiler Guide

Symantec C++ for Power Macintosh Extensions +

Strict ANSI C conformance
If you check the Strict ANSI conformance option on the Language
Settings page of the PowerPC C compiler, the compiler adds the
following ANSI-compatible restrictions to the Symantec C language:

1. You cannot use two slashes (! /) to introduce a comment.

2. You cannot use dimensionless arrays as the last member
of struct definitions. For a description of this feature,
see "Dimensionless Arrays" on page 50.

3. The following keywords are not recognized:

asm _pas obj

cdecl cdecl -
handle fort ran -

inherited inf

- nans _machdl

overload _nan

pascal _pascal

4. You cannot use the unordered, floating comparisons
operators, ! <>=, <>, <>=, ! <=, ! <, ! >=, ! >, and ! <>.
See "Unordered Comparisons" on page 49 for a
description of these operators.

5. You cannot have empty struct definitions.

6. You cannot use arithmetic on pointers to functions.

7. Trigraphs are supported. Trigraphs are sequences of three
letters that are treated as one. The sequence is ? ? and an
additional character. Trigraphs let computers without such
characters as braces ({ , }) , tildes (-) , and carets ("') use
C++. However, many Macintosh applications use
character literals that resemble trigraphs. For example, the
file type ' ? ? ? ? ' is interpreted as ' ? "'. To write the file
type ' ? ? ? ? ' ' use ' ? ? ? \ ? ' .

8. Text on the end of a preprocessor line is not ignored and
is an error. For example, you would need to change
#endif COMMENT to #endif /*COMMENT*/.

Symantec C++ Compiler Guide 53

4 • Compiler Reference

9. Empty member lists in enum declarations and member
lists with a trailing comma are syntax errors.

10. You cannot use binary numbers such as Ob10110.

11 . At least one hexadecimal number must follow a
\x escape sequence.

12. The program must end with a newline. Each translation
unit must end with a newline.

13. You cannot obtain the size of a function with sizeof.

14. You cannot use hexadecimal floating-point constants.

1 5. A non-integer expression is not converted to an integer
expression where a constant expression is required.

16. You cannot put a sizeof or a cast in a preprocessor
expression.

1 7. The comma (,) operator is not allowed in constant
expressions.

18. You cannot place a void expression in a logical && or
I I . For example,

void f();
a I I f (l; //error: voids have no value

19. A function declared with ellipsis (...) does not match a
function <;ieclared without ellipsis.

20. Old style function definitions must match the promoted
size of the arguments. For example,

void f(char);

void f(c)
char c; //error: Prototype for f

should be f(int);

21 . Function definitions must match the number of
prototyped arguments.

54 Symantec C++ Compiler Guide

Symantec C++ for Power Macintosh Extensions +

22. case label constants must be of type int or
unsigned int.

23. Declarators must declare at least one variable.

24. Function prototypes with ellipsis must have at least one
other argument.

25. Macros must match exactly when being redefined.

26. Unrecognized # directives are in error.

Relaxed ANSI C conformance
The Relaxed ANSI conformance option on the Language Settings
page of the PowerPC C compiler maintains the restrictions in the
above list except numbers 1, 2, and 8.

The Strict Prototype Enforcement option lets you choose how strictly
Symantec C enforces the use of prototypes. If this option is on, you
can choose between two enforcement levels: Infer prototypes and
Require prototypes. If this option is off, Symantec C does nothing
when you use or define a function without a prototype. To be ANSI
conformant, turn on Strict Prototype Enforcement and Infer
prototypes.

Strict ANSI C++ conformance
If you check the Strict ANSI conformance option on the Language
Settings page of the PowerPC C++ compiler, the compiler adds the
following ANSI-compatible restrictions to the Symantec C++
language:

1. These keywords are not recognized:

asm _pas obj

cdecl - cdecl
_handle fort ran
inherited inf -
_nans _machdl

overload _nan

pascal _pascal

2. You cannot use arithmetic on pointers to functions.

Symantec C++ Compiler Guide 55

4 • Compiler Reference

3. Trigraphs are supported. Trigraphs are sequences of three
letters that are treated as one. The sequence is ? ? and an
additional character. Trigraphs let computers without such
characters as braces ({ , }) , tildes (-) , and carets (") use
C++. However, many Macintosh applications use
character literals that resemble trigraphs. For example, the
file type ' ? ? ? ? ' is interpreted as ' ? ". To write the file
type '????',use'???\?'.

4. Text on the end of a preprocessor line is not ignored and
is an error. For example, you would need to change
#endif COMMENT to #endif I *COMMENT* I.

5. Empty member lists in enurn declarations and member
lists with a trailing comma are syntax errors.

6. You cannot use binary numbers such as Obl0110.

7. At least one hexadecimal number must follow a
\x escape sequence.

8. The program must end with a newline. Each translation
unit must end with a newline.

9. You cannot obtain the size of a function with sizeof.

10. You cannot use the unordered, floating comparisons
operators, ! <>=, <>, <>=, ! <=, ! <, ! >=, ! >, and ! <>.
See "Unordered Comparisons" on page 49 for a
description of these operators.

11. You cannot use hexadecimal floating-point constants.

12. You cannot cast an lvalue to a different type.

13. Anonymous unions must be static.

14. A non-integer expression is not converted to an integer
expression where a constant expression is required.

15. Member functions cannot be static. For example, the
following declaration is legal C++:

56 Symantec C++ Compiler Guide

} ;

Symantec C++ for Power Macintosh Extensions +

class Foo {
public:

void static int f(void) {return 3;}
int b (void) ;

However, the following definition is a compile-time error:

static int Foo::b(void)

return 1017;

16. A reference cannot be generated to a temporary.

17. The type void * is not compatible with other pointer
types.

18. You cannot convert to and from a void.

19. You cannot type something void where a value is
required.

20. You cannot put a sizeof or a cast in a preprocessor
expression.

21. You cannot use the pre-increment or post-increment
operator function as an overloaded function for post
increment or post decrement.

22. You cannot use dimensionless arrays as the last member
of struct definitions. For a description of this feature,
see "Dimensionless Arrays" on page 50.

23. You cannot use #ident.

24. Function declarations with separate parameter lists never
match functions with supplied prototypes.

25. The comma(,) operator is not allowed in constant
expressions.

26. You cannot place a void expression in a logical && or
I I . For example,

void f();
a I I f (); //error: voids have no value

Symantec C++ Compiler Guide . 57

4 • Compiler Reference

2 7. Function definitions must match the number of
prototyped arguments.

28. case label constants must be of type int or
unsigned int.

29. String literals used to initialize arrays of char are always
null terminated.

30. Declarators must declare at least one variable.

31 . Function prototypes with ellipsis must have at least one
other argument.

32. Function definitions with separate parameter lists are
disallowed.

33. Template class instantiations cannot introduce new non
local names. For example,

template <class T> class X
public: int i;

friend int

} ;

X <int> i;

operator -- (canst X &x,
canst X &y)

return x.y == y.i;
}

//error: Non-local name
operator == (canst x&,
canst x&) cannot be
declared in a template
instantiation

34. Macros must match exactly when being redefined.

35. Unrecognized # directives are in error.

Relaxed ANSI C++ conformance
The Relaxed ANSI conformance option on the Language Settings
page maintains the restrictions in the above list except numbers 1, 3,
12, and 22. These items are of specific relevance to Macintosh
programming. Use the Relaxed ANSI conformance option to ensure
strict type checking while retaining the extensions necessary for
Power Macintosh programming.

58 Symantec C++ Compiler Guide

Predefined Macros +

Predefined Macros
Symantec C++ for Power Macintosh predefines the macros listed
below.

Note
In the context below, the name One means the
preprocessor expansion 1.

SC, SYMANTEC_C, SYMANTEC_CPLUS, _ZTC_,
SC_PLUS_SYMANTEC
The hex version number of Symantec C++. The current version is
Ox800. SYMANTEC_CPLUS is defined only for the integrated
Symantec C++ translator (PowerPC C++), to distinguish it from the
Symantec C++ for MPW translator. All Symantec C and C++
compilers define _sc_.

macintosh, MC601, mc601
One.

_cplusplus
One in Symantec C++; undefined in Symantec C.

LINE
The current line number in the source file.

FILE
Set to a string containing the name of the current source file.

DATE
Set to a string containing the current date.

STDC
Defined as One when using ANSI conformance (relaxed or strict) in
the C compiler.

TIME
Set to a string containing the current time.

_POWERC, powerc, _powerc
One.

Symantec C++ Compiler Guide 59

4 • Compiler Reference

FPCE, _FPCE_IEEE_
One, to indicate support for NCEG and IEEE conformance.

Note
STDC is defined (it indicates ANSI C
conformance) when using the Symantec C compiler;
applec is never defined (Symantec C++ for MPW
defines it to be one).

#pragma Directives
Symantec C++ for Power Macintosh implements the following
#pragma directives:

align
export
external
import
internal
lib_export
message
noreturn

once
options
parameter
segment
template (C++ only)
template_access (C++ only)
trace off
trace on

The Symantec C++ for Power Macintosh compilers ignore the
following pragmas: parameter, segment, trace on and trace
off; they are maintained for 68K compatibility.

The pragmas are case-sensitive. Pragma directives are in the form:

#pragma [SC l pragma-directive [pragma_atB"s]

If you specify SC, the pragma directive must be one of the pragmas
recognized by the Symantec C or C++ compilers. If you do not
specify SC and the pragma directive is not one of those listed above,
then the Symantec C or C++ compiler assumes that the pragma is for
another compiler and produces a warning.

#pragma [SC] align
This pragma lets you set byte alignments within structures. It takes
the form:·

#pragma [SC] align [11214]

60 Symantec C++ Compiler Guide

#pragma Directives +

The optional number indicates which byte boundary to align on. The
default is 4, which maximizes performance on systems with a 32-bit
bus. If you use this pragma with no argument, the compiler uses the
default setting. This option is for backwards compatibility. Use 2 for
mac68k and use 4 for PowerPC.

Note
The #pragma options align syntax is
preferred.

#pragma [SC] export
This directive informs the compiler which functions or data items
should be exported from the fragment being built. The pragma has
the following syntax:

#pragma export on
#pragma export off
#pragma export list namel [, name2]*

Any items declared or defined while' export is on or specified by
name through the export list are tagged as exported items and, if
present in the linkage unit, will be exported by name from the code
fragment (the resulting PEF container).

#pragma [SC] external
This is the default status for global variables and indicates that a
global variable is available to be exported. The pragma has the
following syntax:

#pragma external on
#pragma external off
#pragma external list namel [, name2]*

The code generator cannot perform any optimization that will
prevent this symbol from being exported from the fragment. This
can be used with the linker's Export all symbols option. For more
information, see the Symantec C++ User's Guide and Reference.

#pragma [SC] import
This pragma informs the linker that a specified symbol should be
called using a glue function even within its own fragment. Without
this #pragma in effect, a symbol cannot be patched by subsequent
loading of a patch fragment because internal calls will not be made

Symantec C++ Compiler Guide 61

4 • Compiler Reference

through glue. The compiler must generate all calls to this function as
cross TOC calls. For more information, refer to the Inside Macintosh
PowerPC System Software Manual (Addison-Wesley).

This directive has the following syntax:

#pragma import on
#pragma import off
#pragma import list namel [, name2]*

Any items declared or defined while import is on or specified by
name through the import list are tagged as imported items and get
cross fragment code generation for references to them.

#pragma [SC] internal
This pragma allows the compiler to generate better code by
assuming that calls to the specified functions will always be local
calls. It has the following form:

#pragma internal on
#pragma internal off
#pragma internal list namel [, name2)*

Any items declared or defined while internal is on or specified by
name through the internal list are tagged as internal items.

This pragma can be used to tell the compiler that a function with
external visibility is guaranteed not to be exported by name from its
linkage unit (this would, in the absence of this directive, be quite
permissible within the semantics of C or C++).

Incorrect usage of this pragma (i.e., turned on by the developer to
improve code generation, when the function really is exported from
the fragment) is detected at link time by way of a missing symbol.

#pragma [SC] lib_export
The effect of #pragma lib_export is to export symbols from a
code fragment. Any symbols mentioned in the #pragma will be
exported from the code fragment when it is built. Any calls to
function symbols mentioned in the pragma's list will be made
through glue code even within the fragment. The syntax is:

#pragma lib_export [on I off I list <name> [, ...]]

62 Symantec C++ Compiler Guide

#pragma Directives +

#pragma [SC] message
This pragma causes the compiler to print the specified text as a
warning message while compiling. The syntax is:

#pragma [SC] message "text"

#pragma [SC] noreturn(function-name)
This pragma informs the compiler that the function does not return,
which enables the compiler to generate improved code. The syntax
is:

#pragma [SC] noreturn(identifier)

This pragma is useful for marking functions such as exit () ,
_exit (), abort (), longjmp (),and especially assert (),
which never return to the caller.

#pragma [SC] once
When this directive appears in a header file, Symantec C++ includes
the file only once even if #include directives include it multiple
times.

Note

#pragma [SC] once

Any file included in a precompiled header will only
be included once, whether or not this #pragma is
specified.

#pragma [SC] options
This pragma directive lets you change options specified in the
PowerPC C or PowerPC C++ options and Project Type dialogs.

The #pragma options directive is described in "Accessing
Option Settings in Your Code,'' beginning on page 67.

Symantec C++ Compiler Guide 63

4 • Compiler Reference

#pragma [SC] options align

This pragma lets you set byte alignments for 68K or the PowerPC. It
takes one of the forms:

#pragma [SC] options align=power
#pragma [SC] options align=native

(equivalent to #pragma [SC] align 4)

#pragma [SC] options align=mac68k
(equivalent to #pragma [SC) align 2)

#pragma [SC) options align=reset
(equivalent to #pragma [SC) align)

For PowerPC alignment, use "power" or "native." Use "mac68k" for
alignment on 68K machines. "reset" reverts the alignment mode back
to that of the second most recent alignment pragma, or to the default
mode if none was specified. Modes may be arbitrarily nested. A data
object's alignment mode is the mode in effect when the aggregate
type is defined.

#pragma [SC] parameter
This directive is accepted for backwards compatibility, but is ignored
on the PowerPC.

#pragma [SC] segment
This directive is accepted for backwards compatibility, but is ignored
on the PowerPC.

#pragma [SC] template
This pragma produces one or more instantiations of a template in a
source file. It uses the following syntax:

#pragma [SC) template class<argl, arg2, ... >
#pragma [SC] template function(argl, arg2, ...)

You can use these pragmas anywhere in your source file to expand
the specified templates at the end of the file. It does not matter
where the pragma occurs in relation to the template declaration. One
typical use is after a #inc 1 ude directive that specifies the interface
or source file for the template.

64 Symantec C++ Compiler Guide

#pragma Directives +

For example, assume file vector. cp contains the following:

template<class T> class vector {

T* v;
int size;

public:
vector(int);
T& operator[] (int);
II other

} i

#pragma template vector<int>
II will instantiate a vector class for

ints.
#pragma template vector<double>
II will instantiate a vector class for

II doubles.

Note
This #pragma will expand only the specified
template and not any templates that it depends on.

#pragma [SC] template_access
The template_access pragma option controls the access of template
expansions that occur during compilation. The three types of
access-public, extern, and static-allow flexibility in
template instantiation. The syntax is:

#pragma [SC] template_access public

#pragma [SC] template_access extern

#pragma [SC] template_access static

Public access means that templates' names are globally accessible. In
public access mode, templates are not expanded unless specifically
mentioned in a #pragma template directive as described earlier
in this section. If one template is expanded with public access in two
different files, you get a link error in Symantec C++. Public access is
most useful when used with external access.

External access means that templates specified are not expanded
during compilation. Instead, the compiler generates an external
reference to any name it would normally expand. This is useful
when several source files use a particular template but you need

Symantec C++ Compiler Guide 65

4 • Compiler Reference

only one copy of it. You can designate one source file as your
"template expansion" file, use public access for it, and then use
extern access for all other source files.

Static access means that templates are expanded as usual, but their
names are local to the current source file. This is useful for projects
where you don't want to leave a special file aside for expanding
templates. It is the default setting for Symantec C++.

Note
Static access cannot be used for template classes
containing static data that are used in multiple
translation units, or for template classes containing
virtual functions.

It is an error to declare and use a template without defining it in a
translation unit where #pragma template_access static is in
effect. For example,

template <class T>

Min (1, 2);

Min(T tl, T t2);

//error: static
Min (int, int) not
defined.

For an example on how to use these directives, see the Vector
tutorial in the Symantec C++ User's Guide and Reference.

#pragma [SC] trace on

This directive is accepted for backwards compatibility, but is ignored
on the PowerPC.

#pragma [SC] trace off

This directive is accepted for backwards compatibility, but is ignored
on the PowerPC.

66 Symantec C++ Compiler Guide

Accessing Option Settings in Your Code +

Accessing Option Settings in Your Code
You can use preprocessor directives to change and test most of the
options specified in the PowerPC C or PowerPC C++ options and
Project Type dialogs. The _option directive lets you query
option settings and the options pragma directive lets you change
them. Both directives take option names as arguments, which are
described later in this section.

Note
There are two underscores in _option.

To see if an option is enabled, use the _option directive in a #if
directive. For example, in the following code fragment, the macro
OPTIMIZING is set according to how you set the global optimizer
option:

#if _option(global_optirnizer)
#define OPTIMIZING 1

#else
#define OPTIMIZING 0

#endif

To change the setting of an option, use the options pragma
directive. It takes any number of option names, separated by
commas. To turn an option on, include its name in the list. To turn
an option off, put an ! in front of its name. For example, this code
fragment turns on the global optimizer and turns off the ANSI
conformance option:

#pragrna options(global_optirnizer, !ansi)

You can place an options pragma anywhere in your file. If it
appears outside a function, it applies for the remainder of the file. If
it appears inside a function, it applies to that entire function only.
The previous settings are restored when the compiler finishes
compiling that function. You can change only certain options inside
a function.

Note
If an option is set more than once in a function,
only the last setting is honored.

Symantec C++ Compiler Guide 67

4 • Compiler Reference

Options not applicable to Symantec C++
All of the option settings recognized by THINK C and prior versions
of Symantec C++ are recognized. Options not implemented return a
constant value of 1 and are not settable. The following options are
not applicable to Symantec C++ for Power Macintosh:

a4_globals

align_arrays

assign_register

class_names

defer_adjust

double_8

far_code

far_data

gopt_coloring

gopt_induction

honor_register

indirect

int_4

jump_table

long_macsbug_names

macsbug_names

mc68020

mc6881

mc6881_trans

native_fp

objectc

pcrel_strings

profile

redundant loads

separate_strs

signed_pstrs

thinkc

trigraphs

virtual

Language extension options
The options, as specified in Table 4-8, control whether you can use
some Symantec C++ for Power Macintosh extensions to the C and
C++ languages. They correspond to options on the Language
Settings page of the PowerPC C and PowerPC C++ options dialog.
You can test and set these options.

If this is set. ..
stdc

objectc

ansi

Then Symantec C++ ...
Returns 1 if Strict ANSI C or Relaxed ANSI C is
set in PowerPC C; returns 0 in PowerPC C++.
Returns 1 if using PowerPC C++; returns 0 if
using PowerPC C.
Corresponds to ANSI Settings button on
Language Settings page of compiler options
dialog.

Table 4-8 Language extension options

68 Symantec C++ Compiler Guide

Accessing Option Settings in Your Code +

If this is set... Then Symantec C++ ...
ansi_relaxed Corresponds to Relaxed ANSI conformance

button on Language Settings page of compiler
options dialog.

ansi strict Corresponds to Strict ANSI conformance button
on Language Settings page of compiler options
dialog.

Table 4-8 Language extension options (Continued)

Enumerated type option
This option, as specified in Table 4-9, lets you choose what size
enumerated types can be. It corresponds to the enums are always
ints option on the Language Settings page of the PowerPC C and
PowerPC C++ options dialog. You can change it outside a function,
but not inside one.

If this is set ... Then ...
pack_ en urns Enumerated types can be the size of any

integral type.

Table 4-9 Enumerated type option

Include header once option
This option, as specified in Table 4-10, lets you include a header file
once if it begins with a #if def and ends with a #en di f. It
corresponds to the Read each header file once option on the
Language Settings page of the PowerPC C and PowerPC C++
options dialog. You can change it outside a function, but not inside
one.

If this is set ... Then ...
read_header_once #if ... #endif enclosed header files

treated as if they contain
#pragma [SC] once.

Table 4-10 Include header once option

Treat chars unsigned option
This option, as specified in Table 4-11, lets you treat objects declared
as char as if they were declared as unsigned char. It
corresponds to the treat chars as unsigned option on the Language

Symantec C++ Compiler Guide 69

4 • Compiler Reference

Settings page of the PowerPC C and PowerPC C++ options dialog.
You can change it outside a function, but not inside one.

If this is set ...
chars_unsigned

Then ...
char is unsigned; othe1wise, it is signed by
default.

Table 4-11 Treat chars unsigned option

Map carriage returns option

This option, as specified in Table 4-12, replaces all occurrences of \n
(Oxa) in character string literals with \r (Oxd) and all occurrences
of \r (Oxd) become \n (Oxa). This option must be on when linking
with the Apple PowerPC libraries and off when linking with the
Symantec standard libraries. The option corresponds to the Map
carriage returns option on the Language Settings page of the
PowerPC C and PowerPC C++ options dialog. You can change it
outside a function, but not inside one.

If this is set ...
map er

Then ...
\n (Oxa) in character strings replaced with
\r (Oxd) and \r (Oxd) replaced with \n
(Oxa).

Table 4-12 Map carriage returns option

Type-checking options
These options, as specified in Table 4-13, let you control how strictly
PowerPC C type-checks your code. They correspond to options on
the Language Settings page of the PowerPC C options dialog. You
can change them outside a function, but not inside one.

If this is set ...
check_ptrs

require_protos

infer_protos

Then PowerPC C ...
Checks pointer types. This option has the
same effect as turning on the Check pointer
types option. (PowerPC C++ returns 1.)

Requires function prototypes.
(PowerPC C++ returns 1.)

Infers a prototype when a function is first
used. (PowerPC C++ returns 0.)

Table 4-13 Type-checking options

70 Symantec C++ Compiler Guide

Accessing Option Settings in Your Code +

With require_protos and infer_protos in PowerPC C, you
can get one of the three possible settings for the Strict Prototype
Enforcement option. Table 4-14 describes the option.

If require_
protos is ...
Off
Off

On

And infer_
protos is ...
Off
On

On or Off

You get
this setting ...
Strict Prototype Enforcement option off
Strict Prototype Enforcement option
on, and Infer prototypes option
selected
Strict Prototype Enforcement option
on, and Require prototypes option
selected

Table 4-14 Strict Prototype Enforcement option

Debugging options
These options, as specified in Table 4-15, help you debug your code.
They correspond to options on the Debugging page of the
PowerPC C and PowerPC C++ options dialog. You can change
them anywhere.

If this is set... Then Symantec C++ ...
force_frame Generates a stack frame for each

function. This option has the same effect
as turning on the Always generate stack
frames option.

stop_at_first_err Stops at first error in source file.
report_all_err Reports all error in source file, or stops

at first unrecoverable error.
dont inl ine Uses a function call for any inline

functions.

Table 4-15 Debugging options

Global optimizer options
These options, as specified in Table 4-16, control the global
optimizer, described in "Code optimization," in Chapter 5. They

Symantec C++ Compiler Guide 71

4 Compiler Reference •

Specific information and
examples of each
Warning option can be
found in "Warning
Messages" beginning on
page 99. To find a
particular Warning option,
look it up by its pragma
option name. For example,
you can find information
aboutgenerate_warn by its
pragma option name in the
"Enable warning message"
section.

correspond to options on the Debugging page of the PowerPC C
and PowerPC C++ options dialog. You can change them anywhere.

Then ... If this is set. ..
global_optimizer Use the global optimizer on this code.

This option is like turning on the Use
global optimizer option.

gopt_time If the global optimizer and this option
are on, optimize for time; if the global
optimizer is on and this option is off,
optimize for space.

Table 4-16 Global optimizer options

Warning options
These options, as specified in Table 4-17, help you isolate code that
may not behave as expected. They correspond to options on the
Warning Messages page of the PowerPC C and PowerPC C++
options dialog. You can change them anywhere.

If this is set. ..
generate_warn
warn_unintended_assign

warn_nest_comments

warn_unused_expressions

warn_empty_loops

warn_large_auto

warn_old_style_delete

Table 4-17 Warning Message options

Then ...
Produce warning messages.
Warning when conditional
expression of a for, if, or
while contains an
assignment.
Warn when C style comments
are nested.
Warn when value of
expression has not been used.
Warn when semicolon
appears immediately after
if, while, or switch.
Warn when total size of
automatic variables in
procedure greater than 32KB.
Warn when using older style
array delete operator.
(PowerPC C++ only)

72 Symantec C++ Compiler Guide

Accessing Option Settings in Your Code +

If this is set ...
warn_missing_overloads

warn_ref init

warn_used_bef ore_set

warn_return_addr_auto

Then ...
Warn when using postfix
versions of ++ or -- instead of
missing prefix ops; or when
using prefix version instead of
missing postfix ops. (PowerPC
C++ only)
Warn when reference
initialized with a temporary
value. (PowerPC C++ only)
Warn when attempt made to
obtain uninitialized variable's
value.
Warn when address of auto
variable is a function's return
value

warn_unrecognized_pragma Warn when #pragma not
recognized.

warn_old_style_definition Warn when using pre-ANSI
function definitions with
relaxed ANSI conformance.
(PowerPC C++ only)

warn_cast_incomplete_type Warn when pointer or
reference to incomplete struct
type is cast to pointer to
another struct type.
(PowerPC C++ only)

Table 4-17 Warning Message options (Continued)

Symantec C++ Compiler Guide 73

Compiler Options
Reference•

5
Tms chapter describes the Symantec C++ for Power Macintosh

Compiler Option dialogs and their equivalent AppleScript commands
and pragmas. Within each page, commands are described in the
order in which they appear.

Contents
Symantec C++ for Power Macintosh Compiler Options . 77

The Options Menu . 77
AppleScript . 78
pragmas . 78

C++ Language Settings . 79

C Language Settings . 83

Compiler settings . . 87

Code optimization . . 89
Optimizations . 90

Debugging . . 95

Warning Messages. . 99

Prefix . 108

Symantec C++ Compiler Guide 75

Symantec C++ for Power Macintosh Compiler Options +

Symantec C++ for Power Macintosh
Compiler Options
Symantec C++ for Power Macintosh provides three ways to access
most compiler options: the Options menu, AppleScript, and
pragmas. This section describes the Options menu and AppleScript.
It also includes a complete reference of using the three methods to
access each compiler option.

The Options Menu
Use Options from the Project menu to choose compiler options.
Select the desired compiler from the scrolling list at the left of the
Project Options dialog. There are six types of options, as shown in
Figure 5-1. Each is described on one page of a single dialog box. To
go to a certain page, select the appropriate name by clicking,
scrolling with the arrow keys, or using the arrow buttons to the left
of the pop-up menu. (To exit the Prefix page, press Command-up
arrow.)

'+' .,.tlanguage Settings
i:!:i Compiler Settings

Code Optimization

Warning Messages
PrefiH

Figure 5-1 The Options menu

The six types of compiler options are:

• Language Settings lets you choose extensions to the C
and C++ languages.

• Compiler Settings lets you control how Symantec C++
for Power Macintosh generates code.

• Code Optimization lets you control how Symantec C++
for Power Macintosh optimizes your code.

• Debugging lets you specify how the Symantec debugger
works.

• Warning Messages lets you control which warning
messages (if any) Symantec C++ for Power Macintosh
generates.

Symantec C++ Compiler Guide 77

5 Compiler Options Reference •

For information on
AppleScript, see the
AppleScript Language
Guide: English Dialect
(Addison-Wesley).

• Prefix lets you write code that Symantec C++ for Power
Macintosh includes in all your files.

You can set options that affect only the current project, or set
defaults that Symantec C++ uses whenever you create a new project.
To set the options for use with all subsequently created projects,
select <New Projects> from the Options menu at the top of the
dialog. For each Option category, edit all the settings you want to
change, and select Save.

When you click the Factory Settings button at the bottom of the
page, Symantec C++ sets the options on all pages of the currently
selected Options category to their original settings. For example, if
PowerPC C++ is selected and you click on Factory Settings, the
PowerPC C++ settings are restored to their original settings. No
changes are applied to the other categories such as PowerPC C,
Project Type, and so forth. All original settings are described in this
chapter.

When you click Save, the program saves the changes for all pages of
the dialog box.

AppleScript
All of the compiler options in the Symantec Project Manager are fully
scriptable and recordable using AppleScript. Each setting in the
Compiler Options dialog has a name and a set of possible values
based on its type. For example, an AppleScript that turns off ANSI
conformance in the Symantec C++ compiler would be:

tell application "Symantec Project Manager"
activate
set ansi of Options "PowerPC C++" of project

document "Poker Machine.7t" to false
end tell

pragmas
Symantec C++ for Power Macintosh offers a comprehensive set of
#pragma directives that give you an alternate way to access compiler
options. See Chapter 4, "#pragma Directives," for complete
information on using the options pragma.

78 Symantec C++ Compiler Guide

C++ Language Settings +

C++ Language Settings
On the PowerPC C++ Language Settings page, you can choose
whether or not the PowerPC C++ compiler uses extensions to the
C++ language.

Project Options for "New Project"

Options: I New Project .,,..I
@,._ -0 · PowerPC C++ Compiler Options

-l@ I i i;J I Language Settings .,,.. I
Linker

~
Extensions

... ~ ANS I Conformance ,

® RelaHed ANSI conformance

O Strict ANSI conformance

[ZJ Read each header file once

D Treat chars as unsigned

I Language Support I English
Project W'indow ·

D Map carriage returns

.,,..I D enums are always ints

··i' !Il l "ii" I,,, ptions category that you wish to change by clicking l ts icon .

ANS I Settings

... ,

Symantec Rez 'o Cancel J (Factory Settings J ([Saue J]

The ANSI conformance
options are described in
deta il in the sections "Strict
ANSI C++ conformance"
and "Relaxed ANSI C++
conformance" in Chapter 4.

Figure 5-2 The PowerPC C++ Language Settings page

Use the options on this page to decide how closely the PowerPC
C++ compiler conforms to the ANSI draft description of the C++
language. This is the only page of the C++ options that contains the
ANSI Settings button at the bottom of the page. When you click that
button, the options on this page are set to be strictly ANSI
conformant.

ANSI conformance
With this option originally on, you can choose between two levels of
ANSI conformance in the PowerPC C++ compiler.

Relaxed ANSI conformance. This option is similar to strict ANSI
conformant, but it allows you to use language extensions that are
convenient for Macintosh programming. The original setting is on.

Symantec C++ Compiler Guide 79

5 • Compiler Options Reference

Strict ANSI conformance. This option provides the strictest
conformance to the ANSI draft specification. The original setting is
off.

pragma option names

ansi

ansi relaxed

ansi_strict

AppleScript

ansi

ansi_strict

enums are always ints

Values

True
False

relaxed_ansi
ansi strict

When this option is on, emimeration constants are the same size as
an int. When it is off, enumeration constants can be the same size
as a char, short int, or int. If you're writing ANSI-conformant
code, turn this option on. Otherwise, leave it in its original setting,
off.

If this option is off, Symantec's PowerPC C++ makes enumeration
constants as small as possible. And, if necessary, it makes a constant
as large as an int. For example, these constants will only be as
large as a char:

enum { red=l, yellow, green };

80 Symantec C++ Compiler Guide

C++ Language Settings +

And these constants will be as large as an int:

enum {
million=1000000, billion=lOOOOOOOOO

} ;

pragma option name

pack_enums

AppleScript

pack_enums

Read each header file once

Values

True
False

If this option is on, PowerPC C++ treats header files that contain
#if ... #endif around the entire contents of the file as if the file
contained a #pragma SC once directive. Its original setting is on.

This option doesn't affect the meaning of the #pragma once
directive.

pragma option name

read_header_once

AppleScript

read_header_once

Treat chars as unsigned

Values

True
False

If this option is on, PowerPC C++ treats objects declared as char as
if they were declared unsigned char. The types char and
unsigned char are not equivalent types, even with this option on.
The original setting is off.

pragma option name

chars_unsigned

AppleScript

chars_unsigned

Values

True
False

Symantec C++ Compiler Guide 81

5 • Compiler Options Reference

Map carriage returns
If this option is on, PowerPC C++ replaces all occurrences of \n
(Oxa) with \r (Oxd) in character constants and string literals. Use this
option with the Apple-supplied libraries; turn it off with the
Symantec-supplied libraries (see "Apple vs. Symantec standard
libraries" on page 131). The original setting is off.

pragma option name

ma per

AppleScript

map_cr

Language support

Values

True
False

Use this option to accept foreign language double-byte characters in
string and character literals, as well as comments. This option causes
the compiler to produce localized error messages. Currently, any
supported language may be used for input; however, Japanese is the
only supported foreign language for error messages. The original
setting is english.

pragma option name

(none)

AppleScript

native_language

Values

english
japanese
chinese
korean

82 Symantec C++ Compiler Guide

C Language Settings +

C Language Settings
On the PowerPC C Language Settings page, you can choose whether
the PowerPC C compiler uses extensions to the C language.

Project Options for "New Project"

Options: I New Project ..-1
~ ~.''·"·" 1 · PowerPC C Compiler Options

-(@ ~ I Language Settings ..-1
Linker

~
Extensions

... ~ ANS I Conform•nce ..

@ RelaHed RNSI conformance

O Strict ANS I conformance

I D enums are always ints
Project Window l!m!

~ Check pointer types

PowerPC C++

Symantec Re<!:

~Read each header file once D Map carriage returns

D Treat chars as unsigned Language Support I English
~------~ I I ~~ ~. ;;:,;:,, ...,.,, ::'·=~;:· • :·::·· ~ ··=;·•"' ·::: -

ANSI Settings

~ [Cancel J [Factory Settings J ([Saue JJ

Figure 5-3 The PowerPC C Language Settings page

The options for PowerPC C are similar to those for Power PC C++.
The only differences are Check pointer types and Strict Prototype
Enforcement. For descriptions of the common options, see the prior
section.

Check pointer types
When the Check pointer types option is on, the PowerPC C compiler
makes sure that pointer types match when you assign one pointer to
another or when you do pointer arithmetic. If this option is off,
Power PC C treats all pointers as equivalent types, and it won't

Symantec C++ Compiler Guide 83

5 • Compiler Options Reference

display the "Cannot implicitly convert" error message.
When subtracting two pointers, however, the two types must be
pointers to objects of the same size. The original setting is on.

pragma option name

check_ptrs

AppleScript

check_ptrs

Values

True
False

Strict Prototype Enforcement
The Strict Prototype Enforcement option lets you choose how strictly
PowerPC C enforces the use of prototypes. If this option is on, you
can choose between two enforcement levels: Infer prototypes and
Require prototypes. If this option is off, PowerPC C does nothing
when you use or define a function without a prototype. The original
settings are shown in Figure 5-4.

, ... 18J Strict Prototype Enforcement)

! ® Infer prototypes !
I O Require prototypes !
l ... :

Figure 5-4 The Strict Prototype Enforcement option

84 Symantec C++ Compiler Guide

C Language Settings +

Table 5-1 explains the two enforcement levels:

If you choose ...

Infer prototypes

Require prototypes

When you use a function without a
prototype, PowerPC C ...
Infers a prototype from the first appearance
of a function. That appearance can be a
function call or an old-style declaration. If a
subsequent call, declaration, or prototype
doesn't match the inferred prototype, it's an
error.

Raises an error. You can't use or define a
function unless it has a prototype. New-style
function definitions do not satisfy this
requirement.

Table 5-1 Prototype enforcement levels

Note
There is one exception to the Require prototypes
option requirement. A static function does not need
a prototype. Just define it before using it.

When you use the Require prototypes option, PowerPC C does not
perform argument promotion on an old-style function definition, if
there is a prototype for it. Take this prototype and old-style
definition for the same function:

int AFunction(char);

AFunction(b)
char b;

If Require prototypes is not selected, PowerPC C promotes b to an
int, and the prototype and definition don't match. If Require
prototypes is selected, PowerPC C treats the old-style definition as a
new-style definition, and the prototype and definition match.

These examples show how PowerPC C infers prototypes. If the first
appearance of PrintFloat () is this call:

PrintFloat("Pi is ", 3.14159);

Symantec C++ Compiler Guide 85

5 • Compiler Options Reference

PowerPC C infers this prototype:

int PrintFloat(char*, double);

And if the first appearance of Printint () is this old-style
declaration:

Printint(string, value)
char *string;
int value;

printf("%s%d\n", string, value) ;

PowerPC C infers this prototype:

int Printint(char*, int);

PowerPC C follows the rules of argument promotion when it infers
prototypes. For example, it promotes parameters of type char and
short to int, and parameters of type float to double. For
example, from this function call:

PrintShort ("This answer is: " (short) 32) ;

PowerPC C infers this prototype:

int PrintChar(char * int) ;

Note
PowerPC C promotes the short int to int, and
infers that a function with no specified return type
returns an int.

pragma option name

infer_protos
require_protos

AppleScript

infer_protos

Values

infer_prototypes
require_prototypes

86 Symantec C++ Compiler Guide

Linker

~
Extensions

I
Project Window

~

Compiler settings +

Compiler settings
The Compiler Settings page lets you control how the Symantec
PowerPC C and PowerPC C++ compilers compile your code. The
options are the same for both C and C++.

Project Options for "New Project"

Options: I New Project ... I
'\) PowecPC C++ Compilec Options

I! ~ I Compiler Settings ... I

;··· Struct Field Alignment .. ,

O Align to 1 byte boundary
O Align to 2 byte boundary
@ Align to 4 byte boundary

,:i:l'L~,,
m~ I 1 ... D············· ···········p····ti···o·ns dialog . Click on any item to find out moce about that option. ;

Symantec Rez '{} [Cancel J [Factory Settings J ([Saue JJ

Figure 5-5 The Compi ler Settings page

Struct field alignment
The padding options for the fields in structs, unions, and classes are
as follows.

Align to 1 byte boundary. This option places all fields in structures,
unions, and classes in memo1y w ithout padding. (If not used with
care, this option can result in odd-sized data structures.) The original
setting is off.

Align to 2 byte boundary. With this option, all fields in structures
and classes are padded out to word or 2-byte boundaries. The
original setting is off. (Same as #pragma [SC] options
align=mac68k)

Symantec C++ Compiler Guide 87

5 • Compiler Options Reference

Align to 4 byte boundary. This option pads out all fields in
structures, unions, and classes to 4-byte (long-word) boundaries.
This is the default setting. (Same as #pragma [SC] options
align=power,or#pragma [SC] options align=native)

pragma option name

struct_align

AppleScript

struct_align

Values

1
2
4

88 Symantec C++ Compiler Guide

Linker

Code optimization +

Code optimization
The Code Optimization page lets you control how Symantec's
PowerPC C and PowerPC C++ compilers optimize your code.

Project Options for "New Project"

Options: I New Project -..I
O · PowerPC C++ Compiler Options

t;J I Code Optimization -..I

~ liii!i
· 0 Use global optimizer ... ,;

• Dead assignment elimination • Hoist uery busy eHpressions

Ex,ns 11111!
• Dead uariable elimination

• CSE elimination

• Remoue loop inuarian t s

• Create loop induction uariables

• Constant propagation Project Window !1lW
@ Optimiz.P tor timP

O Op1imi2e for ~pnce [If • Copy propagation

PowerPC C

~- !11111

i#Ml#4 i*i !mf! Click on any item to find out more about tha t option.

~
Symantec Rez

···•

Cancel [Factory Settings J ([Saue JJ

Figure 5-6 The Code Optimization page

Use global optimizer
This option controls the global optimizer. If it's off, the optimizer is
not used. If it's on, you can turn on either Optimize for time or
Optimize for space. Optimize for time results in fas ter code at the
possible cost of code size. Optimize for space results in smaller code
at the possible cost of execution time. The original setting is off

You probably won't use the global optimizer while you 're
debugging. It adds a pass over your compiled code and may more
than double your compilation time. Also, it generates machine code

Symantec C++ Compiler Guide 89

5 • Compiler Options Reference

that is much harder to manually map back to your source code. The
debugger may not be able to pick out the machine code instructions
that correspond to a given statement.

pragma option name

global_optirnizer

AppleScript

global_optirnizer

Optimize for time/space

Values

True
False

With Optimize for time on, Symantec C and C++ optimize for speed
at the possible cost of making your code larger. The original setting
is on.

With Optimize for space on, Symantec C and C++ optimize to reduce
code size at the possible expense of increasing execution time. The
original setting is off.

pragma option name

gopt_tirne

AppleScript

gopt_tirne

Optimizations

Values

optirnize_tirne
optirnize_space

The following are the optimizations that the global optimizer will
perform.

Dead assignment elimination
This feature of optimization allows Symantec C and C++ to remove
assignments to variables that are not used after being assigned,
making your code smaller and faster to execute. This optimization
also allows Symantec C and C++ to reuse registers for more than one
variable.

With Dead assignment elimination, Symantec C and C++ do not load
data into a register when that data is already in one. This
optimization makes your code smaller and faster.

90 Symantec C++ Compiler Guide

Code optimization +

To understand how this optimization works, consider this example:

int j=O, i=l, k;

j = i + l;
k = j;

When you reach the last statement (k = j), the value of j is found
in two places: in a register and in memory. If this option is off, k gets
the value from memory, requiring you to compute the memory
address. If the option is on, k gets the value from the register, saving
the time and space that computation takes.

Symantec C and C++ load j from memory into a register twice, once
for each time it appears. With this feature, Symantec C and C++ load
it from memory only once.

If you're debugging, you may want to turn off global optimization
with its comprehensive set of features. When you set a variable in a
data window, the debugger puts the new value into memory. Dead
assignment elimination allows your program to use a value in a
register and not in memory.

For example, look at the code above. After j = i + 1 executes,
there are two copies of j: one in memory and one in a register. Your
program uses the register copy. The value in the register and in
memory is 2. If you examine j , the data window shows 2.

Now, assume you change the value of j in the data window to 10.
When your program continues, k is still set to 2. You changed the
value of j in memory, but your program used the value of j in the
register.

Dead variable elimination
This feature of global optimization allows Symantec C and C++ to
determine the live ranges of variables in your code, removing any
variables that have empty live ranges.

This optimization also allows Symantec C and C++ to reuse registers
for more than one variable.

Symantec C++ Compiler Guide 91

5 • Compiler Options Reference

CSE elimination
This optimization makes your code smaller and faster. CSE (Common
Subexpression) elimination replaces each subexpression that is used
more than once with a temporary variable set to the subexpression's
value. For example, consider this code:

a i*2 + 3;
b sqrt(i*2);

With this optimization, your code assigns i * 2 to a temporary
variable and computes it only once. It's as if the code were written
as:

temp = i*2;
a temp + 3;
b = sqrt (temp);

Use this optimization on all your code.

Hoist very busy expressions
The compiler produces a single version of an expression that occurs
over several different paths in the code. The result is smaller code.

Remove loop invariants
This optimization makes your loops faster. This feature moves
expressions out of loops that remain constant in each iteration. For
example, consider this loop:

while (!feof(fp)
i = x*S;
DoSomething(fp, i);

The compiler moves i = x* 5 outside this loop and computes it
only once, as if you had written the loop like this:

i = x*5;
while (!feof(fp))

DoSomething(fp, i);

Use this optimization if your code has many loops.

92 Symantec C++ Compiler Guide

r

Code optimization +

Create loop induction variables
This optimization makes loops faster, especially those that cycle
through an array. For example, consider this loop:

int a[ARRAY_SIZE], i;

for (i=O; i<ARRAY~SIZE; i++)
a[i] = GetNextElelment();

Without the create loop induction variables feature, the compiler
performs a multiplication each time it figures the address for the next
array element (i * sizeof (int)). With this optimization, the
compiler remembers the address of the last element and adds the
size of an element to that address. This optimization is beneficial if
your code has a lot of loops. Note, however, that it may make your
code slightly larger.

Constant propagation
Constant propagation replaces certain variables with constants.
Consider the code:

A=5;
for(i=O; i<A; i++)

abc[i]=A;

A always has the value 5 within the loop body. To optimize, the
compiler replaces A with its value:

A=5;
for(i=O; i<5; i++)

abc[i]=5;

Constant propagation opportunities occur frequently when loop
rotation is done. For example, constant propagation converts:

to:

while (e)
expression;

if (e)
do

expression;
while (e)

Symantec C++ Compiler Guide 93

5 • Compiler Options Reference

Copy propagation
Copy propagation is similar to constant propagation, except that it
copies variables instead of constants. For example, it replaces:

A=b;
for(i=O; i<A; i++)

abc[i]=A;

with:

A=b;
for(i=O; i<b; i++)

abc[i]=b;

Copy propagation frequently uncovers unnecessary assignments,
such as the assignment to A, which can be removed.

94 Symantec C++ Compiler Guide

Debugging +

Debugging
The Debugging page lets you specify how the Symantec C and C++
compilers generate code for debugging. The debugging options are
the same for Symantec C and C++ except Use function calls for
inlines is only available with C++. Figure 5-7 shows the Debugging
page for Symantec's PowerPC C++ compiler, Figure 5-8 shows the
Debugging page for Symantec's PowerPC C compiler.

Project Options for "New Project"

Options: I New Project ..,.I
~----~···· PowerPC C++ Compiler Options_

~ ~

i Ill .. :i~ .. 1111

!;] I Debugging

D Always generate stack frames

D Use function calls for inlines

[Z] Enable Symbolic Debugging

:··· Error Reporting ···• '

O Stop at first error
@Report the first few errors
O Report all errors in a file

,:i~ II! ! ;::: ~;;;·;;~;;;;;;~,;;;·o;;;;;;;o;;;: " '' m ~ ••m. ,, ••• - •• ~ '"" ""°' -- ---
~ ~.

Symantec Rez ';c: [~-C-a_n_c-el~J
• #

([Saue ll [Factory Settings J

Figure 5-7 The PowerPC C++ Debugging page

Symantec C++ Compiler Guide 95

5 • Compiler Options Reference

Linker

~
Ex tensions

I
Project Window

PowerPC C++

Project Options for "New Project"

Options: I New Project ""I
O PowerPC C Compiler Options (8.0.0b4c1, Jan 10 1995)

ffi l;J I Debugging

D Always generate stack frames

[81 Enable Symbolic Debugging

;··· Error Reporting ,

O Stop at first error
@Report the first few errors

O Report all errors in a file

H•lP ··_
This is the Symantec Project Options dialog. Click on any item to find out more about that option.

... .-~
Symant•c Roz 'o [Cancel [Factory Settings) ([Saue D

Figure 5-8 The PowerPC C Debugging page

Always generate stack frames
When you select this option, Symantec C and C++ generate a stack
frame for most functions called, although inline functions don't have
stack frames . When it's off, the compilers do not generate stack
frames for functions that don't have local variables or parameters.
The original setting is off.

If you're using the debugger, turn the option on. Othe1wise, leave it
off. Your program will be smaller and faster without the unnecessary
stack frames .

pragma option name

force frame

AppleScript

force frame

Values

True
False

96 Symantec C++ Compiler Guide

Debugging +

Use function calls for inlines
(Symantec C++ only) When you check this option, Symantec C++
uses a function call for any inline functions. This allows easier
debugging of inline functions. The original setting is off.

pragma option name

dont inline

AppleScript

dont inline

Enable Symbolic Debugging

Values

True
False

When you select this option, Symantec C and C++ generate source
object correspondence, and symbolic variable information. When
this option is off, the compilers will only generate source-object
correspondence. Use this option to dramatically reduce the size
overhead for projects where symbolic debugging of variables is not
required. The original setting is on.

pragma option name

(none)

AppleScript

generate_symbolics

Error reporting

Values

True
False

Each of these three options produces a different level of error
reporting.

Stop at first error. If this option is on, Symantec C and C++ stop at
the first error in your source file. The original setting is off.

Report the first few errors. If this option is on, Symantec C and
C++ report the first few errors in your code, or stop at the first
unrecoverable error. The original setting is on.

Report all errors in a file. If this option is on, Symantec C and C++
report errors found in your source file, or stop at the first
unrecoverable error. The original setting is off.

Symantec C++ Compiler Guide 97

5 Compiler Options Reference •
Refer to Chapter 4,
"Compiler Reference, 11 for
additional information
about these pragmas.

pragma option names

stop_at_f irst_err

report_all_err

AppleScript

error_reporting

98 Symantec C++ Compiler Guide

Values

stop_at_first_err
report_first_few_err
report_all_err

Warning Messages +

Warning Messages
Many of the Warning message options are the same for both
Symantec C and C++. Figure 5-9 shows the Warning message page
for Symantec's PowerPC C++ compiler, Figure 5-10 shows the
Warning message page for Symantec's PowerPC C compiler.

Project Options for "New Project"

Options: [New Project Tl
.---------.-,,.., , ... PowerPC C++ Compiler Options (8.0.0b4c1, Jan 10 1995) ... ,

' ~ ~~" 11.1.! •. ,i ' ~~::~~;~;~;;;;:::. •I
Proje~ndow !l!l!I : ~:~st:dl::::essions
~ ~ Large automatic uariables

PowerPC c ~ Old style delete []

~ Missing ouerloads for++ & -

~ Reference initialization

~ Uariable used before set

~ Return address of auto

~ Unrecognized pragma

~ Old style function definitions

~ Cast from incomplete type
~ struct/enum without tag

1$.J§i~U .l!l!li: !!"~lo · +h Symantec Project Options dialog. Click on any item to find out mor~ ~~~~;-;~~;·~~;;~~. mm "

~ 11, ,

Symantec Roz 'o (Cancel [Factory Settings] ll Saue J]

Figure 5-9 PowerPC C++ Warning Messages page

Symantec C++ Compiler Guide 99

5 • Compiler Options Reference

Project Options for "New Project"

Options: I New Project .,..I

Linker
mm

~ !!!!!! !, ... !SJ En ab lo Warning Messsagos ··

~i:,. Ill i ~g:,~~~~::~:... i}~~~f j~~~~~0~~:~·----
£ Ill r- :::~ ~-;;;;;;;;;;~;;:;;.; •• ; -;;;;;;;-.;;;;;.;;;;;;;;;;;-;;;;;;;;;;-;;;;;;;;:------
~ ~:...

Symantec Roz '{} Cancel [Factory Settings J ([Saue J]

Figure 5-10 PowerPC C Warning Messages page

Enable warning messages
This option controls whether or not Symantec C or Symantec C++
generates warning messages. If it is off, the compilers will not
display any warning messages. If it is on, you can choose options for
the individual warning messages.

pragma option name

generate_warn

AppleScript

generate_warn

Values

True
False

Choosing Factory Settings causes all warning message options to
revert to their original settings. By default, the Enable Warning
Messages option is set and each individual warning is enabled.

7 00 Symantec C++ Compiler Guide

Warning Messages +

The following sections describe these messages and the conditions
under which the compilers generate them. Cases where Warning
message options are not available in the PowerPC C compiler are
noted.

Using = in conditionals
If this option is on, Symantec C and C++ warn you when the
conditional expression of a for, if, or while statement contains an
assignment. The original setting is on. For example:

if (x = y) { ... } II WARNING: possible
II unintended assignment

The warning points out that you may have meant this:

if (x == y) { . . . }

In cases in which the assignment is intentional, you can avoid the
warning by rewriting the code, with identical results, as:

if ((x = y) ! = 0) { . . . }

pragma option name

warn_unintended_assign

AppleScript Values

warn_unintended_assign True
False

Nested comments
If this option is on, Symantec C and C++ produce a warning when C
style comments are nested. The original setting is on. For example:

/* This file contains the source code for the project
/*By: John Doe */ II Warning: can't nest comments

pragma option name

warn_nest_conunents

AppleScript

warn_nest_conunents

Values

True
False

Symantec C++ Compiler Guide 101

5 • Compiler Options Reference

Unused expressions
If this option is on, Symantec C and C++ alert you when the value of
an expression has not been used. The original setting is on.

x == y; II Warning: value of
II expression is
II not used

pragma option name

warn_unused_expressions

AppleScript Values

warn_unused_expressions True
False

Empty loops
If you enable this option, Symantec C and C++ produce a warning
when a semicolon appears immediately after an if, while, or
switch statement. The original setting is on. For example:

if (x==y); II Warning: possible
II extraneous ';'

cout << 11 x==Y 11 << endl;

If the semicolon is intentional, add white space after the end of the
statement prior to the semicolon:

if (X==y)

cout << 11 x may or may not equal y 11 << endl;

pragma option name

warn_empty_loops

AppleScript

warn_empty_loops

Values

True
False

102 Symantec C++ Compiler Guide

Warning Messages +

Large automatic variables
With this option, Symantec C and C++ warn you when the total size
of automatic variables in a procedure is larger than 32KB. For
example:

void f(void)
{

int i[32000]
II Warning: very large automatic

This code can cause a stack overflow. In such cases a dynamic
memory allocation using operator new in C++ or malloc in C
may be preferred. The original setting is on.

pragma option name

warn_large_auto

AppleScript

warn_large_auto

Old style delete []

Values

True
False

(Symantec C++ only) If this option is on, Symantec C++ warns you
against using the older-style array delete operator. The original
setting is on. For example:

delete [10] p; II Warning: use delete[]
II rather than delete[expr],
II expr ignored

pragma option name

warn_old_style_delete

AppleScript

warn_old_style_delete

Values

True
False

Symantec C++ Compiler Guide 103

5 • Compiler Options Reference

struct/ enum without tag
(Symantec C++ only) If this option is on, PowerPC C++ produces a
warning when structs that are not given tags are used in the
signature of a function or template. For example:

typedef struct

} *PX;
void f(PX *x)
{
}
II Warning: no tag name for struct or
II enum appearing in signature for 'f'

pragma option name

warn_struct_without_tag

AppleScript Values

warn_struct_without_tag True
False

Missing overloads for ++ & --
(Symantec C++ only) This option produces a warning when you use
the postfix versions of the + + or - - operators instead of the missing
corresponding prefix operators, or the prefix version of the ++ and
- - operators instead of the missing corresponding postfix operators.
The original setting is on. When ANSI conformance is turned on, this
warning becomes an error and cannot be disabled. For example:

A& operator++();
a++; II WARNING: using

II operator++() (or--)
II instead of missing
II operator++(int)

pragma option name

warn_missing_overload

AppleScript

warn_missing_overload

Values

True
False

104 Symantec C++ Compiler Guide

Warning Messages +

Reference initialization
(Symantec C++ only) If this option is enabled, Symantec C++
produces a warning when a reference is initialized with a temporary
value. The original setting is on. If ANSI conformance is turned on,
this warning becomes an error and cannot be disabled. For example:

void f(int &) ;

f (2) ; II WARNING: non-const
II reference initialized to
II temporary

pragma option name

warn_ref init

AppleScript

warn_ref_init

Variable used before set

Values

True
False

In Symantec C and C++, this option warns you when an attempt is
made to obtain the value of an uninitialized variable. The original
setting is on. This error is detected for the last line in the function in
which it appears; use the name of the variable appearing in the
warning message to determine where the error appears. This
problem can be detected only when the global optimizer is enabled.
For example:

void f (int) ;
void g() {

int a;
f (a);

II WARNING: variable 'a'
II used before set

pragma option name

warn_used_before_set

AppleScript

warn used_before_set

Values

True
False

Symantec C++ Compiler Guide 105

5 • Compiler Options Reference

Return address of auto
If you enable this option, Symantec C and C++ produce a warning
when the address of an automatic variable is the return value from a
function. The original setting is on. For example:

int *f(void)
{

int a;
return(&a); II WARNING: returning address

II of automatic 'a'

pragma option name

warn_return_addr_auto

AppleScript

warn return_addr_auto

Unrecognized pragma

Values

True
False

With this option, Symantec C and C++ produce a warning when they
do not recognize a #pragma directive. The original setting is on. If
SC appears immediately after the #pragma directive, this warning
becomes an error and cannot be disabled. For example:

#pragma nooptimize(g)
II WARNING: unrecognized
II pragma

pragma option name

warn_unrecognized_pragma

AppleScript

warn_unrecognized_pragma

Values

True
False

106 Symantec C++ Compiler Guide

Warning Messages +

Old style function definitions
(Symantec C++ only) In Symantec C++, pre-ANSI function definitions
are not allowed. When you use strict ANSI conformance, this
produces an error and cannot be disabled. For example:

int f (x);
double x;
{
}

pragma option name

warn_old_style_definition

AppleScript Values

warn_old_style_definition True
False

Cast from incomplete type
(Symantec C++ only) This warning is issued when a pointer or
reference to an incomplete structure type is cast to a pointer or
reference to another structure type. This is a warning because if the
incomplete type is a sub-class of the type, incorrect code will be
generated. For example:

struct X *px;
struct Y *py;
void f (void)
{

px = (X*)py; I /warning

This warning can be avoided by declaring the struct or class that is
being cast from. This usually means inclusion of the header
containing the declaration.

pragma option name

warn_cast_incomplete_type

AppleScript Values

warn_cast_incomplete_type True
False

Symantec C++ Compiler Guide 107

5 • Compiler Options Reference

Linke-r

~
Extensions

Prefix
The Prefix page lets you write code that Symantec C and C++ will
include in all your files.

Project Options for "New Project"

Options: I New Project ,.I
{} PowerPC C++ Compiler Options ·· ··

!;J ~l~Pr_e_f_i"~~~~~~"""-1

Click on any item to find out more about that option.

................

symantoo Roz {7 Cancel [Factory Settings) ([Saue J)

Figure 5-11 The Prefix page

Use the Prefix page to automatically include the same text in all the
C or C++ source files for a project. The effect is the same as if you
manually put the code into the files.

In PowerPC C++, if you use a precompiled header file such as
PPC MacHeaders++, include it here. By default, this page contains
the line: #include <PPC MacHeaders++>.

In PowerPC C, if you use a precompiled header file such as
PPC MacHeaders, include it here. By default, this page contains the
line: #include <PPC MacHeaders>.

If you need to define a macro in all your files, define it here. For
example, you may have some debugging code in your files that's
compiled only if the macro DEBUG is defined. To include that code,
include this line here:

#define DEBUG

108 Symantec C++ Compiler Guide

Prefix •
When you don't need to include the debugging code anymore,
delete that line from this page. You don't need to edit every C or
C++ source file in your project.

pragma option name

(none)

AppleScript

prefix

Values

text string

Symantec C++ Compiler Guide 109

Porting Code•
6

Trus chapter helps you port existing code to Symantec C++ for Power
Macintosh. It also describes the PowerPC calling conventions, and
how registers and the stack frame are used to pass parameters.

Contents
Porting from 68K 113

Porting steps performed on the 68K machine 113
Porting steps performed on the Power Macintosh 118

Porting from MPW C++ . 120
Include file search path 120
enum prototyping 120
Structure definition . 120
Static member functions 121
const violations . 121
Data definitions in precompiled headers 121
Instantiating abstract base classes 122

PowerPC Calling Conventions . 122
Parameter passing 122
Assigning parameters . 123

Symantec C++ Compiler Guide 111

Porting from 68K +

Porting from 68K
The recommended way to port code to the PowerPC is to begin by
making the code as portable as possible. Once the code is portable,
you then convert the items that are specific to the application being
ported. The following list is tailored for porting 68K applications
from THINK C/Symantec C++, but most of these items apply to all of
the 68K development environments.

Porting steps performed on the 68K machine
You can make your code as portable as possible from within your
present 68K development environment. Perform the following on
your 68K Macintosh.

Upgrade to the latest headers
Apple recently changed their system headers to make them more
consistent between platforms and between languages. The new
headers, called the "universal headers" by Apple, were available with
the 7.0 release of THINK C/Symantec C++ for the Macintosh, and are
included with this version. Certain definitions, most notably patterns,
have undergone some changes that require source code
modifications. Make sure you are using these headers on the 68K
prior to beginning the move to PowerPC. PowerPC development
requires these headers.

Note
The correct way to determine if the universal
headers are being used is to check for
CONDITIONALMACROS being defined. If it is
defined, the new headers are being used.

In the following example, the GetindPattern call will fail to
compile without the universal headers:

void myDraw(void)
{

Pattern
Re ct

thePat;
theRect;

GetindPattern(thePat, sysPatListID,
12); /*system pattern*/

Symantec C++ Compiler Guide 113

6 • Porting Code

In order to make it compile with the new definition of
GetindPattern, you would write:

GetindPattern(&thePat, sysPatListID,
12); /*system pattern*/

Rework inline assembly
Any inline assembly must be rewritten in C or C++, or ported to
PowerPC assembler in separate . asm files. Inline assembler is not
supported in this release of Symantec C++ for Power Macintosh.
When porting from 68K to PowerPC, remember the areas of your
application that are critical to performance tend to change due to the
differences in architecture. For example, floating-point operations
increase in performance disproportionately from other portions of an
application. For this reason, it is recommended that you move inline
assembler into C or C++ until you determine these routines are as
performance critical on the PowerPC as they were on 68K.

Remove int and structure size assumptions
On the PowerPC, the most efficient data types are int and double.
All integer operations on the PowerPC are done on 32 bit registers,
and all floating-point operations are done using 64 bit IEEE floating
point. Any manipulation of objects of other sizes requires additional
work for the compiler to guarantee that the sign of the operand is
correct. Also, the 32 bit bus of the PowerPC makes it more efficient
to manipulate objects 32 bits at a time. For these reasons, it is
recommended that you prefer the int and double data types for
code being ported to PowerPC. Structures should be aligned on 4-
byte boundaries (#pragma options align=powerpc) by
default; this makes them more efficient for access purposes.

Note
Due to backward compatibility with the toolbox,
many of the toolbox routines use mac 6 8 k
alignment. If your application contains structures
that are not used to interface with the toolbox and
are not written to disk in binary form, it is more
efficient to align them for the PowerPC.

114 Symantec C++ Compiler Guide

Porting from 68K +

For example, accesses to the following structure will suffer a
performance penalty if it is not aligned on a 4-byte boundary:

#pragma options align=mac68k
struct x {

short s;
int i;

' #pragma options align=reset

On 68K machines, this structure is 6 bytes and the int starts at offset
2 in the structure. On the PowerPC, it is more efficient to use 4-byte
structure alignment, which makes the structure size 8 and i is at
offset 4. Whenever possible, use the default alignment or explicitly
set the alignment to powerpc with #pragma options
align=powerpc prior to a struct declaration.

Use function prototypes
On the PowerPC, it is very important for all functions to be properly
prototyped, and it makes the code easier to read and less prone to
unexpected errors. If your C code does not already contain proper
function prototypes, it would be a good idea to add them prior to
converting to the PowerPC. For example, the following code will
work on 68K (with 2-byte ints), and will not work on the
Power PC:

void f(x, y)
short x;
short y;
{

printf("%d, %d\ n", x, y) ;

}
void main(void)
{

f(Ox00100020L); /* x = OxOOlO and
y = Ox0020 */

This example illustrates one of the potential pitfalls involved in
porting code from 68K to the PowerPC. It is equally important to
explicitly declare the return type for each function, as this can also
lead to incompatibilities.

Symantec C++ Compiler Guide 115

6 • Porting Code

Use strict pointer type checking
Enable strict pointer type checking, and cast as needed. This is
important because without strict type checking, it is easy for
assumptions regarding the sizes of data types to sneak in. For
example:

void assign_x_y(short *x, int * y)
{

while (*x++ = *y++)

This code assumes that short and int are the same size, which is
not true on the PowerPC or in our 68K C++ compiler.

Access low memory globals properly
Access to low memory globals should be made through LMGetxxx
and LMSetxxx. This can be done on the 68K as these interfaces

. exist in the 68K universal headers.

For example, the following code uses the current working directory
low memory global defined in <lomem. h>:

#include <lomem.h>

long Check_working_directory(void)
{

long cwd = CurDirStore ;

The code should be changed to use the equivalent
LMGetCurDirStore () function as in:

#include <LowMem.h>

long Check_working_directory(void)
{

long cwd = LMGetCurDirStore() ;

7 7 6 Symantec C++ Compiler Guide

Porting from 68K +

This code will now work on both PowerPC and 68K machines.

Note
A ramification of this suggestion is that you should
no longer use the < lomem. h> header file. These
addresses are not the same on PowerPC.

Make all code 32-bit clean
It is always best not to assume that you can use any bits in an
address; moving to the PowerPC is just another source of problems
for code that is not 32-bit clean.

Avoid direct access to registers and VIAs
Direct access to any hardware registers or VIAs should be avoided; it
can be a source of problems between different 68K machines. If a
system interface exists for the register or VIA, it should be used in
preference to direct access.

Use 8-byte IEEE floating-point format
Use the 8-byte doubles option of THINK C and Symantec C++, and
remove references to long double in your program. The 10- and
12-byte double formats supported on the 68K are not supported on
the PowerPC. The highest available precision of the hardware
floating-point unit is 8-byte IEEE format. When porting 68K code,
make sure to eliminate dependency on 10-byte and 12-byte double
formats for accuracy. See Inside Macintosh PowerPC Numerics
Manual(Addison-Wesley) by Apple Computer for more details on
the available floating-point support on the PowerPC. Following these
suggestions will ensure that the 68K and PowerPC versions of your
software will retain identical behavior.

Symantec C++ Compiler Guide 117

6 • Porting Code

Verify #pragma, #ifdef, and #ifndef statements
Examine all #pragma, #ifdef, and #ifndef statements to be sure
they are meaningful on your compiler. A detailed list of the
predefined macros and available pragmas can be found in "Compiler
Reference," Chapter 4.

Note
On the PowerPC, THINK_C and THINK_CPLUS are
no longer predefined symbols. Any code that is
conditionalized on these should be examined, and
if appropriate, converted to use the SYMANTEC_C
and SYMANTEC_CPLUS predefined symbols.

Porting steps performed on the Power Macintosh
After you address the previous items, your code is as portable as 68K
code can be. The next step is to convert those items that are specific
to an application being ported to the PowerPC. These conversions
are best performed using the native Symantec Project Manager
because they are primarily PowerPC specific, however, they can be
done in the 68K environment as well. The end result is a very
portable application that has very few dependencies on either
platform.

Convert callbacks to universal procedure pointers
The single largest change you will make to your code is to change all
uses of callback routines into universal procedure pointers. This is
necessary because the Macintosh operating system did not want to
make assumptions regarding whether callback routines would be
written in 68K or PowerPC code. A universal procedure pointer is
callable from the operating system as either a PowerPC or a 68K
procedure. For example, if you currently have a callback for
performing custom control tracking, you might have code that looks
like this:

#include <Controls.h>

pascal void myAction(ControlHandle
theControl, short ctlPart);

int myTrack(ControlHandle theControl,
Point localPt)

{
return(TrackControl(theControl,

localPt, (ProcPtr)myAction)) ;

118 Symantec C++ Compiler Guide

Porting from 68K +

This code will not compile on the PowerPC because the
TrackControl function expects a Uni versalProcPtr as its
argument and not a ProcPtr. The code for myTrack would be
converted as:

int myTrack(ControlHandle theControl,
Point localPt)

UniversalProcPtr myActionProc;
myActionProc = NewRoutineDescriptor(

(ProcPtr)myAction,
uppControlActionProcinfo,
GetCurrentISA());

return(TrackControl(theControl,
localPt, myActionProc)) ;

With this definition, the code will compile and run on either the 68K
or the PowerPC. The GetCurrentISA () call returns a constant
indicating whether 68K code or PowerPC code is being executed.
uppControlActionProcinfo is a system-defined constant that
should be available for all of the system callback routines describing
their parameter lists for the NewRoutineDescriptor function. See
Inside Macintosh, PowerPC System Software (Addison-Wesley) by
Apple Computer for a detailed discussion of universal procedure
pointers.

Modify performance-critical code resources
Code resources such as CDEF and MDEF resources are not required
to be modified unless they are performance-critical. We recommend
leaving them as 68K emulated code unless you specifically have a
performance problem with a particular code resource. If you do
need to write these as native code, see Inside Macintosh, PowerPC
System Software (Addison-Wesley) for more information on creating
native code resources.

Rewrite certain code resources as code fraginents
Other code resources used by the application and not specifically
called by the operating system should be rewritten as code
fragments, if performance is an issue. For example, if your code used
code resources for some self-modifying behavior or for user
extensions, modify these to use separate code fragment files that are
loaded specifically using the GetDiskFragment () call. For more
information on using code fragments see "Using the Standard
Libraries," Chapter 7, and Inside Macintosh, PowerPC System
Software (Addison-Wesley).

Symantec C++ Compiler Guide 119

6 • Porting Code

Porting from MPW C++
Wherever possible, Symantec C++ has striven for compatibility with
the 68K MPW C++ compiler and the PowerPC MPW compilers, MRC
and PPCC.

Note
MRC uses the Symantec front-end, so source level
compatibility is extremely high.

Symantec C++ uses the same object format as most other MPW
compilers from Apple, Lucid, IBM, and others. This allows you to
import object code directly from these MPW compilers. Symantec
C++ may use different mangling conventions for C++, and
recompilation may be necessary. The following are other known
differences between the compilers:

Include file search path
In Symantec C++, include directives in the form:

#include <filename>

search only the compiler include directories for the file. They do not
search the user directories.

enum prototyping
Symantec C++ defaults to the Macintosh convention of sizing an
enum to the smallest data size (char, short, or int) that holds the
enum range. MPW C++ does the same, but other implementations
handle enum prototyping differently. Check your compiler
documentation and set the Enums are always int setting to match the
behavior of your own compiler. For additional information on this
option, see Chapter 5.

Structure definition
Both the Symantec and MPW compilers place fields in structures, but
they align bit-fields differently. Symantec C++ packs bit-fields
according to the size of the type of the containing field.

120 Symantec C++ Compiler Guide

For example:

struct a
{

} i

char x : 2;
chary : 2;
short z : 2;
int zz : 15;

Porting from MPW C++ +

Symantec compilers start field z on the next new short word while
MPW compilers place field z in the same byte as field x and y. This
difference can also result in a size difference in the structures.
Symantec C++ allocates an integer (4 bytes) for field zz. MPW C++
allocates only 2 bytes.

Static member functions
You cannot declare static member functions as const. MPW C++
ignores the declaration. The Symantec C++ compiler gives an error
message.

For example, the following statement is flagged as illegal by the
Symantec C++ compiler:

static void DoSomeStuff() canst;

const violations
Symantec C++ is stricter than MPW C++ regarding canst
declarations. The MPW compiler allows you to define a canst
member function that violates the canst declaration;
Symantec C++ refuses to compile incorrect function definitions. To
port MPW C++ code, either rewrite your functions or don't declare
functions as canst.

Data definitions in precompiled headers
Symantec C++ does not support data definitions in precompiled
headers. You may, for example, forget to declare a function inline
when it is defined in a header file.

Symantec C++ Compiler Guide 121

6 Porting Code •

For additional information
on the PowerPC Calling
Conventions, see Inside
Macintosh, PowerPC
System Software (Addison
Wesley) by Apple
Computer.

Instantiating abstract base classes
When you provide definitions for the pure virtual functions of an
abstract base class, you must be careful to use the same function
prototypes as were used in the virtual function declaration. For
example:

struct X {

} i

II f() is a pure virtual function
virtual void f(void *) = O;

struct Y : x {
virtual void f(const void *) { }

} i

In this example, the member function Y: : f () does not provide an
implementation for X: : f () . Symantec C++ correctly interprets
Y: : f () as an overloaded function based on X: : f () . MPW C++
incorrectly interprets Y: : f () as the pure virtual function's
implementation.

PowerPC Calling Conventions
Unlike the 68K environment, the PowerPC uses one standard calling
convention that routines use to call other routines. In summary, the
PowerPC calling convention:

• Passes most parameters in dedicated registers, and only
passes parameters on the stack when the available
registers are exhausted.

• Determines stack frame size at compile time.

• Reserves specific stack frame sections for saved registers,
parameters, local variables, and linkage information
required for the stack frame.

Parameter passing
The PowerPC's large quantity of dedicated registers for parameter
passing increase the likelihood that your subroutine's parameters will
be passed in registers, reducing memory accesses, and consequently,
increasing the performance of your application. In cases where
registers are not used for parameter passing, it is necessary to have
an understanding of how to use the parameter area of the stack
frame.

122 Symantec C++ Compiler Guide

PowerPC Calling Conventions +

Assigning parameters
The Symantec C++ for Power Macintosh compilers assign parameters
to registers and to the parameter area in the caller's stack frame by
the following procedure:

Note

• Parameters are arranged in order, like the fields of a
record. The first field is the leftmost parameter, the fields
are aligned on 32-bit word boundaries, and any integer
parameters that occupy less than 32 bits are extended to
32 bits.

Even when these parameters are in registers, it is
assumed that the callee must extend the sign of any
integral parameters that are smaller than 4 bytes.

• When parameters are passed in registers, the first eight
words are passed in GPR3 - GPRlO. The first thirteen
floating-point parameters are passed in FPRl - FPR13.

• GPR3 and FPRl are used to return simple function results.

• Custom data structures (C structures or Pascal records) are
passed without expanding their fields for word alignment
purposes. When this data is returned, the caller maintains
adequate space for the result on the stack, places the
result's address in GPR3, and starts placing the parameters
in GPR4.

• If there are parameters that do not fit in the available
registers, they are passed in the parameter area of the
caller's stack frame.

Note
This convention should be followed by all PowerPC
compilers.

Stack frame layout
The Symantec C++ for Power Macintosh compilers create an area in
the caller's stack frame for the parameters that is big enough to
contain all the parameters passed to the callee. The number of
parameters that are actually passed in registers has no effect on the
size of this area.

Symantec C++ Compiler Guide 123

6 • Porting Code

The following example illustrates how the compilers use the
parameter area on the stack.

void My_Func (float f, int i, float f2,
double d, char c, short s,
unsigned u, float f3, long 1);

Viewing the parameter list from My _Fune as a structure gives:

struct parameters
float f;

} ;

int
float
double
char
short
unsigned
float
long

i;
f2;
d;
c;
s;
u;
f3;
l;

Although some of the variables in this example are passed in
registers, the compiler will allocate space on the stack for all of
them. In allocating space, the PowerPC uses the following lengths
for variables: all integers, regardless of size, are 32 bits, floating
points are 32 bits, and doubles are 64 bits.

124 Symantec C++ Compiler Guide

PowerPC Calling Conventions +

Figure 6-1 shows the parameter area on the stack for the My _Fune
example.

+40

+36

+32

+28

+24

+20

+12

+8

+4

0

1

f3

u

x x I s

x x T c

d

f2

i

f

Stack grows
down

Figure 6-1 Parameter area on the stack

The stack starts with three 32-bit words for the first three parameters:
a floating-point field, f, an integer, i, and another float, f2. The 64-
bit double, d, is assigned to the next two words, followed by c, a
char, and s, a short integer. Both the char and the short
integer are placed into their respective words as follows: their values
are placed into the lower half of their respective words, and the
upper half of their words are padded. The sequence of placement
continues for the remaining fields.

Symantec C++ Compiler Guide 125

6 • Porting Code

The relationship between the stack frame and registers
To understand which parameters are passed in registers and which
are passed on the stack, it is necessary to map the stack to the
available registers. Figure 6-2 illustrates which parameters in this
example are passed in registers and which are passed on the stack.

Stack

1

f3

u

x .. x l s

x x l c

d

f2

i

f

'7

L

'7

General-purpose
Registers

Stack

Stack

GPRlO

GPR9

GPR8

GPR7*
GPR6*

GPR5*

GPR4

GPR3*

Figure 6-2 Parameters mapped to registers

Floating-point
Registers

FPR4

FPR3

FPR2

FPRl

* These registers are reserved, but the corresponding values from the
floating-point registers are not stored in them.

Since GPR3 - GPRlO and FPRl - FPR13 are the only registers that
can be used for parameter passing, the stack must be used when
these are no longer available.

Whenever a floating-point value parameter is placed in a floating
point register, a copy is placed in a general-purpose register. In the
case of a double, one floating-point register is used and two

126 Symantec C++ Compiler Guide

PowerPC Calling Conventions +

general-purpose registers must be used. These are always reserved,
but used only when no prototype or a ... prototype is used. For
example,

int printf(char * ...);

printf("hello%f", 3.0);

The process continues until there are no registers available for the
parameters. In the example in Figure 6-2, u, the unsigned integer,
occupies the last of the general-purpose registers. This forces the
next parameter, f3, a float, to be placed in the next floating-point
register, and, since there are no available general-purpose registers
for the copy, the parameter is passed in the register and on the stack.
For more information about how the registers and stack are used,
see Inside Macintosh, PowerPC System Software (Addison-Wesley) by
Apple Computer.

Symantec C++ Compiler Guide 127

· Using the
Standard Libraries•

7
bs chapter describes the standard libraries that come with Symantec

C++ for Power Macintosh, how to use them with your project, and
how to modify them for your own purposes. It also explains how to
use the online reference to look up functions.

Contents
Headers and Libraries 131

Apple vs. Symantec standard libraries 131
Standard libraries 131
Using the Apple standard libraries 133
Macintosh libraries . 134

Symantec ANSI Libraries. 136
Special versions of the standard libraries 137
Customizing the PPCANSI library . 137

Using the Online Standard Libraries Reference 138
Looking up a topic . 140
Moving around THINK Reference . 140
Reading a function reference page 141
Using the tables of contents 143
Finding lost databases . 144

Symantec C++ Compiler Guide 129

Headers and Libraries +

Headers and Libraries
The layout of the headers and libraries folders is a little different in
Symantec C++ for Power Macintosh than in previous releases of
Symantec C++.

Apple vs. Symantec standard libraries
For the PowerPC, there are two choices for the ANSI C standard
libraries: the Apple standard libraries and the Symantec standard
libraries. The Apple standard libraries are built into the PowerPC
ROM, and your application will require less memory to use them.
Source code for these libraries is not provided. The Apple libraries
support building native MPW tools from within the Symantec Project
Manager.

The Symantec standard libraries are included with full source code
available. They are packaged as either statically linked or shared
libraries. Use these libraries when customization of the libraries is
required. Since performance is better when using statically linked
libraries on the PowerPC, these libraries are a good choice for high
performance applications.

Standard libraries
This folder contains the standard libraries for both the PowerPC and
68K environments. It also contains the following folders:

Folder

Headers and
Source

oops Libraries

STL

Apple PPC
Libraries

Contains

The standard includes and the source
code for the Symantec standard
libraries. It also contains the project
files used to build the PowerPC
libraries.

68K libraries used for programming
with THINK C + Objects or Symantec
C++ with Pascal Objects.

The Hewlett-Packard Standard
Template Library.

Apple's standard libraries (binary only).

Symantec C++ Compiler Guide 131

7 • Using the Standard Libraries

68K Library

ANSI
ANSI++

ANSI-small
ANSI-small++

unix
unix++

profile
profile++

IOStrearns

complex

CPlusLib

CPlusLib TCL

Table 7-1 outlines the library mapping from 68K to PowerPC when
using the Symantec libraries.

PPC Static Library
PPC Shared Library

PPC Sub-projectt (requires ...)

PPCANSI.o PPCANSI PPCANSI.7t

PPCANSI_srnall. o PPCANSI_small PPCANSI_small.7t

PPCunix.o PPCunix PPCunix.7t
(PPCANSI)

Profiling not supported in this release of Symantec C++ for Power
Macintosh

PPCIOStrearns.o PPCIOStrearns PPCI0Strearns.7t
(PPCANSI,
PPCCPlusLib)

PPCcomplex.o PPCcomplex PPCcomplex.7t
(PPCIOStrearns)

PPCCPlusLib.o PPCCPlusLib PPCCPlusLib.7t
(PPCANSI)

PPCCPlusLib TCL.o PPCCPlusLib* PPCCPlusLib.7t

Table 7-1 Library mappings from 68K to PowerPC

t Use this version of the library to debug changes to the standard
libraries that you make.

* PPCCPlusLib TCL is not available because the PPCCPlusLib
shared library can be used instead. Local definitions of operator,
new (), and delete () in the TCL will be preferred to the global
definitions. When building a TCL application, remember to use
PPCCPlusLib TCL.o if required.

Choose shared libraries if application size is an issue. Performance
will be sacrificed. Using these libraries means that you will need to
include these standard libraries as components of your shipping
product.

132 Symantec C++ Compiler Guide

Library

Headers and Libraries +

Table 7-2 describes the libraries containing static run-time code that
virtually all applications built for the PowerPC will require, both C
and C++ based.

For Use When
To Create ... With ... Using ...

PPCRuntime.o Internal linker Symantec Application
Libraries

ApplePPCRuntime.o Internal linker Apple Application
Libraries

shlbPPCRuntime.o Internal linker Symantec Code fragment
Libraries

shlbApplePPCRuntime.o Internal linker Apple Code fragment
Libraries

MPWPPCRuntime.o External linker Symantec Application or
Libraries code fragment

MPWApplePPCRuntime.o External linker Apple Application or
Libraries code fragment

Table 7-2 Required libraries for PowerPC applications

For more information on the internal and external linkers, see the
Symantec C++ User's Guide and Reference.

Using the Apple standard libraries
The header files provided with Symantec C++ for Power Macintosh
are set up for either the Apple or Symantec standard libraries. By
default, the headers for the PowerPC are the Symantec standard
libraries. In order to use the Apple standard libraries, you must
#define _USE_APPLE_LIBRARIES_ to be 1 before including
any of the standard library header files.

Note
If you are using a custom precompiled header that
includes any of the standard library headers, you
must add this #define to the precompiled header
source file and re-precompile it.

Symantec C++ Compiler Guide 133

7 • Using the Standard Libraries

The Apple standard libraries differ from the Symantec standard
libraries in their treatment of ANSI escape sequences within string
literals and character constants. The Symantec libraries expect \n to
be Oxa and \r to be Oxd. The library maps these characters at run
time to the correct characters (Oxd and Oxa). The Apple standard
libraries expect this mapping to be performed by the compiler when
it encounters these characters within character constants and string
literals.

The Map carriage returns option (described in Chapter 5, "Compiler
Options Reference") controls whether the compiler performs this
mapping. This option must be on when using the Apple standard
libraries, and off when using the Symantec libraries. By default, this
option is off.

Apple provides libraries for ANSI C in ROM and for C++ new and
delete as static libraries. The Symantec Project Manager fully
supports the ROM use of either or both of these sets of libraries. You
may also choose to use the Apple ANSI C library and the Symantec
C++ libraries.

In order to use the Apple C standard libraries, you will need to add:

StdCRuntime.o

StdCLib.xcoff

low-level C runtime library

interface to the standard C library
in ROM

Choose either PPCCRuntime. o (Apple's low-level run-time) or the
appropriate version of Symantec's PPCRunt ime. o library. If you
are using C++, we strongly recommend you use the Symantec
versions of PPCCPlusLib. o and the run-time library.

Macintosh libraries
To better support both PowerPC native and 68K development, the
Macintosh-specific libraries and headers have been slightly
reorganized. The Mac Libraries and Mac #includes folders
are now contained in the Macintosh Libraries folder. A new
folder, More System Interfaces, has been added to the
Deve 1 opmen t folder containing headers and libraries for new
Apple System Software technology such as the Drag Manager, AOCE,
AppleScript, ColorSync, and the Thread Manager. Drag required files,
as needed, into the Macintosh Libraries folder. This folder is

134 Symantec C++ Compiler Guide

Headers and Libraries +

taken from the latest E.T.O. CD and is used as is with minor
modifications.

The Thread Manager folder contained two versions of
Threads. h, one in the Interfaces folder and one in the
SnakesWi thSemaphores folder. The latter is out of date and has
been deleted. Also, the correct Threads . h was modified to remove
the ' , ' after the final enumeration constant in the gestaltSelectors
enumeration.

The QuickTime folder contains an Interfaces folder that holds
more recent revisions of the QuickTime headers than are contained
in the standard Universal Headers folder. As such the folder has
been renamed to (Interfaces).

Table 7-3 outlines the library mapping from 6SK to PowerPC.

68K Library PPC Library

AppleTalk InterfaceLib.xcoff

CommToolbox See CommToolbox dev kit.

Graf3D Not supported on PowerPC

HyperXLib See HyperXLib dev kit.

MacTraps InterfacLib.xcoff
Old MacTraps
MacTraps2

nAppleTalk InterfaceLib.xcoff

OSL ObjectSupportLib.xcoff

QuickTime QuickTimeLib.xcoff

SANE MathLib. xcof ft

Table 7-3 Library mappings from 68K to PowerPC

t MathLib.xcoff is not a direct substitute for SANE. See "Inside
Macintosh: PowerPC Numerics' for details. In general
MathLib.xcoff will be required if you link with
InterfaceLib. xcof f.

Symantec C++ Compiler Guide 7 35

7 • Using the Standard Libraries

Symantec ANSI Libraries
Symantec C includes two standard function libraries, ANSI and unix,
which you can find in the Standard Libraries folder:

• The PPCANSI library is a complete implementation of the
ANSI C standard library. The standard gives all C
programmers in all ANSI C environments a consistent set
of functions, making programs easier to port. It includes
functions to perform file and screen I/0, string-handling,
math, and more.

• The PPCunix library contains several functions common
to Unix implementations of C that are not part of the ANSI
standard library. It includes functions to handle files,
signals, and other Unix-specific features.

Use the PPCunix library to make porting software from Unix systems
easier. When writing a new program, try to avoid the PPCunix
library, and use the PPCANSI library instead. The descriptions of the
Unix functions in the online Standard Libraries Reference tell you
when there is an equivalent function in the PPCANSI library.

The PPCANSI library includes the console package, which lets you
use simple Macintosh windows called consoles. Consoles let you
port MS-DOS and Unix programs easily and help you get simple C
programs running quickly. For more information, see "Using the
Online Standard Libraries Reference" later in this chapter.

Symantec C++ includes four standard function libraries,
PPCCPlusLib, PPCIOstreams, PPCcomplex, and the Standard
Template Library (STL), which you can find in the Standard
Libraries folder:

• The PPCCPlusLib library contains utility routines for the
Symantec C++ compiler that handle the new and delete
operators for objects and arrays.

• The PPCIOstreams library is a full implementation of the
standard stream input/output library described in Bjarne
Stroustrup's Tbe C++ Programming Language. It provides
flexible and extendable facilities for input and output.

• The PPCcomplex library allows you to perform arithmetic
operations on complex numbers.

136 Symantec C++ Compiler Guide

Symantec ANSI Libraries +

• The STL is a set of template classes and functions from
Hewlett-Packard that are of general utility. This library is
not provided in binary (. o) form for this reason. For
information on the Standard Template Library, see the
online document, SIT-Online Doc. Updates and additional
information on STL can be found on the Internet ftp site
//butler.hpl.hp.com.

Special versions of the standard libraries
Table 7-4 describes the special versions of the standard libraries,
which are designed to handle special circumstances. Note that these
libraries leave out some functions; therefore, use one of these
libraries only if your program meets the condition for which that
library was designed:

Use this library ...
PPCANSI_small

PPCCPlusLib TCL

If your program ...
Does not use consoles or floating-point
functions

Uses the THINK Class Library

Table 7-4 Special versions of the standard libraries

The PPCANSI_small library differs from the ANSI library. The
PPCANSI_small library is smaller than ANSI, and projects that use it
are smaller as well. It leaves out many things that are available in the
ANSI library. Most importantly, it leaves out console functions and
floating-point support. Also, the %f, %g, and %e conversions are not
available for the formatted 1/0 functions, such as print f () and
scanf ().

Customizing the PPCANSI library
You may want to create your own version of the PPCANSI library
that, for example, includes floating-point functions and leaves out
console functions. To create your own version of the PPCANSI
library:

1. Choose the library from which you want to start. For
example, if you want your library to exclude console and
floating-point functions, start with PPCANSI_small.

2. In the Finder, create a copy of the project and give it a
new name, like PPCMyANSI.

Symantec C++ Compiler Guide 137

7 Using the Standard Libraries •

For more information on
the Link Errors window,
see the Symantec C++
User's Guide and
Reference.

3. In the Symantec Project Manager, open your renamed
project.

4. In the PowerPC C options pages of the Project
Options, set up your options. Table 7-5 contains some
common settings for the options.

5. Remove files you don't need. For example, if you don't
need time functions, remove time. c.

6. Choose Bring Up To Date from the Project menu to
compile your project.

If you remove files from the ANSI library, you may get link errors
when you compile your project. The Link Errors window lists the
functions that other functions in your project need. Search the files
you removed, and add back to your project the files that contain the
needed functions to your project.

Table 7-5 describes some common options settings.

To create a library
that uses ...
No console functions

No floating-point
functions

Set these options ...

In the Prefix section, define the symbol
NOCONSOLE, and remove the files
console. c and command. c.

In the Prefix section, define the symbol
NO FLOATING.

Table 7-5 Common option settings for the PPCANSI library

Using the Online Standard Libraries Reference
Symantec C++ for Power Macintosh includes several useful tools that
make your work with the standard libraries much easier. An online
version of the Standard Template Library (STL) documentation can
be found in the online documentation. This document provides a
comprehensive description of the STL.

The Symantec Project Manager also comes with an online Standard
Libraries Reference, THINK Reference, that includes a database for
the Symantec C standard libraries. In addition, another database that

138 Symantec C++ Compiler Guide

Using the Online Standard Libraries Reference +

describes the Symantec C++ class libraries PPCIOStreams and
PPCComplex is included with Symantec C++ for Power Macintosh.

Note
THINK Reference refers to the libraries by their 68K
names. The contents of the PowerPC versions of the
libraries are identical to the 68K versions.

The version of THINK Reference included with Symantec C++ for
Power Macintosh also contains the entire "Inside Macintosh"
volumes I - VI, complete documentation for the THINK Class Libra1y,
and Symantec C++ for Power Macintosh's error messages.

To look up a standard library function in THINK Reference when
you 're in the Symantec Project Manager, select the function name
and choose Find in Doc Server from the Search menu. You can
also go to the Finder, double-click the THINK Reference icon, and
type the function's name. Usually after a few seconds you 'll see the
THINK Reference window shown in Figure 7-1.

p ri ntf Write a for matted st ri ng to standard output

#include <stdio. h >

Library ANSI or ANSI-small

Prototype int pri ntf(const char * formBt, ...) ;

Usage numchars = pri ntf(format , ...) ;

pri ntf() ~trites a formatted string to standard out11ut. It evaluates the data

Figure 7-1 THINK Reference window

Symantec C++ Compiler Guide 139

7 Using the Standard Libraries •

Sometimes THINK
Reference uses underlined
words for emphasis. You
can differentiate these from
hyper/inks because the
cursor changes to a
magnifying glass only over
hyper/inks.

Note
If you moved the databases since you installed
them, THINK Reference displays a dialog that asks
you to locate them. See "Finding lost databases"
later in this chapter for more information.

The top part of the THINK Reference window is the button panel,
which contains buttons that help you move around the database.
The box on the right side is the Page Title field and contains the
name of the current field. The bottom part is the information area,
which contains a page from the database.

Looking up a topic
If your Symantec C++ documentation refers you to a topic in the
online Standard Libraries Reference, start THINK Reference, type the
name of the topic, and press Return. THINK Reference brings you to
the page that deals with that topic.

Moving around THINK Reference
You move around THINK Reference with hyperlinks. When you
click a hyperlink, you go to a page that describes a related topic.
Whenever the cursor is over a hyperlink, it changes to a magnifying
glass C(l). Hyperlinks appear as bold underlined words or as
plain underlined words. Bold underlined hyperlinks usually refer to
functions, and plain underlined hyperlinks refer to types, variables,
or fields of structures.

You can also go to a hyperlink by typing its name. What you type
appears in the box on the left side of the button panel. If the
hyperlink is on the current page, THINK Reference scrolls the page
to bring it into view and selects it. If the hyperlink isn't on the
current page, THINK Reference displays in the Page Title field the
name of the hyperlink that matches what you've typed. Press Return
to go to the hyperlink's page.

Read THINK Reference's online documentation for more information
on the features discussed here and on other features such as
searching, printing, and setting preferences. Just click the Help
button in the button panel.

140 Symantec C++ Compiler Guide

S"m"w{

Returns -[

Exa mple -

Using the Online Standard Libraries Reference •
Reading a function reference page
Most function reference pages contain the fo ur sections in Figure 7-2
- summa1y, description, returns, and example . Some may omit the
returns and example sections.

Create a ne'w' co nsole

... incl ude <co nsole.h >

Li brary Al-IS i

Prototype f.!il * fopenc(void);

Usage consol e = fopenc O;

fopenc () creates a new co nsole and opens a ne\1 strea m on that console

To set optio ns for the com1;0Je, set the eleme nts in the global str ucture,
consoJe_oP.t ions . To close a console, use fclose() .

Note : Changi ng console.....oP.tions affects the options for t he next console you
create . After yo u create a console, you cannot change its options.

Returns A pointe r to a console.

Exam le

This example creates a console V!ith fopencO and 'w'rites to it

8 i ncl ude <console.h>
• ; ncl ude <stdio.h>

co nsole-DP.tions.nrows = 12;
cc.nsole_oP.tions.ncols = 40;
cp = fopenc ();
fP.ri ntf(cp, "hell o worl d\n") ;

Figure 7-2 A fun ction refere nce page

Not in the
ANSI standa rd
symbo l --

Symantec C++ Compiler Guide 747

7 • Using the Standard Libraries

The summary section briefly describes the function in five lines, as
described in Table 7-6.

This line... Contains ...
function name The name of the function and a short description.

#inc 1 ude The header file that declares the function. Include
it in any source file that calls the function.

Library

Prototype

Usage

The libraries that contain the function. Include one
of these libraries in your project.

The function's declaration from the header file.

An example of how to use the function in a
statement.

Table 7-6 Summary section of a function reference page

If the function is not part of the ANSI standard, the Not in the ANSI
standard symbol appears at the right side of the summary section. If
you plan to compile your program with another ANSI C compiler,
avoid functions that aren't in the standard.

The description section tells you what the function does and
describes each of its arguments in detail. This section may contain
notes that call attention to important information.

The returns section summarizes what the function returns. If the
function sets errno when there's an error, this section also
describes errno's possible values. If a function doesn't return a
value, it doesn't have a returns section.

Most functions also have an example section that illustrates how to
use the function in a program. To copy the example to the clipboard,
choose Copy Code Examples from the Edit menu. You can then
paste it into a source file and try it out.

142 Symantec C++ Compiler Guide

Using the Online Standard Libraries Reference +

Using the tables of contents
The Quick-Jump buttons in the upper-left corner of the THINK
Reference window bring you to tables of contents that help you look
up the information you need.

Fune: Ref Categories:

Help Header Files:

Figure 7-3 The Quick-Jump buttons

Which button you use depends on what you're looking for and how
much you know before you start looking. For instance, if you want
more information on a function and you know its name starts with
fget, you would start in the Fune Ref page. If you know that
stdio . h has a function for printing error messages, the best place
to start would be in the Header Files page.

When you're looking up something in a table of contents, remember
that you can type the name of a hyperlink to select it. If the
hyperlink doesn't appear in the window, THINK Reference scrolls
the page until it appears. To go to the hyperlink's page, press Return.

Table 7-7 summarizes how you use the Quick-Jump buttons to look
up information.

Use this ...
Fune Ref

Categories

Help

Header Files

To look up ...
A function, if you know part of its name

A function, if you know roughly what it does

Online help

A data structure, type, or function, if you know its
header file

Table 7-7 Uses of Quick-Jump buttons

Symantec C++ Compiler Guide 143

7 Using the Standard Libraries •
Fune Ref

Categories

Help

Header Files

The Fune Ref page is an alphabetical listing of every function in the
Symantec C standard libraries. To get to this page, you click the Fune
Ref button in the button panel, choose Fune Ref from the
Reference menu, or press Command-R.

The Categories page is a list of categories, such as I/0 Functions,
UNIX Functions, and Time Functions. This page is useful if you
know what the function does but don't know its name. Each
category has a page that contains hyperlinks to all the functions
listed on it.

To get to the Categories page, you click the Categories button in the
button panel, choose Categories from the Reference menu, or
press Command-T.

The Help page contains links to pages that explain how THINK
Reference works. To get to the Help page, you click the Help button
in the button panel, choose Help from the Reference menu, or
press Command-N.

The Header Files page contains an alphabetical list of hyperlinks to
the header files in the Symantec C standard libraries. Each hyperlink
takes you to a page that describes the types, macros, global
variables, and functions that the header file defines.

To get to the Header Files page, you click the Header Files button in
the button panel, choose Header Files from the Reference menu,
or press Command-H.

Finding lost databases
If you have moved a database since you installed it, THINK
Reference asks you to locate it. THINK Reference expects to find its
databases in the folder that contains the THINK Reference
application. THINK Reference displays the dialog shown in Figure
7-4. Once the name of the folder containing the database is
displayed in the button under the prompt Use all database files in,

144 Symantec C++ Compiler Guide

Using the Online Standard Libraries Reference +

click the button. THINK Reference remembers the location of the
database.

la THINK Reference 2.0 ... j
,Q ~Akbar

!: j<H t

Desktop

-O Cancel
'--~~~~~~~~~~~~

Use all database files in:

£ "THINK Reference 2.0" D

Figure 7-4 Selecting the database folder

Whenever you move a database, THINK Reference brings up this
dialog the next time you use it. If you want THINK Reference to
bring up this dialog, hold down the Shift key as THINK Reference is
starting up. You may need this dialog if you have more than one set
of databases and want to switch among them.

Symantec C++ Compiler Guide 145

Using
Symantec Rez •

8
Resource description files are the text files that Symantec Rez compiles

to produce resources for your application.

If you are not familiar with Apple's Resource description language,
Rez, we recommend that you use a graphical resource editor, such as
ResEdit (included in your package) or Resorcerer. See Apple
Computer's ResEdit 2.1 Reference (Addison-Wesley) for instructions
on using ResEdit.

This chapter describes how to use Symantec Rez to compile resource
description files and add resources to your projects. It describes how
to write a resource description file, how to set your Symantec Rez
options for your project, and also how Symantec Rez is different
from Rez, the resource compiler that comes with Apple's Macintosh
Programmer's Workshop.

Contents
The Resource Compiler 149

Using a resource compiler 149
Standard type declaration files 149

Structure of a Resource Description File 151
Sample resource description file 152

Resource Description Statements . 153
Syntax notation . 153
Special terms . 154
Data-specify raw data 154
Type-declare resource type 154
Resource-specify resource data 165

Labels . 169
Built-in functions to access resource data 169
Declaring labels within arrays 170
Label limitations . 171

Symantec C++ Compiler Guide 147

8 Using Symantec Rez •
Using labels: two examples . 172

Preprocessor Directives . 175
Variable definitions . 176
Header file processing . 177
If-then-else processing . 178

Resource Description Syntax. . 179
Numbers and literals . . 179
Expressions . . 180
Variables and functions . 181
Strings . 184

Setting Symantec Rez Options . 186
Resource alignment . 187
Redeclared types are ok . 187
Prefix String . 187
Language Support 187

Differences from MPW Rez 188

148 Symantec C++ Compiler Guide

The Resource Compiler +

The Resource Compiler
The resource compiler, Symantec Rez, compiles a text file (or files)
called a resource description file and adds the resources to your
project resource file. Symantec Rez has preprocessor directives that
let you substitute macros, include other files, and use if-then-else
constructs. (These directives are described in the section
"Preprocessor Directives" later in this chapter.)

Using a resource compiler
Symantec Rez creates new resources in your project resource file.
Use it with the Resource Copier, which copies resources that already
exist into your project resource file, to include resources to your
applications. Figure 8-1 illustrates the process of creating a project
resource file.

(Editor

!
Resource
description
file (.r)

i
Symantec Rez

)

Project
resource
file

Resource Editor
(Res Edit)

Resource
files (.rsrc)

(Resource Copier J

Figure 8-1 Creating a resource file

Standard type declaration files
Types. r, Sys Types. r, and Pict. r are examples of text files
containing resource declarations for standard resource types. These

Symantec C++ Compiler Guide 149

8 • Using Symantec Rez

files and others are located in the Rez #includes folder, which is
in the Macintosh Libraries folder in the Symantec C++ for
Power Mac folder. Table 8-1 describes the standard type declaration
files.

This file ...
Types.r

SysTypes.r

BalloonTypes.r

AEUserTermTypes.r
AEWideUserTermTypes.r

CodeFragmentTypes.r

MixedMode.r

ImageCodec.r

CTBTypes.r

InstallerTypes.r

Pict.r

Contains ...
Type declarations for the most
common Macintosh resource types
('ALRT', 'DITL', 'MENU', etc.)

Type declarations for 'vers' ,
I DRVR I ' I FOND I ' I FONT I '

'FWID', 'intl ', 'NFMT', and
many other system-level resources.

Type declarations for Balloon Help
resources (' hmnu', 'hdlg',
'hwin ' , etc.)

Types for creating Apple Event
terminology and resources
(' aete', 'aeut ', 'scsz ')

Type declaration for the ' c frg '
resource.

Type declarations for creating
resource based Mixed Mode targets
(' rdes ', 'fdes ',and 'sdes ')

Types for QuickTime image
compression resources.

Types for the Communications
Toolbox.

Types for creating installer scripts
for Apple's Installer.

Type declaration for PICT resources
for debugging PICTs.

Table 8-1 Examples of standard type declaration files

150 Symantec C++ Compiler Guide

Structure of a Resource Description File +

Structure of a Resource Description File
A resource description file consists of resource type declarations
(which can be included from another file) followed by resource data
for the declared types. Note that the resource compiler and resource
decompiler (the MPW DeRez tool) have no built-in resource types.
You need to define your own types or include the appropriate . r
files.

Table 8-2 shows the statements that a resource description file may
contain. Each of the statements is described in the sections following
the table.

Statement
data

type

resource

Description
Specify raw data

Type declaration - declare resource type
descriptions for subsequent resource statements

Data specification - specify data for a resource
type declared in a previous type statement

Table 8-2 Statements in a resource description file

A type declaration describes how the declaration of a resource of
that type will look. You must declare a type (with a type statement)
before you make a resource of that type (with a resource
statement). Otherwise, you can freely mix type and resource
statements in a file. You can redefine a type any number of times,
even a type defined in the standard type declaration files described
in Table 8-1, as long as the Redeclared types are OK option is set on
the Symantec Rez page of the Project Options dialog. (See "Setting
Symantec Rez Options" later in this chapter for more information on
setting options.)

A resource description file can also include comments and
preprocessor directives. Comments can be included any place white
space is allowed in a resource description file, by putting them
within the comment delimiters I* and *I. Note that comments do
not nest. For example, this is one comment:

/* Hello /* there */

Symantec C++ Compiler Guide 151

8 • Using Symantec Rez

Symantec Rez also supports C++ style comments:

type 'tost' { // Ignore rest of this line.

Preprocessor directives substitute macro definitions and include files,
and provide if-then-else processing before other Symantec Rez
processing takes place. The syntax of the preprocessor is very similar
to that of the C language preprocessor.

Sample resource description file
An easy way to learn about the resource description format is to
decompile some existing resources. For example, using DeRez to
decompile one of an application's resources might generate this:

resource 'WIND' (128, "Sample Window") {
{64, 60, 314, 460},
documentProc,
visible,
noGoAway,
OxO,
"Sample Window"

} ;

This resource data corresponds to the following type declaration,
contained in Types . r:

type ' WIND ' {
rect; /* bounds */
integer documentProc, /* procID */

altDBoxProc, plainDBox,
altDBoxProc, noGrowDocProc,
movableDBoxProc, zoomDocProc = 8,
zoomNoGrow=l2, rDocProc=16;

byte invisible, visible;/* visible */
fill byte;
byte noGoAway, goAway; /* close box */
fill byte;
unsigned hex longint; /* refCon */
pstring Untitled="Untitled";

/* title */
/* . . . *I

Type and resource statements are explained in detail in the reference
section that follows.

152 Symantec C++ Compiler Guide

Resource Description Statements +

Resource Description Statements
This section describes the syntax and use of the three types of
resource description statements available for the resource compiler:
data, type, and resource.

Syntax notation
Table 8-3 shows the syntax notation used with resource description
statements.

Notation
terminal

nonterminal

[optional]

repeated ...

a I b

grouping

'[' x ']'

Description
Plain text indicates a word that must appear in the
statement exactly as shown. Special symbols (such
as, - , *, =) and punctuation (such as " , " and " ; ")
must also be entered exactly as shown.

Items in italics can be replaced by anything that
matches their definition.

Square brackets mean that the enclosed elements
are optional.

An ellipsis(. ..), when it appears in the text of this
reference only, indicates that the preceding item
can be repeated one or more times.

A vertical bar indicates an either/or choice.

Parentheses indicate grouping (useful with the
and ... notation).

Curly single quotation marks (' ... ') indicate that
one of the syntax notation characters (for
example, [or]) must be written as a literal. In
this example, the brackets would be typed
literally. They do not mean that the xis optional.

Table 8-3 Syntax notation

Spaces between syntax elements, constants, and punctuation are
optional. They are used for readability only.

Syntax elements in resource description statements may be separated
by spaces, tabs, returns, or comments.

Symantec C++ Compiler Guide 153

8 Using Symantec Rez •

Expression is defined in the
section "Expressions" later
in this chapter.

Special terms
The terms in Table 8-4 represent a minimal subset of the symbols
used to describe the syntax of commands in the resource description
language.

Term
resource-type
resource-name
resource-ID
ID-range

Table 8-4 Special terms

Definition
long-expression
string
word-expression
ID [:JD]

A full syntax definition can be found at the end of this chapter.

Data-specify raw data
Use the data statement to specify raw data as a sequence of bits,
without any formatting.

Syntax
data res-type '(' ID [,resource-name] [,attributes ... J ') ' '{'

data-string
'} ' i

Description
A data statement reads the data found in data-string and writes it as
a resource with the type res-type and the ID ID. You can optionally
specify a resource name, resource attributes, or both.

For example,

data 'PICT' (128) {
$"4F35FF8790000000"
$"FF234F35FF790000"

} i

Type-declare resource type
A type declaration provides a template that defines the structure of
the resource data for a single resource type or for individual
resources. If more than one type declaration is given for a resource
type and redeclared types are allowed, the last one read before the
data definition is the one that's used. This lets you override
declarations from include files or previous resource description files.

154 Symantec C++ Compiler Guide

Resource Description Statements +

Syntax
type resource-type ['(' ID-range ') '] '{'

type-specification ...
'} ' ;

You can also declare a resource type that uses another resource's
type declaration by using the following variant of the type statement:

type resource-typel ['(' ID-range ') '
as resource-type2 [' (' ID ') ' l

Description
A type declaration causes any subsequent resource statement for
the type resource-type to use the declaration { type-specification ... } .
The optional ID-range specification causes the declaration to apply
only to a given resource ID or range of IDs.

Table 8-5 lists the data-type specifications for the type statement.

Specification
bi tstring [n]

byte
integer
long int
Boolean
char
string

pstring
wstring
cstring
point
re ct
fill
align

switch
array

Description
Bitstring of n bits
8-bit number
16-bit number
32-bit number
1-bit Boolean value
8-bit character
Plain (no length indicator or
termination string character)
Pascal string
Word string
C string
Point
Rect
Zero fill
Zero fill to nibble, byte, word, or
long word boundary
Control construct (case statement)
Array data specification-zero or
more instances of data types

Table 8-5 Data-type specifications for type statement

Symantec C++ Compiler Guide 155

8 • Using Symantec Rez

These types can be used singly or together in a type statement.
Each of these type specifiers is described in the sections that follow.

Note
Several of these types require additional fields. The
exact syntax is given in the sections that follow.

Data-type specifications
A data-type statement declares a field of the given data type. It can
also associate symbolic names or constant values with the data type.
The data-type specification can take three forms, as shown in this
example:

type 'XAMP ' {

} i

/* declare a resource of type 'XAMP' */
byte;
byte off=O, on=l;
byte = 2;

The first byte statement declares a byte field; the actual data is
supplied in a subsequent resource statement.

The second byte statement is identical to the first, except that the
two symbolic names off and on are associated with the values O
and 1. These symbolic names could be used in the resource data.

The third byte statement declares a byte field whose value is always
2. In this case, no corresponding statement would appear in the
resource data.

Numeric expressions and strings can appear in type statements;
they are defined in the section "Expressions" later in this chapter.

Numeric types. The numeric types (bitstring, byte, integer,
longint) are fully specified like this:

[unsigned] [radix] numeric-type
[= expr I symbol-definition... l ;

The unsigned prefix signals a resource decompiler, such as MPW
DeRez, that the number should be displayed without a sign-that the
high-order bit can be used for data and the value of the integer
cannot be negative. The unsigned prefix is ignored by Symantec
Rez. Symantec Rez uses a sign if it is specified in the data. Precede a

156 Symantec C++ Compiler Guide

Resource Description Statements +

signed negative constant with a minus sign (-); OxFFFFFF 8 5 and
-Ox7B are equivalent in value.

Radix is one of the following string constants:

hex
binary

decimal
literal

octal

You can supply numeric data as decimal, octal, hexadecimal, binary,
or literal data.

Table 8-6 lists the numeric type specifiers.

Type Description
bitstring '['length'] ' Declare a bitstring of length bits

(maximum 32)

byte

integer

long int

Declare a byte (8-bit) field (this is the
same as bi tstring [8])

Integer (16-bit) field (this is the same as
bitstring [16])

Long integer (32-bit) field (this is the
same as bitstring [32])

Table 8-6 Numeric type specifiers

Symantec Rez uses integer arithmetic and stores numeric values as
integer numbers. Symantec Rez translates boolean, byte,
integer, and longint values to theirbitstring equivalents. All
computations are done in 32-bits and truncated.

An error is generated if a value won't fit in the number of bits
defined for the type. Table 8-7 shows the valid ranges for values of
byte, integer, and longint constants.

Type
byte
integer
long int

Maximum
255
65,535
4,294,967,295

Minimum
-128
-32,768
-2,147,483,648

Table 8-7 Value ranges for numeric type specifiers

Symantec C++ Compiler Guide 157

8 • Using Symantec Rez

Boolean type. A Boolean is a single bit with two possible states: 0
(or false) and 1 (or true) (true and false are global
predefined identifiers.) boolean values are declared as follows:

boolean [= constant I symbolic-value ... J ;

The type boolean declares a 1-bit field; this is equivalent to:

unsigned bitstring[l]

Note
This type is not the same as a Boolean variable as
defined by Pascal or CIC++.

Character type. Characters are declared as follows:

char [= string I symbolic-value... J ;

Type char declares an 8-bit field (this is the same as writing
string [1]).

Here is an example:

type 'SYMB' {
char dollar= "$", percent

} ;

resource 'SYMB' (128)
dollar

} ;

String type. String data types are specified as:

119-:-11.
0 I

string-type ['[' length '] '] [= string I symbol-value ... J ;

158 Symantec C++ Compiler Guide

Resource Description Statements +

Table 8-8 lists the string type specifiers.

String type
[hex] string

pstring

wstring

cstring

Description
Plain string that has no length indicator or
termination character generated. The optional
hex prefix tells a resource decompiler, like MPW
DeRez, to display it as a hex string. string [n]

contains n characters and is n bytes long. The
type char is shorthand for string [l].

Pascal string has a leading byte containing the
length information. pstring [n] contains n
characters and is n+l bytes long. pstring has a
built-in maximum length of 255 characters, the
highest value the length byte can hold. If the
string is too long to fit the field, a warning is
given and the string is truncated.

Word string is a very large pstring; its length is
stored in the first two bytes. Therefore, a word
string can contain up to 65,535 characters.
wstring [n] contains n characters and is n+2
bytes long.

C string generates a trailing null byte.
cstring [n] contains n-1 characters and is n
bytes long. A C string of length 1 can be assigned
only the value 11 11 , because cs tr i ng [1 l has
room only for the terminating null.

Table 8-8 String type specifiers

Each string type may be followed by an optional length indicator in
brackets ([n]). Length is an expression indicating the string length
in bytes. Length is a positive number in the range 1 ::;; length
::;; 2,147,483,647 for string and cstring, 1 ::;; length ::;; 255
for pstring, and 1 ::;; length ::;; 65,535 for wstring.

Note
You cannot assign the value of a literal to a string
type.

Symantec C++ Compiler Guide 159

8 • Using Symantec Rez

If no length indicator is given, a pstring, wstring, or cstring
stores the number of characters in the corresponding data definition.
If a length indicator is given, the data may be truncated on the right
or padded on the right with nulls. If the data contains more
characters than the length indicator provides for, the string is
truncated and a warning message is given.

Point and rectangle types. Because points and rectangles appear
so frequently in resource files, they have their own simplified syntax:

point [= point-constant I symbolic-value ... l ;
rect [= rect-constant I symbolic-value... l ;

where
point-constant = '{' x-integer-expr, y-integer-expr '}'

and
rect-constant = '{' integer-expr, integer-expr,

integer-expr, integer-expr '} '

These type statements declare a point (two 16-bit signed integers)
or a rectangle (four 16-bit signed integers). The integers in a
rectangle definition specify the rectangle's upper-left and lower-right
points, respectively.

Fill and align types
The resource created by a resource definition has no implicit
alignment. It's treated as a bit stream, and integers and strings can
start at any bit. The fill and align type specifiers are two ways of
padding fields so that they begin on a boundary that corresponds to
the field type. align is automatic and fill is explicit. Both fill
and align generate zero-filled fields.

Fill specification. The f i 11 statement causes Symantec Rez to add
the specified number of bits to the data stream. The fill is always O.
The form of the statement is

fill fill-size [' [' length 1 ' l ;

where fill-size is one of the following strings:

bit
word

nibble
long

byte

These declare a fill of 1, 4, 8, 16, or 32 bits (optionally multiplied
by the length modifier). Length is an expression ~ 2, 14 7, 4 8 3, 6 4 7.

160 Symantec C++ Compiler Guide

Resource Description Statements +

The following fill statements are equivalent:

fill word [2 l ;
fill long;
fill bit [32] i

The full form of a type statement specifying a fill might be:

type 'XRES' {
data-type specifications;
fillbit[2];

} ;

Align specification. Alignment causes Symantec Rez to add fill bits
of zero value until the data is aligned at the specified boundary. An
alignment statement takes the following form:

align align-size ;

where align-size is one of these strings:

nibble
long

byte word

Alignment pads the data with zeros until the data is aligned on a 4-,
8-, 16-, or 32-bit boundary. This alignment affects all data from the
point where the alignment is specified until the alignment is changed
by another align statement.

Array type
An array is declared as follows:

[wide] array [array-name I '[' length '] ' l '{'
array-list

'} ';

The array-list, a list of type specifications, is repeated zero or more
times. The wide option outputs the array data in a wide display
format (in a resource decompiler like MPW DeRez)-the elements
that make up the array-list are separated by a comma and space
instead of a comma, Return, and Tab. This has no effect in Symantec
Rez. Either array-name or [length] may be specified. Array-name is
an identifier.

If the array is named, then a preceding statement should refer to that
array in a constant expression with the $ $Count0f (array-name)

Symantec C++ Compiler Guide 161

8 • Using Symantec Rez

function; otherwise, a resource decompiler like MPW DeRez will
treat the array as open-ended. For example,

type 'STR#' {

} ;

/* define a string list resource */
integer= $$Countof(StringArray);
array StringArray {

pstring;
} ;

The $$Count0f () function returns the number of array elements
(in this case, the number of strings) from the resource data.

If [length] is specified, there must be exactly length elements.

Array elements are generated by commas, which are element
separators. Semicolons are element terminators. In this example,
however, it may be a good idea to use semicolons as element
separators:

type 'xyzy' {
array Increment {

integer= $$Arrayindex(Increment);
} ;

} ;

resource 'xyzy' (O) {

} ;

{ /* zero elements */
}

resource 'xyzy' (1) {
{ /* two elements */

} ;

resource 'xyzy' (3) {
} /* two elements */

; i

} ;

/* The only way to specify one element in
* an array that has all constant elements,
* is to use a semicolon terminator.
*/

162 Symantec C++ Compiler Guide

Resource Description Statements +

resource 'xyzy' (4) {
{ /* one element */

} i

Switch type
The switch statement specifies a number of case statements for a
given field or fields in the resource. The format is:

switch '{ ' case-statement... '} ';

where a case-statement has this form:

case case-name : [case-body ; l ...

Case-name is an identifier. Case-body may contain any number of
type specifications and must include a single constant declaration
per case, in this form:

key data-type = constant

The case that applies is based on the key value. For example,

type 'DITL ' {

} i

/* dialog item list declaration
* from Types.r
*/

... type specifications .. .

switch { /* one of the following */
case Button:

boolean enabled, disabled;
key bitstring[7] = 4; /* key value */
pstring;

.case CheckBox:
boolean enabled, disabled;
key bitstring[7] = 5; /* key value */
pstring;

... and so on.

} i

Symantec C++ Compiler Guide 163

8 • Using Symantec Rez

Sample type statement
The following sample type statement is the standard declaration for
a 'WIND' resource, taken from the Types. r file:

type 'WIND ' {
rect; /* bounds */
integer documentProc, /* procID */

altDBoxProc, plainDBox,
altDBoxProc, noGrowDocProc,
movableDBoxProc, zoomDocProc = 8,
zoomNoGrow=l2, rDocProc=16;

byte invisible, visible;/* visible */
fill byte;
byte noGoAway, goAway; /* close box */
fill byte;
unsigned hex longint; /* refCon */
pstring Untitled="Untitled";

/* title */
/* . . */

The type declaration consists of header information followed by a
series of statements, each terminated by a semicolon(;). The header
of the sample window declaration is

type 'WIND'

The header begins with the type keyword followed by the name of
the resource type being declared-in this case, a window. You may
specify a standard Macintosh resource type, as shown in Inside
Macintosh: More Macintosh Toolbox, Chapter 1, or you may declare
a resource type specific to your application.

The left brace ({) introduces the body of the declar.ation. The
declaration continues for as many lines as necessary until a matching
right brace (}) is encountered. You can write more than one
statement on a line, and a statement may cover more than one line
(like the intege.r statement above). Each statement represents a
field in the resource data. Recall that comments may appear
wherever white space appears in the resource description file;
comments begin with I * and end with * I, as in C.

Symbol definitions
Symbolic names for data type fields simplify the reading and writing
of resource definitions. Symbol definitions have the form

name = value [, name = value J ...

164 Symantec C++ Compiler Guide

Resource Description Statements +

For numeric data, the "= value' part of the statement can be
omitted. If a sequence of values consists of consecutive numbers, the
explicit assignment can be left out-if value is omitted, it's assumed
to be one greater than the previous value. (The value is assumed to
be zero if it's the first value in the list.) This is true for bit strings
and their derivatives: byte, integer, and longint. For example,

integer docurnentProc, dBoxProc, plainDBox,
altDBoxProc, noGrowDocProc,
zoomProc=8, rDocProc=16;

In this example, the symbolic names documentProc, dBoxProc,
plainDBox, al tDBoxProc, and noGrowDocProc are
automatically assigned the numeric values 0, 1, 2, 3, and 4.

Memory is the only limit to the number of symbolic values that can
be declared for a single field. There is also no limit to the number of
names you can assign to a given value. For example:

integer documentProc=O, dBoxProc=l,
plainDBox=2, altDBoxProc=3,
rDocProc=16, Document=O, Dialog=l,
DialogNoShadow=2,
ModelessDialog=3,
DeskAccessory=l6;

Resource-specify resource data
Resource statements specify actual resources, based on previous
type declarations.

Syntax
resource res-type'(' ID [,resource-name] [,attributes] ') ' '{'

[data-statement [, data-statement J . . . l
'} ';

Description
A resource statement specifies the data for a resource of type
res-type and ID ID. The latest type declaration declared for res-type is
used to parse the data specification. Data-statements specify the
actual data; data-statements appropriate to each resource type are
defined in the next section.

The resource definition causes an actual resource to be generated. A
resource statement can appear anywhere in the resource
description file, or even in a separate file specified on the command

Symantec C++ Compiler Guide 165

8 • Using Symantec Rez

line or as an #include file, as long as it comes after the relevant
type declaration.

Data statements
The body of the data specification contains one data statement for
each declaration in the corresponding type declaration. The base
type must match the declaration. Table 8-9 lists the data statement
specifications.

Base type
string
bit string
re ct
point

Instance types
string,cstring,pstring,wstring,char
boolean, byte, integer, longint,bitstring
re ct
point

Table 8-9 Data statement specifications

Switch data. Switch data statements are specified by using this
format:

switch-name data-body

For example, the following could be specified for the 'DITL' type
given earlier:

CheckBox { enabled, "Check here" } ,

Array data. Array data statements have this format:

' { ' [array-element [, array-element] . . . l '} '

where an array-element consists of any number of data statements
separated by commas.

For example, the following data might be given for the 'STR#'
resource defined earlier:

resource 'STR#' (280) {

} ;

{ "this",
II is" t

llall I

"test"

166 Symantec C++ Compiler Guide

See Inside Macintosh:
Macintosh Toolbox
Essentials, 'Window
Manager," for information
about resources in
windows.

Resource Description Statements +

Sample resource definition
This section describes a sample resource description file for a
window. Here, again, the type declaration is given in the section
"Sample type statement" earlier in this chapter.

type 'WIND'{
rect; /* bounds */
integer documentProc, /* procID */

altDBoxProc, plainDBox,
altDBoxProc, noGrowDocProc,
movableDBoxProc, zoomDocProc = 8,
zoomNoGrow=l2, rDocProc=16;

byte invisible, visible;/* visible */
fill byte;
byte noGoAway, goAway; /* close box */
fill byte;
unsigned hex longint; /* refCon */
pstring Untitled="Untitled";

/* title */
/* . . . *I

Here is a typical example of the window data corresponding to this
declaration:

resource 'WIND' (128, "My window",
preload) {

/* Status window */
{40,80,120,300},/* Bounding rectangle */
documentProc, /* documentProc etc .. *I
Visible, /* Visible or */

goAway,
0'

/* Invisible */
/* GoAway or NoGoAway */
/* Reference value */
/* RefCon */

"Status Report" /* Title */
} i

This data definition declares a resource of type ' WIND ' , using
whatever type declaration was previously specified for ' WIND ' . The
resource ID is 12 8; the resource name is "My window". Because
the resource name is represented by the Resource Manager as a
pstring, it should not contain more than 255 characters. The
resource name may contain any character, including the null
character (' \ 0 0 0 '). The resource will be loaded when the resource
file is opened.

Symantec C++ Compiler Guide 167

8 • Using Symantec Rez

The first statement in the window type declaration declares a
bounding rectangle for the window:

rect;

The rectangle is described by two points: the upper-left corner and
the lower-right corner. The points of a rectangle are separated by
commas like this:

{ top, left, bottom, right }

An example of data for these coordinates is

{ 40, 80, 120, 300 }

Symbolic names. Symbolic names may be associated with
particular values of a numeric type. Notice that a symbolic name is
given for the data in the second, third, and fourth fields of the
window declaration. For example,

integer docurnentProc=O, dBoxProc=l,
plainDBox=2, altDBoxProc=3,
noGrowDocProc=4, zoornProc=8,
rDocProc=16; /* windowType */

This statement specifies a signed 16-bit integer field with symbolic
names associated with the values 0 to 4, 8, and 16. The values 0
through 4 need not be indicated in this case; if no values are given,
symbolic names are automatically given values starting at 0, as
explained previously.

In the sample window declaration, the values True (1) and False
(0) were given to two different byte variables. For clarity, those
symbolic names were used in the window's resource data. That is:

visible,
goAway,

were used instead of their equivalents:

or

TRUE,
TRUE,

1,
1,

168 Symantec C++ Compiler Guide

Labels +.

Labels
Labels support some of the more complicated resources, such as
' NFNT ' and color QuickDraw resources. Use labels within a
resource type declaration to calculate offsets and permit accessing of
data at the labels.

Syntax
label
character
number
alphanum

Description

character { alphanum}... ': '
'._' I A I B I C ...
O I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9
character I number

Labeled statements are valid only within a resource type declaration.
Labels are local to each type declaration. More than one label can
appear in a statement.

Labels may be used in expressions. In expressions, use only the
identifier portion of the label (that is, everything up to, but
excluding, the colon). See the section "Declaring labels within
arrays" on the next page for more information.

The value of a label is always the offset, in bits, from the beginning
of the resource and· the position at which the label occurs when
mapped to the resource data. In this example,

type 'cool ' {
cstring;

endOfString:
integer = endOfString;

} i

resource 'cool ' (8) {
"Neato"

the integer following the cstring would contain:

(len ("Neato") [5] + null byte [1]) *
8 [bits per byte]

= 48.

Built-in functions to access resource data
In some cases, accessing the actual resource data to which a label
points is desirable. Several built-in functions allow access to that
data:

Symantec C++ Compiler Guide 169

8 • Using Symantec Rez

$$Bi tField (label, startingPosition, numberOJBits)
Returns the numberOfBits (maximum of 32) bitstring found
startingPosition bits from label.

$$Byte (label)
Returns the byte found at label.

$$Word (label)
Returns the word found at label.

$$Long (label)
Returns the longword found at label.

For example, the resource type ' STR ' could be redefined without
using a pstring. Here is the definition of 'STR ' from Types. r:

type 'STR '
pstring;

Here is a redefinition of ' STR ' using labels:

type 'STR ' {
len: byte = (stop - len) I 8 - l;

string[$$Byte(len)];
stop:;
} i

Declaring labels within arrays
Labels declared within arrays may have many values. For every
element in the array, there is a corresponding value for each label
defined within the array. Use array subscripts to access the individual
values of these labels. The subscript values range from 1 to n where
n is the number of elements in the array. Labels within arrays that
are nested in other arrays require multidimensional subscripts. Each
level of nesting adds another subscript. The rightmost subscript
varies most quickly. Here is an example:

type 'test' {
integer = $$CountOf(arrayl);
array arrayl {

integer= $$Count0f(array2);
array array2 {

foo: integer;
} i

} i

} i

7 70 Symantec C++ Compiler Guide

Labels +

resource 'test' (128) {
{

} i

{1,2,3},
{4,5}

In the above example, the label foo takes on values listed below:

foo [l, l]
foo [1, 2]
foo [1, 3]
foo[2,l]
foo[2,2]

32
= 48
= 64
= 96

112

$$Word(foo[l,1]) 1
$$Word(foo[l,2]) 2
$$Word(foo[l,3]) = 3
$$Word(foo[2,l]) 4
$$Word(foo[2,2]) = 5

This built-in function may be helpful in using labels within arrays:

$$Array Index (arrayname)
This function returns the current array index of the array arrayname.
An error occurs if this function is used anywhere outside the scope
of the array arrayname.

Label limitations
Keep in mind that Symantec Rez is basically a one pass compiler.
This characteristic explains some of the limitations of labels.

Note
To decompile a given type, that type must not
contain any expressions with more than one
undefined label. An undefined label is a label that
occurs lexically after the expression. To define a
label, use it in an expression before the label is
defined.

Symantec C++ Compiler Guide 171

8 • Using Symantec Rez

This example demonstrates how expressions can contain only one
undefined label:

type 'test' {
/* In the expression below,
* start is defined,
* next is undefined.
*/

start: integer = next - start;
/* In the expression below,
* next is defined because it was
* used in a previous expression,
* but final is undefined.
*I

middle: integer = final - next;
next: integer;
final:
} ;

Actually, Symantec Rez can compile types that have expressions
containing more than one undefined label, but a resource
decompiler like DeRez cannot decompile those resources. It simply
generates data resource statements.

Note
The label specified in $$BitField (),$$Byte (),
$$Word () , and $$Long () must occur lexically
before the expression; otherwise, an error is
generated.

Using labels: two examples
The first example shows the ' ppa t ' declaration using labels.
Without using labels, the whole end section of the resource would
have to be combined into a single hex string (everything following
the PixelData label). Using labels, the complete 'ppat'
definition can be expressed in the Rez language.

/* PixPat record */

type 'ppat' {
integer oldPattern, newPattern, ditherPattern;

/* Pattern type */
unsigned longint = PixMap I 8;

/* Offset to pixmap */
unsigned longint = PixelData I 8;

/* Offset to data */
fill long; /* Expanded pixel image */

172 Symantec C++ Compiler Guide

Labels +

fill word;
fill long;
hex string [8];

/* PixMap record */
PixMap:

/* Pattern valid flag
/* expanded pattern
/* old-style pattern

*/
*/
*I

fill long; /* Base address */
unsigned bitstring[l] = l;

/* New pixMap flag */
unsigned bitstring[2] = O;

/* Must be 0 */
unsigned bitstring{13];

/* Offset to next row */
rect; /* Bitmap bounds */
integer; /* pixMap vers number */
integer unpacked; /* Packing format */
unsigned longint; /* size of pixel data */
unsigned hex longint;

/*horizontal resolution */
/* (ppi) (fixed) */

unsigned hex longint;
/* vertical resolution */
/* (ppi) (fixed) */

integer chunky, chunkyPlanar, planar;
/* Pixel storage format */

integer; /* # bits in pixel */
integer; /* # bits per field */
integer; /* # components in pixel */
unsigned longint; /* Offset to next plane */
unsigned longint = ColorTable I 8;

/* Offset to color table */
fill long; /* Reserved */

PixelData:
hex string [(ColorTable - PixelData) I 8];

ColorTable:
unsigned hex longint;

/* ctSeed */
integer; /* transindex */
integer = $$Countof(ColorSpec) - 1;

/* ctSize */
wide array ColorSpec {

integer; /* value */
unsigned integer; /* RGB: red */
unsigned integer; /* green *I
unsigned integer; /* blue */

} ;
} ;

Symantec C++ Compiler Guide 173

8 • Using Symantec Rez

Here is another example of a resource definition that uses labels. In
this example, the $$Bi tField () function is used to access
information stored in the resource, in order to calculate the size of
the various data areas added at the end of the resource. Without
labels, all data would have to be combined into one hex string.

/* IconPMap (pixMap) record */

type 'cicn' {
fill long; /* Base address */
unsigned bitstring[l] = 1;

/* New pixMap flag */
unsigned bitstring[2] = O;

/* Must be 0 *I
pMapRowBytes: unsigned bitstring[l3];

I* Offset to next row */
Bounds: rect; /* Bitmap bounds */

integer; /* pixMap vers number */
integer unpacked; /* Packing format */
unsigned longint; /* Size of pixel data */
unsigned hex longint;

/* horizontal resolution */
/* (ppi) (fixed) */

unsigned hex longint;
/* vertical resolution */
/* (ppi) (fixed) */

integer chunky, chunkyPlanar, planar;
/* Pixel storage format */

integer; /* # bits in pixel */
integer; /* # components in pixel */
integer; /* # bits per field */
unsigned longint; /* Offset to next plane */
unsigned longint; /* Offset to color table */
fill long; /* Reserved */

/* IconMask
fill long;

maskRowBytes:

rect;

(bitMap)
/*

integer;
/*
/*

record */
Base address

Row bytes
Bitmapds

/* IconBMap (bitMap) record */

*/

*/
*I

fill long; /* Base address */
iconBMapRowBytes: integer;

/* Row bytes */
rect; /* Bitmap bounds */
fill long; /* Handle placeholder */

174 Symantec C++ Compiler Guide

} ;

Preprocessor Directives +

/* Mask data */
hex string [$$Word(maskRowBytes) *

($$BitField(Bounds, 32, 16) /* bottom */
- $$BitField(Bounds, 0, 16) /* top */

) l ;

/* BitMap data */
hex string [$$Word(iconBMapRowBytes) *

($$BitField(Bounds, 32, 16) /* bottom */
- $$BitField(Bounds, 0, 16) /* top */

) l ;

/* Color Table */
unsigned hex longint; /* ctSeed */
integer; /* transindex */
integer= $$Countof(ColorSpec) - l;

/* ctSize */
wide array ColorSpec

integer;

} ;

unsigned integer;
unsigned integer;
unsigned int~ger;

/* PixelMap data */

/* value
/* RGB: red
/* green
/* blue

hex string [$$BitField(pMapRowBytes,0,13) *

*/
*/
*/
*/

($$BitField(Bounds,32,16) /* bottom*/
- $$BitField(Bounds, 0, 16)/* top */

) l;

Preprocessor Directives
Preprocessor directives substitute macro definitions and include files
and provide if-then-else processing before other Symantec Rez
processing takes place.

The syntax of the preprocessor is very similar to that of the C
language preprocessor. Preprocessor directives must observe these
rules and restrictions:

1 . Each preprocessor statement must be expressed on a
single line, beginning on a new line and terminated by a
return character.

2. The pound sign(#) must be the first character on the line
of the preprocessor statement (except for spaces and
tabs).

Symantec C++ Compiler Guide 175

8 • Using Symantec Rez

3. Identifiers (used in macro names) may be letters (A-Z,

a-z), digits (0-9), or the underscore character U.

4. Identifiers may be any length.

5. Identifiers may not start with a digit.

6. Identifiers are not case sensitive.

Variable definitions
The #define and #undef directives let you assign values to
identifiers:

#define macro data
#undef macro

The #define directive causes any occurrence of the identifier
macro to be replaced with the text data. You can extend a macro
over several lines by ending the line with the backslash character
(\),which functions as the Symantec Rez escape character. For
example,

#define poem "I wander \
thro\' each\
charter\'d street"

(Quotation marks within strings must also be escaped.)

#undef removes the previously defined identifier macro. You can
also define and undefine macros in the Prefix String section of the
Symantec Rez page of the Project Options dialog, described later in
this chapter. Table 8-10 lists the macros that are predefined in
Symantec Rez.

Variable Value Description
true 1 Use for the Boolean value true
false 0 Use for the Boolean value false
rez 1 Use to test whether a resource

compiler is running
derez 0 Use to test whether a resource de-

compiler is running
Symantec_Rez 1 Use to test which resource
THINK_Rez . compiler is running

Table 8-10 Predefined macros

176 Symantec C++ Compiler Guide

Preprocessor Directives +

Header file processing
You can include the text of another file in your file with the
#include directive. It works like the #include directive in C:

#include file

Include the text file file. The maximum nesting is to ten levels. For
example,

#include "MyTypes.r"

You can enclose the file name in either quotes("") or angle
brackets(<>). Table 8-11 shows the rules Symantec Rez uses to find
header files.

#include statement
<filename.h>

Symantec Rez ...
Looks only in the system tree

"filename.h" Looks first in the referencing folder, then
in the project tree, and finally in the
system tree.

Table 8-11 Header file search rules

The referencing folder is the one that contains the file that has the
#include preprocessor directive. For example, if a source file
references a header file MyUt i 1 s . h and that file in turn has the line
#inc 1 ude "MyUt i 1 Types. h", Symantec Rez will look for
MyUt i 1 Types . h in the folder that contains MyUt i 1 s . h first.

Apple's MPW Rez does not support angle brackets in the #include
directive. Instead, you enclose all file names in quotes. If you plan to
use your code with both Symantec Rez and Apple's MPW Rez, test
for which compiler is running with the Symantec_Rez macro, like
this:

#ifdef Symantec_Rez
#inc 1 ude <filename. h>
#else
#include "filename.h"
#endif

Pragma once directives
You may want to create a header file that you want included in
several places but which should define its symbols only once in a
file. You can use the #pragma once directive to do this.

Symantec C++ Compiler Guide 177

8 • Using Symantec Rez

If you have the directive:

#pragma once

in your header file, Symantec Rez will include that file only once. If
another file tries to include that header file, Symantec Rez knows
that the symbols in that file have already been defined, so it doesn't
process the file again.

Keep these restrictions in mind when you use #pragma once:

• It's case sensitive. For example, if you include a file once
with the statement #inc 1 ude <rnyres. h> and later
with the statement #include <MyRes. h>, Symantec
Rez will include it twice.

• It doesn't distinguish between files included with < ... >
and " ... " . For example, suppose you have two header
files named xyz . h; one is in the system tree and the
other is in the project tree. If you include one with
#include <xyz .h> and another with #include
"xyz . h", Symantec Rez will not include the second file.

• It ignores characters after the first 32. If you include two
files with names that start with the same 32 characters,
Symantec Rez will not include the second file.

If-then-else processing
These directives provide conditional processing.

#if expression
[# e 1 if expression
[#else]
#endif

Bcpression is defined in the section "Expressions" later in this
chapter. When used with the #if and #elif directives, expression
may also include this expression:

defined identifier

or

defined '(' identifier ') '

178 Symantec C++ Compiler Guide

Resource Description Syntax +

The following may also be used in place of #if:

#ifdef macro
#ifndef macro

For example,

#define Thai
Resource 'STR ' (199)
#ifdef English

"Hello"
#elif defined (French)

"Bonjour"
#elif defined (Thai)

"Sawati"
#elif defined (Japanese)

"Konnichiwa" ·
#endif
} i

Resource Description Syntax
This section describes the details of the resource description syntax.

Numbers and literals
All arithmetic is performed as 32-bit signed arithmetic. The basic
constants are:

• Decimal (nnn ...): Signed decimal constant between
4,294,967,295 and -2,147,483,648.

• Hex (OXbhh ... or $hbb .. .): Signed hexadecimal constant
between OX7FFFFFFF and OX80000000.

• Octal (Oooo .. .): Signed octal constant between
017777777777 and 020000000000.

• Binary (OBbbb .. .): Signed binary constant between
OBlllllllllllllllllllllllllllllllland
OBlOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.

• Literal (' aaaa'): A literal may contain one to four
characters. Characters are printable ASCII characters or
escape characters. If there are less than four characters in
the literal, then the characters to the left (high bits) are
assumed to be null characters (' \ 0 0 0 ') . Characters that
are not in the printable character set (and are not the

Symantec C++ Compiler Guide 179

8 • Using Symantec Rez

characters \ ' and \ \, which have special meanings) can
be escaped according to the character escape rules. (See
the section "Strings" later in this chapter.)

Literals and numbers are treated in the same way by the resource
compiler. A literal is a value within single quotation marks. For
instance, 'A' is a number with the value 65; on the other hand, "A"

is the character A expressed as a string. Both are represented in
memory by the bitstring 01000001. (Note, however, that "A" is not
a valid number and ' A' is not a valid string.) The following numeric
expressions are all equivalent:

'B'
66
'A'+l

Literals are padded with nulls on the left side so that the literal
'ABC ' is stored as shown in Figure 8-2.

"ABC" B c

Figure 8-2 Padding of literals

Expressions
An expression may consist of simply a number or literal. Expressions
may also include numeric variables, labels, and system functions.

Table 8-12 lists the operators in order of precedence with highest
precedence first. Groupings indicate equal precedence. Evaluation is
always left to right when the priority is the same. Variables are
defined following the table.

Operator
(expr)

-expr

-expr
!expr

Meaning
Use to force precedence in expressions

Arithmetic (two's complement) negation of
expr
Bitwise (one's complement) negation of expr
Logical negation of expr

exprl * expr2 Multiplication

Table 8-12 Operator precedence

180 Symantec C++ Compiler Guide

Operator
exprl I expr2
exprl % expr2

exprl + expr2
exprl - expr2
exprl << expr2
exprl >> expr2

exprl > expr2
exprl >= expr2
exprl < expr2
exprl <= expr2

exprl == expr2
exprl ! = expr2

exprl & expr2

exprl " expr2

exprl I expr2

exprl && expr2

Meaning
Division

Resource Description Syntax +

Remainder from dividing expr 1 by expr2

Addition
Subtraction
Shift left-shift exprl left by expr2 bits
Shift right-shift exprl right by expr2 bits

Greater than
Greater than or equal to
Less than
Less than or equal to

Equal
Not equal

Bitwise AND

Bitwise XOR

Bitwise OR

Logical AND

exprl I I expr2 Logical OR

Table 8-12 Operator precedence (Continued)

The logical operators l, >, >=, <, <=, ==, l =, &&, and I I evaluate to
1 (true) or 0 (false).

Variables and functions
Some resource compiler variables contain commonly used values.
All Symantec Rez variables start with $ $ followed by an
alphanumeric identifier.

The following variables and functions have string values (typical
values are given in parentheses):

$$Date
Current date. Useful for putting timestamps into the resource file.
The format is generated through the ROM call IUDateString ().
("Thursday, May 20, 1987 ")

Symantec C++ Compiler Guide 181

8 • Using Symantec Rez

$$Format ("formatString", arguments)
Works just like the #printf directive except that $$format ()
returns a string rather than printing to standard output.

$$Name
Name of resource from the current resource. The current resource is
the resource being generated in a resource statement, or being
included from an include statement.

For example, to include all ' DRVR ' resources from one file and
keep the same information, but also set the SYSHEAP attribute:

INCLUDE "file" 'DRVR' (O: 40) AS
'DRVR' ($$ID, $$Name, $$Attributes I 64);

The $$Type, $$ID, $$Name, and $$Attributes variables are
undefined outside of a change, delete, include, or resource
statement.

$$Time
Current time. Useful for time-stamping the resource file. The format
is generated through the ROM call IUTimeString ().
("7:50:54 AM")

$$Version
Version number of Symantec Rez. (" V3 . O ")

These variables and functions have numeric values:

$$Attributes
Attributes of resource from the current resource. See the $$Name
string variable.

$$Bi tField (label, startingPosition, numberOfBits)
Returns the numberOfBits (maximum of 32) bitstring found
startingPosition bits from label.

$$Byte (label)
Returns the byte found at label.

$$Day
Current day. Range 1-31.

$$Hour
Current hour. Range 0-23.

182 Symantec C++ Compiler Guide

Resource Description Syntax +

$$ID
ID of resource from the current resource. See the $$Name string
variable.

$$Long (label)
Returns the longword found at label.

$$Minute
Current minute. Range 0-59.

$$Month
Current month. Range ~-12.

$$PackedSize (Start, RowBytes, RowCount)
Given an offset (Start) into the current resource and two integers,
RowBytes and RowCount, this function calls the Toolbox routine
UnpackBits() RowCounttimes. $$PackedSize() returns the
unpacked size of the data found at start. Use this function only for
decompiling resource files. An example of this function is found in
Pict. r.

$$ResourceSize
Current size of resource in bytes. When decompiling,
$$Resources i ze is the actual size of the resource being
decompiled. When compiling, $$ResourceSize returns the
number of bytes that have been compiled so far for the current
resource. (See the 'KCHR' resource in SysTypes. r for an
example.)

$$Second
Current second. Range 0-59.

$$Type
Type of resource from the current resource. See the $$Name string
variable.

$$Weekday
Current day of the week. Range 1-7 (that is, Sunday-Saturday).

$$Word (label)
Returns the word found at label.

$$Year
Current year.

Symantec C++ Compiler Guide 7 83

8 • Using Symantec Rez

Strings
There are two basic types of strings:

• Text string (" a ... "): The string can contain any printable
character except ' " 'and '\ '. These and other characters
can be created through escape sequences. (See the
section "Escape characters" on page 185.) The string "" is
a valid string of length 0.

• Hex string($" hh ... "): Spaces and tabs inside a
hexadecimal string are ignored. There must be an even
number of hexadecimal digits. The string $ " " is a valid
hexadecimal string of length 0.

Any two strings (hexadecimal or text) will be concatenated if they
are placed next to each other with only white space in between. (In
this case, returns and comments are considered white space.)

Figure 8-3 shows a Pascal string declared as

pstring [10];

whose data definition is

"Hello".

Figure 8-3 Internal representation of a Pascal string

In the input file, string data is surrounded by double quotation marks
(").You can continue a string on the next line. A separating token
(for example, a comma or brace) signifies the end of the string data.
A side effect of string continuation is that a sequence of two
quotation marks("") is simply ignored. For example,

"Hello ""out "
"there."

is the same string as:

"Hello out there.";

184 Symantec C++ Compiler Guide

Resource Description Syntax +

To place a quotation mark character within a string, precede the
quotation mark with a backslash like this:

"Hello \"out\" there."

Escape characters
The backslash character(\) is provided as an escape character to
allow you to insert nonprintable characters in a string. For example,
to include a newline character in a string, use the escape sequence
\n.

Table 8-13 shows the valid escape sequences.

Escape Hex
Name Sequence Value
Tab \t $09
Backspace \b $08
Return \r $0A
Newline \n $OD
Form feed \f $0C
Vertical tab \v $OB
Rubout \? $7F
Backslash \\ $SC
Single quotation mark \' $3A
Double quotation mark \" $22

Table 8-13 Escape sequences

You can also use octal, hexadecimal, decimal, and binary escape
sequences to specify characters that do not have predefined escape
equivalents. The forms are given in Table 8-14.

Base
2
8
10
16
16

Form (# digits)
\ OBbbbbbbbb (8)

\OOO (3)
\0Dddd(3)
\OXhh (2)
\$hh (2)

Example
\OB01000001
\101
\00065
\OX41
\$41

Table 8-14 Numeric escape sequences

Symantec C++ Compiler Guide 185

8 • Using Symantec Rez

Here are some examples:

Note

\077
\OxFF
\$Fl\$F2\$F3
\Od099

/* 3 octal digits */
/* 'Ox' + 2 hex digits */
/* '$' + 2 hex digits */
/* 'Od' + 3 decimal digits */

An octal escape code consists of exactly three digits.
For instance, to place an octal escape code with a
value of 7 in the middle of an alphabetic string,
write AB\007CD, not AB\ 7CD.

Setting Symantec Rez Options
J

To set options for Symantec Rez, choose Symantec Rez from the
scrolling list that appears when you choose Options from the
Project menu.

Project Options for "New Project"

Options: I New Project ... I
.-------~· ·Symantec Rez Compiler Options

' r.1.1·.: ! R;o~r~;;lignm•nt i:gj Redeclared types are OK
Linker

ti! 0 Word Language Support: 1.----E-n_g_li-sh--..,--.I

111111
O Long Word ~

Ex1•nsions .I.Ji!

PowerPC C++

.. L ~ li:::~~- .. -··:·:_~_::·_·_:·;~~;:~~.;~~~------r~~~~--f"
Figure 8-4 The Symantec Rez options dialog

186 Symantec C++ Compiler Guide

Setting Symantec Rez Options +

Resource alignment
This option lets you choose how your resources are aligned: along
byte, word, or long word boundaries. The default is byte.

Redeclared types are ok
This option lets you choose if Symantec Rez continues compiling
your file if you declare a resource type more than once in a resource
file. If it's selected, Symantec Rez prints a warning and continues
compiling. Otherwise, Symantec Rez prints an error message and
stops compiling. The option is selected by default.

Prefix String
The Symantec Rez Prefix String lets you include some text in all the
Symantec Rez source files in your project. The effect is the same as if
you put the string at the beginning of all your resource description
files.

Note
Previous versions of THINK Rez defined the macros
true, false, Rez, DeRez, and THINK_Rez in the
prefix. These are defined internally in Symantec
Rez.

If you need to define a macro in all your files, define it here. For
example, you may have some resources you use for debugging that
are compiled only if the macro DEBUG is defined. To include that
code, include the following line:

#define DEBUG

When you no longer need to include the debugging code, just delete
that line from this page. You don't need to edit every . r file in your
project.

Note
When you change the Symantec Rez prefix string,
the Symantec Project Manager recompiles all the
Symantec Rez files in your project.

Language Support
Use this option to accept foreign language double-byte characters in
string and character literals, as well as comments. This option causes
the compiler to produce localized error messages. Currently, any

Symantec C++ Compiler Guide 187

8 • Using Symantec Rez

supported language may be used for input; however, Japanese is the
only supported foreign language for error messages.

Differences from MPW Rez
Symantec Rez is based on Rez, Apple's resource utility that's
available with Apple's Macintosh Programmer's Workshop (MPW).
Symantec Rez supports most of the Rez features described in the
MPW 3.2 documentation.

The most significant difference between MPW Rez and Symantec Rez
is that some of MPW Rez's features are handled by the Symantec
Project Manager and not by Symantec Rez. Symantec Rez only
compiles resource description files; MPW Rez also modifies resource
files and copies them into your application. The Symantec Project
Manager handles these tasks. To copy a resource file into your
application, simply include it in your project and the Symantec
Project Manager copies its contents into your application
automatically. To modify a resource file, double-dick its name in
your project window and the Symantec Project Manager launches
your resource editor (such as ResEdit or Resourcerer) and opens the
file.

The following are not supported in Symantec Rez:

• The change and delete statements
• The $$shell function

The following is a feature in Symantec Rez that is not in MPW Rez.

In Symantec Rez, the #include statement uses the same
rules for finding header files that Symantec C and Symantec
C++ use. For more information, see the section "Header file
processing" earlier in this chapter.

188 Symantec C++ Compiler Guide

Language Reference•
A

Symantec C is a conforming implementation of the C programming
language as defined in the ANSI C standard, ANSI/ISO 9899- 1990,
Information Technology-Programming Language C Symantec C++
implements the C++ language as defined in Tbe Annotated C++
Reference Manual, currently under review by working group X3Jl6
of the ANSI standards committee.

This appendix describes how:

• Symantec C implements those aspects of the C language
that the ANSI C standard denotes as implementation
defined

• Symantec C++ implements those aspects of the language
denoted as implementation-defined in Tbe Annotated C++
Reference Manual.

This appendix is divided into two parts: Symantec C Language
Reference and Symantec C++ Language Reference. In the C
Language Reference, section numbers correspond to the sections in
the ANSI standard. In the C++ Language Reference, section numbers
correspond to the sections in Tbe Annotated C++ Reference Manual
(ARM).

Contents
Part I - Symantec C Language Reference 193

Introduction . . 193
Implementation-defined behavior 193
Undefined behavior 193
Setting ANSI conformance 193
About the standard libraries 194

C Language Reference 194
2.1.1.3 Diagnostics . 194

Symantec C++ Compiler Guide 189

A • Language Reference

2.1.2.2.1 Program startup
2.1.2.3 Program execution
2.2.1 Character sets
2.2.1.2 Multibyte characters
2.2.4.2.1 Sizes of integral types <limits.h> .
3.1.2 Identifiers
3.1.2.2 Linkages of identifiers
3.1.2.5 Types
3.1.3.4 Character constants .
3.1.7 Header names .
3.2.1.2 Signed and unsigned integers
3.2.1.3 Floating and integral
3.2.1.4 Floating types
3.3 Expressions
3.3.2.3 Structure and union members
3.3.3.4 The sizeof operator .
3.3.4 Cast operators . .
3.3.5 Multiplicative operators
3.3.6 Additive operators .
3.3.7 Bitwise shift operators
3.3.8 Relational operators .
3.5.1 Storage-class specifiers
3.5.2.1 Structure and union specifiers
3.5.2.2 Enumeration specifiers
3.5.3 Type qualifiers .
3.5.4 Declarators . .
3.6.4.2 The switch statement
3.8.1 Conditional inclusion .
3.8.2 Source file inclusion
3.8.3 Macro replacement
3.8.6 Pragma directives .
3.8.8 Predefined macro names
4.1.5 Common definitions <stddef.h>
4.2 Diagnostics <assert.h> .
4.3.1 Character-testing functions .
4.5.1 Treatment of error conditions
4.5.6.4 The fmod function .
4.7.1.1 The signal function .
4.9.2 Streams
4.9.3 Files
4.9.4.1 The remove function
4.9.4.2 The rename function
4.9.5.2 The fflush function

190 Symantec C++ Compiler Guide

. 194

. 194

. 194

. 194

. 194
195
195
195
196
196
197
197

. 197

. 197

. 197

. 197

. 197

. 198

. 198
198
198
198
198
199
199

. 199

. 199

. 200

. 200

. 200

. 200

. 200

. 201

. 201

. 201

. 201

. 201

. 201

. 202

. 202

. 202

. 202

. 202

•
4.9.6.1 The fprintf function 202
4.9.6.2 The fscanf function 203
4.9.9.1 The fgetpos function 203
4.9.9.4 The ftell function . 203
4.9.10.4 The perror function 203
4.10.3 Memory management functions 203
4.10.4.1 The abort function . 203
4.10.4.3 The exit function . 203
4.10.4.4 The getenv function 203
4.10.4.5 The system function 203
4.11.6.2 The strerror function 203
4.12.1 Components of time 204
4.12.2.1 The clock function 204

Symantec C Extensions . 204
pascal keyword . 204
C++ style comments 204
Identifiers after #else and #endif 204
Function prototypes 204
Dimensionless arrays allowed 204
vcid* W4
Predefined symbols . 205

Part II - Symantec C++ Language Reference 206
Introduction . 206

Lexical Conventions . 206
§2.3 Identifiers 206
§2.5.2 Character Constants 207
§2.5.4 String Literals . 207

Basic Concepts . 207
§3.4 Start and Termination 207
§3.6.1 Fundamental Types 208

Standard Conversions. 213
§4.1 Integral Promotions 213
§4.2 Integral Conversions 213
§4.3 Float and Double . 213
§4.4 Floating and Integral 213
§5.0 Expressions . 213
§5.2.4 Class Member Access 214
§5.3.2 Sizeof . 214
§5.3.3 New . 214
§5.4 Explicit Type Conversion 215
§5.6 Multiplicative Operators . 215
§5.7 Additive Operators 215

Symantec C++ Compiler Guide 191

A • Language Reference

§5.8 Shift Operators

Declarations
§7.1.6 Type Specifiers
§7.2 Enumeration Declarations
§7.3 Asm Declarations
§7.4 Linkage Specifications .

Classes
§9.2 Class Members .
§9.6 Bit-Fields . . .

Special Member Functions
§12.2 Temporary Objects

Templates
§14.1 Templates
§14.4 Function Templates
§14.7 Friends

Exceptions
§15 Exception Handling .

Preprocessing
§16.4 File Inclusion . .
§16.5 Conditional Compilation
§16.8 Pragmas
§16.10 Predefined Names . .

192 Symantec C++ Compiler Guide

. 216

. 216

. 216

. 216

. 217

. 217

. 217

. 217

. 217

. 218

. 218

. 218

. 218

. 221

. 224

. 225

. 225

. 225

. 225

. 225

. 226

. 226

C Language Reference +

Part I - Symantec C Language Reference
Introduction
This section describes how Symantec C implements the behavior that
the ANSI Standard identifies as implementation-defined. It also
documents consistent behavior in Symantec C that the standard
identifies as "undefined behavior." These behaviors represent
conforming extensions.

Note
This section is not a substitute for the ANSI
standard.

Implementation-defined behavior
The ANSI Standard defines implementation-defined behavior as:

" ... behavior, for a correct program construct and correct data,
that depends on the characteristics of the implementation and
that each implementation shall document." ·

Implementation-defined behavior covers such things as the way
error messages are reported, the number of significant characters in
identifiers, the format for integers and floating-point numbers, and so
on.

Undefined behavior
The ANSI Standard defines undefined behavior as:

" ... behavior, upon use of a nonportable or erroneous program
construct, of erroneous data, or of indeterminately valued
objects, for which the standard imposes no requirements."

In most cases, undefined behavior is ignored, generates a diagnosed
error, or results in a run-time error. This section uses the notation
"(Conforming Extension)" to mark the instances in which Symantec
C behaves in a predictable manner for cases that the standard
specifies as undefined. If you are writing portable C code, your
program should not rely on behaviors described in Symantec C as
conforming extensions.

Setting ANSI conformance
The default options settings for Symantec C are not ANSI
conformant. To make Symantec C an ANSI-conformant compiler,
open the PowerPC C options dialog, choose the Language Settings

Symantec C++ Compiler Guide 193

A Language Reference •

The section numbers in
C Language Reference
correspond to the sections
in the ANSI standard.

page, and click the ANSI Settings button. Any options that affect
ANSI conformance appear on that page.

About the standard libraries
For more information about implementation-defined behavior or
Symantec C extensions to the standard libraries described in section
4.0 of the standard, refer to the online Standard Libraries Reference
that came with your package.

Note
The descriptions of standard libraries, as presented
in this appendix, refer to the Symantec libraries, not
the Apple libraries.

C Language Reference
2.1.1.3 Diagnostics
Errors that occur during translation are reported in the Compile
Errors window. The offending line is highlighted in a text editing
window. Link errors are reported in a Link Errors window.

2 .1.2.2.1 Program startup
If the ccommand function is not used, argc is set to 1, and
argv [0] is the empty string. If the ccommand function is used,
argc and argv are set according to the values provided in the
ccommand dialog box. See the description of ccommand in the
online Standard Libraries Reference for more information.

2.1.2.3 Program execution
In programs that use the console package, the Console window is an
interactive device. In Macintosh programs (programs that initialize
the Macintosh Toolbox), the interactive device is output only.

2.2.1 Character sets
The source and execution characters include the full Macintosh
character set.

2.2.1.2 Multibyte characters
There are no shift states for multibyte characters. Multibyte
characters are 1 byte long.

2.2.4.2.1 Sizes of integral types <limits.h>
The number of bits in a character in the execution character set is 8.

194 Symantec C++ Compiler Guide

exponent

C Language Reference +

3.1.2 Identifiers
All characters in an identifier are significant. The number of
significant characters in an identifier with external linkage is 1024. In
addition, case is significant in identifiers with external linkage.

3.1.2.2 Linkages of identifiers
Identifiers without initializers may be declared later with internal
linkage. Any other combination of internal and external linkage is a
compile-time diagnostic.

extern int foo; /* this foo has */
/* external linkage */

static int foo = 63; /* this foo has */
/* internal linkage *I

3.1.2.5 Types
Integers are represented as two's complement binary numbers. The
sizes of integer types are: ·

Type Bytes
char 1
short 2
long 4
int 4

The limits for the integer types are given in the header file
<limits .h>.

Symantec C uses two different representations for floating-point
values. The floating-point representations are:

• 4-byte IEEE single precision
• 8-byte IEEE double precision

62 51 0
IL_ .. _ _J_I ______ m_a_n_ti_ss_a ________ ___.l 8-byte IEEE

30 22 0
exponent

\ L -"'~l __ m_a_nt_is_s_a __ ___.l 4-byte IEEE

Figure A-1 Floating-point formats

These formats are documented in detail in Inside Macintosh
PowerPC Numerics Manual (Addison-Wesley) by Apple Computer.

Symantec C++ Compiler Guide 195

A • Language Reference

Table A-1 shows how floating-point types map to floating-point
formats.

Type
float

long double

double

Format
4-byte IEEE

8-byte IEEE

8-byte IEEE

Table A-1 The floating-point format used for each type

3.1.3.4 Character constants
If a string literal begins with the sequence \p or \ P, it is treated as a
Pascal string. The \p or \Pis replaced with the length of the string.
The type of Pascal strings is unsigned char [J, or optionally,
char [J . Pascal strings are not null-terminated.

Characters in the source character set are mapped one-to-one to the
execution character set. Multibyte characters are 1 byte long and
map one-to-one .with single-byte characters.

The basic execution character set consists of all 256 Macintosh
characters. There are no integer character constants or escape
sequences that cannot be represented in the basic execution
character set.

An integer constant may contain one, two, or four characters from
the execution character set. All multi-character constants are of type
int.

The backslash character(\) is ignored for all unspecified escape
sequences. (Conforming Extension)

3.1.7 Header names
In header name preprocessing, header names are treated as
character strings with different delimiters. The characters ' , \, 11 , and
I * are allowed between the < and > delimiters, and the characters
', \,and /* are allowed between the 11 delimiters. (Conforming
Extension)

196 Symantec C++ Compiler Guide

C Language Reference +

3.2.1.2 Signed and unsigned integers
If an integer is converted to a shorter signed integer, the low-order
bits are retained and the high-order bit of the shorter integer is
treated as the sign bit.

If an unsigned integer is converted to a signed integer of equal
length, and the value cannot be represented in the signed integer,
there is no change in representation, but the high bit becomes the
sign bit.

3.2.1.3 Floating and integral
When a value of an integral type is converted to a floating type, if
the value being converted is in the range of values that cannot be
represented exactly, the result is rounded in the current rounding
mode. The default rounding mode is round-to-nearest, and may be
changed by the program.

3.2.1.4 Floating types
If a floating value being converted is in the range of values that can
be represented, but cannot be represented exactly, the result is
rounded in the current rounding mode. The default rounding mode
is round-to-nearest, and may be changed by the program.

3.3 Expressions
Bitwise operations on signed integers are carried out as if they were
unsigned.

3.3.2.3 Structure and union members
If a member of a union object is accessed using a member of a
different type, the data stored at that location is treated as if it were a
member of the accessing type.

3.3.3.4 The sizeof operator
The type of the sizeof operator is size_t, which is defined as
unsigned int.

3.3.4 Cast operators
A pointer to a function may be converted to a pointer to an object
without losing the value of the pointer. (Conforming Extension)

When converting from a pointer to an integer, if the integer is 4
bytes, then all the bits are used without a change of representation;
the 4-byte quantity is interpreted as an integer whose type (for

Symantec C++ Compiler Guide 197

A • Language Reference

example, signed or unsigned) is given by the cast expression. If the
integer is smaller than a pointer, then the low-order bytes are used.

3.3.5 Multiplicative operators
The sign of the remainder is the same as the sign of the dividend.
Table A-2 shows the results of the division and modulus operators.

If a and b are ... Then alb and a%b are ...
a= b= alb= a%b=

5 3 1 2
-5 3 -1 -2

5 -3 -1 2
-5 -3 1 -2

Table A-2 Results of division and modulus operators

3.3.6 Additive operators
Adding to or subtracting from a pointer that does not behave like a
pointer to an element of an array is allowed. Memory is treated as a
linear address space. Pointers that do not behave as if they point to
the same array object may be subtracted. (Conforming Extension)

The type of integer required to hold the difference between two
pointers is ptrdiff_t, which is defined as int.

3.3.7 Bitwise shift operators
A right shift of a negative-valued signed integral type copies the sign
bit in.

3.3.8 Relational operators
Pointers may be compared using a relational operator even if they
do not pofrit to the same aggregate or union. (Conforming
Extension)

3.5.1 Storage-class specifiers
The order in which registers are allocated is unspecified.

Structs and unions are never placed in a register, even if they would
fit into one.

3.5.2.1 Structure and union specifiers
A bit-field may be declared with any integral type. The size of the
declared type determines the "word" size for that bit-field, so a
"word" may be 8, 16, or 32 bits wide.

198 Symantec C++ Compiler Guide

C Language Reference +

A sequence of bit-fields with the same word size are packed into a
word. No bit-field may be wider than its word size. If a bit-field
would straddle a word boundary, it is placed in the next word.

Bit-fields are assigned beginning with the high-order bit of a word.
An unnamed field with a width of 0 "closes out" the current word. A
bit-field with a different word size from the preceding bit-field
causes this closing out to happen automatically, just as a non-bit
field member does. (Conforming Extension)

A plain int bit-field is treated as a signed int.

All structures and unions are padded if necessary to be even-sized.
Padding is inserted after a member only to meet the alignment
requirements of the next member or at the end of the structure or
union. Only odd-sized data items (for example, char, odd-sized
array of char, char-size enum types, and so on) do not need to be
aligned.

3.5.2.2 Enumeration specifiers
Enumerated types are of type int if the enums are always ints
option is on. Otherwise, the type of an enumerated type is the first
one in Table A-3 that is sufficient to hold all the values:

char
short
int

Table A-3 The type used for an enumerated type

3.5.3 Type qualifiers
In a compound assignment to a volatile-qualified type, Symantec C
may generate a fetch and a store. Otherwise, each use of the volatile
qualified type results in a fetch or a store. If the volatile object is
larger than 4 bytes, the compiler may need to generate multiple
fetches or multiple stores.

3.5.4 IJeclarators
There is no limit to the number of declarators in an identifier.

3.6.4.2 The switch statement
The maximum number of case values in switch statements is
limited only by available memory.

Symantec C++ Compiler Guide 199

A • Language Reference

3.8.1 Conditional inclusion
The token defined has special meaning only if it appears literally
with an #if or #elif directive. (Conforming Extension)

The value of a single-character constant in a constant expression that
controls conditional inclusion matches the value of the same
character constant in the execution character set. Such character
constants can have a negative value.

3.8.2 Source file inclusion
The mechanism that Symantec C uses to locate header files is
described in "How Symantec Compilers Look for Header Files" in
Chapter 4.

The name in the #include directive is interpreted as a Macintosh
file name. Case is not significant, and colons are treated as volume
and directory separators.

3.8.3 Macro replacement
A macro argument that consists of no preprocessing tokens is treated
as no tokens. (Conforming Extension)

3.8.6 Pragma directives
See "#pragma Directives" in Chapter 4 for a complete list and
description of all the #pragma directives.

3.8.8 Predefined macro names
The following predefined macro names cannot be undefined or
redefined:_LINE_,_FILE_,_DATE_,_TIME_,and
STDC. (Conforming Extension)

The identifier defined is interpreted specially only in the context of
#if or #elif directives. It may not be undefined or redefined.
(Conforming Extension)

DATE and _TIME_ are always available.

200 Symantec C++ Compiler Guide

C Language Reference +

4.1.5 Common definitions <stddef .h>
The following types are defined in <stddef. h>

Type
NULL
size_t
ptrdiff_t

Definition
((void *) 0)
unsigned int
int

Table A-4 Common types defined in stddef.h

4.2 Diagnostics <assert.h>
The diagnostic printed by assert is of the form "Assertion failed:
expression, file .:cyz, line nnn". The message appears on stderr,
and, if possible, is followed by the message "press return to exit".

4.3.1 Character-testing functions
The character-testing functions operate on the ranges in Table A-5.

Function
isalnum ()
isalpha ()
iscntrl ()
is lower ()
isprint ()
isupper ()

Range
a-z,A-Z, 0-9
a-z,A-Z
OxOO-OxlF, Ox7F
a-z
Ox20-0x7E
A-Z

Table A-5 Character-testing functions

4.5.1 Treatment of error conditions
The values returned by mathematics functions on domain errors are
documented for each function in the online Standard Libraries
Reference.

The mathematics functions do not set errno to ERANGE on
underflow range errors.

4.5.6.4 The fmod function
If the second argument to fmod is 0, fmod returns 0 and sets
errno to EDOM.

4.7 .1.1 The signal function
The set of signals, their semantics, and the default handling of
signals are described in the documentation of signal in the online
Standard Libraries Reference.

Symantec C++ Compiler Guide 201

A • Language Reference

No implementation-defined blocking of signals is performed. The
default handler is reset if a SIGILL signal is received.

4.9.2 Streams
The last line of a text stream does not require a terminating newline
character. Trailing blanks are not stripped off when writing to a text
stream. No null characters are appended to a binary stream.

4.9.3 Files
The file position indicator of an append mode stream initially points
to the end of the file. Zero-length files actually exist. A write on a
text stream does not truncate beyond that point. Writing in place is
allowed.

Symantec C implements buffered and unbuffered 1/0. Line-buffered
1/0 is the same as fully buffered 1/0.

The rules for composing valid file names are identical to Macintosh
file-naming rules. In general, file names may have up to 31
characters, and the : character separates directory names. See the
online Standard Libraries Reference for more information.

The same file can be opened more than once if the Macintosh file
system allows it.

4.9.4.1 The remove function
It is an error to remove an open file.

4.9.4.2 The rename function
It is an error to use rename to give a file a name that already exists.

4.9.5.2 The fflush function
If you use ff 1 ush on a stream that is being used for input or
update, and the most recent operation was input, the buffer is
cleared and the next read will go to disk. (Conforming Extension)

The ff 1 ush function always returns the buffer to a neutral state, so
this function can be used to switch between input and output,
regardless of the last 1/0 operation. (Conforming Extension)

4.9.6.1 The fprintf function
If the conversion specification for the fprint f function contains a
flag and the conversion specifier is s, the matching argument is
treated as a Pascal string. (Conforming Extension)

202 Symantec C++ Compiler Guide

C Language Reference +

The output for the %p conversion in fprintf is the same as
% . 8 lX, eight digit, hexadecimal integer that uses capital letters and
leading zeros.

4.9.6.2 The fscanf function
The input format for the %p conversion in fscanf is the same as
% lx, a hexadecimal integer.

A dash (-) character that is neither the first nor the last character in
the scanlist for % [conversion is treated as a range specifier. For
example, % [0 - 9] means the range of characters from ' 0 ' to ' 9 '
inclusive.

4.9.9.1 The fgetpos function
If fgetpos fails, errno is set to ENODEV.

4.9.9.4 The ftell function
If ft ell fails, errno is set to ENODEV.

4.9.10.4 The perror function
The function perror prints the supplied error string, the string
"Error: ", and the value of errno.

4.10.3 Memory management functions
If the number of bytes of memory requested from calloc,
malloc, or realloc is 0, these functions return a pointer to a
unique zero-size block of memory.

4.10.4.1 The abort function
The abort function closes all open and temporary files.

4.10.4.3 The exit function
The argument to the exit function is always ignored.

4.10.4.4 The getenv function
The getenv function always returns NULL.

4.10.4.5 The system function
The system function always ignores its argument and always
returns 0 (zero).

4.11.6.2 The strerror function
The string that st rerror returns is "Error: " and the value of its
argument.

Symantec C++ Compiler Guide 203

A • Language Reference

4.12.1 Components of time
The time functions are not aware of daylight savings time or the
local time zone.

4.12.2.1 The dock function
The clock function returns the number of ticks (60ths of a second)
since the Macintosh was turned on.

Symantec C Extensions
This section describes the extensions to ANSI C that are enabled
when you turn off ANSI conformance.

pascal keyword
The identifier pascal is reserved to define functions that follow
Pascal calling conventions. For examples, see "Calling Toolbox
Routines" in Chapter 3.

C++ style comments
Two slashes(//) introduce a comment. The comment ends at the
newline character.

Identifiers after #else and #endif
An identifier after an #endif or #else preprocessing directive is
ignored.

#ifdef DEBUG
printf ("oops! \n");

#endif DEBUG

Function prototypes
The parameter list (...) is allowed in a function prototype.

Dimensionless arrays allowed
Dimensionless arrays are allowed as the last member of struct
definitions. The member does not contribute to the size of the
struct. For example:

struct {

void*

short count;
char data [l ;

CountData; /* sizeof(CountData) is 2 */

The type void * is compatible with function pointers and data
pointers.

204 Symantec C++ Compiler Guide

C Language Reference +

Predefined symbols
The preprocessor symbol SYMANTEC_C is defined as the hex
version number of Symantec C++. The current version is Ox800. The
preprocessor symbol THINK_C is defined as 6 in THINK C 6.0 and
6.5, and as 5 in THINK C 5.0. It is defined as 1 in THINK C 4.0. It is
not defined at all for prior versions.

Symantec C++ Compiler Guide 205

A Language Reference •

The numbers in this
section correspond to the
sections in the Annotated
C++ Reference Manual
(ARM).

Part 11 - Symantec C++ Language Reference
Introduction
This section describes how Symantec C++ implements those aspects
of the C++ language that are denoted as implementation-defined in
Tbe Annotated C++ Reference Manual.

This chapter makes use of two abbreviations: ARM and Gray. ARM
refers to Tbe Annotated C++ Reference Manual, by Margaret Ellis and
Bjarne Stroustrup, published by Addison-Wesley, Reading,
Massachusetts, 1990. Gray refers to Tbe C++ Programming
Language, Second Edition by Bjarne Stroustrup, published by
Addison-Wesley, Reading, Massachusetts, 1991.

This section is organized by the numbered sections of the ARM, with
individual subsections marked with applicable references in both the
ARM and Gray books. The ANSI committee is using the ARM as the
basis for its definition of the C++ language; this section, however,
includes references to both the ARM and Gray books.

Page numbers refer to the place in the specified reference where the
implementation-dependent behavior is noted, not necessarily to the
beginning of the section.

Note
This chapter identifies the differences between
Symantec C++ and a standard C++. It does not
define C++ language, nor does it explain C++ to a
new user. See the ARM for a definition of C++
language, and the Gray book for C++ instruction.

When the ANSI C+:i- standard becomes publicly
available, we will compare our Symantec C++
implementation to the ANSI standard.

Lexical Conventions
§2.3 Identifiers
[ARM p. 6, Gray p. 478]
Identifiers in Symantec C++ have a maximum size of 1024 characters.
They may have upper- and lowercase letters, numbers, or
underscores U. The underscore counts as a letter. All characters are
significant. Identifiers are case-sensitive and must begin with a letter.

206 Symantec C++ Compiler Guide

§2.5.2 Character Constants
[ARMp. JO, Gray pp. 480-1]

C++ Language Reference +

The mapping of characters in the source character set to the
execution character set is one-to-one. The basic execution character
set consists of all 256 Macintosh characters. You can represent all
integer character constants or escape sequences with the basic
execution character set.

Multi-character constants are type int and can contain between one
and four characters from the execution character set. If the constant
has more than four characters, then the compiler generates an error.
If a character string of three or four characters is assigned to a
short, then the last two characters are used in the assignment. For
example, the following statement assigns CD (Ox4344) to foo.

short foo = 'ABCD';

If the character following the backslash character is not one of the
defined escape sequences, then the compiler generates an undefined
escape sequence error.

§2.5.4 String Literals
[ARM pp. 10-11, Gray p. 482]
If a string literal begins with the sequence \p or \ P, the compiler
treats it as a Pascal string. The compiler replaces the \p or \ P with
the length of the string. Null (' \ 0 ') is not appended to Pascal strings.
Pascal strings, therefore, are restricted to 255 characters. Longer
strings are truncated.

You can modify a string literal, but try to avoid doing so. If you
modify a string literal, you may overwrite other global values.

The type of wchar_t is defined as a short int in stddef. h.

Basic Concepts
§3.4 Start and Termination
[ARM p. 19, Gray p. 485]
Every C++ program must contain a function called main ().Its
default type is int, and it has external linkage. You can take the
address of main () .

Symantec C++ Compiler Guide 207

A • Language Reference

§3.6.1 Fundamental Types
[ARMp. 22 (cf p. 7; 3.2.lc), Gray pp. 486-7]
The compiler allocates types on word boundaries. Within structures,
you can set alignment on byte, word (2 bytes), or long word
(4 bytes, the default) boundaries.

The compiler treats a char object that is not declared either signed
or unsigned as a signed value.

Integers are represented as two's complement binary numbers. Table
A-6 lists the sizes of the integer types.

Type Bytes
char 1
short 2
int 4
long 4

Table A-6 The size of integer types

The header 1 imi ts . h specifies the largest and smallest values of
the integral types. Table A-7 defines the limits of the integral types.

Variable
CHAR_BIT

SCHAR_MAX

SCHAR_MIN

UC HAR_ MAX

CHAR_MAX

CHAR_MIN

Value
8

+127

-128

255

UCHAR_MAX
SCHAR_MAX

0
SCHAR_MIN

Table A-7 Limits of integral types

Definition
Maximum bits in a byte

Maximum value of signed
char

Minimum value of signed
char

Maximum value of unsigned
char

Maximum value of char

Minimum value of char

208 Symantec C++ Compiler Guide

C++ Language Reference •
Variable Value Definition
SHRT_MAX +32767 Maximum value of short

SHRT_MIN -32768 Minimum value of short

USHRT_MAX 65535 Maximum value of unsigned
-short

LONG_MAX +2147483647 Maximum value of long

LONG_MIN -2147483648 Minimum value of long

ULONG_MAX 4294967295 Maximum value of unsigned
long

INT_MAX LONG_MAX Maximum value of int

INT_MIN LONG_MIN Minimum value of int

UINT_MAX ULONG_MAX Maximum value of unsigned
int

Table A-7 Limits of integral types (Continued)

Table A-8 shows the two ways you can represent floating-point
values.

Type Default Size Format
in Bytes

float 4 IEEE single precision

double 8 IEEE double precision

long double 8 IEEE 8 byte

Table A-8 Floating-point values

You can find these formats documented in detail in the Inside
Macintosh PowerPC Numerics Manual (Addison-Wesley) by Apple
Computer, and the MC68881/682 User's Manual (Motorola).

Symantec C++ Compiler Guide 209

A • Language Reference

The header f 1 oat i ng . h defines the characteristics of the floating
types. Table A-9 summarizes the floating types.

Variable
FLT_DIG

FLT MANT_DIG

Value
7

24

FLT_MAX_lO_EXP 38

FLT_MAX_EXP 128

FLT_MIN_lO_EXP -37

FLT_MIN_EXP -125

FLT_RADIX 2

FLT_ROUNDS 1

FLT_MAX 3.402823e+38

Table A-9 Floating-point limits

Definition
Decimal digits of precision

Number of base
FLT_RADIX digits in
mantissa

Maximum positive integer
n such that 10 raised to the
nth is within the range of
normalized floating-point
numbers

Maximum positive integer
n such that FLT_RADIX
raised to the nth minus 1 is
representable

Minimum negative integer
n such that 10 raised to the
nth is within the range of
normalized floating-point
numbers

Minimum negative integer
n such that FLT_RADIX
raised to the nth minus 1 is
a normalized floating-point
number

Radix of exponent
representation

Direction of rounding

Maximum representable
floating-point number

210 Symantec C++ Compiler Guide

C++ Language Reference +

Variable Value Definition
FLT_MIN l.175494e-38 Minimum normalized

positive floating-point
number

FLT_EPSILON l.192093e-7 Minimum positive number
x such that l.O+x does not
equal 1.0

DBL_DIG 15 Decimal digits of precision

DBL MANT_DIG 53 Number of base
FLT_RADIX digits in
mantissa

DBL_MAX_ 10 - EXP 308 Maximum integer n such
that 10 raised to the nth is
representable

DBL_MAX_EXP 1024 Maximum integer n such
that FLT_RADIX raised to
the nth minus 1 is
representable

DBL_MIN_lO - EXP -307 Minimum negative integer
n such that 10 raised to the
nth is within the range of
normalized floating-point
numbers

DBL_MIN_EXP -1021 Minimum negative integer
n such that FLT_RADIX
raised to the nth minus 1 is
a normalized floating-point
number

DBL_MAX l.797693e+308 Maximum representable
floating-point number

DBL_MIN 2.225074e-308 Minimum normalized
positive floating-point
number

Table A-9 Floating-point limits (Continued)

Symantec C++ Compiler Guide 211

A Language Reference •
Variable Value Definition
DBL_EPSILON 2.220446e-16 Minimum positive number

x such that l.O+x does not
equal 1.0

LDBL_DIG 15 Decimal digits of precision

LDBL MANT_DIG 53 Number of base
FLT_RADIX digits in
mantissa

LDBL_MAX_lO_EXP 308 Maximum integer n such
that 10 raised to the nth is
representable

LDBL_MAX_EXP 1024 Maximum integer n such
that FLT_RADIX raised to
the nth minus 1 is
representable

LDBL_MIN_lO_EXP -307 Minimum negative integer
n such that 10 raised to the
nth is within the range of
normalized floating-point
numbers

LDBL_MIN_EXP -1021 Minimum negative integer
n such that FLT_RADIX
raised to the nth minus 1 is
a normalized floating-point
number

LDBL_MAX l.79693e+308 Maximum representable
floating-point number

LDBL_MIN 2.225074e-308 Minimum normalized
positive floating-point
number

LDBL_EPSILON 2.220446e-16 Minimum positive number
x such that l.O+x does not
equal 1.0

Table A-9 Floating-point limits (Continued)

212 Symantec C++ Compiler Guide

C++ Language Reference +

Standard Conversions
§4.1 Integral Promotions
[ARM pp. 31-2, 322, Gray p. 489}
Symantec C++ follows ANSI C in that integral promotion is "value
preserving." See ARM p. 32 for an in-depth discussion of this and its
relationship to older C++ implementations.

§4.2 Integral Conversions
[ARM p. 33, Gray p. 489}
When the compiler demotes an integer to a smaller, signed integer,
the compiler copies the low-order bits; the high-order bit of the
smaller integer becomes the sign bit.

When the compiler tries to convert an unsigned value to a signed
integer of equal length, but the compiler cannot represent the
unsigned value by the signed type, then the representation bit
pattern doesn't change. The high-order bit, which in the unsigned
interpretation contributes to the value, is now interpreted as the sign
bit.

§4.3 Float and Double
[ARM p. 33, Gray p. 489}
If you convert a floating-point value that is in a range that the
compiler can represent but not exactly (such as 0.1, which becomes
a repeating binary fraction), the compiler rounds the result according
to the rounding mode. The default rounding mode is to round to the
nearest, and you can change this mode by editing the value
FLT_ROUNDS in floating. h, which is documented in Table A-9.

§4.4 Floating and Integral
[ARM pp. 3~4, Gray p. 489}
If you convert an integral type to a floating-point type, and that
value is in the range the compiler can represent but not exactly, the
compiler rounds the result according to the current rounding mode.
The default rounding mode is to round to the nearest integer, and
you can change it.

§5.0 Expressions
[ARMp. 46 (cf p. 72, §5.6), Gray p. 492}
The compiler ignores integer overflows.

Symantec C++ Compiler Guide 213

A • Language Reference

Symantec C++ handles division by zero in several different ways,
depending on context.

If you try to divide this by zero... The compiler returns ...
A constant expression An error

Any number during constant
folding

An integer

A floating-point number

Table A-10 Division by zero

An error

A microprocessor exception
(System Error #4)

INF (+co)

For further information, consult the Inside Macintosh PowerPC
Numerics Manual.

§5.2.4 Class Member Access
[ARMp.531
The compiler doesn't convert values stored in a member of a union
and then accessed through another member. For example:

union u_tag {
int ival;
float fval;

} u_obj;
int i;
u_obj.fval = 4.0;
i = u_obj.ival;

assigns Ox40800000 to i.

§5.3.2 Sizeof
[ARM p. 58, Gray p. 4971
The type size_t is defined as an unsigned int in stddef. h.

§5.3.3 New
[ARM p. 61, Gray p. 4991
Allocation is performed inside an object's constructor if one is
present.

214 Symantec C++ Compiler Guide

§5.4 Explicit Type Conversion
!ARMp. 71, 37, Gray pp. 500-2]

C++ Language Reference +

You can convert a pointer to an integral type large enough to hold it
(that is, 4 bytes) with no changes, though the compiler interprets the
bit pattern as the integral type. When converting to a smaller integral
type, the compiler uses the low-order bytes of the pointer.

If you convert an integral type to a pointer, the compiler promotes
and sign-extends smaller integral types to the appropriate integral
type without losing information.

You can cast away the "const"-ness of an object, so that it is
possible to modify the value of the constant object. If a pointer or
reference to a const is cast to a pointer or reference to non-canst,
writing to the pointer or reference succeeds if the original pointer or
reference contained a valid address.

§5.6 Multiplicative Operators
(ARM p. 72, Gray p. 503]
When two integers are divided with the I operator, where the result
is inexact and one and only one of the operands is negative, the
result is the smallest integer greater than the algebraic quotient (such
as - 2 3 I 4 = - 5). If the % operator is used, where the division is
inexact and one and only one of the operands is negative, the result
is negative (such as - 2 3 % 4 is equal to - 3). If the right operand of
the % or I operator is 0, then the compiler signals a microprocessor
exception.

§5.7 Additive Operators
(ARM p. 73, Gray p. 503]
The compiler treats memory as a linear address space. You can
reference out of the bounds of an array without the compiler
detecting it. For example:

int a[lOJ;
void f ()
{

int* p = &a[lOJ;
*p = Oxdeadbeef;

Symantec C++ Compiler Guide 215

A • Language Reference

You can subtract two pointers to objects in the same array to find the
number of elements separating the operands. The result is of type
ptrdiff_t, defined as long in <stddef. h>. Subtracting pointers
of differing types results in an error, though explicit casting lets you
do the operations.

§5.8 Shift Operators
[ARM p. 74, Gray p. 504]
If the right operand of the left-shift operator<< is negative, then the
result is undefined. If it is greater than or equal to the length in bits
of the promoted left operand, then it is taken modulo 64 and used,
with the usual result that all the bits are shifted out of the left
operand.

When the left operand of the >> operator is a signed type and
negative, the compiler performs a signed right shift.

Declarations
§7.1.6 Type Specifiers
[ARMp. 110, Grayp. 521}
A declaration with the specifier volatile tells the compiler that the
declared object can change in an undetectable way. These objects
are not optimized.

§7.2 Enumeration Declarations
!ARMpp. 114-5, Grayp. 523}
The size of an enumeration is the largest integral type that holds the
largest value in the enumeration, unless the enums are always ints
option is on (See "enums are always ints" in Chapter 4 for more
information). You can cast to an enumeration, but you may not get
the results you expected. For example:

enum color {red, yellow, green=20, blue};
color c3 = color(600);
int i = c3;

Here, i will receive 58 since each enumerator is stored as a single
byte. Changing the enumeration to:

enum color {red, yellow, green= 2000, blue};

allocates each enumerator as a long, into which 600 fits.

216 Symantec C++ Compiler Guide

§7.3 Asm Declarations
[ARM p. 115, Gray p. 524]

C++ Language Reference +

An asm declaration lets you embed short assembly language
fragments into the body of your C++ code. It takes a variable
number of integer arguments representing the machine language
instructions. The compiler then inserts these instructions into the
generated code. For example, the declaration:

asm (0x700A,Ox5A80,0x2600);

inserts these instructions into the code:

MOVEQ
ADDQ.L
MOVE.L

#$0A,DO
#$05,DO
DO,D3

§7.4 Linkage Specifications
[ARMp. 116, 118, Gray p. 524]
Symantec C++ supports C, C++, and Pascal linkage types.

Classes
§9.2 Class Members
[ARMp.173, 241, Grayp. 545]
The compiler allocates non-static data members of a class in order of
appearance in the source file, regardless of intervening access
specifiers.

§9.6 Bit-Fields
[ARMpp.184-5, Grayp. 550]
You can declare a bit-field with any integral type. The size of the
declared type determines the "word" size for that bit-field, so a
"word" may be 8, 16, or 32 bits wide.

A sequence of bit-fields with the same word size is packed into a
word. No bit-field may be wider than its word size. If a bit-field
would straddle a word boundary, the compiler places it in the next
word. For example, the bit-field declaration

struct bits {
int bl: 24;
int b2: 8;
int b3: 24;
int b4: 24;

} i

Symantec C++ Compiler Guide 217

A • Language Reference

is represented in memory as:

31 0

bl I unused

b2 lb3

b4 lunused

Figure A-2 Sample code as represented in memory

The compiler assigns bit-fields beginning with the high-order bit of a
word. An unnamed field with a width of 0 "closes out" the current
word. A bit-field with a different word size from the preceding bit
field causes this closing out to happen automatically, just as a non
bit-field member does.

The compiler treats a plain int bit-field as a signed int.

Special Member Functions
§ 12.2 Temporary Objects
[ARM pp. 267-8, Gray p. 572]
The compiler destroys temporary objects when their values go out of
scope.

Templates
This section has undergone fairly substantial revision by the ANSI
C++ committee. The Symantec compilers implement several rules
from the latest ANSI C++ draft that did not exist in the ARM. Changes
below taken from the latest ANSI C++ draft standard (dated
September 20, 1994) are specifically cited as coming fro~ this
document.

§14.1 Templates
By default, the Symantec compilers give local linkage to template
classes and functions. This renders certain well-formed template
programs erroneous and places limitations on what can be done

278 Symantec C++ Compiler Guide

C++ Language Reference +

with templates without using the template_access pragma. For
example:

template <class T>
void f (T &t);

void main(void)
{

int i;
f (i);

In the ARM, this program would be well-formed because the linkage
of f would be global. If the definition for f appeared in a different
translation unit that caused the expansion off (int), the program
would link and run properly. Under the Symantec compilers this
program would be ill-formed because function f has local linkage
and is not defined within the translation unit.

The error reported would be:

Error: no definition for static 'f(int&)'

If the definition of f is found in another translation unit, the
#pragma template_access directive must be used to inform the
compiler that the definition for f will be seen elsewhere. As in:

#pragma template~access extern

template <class T>
void f(T &t);

void main(void)
{

int i;
f (i) ;

II Templates are
II defined elsewhere

Symantec C++ Compiler Guide 219

A • Language Reference

The file containing the definition for f (T) would be:

#pragma template_access public// I am
//expanding templates here

template <class T>
void f(T &t)
{

#pragma template f(int)

See "#pragma [SC] template_access" in Chapter 4 for more
information on the template_access pragma.

Due to their local linkage by default, template classes that contain
static data will not behave properly. For example:

file f.h:

template <class T> class X {
static int i;
} i
template <class T>
int X<T>::i = 10;

file fl. c:
#include <f.h>

void fl (void)
{

X<int>::i 5;
}

file f2.c:
#include <f.h>

void f2(void)
{

X<int>: :i = 6;

Due to the local linkage of template classes, fl. c and f2. c each
have their own independent copy of X<int>: : i. The compiler will
not diagnose this is an error, but the program may not behave as the
user intends. In order to get the proper linkage for template class
static data, the #pragma template_access directive must be

220 Symantec C++ Compiler Guide

C++ Language Reference +

used to control the linkage of the template classes involved. For
example:

file f.h:

#pragma template_access extern
template <class T> class x {
static int i;
} ;
template <class T>
int X<T>::i = 10;

file fl.c:
#include <f.h>

void fl (void)
{

X<int>::i = 5;

file f2.c:
#include <f.h>
#pragma template_access public

void f2(void)
{

X<int>::i = 6;

#pragma template X<int> II Provides definition
II for X<int>: :i=lO

§14.4 Function Templates
The Symantec compiler implements the following rules from the
ANSI C++ draft specification section 14.9.3 [temp.over]:

1. Look for an exact match (13.2) on functions; if found, call
it.

2. Look for a function template from which a function that
can be called with an exact match can be generated; if
found, call it.

3.Look for a match with conversions. For arguments to
ordinary functions and for arguments to a template
function that corresponds to parameters whose type does
not depend on a deduced template-parameter, the
ordinary best-match rules apply. For template functions,
only the following conversions listed below apply. After

Symantec C++ Compiler Guide 221

A • Language Reference

the best matches are found for individual arguments, the
intersection rule (_over. match. args_) is used to look
for a best match; if found call it.

For arguments that correspond to parameters whose type depends
on a deduced template parameter, the following conversions are
allowed:

• For a parameter of the form B<params>, where par ams
is a template parameter list containing one or more
deduced parameters, an argument of type "class derived
from B<params>'' can be converted to B<params>.
Additionally, for a parameter of the form B<params> *,
an argument of type "pointer to class derived from
B<params>" can be converted to B<params> *.
Similarly for references. Also, for a parameter of the form
T, an argument of type "T B : : * where B is a base of
D<params>" can be converted to T D<params>: : *.

• A pointer or reference can be converted to a more
qualified pointer (reference) type, according to the rules
in 4.10 (_conv. ref_).

• "array of T" to "pointer to T".

• "function ... " to "pointer to function ... ".

In each case, if there is more than one alternative in the first step
(1, 2, 3) that finds a match, the call is ill-formed.

This rule allows:

template <class T>
double f(T &t, doubled);

void f(void)
{

double d;
int i = O;

d=f(i,i); II Allowed by rule #3
II in ANSI,
II ill-formed in the ARM

which previously would have been ill-formed.

222 Symantec C++ Compiler Guide

C++ Language Reference +

Another modification was to the behavior of template specialization
in the ARM, declaring a function that could be expanded from a
template was defined as causing a new expansion unless the new
declaration contained a definition. For example:

template <class T>
voidf(Tt);
{

void f (int);

void f(double d)
{

II
II

II
II
II

Created an expansion of
f (T t) to satisfy f(int)

Ambiguous in the ARM,
either error or a valid
specialization of f (T)

In the ANSI draft there is new syntax for explicitly instantiating a
template and the declaration void f (int) will never generate an
expansion of the template function f. The current compiler does not
implement the new syntax for explicit specialization, but does
implement pragmas that accomplish this for the user. The compiler,
therefore, never allows the declaration of f (int) to instantiate the
template function. The previous code example will report an
undefined symbol for f (int), treating it as a specialization of the
template function f. In order to get the same behavior in the
Symantec compiler, use: ·

template <class T>
void f(T t);
{

#pragma template f(int) II Create an

void f(double d)

II expansion of
II f(T t), namely
II f(int)

II valid specialization
II of f(T)

Symantec C++ Compiler Guide 223

A • Language Reference

§ 14.7 Friends
The Symantec compilers implement the following restriction
regarding template expansion and name injection from the ANSI C++
draft specification, section 14.2.4 [temp.inject]:

"Names that are not template members can be declared within a
template class or function. However, such declarations must match
declarations in scope at the point of their declaration or
instantiation."

This means that many templates that presently declare friend
operators or other template friend functions must be provided with
declarations prior to the instantiation of the template class. For
example:

template <class T> class X {

friend ostream &operator<<(ostream& s, X<T>& rn);
} ;

X<int> xi;
ANSI,

II With the ARM, this is OK, with

II this is ill-formed
II Will receive:
II Error: Non-local name 'operator
II <<(ostream&,X<int>&)' cannot be
II declared in a template
II instantiation.

This error will only be reported if ANSI conformance (relaxed or
strict) is enabled. In order to avoid the error, simply declare the
friend prior to the first instantiation of the template class, as in:

template <class T> class x {

friend ostream &operator<<(ostream& s, X<T>& rn);
} ;
template <class T>
ostream & operator <<(ostream & s, X<T>& rn);

X<int> xi; II This is OK in both the ARM and
II ANSI specifications.

224 Symantec C++ Compiler Guide

Note

C++ Language Reference +

The class body for a class is parsed and this error is
produced regardless of any #pragma
template_access options specified. The
#pragma template_access directive controls
the generation of code and data, the declarations of
class members, and other symbols are always
expanded regardless of the #pragma
template_access setting. See "#pragma [SC]
template_access" in Chapter 4 for more information
on the template_access pragma.

Exceptions
§15 Exception Handling
The Symantec compilers do not currently implement any of the
exception handling portion of the ARM or ANSI specifications. The
keywords throw, try, and catch are reserved in this release.

Preprocessing
§16.4 File Inclusion
[ARMpp.375-6(cf 163.2c), Gray pp. 610-11}
These are the rules Symantec C++ uses to find header files:

#include statement
<filename.h>

"filename.h"

Symantec C++
Look first in the referencing folder,
then in the system tree.

Looks first in the referencing folder,
then in the project tree, and finally
in the system tree.

The referencing folder is the one that contains the file that has the
#include preprocessor directive. For example, if a source file
references a header file MyUtils. h, and that file in turn has the
line #include "MyUtil Types. h", Symantec C++ looks for
MyUtil Types. h in the folder that contains MyUtils. h first.

§16.5 Conditional Compilation
[ARM p. 3 77, Gray p. 613}
No limit has been placed on the number of #if directives that you
can nest.

Symantec C++ Compiler Guide 225

A • Language Reference

§ 16.8 Pragmas
[ARM p. 3 78, Gray p. 613}
Symantec C++ defines many pragmas. The preprocessor produces a
warning for unrecognized pragmas. See "#pragma Directives" in
Chapter 4.

§ 16.10 Predefined Names
[ARMp. 379, Grayp. 614}
Symantec C++ does not define the predefined name _STDC_ .

226 Symantec C++ Compiler Guide

Error Messages•
B.

Tms appendix lists and describes error and warning messages
generated by Symantec C, Symantec C++, and Symantec Rez. Error
messages generated by the Symantec Debugger and the Symantec
Internal Linker are described in the Symantec C++ User's Guide and
Reference.

Use this reference to:

• Check or confirm that an error has been reported.
• Discover possible causes for an error.
• Discover possible ways to correct an error.

All the error messages in this Appendix indicate in which category
(CIC++, C, C++, Symantec Rez) they belong. For example, CIC++
means that either compiler can generate the message, while C++
means that only the PowerPC C++ compiler can produce the
message. Messages marked Warning indicate code that does
compile but that may not execute as you expect. This appendix lists
messages in the order of: messages that begin with symbols,
followed by messages with variable first words, followed by the
remaining alphabetized messages.

Some descriptions contain a margin note that refers to sections in
1be Annotated C++ Reference Manual by Margaret A. Ellis and
Bjarne Stroustrup, published by Addison-Wesley, Reading,
Massachusetts, 1990. These sections contain information that will
help fix your program.

Contents
Recognizing Compiler Error Messages

Error Message Types .
Lexical errors .
Preprocessor errors

229

230
230
230

Symantec C++ Compiler Guide 227

B • Error Messages

Syntax errors
Warnings
Fatal errors .
Internal errors

Symantec C++ for Power Macintosh Error Messages .

228 Symantec C++ Compiler Guide

. 230

. 230

. 230

. 230

. 231

Recognizing Compiler Error Messages +

Recognizing Compiler Error Messages
When the compiler encounters a line in source code it can't compile
or believes is incorrect, it usually prints the reason in the Build Errors
window, as in Figure B-1 below, and continues· compiling your
project

Build Errors for Spinning Mac. n
Delete All I

Fi le •main .c•; Line 150
Error: tmdef i ned identifier · gMa i nGWor Id ' llilll

Figure B-1 Build Errors window

To see the line described in the message, double-click the message,
or click Go To at the top of the window. If the error is in a source
file , the Symantec Editor opens the file and selects the line, as in
Figure B-2 below. The Symantec Editor keeps track of your edits.

I Markers • 11 Headers T I
void Too I box In it< void)
{

lnitGraf <&qd.thePort);
lni tFonts <);
In i UJ i ndotus <);
lnitMenus()

lnitDi a logs<OU;
In i tCursor <);
FlushEvents<O, everyEvent>;

•main.c 1'1€1

•

/*************MenuBarl~t***********/

Figure B-2 Symantec Editor with incorrect line of code highlighted

Symantec C++ Compiler Guide 229

B • Error Messages

Error Message Types
There are six error message types. Each message usually contains
specific information about the problem. The compiler normally lists
four errors of the preprocessor, syntax, or lexical types before
exiting. Use the Report all errors in a file option to let compilation
continue to the end of the source file before exiting with an error.

Lexical errors
Lexical errors occur when the compiler encounters an unidentified
or incomplete token. While they do not terminate compilation
immediately, lexical errors do prevent the compiler from generating
executable code.

Preprocessor errors
Errors can occur in one of the preprocessing directives. While they
do not terminate compilation immediately, preprocessor errors can
prevent the compiler from generating executable code.

Syntax errors
While they do not terminate compilation immediately, syntax errors
can prevent the compiler from generating executable code.

Warnings
Warnings occur when the compiler finds a statement that is
legitimate but is probably not what you intended. Warnings are not
errors and do not terminate compilation or prevent the compiler
from generating code.

Fatal errors
Fatal errors terminate compilation immediately. A typical fatal error
occurs when the compiler runs out of memory.

Internal errors
Internal errors, a class of fatal error, take the following form:

file/line #

An assertion failure within the compiler generates this type of error.
The error number is useful only in designating where the error
occurs in the compiler code. The cause of this message may be an
error in source code that the compiler cannot handle intelligently or
a bug in the compiler itself. If your code generates this type of error,

230 Symantec C++ Compiler Guide

Symantec C++ for Power Macintosh Error Messages +

report it to Symantec, even if your code causes the error. With this
information, Symantec can improve error reporting in future
releases.

How to report an internal error
· Before reporting an internal error to technical support, try to isolate
the error in a small program fragment. Use the following procedure:

1. Place all included code into the main program body using
the Preprocess command on the Build menu.

2. Find the approximate cause of the error by backtracking
and removing excess code to isolate a short program that
demonstrates the fault.

3. Use mnemonic names for objects and variables in the
sample code. Code containing class Base rather than
class Hyperxytrisms59 is much easier for the
technical support staff to understand.

4. If applicable, put the offending code in an #ifdef
BUG . . #en di f block.

5. Write a comment_header with the following information:
your name, telephone number, address, version of the
compiler, and the Symantec Project Manager as well as
any other software involved, the nature of the problem,
and other relevant details.

A short bug report lets the technical support staff quickly find and
reproduce the problem.

Symantec C++ for Power Macintosh
Error Messages
This list contains error messages that the Symantec compilers may
generate:

must be followed by a parameter
(CIC++)The number sign operator must appear in front of a macro
parameter. For example, #c.

'#else' or '#elif' found without '#if'
(CIC++) More #else or #eli f preprocessor directives appear than
preceding #if, #ifdef, or #ifndef directives.

Symantec C++ Compiler Guide 231

B • Error Messages

'#endif' found without '#if'
(O'C++)More #endif preprocessor directives appear than
preceding #if, #ifdef, or #ifndef directives.

#printf statements can't have more than 20 arguments
(Symantec Rez) Symantec Rez won't compile any #printf statement
with more than 20 arguments.

#printf statements do not end with a ';'
(Symantec Rez) Unlike C, in which the printf statement is a
function call, Symantec Rez considers #printf a preprocessor
statement, similar to a #define.

$$resource statement failed
(Symantec Rez) A $$resource statement fails if the source file
can't be found, or if the given resource type, ID or name is invalid.

$$shell is not supported
(Symantec Rez) The Symantec Project Manager does not support
exported shell variables, so Symantec Rez will not compile files that
contain any $$shell statements.

' ('expected
(CIC++) The compiler expects the expression after the if, while,
or for keywords to be enclosed in parentheses.

') ' expected
(C!C++)The compiler expects a set of parentheses to be closed.
Check for a pair of mismatched parentheses or a bad expression.

11 comments are not ANSI C
(CIC++) You cannot use I I comments with strict ANSI conformance
in the C compiler.

':'expected
(C!C++)The compiler expects a colon after a constant expression in
a case statement and after the keywords public, private, and
protected in a class declaration.

'::'expected
(C++) If the compiler generates this message, let us know. The first
validated entry to qa@bedford.symantec.com wins a prize of our
choice.

232 Symantec C++ Compiler Guide

See ARM 14. 1 for more
information.

See ARM 14. 1 for more
information.

Symantec C++ for Power Macintosh Error Messages +

'::;or'(; expected after class ;identifier;
(C++)The compiler expects two colons or an open parenthesis after
a class name in an expression. Casting, however, does not allow two
colons. For example:

class x;
f=*(x*)y;

';;expected
(C/C++)The compiler expects a semicolon at the end of a statement.

'<;expected
(C++)ln a class or function template, the argument list must be
placed between angle brackets.

'=;,';;or',; expected
(CIC++) A variable is declared incorrectly. A declaration must
include an equals sign, a semicolon, or a comma after the variable
name.

'>;expected
(C++) In a class or function template, the argument list must be
placed between angle brackets.

']' expected
(CIC++) The compiler expects a close bracket at the end of an array
declaration or reference.

'{' expected
(CIC++) The compiler expects an open brace.

'{'or tag identifier expected
(C/C++)The compiler expects a tag name or an open brace to follow
the keywords struct, class, union, or enum.

'}' expected
(CIC++) The compiler expects a close brace.

;identifier; is a pure virtual function
(C++) The compiler cannot directly call a pure virtual function.

Symantec C++ Compiler Guide 233

B Error Messages •

See ARM 7 2.6.2 for more
information.

'identifier' is a virtual base class of 'identifier'
(C++)You cannot convert a pointer to a virtual base class into a
pointer to a class derived from it. Also, you cannot create a pointer
to a member of a virtual base class. For example:

class virtual_class
public:

int x;
} i

class sub_class :
virtual public virtual_class { };

void main ()
{

virtual_class *v;
sub_class *s;
int virtual_class: :*i;

s (sub_class *) v;ll error
i &sub_class::x;

'identifier' is already defined
(CIC++) You've already defined the item.

'identifier' is not a class template
(C++)The compiler expects to find the name of a class template but
doesn't. If you are declaring a template member function, make sure
the function's class name is a template. If you use a type of the form
foo<bar>, make sure you declare as a template the class name
before the less-than sign.

'identifier' is not a constructor
(C++)You can use a member initialization list only when you're
defining base constructors and member initializers. For example:

struct base { base(int); };
struct other { other(int); };

{ class sub : base
sub(int);
sub2(int);
other o;

II A constructor.
II Just a method.

sub::sub(int a) o(a), base(a)
sub::sub2(int a): o(a), base(a)

}II OK
}II ERROR

234 Symantec C++ Compiler Guide

See ARM 11.4 for more
information.

Symantec C++ for Power Macintosh Error Messages +

'identifier' is not a correct struct, union or enum tag identifier
(CIC++) The struct, union, or enum tag identifier includes
invalid characters or is already defined.

'identifier' is not a member of forward referenced struct 'identifier'
(CIC++) You cannot access members of a struct if it has not been
declared. For example:

struct X;
void f (x*Px) {

Px->i = O; //error

'identifier' is not a member of struct 'identifier'
(CIC++) The member identifier is not a member of this class,
struct, or union. Make sure to spell the member name correctly
and verify that the member actually belongs to the struct with
which you're using it. If the member belongs to a different struct
but you want to use it with this struct anyway, cast the struct.
Also check for a class member function that is forward-referenced.
For example:

class X;
class Y {

void g();
I* . . . *I

} ;

class Z {
friend void
friend void

} ;

II Forward reference
II Declaration

X: : f () ; I I ERROR
Y : : g () ; I I OK

'identifier' is not a static variable
(C++)A static variable is not used as an argument to a static
constructor when required.

'identifier' is not a struct or a class
(C++)You can derive new classes only from a class or a struct.
It is not possible, for instance, to derive a class from a union.

Symantec C++ Compiler Guide 235

B • Error Messages

1 identifier' is not a variable
(C)You cannot use a typedef as a variable. For example:

typedef int FOO;
void f (void)
{

int i;
i = FOO;

'identifier' is not in function parameter list
(CIC++) The parameter identifier is not listed as a parameter to the
function in the function definition.

'identifier' must be a base class
(C++) When naming a member of a base class in a derived class
declaration, qualify the member with a base class identifier. For
example:

class other;
class base {
private:

I* . . . *I
} ;

class sub : base {
public:

other: :a; II ERROR: other must be a
I* . .. *I II base class of sub.

l;

'identifier' must be a class name preceding'::'
(C++)The identifier before the double colon operator must be a
class, a struct, or a union.

236 Symantec C++ Compiler Guide

See ARM 7 4. 7 for more
information.

Symantec C++ for Power Macintosh Error Messages +

'identifier' must be a public base class
(C/C++)When you use the syntax p->class:: member, class must be
a public base class member of the class to which p is referring. For
example:

class public_base {
public:

int x;
} i

class other_class
public:

int z;
} i

class sub
I*

public public_base {
*I

} i

void main()
{

sub* s;
s->public_base: :x
s->other_class: :z

1 i
1 i

II OK
II ERROR

'identifier' previously declared as something else
(O'C++)You previously declared the identifier as another type. For
example, you may have used a function without declaring it, so the
compiler automatically declares it as a function returning an int.
You cannot then declare that function to be something else.

'identifier' storage class is illegal in this context
(CIC++) Check for one of the following:

• You declared a template outside the global scope.
• You declared a function argument static or extern.
• You used an auto or register variable with global

scope.

Symantec C++ Compiler Guide 237

B • Error Messages

register int global;
II ERROR: Can't declare global
II variable as register.

void f ()
{

template<class T> T ave(T* a, int size)
{

II ERROR: Can't declare template
II in a function.

}

I* *I

number actual arguments expected for 'identifier'
(O'C++) The compiler expects a different number of arguments for
the function or template. You may be using the function incorrectly,
or you may be calling a function with a variable number of
arguments without including its header file.

number exceeds maximum of 'number' macro parameters
(C!C++)A macro has more than the allowed number of macro
parameters.

0 expected
(C++) A pure virtual function is declared incorrectly. The following is
the correct syntax:

class X {
virtual pure_virtual_func()
I* . . . *I

0 or 1 expected

0; I I OK

(C!C++/Symantec Rez) Only binary digits can follow the characters
Ob. No spaces should be placed between the b and the number.

238 Symantec C++ Compiler Guide

See ARM 11.3 for more
information.

See ARM 11.3 for more
information.

Symantec C ++ for Power Macintosh Error Messages +

a derived class member has the same name ~identifier'
(C++) A base member's access cannot change when a derived class
defines a member with the same name. For example:

class base {
public:

int x, y;
I* *I

} i

class sub : base {
public:

void x();
base::x; II ERROR: same name as x()
base: : y; I I OK

} i

access declaration must be in public or protected section
(C++) A class member's access can change only if that class member
is in a public or protected section. For example:

class base
int a;

public:
int x;

} i

class sub
base::a;

public:
base: :x;

} i

private base {
II ERROR

II OK: xis public

alignment must be 1, 2, 4
(CIC++)The value for the alignment in a #pragma align
statement must be 1, 2, or 4.

Symantec C++ Compiler Guide 239

8 • Error Messages

already seen initializer for 'identifier'
(C++) Either more than one member-initializer for the identifier
exists, or more than one initializer for the base class exists. For
example:

class base {
int x;
base(int);

} i

class sub : base {
base b;
sub (int);

} i

sub: :sub(int a)

{ x = a; }

base(a+l),
b(a*2) I

base(a-2)

ambiguous reference to base class 'identifier'

II OK
II OK
II ERROR

(C++)This class has more than one base class, and it is not clear to
which the program is referring.

ambiguous reference to function or member
(C++)This function or data member is ambiguous with an
inheritance tree. For example:

class B {
int i;
void f ();

} i
class C B {
} i
class D B,C
{
} i
D d;
void g(void)
{

d.i = 3;
d. f () i

//error
//error

240 Symantec C++ Compiler Guide

See ARM 12.1 for more
information.

Symantec C++ for Power Macintosh Error Messages +

ambiguous reference to function
(C++) In calling an overloaded function, more than one definition of
the function matches the call. For example:

struct X {
X(int);

} ;

struct Y {
Y(int);

} ;

void f (X);
void f (Y);

II f() can take an argument of
II either type X or type Y.

void main()
{

f(l); II ERROR: Ambiguous,
II f(X(l)) or f(Y(l))?

f (x (1)) ; I I OK
f(Y(l)); II OK

ambiguous type conversion
(C++)The compiler cannot find an unambiguous type conversion.
For example:

struct X

} ;

operator int();
operator void*();

void main()
{

X x;

if (x) ;
if ({int) x) ;
if ((void*) x)

II ERROR
II OK
II OK

argument of type 'identifier' to copy constructor
(C++) Copy constructors for class X cannot take an argument of type
X. Instead, use the reference to X.

Symantec C++ Compiler Guide 241

B Error Messages •
See ARM 13.4.7 for more
information.

See ARM 8.4.3 for more
information.

argument to postfix ++ or -- must be int
(C++) Only declarations of the following form can declare
overloaded functions for the prefix and postfix operators ++ and --:

operator ++ ()
operator ++(int)
operator -- ()
operator --(int)

array dimension must be > 0

II prefix ++X
II postfix X++
II prefix --X
II postfix X--

(O'C++) A negative number or zero cannot act as an array dimension
when you declare an array.

array nesting too complex
(Symantec Rez) Symantec Rez will not compile a nested array that is
more than 20 levels deep.

array of functions is illegal
(CJ An array of pointers to functions, not an array of functions, can
be declared. For example, instead of this:

int x[lO] (int, int);
II ERROR: an array of functions
II returning int

use this:

int (*x[lO])();
II OK: an array of pointers to
II functions returning int

array of functions or refs is illegal
(C++) An array of pointers to functions, not an array of functions,
can be declared. For example, instead of this:

int &x[lO];
II ERROR: Array of references to int

use this:

int *x[lO];
II OK: Array of pointers to int

An array of references is illegal in C++.

242 Symantec C++ Compiler Guide

Symantec C++ for Power Macintosh Error Messages +

array or pointer required before'['
(O'C++)The brackets operator can only follow an array or pointer
identifier.

assignment to 'this' is obsolete, use X::operator new/delete
(C++)Avoid performing storage management by assigning to this.
Instead, overload the operators new and delete.

Warning
Assigning to this is not part of the latest definition of
C++, and future compilers may not support it.

at least one parameter must be a class or a class&
(C++)An operator overloaded function that is not a class member
must have at least one parameter that is a class or class reference.

attempt to initialize an array i~ a type statement
(Symantec Rez) The only kind of arrays that can be initialized when
declared are rect and point. All other arrays must be defined as a
resource statement.

bad constant value
(Symantec Rez) Some statements require a constant value. Make sure
that your statement is not attempting to use a computed value when
a constant value is required. For example, an enumerated value must
be a constant value.

type 'test'
short x = unknown_label_value;

/* must be a constant value */
} i

Symantec C++ Compiler Guide 243

8 • Error Messages

bad member-initializer for 'identifier'
(C ++) A syntax error exists in the base class initializer for the class
identifier. For e~ample:

struct base {
base (int);

} ;

struct sub : base
sub(int);
int var;

} ;

sub: :sub(int a) : base(a),, var(a) { }
II ERROR: Extra comma

binary exponent part required for hex floating constants
(O'C++)The exponent is missing from a hexadecimal floating-point
constant. A hexadecimal floating-point constant comprises an
optional sign, the Ox prefix, a hexadecimal significand, the letter p
to indicate the start of the exponent, a binary exponent, and an
optional type specifier. These are valid hexadecimal floating-point
constants:

Oxl.FFFFFEp127f
Oxlp-23
-0xl.2ACp+10

'bit' is not a legal align specifier
(Symantec Rez) You can't align a resource on a bit boundary. Only
nibble, byte, word, and long are valid align specifiers.

bitstring is a numeric type
(Symantec Rez) Even though it sounds like a string, it is actually a
numeric type. A bitstring is used to define a sequence of bits. The
type bitstring [16] is the same as an integer.

blank arguments are illegal
(CIC++) Arguments are missing from a macro reference that is
defined to take them. For example:

#define TWICE(x) (x+x)

TWICE (10)
TWICE ()

II OK
II ERROR

244 Symantec C++ Compiler Guide

Symantec C++ for Power Macintosh Error Messages +

'break; is valid only in a loop or switch
(O'C++)The break statement can occur only within a for, while,
switch, or do/while statement.

can only delete pointers
(C++)The delete operator works only on pointers. Use delete
on a pointer to an object and not the object itself.

can't assign to const variable
(C!C++)A new value is assigned to a const variable. Remove the
assignment or remove the restriction from the variable.

can't calculate size of an expression that contains an array
statement
(Symantec Rez) Statements that contain references to forward labels
can't contain array statements.

can't calculate size of an expression that contains a switch
statement
(Symantec Rez) Statements that contain references to forward labels
can't contain switch statements.

can't declare member of another class ;identifier'
(C++) In a class declaration, a class name modifies a member
function name. For example:

class X {
void func_in_X();

} i
class Y

} i

void X::func_not_in_X();
int func_in_Y();

II ERROR
II OK

Symantec C++ Compiler Guide 245

B • Error Messages

can't handle constructor in this context
(C++)Having a constructor as a default function parameter is illegal.
For example, instead of:

use:

class X {
public:

X(int);
} ;

foo (X X=X (1)) ;

void foo ()
{

X x(l);

}
void foo(X x)

//ERROR

can't have data statement without matching type statement
(Symantec Rez) If you have a statement in a resource block, then
there must be at least one type statement in the matching type
block.

can't have unnamed bit-fields in unions
(CIC++) Using an unnamed bit-field in a union is illegal. Use a
named bit-field or remove the bit-field.

can't nest comments
(CIC++) Warning. Avoid nesting comments; it's easy to nest
incorrectly and accidentally comment out the wrong code. Instead,
use #if 0 and #endif to block out sections of code. Avoid
crossing existing #if. For example, the following statements
comment out the enclosed code:

#if

#endif

246 Symantec C++ Compiler Guide

Symantec C++ for Power Macintosh Error Messages +

can't pass const/volatile object to non-const/volatile member
function
(C++) An object declared as canst or volatile is trying to call a
member function that is not. Declare the member function canst or
volatile, or remove the restriction from the object. For example:

struct A {
int regular_func();
int const_func() canst;

} ;

void main()
{

canst A const_obj;
A regular_obj;

const_obj.regular_func();
const_obj.const_func();
regular_obj.const_func();
regular_obj.regular_func();

can't return arrays, functions or abstract classes

II ERROR
II OK
II OK
II OK

(C++) A function cannot return an array, function, or abstract class.
However, a function can return a pointer to an array, a pointer to a
function, or a pointer to an abstract class. For example:

typedef char ARRAY[256);
ARRAY func_returning_array(); II ERROR
ARRAY *func_returning_ptr_to_array();

II OK
class X*func_returning_abstract_class();

II OK

can't take address of register, bit-field, constant or string
(C!C++)You cannot take the address of a register variable, a bit-field
in a structure, a constant, or a string. Declare the object differently,
or avoid taking its address.

can't take sizeof bit-field
(C!C++)It is illegal to use sizeof to determine the size of a bit-field
membert>f a struct.

Symantec C++ Compiler Guide 247

B Error Messages •

See ARM 8.5.3 for more
information.

cannot convert ;identifier*' to a private base class ;identifier*'
(C++) A pointer to a class x cannot convert to a pointer to a
private base class Y unless the current function is a member or a
friend of X.

class Y {
} i
class X: Y;
void f(void)
{

class X*Px;
class Y*Py;

Py=(class Y *)Px;
}

cannot create instance of abstract class ;identifier;
(C++) An abstract class contains at least one pure virtual function by
the declaration virtual func () = 0. It is illegal to declare objects
of such a class. For example:

class abstract_class
public:

virtual int func() = O;
int x, y;

} i

class subclass : abstract_class {
public:

virtual int func() { return (x*2);
int a, b;

} i

void main()
{

subclass a;
abstract class b;
I I . . .

cannot define parameter as extern

II OK
II ERROR

(CIC++) extern is an illegal storage class for a function parameter.

cannot delete pointer to const ·

(C++) Using the delete operator on a const pointer is illegal.
Remove the const by casting, or remove the delete operator.

248 Symantec C++ Compiler Guide

Symantec C++ for Power Macintosh Error Messages +

cannot find constructor for class matching name
(C++)The compiler cannot find a constructor that matches the
current initializers. Use different initializers. Coerce some initializers
so they match those of a constructor, or define a new constructor.
For example:

struct X {
X(char *);

} ;

void main()
{

}

X a
x b
x c

lL;
3.le20;
"hello";

I I ERROR
II ERROR
II OK

cannot generate 'identifier' for class 'identifier'
See ARM 12.1 and 12.8 for (C++) The compiler cannot define a copy constructor X: : X (X&) for
more information. class X or an assignment operator X& operator= (X&) for

class X for the class. If a class needs these methods, define them
explicitly.

The compiler cannot define an assignment operator if one of these
conditions is true:

• The class has a const member or base.

• The class has a reference member.

• The class has a member that is an object of a class with a
private operator=().

• The class is derived from a class with a private
operator=().

The compiler cannot generate a copy constructor if one of these
conditions is true:

• The class has a member that is an object of a class with a
private copy constructor.

• The class is derived from a class with a private copy
constructor.

Symantec C++ Compiler Guide 249

8 Error Messages •

See ARM 11.3 for more
information.

cannot generate template instance from #pragma template identifier
(C++)The compiler cannot generate a template instance from the
specifier in the #pragma template directive. Include the template
definition in the program and spell the template instance correctly.

cannot have member initializer for 'identifier'
(C++) The constructor initializer can initialize only non-static
members.

cannot implicitly convert
(O'C++) This expression requires the compiler to perform an illegal
implicit type conversion. To perform this conversion, explicitly cast
the expression.

cannot raise or lower access to base member 'identifier'
(C ++) Access declarations in a derived class cannot grant or restrict
access to an otherwise accessible member of a base class. For
example:

class base
public:

int a;
private:

int b;
protected:

int c;
} i

class sub :
public:

base: :a;
base: :b;

protected:
base: :c;
base::a;

} ;

private base {

II OK
II ERROR: can't make b
II accessible

II OK
II ERROR: can't make a
II inaccessible

case number was already used
(O'C++)This value already occurs as a case within the switch
statement.

casting from incomplete structure type identifier
(C++)This warning is received when the struct type being cast from
is an incomplete type. This will cause a problem when it is later or

250 Symantec C++ Compiler Guide

Symantec C++ for Power Macintosh Error Messages +

elsewhere defined as a derived class of the type being cast to. For
example:

struct X;
struct Y;
Y * f(X *x)
{

return ((Y*)x);
}

casts and sizeof are illegal in preprocessor expressions
(O'C++) A Symantec extension to ANSI Callows the use of the
sizeof operator and performs a cast in preprocessor directives.
Turning on the Strict ANSI conformance option on the Language
Settings page disallows use of these expressions in a preprocessor
directive.

char type only allows one character per string
(Symantec Rez) If the type statement is of type char, then the
matching resource description statement needs to be in double
quotes, but it must be zero or one byte long.

1111

"a"
"ab"

//valid char,
II a zero byte will be output
I /valid char
//invalid char

class name 'identifier' expected after -
(C++) A destructor is declared incorrectly. The proper name is
class::-class(). If the class is named X, its destructor is X: : -X ().

code segment too large
(O'C++)The code contribution of one file exceeds 32K.

comma not allowed in constant expression
(O'C++) It is illegal to use a comma in a constant expression or to
separate numbers by commas or spaces.

const or reference 'identifier' needs initializer
(C++) Non-extern const declarations or references must be
initialized.

constant expression does not fit in type
(O'C++) Each constant expression evaluates to a constant in the
range of representable values for its type.

Symantec C++ Compiler Guide 251

B • Error Messages

constant initializer expected
(O'C++)When you are initializing a variable being declared, any
nonpointer-type initializer must be either a constant or the address of
a previously declared static or extern item. For example:

canst float pi = 3.1415;
float a= 3.0;
static float b;

float w = a*2;
float x = pi*pi;
float *z = &b;

II ERROR: a isn't canst
II OK: pi declared canst
II OK: bis static

'continue' is valid only in a loop
(Q'C++) A continue statement occurs out of context. Use it only
within for, while, and do/while statements.

cstring too long (will be truncated)
(Symantec Rez) Warning. If no length indicator is given, a cstring
appends a null byte to the string. The maximum size of a cstring
is 2,147,483,647, but Symantec Rez will run out of memory long
before then.

Data member 1 identifier cannot appear in a struct after a
dimensionless array
(O'C++) A dimensionless array can only be the last member in a
structure. For example:

struct A {
int X[];
int i;

}
//ERROR

data or code 'identifier' defined in precompiled header
(O'C++) Precompiled headers can contain only declarations, not
definitions.

data statement type does not match type statement declaration
(Symantec Rez) Each data statement must have a type statement of
the same base type.

declarator for 0 sized bit-field
(Q'C++) A bit-field must have a size.

252 Symantec C++ Compiler Guide

Symantec C++ for Power Macintosh Error Messages +

'default:' is already used
(CIC++)The default: statement appears more than once in a
switch statement.

delete[] ;identifier' not allowed for handle/Pascal class
(C++)You cannot use delete on an array of Pascal or handle-based
objects.

different configuration for precompiled header
(CIC++) The precompiled header being used is precompiled with
different options. Precompile the header again with the current
options or check the current options for accuracy. Can also occur
when a newer compiler is used with an older precompiled header.

divide by 0
(CIC++)A constant expression tries to divide by zero or get modulo
(%)of zero.

duplicate direct base class 1 identifier
(C++)A class cannot derive the same base class more than once
(directly). For example:

class B {
int i;

} ;
class C:B,B
{
} i

empty declaration

//ERROR

(CIC++) A declaration must declare at least a declarator, a tag, or the
members of an enumeration.

end of file found before '#endif'
(CIC++) Missing #en di f causes the compiler to reach the end of the
file in the middle of a conditional compilation statement list.

end of file found before end of comment, line number
(CIC++) A missing *I causes the compiler to reach the end of the
file in the middle of a comment.

Symantec C++ Compiler Guide 253

B • Error Messages

end of line expected
(CIC++) Using the Strict ANSI conformance option on the Language
Settings page does not allow any text to follow the #endif
keyword, unless the text is a comment. For example:

#ifdef DEBUG
printf ("oops\n");

#endif DEBUG II Not ANSI-compatible

#ifdef DEBUG
printf ("oops\n");

#endif //DEBUG II ANSI-compatible

error opening resource file for $$resource or $$read statement
(Symantec Rez) The $$resource and $$read statements require
Symantec Rez to be able to open the resource fork of a file. Make
sure that the file exists, that it is not opened with write access by
another running application, and that it is in the system or project
tree.

escape sequence doesn't fit in a byte
(Symantec Rez) An escape sequence is a series of two or more
characters that form a character. Octal, hexadecimal, decimal and
binary escape sequences can be used to specify characters that do
not have predefined escape sequences. However, all escape
sequences must fit into a single byte. Escapes must be of the form:

base number form digits example

2 \OBbbbbbbbb 8 \OB10000001
8 \000
10 \ODddd
16 \OXhh
16 \$hh

Here are some examples:

\077
\OxFF
\$Fl\$F2\$F3
\Od099

3 \101
3 \OD065
2 \OX41
2 \$41

/* 3 octal digits*/
/* 'Ox' plus 2 hex digits*/
/* '$' plus 2 hex digits*/
/* 'Od' plus 3 decimal digits*/

Remember that an octal escape code consists of exactly three digits.
For instance, to place an octal escape code with a value of 7 in the
middle of an alphabetic string, write AB\007CD, not AB\ 7CD.

254 Symantec C++ Compiler Guide

Symantec C++ for Power Macintosh Error Messages +

Also, remember that Symantec Rez is not C or C++. The string "\ O" is
not valid in Symantec Rez because the \ 0 character is not a valid
escape sequence.

expected data definition of 'identifier', not func definition
(CIC++) Declarations appearing outside a function body must have
correct declaration syntax. This error occurs most often when too
many braces ({ }) have been specified in a function body.

expected point type data statement
(Symantec Rez) As Symantec Rez parses your resources, it knows
when to expect certain kinds of statements. You will get this error if
Symantec Rez expects to parse a point statement, and sees
something other than a point statement.

expected switch statement
(Symantec Rez) As Symantec Rez parses your resources, it knows
when to expect certain kinds of statements. Make sure you picked a
valid case from the switch statement in the matching type block.

exponent expected
(CIC++)The compiler cannot find the exponent for the
floating-point number written. Do not put any white space between
the e and the following exponent.

expression expected
(CIC++) The compiler expects to find an expression but cannot. A
missing semicolon or close brace may cause this problem.

external with block scope cannot have initializer
(CIC++) Initializing a variable declared extern is illegal. Instead,
initialize the variable in the file where it is defined.

field 'identifier' must be of integral type
(CIC++)An inappropriate type occurs for a bit-field member of a
structure. Use signed/unsigned char, short, int, or long.

file specification string expected
(CIC++) The compiler cannot find the filename string in an
#include statement. Enclose the filename in double quotes or
angle brackets.

Symantec C++ Compiler Guide 255

B • Error Messages

forward referenced class 'identifier' cannot be a base class
(C++)A class must be declared before it can be used as a base class
for a new class. A forward declaration is not sufficient. For example:

class A; II Forward reference for A
class B { II Declaration of B

int a, b, c;
void f();

} ;

class X A { I* ... *I };II ERROR: A isn't
II declared

class Y: B { I* ... *I };II OK: Bis
II declared

Function definitions with separate parameter lists are not allowed in
C++
(C++)In C++, function definitions with separate parameter lists are
illegal. If ANSI is off, this error becomes a warning. For example:

void f(a)
int a;
{

Note: This also happens when typedef names are missing or
misspelled. For example:

typedef int PARAM_TYPE;
void f(PARM_TYPE a)
{

Function definitions with separate parameter lists are obsolete in
C++
(C++) Warning. In C++, function definitions with separate parameter
lists are illegal. See previous error message for examples.

function 'identifier' has no prototype
(CIC++) The compiler cannot find a function prototype for this
function. The C++ compiler requires function prototypes by default.

256 Symantec C++ Compiler Guide

See ARM 14. 1 for more
information.

See ARM 9.5 for more
information.

Symantec C++ for Power Macintosh Error Messages +

function 'identifier' is too complicated to inline
(CIC++) Warning. A function declared as inline is too complex to
compile inline, so the compiler compiles it as a normal function.

function definition must have explicit parameter list
(CIC++) A function definition requires an explicit parameter list. It
cannot inherit a parameter list from a typedef. For example, this
definition does not compile:

typedef int functype(int q, int r);

functype funky II ERROR: No explicit
{ II parameter list

return q+r;

function expected
(CIC++)The compiler expects to find a function declaration but does
not. Check for mismatched braces, parentheses not preceded by a
function name, or a template declaration not followed by a class or
function declaration.

function member 'identifier' cannot be in an anonymous union
(C++) Anonymous unions cannot have function members.

functions can't return arrays or functions
(C) It is illegal for a function to return an array or a function. See
"can't return arrays, functions or abstract classes."

global anonymous unions must be static
(C++)Anonymous unions must be extern or static.

hex digit expected
(CIC++)The compiler expects to find a hexadecimal digit after the
characters Ox. Do not put any white space after the x.

hex strings must be an even number of digits
(Symantec Rez) All hex strings must be an even number of digits.
Symantec Rez will not pad the string for you.

identifier expected
(CIC++) The compiler expects to find an identifier, but finds instead
another token.

Symantec C++ Compiler Guide 257

B • Error Messages

identifier found in abstract declarator
(CIC++)A type in a sizeof expression, typedef statement, or
similar place incorrectly includes a variable name. For example:

x = sizeof(int a[3]);
II ERROR: a is a variable
II name.

x = sizeof(int[3]);
II OK

identifier is longer than 1024 chars
(CIC++) The maximum size of an identifier is 1024 characters.

identifier or '(declarator)' expected
(CIC++) The compiler expects to find a declaration for a static
variable, an external variable, or a function. If this error appears in a
function, see if there are more right braces than left braces.

illegal bitstring size
(Symantec Rez) The only numeric type specification that allows a
size is bitstring. The byte, integer, and longint types
cannot have sizes.There is no implicit array type as in C. If you want
an array of bytes, you have to explicitly declare them:

type 'test' {
array [12] {

byte; 1112 bytes
} ;

} ;

illegal cast
(CIC++) You cannot cast structs or unions to other types. You can
cast numerical values or pointers to other numerical values or
pointers. Example:

typedef struct {short v, h;} Point;
void function(void)
{

Point p;
long l;
p (Point) l;
p =*(Point*) &l;

II NO
II OK

illegal character, ascii number decimal
(CIC++) The source file includes a character outside a comment or
string, such as @ or $, that is not part of the C character set.

258 Symantec C++ Compiler Guide

Symantec C++ for Power Macintosh Error Messages +

illegal combination of types
(CIC++) Certain types cannot occur together. For example, you
cannot declare a variable to be a short long int.

illegal constructor or destructor declaration
(C++) A constructor or destructor is declared incorrectly. For
example, a constructor may be declared as virtual or friend, a
destructor may be declared as friend, or a return value may be
specified for a constructor or destructor.

illegal hex string character
(Symantec Rez) Escape sequences are not allowed inside hex strings.

illegal operand types
(CIC++) The operands are of the wrong type. Cast the operands to
the correct type.

illegal pointer arithmetic
(CIC++)You cannot perform some arithmetic operations on pointers.
You cannot assign integers to pointers except for the constant zero.
In addition, you cannot compare pointers to integers, again, with the
exception of the constant zero. In all cases, you can use a cast to
force the operation when necessary. Example:

void function(void)
{

short *short_ptr;
short i;
char *pl, *p2;
long result;

short_ptr
short_ptr
short_ptr

result

result

Ox220;
O;
(short *)

pl + p2;

pl I p2;

illegal rect statement

II NO
II OK
Ox220;
II OK: Address of
II MemErr
I I NO : Can ' t add
II
II
II

pointer
NO: Can't divide

pointers

(Symantec Rez) If the type statement called for a rectangle, then
your array must contain exactly four elements.

0, 0, 100, 100 };
0 I 0 } ;

I* valid rect *I
I* illegal rect *I

Symantec C++ Compiler Guide 259

B Error Messages •

See ARM 13.4.6 for more
information.

illegal redefinition of macro 'symbol'
illegal resource attribute
(Symantec Rez) Symantec Rez can't set the changed bit of a resource.

illegal return type for operator->()
(C++) operator-> () must return one of these:

• A pointer to an object of the class that defines
operator-> ()

• A pointer to an object of another class that defines
operator-> ()

• A reference to an object of another class that defines
operator-> ()

• An object of another class that defines operator-> ()

illegal type for 'identifier' member
(CIC++) Variables cannot be of type void.

illegal type id range
(Symantec Rez) If a range is provided by a type declaration, then all
resources of that type must be within that range. It is legal to have
several type declarations of various ranges, but all resources must be
within one of those ranges.

260 Symantec C++ Compiler Guide

Symantec C++ for Power Macintosh Error Messages •
type 'test' (0:128) {

pstring;
rect;

} i
type 'test' (129:131) {

pstring;
point;

} i

resource 'test' (128) {//legal - falls within
II range of first
II 'test' type

"hello world",
{ 0, 0, 100, 100 };

} i

resource 'test' (1000) {//no type exists for
II 'test' id= 1000

} i

"hello world",
{ 0, 0 };

Illegal use of template type argument during expansion of template
identifier
(C++)The template type argument must not appear in the template
class declarator. For example:

template<class T> class X<T>{
} i

//ERROR

inherited function must be member of derived class
(C++)When using the inherited : : , the member being accessed
must exist in the first base class of the specified object.

initialization of 'identifier' is skipped
(C++) It is illegal in C++ to skip over an initialization. For example:

switch (i)
case 1:

int x = 3;
case 2:

break; //ERROR: initialization
II of xis skipped.

Symantec C++ Compiler Guide 261

B Error Messages •
See ARM 9.4 for more
information.

initializer for static member must be outside of class def
(C++) Static class members must initialize outside the class
definition. For example:

class A {
static int a = 5;

II ERROR: Can't initialize static
II class var in class def.

void f();
} ;

class B {

} i

static int b;
void f();

int B: : b = 6 i
II OK:
II

Initialize static class var
outside class def.

integer constant expression expected
(CIC++) An integer constant expression must occur in case
statements, in array size declarations, and in the #if, #elif,
#exit, and #line preprocessor commands.

integral expression expected
(CIC++) An integer type must occur in case statements, in array size
declarations, and in the #if, #elif, #exit, and #line
preprocessor commands. For example:

float f;
f=f<<l;

internal error 'filename' line number
(C!C++)This indicates a defect in the Symantec C++ compiler. Please
contact Symantec technical support with details of this problem,
including the filename and line number reported.

invalid escape character
(Symantec Rez) Symantec Rez does not allow just any character to
be escaped. It expects them to be formatted as octal, hex, decimal or
binary escapes. An escape sequence is a series of two or more
characters that form a character. Octal, hexadecimal, decimal and
binary escape sequences can be used to specify characters that do
not have predefined escape sequences. However, all escape
sequences must fit into a single byte. Escapes must be of the form:

262 Symantec C++ Compiler Guide

See ARM 8.4.3 for more
information.

Symantec C++ for Power Macintosh Error Messages +

Base Number form Digits Example
2 \OBbbbbbbbb 8 \0Bl0000001
8 \000 3 \101
10 \ODddd 3 \0D065
16 \OXhh 2 \OX41
16 \$hh 2 \$41

Here are some examples:

\077 /* 3 octal digits*/
\OxFF
\$Fl\$F2\$F3
\Od099

/* 'Ox' plus 2 hex digits*/
/* '$' plus 2 hex digits*/
/* 'Od' plus 3 decimal digits*/

Remember that an octal escape code consists of exactly three digits.
For instance, to place an octal escape code with a value of 7 in the
middle of an alphabetic string, write AB\007CD, not AB\ 7CD.

Symantec Rez is not C or C++; the string 11 \ 0 11 is not valid in
Symantec Rez, because the \ 0 character is not a valid escape
sequence.

invalid parameter to #print directive
(Symantec Rez) The #printf directive can be used to print strings
and integral numbers. It can't be used to print array values or label
indexes.

invalid reference initialization
(C++) Results from trying to initialize:

• A volatile reference to a canst
• A canst reference to a volatile
• A plain reference to a canst or volatile

invalid storage class for friend
(CIC++) Friend functions cannot be virtual.

last line in file had no \n
(CIC++) Compiling with the Strict ANSI conformance option on
means that the last line of a source file must end with a newline
character. A backslash cannot precede the newline.

line number expected
(CIC++) The line number in the #line directive must be a constant
expression.

Symantec C++ Compiler Guide 263

B Error Messages •

See ARM 9.4 for more
information.

linkage specs are "C", "C++", and "Pascal", not" identifier''
(C++)The compiler supports only the C++, C, and Pascal linkage
types.

local class cannot have static data on non-inline function member
;identifier;
(C++)A local class (that is, a class declared within a function) cannot
have a static data member or a non-inline function member. For
example:

void f ()
{

class local_class
int a, b;
static int c;

II static var in
II ERROR: Can't have

void g ();
11, 12 i

I I . .

II local class
II ERROR: non-inline
II function

lvalue expected
(CIC++) The compiler expects to assign a value to an expression,
such as a variable. For example:

short short_f(void);
short *pshort_f(void);
void function(void)
{

short i;
short *p &i;

II Operand of
7++;
short_f () ++;
pshort_f () ++;

++ must be an lvalue
II NO
II NO
II NO

II Left operand of an assignment
II must be an lvalue.
pshort_f() = i; II NO
*pshort_f() = i;ll OK: Produces an lvalue
(*p)++; II OK
(*pshort_f())++;ll OK

macro ;identifier; can't be #undef'd or #define'd
(CIC++) It is illegal to redefine or undefine this predefined macro.

264 Symantec C++ Compiler Guide

See ARM 3.4 for more
information.

See ARM 7 4 for more
information.

Symantec C++ for Power Macintosh Error Messages +

main() cannot be static or inline
(C++) It is illegal to declare the function main () as static or
inline.

malformed template declaration
(C++) A template class or function is declared incorrectly. The
following are correct declarations:

template<class T, int x>
class vector {

T v [x] ;
public:

vector();

} ;

T& operator[] (int);
I* . . . *I

II OK

template<class T> II OK
T ave (T x, T y) {

return ((T) ((x+y) 12)) ;

Maximum number of number nested template expansions exceeded
for expansion of 1 identifier'
(CIC++) Internal compiler limit on number of nested template
expansions was exceeded.

maximum length of number exceeded definition
(CIC++)A macro was seen that was larger than the compiler's
internal buffer.

maximum of number characters in string exceeded
(CIC++) A string literal cannot exceed 1024 characters.

maximum width of number bits exceeded
(CIC++)This field can contain number bits. For example:

struct X
char
short
long

} ;

x:9; II ERROR: char is 8 bits
y:l7; II ERROR: short is 16 bits
z:33; II ERROR: long is 32 bits

Symantec C++ Compiler Guide 265

B • Error Messages

member 'identifier' can't be same type as struct 'identifier'
(CIC++) A structure cannot contain itself as a member, as in:

struct X {
struct X x;

} ;

member 'identifier' is const but there is no constructor
(C++) If a class has a canst member, the class must also have a
constructor. Initialize a const variable only in the constructor, for
example:

class A {

} ;

canst int x;
int y, z;
void f();

class B {

} ;

const int x;
int y I Z i
void f();
B ();

II ERROR: no constructor
II to initialize x

II OK: x can be
II initialized.

member 'identifier' of class 'identifier' is not accessible
(C++) A class member that is private or protected cannot be
accessed.

member 'identifier' of class 'identifier' is private
(C++) Only a class function or a derived function of the class can use
a private member. For example:

class super
private:

} ;

int x;
int f () ;

class sub : super {
int g ();

} ;

int super: : f ()
{

return (x++); II OK: B::f() is a
II member function

266 Symantec C++ Compiler Guide

Symantec C++ for Power Macintosh Error Messages •
int sub::g(}
{

return (x++);

main()
{

super s;
s.x = 3;
return O;

II ERROR:
II
II
II

II ERROR:
II
II
II

member functions cannot be static

sub::g() isa
member function
of a derived
class

main() isn't a
member function
or a friend
function

(C++)Ifyou use the ANSI conformance option, you cannot declare a
member function to be static.

missing 1, 1 between declaration of 'identifier' and 'identifier'
(CIC++) Declarations must be separated by a comma. This often
occurs when a typedef is missing or misspelled.

missing 'key' in case selector
(Symantec Rez) Every case in a switch statement must have a key
statement. It is this key statement that allows Symantec Rez to select
the correct case. Which case applies is based on the key value, for
example,

type 'DITL' {

} ;

... type specifications ...
switch {

case Button:
boolean enabled,
key bitstring[7] = 4;1*
pstring;

disabled;
key value *I

case CheckBox:
boolean enabled, disabled;

} ;

pstring;
case ...

I* missing key statement *I

missing or undefined label or enumerated value
(Symantec Rez) Symantec Rez expected an identifier, but got
something else like a ' , ' or ' } '.

Symantec C++ Compiler Guide 267

B Error Messages •

See ARM 5.3.4 for more
information.

must be void operator delete(void * [,size_t]);
(CIC++)The improper prototype occurs when the delete operator
for a class that uses the C++ model is overloaded. The prototype for
an operator delete overload must be either:

void operator delete(void *); II OK

or

void operator delete(void *,size_t) ;II OK

must be void** operator delete(void**)
(C++)You can override new and delete for Pascal classes, but the
overridden functions have different arguments from those for other
classes. Pointers are of type void**, not void*.

must use delete[] for arrays
(C++) To delete an array a, use this statement:

delete[] a; II OK

and not

delete a; II ERROR

need at least one external definition
(CIC++) ANSI requires a translation unit to define at least one
external name.

new identifier [], not allowed for handle/Pascal class
(C++)You cannot allocate an array of Pascal or handle-based objects
using new.

no constructor allowed for class 'identifier'
(C++)The class includes a variable with the same name as the class.
This prevents the use of a constructor that must have that name.

no definition for static 'identifier'
(CIC++) A static function was declared but never defined. If this
error occurs for a template function, see "§14.1 Templates" on page
218.

static void f(void);
void g(void)
{ f () i
}

268 Symantec C++ Compiler Guide

Symantec C++ for Power Macintosh Error Messages +

Note: In C++, this also occurs for template functions that are not
defined when using #pragma template_access static. For
example:

#pragma template_access static
template<class T> T f(T);
void g ()
{

int i;
i=f(7);

//ERROR: no definition for
II static 'f(int)'

no identifier for declarator
(CIC++) An identifier is missing from this declaration. For example:

void f(char [3]) //ERROR: No identifier
{

I I . . .

int [3];
int a[3];

II ERROR: No identifier
II OK: Identifier is a

no instance of class 'identifier'
(C++) You get this error message for attempting to reference class
members in a class static function.

no instance of class 'identifier' for member 'identifier'
(C++) It is illegal to attempt the following:

• Call a nonstatic member function without using an
instance of the class

• Access a nonstatic data member without using an instance
of the class

• Define a nonstatic data member outside a class

However, it is legal to attempt the following:

• Call a static member function without an object
• Access a static data member without an object
• Define a static data member outside a class

Symantec C++ Compiler Guide 269

B • Error Messages

For example:

struct CLASS {

} ;

static void static_func();
void nonstatic_func();

static int static_data;
int nonstatic_data;

int CLASS::nonstatic_data = l;
int CLASS::static_data = 1;

void main()
{

CLASS object;

II ERROR
II OK

int i
int j

CLASS::nonstatic_data;ll ERROR
object.nonstatic_data;ll OK

CLASS: :nonstatic_func();
CLASS::static_func();
object.nonstatic_func();

no match for function 'identifier'

II ERROR
II OK
II OK

(C++)The function is overloaded and the compiler cannot find a
function that matches the call.

no resources read by include statement
(Symantec Rez) Warning. If an include statement fails for any
other reason other than running out of memory, you will get this
error message. Make sure that the file exists, that it is not opened
with write permission by any other application, and that you have
specified a valid pathname.

no resources read by read statement
(Symantec Rez) Warning. If a read statement fails for any other
reason other than running out of memory, you will get this error
message. Make sure that the file exists, that it is not opened with
write permission by any other application, and that you have
specified a valid pathname.

270 Symantec C++ Compiler Guide

See ARM 8.4.3 for more
information.

Symantec C++ for Power Macintosh Error Messages +

no return value for function 'identifier'
(C++)A function has a return type other than void, but it has no
return statement or has a path by which it doesn't return. For
example:

int f ()
{

if (x)
return (1);

no such option 'symbol'
(CIC++) You used the identifier symbol as an argument to #pragma
options or _option, but it is not one of the valid options.
Example:

#pragma options(!optimize)
#pragma options(!global_optimizer)

no tag name for struct or enum

II NO
II OK

(O'C++) Warning. If a struct or an enum does not have a tag
name, further objects of this type cannot be declared later in the
program. Give every struct and enum a tag name so the
compiler's type-safe linkage system can use it.

non-const reference initialized to temporary
(C++) Warning. In most cases, this message means that a reference
is being bound to a temporary due to type conversion. Since the
reference is not const, the referenced temporary may change its
value.

However, this message becomes an error when the Strict
ANSI conformance option on the Language Settings page is set.

Non-local name 'identifier' cannot be declared in a template
instantiation.
(C++)A template instantiation cannot introduce a new name into the
global scope. For example:

template<class T> class X {
friend int operator (T tl, T t2)11ERROR
{

return ((long) tl (long) t2);

} ;
X<int> X;

Symantec C++ Compiler Guide 271

B • Error Messages

Use the following instead:

template<class T> int operator == (T tl, T t2)
{

return ((long)tl == (long)t2);
}
template<class T> class X {

friend operator== (T tl, T t2);
} ;
X<int> X;

For more information, see "§14.7 Friends" on page 224.

not a struct or union type
(CIC++) The type of object preceding the object member operator
selector (.)or the pointer to object selection (operator ->)is not
a class, a struct, or a union.

not an overloadable operator token
(C++)You cannot overload these operators:

* ? :

not enough bits to use $$byte, $$word or $$long

sizeof

(Symantec Rez) If the resource is smaller than 8 bits, you can't use
$$byte. Similarly, you need 16 bits and 32 bits to use $$word and
$$long.

not in a switch statement

(CIC++) It is illegal to use a case or default statement outside a
switch statement.

number 'number' is too large

(C/C++)The number is too large to be represented in an object with
long type.

272 Symantec C++ Compiler Guide

Symantec C++ for Power Macintosh Error Messages +

number is not representable
(CIC++) The compiler cannot represent a numeric constant because
of the constraints listed in the following table:

You cannot represent ...
Integer

Floating-point number

If it is ...
Greater than ULONG_MAX
(in limits. h)

Less than DBL_MIN or
greater than DBL_MAX

(in float. h)

Enumeration constant Greater than INT_MAX
(in limits .h)

Octal character constant Greater than 2 5 5

Table B-1 Unrepresentable numbers

object has 0 size
(C/C++)You cannot subtract pointers to objects of 0 size.

octal digit expected
(CIC++) The compiler expects that a number with a leading 0 is an
octal digit. Using an 8 or a 9 is illegal.

one argument req'd for member initializer for 'identifier'
(C++) Member initializers in which the member lacks a constructor
must have exactly one parameter because the member is initialized
by assignment.

only one identifier is allowed to appear in a declaration appearing in
a conditional expression
(C++)When declaring identifiers in if, for, while, and switch
statements, only one identifier is allowed.

only classes and functions can be friends
(C++) It is legal to declare other classes or functions friend only
when declaring a function within a class.

Symantec C++ Compiler Guide 273

B Error Messages •

See ARM 11.3 for more
information.

only pointers to handle based type allowed

(C++)You cannot declare an instance of a handle object. For
example:

class _handle X
{
}
x y;

operator functions ->O and D must be non-static members
(C++) It is illegal to declare as static these operators:

• The pointer to object selection operator (- >)
• The function call operator (())
• The array operator ([l)

operator overload must be a function

(C++) It is illegal to declare an overloadable operator as a variable.
For example:

struct X {
int operator<<; II ERROR

} ;

out of memory

(C/C++)The compiler is out of memory. Try the following:

• Break the file or function into smaller units
• Increase the partition size for the Symantec Project

Manager
• Close any open windows in the editor

overloaded function 'identifier' has different access levels

(C++) It is illegal to adjust the access of an overloaded function that
has different access levels. For example:

class base {
public:

void f(int);
private:

void f (float) ;
} ;

class sub : base {
base:: f;

} ;
II ERROR: f () is
II overloaded.

274 Symantec C++ Compiler Guide

Symantec C++ for Power Macintosh Error Messages +

overloading type conversion or operator function not allowed
(C++) Pascal object classes do not allow overloaded functions or
operators.

parameter list is out of context
(O'C++) Parameters in a function definition are illegal and are
discarded. For example:

int f(a, b); II ERROR
int g(int, int); II OK
int h(int a, int b); II OK

parameter lists do not match for template ;identifier;
(C ++) The parameter list for the template instantiation does not
match the formal parameter list for the class definition.

template<class T,
template<class T,
vector;

vector<int,20> x;
vector<float,3.0>

Pascal object class expected

int size> class vector;
unsigned size> class
II no {}
II OK
II ERROR: 3.0 is not an
II int.

(C++)You cannot use C++ virtual functions in a code resource.

pointer required before 1->1 or after 1*1

(C)These operators can apply only to pointers. The operators->
and * must be used with a pointer.

pointer required before'->','->*' or after'*'
(C++)These operators can apply only to pointers. The operators
->, - > * and the operator * must be used with a pointer.

pointer to member expected to right of . * or ->*
(C++) The identifier after . or -> * must be a pointer to a member of
a class or struct.

pointers and references to references are illegal
(C++)You cannot declare a pointer or reference to reference type, as
in:

int & & a;

Symantec C++ Compiler Guide 275

B • Error Messages

possible extraneous';'
(CIC++) Warning. The compiler finds a semicolon immediately after
an if, switch, or while statement and executes the next
statement, regardless of whether the test evaluates to true or false.
For example:

int x=l, y=O;

if (x==Y); II WARNING: Extra
printf("x==y\n"); II semicolon. printf()

II always executed.

if (x==y) II OK
printf("x==y\n");

If you want a semicolon, suppress the warning by putting white
space, such as a space or a return, between the close parenthesis
and the semicolon.

while (fread(file)==unwanted_data)
II OK: semicolon is
II intentional

possible unintended assignment
(CIC++) Warning. The assignment operator(=) instead of the
equality operator(==) appears in the test condition of an if or a
while statement. For example:

if (x=y) { ... } II WARNING: x=y is an
II assignment

instead of

if (x==y) { ... } I I OK: x==y is a test

Test the value of the assignment explicitly, like this:

if ((X=Y) ! = 0) { . . . }
I I OK: (x=y) ! =0 is a test

The compiler produces identical code for the first and third
examples.

premature end of source file
(CIC++)A string that is missing a close quote or a comment that is
missing a * I causes the compiler to reach the end of the file while
processing a comment.

276 Symantec C++ Compiler Guide

See ARM 7 7 .3 for more
information.

Symantec C++ for Power Macintosh Error Messages +

prior forward reference class identifier must match handle/Pascal
class type
(C++)This error occurs when there is a mismatch between a forward
declaration of a class and a definition, as in:

class x;
class __pasobj x {

prototype for 'identifier' should be identifier
(CIC++) A function of the form: func (s) short s; { . . . }
should be prototyped as:

func(int s);

rather than:

func (short s) ;

pure function must be virtual
(C++) Pure member functions must be declared as virtual, like
this:

class B {

} ;

virtual void f ()
void g() = O;

0; II OK
II ERROR

qualifier or type in access declaration
(C++) It is illegal to specify a storage class or type when adjusting
the access to a member of a base class. For example:

class base {
public:

} i

int b, C, d;
int bf();

class sub : private
int e;

public:
base::b;

} ;

int base: :c;
static base: : d;

base {

II OK
II ERROR
II ERROR

Symantec C++ Compiler Guide 277

B Error Messages •

See ARM 12 .3 .2 for more
information.

redefinition of default parameter
(C++) It is illegal to redefine the Jefault argument for a parameter
even if it is redefined to the same value. For example:

II Prototyping the function.
int f(int, int=O);

II Defining the function.
int f(int a, int b=O)// ERROR: Can't
{ // redefine default

return g(a,b); //argument, even to
II the same value.

The line given for the error is sometimes past the close brace of the
body of the function.

resource type has already been declared
(Symantec Rez) Symantec Rez allows you to decide if you want to
allow redeclaration of resource types. This option can be set in the
Symantec Rez options dialog. The error message is generated only
when this option is turned off.

resource types have to be exactly four characters long
(Symantec Rez) All resource types must be exactly four characters
long. The most common way to declare a resource type is to use
single quotes around four characters.

'test' //valid resource type
'tests' //invalid resource type

return type cannot be specified for conversion function
(C++) It is illegal to specify the return type of a conversion function.
For example:

class X

} ;

char* operator char* ();
operator char* ();

returning address of automatic 'identifier'

II ERROR
II OK

(CIC++)This results in an invalid pointer beyond the end of the
stack.. When the function returns, the caller receives an illegal
address that can cause a bus error.

278 Symantec C++ Compiler Guide

Symantec C++ for Power Macintosh Error Messages +

should be number parameter(s) for operator
(C++)The incorrect number of arguments appears in a declaration of
an overloaded operator. The function call operator () is n-ary; it can
take any number of arguments.

size of identifier is not known
(O'C++) It is illegal to use a struct or an array with an undefined
size. For example:

struct x {
int a [];
I* . *I

} i

struct y {

} i

int a[lOO];
I* . . . *I

statement expected

II ERROR

II OK

(O'C++)The compiler expects a statement but does not encounter
one. A missing comma or semicolon or a label without a statement
can cause this error. For example:

while (TRUE)
II
if (done)
II

endl:
} II

II

while (TRUE)
II

goto endl;

ERROR; No statement
label.

if (done) goto end2;
II

end2:

after

II OK: Null statement after label.

static function 'identifier' cannot be virtual
(C++) Static member functions of classes cannot be virtual.

static or non-member functions can't be const or volatile
(C++) It is illegal to declare a static class member function or a
nonmember class function as const or volatile.

Symantec C++ Compiler Guide 279

B Error Messages •

See ARM 14.4 for more
information.

See ARM 14.4 for more
information.

static variables in inline functions not allowed
(C++) It is illegal to declare a static variable within an inline function.

storage class for 'identifier' can't be both extern and inline
(C++)lt is illegal to use the inline type specifier for a function
declared external.

string expected
(CIC++) The compiler expects to encounter a string but cannot find
one. Check for an #ident directive not followed by a string.

string too long (will be truncated)
(Symantec Rez) Warning. If no length indicator is given, a
pstring, wstring, or cstring stores the number of characters
in the corresponding data definition. However, the maximum size of
a pstring is 255, and the maximum size of a wstring and
cstring is 2,147,483,647.

struct-declaration-list can't be empty
(C) In C, a st rue t must contain at least one member. For example:

struct X {};

template-argument 'identifier' must be a type-argument
(C++) In a function template, template arguments must be type
arguments. Unlike class templates, function templates cannot have
expression arguments. For example:

template<class T, int x> foo(T y)
II ERROR: xis an expression argument.
{

return x+y;

template-argument 'identifier' not used in function parameter types
(C++)When you define a function template, every template
argument in the template's argument list must appear in the
function's argument list. For example:

template<class
int bar(Tl x)
{

T2 y;
II

Tl, class T2>
II ERROR: T2 isn't in
II function's
II argument list.

280 Symantec C++ Compiler Guide

Symantec C++ for Power Macintosh Error Messages +

the change statement is not supported
(Symantec Rez) Warning. Because Symantec Rez is a translator in an
integrated environment, the change statement is not supported.
Symantec Rez can only compile resource files and add resource
contributions to the resource fork of a project, it cannot delete,
change or otherwise modify the resource fork of the project except
to add to it.

the delete statement is not supported
(Symantec Rez) Warning. Because Symantec Rez is a translator in an
integrated environment, the delete statement is not supported.
Symantec Rez can only compile resource files and add resource
contributions to the resource fork of a project, it cannot delete,
change or otherwise modify the resource fork of the project except
to add to it.

the resource type 'type' has been redeclared
(Symantec Rez) Warning. Symantec Rez allows you to decide if you
want to allow redeclaration of resource types. This option can be set
in the Symantec Rez options dialog. You will get this warning
when the option is enabled, otherwise Symantec Rez will generate a
fatal error and halt compilation of the file.

too many initializers
(CIC++) The number of initialization values exceeds the expected
number of data items specified in the declaration of the data
structure. Example:

char *directions[4] ={"north", "east",
"south", "west", "lost" }; II NO

struct { short a,b,c; } x[2] =
{ 1 , 2 I { 3 I 4 } } i I I NO

too many parameters to $$Format statement
(Symantec Rez) The $$Format function has a maximum of 20
parameters.

trailing parameters must have initializers
(C++) Parameters with default initializers must occur at the end of a
parameter list. For example:

int f(int, int=l, int=O);
int g(int=O, int=l, int);
int h(int=O, int, int=l);

II OK
II ERROR
II ERROR

Symantec C++ Compiler Guide 281

B • Error Messages

type conversions must be members
(C++) It is illegal to declare a type conversion function outside a
class. Declare it inside a class.

type is too complex
(C++)The compiler appends information regarding parameter and
return types to the end of a function name. With this information
added, the identifier exceeds the compiler's maximum of 1024
characters.

type mismatch
(C!C++)This error is either a syntax error or a warning message. The
compiler expects to find one data type but finds another. More
information about which types it expects and what it finds follows
this message.

type must be void **operator new(Pascal void (*) (), size_t)
(C++)You can override new and delete for Pascal classes, but the
overridden functions have different arguments from those for other
classes. Pointers are of type void**, not void*, and new has an
additional (leading) parameter of type pascal void (*) () .

type must be void *operator new(size_t [,..]);
(C++)The wrong prototype appears when the new operator for a
class that uses the C++ model is overloaded. When operator new is
overloaded, it must have a return type of void * and take a first
argument of size_t. The compiler automatically sets the value of
the first argument to be the class size in bytes.

type of 'identifier' does not match function prototype
(C!C++)The arguments of the function do not match the prototype
previously given.

type or storage class is required in the declaration of 1 identifier•
(CIC++) A declaration must include a type or storage class. This error
is most often caused by a typedef that is either not declared or
misspelled. For example:

typedef short OSErr;
OSerr oserr; //ERROR

282 Symantec C++ Compiler Guide

Symantec C++ for Power Macintosh Error Messages •
undefined escape sequence
(CIC++) The compiler recognizes only the following escape
sequences in a string or character constant:

This
sequence ...
\'
\II

\?
\\
\a
\b
\f
\n
\r
\t

Represents ...

Single quote
Double quote
Question mark
Backslash
Alert (bell)
Backspace
Form feed
Newline
Return
Tab
Vertical tab \v

\xXXX
\000

The character specified with the hexadecimal number
The character with the octal number

Table B-2 Defined escape sequences

undefined identifier 'identifier'
(CIC++) It is illegal to use an identifier without declaring it. Spell the
identifier correctly.

undefined label 'identifier'
(CIC++)A label must be defined for the goto command to go to.
Spell the label correctly and make sure the label appears in the same
function as the goto.

undefined tag 'identifier'
(CIC++) The structure or union is not defined.

undefined use of struct or union
(CIC++) It is illegal to use operators, such as arithmetic or
comparison operators, on a struct, class, or union.

unexpected end of file
(Symantec Rez) End-of-file was reached before a Symantec Rez
construct was completed. Symantec Rez expected more resource or
type statements. A common error is a missing } . Example:

type 'test'{
/* EOF - end of file before close brace */

Symantec C++ Compiler Guide 283

B • Error Messages

unexpected end of resource
(Symantec Rez) Symantec Rez expected to see at least one more
statement before the closing ' } '

unexpected end of data statement
(Symantec Rez) Symantec Rez expected more resource statements to
match the type statements, or you might be missing a } .

union members cannot have ctors or dtors
(C++) A union cannot contain a member that is an object of a class
with a constructor or a destructor.

unknown enumerated value or label
(Symantec Rez) Symantec Rez encountered an identifier that has not
been defined. Make sure that you are not missing a',' or';'.

unknown resource type 'symbol'
(Symantec Rez) All resource types must be defined before being
referenced. Make sure that the resource type falls within the range
for the given type definition, and that you have included the correct
header file if it is a predefined resource type.

unknown string prefix 'symbol'
(Symantec Rez) The numeric types (bitstring, byte, integer
and longint) are fully specified like this:

[unsigned] [radix] numeric-type
[= expr I symbol definition ...];

Where radix is one of the following string constants:

hex decimal octal binary

If any string constant other than the word unsigned or one of the
radix given above appears before the numeric type, it is considered
an unknown string prefix.

unknown token
(Symantec Rez) Certain characters that are part of the ASCII character
set are illegal tokens in Symantec Rez. However, any character can
occur within comments, string literals or character literals. Example:

integer = #define M 4; /* Illegal */

284 Symantec C++ Compiler Guide

Symantec C++ for Power Macintosh Error Messages •
unrecognized pragma
(O'C++)This error occurs when a #pragma is seen that the compiler
does not recognize. It is a warning when using #pragma xxx and
an error when using #pragma SC xxx.

unrecognized preprocessor directive ;#identifier;
(O'C++)The compiler does not support the specified preprocessor
directive.

unrecognized token
(O'C++)The compiler does not recognize the token as valid. Check
for an extra U or L suffix in an integer constant. It is illegal to use $
and @ in identifiers.

unterminated macro argument
(O'C++)A macro argument is missing a close quote or parenthesis.

unterminated string
(O'C++)A string is missing a close quote, or a file contains a lone
quote mark.

use delete[] rather than delete[expr], expr ignored
(C++) Warning. This syntax for deleting an array of objects is
outdated, although the current version of the compiler supports it
and ignores expr.

delete [expr] p; II WARNING: obsolete

New code uses this syntax instead:

delete [] p; II OK

using operator++O (or --) instead of missing operator++(int)
(C++) Warning. It is illegal to use the postfix increment (or
decrement) operator on an object of a class, such as x++, without
overloading the postfix operator for that class. However, the prefix
operator is overloaded. The compiler uses the prefix version of the
operator.

To overload the postfix increment operator x + +, use
operator++ ().To overload the prefix increment operator ++x,
use operator++ (int) .

Symantec C++ Compiler Guide 285

B • Error Messages

value of expression is not used
(CIC++) Warning. It is illegal to compute an expression without
using its value, such as the equality operator(==) instead of the
assignment operator(=). For example:

X==y; II WARNING: The value of x
II doesn't change.

X=y; II OK: x and y have same value.

Failure to assign the result of a computation to a variable can also
cause this error. For example:

t-5; II WARNING: Result of this

X=t-5;
t-=5;

II
II
II

computation is lost.
OK: x contains the result.
OK: t contains the result.

variable ;identifier; used before set
(CIC++) Warning. The optimizer discovers that a specified variable
appears before it is initialized. The program may generate
inexplicable results.

vectors cannot have initializers
(C++) It is illegal to initialize a vector of objects with a constmctor
that has an argument list.

very large automatic
(CIC++) Warning. Large automatic variables can cause stack
overflow. Dynamically allocate the memory with a function such as
malloc ().

voids have no value
(C) Functions declared as void cannot return a value.

voids have no value, ctors and dtors have no return value
(C++) It is illegal to return a value from a constmctor, destmctor, or
function declared void or a reference to a void. It is also illegal to
use the value of a constmctor, destmctor, or function declared void.

'while' expected
(CIC++)The keyword while is missing from the end of a
do/while loop. For example:

286 Symantec C++ Compiler Guide

Symantec C++ for Power Macintosh Error Messages +

do {
x = f(y);

} (x!=O);

do {
x = f (y) i

} while (x!=O);

II ERROR: missing while.

II OK

wstring too long (will be truncated)
(Symantec Rez) If no length indicator is given, a ws tr ing stores the
length in the first two bytes of the string. The maximum size of a
wstring is 65,535.

Symantec C++ Compiler Guide 287

Index•

Entries in boldface are menu commands. Entries in typewriter
face are functions, methods, variables, keywords, or files.

Symbols
#include statement 39
#pragma directive

seepragmas
#pragmas

see pragmas

Numerics
4-byte IEEE single precision 47, 195
8-byte IEEE double precision 47, 195

A
aliases 41
alignment 87

bit-fields 120
data object 43
mac68k 114
mode 43
options 87
powerpc 115
structure 114

Annotated C++ Reference Manual
8, 189, 227

see also ARM conformance and
ANSI C++

ANSI C
ey' 1sions 204-205
it. .mentation-defined 189
libraries 136
relaxed conformance 55
standard 8
strict conformance 53

ANSI C standard 194-204
2.1.1.3 Diagnostics 194
2.1.2.2.1 Program startup 194

2.1.2.3 Program execution 194
2.2.1 Character sets 194
2.2.1.2 Multibyte characters 194
2.2.4.2.1 Sizes of integral types 194
3.1.2 Identifiers 195
3.1.2.2 Linkages of identifiers 195
3.1.2.5 Types 195
3.1.3.4 Character constants 196
3.1.7 Header names 196
3.2.1.2 Signed and unsigned

integers 197
3.2.1.3 Floating and integral 197
3.2.1.4 Floating types 197
3.3 Expressions 197
3.3.2.3 Structure and union

members 197
3.3.3.4 The sizeof operator 197
3.3.4 Cast operators 197
3.3.5 Multiplicative operators 198
3.3.6 Additive operators 198
3.3.7 Bitwise shift operators 198
3.3.8 Relational operators 198
3.5.1 Storage-class specifiers 198
3.5.2.1 Structure and union

specifiers 198
3.5.2.2 Enumeration specifiers 199
3.5.3 Type qualifiers 199
3.5.4 Declarators 199
3.6.4.2 The switch statement 199
3.8.1 Conditional inclusion 200
3.8.2 Source file inclusion 200
3.8.3 Macro replacement 200
3.8.6 Pragma directives 200
3.8.8 Predefined macro names 200
4.1.5 Common definitions 201

Symantec C++ Compiler Guide 289

Index •
4.10.3 Memory management

functions 203
4.10.4.1 The abort function 203
4.10.4.3 The exit function 203
4.10.4.4 The getenv function 203
4.10.4.5 The system function 203
4.11.6.2 The strerror function 203
4.12.1 Components of time 204
4.12.2.1 The clock function 204
4.2 Diagnostics 201
4.3.1 Character-testing functions

201
4.5.1 Treatment of error conditions

201
4.5.6.4 The fmod function 201
4.7.1.1 The signal function 201
4.9.10.4 The perror function 203
4.9.2 Streams 202
4.9.3 Files 202
4.9.4.1 The remove function 202
4.9.4.2 The rename function 202
4.9.5.2 The fflush function 202
4.9.6.1 The fprintf function 202
4.9.6.2 The fscanf function 203
4.9.9.1 The fgetpos function 203
4.9.9.4 The ftell function 203

ANSI C++
draft rules implemented 221
libraries 136
relaxed conformance 58
strict conformance 55

Apple standard libraries 133
AppleScript 78

ansi 80
ansi_strict 80
chars_unsigned 81
check_ptrs 84
dont_inline 97
error_reporting 98
force_frame 96
generate_syrnbolics 97
generate_warn 100
global_optimizer 90
gopt_time 90
infer_protos 86
map_cr 82
nati ve_language 82
pack_enums 81
prefix 109
read_header_once 81
struct_align 88
Symantec Project Manager and 78

290 Symantec C++ Compiler Guide

warn_cast_incomplete_type
107

warn_empty_loops 102
warn_large_auto103
warn_missing_overload 104
warn_nest_comments 101
warn_old_style_definition

107
warn_old_style_delete 103
warn_ref_init 105
warn_return_addr_auto 106
warn_struct_without_tag

104
warn_unintended_assign 101
warn_unrecognized_pragma

106
warn_unused_expressions

102
warn_used_before_set 105

arguments
passing to Pascal routines 28

ARM conformance 206-226
12.2 Temporary Objects 218
14.1 Templates 218
14.4 Function Templates 221
14.7 Friends 224
15 Exception Handling 225
16.10 Predefined Names 226
16.4 File Inclusion 225
16.5 Conditional Compilation 225
16.8 Pragmas 226
2.3 Identifiers 206
2.5.2 Character Constants 207
2.5.4 String Literals 207
3.4 Start and Termination 207
3.6.1 Fundamental Types 208
4.1 Integral Promotions 213
4.2 Integral Conversions 213
4.3 Float and Double 213
4.4 Floating and Integral 213
5.0 Expressions 213
5.2.4 Class Member Access 214
5.3.2 Sizeof 214
5.3.3 New 214
5.4 Explicit Type Conversion 215
5.6 Multiplicative Operators 215
5.7 Additive Operators 215
5.8 Shift Operators 216
7.1.6 Type Specifiers 216
7.2 Enumeration Declarations 216
7.3 Asm Declarations 217
7.4 Linkage Specifications 217

B

9.2 Class Members 217
9.6 Bit-Fields 217

bit-fields 120, 198, 217, 246, 247,
252

Build Errors window 229

c
C language reference 194-205
C++

learning 3, 8
libraries 134

C++ language reference 206-226
basic concepts 207-212
classes 217-218
declarations 216-217
exceptions 225
lexical conventions 206-207
preprocessing 225-226
see also ARM conformance
special member functions 218
standard conversions 213-216
templates 218-225

C++ Programming Language, Second
Edition 8, 206

callback routines 118
calling conventions for PowerPC

122-127
carriage returns 82, 134
char 81
character constants 53, 56, 81, 196,

207
code fragment 133
code optimization 89-94
code resources 119
comments, nested 101
common subexpression elimination

(CSE) 92
compiler

error messages
see error messages and warning

messages
options 77, 186

C language settings 83-86
C++ language settings 79-82
code optimization 89-94
compiler settings 87-88
debugging 95-98
prefix 108-109
Symantec Rez 186-188
warning messages 99-107

resource 149
compiling resources 147
consoles 136
const violations 121
creating custom libraries 137

D
debugging 95-98

global optimizer, use in 89
DeRez 151, 152, 156
dimensionless arrays 50
double-byte characters 82

E
enum 120
enumeration constant 80
error messages 227-287
error reporting 97
escape sequences 134
exception handling 225
extensions, Symantec C 204

F
files

resource description 147
type declaration 149-150

floating-point
differences from 68K 117
limits 47-49
PowerPC parameter passing 122
registers 42

folder
shielded 40
structure 131-135
Symantec Rez 150

foreign language
double-byte characters and 82

function
inline 97
old style definitions 107
prototypes 115
prototypes in C 84
pure virtual 122

function reference
in THINK Reference 141

functions

G

special member 218
static member 121

global optimizer 89
and uninitialized variable 105

Symantec C++ Compiler Guide 291

Index •
debugging and 89

Gray 206

H
headers

Apple standard library 133
customizing 15
porting from 68K 113
PPC MacHeaders 15
PPC MacHeaders++ 15
read once option 81
searching for 39

inherited extension 51
inline function 97
integers

limits 45-46

L
libraries

68K 131, 132
ANSI 132, 136
ANSI++ 132
ANSI-small 132
ANSI-small++ 132
Apple standard 131
ApplePPCRuntime.o 133
AppleTalk 135
CommToolbox 135
complex 132
CPlusLib 132
CPlusLib TCL 132
Graf3D 135
HyperXLib 135
IOStreams 132
Macintosh-specific 134
MacTraps 135
MacTraps2 135
mapping from 68K to PowerPC

132, 135
MPWApplePPCRuntime.o 133
MPWPPCRuntime.o 133
nAppleTalk 135
Old MacTraps 135
oops 131
OSL 135
PowerPC static 132
PPCANSI 136
PPCANSI.o 132
PPCANSI_small.o 132
PPCcomplex.o 132

292 Symantec C++ Compiler Guide

PPCCPlusLib TCL.o 132
PPCCPlusLib.o 132
PPCIOStreams.o 132
PPCRuntime.o 133
PPCunix 136
PPCunix.o 132
profile 132
profile++ 132
QuickTime 135
required for PowerPC 133
SANE 135
shared 132
shlbApplePPCRuntime.o 133
shlbPPCRuntime.o 133
standard 131
Standard Template Library (STL)

131
StdCLib.xcoff 134
StdCRuntime.o 134
unix 132, 136
unix++ 132

Link Errors window 138
linker

external 133
internal 133

literals
Pascal string 29

loops
optimization 92-93
warnings 102

M
Mac #includes folder 33
Mac #includes.c 16
macros

predefined 59
mapping libraries from 68K 135
messages

N

see error messages and warning
messages

nested comments 101

0
old-style definitions

and prototypes 85
online documentation

Standard Templates Library (STL)
138

operator
++/-- 104

optimization
accessing in code 71
Constant propagation 93
Copy propagation 94
Create loop induction variables 93
CSE elimination 92
Dead assignment elimination 90
Dead variable elimination 91
global optimizer 89
Hoist very busy expressions 92
Optimize for space 90
Optimize for time 90
Remove loop invariants 92

optimizer 89
option

p

Align to 1/2/ 4 byte boundary 87
Always generate stack frames 96
ANSI conformance 79
Check pointer types 83
enums are always ints 80
Error reporting 97
Language support 82
Map carriage returns 82, 134
Optimize for time/space 90
Read each header file once 81
Relaxed ANSI conformance 79
Report all errors in a file 97
Report the first few errors 97
Stop at first error 97
Strict ANSI conformance 80
Strict Prototype Enforcement 84
Symbolic Debugging 97
Treat chars as unsigned 81
Use function calls for inlines 97
Use global optimizer 89
Warning messages 100

parameter
assigning to registers 123, 126
deduced template 222
passing 122, 126

Pascal
routines 28
strings 29
types 28

pointer checking 83
porting

32-bit clean code and 117
8-byte IEEE floating-points and

117
code 111-127

code fragments and 119
compiler differences 120-122
converting callbacks and 118
direct register access and 117
direct VIA access and 117
from 68K 113-119
from MPW C++ 120-122
from Unix 136
function prototypes and 115
inline assembly and 114
int and structure size assumptions

and 114
low memory globals and 116
mangling conventions and 120
modifying code resources and 119
performance-critical and 119
pragmas and 118
predefined macros and 118
steps performed on 68K 113-118
steps performed on Power

Macintosh 118-119
strict type checking and 116
universal procedure pointers and

118
PPC MacHeaders 108
PPC MacHeaders++ 108
PPC static library 132
PPCANSI library

common option settings 138
creating your own 137
customizing 137

PPCANSI_small library 137
PPCComplex 139
PPCIOStreams 139
PPCPlusLib TCL library 137
pragma directive

seepragmas
pragma options ()

ansi 80
ansi_relaxed 80
ansi_strict 80
chars_unsigned 81
check_ptrs 84
dont_inline 97
force_frame 96
generate_warn 100
global_optimizer 90
gopt_time 90
infer_protos 86
mapcr 82
pack_enums 81
read_header_once 81

Symantec C++ Compiler Guide 293

Index •
report_all_err 98
require_protos86
stop_at_first_:_err 98
struct_align 88
warn_cast_incomplete_type

107
warn_empty_loops 102
warn_large_auto 103
warn_missing_overloadl04
warn_nest_comments 101
warn_old_style_definition

107
warn_old_style_delete 103
warn_ref_init 105
warn_return_addr_auto106
warn_struct_without_tag

104
warn_unintended_assign 101
warn_unrecognized_pragma

106
warn_unused_expressions

102
warn_used_before_set 105

pragmas
align 60
export 61
external 61
import 61
internal 62
lib_export 62
message 63
noreturn63
once 63
options 63
options align 64
parameter 64
SC modifier 60
segment 64
template 64
template_access 65
trace off 66
trace on 66
unrecognized 106

precompiled headers 15
data definitions in 121

predefined macros 59
project tree 39, 41
prototypes

enforcement levels 84
porting from 68K 115
virtual functions 122

294 Symantec C++ Compiler Guide

R
registers

direct access to 117
floating-point 126
passing parameters in 123
reusing 90-91
variables in 42

ResEdit 147
Resorcerer 147
resource compiler 149
resource description

syntax 153, 179-186
resource description file 151

comments 151
data statement 151, 154
resource statement 151,

165-175
type statement 151, 154-165

resource description language 147

s
shielded folder 40
stack frames 96

always generate 96
layout 123
overflow 103

standard libraries 131-138, 194
68K 131
ANSI C 131
Apple 131
Apple C 134
differences between Apple and

Symantec 134
PowerPC 131
PPCcomplex 136
PPCCPlusLib 136
PPCIOstreams 136
Standard Template Library (STL)

136
Symantec 131
using Apple 133

Standard Libraries Reference 138
see also THINK Reference

standard library functions 136
Standard Template Library (STL) 131

· online documentation 138
static functions, and prototypes 85
string literals 134
strings

converting 29

structs
as Toolbox arguments 28

Symantec Rez 147-188
arithmetic 157
errors generated by

see Appendix B
options for 186-188
preprocessor directives 175-179
using 149
vs. MPW Rez 188

Symantec Rez folder 150
Symantec standard libraries 131
system tree 16, 39

T
template

ANSI vs. ARM 218
default linkage 218
new restrictions on 224
template pragma 64
template_access pragma 65

THINK Reference 138
button panel 140
Categories 144
Copy Code Examples 142
databases 138
error messages 139
Find in Doc Server 139
Fune Ref 144
function reference page 142
Header Files 144
Help 140, 144
hyperlinks 140
information area 140
Inside Macintosh volumes I - VI

139
lost databases 140, 144
navigating through 140
online documentation 140
page title field 140
pages in 144
PPCComplex 139
PPCIOStreams 139
quick-jump buttons 143
returns section 142
Search menu 139
Symantec C standard libraries 138
THINK Class Library 139
using the tables of contents 143

Toolbox routines 27-32
arguments, converting 28
header files 32-33

libraries 27
strings, and 29

tree
duplicate file names 41
project 39, 41
system 16, 39

type

u

checking 81, 83
incomplete structure 107
Pascal 28

universal headers 116
universal procedure pointer 118

v
variable

automatic 103, 106
copying 94
removing dead 91
replacing with constants 93

variables
removing assignments to 90-91

w
warning messages 99-107, 227

c 100
C++ 95, 99
see also Appendix B

window
Build Errors 229
Link Errors 138
THINK Reference 139

Symantec C++ Compiler Guide 295

05-30-00140

SYMANTEC.

Technical Support
For specific technical questions about Symantec C++,

please call our technical experts by choosing one of the three support options below.
For information on Symantec's broad range of service and support programs, ,

see the Service and Support Solutions section in the User's Guide.

StandardCarc Support
503-465-8470 (No charge for 90 days from date of first call.)

PriorityCare 800 or PremiumCare 800 Support
800-927-4014 (Charged on a per-incident or per-year basis.)

PriorityCare 900 Service
900-646-0004 (Charged on a per-minute or per-incident basis.)

Customer Service
For general questions about Symantec products, please call

800-441-7234 (U.S. and Canada) or 503-334-6054.

Symantec Corporation Headquarters
10201 Torre Avenue

Cupertino, California 95014
408-2 53-9600

S;mamec and the S)man<ec logo are U.S. regiSfCred <rademarks of S)mar<ec Corporation. Other brands and produCIS are
<rademarks of tl1eir rcspec<ive holder/s. ©1995 S;man<ec Corpomlion. All Righ~ Resen·ed. Prin<ed in the U.S.A. 436-05 18-12 111)5 I 19493JR 411)5 '

Made from JOO
RCC)ded Materi

