
~ Neiv Technology Building Blocks

Symantec C++
for the Macintosh:
The Basics

• Master the new Symantec C++ compiler
• Learn the exceptional features of C++
• Design and maintain C++ applications

Symantec C++
. for the Macintosh:
The Basics

Symantec C++
for the Macintosh:
The Basics

John May & Judy Whittle

M&T Books
A Division of MIS:Press
A Subsidiary of Henry Holt and Company, Inc.
115 West 18th Street
New York, New York 10011

© 1993 by MIS:Press

Printed in the United States of America

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage and retrieval
system, without prior written permission from the Publisher. Contact the Publisher for information on
foreign rights.

Limits of Liability and Disclaimer of Warranty
The Author and Publisher of this book have used their best efforts in preparing the book and the pro­
grams contained in it. These efforts include the development, research, and testing of the theories and
programs to determine their effectiveness.

The Author and Publisher make no warranty of any kind, expressed or implied, with regard to these pro­
grams or the documentation contained in this book. The Author and Publisher shall not be liable in any
event for incidental or consequential damages in connection with, or arising out of, the furnishing, per­
formance, or use of these programs.

ISBN 1-55828-276-9: $39.95

Publisher: Steve Berkowitz
Associate Publisher: Brenda McLaughlin
Development Editor: Margot Owens Pagan
Production Editor: Mark Masuelli
Assistant Production Editor: Joseph McPartland
Copy Editor: Andrea Salvatore
Technical Editor: Ray Valdes

95 94 93 4 3 2 1

Table of Contents

Ackno'Ytfledgments •••••••••••••••••..••••••••••••••••••..••••••••• xvii

l'refe1ce ••• xix

Why This Book is For You •••••••.••••••••••••••••••••.•••••••••••• 1

lntrc>cl11ctie>n ••• ~
Prerequisites- Software and Hardware Required 5
How the Book Is Organized 5

Object-Oriented Methodology- A Powerful Approach 6

C++ 6

Chapter 1: Basic Programming Concepts ••••••••••••••.••• 7

Numbering Systems 7

Decimal Numbers 8

Binary Numbers 8
Hexadecimal Numbers 9

v

Symantec C++for the Macintosh: The Basics

Octal Numbers ... 11
ASCII Characters .. 12
Bits, Bytes, and Nibbles ... 13

Kilo, Mega, Giga ... 14
Signed and Unsigned Numbers ... 15

Ones Complement ... 16
Twos Complement Rule ... 17

Logic .. 17
AND Operation .. 18
OR Operation ... 19
NOT Operation .. 21
XOR Operation .. 21

Summary ... 22
Exercises ... 22

Chapter 2: Obiect-Oriented Development 27
Procedural versus Object-Oriented Programming 28

Procedural Programming ... 28
Object-Oriented Problem Solving ... 28
Putting to Rest an Old Myth ... 29

OOP and C++ .. 31
Advances in Development Environments .. 32
Objects and Classes .. 33

Objects .. 33
Classes .. 34

Messages and Methods ... 35
Encapsulation ... 35
Class Diagrams ... 35

Methodology .. 38
Specifying Fields and Methods .. 38
Subclassing and Inheritance .. 38
Abstract Class .. 39

Overriding ... 40
Multiple Inheritance .. 40
Polymorphism and Dynamic Binding .. .41

vi

\

Table of Contents

Iterator Methods .. 42
Where to Begin an Object-Oriented Program .. .44
Summary ... 45
Exercises-Programming with Objects .. .45

Chapter 3: The Symantec C++ Environment ••••••••••••• 47

Getting Started with Symantec C++ ... 48
Creating a Project ... 48

Segments .. 51
Creating a Source File .. 52
Adding Libraries ... 53
Compiling the Program .. 54
Running the Program ... 55
Building an Application ... 55
Summary ... 57
Exercises ... 57

Chapter 4: Fundamentals of C++ 59

Comments .. 60
Statements .. 61
White Space .. 62
Variables ... 62

Reserved Variables ... 63
Predefined Variable Types ... 63
Declarations ... 66
Definitions ... 66
Initialization ... 66
Signed and Unsigned .. 67
Specified Constants ... 68

Logical Values ... 69
Strings ... 69

String Constants .. 70
Scope ... 70
Operators .. 70

Unary Prefixed Operators .. 7 4

vii

Symantec C++for the Macintosh: The Basics

Deferencing - * .. 7 4
Address of - &. .. 75
Negative - - .. 75
Ones Complement - - ... 75
Logical NOT- ! .. 75
Increment-++ .. 76
Decrement - - - ... 77
Size of - size ofl) ... 78
Cast to- {cast) .. 78
New Operator-new .. 79
Delete Operator - delete .. 79

Unary Postfixed Operators .. 80
Function Call - {) ... 80
Array Subscript - [] .. 81
Dynamic Arrays, New ... 82
Dynamic Arrays, Delete .. 83
Direct Selection - .. 83
Indirect Selection - - >•.............•..•.•..•.•.....•...•..•...................... 84
Increment - + + .. 84
Decrement - - - ... 85

Binary Operators-Arithmetic and Logical .. 85
Addition - + .. 86
Subtraction - - ... 86
Multiplication - * .. 86
Division - / ... 87
Modulus - % .. 8 7

Bitwise AND-&. ... 87
Bitwise Inclusive OR - I .. 88
Bitwise Exclusive OR{XOR) - 11 •• 89
Left Shift - << ..•.•.•..•.•..•.......•....•.......•...................................•.••........ 90
Right Shift - >> .•.•..•.•..•.•............•.••..•..................................••.•.•....... 90
Equal {or replacement) - = ... 91

Binary Operators-Assignment ... 91
Addition Update - += ... 93

Binary Operators-Comparison .. 94

viii

Table of Contents

Logical AND and Logical OR .. 96

Ternary Operator - ?: ... 97

Comma Operator ... 98

Summary ... 99
Exercises ... 99

Chapter 5: Controlling the Program Flow 103

Statements .. 104

Expression and Null Statements ... 104

Blocks ... 104

If .. 105

If-Else ... 108
Else-If ... 109
Switch ... 110

Switch-Break .. 112

Which Do I Use-Switch or If-Else? ... 114

While .. 115

Do-While Loop .. 116

For Loop .. 116
While versus For .. 118

Break ... 118
Continue ... 119

Labels and Goto ... 119

Style .. 121

Error from Fortran .. 121
Rule 1: Placement of Curly Braces .. 122
Rule 2: Use Curly Braces on All If Tests ... 123

Rule 3: Space Between Statement Keywords and Parentheses 125
Rule 4: No Space Between Function Name and Parentheses 125
Rule 5: Use Spaces Between Binary Operators 125
Rule 6: Use Spaces After Commas and Semicolons 126

Rule 7: Capitalize Every Main Word in a Function Name 126
Rule 8: Capitalize Every Main Word in a Variable Name

Except the First ... 127
Rule 9: Use Blank Lines Only When They Convey Meaning 127

ix

Symantec C+ +for the Macintosh: The Basics

Rule 10: Go Easy on the Use of Underscore U 128
Rule 11: Use a Break on the Last Case of a Switch Statement 128
Rule 12: Operators in Definition and Declaration Statements 129
Summary ... 129
Exercises ... 130

Chapter 6: Functions and Variables 133
Functions .. 135

A Function Definition ... 135
A Function Definition Example .. 136

Function Prototypes ... 136
Variable Number of Arguments .. 137

Passing Function Arguments ... 138
Passing by Value .. 139
Passing by Pointer .. 139
Passing by Reference .. 140
Default Arguments .. 141
Passing Multiple Values .. 142

Explicit Void ... 142
The Stack .. 142

The Heap ... 146
C and Pascal on the Macintosh ... 146
Procedures and Functions .. 14 7
Order of Parameters Pushed .. 148

Type Conversion .. 149
Variable Storage Types ... 149

"auto" Variables ... 150
Static Variables .. 150
External Variables .. 151
Register Variables .. 152
"canst" Variables ... 154

Reference Declarations .. 155
Right-Left Rule .. 156
Function Overloading .. 158
Scope Resolution Operator .. 159

x

Table of Contents

Inline Functions ... 159
C++ Preprocessor .. 160

Conditional Directives .. 161

C++ Preprocessor Examples: .. 161

#define versus const and inline ... 162

The Preprocessor and Comments ... 163

Summary ... 163
Exercises ... 163

Chapter 7: Input/Output Streams •••••••••••••••.••••••••• 165

Streams ... 166

I/O Channels .. 166

Predefined I/O Stream Manipulator .. 167

Generalized Escape Sequence .. 167
Formatted Output .. 168

Advanced Formatting .. 169
Input Stream Example ... 170

I/O on the Macintosh ... 171

Summary ... 171

Exercises ... 172

Chapter 8 Advanced Data Structures •••••••••••••••••••• 173

Pointers ... 17 4
Initializing a Pointer .. 175

Void Pointers .. 176
Arrays .. 177

Initializing Array Values .. 178

Initializing String Arrays ... 178
Indexing Arrays .. 179

Array Assignment .. 179
Multidimensional Arrays .. 180

Free Store Operators ... 181
Testing for Space .. 181
Destroying Heap Variables .. 181
When to Use Dynamic Memory Allocation 183

xi

Symantec C++for the Macintosh: The Basics

Enumerated Values .. 183

Enumerated Variables ... : 184
Enumerated Types ... 185
"typedef" .. 185

Structures .. 186

Declaring a Structure ... 187
Anonymous Structures .. 188

Referencing Data Elements of Individual Structures 188
Padding ... 189

Creating an Array of Structures .. 189
Structures and Bit Fields .. 191

Unions ... 192

Operator Overloading ... 193

Member Functions and Structures .. 194

Summary ... 197

Exercises ... 197

Chapter 9: Classes in C++ ••••••••••••••••••••••••••••••••••••• 199

Defining a Class ... 200
Classes and Structures ... 201

Data Hiding .. 201

Objects .. 202

Member Functions ... 202

Constructors ... 203
Destructors ... 204

Initializing Functions ... 205
Accessor Methods .. 206
Collaborators .. 208
Friends ... 208

Friend Class .. 208

Friend Functions .. 209
Data-Hiding Convention ... 209

Summary ... 210
Exercises ... 210

xii

Table of Contents

Chapter 10: Linked List Example •••••••••••••••••••••••••• 213
Statement of the Problem .. 214

Creating a Circular List ... 215
Adding and Deleting Nodes ... 215

Building the Code ... 216

Creating a Friend Class .. 217

Insert Function ... 218

Extract Function .. 219

InputData Function ... 220
DisplayData Function .. 220

Destructor .. 221
Writing the Main Function .. 222
Summary ... 223

Exercises ... 224

Chapter 11 : Subclassing and Inheritance •••••••••••••• 225
Defining Derived Classes ... 226

Virtual Functions ... 227
Pure Virtual Functions .. 22 7

Protection Keyword .. 228
Constructors in Derived Classes ... 231

Destructors in Derived Classes ... 232

"I" Functions in Derived Classes .. 232
Static Members ... 235

Static Member Functions .. 236
When to Use Static Members .. 237

Creating Objects (Instances) .. 237
Dynamic Object ... 238
Initializing Instances .. 238

Using Instances .. 238
Which Functions? ... 238
Which Data? ... 240
Accessing Member Data .. 240
The C++ "this" Pointer .. 241

xiii

Symantec C++for the Macintosh: The Basics

Summary ... 243

Exercises ... 243

Chapter 12: Phonebook Example ••.••.••••••••••••••••••• 245

Source File Organization .. 246
Naming Conventions ... 246

Class Diagrams ... 24 7
PhoneBook Project ... 24 7

UString.h .. 247

UString.cp ... 249

UTelephone.h ... 251
UTelephone.cp ... 251

UPhoneBook.h ... 254
Class TEntity ... 254

Class TPerson ... 256

Class TCompany .. 256

UPhoneBook.cp .. 257

PhoneBook.cp ... 25 7
Pause Routine .. 258

Summary ... 259
Exercises ... 259

Chapter 13: Advanced Features of C++ •••••••••••••••• 261

Inline Functions in a Class .. 262

Operator Overloading in Classes ... 262

Pointers and Objects .. 263
Shape Example .. 270
Templates ... 281

Template for a Routine .. 282

Template for a Class .. 282
Multiple Inheritance .. 284

Ambiguities of Data Members in Multiple Inheritance 285

Ambiguities of Member Functions in Multiple Inheritance 286
Summary ... 288
Exercises ... 288

xiv

Table of Contents

Chapter 14: ToolBox, Memory
and Symantec C++ ••• 289
Using the ToolBox from C++ ... 290
Pointers and Dynamic Memory .. 290

Master Pointers .. 290
Dereferencing a Handle ... 293

The Keyword "inherited" .. 294

Summary ... 295

Chapter 15: Using Symantec C++ 297
THINK Project Manager .. 298
Source Menu ... 298

Adding, Removing and Getting Information on Files 299
Debug .. 300
SourceServer ... 300

Checking the Syntax, Preprocessing, and Disassembling 300

Precompiling, Compiling, and Making a Project 301

Browser ... 301
Project Menu .. 302

Closing the Project ... 302
Setting the Project Type .. 303

Bringing the Project Up to Date .. 304
Using the Debugger and Running the Program 305

Search Menu ... 305

Go To and Marking .. 306

Edit Menu ... 307
Specific Edit Items ... 307

Tabs and Fonts ... 307
Shift Left and Shift Right .. 308
Balances .. 308

Options Menu ... 309
THINK Project Manager Options ... 309

Preferences ... 309

Editor .. 311

xv

Symantec C++for the Macintosh: The Basics

Debugging .. 311
Extensions .. 313
Project Window .. 313

.o Converter .. 314
Symantec C++ .. 315

Language Settings ... 315
Compiler Settings .. 316
Code Optimization .. 317
Debugging .. 318
Prefix .. 319

TIDNKC .. 320
TIDNK Rez ... 320

File Menu .. 321
Windows Menu .. 322
THINK Debugger ... 323

Source Window .. 323
Data Window ... 324
File Menu ... 325

Edit Menu ... 325
Debug Menu ... 325
Source Menu .. 32 7
Data Menu .. 327
Windows Menu .. 328

Summary ... 329

Appendix A: Glossary ••••••••.••..••••.•••..••••..••••.••••.••• 331

Appendix~= ~il>liosarapt.~ ••.•••••••••••••.•••••.••••...•••.•• 33~

l11cltt)(••• ~'ll

xvi

Acknowledgments

We'd like to thank the following people for all their help with this book:

M&.T Books for giving us the opportunity to write this book.

The folks at Symantec Corporation for their wonderful product and their
assistance in this project.

Tony Meadow, Randy Matamoros, David Taylor, and John Wilkinson of
Bear River Institute for invaluable cooperation and help with all aspects of
Symantec C++ 6.0.

Larry Horwitz and Ray Valdes for their detailed technical review and edit
of the manuscript.

Tom Condon of Becton Dickinson who kept us apprised of ongoing changes
in the product.

The University of California, Berkeley, especially the students and faculty
in the Department of Electrical Engineering and Computer Science for their
feedback on the manuscript.

Carole Mcclendon of Waterside Productions for hooking us up with M&. T
Books and her assistant Belinda Catalona for keeping us on track.

Margot Pagan, Project Editor, and Mark Masuelli, Production Editor, of
M&T Books for all their fine work, pleading, and encouragement throughout
the writing process.

xvii

Symantec C+ +for the Macintosh: The Basics

Mary and Shawn May and Pat and Paul Whittle for their assurance, inspi­
ration, and support, without which this book might have been impossible.

A big thanks to you all.

xviii

Preface

T here are many object-oriented programming languages(OOP), including
Object Pascal, Object Modula, Eiffel, Objective C, Self, Simula, Smalltalk,

Common LISP with CLOS, and C++. Some are quite old, others are new. For
example, Smalltalk was defined in 1972, while Self was invented in the lastlO
years. This should tell you that object-oriented programming is not new, but
that it has taken some time for it to become mainstream technology.

Object-oriented programming is quickly becoming mainstream technolo­
gy. I believe that the primary reason is that it provides a better way to manage
complexity. The rapid evolution of desktop applications (contrast Word version
1 and Word version 5), and the operating systems (contrast the first version of
the Macintosh operating system and System 7) over which they preside, pro­
vides numerous examples of large, complex software packages that have be­
come increasingly difficult to maintain and enhance. The structured program­
ming techniques that are now conventional wisdom are no longer able to help
us manage software that is this complex. Object-oriented programming is not
a panacea, and will not solve all of our software development woes. It is, how­
ever, the next step in the evolution of software development technology.

The old myths about object-oriented programming (that it produces slow­
er code which takes up a lot of disk space, etc.) die hard. Examples abound of
high-performance applications that provide sophisticated interfaces and per­
form many complex calculations that were implemented using object-orient-

xix

Symantec C++for the Macintosh: The Basics

ed technology. Adobe's Photoshop and Ray Dream's Designer are examples of
such applications that were implemented with C++ and MacApp, Apple's ap­
plication framework.

Apple Computer has encouraged developers to adopt object-oriented tech­
nology for at least five years now, after experimenting with it for more than
10 years. As a result of this, object-oriented programming is mainstream for
commercial and in-house development in the world of Macintosh software. If
you look at the new Macintosh applications from the last couple of years, that
is, applications which have been introduced and not those which were enhanced,
a significant percentage of them have been developed using object-oriented pro­
gramming languages.

During the last five years, C++ has become the primary object-oriented pro­
gramming language. Market forces determine much of the technology that we
use (videotape and audiotape formats come to mind here), perhaps more often
than we'd like to admit. Being honest about it, market forces have also select­
ed C++ as the object-oriented language that most programmers will be using
during this decade. C++ is a complex language, as complex as COBOL or Ada,
albeit complex in different ways than those languages. As such, it is too com­
plex to learn the entire language at one time.

John and Judy's book will help you gain a solid mastery of the basic features
of C++. Once you feel comfortable with the topics covered in this book, you
should be ready to approach other topics, such as learning an application frame­
work like the TIIlNK Class Library, MacApp, or Bedrock. Only after that, should
you learn the more advanced features of C++.

Once you are using C++, you'll be able to participate in using some of the
most interesting technology to come along. Application frameworks are col­
lections of classes that provide the standard behaviors of an application. MacApp,
Apple's current object-oriented application framework, provides all the code to
manage memory, desk accessories, multiple windows, printing, undo and redo,
and many other behaviors. MacApp is about to be supplanted by a joint devel­
opment by Symantec and Apple called Bedrock. This application framework,
written in C++, will allow you to more easily develop applications for both
Macintosh and Windows. Once you have a Bedrock-based application running
on one of these platforms, it will only take a small amount of work to have it
running on the other.

Next, about two years ago Apple and IBM established a joint venture named
Taligent. The people at Taligent are developing an object-oriented operating
system in C++. They are also working on a powerful development environment
that will be tightly integrated with the operating system. This will enable you

xx

Preface

to develop complex applications in less time and with less effort than with any
other current software development technology.

Anthony Meadows

Series Editor

xxi

Why This Book
Is For You

Here is a book you need to learn C++ programming on the Macintosh. This
hands-on tutorial teaches you C++ programming from the ground up, taking
you from the fundamentals of object-oriented programming to the advanced
features of C++. Special focus is given to Symantec C++, the latest compiler for
Macintosh programming. Through detailed discussions and solid programming
examples you'll gain a thorough understanding of Symantec C++ and will be
on your way to designing efficient C++ applications.

This book is filled with programming examples you can study and learn
from. The source code has been written to compile and run using Symantec
C++ and is provided on the enclosed disk.

If you are:

• A software developer for the Macintosh

• A corporate in-house programmer, scientist, or engineer

• Someone who wants to learn more advanced skills for customizing an
application in Symantec C++

• A programmer who wants to learn techniques, beyond those presented
in the product manual

... this book is for you.

1

Symantec C+ + for the Macintosh: The Basics

And, even if you're someone who doesn't know anything at all about pro­
gramming in C++, but want to write programs for the Macintosh, Symantec
C++, will put you ahead of the game.

If you're already programming in C, and want to learn C++ because it's the
programming language of the future and you want to design your programs as
a collection of objects to make them easier to write, modify and maintain;
Symantec C++ is a much more effective, and complete, object-oriented lan­
guage than C.

Or, perhaps you are a programmer who is using Zortech C++ and running
it under MPW-you already know something about C++, object-oriented pro­
gramming and the Class Library-you will want to know about Symantec C++
for the Macintosh.

2

Symantec C++ for the Mac: The Basics features

• The new Symantec C++ compiler

• the basics of programming

• language extensions of C++

• explanations of encapsulation and data hiding

• examines inheritance

• explains polymorphism, exploration of dynamic binding

• Helps you to understand data structures, functions and variables: an in­
depth explanation of their structure of classes. Each chapter features a
summary of the information and exercises to help you along.

Introduction

T his book is about programming the Macintosh in C++, but it is also about
a unique and exciting product: Symantec's new Symantec C++ for the Mac­

intosh. The product is unique because there isn't another C++ compiler for the
Mac that doesn't require the Macintosh Programmers Workshop (MPW) or is
completely stand-alone. Symantec C++ is exciting because it comes from those
wonderful folks who gave you THINK C, the most versatile, complete, eco­
nomical, and popular C programming package for the Mac. (THINK C is so pop­
ular that many programmers who are required to develop an application under
MPW first develop on THINK C and then port their applications. The new
Symantec C++ will run under both the Finder and MPW, something that was
not possible before.)

The intention here is to give you an in-depth presentation on the product
itself, as well as the C++ language, and introduce you to object-oriented pro­
gramming,. With the aid of this book, you will:

• Learn programming basics.

• Master the new Symantec C++ product.

• Comprehend object programming and design concepts.

• Discover the language features of C++.

• Learn how to author an object design using C++.

3

Symantec C++for the Macintosh: The Basics

As a teaching vehicle, this book differs from other volumes on C++ in form and
order of presentation. The book begins with an introduction to the concepts of
object-oriented programming and the C++ language, goes into a detailed descrip­
tion of Symantec C++, and introduces you to some advanced features of C++.
The advantage here is that you can ease into object-oriented programming from
the very beginning, rather than wading through long dissertations on the lan­
guage, the Macintosh Toolbox, and an application framework first.

You do not have to be a programmer, or even know anything about pro­
gramming, to use this book. However, there is an underlying assumption that
you already know the Mac fairly intimately. And that you may be a registered
software developer for the Mac, a corporate in-house programmer, a scientist,
engineer, or a general user wanting to learn more advanced skills for cu5tomizing
an application in Symantec C++. It's likely that you'll fit into one of the three
following categories:

4

1. A person who doesn't know anything about Symantec C++, or even
C++, but wants to learn how to program the Mac. Chances are you know
that Symantec C++ is going to be the major compiler on the market.
You'll want to cover every chapter in the book, from programming ba­
sics to advanced features of Symantec C++.

2. A programmer who has THINK C and wants to know what's different
about Symantec C++. You'll also want to learn more about object-ori­
ented programming and the Class Library. You may want to skip over
Chapters 1, 4, 5 and 6, and concentrate instead on Chapter 2 and the
more advanced features of C++.

3. A programmer who has been using Zortech C++ and is running it un­
der MPW. You already know something about C++, object-oriented pro­
gramming, and the Class Library. You're mainly concerned with us­
ing the Symantec C++ product. Chapters 3 and 15 will be especially use­
ful to you.

Introduction

Prerequisites-Software and Hardware Required
The first thing you need is Symantec C++ from Symantec. If you're not a pro­
grammer, we'll bring you up to speed on programming conventions.

For practical purposes, we recommend the following Mac hardware:

• 4 MB of RAM, 5 to 8 preferred.

• A fast hard disk with at least 20 MB of free space.

• A fast processor to reduce compile times.

For software, we highly recommend THINK Reference, also from Symantec, a
comprehensive guide to system information. This package gives you:

Ill Detailed routine descriptions, declarations, and notes on the Mac op-
erating system.

• Technical notes, example code, and tips from Symantec engineers.

II Sections on fonts, resource types, and other Mac topics.

• Graphics to illustrate key concepts.

THINK Reference also provides Speed Search, a method of finding a topic quickly
by typing in just a few characters. Topics are organized by trap names, man­
agers, keywords, data interfaces, and structures.

All in all, THINK Reference is an essential tool for any serious Mac pro­
grammer.

How the Book Is Organized
The objective of the book is to familiarize you with the product, Symantec C++,
and to teach you to use that product in programming applications. To accom­
plish this, the book has the following mix of material: 25 % on Symantec C++
(the compiler, editor, preprocessor, assembler, header files, linker, and debug­
ger), 50% on the C++ language (how it differs from C, small and large enhance­
ments, etc.), and 25% on object-oriented programming.

5

Symantec C++for the Macintosh: The Basics

Obiect·Oriented Methodology­
A Powerful Approach
Object-oriented methodology, which is on the cutting edge of programming
concepts, accomplishes three main goals:

II It provides natural modeling of real-world processes.

Ill It encourages and supports reuse.

Ill It enforces modularity.

Its main concepts are to:

II Create programming objects that correspond to real-world objects.

II Give those objects the ability to store data and to respond to messages.

II Reuse existing objects in whole or in part without changing the
existing objects.

If object-oriented programming (OOP) seems abstract, and you find that you
have difficulty in knowing how to apply the concepts, don't despair! It will all
become evident to you as you proceed through the book-especially when you
start to add member functions to data structures (Chapters 8 and 9).

C++
C++ is a powerful successor language to C, and is a better C. (Actually, the term
C++-that is, C followed by the increment operator-means "one better than
C" or "one more than C.") C++ is actually a hybrid language that supports both
procedural and object programming. You can use C++ for data abstraction and
for object-oriented programming extensions. Currently, C is the most popular
language on both the Mac and the PC. C++ will probably be the closest thing
to an industry standard object-oriented language. If you are using C++ and object­
related technologies, you are on the leading edge.

6

1 Basic Programming
Concepts

T his chapter is a review of the basics of computer programming. If you have
already done programming, this material will be familiar to you. If you're

comfortable with the basics, you can skip to Chapter 2, which introduces object­
oriented programming.

Numbering Systems
We've all been told that computers are dumb and a program is only as smart as
the person who wrote it. But we don't often think about computers being stu­
pid until we realize that they understand only one thing: numbers. Further­
more, they recognize only two numbers, 0 and 1.

Each line of code that you write translates into numbers and, consequently,
bits or bytes of memory. This section presents the numbering systems the com­
puter uses, along with their associated codes and symbols, and a brief descrip­
tion of their logical use.

7

Symantec C+ + for the Macintosh: The Basics

Decimal Numbers
The decimal (meaning "pertaining to ten") numbering system, which is the
most common system in use, is sometimes referred to as a base 10 number sys­
tem. Historians and anthropologists agree that the system developed as it did
because humans have 10 fingers. Each of the 10 numbers is represented by an
Arabic (or Hindu-Arabic) figure, and early records show that the system was
introduced in Europe in the 12th century.

In base 10, the number 973210 is evaluated as shown in Table 1.1.

Table 1.1

1000 100 10 1

103 102 101 1~ 10°

9 7 3 2

(9x1000) + (7x 100) + (3 x 10) + (2 x 1) +

9000+ 700+ 30+ 2

In the far right (ones) column, 10° means simply "1 with no zeros after it." The
next column to the left is a tens column, the next a hundreds column, and the
last (far left) a thousands column. By multiplying 9 by 1000, 7 by 100, 3 by 10,
and 2 by 1, and then adding the results together, you get the number 973210.

In this book, if a number is not preceded by a 0 or a Ox or followed by a sub­
script to describe what it is, the number is assumed to be decimal. (In C, any
number that is preceded by a Ox is assumed to be hexadecimal, and any number
preceded by a 0 is octal. These bases are discussed further on in this chapter.)

Binary Numbers
The binary (meaning "pertaining to two") numbering system is the system used
by computers. This is because the simplest state in which an electric circuit
exists is: on or off. The two binary numbers are represented by the Arabic fig­
ures 0 and 1. This numbering system is sometimes referred to as a base 2 num­
ber system.

In similar fashion to the evaluation of the decimal number in the previous
table, the number 110101012 (with the subscript 2 indicating base 2) is evalu­
ated in Table 1.2.

8

Basic Programming Concepts

Table 1.2

The icons in the top row of the table represent switches that are either on (the
button is up) or off (the button is down). If the switch is off, that column repre­
sents a zero, or nil. You can also think of the 1 as a magnetized tape and the 0
as a nonmagnetized tape, or the 1 as an electrical charge and the 0 as no elec­
trical charge. On a CD-ROM (read-only memory) for exam-
ple, a laser beam is reflected off a mirrored surface. If the
reflection goes in one direction, it represents a 1. If it goes
in the other direction, it represents a 0.

Look at the first column (far left). The second row states
that the value of this column is 2 to the 7th power, and the
third row declares that the product of 27 is 12810 (2 x 2 x 2 x
2 x 2 x 2 x 2 = 128). The fourth row shows that because the
switch is on, the number 12810 is a valid number. In the third
column, the switch is off, so the number 3210 is invalid (Ox
3210 = O). By adding 12810, 6410, 1610, 410, and l.o--the results
of the multiplication in the last row of the table-you get
the number 213 10 in the decimal system.

Hexadecimal Numbers

By the way, the terms
most significant bit
(msb) and least signif·
icant bit (lsb) are used
with binary numbers.
In the binary table
above, the msb is 27,
and the lsb is 20.

The hexadecimal (meaning "pertaining to sixteen") numbering system aids
people in understanding the number system used by computers. In fact, it is
used as a shorthand notation for binary numbers and is known as the base 16
or hex number system. Each of the 16 numbers is represented by an Arabic fig­
ure or alphabetical character: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F.
Depending o the system, a hex number may be displayed on a computer as
$A87D, OxA87D, Z 1A87D, or A87D. It may also be written as A87D16.

9

Symantec C++ for the Macintosh: The Basics

To convert binary numbers to hex, collect the binary numbers into four groups
of four, starting from the right-hand side (lsb). Keep grouping your way across
until you run out of bits. If you have 1 to 3 bits left over, use leading zeros. Then,
replace each binary group with a hex equivalent. To convert hex numbers to
binary, replace each hex digit with four binary characters. (see Table 1.3).

1010

A

Table 1.3

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1no
1111

1000

8

0
1
2
3
4
5
6
7
8
9
A

B
c
D
E
F

0111

7

;

1101

D

Alpha eight seven dog is easier to say (and comprehend) than one zero one zero
one zero zero zero zero one one one one one zero one.

To convert the hexadecimal number to the decimal system, you can cre­
ate a table similar to the tables evaluating decimal and binary numbers (see
Table 1.4).

10

Basic Programming Concepts

By adding together the numbers in the bottom row, you get the decimal equiv­
alent of A87D10, which is 4313310.

Octal Numbers
The octal numbering system (meaning "base 811

) is not as common as the hexa­
decimal, but both C and C++ do make use of it. Like the binary and hexadeci­
mal systems, the octal system is a power of 2. With 3 bits, a total of 23 = 8 pos­
sible numbers can be represented. These are the eight digits from 0 through 7.

To convert binary numbers to octal, collect the binary numbers into groups
of three, starting from the right-hand side (lsb). Keep grouping your way across
until you run out of bits. If you have one or two bits left over, use leading zeros.
Then, replace each binary group with an octal equivalent. To convert octal
numbers to binary, replace each octal digit with three binary characters. The
relationship between octal and binary numbers is shown in Table 1.5.

11

Symantec C++ for the Macintosh: The Basics

111
7

110
6

011
3

To convert the octal number to the decimal system, you can create a table sim­
ilar to the tables evaluating decimal, binary, ,and hexadecimal numbers. In Table
1.6, we convert 763s to its decimal equivalent.

Table 1.6

By adding together the numbers in the bottom row, you get the decimal equiv­
alent of 763s, which is 49910.

As is the case with hexadecimal numbers, octal numbers are used in place of
a binary number to make a quantity or code easier to work with and remember.

ASCII Characters
ASCII (pronounced ass-key) stands for the American Standard Code for Infor­
mation Interchange. An ASCII character is an 8-bit code that is used to repre­
sent not only numbers but also letters (both lower-nd uppercase), special sym­
bols, and control functions.

12

Examples from the extended Macintosh character set are:

A is Ox41

Bis Ox42

a is Ox61

bis Ox62

1 is Ox31

2 is Ox32

Carriage return is OxOD

Space is Ox20

TM is OxAA

2: is OxB7

Basic Programming Concepts

The standard ASCII numbers use the lower 7 bits of a byte and ignore the first
bit. (The first bit is reserved for a signed bit, which we discuss later.) The Mac­
intosh uses all 8 bits (the numbers 00 to FF) to represent an extended set of
ASCII digits. The Mac keeps the standard table but adds 80 through FF for spe­
cial characters, for a total of 256 ASCII characters.

Bits, Bytes, and Nibbles
Here, in abbreviated form, is the long and the short of bits, bytes, and nibbles:

II 4 bits equal a nibble (sometimes spelled nybble).

II 8 bits equal a byte (never spelled bite).

II 2 nibbles equal a byte.

1010 1000

A 8

nibble nibble
byte

II 2 bytes is equal to a 2-byte word called a short int (short for integer) in
C++. It is called an integer in Pascal.

OxA83F

11111 4 bytes is equal to a 4-byte word called a long int in C++. It is called a
long integer in Pascal.

Ox84A326AD

Sometimes a 2-byte word is just called a word, and a 4-byte word is called a
long.

13

Symantec C++ for the Macintosh: The Basics

Table 1. 7 shows the relationships of integer types in these languages: 68000
Assembly Language (ASM), Pascal, Fortran, and C++. The last three have an infor­
mal relationship with the 68000 Assembly Language but not with each other.
(However, C++ has a relationship with Pascal through the Toolbox.) The reason
Pascal and Fortran have a relationship with 68000 ASM is because the micro­
processor on the Mac is a Motorola 68000, and they're all running 68000 code.

Table 1.7

Relationships of Integer Types

68000ASM Pascal Fortran C++

1 Byte Byte byte Integer *1 char
0

2 Bytes Word . integer Integer *2 short (int)

4Bytes Long long int Integer *3 long (int)
--"-

The thing to remember here is that Word -whenever you are speaking of micro­
processors or computers-is the size of an instruction. On the 68000, an instruc­
tion is 16 bits long. This becomes important when you talk about the word size
of a computer. (On a Cray computer, the word size is 64 bits; on a VAX, it is 32
bits; and on the old 8080 microprocessors running on CP/M, a word was 8 bits.)

Kilo, Mega, Giga
The terms Kilo, Mega, and Giga are a type of shorthand or "techese." Kilo means
thousand, Mega means million, and Giga means billion. However, in comput­
erese, the terms stand for the actual values shown in Table 1.8.

Table 1.8

Scientific and Engineering Compuh;r Science

Kilo(K) 1,000 103 210 1,024

Mega (Meg) 1,000,000 106 220 1,048,576

Giga (G) 1,000,000,000 109 230 1,073 ,7 41,824

• BOOK bytes on a floppy are 800 x 1,024 bytes, or 819,200 bytes.

• 20Meg hard drive is 20 x 1,084,576 bytes, or 20,971,520 bytes.

• Half Gig CD ROM is 0.5 x 1,073,741,824 bytes, or 536,870,912 bytes.

14

Basic Programming Concepts

Signed and Unsigned Numbers
A number is signed or unsigned depending wholly on how you use it. By default,
the computer thinks integer variables are signed, which means that they can
represent both positive and negative numbers. Unsigned numbers can only be
positive. If you're not going to be using negative values (that is, in the range of
-32, 768 to +32, 767), you can use unsigned numbers to force the compiler to read
the contents of a variable to be in the range of 0 to 65,535. Here are some rules
of thumb about computing unsigned and signed numbers:

• Unsigned Byte- To compute the decimal equivalent, you simply con­
vert the binary number to decimal.

• Signed Byte- If the first bit (most significant bit or msb) is zero, com­
pute the decimal equivalent. OxOO to Ox7F is a number from 0 to 127. Or,
if the first bit (msb) is one, invert all the bits, add one, compute the dec­
imal equivalent, and make that number negative. This operation is called
twos complement and is simply a method for representing the values of
negative numbers. Hence, Ox80 to OxFF is a number from -128 to - 1.

Table 1.9

Ones Complement

-127

0111 1111
01111110

Largest Negative Number

15

Symantec C+ + for the Macintosh: The Basics

If there is a twos complement, there must be a ones complement, right? There
is, and the operation consists of simply inverting all the bits (a complement)
and adding the negative sign. At one time, the ones complement representa­
tion was widely used in digital computers. But there was a definite problem
with it, as you can see from in Table 1.9.

Ones Complement Rule
• If sign bit is zero, just convert to decimal.

• If sign bit is one, invert all bits and convert to decimal.

As you can see, the ones complement allows for both a positive and a negative
0, which cannot be. Twos complement takes care of the problem by getting rid
of the negative 0, as shown in Table 1.10.

16

Table 1.10

Twos Complement

largest Positive Number

-128

largest Negative Number

Basic Programming Concepts

Twos Complement Rule

Ill If sign bit is zero, just convert to decimal.

111 If sign bit is one, invert all bits, add one, then convert to decimal.

Ones complement has a minus range of -0 to -127, while twos complement
has a minus range of-1 to -128.

Therefore:

ill!I Unsigned bytes have a range from 0 to 255.

Ill Signed bytes have a range from -128 to +127.

1111 Unsigned words have a range from 0 to 65,535.

111 Signed words have a range from -32, 768 to 32, 767.

11 Unsigned long words have a range from 0 to 4,294,967,295.

11111 Signed long words have a range from -2,147,483,648 to 2,147,483,647.

Logic
The system of logic we know was developed by the ancient Greeks as a branch
of philosophy. It's doubtful that any of the Greek philosophers foresaw the fruits
of their efforts used in electronic circuitry in the 20th century, but who knows?

Specifically, logic can be applied to an electric circuit in its simplest state;
that is, a switch is either on or off. If the switch is off, it is also open. Figure 1.1
shows a diagram of a simple electric circuit with a battery, an open switch, and
a light bulb.

Open Switch

~~
Battery~-=-

Figure 1.1 Open-Switch operation.

17

Symantec C++ for the Macintosh: The Basics

As you can see, when the switch is open, the light bulb is off because no cur­
rent can flow through the circuit, and no voltage is applied to the light bulb.
(See Figure 1.2.)

Closed Switch

¥

Battery-> -=-

Light Bulb'
Figure 1.2 Closed-Switch operation.

In the closed-switch operation, the switch is closed and the light bulb is on.

If open and off are represented by 0, and closed and on by 1, they can be rep­
resented by Table 1.11.

Table 1.11

Switch Bulb '"
0 0
1 1

AND Operation
Figure 1.3 represents an AND operation, where both A and B must be closed for
C to be on. The AND operation in C programming is represented by an & (amper­
sand) or by a && (double ampersand), depending on whether the operation is
caried out on bit-values (the bitwise AND) or truth-values (the logical AND).

A B

¥ ¥ 1-/1...._______,
Battery-> -=- +-c

Figure 1.3 AND operation.

18

Basic Programming Concepts

The truth table for Figure 1.3 follows:

Table 1.12

In column A in the table above, we have the state of switch A. Column B rep­
resents the state of switch B, and column C represents the light bulb as either
off or on. Remember that 0 is off and 1 is on. This table shows that both switch
A and switch B must be closed for C to be on.

10102 = 1000
1100

& 1011
1000

In the stacked formula above, start with the far right-hand bits. Check the truth
table to see what 1 & 0 (C programming uses the & symbol to represent the
AND operation) produce in column C. (They produce a 0.) Then move to the
left, adding the bits in each column, and checking the truth table for the answer.
When you reach the far left bits (1 & 1), you see that the result is 1, and the
light bulb is on.

Try this exercise:

In the example above, convert the hex numbers to binary, and then AND them
together.

OR Operation
Figure 1.4 represents an OR operation, where either A or B can be closed for C to be
on. The OR operation in C programming is represented by a I (vertical bar).

19

Symantec C++ for the Macintosh: The Basics

Battery~ --=-

Figure 1.4 OR operation.

The truth table for Figure 1.4 follows:

Table 1.13

A

0

0
-'°-

1

1

B
0

1

0

1

11002 10112

1100

1011

1111

c
0

1
'

1

1

~c

As you did for the AND formula, start with the right hand bits, look at the truth
table for the answer, and put that number on the total line.

Try this exercise:

20

Basic Programming Concepts

NOT Operation
The truth table below represents a NOT operation, where you invert the bits
from 0 to 1 and vice versa. The NOT operation in C programming is represented
by a - (tilde).

Table 1.14

A B
0

0

Try this exercise:

XOR Operation
The truth table below represents an XOR operation. The
XOR operation is the same as an OR operation, but in the
case where both A and B equal 1, the result will be 0. The
XOR operation is represented by a /\ (caret).

Table 1.15

A B c
0 0 0

-~

0 1 1

1
.!

0 1

1 1 0

All numbers in the C++
language are assumed
to be in the decimal sys­
tem unless prefixed by
the letters "Ox"

21

Symantec C++ for the Macintosh: The Basics

Summary
In this chapter, you've learned the basic concepts of programming:

Ill Numbering systems.

Ill ASCII characters.

Ill Bits, bytes, and nibbles.

Ill Signed and unsigned numbers.

Ill Logic operations and truth tables.

An understanding of these basics is absolutely essential before you can develop
proficiency in writing code. Now that you have this under your belt, try the
following exercises. Then let's move on to the concepts of object-oriented pro­
gramming in Chapter 2.

Exercises

22

1.1 Convert the following binary numbers to decimal:
(a) 10102
(b) llL
(c) 010110102

1.2 Convert the following decimal numbers to binary:
(a) 2310
(b) 10010
(c) 14510

1.3 Convert the following octal numbers to binary:
(a) 123.
(b) 7642.
(c) 3527.

1.4 Convert the following binary numbers to octal:
(a) llOOL
(b) 1101101012
(c) 10011 lOL

Basic Programming Concepts

1.5 Convert the following octal numbers to decimal:
(a) 35a
(b) 342s
(c) 1234s

1.6 Convert the following decimal numbers to octal:
(a) 4210
(b) 126010
(c) 423510

1. 7 Convert the following binary numbers to hexadecimal:
(a) 11112
(b) 101010102
(c) 111110111010lllb

1.8 Convert the following hexadecimal numbers to binary:
(a) A616
(b) A0416
(c) 7AB416

1.9 Convert the following decimal numbers to hexadecimal:
(a) 12310
(b) 235210
(c) 361910

1.10 Convert the following hexadecimal numbers to decimal:
(a) Al3B16
(b) E916
(c) 7CA316

1.11 Represent the following numbers as ASCII characters:
(a) 4h
(b) 6110
(c) 25010

23

Symantec C++ for the Macintosh: The Basics

24

1.12 What are the hexadecimal and decimal values of the following ASCII
characters:
(a) A
(b) a
(C) TM

1.13 Divide the following bits into nibbles:
(a) 111001002
(b) DEADCODE,.

1.14 Divide the following into words (short):
(a) 111111101101101101112
(b) FOODFACE16

1.15 Divide the following into longs:
(a) A616
(b) FEDCBA987654321016

1.16 How many bytes are in each of the following:
(a) BOOK
(b) 520Meg
(c) 3Gig

1.17 Find the eight-bit one's complement form of the following numbers:
(a) FF16
(b) -1010
(c) 12310

1.18 Find the eight-bit two's complement form of the following numbers:
(a) FF16
(b) -1410
(c) 9910

1.19 AND the following numbers:
(a) ABCD16 & EF12,.
(b) 9316 & DE16
(c) 10102 & OlOb

1.20 OR the following numbers:
(a) 6A16 I DD16
(b) OAAC16 I 842716
(c) 10012 I 01102

1.21 NOT the following numbers:
(a) FFFF16
(bJ AA16
(cJ 111001112

1.22 XOR the following numbers:
(a) BE16 " BCi6
(bJ 9BC816 "FFFF16
(c) 10012 " 10112

Basic Programming Concepts

25

2 Obiect-Oriented
Development

0 bject-oriented programming (OOP) is a design methodology that incorpo­
rates several sophisticated and efficient mechanisms for managing the

complexity of present-day application development. Object program design
models the world as a collection of objects that interact by passing messages
back and forth. Programming with objects is not complicated but merely dif­
ferent from traditional, procedural-based programming (which has been the
method for programming until recently). Because the concepts of object-ori­
ented programming are different and may at first seem somewhat obtuse, we do
not expect you to grasp everything in this chapter right away. Instead, you may
want to read through this chapter once and then come back to it again after
you have read the chapters on structures (Chapter 8) and classes (Chapter 9).

Object-oriented programming, which arrived on the scene in 1971, is the
next step beyond procedural programming, a kind of natural progression born
of necessity. Apple has made its message clear: OOP is the wave of the future
for Macintosh applications, and Apple's primary internal development language
is C++ and is object oriented.

27

Symantec C++ for the Macintosh: The Basics

Procedural versus
Obiect-Oriented Programming
Procedural programming treats action and data as two separate entities; that is,
you define data structures and then develop a set of routines (or perhaps a li­
brary), which in tum operate on data that you pass into them as arguments. In
object-oriented programming, when you define the structures, you define their
actions at the same time. Instead of routines acting on data, you have sets of
objects interacting with each other.

Procedural Programming
With procedural programming, you define variables to represent the data used
by your program. You might even group related variables into structures or
records . You then write subroutines, procedures, or functions that operate on
those variables.

Procedural-based programming is a time-consuming, multiphased process
but, nonetheless, is currently the most common type of programming. The fol­
lowing are typical phases of a procedural-based development methodology:

1. State the problem.

2. Analyze to obtain a feel for what needs to be done by talking with users.

3. Discuss all possible solutions and identify the most effective solution.

4. Generate a high-level design of the proposed solution.

5. Using the high-level design as a guide, generate a detailed design for the
subsequent solution.

6. Begin programming.

7. Commence integration and testing.

8. Conduct Alpha and Beta testing.

9. If there are any problems in any of these phases, loop back and start
all over again.

Obiect-Oriented Problem Solving
The premise of object-oriented problem solving is that the best way to devel­
op software is not to develop but to reuse. Also, object-oriented programming
models the world as a collection of ob;ects that interact by passing messages

28

Object-Oriented Development

back and forth. OOP defines classes to model real-world data (the classes pro­
vide automatic data modularity). You then write the methods (i.e., functions)
that operate on the data in your classes.

Some typical benefits that derive from object-oriented methodology are
listed below:

1. The OOP approach encourages the use of modem software engineering
technology. Because it is a very structured system for describing a problem
and the solution to that problem, it requires you to work within constraints
and rules. And, it makes it easier for other programmers to aid in the im­
plementation of the specific object-oriented design. As an example, sup­
pose that you wanted to write a computer program that would compose a
book. Assume, then, that you say to the program, "Write a book." Where
would it begin? If you say, "Write a romance," you put a constraint on
the program. If you then say, "Use only English words," and "Confine it
to 250 pages," more constraints are added. These constraints make it eas­
ier for programmers to use tools, and this focusing by programmers leads
to even more innovative CASE tools.

2. Another benefit of OOP is that it promotes and facilitates software
reusability. It's conceivable that in many instances OOP projects will
require only 10 to 20% new code. The rest is reusable.

3. When well done, OOP solutions more closely resemble real-world so­
lutions; in other words, the solutions are more natural.

4. OOP results in software that is easily modified, extended, and main­
tained because it enforces modularity. If you represent the OOP units
as black boxes that are independent of one another, they are easy to
modify and maintain because you only have to work on one at a time.
They are also easy to extend because all you have to do is add more
black boxes; that is, you don't have to make modifications before you
add something.

5. OOP results in a significant reduction of integration problems for the
same reasons as item 4 above.

Putting to Rest an Old Myth
In the beginning, object-oriented programming was slower than procedural pro­
gramming and took up more memory. Over the past several years, great strides
have been made in compiler technology to optimize code. Consequently,

29

Symantec C++ for the Macintosh: The Basics

tremendous gains are achievable by making the overall structure of today's pro­
grams object oriented.

There are, however, places within your code where you may have concerns
about speed, memory, and disk space (specifically with certain numerical algo­
rithms), and you may want to use procedural based programming in these areas.

Because of the immense increase in the capability of hardware, you do not
have to be as concerned about speed and memory as you once might have been.
In general, use object-oriented programming when you:

1111!1 Have a boss or client that is breathing down your neck to finish
the program.

111!1 Require easy error checking.

II Want easy maintenance.

Iii Want a modular structure.

11111 Want good user interface.

II Want to run on all Macs and perhaps other platforms.

There is an analogous story that made the rounds of the integrated circuit de­
sign firms in Silicon Valley in California. Designers were desperate to get more
and more devices on a silicon wafer, to make that jump from 100 devices
(small-scale integration, or SSI) to 1 million per wafer (very large scale integra­
tion, or VLSI). As the designs for the masks became ever more complex, the en­
gineers involved had to start pasting the circuitry maps first on a table, then
the floor, and finally the walls and ceilings. The size of the map got so big that
engineers started talking about hiring a "tall, thin designer. He would have to
be 30 feet tall in order to see out over the entire map, and he would naturally
be thin because the firm wouldn't pay enough for him to eat properly."

The point is well taken, though, that technological advances occurred so
rapidly that firms became hard-pressed to keep up not only with the technol­
ogy but with the costs involved. Carver Mead (a professor of Computer Science,
Electrical Engineering, and Applied Physics at the California Institute of
Technology), estimated that if you looked at the designs of the masks and
equated the density to be that of a normal city-that is, eight city blocks to a
mile-the map in 1963 would cover a city the size of Pasadena. In 1978, the
map would equal the size of the Greater Los Angeles area, in 1985 the equiva­
lent of California and Nevada combined, and in 1990 the continent of North
America. In the meantime, the costs of the capital equipment for making a
VLSI chip were approaching $1 billion, leaving almost no margin for error. In
order to stop the spiraling costs and to get a higher yield of dies per wafer,

30

Object-Oriented Development

chip makers began putting constraints on the designers by coming up with a
set of rules to design by. In this respect, they were willing to sacrifice the effi­
ciency of packing more transistors into an integrated circuit in trade for mak­
ing the design process much easier and more reliable. And this is what object­
oriented programming is all about: imposing constraints and setting standards
for coding. In object-oriented programming, we are willing to sacrifice memo­
ry and performance in order to produce more reliable programs that do more
things. This is not a great sacrifice because of extensive changes in technolo­
gy in the past few years: memory is becoming considerably less expensive than
it was five years ago, and CPUs are substantially faster.

OOP and C++
OOP has a set of commonly used terms (even though there is no standard set of
concepts and terms). C++ employs the same concepts but uses a slightly different
terminology. In this book, when we discuss the field of object-oriented program­
ming that is not language specific, we use the common terminology. When we dis­
cuss C++, we introduce the C++ terms and stick with them. In the following
table, we present both general OOP terms and C++ terms so that you can make
mental translations if necessary.

Commonly Used C++
OOPTerms Terms

Method Member function

Instance variable Data member

Class Class

Superclass Base class

Subclass Derived class

Object lnstQnce or object

C++ does not include every concept proposed as part of object-oriented pro­
gramming. As shown in Figure 2.1, persistence, delegation, and genericity are
the three main aspects not encompassed by C++.

31

Symantec C++ for the Macintosh: The Basics

Object Programming

Data Abstraction

Inheritance

Polymorphism

Persistence

Delegation

Genericity

Multiple Inheritance

Figure 2.1 Object-oriented programming aspects included in C++.

Advances in Development Environments
Up to this point, there have been two major development environments for the
Mac: MPW (Macintosh Programmers Workshop) from Apple and THINK
from Symantec. Apple supplied C and Pascal compilers and an assembler for
their MPW environment and later a C++ compiler. In addition, there have been
third-party suppliers whose products run under MPW, namely Ada, Modula,
FORTRAN and Zortech C++.

The MPW development environment is quite versatile and powerful, but
it is a difficult system to use. MPW has many similarities to UNIX, so many of
the line-oriented commands are analogous to UNIX.

THINK runs under the Finder. Unlike MPW, it is paradoxically more Mac­
like: it has the Mac human interface built right into the environment. It does
not have the same power as MPW, but is much easier to use.

32

Object-Oriented Development

Symantec has had two compilers under the THINK environment: THINK
C and THINK Pascal. Over time, the company has modified both to support ob­
ject-oriented programming. Symantec C++ implements some of the features of
C++ not found in C; that is, polymorphism, multiple inheritance, friends, and
overloading. In 1991, Symantec purchased Zortech, and Symantec C++ is the re­
sult of mixing Zortech C++ and THINK C.

With the advent of the Macintosh, Apple developed a set of routines (in a
ROM chip inside of every Mac) that contain something called the Toolbox. The
main purpose of the Toolbox is to provide a set of routines for consistent user
interface. Apple also created a library of classes under MPW to interface with
the Toolbox called MacApp. Symantec, in the meantime, developed its own
class library, which is called Think Class Library (TCL) . Unfortunately, since
there were no standards set for developing class libraries, the Apple and
Symantec libraries were incompatible. Subsequently, Apple and Symantec
got together to develop an application framework, not just for the Mac but also
for use on other platforms like the PC, probably to run with Windows. An ap­
plication framework is a type of class library that you build on to develop
your own application. This framework is called Bedrock. It will allow source
code to be transferred to run on other platforms using Bedrock, but each plat­
form will retain its individual interface characteristics: a window on the PC
will be a PC window, and a window on the Mac will be a Mac window.

Obiects and Classes
All 00 programming involves objects (of course), the classes that objects be­
long to, and all the things that objects can do.

Obiects
What is an object? An object is a programming construct that can do useful
work. It is also a mechanism for modeling things in the real world, such as peo­
ple, places, and things. All of these can be manipulated as
objects in software. If you're writing a program to invento­
ry different models of cars, for instance, you can use each
model of car as an object.

To get an object to perform some operation, you send it
a message telling it exactly what you want it to do. The ob­
ject has methods that are used to respond to the messages .
Each object has its own private memory (internal data)
and local functions (methods) . Every object has a name,

The information in an
object will be hidden
unless you are in the
process of designing a
class.

33

Symantec C++ for the Macintosh: The Basics

which is sometimes referred to as an object reference variable. An object is a
self-contained unit of information (modularity), where the data is protected (in­
formation hiding); that is, the object determines the method that will be used,
and that information is hidden from you-it's none of your business. The same
thing is true for what data the object will use.

Additionally, the data that the object uses can be private information. In
other words, the object's internal data is private and any "internal" methods
that an object uses can also be hidden, so all you have to do is send it a mes­
sage to do something. It is up to the object to figure out how to do it.

Classes
One useful way to think about objects and classes is to compare them with
variables and structures. To see the comparison, examine the following code:

Class
class TMonster

} ;

private:

RGBColor fColor;

short fNumOfEyes;

public:

void HideUnderBed();

void MakeScaryNoises();

Type
typedef struct

short top;

short left;

short bottom;

short right;

Rect;

Objects of the same class have identical properties. Objects of the same class
will have their own copies of a set of common data, and they each share a com­
mon set of methods. So, all the monsters may have color and eyes (common
data), and they could all have the same way of making scary noises (methods).
When you create a new class of objects, you must define the internal variables
and the set of messages, and you must write the methods used by the objects.
The internal data (variables) contained in an object are called instance variables.

Variables and methods are defined for an entire class. Each object, which is
an instance of a class, will have its own, unique instance variables. Each will
"point" to a single copy of code for shared methods. Put another way, each
object has unique internal variables but shares methods with other objects of
the same class.

34

Obiect·Oriented Devel_opment

An object is an instance of a class. A class is to an object as a data type is to
a variable. For example, you can say: CookieMonster and GroverMonster are
each monster objects. They are each instances of the class TMonster. (In this
book, the convention is that the names of classes begin with an uppercase T.J

Messages and Methods
~o program with objects, you create an object of the class you need. You then
send that object messages describing what you want it to do, and the object
responds to those messages by performing some operation, which is the
method. A message must be addressed to a specific object. In C++, a message is
the name of a function with any associated arguments. For every message, there
is an associated response. For example:

void TMonster::EatCookies (short type)

{

}

You can think of messages as function calls, and methods as function defini­
tions. A method is defined to be the function executed by the object in response
to a message. Also, a method is a service that an object performs.

Encapsulation
Encapsulation is simply a method of packaging instance variables and method
names together as an object. In other words, the data is encapsulated into the ob­
ject, and messages are then used to manipulate the data. This encapsulation of
data enables information hiding. It also defines an interface.

Class Diagrams
Class diagrams are useful for program design and program documentation be­
cause they allow you to see the structure of your application. They are used
mostly at the beginning (at the time you lay everything out) and at the end of
the project, when you test arid document it.

35

Symantec C++ for the Macintosh: The Basics

collaborator

Accessor
Method

TMonster
(Name
(Color
(Troll
HideUnderBed
MakeScaryNoises
GetColor

Figure 2.2 Class diagram.

In the class diagram shown in Figure 2.2, TMonster is the class name. In this
book, the convention is to have class names begin with an uppercase T for type.
They appear in bold letters, always at the top of the clas.s diagram.

Things that begin with fare internal variables, in this example [Color,
{Name, and [Troll. These are only of interest to the person who has to write a
message for an object. Sometimes the internal variables are called instance
variables; at other times they're called fields. By convention, these are repre­
sented in the class diagram in italics.

Some internal variables may be references to other objects-here, [Troll.
These references are sometimes called collaborators.

Messages represent jobs that the objects can be asked to do. Message names
are also the names of the functions that implement the jobs, in this example
HideUnderBed and MakeScaryNoises. These functions are called methods,
which are represented by normal type and are always located at the bottom of the
class diagram. Methods (which have the same name as messages) may be under­
lined. This underlining can be useful because the number of underlined methods
defines how much work you will have in writing the corresponding routines.

Sometimes an object provides a copy of an instance variable. This is done
through a special message called an accessor method. In Figure 2.2, GetColor
is an accessor method.

It is important to remember that messages are not global procedures.
Messages must be sent to instances or instantiated objects. (To instantiate
means to make an object from a class.) These instantiated objects incorporate
the compiled methods, as shown in Figure 2.3.

36

Class Definition

TMonster
(Name
fcolor
HideUnderBed
MakeScaryNoises

Figure 2.3 Classes versus objects.

Object-Oriented Development

Methods

[TMonster::HideUnderBed]

[TMonster::MakeScaryNoises]

Instantiated Objects

In the above figure, we created a class called TMonster that contains internal
variables and the names of the methods used by TMonster. Next we created
two instances of this class (objects) called CookieMonster and Godzilla. We
also wrote the methods (TMonster:HideUnderBed and TMonster:

MakeScaryNoises) that will respond to the messages sent to the objects. To
send a message to CookieMonster, you write:

CookieMonster . HideUnderBed

Fields and methods are defined for the entire class. Each object (instance of a
class) will have its own unique field data. Also, each object will "point" to a
single copy of code for the shared methods.

Note that objects send messages, too, as shown in Figure 2.4.

37

Symantec C+ + for the Macintosh: The Basics

Hide U nderBed(monsterFile)

lnstanceNum I
CookieMonster
Blue
Godzilla

MakeScary Noises(monster, monster File)

lnstanceNum2
Godzilla
Green
Herman Munster

TMonster
fName
fcolor
HideUnderBed
MakeScaryNoises

[TMonster::HideUnderBed]

[TMonster::MakeScaryNoises]

Figure 2.4 Example of obiects sending messages.

Figure 2.4 illustrates one of the most powerful features of C++: the master
pointer. Here, the pointer is a pointer to an object of class TMonster. It not only
points to objects of class TMonster, it points to objects that are subclasses of
TMonster as well and uses the same message.

Methodology
If you do not have the kind of object you need, you must define a new class of
object. You also have to define the internal variables that the object is going
to use and the messages that will be sent to the object, and you must write
the methods that the object will use to implement the messages.

Specifying Fields and Methods
The fields of a class often correspond to real-world data. Sometimes they store
temporary data used by the methods. Each message has to have a method. Since
methods only perform one task, they should be small in size.

Subclassing and Inheritance
Classes have fields and procedures; they resemble an advanced form of data hid­
ing, which is called data abstraction . But classes offer much more than just

38

Object-Oriented Development

data hiding. You can create a new class from an existing class and reuse most
of the class's methods and instance variables. The mechanism for this is called
subclassing. Subclasses inherit their behavior from the parent class. The sub­
class will have all the instance variables that the parent class has but can add
others. Subclasses can also alter their behavior without modifying the parent
class by adding new methods or overriding old methods. Figure 2.5 shows an
example of subclassing.

In the figure, the new class that is created is called a subclass, and the par­
ent class is called a superclass. The reason the arrow points upward is that the
subclass inherits variables and methods from the superclass; the superclass
code does not even know that the subclass exists.

Subclassing offers a way to add new methods without affecting the behav­
ior of the original class, so it is useful when you want to leave the original class
alone. It is also a great way to make a versatile library (called a Class Library).

Without Subclassing:

TCookieMonster
(Color
fNumOfEyes
fCookiesConsumed
HideUnderBed
MakeScaryNoises
EatCookies

Figure 2.5 Subclassing example.

Abstract Class

With Subclassing:

TMonster
(color
fNumOfEyes
HideUnderBed
MakeScaryNoises

TCookieMonster
fCookiesConsumed
EatCookies

An abstract class acts as a template for other classes but is one that will never
be instantiated. It is usually used as the root of a class hierarchy; that is, its pur­
pose is to promote reuse. You use it if you want to create a really general class
like automobile or window with the intention of creating subclasses. A con­
crete class, on the other hand, is instantiated to create objects. Examples of con­
crete classes might be ForeignAutomobile and DomesticAutomobile.

39

Symantec C++ for the Macintosh: The Basics

Overriding
Overriding occurs when a method replaces an inherited method from a super­
class. In overriding, one message sent to two different but related objects will
invoke two different methods. You send the same message to different types of
objects, but the resulting behavior is different for objects of different classes.
(This override capability also allows you to write generic code and promote code
reuse.) A method that can be overridden in C++ is called a virtual function.

Figure 2.6 shows an example of the override capability.

TCookieMonster
fCookiesConsumed
EatCookies

TMonster
fcolor
fNumOfE.yes
HideUnderBed
MakeScaryNoises

TNastyMonster
fNumOfPeopleBitten
BitePeople
MakeScaryNoises

Figure 2.6 Example of overriding.

Multiple Inheritance
Multiple inheritance allows you to define classes that inherit properties from
more than one superclass, but it greatly complicates designing reusable class­
es. Superclasses with variables or methods with the same names require com­
plicated rules to avoid conflicts. Some programmers feel that you can write ef­
fective code without using multiple inheritance, and that you should, in fact,
avoid multiple inheritance because it drastically complicates the design.
Figure 2. 7 illustrates an example of multiple inheritance.

40

Obiect-Oriented Development

TDinosaur
(Weight
Lay Eggs

TMonster
(color
fNumOfEyes
MakeScaryNoises

TGodzilla
(Weight
(Color

fNumOfEyes
fNumOfPeopleBitten

Lay Eggs

MakeScaryNoises
Breathe Fire
Trash Tokyo

Figure 2.7 Example of multiple inheritance.

TDragon
fNumOfPeopleBitten
BreatheFire

Polymorphism and Dynamic Binding
Objects from related classes use the same names for different methods. Object
languages in general support sending messages to objects without worrying
about which exact method will be used. This is called polymorphism. Figure
2.8 shows an example of polymorphism.

The message sent to an object can be invoked without knowing the object's
actual class. Since messages invoke methods, and some of the methods cannot
be resolved at compile time (i.e., we don't know which method will actually
be used), they are resolved at run time. Because this operation is done at run
time, it is called dynamic binding. The method that is chosen depends, natu­
rally, on whether the method is an overriding one.

Dynamic binding requires a process known as method lookup. The prop­
erty of having many routines with the same name (polymorphism) means

41

Symantec C++ for the Macintosh: The Basics

that the compiler cannot always determine at compile time which method
should be called. This results in the need for a method lookup table mechanism
to find the correct method. A good object language creates this table by means
of compiler-generated code, and this table is transparent to you. In C++, these
tables are called vtables, with the letter v standing for virtual.

TMonster
(color
fNumO(Eyes
HideUnderBed
MakeScaryNoises

TNastyMonster
fNumOfPeopleBitten
BitePeople
MakeScaryNoises

ij TMonster::HideUnderBed ~

ij TMonster::MakeScaryNoises ~

lnstanceNum I
Green
3
,,7

InstanceNuml -> MakeScaryNoises = ???

TNastyMonster::BitePeople

TNastyMonster::MakeScaryNoises

Figure 2.8 Example of polymorphism.

Iterator Methods
An iterator method can be set up to send the same message to every object in
a collection. The difference between iterator methods and traditional meth­
ods is subtle but important. For example, if you want to add a new monster in
object programming, you do not need to change the code. However, in tradi­
tional programming, you have to add a new case label to the switch statement
to accomplish the same thing. The following code illustrates this:

42

Obiect·Oriented Development

Sending a Message to Each Object:

cookieMonster-)HideUnderBed():

oscarTheGrouch-)HideUnderBed() :

godzilla->HideUnderBed() :

Writing a Switch Statement, Traditional Programming:

switch (theMonster)

{

case cookieMonster:

HideCookieMonsterUnderBed() :

break;

case oscarTheGrouch:

HideOscarTheGrouchUnderBed():

break;

case Godzilla:

HideGodzillaUnderBed(): //Watch out!!

break;

Using an Iterator Method:

ForEveryMonster(HideUnderBed):

Looking at the above examples of code, you can see that with a switch state­
ment, you must make physical changes in the code; that is, you must create
new names and methods for each case. With the iterator method, you can send
messages to all of the objects with just one command. Of course, you have to
write the iterator method, but no modification of code is necessary.

43

Symantec C++ for the Macintosh: The Basics

Where to Begin an
Obiect-Oriented Program

After reading about all the wonderful things that OOP incorporates and can do,
most programmers feel:

Ill Scared.

Ill Confused.

Ill Lost-not knowing where to begin.

Take heart. There is a comfortable, organized way to begin your 00 program:

Ill Describe the problem your program must solve in English sentences.

Ill Identify nouns. These can be the class names.

II Find verbs. These are good candidates for messages.

Ill Look for adjectives. These may lead you toward instance variables.

After collecting all the ingredients, practice some visualization:

Ill Imagine a scene that involves a task.

Ill Imagine objects in the scene (classes).

Ill Imagine what the object can do !methods).

Iii Imagine things that describe the objects !instance variables).

As you begin to design your program, think in terms of small methods; they
are easier to write and debug. Make sure that your methods have only a single
purpose; this helps keep them small and makes it easier to reuse a class.

To create an object-oriented application, you must carefully design class­
es for your objects and code your design in an object language. Your coding will
be influenced by the language you choose, but whatever the language, your code
will be organized around a class hierarchy, and the flow of control will be based
on sending messages to instantiated objects. Both your design and your code
will look very different from those of a traditional application.

44

Object-Oriented Development

Summary
In this chapter, you've learned about:

II Objects

Real-world modeling

Modularity

Information hiding

1111 Classes

Code sharing and reuse

Subclassing and inheritance

Polymorphism and dynamic binding

Now you can put this knowledge to work with the following exercises.

Exercises-Programming with Obiects
1. Imagine that you are writing an application to help manage a compa­

ny's personnel and fixed assets. Building on the examples presented in
this chapter, create a design (i.e., draw class diagrams) for an object-ori­
ented program that meets the following requirements.

The company has four types of employees: managers, programmers, sec­
retaries, and bookkeepers. The first two categories are salaried and the
latter two are paid hourly. Your design must allow the program to print
paychecks for each employee that show the employee's name, gross pay,
tax, and net pay. Inputs to the paycheck process for each employee in­
clude the employee's salary, tax rate, and (for hourly employees only) the
number of hours worked. Give some object (e.g., one associated with a
bookkeeper) the ability to print all paychecks. How will the bookkeeper
object cause all of the individual paychecks to be printed? You may as­
sume a fixed maximum number of employees if you wish.

The company also has three types of assets: typewriters, adding ma­
chines, and computers. Make, model number, and serial number are
of interest for all of these items. For computers, the amount of memo­
ry is also important. For simplicity, assume that each employee can
be assigned at most one piece of equipment. Your design must allow

45

Symantec C+ + for the Macintosh: The Basics

46

the program to print a list that shows each employee's name followed
by a description of the piece of equipment assigned to that employee.

Finally, each secretary has one boss and each programmer knows one pro­
gramming language. Your design must allow the program to list the boss
for each secretary and the language for each programmer.

2. Create a diagram of the instantiated objects in your program, assuming
a company that consists of two programmers, one secretary, one
bookkeeper, and one manager, and some reasonable distribution of
equipment. You need not show the fields or methods for each instance,
but do use arrows to show collaborations among instances; that is, the
references from one instantiated object to another. You may use pen­
cil and paper or a paint or draw program.

3. Your class diagram probably demonstrates many instances of inheri­
tance. What possibilities for polymorphism does it contain?

3 The Symantec C++
Environment

I f you have not used Symantec's THINK C development environment before,
then you are in for a nice surprise- especially if you've been using UNIX or

DOS. Symantec C++ is even friendlier than the earlier THINK C versions and
has considerably more to offer. It supports MacApp and includes THINK C and
the THINK Class Libraries. In the future, it will support the Apple/Symantec
jointly developed class library.

If you are a first-time Macintosh programmer, you'll find that Symantec C++
is a fully integrated development environment that contains everything you
need to begin developing your own applications, as well as desk accessories
and device drivers. The three main components for development-editor, com­
piler, and linker- are all included in the package and work together to produce
your project; that is, you don't have to jump from one application to another to
edit, compile, and link. In addition, Symantec C++ has a source-level debugger
to aid you in debugging your program.

The following sections introduce you to the Symantec C++ environment,
show you how to create an application, and give you brief explanations of
each menu, window, and dialog box that you will be using. Chapter 15 treats
the components of Symantec C++ in much more detail. In this chapter, we
highlight the nitty-gritty aspects of developing applications in this environ­
ment, with an emphasis on what to do when.

47

Symantec C++ for the Macintosh: The Basics

Getting Started with Symantec C++
If you followed directions in the Users Manual for installing Symantec C++
on your hard drive, you should be ready to write a simple application. The first
thing you need to do is create a folder for your project, name it MyNewProject,
and put it in your Projects folder on the hard drive. jYou will have separate fold­
ers for all of your development projects.)

Symantec C++ is more lenient than earlier versions of THINK C, where you
were required to keep everything-THINK C shell, projects, utilities, and li­
brary sources-within the Development folder. With Symantec C++, you can
have the THINK Project Manager in one folder and the rest of the development
environment in another folder. In fact, you can have the THINK Project
Manager on a hard disk other than that where you keep your project files and
it will still execute. Nevertheless, Symantec C++-probably more for logical
organization reasons than anything else-has put everything into a folder called
Development. In a folder called Symantec C++ for Macintosh !within the
Development folder) are the THINK Project Manager, Debugger, libraries, tools,
and translators. For ease of access, if for no other reason, you will probably want
to keep each of your project folders within the Projects folder.

Another useful convention is to name each of your project folders with a
.f extension. This way you can identify your Symantec C++ project folders at
a glance.

Creating a Proiect
Now that you have a folder ready for your project, double-click on the THINK
Project Manager icon to launch Symantec C++. A dialog box similar to that in
Figure 3.1 will appear.

48

The Symantec C++ Environment

la Symantec C++ for Marin ... ,.. I
0 Aliases &J
D C/C++ Libraries
D Mac #includes
D Mac Libraries
D oops Libraries
D TH INK Class Library 1.1.3
D Tools
D Translators

Figure 3.1. THINK Proiect Manager dialog box.

1,;_1 Macintosh HD

(f ~ ~~ (? .. . j

(Desktop

¢ Open J
(New)
(Cancel)

Click on the New button, and a dialog box like the one in Figure 3.2 will ap­
pear with the request for you to name your new project.

la Symantec C++ for Marin ... ,.. I
0 Aliases &J
D C/C++ Libraries
D Mar #includes
D Mac Libraries
D oops Libraries
D TH INK Class Library 1.1.3
D Tools
D Translators

Figure 3.2. The New Proiect dialog box.

~ Macintosh HD

(fjO(t

(Desktop

¢ Open J
(New)
(Cancel

49

Symantec C++ for the Macintosh: The Basics

When the new project dialog box appears, the Create button will be grayed
out until you enter text. Name your project MyNewProject.n but do not click
the Create button yet unless the folder in which you want to save your pro­
ject is the one currently open. Use the standard file box at the top of .the dia­
log box to move around to different folders until you find and open your
MyNewProject folder. As you move around the folders, the Create button
changes to Open . When you find and open the folder you want, the Open but­
ton changes to Save. Press Save. Symantec C++ creates a new project document
on the hard disk and displays the Project Window shown in Figure 3.3.

Mll:_NewProfect. -rr
::II

Name Code

I
Totals 578 "I}

~

I I<
~

~

1
r.:;.-
{}

~ 1i
Figure 3.3. The Proiect Window.

The two columns in the Project Window display the name of each file (or li­
brary) that you include in your project along with the size of the code in
bytes, plus a total of all bytes of code. Look at Figure 3.4 to get a better idea of
what a more complex Project Window might look like.

50

The Symantec C++ Environment

Shapes.n
Name Code

"'V"Segment 4 11760 {r
CPlusLib 1690
Mac Traps 8342
MyLib.11 162
oops++ 338
Shapes .op 432
UList.cp 310

........ ~.~.~ ~.P.~.~ :.?. P.

Figure 3.4. Proiect Window Showing Compiled Files with Number of Bytes

The Project Window shown in Figure 3.4 contains the files and libraries that
are included in the Shape example in Chapter 13.

Segments
Symantec C++ now numbers the segments in which your files appear, and,
when you have exceeded the segment limit of 32K bytes, automatically opens
up a new segment. Since it makes sense to keep related routines in the same
segment, if possible, Symantec C++ allows you to move items around from seg­
ment to segment.

Segments are units of object code that go in and out of memory. All of your
code executes in a resource, which is restricted to 32K, and that resource may
or may not be in memory. A code resource with an ID of 0 or 1 is always in
memory. A code resource with an ID of 2 or more is the actual code that you
compile. The code resources 0 and 1 figure out, when you run the program,
which of the segments the code is in. That segment is loaded into memory for
as long as you need it. The segment loader is part of the operating system of the
Toolbox. (The Toolbox is divided into two parts: the operating system, which
has the Memory Manager, and the user interface, which has the Menu Manager
and other related managers .)

51

Symantec C++ for the Macintosh: The Basics

Creating a Source File
Now that you have created a project, you need to write the source code for it.
To do this, pull down the File menu and select New. When the source code edit­
ing window appears (as shown in Fig. 3.5), type in the code as you see it in
Figure 3.5.

main()
{

}

Sys8eep(4Q);
reh~rn O;

M NewPro -ect.cp

Figure 3.5. Source Code Window for MyNewProiect

Iii

After you have typed in the source code, choose Save As from the File menu,
name the file MyNewProject.cp (for C++) and press Save. Next, switch to the
Project Window.

With the Project Window open, select Add Files from the Source menu. A
dialog box like the one in Figure 3.6 will appear.

52

The Symantec C++ Environment

G:::) Macintosh HD

(~: j(H t)
(Desktop)

(Oo~u~)
(Cancel)

Rdd

(Rdd Rll)
(B~~mou~~)

Figure 3.6. Add Files Dialog Box from the Source Menu

Click on the Add button to add the file to the MyNewProject.f project window.
You could run this project now because it does not require any special libraries,
but it is a good idea to know from the beginning how to add libraries to your
project.

Adding Libraries
Macintosh libraries are essential to most Mac programs. In fact, it is nearly im­
possible to write an application for the Mac without the Mac header files and li­
braries. The program disks that you received with Symantec C++ contain almost
all of the library functions that you'll need. !But you may want to build your
own libraries that contain routines and functions you'll use over and over again. I

Since you already have the Add Files dialog box open, move around the
standard file box at the top of the dialog box until you see C/C++ Libraries with­
in the Symantec C++ for Macintosh folder. Open the C/C++ folder, select ANSI

53

Symantec C++ for the Macintosh: The Basics

!or ANSI++) and click the Add button. You will see the ANSI library appear in
the lower window of the dialog box, as shown in Figure 3. 7.

I a C/C++ Libraries ... ~
D RNSI++ E::J Macintosh HD
D RNSl-R4

) D RNSl-R4++ (~: j(H t
D RNS I-small () Desktop
D RNS I-small++
CJ C headers (
CJ C sources

Done)
CJ C++ headers (Cancel)
RNSI Open

(Rdd Rll)

II (H•~mou•~)

Figure 3.7. Adding Libraries to MyNewProject

You do not actually need the ANSI library to run this project, but you will need
that and other libraries for most of your applications. Adding to this project will
not affect the project.

Compiling the Program
There are a number of ways to compile your program, but the two that you will
use most are the Compile command in the Source menu and the Run command
in the Project menu. For the purposes of this project, choose Compile from
the Source menu. A dialog box shows the number of files and the number of
lines of code that are compiled lin this case, 1 file and 5 lines, if you started
your code on the top line).

54

The Symantec C++ Environment

Remember that Symantec C++, unlike traditional compilers, does not cre­
ate separate object files from your source files. Instead, it puts all the object
code into the project document.

Running the Program
Now it's time to see if the program will run. If it compiled, you have half the
battle won. The other half is linking all parts of the program.

The good news is that this program compiles and links. The bad news is
that it is kind of a dumb program; all it does is play your system beep sound.
You can, however, make it more exciting by changing your beep sound. If you
have one of the newer Macs with a built-in microphone, or if you have sound­
editing capability or a sound management program !like SoundMaster), you can
assign something that you really like to be your system beep. Then, when you
run this simple little program, you may even hear a Bach fugue. Just remember
to change the number inside the parentheses after SysBeep in your source code.
The number 40 only allows a I-second sound to play. If the sound you want
to play lasts about 6 or 7 seconds, you may want to write in the number 400
to make sure the entire sound plays.

Building an Application
If you have done everything right to this point, you can now turn your project
into a stand-alone application. Choose Build Application from the Project
menu. If you have made changes in the project, the dialog box shown in
Figure 3.8 will appear.

Bring the project up to date?

(

(No) (Cancel J n

figure 3.8. Bringing MyNewProject Up to Date

Make)

Yes J

55

Symantec C++ for the Macintosh: The Basics

Bring the project up to date by clicking on the Yes button. As soon as the pro­
gram is recompiled, the dialog box in Figure 3.9 will appear.

la MyNewProject ..-1
D M~f .. ~ewPro je(Lcp ~
D MqN(~WPHl j(~(t Tf

Saue application as:

I System Bee~
[g] Smart Link

Figure 3.9. Saving MyNewPro;ect as an Application

c:i Macintosh HD

[fj~~c1]

[Desktop]

n Saue D
(Cancel]

To be really creative, save your application as System Beep. Hang around for a
while and then open up the MyNewProject folder on your hard disk. You will
see the application there just as it appears in Figure 3.10 .

. . ,.,
CJ My NewPro ject .cp

CJ MyNewProject.11

<$ Sy stem Beep

- folder

2K TH INK Project Man... -

65K TH INK Project Man... -

2K application program -

Figure 3.10. System Beep, the Application Developed from MyNewPro;ect

Now, double click on the application icon, and voila! It may not be a spread­
sheet, database management, or word processing program, but it is a program
nevertheless.

56

The Symantec C++ Environment

Summary
In this chapter, you have learned how to:

Ill Create a project.

Ill Create a source file.

II Add files and libraries.

II Compile the program.

Ill Run the program.

Ill Build an application.

In Chapter 15, Using Symantec C++, we discuss the other features of the
Symantec development environment in much greater detail. Now, however,
you know the basics of the THINK Project Manager. In the next chapter, you
will learn the fundamentals of the C++ language.

Exercises

1) Install Symantec C++ on your computer if you have not done so already.

2) Perform the tutorial exercises found in the Symantec C++ manual.

57

4 Fundamentals
of C++

T he C++ language was developed by Bjame Stroustrup of Bell Laboratories
and Apple's version has been available on the Macintosh since 1990.

C++ (which is contrived to mean "C incremented by l," or "l better than C")
is essentially a superset of ANSI C with many additional features. It supports
object-oriented programming via class definitions, inheritance, polymor- ·
phism, and more.

To understand C++, you have to be familiar with the programming basics
of the C language and how it relates to the Mac. This section introduces the
elements of the language, describes the syntax, and identifies some differ­
ences between C and C++, to help you avoid the traps and pitfalls of C.

59

Symantec C++ for the Macintosh: The Basics

Comments
Comments represent an area where C and C++ differ in a significant way. C
uses I* ... * I to define a comment. This expression is referred to as a multiline
comment. For instance:

/*

This is a comment

*/

The embedded I* is ignored. Another example follows:

/*This/* is a comment*/.

In the above example, the compiler will ignore the second I*. Another example is:

/* This /* is a */ comment*/

Multiline comment pairs do not nest. That is, one comment pair cannot
occur within a second pair.

C++ uses both the star slash and the double slash-I I-which is a single­
line comment. Everything on the rest of the line is ignored. For example:

a = b; II Set a equal to b.

c = d;

The compiler ignores the words, Set a equal to b.

For debugging purposes, the 11 makes it very easy to comment out code.
However, it is very poor style to leave commented out code in software. For
instance:

for (i - 1; i < 10; i++)

{

a ma b:

II c = d;

e - f;

g = h;

}

60

Fundamentals of C++

In the above example, the line / / c = d has been commented out; that is, the
compiler has been instructed to ignore the expression c = d. This might be
done for a variety of reasons, but most likely the programmer will comment
out the line to see if the rest of the code works. The problem occurs when the
programmer, in proofing the code, does not see the all-too-easily-hidden//.

Writing comments liberally will help you identify specific areas of your
program more easily. It is always a good idea and good style to write a com­
ment or comments for each function within the program. The double slashes
are less prone to error than the /* ... * /. However, the latter are useful for
block statements.

Statements
All C++ programs derive from statements, which contain expressions.
Statements are really lines of instructions that you give to the compiler. If it
isn't a blank line, lines, or a comment, then it's a statement. A statement in
C ++ always ends in a semicolon or a curly brace, but can span several lines.
For example, you can say:

a= b ;

or:

a

b

or:

a b;

c d;

or:

a = b; c = d ;

As shown in the last example, it is possible to have sev­
eral statements on the same line, separated by semicolons.

The last example con·
fains a redundant state­
ment; that is, a state­
ment that does nothing.
This is called a no-op.

61

Symantec C++ for the Macintosh: The Basics

Another more complicated example might be:

for (i = 1; i < 10; i++)

{

a [i] b;

or:

for (i = 1; i < 10; i++){ a[i] = b; }

or:

for (i = 1; i < 10; i++){ a[i] = b; };

White Space
White space describes blanks, tabs, carriage returns, and line feeds embedded
in text. C++ ignores white space except inside identifiers, numbers, and any
words or symbols that belong together.

Variables
Variables are names given to memory locations. They contain values that
change with program dynamics and are written to or read from memory as
required. Variables are identifiers that can have a maximum of 127 charac­
ters in length, and all of the characters are "significant." At one time, com­
pilers such as Fortran allowed variables up to 30 characters, but these com­
pilers only read the first seven.

Numbers, alpha characters, and underlines are valid symbols for variable
names. It is not a good practice to begin a variable name with a number or an
underline. Since the characters are case significant, always begin the first
word of a variable's name with a lowercase letter, and then capitalize the
first letter of each significant word that follows. (This convention helps you
distinguish a variable from a function.)

62

Fundamentals of C+.+

Examples of the format of variables include:

myEventLoop

theControlRect

dialogPtr

Reserved Variables
There are some words that you may not use for variable or function names
because these are reserved by C++. The full list of these 54 keywords follows:

asm far public
auto float register
break for return
case fortran short
catch friend signed
cdecl goto sizeof
char huge static
class if struct
con st inline switch
continue int this
default long template
delete near typedef
do new union
double overload unsigned
else operator virtual
entry pascal void
en um private volatile
extern protected while

Predefined Variable Types
C++ has certain basic or predefined variable types. Some of the most impor­
tant of these are:

char A byte that ranges from -128 to +127. An 8-bit num­
ber. The first bit is the sign, and the following bits are
the number.

63

Symantec C++ for the Macintosh: The Basics

short

int

long

float

double

A word that is 2 bytes in length. It ranges from
-32,768 to +32,767.

In Symantec C++, the same as a short. It can be set to
either a short or a long.

A long word; i.e., 4 bytes. It ranges from
-2,147,483,648 to +2,147,483,647.

Real l .e that ranges from --36 to +36 (precision 7 digits).

Real l.e that ranges from -303 to l.e +303 (precision
13 digits).

Figure 4.1 shows some predefined variable names and their positions in
memory.

Memory Variable Names

'a'
...._ { char theChar; J-

I ~ 512 ... _ {short theShort; J-

...._ J float theFloat; J
J 3.14159 }

... - -l
l

21

Figure 4. 1 Example of predefined variable names and their positions in memory.

64

Fundamentals of C++

Another way to demonstrate the size of integers is in the following list:

Type

char

short

int

long

Size
1 byte

2 bytes

4 bytes (MPW)

2 bytes or 4 bytes,
depending on the
option (THINK)

4 bytes

Typically, an int is of machine word size. However, on the 68000, this is
ambiguous (32-/16-bit microprocessor). The Macintosh Programmers
Workshop (MPW) has a 32-bit int, while THINK has a 16-bit int. The best
way to avoid confusion is to use the words short or long and never use int.

The predefined types mentioned above are primitive data types. You can
make up your own data types. Typical examples of variable types are:

main()

short a;

long b;

float c;

char d;

a 10;

b = 7638465;

c 3 . 14;

d 'a';

Under TiilNK C 5.0, and
Symantec C++, you can
have an option set up
to declare whether an
int is a short or a long.
Under 4.0, a dialog box
asks you to declare
whether an int is a 4-
byte or a 2-byte int.

65

Symantec C++ for the Macintosh: The Basics

Declarations
C++ requires that you declare the type of every variable before you use it.
You declare a variable by specifying the type first and then stating the name
of the variable of that type that you want to declare. For instance, if you
want to declare a, you must say:

short a;

Definitions
Definitions cause space to be allocated for a variable, or code to be generated
for a function. (Declarations, on the other hand, do not cause space allocation
or code generation.) Variable definitions should appear at the beginning of
each program or function. Typical definitions are:

short i - o. j - 0;

float pi - 3.14;

char er - OxOD;

char space - ' '. .

Initialization
You can initialize the variable in the definition statement, and you can
define a variable anywhere a normal statement may occur. Just remember
that the variable must be defined before you use it. An example showing
variable definitions directly after a declaration follows:

y - 6;

float t; t - x; x - y; y - t; //swap x and y.

A variable that has not been assigned a value is said to be uninitialized. An
uninitialized variable's value is also undefined. The memory storage for the
variable is not swept clean when allocated. C++ supports two forms of vari­
able initialization, as shown here:

66

Fundamentals of C++

short myValue = 1024: //explicit form

or:

short myValue (1024); //implicit form

A variable may also be initialized with an arbitrarily complex expression.
Remember that all variables used in the expression must be initialized. An
example of a complex expression might be:

float price = 99.95:

float tax= 0.0825;

float total (price+ (price* tax)):

Signed and Unsigned
To further differentiate the variable types, you can put the modifiers signed
or unsigned before certain types of variables. For example:

main()

}

short a:

unsigned short b;

signed char c:

unsigned char d;

a = 32767;

b - 65535;

c = 'a':

d = 'I':

The default for any of these variables is signed. The following list shows the
ranges for signed and unsigned variables:

67

Symantec C+ + for the Macintosh: The Basics

unsigned char

unsigned short

unsigned int

unsigned long

The range is 0 to 255 or 28 -l(still 1 byte). All 8 bits
are used for the number.

The range is 0 to 65,535 (216 -1).

Same as short or long, depending on the option.

This range is 0 to 232 -1.

You can also have numerical constants. For instance:

long a:

a= 5;

Constants are shorts by default. However, you can change this in Symantec
C++. If, in the example above, you change the int to a long, which is called a
literal constant, the 5 will be a long. (The problem with the above example is
that it has mixed types. First, you declare a as long, then set it equal to 5, ·
which is normally a short. This is not good coding practice.)

Specified Constants
Following is a list of specified constants showing the individual formats:

OxFF hex char

OxFFFF hex short

OxFFFFFFFF hex long

l 23L long

128U unsigned (You may use U or u)

1024UL unsigned long (UL or LU)

"Macintosh" string

'T' char

'TEXT' long

1.23 double float (double precision)

l .23e2 double float (scientific)

3. l 4F float (single precision)

l.OL extended precision

All numbers are assumed to be short and decimal unless otherwise specified.
When you declare the variables, you may write:

68

Fundamentals of C++

short a, b;

short a - 10;

or:

short a = 10, b;

(You may have as many of
these as you wish, each sepa­
rated by a comma.)

(a and b are both declared
shorts and, in addition, a is
set to the value of 10.)

In the statement short
a = 10, short is the type,
a the identifier, and 10
the initializer.

In the above example, we initialized a to be the value of 10, thereby making
10 the initializer.

Logical Values
Any value that does not equal zero is assumed to be true. If a value is zero,
then it is logically false.

Strings
C++ strings are always terminated with a null (0) character (see Figure 4.2),
and character constants-a, b, c, d, and e-are automatically null termi­
nated. C++ strings are usually contained in an array of chars.

Figure 4.2 AC++ string.

Pascal strings are used with the Mac ToolBox (see Figure 4.3). The first byte in
a Pascal string is the length of the string, with a maximum of 255 characters
(Str255). Pascal strings are usually contained in an array of unsigned chars.

I 22 I T I h I e I I M I a I c I i I n I t I 0 I 8 I h I I c I 0 Im I p I u I t I e I r I

\L<mgthSyre

Figure 4.3 A Pascal String

69

Symantec C++ for the Macintosh: The Basics

String Constants
The C++ compiler places a null character at the end of every literal string
constant. An example of a string constant might be:

char *myString = "abcde";

Here, myString points to six characters.

Scope
Statements can refer to variables that are only within the same scope. Scope
is the space, domain, or world where an identifier is recognized. Figure 4.4
illustrates the areas of scope.

Operators
An operator is a unique character or set of characters that represent a specific
computer operation. An operator works on something called an operand.

70

In C++, there are four basic types of operators:

1. Unary

•Prefixed

•Postfixed

2. Binary

• Arithmetic and logical

• Assignment

• Comparison

3. Ternary

4. Comma

Fundamentals of C++

#include (iostreams.h>
short q: """' J Global Scope
main() """"' 1

{

short a:
a = 123; """' { Local to main]

= 1 """"" q

{

short b;
b = 123; """"" { First sublevel in main J

456; --a =
q = 2

{

short c;
c = 123;
b = 456;

,,,. Innermost sublevel

" in main
a = 789;
q = 3

}

}

}

Figure 4.4 Scope.

Operators have a hierarchical order something like the order of operations in
mathematics. Table 4.1 shows the order or precedence for groups of operators
in descending order:

71

Symantec C++ for the Macintosh: The Basics

72

Table 4.1

Operator

I I
[l

->

+

++

*

&

sizeof

I type)

new

delete

*

I
%

+

>>

>>

Description
Scope resolution

Function call

Array element

Direct selection

Indirect selection

Unary plus

Unary minus

Increment

Decrement

Logical NOT

Ones complement

Dereference

Address of

Object size

Cast

New operator

Delete operator

Multiplication

Division

Modulus

Addition

Subtraction

Left shift

Right shift

Fundamentals of C++

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

-- Logical equals

!= Logical NOT equals

& Bitwise AND

I Bitwise OR

&& Logical AND

11 Logical OR

?: Conditional

= Assignment

+= Addition update

Subtraction update

* = Multiplication update

I= Division update

%= Modulus update

<<= Left shift update

>>= Right shift update

&= Bitwise AND update

!= Bitwise OR update

"= Bitwise XOR update

Comma

73

Symantec C+ + for the Macintosh: The Basics

Unary Prefixed Operators
Operators require one, two, or three variables. Unary operators perform func­
tions on a single operand. A list of unary prefixed operators follows:

*
&
+

++

sizeof(I
(cast)
new

delete

Dereferencing - *

Dereferencing
Address of
Positive
Negative
Logical NOT
Increment
Decrement
Size of
Cast to
New operator
Delete operator

An address is a reference to a memory location. When you dereference the
address, you then have the contents contained at that address. For instance:

theValue = *thePointer;

In the above example, the statement takes the contents of the address con­
tained in thePointer and places it in theValue. Actually, the statement sets
theValue equal to *thePointer. Another example might say:

newValue = *{&oldValue);

This is the same as saying:

newValue = oldValue;

If xis a pointer

*x = 10;

the above example puts 10 in the location pointed to by x. In other words,
the contents of x equal 10.

74

Fundamentals of C++

Address of - &
The operator & is placed before a variable name to indicate that we want the
address (in memory) of that variable, not its current value. For instance:

theAddress = &myVariable;

The above statement sets the variable theAddress equal to the memory
address of myVariable.

Negative --
The negative operator turns a number into a negative number. For example:

short a;

short b;

a= 5;

b = -a;

In this example, the value of bis equal to -5.

Ones Complement - -
Ones Complement inverts the bits in the variable. For instance:

\

char a;

char b;

a = OxAA;

b = -a;

In this case, the value of b will be OxSS.

Logical NOT - !
A logical NOT takes the logical of its operand and inverts it. For example:

char a;

char b;

a = OxAA;

b = !a;

In this case the value of b will be 0.

75

Symantec C++ for the Macintosh: The Basics

Increment - ++
This operator increases the value of a variable by 1. For example:

short a;

a= 5;

++a;

The result of this is that a = 6. The above example says the same thing as:

short a;

a= 5;

a=a+l;

We could also say:

short a;

a= 5;

a++;

In this latest example, a still has the value of 6, but the ++ is now a postfixed
operator instead of a prefixed operator. (See section below on unary postfixed
operators.)

Prefixed and postfixed operators have different effects in C++. For
instance, look at the following code:

short a;

short b;

a= 5;

b = ++a;

This statement says the same thing as:

short a;

short b;

a= 5;

a= a+ 1; b =a;

76

Fundamentals of C++

In the above example, a is incremented by 1 and put into
b; that is, b = ++a, which is the same as a = a + 1; b = a.

Now take a look at an example with a postfixed operator:

short a;

short b;

a 5;

b = a++;

The above example says the same thing as:

short a;

short b;

a 5;

b =a; a= a+ l;

C++ takes its name
from the++ operator.
C++ is one step beyond
its predecessor lan­
guage, C.

Here, the example is evaluated as b = 5 and a= 6 (b = a++;}. In other words, b
is set equal to a , and then a is incremented.

Decrement - - -
This operator decreases the value of a variable by 1. For instance:

short a;

a= 5;

-a;

The result of this is that a = 4. This is the same as:

short a;

a - 5;

a= a - 1;

We could also say:

short a;

a= 5;

a--;

77

Symantec C++ for the Macintosh: The Basics

In the preceding example, a still has the value of 4, but the -- is now a post­
fixed operator instead of a prefixed operator. See the explanation of the differ­
ence between prefixed and postfixed operators in the preceding section on
the increment operator.

Size of - sizeof()
The sizeof operator returns the size of a variable in bytes. For example:

short a;

short b;

b = sizeof(a);

Here, b is equal to 2 because a is a short, and a short takes up 2 bytes. You
can also say:

short b;

b = sizeof(long);

In this example, b is equal to 4.

Cast to - (cast)
Casting transforms a variable from one type to another. For instance:

long a;

short b;

b = 5;

a= b;

In this example, a may or may not be equal to 5. You cannot predict this
because there is a variable-type mismatch. To be safe, you cast it thus:

long a;

short b;

b = 5;

a= (long)b;

In this case, a = 5.

78

Fundamentals of C++

New Operator - new
New is a unary operator that's available to access memory storage. New is a
replacement for the library function malloc and is more convenient to use.
New creates memory in an area called free store, which is a system-provided
memory pool (located in the heap) for objects whose lifetime is directly man­
aged by the program. When you want to create an object in memory, you call
new. When you want to destroy that object, you use delete.

The new operator returns a pointer to the beginning of memory for the allo­
cated variable or object. If you don't have any space in free store, the new will
return a zero-value pointer. You can then use this feature to determine whether
or not you have enough memory to allocate something. For example:

short *i;

i = new short;

*i = 20;

Here, the first line declares i to be a pointer to a short. The compiler only allo­
cates space for the pointer, not for the contents that the pointer points to.

The second line uses the new operator to obtain a short object, which is
located in the free store area. The new operator returns the address of the
short, which we place in i with the= operator.

On the third line, we set the contents that are pointed to by i to the value
of 20.

We discuss the new operator in more detail later in the book.

Delete Operator - delete
The delete operator destroys the memory space that was allocated by the
new operator. For instance, to delete the space we allocated above, write:

delete i;

The memory allocated by the new operator is no longer accessible. However,
the value is still there. If you use the delete again, you will delete another
word that is at the same address as i, because the address has not been elimi­
nated. Delete will also delete memory in the free store area without your
ever having allocated anything to it. You do not want to do this. To prevent
it, never use delete without first using the new operator. However, if you
delete a pointer of zero value, the delete command actually does nothing.

79

Symantec C++ for the Macintosh: The Basics

Unary Postfixed Operators
Following is a table of unary postfixed operators:

(I
[]

->

++

Function call
Array subscript
Direct selection
Indirect selection (called an arrow)
Increment
Decrement

Function Call - ()
A function is like a piece of code or routine that you call up when you need
it. You usually declare a group of code a function when you are going to use
it many times. It makes things more understandable. In a function call (in
between the parentheses), you pass to the function a group of arguments
(variables) that are used or set by the function. Sometimes a function returns
a value. Below is an example of a call to a function:

short a;

short b;

short c;

c = divide(a, b);

This function definition would be:

short divide(short x, short y)

return(x I y);

80

Fundamentals of C++

A second type of call to a function might look like:

short a;

short b;

short c;

divide(a, b, c);

}

The function would be:

short divide(short x, short y, short & z)

z = x I y;

For more information on and further examples of functions, see Chapter 6.

Array Subscript - []
An array i$ a collection of variables that is contiguous in memory. An array
has a name, a type, and an index. To use an array, you first have to declare it.
For instance:

long a [100];

The above declares the array as 400 bytes and sets aside the memory for it.
Even though this is declared as an array, an array in C++ is not a data type;
it's an operator. To use the array in code, you would write:

long a [100];

a[O] = 1000;

a[l] = 1001;

a[2] = 1002;

81

Symantec C++ for the Macintosh: The Basics

a[98] = 1098;

a[99] = 1099;

Here, you've created an array that has 100 elements. The [] is an operator,
just as the+ is in addition, but in the function a[i] is the same thing as *(a+
i). In the example, a is actually the address of the beginning of the array or of
the first element in it. When i is added to a, the a + i combination is the ith
element in the array. So, *(a + i) is the contents of the ith element in the
array .. This is exactly the same as saying a[i]. Since the address of a is the
address of the first element in the array, you can obtain the contents of that
element by stating that the index is equal to 0. Therefore, arrays always start
with a[Oj because that is the way you obtain the first element in the array.
The last element in the array is af 99], even though we dimensioned the array
by 100, which is the maximum index value of the value by which you
dimensioned the array. So if we addressed a{100], we would be addressing a
memory location of something that is out of the bounds of a and would be an
invalid value.

Since the [] is an operator, you do not have to declare something as an
array to use this operator.

Dynamic Arrays, New
If you wanted to create an array that is dynamic (i.e., its size is determined at
run time, as opposed to compile time), you could write:

long *a;

short n;

n = 100;

a = new long[n];

a[99] = 1099;

In the above example, the new in the statement a = new long[n] allocates an
array of n longs and places the address of the first element of the array in a.
This makes it dynamic. In contrast, a static array is dimensioned at compile
time-once its size is declared, it never changes. For a dynamic array, there is
no space allocated at compile time. Using the new operator, you request
space for that array.

82

Fundamentals of C++

Dynamic Arrays, Delete
To use delete to wipe out the memory in the preceding new example, you
would write the following:

delete [n] a;

This will delete n longs pointed to by a from the free store.

Direct Selection - •
To understand what direct selection is, you have to understand structure. A
structure is a way to consolidate or encapsulate a group of variables. It's sim­
ilar to an array, but the variables that we put into this group are not all of the
same type. For instance:

typedef struct

long a;

char b;

short c;

} myType;

The above code creates a new variable type called myType. The variable type
that it creates is a type just as a short is a type. To use this new type, we
need to say:

myType theType;

The above line declares a variable called theType of the type myType. To set
the values contained in theType, we would use the direct selection operator.
For example:

theType.a 8201836;

theType. b 'm';

theType.c 512;

When we declared theType, we created a collection of variables in memory
all associated with the identifier theType, which is a structure. It can contain
any number and combination of variable types. In the above example, it con-

83

Symantec C++ for the Macintosh: The Basics

tains a long, a character, and a short. To set the value of any of the variables
in the structure, we used the direct selection operator. You not only set the
values (as above) but you can use the values as well.

Indirect Selection - - >
Indirect selection uses the -> symbol, which is sometimes called an arrow.
Indirect selection performs almost exactly the same function as direct selec­
tion, except that the variable is an address or a pointer. For instance:

myType theType, *pTheType;

pTheType = &theType;

pTheType->a

pTheType->b

8201836;

'm';

pTyeType->c = 512;

On the first line of this example, we declare a structure called theType of
type myType and a variable called pTheType, which is to be used as a pointer
to something that contains a record of type myType. On the second line, we
put the address of the variable theType into pTheType. On all the other lines,
we use indirect selection to gain access to the individual members contained
in the structure.

Increment - + +
This operator increases the value of a variable by 1. For example:

short a;

a++;

The result is that a= 6. This says the same thing as:

short a;

a= 5;

a= a+ 1;

84

Fundamentals of C++

Decrement - - -
This operator decreases the value of a variable by 1. For example:

short a;

a= 5;

a- - ;

The result of this is that a = 4. This is the same as the following:

short a;

a= 5;

a= a - l;

Binary Operators-Arithmetic and Logical
Binary operators function on two expressions, one on the left side of the
operator and one on the right side. A list of binary operators follows:

Arithmetic and Logical Operators

+ Addition
Subtraction

* Multiplication

I Division
% Modulus
& Bitwise AND
I Bitwise inclusive OR

A Bitwise exclusive OR (XOR)
<< Left shift

>> Right shift
Equal (or replacement)

85

Symantec C++ for the Macintosh: The Basics

Addition - +
This is used simply to add two numbers together. For example:

The + (plus) sign is also
a unary operator.

Subtraction

short a;

short b;

sho r t c;

a = 4;

b = 5;

c = a + b;

The result of the above is that c = 9.

This operator is used to subtract two numbers. For instance:

The- (minus) sign is also
a unary operator.

short

short

short

a = 4;

b = 5;

c a

a;

b;

c;

-

Here, c = -1 .

Multiplication - *

b;

This operator is used to multiply two numbers. For example:

The • (asterisk) sign is
also used as the deref­
erencing unary opera­
tor.

86

short a;

short b;

short c;

a 4;

b = 5;

c = a . b;

Here, c = 20.

Fundamentals of C++

Division - I
This operator is used to divide two numbers. For instance:

short a;

short b;

short c;

a = 20;

b = 5;

c = a I b;

Here, c = 4.

Modulus - o/o
This operator is used to show the remainder when the first number is divided
by the second number. For example:

short a;

short b;

short c;

a = 22;

b = 5;

c = a % b;

Here, c = 2, which is really a - (a I b).

The modulus operator should be used with integers only; not with float­
ing point numbers. It can be used to determine if the variable is odd.

Bitwise AND - &
A bitwise AND takes each bit of the left expression and performs an ANDing
function with each bit of the right expression. For instance:

char a;

char b;

char c;

a= OxSS;

87

Symantec C++ for the Macintosh: The Basics

When we ANDed the
55 with a OF, the up­
per nibble of the 55 be­
came 0, and we were
left only with the low­
er nibble, which is a 5.
In a sense, we masked
out the upper nibble.
When you want to
mask out certain bits,
use a 0 in the masking
number. For those that
you want to keep un­
masked, use a 1 in the
masking number.

b = OxOF;

c a & b;

In the above example, c = Ox05. In the binary system, the
numbers look like this:

a 0101 0101
b 0000 1111

Using the truth table for an AND function, the result will
be:

or:

c 0000 0101

0101 0101
& 0000 1111

0000 0101

Bitwise Inclusive OR - I
A bitwise OR takes each bit of the left expression and performs an ORing
function with each bit of the right expression. For instance:

char a;

char b;

char c;

a = Ox55;

b = OxAA;

c = a I b ;

In the above example, c = OxFF. In the binary system, the numbers look like
this:

a 0101 0101
b 1010 1010

88

Fundamentals of C++

Using the truth table for an OR function, the result will be:

or:

c 11111111

0101 0101
1010 1010
11111111

Bitwise Exclusive OR(XOR) - "
A bitwise XOR takes each bit of the left expression and performs an XORing
function with each bit of the right expression. For example:

char a:

char b:

char c:

a= OxSS:

b = OxFF:

c = a " b:

In the above example, c = OxAA. In the binary system, the numbers look like
this:

a 0101 0101
b 11111111

Using the truth table for an XOR function, the result will be:

c 1010 1010

or:

0101 0101
A 11111111

1010 1010

89

Symantec C++ for the Macintosh: The Basics

Left Shift - < <
A left shift takes all the bits in the expression and shifts them to the left side
by the number of places indicated. For instance:

char a;

char b;

char c;

a= Ox55;

b = 1;

c = a << b;

In the above example, c = OxAA. Before the shift:

a 0 l 0 l 0 l 0 l, then shifted by b (l}

After the shift:

c 1010 1010

Right Shift - >>
A right shift takes all the bits in the expression and shifts them to the right
by the number of places indicated. For example:

char a;

char b;

char c;

a = OxAA;

b = 1;

c = a » b;

In the above example, c = OxDS. Before the shift:

a 1010 1010, then shifted by b (1).

The right shift fills with Os if the left operand is unsigned. Otherwise, the fill
is a copy of the signed bit; in this case, a 1.

90

Fundamentals of C++

After the shift:

c 1101 0101

Equal (or replacement) - =
The equal operator totals any preceding operation(s). For example:

char a:

char b;

char c;

a = 6;

b = 2;

c = a/b;

c = 3

In the above example, c = 3 is the result of a division operation (alb). The
more complex use of the = operator as an assignment operator is discussed in
the next section.

Binary Operators-Assignment
The equal is an assignment statement that has a low precedence.
Assignments are evaluated from right to left. In C++, the = symbol is an oper­
ator, although in other languages it is not. The difference is that in C++ a
statement can contain more than one = sign. For example:

short a;

short b;

short c;

a=b=c=l;

The above statement assigns the value 1 to c. It sets b to be the value of c,
and sets a to be the value of b. Typically, the= assignment operator produces
assembly code for something like a = b :

MOVE b, al;

MOVE al. a;

91

Symantec C++ for the Macintosh: The Basics

Here, the assembler takes the value of b (right-hand side) and puts it into a tem­
porary register. (A register is a working storage location that's inside the 68000
microprocessor.) It then places the contents of the temporary register into a (the
left-hand side). Therefore, in C++, as in most high-level languages, the left-hand
side of the assignment must be an expression that refers to storage in the
machine, which is referred to as an lvalue. The right-hand side of the assignment
can be a storage value, an expression, or a constant. It is referred to as an rvalue.
(The rvalue may be read but not altered, so you can think of it as a read value.
The lvalue is the memory location where the result is written, so you can think
of it as a location value.) Figure 2.5 shows the location of the rvalue and lvalue.

//simple assignment

lvalue rvalue

Figure 4.5 I and r values.

The code below illustrates the concept of the lvalue and rvalue:

short a;

short b;

a+ 1 = b;

The above is not valid. a + 1 is not an lvalue; that is, it is not a valid memory
location. An error message will come up saying that you have an invalid
lvalue. Instead, it's an expression. What would be acceptable is the following:

short *a;

short b;

*(a+l)=b;

Here, a is a pointer to a short, and we're taking a, which is a memory
address, adding 1 to it, and placing b in the contents of that memory address.

Also, you may not say:

short a;

0 = a;

92

Fundamentals of C+ +

You will get the same error message because 0 is a constant, not a memory
location.

+=

- =

* =

I=
%=

<<=

>>=

Assignment Operators

Assignment

Addition update

Subtraction update

Multiplication update

Division update

Modulus update

Left shift update

Right shift update

Bitwise AND update

Bitwise OR update

Bitwise XOR update

Addition Update - + =
If you want to increment a value by 1, you can do the following:

short a;

a= a+ 1;

Another way to do this is to use the += operator, as follows:

short a;

a += 1;

All of the other operators that contain the= symbol work in the same way. If
you write a (operator) = b, it results in a = a (operator) b. Another, more
challenging example is below:

short a= 5;

short b = 7;

93

Symantec C++ for the Macintosh: The Basics

short c = 3;

a+= b++ + ++c;

In this example, c is incremented by 1, so c now contains the value of 4.
Then, the value of c is added to b, and that result is added to a and stored
back in a. So a will be equal to 4 + 7 + 5. In addition, b will be incremented
so that after this expression is fully executed, b will have the value of 8.
Another way to state the last line is:

a+=b+++++c;

However, this expression is confusing. That is why C++ rules include insert­
ing a space between binary operators and no space between the operator and
the operand for unary operators.

Binary Operators-Comparison

Comparison binary operators provide a logical result that is either true or false.
These operators are used to compare things, as in the following example:

short a:

short b;

short c;

a = 2;

b = 5;

c = a < b;

The above example compares a and b. Since a is less than b, the result of the
operation is a true. (A true in C++ is defined as something that is not 0.) A
false would be 0. For all comparison operators, the result is either 1 or O; that
is, true or false. If a is less than b, then the value of c is 1, or true. Otherwise,
c is 0, or false.

94

<

>

<=

>=

!=
&&
11

Fundamentals of C++

Comparison Operators

Equality

Less than

Greater than

Less than or equal to

Greater than or equal to

Inequality

Logical AND
Logical OR

The equality operator compares two variables to see if they are equal to each
other. For instance:

short a;

short b:

short c:

a - 2;

b - 5;

c - a - b;

The above example sets the value of a to the value of b, then sets the value
of c to the value of a. The result is that a, b, and c all have the value of 5.
However, the statement does not perform a comparison
to see if a is equal to band set c to true or false, depend- lllNIUA
ing on the result of the comparison. To do such a compar- n•
ison, write the following:

short a:

short b:

short c:

a - 2;

b - 5:

c - a - = b:

A common mistake
made in C program­
ming is to use the = op­
erator when the == op­
erator is intended. This
is especially true when
the == operator is used
in the control state­
ments; that is, an if or
while statement.

95

Symantec C++ for the Macintosh: The Basics

In this example, a is compared to b. Because they are not equal, it sets the
value of c to false.

The <, >, <=, >=, and != operators all have the same function as the == opera­
tor; that is, they compare two variables and provide a result that is either
true or false.

Logical AND and Logical OR
These operators take the logical value of the two operands and state either,
"If a is this AND bis that, then c will be true (or false)," or "If a is this OR b
is that, then c will be true (or false)."

short a;

short b;

short c;

a 2;

b 5;

c = a && b;

In the above example, if a is not equal to 0 (i.e., a is true) and bis not equal
to 0, then c will be set to true. This is quite different from saying:

short a;

short b;

short c;

a = 2;

b = 5;

c = a & b;

The above example takes the hex number Ox0002 and performs a bitwise
AND with the number OxOOOS. The result placed in c will be Ox0007.

The && operator is normally used in statements like the following:

short a= 2, b = 5, c = 7, d = l, e;

e = (a < b) && (c > d) ;

96

Fundamentals of C++

The result of the above operation is that e is equal to true.

The OR comparison (II) operates similarly, except that it states, "This or
this, /1 instead of "This and this." For example:

short a= 2, b = 5, c = 7, d = l, e;

e = (a = b) 11 (c == d):

Here, if a is equal to b or c is equal to d, then e will be equal to true.
However, that is not the case, so e is equal to false.

The &.&. and 11 operators are evaluated from left to right; that is, as soon as
the result of the left-hand variable is known, the operation will determine
whether it needs to evaluate the right-hand variable. If not, it will set the
assignment to true or false immediately. The advantage of this is speed. For
efficiency's sake, you should put the variable most likely to affect the outcome
in the left-hand position. Figure 2.6 shows this short-circuit evaluation.

if ((a == b) 11 (c == d))
{

If a equals b,
then the expression (c == d) is not evaluated

Figure 4.6 Short-circuit expression evaluation.

Ternary Operator - ?:
The ternary operator provides a choice between two alternatives. For instance:

short a, b, c, d;

d = c ? a : b;

The above example can be expressed as d equals a if c is true, otherwise b.
Thus, the value of d will be either a or b. It is not a logical value. A typical
example of this is:

short a,b,c;

c = (a < b) ? a b;

97

Symantec C++ for the Macintosh: The Basics

This statement performs a minimum (min) function; that is, it takes the smaller
of two values, either a or b. Another example might look like the following:

short a,b.c;

c - (a > b) ? a : b;

The above example describes a maximum (max) function because it takes the
larger of the two. Another example might look like:

short a,b;

b - (a < 0) ? -a : a;

Here, if a is less than 0 (is a negative number), then set b to -a (which is a
positive a); otherwise (a is positive), set b to a. This is referred to as an
absolute value function.

Comma Operator
The comma operator is used to separate a series of expressions. These expres­
sions are evaluated from left to right. (It is important not to confuse the
comma operator with the statement/end separator-the semicolon.) Here is an
example of the use of the comma operator in a complex statement:

short i - (ia !=O) ?

ix - 5. ia[ix] 1:

ix= 6, ia[ix] = ix - 1,0;

for (short i = 1. short j = 1; i < 10; i++. j++)

a - 100; b - 200; c - 300;

98

Fundamentals of C++

Summary
In this chapter, you have learned the elements of the C++ language:

• Simple statements.

• Variables.

• Basic data types.

• Operators.

In the next chapter, we will introduce you to the basics of program flow and
will discuss C++ standards of style.

Exercises

1) Which comments are valid?

a) II Macintosh

b) I* Macintosh

c) I* Macintosh *I
d) I* Macintosh I* Computer *I System *I
e) II Macintosh II Computer

f) #define pi 3.14 II rr

g) y = a*xl*p: I* simple equation *I

2)

h) "I* Macintosh *I,.

i) "II Macintosh"

j) II I* Macintosh *I
k) I* II Macintosh *I

Debug the following:

main()

short library:

short public = 1;

short private= 2;

short i;

99

Symantec C++ for the Macintosh: The Basics

100

}

cin » i;

if (i == 0)

library= public;

else

library private;

return (0);

3) Debug the following:

main()

char system[9] ="Macintosh";

cout << system;

return (0);

4) What is the value of x on each line of the code below:

main ()

short x;

x = S;

x (4 * 2) - 6;

x /= 5;

x-;

x = short(25.0);

x /= 3 * 2;

x = (3 * 4 * S) I 9;

x -= (3 + 4) * 2;

x = sizeof(long) + 1;

}

x = (3 + 4) * 2:

x = sizeof(char);

x /= (3 + 4) I 6;

5) Which of the following are true or false:

a) 10 == s * 2

b) 0 && 0

cl 12 11 o

Fundamentals of C++

d) short a = 1, b = 2; a > b 11 b > a:

101

5 Controlling the
Program Flow

C++ programs derive from control structures that allow you to determine
which operations the computer will perform and in what order. The struc­
tures determine the flow of control of the program.

C. Bohm and G. Jacopini stated in Flow Diagrams, Turing Machines and
Languages with Only Two Formation Rules that any algorithm could be
coded in a computer language using only three control structures: sequential
execution, conditional execution, and looping. Sequential execution is the
most common and is usually part of a simple statement or block of state­
ments. Conditional execution and looping are more complex. All are covered
in the following subsections.

103

Symantec C++

Statements
All C++ programs are made up of statements, which are followed by a semi­
colon. The several types of statements are described below.

Expression and Null Statements
The most common statement is the expression statement. An expression is a
statement that describes the relationship between variables and operators.
For example:

short a, b, c;

a= b + c;

The above expresses a's relationship to band c using the= and+ as operators.

C++ can also have a null statement, which is a statement for which no code
is generated. It is equivalent to an assembly language No-op. For instance:

short a. b. c;

a=b+c;;

In the above example, nothing happens between the two semicolons. This
example is not a useful one, but there are instances where a null statement
can be useful.

Beyond the expression and null statements, there are other statements in
C++ that use keywords.

Blocks
A block, or compound statement, is a collection of statements enclosed by a
pair of curly braces. Thus, from the beginning of an open curly brace to the
closed curly brace, all of the statements contained therein constitute a block.
We have used blocks in all of our code examples, although we have not always
shown the curly braces because most of the examples are code fragments. The
following is an example of a compound statement using the curly braces:

main()

short a, b, c, d;

c = a + b;

104

Controlling the Program Flow

d = a+ c:

The three lines between the curly braces make up a block.

If
The if statement is the simplest of all the control statements. An if takes the
following form:

if (expression) statement;

The if statement simply means that the statement executes if the expression
is true; that is, if everything inside is not equal to 0 (the C++ definition of
true). However, you can say in the expression that something is equal to 0,
and it will execute because the expression is true. The following is a simple
example of an if statement:

short a:

if (a < 0) a = -a:

The above example says that if a is less than 0, then a is equal to -a. In other
words, it takes the absolute value of a. Another way to write this is:

short a;

if (a < 0)

a = -a:

This is exactly the same as the first example but shows that C++ ignores
intervening lines and white spaces.

The statement in the if statement can be a block statement. For instance:

short a, b, c:

if (a != 0)

b = 10:

c = 20;

105

Symantec C++

The example above has a compound (block) statement between the curly
braces. A variation of the above example might be:

short a, b, c;

if (a)

b = 10;

c = 20;

This code does exactly the same thing as the previous code because the
expression still says, "if a is not equal to 0."

It is important to note that the logical expression inside the parentheses
can be interpreted differently for the =, &, and I operators. For example, if
you are comparing variables-a equals b, and c equals d-the rational thing
to write would be:

short a, b, c, d, e;

if ((a= b) & (c = d)) e = 0;

This appears to say, "If a is equal to b and c is equal to d, then set e to O."
What actually happens is that a is set equal to b, clobbering a, and c is set
equal to d, clobbering c, and if the bitwise ANDing of a and b is not equal to
0, e will be set to 0. The correct way to write that statement is:

short a, b, c, d, e;

if ((a== b) && (c == d)) e = 0;

By using the == and &&, the above example evaluates the logical expressions
this way: "If a is equal to b and c is equal to d, then set e equal to 0." It com­
pares a to b and c to d rather than setting values.

Even if you intend to do an assignment in the expression part of an if
statement, the best way to write this would be:

short a, b, c;

a=b+l;

if (a != 0) c = 0;

106

Controlling the Program Flow

A crackerjack C++ programmer might look at that and, for conservation of
keystroke purposes, might express it in the following manner:

short a, b, c:

if (a= b + 1) c = O;

This will execute the same as the first example, but it is poor style. If at
some future time you wanted to modify your code, you might not know
what was originally intended.

C++ has unusual rules for curly braces. The language allows you to write
an if statement with an else statement without braces-if there is only one
line of code after each statement. However, if you do not use braces, you
stand the chance of making a disastrous mistake. Thus, a good example of
code is:

if (i < 0)

do one line

else

do another line

}

A bad example might be:

if (i < 0)

do one line

else

do another line

The reason that the preceding example is considered poor style is that it
lends itself to error. That is because almost every line of code in C++ has a
semicolon after it, and it is remarkably easy to insert a semicolon where one
does not belong. For instance, it would be effortless to write:

107

Symantec C++

if (a= b):

c = d:

Let's assume that in this example you wanted to say, "If a equals b, then c
equals d." Instead, you are saying, "If a equals b, then do nothing and always
set c to d." The best way to avoid this error is to use braces, as follows:

short a, b, c, d:

if (a != b)

c = 10:

d = 20:

Here, if you inadvertently put a semicolon after the if (a != b) expression, the
brace on the following line automatically flags the error. (This is true only in
the Symantec compiler.)

If-Else
An if-else statement includes the alternative condition; that is, if the expres­

. sion is true, execute the first statement, or else execute the second state­
ment. The syntax of the if-else is:

if (expression) first statement:

else second statement:

A simple example would be:

short a, b:

if (a < 0) b = -a;

else b = a:

An alternative way of saying the above would be:

short a, b:

if (a < 0)

b = -a:

108

Controlling the Program Flow

else

b = a;

Even though this example is acceptable syntax in C++, it is poor style for the
reasons discussed in the previous section: Since most lines are terminated by
a semicolon, it's easy to insert one in the wrong place. You might inadver­
tently write:

if (a < 0) ;

b = -a;

else

b = a;

What would happen above is that if a were less than 0, nothing would hap­
pen (this is a null statement) and b would always be set to -a. A better way
to say this is:

short a, b;

if (a < 0)

b = -a;

else

{

b a;

This makes the statement clearer and more goof-proof. It also assures that
the compiler will pick up any mistakes.

Else-If
The else-if statement is used to implement multiple-choice statements. In
essence it says, "If the first expression is true, execute the first statement;
else if the second expression is true, execute the second statement."

The form for an else-if statement is:

if (first expression) first statement;

109

Symantec C++

else if (second expression) second statement;

else last statement;

A simple example would be:

char answer;

short result;

if (answer = I A 1) result = false;

else if (answer , B,) result false;

else if (answer 1c1) result true;

else if (answer , D,) result false;

else if (answer 'E') result false;

else result = false;

The above example says: "If C is the answer, the result is true. If A, B, D, E,
or anything else is the answer, then the result is false."

Switch
A switch statement executes a particular action depending on whether an
expression matches one of a number of constant values. A switch statement
has the following form:

switch (expression)

case first constant:

first statement;

case second constant:

second statement;

110

Controlling the Program Flow

default:

last statement;

In the above example of code, the lines with a case and constant (or default)
are called case labels. These end in a colon. The case and default labels can
occur in any order, but by convention the default case is usually last. You
cannot have two instances of the same case label; each must be unique.

When the switch expression matches the case constant, the statement
following that case label is executed. In addition, every statement from the
first matched statement to the last is executed. For example:

short i;

char theCharacter;

i - O;

switch (theCharacter)

case ('4') :

i++;

case ('3'):

i++;

case ('2') :

i++;

case ('1') :

i++ ;

default:

Although the default
case is optional, it is
good programming
practice to have a de­
fault case in the event
that none of the other
cases matches. lhis way
you know that the swifd1
statement has execut­
ed properly. By con­
vention, the default case
is usually the last case
in the switch statement.

In this example, we have two variables: theCharacter, which is some ascrib­
able ASCII value, and i, which is a short number. In the first line of code, we
set i to 0. In the second line, we have the variable theCharacter, which is
what we will be testing on. Each of the case expressions contains an ASCII
constant. For example, case ('4') is Ox34, case ('3') is Ox33, and so on. Let us
suppose that case ('4') is a match, then the line following that case label­
i++-gets executed. When that statement is executed, i is now equal to 1.
The next thing that happens is that the program falls through and executes

111

Symantec C++

the statement following the next case label and ignores the case label; in this
case ('3'). Each additional statement under each case label, including the
default, is also executed, thereby changing the value of i in each case.

If you do not want the fall-through feature for a particular case, you must
use the switch-break statement, which is covered in the next section.

Switch-Break
The switch-break statement is just a switch statement with the addition of
a break statement. When a break statement is executed, it forces the pro­
gram to branch out of the switch statement; that is, it does not fall through.
The format for a switch statement using breaks is:

switch (expression)

case first constant:

first statement:

break:

case second constant:

second statement:

break:

default:

last statement:

break:

}

For performance purposes, put the case that is most likely to match first in the
switch-break statement (may vary from complier to compiler). An example of
a switch-break statement might be:

112

short i:

char theCharacter:

switch (theCharacter)

case (I 9 I) :

case (I 8 I) :

case (I 7 I) :

case (I 6 I) :

case (I 5 I) :

case (I 4 I) :

case (I 3 I) :

case (I 2 I) :

case (I 1 I) :

case (IQ I) :

i = theCharacter

break:

case (I A I) :

i = 10:

break:

case ('B'):

i = 11:

break:

case ('C'):

i = 12:

break:

case ('D'):

i = 13:

break:

case ('E'):

i = 14:

break:

case ('F'):

i = 15:

break:

default:

i = O:

break;

Controlling the Program Flow

- Ox30;

113

Symantec C++

In this example, the first 10 lines after the open curly brace are fall-through
cases; that is, they are multiple case labels attached to one statement. For
each of those cases, we have an ASCII character from which we subtract
Ox30, thereby setting i to the decimal equivalent. After that, we hit the break
statement, which forces us to branch out of the switch statement and not
execute any of the other cases in the block. In the other cases-A through
F-we assign i to the decimal of the hex digits. If no match is found, the
default is executed.

For sanity's sake, it is best to avoid fall-throughs except to prevent ineffi­
cient duplication of code lines. Fall-throughs are best used when you have
multiple labels for a single computation.

Which Do I Use-Switch or If-Else?
Since these two statements do almost the same thing, it is sometimes diffi­
cult to know which to use. We suggest that you use a switch statement if at
all possible. The following rule will help: If you are matching an expression
to a constant, use a switch statement. If you are matching an expression to
an expression, use an if-else statement. For example:

Switch:

case ('A'):

i = 10;

break;

case ('B') :

i = 11;

break;

case ('C') :

i = 12;

break;

If-Else:

114

if

a = b

else

a < b

a > b

and so on.

Controlling the Program Flow

While
The while statement executes a statement as long as a
specific expression is true. The test for a logical true is
made each time before the statement is executed. If the
expression is always false, the statement is never exe­
cuted.

The format for the while statement is as follows :

while (expression) statement;

The statement can be compound. The test for the expres­
sion is always done at the top of the loop. An example of
a while statement might be:

i = 0;

while (i < 100)

i++;

The above statement changes the value of i by 1 each time
you go through the loop. In this example, the statement will
be executed 100 times, but the test for the expression will
be executed 101 times.

The statement has to affect the expression in some way.
Otherwise, you will have an endless loop, because the expres­
sion would always be true. At some point, the statement
has to render the expression false.

Another way to write the above example might be:

i = O;

while (i < 100)

i++ ;

The problem with the style of this example is the ten­
dency to put a semicolon after while (i < 100). Doing this
puts the program into an infinite loop.

Variables that retain
a value based on the
number of times through
a loop are called coun­
ters. Typically, pro­
grammers designate
these counters as i, ;, k,
I, m, and n. Originally,
in Fortran (the mother
of all programming lan­
guages), the first let­
ter of any integer vari­
able had to begin with
one of those letters. This
tradition has been hand­
ed down to C++.

For the most part, the
only way out of an in­
finite loop on the
Macintosh is to restart
the machine.

115

Symantec C+ +

Do-While Loop
The do-while statement is similar to the while statement, except that the
test and evaluation of the expression are done at the bottom of the loop. The
format is:

do statement while (expression);

The statement can be single or compound.

Notice that the test and evaluation for the expression come at the end of
the loop. An example of a do-while statement is shown in the following:

i = O;

do

i++;

while (i < 100):

Here, the statement will still be executed 100 times, and the test for the
expression will be executed 100 times as well. You only use the do-while
statement when the problem you're trying to code dictates that the state­
ment be executed at least once before the expression is evaluated.

For Loop
The for loop, while similar to the while statement, can improve the readabil­
ity of your code. It does this by confining the initialization, testing, and evalu­
ation of the loop counter on a single line. The format for the for loop is:

or:

116

for (initial exp; test exp; evaluate exp) statement;

initial exp;

while (test exp)

statement;

evaluate exp

Controlling the Program Flow

The test of the expression comes at the top of the loop, while the evaluation
of the expression always comes at the bottom.

To see how a for loop improves the appearance of a complicated while
statement, look at the following:

i = 0;

while (i < 100) //This is a while statement

{

y[i] = a[i] * x[i] + b[i];

i++;

}

for (i = O; i < 100; i++) //This is a for loop

{

y [i] = a [i] * x [i] + b [i] ;

}

The for loop in this example keeps all the operations of the loop counter on
one line, and it also reduces the code by two lines.

If the initial expression is left blank, no initialization takes place. If the
evaluation expression is left blank, no evaluation takes place. If, however,
the test expression is left blank, the loop executes forever. An example of an
infinite for loop would be:

for (;;)

{

do stuff here

Another thing that C++ allows inside a for loop is use of the comma operator.
This lets you use multiple expressions on the same line. For example, look at
the following for loop without the comma operator:

j = 0;

for (i = 0; i + j < 100; i++)

do stuff here

117

Symantec C++

IAININI
The initialization and
evaluation expressions
do not have to be con­
nected to the test ex­
pression in any way,
although it is good prac­
tice to connect them.
The test expression,
however, has to be able
to terminate the loop
or an infinite loop will
be created.

IAININI
Use the break state­
ments to terminate a
loop sparingly, because
such a construction is
not conducive to struc­
tured thinking; that is,
there is probably an­
other way to write the
loop and express the
same logic without the
use of a break. How­
ever, the break state­
ment is a necessary evil
in a switch statement
because it is the only
way to avoid the fall­
through.

118

j++;

This same loop using the comma operator would be writ­
ten this way:

for (i = 0, j = 0; i + j < 100; i++, j++)

do st:uff here;

You use a comma instead of a semicolon because a com­
piler uses the semicolon to delineate the initialization,
test, and evaluation of expressions. In addition, the com­
piler uses the semicolon to separate multiple statements
on a single line. If you want to use multiple statements
for the initialization, test, and evaluation expressions, the
use of a semicolon would be confusing to the compiler.
Therefore, to separate multiple statements in the for
expressions, use the comma.

While versus For
For code optimization and efficiency, it is sometimes
more desirable to use a while loop instead of a for loop
and vice versa. Here are a couple of rules of thumb:

• If you have a for loop with the first and third
expressions omitted, use a while loop.

• If a loop depends on a simple comparison for
repetition and does not use an index variable, use
a while loop.

• Otherwise, use a for loop.

Break
A break statement inside a while, do, or for loop termi­
nates the loop. The format is:

break;

Controlling the Program Flow

An example of a break statement is:

for (i = 0; i < 100; i++)

do st:uff here;

if (this is true) break;

do more st:uff here;

WAININI
Use the continue state­
ment sparingly for the
same reasons that you
use the break state­
ment sparingly.

The break can occur anywhere inside the loop. Note that a break statement
inside a switch statement that is inside a loop will terminate the switch
statement only; it will not terminate the loop.

Continue
The continue statement causes a loop to recycle by
branching to the place in the loop where the evaluation
and test occur. For example:

for (i = O; i < 100 ; i++)

do stuff here;

if (this is true) continue;

do more stuff here;

The continue statement
has no effect on switch
statements.

In the example above, anything after the continue statement will not be exe­
cuted if the if statement is true; the loop will then test and evaluate the
expression again for continuation or termination.

Labels and Goto
Any statement may be preceded by a label. The format for a label is:

identifier:

The only use for a label is to be the target of a goto statement. A goto is a
way to transfer unconditionally to a label. The format of a goto is:

goto identifier;

119

Symantec C++

IAININI
The goto statement
should be avoided as
much as possible be­
cause it misses the un·
derlying syntax of the
problem and represents
one-step thinking.

An example might be:

for (i = 0 ; i < 100 ; i++)

for (j = 0; j < 100; j++)

do stuff here;

if (an error detected) goto fixit ;

fixit:

handle error here;

In this example, we have nested loops-that is, a loop containing a loop.
Inside the loops, we executed statements, and we have an if test to determine
if an error occurred in the calculation of those statements. If it did, we exe­
cuted the goto, transferring control unconditionally to the label fixit, where
we execute more statements to handle the error.

The above example is probably the closest to a valid use of the goto statement.
However, that same example without the goto statement could be written:

In the above example,
you could not use break
statements to accom­
plish what the goto ac­
complishes. If you place
a break statement in
the innermost loop of
the two nested loop
statements, you would
break out of the inner
loop but remain in the
outer loop.

120

for (i = O; i < 100 && error == false; i++)

for (j 0; j < 100 && error false; j++)

do stuff here;

if (an error detected) error true;

if (e rror true)

handle e r ror here;

In this example, we have the advantage of retaining a
structured way of thinking; the disadvantage is that we
have introduced a new variable.

Controlling the Program Flow

Style
Although C++ is a popular, widely used language, it can be terse and demanding,
and programmers must follow prescribed conventions. For that reason we devote
this sectfon to a discussion of C++ programming standards.

Error from Fortran
What was intended:

DO 10 I=l, 23

do stuff here

10 CONTINUE

What was coded:

DO 10 I1. 23

do stuff here

10 CONTINUE

What the compiler saw:

DOlOI=l.23

do stuff here

lOCONTINUE

What happened:

DOlOI = 1.23

do stuff here

10 CONTINUE

This error was found in a program that was used to compute the trajectory of
a multimillion-dollar communications satellite. After launch, no trace of the
satellite was ever found.

Errors like this can happen with an old dinosaur like Fortran but can nev­
er happen with an advanced language like C++ ... can they? Let's take a look.

121

Symantec C++

What was intended:

a = b/*p /* Div b by the contents of p •/:

What happened:

a = b /*/* Div b by the contents of p */:

What should have been done:

a= b I *p: /* Div b by the contents of p */

The point of all this is to urge you to be consistent in your methods for C++ code.

Rule 1 : Placement of Curly Braces

Even the experts disagree on where the curly braces should go, as seen in the
following.

The curly brace rule according to Kernighan and Ritchie:

if (expression) {

statements

According to Plum:

if (expression)

statements

According to Whitesmith:

if (expression)

{

statements

122

Controlling the Program Flow

Rule 2: Use Curly Braces on All If Tests

This:

if (i < 0)

do one line

}

else

do another line

Not this:

if (i < 0)

do one line

else

do another line

Okay:

if (a == b)

c = d;

Wrong:

if (a = b) ;

c = d;

Best:

if (a = b)

c = d;

123

Symantec C++

What the programmer thought he/she had:

if (a <= b)

if (a - b)

i++;

else

{

a = b;

i = 1;

What the programmer really had:

if (a <= b)

if (a == b)

i++;

else

}

a = b;

i = 1;

The fix:

124

if (a <= b)

{

if (a = b)

{

}

else

i++;

a = b;

i = 1;

Controlling the Program Flow

Rule 3: Space Between Statement
Keywords and Parentheses

This:

for (i = 1; i <= 10; i++)

if (a = b)

Not this:

for(i = 1; i <= 10; i++)

if(a = b)

Rule 4: No Space Between Function
Name and Parentheses

This:

MyFunction(variable)

Not this:

MyFunction (variable)

Rule 5: Use Spaces Between
Binary Operators
(No Spaces Between Unary Operators)

This:

a = i++ + ++j * *k

Not this:

a+i+++++j • *k I /Huh??

125

Symantec C++

Rule 6: Use Spaces Aker Commas
and Semicolons

This:

MyFunction(theVarl, theVar2, theVar3)

Not this:

Myfunction(theVarl,theVar2,theVar3)

This:

for (i = 1; i <= 10; i++)

Not this:

for (i = l;i <= lO;i++)

Rule 7: Capitalize Every Main Word
in a Function Name

This:

MyFunction(theVar)

Not this:

myFunction(theVar)

Or this:

myfunction(theVar)

Or this:

MYFUNCTION(theVar)

126

Controlling the Program Flow

Or this:

My_Function(theVar)

Rule: 8 Capitalize Every Main Word in a
Variable Name Except the First

This:

short eventRecord;

Not this:

short EventRecord;

Rule 9: Use Blank Lines Only When
They Convey Meaning

For example:

HLock(theHandle);

thePointer = *theHandle;

pi=3.14;

f = 1.0/ (2.0 * pi * SquRoot(f * c));

*thePointer = 1.0 I f;

HUnlock(theHandle);

127

Symantec C++

Rule 1 0: Go Easy on the Use
of Underscore(_)

This:

theWindowDefProc = MyDefinitionRoutine;

Not this:

The_Window_Def_Proc = My_Definition_Routine;

Rule 11 : Use a Break on the Last Case
of a Switch Statement

This:

switch (the Var)

{

case (1) :

do stuff here

break;

case (2) :

do more stuff here

break;

default:

break;

}

Not this:

switch (theVar)

case (1):

do stuff here

128

Controlling the Program Flow

}

break;

case (2):

do more stuff here

A case label that deliberately omits a break statement should in most cases
provide a comment stating that the omission is deliberate.

Rule 12: Operators in Definition and
Declaration Statements

This:

char *pl;

Not this:

char* pl:

char* pl, p2; // Could be a problem

In the above example, p1 is a pointer to a character, where p2 is a character.

Summary

• Be consistent: Choose a style and stick with it!

• Your style should help you program defensively.

• Code for readability: Be kind to those programmers who follow you.

129

Symantec C++

Exercises

130

1) Write a program that will create an array on the heap, then initialize
that array to zero.

2) Debug the following function:

void PrintCanine(short canine)

{

switch (canine)

{

case 1: cout « "Doberman";

case 2: cout « "German Shepherd";

case 3: cout « "Weimaraner";

}

}

3) Debug the following program:

main()

{

}

short array[lOOO];

short i;

for (i - O; i <- 1000; i++);

a[i] - i;

4) Write your own routines to:

a) compute the minimum and maximum of two variables.
b) compute the absolute value of a variable.

5) What is wrong with the following code fragments:
a) do (i++) until (i - 100):

b) while {) i++;

c) for (i - O: i < 100: i++) i-:

Controlling the Program Flow

6) Create a file call MyStyle. In that file define a set of rules that describe
your coding style. The file should include:

a) how much white space you use to indent code.

b) how much white space you use before and after operators.

c) how you use characters in variable and function names.

d) any rules that apply to control statements.

131

6 Functions and
Variables

w:e covered variables (and to some extent functions) in Chapter 4. In this
chapter, we show you how these elements interact.

133

Symantec C++for the Macintosh: The Basics

Functions
A function is a collection of statements that perform a particular task. In a well­
written program, a function will perform only one task. Functions break a pro­
gram up into parts that are reusable and can be saved in a library, which keeps you
from reinventing the wheel every time you want the same task performed. Functions
also make your code more readable and easier to maintain.

When you write a function, you might ask yourself, "Does it make the code
more readable and does it hide the code (along with all the thought processes
that go on behind it)?" If the answer is yes, write the function.

Common programming
pnxtice on the Machdosh
is to capitalize the first
letter of each major ward
in the function name.
This is different from a
variable, which has a
lowercase letter for the
first letter of the first
word but an uppercase
letter for the first letter
of each maior word fol·
lowing. An example of
a function name is
EventRecord. Some pro·
grammers like to use
underbars to replace
spaces in names of func­
tions and variables. For
example, Pen_Normal.
This style is not really
popular on the Mac,
probably because the
Toolbox does not use it.

134

You can think of a function as a kind of black box, with
data going in and out. The inside of the box is invisible to
the rest of the program. It is not necessary to know what is
going on; you need only know what goes in and what comes
out.

For every program, you must have at least one function,
and it must be called main. The main function controls the
execution of the program and calls other functions, which
in tum call still more functions.

When a program calls a function, control is passed to
that function; that is, when the program makes a call to the
function, it stops executing operations and passes them on
to the function, which executes until it encounters a return
or the end of the function. Figure 6.1 depicts a function call,
execution, and return to the next statement.

You call a function by stating its name followed by the
function operator. For example:

PenNormal();

When designing functions, try to keep them short. A func­
tion should be limited to one printout page, about 50 to 60
lines. Small functions are easier to maintain.

A Function Definition
A function that does not indicate a return type is pre­
sumed to return an int value. For example:

Functions and Variables

Functions

main()
{

statement 1 ;
statement 2. . function()
statement 3; {

statement 4; """' statement 1; -"""' 5 ; - statement statement 2; ,, statement 6; statement 3;

statement 7 ; statement 4· .
statement 8; statement 5;

} statement 6; "" Jiii'
}

'~
""""' -

Figure 6.1 Function call, execution, and return.

return-type Name (argument list)

declarat:ions

st:at:ement:s

A return statement provides a method for terminating the execution of a
function. The return of a zero in the main function indicates the successful
completion of the main. The form for a return statement is as follows:

return;

or:

return variable;

or:

return (variable);

135

Symantec C+ +for the Macintosh: The Basics

A Function Definition Example

short Name (short top, short bottom)

short temp2Bytes:

long temp4Bytes;

temp4Bytes bottom - top:.

temp2Bytes = (short)temp4Bytes;

return (temp2Bytes):

Function Prototypes
A function prototype is a mechanism used in C++ to improve program relia­
bility. All functions must have their type and arguments explicitly listed be­
fore they are used or defined. If a function is not declared to the program before
it is used, a compile-time error will result.

Prototypes are also known as forward declarations. They have the follow­
ing form:

type name (argument-declaration list);

A typical example of a prototype might be:

or:

136

void PenNormal(void);

void SetPort(GrafPtr thePort);

void SetPt(Point thePoint, short h, short v);

short StringWidth(Str255 theString);

float squ(float x); //Prototype

main()

Functions and Variables

float pi;

float radius;

float area;

radius= 5.0;

area = pi * squ(radius);

You may omit parameter names from the prototype (only the types are impor­
tant). For instance:

or:

void setRect(Rect theRect, short top, short left,

short bottom, short right);

void SetRect (Rect, short, short, short, short);

Note that in these examples the keyword void is used in prototypes and func­
tion definitions for empty argument lists and in prototypes and function defi­
nitions for null returned values. (This non-use of void in function definitions
is specific to Symantec.)

Variable Number of Arguments
An ellipsis(...) can be used to specify an unknown number and type of para- ·
meters. However, argument checking is turned off when a function is de­
clared to have an unspecified number of arguments. Because of this, it is best
not to use this capability unless it is absolutely necessary.

An example of code with a variable number of arguments might be:

Prototype:

int printf(char *format, _);

Use:

printf(" %f is sqrt of 4\n", sqrt(4));

The library stclarg.h
contains a set of macros
for accessing unspeci­
fied arguments.

137

Symantec C++for the Macintosh: The Basics

Passing Function Arguments
The code between the left and right parentheses in a function is called argu­
ments (or parameters). When you make a function call, the arguments that you
have placed between the parentheses are automatically available to the func­
tion. This operation is called passing arguments. For example:

main ()

float a,b;

a 6:

b = Square(a):

do more stuff here;

float Square(float x)

return(x * x);

In the above example, a is passed in to square, and inside of square it is referred
to as x.

You may pass in function arguments by three different methods: value,
pointer, and reference. Examples of each method appear below.

It is important to note that under C++ and the new ANSI standard for C,
the declaration of the arguments must be included between the parentheses of
the function declaration. Previously, the code in C would have been written as
follows:

float Square(x)

float x;

return(x * x);

Do not use the above style in your programming because C++ does not sup­
port it.

138

Passing by Value

main()

}

short a, b;

a c:::s 5:

MyFunction(a);

b = a;

MyFunction(short x)

if (s = 5)

x = 6;

}

Functions and Variables

When this routine is complete, b will be equal to 5.

Passing by Pointer

main()

short a, b;

a= 5;

MyFunction(&a);

b = a;

MyFunction(short *x)

139

Symantec C++for the Macintosh: The Basics

if (*x == 5)

*x = 6;

When this routine is complete, b will be equal to 6.

Passing by Reference

main ()

short a, b;

a= 5;

MyFunction(a);

b = a

MyFunction(short &x)

if (x = 5)

x = 6;

When this function is complete, bis equal to 6.

140

Functions and Variables

Default Arguments
A default argument is usually a constant that occurs frequently. By using a
default argument, you save writing in a default value at each call.

short Exp(short n, short k = 2);

main ()

{

short i. a, b;

i = 5;

a= Exp(i + 5, 1);

b = Exp(i + 5, 3);

short Exp(short n, short k 2)

if (k == 2)

return (n * n) ;

else

return (Exp (n, k - 1) * n);

}

Remember that only trailing arguments may have a default value, as shown
in the following code:

void foo(long i. long j = 7) //legal

void goo(long i = 3, long j) //illegal

void hoo(long i, long j = 3. long k = 7) //legal

void moo(long i = 1. long j = w. long k = 3) //legal

void noo(long i. long j= 2, long k) //illegal

141

Symantec C++for the Macintosh: The Basics

Passing Multiple Values
You can also pass in multiple values. For example:

main()

short a= 3, b = 4, c;

c = MyFunction(a, b);

short MyFunction(short a, short b)

return(a + b);

You can pass in any number or combination of variable types.

Explicit Void
You can explicitly ignore the result of a function by placing a void typecast in
front of the function call. You use an explicit void when you do not care about
the returned value. Note the typecast void in the following examples:

short MyFunction(short &A);

Y = MyFunction(X);

(void) MyFunction(Z);

MyFunction(Z);

The Stack

//Prototype

//Normal

//Explicit

//Implicit

When you call a function, the address where you need to return is pushed into
a queue (waiting line) called the stack. The stack holds the return address, func­
tion arguments, and local variables. The stack is a LIFO; that is, the Last
thing that is put Into the queue is the First thing that comes Out. When the
function hits a return or comes to an end, it pops that address out of the stack
and returns to the address of that statement plus one additional statement.

142

Functions and Variables

By convention, the stack grows from high to low memory address. When
a function has finished executing, the stack consumed by the function is re­
leased, restoring the stack to the state it was in before the function was
called. In C++, all stack management is automatically done by the compiler.

Figure 6.2 shows how memory is allocated in the stack.

The Stack

High Memory High Memory High Memory

Stack t Stack

Low Memory Low Memory Low Memory

Figure 6.2 Memory in the stack.

To see how the stack manages memory in a function call, examine the fol­
lowing code:

main ()

do st:uff here;

MyFunction(); \\ This is a function call

do more st:uff here;

void MyFunction()

do my funct:ion's st:uff here;

143

Symantec C++for the Macintosh: The Basics

When the program starts this example, it executes statements (do stuff here) in
the main. Embedded within the statements of the main is the call to the func­
tion (MyFunction). In the process of making that call, the address where you
need to return (do more stuff here) is pushed on the stack. Next, the state­
ments in MyFunction are executed (do my function's stuff here). Note that the
line void MyFunction() is called a function declaration. When the end of the
function is encountered, the return address is popped off the stack, and the state­
ment (do more stuff here) is executed. The handling, and even the concept, of
the stack are transparent to the C++ programmer.

You do not have to call a variable that you pass in to a function by the same
name that you use in the function declaration. This gives the function a gen­
eral-purpose capability, which means (in this case) that you do not have to write
a routine to square a particular variable; you can write a routine that squares
any variable.

When you pass in a variable to the function, you get a copy of the val­
ue of the variable; you do not get the variable itself. For example, look at
the following:

main ()

{

}

short a = 0, b;

MyFunction(a);

b =a+ 1;

void MyFunction(short a)

a 5;

}

First you declare a and b and set a to 0. Then you call MyFunction, which
changes the value of a. Then you compute bas being the value of a+ 1. From
a quick examination of the program, it appears that b is equal to 6, and a is
equal to 5. However, a is actually equal to 0, and bis equal to 1. The reason is
that when we called MyFunction, it created a local variable called a on the stack.
A copy of the value of the a argument being passed in from the main was placed
in that local variable. Then the local variable a was set to 5, but not the a that

144

Functions and Variables

was declared in main. When the end of MyFunction is reached, any memory
created for MyFunction on the stack is released. Therefore, the value of the a
that was set to 5 is now lost.

In order to make the program work, you must do the following:

main()

{

short a= 0, b:

MyFunction(&a);

b =a+ 1;

void MyFunction(short *a)

{

*a= 5;

}

In this example, we passed the address of a as an argument to MyFunction
!which is 4 bytes). Now, in the function declaration, we declared a to be a point­
er to a short. Where *a.= 5, we are saying that the contents of a are equal to
5. It works because we passed in the address of a, a copy of which was stored
as a local variable. In other words, if you want the routine to change a value,
you have to pass in the address. !This only applies to arguments being passed
in as values.)

The void means that MyFunction does not return a value. The following is
an example of a function that returns a value:

main()

{

}

float a;

do st:uff here:

a = GetPi();

do more st:uff here:

145

Symantec C++for the Macintosh: The Basics

A function that returns
nothing is called a void
function. In some lan­
guages, a void func­
tion is referred to as a
procedure, and a func­
tion that returns a val­
ue is referred to as a
function.

The Heap

float Get Pi ()

return(3 .14);

Here, the function returns the value of pi; that is, the func­
tion returns a float .

The returned value is not placed on the stack; it is stored in
the 68xxx microprocessor's registers. The register (DO) is
only 4 bytes long, so the value of whatever is returned can­
not be more than 4 bytes. (See the subsection entitled Register
Variables later in this chapter.)

The heap, which is located at the low end of memory, contains quite a variety
of data objects. The system heap, which you will not use in your programming,
contains the Operating System code, INITS, fonts, DAs, and other management
data that are part of the Mac environment. The application heap, which is the
one that you will use, contains your application resources, including the code
segments of your applications. Among other things, it is used for dynamic mem­
ory allocation. The free store operators new and delete act on the heap. Figure
6.3 shows how memory is allocated to the heap.

Remember that you have to allocate a block of memory in the heap before
you can use it, and only one application can use a block of the heap at any giv­
en time. After you have finished with the block, you deallocate it so that an­
other part of your program can then use it.

C and Pascal on the Macintosh

C programmers must have some knowledge of Pascal, specifically in the areas
of procedures, functions, and parameters. This is because the Mac is a native
speaker of Pascal. All of the Mac ROM (read-only memory) routines are defined
as if they were being called from Pascal, so users of other languages must
compensate. Note the following declarations of toolbox routines in Pascal:

146

Functions and Variables

High Memory

Stack

Unused Space

Heap

Low Memory

Figure 6.3 Memory in the heap.

PROCEDURE FrameRoundRect

(r : Rect; ovalWidth, ovalHeight: INTEGER);

FUNCTION StringWidth(s: Str255) : INTEGER;

Procedures and Functions
Pascal has two kinds of subroutines: procedures and functions . In C, every sub­
routine is a function, and a void function is essentially a procedure, as shown
in the code below:

Pascal declaration:

PROCEDURE FrameRoundRect

(r: Rect; ovalWidth, ovalHeight: INTEGER);

C++ equivalent:

pascal void FrameRoundRect

(const Rect *r, short

ovalWidth, ovalHeight);

Pascal declaration:

FUNCTION StringWidth(s : Str255): INTEGER ;

147

Symantec C++for the Macintosh: The Basics

C++ equivalent:

typedef const unsigned char *ConstStr255Param;

pascal short StringWidth(ConstStr255Param s);

Order of Parameters Pushed
Pascal pushes parameters to a subroutine in order from first to last. C pushes
them in reverse order, from last to first. This allows C to support a variable
number of arguments and default arguments. When calling a Pascal function
from C, you must push parameters in Pascal order. Figure 6.4 shows parame­
ter orders in Pascal and C stacks.

Foo(a,b,c);
Pascal Stack C Stack

a c

b b

c a

top > return top > return

Figure 6.4 Order of parameters pushed in Pascal and C++.

Used in function declarations (i.e., prototypes), the Pascal keyword tells the
compiler to push parameters in forward order just as Pascal would. Used in func­
tion definitions, the Pascal keyword tells the compiler to expect its parameters
in forward order, as shown in the following code:

148

pascal void ScrollUp(ControlHandle theControl,

Intl6 thePart)

{

Intl6 startingValue;

if (thePart == inUpButton)

startingValue = GetCtlValue(theControl);

... II more code here

Functions and Variables

}

}

Type Conversion
At the machine level, all data types in memory meld into a contiguous stream
of bits carrying types of information that represent a kind of prescription: Take
x number of bits and interpret them using the following pattern.

Converting from one type to another will change the type but not the un­
derlying bit pattern. The size of the new type may be wider or narrower, and
the interpretation of the bits will change. Some type conversions are not safe;
for example, it is not safe to convert from a wider data type to a narrower one
or vice versa. Note the following inconsistencies:

float fval = 3.14159:

double dval:

dval = double(fval):

This example requires bits beyond the size of a float.

unsigned char ucval = 255:

char cval:

cval = char(ucval);

Here, the interpretation of the bits changes.

short sval:

sval = 3.14159:

In this example, the fractional part is lost.

Variable Storage Types
Variables store data in the form of characters, numbers, strings, pointers, and
data structures. This section covers five variable storage types: automatic,
static, external, register, and const.

149

Symantec C++for the Macintosh: The Basics

11 auto11 Variables
In C++, local variables are known as auto (automatic) variables because C++
automatically creates memory for them on the stack each time the function
is entered. However, that space is removed from the stack after the function
is executed.

You can put the word auto in the declaration, but it is pointless to do so.
All local variables that you might declare are auto by default. Note the fol­
lowing code:

main()

{

short a = O:

MyFunction(a):

MyFunction(a):

void MyFunction(short &a)

{

auto short b:

if (a = 0)

{

b = O:
}

a= a+ 1:

b = b + 10:

The second time MyFunction is called, the variable b is garbage.

Static Variables
Static variables, which can be internal or external, are another type of storage.
An internal static variable is local to a particular function, just as an automat­
ic (local) variable is. Unlike an automatic, it remains in existence in permanent
data storage rather than coming and going each time the function is called.
An example of a function with a static variable might be:

150

Functions and Variables

main()

short a= O;

MyFunction(&a);

MyFunction(&a) ;

void MyFunction(short *a)

static short b;

if (*a == 0)

b = O;

*a - *a+ 1;

b = b + 10;

In this example, we have set a to 0 and have given MyFunction the address of
a. The first time we call MyFunction, we pass in the address of a. Here, if the
contents of a are equal to 0, which is true in this case, we set b to 0. Then we
bump the contents of a by 1, so that the contents of a are equal to 1, and we
bump b to 10. The second time we call this function, the variable a is now equal
to 1 and we have failed the if test; we do not set b to 0. When the program is
finished (i.e., after the second call is made to MyFunction), a will be equal to 2,
and b will be equal to 20. The significance is that the value of b is retained be­
cause it is stored in the private data area; it is not popped off the stack.

External Variables
You can declare a variable to be available to every function
in your program by making it global or external. For instance:

short b;

main()

External variables are
stored in the data area,
not on the stack.

151

Symantec C++for the Macintosh: The Basics

short a = O:

MyFunction(a):

MyFunction(a):

}

void MyFunction(short &a)

}

external short b:

if (a == 0)

{

b = O:

}

a= a+ 1:

b = b + 10;

By declaring short b outside of any function block, you make it external and,
therefore, accessible to any function that follows. In the example above, both the
main and MyFunction know of the existence of b. If you moved the declaration
between the main and My Function, only My Function would know about b. When
you place the declaration of a variable inside a function block, the existence of
that variable is known only to the function itself; that is, it is local to that func­
tion. However, you can place the variable inside the function block and make it
global by inserting the word external before the variable. The external declara­
tion in MyFunction is required only if MyFunction is declared before b.

Register Variables
Register variables offer a fourth class of storage. When you declare a variable a
register variable, you ask the compiler, whenever possible, to store that vari­
able in a register. You may want the variable put into a register because you
will be using it frequently, and a CPU does its fastest computations on vari­
ables that are in registers. However, the compiler may not always be able to
store the variable in a register for two reasons: (1) There are only eight 4-byte
data registers in a 68xxx CPU, and these may already be in use; and (2) the vari­
able that you want to store is greater than 4 bytes. Generally, it is best to avoid
declaring register variables.

152

Functions and Variables

Figure 6.5 shows the user's registers in a 68xxx microprocessor.

Typical register usage in C++ is as follows:

A7 Stack pointer (SP)

A6 Pointer to function's locals (base register)

A5 Pointer to application globals

A4 Pointer to driver or code resource globals

DO Return value from function

DO
DI

D2

03
D4

DS

D6

D7

I Pc -------

Figure 6.5 68xxx user's registers.

AO
Al

A2

A3
A4

AS

A6

A7

.______.I CCR

153

Symantec C+ +for the Macintosh: The Basics

WAININI
Compilers are better
able to optimize now
than ever before. there­
fore, if you force the
compiler to store a vari·
able in a data register,
you may take away
that optimization. It may
be best to leave the
choice to the discretion
of the compiler.

AO-Al and DO-D2 are trashable registers; that is, they are
not guaranteed to remain the same after a ROM call. A2-A7
and D3-D7 are protected registers; that is, they are never
corrupted or changed by the action of a ROM routine. That
leaves only three address registers and five data registers
available for register variables. Even so, it is not likely that
the compiler could maintain more than one address regis­
ter and two or three data registers for register variables.

11 const" Variables
The canst keyword is a type specifier. When used alone, it
implies an int type. Any variable declared a canst cannot be
changed.

If you do not initialize a canst, you will get a compile­
time error. The same will happen if you try to assign the ad­
dress of a canst.

An example of a canst declaration is:

const false - O;

const double pi - 3.14;

ComputeArea(float radius, const float pi);

You may declare a pointer to the address of a canst, but the pointer itself is not
a canst. The pointer can be changed to address a different variable of the same
type at any time, but the contents of the pointer cannot be modified through
the pointer. Note the following code:

double x;

const double *pc ; //OK

*pc= &x; //OK

You can define a pointer that is a canst. You can also define a canst pointer to
a canst, as shown below:

short i - 10 ;

short *const cpi - &i; //Constant pointer to short

154

Functions and Variables

const short j = 20;

const short *const cpj &j;

Reference Declarations
Reference declarations provide a way to have a multiple

A literal string is a char*,
not a const char"'.

number of names refer to the same object. Modifying one is the same as mod­
ifying any other. As is the case with all variables, reference variables must be
initialized. A reference type is sometimes referred to as an alias. The format for
reference declarations is shown in the following example.

short &theAlias = theNarne;

unsigned char theString[256];

unsigned char &length= theString[O];

unsigned char &last = theString[255];

Another example might be:

shor t va l = 10;

short &refVal val;

short *pVal = &refVal;

if (*pVal refVal && pVal &refVal)

155

Symantec C++for the Macintosh: The Basics

Right-Left Rule
The right-left rule provides a method for you to see how and in what order a
function operates. Here is how it works:

1. Start with the identifier.

2. Look to the right for an attribute.

3. If none is found, look to the left.

4. If found, substitute an English keyword.

5. Continue right-left substitutions as you work your way out.

6. Stop when you reach the data type in the declaration.

()

[n]
*
&

English Keywords

Function returns

Array of n

Pointer to

Reference to

Now, let's look at the following walkthrough of the right-left rule:

Signal is a ...

main()
{

int (*signal(sig, pfunc)) ();

1
T

Signal is a function that returns ...

156

main()
{

int (*signal(sig, pfunc)) ();

1
l

Functions and Variables

Signal is a function that returns a pointer to a ...

main()
{

int (*signal(sig, pfunc)) ();

1
1

Signal is a function that returns a pointer to a function that returns ...

main ()
{

int (*signal(sig. pfunc)) ();

1
I

Signal is a function that returns a pointer to a function that returns an int.

main()
{

int (*signal(sig, pfunc)) ();

1
I

Another example might be:

long *p [2] ;

Here, p is an array of two pointers to a long.

157

Symantec C+ +for the Macintosh: The Basics

Function Overloading
In C++, it is possible to overload functions; that is, more than one function with­
in the same program can be given the same name. The correct one will auto­
matically be called during the execution of the program. Use of function over­
loading can make a program more readable. The following code makes ample
use of the function-overloading capability:

main()

short a, b, c;

short sum:

a= 2; b = 3; c = 4;

sum = add (a, b);

sum = add (a,b,c);

short add(short a, short b)

return (a + b);

short add(short a, short b, short c)

return (a + b + c);

In this example, the number and the type of arguments determine which function
gets called. The reserve word overload could be placed in front of each function
declaration that is overloaded, but it is not required or recommended.

As mentioned before, the correct function to be invoked is determined by
the type and number of arguments that are being passed to the function by the
call. The return value-if any-is not taken into account. All functions over­
loaded with the same name should have the same return type.

158

Functions and Variables

Scope Resolution Operator
In C++, a function can declare an automatic (local) variable that has the same
name as a global variable. It is important to note that in that function, the lo­
cal variable will be referenced, not the global. If you want to access the global
variable, you can do this by using the scope resolution operator(::). Note the
following code:

short sameName = 5;

main()

MyFunction();

void MyFunction()

short theValue;

short sameName = 4;

theValue = sameName * 2

theValue = : :sameName * 2;

lnline Functions

//local variable

//global variable

Every call to a function slows the execution of your program to some extent.
Functions that are invoked many times may be placed inline, avoiding the over­
head of a function call. The penalty you pay is that your program consumes
more memory. You simply call an inline function like you would any other
function, as shown in the following example:

inline char LoByte(short x)

return (x & OxOOFF) ;

159

Symantec C++for the Macintosh: The Basics

or:

iriline char HiByte(short x)

return ((x >> 8) & OxOOFF);

C++ Preprocessor
A preprocessor operates on your C++ source code before presenting it to the com­
piler. The preprocessor looks for a set of keywords that begin with the oglethor­
pe (#) symbol. The following list shows the preprocessor statements:

#include
#define
#if
#else
#end if
#ifdef
#ifndef

Files may be read into your source code with the #include.Files enclosed in " "
are read in from your current folder, and files enclosed in <> are read in from a
specified folder. For example:

//include "MyFile .h"

#include <TheirFile.h>

The if, else, endif, ifdef, and ifndef are used for conditional compiles. The for­
mat for this is:

160

#ifdef THINK_C

do this code

//else

do "this code for everyone else

fiend if

Functions and Variables

Conditional Directives
Conditional directives can be used to guard against the multiple processing of
a header file. For instance:

#ifndef _MyHeader_

#define _MyHeader_

MyHeader.h contents go here

//end if

C++ Preprocessor Examples:
The define statement implements macros and supports arguments in C++. It
can also be used to define constants. Examples of macros that can be useful in
Toolbox programming follow:

#define SetPt(pt,hor,vert) {(pt)->h = (hor) ;\

(pt)->v (vert);}

#define SetRect(rect, 1, t, r, b)\

{(rect)->top = (t); (rect)->left = (l);\

(rect) -)bottom = (b); (rect) -)right = (r);}

#define SetRGBColor(rgb,r,g,b)\

{ (rgb) ->red = (r); (rgb) ->green = (g); (rgb) ->blue = (b);}

#define RectWidth(rect) ((rect)->right - (rect)->left)

//define RectHeight (re ct) ((re ct) -)bottom - (re ct) - >top)

//define abs (x) ((x) <o? - (x) : (x))

#define min(x,y) ((x)<(y)?(x): (y))

//define max (x, y) ((x) < (y)? (y) : (x))

161

Symantec C++for the Macintosh: The Basics

In the preprocessor, the
backslash (\) allows
you to continue a macro
expression to a new
line. In C, macros had
to be on one line only.

#define HiByte(x) ((x) >> 8) & OxOOFF)

#define LoByte(x) ((x) & OxOOFF)

#define Swap (x,y) ((x)A-(y)A-(x)A-(y))

#define arraySize(x) (sizeof(x) I sizeof

((x) [OJ))

#define infinity ;;

#define versus const and inline
The advantage of defining inline functions and canst definitions rather than us­
ing the #define statement is that the C++ compiler can check the same code you
see for errors. The disadvantage of defining inline functions is that it takes more
work to support arguments of various types. Note the following code:

short abs(short x)

return (x < 0 ? -x x) ;

long abs(long x)

return (x < 0 ? -x x) ;

float abs (float x)

return (x < 0 ? -x x) ;

double abs(double x)

return (x < 0 ? -x x) ;

162

Functions and Variables

The Preprocessor and Comments
Other C++ compilers may not recognize the single-line preprocessor comment,
which is:

#define pi 3.14 // pi is rr

Symantec C++ does recognize the double-slash preprocessor comment. If you
use the double slash, just be aware that it may not be compatible with other
compilers when you attempt to port your code.

Summary
The features discussed in this chapter were:

• Usi?g functions in C++.

• Function prototypes.

• The program stack.

• Pascal functions.

• Variable storage types.

• The right-left rule.

• Function overloading.

• Rules of scope.

• Inline functions and preprocessor statements.

Exercises

1) Recode the following using inline declarations:

a) //define Min(a,b) ((a)<(b)?(a):(b))

b) //define Max(a,b) ((a)<(b)?(b):(a))

c) //define Abs(a) ((a) <o? - (a) : (a))

d) //define HiByte(x) (((x) » 8) & OxOOFF)

e) //define LoByte(x) ((x) & OxOOFF)

fJ //define cube(x) (x) * (x) * (x)

gJ //define arraySize(a) (sizeof (a) I sizeof ((a) [O]))

163

Symantec C++for the Macintosh: The Basics

2) Using the right-left rule, explain the following:

a) char (* (*p)) () [10];

b) char * (*p) () [10];

c) char **p () [10];

d) char* * *p () [10];

e) char* * (**p) () [10];

3) Given the following function:

void Swap (short *x, short *y)

short temp;

temp = *x;

*x = *y;

*y =temp;

}

Rewrite the function using call-by-reference.

4) Create a header file. Place in the header file the following:

a) macros or consts that you feel that you will commonly use.

b) your favorite inline functions.

c) the necessary code to make sure that your header file will not
generate an error if it is included more than once.

5) Rewrite the following as an inline function. Overload the function to sup­
port shorts and longs.

#define swap(x,y) short t; t ~ x; x = y; y = t;

164

Input/Output
Streams

T he simplest examples of input/output devices on your computer are the
keyboard (input) and the screen (output). You use these devices to get in­

formation into and out of the computer in the same way that you use pens
and books. These are easy concepts to understand when you are just a computer
user. What is not quite as easy to comprehend is the way in which the com­
puter handles your input and output when you write a program.

Neither C nor C++ contains any predefined input and output operators. Both
support the infamous stdio (standard input/output) library, and C++ supports
a new library called iostream. The iostream library is far more robust than the
stdio library. You should use the iostream library for any new projects, because
C++ will not support the stdio library in the future.

165

Symantec C++for the Macintosh: The Basics

Streams
A stream is a sequence of bytes. You can extract data from a stream and place
it into a program variable with the extraction operator(»). Conversely, you
can inset data into the stream with the insertion operator(«).

The term escape se­
quence refers to es­
caping from a string
and going into anoth­
er mode. The backslash
represents the escape
mechanism and the
character after the back­
slash determines the
action taken.

\\
\?
\a
\b
\f
\n
\r
\t
\v
\'
\"
\0

166

1/0 Channels
The name of the input channel associated with the user's
keyboard is called cin (standard input). The output associ­
ated with the computer screen is called cout (standard out­
put). Error statements may go to the user's screen or to an
error file, which is called cerr (standard error) . An example
of a string going to an output channel might be:

cout << "This goes to the output channel \n";

You may have noticed that the output line includes the char­
acter sequence In. This is an escape sequence of control char­
acters that instructs C++ to move to a new line. This will
be a common resident in the source code of your programs.
Other escape sequences are as follows.

Escape Sequences

Backslash
Question mark
Sound bell
Backspace
Formfeed (new page)
New line
Carriage return
Horizontal tab
Vertical tab
Single quote character
Double quote character
Null

Input/Output Streams

An example of an escape sequence might be:

cout << "\a":

cout << 11 \nError - press any key to continue\a\n":

The first statement sounds the system beep. The second statement moves to
a new line, displays a warning on the screen, sounds the beep, and then moves
onto another line.

Predefined 1/0 Stream Manipulator
The term endl insets a new line character into the output stream and then flush­
es the output buffer. An example might be:

cout << 11 \n":

use instead

cout << endl:

Generalized Escape Sequence
The format of the generalized escape sequence is \000, where 000 represents a
sequence of up to three octal digits, as shown in the following code:

\7 //bell

\O //null

\12 //newline

\062 // 1 2 1

The format for a hex escape sequence is \xhh, where hh represents any number
of hex digits. An example is:

\x7 //bell

\xO //null

\xOa //new line

\x32 //'2'

167

Symantec C++fqr the Macintosh: The Basics

Formatted Output
C++ provides the capability for you to alter the format of the data you want to
display from an unformatted output to a formatted one. There are five simple
formatted output functions: chr(), dee(), act(), hex(), and str().

Characters:

WAININI char letter;

letter = 'a' ;
Not all C++ compilers
support hex escape
sequences.

cout << letter; II a or 97?

cout << chr(letter); //will output a

In the above example, the format cout « letter would most likely output 97.
By using the format chr(letter), you ensure that the output will be a.

Decimal Numbers:

float number;

number= 12.345;

cout << dec(number);

cout << dec(number, 20);

II output will be 12

II twenty chars wide

In the above example, the number will be right-justified (to 20 places).

Hex and Octal Numbers:

short number;

number = 16;

cout << hex(number);

cout << oct(number);

II 10

II 20

Here, if you added the statement cout « dec(number), you would get the dec­
imal number 16 as the output.

168

Input/Output Streams

Strings:

cout << str(string);

cout << str(string, 30); II 30 characters

When the number of characters for the field is omitted or
equal to zero, the correct amount of space required to dis­
play the contents of the variable will be allocated auto­
matically. If the number allocated for the field is too small,
the output will be truncated without any warning. If the
number is negative, the output will be left-justified.

The strings discussed
above are C strings, not
Pascal strings.

Advanced Formatting
A more complex formatted output is available through the form() function.
This function allows formatting sequences called conversion commands. An
example might be:

short number= 123;

cout << form(" %x %s", number, 11 \n"); //hex

cout << form(" %o %s", number, 11 \n"); //octal

cout << form(" %d %s", number, 11 \n"); //decimal

As shown in this example, you must place the appropriate formatting sequence
or sequences between double quotation marks before the values to which
they refer.

The conversion commands are as follows:

%c
%d
%e
%f
%g
%0
%p
%s
%u
%x

Single character
Decimal integer
Scientific notation
Floating point value
General numerical format
Octal integer
Pointer value
String
Unsigned integer
Hexadecimal integer

169

Symantec C++for the Macintosh: The Basics

The following code is another example of advanced formatting:

float fraction;

fraction= 123.456;

cout << form("%3.2f%s", fraction, "\n");

In the last line of the example above, the numbers immediately before and af­
ter the decimal point specify the number of digits before and after the decimal
point, respectively.

Input Stream Example
With the function cin and the operator», you can input variables of any type
in sequence, as follows:

float fraction;

char letter;

short number;

cin >> fraction >> number >> letter;

However, cin does have a disadvantage, as you'll see in the examples below.

If your input was:

This is a string

char str [80] ;

cin >> str;

the input variable will contain:

str is "This"

If your input was:

170

This is a string

char strl [80], str2 [80], str3 [80], str4 [80];

cin >> strl, str2, str3, str4;

Input/Output Streams

The input variables will contain:

strl is "This"

str2 is "is"

str3 is "a"

str4 is "string"

The variable string will hold up to 80 characters, so you might think that by
assigning the string 80 characters you would have enough field width to print .
"This is a string." The reason that only the word "This" will be assigned to the
string is that cin recognizes a space character as the end of the variable.

1/0 on the Macintosh
Almost all input and output on the Mac should be accomplished through the
Toolbox or a class library. The C++ I/O can be useful for debugging, but the use
of a debugger is more efficient, and you don't risk the danger of leaving cins and
couts in your code.

Summary
In this chapter, we've covered:

Ill Using stream operators.

!II What I/O channels are.

Ill Escape characters.

Ill Formatted output.

The next chapter, Chapter 8, is on advanced data structures. It is in this chap­
ter that you will begin to see firmly the relationship between data structures
and member functions in object-oriented programming.

171

Symantec C++for the Macintosh: The Basics

Exercises

1 J Write a program that will prompt a user for a temperature in Fahrenheit
or Celsius, then display the temperature in both scales.

2) Write a program that will accept a book title, author, publisher and copy­
right date, then display all of the information.

172

8 Advanced Data
Structures

Computers only know about bits, period. But how those bits are interpret­
ed (and what is done with them) is accomplished through data structures.

C++ differs from C (and Pascal) in that it allows structures to contain member
functions as well as data, and these member functions manipulate the data con­
tained in those structures.

To understand the function of structures fully, you must comprehend point­
ers and arrays and know something of dynamic memory allocation. This chap­
ter covers those topics, then moves on to enumerating variables, structures,
and unions; operator overloading (as opposed to function overloading); and en­
capsulation.

173

Symantec C++for the Macintosh: The Basics

Pointers
A pointer is a variable that contains the address (memory location) of another
variable. Use of a pointer is called indiiection because the pointer is getting in­
formation indirectly. Getting the contents of a pointer is called dereferencing.

The size of the pointer has to be large enough to contain the address for a
particular machine. For instance, a pointer on a Cray would have to be 8 bytes
(a 64-bit word), but on the Macintosh, a pointer is 4 bytes. Figure 8.1 illustrates
a pointer to memory.

Memory

Value

Pointer

Figure B. 1 Pointer to an address in memory.

If you want to declare something to be a pointer you, might say:

short *p:

Using the right-left rule, this example declares that p is a pointer to a short.
The only memory that is assigned here is the 4 bytes for the pointer, not the
memory that it is pointing to. Right now, the p is pointing to garbage.

174

If you wanted to assign an address top, you would write:

short *p:

short a:

Advanced Data Structures

p - &a;

Here, we declared a pointer to a short, we declared the short,
and we set the pointer to the address of the short. As you
can see, p now points to a.

Another example of using a pointer in code might be:

long a, b, *p;

p - &a;

*p - 101;

a - 101;

b = *p:

b - a;

//same

//same

Initializing a Pointer
There are three ways to initialize a pointer:

By variable address:

short value= 55;

short *pl;

pl - &value;

From another pointer:

short value= 55;

short *pl , *p2;

pl = &value;

p2 - pl;

WAININI
Pointers direct you to an
area in memory. You
must make sure that
those areas are safe to
use; that is, they are not
used for some other pur­
pose for which you have
no knowledge. In all the
previous~, we've
declared a pointer and
something that it will
point to. Then we cficl the
following assignment:

p = &a;

This is legal. However,
a very dangerous use
of a pointer is:

short *p;

*p = 10;

In this case, p has nat been
initialized and can there­
fore be pointing any­
where in memory. At the
memory location of p
we assign the value of
10, thereby overriding
anything else that may
be in that memory lo­
cation. That memory lo­
cation may hold part of
your executable code,
an 1/0 device, or any­
thing else imaginable.

175

Symantec C++for the Macintosh: The Basics

By using new operator:

It is illegal to take the
address of a register
variable; the compil­
er will not allow it.

Void Pointers

short *pl;

pl = new short;

*pl = 55;

Void pointers can be used to point to variables of any type. The only way a void
pointer can be initialized is by setting its value from another pointer. To
dereference a void pointer, you must cast it first.

short valuel = 55, value2, *pl;

void *vpl;

pl= &valuel;

vpl =pl; //Both point to the same place

value2 = *short(vpl);

In the above example, we declared valuel equal to 55, value2 as just a short,
and *pl as a pointer to a short. Then we declared *vpl as a pointer to void,
which is of unknown origin. Now we say that pl is equal to the address of
value, and vpl is equal to pl. Now vpl and pl both contain the same address.
The problem is with the interpretation: pl will always be interpreted as a point­
er to a short, and vpl is a generic pointer. It points to memory, but at the
same time it points to void. (It knows not what it points to!) There may be some
reason for using this void pointer-to change the value from a short to a long,
for instance- but the only way to use it is to cast it. This is done with the ex­
pression value2 = *short(vpl}. Casting takes precedence in the order of opera­
tions here; that is, the cast vpl is converted to a short, whose contents are then
placed in value2. (Remember that the right-left rule applies only to definitions.
It does not apply here.)

176

Advanced Data Structures

Arrays ·
An array is an accumulation of memory set aside for like­
kind variables . For example, you can have an array of 100
chars or any other valid variable type. To declare an array,
you might write:

char a [100];

This declaration reserves 100 chars in memory for your use.
If you want to access one of the chars in that array, you
would write:

a[lO] = 5;

In this example, a will be indexed by the number 10, and in
that number 10 slot, you set the value 5. From our discus­
sion of the bracket operators, another way of stating the line
a[lO} = 5 would be:

*(a+ 10) = 5;

Here, you take the a, which is an address or pointer, and add
an offset to it. The offset is 10, which is the index. This is au­
tomatically multiplied by the size of a char. Then you take
the contents of the combination of the address and offset and
put a 5 in that memory location. As you can see, an array is
much more concise. (See Figure 8.2.)

In the first array example, when we declared a, we set
the size of a to 100. This is known as dimensioning a. We
dimensioned a to the size of 100, but we can only index a
from 0 to 99. To get to the very first element in a, we must
write a[O], which is the same thing as saying *(a+ 0) or, sim­
ply, *a. To get to the last element in a, we write a[99}, which
is the same thing as saying * (a + 99).

An example of the use
of pointers can be found
in the passing of pa­
rameters to a function.
See the section called
Passing Fundion Argu­
ments in Chapter 6.

WAININI
If you index the array
by any number small­
er than 0 or greater than
99, you will be ad­
dressing a memory lo­
cation outside «the area
that was reserved for
the array. C++ does not
have array bounds
checking, which means
that there are no safe­
guards to prevent an
array from being over­
written. If your program
has many variables, you
take a chance that the
exclusive storage allo­
cated to these other vari­
ables may be over­
written by the excess
characters in the array.
As you can see, this is
fraught with the same
clangers as using a point­
er indiscriminately.

177

Symantec C++for the Macintosh: The Basics

Index
~ The Same

' a[i] = 5; t +
Pointer Index

' *(a + i * sizeof(a)) = 5

+ y._ Offset ___.y
Pointer

Figure 8.2 Ease of Using an array.

Initializing Array Values
Values can be assigned to arrays by listing the values inside curly braces sepa­
rated by commas, as shown in Figure 8.3.

Memory

short set[4] {9,8,3,4}; Set[O] 9

Set[l] 8
or

Set[2] 3

short set[] = {9,8,3,4};
Set[3] 4

Figure 8.3 Initializing array values.

Initializing String Arrays
You can initialize a string array by putting brackets after the type and name
and then declaring the value. For instance:

char string[6] = "Hello";

or:

char string[] ="Hello";

178

Advanced Data Structures

In the first example, we declared and initialized an array string of size 6. "Hello"
is only five characters, but the extra array element is required for the null char­
acter used to terminate C++ strings. In the second example, where we have not
declared an array size, the array will automatically be set to 6 because it is equat­
ed to a string literal.

Indexing Arrays
The definition of an array contains the number of elements in the array. The
index of the following array is from 0 to 9, the array size:

short a[lO]; //10 is the array size

a [O] 1;

a[9] = 10;

//[O] is the array index, and 1 is the

//value

The off by one error is a common error in C++ arrays. Just remember that
your index number will always be one behind your element number.

Array Assignment
C++ does not allow you to initialize or assign an array with any other, as shown
in the following example:

short a= {l, 2, 3, 4};

short b[4];

b = a: //error

Also, C++ does not provide any compile-time or run-time range checking of the
array. The compiler would allow the following code:

short a[lO];

179

Symantec C++for the Macintosh: The Basics

for(short i = O; i < 100; i++)

a[i] = O:

Here, you have declared an array size of 10, but your code allows for 100 ele­
ments. As the program goes through and executes the code, it will write over
anything in memory that is in the way. It may, in fact, clobber some of your
code. The point here is to be careful that your code matches the size of your ar­
ray.

Multidimensional Arrays
Multidimensional arrays, which can be useful for scientific and graphics work,
are an extended feature in C++. Such an array declared as a formal argument
must specify the size of all its dimensions beyond the first one. Following are
examples of multidimensional arrays:

float large [10] [10] [10] [10] :

b = sizeof(large);

//4 dimensions

//10000

Here, the four-dimensional array will have 10,000 elements; that is, 10 x 10 x
10 x 10 = 10,000.

short a [4] [3] = {

{O, 1, 2},

{3. 4, 5},

{6, 7. 8},

{9, 10, 11}

} :

or:

short a[4] [3] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11};

180

Advanced Data Structures

Free Store Operators
Free store operators are used to create and destroy variables in memory. This
operation is called dynamic memory allocation. Most other variables are creat­
ed on the stack, but free store operators create memory for variables on the heap
(free store). You create this heap variable with the new operator, which returns
a pointer to the beginning of the memory allocated to the variable. For instance:

char *word= new char[20];

Here, we have reserved 20 chars on the heap pointed to by word, which is both
an array name and a pointer.

Testing for Space
If you do not have enough memory to create the variable(s) you asked for, new
will return a null {OL) pointer, as shown below:

char *word= new char[20];

if (!word) error

The last line in the example above means simply, "If word is not valid, then
error."

Destroying Heap Variables
A heap variable can be destroyed by using the delete operator. The space con­
sumed by the variable will be returned to the heap. To destroy the variable in
the previous example, you would write:

delete [20] word;

or:

delete word;

Deleting a null pointer-that is, one with a 0 value-is always safe because it
does nothing. You can say:

181

Symantec C++for the Macintosh: The Basics

delete [20] word;

word = 01 ;

Here, you have deleted word and then set its value to 0. Just after the delete,
the variable word yvill still have the value pointing to memory. Something else
may now be there, but word will still have that address. However, by setting
the value to 0, if you at some future time need to delete word again, it will be
okay. You will not have the horrendous error that you would otherwise have
if you attempted to delete the same memory twice.

IAININI
For every new, there
should be a corre­
sponding delete. If you
attempt to delete a vari­
able that has already
been deleted, the er­
ror will not be detect­
ed by the compiler, but
the bug will show up
later on. The new and
delete operators are
replacements for mal­
loc() and free{).

There are other dangers in using the new and delete opera­
tors. Look at the following code:

main()

for (short i - l; i <= 10; i++)

MyFunction();

void MyFunction()

char *word;

word = new char [256] ;

In the above example, the function My Function creates a pointer on the stack
and then returns to the main, thus destroying the pointer. There is no way to
go back and delete this memory. More danger:

short •x new short:

short •y new short;

*x = 26;

*y 32;

182

Advanced Data Structures

y = x: //clobbers old y

*x = 97:

Here, the pointer's value is overwritten, and there is no way to go back and
delete its associated memory.

When to Use Dynamic Memory Allocation
It is best to treat variables containing user data as dynamic (heap) variables.
This is especially true if you cannot foretell the amount of space they will re­
quire. Variables that you need for housekeeping while the program is running­
loop counters, flags, and so on-should be on the stack.

Enumerated Values
The enum statement creates constants, which are assigned a numerical value
starting with 0. Enumerators differ from const declarations in that there is no
addressable storage associated with an enumerator. For this reason, it is an er­
ror to apply the address-of(&) operator to an enumerator.

You declare an enumeration with the enum keyword and a comma-sepa­
rated list of enumerators enclosed in curly braces. An example of an enum state­
ment might be:

en um

{

false,

true

} :

result = false:

result = 0 //same as above

The enum constants can be assigned numerical values starting with 0. You can
also force the values, as shown in the following code:

en um

simml = 1,

183

Symantec C++for the Macintosh: The Basics

simm2,

simm4 4

} ;

memory= simm2;

Here, instead of simml being equal to 0, we have forced it to be equal to 1. The
incrementing starts after that.

By the way, the simms in the example above refer to the memory cards that
you have in your Mac.

Enumerated Variables
We stated above that you can assign numeric values to enumerated constants.
However, if you assign any value other than the enumerated constants to an
enumerated variable you will get a compile-time error. Look at the following
example:

short hop = 4;

en um

jump,

run,

skip

simonSez;

simonSez =skip; //OK

simonSez =hop; //Compile error

In this example, we have declared a variable-hop-which is a short and which
we have set equal to 4. Next, we have enumerated type with jump, run, and
skip and a variable called simonSez. We can assign simonSez a value of the enu­
merated type, but we cannot assign it any other value, such as hop.

184

Advanced Data Structures

Enumerated Types
In addition to the "built-in" data types such as char, short, and long, C++ al­
lows you to create enumerated types. For instance:

enum TrafficLight

{

red,

yellow,

green

MarketAndGeary, MissionAndSth;

MarketAndGeary = red;

MissionAnd5th = green;

Here, the variables MarketAndGeary and MissionAndSth are created within
the enum. These variables are known as anonymous variables because no
new type has been defined.

utypedef"
C++ allows you to create your own variable types, which you use in the same
manner as built-in types, with the term typedef. For example:

typedef Byte char;

typedef Boolean char;

typedef Integer int;

Boolean flag;

Byte status;

Integer i;

The expression typedef can serve as a program documentation aid. It can be
used to reduce the notational complexity of a declaration and to improve the
readability of definitions of pointers to functions and class member functions.
A typical example might be:

185

Symantec C+ +for the Macintosh: The Basics

The variable type Rect
has already been de­
fined for you. It is used
by the Macintosh
Toolbox and is defined
in a file called
QuickDraw.h. You can
open up that file to see
what the definition of
a rectangle is. You can
also see some other
data structures used by
the Toolbox and their
definitions as well. We
also called a function
called SetRect, which is
a Toolbox call. The de­
finition of that function
is also in QuickDraw.h.
You can find an ex­
planation of how this
function works in Inside
Macintosh or the THINK
Reference™.

Structures

typedef float wages;

wages johnsPay, marysPay;

The terms in the above example tell you exactly what you're
going to get. When you use typedef with a structure, it
gets more complicated. For instance:

typedef struct

short top;

short left;

short bottom;

short right;

Rect;

Here, we defined the typedef to be a rectangle rather than
a predefined type. To use this rectangle, you might say:

Rect theRect;

SetRect (&theRect, 10, 15, 100, 150);

Here, we have created a new variable called theRect of type
Rect. Then we called a function and passed the function the
address of that rectangle. The function called sets the co­
ordinates of the rectangle to the four additional values that
we passed in.

A structure provides a way to declare new variables and variable types. It con­
sists of a number of variables that are collected under one name. This is one
of the most powerful features in C++. Both C and Pascal allow you to create
structures for containing specific information, both numeric and nonnumer­
ic. In Pascal, this capability is called a record, and in C it is called a structure.
C++ differs from C and Pascal in that it allows structures to contain member
functions, which we will discuss later in this chapter. The form for a struc­
ture is:

186

Advanced Data Structures

struct identifier

structure declaration member list

} declared variables;

Declaring a Structure
To declare a structure, you might write:

struct Automobile

{

} :

char make[20]:

char model[20]:

short numDoors:

long mileage;

Automobile usedCar:

//type

//instance of type

In this example, we declared a new type called Automobile. We then created a
variable called used Car of type Automobile. Now look at the next code fragment:

struct Automobile

{

char make[20];

char model[20]:

short numDoors;

long mileage;

usedCar, *pUsedCar;

//type

This example also creates a pointer to an Automobile type.

187

Symantec C++for the Macintosh: The Basics

Anonymous Structures
C++ allows you to create anonymous structures in much the same way that
you create anonymous types. For example:

struct Automobile

char make[20]:

char model[20]:

short numDoors:

long mileage:

usedCar, newCar:

//type

Here, the structure creates two variables called usedCar and newCar. No new
named type is defined; therefore, the structure is anonymous.

Referencing Data Elements of Individual Structures
To access the elements of individual structures, you must use the dot (.) oper­
ator. For instance:

struct Automobile

{

char make[20]:

char model[20]:

short numDoors:

long mileage:

usedCar;

usedCar.numDoors = 4;

//type

usedCar.mileage = 250000;

However, if you have a pointer to the structure, you may use the-> (arrow)
operator:

188

struct Automobile

char make[20];

char model[20];

short numDoors;

long mileage;

usedCar, *pUsedCarl;

pUsedCar = &usedCarl;

//type

pUsedCar-)numDoors = 4;

pUsedCar-)mileage = 250000;

Advanced Data Structures

You may also use indirect selection (the dot operator) if you dereference the
pointer, as shown in the following code:

pUsedCar-)mileage = 250000;

or:

(*pUsedCar) .mileage 250000;

Padding
An important thing to remember about memory assignment on the Mac is that
the 68xxx is a "word" (2-byte) machine. This means that anytime you get or
use any possible variable, the address always has to begin on an even-byte bound­
ary. If you attempt to address an odd-byte variable, you will get a bomb. To
ensure that the address falls on an even-byte boundary, the machine pads the
odd byte, as shown in Figure 8.4.

189

Symantec C++for the Macintosh: The Basics

struct MyStruct
{

} ;

short a;
char b;
short c;

MyStruct theStruct;
long x;

x = sizeof(theStruct);

fxis6

Figure B.4 Example of padding.

a

b

c

What you really have

a

""""' ~ b padding

c

Creating an Array of Structures
Suppose that you want to create a table showing, for example, the number of
days in each month. Perhaps the easiest way to do this is to create an array of
structures. You initialize the array of structures and enclose each member in
curly braces, as in the following code:

190

struct

char *month;

short days;

theMonths []

{"Jan", 31}.

{"Feb", 28}.

{"Mar", 31}.

{"Apr", 30}.

{"May", 31},

{"Jun", 30},

{"Jul", 31},

Advanced Data Structures

{"Aug", 31}.

{"Sep", 30}.

{"Oct", 31}.

{"Nov", 30}.

{"Dec". 31}.

} :

In this example, we have a structure that contains a pointer to some chars
(months). We have also declared some shorts (days). We then declare an array
of months and days and set them equal to the number of days in each month.

Structures and Bit Fields
Bit fields give you the ability to cut down on the kind of memory that an ordi­
nary structure might consume. Look at the following code for a table showing
the day, month, and year:

struct date

{

} :

short day:

short month:

short year:

Here, each short consumes 2 bytes for a total of 48 bits (6 bytes). Now look at
the next example:

struct date

{

} ;

unsigned day : 5:

unsigned month : 4:

unsigned year : 7:

By declaring unsigned bit fields, you have allocated an int, (2 bytes). The day
consumes 5 bits of the int, the month 4, and the year 7, for a total of 16 bits (2

191

Symantec C++for the Macintosh: The Basics

bytes), a saving of 32 bits (4 bytes) of memory. The disadvantages are that you
cannot access the address of bit fields, and things run more slowly than when
you access ordinary variables.

Unions
Unions are a way to allocate items that use the same storage area. The format
of a union is similar to a structure and looks like:

union example

short i;

float f;

} ;

As illustrated in the example above, the word union replaces struct. All mem­
bers of a union occupy the same memory space. If you address short i in mem­
ory, you will get 2 bytes, and if you address float f, you will get 4 bytes.

Suppose that you want to describe a point in a coordinate system that is
sometimes described in Cartesian coordinates and at other times in polar co­
ordinates. You cannot use both coordinate systems at the same time. Instead,
you use a union to conserve space and to describe this point. For instance:

union point

'} ;

192

struct cartesian

} ;

short x;

short y;

struct polar

} ;

short radius;

short theta;

Advanced Data Structures

Here, we created two structures inside a union. Use the first case whenever you
want to access or update the value in Cartesian coordinates and the second case
when you want to do so in polar coordinates.

To access the components of a union, you use the dot operator, as shown in the
following code:

point.cartesian.x

point.cartesian.y

point.polar.radius

point.polar.theta

Operator Overloading
To improve the extendibility of the language, C++ allows operator overload­
ing (in a similar fashion to function overloading). To overload an operator,
you must use the keyword operator. In a way, you create more uses for opera­
tors. Figure 8.5 shows the C++ operators that can be overloaded.

+ * I % A &
< > += -- *= I=

1= << >> >>= <<= -- !=

II ++ D 0 new delete

Figure B.5 Operators that can be overloaded.

An example of operator overloading might be:

struct complex

} :

float r:

float i:

complex a, b, c;

%= "= &=
<= >= &&

193

Symantec C++for the Macintosh: The Basics

a.r = 3.0: a.i = 4.0;

b.r = 7.4: b.i = -5.6;

c - a + b:

complex operator +(complex x, complex y)

{

}

complex temp:

temp.r = x.r + y.r;

temp.i = x.i + y.i;

return (temp):

In this example, we have float r and float i, and we have declared three complex
variables: a, b, and c. We then say that the real part of a is equal to 3, the imag­
inary part of a is equal to 4, the real part of b is equal to 7.4, and the imaginary
part of bis equal to-5.6. Next, we set c equal to a+ b. The plus(+) symbol works
for shorts and floats, and so on, but it does not ordinarily work with a structure;
the compiler will give us an error saying that we cannot add to structures to­
gether. To get around this, we declare a new operator for the + symbol, which
will return a type complex and take as its operand on either side of the+ sym­
bol x and y. Next, we create a temporary where temp.r is equal to the sum of the
real components and temp.i is equal to the sum of the imaginary components,
and then we return the temp.

Be careful in choosing the appropriate operator to be overridden. If the + op­
erator is overridden to mean multiply, the compiler will not care, but the
next person to look at your code will!

Member Functions and Structures
Member functions are functions that are added to a structure, and they have
access to the data members in the structure to which they belong. Using mem­
ber functions allows you to access the data elements that form part of the struc­
ture without the need to use code that does not belong to the structure. This
operation is known as encapsulation. Look at the following example:

194

struct automobile

} ;

char model[20];

long year;

void InData(void);

void OutData(void);

void automobile: :InData()

cout << "Enter model\n";

cin >> model;

cout (("Enter year";

cin >> year;

void automobile::OutData()

{

}

cout >>model >> "\n";

cout >>year >> "\n";

main()

}

automobile mercedes, ford;

mercedes.InData();

ford.InData();

mercedes.OutData();

ford. OutData () ;

Advanced Data Structures

195

Symantec C+ +for the Macintosh: The Basics

In the example above, we have the model and year of the automobile and have
added two prototype functions: InData() and OutData(). We then declare those
functions: void automobile::InData() and void automobile::OutData(). The
first function prompts you to input the model and year, and the second func­
tion prints out what you have entered. Note that we did not need to pass in
model and year as arguments. They are inside the structure, so we have ac­
cess to them.

In main, we declared two automobiles, a mercedes and a ford (of automo­
bile type). Where we say mercedes.InData() and ford.InData, the routine will
input the data in the proper place. (The same is true with mercedes. OutData(
) and ford. OutData().) Now look at another example of the main:

main()

{

automobile *mercedes = new automobile:

automobile *ford =new automobile;

mercedes-)InData():

ford-)InData():

mercedes-)OutData():

ford-)OutData ():

In this main, we have declared automobiles on the heap instead of the stack.
In other words, mercedes and ford are pointers to automobiles. That requires
us to use the indirect(->) operator.

196

We can also write the main using a reference operator:

main ()

{

automobile &mercedes = *new automobile:

automobile &ford = *new automobile;

mercedes.InData():

ford.InData():

mercedes.OutData():

ford. OutData () :

Advanced Data Structures

Here, we have both mercedes and ford as references to an automobile. Even
though we declare them as references, they are really pointers. The compiler
will automatically deference them, allowing us to use the dot operator.

Summary
In this chapter, we have covered most of the advanced features of data struc­
tures:

• Using pointers and arrays.

• Dynamic memory allocation.

• Enumerated variables, structures, and unions.

• Operator overloading.

• Encapsulation.

These concepts lead us nicely into classes, which the next chapter discusses in
detail.

Exercises

1) Define a structure that will be able to store the following information:

book title

author

publisher

copyright date

2) Write a program that declares an array of books on the heap. The array
should be dynamic. Include the code you wrote in Chapter 7 to assign
values to a book.

3) Rewrite the program using member functions.

197

9 Classes
in C++

I n Chapter 8, we explained that structures can contain both data elements and
member functions, satisfying some elemental requirements of object-orient­

ed programming (OOP). As powerful as C++ structures are in organizing data
and functions (representing a significant advance on C structures), they still
have some disadvantages. These can be overcome by the use of classes, which
are more advanced forms of abstract data typing.

199

Symantec C++for the Macintosh: The Basics

Defining a Class
A class definition is made up of two parts: (1) the name, composed of the key­
word class; and (2) the declaration list enclosed in curly braces. For instance:

class TAutomobile

} ;

private:

char fModel[20];

long fYear;

protected:

long fStickerPrice;

public:

void InData(void);

void OutData(void);

The class diagram for the above example would look like this:

TAutomobile

fModel

fYear

fStickerPrice

InData

OutData

Data members are like variables in a structure. Here, they are called instance vari­
ables. Each instance of the class will have its own storage area for the data mem­
bers. Figure 9.1 shows the relationship of data members and instance variables.

Data members are typically private to the class; that is, code that is not part
of the class cannot access this data. Member functions are functions added to
a class. (You can also think of member functions as methods.)

Member functions are different from ordinary functions in that they have
access to private members of their own class. They are defined only within the
scope of their class, not within the global program scope. The class definition
contains a prototype for each member function. In Figure 9.1, these are void

200

Classes in C++

TAutomobile
fMode/

class TAutomobile (Year
{ fStickerPrice

private: In Data

char fModel [20] ; OutData
long fYear; I

" protected: TAutomobile #I
long fStickerPrice; Ford Pinto

public:
1972

void InData(void);
$35,000 TAutomobite #2

void OutData(void); Chevx
} I 1957

$95,000
!E_

Figure 9.1 Relationship Between Data Members and Instance Variables

InData(void); and void OutData(void);. One of the most important aspects
about classes is that they permit data hiding.

Classes and Structures
Classes look very much like structures except that they use the keyword class
rather than struct, and nothing in the private section can be altered or even
used except by means of the public member functions. Perhaps the ma­
jor difference between classes and structures is that all data members and data
functions in a class are private by default; everything in a structure is public
by default.

Data Hiding
Data hiding is done by placing member functions and data
in one of three sections: private, protected, and public. Data
and functions declared private are accessible only to func­
tions declared in the class. Those that are declared protected
are only accessible to the class and its subclass. Those that
are declared public are available to any code that has a ref­
erence to an object of this class .

It is a common mistake
to forget the keyword
public when defining
a class. Remember that
if no keyword appears,
the default is private.

201

Symantec C++for the Macintosh: The Basics

Obiec.ts
Objects are instances of a class. They are declared just like any other variable,
except that the type is a class. For example:

TAutomobile mercedes, ford:

Here, the class is TAutomobile and the objects (instances) are mercedes and ford.

Member Functions
Somewhere in the source code you must have the member function definition;
that is, its source code. Figure 9.2 shows this relationship.

class TAutomobile
{

private:
protected:
public:

void InData(void);

} ... ~'

.. ------------..... ~ "d V01

{

TAutomobile
(Model
(Year
'(StickerPrice
In Data
OutData

Member Function

TAutomobile::InData()

The code goes here
}

Figure 9.2 Member Function Definition

Note that in the figure above, the:: operator identifies the class to which the
member belongs. In this case, it is TAutomobile.

202

Classes in C++

Constructors
A constructor is a special type of member function. It is called automatically
when an object is created and does not need to be called explicitly. You
should first declare a constructor in the public area of a class. An example of
use of a constructor might be:

class TAutomobile

{

} ;

private:

char fModel[ZO];

long fYear;

protected:

long fStickerPrice;

public:

TAutomobile(void);

void InData(void);

void OutData(void);

//constructor

As you can see from the above example, the constructor (TAutomobile(void);)
has the same name {TAutomobile) as the class of which it is a member. If an
array of objects is created, the constructor will be called once for each array
element.

When you call new to create an instance of a class, two things happen: (1)
memory is allocated, and (2) one or more constructors are called.

A constructor with no arguments passed is called a default constructor. It
is possible to pass one or more arguments to a constructor, as shown below:

TAutomobile ford(arguments);

or

TAutomobile ford= new TAutomobile(arguments);

You use a constructor typically to initialize data and to create space for data on
the heap. For example:

203

Symantec C++for the Macintosh: The Basics

TAutomobile: :TAutomobile()

fModel =new char[20];

fYear = new long;

fStickerPrice = new long;

In the above example, TAutomobile() is a default constructor because we
have not passed any arguments into it. We then say that we are getting a char­
acter array (new char{20]) and making /Model point to it. The same is true with
fYear =new long and fStickerPrice =new long. We now have memory on the
heap for all three variables.

Destructors
A destructor is generally used for any type of cleanup operations. A destructor
cannot take an argument nor can it be overloaded. You declare a destructor just
as you would a constructor except that you precede the name by a tilde(-).
An example of the use of a destructor might be:

204

class TAutomobile

} ;

private:

char fModel[20];

long fYear;

protected:

long fStickerPrice;

public:

TAutomobile(void);

-TAutomobile(void);

void InData(void);

void OutData(void);

TAutomobile::TAutomobile()

//destructor

delete fModel ;

de l ete fYear;

delete fStickerPrice;

When you call delete to destroy an object, two things hap­
pen: (1) one or more destructors are called, and (2) memory
is deallocated.

You may have noticed that constructors and destruc­
tors have no return values, and they are not preceded by the
word void. The reason that void is not used is that both con­
structors and destructors do in fact return values. The re­
turned value is implicit rather than explicit. It consists of a
special pointer this->, which is the address of the object be­
ing created or destroyed. The implicit this -> pointer pro­
vides a means by which a member function can know which
object (instance of a class) it is dealing with. For now, you
need only know that both constructors and destructors re­
turn a value, but you do not need to declare it.

Initialization Functions

Classes in C++

Constructors and de­
structors are not in­
herited since they serve
as class-specific initial­
ization functions. More
on inheritance later.

Constructors and de­
structors are useful but
not absolutely neces­
sary. You do not need
a corresponding de­
structor for every con­
structor and vice ver­
sa. MacApp classes typ­
ically use an explicit ini­
tialization method rather
than a constructor.

You may have initialization functions in addition to or instead of constructors.
The convention for naming initialization functions is to begin the function
name with the letter I. (The standard MacApp method of initializing objects of
a given class is with an I function.) Call the I function for each object as soon
as you have created it. You pass to your I function whatever parameters it needs.
For instance:

class TAutomobile

private: ...

protected : ...

public: ...

void IAutomobile(const char *model ,

const long mileage) ;

205

Symantec C++for the Macintosh: The Basics

} ;

main()

TAutomobile ford, chevy;

IAutomobile("Pinto", 24000);

IAutomobile("57Chevy", 251925);

As you can see in the above example, the initialization function void !Automobile
looks like a constructor, except that the T has been changed to an I. The val­
ues canst char *model, canst long mileage are declared constants, which means
that when we pass in values, they cannot be changed by that function; the func­
tion can only use them, it cannot change them. (Declaring the canst is a safe­
ty measure, a form of defensive programming.) Note that the I functions are
called as soon as the objects ford and chevy were created.

I functions are used mainly to initialize variables, not to allocate memory.

Accessor Methods
One way to give other parts of your program access to private data is through
an accessor. For example:

206

class TAutomobile

{

private:

char fModel[20];

long fYear;

protected:

long fStickerPrice;

public:

TAutomobile(void);

} ;

-TAutomobile(void);

long GetYear(void);

void SetYear(long year);

void InData(void);

void OutData(void);

long TAutomobile: :GetYear()

{

return (fYear);

void TAutomobile: :SetYear(long year)

{

fYear - year;

Classes in C+ +

Constructors, destruc­
tors, and accessor func­
tions are often omitted
from class diagrams.

In this example, we have the variables f Model and fYear in the private sec­
tion, but we allow members of the public section to get a certain amount of ac­
cess to the private section by giving them the routines Get Year and Set Year.
The first returns the value of the year, and the second allows them to set the
year. By the way, accessors should return data, not the address to data.

It is a good idea to provide accessor functions for each data member that
must be accessed from outside the class . As a first step, you may want to pro­
vide accessor methods for all data members, and then remove those that are
not needed.

207

Symantec C++for the Macintosh: The Basics

Collaborators
Data members do not have to be just simple variables. They can be references
to other objects; for example, collaborators. Collaborator data members can
have accessor methods just like any other member. Figure 9.3 shows the rela­
tionship between collaborators and classes.

class TAutomobile

private:

protected:

TDealer *fDealer;

public:

TAutomobile

fModel

fYear

fSt:ickerPrice

InData

OutData

void SetDealer(TDealer *theDealer)

TDealer *GetDealer(void);

TDealer

fCit:y

fNumSalesmen

fDiscount:

Figure 9.3 Collaborators

ComputeDiscount

Car Inventory

Collaborator data members can have accessor methods just like any other
member.

Friends
A friend is called just that because it has access to the private section of the
class to which it is a friend. (You can have both friend classes and friend func­
tions.) Although friends can come in mighty handy at times, it is best to exer­
cise restraint when creating friends. After all, the creation of friends compro­
mises the whole idea of data hiding.

Friend Class
To declare a class as a friend, you place a statement within the class definition.
For instance, the following declaration might be used in conjunction with our
TAutomobile examples:

208

Classes in C++

friend class TUsedCarSalesman;

It does not make any difference which section you place the friend statement:
public, protected, or private. Member functions of the friend class will be
able to manipulate the private data elements of the class to which it is a friend.

Friend Functions
Functions may also be friends of a class, and you declare a friend function for
the same reasons that you declare a friend class. You can declare a friend
function by placing the following statement in the class:

friend void GetSalesQuota(short quota);

As you can see, the key word in the declaration is friend.

Data-Hiding Convention
By convention, public members are listed first, followed by protected, then pri­
vate, as shown in the following code:

class TAutomobile

} ;

public:

void InData(void):

void OutData(void);

protected:

long *fStickerPrice;

private:

char *fModel;

long *fYear;

209

Symantec C++for the Macintosh: The Basics

Summary
In this chapter, we covered:

• Defining classes and objects in C++.

• Data members and member functions.

• Data hiding.

• Constructors and destructors.

• Initialization functions.

• Accessors.

• Collaborators.

• Friends.

Now it's time to put together everything that you have learned up to now
into a good example. That is what Chapter 10 does with the list example.

Exercises

1) The following is a code to add two vectors:

void VAdd(float *a, float *b, float * c, short n)

for (short i = O; i < n; i++)

c[i] = a[i] * b[i];

return (c);

Write the corresponding function for a vector class:

void vector::add(vector &a, vector &b);

where the result of the addition is the implicit vector argument.

210

Classes in C++

2) Modify the above code to support other vector operations (subtraction, mul­
tiplication, division, absolute value, etc.). Use operator overloading wher­
ever possible.

3) A complex number is a number made up of two other numbers. One of the
numbers is called a real number (these are the same numbers that you learned
in arithmetic); the other an imaginary number. Both numbers are floating
point. A complex number type could be defined using a structure as:

struct Complex

float r; II real part

float i; II imaginary part

} ;

When two complex numbers are added, subtracted, multiplied, or divided,
the resulting number is also complex. To add two complex numbers, you
would use the following algorithm:

C = A + B

C.r = A.r + B.r

C.i = A.i + B.i

Where A, B, and Care coinplex numbers and rand i are real and imaginary,
respectively. To subtract two complex numbers, you would say:

C = A - B

C.r = A.r - B.r

C.i = A.i - B.i

To multiply two complex numbers, you would

C = A * B

C.r = (A.r * B.r) - (A.i * B.i)

C.i = (A.i * B.r) + (A.r * B.i)

211

Symantec C++for the Macintosh: The Basics

212

And finally, to divide two complex numbers:

C = A I B

C.r = ((A.r * B.r) + (A.i * B.i)) / ((B.r * B.r) + (B.i * B.i))

C.i = ((A.i * B.r) (A.r * B.i)) / ((B.r * B.r) + (B.i * B.i))

If A.r = 3, A.i = 4, B.r = 4, B.i = 2 then the results of the above operation
would be:

C.r C.i

Addition 7 2

Subtraction -1 6

Multiplication 20 10

Division 0.2 1.1

Create a complex data type using either struct or class. Add to your com­
plex class, function members to assign values to the complex numbers. In
addition, build function members that add, subtract, multiply and divide.
Write a program that test this complex class on all of the above 'operations.
You can use the above numbers to check your results. Implement opera­
tor overloading into your function members. In this case, adding two
complex numbers with operator overloading would look like:

Complex a, b, c;

a.r = 3; a.i = 4;

b.r = 4, b.i = 2;

c =a+ b;

10 Linked List
Example

T his chapter consists of a walkthrough of a fairly simple example. We pro­
vide a lengthy description of a problem, from definition through modeling,

then we design the classes and class diagrams and create the methods for the
classes. When finished, we will have gone through the basic process of object­
oriented design methodology.

213

Symantec C++ for the Macintosh: The Basics

Statement of the Problem
Our problem (or objective) is to create a simple linked list, something that is
used for a variety of things. For example, we may want to create a list of clients,
along with their addresses and phone numbers. Also, when you have an event
(like a mouse-down event) on the Macintosh, you create an "event record"
where things are put into a queue. That queue is actually a linked list of the
kind shown in Figure 10.1.

Head node Node Node Tail node

I Pointer I Pointier I Pointer I
Data I Data Data Data ~--

Null pointer Start pointer

Figure 1 O. 1 A linked list

A linked list is made up of a number of nodes. The first node to be placed in the
list is the head node, while the most recent node at any given moment is the
tail node. Figure 10.2 shows the relationship of the pointers and nodes in a singly
linked list.

-~_D_at_a__,1-C: ...__D_at_a__,1-C: .__n_a_ta__.l-c: I
Null pointer Start pointer

Figure 10.2 Structure of a Singly linked list

Only the address of the tail is directly known to the program and is contained
in the start pointer. All of the other nodes can be reached by "daisy-chaining"
forward along the list in the direction of the head. When the end of the list is
reached, the pointer of the head node is set to zero. Backward movement -
from the head toward the tail - is not possible unless additional links are added.

214

Linked List Example

Creating a Circular List
A variation on the singly linked list requires the head node to point back to the
tail. This creates a circular list, and is shown in Figure 10.3.

Head node Node Node Tail node

I Poinj"' I Poinj"' I Poinj°' I
rj Data ~ Data ~ Data~ Data ~

Figure 10.3 A Circular list

A singly linked list is useful when new nodes will be added only at the tail
end of the list and when deletions also take place from the tail. Such a struc­
ture is perfectly adequate for a very large number of applications (the stack
works in a way similar to this).

Adding and Deleting Nodes
Figure 10-4 shows a list comprising a single node; that is, when the head and
the tail are the same. This list contains a null pointer and is pointed to by the
start pointer.

First node

I
I Data I• I

Null pointer Start pointer

Figure J 0.4 A Single Node List

Adding a new node at the tail end has the effect of "pushing" the head node
farther up the list. Each time a node is added, the start pointer points to the new
tail, which itself contains a new pointer to the head. The process, which is shown
in Figure 10-5, continues as more new nodes are added at the tail of the list.

215

Symantec C++ for the Macintosh: The Basics

(Head)
First node Second node

I I
1-----11 Data l-C:-------1 Data I-< I

Null pointer Start pointer

(Head)
First node Second node Third node

I I I
---1 Data ..-1-C:!----i Data l-C:----1 Data ,___

Null pointer Start pointer

Figure 10.5 Adding Nodes to the Tail of a Linked List

To remove nodes from the tail end, set the start pointer to point to the next
node. Next, delete the memory space occupied by the node using the delete op­
erator, as shown in Figure 10.6.

(Head)
First node

I
Third node

Second node deleted

D!ta ..-1-<!----il ~ I 1------11 Data ..-1-C:!----i
Null pointer Start pointer

Figure 10.6 Deleting a Node from a linked List

Building the Code
Now that we've determined what our objective is, it's time to build the code
that will solve the problem. This actually takes quite a bit of insight. It is not
as simple as saying, "Okay, now that I've described this, it's perfectly obvious
how this code needs to be written." This can, in fact, take hours and numer­
ous iterations. So, we start out with the knowledge that we have two things: a
list and a node. Now we visualize how we're going to deal with them.

216

Linked List Example

Creating a Friend Class
First, we have to create two classes: a list class and a node class. We begin with
the node class, knowing that the nodes are a part of the list and must be ac­
cessed by the list. Therefore, we'll make this node class a friend to another class
called TList. The node class has no public elements; the entire class is pri­
vate. Objects of class TNode will only be accessible to member functions of
class TList. The first part of the code will look like this:

class TNode

{

friend class TList:

TNode *next:

char data[20]:

} :

Here, the node contains a pointer to next, which contains the address of the
next node. In addition, the node contains the data that we are storing in the list.
This data may be an address, phone number, or any other type of data. For now,
we've allotted 20 characters. Now we're ready for the next chunk of code:

class TList

{

public:

TList(void) {start = 0;}

-TList(void):

void Insert(void):

void Extract(void);

void InputData(void);

void DisplayData(void);

private:

TNode *start:

In this part of the code, the list class contains a pointer to the start of the list.
This pointer is private, so it can only by accessed by a member function.

217

Symantec C++ for the Macintosh: The Basics

We know that when we create this list we have to initialize the start point­
er. When the list is first created, it contains no nodes. Therefore, we need to
zero-out the start pointer. We do this by creating a TList constructor, inside of
which we set the start point to 0. (Notice that we have written an inline func­
tion here.) Once we have a constructor, we decide that it would be nice to have
a destructor that goes through and deletes all the nodes when the list is delet­
ed. So, we create the destructor -TList.

We know that we will want to insert things into the list, so we write the
member function void Insert(void);. We'll also want to delete or extract things
from the list, so we create void Extract(void);. In addition, we have written two
other functions, void InputData(void); and void DisplayData(void);, which will
allow us to input information into a data area and display it.

Insert Function
The insert function is called when a new node is to be added to the list:

218

void TList::Insert()

{

TNode *temp;

temp = new TNode;

if (!temp) //no more space

cout << "Out of space\n•:

return;

if (!start) I /head node

}

start = temp;

temp->next = 0;

else //not head node

temp-)next = start;

Linked List Example

start = temp;

}

To insert a new node into the list, we declare a temporary pointer to a node.
Then we call new TNode, which will give us the memory for the new node. We
put the pointer to that memory into temp. Next we say, "If temp is not valid,
we're out of memory space." We then write that out to the screen with cout
« "Out of space\n";. If temp is not 0, we're okay.

Next, we say, "If start is not valid (that is, start is pointing to 0), then this
will be the first node to be added." We then set the start node equal to the one
that we just created: temp. This has a pointer to the next node, and we set it
back to 0. If the start node is not pointing to 0, there is already a node in the
list. That means that we will be adding to the tail of that list. Therefore, we
take the start node and put it into the pointer to the next: temp-> next= start.
Next we place the pointer to memory into start.

Extract Function
The extract function removes the current tail node from the list and reclaims
the heap space:

void TList::Extract()

TNode *pl, p2;

if (!start)

cout << "\nEmpty list\n•:

return:

pl = start;

p2 = pl->next;

delete pl;

start = p2;

219

Symantec C++ for the Macintosh: The Basics

In the extract function, we create two pointers to TNode (*pl, p2). We then
ask if the start pointer is valid using the expression if (!start). If start is point­
ing to 0, we output to the screen: "Empty list." That ends the function be­
cause if there are no nodes, there is nothing to extract.

However, in case start is pointing to the next node, we make copies of the start
node and the next node it is pointing to: pl =start; and p2 =pl-> next;. We then
delete pl, which is the data of the node, and set the start pointer equal to p2.

The reason for using the local variables p 1 and p2 is that had we simply
said, "Delete start" (without making a copy of next), we would delete the node
and the pointer to the next node, which we would not be able to retrieve. These
temporary variables are really safety nets.

lnputData Function
Our sequence is to first get the node and then to put the data into the node.

The InputData function reads the data from the user, then stores the data
in the current node:

void TList::InputData()

cout << "Data: ";

cin >> start->data;

All this function does is to tell us that we need to input data with the expres­
sion cout « "Data:";. It waits for the data to be input and then stores it in the
start node: cin » start->data;.

DisplayData Function
This function is a little more versatile than the InputData function. It will

output to the screen all the data contained in all the nodes in the list:

void TList::DisplayData()

TNode *i = start;

220

Linked List Example

while (i)

{

cout << i-)data << "\n";

i = i-)next:

Here, we make i a pointer to a node, and we initialize i with start all in the
same line. Next we say, "While i is not equal to 0, execute the following loop."
In the loop, we output the data of one node and then go to the next (i = i->next).
When we reach the tail, i will be equal to 0, and the function will end.

Destructor
The destructor reclaims the heap space occupied by the list:

TList: : -TList ()

}

TNode *pl, *p2;

pl = start;

if (!start)

{

return;

while (pl)

p2 = pl-)next;

delete pl;

pl = p2;

Once again we have the "delete" problem, so we must make copies of the
start node and the next node that it is pointing to. We then set pl equal to

221

Symantec C++ for the Macintosh: The Basics

start. We do a check to see if the list is empty. If it is, we do not bother with
the destructor.

If there is a node, however, we say that while pl (the start) is valid, we as­
sign p2 to be a pointer to the next node and delete p 1. We then set p2 equal to
p 1. Then we delete each node until we reach the end of the list.

Writing the Main Function
In order to use all of this code, we must create the main function. The most
outstanding feature of this example is that the implementation details of how
the list is managed are hidden from the outside user. Let's look at the code:

222

#include <iostreams.h>

main()

{

TList myList;

myList.Insert();

myList.InputData();

myList.Insert();

myList.InputData();

myList.Insert();

myList.InputData():

myList.Insert();

myList.InputData();

myList.DisplayData();

myList.Extract();

myList.Extract();

myList.DisplayData();

//Input data

//Show data

//Remove two nodes

//Show data

Linked List Example

In this main function, we start by declaring a #include, in this case the iostreams,
and then declaring a list: TList myList. As soon as this declaration is hit, the
constructor for myList is called to initialize the start pointer that is contained
in TList. (Note that this is not evident anywhere in the list. We do not have ac­
cess to the start pointer because it is hidden from us.)

Next, we call InsertData and InputData to insert and put data into four
nodes. After that, we call DisplayData to see what is in the nodes. We may not
like what we see, so we remove the last two nodes and then display the data
once more.

Once the function reaches the last curly brace, the destructor is called. It
goes through and cleans out all of the memory.

Summary
In this linked list example, we covered:

• Defining data classes

• Data hiding and encapsulation

• Writing and calling methods

• Using dynamically allocated objects

In the next chapter, we'll show how to create subclasses and describe how in­
heritance works. We'll even use subclasses of TNode and TList as examples so
that you can see more clearly the relationships between parent classes, sub­
classes, abstract classes, and inheritance.

223

Symantec C++ for the Macintosh: The Basics

Exercises

224

1) Rewrite the book example from Chapter 8 to incorporate the books in
a linked list.

2) Modify the Linked list example to:

a) a circular list

b) a doubly linked list

11 Subclassing and
Inheritance

0 bject-oriented programming expands abstract data types by allowing a type
and subtype association. In C++, the instrument for this association is sub­

classing. The subclass acquires shared characteristics--data members and mem­
ber functions-from the parent class through inheritance. Because of their abil­
ity to reuse code and save storage space, subclassing and inheritance are the
most useful and powerful aspects of object-oriented programming.

We touched on subclassing and inheritance briefly in Chapter 2. In this
chapter, we examine in detail how to define derived classes, the value of vir­
tual functions, and how and when to use protection keywords in base and de­
rived classes. We also look at constructors, destructors, and I functions in de­
rived classes; static members and static member functions; accessing member
data; and the this pointer.

225

Symantec C++ for the Macintosh: The Basics

Defining Derived Classes
The existing class is called the base class, and the new class is called the derived
class. There is no theoretical limit to how far the derivations can extend, but there
are practical limits. Figure 11.1 shows the definition of a new class, complete with
class diagrams for both the base and the derived classes.

class TForeignAuto : public TAutomobile
{

public:
short GetDuty (void):
void SetDuty (short duty):
virtual void InData (void): //OVERRIDE

private:
short fDuty; TAutomobile

} ; fModel •
fYear
fSt:ickerPrice
InData
OutData TForeignAuto
Computer Price fDut:y

InData

Figure 11.1 Defining a derived class.

In declaring a derived class, the name of the base class appears after the name
of the derived class, separated by a colon. The keyword public makes the pub­
lic section of the base accessible to the derived class and any further classes de­
rived from that.

In the derived class, you must specify new data members and new member
functions. Member functions may be overridden las shown in Figure 11.1). The
function will have the same name as the member function in the base class,
but its purpose will differ from that of the base class. Member functions of the
derived class can only access public and protected (not private) members of the
base class.

For a derived class to override an inherited function, that function must
have been prototyped as virtual in the base class land not be private). The term
virtual in Figure 11.1 means that the function InData may be overridden; vir­
tual void InData(void); is the prototype. InData is then overridden in TForeignAuto.
It appears that there is now an ambiguity because there are two InData func­
tions. At compile time, the compiler does not know which function will be
called, the TAutomobile InData or the TForeignAuto InData. This is deter­
mined at run time.

226

Subclassing and Inheritance

It is a good idea to make all public and protected functions virtual. Then,
to optimize, go back and make functions that are not overridden nonvirtual. (If
you have the "Optimize monomorphic methods" box checked, the compiler
will optimize automatically.) You'll want to do this simply because nonvirtu­
al functions run faster than virtual functions.

Virtual Functions
The word virtual tells the compiler to check the actual class of the object at
run time. This ensures that the derived class's member function will be called.
This happens even if the pointer used to access the member function is declared
as a pointer to the base class. For instance, if we create a pointer to TAutomobile
but assign that pointer the value of the address of a foreign automobile, at run
time the program will determine that the pointer is actually pointing to a for­
eign automobile.

Pure Virtual Functions
Virtual functions initialized to zero are considered pure virtual functions. This
process forces all the subclasses to override the routine. The format for a pure
virtual function is shown in Figure 11.2.

class TAutomobile

} :

private:

public:
virtual void InData(void) = O:
virtual void OutData(void) = O:

Figure 11.2 Format for a pure virtual function.

The syntax= 0 indicates that every concrete derived class must define its own
version of the member function. Otherwise, there will be a compiler error. The
concept is a bit obscure, but that is the syntax.

227

Symantec C++ for the Macintosh: The Basics

The definition is only necessary if we create an object. If we have not cre­
ated an instance to an object, there will be no pointer. However, once we cre­
ate an instance of an object, we need a pointer to a function. In this case, the
pointer would be to zero-ERROR!-unless we define another version of the
member function.

Protection Keyword
When you preface the base class name with the public keyword, all members
inherited from the base class retain their original public, protected, or private
status. Figure 11.3 illustrates this.

class TDerived
{

TBase

Public

public TBase

TDerived

·Public

Protected a---.,. Protected

Private Private

Figure 11.3 Protection keyword: public.

If you preface the base class name with the private keyword, all members in­
herited from the base class will become private to the derived class (see Figure
11.4). This means that the derived class may not have access to (cannot change)
the private members of the base class. Any private members retain their orig­
inal status.

228

Subclassing and Inheritance

class TDerived
{

TBase

Public

Protected

Private

private TBase

TDerived

Public

Protected

Private

Figure 11.4 Protection keyword: private.

If you preface the base class name with the protected keyword (Figure 11.5 J, all
public members become protected members in the derived class. Any private
and protected members retain their original status.

class TDerived
{

TBase

Public

protected TBase

TDerived

Public
Protected __ __,. Protected

Private Private

Figure 11.5 Protection keyword: protected.

If you do not specify a protection keyword, the default is private. This de­
fault feature is a holdover from early versions of C++ and should be avoided.
Always preface the base class name with a protection keyword in the derived
class declaration.

The significance of using the protection keyword in a derived class decla­
ration becomes important only if another class inherits from the derived
class. If the base class was converted to private, any further derivations of the
derived class cannot access any of the base class members. This becomes ap­
parent in Figure 11.6.

229

Symantec C++ for the Macintosh: The Basics

class TDerived : private TBase

class TDerived2 : public TDerived

TBase TDerivedl TDerived2

Public Public y Public

Protected ~I Protected ~ Protected

Private ~
Private

TDerived 1 has access to:
public members from TBase
protected members from TBase
public members in TDerived 1
protected members in TDerived 1
private members in TDerived 1

... Private

TDerived2 has access to:
public members from TDerived 1
protected members from TDerived 1
public members in TDerived2
protected members in TDerived2
private members in TDerived2

Figure 11.6 Private inheritance of derived classes.

In Figure 11.6, TDerived1 creates its own copies of all of TBase's public, pro­
tected, and private information (it creates its own version of everything). If
TBase has a short a in its private section, TDerived1 will have a copy of that
short a, but it cannot access the short a in TBase. If the short a were in TBase's
protected section, TDerived1 would have access to it.

In this same figure, TDerived2 has no access to any members in TBase be­
cause TDerived1 has made all of TBase's information private. Figure 11. 7 shows
that if the information from the base class is declared public in the first derived
class, the second derived class will still have access to the public and protect­
ed members of the base class.

230

Subclassing and Inheritance

class TDerived : public TBase

class TDerived2 : public TDerived

TBase

Public

Protected

Private

TDerived 1 has access to:

public members from TBase

protected members from TBase

public members in TDerived l
protected members in TDerived 1

private members in TDerived 1

TDerivedl TDerived2

Public Public

Protected Protected

Private Private

TDerived2 has access to:

public members from TDerived 1 and TBase

protected members from TDerived 1 and TBase

public members in TDerived2

protected members in TDerived2

private members in TDerived2

Figure 11.7 Public inheritance of derived classes.

Note that if the public information in TBase were to be put into the protected
section of TDerived1, TDerived2 would still have access to it. Also, remember
that the only things that can access the private section of a class are the mem­
bers of the class itself and friend classes.

Constructors in Derived Classes
When base and derived classes both have constructors, the constructor in the
base class is called first. When that call is complete, the derived class is called.
The headers for both the base and derived classes are shown in Figure 11.8.

231

Symantec C++ for the Macintosh: The Basics

Header of base class constructor:

I TBase: :TBase(short a, short b) I
Header of derived class constructor:

TDerived::TDerived(short a, short b, float c)

Figure 11.B Headers for base and derived class constructors.

The argument list in the prototype and header for a derived class constructor
should include the arguments and argument types for both the base class and
the derived class. In addition, the arguments (but not the types) for the ·base
class should be enclosed in parentheses and appended to the end of the de­
rived class header, preceded by a colon. Figure 11.9 shows this format.

class TBase
{

public:
TBase(short a, short b):

} ;

class TDerived : public TBase
{

public:
TDerived(short a, short b, float c):

} ;

TBase::TBase(short a, short b)
{

'"

}

TDerived::TDerived(short a, short b, float c) : (a, b)
{

...
}

Figure 11.9 Base and derived class constructor formats.

If the derived class has any members that are not in the parent class, the de­
rived class constructor should initialize them. For instance, in our example of

232

Subclassing and Inheritance

TForeignAuto, we have added a member-fDuty-that was not in the original
TAutomobile class. So, the responsibility of the constructor in TForeignAuto
is to initialize fDuty, not !Model, fYear, and fStickerPrice. The constructor of
the base class will initialize those objects.

If the constructor for a class is not public, only friends of that class will be
able to create objects of that class, since creating an object is just like calling
its constructor.

Destructors in Derived Classes
Since destructors work in reverse order from constructors,
the destructor in the derived class is called firs t, followed
by the destructor for the base class. Since destructors do not
pass arguments, the destructor of a derived class does not
require any special syntax. Classes that will be used as base
classes for derived classes should have virtual destructors.

To iterate:

Watch out for the er­
ror of trying to reclaim
the same heap space
more than once.

• Constructors for parent classes execute before the constructors for derived
classes .

• Destructors for parent classes execute after the destructors for derived
classes .

.111" Functions in Derived Classes
If you are using I functions, then every class should have its own (as shown in
Figure 11.10). The I function for the derived class should include the arguments
from the I function in the base class.

233

Symantec C++ for the Macintosh: The Basics

class TBase
{

public:
void IBase(short a, short b):

} :
class TDerived : public TBase
{

public:
void IDerived(short a, short b, float c):

} :

Figure 11.10 "/"functions in derived classes.

The I function for a subclass should gather initialization values for each of its
data members, including inherited ones. (There is no mechanism for the !Derived
class to call the !Base function unless you specifically write it inside of !Derived.
Therefore, you need to pass in all the variables from !Base to !Derived.) The I
function for the subclass should also initialize the data members that are de­
fined by the class and call the inherited I function to initialize inherited data
members. Figure 11.11 illustrates the initialization process.

class TBase
{

public:
void IBase(short a, short b);

} ;

class TDerived : public TBase
{

public:
void IDerived(short a, short b, float c):

} ;

TDerived::IDerived (short a, short b, float c);
{

this->IBase (a, b);

main() initialize a field from "c"
{

}

TDerived theClass;

theClass::IDerived(S, 7. 9 .o);
}

Figure 11.11 Initializing data members in a derived class "/" function.

234

Subclassing and Inheritance

In Figure 11.11, we have created !Base in the base class and /Derived in the sub­
class. In the main function, we have created TDerivedtheClass. Now we need
to call the I function immediately, which we do, and we pass in the variables
5, 7, and 9.0 for a, b, and c. We then pass in a and b to /Base and have it ini­
tialize them. Then we initialize c.

As you can also see from the figure, the creator of the object only has to call
one initialization function.

Static Members
Static members are those that have the same address (and value) for all ob­
jects of the class. They are almost like global variables within the class.
Figure 11.12 shows the format for the declaration of a static member.

class TAutomobile
{

private:

protected:

TAutomobile
(Model
(Year
fStickerPrice
fPercentSa/es Tax
In Data
OutData

static short fPercentSalesTax;
public:

}

Figure 11. 12 Declaration of a static member.

Static members save storage space, which is reserved only once, and all objects
reference that storage. Figure 11.13 illustrates this process.

235

Symantec C++ for the Macintosh: The Basics

Nonstatic Data Member

Static Data Member

Figure 11. 13 Storage areas for nonstatic and static data members.

In Figure 11.13, if we had three objects that all had an instance variable of blue,
then each object would have its own copy of blue. However, if we make the in­
stance variable in the three objects static, then all three share the same mem­
ory location for blue.

Static members do not need to have constant values, but the values are al­
ways the same for all instances of the class. In other words, you can change the
value of the static member, but once you change it for one, you change it for all.

Static Member Functions
Static member functions are member functions declared with the keyword sta­
tic. A static member function in a class can access only the static members of
a class. They cannot access any of the nonstatic members of the class (although
they can access them through this->).

236

Subclassing and Inheritance

When to Use Static Members
Use static members as a replacement for global variables. Static members and
static member functions are often preferable to global variables because they
can be protected from unauthorized modifications.

Creating Obiects (Instances)
You can create objects or instances either by static allocation (on the stack)

or dynamic allocation (on the heap). Figure 11.14 shows the process of creating
objects with both types of allocation.

Static Allocation

TAutomobile ford;
TForeignAuto mercedes;

ford mercedes

IAstance #2
fields ...

Dynamic Allocation

TAutomobile *dodge;
dodge = new TAutomobile;

or

dodge

Pointer J

Instance #3
fields ...

TAutomobile *dodge new TAutomobile;

figure 11.14 Example of creating objects using static and dynamic allocation.

237

Symantec C++ for the Macintosh: The Basics

Dynamic Obiect
The class name that follows the new operator determines the actual class of a
dynamically allocated object, no matter what type its pointer is defined to be.
You might declare a dynamic object this way:

TAutomobile *dodge = new TAutomobile:

Initializing Instances
Initialize each newly created instance by calling its initialization member func­
tion immediately lif constructors are not used). For example:

TAutomobile ford:

TForeignAuto mercedes:

TAutomobile *dodge:

ford.IAutomobile("Ford Pinto", 257298):

mercedes.IForeignAuto("300E", 49995, 500):

dodge = new TAutomobile:

dodge-)IAutomobile("Dodge Plymouth", 34796):

Using Instances
To get useful work from an instantiated object, send it a message. To send it a
message, you must have a reference to it. You need to have a pointer to the
object or the actual object itself to send a message to the object. Figure 11.15
shows an array of AutoList with four pointers to different objects lin this case,
autos). The code is asking for the sticker price on the fourth auto.

Which Functions?
C++ must make all member functions available and keep track of which is to
be called for each object. Figure 11.16 demonstrates the calling of an overrid­
den function in a subclass.

238

Subclassing and Inheritance

fAutoList[4] .ComputeStickerPrice;
dealerName = fDealer->GetName;

TApplication

Auto List

TAutomobile #2 TAutomobile #3 TAutomobile #4
Chety VW Bug Mercedes
$95.000 $12,000 $8,000
UPullit NotaBMW Fred's Salvage

Figure 11. 15 Example of using instances .

TAutomobile
(Model
(Year
In Data
OutData

[TAutomobile::lnData]

[TAutomobile::OutData]

ComputeStickerPrice [TAutomobile::ComputeStickerPrice ~

TForeignAuto
(Duty
ComputeStickerPrice

anAuto

I Pointer I)ii auto#I
l'"'lercedes 300E
$40,000
5%

TForeignAuto::ComputeStickerPrice

Figure 11. 16 Calling functions for each obiect.

239

Symantec C+ + for the Macintosh: The Basics

In Figure 11.16, we have TAutomobile and TForeignAuto and a pointer to auto
#1 (an instance), which is a foreign automobile. However, the pointer is actu­
ally pointing to TAutomobile. The question here is: "Which function will be
called? ComputeStickerPrice for TAutomobile or ComputeStickerPrice for
TForeignAuto?" C++ will call the correct function because it has kept track of
what is to be called for each object.

Which Data?
Messages must be sent to specific objects. Here are some things to keep in mind
about objects:

II Member functions are not global; you must have an object reference to call
them. For example, you must call ford.InData; you may not simply call
InData. And, you may not call ford.InData from some place that does not
have access to ford.

111111 Member functions use the same code for each instance. However, they usu­
ally reference the data members, and the data is unique for each instance.

1111111 Effectively, every member function has a hidden parameter that points to
the object data.

Accessing Member Data
Use the arrow operator(->) whenever you want to access a member of a par­
ticular class through a class pointer. Figure 11.17 shows the process for accessing
member data.

240

Subclassing and Inheritance

anAuto

autQ#I
Mercedes 300E
$40,000
5% ...___ __________ _.

[TAutomobile::lnData]

[TAutomobile::OutData]

TAutomobile::ComputeStickerPrice

TForeignAuto::ComputeStickerPrice

II This call to a member function:
anAuto-)ComputeStickerPrice (. ..)

II Really means something like this:
ComputeStickerPrice (anAuto)

Figure 11. 17 Accessing member data .

In the code in Figure 11.17, we have a pointer (anAuto) to mercedes, and we are
calling the function ComputeStickerPrice. Because we are calling a member
function, we use the arrow from the pointer to the function.

The C++ 11this" Pointer
The this pointer in C++ means "the address of the object (structure or class)
that I am currently in." The implicit use of the this pointer allows a member
function to know which object of a structure it is dealing with. Sometimes,
however, it is necessary to use the explicit form of the pointer. From outside
the member functions, for example, you would use an explicit reference, as
shown in the following code:

anAuto-)ComputeStickerPrice (. ..)

This means the same thing as:

ComputeStickerPrice(anAuto, _)

241

Symantec C++ for the Macintosh: The Basics

However, from inside the member function, we refer to the "current" object as
this, and write the code this way:

this-)ComputeStickerPrice (. ..)

That code means the same thing as:

ComputeStickerPrice(this, _)

or

ComputeStickerPrice(anAuto)

When calling an overridden member function, the call

this-)ComputeStickerPrice(_)

gives us the same thing as:

TForeignAuto::ComputeStickerPrice(this, _)

If we want to call TAutomobile::ComputeStickerPrice instead, we can call it
explicitly:

TAutomobile: : ComputeStickerPrice (. ..)

This is the same as saying:

TAutomobile:: ComputeStickerPrice (this, ...)

Remember that the this call only works from a member function.

To iterate, the this-> argument to a member function can be used to show
explicitly that a member or member function for the class is being accessed.
Some programmers prefer the more explicit form, and there is no performance
penalty for using it.

You are not required to use this-> when it is implicit, but by using it you
can improve readability. Our recommendation is that you use this-> notation
for all your messages.

242

Subclassing and Inheritance

Summary
In this chapter, we discussed subclassing and inheritance in detail. The topics
covered included:

II Derived classes.

111111 Virtual functions.

1111 Constructors and destructors.

111111 Initialization functions.

II Using static members.

II The this-> pointer.

Exercises

1) Create a program called "Company" that implements the class design you
created in Chapter 2. Create equipment and employee classes. Write mem­
ber functions that enable each equipment object to output a description of
itself (make, model, serial number, and, for computers only, amount of
memory). Most of these functions are one-liners using cout. When your
classes are ready, return to the main ("company") program and modify it
to use your classes. Declare one variable for each of your class types, ini­
tialize each variable, and then send each one a message telling it to print a
description of itself.

2) Add to the "company" tool by repeating the previous exercise for your em­
ployee classes. This is a somewhat bigger job than the last one because
there are a few more methods and classes; but you know how to do it
now, right? One new "wrinkle" for the employee objects is that they con­
tain references to equipment objects, so some of your messages will be sent
via pointers (rather than via static variable references).

3) Each of your employee objects should know how to print a paycheck that
shows gross pay, tax, and net pay, and how to print a description of its piece
of equipment (by sending a message to its collaborating equipment object).
The bookkeeper object will have an array that holds a reference to each em -
ployee, plus methods to print paychecks and equipment descriptions for

243

Symantec C++ for the Macintosh: The Basics

each employee. (You could of course have the bookkeeper keep a vari­
able-length list of employees rather than a fixed-length array, but an array
will probably be easier to code.) For this exercise you may omit the reports
of bosses (for secretaries) and language skills (for programmers) discussed
in Exercise 1 of Chapter 2.

4) In your main program, test your classes by setting up a company that cor­
responds to the one described in Exercise 1 of Chapter 2 (i.e., one manag­
er, one secretary, etc.) and printing the paychecks and equipment list for
those employees.

244

Suggestion: Start by implementing just enough code to instantiate one type
of employee object, such as TProgrammer, and test that single object via
calls from the main program. Then implement additional objects one at a
time until you have the entire company represented.

If you have additional time, and if the main program that you wrote in­
stantiated all objects as static objects, change one or two of these objects
to be allocated dynamically so that they must be accessed via pointers.

12 Phonebook
Example

T his PhoneBook example is a simple program that dials touch-tone phone
numbers through the speakers of the Macintosh. The purpose of the exam­

ple is to show you how to deal with some practical considerations. Before writ­
ing any C++ code, you must take into account:

• Source file organization

• Development environment

245

Symantec C++ for the Macintosh: The Basics

Source File Organization
When starting out, put class definitions in one file and function definitions
in another. Put each class or family of classes in its own files, as shown in
Figure 12.1.

II Class def.
class TAutomobile {

Automobile.h private:
public:
ComputeStickerPrice (void);

} :

Automobile.cp

II Function def.
pascal void

TAutomobile: :
ComputeStickerPrice (void)

{

II The code
}

Figure 12.1. Example ol Source File Organization

Naming Conventions
Here are the accepted C++ rules for naming among Macintosh programmers:

246

II Class names begin with "T"

II Data members begin with "f"

II Initialization functions are the class name preceded with the
letter "I"

II Variables begin with a lowercase letter, while functions begin
with an uppercase letter.

II Global variables begin with "g"

Ill Constant variables begin with "k"

Phone Book Example

The following are file naming conventions and definitions .

. cp C++ source files

.cp.o compiled object code from C++

.c C source files

.c.o compiled object code from C

.a assembler code

.a.a assembled code

.p Pascal source files

.p.o compiled object code from Pascal

.h header files

.r text file description of resources (rez)

.R text file description of resources (RMaker)

.rsrc compiled resources (rez, RMaker, ResEdit)

Class Diagrams
The first thing we need to show for the example are the class and subclasses,
their members and functions that we'll be working with. Figure 12.2 shows the
class diagrams for the PhoneBook example.

PhoneBook Proiect
The PhoneBook example is a project that contains a number of files, which are
described in the following paragraphs. The project folder, which is titled Phone­
Book./, contains these files: PhoneBook.n, UString.h, UString.cp, UTelephone.h,
UTelephone.cp, UPhoneBook.h, UPhoneBook.cp, and PhoneBook.cp, which
contains the main function.

UString.h
After setting up the class diagrams, the next step is to create the header files.
Header files (.h files) are used primarily to store forward declarations, includ­
ing external variables, function prototypes, class definitions, and inline func­
tions. Figure 12.3 shows the makeup of UString.h.

247

Symantec C++ for the Macintosh: The Basics

CStr255
fString
CStr255
CStr255 //Overload
operator=
operator[]

TPerson
fFirstName
flastName
fBirthday
fEmployer
SetName
GetName

TEntity
fStreet
fCity
fState
fCountry
fZipCode
f PhoneNumber
SetName
GetName
Dial

Figure 12.2. Closs Diagrams for PhoneBook Example

#ifndef ~UString~
#define ~UString~

class CStr255
{

private:
Str255 fString;

public:

Tielephone
freq1
freq2
fr ones
fTempWave
fT elephonef
-TT elephone
Compute Tones
Press Tones
On Hook
Off Hook
Dial

TCompany
fCompanyName
fExtension
SetName
GetName
Dial(void)

CStrlSS
(String
CStr255
CStr255 //Overload
operator=
operator []

CStr2SS() {fString[O] = 0;}
CStr2SS(const char* str); //Overload
CStr255& operator = (const char* str);
unsigned char& operator[] (short index);

} ;

fiend if

Figure 12.3. UString.h Header File

248

Phone Book Example

In Figure 12.3, we have used the preprocessor commands #ifndef _UString_ and
#define_UString_ to mean, "If UString has not already been defined, then
define it." If by some chance this file should be included again, and it has
already been read in once, then the preprocessor commands will ensure that it
is not read in twice.

We have created a CStr255 class in order to avoid having to deal with arrays,
which require each character in the string to be copied in individually. The only
piece of data in the class that is private is the string itself, which is called £String.
In the public area, there are two constructors, one (the first, which is inlineJ to
create the length of the fString to be zero and one to be called if the string is
set to a specific length. The third method overrides the = operator and the fourth
overrides the[] operator.

UString.cp
Figure 12.4 shows the three non-inline methods for class CStr255 contained in
the file UString.cp.

CStr255: :CStr255(const char* str)
{

for (short i = 0; i <= (str [O] + 1) ; i++)
{

fString [i] = str [i] ;
}

} CStr255& CStr255::operator = (const char* str) ._ {

for (short i = 0; i <= (str [O] + 1) ; i++)
{

fString [i] = str [i] ;
}
return *this;

}
CStr255::operator[] (short index)

~
unsigned char&
{

return fString[index];
}

Figure 12.4. Three member functions for the class C5tr255, including its constructor

249

Symantec C++ for the Macintosh: The Basics

The first method, which is actually the second constructor, takes each of the
characters in the string that is passed in, hangs them in a loop, and copies each
into /String. This is useful when you want to declare and initialize a CStr255
in a statement, such as:

CStr255 theString = "Macintoshn;

The second function overrides the= operator and does essentially the same
thing as the first method. Wherever you have written in your code x = "some
string", for example, the function will copy the string into f String.

The third method, which overrides the bracket operator, is passed in an
index, and must return a character. To do this, we return £String indexed by
the index to implement the bracket operator .

...------------- TTelephone
#ifndef ~UTelephone~
#define ~UTelephone~

#include "UString.h"
#include <sound.h>
#include <math.h>

class TTelephone
{

} ;

public:
TTelephone(void);

-TTelephone(void);
void OnHook(void) {}
void OffHook(void) {}
void Dial(CStr255);

private:
short freql;
short freq2;
FTSynthRec fTones;
Ptr fTempWave;
void ComputeTones(char
void PressTones(void);

/lend if

freq/
freq2
(Tones
(Temp Wave
TTelephone
- TTelephone
Compute Tones
Press Tones
On Hook
OffHook
Dial

theNumber);

Figure 12.S. Defines, Includes, and Public and Private Members of Class TTelephone

250

Phone Book Example

UTelephone.h
UTelephone.h, which is another header file, shows the forward declarations
and public and private members of class TTelephone in Figure 12.5.

At the very top of the file, we include UString.h, Sound.h library from the Tool­
box, and the math.h library !because we will be making computations). It is
not really necessary to understand exactly what is going on here. In fact, that
is one of the joys of object-oriented programming: things inside the black box
I encapsulations) actually work.

In the public area, TTelephone is a constructor that creates a waveform in
memory, and-TTelephone is a destructor that removes it from memory. The
functions OnHook and Of!Hook are not actually used in this example (because
the tones play through the Mac's speakers), but you could modify them to dial
through the serial port connected to a modem. In that case, the modem would
pick up the phone and dial the number, then replace the phone on-hook. The
Dial routine is specific to this class.

In the private area, freq1 and freq2 are two variables that make up one tone
on a touch-tone telephone. These must be calculated for each number. Playing
the tones through the computer speaker requires two records: a sound record
and a temporary waveform record. There are also two methods that no other
class will use: ComputeTones and PressTones .. The first function will com­
pute the tone when two frequencies are passed in, and the second routine plays
the tone. The Dial function actually takes a number and calls both Compute­
Tones and PressTones.

UTelephone.cp
The next step in the project development process is to write all of the methods
for class TTelephone. These are shown in Figures 12.6 through 12.8.

The first method, shown in Figure 12.6, is the constructor TTelephone, which
sets up a wave form that can be played through the speaker. The tone that will
be playing is a sinusoidal tone, so we create a sampled wave form in memory
that is a sinusoid. We then change the rate at which it is played back so that
we can change the pitch of the sinusoid.

In order to create the sinusoid, we create a sound record !see Volume 6 of
Inside Macintosh for details on the sound manager) that the sound synthesizer
needs. We also need the temporary waveform with 256 bytes and a computa­
tion ofpi. Next, we have a/or loop from 0 to 255 that computes theta. We take
the sine of that, multiply it by 127 lwhich is an amplitude), and add that to 128,

251

Symantec C++ for the Macintosh: The Basics

TTelephone::TTelephone()
{

short i;
double pi, theta;

fTones.sndRec = (FTSndRecPtr)NewPtr(sizeof(FTSoundRec));
fTempWave = NewPtr(256);
pi= 4.0 • atan(l.O);
for (i = 0; i <= 255; i++)
{

}

theta = double(i) • 2.0 * pi I 256.0;
fTempWave[i] = 128 + char(127.0 * sin(theta));

fTones.mode = ftMode;
fTones.sndRec-)duration = 0;
fTones.sndRec->soundlWave = (WavePtr)fTempWave;
fTones.sndRec->sound2Wave = (WavePtr)fTempWave;
fTones.sndRec->sound3Wave = OL;
fTones.sndRec->sound4Wave = OL;
fTones.sndRec->soundlRate = 0;
fTones.sndRec->sound2Rate = 0;
fTones.sndRec->sound3Rate = O;
fTones.sndRec->sound4Rate = 0;
fTones.sndRec->soundlPhase = 0;
fTones.sndRec->sound2Phase = O; TTelephone: :-TTelephone()
fTones.sndRec->sound3Phase = 0; {
fTones.sndRec->sound4Phase = O; DisposePtr((Ptr)fTones.sndRec);

} DisposePtr(fTempWave);
}

Figure 12.6. Methods for UTelephone.cp

which is an offset. We then put that in the temporary wave form. If you plot­
ted the numbers, they would go up (positive) and down (negative) to make one
cycle of a sinusoidal waveform.

After computing the waveform, we set up the sound record so that the sound
synthesizer knows what is going on. First, we set the tones in the Mac's four­
tone mode and the duration of the tones (how long they will play in fractions
of a second). Sound waves 1 and 2 are set to be pointers to the temporary wave­
form. Sound waves 3 and 4 are set to nothing, and the rest of the sound rates
and phases are also set to zero.

The destructor deletes the wave form and the sound record from memory.

Figure 12. 7 shows the switch statement for computing the tone from a sin­
gle digit.

The first case is for digits 1, 2, 3, and A (which is at the top of an additional
column of tones put in by the phone company). The frequency for any of those
digits is 697. The frequency for the second row (4, 5, 6, and B) is 770. For the third
row (7, 8, 9, and C), it is 852, and for the fourth row (*, 0, #, and D) it is 941.

252

Phone Book Example

void TTelephone: :ComputeTones(char theNumber)
{

switch (theNumber)

case ('l'):case ('2'):case ('3'):case ('A'):
freql = 697;
break;

case ('4'):case ('S'):case ('6'):case ('B'):
freql = 770;
break;

case ('?'):case ('8'):case ('9'):case ('C'):
freql = 852;
break;

case ('*'):case ('O'):case ('#'):case ('D'):
freql = 941;
break;

default:
freql = O;
break;

switch (theNumber)

case ('l'):case ('4'):case ('?'):case ('*'):
freq2 = 1209;
break;

case ('2'):case ('S'):case ('8'):case ('0'):
freq2 = 1336;
break;

case ('3') :case ('6') :case ('9') :case ('ff'):
freq2 = 1477;
break;

case ('A'):case ('B'):case ('C'):case ('D'):
freq2 = 1633;
break;

default:
freq2 = O;
break;

Figure 12.7. Switch Statement for UTelephone.cp Methods

The cases in the lower switch statement are for the columns, starting with
the first column - 1, 4, 7, and *. The frequency for those digits is 1209. For the
second column (2, 5, 8, and 0) it is 1336, for the third column (3, 6, 9, and #) it
is 1477, and for the fourth (A, B, C, and DJ it is 1633.

The number 2, for example, would have the frequencies 697 and 1336. Now
that we have computed the tones, the next step is to play them. This function
is shown in Figure 12.8.

253

Symantec C++ for the Macintosh: The Basics

void TTelephone::PressTones()
{

if (freql && freq2)
{

fTones.sndRec-)duration = (short) (0.2 * 60. 0);
fTones.sndRec->soundlRate = FixRatio(freql, 87);
fTones.sndRec->sound2Rate = FixRatio(freq2, 87);
StartSound(&fTones, sizeof(fTones), SndCompletionProcPtr(-1));

}

} void TTelephone::Dial(CStr255 theNumber)
{

for (short i =s 1; i <= theNumber[O]; i++)
{

ComputeTones(theNumber[i]);
PressTones();

}
}

figure 12.8. Method for Creating Dial Tones in UTelephone.cp

This function says, "If frequency 1 and frequency 2 do not equal 0, then play,
for two-tenths of a second, at a specific rate (via a Toolbox routine called
FixedRatio) for each tone, each sound." (The speed at which the waveform is
played back determines the frequency.) We call StartSound and pass it the
records. It then plays the tone.

In the Dial routine, we have a for loop where i starts with 1 and loops through
every character of the number, then computes the tones and plays them.

UPhoneBook.h
UPhoneBook.h is a header file that contains the #includes and #defines, as

well as the structures of all three classes used in the example. Figure 12.9 shows
the first part of the header file. Each class is described separately in the fol­
lowing paragraphs.

Again, the preprocessor commands #ifndef_UPhoneBook_ and #define_UPhone­
Book_ ensure that if UPhoneBook has not been defined, it will be defined. And,
if it has already been read in, it will not be read in a second time.

Note that we include both UString.h and UTelephone.h because we will
be using them later on.

Class TEntity
Class TEntity, shown in Figure 12.10, is the parent class from which the other
two classes inherit.

254

Phone Book Example

#ifndef ~UPhoneBook~
#define ~UPhoneBook~

#include "UString.h"
#include "UTelephone.h"

include TEntity class here
include TPerson class here
include TCompany class here

#endif

Figure 12.9. Defines and Includes for UPhoneBook.h

class TEntity
{

protected:
CStr255 fStreet;
CStr255 fCity;
CStr255 fState;
CStr255 fCountry;
CStr255 fZipCode;
CStr255 fPhoneNumber;

public:
void SetName() {)
void GetName() {)
void SetStreet(CStr255 theStreet) {fStreet = theStreet;l
void GetStreet(CStr255 theStreet) {theStreet = fStreet;J
void SetCity(CStr255 theCity) {fCity = theCity;J
void GetCity(CStr255 theCity) {theCity = fCity;J
void SetState(CStr255 theState) {fState = theState;)
void GetState(CStr255 theState) {theState = fState;J
void SetCountry(CStr255 theCountry) {fCountry = theCountry;J
void GetCountry(CStr255 theCountry) (theCountry = fCountry;J
void SetZipCode(CStr255 theZipCode) {fZipCode = theZipCode;}
void GetZipCode(CStr255 theZipCode) {theZipCode = fZipCode;}

TEntity
(Street
(City
(State
(Country
fZipCode
fPhoneNumber
SetName
GetName
Dial

void SetPhoneNumber(CStr255 theNumber) {fPhoneNumber = theNumber;}
void GetPhoneNumber(CStr255 theNumber) {theNumber = fPhoneNumber;J
virtual void Dial(void);

) ;

Figure 12.10. TEntify Class within UPhoneBook.h

255

Symantec C++ for the Macintosh: The Basics

In the protected area we created six fields: {Street, {City, {State, {Country,
fZipCodel, and f PhoneNumber.

The public area has fourteen inline accessors - SetName through Get­
PhoneNumber. In SetName and GetName we do not pass in anything. In each
of the other accessors, we pass in a string and make it equal to the name of the
variable, such as theStreet or theNumber !for phone number). In addition, there
is the prototype of the virtual function Dial.

Class TPerson
Class TPerson inherits everything from TEntity but adds a first name, last

name, birthday and employer. It is shown in Figure 12.11.

Each of the fields in class TPerson has an accessor to set it and to get it !so
that you could print out the whole set of fields if you wished).

TPerson
fFirstName

.--~~~~~~~~~~~~~~~~~~~~~~~~~~p.astName

{lass TPerson : public TEntity {Birthday

} ;

protected:
CStr255 fFirstName;
CStr255 fLastName;
CStr255 fBirthday;
CStr255 fEmployer;

public:
void SetName(CStr255 theFirstName, CStr255 theLastName)

{fFirstName = theFirstName; fLastName = theLastName;}
void GetName(CStr255 theFirstName, CStr255 theLastName)

{theFirstName = fFirstName; theLastName = fLastName;}

{Employer
SetName
GetName

void SetBirthday(CStr255 theBirthday) {fBirthday - theBirthday }
void GetBirthday(CStr255 theBirthday) {theBirthday = fBirthday }
void SetEmployer(CStr255 theEmployer) {fEmployer = theEmployer }
void GetEmployer(CStr255 theEmployer) {theEmployer = fEmployer }

Figure 12.11. TPerson Class within UPhoneBook.h

Class TCompany
Class TCompany also inherits from TEntity. Class TCompany is shown in

Figure 12.12.

In addition to the inherited fields, TCompany adds two strings: fCompa­
nyName and {Extension. It also overrides the Dial function so that it not only
dials the number but also the extension.

256

Phone Book Example

class TCompany : public TEntity
{

protected:
CStr255 fCompanyName:
CStr255 fExtension;

public:

TCompany
fCompanyName
£Extension
SetName
GetName
Dial(void}

void SetName(CStr255 theCompanyName) {fCompanyName = theCompanyName;}
void GetName(CStr255 theCompanyName) {theCompanyName = fCompanyName:}
void SetExtension(CStr255 theExtension) {fExtension = theExtension;}
void GetExtension(CStr255 theExtension) {theExtension = fExtension;}
void Dial(void); II Override

} ;

Figure 12. 12. TCompany Class within UPhoneBook.h

void TEntity: :Dial()
{

telephone.Dial(fPhoneNumber);
}

void TCompany::Dial()
{

telephone.Dial(fPhoneNumber);
telephone.Dial(fExtension);

}

Figure 12. 13. Methods for UPhoneBook.h

UPhoneBook.cp
UPhoneBook.cp shows the written method for dialing a phone number and

the overridden method for dialing a company number and extension.

PhoneBook.cp
PhoneBook.cp contains the main function for the project. Figure 12.14

shows the code for PhoneBook.cp.

Inside main, we declare and create memory on the heap for Barney Rubble
of class TPerson and for AcmeMerchandise of class TCompany. Next, we set

257

Symantec C++ for the Macintosh: The Basics

the name and address for the personal number and the name, address and exten­
sion for the company number. We then dial the personal number and the com­
panynumber and extension, with a pause in between.

main()
(

TPerson *pBarneyRubble = TPerson:
TCompany *pAcmeMerchandise = new TCompany;

pBarneyRubble->SetName(*(CStr255*)"\pBarney", *(CStr255*)"\pRubble");
pBarneyRubble-)SetStreet{*{CStr255*)"\pl5 Rockport Rd");
pBarneyRubble->SetCity(*(CStr255*)"\pBedrock"):
pBarneyRubble->SetState(*(CStr255*)"\pCA"):
pBarneyRubble-)SetZipCode(*{CStr255*)"\p94526");
pBarneyRubble->SetPhoneNumber(*(CStr255*)"\p510-555-1212"):

pAcmeMerchandise->SetName(*(CStr255*)"\pAcme Merchandise Co.");
pAcmeMerchandise->SetStreet(*(CStr255*)"\p128 Warner Brother's Road");
pAcmeMerchandise-)SetCity(*(CStr255*)"\pToon Town.");
pAcmeMerchandise-)SetState(•(CStr255*)"\pCA");
pAcmeMerchandise->SetZipCode(*(CStr255*)"\p94583");
pAcmeMerchandise->SetPhoneNumber(*{CStr255*)"\p415-555-1212");
pAcmeMerchandise->SetExtension(*(CStr255*)"\p99");

pBarneyRubble-)Dial();
Pause() :
pAcmeMerchandise-)Dial();

return OL;

Figure 12.14. Main Function for PhoneBook.n

Pause Routine
The code for the pause routine, which is used in main, is shown in Figure 12.15.

The pause routine pauses the program after dialing the personal number
and waits for you to press the mouse button; it then dials the company num­
ber and extension.

258

Phone Book Example

void Pause()
{

}

while(Button()){SystemTask():}
while(IButton()){SystemTask():}

Figure 12.15. Pause Routine for PhoneBook.7t

Summary
This PhoneBook example emphasized the following features:

• Source file organization

• Naming conventions

• Examples using inheritance, methods, etc.

Exercises

1 J Add a new person or company to the PhoneBook example

2) If you know how to use the Macintosh Toolbox, create snd resources
for your phone book. Use the snds instead of the i/o stream data for each
name.

259

13 Advanced Features
of C++

Beyond the more obvious changes in C++ from C-classes, subclasses, in­
heritance, certain keywords, comments, and so on-there are several

more advanced features. Although this book is a primer, and our objective is to
teach the basics of C++ and Symantec C/C++, we feel that some of the advanced
features are so useful that they need to be included. In this chapter, we take a
look at inline functions, operator overloading, pointers and objects, polymor­
phism, templates, and multiple inheritance. We give some examples of when
to use these features and, just as important, when not to use them.

261

Symantec C++ for the Macintosh: The Basics

lnline Functions in a Class
Inline functions can be placed inside a class definition. For example:

lnline functions are an
optimization that should
be used sparingly, if at
all. Note also that in­
line functions cannot
be virtual.

class TAutomobile

} ;

priv ate:

char *fModel;

long *fYear;

protected:

long *fStickerPrice;

public :

long GetYear (void) {return fYear;};

void InData(void);

v oid OutData(void);

The reserved word inline is not required in the definition. The function's code
is placed immediately after the function's declaration and is enclosed in curly
braces. For inline member functions, the compiler will insert the inline code
in each place that the member function is called. (It does not place it inline in
the object but, rather, where it is called.)

Nonvirtual inline functions provide speed at the expense of code reusability.
Use nonvirtual inline functions only when you are absolutely sure that you
need every microsecond. In addition, you must be sure that no one will ever
want to override the method in a derived class.

Operator Overloading in Classes
Operator overloading is a device that allows you to add new data types to those
that C++ already handles . You can redefine standard operators for use with new
classes. Redefinition consists of supplying a member function to be called when
the operator is used. This is an advanced concept that can be useful for extending
the language.

Figure 13.l shows the code used in overloading operators.

262

Advanced Features of C++

struct CStr255 :CString {

public:

//Define string concatenation operator

CStr255& operator += (const CString& str):

...
} ;

CStr255 &
Cstr255: :operator+= (const CString& str) {

... II code to concatenate strings goes here

return *this;
}

CStr255 myStr="A";

CStr255 yourStr="B";

myStr += yourStr;

cout<<myStr;//Yields "AB"

Figure 13.1 Operator Overloading in Classes

Pointers and Obiects
Whenever a base class is a public base of a derived class, you can:

• Convert a pointer to a derived object to a pointer to a base object.

• Convert a reference to a derived object to a reference to a base object.

• Initialize a base object address to refer to a derived class.

Figures 13.2 and 13.3 demonstrate these techniques.

263

Symantec C++ for the Macintosh: The Basics

class TBase {. .. } ;
class TDerivedl : public TBase {. .. } ;
class TDerived2 : public TDerivedl {...};
TBase b, *pb, &rd;
TDerivedl dl, *pdl, &rdl;
TDerived2 d2, *pd2. &rd2;

pb = &dl; // OK. base ptr set to a derived ptr.
pdl = &d2;
pb = &d2;

Figure 13.2 Setting Base Object Pointers to Derived Class Pointers

In Figure 13.2, we declare the three classes - TBase, TDerived1, and TDerived2.
In each class, we declare a class object, a pointer to the class object, and a ref­
erence to the class object. As you can see from the figure, we can set the
pointer to the base object (pb) to an address of TDerived1. We can also say
that a pointer to TDerived1 contains an address of TDerived2 and a pointer to
the base also contains the address of TDerived2. The same thing is true with
the references in Figure 13.3.

An object of a derived class is an object of its base class; the opposite is
not true. You cannot convert a pointer (or reference) to a base object to a point­
er (or reference) to a derived object unless you cast it. This could be danger­
ous! Figure 13.4 demonstrates this principle.

In Figure 13.4, we have made the same declarations as we made in the
previous two figures. However, in this case, we show that you cannot set the
pointer !or reference) to TDerived1 equal to a pointer !or reference) to the

264

class TBase {. .. };
class TDerivedl : public TBase {...};
class TDerived2 : public TDerivedl {...} ;
TBase b. *pb. &rd;
TDerivedl dl, *pdl. &rdl;
TDerived2 d2, *pd2. &rd2;

pb = &dl; // OK, base ptr set to a derived ptr.
pdl = &d2;
pb = &d2;

Figure 13.3 Setting Base Object References to Derived Class References

Advanced Features of C++

class TBase {...};

class TDerivedl : public

class TDerived2 : public

TBase b, *pb. &rb;

TDerivedl dl, *pdl, &rdl;

TDerived2 d2, *pd2, &rd2;

pdl = pb; //error

TBase {...};

TDerivedl {...};

pdl = (TDerivedl*)pb;//OK, but suspect

rdl = b; //error

Figure 13.4 Attempting to Set Derived Class Pointers or
References to Base Class Pointers or References

base, nor can you set a reference (or pointer) to TDerived2 equal to a reference
(or pointer) to the base. In other words, you cannot go back up the chain.

We also have a pointer to TDerived1 and we cast it to be a pointer to the
base. This will compile, but it is suspect.

Figure 13.5 explains the principle with instance variables.

In Figure 13.5, we have two classes: TBase and TDerived. In the public sec­
tion of TBase we have two functions-foo and goo-and in the public section

class TBase class TDerived : public TBase
{ {

public: public:
short foo(void); float hoo(float);
void goo(short); private:

private: float x;

short i. j; } ;

} ;

----->~ TDerived-------.
TBase

TBase subobject

x

Figure 13.5 Order of Memory Allocation for Inherited Objects

265

Symantec C++ for the Macintosh: The Basics

of TDerived, we have the function hoo. In the private section of TBase are
two short variables, i and;. In the private section of TDerived, we have a float
variable, x. The diagram shows how TDerived makes room for the inherited
variables (each box is 2 bytes), and it also shows that TDerived makes room for
x (which is a long and takes up 4 bytes). TDerived makes room for the inherit­
ed variables first, and then makes room for its own. Therefore, there is no way
that the base class can know anything about the derived class's objects.

Figure 13.6 shows even more graphically the areas that pointers for a base
and two derived classes may access in each of the classes.

TBase

Fields in TBase

TDerivedl

Inherited fields
from TBase

TDerived2

Inherited fields
from TBase

TDerived2 Pointer may access

Figure 13.6 Fields That Pointers of a Base Class and Two Derived Classes May Access

The following figures show what will happen in two given classes when you
use pointers to call functions.

266

Advanced Features of C++

Given the following two classes:

class Tbase
{

private:
short x;

public:
void foo (void);

} ;

class TDerived:public TBase
{

private:
short y;

public:
void foo (void);//override

} ;

Figure 13.7 Declaring a Base Class and a Derived Class

class Tbase
{

private:
short x:

public:
void foo (void):

} :
'-------' class TDerived:public TBase

{

private:
short y:

public:
void foo (void)://override

} :

If you define the pointer:

TBase *p - new TBase:

To call the function foo:

p-)foo();

This statement will call TBase's Foo

Figure 13.8 Defining a Pointer to TBase

In Figure 13.8, if we define p to be a pointer to TBase and set it equal to new
TBase, p->foo will call the foo in TBase. This is not surprising.

267

Symantec C++ for the Macintosh: The Basics

class Tbase

private:
short x:

public:
void foo (void):

} :
'------! class TDerived:public TBase

{

private:
short y:

public:
void foo (void) ://override

} :

If you define a second pointer:

TBase *p - new TDerived: I

To call the function foo:

p-)foo ():

This statement will also call TBase's foo

Figure 13.9 Defining a Second Pointer

In Figure 13.9, if we define p to be a pointer to TBase and set it equal to new
TDerived, p->foo will still call the foo in TBase.

class Tbase
{

private:
short x:

public:
void foo (void) :

} :
~ class TDerived:public TBase

{

private:
short y:

public:
void foo (void) ://override

} :

One way to call TDerived's
Foo might be:

TBase *p - new TDerived: I

To call the function Foo:

p->foo():

This statement will call TDerived's foo

Figure 13.10 Calling TDerived's Foo Function

In Figure 13.10 we have to declare the type of an object's pointer in advance
(compile time). However, suppose we do not know the type of an object point­
er at compile time, or a single pointer addresses a list of objects, many of which

268

Advanced Features of C++

are of derived classes? We just add the keyword virtual to the classes (Figure
13.11), and we have a new way to call foo in TDerived. This is polymorphism
(Figure 13.12).

class TBase
{

private:
short x;

public:
virtual void foo (void);

} ;

class TDerived:public TBase
{

private:
short y;

public:
virtual void foo (void);//override

} ;

Figure 13. 11 Adding "virtual" to the Functions

class TBase
{

virtual void foo (void) ;
} ;

~ class TDerived: public TBase
{

virtual void foo (void);
} ;

Calls TBase's foo

TBase *p = new TBase;
p-)foo ();
delete p;

Tbase *p=new TDerived:
p-)foo ();

/ delete p:
Calls TDerived's foo .._ ________

Figure 13.12 Using Polymorphism

269

Symantec C++ for the Macintosh: The Basics

In Figure 13.12, the type of the object pointed to by pis examined to select
which function to invoke. Another example of calling foo in all three classes,
this time with an array of pointers, is shown in Figure 13.13.

clas s
{

TBase

TBase *p [5] ;

p [O] - new TBase;
p[l] =new TDerivedl;
p [2] - new TDerived2;
p[3] - new TDerivedl;
p[4] - new TBase;

virtual vo id fo o (void) ; for (short i = O; i<S; i++)
} ; {

'--i c lass TD e riv edl: p ub lic TBa s e i-)foo() ;
{ }

...
vi rtual v oid f oo (vo id) ;

} ;

._ c l a ss TDerived 2: public TDe r i vedl
(

virtua l void f o o (vo id);
} ;

Figure 13.13 An Array of Pointers

A container is a list or
array normally used to
contain objects.

In the example in Figure 13.13, pis an array of 5 pointers to
TBase. We also have three different routines, because TDerived.1
overrides the foo in TBase, and TDerived2 also overrides the
foo in TDerived1. In the for loop, we set i to 0, and while i
is less than 5, we increment i each time through. When we
then call i->foo, the program will automatically call the right
one. This is really an iterator function.

Shape Example
The following Shape example, which is based on the List example in Chapter
10, illustrates polymorphism and the iterator function . The purpose of the ex­
ample is simply to draw several shapes (rectangle, round rectangle, circle, tri­
angle, and an X) on the screen with one call (iterator function) .

We start with the main function, Shapes.cp, which follows :

270

Advanced Features of C++

#include "UList.h"

#include "UShapes.h"

/!include "MyLib. h"

/**/

main ()

/**/

{

}

TShapeList theShapes;

InitToolBox();

OpenWindow():

theShapes.Add(new TRectangle(lO, 10, 60, 60)):

theShapes.Add(new TRoundRectangle(70, 70, 120, 120)):

theShapes.Add(new TOval(130, 130, 180, 180)):

theShapes.Add(new TTriangle(190, 190, 240, 240)):

theShapes.Add(new TXRect(250, 250, 300, 300)):

theShapes.DrawAll():

Pause():

return O:

At the very beginning of the code, we declare the two #include files, which con­
tain the functions that the main will call, and MyLib.h, which contains the
InitToolBox (initializing the Toolbox), Open Window (this opens up a window
on the screen titled MyShapes), and Pause (this keeps the window from going
away immediately so that you can view what's in it). These are the header files.
(Remember that in Symantec C++, you can view any header file connected with
your source file by holding down the option key, clicking on the title of the
source file, and chcking on the header file you wish to open.)

271

Symantec C++ for the Macintosh: The Basics

Inside the main, TShapeList is declared as the Shapes, and the calls are
made to initialize the Toolbox and open the window in which to draw the
shapes. Next, we add the various shapes and their size, which also includes
the position where each will appear on the screen (the top left and bottom right
points in pixels). Then we request the function to draw all the shapes.

After the shapes appear on the screen, they will remain there until the
mouse is clicked inside the window area (Pause()). Note that in C++ we must
return a 0 (nil) at the end of the routine; otherwise, we will get an error.

The next file to look at is UList.h, which is the header file for UList.cp,
which in turn is derived from TList in Chapter 10.

272

#ifndef ~UList~

#define ~UList~

/**/

class TNode II Node Definition

/**/

{

private:

friend class TList;

TNode *next;

TNode *prev;

} :

/**/

class TList II List Definition

/**/

{

public:

TList(void) {sl = O; s2 = 0;}

virtual -TList(void);

void Add(TNode *n):

void Remove(TNode *n);

void* Next(TNode *n) {if (n == 0) return(sl);

else return (n->next);}

Advanced Features of C++

void* Prev(TNode *n) {if (n ~ 0) return(s2);

else return (n->prev) ;}

private:

TNode *sl;

TNode *s2;

} ;

//end if

Included in this header file is the notation #ifndef _UList_ which tells the
compiler to define the file if it is not already defined. Inside the file, we have
class TNode, which is a friend of class TList, and the next and previous nodes
ITNode *next and TNode *prev). Note that all attributes are private.

The second part of the file, class TList, has an inline constructor with two
start pointers Isl and s2J. One starts at the head and goes all the way through,
and the other starts at the end and goes to the beginning. Those are both set to
0 because there is nothing in the list !so they are pointing to nothing). There is
also a destructor, virtual -TList(void); , which clears out everything in memory.

TList also includes Add and Remove prototypes and an inline routine called
Next. In this routine, if we pass a 0 to Next, it will return s1, which is a
pointer to the first node. If we pass it any other number, it will return a point­
er to the next node. The inline routine Prev does the same thing in reverse. If
we pass it a 0, it will return s2, which is a pointer to the last node. TList also
includes the private variables TNode *s1 and TNode *s2, which are both point­
ers to TNode.

Note the source code for the add, remove, and destructor functions found
in UList.cp, which follows:

#include "UList.h"

/**/

void TList: :Add(TNode *n) II Add node to list

/**/

if (Isl II !s2)

{

n->next = O;

273

Symantec C++ for the Macintosh: The Basics

274

}

sl = n;

n->prev = O:

s2 - n;

}

else

{

}

n->next = sl:

sl->prev = n:

n-)prev = O:

sl = n;

/**/

void TList::Remove(TNode *n) II Remove node from
II list and delete memory

/**/

{

TNode *i;

i = sl:

while (i)

{

if (i = n)

{

if (I i - >next)

{

}

i-)prev-)next = O:

s2 = i-)prev:

else if (li-)prev)

{

sl - i-)next;

i->next->prev = O;

}

Advanced Features of C++

}

else·

}

i-)prev->next

i-)next-)prev

i = i->next;

delete [] n;

i->next;

i-)prev:

/**/

TList: :-TList () II TList Destructor

/**/

TNode *pl, *p2;

pl = sl;

if (!sl)

{

return;

}

while (pl)

{

p2 = pl->next:

delete pl;

pl = p2;

Next, we look at the header file UShapes.h, which is also derived from TList.

#ifndef ~UShapes~

#define ~UShapes~

#include "UList.h"

275

Symantec C++ for the Macintosh: The Basics

276

/**/

class TShapeList public TList

/**/

public:

void DrawAll(void)

} ;

/**/

class TShape public TNode

/**/

} ;

protected:

Rect fRect;

public:

TShape(short top, short left,

right)

virtual void Draw(void) = 0;

short bottom, short

/**/

class TRectangle public TShape

/**/

public:

TRectangle(short top, short left, short bottom,

short right) (top, left, bottom, right){};

virtual void Draw(void) ;

} ;

/**/

class TRoundRectangle public TShape

/**/

public:

Advanced Features of C++

TRoundRectangle(short top, short left, short bottom,

short right) (top. left, bottom, right){};

virtual void Draw(void);

} ;

/**/

class TOval : public TShape

/**/

{

public:

TOval(short top, short left. short bottom, short

right) (top. left. bottom, right){};

virtual void Draw(void);

} ;

/**/

class TTriangle : public TShape

/**/

public:

TTriangle(short top, short left, short bottom, short

right) (top, left, bottom, right){};

virtual void Draw(void);

} ;

/**/

class TXRect : public TShape

/**/

{

public:

TXRect(short top, short left, short bottom, short

right) (top, left, bottom, right){};

virtual void Draw(void);

} ;

f/endif

277

Symantec C++ for the Macintosh: The Basics

In this header file, we include the usual #ifndef statement, and we also include
"Ulist.h". We then create a TShapesList, which is inherited from TList in
Chapter 10. We added one new method which we call DrawAll.

We now create TShape, which is an abstract class (we will never instanti­
ate it directly). This is inherited from TNode, but we add a new instance vari­
able: fRect. It also has a constructor, which sets the top left and bottom right
of a rectangle, and a pure virtual function void Draw(void) = 0. This requires
each of the shapes inherited from TShape to draw its own individual shape; that
is, this is not a generic draw function.

Next, we create a rectangle inherited from TShape, and we create a con­
structor with the top, left, bottom, and right into which we pass the top, left,
bottom, and right measurements. We also declare a virtual Draw override. We
then do exactly the same thing for a round rectangle, an oval, a triangle and
anX class.

278

The next piece of code that we need to deal with isUShapes.cp, which follows

#include "UShapes.h"

/**/

void TShapeList::DrawAll()

/**/

{

} ;

TShape *p;

p = Next(O);

while (p)

p-)Draw();

p = Next(p);

/**/

Advanced Features of C++

TShape::TShape(short top, short left, short bottom.

short right)

/**/

{

}

fRect.top = top;

fRect.left = left;

fRect.bottom =bottom;

fRect.right = right;

/**/

void TRectangle::Draw()

/**/

FrameRect(&fRect)

/**/

void TRoundRectangle: :Draw()

/**/

FrameRoundRect(&fRect. (fRect.right - fRect.left) I 4,

(fRect.bottom - fRect.top) I 4)

,••.•••..•..•..............•••..•........•••••.•.. ,
void TOval::Draw()

/**/

{

FrameOval(&fRect)

/**/

void TTriangle::Draw()

/**/

{

279

Symantec C++ for the Macintosh: The Basics

MoveTo(fRect.left + ((fRect.right - fRect.left) I 2),

fRect.top);

LineTo(fRect.left, fRect.bottom);

LineTo(fRect.right, fRect.bottom);

LineTo(fRect.left + ((fRect.right - fRect.left) I 2),

fRect.top);

/**/

void TXRect::Draw()

/**/

MoveTo(fRect.left, fRect.top);

LineTo(fRect.right, fRect.bottom);

MoveTo(fRect.right, fRect.top);

LineTo(fRect.left, fRect.bottom);

The first function (Draw All()) in UShapes.cp allows us to draw all of the shapes.
We have a ShapesList where p is a pointer to TShape. We get the first pointer
in the list by saying Next and passing it 0. Then, while pis not equal to 0, draw.
And then p is equal to the next p. This continues through the list for as many
shapes as are in it; that is, when p is equal to 0.

The constructor for TShape sets fRect. top, and so on, to the values that are
passed in. After that, we draw the rectangle with FrameRect(etJfRect);, the
round rectangle with the expression under void TRoundRectangle::Draw(), the
circle with the function under void TOval::Draw(), the triangle with the
function under void TTriangle::Draw() and the X with the function under void
TXRect::Draw(). Notice the computations necessary to draw a round rectan­
gle and a triangle. Note that all the draw routines are done through the Toolbox.

Adding another shape to the list is relatively simple. First we go into the
main, where we need to change the source code. If you want to add another
shape in this example, you would declare it (with its values) after XRect. Also,
in Shapes.cp, you include a function to draw the shape that you are adding. The
rest of the code remains valid.

280

Advanced Features of C++

Templates
Templates provide a way to parameterize types within a function or a class. To
declare a template, you must place the template keyword and its associated pa­
rameter type list at the beginning of a function or class declaration. For example:

template <class Type> class MyClass

{

The types that will be parameterized are within the arrows.

short s = 10:
long 1 = -10:
float f = 10:
double d = -10:

s = abs(s):
1 =abs (1):
f =abs (f):
d = abs (d) :

short abs (short x)
{

return x<O?-x:x:
}

'- long abs (long x)
(

return x<OL?-x:x:
}

'---i float abs (float x)
{

return x<O.OfO?-x:x:
}

'- double abs (double
(

x)

return x<O.OeO?-x:x:
}

Figure 13.14 Example of Absolute Value Routines

In the example in Figure 13.14, we have created an absolute value routine for
four variables using the ternary operator(?:). First we pass in a short, then over­
load it by passing in a long, then a float, and then a double. In each case we
compare x to a 0 of the given type. (Note that we do not have to use the word
overload. It is automatic.)

281

Symantec C++ for the Macintosh: The Basics

Template for a Routine
The problem with the routines in Figure 13.14 is that if we want to add any­
thing else-say an extended double or an int-we will have to write addition­
al routines. The way to solve that problem is to collapse all of those routines
into a template, as shown in Figure 13.15.

short s = 10;
long 1 = -10;
float f = 10;
double d = -10;

s = abs(s);
1 = abs (1);
f = abs (f):
d = abs (d) :

template <class theType>

theType abs(theType x)
{

return x <theType (0) ? -x :x;
}

Figure 13.15 Collapsing the Code into a Template

The code for the template in Figure 13.15 could all be on one line. Instead of
naming each of the variables after we declare the template, we simply say
theType abs(theType x). We then cast 0 into theType. Now, when we call the
absolute value routine, it will automatically call the correct one. It will look
at the arguments, and when it finds the types that it needs, it will create an
instance of this function in memory for the particular type. In the above ex­
ample, it would create four instances of the routine.

Template for a Class
C++ also supports templates for classes. The keyword class indicates that the
parameter may be a built-in or user-defined function. You can have more than
one type in a template type list, but each type must be preceded by the word
class, and the types are separated by commas. Figure 13.16 shows a template
for the class Array.

The template class in Figure 13.16 could be very useful. In this example we
have a class called Array. In the public section, we have a constructor into which
we pass short theSize. We also set a protected variable size equal to the theSize
that we are passing into the array, and we have array as some pointer to theType.
We create an array of theType and whatever size we have on the heap. If theType

282

Advanced Features of C++

template <class theType>class Array
{

public :

Array (short theSize)

{size=theSize;array=new theType [size]:}
~Array(){delete []array;}

theType & operator[] (short index)
{

}

if ((index<O) I I (index> size))
else return array [index] ;

protected:

error;

short size;

theType *array;
} ;

Array<short>s(lO);

Array<double)d(l32);

s [9] = 35535;

d[2] = 3.14;

Figure 13.16 Template of the Class Array

was a short, we would set the size by calling the constructor with array(10).
Then we would create an array of new shorts of 10 in size The destructor deletes
all of the information in the array.

We then override the operator bracket([]). The[] operator has one variable,
an index, passed in. This will return the array that is indexed here.

To use this function, we declare Array (which is a class
now) of shorts (s) that sets the size to be 10 and creates a
pointer to an array of 10 shorts on the heap. We also create
an array of 132 doubles. We set s[9] equal to a number (35535
here) and d[2] equal to a number (3 .14). Next we say, "If the
index is less than 0 or greater than size (10 in this case), then
provide an error message of some sort. Otherwise, return
the array." Since our index numbers are 2 and 9, the func­
tion would return the array.

What this function provides is a method of bounds
checking that does not normally exist in C++. (Remember
that you may declare an array of a number such as 10, but
you can index it by any number because the compiler has
no way of checking the bounds of the array.)

1he parameterized type
must appear at least
once in the template
function or class. Tem­
plate functions can be
overloaded, provided

. the arguments of each
instance are distin­
guishable by type or
number.

283

Symantec C++ for the Macintosh: The Basics

Multiple Inheritance
You may create classes in C++ that are derived from two or more base classes at
the same time. This is known as multiple inheritance. The resulting class that
is derived by multiple inheritance combines the properties of two or more an­
cestors. Figure 13.17 shows the class diagrams involved in multiple inheritance.

TAutomobile
fModel
fYear
fSt:ickerPrice
InData
OutData

TCargoSpace
fCapacit:y
fLongest:Dim
fMaxWeight:
StoreLoad
Car Inventory

TT ruck
fNumOfAxels
fTrainedDriver
SetRoute
AvoidPolice

Figure 13.17 Class Diagrams in Multiple Inheritance

The following statement is used to define the class:

class TDerived Class : TBaseClassl, TBaseClass2, _

Each base class m.ay be given the identifier public or private (default).

284

Advanced Features of C++

Ambiguities of Data Members in Multiple Inheritance
A major problem with multiple inheritance is that data members or member
functions in one base class might have the same name as a data member or
function in another base class. If basel and base2 both have a data member
with the same name, then any attempt in the derived class to access this data
member will result in a compiler error. Figure 13-18 illustrates the problem,
and Figure 13.19 shows how to resolve it.

The Problem:
class derived :basel, base2
{

class basel

public:
void check()
{

if (myData==myData)
{

cout(("Same!\n";
{ }

public: }
bas el () {myData=6;} }

protected:

} ;

short myData; _I

- class base2

public:
base2 () {myData=7;}

protected:
short myData;

} ;

include <stream.h>

main ()
{

deriv ed sample;

sample. check() ;

Figure 13. 18 Example of a Problem with Ambiguities in Data Members in Multiple Inheritance

285

Symantec C++ for the Macintosh: The Basics

The Fix:
class derived :basel, base2
{

}

public:
void check()
{

if (basel::length~base2::length)
{

}

}

cout<< 11 Same!\n";

Figure 13.19 The Solution to the Ambiguity of Data Members Problem in Multiple Inheritance

Ambiguities of Member Functions
in Multiple Inheritance
If base1 and base2 both have a member function with the same name, then any
attempt in the derived class to call this member function will result in a com­
pile error. Figure 13.20 depicts the problem ambiguities of member functions,
and Figure 13.21 shows the solution.

286

Advanced Features of C+ +

The Problem:

class basel
{

public:

} ;

void test() {cout << "Basel \n";}

class base2
{

public:

} ;

void test() {cout << "Base2\n";}

class derived :basel, base2 1---'

{

public:

} :

void testl () {test() : }
void test2 () {test() : }

include <stream.h>

main()
{

derived sample;
sample. testl () ;
sample.test2();

Figure 13.20. An Example of a Problem with Ambiguities
in Member Functions in Multiple Inheritance

The Fix:

class derived :basel, base2
{

public:

} ;

void testl () {bas el: : test () ; }
void test2 () {base2: : test () ; }

Figure 13.21. Solution to the Problem of Ambiguities
in Member Functions in Multiple Inheritance

287

Symantec C++ for the Macintosh: The Basics

Summary
The main items covered in this chapter on advanced C++ features were :

II Inline functions

1111 Overloading operators

II Pointers and objects

Ill Polymorphism

111 Templates

II Multiple inheritance

Exercises

1) Modify the shapes example to support a new shape class.

2) Rewrite the shapes example without using (OOP). You will need to use
switch statements and structures to implement the code. Compare the tra­
ditional version to the OOP version. How do they differ?

288

14 ToolBox, Memory
and Symantec C++

Symantec C++ has an easy way to call the toolbox and also contains some
nuances for handling memory.

289

Symantec C++ for the Macintosh: The Basics

Using the ToolBox from C++
THINK C++ provides data structures and glue code for accessing the Macintosh
ToolBox, as shown in Figure 14.1.

PROCEDURE FrameRoundRect
(r: Rect; ovalWidth, ovalHeight:INTEGER);

Pascal void FrameRoundRect(const CRect& r,
short ovalWidth, short ovalHeight);

FUNCTION StringWidth(s: Str255) :INTEGER;
pascal short StringWidth(const CStr255& s);

Figure 14.1. Data Structures and Glue Code for Accessing the Too/Box

In Figure 14.1, it appears that the procedure is calling the ToolBox directly. It
declares a Pascal function, so it looks like a Pascal routine. This is an Apple
extension. THINK C/C++ will not use the Pascal declaration.

Pointers and Dynamic Memory
Figure 14.2 shows you how to request a chunk of memory. That memory is non­
relocatable. The call to NewPtr is almost the same as a call to "new"; it sets
memory on the heap but, it does not execute the constructor.

Master Pointers
Master pointers are pointers to dynamic memory that are created and main­
tained by the Macintosh ToolBox Memory Manager. These master pointers
enable us to use relocatable memory via handles. Figure 14.3 shows how han­
dles work. ,

A handle is a pointer to a Mac master pointer. It is also known as double
indirection. You use handles to point to relocatable areas in memory, as shown
in Figure 14.4.

290

Symantec Extensions to C++

Memory

Value

Pointer

long *p;

p = NewPtr(400);

p[49] = 10;

DisposPtr(p);

The location pointed to
by "p" had better not
move!

Figure 14.2. Pointers and Dynamic Memory

Memory

Master Pointer

Pointer

Value

long **h, *p;

h NewHandle(400);
p = *h;

p[49] = 10;
(*h) [49] = 10; //Same

DisposHandle(p);

The data block pointed
to by "h" might move!

Figure 14.3. Example of a Handle in Memory

291

Symantec C++ for the Macintosh: The Basics

The Heap

Pointer

Non-relocatable
block

Figure 14.4. Relocatable Memory

The Heap

Relocatable
block

Handle

Master pointer
block

Figure 14.5 points out what is a handle and, more important, what is not
a handle.

Handle handle;
Ptr pointer ;

This is not
a handle

handle= NewHandle(sizeof(long));

pointer = *handle;

*pointer= 12;

DisposHandle(handle);

Figure 14.5. Code Depicting a Handle

long value, *pointer,
**handle;
pointer = &value;
handle= &pointer;

** handle= 12; //same
value= 12;

A handle must point to a master pointer that has been created and is managed
by the Mac ToolBox ..

292

Symantec Extensions to C+ +

Dereferencing a Handle
Figure 14.6 depicts the dereferencing of a handle.

h

p

Master
Pointer

Figure 14.6. Dereferencing a Handle

Memory

In Figure 14.6, pis a copy of the master pointer. If the data moves in mem­
ory, p points to garbage. When this happens, p is called a dangling pointer.
You can avoid a dangling pointer by using hLock and hUnlock. Look at the
following code:

Handle h;

ptr p;

hLock(h);

p - *h;

... use the dereferenced handle here ...

hUnlock(h);

293

Symantec C++ for the Macintosh: The Basics

The Keyword .11inherited"
The keyword inherited can be used unambiguously with descendants of
Pascal Object to refer to superclass methods. You might write the code this way:

class TMyClass : public PascalObject

public:

virtual pascal void Free(_) //OVERRIDE

} ;

pascal TMyClass: : Free(. ..)

inherited: : Free(. ..) :

II _means the same as PascalObject::Free(_);

This is an Apple extension, but it will probably be in THINK C/C++ as well.

This example contains the class TMyClass (which is inherited from
PascalObject). We have a virtual function, Free, which we have overridden.
However, we want to call the original Free. Both functions have the same name,
and we cannot call the original with Free(...). That is the same as calling this­
> Free, which in this case would put us in an infinite loop because the function
would continue to call itself; there is no way out of it.

By placing the keyword inherited in front of the two colons, the program
will automatically call the original Free. This feature comes from Pascal, which
is evident from the line pascal TMyClass::Free().

294

Symantec Extensions to C++

Summary
In this chapter, we've covered THINK Extensions to C++:

• Calling the ToolBox from C++.

• Using handles and master pointers with C++.

• The perils of relocatable memory.

• The keyword inherited.

295

ls Using
Symantec C++

I n Chapter 3, you created a simple project and built it into an application. The
process probably went smoothly because the THINK Project Manager is easy

to work with and understand. However, most projects that you develop will not
be that simple and will require from you a much greater knowledge of the Syman­
tec development environment than was necessary for the project in Chapter 3 .

The Users Manual is well written and complete-it covers every menu,
dialog, warning, and checkbox that you will see on your screen. Furthermore,
the on-screen help and explanations give you most of the information you'll
need as you use the varied and numerous features of the program. Our purpose
in this chapter is to introduce you to those features, show you what the menus
and dialogs look like, and add some information that is not available in the
manual or on the screen. We leave the detailed descriptions up to Symantec
C++ itself.

297

Symantec C++ for the Macintosh: The Basics

THINK Proiect Manager
The THINK Project Manager is the heart and soul of Symantec C++. It is the
application that does everything, including accessing the debugger, libraries,
SourceServer, and translators (compilers).

When you open the THINK Project Manager, the first thing it asks you to
do is open a project, either new or existing. Figure 15.l shows the Project Win­
dow, which is the mainstay of the THINK Project Manager.

M Turn.n
Name

'V"Segment 2

ANSI

ANSI++

ANSl-A4

ANSI-small

complex

CPluslib

CPlusL ib-A4

IOStreams

Mac #includes .c

Mac #includes .cpp

pt"ofile

Code
4
0
0

lllllt 0
0 ·:·:·:

0

111

0
0
0
0
0 ~
0 \Ii

Figure 15. 1. THINK Pro;ect Manager Pro;ect Window

The Project window lists every file and library that you have included in your
project, divides the project into 32-Kbyte segments (discussed in Chapter 3),
and lists the number of bytes of complied code that each file contains. You can
access any of the files listed in the Project Window by double-clicking on the
file directly in the window.

Source Menu
The Source menu, which is divided into four main sections, allows you to do
and view a number of things at various times during the creation of a project.
The Source menu is closely related to the Project menu. Figure 15.2 displays
the Source menu.

298

Source Windows

Rdd Files ...
Remoue
Get Info

Check SyntaH
Preprocess
Disassemble

Precompile ...
Compile
Make ...

Browser

Figure 15.2 • Source Menu

~y

~

~\

~J

Using Symantec C++

Adding, Removing, and Getting Information on Files
When you need to add files and libraries to your project, you do it through the
Source menu. Selecting the Add Files option will bring up a dialog box (shown
in Fig. 3.6 in Chapter 3) that asks you which files you wish to add. You can
move around the various folders on your hard disk and add whatever you want;
you can add selected files or all the files in a folder with the Add All button, or
you can remove files with the Remove button.

Also included in the Source menu is the option Remove. This can be a dan­
gerous option: if you happen to have a file selected in the Project Window and
you accidentally click on Remove, THINK Project Manager will automatically
remove the selected file. The problem is that you may not be aware of it because
you may have another window open in front of the Project Window.

299

Symantec C++ for the Macintosh: The Basics

The Get Info option brings up a dialog box that gives you information on
the components of your project; that is, it tells you the size of your files, seg­
ments, and entire project. The Users Manual gives a detailed description of
what each of the elements in the dialog box means.

Debug
You'll find that the Debug option is grayed out unless you are running your
program with the debugger on and select a file to edit through the debugger's
Source menu. Once the window with the file to edit comes up, the THINK
Project Manager menu bar reappears. At this point, you can choose Debug from
the Source menu. This will take you back to the Source and Data windows of
the debugger.

SourceServer
Source Server acts as a sort of librarian. If you have a large number of people
working on the same project, you can fix the code so that people have to check
routines in and out. The routines cannot be checked back in until they have
been compiled and run with the rest of the program. Furthermore, two people
cannot check out the same routine to work on at the same time.

Checking the Syntax, Preprocessing,
and Disassembling
Check Syntax does only that; it doesn't compile. It does, however, tell you if
your program will not compile by giving you error messages at the bottom of
the screen.

Click on Preprocess if you think you might have any bugs in your macros,
#include files, or #ifdef statements. Preprocess creates a new file that expands
the macros, and so on, and allows you to see the contents of all these files.

Disassemble allows you to look at your code in assembly language, not a
pretty sight. However, it can help you on occasion to debug your code and find
out how efficient it is.

300

Using Symantec C++

Precompiling, Compiling, and Making a Proiect
Precompile pertains only to header files, which are the #include files. Pre­
compiling these files allows them to load faster during the compiling process.

When you select Compile, you compile or recompile only the file that you
have open or selected. (When you choose Run from the Project menu and click
the button to bring everything up to date, Symantec C++ recompiles any file
that has been changed since it was last compiled before it runs it.)

Make is a facility that changes the out-of-date flag. You can force certain
files that you want to recompile to be out of date by checking them in the dia­
log box that appears when you click on Make. The dialog box displays all of
the files and libraries in your project. You can check on those items that you
want to recompile or reload and THINK Project Manager will recompile them
when you bring your project up to date, compile it, or run it.

Browser
Browser brings up your class diagram. If you have several classes-as in the
Shape example in Chapter 13, for instance-you will see by the diagram that
each of the subclasses was derived directly from TList or TShape. This browser
can be extremely helpful, not only in keeping track of classes and subclasses,
but in planning out your project.

301

Symantec C++ for the Macintosh: The Basics

Proiect Menu

The Project menu is the most used and probably most important of the menus
in the THINK Project Manager. It is shown in Figure 15.3.

Source

Close Project
Close & Compact

Set Project Type ...
Remoue Objects

Bring Up To Date
Check Link
Build Library ...
Build Application ...

Use Debugger
Run

Figure 15.3. Project Menu

Closing the Proiect
When you click on Close Project, Symantec C++ will close the project that you
currently have open and bring up a dialog box for you to open up another pro­
ject. You can also choose Close&. Compact, which stores the project in a com­
pacted mode to save disk space. However, it takes more time to reopen that
project from its compacted state, so if you are working on the project off and
on, you will probably not want to compact it.

If you have other projects that you've opened up recently, the menu attached
to Switch To Project will give you a list of those, and you can select one. This
process of switching projects is very fast and saves you the time and trouble of
going through the Open option under the File menu.

302

Using Symantec C++

Setting the Proiect Type
Set Project Type allows you to choose among four project types listed in a dia­
log box, as shown in Figure 15.4.

@ flpplication

0 Desk flccessory

0 Deuice Driuer

0 Code Resource

File Type I ff PPL I

Creator lfBllllll

Partition (K) 13_8_4 __ ~

SIZE Flags ~I 0000 I
0 Far CODE

D Far DflTfl

0 Separate STRS

(Cancel) OK

Figure 15.4. Dialog Box for Set Proiect Type

As you can see in Figure 15.4, Symantec allows you to create applications, desk
accessories, device drivers, and code resources. If you are creating an applica­
tion, you will also create code resources. When you develop a desk accessory,
you create a driver resource (DRVR) instead of a code resource (CODE). You
would select Device Driver if you wanted to write a program for a laser printer,
for example. Code resources are things like CDEVs, CDEFs, MDEFs, WDEFs,
and so on. The default selection is Application, which brings up APPL.

Writing desk accessories (which are also drivers) and device drivers and
building code resources is a complex process that is not well explained in the
Users Manual. The Symantec C++ Users Manual gives you the volume and
chapter references for each type.

If you choose Application (certainly the most common project type), the
letters APPL will appear in the box next to File Type. You can set the Creator
to what you want your application's signature to be. If you leave the box empty,
your application icon will be the standard diamond shape with a hand over it.

303

Symantec C++ for the Macintosh: The Basics

The Partition size in Kbytes is 384 by default. The SIZE Flags box has to do
with whether or not your application is 32-bit compatible, multifinder aware,
and so forth. You can see the things available on the pop-up menu by clicking
on the little box with the checkmarks in front of the SIZE Flag box. This is well
explained in the Users Manual, as are Far CODE, Far DATA, and Separate STRS.

If the project that you have open has been compiled, it will show the num­
ber of bytes that each file or library takes up on your hard disk. To save space,
you can select Remove Objects and Symantec C++ will bring up a dialog box
telling you that removing the objects necessitates recompiling or reloading
when you want to rerun the program. If you click the Continue button, it
removes the objects in each file and turns the number of bytes to 0.

Bringing the Proiect Up to Date
Any time you make an editing change to one of your files, Symantec C++ auto­
matically marks it as having been changed. You can essentially save your changes
by selecting Bring Up To Date. If you want to run the application after you've
made changes, a dialog box will ask you if you want to bring everything up to
date before it runs. The option Bring Up To Date does not run the program, but
it does save and make permanent all of your changes.

Check Link simply goes through the program and makes sure that all aspects
of the program link up. If you select this option, you will be asked once again
if you wish to bring the project up to date. If you say no, THINK Project Man­
ager will check the links in the old version of your program.

Build Library permits you to build your own library file and include it in
your project. It is best to add the library to your project as a project file (that is,
a .7t file) rather than as a .lib file. If you add the library as a project file instead
of building a library, Symantec C++ will include the code only for the items
that you use in your program; it ignores the other files, libraries, and useless
routines in the project file if your program does not need them. (This is another
example of code optimization in Symantec C++.)

When you select Build Application, THINK Project Manager will bring the
project up to date, link it, and also copy in the resource file if you have one.
After you name the application and save it, it is then copied to your hard disk
as a stand-alone application.

304

Using Symantec C++

Using the Debugger and Running the Program
The debugger is a subordinate application in Symantec C++. You cannot launch
it from the Finder; you have to have a project open to run it. If you check Use
Debugger in the Project menu, the debugger will come up each time you run a
program. (You can also launch the debugger by checking the box Use Debug­
ger in the Debugging option inside the Edit menu of the THINK Project Man­
ager.) See the more detailed discussion of the debugger in the section on the
THINK Project Manager options menu later in this chapter.

Search Menu
While the Source and Project menus pertain to the THINK Project Manager,
the Search and Edit menus deal strictly with the Editor. The Search menu acts
much like the Find option in a good word-processing program, allowing you to

Project Source

Figure 15.5. Search Menu

305

Symantec C++ for the Macintosh: The Basics

search through the files of your project for strings and symbols and replace items
as well. The Grep option allows you to find strings that match a pattern. Fig­
ure 15.5 displays the Search menu.

The first section of the Search menu contains most of the items that you
would normally find in the Find and Replace dialog box of a word processing
program. Symantec C++, however, allows you to find and replace directly from
the menu or through keystrokes without bringing up a dialog box.

Find in Next File will find whatever string you are looking for in any of
the files associated with your project. To use the command for Find in THINK
Reference, you must have installed THINK Reference in the same folder as
Symantec C++.

Go To and Marking
The command Go To brings up a dialog box with a text edit box in which you
enter the number of the line that you want to go to. The problem with this is
that the lines are not automatically numbered and shown, so any number you
enter in the box may be a stab in the dark.

You can set a mark in your code to help you get to a certain point in your
program quickly. When you select Mark from the menu, a dialog box asks you
to name the mark and press the Okay button. Later on, when you want to get
to a marker (jump to it), you do so by holding down the command key and click­
ing on the menu bar. A menu pops up with a list of all the markers you've made
in the program. Then you just click on the marker you want and it takes you
to that part of the code.

When you click on the Remove Marker option in the menu, a dialog box
containing a list of all your markers appears. As soon as you select one or more
markers in the group, the Remove button becomes active and allows you to
remove all of the selected markers.

Go To Next Error and Go To Previous Error are active only when you are
attempting to compile or run your code and the Error Window comes up. Using
those two options allows you to move around the errors in your code more quickly.

306

Using Symantec C++

Edit Menu
The Edit menu contains the normal Macintosh editing tools: Undo, Cut, Copy,
Paste, Clear, and Select All, as seen in Figure 15.6.

Select All

Options

Set Tabs & Font ...
Shift Left ~[

Shift Right ~]

Balance ~B

Figure 15.6 Edit Menu

Specific Edit Items

The Edit menu also contains some items not normally found in the edit menus
of most applications for the Mac. These items, aside from the options, are dis­
cussed in the following paragraphs.

Tabs and Fonts
If you select Set Tabs&. Font from the menu, the following dialog box (shown
in Fig. 15.7) will appear.

307

Symantec C+ + for the Macintosh: The Basics

Tabs:!ill

Font: I Monaco ... I Size: I 9 ... I
The quick brown fox jumps over the lazy dog.

[Set Default) Cancel) OK

Figure 15.7. Tabs and Fonts Dialog Box

B

Since you can only have one font and size for the whole file, this dialog box
allows you to choose the one you want. You set tab stops only if you want to
use the Shift Left and Shift Right options. The default option in the dialog sets
the tabs to 9, the font to Monaco, and the size to 9. The text box shows you
what your font and size will look like on the screen.

Shih Leh and Shih Right
If you select a block (or line) of code and either choose Shift Left or hold down
the Command key and the open bracket, it will shift the block to the left in
tabs of the number of spaces you have chosen. If you choose Shift Right or hold
down the Command key and close bracket, it will shift the block to the right.

Balances
The Balance command helps you balance parentheses, brackets, and braces. If
you set the cursor at the first open curly brace, for example, Balance will extend
the selection to the corresponding closing curly brace. If you set the cursor to
another open curly brace further along in the program, it will find that curly
brace's corresponding closing brace. Balance works in both directions to enclose
the smallest block of text enclosed in parentheses, brackets, or braces.

308

Using Symantec C+ +

Options Menu
The Options dialog is also in the Edit menu. It contains choices for the THINK
Project Manager; THINK C and Symantec C++, which are both translators;
THINK Rez, which is the resource compiler; and .o Converter, which converts
.o (Macintosh Programmers Workshop) files to Symantec C++.

Select Rll

Figure 15.8. Options Menu

TH INK Project Manager ...
. o Conuerter ...
Symantec C++ •••

THINK C. ..

THINK Proiect Manager Options
When you choose the THINK Project Manager option, a dialog box corresponding
to that in Figure 15.9 appears. The first dialog box shows items under the Pref­
erences option. Other menus in the THINK Project Manager option are Editor,
Debugging, Extensions, and Project Window.

Preferences
Most of the options in this menu are self-explanatory. However, if you need to
get more information, click the mouse on any of the buttons or boxes; a com­
plete explanation of the function will appear in the text box (above the Factory
Settings, Cancel, and OK buttons).

309

Symantec C++ for the Macintosh: The Basics

!;] I Preferences

~ Confirm project updates

D Always compact projects

D Generate link map

® New Projects

~ Optimize monomorphic methods

D Always check file dates

1··1·h1~··;~··th·~·rHiNi<··p·;~j-~~-t-·i1~-~~~~·;·~~-ti~~~-·d";~-i~-~-_-·;:i·i~i;-~~--~-~~---b~·t·;~~--t~··(;·~ci··~-~t··;;;·~~-~--~b~~-t-·th~t--~~·t·;~·~·_-····1
i Use the pop-up menu to go to a specific page, or use the arrow button to move to the next or previous i
l pages. l
t. .. l

Cancel OK

Figure 15.9. Preferences Menu within the THINK Project Manager Option

~I Editor

~
, ... Searching .. ,

! D Whole words only !

l[~;~2~~J;._·~-~·~-·- -__ __I

~ Confirm saues

D Reopen files

® New Projects

~ Projector-Aware

D Use eHternal editor

B

r·:rt;i~··;~··th·~··1·;;·iNK00P·;~·j·~~-t .. M~-~~-~~·;··~~·;;~-~~-·d·;~-i~-~-... ci"i~·k··~~-~-~~-··;;~·;;~~-t~·fl~d·~-~t··;;;·~~-~--~b~~·t·th~t··~~;;~·~·-·····1
j Use the pop-up menu to go to a specific page, or use the arrow button to move to the next or previous j
j pages. j
L!

Cancel OK

Figure 1 S. 1 O. Editor Menu within the THINK Pro;ect Manager Option

310

Using Symantec C++

Note that even if the Confirm project updates box is not checked, THINK C++
will update the projects anyway; it just will not require you to confirm the update.

Editor
Figure 15.10 shows the Editor menu within the THINK Project Manager option.

The Editor menu is divided into two sections: the items in the first section
within the Searching box deal entirely with search and replace functions, and
the items in the second section to the right of the box, are more general. You
can get an explanation of each of the functions by clicking on any of the boxes
within the lists. The only item that is not self-explanatory is the Projector­
Aware option, which, when checked, forces THINK C++ to honor Macintosh
Programmers Workshop Projector resources. This allows you to work on a large
project with people who are using MPW Projector.

The Use external editor item is a new feature for Symantec C++. In the old
versions of THINK C, if you wanted to use an editor other than the THINK C
editor (e.g., QUED/M™ or Microsoft Word™), you had to get out of THINK C,
work on the program in the outside editor, then go back into THINK C to com­
pile the program. With this new optional feature in the Editor menu, you can
now work on your program in an external editor without leaving the Symantec
C++ environment. However, your external editor must be compatible with THINK.
Check the User Manual carefully for instructions on using an outside editor.

Debugging
Figure 15.11 shows the Debugging menu within the THINK Project Manageroption.

To use any of the options in the Debugging menu, you must first check the
box beside Use Source Debugger. Otherwise, all of the options within the box
will be grayed out and unavailable. Checking the Use Source Debugger is the
same as checking Use Debugger in the Project menu. Generally, you will have
this turned on, which also means that you will be using the source debugger
instead of an external debugger like Tmon or MacsBug.

A nice option in this menu is Use Second Screen. If you have more than
one screen and you check this option, the debugger will automatically come
up on the second screen.

If you do not have a second screen, you may find turning off the Update
program windows useful. If you have the option turned on and the debugger
menu is over the front of a window, for example, the source code window behind
it will be constantly updated to the point where you may not be able to see
what the actual problem in the code is. If you tum this option off, the window
behind stays in a steady state.

311

Symantec C++ for the Macintosh: The Basics

® New Projects

~ I Debugging . I
~ ,.. D Use Source Debugger ···1

I 181 Us(~ ~t~cond ~crn(m !
! D Up111~ h~ prnqrnm winilnws !

l1~:;;q~;;~;;:;~:~;~:1:~,-~
:··:r·h;·~··;~··th·~··:r·ii·iNK .. P·~;j·~~t-·M;~;~~-~--~;t·;;~~-·d;;i;~·:·c;1;~·j;··~~-~-~~-·b~tt·~~-t~··ii.~d·;~t·-~·~;~·-~j;·~~·t··th.~t··~;t·;;~·.-····1
l Use the pop-up menu to go to a specific page, or use the arrow button to move to the next or previous !

i.~.~~-~~.: .. .J

Cancel

Figure 15. 11. Debugging Menu within the THINK Project Manager Option

« !: opq « ® New Projects

~I EHtensions
File Extension Translator
.asm THINK C (!hili) File EHtension .c THINK C
.cp S11mantec C++

11 .cpp S11mantec C++
.note «none» (Ht~p!!~C(~) Translator .0 .o Converter
.r THINK Rez

«none» ersr-c Resource Copier

([!(~!(~1 (~)
r:r·h;·~ .. ;~·th·~ .. :r·ii·iNK .. P.~~j-~~t-·M~-~~-~~-~--~;t·;~~~ .. d·;~-i~·~·:·c:i·;~·j;··~~-~-~~ .. j;~·;t·~~·t;·ii.~d··~·~t .. ~-~~-~ .. ~j;-~~t .. th~t .. ~;t·;;~·:]
l Use the pop-up menu to go to a specific page, or use the arrow button to move to the next or previous j

l.~.~~-~~-:1

Cancel OK

Figure 15. 12. Extensions Menu within the THINK Project Manager Option

312

Using Symantec C++

Always save session does just that, but it also marks the place where you left
off in the debugger session. When you return, it takes you directly to that place.

Extensions
Figure 15.12 shows the Extensions menu within the THINK Project Manager
option.

The Extensions menu gives you a way to set old files to have new exten­
sions or translators and to add extensions. For example, if you created a file
using a file extension and a compiler that are not on the installed extension
and translator list in the Extensions menu, you can change the extension of
your file, choose a translator, and click replace to tum the file into one that can
be used in Symantec C++. Or, you can enter a new extension into the File Exten­
sion box, choose whichever translator you want, and click Add to add the exten­
sion to the list.

Proiect Window
Figure 15.13 shows the Project Window menu within the THINK Project Man­
ager option.

This menu allows you to choose the number of the elements you want to
see in the project window: size of code, data, jump tables, and strings, and the

~ I Project Window I
fZI Show CODE size

D Show DRTR size

D Show JUMP size

D Show STRS size

D Show segment numbers

@ New Projects

1 .. :r·;;;·~··;~··th~ .. :r·fiiNi«·;;·~~·;~~·*··M~~~·~~~ .. ~~·*·;~·~~··;;·;~·;~·~· ... c1;~·k··~~ .. ~·~~··b~*·*·~~ .. t~ .. <;·~;; .. ~·~t .. ~·~;~··~b"~~·* .. th~t··~~·;;;~·~·.·····1
! Use the pop-up menu to go to a specific page, or use the arrow button to move to lhe nexl or previous !
l.~.~~.~~.: .. l

Cancel OK D

Figure 1 S. 13. Proiect Window Menu within the THINK Proiect Manager Option

313

Symantec C+ + for the Macintosh: The Basics

segment numbers. The default setting is to show code size only. However, the
segment numbers appear even if you do not have that option selected. The pro­
ject window expands in columns to the right by the number of options you
have selected .

• o Converter
The .o Converter option allows you to use a Macintosh Programmers Work­
shop (MPW) .o file in a Symantec C++ project. This automatic conversion is
new for Symantec C++. In previous THINK C versions, you were required to
go through a two-pass, eight-step conversion process. Now, you simply include
the .o files in your project, and Symantec C++ converts them. Figure 15.14 shows
the dialog box for the .o Converter.

If the use Toolbox trap list box is checked, Symantec C++ converts the
spelling of any all-uppercase MPW file name that has the same name as a Tool­
box trap to the Inside Macintosh spelling of the trap.

If the use .v file box is checked, Symantec C++ converts any all-uppercase
name that is the same as a name in the supplied vocabulary file to the mixed­
case spelling in the vocabulary file. If the vocabulary file does not exist, Syman­
tec C++ creates a new one.

« !: opq « @ New Projects

, ... Vocabulary ... ,

I 12;] use ToolboH trap list I
I Duse '.u' file I
l .. :

Fr.hi·~ .. ;~·th; .. :~ .. c:~·~~~~t~·~ .. ~~·;;~·~~ .. d;~·i~·~._ .. c:i·;~·k .. ~~·;~~· .. ;;~·;t·~~ .. t~ .. fi~ci .. ~·~t .. ;;;·~;·; .. ~b~~t .. th.~t .. ~~·;;~·~·~·iJ~; .. ;;;~ l
! pop-up menu to go to a specific page, or use the arrow button to move to the next or previous pages. j

t.I
Cancel OK)J

Figure 15.14 • . o Converter Menu within the .o Converter Option

314

Using Symantec C++

Symantec C++
The Symantec C++ menu (under the Options menu) contains five options: Lan­
guage Settings, Compiler Settings, Code Optimization, Debugging, and Prefix.

Language Settings
Figure 15.15 displays the language settings available in Symantec C++.

The first choices in the menu involve ANSI Conformance. You do not want to
check Enforce ANSI compatibility if you are using Toolbox calls: they are not
ANSI compatible. Also, Symantec C++ lets you set up enumeration constants
to be something other than ints. However, if you check enums are always ints,
that takes away your option to declare them something else.

Treat chars as unsigned means that anytime you declare something to be
a char it will be read as unsigned no matter what you do.

Read each header file once is new to Symantec C++. If you have this box
checked, you no longer have to use the #ifndef, #define, and #endif sequence
in your header files to make sure the file is only read once. This is a time saver.

[;} I Language Settings I
,. .. ANSI Conformance .. .,

I D Enforce HNSI compatibility I
i D enums are always ints i
! .. J

® New Projects

181 Head each header file once

D Treat chars as unsigned

181 "\p" is unsigned char[]

rE~~b·i;·thi~-~~;1~~·t~·;·~1~;~·; .. :;.;Ns·i·~~~;~tb·111;~·:·w1t·h .. th;~ .. ~;·;;~~ .. ~~~·;;;·;·~~;;:;~1i;; .. ; .. ~t;i~t;; .. ~b'~~t 1
l allowing casts to 'void *',and trigraph processing will take place. See the User Manual for a full list of l
i changes i
L -... J

(1: <H tor~~ S(~t t in~j~) [HNS I Settings J Cancel ([OK)J

Figure 15.15. language Settings Menu within the Symantec C++ Option

315

Symantec C++ for the Macintosh: The Basics

Compiler Settings
Figure 15.16 shows the compiler settings available to Symantec C++.

~ I C:ompiler Settings I
~

D Generate 68020 instructions
r D Gener ate 68881 instructions]

j DU~•~ BB I tor tnUlG(~fHl(m1<1I~ j
L ... J
D 8 byte doubles

® New Projects

, ... Struct Field Alignment .. ,

l 0 Rlign to 1 byte boundary i
! ® Rlign to 2 byte boundary !
! 0 Rlign to 4 byte boundary i
L .. J
D Place string literals in code

t8l Honor 'register' declarations

! .. r.hi; .. ;;·*t;; .. c~·;·c;~·;:;;~;i~; .. o~ti~~; .. ;ji~i·~~·:·c;1;~k .. ~·~ .. ~~·~ .. b·~;*~·~ .. t~ .. ii~·d .. ~~·t .. ~~·;~ .. ~b~·~*·t·h~t .. ~~*i·~~·:·U';~ .. th·; 1
i pop-up menu to go to a specific page, or use the arrow button to move to the next or previous pages. i

i. ... J

Cancel OK D

Figure 1 S.16. Compiler Settings Menu within the Symantec C++ Option

The option Generate 68020 instructions (as opposed to 68000) gives some addi­
tional instructions for the 68020 and 68030 that are enhanced over those for
the 68000. Checking this option also allows you to check the Generate 68881
instructions for the math coprocessor.

Struct Field Alignment allows you to change the byte boundaries to avoid
the padding of bytes to even-byte boundaries (see Chapter 8, Data Structures).
The problem with aligning to a I-byte boundary is that you may still get an
address error eventually.

Place string literals in code is an interesting and helpful option. These string
literals and constants to into an area that Symantec C++ creates called a data
resource instead of a code resource. The problem with the data area is that it
is restricted to 32 Kbytes. If you have a lot of strings, you might not want to
fill up all that data area with hundreds or thousands of strings, because you
may overrun the data area. If you check this box, it will force the strings into
the code area where you can segment them.

Honor 'register' declarations is most useful if it's turned off, since the Mac
has a hard time honoring register declarations. If this box is not checked, then

316

Using Symantec C++

the compiler can ignore any of those declarations (especially in old code that
might have been written for the VAX or Cray) and save some time.

Code Optimization
Figure 15.17 shows the Code Optimization menu for Symantec C++.

[« i: 0!>1.~ «) ® New Projects

[;J I Code Optimization I ~
r· 18] Use Glob a 1 Optimizer .. ,

! 18] Dead assignment elimination 18] Hoist uery busy eHpressions j

i 18] Dead uariable elimination l8J Remoue loop inuariants ~
i 18] CSE elimination l8J Create loop induction uariables l
! 18] Constant propagation !

L~~~~'.:I:~~: ___ ------~~;~~~~:~;'.;·;".!'.'"~'~-J
r:r:h1~··;~··th·~··c~~··c;~;;:;;1i;;··ii·;;1~~~··d1~1~~: .. C"ii~k·~~--~~~--b~tt~~··;~··i;~d··~~;·~~;;·;b~~;··t·h;t··~;;;·~~·:··li·~;·;h·~········1
! pop-up menu to go to a specific page, or use the arrow button to move to the next or previous: pages. !
i .. .i

Cancel ([OK D

Figure 15.17. Code Optimization Menu within the Symantec C++ Option

One could write an entire book on these code optimizations. However, Syman­
tec C++ does a good job of describing each of the options in the text box on
screen as well as in the Users Manual. The only box that is not checked as a
default (Factory Settings) is Optimize for space. (We discussed this "optimiza­
tion" in Chapter 2, Object-Oriented Development.) Remember that you have
to check the Use Global Optimizer box for any of the other options to be active.

317

Symantec C++ for the Macintosh: The Basics

Debugging
Figure 15.18 displays the Debugging menu for Symantec C++.

(« I: opq «) ® New Projects

[;J I Debugging

...
D Rlways generate stack frames

D Generate profiler calls

D Generate Macsbug names

D Use function calls for inlines

! .. l'8J Gener ate warning messages)

! l'8l Generate optimizer warnings !
i. ... J
, ... Error reporting ... ,

i O Stop at first error l
i ® Report the first few errors i
! O Report all errors in a file !
L ... i

r-:r·;;;·; .. ;~ .. th~ .. ;;·~·~ .. c~·;;;~ii~·~ .. Ci·~*1·~~·; .. ci1·~i·~;: .. c:;i~~ .. ~·~ .. ~~·~ .. b.~tt~~ .. t~ .. i;~·ci .. ~~t .. ~~~~ .. ~~~·~t .. th~·t·~·~*i~~: .. u·~~ .. th·~ 1
i pop-up menu to go to a specific page, or use the arrow button to move to the next or previous pages. i
l .. .I

Cancel OK]

Figure 15.18. Debugging Menu within the Symantec C++ Option

One interesting feature on this menu is Generate Macsbug names. When you
compile code, the names of all your variables are lost (there are no names, only
registers). The THINK Debugger can create a symbol table that gives the names
that you were using and their memory addresses (or registers). It cross-relates
them, so that if you request what a certain rectangle has in it, it tells you or it
gives the memory location. If you check this box in the Debugging menu, it
will generate the Macsbug™ symbol table with the names in it.

318

Using Symantec C++

Prefix
Figure 15.19 shows the Prefix menu in Symantec C++.

@ New Projects

[;) I PrefiH I~
#include <MacHeaders++>

:······································ .. ········ .. ·· .. ········ .. ···································· .. ···················· .. ···· .. ········ .. ···········~
j If you put preprocessor directives (#defines, #includes, etc.) here, Symantec C++ processes them at j
! the beginning of each source file. !

i .. .I
Cancel OK

Figure 15.19. Prefix Menu within the Symantec C++ Option

Before your code is compiled, the items that you include in the Prefix edit text
box will be processed at the beginning of each file. In Figure 15.19, the #include
file is MacHeaders++. This is a list of precompiled commonly used headers for
Macintosh Toolbox routines, such as Quickdraw.h, Palettes.h, Icons.h, and so
forth. However, you may want to add a header file that has been commented
out of the MacHeaders++. One way to do this is to go into Macincludes.cpp,
remove the comment slashes, recompile the list, and name it MacHeaders++
to replace the old one. However, there is danger here because if someone else
is compiling your code and does not have the same MacHeaders++ file as you
have, that person will get an error in the program. The best thing to do is sim­
ply to add a #include for the particular header file you want in your own code.

319

Symantec C+ + for the Macintosh: The Basics

THINK C
Figure 15.20 shows the Language Settings menu for the THINK C options.

(« !: opq «) ® New Projects

[;J I Language Settings I
, ... ANS I Conformance ... , i"" !SJ Language Extensions ... 1
I O#d f' STDC 11 @THINK c I , e me_ _ . . .
' i i 0 THINK c +Objects i

D Recognize trigraphs i L.J
D enums are always ints I !"" !SJ strict Prototype Enforcement 1

'--···-~--~-~-~-~-~---~-~-~-~-~-~.r. ... ~.~-~-~-~ .. J J ® Infer prototypes J

l 9. .. ~-~-~-~-~-~~---~-~~.!.~.!.~.~-~-~I
r·;:·h;·~··;~··th·~··c:··c:~-~~;;~·~··Ci·~ti·~~-~··ci;·~1~~-:··c:·;;·~k·~-~--~~~--b~tt~-~-·;·~··i;~·ci··~~-;·~~-~~-~-b~~t··;h~·;·~~t;~~-:··;;~~-th·~··············1
! pop-up menu to go to a specific page, or use the arrow button to move to the next or previous pages. !

L. .. it··· .. ···.!
(i: <H ton~ §(d 1 in9~) (RNS I Settings) [Cancel) O

Figure 15.20. The THINK C Compiler Options Dialog Box

THINK C is included in the Symantec C++ environment so that earlier pro­
grams written in one of the THINK C versions can be included in your Syman­
tec C++ programs. THINK C is not within the scope of this b\)ok.

THINK Rez
Symantec C++ has built-in Rez, which allows you to write textual resources
and compile them, just as you compile code. This is a new and important fea­
ture. In .prior versions of THINK C, you could create a Rez program (a text file)
inside of THINK C, but you were then required to get out of THINK C and run
Rez separately to compile it. You would then produce your .rsrc file either with
Rez or ResEdit. Now, Symantec C++ has the ability to create a Rez file and,
once you click Build Application, compile the resources automatically with
Rez. Figure 15.21 shows the menu for the THINK Rez option.

320

0 lhis Pm j(H t « f O!HJ «

r·· Resource Alignment .. ,

!@ Byte O Word O Longword !
L .. -1

PrefiH String
#define true 1
#define false 0
#define Rez true
#define DeRez false
#define THINK..Rez

Using Symantec C+ +

@ New Projects

[2J Redeclared types ok

:
! This is the Rez Compiler Options dialog. Click on any button to find out more about that option. Use the !
j pop-up menu to go to a specific page, or use the arrow button to move to the next or previous pages. l
l-.. 1

Cancel n OK

Figure 15.21. THINK Rez Compiler Options Dialog Box

File Menu
The File menu of the THINK Project Manager contains the standard file items
that most Mac applications contain. Figure 15.22 displays the File menu.

One puzzling thing about the File menu is that you can select Save A Copy
As from the File menu, but it brings up exactly the same dialog box as the Save
As option. If you want to save a copy of your source code and not replace the
existing file, you must append the word copy after the name or change the name
of the file.

The Modify Read-Only option pertains to projects using MPW Macintosh
Programmers Workshop Projector. You cannot edit a file marked read-only
when the Projector-Aware option is checked in the Editor menu (in the THINK
Project Manager option under the Edit menu). You can select or copy it, but
not its Projector resources. However, you can edit it by selecting the Modify
Read-Only option. The icon changes to a pencil with a dotted cross-out for the
editing process.

321

Symantec C+ + for the Macintosh: The Basics

Search Project
N .w Project... ~N

Open Project... ~o

Open Selection
Close

Saue
Saue As ...
Saue A Copy As ...
Reuert

Page Setup ...
Print. ..

Modify Read-Only

Figure 15.22. File Menu

Windows Menu
Figure 15.23 displays the Windows menu of the THINK Project Manager.

The Windows menu items are only active (with the exception of the Full
Titles option, which is always active) when you have an editing window open.
Most of the options here are self-evident. When you select Full Titles, the title

322

Using Symantec C++

in the open window will expand to show you to which tree in the project tree
your open file is assigned.

THINK Debugger
The THINK Debugger is a source-level debugger and is a subordinate program
to the THINK Project Manager; it cannot run on its own. You launch the debug­
ger by setting the option to use the debugger when you run a program from the
Project menu. Once the debugger is launched, a Source window and a Data win­
dow appear on the screen and the menu bar changes from the Project Manager
menu bar to the debugger menu bar. All of the debugger functions are explained
fully in the Users Manual, but we will take the opportunity in this section on
the debugger to point out things of interest and also exceptions.

Once you select Use Debugger, a little bug appears next to Name in the
Project Window. Also, every file that you can debug will have a little diamond
in front of it.

Source Window
The Source Window, which contains the source code of your program, is shown
in Figure 15.24.

/***
main()
/***
{

TShapelist theShapes;

lni Hool Box(>;
Openl..J i ndow () ;

theShapes.Add(new TRectangle(10, 10, 60, 60>>;
theShapes.Add(new TRoundRectangle(70, 70, 120,
theShapes.Add(new TOval(130, 130, 180, 180>>;
theShapes.Add(new TTriangle(190, 190, 240, 240
theShapes.Add(new TRectan1Je(250, 250, 300, 30
theShapes.Add(new TXRect(~10, 310, 360, 360>>;

Hiylib.'lf

Figure 15.24. Source Window in THINK Debugger

323

Symantec C++ for the Macintosh: The Basics

Data

1
._lar-ea l ______ l 0[8]
pi
radius

area
area
temp
z
x
*B
B
A

j
area *2.0

1.807575e-43
9.50725e-41
i 1 . 022023e-40
i 78.5
1 . 022023e-40
7.452755e-41

99 undefined identi
struc:t Ox35485C
Ox354B5C
Ox40AOBE04
372
115
2.04404504394132417 {}:

ti
Figure 15.25. Data Window in the THINK Debugger

We've used Shapes.cp, which is part of the Shapes example from Chapter 13,
as the example for the Source Window in Figure 15.24. The file that contains
the main program is the file that comes up first in the debug window, but you
can bring up any of the other files that can be debugged by selecting one and
then selecting Debug from the Source menu.

Data Window
The Data Window allows you to examine and edit the values of your variables
while you debug your programs. Figure 15.25 shows the Data Window.

The top box in the Data Window is the text entry box. You can copy a variable
into the box by selecting it in the Source Window and then selecting Copy To
Data from the debugger Edit menu. You can then enter the expression by click­
ing on the checkmark. It will appear in the lefthand column below the box (the
expression column) and its value will appear in the righthand column (value
column).

Inside the Data Window you can edit expressions, remove expressions, for­
mat values, display and change contexts, evaluate expressions, and set values.

324

Using Symantec C++

File Menu
The File menu inside the debugger is very simple: you can save the file you are
working on, and you can close. It does not allow you to open any other win­
dow or print. This menu is shown in Figure 15.26.

Figure 15.26. Debugger File Menu

Edit Menu
The Edit menu contains the standard options that most Edit menus contain
plus the Copy To Data command mentioned in the discussion on the Data Win­
dow. This is an extremely useful feature when you want to work with variable
expressions and values. The Edit menu is shown in Figure 15.27.

Cut
Copy
Paste
Clear

Figure 15.27. Debugger Edit Menu

Debug Menu
Much of what is in the Debug menu is redundant. The commands for Go, Step,

325

Symantec C++ for the Macintosh: The Basics

Step In, Step Out, Trace, and Stop appear in the Source Window of the debugger.
However, if you do not want to use the mouse, you can use the equivalent key­
strokes to do the same thing quickly. The Debug menu is shown in Figure 15.28.

The commands for Go Until Here and Skip To Here act as though you have set
a temporary breakpoint in the Source Window. All you have to do is select a
line and use the command Go Until Here and the program starts execution and
stops at the selected line. The Skip To Here command skips to the selected line
without executing any code in between.

The Monitor command works only if you have a low level debugger installed.
When you use the Monitor command, it assures that all registers and low-mem­
ory globals contain the proper values for your program.

The only practical way to get out of the debugger is to use the ExitToShell
command in the Debug menu. This exits you to the current file window where
you can close the window, switch to another file or project, or quit the THINK
Project Manager.

326

Go
Step
Step In
Step Out
Trace
Stop

Go Until Here
Skip To Here

Figure 15.28. Debugger Debug Menu

Using Symantec C++

Source Menu

The Debugger Source menu allows you to set and clear breakpoints, which we
discussed above in the section on the Source Window. The Attach Condition
command allows you to turn a simple breakpoint into a conditional breakpoint
(something that has a condition attached to it). Since you may forget the con­
ditions that you attached to certain breakpoints as you debug your program,
the Show Condition command will show the associated condition in the Data
Window. Finally, the Edit <fileName> command takes you out of the Source
and Data windows and back to the current file window. The Source menu is
shown in Figure 15 .29.

Windows
Set Breakpoint
Clear All Breakpoints

Attach Condition
Show Condition

Figure 15.29. Debugger Source Menu

Data Menu

The Data menu works only with the Data Window. Some of the commands are
complex but are well described in the Users Manual. Figure 15.30 shows the
Data menu.

When you choose Set Context for a selected expression in the Data Window,
the expression will copy to the next line and the cursor will blink in the data
entry box. Enter what you want the context to be and press the Return key.
You can also show the context of an expression by selecting Show Context.
The context will appear in the values column.

The list of display formats from Signed Decimal to Floating Point allows
you to change the format of an expression in the Data Window. Check the Users
Manual for the types and formats available.

327

Symantec C++ for the Macintosh: The Basics

Figure 15.30. Debugger Data Menu

Windows

Set ConteHt
Show ConteHt

Signed Decimal ~-

Unsigned Decimal
HeHadecimal
Character
Pointer
Address
C String
Pascal String ~·

Floating Point

Locked

The Locked command is useful if you don't want an expression to be re­
evaluated, especially if you want to compare the values of the same expressions
at different times. To lock the expression, select it in the Data Window and
click on Locked or hold down the command key and press L. Similarly, if you
want an expression to be context free (not have a value listed in the value col­
umn), you can select an expression in the Data window, click on Context Free
or hold down the command key and press K.

Windows Menu
The Windows menu offers you an alternative way to switch around the differ­
ent windows as you debug. The current source file is in the topmost position
in the menu. After the segment line, the first window mentioned is the Source
Window of the file being debugged and the second is the Data Window for that
file. The Windows menu is shown in Figure 15.31.

328

Using Symantec C++

Figure 15.31. Debugger Windows Menu

Summary
This chapter has covered the main features of the Symantec C++ 6.0 develop­
ment environment, with an emphasis on how to use those features. Although
this is a reference chapter, it does not contain anywhere near the information
you need to really understand the program. We strongly suggest that you care­
fully read your Users Manual for those items that are not clear to you or on
which you want more information.

329

A Appendix A
Glossary

abstract class

actor

argument

brackets []

C++

call

class

compiler

An abstract class acts as a template for other classes.
It is usually used as the root of a class hierarchy.

A model of concurrent computation in distributed
systems. Computations are carried out in response
to communications sent to the actor system.

A variable that is passed into a function.

Used for subscripting an array.

An object-oriented language based on C.

Instruction that passes control to a different part of
the program or function. A call executes other pro­
grams or parts of programs as though they were writ­
ten in at the point where the call occurs.

A data type from which objects can be created. It is
used to specify the behavior and attributes common
to all objects of the class.

Utility that translates the source code from a high­
level programming language (C++) into the object
code used in running the machine.

331

Symantec C++ for the Macintosh: The Basics

curly braces { }

data abstraction

declaration

delegation

encapsulation

function

genericity

handle

heap

hierarchy

332

Also called braces, used in C++ to enclose executable
statements.

Viewing data objects in terms of the operations with
which they can be manipulated rather than as ele­
ments of a set. The representation of the data object
is irrelevant.

Statement of values and data types having a global
influence on a program.

Each object is considered an instance without a class,
and new objects can be defined in terms of other
objects. Attributes are delegated from base objects to
·the new objects.

The facility by which access to data is restricted to
legal access. Illegal access is prohibited in an object
by encapsulating the data and providing the member
functions as the only means of obtaining access to
the stored data.

Equivalent to a subroutine or function in FORTRAN
or a procedure in Pascal, a function is a basic opera­
tional entity of any C program. A function encapsu­
lates a series of computations in a black box, which
you can then use without worrying about what is
inside. With properly designed functions, you can
ignore how a job is done and concentrate on what is
done.

Technique for defining software components that
have more than one interpretation depending on the
parameters representing types.

Pointer to a master pointer.

Area of memory where space is allocated and released
on demand via the Memory Manager.

The set of superclasses and subclasses derived from
the superclasses can be arranged in a treelike struc­
ture, with the superclasses on top of classes derived
from them. Such an arrangement is called a "hierar­
chy of classes."

inheritance

instance variables

integer

linker

long

master pointer

member functions

message

methods

multiple inheritance

object

object code

parameter

Using Symantec C++

The mechanism by which new classes are defined
from existing classes. Subclasses of a class inherit
operations of their parent class. Inheritance is the
mechanism by which reusability is facilitated.

Variables representing the internal state of an object.

Whole number; that is, containing no fractions or
decimal points.

Utility that links individual object-coded modules
produced by a compiler into a complete machine lan­
guage program ready for execution.

Variable with a data length of 4 bytes.

Pointer to a pointer. Master pointers enable the Mem­
ory Manager to keep track of memory locations that
it has relocated.

Functions that are used to implement different oper­
ations on the object. They are part of the specifica­
tion of a class.

The process of invoking an operation on an object.
In response to a message, the corresponding method
is executed in the object.

Implementation of the operations relevant to a class
of objects. Methods are invoked in response to mes­
sages.

A subclass inherits from more than one superclass.
Instances of classes with multiple inheritance have
instance variables for each of the inherited super­
classes.

A combination of data and the collection of opera­
tions that are implemented on the data. Can also be
described as a collection of operations that share a
state.

·Machine language produced by compilation of the
source code.

Sometimes used as a substitute word for argument.

333

Symantec C++ for the Macintosh: The Basics

parentheses ()

persistence

pointer

In C++, a pair of parentheses encloses a variable in a
statement. If no variable is to be passed in, nothing
goes between the parentheses, but they are still
required by C++ syntax.

The phenomenon where data outlives the program
execution time and exists between executions of a
programs. All databases support persistence.

Memory address containing a data item used in run­
ning a program.

polymorphism The same operation can be applied to different classes
of objects. The operation on the object can be invoked
without knowing its actual class.

prototype A prototype represents the default set of documents
of a function.

Resource Data unit representing a dialog box, menu, alert, icon
or other element of the Macintosh graphical interface.

returned value A value that is returned by a function.

reusability The ability to use well-designed software modules
that have been tested, in several places, in different
applications, so as to minimize development of new
code. Object-oriented languages employ inheritance
as a mechanism for reusability.

short Variable with the default length of 2 bytes in C++.

Smalltalk One of the first object-oriented languages. It provides
an integrated software development environment,
including the facility to display multiple windows
and browse through classes.

source code Statements in a programming language.

structure Logical arrangement of a program.

structured programming Software development methodology that employs
functional decomposition and a top-down design
approach for developing modular software; traditional
programming techniques of breaking a task into mod­
ular subtasks.

334

subclass

superclass

this pointer

variable

void function

Using Symantec C++

A class that inherits behavior and attributes from
another class. The subclass exploits reusability of
design and reusability of code from its superclass.

A class that serves as a base class to another class. A
superclass provides behavior and attributes to classes
derived from it by the inheritance mechanism.

A pointer to the current object in C++. Serves as a
pointer to self.

Value that changes with program dynamics and is
written to or read from memory as required.

Indicates to the Mac that there is no value to return
for a particular function.

335

BAppendix B
Bibliography

Anderson, Paul and Anderson, Gail. Advanced C Tips and Techniques,
Indianapolis, IN: Hayden Books, 1988.

Andrews, Mark. Programmer's Guide to MPW, Volumes I and 11, Reading,
MA: Addison-Wesley, 1991.

Bar-David, Tsvi. Object-Oriented Design for C++, Englewood Cliffs, NJ: PTR
Prentice-Hall, 1993.

Brown, T.D., Jr. C for FORTRAN Programmers, Summit, NJ: Silicon Press,
1990.

Cargill, Tom. C++ Programming Style, Reading, MA: Addison-Wesley, 1992.

Cargill, Tom. "Using Multiple Inheritance in C++," Dr. Dobb's Macintosh
fournal, Volume 17, Issue 12, December 1992, pp. 48-51.

Coad, Peter and Jill Nicola. Object-Oriented Programming, Englewood
Cliffs, NJ: Prentice Hall, 1993.

Computer Language, San Francisco, CA: Miller Freeman Publications,
August 1991.

The C Users fournal ™, Volume 11, Number 5,. Lawrence, KS: R&D
Publications, Inc., May 1993.

337

Symantec C++ for the Macintosh: The Basics

Davis, Stephen R. C++ Programmer's Companion,. Reading, MA: Addison­
Wesley, 1993.

Develop, The Apple Technical fournal, Issue 8, Mt. Morris, IL: Apple
Computer, Inc., Autumn 1991.

Dr. Dobb's fournal, San Mateo, CA: M&T Publishing, August 1991.

Ellis, Margaret A. and Bjarne Stroustrup. The Annotated C++ Reference
Manual. Reading, MA: Addison-Wesley, 1990.

Hancock, Les and Krieger, Morris. The C Primer, New York, NY: McGraw­
Hill, Inc. 1982.

Hansen, Tony L. The C++ Answer Book,. Reading, MA: Addison-Wesley,
1990.

Hughes, Tohn M. Programming in Zortech C++ with Version 2,. Wilmslow,
Cheshire, England: Sigma Press, 1991.

fournal of Ob;ect-Oriented Programming, New York, NY: SIGS
Publications, Inc., February 1993.

Keffer, Thomas. "Why C++ Will Replace Fortran," Dr. Dobb's fournal,
Volume 17, Issue 12, December 1992, pp. 39-46.

Kernighan, Brian W. and Ritchie, Dennis M. The C Programming Language,
Englewood Cliffs, NT: Prentice-Hall, 1978.

Knuth, Donald E. The Art of Computer Programming, Volume 1,
Fundamental Algorithms, Reading, MA: Addison-Wesley, 1973.

Koenig, Andrew. C Traps and Pitfalls, Reading, MA: Addison-Wesley, 1989.

Ladd, Scott Robert. Applying C++,. San Mateo, CA: M & T Books, 1992.

Lippman, Stanley B. C++ Primer,. Reading, MA: Addison-Wesley, 1991.

Maher, Tim. "AC++ Beautifier," Dr. Dobb's fournal, Volume 17, Issue 12,
December 1992, pp. 23-26.

Mark, Dave. Learn Con the Macintosh, Reading, MA: Addison-Wesley,
1991.

Matthies, Kurt W.G. and Hogan, Thom. Macintosh C Programming by
Example, Redmond, WA: Microsoft Press, 1991.

McDonald, Tom. "C for Numerical Computing, "fournal of Supercomputing,
Volume 5, 1991, pp. 31-48.

338

Using Symantec C++

Mead, Carver and L. Conway. Introduction to VLSI Systems, Reading, MA:
Addison-Wesley, 1980. ·

Meyers, Scott. Effective C++, 50 Specific Ways to Improve Your Programs
and Designs, Reading, MA: Addison-Wesley, 1992.

Moving from C to C++, Supplement to SIGS Publications, Cupertino, CA:
Symantec Corporation, 1992.

Murray, Robert B. C++ Strategies and Tactics, Reading, MA: Addison­
Wesley, 1993.

Object Magazine, New York, NY: SIGS Publications, Inc., Mar-Apr 1993.

Parker, Richard 0. Easy Object Programming for the Macintosh Using
AppMaker™ and Think C™, Englewood Cliffs, NJ: Prentice-Hall, 1993.

Pipelines, Volume 7, Number 3, Des Moines, IA: Microware, 1992.

Plum, Thomas. Learning to Program in C, Cardiff, NJ: Plum Hall, Inc., 1983.

Plum, Thomas and Dan Sacks. C++ Programming Guidelines, Plum Hall,
1991.

Pohl, Ira. C++ for Programmers, Redwood City, CA: The
Benjamin/Cummings Publishing Company, Inc., 1989.

"Programming in C++ on the Macintosh", A Programming Course
Customized for HBO Time-Warner, Berkeley, CA: Bear River Institute,
1993.

Rao, Bindu R. C++ and the OOP Paradigm, New York, NY: McGraw-Hill,
Inc., 1993.

Saks, Dan. "Standard C++: A Status Report," Dr. Dobb's fournal, Volume 17,
Issue 12, December 1992, pp. 15-20.

Shapiro, Jonathan S. AC++ Toolkit. Englewood Cliffs, NJ: Prentice-Hall,
1991.

Shiffman, Harris. "Toward a Less Object-oriented View of C++," Dr. Dobb's
fournal, Volume 17, Issue 12, December 1992, pp. 35-38.

Sprowls, R. Clay. Computers: A Programming Problem Approach, New
York, NY: Harper & Row, Publishers, 1966.

Stevens, Al. "A Conversation with Bjarne Stroustrup," Dr. Dobb's fournal,
Volume 17, Issue 12, December 1992, pp. 7-12.

339

Symantec C++ for the Macintosh: The Basics

Stevens, Roger T. Fractal Programming and Ray Tracing with C++, San
Mateo, CA: M & T Books, 1990.

Straker, David. C Style, Standards and Guidelines. New York, NY: Prentice-
Hall, 1992.

Swan, Tom. C++ Primer, Carmel, IN: SAMS Publishing, 1992.

Swan, Tom. C++ Code Secrets, Carmel, IN: SAMS Publishing, 1993.

THINK C, Object-Oriented Programming Manual, Cupertino, CA:
Symantec Corporation, 1989.

THINK C, Users Manual, Cupertino, CA: Symantec Corporation, 1989.

Traister, Robert J. Mastering C Pointers, San Diego, CA: Academic Press,
Inc., 1990.

Weston, Dan. Elements of C++ Macintosh Programming, Reading, MA:
Addison-Wesley, 1990.

Wiener, Richard S. and Pinson, Lewis J. An Introduction to Object-Oriented
Programming and C++, Reading, MA: Addison-Wesley, 1988.

Wilson, David A., Rosenstein, Larry S. and Shafer, Dan .C++ Programming
with MacApp, Reading, MA: Addison-Wesley, 1990.

340

Index

A
abstract class, 39, 278, 331

abstract data type (ADT), 199, 225

accessing member data, 240
accessor, 36, 206-207, 208, 256

actor, 331

Add Files command

(Source menu), 52, 53, 299

addresses of, 72, 74, 75, 79

ANSI (American National Standards
Institute), 53-54, 59, 138

conformance, 315

arguments, 28, 80, 136, 137, 158, 161,
196,283,331

default, 203-204

functions, 35, 80, 138-146

in derived classes, 232-233

arithmetic operators, 70, 85

arrays, 69, 72, 156, 173, 177-183, 203-
204, 238,270,282-283,331

assignment, 179

creating an array of structures, 190-191

dynamic, 82

indexing, 179

initializing, 178

multidimensional, 180

subscript, 80, 81-82

ASCII characters, 12

assignment operators, 70, 73, 91-94

automatic variables, 150, 159

B
backslash (\), 162, 166

base classes, 31, 226-235, 263-270, 335

Bedrock framework, 33

binary numbering system, 8-12

binary operators, 70, 85-97, 125
bits, 13

bitwise AND operator, 73, 85, 87
bitwise exclusive OR operator, 73, 89

341

Symantec C++ for the Macintosh: The Basics

bitwise inclusive OR operator, 73, 88-89
brackets, 331
breakpoints, 327
break statements, 112-114, 118-119, 128-

129
Bring Up To Date command {Project menu),

304
Browser, 301
Build Application command {Project menu),

55,304,320

c
.c files, 247
C++,331

comment syntax, 60
fundamentals, 59-98
improvements over C, 4, 31-32
right-left rule, 156-157
statements, 61-62
style, 121-129
variables, 62-64
white space, 62

call, 331
C and Pascal for the Macintosh, 146
characters (chars), 63, 68
class diagrams, 35, 207
class libraries, 33
classes, 199-209, 331

abstract, 39
and structures, 201
defining, 200
member functions, 202
objects, 33-35, 202

Code Optimization panel, 317
code resources, 51, 153, 303, 316
collaborators, 36, 208
comment syntax, 4-2
comments, 60-61
Compile command, 54-55, 301
compiler, 331

342

Compiler Settings panel, 316
Generate 68020 instructions option, 316
honor registers, 316
Place String Literals, 316
Struct Field Alignment, 316

comparison operators, 94-96
const, 154-155, 162
constants, 68
constructors, 203-204

in derived classes, 231-233
curly braces, 332

D
data abstraction, 332
data hiding, 201, 209
data members, 31, 194, 200-208, 228-231,

235-236, 246, 285
data structures, 173

see Chapter 8, Advanced Data
Structures, 1 73

Debugger, 323-328
Debugging panel, 318

Generate MacsBug names option, 318
decimal numbering system, 8
declarations, 66, 127, 136, 332

and definitions, 66
reference, 155

decrement operators, 72, 74, 77-78
definitions, 66, 129, 136, 176
delegation, 332
delete operators, 72, 72, 79, 83, 146, 181,

204
dereferencing pointers, 72, 7 4, 17 4, 176,

293
derived classes, 31, 225

see Chapter 11, Subdassing and
Inheritance, 225

destructors, 204-205
in derived classes, 233

displaying hierarchies, 301

double, 64
dynamic binding, 41-42
dynamic memory, 181, 183, 290

E
Edit menu, 307-308
encapsulation, 35, 83, 194, 332
enumerations, 183-186, 315
expressions, 61, 98
Extensions menu, 247, 313
external variables, 151, 247

F
Far DATA option (Set Project Type menu),

303-304
fields, 36-39
File menu, 321

Save A Copy As, 321
Save As, 321

Roats, 64
for loop, 116
free store operators, 79, 146, 181

destroying heap variables, 181
testing for space, 181

friends, 208-209
class, 209, 217, 233
functions, 209

function calls, 35, 72, 80-81, 134-149, 159
see Chapter 6, Functions and Variables,
131

functions, 131, 332
default arguments, 141
definitions, 35, 80, 134, 148
explicit void, 142
I functions in derived classes, 233-235
inline, 159
initialization, 205-206
number of arguments in, 137
overloading, 158

G

passing, 138-140
by pointer, 139
by reference, 140
by value, 139

passing multiple values, 142
prototypes, 136-137
virtual, 227

genericity, 332

Index

global variables, 151, 153, 159, 246

H
.h files, 247
handles, 290-293, 332

dereferencing, 293
header file, 247
heap,the,79, 146-147, 181-183,203,233,

332
hexadecimal numbering system, 9
hierarchy, 332

I
1/0 operations, 165-171

on the Mac, 171
streams, 166

advanced formatting, 169-170
formatted output, 168-169
generalized escape sequence, 167
input stream example, 170-171
1/0 channels, 166-167
predefined 1/0 stream
manipulator, 167

#include, 160-162
inheritance, 38, 225-242, 284-287, 333

and subclassing, 38
multiple, 40, 284-287
see Chapter 11, Subclassing and lnheri-

343

'·,\

Symantec C+ + for the Macintosh: The Basics

tance, 225
initializing member functions, 205
inline functions, 159, 162, 262
instances, 31, 35

initializing, 238
variables, 31, 34-35, 333

int data type, 64
integer, 333
iterator methods, 42-43, 270

K
keywords, 63

reserved variables, 63

L
labels, 119-120
Language Settings panel, 315
left shift operator, 72, 85, 90
libraries

adding to projects, 52, 53, 299
Linked List Example, 213-223

adding and deleting nodes, 215-216
building the code, 216
creating a circular list, 215
creating a friend class, 217-218
destructor, 221-222
display data function, 220-221
extract function, 219-220
insert function, 218-219
input data function, 220
main, 222-223
statement of problem, 214

linker, 333
literal constants, 68, 70
local variables, 150, 159
logic, 17-18
logical AND operator, 73, 95, 96-97
logical operators, 85
logical OR operator, 73, 95, 96-97

344

logical values, 69
longs, 64, 333
loops, functions with, 116-118

M
MacApp framework, 33, 47, 205
MacHeaders++ (precompiled header), 319
Macintosh Programmers Workshop (MPW),

32-33, 65, 314
main() program, 134
master pointer, 333
member functions, 31, 194-197, 333
memory, 79, 146, 181, 265

dynamic, 79, 146, 181
disposing of old, 181

messages, 31, 333
and methods, 35

method lookup, 41-42
methodology, 38
methods, 31, 35, 333
multiple inheritance, 40, 284-287, 333

ambiguities of data members, 285
ambiguities of functions, 286

N
naming conventions, 247
new operator, 72, 79
nibbles, 13-14
null pointers, 181
null statements, l 04
null values, 69
numbers,

0

signed and unsigned, 15-17
systems, 7-12

object-oriented development, 27-44
abstract class, 39

behavior of objects, 33-34
deriving classes, 34-35
encapsulation, 35
methodology, 38

object-oriented programming
benefits, 28
creating a program, 44

objects, 333
and classes, 33
behavior, 33-34
code, 333
creating, 237
dynamic, 237

octal numbering system, 11-12, 167
ones complement, 15-16
operators,

addition , 72, 86
update, 73, 93-94

address of, 72, 75
arithmetic and logical, 85
array subscripts, 72, 81-82

dynamic, new, 82
delete, 83

binary, 91
assignment, 91-92
comparison, 94

bitwise exclusive OR (XOR), 73, 89
bitwise AND, 73, 87
bitwise inclusive OR, 73, 88-89
cast, 72, 78
comma, 98
comparison,
decrement, 72, 77-78, 85
dereferencing, 72, 7 4
delete, 72, 79, 83
direct selection, 72, 83
division, 72, 87
equal, 73, 91
form ones complement, 75
function call, 72, 80-81

Index

greater than, 73
greater than or equal to, 73
increment, 72, 76-77, 84
indirect selection, 72, 84
left shift, 72, 90
less than, 73
less than or equal to, 73
logical AND, 73, 96-97
logical not, 72, 75
logical OR, 73, 96-97
modulus, 72, 87
multiplication, 72, 86
negative, 72, 75
new,72,79,82
not equal, 73
precedence, 71
right shift, 72, 90
scope resolution, 6-30
sizeof, 72, 78
subtraction, 72, 86
ternary, 97-98
unary, prefixed, 7 4
unary, postfixed, 80

optimizing, 118, 154, 227, 262
for time, 118
Optimization panel, 317

Options panels, 309-321
Code Optimization, 317
Compiler Settings panel, 316-317
Debugging panel, 318
Language Settings, 320
Prefix panel, 319
THINK Project Manager, 309

Preferences, 31 0-311
Editor, 310-311
Debugging, 311-312
Extensions, 312-313
Project Window, 313-314
.o Converter, 314

THINK Rez, 321

345

Symantec C++ for the Macintosh: The Basics

Out command (Debugger menu),
output streams, 165-171

see Chapter 7, Input/Output Streams
overloaded functions, 158
overloaded operators, 193-194, 262-263
overriding, 40, 226, 249

p
parameters, 28, 80, 136, 137, 138, 148,

158, 161, 177, 196,283,333
default, 203-204
in derived classes, 232-233
in functions, 35, 80, 138-146

parentheses, 334
partition sizes, 304
Pascal, 13-14, 32, 63, 69, 146, 290

order of parameters pushed, 148
string, 69

passing
function arguments, 138
by pointer, 139
by reference, 140
by value, 139

pause routine, 258-259
performance, improving with inline functions,

159
persistence, 334
PhoneBook Example, 244-259

class diagrams, 247
Class TCompany, 256
Class TEntity, 254-256
Class TPerson, 256
naming conventions, 246
Pause Routine, 258
PhoneBook.cp, 257
project, 247

346

source file organization, 246
UPhoneBook.cp, 257
UPhoneBook.h, 249-250
UString.cp, 249-250

UString.h, 247
UTelephone.cp, 251-254
UTelephone.h, 251

pointers, 164-165, 334
dereferencing, 7 4
defining as class objects, 263-270
initializing, 175
null, 182
void, 176

polymorphism, 269, 334
and dynamic binding, 41-42

precedence, 71-73
precompiling, compiling, and making a pro­

ject, 301
preference menu, 310
Prefix panel, 319

MacHeaders++, 319
preprocessing

and comments, 163
and checking syntax and disassembling,
300
C++ preprocessor, 160, 161-163

private, 34
classes and structures, 201
declaration of classes, 228-231
defining derived classes, 226
friends, 208-209
in accessor methods, 206
keyword, 63

procedural programming, 28
program How, controlling, l 03-120
Project Manager (THINK), 47-56, 298-329
Project menu, 302-305

Bring Up To Date command, 304
Build Application command, 304
Remove Objects command, 304
Set Project Type menu, 303-304

Build options, 304
Use Debugger command, 305

projects,

adding files, 52, 53, 299
closing, 302

protected keyword, 63
protected members, 201, 208-209, 228-231
protection keyword, 228
prototype, 136-137, 334
public keyword, 63
public members, 201, 208-209, 228-231

Q
QuickDraw.h file, 186, 319

R
reference variables, declaring, 155
register variables, 152-154
Remove Objects command (Project menu),

304
ResEdit, 320
reserved variables, 63
resources, 51, 146, 247, 303, 320, 334
returns, 80, 134-137, 142, 145-146, 153,

205,334
keyword, 63

reusability, 334
right shift operator, 72, 85, 90
Run command (Project menu), 305

s
Save As command, 52, 321
scope, 70
scope resolution operator, 72, 159
Search menu, 305-306

Find Again command, 306
Find command, 306
Find in Next File command, 306
Go To Next Match command, 306
Go To Previous Match command, 306

Index

Set Project Type (Project menu), 303-304
Shape Example, 270-280
short, 334
sizeof operator, 63, 72, 78
Smalltalk, 334
source code, 334
Source menu, 298-301

Add Files command, 299
Check Syntax command, 300
Compile command, 301
Debug option, 300

SourceServer, 300

stack, the, 142,-146, 148, 150, 151, 153,
181,237

statements, 105-120
as lines of instruction, 61-62
blocks, 104
break, 112, 118-119
continue, 119
do-while loop, 116
else-if, 109-110
expression and null statements, 1 04
for loop, 116-118
goto, 5-20
if, 105-108, 114
if-else, 108-109
labels and goto, 119-120
switch, 110-112, 114
switch-break, 112-114
while versus for, 118
while, 115

static
data members, 235-236
keyword, 63,
member functions, 236
variables, 150-151

Step command (Debugger menu), 326
Stop command (Debugger menu), 326
stream library (1/0), 165
streams, 166-171

347

Symantec C+ + for the Macintosh: The Basics

string constants (literals), 70, 316
strings, 69
structures, 173-197, 186, 334

abstract data type, 199-225
and bit fields, 1 91
and member functions, 194-196
anonymous, 188
creating an array of, 190-191
declaring with typedef, 185
declaring, 187
padding, 189
referencing data elements of, 188

structured programming, 334
style, 121-129

rules, 122-129
subclassing, 335

and inheritance, 38, 225
superclass, 335
switch statements within functions 43 63 I I I

11 O· 114 I 11 9 I 128· 129
Symantec C++, 47-56, 297-329

adding libraries, 53-54
Browser, 301

348

building an application, 55
compiling C++, 54
creating a project, 48
creating a source file, 52
Edit menu, 307-308
getting started, 48
precompiled header files,

conditional directives, 161
MacHeaders++, 31 9

preprocessor, 161, 163
running a program, 55
Search menu, 305-306
Segments, 51
setting project type, 303
Source menu, 298-305
SourceServer, 300
THINK Project Manager, 298

T
templates, 281-283

for a class, 282
for a routine, 282-283

temporary breakpoints, 326
THINKC, 320
THINK Debugger, 323-328

Data menu, 327
Data window, 324
Debug menu, 325
Edit menu, 325
File menu, 325
Source menu, 327
Source window, 323
Window menu, 328

THINK Project Manager,
Options, 309-320

.o Converter, 314
Debugging, 311
Editor, 311
Extensions, 313
Preferences, 309
Project window, 313

Symantec C++ compiler, 315-319
THINKC, 320
THINK Rez, 320

this keyword, 63, 205
this pointer, 241-242, 335
Toolbox, Memory and Symantec C++, 289-

294
dereferencing a handle, 293
keyword inherited, 294
master pointers, 290
pointers and dynamic memory, 290
using from Symantec C++, 290

translators, 48, 298, 309, 313
twos complement, 16-17
type conversion, 63, 149
typedef I 185

u
unary operators, 7 4-85
unions, 192
Use Debugger command (Project menu), 305

v
v-tables (virtual tables), 42
variables, 335

const, 154
declaring, 66
defining, 66
external, 151
global, 151, 153, 159, 246
initialization of, 66
passing by pointer, 139
passing by reference, 140
passing by value, 139
predefined, 63
register, 152
reserved, 63

signed and unsigned, 67
static, 150
storage, 149-154

virtual functions, 40, 227-228
virtual, 42, 233, 262, 269, 278

keyword, 63
void, 137, 145, 146, 147, 205

functions, 335
keyword, 63
pointers, 176

w
while loop, 115, 116, 118
windows, 322

Full Tirles option, 322

z
Zortech C++, 32

Index

349

M&T BOOKS

A Library of Technical References
from M&T Books

Advanced Fractal Programming in C
by Roger T. Stevens

Programmers who enjoyed our best-selling Fractal
Programming in C can move on to the next level of fractal
programming with this book. Included are how-to
instructions for creating many different types of fractal
curves, including source code. Contains 16 pages of full-color
fractals. All the source code to generate the fractals is
available on an optional disk in MS/PC-DOS format. 305 pp.

Book/Disk $39.95 #0974

Level: Intermediate

Advanced Graphics Programming in C and C++
by Roger T. Stevens and Christopher D. Watkins

This book is for all C and C++ programmers who want to
create impressive graphic designs on IBM PCs or compatibles.
Through in-depth discussions and numerous sample
programs, you will learn how to create advanced 3-D shapes,
wire-frame graphics, solid images, and more. All source code
is available on disk in MS/PC-DOS format. Contains 16 pages
of full-color graphics. 560 pp.

Book/Disk $39.95 #1733

Level: Intermediate

1-800-488-5233

M&T BOOKS

A Library of Technical References
from M&T Books

Applying C ++

•Yow uptttl' idt
IO • ritiag powttf.I
C++ prvgr11111.

•Uidrdwi~tipl

11\dMf tU ll'fltf.

•OMk indudo
uayi1101«rmdL

(.. Com ponents
and Algorithms

Applying C++
by Scott Robert Ladd

Intermediate level programmers ... this is your next book!
Learn how to design and maintain clean, efficient C++
applications and do it by using the very tricks, techniques and
strategies of the industry's acknowledged C++ gurus. You
want to get around language limitations? Solve problems in
the real world? Find out what works and what doesn't? Get
inside this volume and discover the keys to object-oriented
programming design, C++ tricks and traps, interfacing with
MS-DOS, planning and implementing C++ libraries and
applications, building a spreadsheet and much more. Includes
complete source code disk. 544 pp.

Book/Disk $34.95

Level: Beginning-Intermediate

C++ Components and Algorithms
by Scott Robert Ladd

#2624

It's true: experienced C programmers always need the kind of
comprehensive tools that can help them develop and maintain
powerful C++ applications. This excellent volume is where
you can find them-all of them! Memory management,
indexed files using B-Trees, mathematical programming,
adaptive algorithms and more. The in-depth discussions and
numerous source code examples are geared toward an
understanding of C++'s inner workings. The programs and
classes presented are compatible with various C++ compilers,
making them valuable to a wide audience of C programmers.
All source code included on disk in MC/PC-DOS format.
Now you can C more than ever! 512 pp.

Book/Disk $39.95 #2276

Level: Advanced

1' -800-488-5233

M&T BOOKS

A Library of Technical References
from M&T Books

Photorealism and Ray Tracing in C . '
by Christopher Watkins and Stephen Coy

C programmers interested in computer graphics ... look no
further! This is the book that puts the tools in your hands to
produce photorealistic, 3"b images on PCs. Includes section
on ray tracing, plus tips for producing sample images as well
as creating original designs. Source code on MS/PC-DOS disk
for reproducing and customizing sample images. Includes
~ight pages of full-color graphics. 476 pp.

Book/Disk $44.95 #2470

Level: Intermediate

Fractal Programming and Ray Tracing with C++
by Roger T. Stevens
Finally, a book for C and C++ programmers who want to
create complex and intriguing graphic designs. By the author
of three best-selling graphics books, this new title thoroughly
explains ray tracing, discussing how rays are traced, how
objects are used to create ray-traced images, and how to
create ray tracing programs. A complete ray tracing program,
along with all of the source code, is included. Contains 16
pages of full-color graphics. 444 pp.

Book/Disk (MS-DOS) $39.95 #1180

Level: Intermediate

1-800-488-5233
/

M&T BOOKS

A Library of Technical References
from M&T Books

Serial Communications
A C++ Developer's Guide

The Data
Compression

Book

-1 -- ~- w: .

~}. 1i .. ~· •
$~"_..,,'V~ ,T~; /}a.:

Fm•m,lm, 1fru11•tl111

<>•pm11••U<imi11110C

lhtiltb••

Serial Communications: A C++ Developer's
Guide
by Mark Nelson

A hands-on guide to mastering object-oriented techniques in
writing software for modems, BBS's and other
communications systems, this book covers the latest C
compilers from Microsoft, Borland, and Zortech. For
beginners and advanced programmers, this book is a
comprehensive reference to writing flexible communications
programs using C++ that are easily portable between different
operating systems and hardware platforms, to avoid the
limitations of serial programming. Topics include accessing
modems across networks, using standard and intelligent
multiport boards, and implementation of file transfer formats
such as XMODEM, YMODEM, ZMODEM and Kermit.
662 pp.

Book/Disk $44.95

Level: Beginning-Advanced

The Data Compression Book
by Mark Nelson

#2810

An authoritative guide for advanced C programmers. Details
various data compression techniques, explaining the theory
behind each and showing how to apply them to significantly
increase your system's storage capacity. MS/PC-DOS disk

·~ contains sample source code. 527 pp.

Book/Disk $39.95 #2160

Level: Advanced

1-800-488-5233

M&T BOOKS

A Library of Technical References
from M&T Books

PROGRAMMING IN '+'
3 DIMENSIONS

Getting Graphic: Programming Fundamentals
in C and C++
by Mark Finlay

This book teaches the fundamentals of graphics
programming. It shows C and C++ programmers how to plot
points on a screen, draw geometric shapes, design 3-D figures,
and more. This book/disk package is filled with sophisticated
and usable source code examples and sample graphic images.
Getting Graphic: Programming Fundamentals in C and C++
is a perfect introduction to the exciting world of graphics.
500 pp.

Book/Disk $39.95 #2829

Level: Beginning-Intermediate

Programming in 3 Dimensions
3-D Graphics, Ray Tracing, and Animation
by Christopher D. Watkins and Larry Sharp
Required reading! This one is for all computer graphics
enthusiasts who want a detailed look at 3-D graphics and
modeling. Also features discussions of popular ray tracing
methods and computer animation. Includes eight pages of
full-color graphics. Provides C source code and numerous
examples. MS/PC-DOS disk contains sample source code. A
must! 512 pp.

Book/Disk $39.95 #2209

Level: Intermediate

1-800-488-5233

M&T BOOKS

A Library of Technical References
from M&T Books

PagcMaker 5
ByExample

QuarkXPress 3.2 1i '
By Example

PageMaker 5 By Example
Windows Edition
by Webster & Associates

Become a PageMaker pro quickly and easily with this hands­
on guide to using PageMaker 5 for Windows. It fully explains
the new features and functions of this latest version. You'll
find detailed information on everything from PageMaker
basics to advanced techniques. Includes exercise disk that
contains an animated tour of design basics, a glossary of
terms, and an image viewer. 550 pp.

Book/Disk (MS-DOS) $29.95

Level: Beginning - Intermediate

QuarkXPress 3.2 By Example
by Cynthia Williams

#2977

The complete guide to mastering QuarkXPress 3.2. Covers
QuarkXPress 3.2 features including the new color, style sheet,
and trapping palettes. Contains glossary of desktop
publishing terms, listing of XTensions, instructional case
studies, and 8 pages of full-color illustrations. 338 pp.

Book $29.95 #323X

Level: Beginning - Intermediate

1-800-488-5233

M&T BOOKS

A Library of Technical References
from M&T Books

Managing
Iln ternetworks with

SNMP

TROUBLESHOOTING

TCP/IP _ ... , · ' ... G
/, r

I , __

J

Managing lnternetworks with SNMP
by Mark A. Miller
Companion to the best-selling Troubleshooting TCP/IP,
this book presents practical information on how to imple­
ment the Simple Network Management Protocol (SNMP).
It provides an overview of network management architec­
tures, shows how vendors integrate SNMP into their
products, and gives an in-depth understanding of the pro­
tocol itself. Filled with illustrations, case studies, and
helpful examples. 528 pp.

Book $44.95

Level: Advanced

Troubleshooting TCP/IP
by Mark A. Miller

#3043

Here's where to find all the knowledge you'll need to
maintain a healthy TCP/IP-based internetwork - dependable,
easy to administrate and trouble-free! This is a unique and
detailed look at the protocols used within the TCP/IP internet
that teaches network administrators how to detect and solve
problems that can arise in the implementation of TCP/IP and
related protocols. In-depth discussions and expert
troubleshooting techniques, plus numerous case studies
encountered with TCP/IP-based internetworks. Valuable
illustrations, tips, techniques - this is an important reference
for anyone using TCP/IP! 608 pp.

Book $44.95 #2683

Level: Advanced

1-800-488-5233

r-

M&T BOOKS

A Library of Technical References
from M&T Books

Troubleshooting
Your PC
THEUlMIUTf..IV..'l°&U'I

Gll!llTllllf'l;i,/Jt'l;A.,._1

MA£\TAM11;'1\lUIPC.

JrnA,..,..~'Ylln,ml
MilrrTMI

Troubleshooting Your PC
by Jim Aspinwall, Rory Burke, and Mike Todd

A complete do-it-yourself guide to repairing and maintaining
IBM PC's and compatibles. Provides tips for servicing your
system and methods for keeping it running smoothly. Covers
PC essentials such as interfaces, memory, and disk drives.
Includes problem index with solutions to over 100 problems.
Useful diagnostic tools provided on MS/PC-DOS disk. 496 pp.

Book/Disk $32.95 #2446

Level: Beginning - Advanced

PC Power!
by Stephen J. Dougherty

The final frontier? It's how to squeeze that last ounce of
power out of your PC! Now you can tune it up and take off
with this extraordinary volume for people who want
maximum PC speed and efficiency. No high tech hype, this is
a down-to-earth book that addresses the issues in easy-to­
understand language. Learn how to analyze, diagnose and
troubleshoot your system for maximum performance.
Discover how to use performance enhancements for many
popular applications, including Windows. Plus dozens of tips,
tricks and customized techniques. Applicable to all 286, 386
and 486-based PCs. Icons throughout highlight Warnings,
Tips, Rules of Thumb and Shopping Tips. Start me up! 304 pp.

Book $26.95 #2500

Level: Beginning-Intermediate

1-800-488-5233

M&T BOOKS

A Library of Technical References
from M&T Books

Real World Fractals: Object-Oriented
Fractal Programming in C++
by Mark Finlay and Keith A. Blanton

Learn to create exciting fractals using object-oriented
programming techniques. This book/disk package shows you
how. It explores the latest advances in fractal modeling,
showing you how to apply the techniques to real-life
applications such as flight simulation, physical modeling, and
computer visualization. Complete with source code disk.
Contains 8 pages of full-color fractals.450 pp.

Book/Disk $39.95

Level: Intermediate - Advanced

Fractal Programming in C
by Roger T. Stevens

#0378

If you are a programmer wanting to learn more about
fractals, this book is for you. Learn how to create pictures
that have both beauty and an underlying mathematical
meaning. Included are over 50 black and white pictures and
32 full-color fractals. All source code to reproduce these
pictures is provided on disk in MS-DOS format requiring an
IBM PC or clone with an EGA or VGA card, a color monitor,
and a Turbo C, Quick C, or Microsoft C compiler. 580 pp.

Book/Disk $39.95 #0389

Level: Intermediate

1-800-488-5233

M&T BOOKS

A Library of Technical References
from M&T Books

Windows 3.1: A Developer's Guid(
ZnJEJi1iun

Jrrfrq M. Ric hter

~ OQ 0' C C>~ o ... ,

The
WordPerfect
Idea Book

Windows 3.1: A Developer's Guide,
2nd Edition
by Jeffrey M. Richter
Here's how to get to the next level of Windows program­
ming! This highly regarded best-seller has been updated
and revised to cover Windows 3.1. Covers new features,
including new Windows 3.1 hooks, subclassing, and
superclassing windows. Packed with valuable illustrations,
utilities, and source-code examples. Disk contains 12
complete applications. 736 pp.

Book/Disk $39.95 #2764

Level: Advanced

The WordPerfect Idea Book: The Quest for
Design Excellence
by Roger C. Parker
If there's one book that belongs on your desktop, this is it!
It's loaded with illustrations and expert design techniques
- and the kind of tips and secrets that make desktop pub­
lishing fun and easy to learn. With this compelling guide
to designing with WordPerfect, you'll turn out professional­
looking documents quickly and easily. You'll master pub­
lishing features and discover, step-by-step, how to design
logos, letterheads, press releases, and newsletters. Covers
WordPerfect 5.0/5.1 and WordPerfect for Windows. This
is the "big idea" book you've been looking for! 320 pp.

Book $24.95 #2861

Level: Beginning - Advanced

1-800-488-5233

M&T BOOKS

A Library of Technical References
from M&T

To Order:

Charge my:

0 Visa
0 MasterCard
0 AmExpress

0 Check enclosed,
payable to M&T
Books.

2985

ORDER FORM

Return this form with your payment to M&T Books,
115West18th Street, New York, New York 10011 or
call toll-free 1-800-488-5233.

ITEM# DESCRIPTION DISK PRICE

Subtotal

NY residents add sales tax - %

Add $4.50 per item for shipping and handling

TOTAL

CARDNO.

SIGNATURE EXP.DATE

NAME

ADDRESS

CITY

STATE ZIP

M&T GUARANTEE: If you are not satisfied with your order for any reason, return it to us
within 25 days of receipt for a full refund. Note: Refunds on disks apply only when returned
with book within guarantee period. Disks damaged in transit or defective will be promptly
replaced, but cannot be exchanged for a disk from a different title.

Symantec C++ for the Mac:
The Basics
John May & Judy Whittle
ISBN: 1-55828-276-9
Copyright 0 1993 MIS:Pttss. Inc.

Format: Macintosh/OS

M&T Books
115 West 18th Street New York, NY 10011

(800) 488-5233

to learn C++ programming on the Macintosh.
This hands-on tutorial teaches } ou C++
programming from the ground up, taking
you from the fundamentals of object-oriented
programming to the advanced features of
C++. Special focus is given to Symantec (++,
the latest compiler for Macintosh
programming. Through detailed discussions
and solid programming examples you'll gain
a thorough understanding of Symantec C++
and will be on your way to designing
efficient C++ applications.

Look inside for
complete coverage
of Symantec C++:
• Master the new Symantec C++

development environment
• Learn the differences between

Symantec C++ and Think C
• Become skilled in object

programming and design concepts
• Discover the exceptional

features of C++
• Learn how to write an object

design using C++
• Design and maintain

C++ applications

This book is filled with programming
examples you can study and learn from. The
source code has been written to compile and
run using Symantec C++ and is provided on
the enclosed disk.

Wh y this book is for you-page 1.

M&T Books

115 We<.,t 18th Street

New York, Y 10011

Bi,ocll ntenned1a1e

Pro!!ramm in

John May
is the owner of Devil
Mountain Developments,
a service company
specializing in Macintosh
software engineering.
He teaches a course,
Programming the
Macintosh, at the
University of California,
Berkeley, and has
consulted on the design
and marketing of
Macintosh-based software.

Judy Whittle
is a seasoned technical
writer and a marketing
communications/DTP
and printing consultant.
With John May, she is
co-author of Extending
the Macintosh Toolbox:
Programming MenLIS,
Windows, Dialogues
and More!

US$ 34.95
CAN$ 43.95

ISBN 1-55828-276-9

I II
90000>

9 781558 ~ 282 7 66 '

