i New Technology Building Blocks

Symantec C++
for the Macintosh:

The Basics

e Master the new Symantec C++ compiler
e Learn the exceptional features of C++
* Design and maintain C++ applications

M&T =

LE

John May & Judy Whittle

Symantec C++
for the Macintosh:

The Basics

Symantec C++
for the Macintosh:

The Basics

SX008 W

M&T 2

LE

M&T Books

A Division of MIS:Press

A Subsidiary of Henry Holt and Company, Inc.
115 West 18th Street

New York, New York 10011

© 1993 by MIS:Press
Printed in the United States of America

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage and retrieval
system, without prior written permission from the Publisher. Contact the Publisher for information on
foreign rights.

Limits of Liability and Disclaimer of Warranty

The Author and Publisher of this book have used their best efforts in preparing the book and the pro-
grams contained in it. These efforts include the development, research, and testing of the theories and
programs to determine their effectiveness.

The Author and Publisher make no warranty of any kind, expressed or implied, with regard to these pro-
grams or the documentation contained in this book. The Author and Publisher shall not be liable in any
event for incidental or consequential damages in connection with, or arising out of, the furnishing, per-
formance, or use of these programs.

ISBN 1-55828-276-9: $39.95

Publisher: Steve Berkowitz

Associate Publisher: Brenda McLaughlin
Development Editor: Margot Owens Pagan
Production Editor: Mark Masuelli

Assistant Production Editor: Joseph McPartland
Copy Editor: Andrea Salvatore

Technical Editor: Ray Valdés

95 94 93 4 3 2 1

Table of Contents

Acknowledgments.....cccceesseccseccssecccssccsssccsseecascccsed XVii
Preface ...l.........-.........xix
Why This Book is FOr YouU. ..ccccceeseeccsnecssnccsssecsscsssscecs |

Introductionl...............................l................l.3

Prerequisites—Software and Hardware Required..........c...cooevveuvennnen. 5
How the Book Is Organized.........cccooveevueeeieevieeiiieeeeeeee e 5
Object-Oriented Methodology—A Powerful Approachccccveevveenneee. 6
(O sosumnonaninsovnanenssssmsssssubs s vassoissn smassons SoA S RN TR RSB RSB SATRRS RN S 6

Chapter 1: Basic Programming Concepts ..ccccecereccereec?

TRDEIIEE BRI wcumron snmssisssssisssinn Moo R RSB A SIS SRR SR 7
Decimal NUMDETS.......coveiiiiiiciiiceicteecie ettt e ereenan 8
Binary NUMDEIS ...c.coviiiiiiiiieiiese ettt 8

Hexadecimal INUIIDEIS ..ccooiivivieeiiiiiee ettt eeeeereeeeeeeeireeeeenneeeeseeaeeessnes 9

Symantec C++for the Macintosh: The Basics

OCtal NUMDETS.......ooiiiiiiicieieeeterete et sa st e eanens 11
ASCIL CharaCters.......ceeouervereerieeeeetentenieteeestessessessessessensessessessessenesseennens 12
Bits, Bytes, and NibbDIEsccoecerieriiriiniiiiinteieeie et 13

Kilo, ME8a, Giga....evueerirerienieeeneenteeienieetentesiesiesresseres e ssesen et esennesseeeneens 14
Signed and Unsigned NUMDETScc.coceveviiriininieneienieniencnerienieeeeeee e 15

Ones COMPIEMENLoocuirieeierierieeieneeteeiienteetesrestesreeeeeseeeeseesasessenes 16

Twos Complement RULEcoccoveeririniiniiinenieinenenecnieseeeceresaeee 17
LOIC e itieitiee ettt e sttt et e e et e e ree e sret e s abe e e bee e she s e snaae s nreesbesenraeenannes 17

AND OPEIatiOn..cccuveerereeenreercriiinirienieeenieeeesenesreessseesessnessseesssssesssses 18

OR OPEIAtiON ..cceeevierreuieereeerciiieiiiteirtteerreresenreeesreeseeeeesesseesssessnsessssees 19

NOT OPEIationccceeeerueerreriiiiiiiiiiieeneerereereereeeeerrerreesesreesssereesaes 21

XOR OPEIAtION ..c.euuvviiieeeiiieeeeririteeeeeiteeeeseirreeseessaeesesssssassessssssessssenens 21
SUIMINIATYteiiiiieciie ettt et et e ettt e s sitessseeessbaeessbeesessneesssesssaasnseees 22
EXEICISES .uvveieiiiririienirereiteeieeeeceteestte ettt essuteessateessbeessssaesssseeesnsessssasensenes 22

Chapter 2: Object-Oriented Developmentcce0000e27

Procedural versus Object-Oriented Programming..............cccoeevveueenenenne. 28
Procedural Programming..........cccceeeveienuesienieneseneeniensessensessosessessansnens 28
Object-Oriented Problem SOIVINGccccovveuvierieniiiiiieiicreceenieve e 28
Putting to Rest an Old Myth.......cccoviniieiiiieececeeeeeece e 29

OOP aNd Ct ettt sttt ss e aeeseeas s eas e s nnenns 31

Advances in Development ENvironmentsccceeeeveeeeerenenneresnenenens 32

Objects and CLasses.......cceovrveieiriereireieerieeeee ettt ve e 33
ODBJECLS c.eiureeierieereeteere et eeeereeeesteertete e e e teesseerbestesseetesrnsesesnsensessrensesns 33
CLASSES ..vevvenieieeieeetetetete ettt e e st e st et et e et esseebest e beseaeeseesessessenseneens 34

Messages and Methods..........ccooeueciiirienniiiiineinccccceeseee e 35

ENcapsulationcccocevuieerenienieiencecsenese et 35

Class DIiagramS........eccverueeriererreeeeseesirseesteseesteesseeseesseessessessessesseessesseonss 35
MEthOdOLOZYveeeviereeriieieieeeeteetrrree ettt rs b trenveenvaeneas 38
Specifying Fields and Methods........ccccccevvirininieecinecieecceeecee e 38
Subclassing and INheritancecoceveevevieniieieeeeeieeeceeee s 38
ADSLIACt ClaSS ...c.coveriiieiicierieieteiercere ettt ene 39

OVEITIAING. .. coveeetereirieeeieiet ettt ettt ettt b b ss e b be b reereensensene 40

Multiple INheritancecoccovevveeereririenienieeeeee ettt 40

Polymorphism and Dynamic Binding...........cccceeevevveieeeieiecieeecrecrerenen, 41

vi

Table of Contents

Tterator MEthodsc.coevvivienenriieiirerrestecieereeesiensesess s s seseesaeaenses 42
Where to Begin an Object-Oriented Programccocecveeeevevueenrernenens 44
SUIMIMATY ...ttt ettt ree e sttt sest e s aee st eee s st eesetesneesans 45
Exercises—Programming with ObJECtS......c.cceeveververerrurrervenenenenenenennes 45

Chapter 3: The Symantec C++ Environment.............47

Getting Started with Symantec C++ ...oovveververvenieniiiiieiiieceeesesece e 48
Creating @ PIOJECTccuvievieiiiieieieeierecettessnnesssneesesssesssanesssessssssesssssassonses 48

SEEIMEIILS ...ueeeiireiiirieiiieeeeiaeeiireeeeaeeeseessssatassseesssssessssssesastesssssessseassssanens 51
Creating a SOUrCe Filecoiviiveeeriericeccreeee e ste s ae e 52
Adding LiDIari€sccoooeeuecieiiecenieceesiesteseesesiestessessessesessessessessessessessenes 53
Compiling the Programi...........ccccceeviecieeveeererneeninniesiesesssessesssssesesssesssenses 54
Running the Programi............cccceeveeievieeieeeceneenecteereeesssessseseeeseessesseessennes 55
Building an Applicationcccueeeiiervieeeeniensierieerienteeesreessesseeseesaessesnsenes 55
SUININIATYveiviieeeiieeceteereeecreessreeeraeeeessnessesstessanesesssessssesssssessssesssasessssasen 57
EXEICISES .uvveivivieeeiieieiieeeiieeeiteeeeisteessaeessseesseneaesssesssseessssesssssesssseesssssassreses 57

COMIMENLES ..ottt sttt et et sb e eabe s besbee bt ssnbesentesnnaens 60
StALEIMEIILS .eiuviieeiieieieieite et eesreeesteeeebee s st eessnaessanaesssneeesssasssseesssseesnsenns 61
WHILE SPACE ...c.veveeeeiiiictieectceee ettt se st st sa et basb et e b e aesaasre e 62
VAIIADIEScuoeuvieieicieieeeececteeee ettt e ea e et r b e e baeran 62
Reserved Variablesooooieeiiieeiiiienenenenesiesresesese st enessessessesnens 63
Predefined Variable TYPeScccouecueviiviriniiniinicnienenenenieicteneresiennens 63
DECIATALIONSceeeevieieiieeieieeeeteeiste ettt sre st e e s sesresbe s esbessasbesaesaens 66
DEfINItIONS ..uvevererreieieeeeeieeeeeererteestesseesseestesseesessesssassasssessesssessessesnnens 66
INitialiZatiON....c.eoveeieeeeiieiee ettt e e e e e ere b ennens 66
Signed and Unsigned..........c.coocveiiiiiieicciincieeieecieeceeeceeereeeeeeseeesseeeneens 67
Specified CONSLANLScccveeviereiereeieceeeteeteeeneesteeeesteesaesesteessessnessaeses 68
L0gICal VAIUES......c.viiiiiiiiiieiiiiceceteccee ettt rte e er et baeese e e e e saenes 69
SEIITIES ..uveiiieieeeiereeteeeiteeeesreeste e s raeesteeesesssesentessessaessssesssessaesnsensaeensessssenses 69
String CONSLANTScoceererireiiiierieereeeriresiee ettt eseesseeessseessareneas 70
SCOPE cevretirecttietecritte e e eerte e e ettt e e ss s st eese bbb e e se s s sra b e see s ab et e s s bntte s bnnaa s branaeas 70
OPEIALOTS ...venneieririirirtinitee e seireeeieeesssste bt s eereeseaeessostesensesssseesssnanessssens 70
Unary Prefixed OPeratorsocveeveeeereerienenrenieesienseneesesiesesiessesseeasens 74

vil

Symantec C++for the Macintosh: The Basics

Deferencing — *ccoceeevereereneneneniereeenteesessssssesessesessssesesessssesesenns 1 4
Address of — &.....ocevevererrcneneecnnnnns ettt ettt ettt aenes 75
Negative — —.....ccoovveireinnnne cereeenneeaes e eete e et e st e seete s raereasearanan 75
Ones Complement — ~.................... ettt et ettt et nes 75
Logical NOT — !......... ettt ettt b ettt et e e tennneaans £

Decrement — — —....ccoccvvvniriiinicrinnienns ceeeeerereeerrere e s e tresebesraesearaenn 77
Size Of — S1Z€ Off) ..veveveueereiierieieerictrce e 78
Cast to — (cast).....ccccee.... ettt eates reeetenteeee e e e s te e st e naeneen 78
New Operator — new.....cc.ceeeveeeueeneen. retteeerterete e et e e s raeesaeseraseenanaas 79
Delete Operator — delete.........ccoueirivirenierieerieenieeeesieeeeseseeenaens 79
Unary Postfixed Operatorscccevvevervevevenenen ettt nena 80
Function Call — ()..ccoeevevvenerenennene ettt ra e ereetas ceereeeennn.80
Array Subscript — [Jocccoeverenenerennene. eetetet e e e ae s ereaenaas 81
Dynamic Arrays, New........ccceueeenenen. ettt e e rtr e teee s s neeennaaees .82
Dynamic Arrays, Delete..........cccoevevevennen. oo eeeraans e 83
Direct Selection —c.cocevueeeenieineeieneeeenreinienans ceeeteetent e eeeaeraans 83
Indirect Selection — - > e ettt ettt ettt nes 84
Increment — + +....... ettt e et 84
Decrement — - —....... reete e s te e st e s s rae s rraeenserans rtee et e e eteearaesnnes 85
Binary Operators—Arithmetic and Logicalccccccveveerivieeenrennnnee. .85
Addition — +..c.oooveeieeieeeeeeeeen eereerrer s eeree e e e et e rae e reeraas86
Subtraction ——........... ettt ae s e ettt e et rans 86
Multiplication — *cccoeevvevirerreneririenereeeneenenns et aaans 86
Division — /.....cccceeuunee ettt ettt ettt tanenans rereeeeseenenteneians 87
Modulus — % ettt et aeaes 87
Bitwise AND — &...cccoevvviiieiiriininennenennneenns et s eeas 87
Bitwise Inclusive OR — | et e et e e ettt r et et esenns 88
Bitwise Exclusive OR(XOR) — " ..cuvvreieverereevnreeirenns rerrrrreereeneenenn 89
Left Shift — <<.......... veeverreeertererens ettt enanens vveneenen90
Right Shift — >> ...ccvivveriereennne. e vreveernrenrenens 90
Equal (or replacement) — =................. ceerreetente e e te et e teerearaans) |
Binary Operators—Assignment.................... et et r e st eareeeeares 91
Addition Update — +=.....c.ccecuenueneee. reereere ettt st ebe e aes veeen93
Binary Operators—Comparison rertererteeereeeraeresaraeenns creeeenn .94

Table of Contents

Logical AND and Logical OR........cccccceveruevurnrenenienenienseeeseeraesanssenns 96
Ternary OPerator — ?:c.ccvvivieveiiniiniininiininineresseeesesesssosesssesesees 97
ComMIMA OPETALOLcoeerrvverrrererrerrrerseersnrenestesnsisnsessrnasssesssessessssseessassssenes 98

SUIMIMIATY ...coiiiiiieeieeiieesterresne st e seesresestes et e sesenteseasessnnassasssessnasssassssaesans 99
EXEICISES couviiviiueniiiiniiiiiiteieninitesstsesecntsae st es st ssbtesesate s e s sassnsestesneessesssassesnse 99

SEALEIMEIILSeeeueeeriiecieetrerereeesnteseeeeeesseeeetssseesaeesssaessuasssesssessanessesessaens 104
Expression and Null Statements.........cceceeeveeeievenierenresieseseeensereesennes 104
BLOCKS ..veviiieiiiicietnieisiet ettt ete e ste e sse e e et e e s sasse s ssasaenaen 104
Lf ettt ettt r et b b neas 105
IE-EISE .ottt testestestestes e st et eseessesseesestesesaessesaessasseseennassensaneans 108
EISE—IE ...ttt ettt st s ae et n s 109
SWILCH ..ttt sttt st nas 110
SWItCh—BIeaK.......ccceviruiirirtieiieieeteesteteetete ettt nesens 112
Which Do I Use—Switch or If-EISe?cccoceeeerenenenenenrenienienreseennens 114
WHRILE .ttt ettt ettt et een
DO-WHhile LOOD ...coveurreninreiiereteentnienienteseesentesentsnessestesessenensosessessesenss
FOT LOOD . iiieeiciiiiieeeiteeesiteseneeesseeessseessesasesonesssssnssesssesansesssssaassssananes
While versus For
BIEAK ...uiiiiieiecete ettt sttt st sttt et e raeaene s
COMUIMUE.....eeuiiiereeeiiieerrrteeeeeierreeerereesesesttteessaneresessssesesssssesesasssnsanes
Labels and Goto

SEYLE ottt s r st ens

Error from FOrtranccceeveeveeneneenennenenenne

Rule 1: Placement of Curly Braces.................

Rule 2: Use Curly Braces on All If Tests

Rule 3: Space Between Statement Keywords and Parentheses.............. 125

Rule 4: No Space Between Function Name and Parentheses................. 125

Rule 5: Use Spaces Between Binary Operatorsccocceceeveeververereennnas 125

Rule 6: Use Spaces After Commas and Semicolons..........ccccoveeeevenenne. 126

Rule 7: Capitalize Every Main Word in a Function Name 126

Rule 8: Capitalize Every Main Word in a Variable Name

EXCEPt the FirSt......coevuiiiiiiieieieienteieeeeseeeetesteseste st estessesasessessaseessnasnas 127

Rule 9: Use Blank Lines Only When They Convey Meaning................ 127

Symantec C++for the Macintosh: The Basics

Rule 10: Go Easy on the Use of Underscore (_)eoeeveeeerueecerreeenennes 128
Rule 11: Use a Break on the Last Case of a Switch Statement.............. 128
Rule 12: Operators in Definition and Declaration Statements 129
SUIMIMIATYcccriiiireeiiieeccteccreeesrreeseseaeesreeessteessseessssessssessenseesessessnseeessnes 129
EXEICISES tiiuureiiiiriiiiiceeceeretee sttt eneete s sareeese s ste e s s s snnsaessssve s s s nsnnanas 130

FUNCHIONSeeeiiiiiiiierreieccicciic et enrce e s ssreesesaeesestesesneessasassssassssenannns 135
A Function Definitioncccccoceeveirvinrienennienesseseereeneeseeessensesseesaenses 135

A Function Definition Example..........ccccooevvevveeeeeeeeneerinreseenenens 136
Function PrototyPes......ccccceverieiiiieeiiiiiinniienrieessnteesseeesennessssessssasssnnns 136
Variable Number of ATgUments.........ccccecueveeeeeerenresrenenreeseereseesnesnenns 137
Passing Function Arguments........ccocceovueveeiierserinieineeeseseneesscesessnesennens 138
Passing by Valuecc.coeveeiriicicinieieccrccseteee e 139
Passing by POINterccceeiereeneeiiienenneeseeseseesteeeeneeeseeeaesseesnessnes 139
Passing by Reference........ccccevuevuieveniinieniinienieniereeneeenseseessessessesesseesenses 140
Default ArgUmentsccoceeverererrinenenrenesesesiessessesseeseesesseseessessenes 141
Passing Multiple ValUuescceeueerreuereeeeeererenneresssseseeesssesssesssenns 142
EXPLICIEt VOI ..cuviiiiiiiieeiicreeeiecteetrere e ercreesaessesse s e sasessessessesanenne 142
ThE StACK ...ccueiiiiiiriieirccceee ettt ettt a e ve e et sa et s e ae e esen 142
ThE HEAP.....cucoieeeeeteeeeer ettt s e s e stesaeae e se s asae e s e s nnens 146
C and Pascal on the Macintosh........cccoceeeveienenecenesenececeeeeeee 146
Procedures and FUNCLIONS.......cccceeeerrerenrinvenenieeecsessessesseesessesaesnesnenes 147
Order of Parameters Pushed.........coccoevievieieiienienieiciecercreceeeeneene 148
TYPE CONVEISIONcovvrriirniiiiieirieeiiiiiesieeeeteesesseessreeesseessssaessessassnaases 149
Variable Storage TYPES.......ccveeurrereertrrernerinrinresisessesensesessessessssesesessessenes 149
“aUt0” Variables.........cccoeeevrinenenieninieneseiese et ere e 150
Static Variablescccoevirininiiniiiniincnene e 150
External Variablescococieeiercieniinerieneciececeteeeceesee e sse e e ssnens 151
Register Variablesococvoeieeiiiiniiieceeee e 152
“conSt” Variablescoevevvieeveniertiniecee et cre e ee et aesaeenaeens 154
Reference Declarationsccocevereeeevinenenienenesiensessessessessessesseseeseessens 155
Right—Left RULE ...c.oooveiiiiiieerieteceeerenrener et st cssscenesseessessessesssenns 156
Function Overloadingcceceveeeeerenenenieniesese e seesee e sseeseeesensnens 158
Scope Resolution OPEratorcocceceeerenresenieniesesiessersessessessesseseseeseesnens 159

Table of Contents

Inline FUNCLIONSecveuveieieieeieieeeeeee ettt e et be s reerans 159
C4 PIEPIOCESSOTeeeeeeeiieieeteettete sttt et cate et e neeseeeere s st esaseeseens 160
Conditional DIFECIVES ...c.ccverveverieeeereeeereteeeereeseeeeaesessessasaesseenes 161
C++ Preprocessor EXamples:.......cccveeevereereeniereninnienienienneeseseeseeseens 161
#define versus const and inline.........ccoceevereeinienenienieneneree e 162
The Preprocessor and COMMENLScccruevereriruerererieininrerereesieeneesens 163
SUMINATY ..ottt et sabe e 163
EXEICISES 1uveiiieceiieeiieiie ettt st e e s eeee et e e e s e ateeeesaseaeeesnmenaens 163

SEICAIIIS .eouviiiiiirieiiiiriteeeree e teseree et e e eneresrres s bbesesbe e s e sranessstesnresssmnesenases 166
I/O Channelscooieieiiiiicieiieeeeete ettt st 166
Predefined I/O Stream Manipulator........cccccceveevenieienennnnecnenieeenennen 167
Generalized ESCApe SEQUENCE.......c.evveueeueereeemieeiieieiererieeeteieseenaeseesens 167
Formatted OULPULccccuevvieierreerereeeeeeesieeeerece e esae s e e e s e eeressseneas 168
Advanced FOrmattingocceevevrereeeereeieeesinnnsesteneeeeessessessessessenns 169
Input Stream EXamplecooceviriirenieneneninienesese et 170

I/O on the Macintosh.........covieeeieeiiiieieiererie et eete e e e veesaeenans 171

SUIMIMATY ..ottt ettt ee st smeesne e 171

EXEICISES .uveeeveereieenienieeneeitenit et e ettt s bt e e st e e ne e e e st eemeesareesanens 172

POINLETS ...coiiieiiieeiieeee ettt ste e et etee s sate e sareeesseeenabesenbaessanenesan 174
Initializing @ POINLETcceeiviiiiieerieieeeieeeeeettsieeeeesseneseeesressneesbeeesnas 175
VOId POINLETS ...uvevriiieeeieeeieieee e ee et e st et et et e st e sae e st e b et asaeenes 176

ATTAYS ...ttt e te e estte e saa e st e e s bt e s era e e s bae e e seaeanbe e s raaessraeaas 177
Initializing Array Values........ccocceievevieneceneninienenenenencsreee e 178
Initializing String AITAYScccoeviiereerrenieneriiiereterestereseereseeneeeens 178
INAEXING ATTAYS ..oviniereiienieeieieeieieresreereeeete st sieeseeseesessessessessessessenns 179
Array ASSIGNIMENLoviviiiiiiieeirreiiteeeerreeeree sttt e sireeesneessvessnseeesseesens 179
Multidimensional AITaysc.coeeveveneriereninieneneneerenesreneeceesesnenne 180

Free Store OPeratorsS.....ccccvvuuuerieiiiereiieiieeeeietitetereeireeerteeeseessnsesaseeees 181
TeSting fOr SPACEcccvievirieieeireiee ettt sttt r st ees 181
Destroying Heap Variablescoooovvivveinienninnienenisreereesieeseennes 181
When to Use Dynamic Memory Allocation..........c.ccoeeeueireeenecnnnens 183

Symantec C++for the Macintosh: The Basics

Enumerated VAlUesccocoeeieienieieceeeeeeeteeeice et eaeae 183
Enumerated Variables........cooovverviieniecieeeeeercce e 184
ENUMErated TYPES ...ccuvvceeiereierierierietentereesteeesaesee e ssesstesaesseasassees 185
HEYPEAEE" ...ttt ettt ettt ettt en 185

SEIUCTULES.....eeeiieeeieeiiteeestteeee e ersteesattesreeesreesereestaessssasesssnesssesssneeasses 186
Declaring a StIUCEUIEcovevevereeieirireerereeseesestesesseseesesaeseesesessaaesesas 187
ANONYIMOUS StIUCEULES ...eeveeneerrieierierieneenteetestesrrseesseesseestensessesssenses 188
Referencing Data Elements of Individual Structures......................... 188
Paddingcooooviiiiieiieeeet ettt ettt s a e 189
Creating an Array of StrUCLULEScc.evevververrereerierierieeeeeeeseseeeae e 189
Structures and Bit Fields......cccoceevervvririnieieieeeeceeeese e 191

UDIORIS e ettieiititireeeeieesireeeeeeeeeresstteeseeesnreessataeesseeassnessssesssssseessesessssenens 192

Operator OVErloading..........cceeeeverieeienireceeiteseee e sreereeeeseeseessseessessees 193

Member Functions and StrUCtUIESc.ccoveeieveeieivenreenreeeeereereeeecsvennes 194

SUIMIMIATY ...tiiiieerire ettt ettt eeeteseteeessbeesibaesaneeeessnaessnsessssenassnne 197

EXEICISES .uuvveieieriiiieeeiieeesreesetessiteeeerttessteeseseeseuteesusasesssnessnsnesosesssssasanns 197

Chapter 9: Classes in C++.c.ccevreeeccsseccsssseessssceosssses 199

Defining @ Classcccocevueireerinierieenieinerieesteteiestesesseste s ie st et ssassesaesas 200
Classes and SEIUCLULESccceeeveeerieerieereeeireenrerereenreeseeeeeesseessverseeessesenees 201
Data HIidingcoooeerieiirieeieneeriteieeeetee e st eteseeesaeensessesseessesnneens 201
ODBJECES ..vviviiviirecrreticeeteereeteerre e e e s e beesreebessee e eseseseessersebsersensansresres 202
MemDbEr FUNCEIOISc.veeveereerierieereeeeeeereereerreeetsereesseestesseorsessessesenes 202
COMSEIUCEOIS .eviievverieeerniireeerrieeeeeeertteeeesisteeeeeessrseeesseeeesssrareesesssseesesssseees 203
IDESEITICLOTSvviieeiiiieectree ettt e e e sttt reeeeateseeeeensesecessrnreeeessssssassnnsaseessnns 204
Initializing FUNCHIONS......covviieiiicicieiintit e 205
ACCeSSOT MEthOdSvoooeveiiieiieeiie et 206
COl1aDOTALOTS ...cuvveeerecriiireereeit et et esrte e ste s raesbae st e be e tee s bseereesraeensaessees 208
FIIEIIAS. ... ettt e vete s e e e re s e eesreenreennesbeeanennsereenseen 208
Friend Class......coveerieeiieieeiiecieesreeeieeeireestaeeseetreaeesansebeessaesanesnveeennes 208
Friend PUNCLIONS ..eovieveiieciieiieieeteeete ettt eene e ereersenteeneenes 209
Data-Hiding CONVENIONcoceeuiiiieuieierrerereenrereiteiensentessessesseeeneensenee 209
SUIMIIMATY ...iiiiiieeeiieeette ettt e ernree et e staeesareessneeesbreesssneessnsaessressssunaseses 210
EXEICISES .ouvvvieieeinrreeeeiieeeecittreeeesciteeeesttaeeeeeenteeseeereseeeesnnsasesssesaseonsssaenas 210

Table of Contents

Chapter 10: Linked List Exampleccccerneecerneecceneec213

Statement of the Problemcccooveiiievieceeeniireiceeeeeeeeeev e 214
Creating a Circular LiStccccueeverieuireeeeierieieeeeeeeiee e 215
Adding and Deleting NOAES..........cccoiruerieeveerieinininieeeesieeeseeeresenenenas 215
Building the Code.........ccoueuiriiiinieiiiieieeee ettt 216
Creating a Friend Class..........coceevevevrenienieniennieieieceesreeree e 217
InSert FUNCLIONccccuiiiiiireiieiitiiie et etee e ee et 218
EXtract FUNCHIONcevviieiiiiieeeiiee ettt e e sine s sree e sae e s eeean 219
InputData FUNCHIONcccoviieeiiiiiiieerieenicieecitecsiteesee e 220
DisplayData FUNCHION..........ccovuviimimiiinireiiiiccccceeneneeecerenenene e 220
DESTIUCLOTL «...eeiiiiieeiiieeiireniteeriteiteeereeeeentresteessitreessateesrsaesesssesnssnens 221
Writing the Main FUNCtion.........ocecieveeeeniererenieeneeseseee e 222
SUIMIIMATY ..ottt ettt et se e s e e et e s vaesresesaeeesaenssens 223
EXCICISES ..uveiiiiiriieeeieecet ettt ettt seete s st e e s iae e s vt e s nessnbaeennraaanes 224

Chapter 11: Subclassing and Inheritance..............225

Defining Derived Classes.........co.coueiirereininieinieninententeesseseneeessessesens 226
Virtual FUNCLIONS ...ouvieveieviiieeeiierciecre e eneeereetecaeestesneesneenseorsensessesssesnsenes 227
Pure Virtual FUNCHIONScooieeiiiiieiveeneeenreereeeneeceieeere e esaee e eeneeens 227
Protection KeYWOrd.......c.ccceoeeviieiieiieiieieeieeeeteee et v e ereeneeneen 228
Constructors in Derived Classes.........ccoveeerveeveenreereiieenreenecececsreeeeenean 231
Destructors in Derived Classesoovvvereenieeieiiriineiieereeeeseeenvesenenes 232
“T" Punctions in Derived ClasSesc.eveeeeerveeiiriiiiieeeeeieeeseesiesenens 232
StatiC MEMDETS.....c..coviiieiieiieiecriecte et creecte ettt sas s sas e 235
Static Member FUNCLIONScceeevveeiienieeiienricee et 236
When to Use Static MemMDETS.........ccoeeeevieeieerierieeecececee e 237
Creating ODbjects (INStANCES)ccveiiivieeerieeieeeeieere e eereere e erresteennens 237
DyNamic ODJECtocvieiiriiiieiicieeeecte ettt et erverr et ere s eae s 238
Initializing INStANCES.......ccvevveveriereeieieeeieriesiet ettt eerenens 238
USING INSTANCEScoouveueieiieeiieeiieeetecteerteseeeste et e e et e eeeesresanessrnesevnanes 238
WHhiCh FUNCHONS?......ovieieniicrecreerece e ete v ereenrsereereebeereesane s 238
WHiCh Data?ooveiieiiceiee ettt ettt ettt s st s asesaeessneens 240
Accessing Member Datacecevvereeeenieerienienineesieeeeeeesessenessessnessennns 240
The C++ “this” POINLEr........ccocuviiiiiimiiiiiiiiicceccc e 241

Symantec C++for the Macintosh: The Basics

Chapter 12: Phonebook Example.......ccccceeeeneeeesss. 245

Source File Organization........cccoceeieriinrirreerienesieseseeeeseesaeeseeeessessenns 246
Naming CONVENIONS......ccccevrveererereeiierriieeeeneeessteesiieeessseesesssesaesssssaesns 246
Class Diagrams.......c.oceeeeceereenieeiieritenienieentee et et estese e tesneesieessessasnnessans 247
PhONEBOOK PIOJECE ..ccuviiiiieieeieeiteeieeeiestessteeetasstesseseseesssesssnessasssnessses 247
USHING. R ottt s 247
USEIINZ.CP vevreeeieeieerte ettt et e e sttt e it e e e bt sbe e baesabeesaeeereesavassunes 249
UTelephone. h.....c.oooviiiiiiiiieieeeeeece et sre s b e naee 251
UTElePhOnE.CP ..vovvierecerieieieeeteieeteeteteeree e stebeeaesea e e sssesseesaenseenns 251
UPhoneBooK.hc.ooviiiiiieee e 254
Class TENLILY c.vvevveiveeieeiereneereeestesteteseeaeessesesteesesssessesseessasssssansns 254
Class TPEISOM.......ccueecierireeiieeeestertetee e essesstestessessseesnessesseesssssaessensees 256
Class TCOMPANYcccverrereeeeienrenrenierientesiesiessessessesesssessessessessesesssessenes 256
UPRONEBOOK.CP ...vvevvieireeieseeeieeeeeiteeiieitereesstee e seasaseessesssesssessessasssennns 257
PhONEBOOK.CP ..ottt ettt ettt et sae s e s nes 257
Pause ROULINE ...ccccviiiiiiiiiieeeieeencteenitesnieeesttessineerereeestnessveessaeeenneas 258
SUIMIINATLYviieiieiiiiececree et ee ettt e e et e e e e e bbeeessases e e ssaaaasessssnessanssssanas 259
EXEICISES coiiiuuiiiieiiiiieieeiieeeeetee e sttt e e ssnereeesssnreeesesreaeesssnsraeesseseenesesassens 259

Chapter 13: Advanced Features of C++ ..ccceveeeeeeess261

Inline Functions in a Classcecceveeieieieieieieeeeeecee e 262
Operator Overloading in Classes........ccceevvvvererceeineieceeneeceeeeeee e 262
Pointers and ODJECLSccuvievieccieeieeeieeieeireesteeereereenreeerreerveesareeresenseeennas 263
Shape EXAMIPLE......coiriiriiiiieieietetententenietenteste e st e e e e ee s e e ssas e annans 270
TEMPLALESeviviiiiieeiieie ettt ettt ste et be e be e e s re et eraeeaareens 281
Template for 2 ROULINE.cccvieeiiinieieeeeie ettt 282
Template for a Classccvceveriireeiiinirieeeeeseese et 282
Multiple INheritanceccoveverereerieiieeninereeeeeee et saesaeaas 284
Ambiguities of Data Members in Multiple Inheritance.................... 285
Ambiguities of Member Functions in Multiple Inheritance.............. 286
SUMIMATYoiiiieeiiiiee ettt ettt e ste e e e e crre e e e eee e e e areseesesassassennnraneas 288
EXEICISES ciiiiiiiiiiieiiieieette ettt et e saae e s e e s seraae e e aene 288

Xiv

Table of Contents

Chapter 14: ToolBox, Memory
and symantec C++ oooooooo.ooooooooooooooooooooo00000000000000000289

Using the TooIBOX from C+....ceevivirieriieieerieeeeneeenieeseseeeeseesesseseesens 290
Pointers and Dynamic MEMOTYcccovererieneinierineneneneeeeiesessesessens 290
MaSter POINTEIS ...ocouveeereeeriiieeiereecteerie ettt sesereses e s saee e e 290
Dereferencing a Handlecccoceveveniecenenicncnienineneenenereeeeeennenns 293
The Keyword “inherited”cocoeriiereeveereenieneneenieiensenresesseesesnennas 294
SUIMIMIATY ...vveeiieiireeeeriiteeeeiirteeeesireeesesteaesesonnereesosssnsessassssessessssessssssusenens 295

THINK Project Managercccecveerieeriiveeeoseeessiuessiuesssruesssssesssessessaesns 298
SOUICE MENU....cceuieiiiiiiiiieiieeeieecereeeeesesreecesetessstesssnessssesessnsessnsesessenes 298
Adding, Removing and Getting Information on Files........................ 299
DIEDUG.....ceveiceeeciecte ettt ettt e e e s be st e st e sta e sraestse e sneesseenteereennns 300
SOUICESEIVEY ...veeevvieriieeiiieisiieeesereesreessssteesssessesstessesssssesessseessnesssnsens 300
Checking the Syntax, Preprocessing, and Disassembling.................. 300
Precompiling, Compiling, and Making a Projectc.cceevevvrverennne. 301
BIOWSEY ...viiiiiiieieeiirteeireteeeeeeereeessteeeesesaentesseeneeessssnensessssaressassnseaesas 301
PrOJECt MENU ...cueeiiiiiiiiiiieeecceeeeeseeeeeseirete e s st e seesneeeessesasteessanennesanen 302
CloSing the PrOJECt....ccuuvveiverieeierieeieeeeeceeteierteee et e s see s b aeaees 302
Setting the Project TYPE ...c..covcvvevieiereereeeeeereeterisesnseeseeseessassessenses 303
Bringing the Project Up t0 Datecoccveeeerrienenenierenenennceneneneee 304
Using the Debugger and Running the Program............cccceceveeerveennne. 305
S€ATCH MENU.....oecuiiiiiiieesteteeeceetesre sttt e be e beseesaesneeessensens 305
G0 To and Marking........c.cceeveieeeierreceieeeer ettt 306
Edit MEIU ..ccvviivieiieieeieitcier et ecre e eaeseesseessesssessassnasaessassssessansassassenns 307
SpeCific EAIt IEEMSeveviiieiieeeteree ettt 307
Tabs and FOMEScuecviiiiieniiiecieccieciecereeseeesresaeesaeenvnessbeseeesanesssesnns 307
Shift Left and Shift Rightccccovviivienenininiieieececcceeeeeene 308
BalanCeS.....uooveeereeriieiietieteeeee ettt ee et et e seaerae e e ae e e e sseesae e 308
OPLions MENU.....cccceriiiriiiieneieecriiiiiec ettt as s saas e 309
THINK Project Manager OPtionscccceeiiiiiiiiinnnicinneniieinnieennns 309
PIEIEIEIICESveveenreereereenrictreceeetesienteereesee et etrseesessaessessesneensasssanees 309
EditOT oovviiiriiieerricierireeete e sreeeeree e e sesssesseeeesesresssessnessaesaarsessaenes 311

Symantec C++for the Macintosh: The Basics

DEDUZZINGoevevireereiereeeeeieieeteteste e eesessese s aste e esessasesseseesassenes 311
EXEENISIONS ...eevveeeeiieiriirnntreetereeeeeeesassosssssseneeseesssssssssssssessssssssnssnsnsnnas 313
Project WIndoW......coceeeveeieriiiiininiienteeeees e eeeteseesteeses e seneesaesanes 313

L0 COMVEILEY....cuveeeiiiiieieinirerieteeteesssesssssssenseseseseessssssssnnsasssssassssssssnsnnnsnes 314
SYMANLEC CH evrerirriierenieniieniiiieseiieentesesssesssesesestesaesssesstontessssssesses 315
Language Settingscovevvimniiiiiiniiiniienninnnicnae s e esseens 315
Compiler Settings........coevveiiiiierininininiiniiin 316
Code OptimiZationcocceveeverreereerenenreeieertenieeeseeseresssessesseeeseesesses 317
DEDBUGEZING ...c.veveveeeirieiirienceintneceees et sessesses et esee e saes e sanens 318
PIEEIX c..voveveiieceieeesreeneeeterstesste s e e s eeneeses e eesaesseseensansaasestassaenssesens 319
THINK C..eeevierecteeriereesseesteestessesesssaessesssesssssssssessssssassssssassssssssssenss 320
THINK REZ.....cveiveenrirriereerseeireessessesseesseessesssessessesssessssssasssessessasssssssanes 320
File MIENU.....cveeeeenreeeienresteieeeereereeeseessasseeseensesseessessessaessessassssassessessasnsennes 321
WINAOWS IMEIIUceevieereerecerreetresiereneeeseessseesssesssnesssessssesssessssessesssensasens 322
THINK DEDUZEEToooveirieieiieiiiiiictiieeeiecestestestsentseesstesiessesssesssenns 323
SOUTCE WINAOWcvvieirieiieienciennetenreeennesseeesaeesteesseesssessseesssessanessassnnes 323
Data WINAOWcocveerieerienireriiereiieneeeiseeessesessessesesssssssesssasssssssesssssenes 324
FALE IMIENULouvviinviicieertreetreeeeeerescttessaessasessaessssesseessasssssssnssesssesssessanns 325
Edit MENU ...veeviireeniereeniereereeeetetetereeeessesessessessessessensessensassessessersessans 325
DEDUZ MENU......cveeuieieiirenreeereeteresreesessteeesesssseeseessssessessssassesssassaseas 325
SOUICE MEINU ...ovveirieerieirenieeneeeireesteesiseessaesssessseessasssssssssessaesssasssesnns 327
Data MENU......ccciiiiiiieiiiiineieeeieieseneesnneeteeeeeeesssesssssnsesseseesssessssssssssssseses 327
WiINAOWS MENUcivirriereerteeieereeereeeesseeseesssessessesssessasssessaessessasssssssenss 328
SUMMIATYoeiiiiiiiriieeereiieiireennit et stsssste e ssasessnsessssessonseseses 329

Appendix A: Glossary....ccccccceeeccssrecccssecccsseccessseces 33 1
Appendix B: Bibliography.................Q..................337

Index...ccc.. - cesessssses cese 341

Acknowledgments

We'd like to thank the following people for all their help with this book:
MA&T Books for giving us the opportunity to write this book.

The folks at Symantec Corporation for their wonderful product and their
assistance in this project.

Tony Meadow, Randy Matamoros, David Taylor, and John Wilkinson of
Bear River Institute for invaluable cooperation and help with all aspects of
Symantec C++ 6.0.

Larry Horwitz and Ray Valdés for their detailed technical review and edit
of the manuscript.

Tom Condon of Becton Dickinson who kept us apprised of ongoing changes
in the product.

The University of California, Berkeley, especially the students and faculty
in the Department of Electrical Engineering and Computer Science for their
feedback on the manuscript.

Carole McClendon of Waterside Productions for hooking us up with M&T
Books and her assistant Belinda Catalona for keeping us on track.

Margot Pagan, Project Editor, and Mark Masuelli, Production Editor, of
MA&T Books for all their fine work, pleading, and encouragement throughout
the writing process.

Symantec C++for the Macintosh: The Basics

Mary and Shawn May and Pat and Paul Whittle for their assurance, inspi-
ration, and support, without which this book might have been impossible.

A big thanks to you all.

xviii

Preface

here are many object-oriented programming languages(OOP), including

Object Pascal, Object Modula, Eiffel, Objective C, Self, Simula, Smalltalk,
Common LISP with CLOS, and C++. Some are quite old, others are new. For
example, Smalltalk was defined in 1972, while Self was invented in the last10
years. This should tell you that object-oriented programming is not new, but
that it has taken some time for it to become mainstream technology.

Object-oriented programming is quickly becoming mainstream technolo-
gy. I believe that the primary reason is that it provides a better way to manage
complexity. The rapid evolution of desktop applications (contrast Word version
1 and Word version 5), and the operating systems (contrast the first version of
the Macintosh operating system and System 7) over which they preside, pro-
vides numerous examples of large, complex software packages that have be-
come increasingly difficult to maintain and enhance. The structured program-
ming techniques that are now conventional wisdom are no longer able to help
us manage software that is this complex. Object-oriented programming is not
a panacea, and will not solve all of our software development woes. It is, how-
ever, the next step in the evolution of software development technology.

The old myths about object-oriented programming (that it produces slow-
er code which takes up a lot of disk space, etc.) die hard. Examples abound of
high-performance applications that provide sophisticated interfaces and per-
form many complex calculations that were implemented using object-orient-

Xix

Symantec C++for the Macintosh: The Basics

ed technology. Adobe’s Photoshop and Ray Dream’s Designer are examples of
such applications that were implemented with C++ and MacApp, Apple’s ap-
plication framework.

Apple Computer has encouraged developers to adopt object-oriented tech-
nology for at least five years now, after experimenting with it for more than
10 years. As a result of this, object-oriented programming is mainstream for
commercial and in-house development in the world of Macintosh software. If
you look at the new Macintosh applications from the last couple of years, that
is, applications which have been introduced and not those which were enhanced,
a significant percentage of them have been developed using object-oriented pro-
gramming languages.

During the last five years, C++ has become the primary object-oriented pro-
gramming language. Market forces determine much of the technology that we
use (videotape and audiotape formats come to mind here), perhaps more often
than we’d like to admit. Being honest about it, market forces have also select-
ed C++ as the object-oriented language that most programmers will be using
during this decade. C++ is a complex language, as complex as COBOL or Ada,
albeit complex in different ways than those languages. As such, it is too com-
plex to learn the entire language at one time.

John and Judy’s book will help you gain a solid mastery of the basic features
of C++. Once you feel comfortable with the topics covered in this book, you
should be ready to approach other topics, such as learning an application frame-
work like the THINK Class Library, MacApp, or Bedrock. Only after that, should
you learn the more advanced features of C++.

Once you are using C++, you'll be able to participate in using some of the
most interesting technology to come along. Application frameworks are col-
lections of classes that provide the standard behaviors of an application. MacApp,
Apple’s current object-oriented application framework, provides all the code to
manage memory, desk accessories, multiple windows, printing, undo and redo,
and many other behaviors. MacApp is about to be supplanted by a joint devel-
opment by Symantec and Apple called Bedrock. This application framework,
written in C++, will allow you to more easily develop applications for both
Macintosh and Windows. Once you have a Bedrock-based application running
on one of these platforms, it will only take a small amount of work to have it
running on the other.

Next, about two years ago Apple and IBM established a joint venture named
Taligent. The people at Taligent are developing an object-oriented operating
system in C++. They are also working on a powerful development environment
that will be tightly integrated with the operating system. This will enable you

Preface

to develop complex applications in less time and with less effort than with any
other current software development technology.

Anthony Meadows
Series Editor

Why This Book
Is For You

Here is a book you need to learn C++ programming on the Macintosh. This
hands-on tutorial teaches you C++ programming from the ground up, taking
you from the fundamentals of object-oriented programming to the advanced
features of C++. Special focus is given to Symantec C++, the latest compiler for
Macintosh programming. Through detailed discussions and solid programming
examples you’ll gain a thorough understanding of Symantec C++ and will be
on your way to designing efficient C++ applications.

This book is filled with programming examples you can study and learn
from. The source code has been written to compile and run using Symantec
C++ and is provided on the enclosed disk.

If you are:

A software developer for the Macintosh
A corporate in-house programmey, scientist, or engineer

Someone who wants to learn more advanced skills for customizing an
application in Symantec C++

A programmer who wants to learn techniques, beyond those presented
in the product manual

...this book is for you.

Symantec C++ for the Macintosh: The Basics

And, even if you're someone who doesn’t know anything at all about pro-
gramming in C++, but want to write programs for the Macintosh, Symantec
C++, will put you ahead of the game.

If you're already programming in C, and want to learn C++ because it’s the
programming language of the future and you want to design your programs as
a collection of objects to make them easier to write, modify and maintain;
Symantec C++ is a much more effective, and complete, object-oriented lan-
guage than C.

Or, perhaps you are a programmer who is using Zortech C++ and running
it under MPW—you already know something about C++, object-oriented pro-
gramming and the Class Library—you will want to know about Symantec C++
for the Macintosh.

Symantec C++ for the Mac: The Basics features

The new Symantec C++ compiler

the basics of programming

language extensions of C++

explanations of encapsulation and data hiding

examines inheritance

explains polymorphism, exploration of dynamic binding

Helps you to understand data structures, functions and variables: an in-
depth explanation of their structure of classes. Each chapter features a
summary of the information and exercises to help you along.

Infroduction

his book is about programming the Macintosh in C++, but it is also about

a unique and exciting product: Symantec’s new Symantec C++ for the Mac-
intosh. The product is unique because there isn’t another C++ compiler for the
Mac that doesn’t require the Macintosh Programmers Workshop (MPW) or is
completely stand-alone. Symantec C++ is exciting because it comes from those
wonderful folks who gave you THINK C, the most versatile, complete, eco-
nomical, and popular C programming package for the Mac. (THINK C is so pop-
ular that many programmers who are required to develop an application under
MPW first develop on THINK C and then port their applications. The new
Symantec C++ will run under both the Finder and MPW, something that was
not possible before.)

The intention here is to give you an in-depth presentation on the product
itself, as well as the C++ language, and introduce you to object-oriented pro-
gramming,. With the aid of this book, you will:

Learn programming basics.
Master the new Symantec C++ product.
Comprehend object programming and design concepts.

Discover the language features of C++.

Learn how to author an object design using C++.

Symantec C++for the Macintosh: The Basics

As a teaching vehicle, this book differs from other volumes on C++ in form and
order of presentation. The book begins with an introduction to the concepts of
object-oriented programming and the C++ language, goes into a detailed descrip-
tion of Symantec C++, and introduces you to some advanced features of C++.
The advantage here is that you can ease into object-oriented programming from
the very beginning, rather than wading through long dissertations on the lan-
guage, the Macintosh Toolbox, and an application framework first.

You do not have to be a programmer, or even know anything about pro-
gramming, to use this book. However, there is an underlying assumption that
you already know the Mac fairly intimately. And that you may be a registered
software developer for the Mac, a corporate in-house programmer, a scientist,
engineer, or a general user wanting to learn more advanced skills for customizing
an application in Symantec C++. It’s likely that you'll fit into one of the three
following categories:

1. A person who doesn’t know anything about Symantec C++, or even
C++, but wants to learn how to program the Mac. Chances are you know
that Symantec C++ is going to be the major compiler on the market.
You'll want to cover every chapter in the book, from programming ba-
sics to advanced features of Symantec C++.

2. A programmer who has THINK C and wants to know what’s different
about Symantec C++. You'll also want to learn more about object-ori-
ented programming and the Class Library. You may want to skip over
Chapters 1, 4, 5 and 6, and concentrate instead on Chapter 2 and the
more advanced features of C++.

3. A programmer who has been using Zortech C++ and is running it un-
der MPW. You already know something about C++, object-oriented pro-
gramming, and the Class Library. You’re mainly concerned with us-
ing the Symantec C++ product. Chapters 3 and 15 will be especially use-
ful to you.

Introduction

Prerequisites—Software and Hardware Required
The first thing you need is Symantec C++ from Symantec. If you're not a pro-
grammer, we'll bring you up to speed on programming conventions.

For practical purposes, we recommend the following Mac hardware:

B 4 MB of RAM, 5 to 8 preferred.
B A fast hard disk with at least 20 MB of free space.
B A fast processor to reduce compile times.

For software, we highly recommend THINK Reference, also from Symantec, a
comprehensive guide to system information. This package gives you:

B Detailed routine descriptions, declarations, and notes on the Mac op-
erating system.

B Technical notes, example code, and tips from Symantec engineers.
B Sections on fonts, resource types, and other Mac topics.
B Graphics to illustrate key concepts.

THINK Reference also provides Speed Search, a method of finding a topic quickly
by typing in just a few characters. Topics are organized by trap names, man-
agers, keywords, data interfaces, and structures.

All in all, THINK Reference is an essential tool for any serious Mac pro-
grammer.

How the Book Is Organized

The objective of the book is to familiarize you with the product, Symantec C++,
and to teach you to use that product in programming applications. To accom-
plish this, the book has the following mix of material: 25% on Symantec C++
(the compiler, editor, preprocessor, assembler, header files, linker, and debug-
ger), 50% on the C++ language (how it differs from C, small and large enhance-
ments, etc.), and 25% on object-oriented programming.

Symantec C++for the Macintosh: The Basics

Object-Oriented Methodology—
A Powerful Approach

Object-oriented methodology, which is on the cutting edge of programming
concepts, accomplishes three main goals:

B It provides natural modeling of real-world processes.
B It encourages and supports reuse.
B It enforces modularity.

Its main concepts are to:

B Create programming objects that correspond to real-world objects.
B Give those objects the ability to store data and to respond to messages.

B Reuse existing objects in whole or in part without changing the
existing objects.

If object-oriented programming (OOP) seems abstract, and you find that you
have difficulty in knowing how to apply the concepts, don’t despair! It will all
become evident to you as you proceed through the book—especially when you
start to add member functions to data structures (Chapters 8 and 9).

C++

C++ is a powerful successor language to C, and is a better C. (Actually, the term
C++—that is, C followed by the increment operator—means “one better than
C” or “one more than C.”) C++ is actually a hybrid language that supports both
procedural and object programming. You can use C++ for data abstraction and
for object-oriented programming extensions. Currently, C is the most popular
language on both the Mac and the PC. C++ will probably be the closest thing
to an industry standard object-oriented language. If you are using C++ and object-
related technologies, you are on the leading edge.

Basic Programming
Concepts

his chapter is a review of the basics of computer programming. If you have

already done programming, this material will be familiar to you. If you're
comfortable with the basics, you can skip to Chapter 2, which introduces object-
oriented programming.

Numbering Systems

We've all been told that computers are dumb and a program is only as smart as
the person who wrote it. But we don’t often think about computers being stu-
pid until we realize that they understand only one thing: numbers. Further-
more, they recognize only two numbers, 0 and 1.

Each line of code that you write translates into numbers and, consequently,
bits or bytes of memory. This section presents the numbering systems the com-
puter uses, along with their associated codes and symbols, and a brief descrip-
tion of their logical use.

Symantec C++ for the Macintosh: The Basics

Decimal Numbers

The decimal (meaning “pertaining to ten”) numbering system, which is the
most common system in use, is sometimes referred to as a base 10 number sys-
tem. Historians and anthropologists agree that the system developed as it did
because humans have 10 fingers. Each of the 10 numbers is represented by an
Arabic (or Hindu-Arabic) figure, and early records show that the system was
introduced in Europe in the 12th century.

In base 10, the number 9732.0 is evaluated as shown in Table 1.1.

Table 1.1

In the far right (ones) column, 10° means simply “1 with no zeros after it.” The
next column to the left is a tens column, the next a hundreds column, and the
last (far left) a thousands column. By multiplying 9 by 1000, 7 by 100, 3 by 10,
and 2 by 1, and then adding the results together, you get the number 9732..

In this book, if a number is not preceded by a 0 or a Ox or followed by a sub-
script to describe what it is, the number is assumed to be decimal. (In C, any
number that is preceded by a Ox is assumed to be hexadecimal, and any number
preceded by a 0 is octal. These bases are discussed further on in this chapter.)

Binary Numbers

The binary (meaning “pertaining to two”) numbering system is the system used
by computers. This is because the simplest state in which an electric circuit
exists is: on or off. The two binary numbers are represented by the Arabic fig-
ures 0 and 1. This numbering system is sometimes referred to as a base 2 num-
ber system.

In similar fashion to the evaluation of the decimal number in the previous
table, the number 11010101, (with the subscript 2 indicating base 2) is evalu-
ated in Table 1.2.

Basic Programming Concepts

Table 1.2

The icons in the top row of the table represent switches that are either on (the
button is up) or off (the button is down). If the switch is off, that column repre-
sents a zero, or nil. You can also think of the 1 as a magnetized tape and the 0
as a nonmagnetized tape, or the 1 as an electrical charge and the 0 as no elec-

trical charge. On a CD-ROM (read-only memory) for exam-
ple, a laser beam is reflected off a mirrored surface. If the
reflection goes in one direction, it represents a 1. If it goes
in the other direction, it represents a 0.

Look at the first column (far left). The second row states
that the value of this column is 2 to the 7th power, and the
third row declares that the product of 27 is 128 (2 x2x 2 x
2x2x2x2 =128). The fourth row shows that because the
switch is on, the number 128 is a valid number. In the third
column, the switch is off, so the number 32 is invalid (0 x
3210 = 0). By adding 12810, 6410, 1610, 410, and l.—the results
of the multiplication in the last row of the table—you get
the number 2131 in the decimal system.

Hexadecimal Numbers

By the way, the terms
most significant bit
(msb) and least signif-
icant bit (Isb) are used
with binary numbers.
In the binary table
above, the msb is 27,
and the Isb is 20.

The hexadecimal (meaning “pertaining to sixteen”) numbering system aids
people in understanding the number system used by computers. In fact, it is
used as a shorthand notation for binary numbers and is known as the base 16
or hex number system. Each of the 16 numbers is represented by an Arabic fig-
ure or alphabetical character: 0, 1,2, 3,4,5,6,7,8,9,A,B,C,D, E, and F.
Depending o the system, a hex number may be displayed on a computer as
$A87D, 0xA87D, Z'A87D, or A87D. It may also be written as A87Ds.

Symantec C++ for the Macintosh: The Basics

To convert binary numbers to hex, collect the binary numbers into four groups
of four, starting from the right-hand side (Isb). Keep grouping your way across
until you run out of bits. If you have 1 to 3 bits left over, use leading zeros. Then,
replace each binary group with a hex equivalent. To convert hex numbers to
binary, replace each hex digit with four binary characters. (see Table 1.3).

Tble 1.

1010 1000 0111 1101
A 8 7 D

Alpha eight seven dog is easier to say (and comprehend) than one zero one zero
one zero zero zZero zZero one one one one one zero one.

To convert the hexadecimal number to the decimal system, you can cre-
ate a table similar to the tables evaluating decimal and binary numbers (see
Table 1.4).

10

Basic Programming Concepts

Table 1.4

By adding together the numbers in the bottom row, you get the decimal equiv-
alent of A87D., which is 43133..

Octal Numbers

The octal numbering system (meaning "base 8") is not as common as the hexa-
decimal, but both C and C++ do make use of it. Like the binary and hexadeci-
mal systems, the octal system is a power of 2. With 3 bits, a total of 23 = 8 pos-
sible numbers can be represented. These are the eight digits from O through 7.

To convert binary numbers to octal, collect the binary numbers into groups
of three, starting from the right-hand side (1sb). Keep grouping your way across
until you run out of bits. If you have one or two bits left over, use leading zeros.
Then, replace each binary group with an octal equivalent. To convert octal
numbers to binary, replace each octal digit with three binary characters. The
relationship between octal and binary numbers is shown in Table 1.5.

Table 1.5

Symantec C++ for the Macintosh: The Basics

111 110 011
7 6 3

To convert the octal number to the decimal system, you can create a table sim-
ilar to the tables evaluating decimal, binary, and hexadecimal numbers. In Table

1.6, we convert 763s to its decimal equivalent.

Tabl 1.6

By adding together the numbers in the bottom row, you get the decimal equiv-
alent of 763s, which is 499..

As is the case with hexadecimal numbers, octal numbers are used in place of
a binary number to make a quantity or code easier to work with and remember.

ASCII Characters

ASCII (pronounced ass-key) stands for the American Standard Code for Infor-
mation Interchange. An ASCII character is an 8-bit code that is used to repre-
sent not only numbers but also letters (both lower-nd uppercase), special sym-
bols, and control functions.

Examples from the extended Macintosh character set are:

A is Ox41 2 is 0x32

B is Ox42 Carriage return is 0xOD
ais Ox61 Space is 0x20

b is 0x62 ™ is OxAA

T is Ox31 2 is OxB7

12

Basic Programming Concepts

The standard ASCII numbers use the lower 7 bits of a byte and ignore the first
bit. (The first bit is reserved for a signed bit, which we discuss later.) The Mac-
intosh uses all 8 bits (the numbers 00 to FF) to represent an extended set of
ASCII digits. The Mac keeps the standard table but adds 80 through FF for spe-
cial characters, for a total of 256 ASCII characters.

Bits, Bytes, and Nibbles

Here, in abbreviated form, is the long and the short of bits, bytes, and nibbles:

4 bits equal a nibble (sometimes spelled nybble).
8 bits equal a byte (never spelled bite).

2 nibbles equal a byte.
1010 1000
A 8
nibble nibble
byte

2 bytes is equal to a 2-byte word called a short int (short for integer) in
C++. It is called an integer in Pascal.

OxA83F

4 bytes is equal to a 4-byte word called a long int in C++. It is called a
long integer in Pascal.

0x84A326AD

Sometimes a 2-byte word is just called a word, and a 4-byte word is called a

long.

13

Symantec C++ for the Macintosh: The Basics

Table 1.7 shows the relationships of integer types in these languages: 68000
Assembly Language (ASM), Pascal, Fortran, and C++. The last three have an infor-
mal relationship with the 68000 Assembly Language but not with each other.
(However, C++ has a relationship with Pascal through the Toolbox.) The reason
Pascal and Fortran have a relationship with 68000 ASM is because the micro-
processor on the Mac is a Motorola 68000, and they’re all running 68000 code.

Table 1.7

The thing to remember here is that Word —whenever you are speaking of micro-
processors or computers—is the size of an instruction. On the 68000, an instruc-
tion is 16 bits long. This becomes important when you talk about the word size
of a computer. (On a Cray computer, the word size is 64 bits; on a VAX, it is 32
bits; and on the old 8080 microprocessors running on CP/M, a word was 8 bits.)

Kilo, Mega, Giga

The terms Kilo, Mega, and Giga are a type of shorthand or “techese.” Kilo means
thousand, Mega means million, and Giga means billion. However, in comput-
erese, the terms stand for the actual values shown in Table 1.8.

B 800K bytes on a floppy are 800 x 1,024 bytes, or 819,200 bytes.
B 20Meg hard drive is 20 x 1,084,576 bytes, or 20,971,520 bytes.
B Half Gig CD ROM is 0.5 x 1,073,741,824 bytes, or 536,870,912 bytes.

14

Basic Programming Concepts

Signed and Unsigned Numbers

A number is signed or unsigned depending wholly on how you use it. By default,
the computer thinks integer variables are signed, which means that they can
represent both positive and negative numbers. Unsigned numbers can only be
positive. If you're not going to be using negative values (that is, in the range of
-32,768 to +32,767), you can use unsigned numbers to force the compiler to read
the contents of a variable to be in the range of 0 to 65,535. Here are some rules
of thumb about computing unsigned and signed numbers:

B Unsigned Byte—To compute the decimal equivalent, you simply con-
vert the binary number to decimal.

B Signed Byte—If the first bit (most significant bit or msb) is zero, com-
pute the decimal equivalent. 0x00 to 0x7F is a number from 0 to 127. Or,
if the first bit (msb) is one, invert all the bits, add one, compute the dec-
imal equivalent, and make that number negative. This operation is called
twos complement and is simply a method for representing the values of
negative numbers. Hence, 0x80 to OXFF is a number from -128 to -1.

Tabl 1.

15

Symantec C++ for the Macintosh: The Basics

If there is a twos complement, there must be a ones complement, right? There
is, and the operation consists of simply inverting all the bits (a complement)
and adding the negative sign. At one time, the ones complement representa-
tion was widely used in digital computers. But there was a definite problem
with it, as you can see from in Table 1.9.

Ones Complement Rule

B If sign bit is zero, just convert to decimal.
B If sign bit is one, invert all bits and convert to decimal.

As you can see, the ones complement allows for both a positive and a negative
0, which cannot be. Twos complement takes care of the problem by getting rid
of the negative 0, as shown in Table 1.10.

it

16

Basic Programming Concepts

Twos Complement Rule

If sign bit is zero, just convert to decimal.
B If sign bit is one, invert all bits, add one, then convert to decimal.

Ones complement has a minus range of -0 to -127, while twos complement
has a minus range of -1 to -128.

Therefore:

Unsigned bytes have a range from 0 to 255.

Signed bytes have a range from -128 to +127.

Unsigned words have a range from 0 to 65,535.

Signed words have a range from -32,768 to 32,767.

Unsigned long words have a range from 0 to 4,294,967,295.

Signed long words have a range from -2,147,483,648 to 2,147,483,647.

Logic

The system of logic we know was developed by the ancient Greeks as a branch
of philosophy. It’s doubtful that any of the Greek philosophers foresaw the fruits
of their efforts used in electronic circuitry in the 20th century, but who knows?

Specifically, logic can be applied to an electric circuit in its simplest state;
that is, a switch is either on or off. If the switch is off, it is also open. Figure 1.1
shows a diagram of a simple electric circuit with a battery, an open switch, and
a light bulb.

.

Open Switch

Battery —3p» “—_)

Light Bule

Figure 1.1 Open-Switch operation.

17

Symantec C++ for the Macintosh: The Basics

As you can see, when the switch is open, the light bulb is off because no cur-
rent can flow through the circuit, and no voltage is applied to the light bulb.
(See Figure 1.2.)

Closed Switch

V 4

|

Battery —3p» ~—_ 8@‘
Light BulbT

In the closed-switch operation, the switch is closed and the light bulb is on.

If open and off are represented by 0, and closed and on by 1, they can be rep-
resented by Table 1.11.

Figure 1.2 Closed-Switch operation.

Table 1.11

AND Operation

Figure 1.3 represents an AND operation, where both A and B must be closed for
C to be on. The AND operation in C programming is represented by an & (amper-
sand) or by a && (double ampersand), depending on whether the operation is
caried out on bit-values (the bitwise AND) or truth-values (the logical AND).

A B
y 4 V4
A

e

Battery —3p» —_ o) €& C

Figure 1.3 AND operation.

Basic Programming Concepts

The truth table for Figure 1.3 follows:

Table 1.12

In column A in the table above, we have the state of switch A. Column B rep-
resents the state of switch B, and column C represents the light bulb as either
off or on. Remember that 0 is off and 1 is on. This table shows that both switch
A and switch B must be closed for C to be on.

1100: & 1010. = 1000
1100
& 1011
1000

In the stacked formula above, start with the far right-hand bits. Check the truth
table to see what 1 & 0 (C programming uses the & symbol to represent the
AND operation) produce in column C. (They produce a 0.) Then move to the
left, adding the bits in each column, and checking the truth table for the answer.
When you reach the far left bits (1 & 1), you see that the result is 1, and the
light bulb is on.

Try this exercise:
A5 & 5Ai = 00

In the example above, convert the hex numbers to binary, and then AND them
together.

OR Operation

Figure 1.4 represents an OR operation, where either A or B can be closed for C to be
on. The OR operation in C programming is represented by a | (vertical bar).

19

Symantec C++ for the Macintosh: The Basics

Battery —3p» t;_'__ @ < C

Figure 1.4 OR operation.

The truth table for Figure 1.4 follows:

Table 1. 13

1100. | 1011,

1100
l 1011
1111

As you did for the AND formula, start with the right hand bits, look at the truth
table for the answer, and put that number on the total line.

Try this exercise:
A5|6 I 5A16 = FFlé

20

Basic Programming Concepts

NOT Operation

The truth table below represents a NOT operation, where you invert the bits
from 0 to 1 and vice versa. The NOT operation in C programming is represented

by a ~ (tilde).

Tabe 1.14

~1011: = 0100:

Try this exercise:
~5Ai = Abx

XOR Operation

The truth table below represents an XOR operation. The
XOR operation is the same as an OR operation, but in the
case where both A and B equal 1, the result will be 0. The
XOR operation is represented by a * (caret).

Table 1.15

All numbers in the C++
language are assumed
fo be in the decimal sys-
tem unless prefixed by
the letters “0x”

21

Symantec C++ for the Macintosh: The Basics

Summary

In this chapter, you’ve learned the basic concepts of programming:
Numbering systems.

ASCII characters.

Bits, bytes, and nibbles.

Signed and unsigned numbers.

Logic operations and truth tables.

An understanding of these basics is absolutely essential before you can develop
proficiency in writing code. Now that you have this under your belt, try the
following exercises. Then let’s move on to the concepts of object-oriented pro-
gramming in Chapter 2.

Exercises

1.1 Convert the following binary numbers to decimal:
(a) 1010.
(b) 111,
(c) 01011010,

1.2 Convert the following decimal numbers to binary:

(a} 2310
(b) 100w
(C) 1455

1.3 Convert the following octal numbers to binary:

(a) 1235
(b) 7642
(c) 3527

1.4 Convert the following binary numbers to octal:
(a) 11001,
(b) 110110101.
c) 10011101,

22

Basic Programming Concepts

1.5

1.6

1.7

1.8

1.9

1.10

1.11

Convert the following octal numbers to decimal:

(a) 35s
(b) 342
(c) 12344

Convert the following decimal numbers to octal:

(a) 420
(b) 12600
(C) 423510

Convert the following binary numbers to hexadecimal:
(a) 1111

(b) 10101010.

(c) 1111101110101111,

Convert the following hexadecimal numbers to binary:
(a) A6

(b) AO04:

(C) 7AB4.s

Convert the following decimal numbers to hexadecimal:
(a) 12310

(b) 2352

(c) 36190

Convert the following hexadecimal numbers to decimal:
(a) A13Bis

(b) E9

(C) 7CA3:6

Represent the following numbers as ASCII characters:
(a) 41

(b) 61w

‘C) 25010

23

Symantec C++ for the Macintosh: The Basics

1.12 What are the hexadecimal and decimal values of the following ASCII

characters:
(a) A
(b) a
(C) ™

1.13 Divide the following bits into nibbles:
(a} 11100100
(b) DEADCODE:

1.14 Divide the following into words (short):
(a) 11111110110110110111.
(b) FOODFACE:s

1.15 Divide the following into longs:
(a) AGis
(b) FEDCBA9876543210

1.16 How many bytes are in each of the following:

(a) 800K
(b) 520Meg
(c} 3Gig

1.17 Find the eight-bit one’s complement form of the following numbers:

(a) FF.
(b) -10uw
(C) 1231

1.18 Find the eight-bit two’s complement form of the following numbers:

(a) FFu
(b) 14w
(C) 991

1.19 AND the following numbers:
(a) ABCDI16 & EF12:
(b) 9316 & DEss
(c) 10102 & 0101

24

Basic Programming Concepts

1.20

1.21

1.22

OR the following numbers:
(a) 6A16 | DDus

(b) OAACI6 | 8427

(c) 10012 10110:

NOT the following numbers:

(a) FFFF.s
(b) AAu
(c) 11100111

XOR the following numbers:

(a) BE16 * BCi
(b) 9BC816 " FFFF:
(c) 100127 1011l

25

Object-Oriented
Development

bject-oriented programming (OOP) is a design methodology that incorpo-

rates several sophisticated and efficient mechanisms for managing the
complexity of present-day application development. Object program design
models the world as a collection of objects that interact by passing messages
back and forth. Programming with objects is not complicated but merely dif-
ferent from traditional, procedural-based programming (which has been the
method for programming until recently). Because the concepts of object-ori-
ented programming are different and may at first seem somewhat obtuse, we do
not expect you to grasp everything in this chapter right away. Instead, you may
want to read through this chapter once and then come back to it again after
you have read the chapters on structures (Chapter 8) and classes (Chapter 9).

Object-oriented programming, which arrived on the scene in 1971, is the
next step beyond procedural programming, a kind of natural progression born
of necessity. Apple has made its message clear: OOP is the wave of the future
for Macintosh applications, and Apple’s primary internal development language
is C++ and is object oriented.

27

Symantec C++ for the Macintosh: The Basics

Procedural versus
Object-Oriented Programming

Procedural programming treats action and data as two separate entities; that is,
you define data structures and then develop a set of routines (or perhaps a li-
brary), which in turn operate on data that you pass into them as arguments. In
object-oriented programming, when you define the structures, you define their
actions at the same time. Instead of routines acting on data, you have sets of
objects interacting with each other.

Procedural Programming

With procedural programming, you define variables to represent the data used
by your program. You might even group related variables into structures or
records. You then write subroutines, procedures, or functions that operate on
those variables.

Procedural-based programming is a time-consuming, multiphased process
but, nonetheless, is currently the most common type of programming. The fol-
lowing are typical phases of a procedural-based development methodology:

State the problem.
Analyze to obtain a feel for what needs to be done by talking with users.
Discuss all possible solutions and identify the most effective solution.

Generate a high-level design of the proposed solution.

-

Using the high-level design as a guide, generate a detailed design for the
subsequent solution.

Begin programming.
Commence integration and testing.

Conduct Alpha and Beta testing.

0 . oo

If there are any problems in any of these phases, loop back and start
all over again.

Object-Oriented Problem Solving

The premise of object-oriented problem solving is that the best way to devel-
op software is not to develop but to reuse. Also, object-oriented programming
models the world as a collection of objects that interact by passing messages

28

Object-Oriented Development

back and forth. OOP defines classes to model real-world data (the classes pro-
vide automatic data modularity). You then write the methods (i.e., functions)
that operate on the data in your classes.

Some typical benefits that derive from object-oriented methodology are
listed below:

The OOP approach encourages the use of modern software engineering
technology. Because it is a very structured system for describing a problem
and the solution to that problem, it requires you to work within constraints
and rules. And, it makes it easier for other programmers to aid in the im-
plementation of the specific object-oriented design. As an example, sup-
pose that you wanted to write a computer program that would compose a
book. Assume, then, that you say to the program, “Write a book.” Where
would it begin? If you say, “Write a romance,” you put a constraint on
the program. If you then say, “Use only English words,” and “Confine it
to 250 pages,” more constraints are added. These constraints make it eas-
ier for programmers to use tools, and this focusing by programmers leads
to even more innovative CASE tools.

Another benefit of OOP is that it promotes and facilitates software
reusability. It’s conceivable that in many instances OOP projects will
require only 10 to 20% new code. The rest is reusable.

When well done, OOP solutions more closely resemble real-world so-
lutions; in other words, the solutions are more natural.

OOP results in software that is easily modified, extended, and main-
tained because it enforces modularity. If you represent the OOP units
as black boxes that are independent of one another, they are easy to
modify and maintain because you only have to work on one at a time.
They are also easy to extend because all you have to do is add more
black boxes; that is, you don’t have to make modifications before you
add something.

OOP results in a significant reduction of integration problems for the
same reasons as item 4 above.

Ii“hﬂing to Rest an Old Myth

In the beginning, object-oriented programming was slower than procedural pro-
gramming and took up more memory. Over the past several years, great strides
have been made in compiler technology to optimize code. Consequently,

29

Symantec C++ for the Macintosh: The Basics

tremendous gains are achievable by making the overall structure of today’s pro-
grams object oriented.

There are, however, places within your code where you may have concerns
about speed, memory, and disk space (specifically with certain numerical algo-
" rithms), and you may want to use procedural based programming in these areas.

Because of the immense increase in the capability of hardware, you do not
have to be as concerned about speed and memory as you once might have been.
In general, use object-oriented programming when you:

B Have a boss or client that is breathing down your neck to finish
the program.

Require easy error checking.
Want easy maintenance.
Want a modular structure.

Want good user interface.

Want to run on all Macs and perhaps other platforms.

There is an analogous story that made the rounds of the integrated circuit de-
sign firms in Silicon Valley in California. Designers were desperate to get more
and more devices on a silicon wafer, to make that jump from 100 devices
(small-scale integration, or SSI) to 1 million per wafer (very large scale integra-
tion, or VLSI). As the designs for the masks became ever more complex, the en-
gineers involved had to start pasting the circuitry maps first on a table, then
the floor, and finally the walls and ceilings. The size of the map got so big that
engineers started talking about hiring a “tall, thin designer. He would have to
be 30 feet tall in order to see out over the entire map, and he would naturally
be thin because the firm wouldn’t pay enough for him to eat properly.”

The point is well taken, though, that technological advances occurred so
rapidly that firms became hard-pressed to keep up not only with the technol-
ogy but with the costs involved. Carver Mead (a professor of Computer Science,
Electrical Engineering, and Applied Physics at the California Institute of
Technology), estimated that if you looked at the designs of the masks and
equated the density to be that of a normal city—that is, eight city blocks to a
mile—the map in 1963 would cover a city the size of Pasadena. In 1978, the
map would equal the size of the Greater Los Angeles area, in 1985 the equiva-
lent of California and Nevada combined, and in 1990 the continent of North
America. In the meantime, the costs of the capital equipment for making a
VLSI chip were approaching $1 billion, leaving almost no margin for error. In
order to stop the spiraling costs and to get a higher yield of dies per wafer,

30

Object-Oriented Development

chip makers began putting constraints on the designers by coming up with a
set of rules to design by. In this respect, they were willing to sacrifice the effi-
ciency of packing more transistors into an integrated circuit in trade for mak-
ing the design process much easier and more reliable. And this is what object-
oriented programming is all about: imposing constraints and setting standards
for coding. In object-oriented programming, we are willing to sacrifice memo-
ry and performance in order to produce more reliable programs that do more
things. This is not a great sacrifice because of extensive changes in technolo-
gy in the past few years: memory is becoming considerably less expensive than
it was five years ago, and CPUs are substantially faster.

OOP and C++

OOQOP has a set of commonly used terms (even though there is no standard set of
concepts and terms). C++ employs the same concepts but uses a slightly different
terminology. In this book, when we discuss the field of object-oriented program-
ming that is not language specific, we use the common terminology. When we dis-
cuss C++, we introduce the C++ terms and stick with them. In the following
table, we present both general OOP terms and C++ terms so that you can make
mental translations if necessary.

C++ does not include every concept proposed as part of object-oriented pro-
gramming. As shown in Figure 2.1, persistence, delegation, and genericity are
the three main aspects not encompassed by C++.

31

Symantec C++ for the Macintosh: The Basics

Object Programming

Data Abstraction

Inheritance

Polymorphism _

Persistence

Delegation

Genericity

Multiple Inheritance

Figure 2.1 Objectoriented programming aspects included in C++.

Advances in Development Environments

Up to this point, there have been two major development environments for the
Mac: MPW (Macintosh Programmers Workshop) from Apple and THINK
from Symantec. Apple supplied C and Pascal compilers and an assembler for
their MPW environment and later a C++ compiler. In addition, there have been
third-party suppliers whose products run under MPW, namely Ada, Modula,
FORTRAN and Zortech C++.

The MPW development environment is quite versatile and powerful, but
it is a difficult system to use. MPW has many similarities to UNIX, so many of
the line-oriented commands are analogous to UNIX.

THINK runs under the Finder. Unlike MPW, it is paradoxically more Mac-
like: it has the Mac human interface built right into the environment. It does
not have the same power as MPW, but is much easier to use.

32

Object-Oriented Development

Symantec has had two compilers under the THINK environment: THINK
C and THINK Pascal. Over time, the company has modified both to support ob-
ject-oriented programming. Symantec C++ implements some of the features of
C++ not found in C; that is, polymorphism, multiple inheritance, friends, and
overloading. In 1991, Symantec purchased Zortech, and Symantec C++ is the re-
sult of mixing Zortech C++ and THINK C.

With the advent of the Macintosh, Apple developed a set of routines (in a
ROM chip inside of every Mac) that contain something called the Toolbox. The
main purpose of the Toolbox is to provide a set of routines for consistent user
interface. Apple also created a library of classes under MPW to interface with
the Toolbox called MacApp. Symantec, in the meantime, developed its own
class library, which is called Think Class Library (TCL). Unfortunately, since
there were no standards set for developing class libraries, the Apple and
Symantec libraries were incompatible. Subsequently, Apple and Symantec
got together to develop an application framework, not just for the Mac but also
for use on other platforms like the PC, probably to run with Windows. An ap-
plication framework is a type of class library that you build on to develop
your own application. This framework is called Bedrock. It will allow source
code to be transferred to run on other platforms using Bedrock, but each plat-
form will retain its individual interface characteristics: a window on the PC
will be a PC window, and a window on the Mac will be a Mac window.

Objects and Classes

All OO programming involves objects (of course), the classes that objects be-
long to, and all the things that objects can do.

Objects

What is an object? An object is a programming construct that can do useful
work. It is also a mechanism for modeling things in the real world, such as peo-
ple, places, and things. All of these can be manipulated as
objects in software. If you’re writing a program to invento-
ry different models of cars, for instance, you can use each
model of car as an object.

To get an object to perform some operation, you send it The information in an
a message telling it exactly what you want it to do. The ob- object will be hidden
ject has methods that are used to respond to the messages. unless you are in the
Each object has its own private memory (internal data) process of designing a

and local functions (methods). Every object has a name, class.

33

Symantec C++ for the Macintosh: The Basics

which is sometimes referred to as an object reference variable. An object is a
self-contained unit of information (modularity), where the data is protected (in-
formation hiding); that is, the object determines the method that will be used,
and that information is hidden from you—it’s none of your business. The same
thing is true for what data the object will use.

Additionally, the data that the object uses can be private information. In
other words, the object’s internal data is private and any “internal” methods
that an object uses can also be hidden, so all you have to do is send it a mes-
sage to do something. It is up to the object to figure out how to do it.

Classes

One useful way to think about objects and classes is to compare them with
variables and structures. To see the comparison, examine the following code:

Class Type
class TMonster typedef struct
{ {

private: short top;
RGBColor fColor: short left;
short fNumOfEyes; short bottom;

public: short right;
void HideUnderBed(); } Rect;

void MakeScaryNoises();

}s

Objects of the same class have identical properties. Objects of the same class
will have their own copies of a set of common data, and they each share a com-
mon set of methods. So, all the monsters may have color and eyes (common
data), and they could all have the same way of making scary noises (methods).
When you create a new class of objects, you must define the internal variables
and the set of messages, and you must write the methods used by the objects.
The internal data (variables) contained in an object are called instance variables.

Variables and methods are defined for an entire class. Each object, which is
an instance of a class, will have its own, unique instance variables. Each will
“point” to a single copy of code for shared methods. Put another way, each
object has unique internal variables but shares methods with other objects of
the same class.

34

Object-Oriented Development

An object is an instance of a class. A class is to an object as a data type is to
a variable. For example, you can say: CookieMonster and GroverMonster are
each monster objects. They are each instances of the class TMonster. (In this
book, the convention is that the names of classes begin with an uppercase T.)

Messages and Methods

To program with objects, you create an object of the class you need. You then
send that object messages describing what you want it to do, and the object
responds to those messages by performing some operation, which is the
method. A message must be addressed to a specific object. In C++, a message is
the name of a function with any associated arguments. For every message, there
is an associated response. For example:

void TMonster::EatCookies (short type)
{

You can think of messages as function calls, and methods as function defini-
tions. A method is defined to be the function executed by the object in response
to a message. Also, a method is a service that an object performs.

Encapsulation

Encapsulation is simply a method of packaging instance variables and method
names together as an object. In other words, the data is encapsulated into the ob-
ject, and messages are then used to manipulate the data. This encapsulation of
data enables information hiding. It also defines an interface.

Class Diagrams

Class diagrams are useful for program design and program documentation be-
cause they allow you to see the structure of your application. They are used
mostly at the beginning (at the time you lay everything out) and at the end of
the project, when you test and document it.

35

Symantec C++ for the Macintosh: The Basics

TMonster Class Name
fName st
instance
fColor variables
collaborator —3p~ fTroll
HideUnderBed
A MakeScaryNoises Messages
ccessor
Method Gel

Figure 2.2 Class diagram.

In the class diagram shown in Figure 2.2, TMonster is the class name. In this
book, the convention is to have class names begin with an uppercase T for type.
They appear in bold letters, always at the top of the class diagram.

Things that begin with f are internal variables, in this example fColor,
fName, and fTroll. These are only of interest to the person who has to write a
message for an object. Sometimes the internal variables are called instance
variables; at other times they’re called fields. By convention, these are repre-
sented in the class diagram in italics.

Some internal variables may be references to other objects—here, fTroll.
These references are sometimes called collaborators.

Messages represent jobs that the objects can be asked to do. Message names
are also the names of the functions that implement the jobs, in this example
HideUnderBed and MakeScaryNoises. These functions are called methods,
which are represented by normal type and are always located at the bottom of the
class diagram. Methods (which have the same name as messages) may be under-
lined. This underlining can be useful because the number of underlined methods
defines how much work you will have in writing the corresponding routines.

Sometimes an object provides a copy of an instance variable. This is done
through a special message called an accessor method. In Figure 2.2, GetColor
is an accessor method.

It is important to remember that messages are not global procedures.
Messages must be sent to instances or instantiated objects. (To instantiate
means to make an object from a class.) These instantiated objects incorporate
the compiled methods, as shown in Figure 2.3.

36

Object-Oriented Development

Methods
FMonster::HideUnderBed

JA

Class Definition WTMonster::MakeScaryNoises

/),

TMonster

fName

fcolor
HideUnderBed
MakeScaryNoises

Instantiated Objects

Figure 2.3 Classes versus objects.

In the above figure, we created a class called TMonster that contains internal
variables and the names of the methods used by TMonster. Next we created
two instances of this class (objects) called CookieMonster and Godzilla. We
also wrote the methods (TMonster:HideUnderBed and TMonster:

MakeScaryNoises) that will respond to the messages sent to the objects. To

send a message to CookieMonster, you write:

CookieMonster.HideUnderBed

Note that objects send messages, too, as shown in Figure 2.4.

Fields and methods are defined for the entire class. Each object (instance of a
class) will have its own unique field data. Also, each object will “point” to a
single copy of code for the shared methods.

37

Symantec C++ for the Macintosh: The Basics

HideUnderBed(monsterFile)

MakeScaryNoises(monster, monsterFile)

TMonster

fName [TMonster::HideUnderBed ﬂ
fcolor

HideUnderBed rr

MakeScaryNoises TMonster::MakeScaryNoises JJ

Figure 2.4 Example of objects sending messages.

Figure 2.4 illustrates one of the most powerful features of C++: the master
pointer. Here, the pointer is a pointer to an object of class TMonster. It not only
points to objects of class TMonster, it points to objects that are subclasses of
TMonster as well and uses the same message.

Methodology

If you do not have the kind of object you need, you must define a new class of
object. You also have to define the internal variables that the object is going
to use and the messages that will be sent to the object, and you must write
the methods that the object will use to implement the messages.

Specifying Fields and Methods

The fields of a class often correspond to real-world data. Sometimes they store
temporary data used by the methods. Each message has to have a method. Since
methods only perform one task, they should be small in size.

Subclassing and Inheritance

Classes have fields and procedures; they resemble an advanced form of data hid-
ing, which is called data abstraction. But classes offer much more than just

38

Object-Oriented Development

data hiding. You can create a new class from an existing class and reuse most
of the class’s methods and instance variables. The mechanism for this is called
subclassing. Subclasses inherit their behavior from the parent class. The sub-
class will have all the instance variables that the parent class has but can add
others. Subclasses can also alter their behavior without modifying the parent
class by adding new methods or overriding old methods. Figure 2.5 shows an
example of subclassing.

In the figure, the new class that is created is called a subclass, and the par-
ent class is called a superclass. The reason the arrow points upward is that the
subclass inherits variables and methods from the superclass; the superclass
code does not even know that the subclass exists.

Subclassing offers a way to add new methods without affecting the behav-
ior of the original class, so it is useful when you want to leave the original class
alone. It is also a great way to make a versatile library (called a Class Library).

v With Subclassing:
Without Subclassing: TMonster
TCookieMonster | feolor
fColor fNumOfEyes
fNumOfEyes HideUnderBed §
fCookiesConsumed | MakeScaryNoises |
HideUnderBed i T,
MakeScaryNoises § $
. TCookieMonster |
ookiesConsume
fCookiesC d

EatCookies

Figure 2.5 Subclassing example.

Abstract Class

An abstract class acts as a template for other classes but is one that will never
be instantiated. It is usually used as the root of a class hierarchy; that is, its pur-
pose is to promote reuse. You use it if you want to create a really general class
like automobile or window with the intention of creating subclasses. A con-
crete class, on the other hand, is instantiated to create objects. Examples of con-
crete classes might be ForeignAutomobile and DomesticAutomobile.

39

Symantec C++ for the Macintosh: The Basics

Overriding

Overriding occurs when a method replaces an inherited method from a super-
class. In overriding, one message sent to two different but related objects will
invoke two different methods. You send the same message to different types of
objects, but the resulting behavior is different for objects of different classes.
(This override capability also allows you to write generic code and promote code
reuse.) A method that can be overridden in C++ is called a virtual function.

Figure 2.6 shows an example of the override capability.

TMonster
fcolor

fNumOfEyes
HideUnderBed

b X

TCookieMonster TNastyMonster
fCookiesConsumed | fNumOfPeopleBitten
EatCookies BitePeople

MakeScaryNoises

Figure 2,6 Example of overriding.

Multiple Inheritance

Multiple inheritance allows you to define classes that inherit properties from
more than one superclass, but it greatly complicates designing reusable class-
es. Superclasses with variables or methods with the same names require com-
plicated rules to avoid conflicts. Some programmers feel that you can write ef-
fective code without using multiple inheritance, and that you should, in fact,
avoid multiple inheritance because it drastically complicates the design.
Figure 2.7 illustrates an example of multiple inheritance.

40

Object-Oriented Development

TMonster
fcolor

fNumOfEyes !
MakeScaryNoises

TDragon
fNumOfPeopleBitten §
BreatheFire ;

TDinosaur

fWeight

LayEggs

TGodzilla

fWeight

fColor

fNumOfEyes
fNumOfPeopleBitten
LayEggs
MakeScaryNoises
BreatheFire
TrashTokyo

Figure 2.7 Example of multiple inheritance.

Polymorphism and Dynamic Binding

Objects from related classes use the same names for different methods. Object
languages in general support sending messages to objects without worrying
about which exact method will be used. This is called polymorphism. Figure
2.8 shows an example of polymorphism.

The message sent to an object can be invoked without knowing the object’s
actual class. Since messages invoke methods, and some of the methods cannot
be resolved at compile time (i.e., we don’t know which method will actually
be used), they are resolved at run time. Because this operation is done at run
time, it is called dynamic binding. The method that is chosen depends, natu-
rally, on whether the method is an overriding one.

Dynamic binding requires a process known as method lookup. The prop-
erty of having many routines with the same name (polymorphism) means

41

Symantec C++ for the Macintosh: The Basics

that the compiler cannot always determine at compile time which method
should be called. This results in the need for a method lookup table mechanism
to find the correct method. A good object language creates this table by means
of compiler-generated code, and this table is transparent to you. In C++, these
tables are called vtables, with the letter v standing for virtual.

TMonster

fcolor

fNumOfEyes
HideUnderBed
MakeScaryNoises

e

hTMonster::HideUnderBed J]

rrTMonster::MakeScaryNoises ﬂ

InstanceNum1 -> MakeScaryNoises = 2?22

TNastyMonster
fNumOfPeopleBitten
BitePeople

MakeScaryNoises

rfTNastyMonster::BitePeople ﬂ

rTNastyMons'cer::MakeScaryNoises JJ

Figure 2.8 Example of polymorphism.

Iterator Methods

An iterator method can be set up to send the same message to every object in
a collection. The difference between iterator methods and traditional meth-
ods is subtle but important. For example, if you want to add a new monster in
object programming, you do not need to change the code. However, in tradi-
tional programming, you have to add a new case label to the switch statement
to accomplish the same thing. The following code illustrates this:

42

Object-Oriented Development

Sending a Message to Each Object:

cookieMonster->HideUnderBed();
oscarTheGrouch->HideUnderBed();
godzilla->HideUnderBed();

Writing a Switch Statement, Traditional Programming:

switch (theMonster)
{
case cookieMonster:
HideCookieMonsterUnderBed();
break;
case oscarTheGrouch:
HideOscarTheGrouchUnderBed();
break;
case Godzilla:
HideGodzillaUnderBed(); // Watch out!!

break;

Using an Iterator Method:
ForEveryMonster (HideUnderBed) ;

Looking at the above examples of code, you can see that with a switch state-
ment, you must make physical changes in the code; that is, you must create
new names and methods for each case. With the iterator method, you can send
messages to all of the objects with just one command. Of course, you have to
write the iterator method, but no modification of code is necessary.

43

Symantec C++ for the Macintosh: The Basics

Where to Begin an
Object-Oriented Program

After reading about all the wonderful things that OOP incorporates and can do,
most programmers feel:

Scared.

Confused.

Lost—not knowing where to begin.
Take heart. There is a comfortable, organized way to begin your OO program:

Describe the problem your program must solve in English sentences.

Identify nouns. These can be the class names.
Find verbs. These are good candidates for messages.

Look for adjectives. These may lead you toward instance variables.
After collecting all the ingredients, practice some visualization:

B Imagine a scene that involves a task.
B Imagine objects in the scene (classes).
Imagine what the object can do (methods).

Imagine things that describe the objects (instance variables).

As you begin to design your program, think in terms of small methods; they
are easier to write and debug. Make sure that your methods have only a single
purpose; this helps keep them small and makes it easier to reuse a class.

To create an object-oriented application, you must carefully design class-
es for your objects and code your design in an object language. Your coding will
be influenced by the language you choose, but whatever the language, your code
will be organized around a class hierarchy, and the flow of control will be based
on sending messages to instantiated objects. Both your design and your code
will look very different from those of a traditional application.

Object-Oriented Development

Summary

In this chapter, you've learned about:

B Objects

Real-world modeling
Modularity
Information hiding

Classes

Code sharing and reuse

Subclassing and inheritance
Polymorphism and dynamic binding

Now you can put this knowledge to work with the following exercises.

Exercises—Programming with Objects

1.

Imagine that you are writing an application to help manage a compa-
ny’s personnel and fixed assets. Building on the examples presented in
this chapter, create a design (i.e., draw class diagrams) for an object-ori-
ented program that meets the following requirements.

The company has four types of employees: managers, programmers, sec-
retaries, and bookkeepers. The first two categories are salaried and the
latter two are paid hourly. Your design must allow the program to print
paychecks for each employee that show the employee’s name, gross pay,
tax, and net pay. Inputs to the paycheck process for each employee in-
clude the employee’s salary, tax rate, and (for hourly employees only) the
number of hours worked. Give some object (e.g., one associated with a
bookkeeper) the ability to print all paychecks. How will the bookkeeper
object cause all of the individual paychecks to be printed? You may as-
sume a fixed maximum number of employees if you wish.

The company also has three types of assets: typewriters, adding ma-
chines, and computers. Make, model number, and serial number are
of interest for all of these items. For computers, the amount of memo-
ry is also important. For simplicity, assume that each employee can
be assigned at most one piece of equipment. Your design must allow

45

Symantec C++ for the Macintosh: The Basics

the program to print a list that shows each employee’s name followed
by a description of the piece of equipment assigned to that employee.

Finally, each secretary has one boss and each programmer knows one pro-
gramming language. Your design must allow the program to list the boss
for each secretary and the language for each programmer.

Create a diagram of the instantiated objects in your program, assuming
a company that consists of two programmers, one secretary, one
bookkeeper, and one manager, and some reasonable distribution of
equipment. You need not show the fields or methods for each instance,
but do use arrows to show collaborations among instances; that is, the
references from one instantiated object to another. You may use pen-
cil and paper or a paint or draw program.

Your class diagram probably demonstrates many instances of inheri-
tance. What possibilities for polymorphism does it contain?

46

The Symantec C++
Environment

f you have not used Symantec’s THINK C development environment before,

then you are in for a nice surprise—especially if you’ve been using UNIX or
DOS. Symantec C++ is even friendlier than the earlier THINK C versions and
has considerably more to offer. It supports MacApp and includes THINK C and
the THINK Class Libraries. In the future, it will support the Apple/Symantec
jointly developed class library.

If you are a first-time Macintosh programmer, you'll find that Symantec C++
is a fully integrated development environment that contains everything you
need to begin developing your own applications, as well as desk accessories
and device drivers. The three main components for development—editor, com-
piler, and linker—are all included in the package and work together to produce
your project; that is, you don’t have to jump from one application to another to
edit, compile, and link. In addition, Symantec C++ has a source-level debugger
to aid you in debugging your program.

The following sections introduce you to the Symantec C++ environment,
show you how to create an application, and give you brief explanations of
each menu, window, and dialog box that you will be using. Chapter 15 treats
the components of Symantec C++ in much more detail. In this chapter, we
highlight the nitty-gritty aspects of developing applications in this environ-
ment, with an emphasis on what to do when.

47

Symantec C++ for the Macintosh: The Basics

Getting Started with Symantec C++

If you followed directions in the Users Manual for installing Symantec C++
on your hard drive, you should be ready to write a simple application. The first
thing you need to do is create a folder for your project, name it MyNewProject,
and put it in your Projects folder on the hard drive. (You will have separate fold-
ers for all of your development projects.)

Symantec C++ is more lenient than earlier versions of THINK C, where you
were required to keep everything—THINK C shell, projects, utilities, and li-
brary sources—within the Development folder. With Symantec C++, you can
have the THINK Project Manager in one folder and the rest of the development
environment in another folder. In fact, you can have the THINK Project
Manager on a hard disk other than that where you keep your project files and
it will still execute. Nevertheless, Symantec C++—probably more for logical
organization reasons than anything else—has put everything into a folder called
Development. In a folder called Symantec C++ for Macintosh (within the
Development folder) are the THINK Project Manager, Debugger, libraries, tools,
and translators. For ease of access, if for no other reason, you will probably want
to keep each of your project folders within the Projects folder.

Another useful convention is to name each of your project folders with a
.f extension. This way you can identify your Symantec C++ project folders at
a glance.

Creating a Project

Now that you have a folder ready for your project, double-click on the THINK
Project Manager icon to launch Symantec C++. A dialog box similar to that in
Figure 3.1 will appear.

48

The Symantec C++ Environment

' Symantec C++ for Macin...

[0 Aliases

O C/C++ Libraries

[0 Mac #includes

O Mac Libraries

O oops Libraries

O THINK Class Library 1.1.3
O Tools

O Translators

Figure 3.1. THINK Project Manager dialog box.

— Macintosh HD

[fiascr |

[Desktop |

", A

[New]
[Cancel |

Click on the New button, and a dialog box like the one in Figure 3.2 will ap-
pear with the request for you to name your new project.

[0 Aliases

O C/C++ Libraries

[0 Mac #includes

[0 Mac Libraries

O oops Libraries

O THINK Class Library 1.1.3
O Tools

O Translators

— Macintosh HD

[#iascy]
[Desktop |

(_Open]
[New]

Cancel

49

Symantec C++ for the Macintosh: The Basics

When the new project dialog box appears, the Create button will be grayed
out until you enter text. Name your project MyNewProject.n but do not click
the Create button yet unless the folder in which you want to save your pro-
ject is the one currently open. Use the standard file box at the top of the dia-
log box to move around to different folders until you find and open your
MyNewProject folder. As you move around the folders, the Create button
changes to Open. When you find and open the folder you want, the Open but-
ton changes to Save. Press Save. Symantec C++ creates a new project document
on the hard disk and displays the Project Window shown in Figure 3.3.

Hame Code
Totals 578 |4

Figure 3.3. The Project Window.

The two columns in the Project Window display the name of each file (or li-
brary) that you include in your project along with the size of the code in
bytes, plus a total of all bytes of code. Look at Figure 3.4 to get a better idea of
what a more complex Project Window might look like.

50

The Symantec C++ Environment

Hame

— Segment 4 11760 |3
CPusLib 1690 |
MacTraps 8342 ,":"
MyLib. 7 162 [
oops++ 338
Shapes.cp 432
UList.cp 310
UShapes.cp 482 |

<~ Segment 2 28192 |
Totals

Figure 3.4. Project Window Showing Compiled Files with Number of Bytes

The Project Window shown in Figure 3.4 contains the files and libraries that
are included in the Shape example in Chapter 13.

Segments

Symantec C++ now numbers the segments in which your files appear, and,
when you have exceeded the segment limit of 32K bytes, automatically opens
up a new segment. Since it makes sense to keep related routines in the same
segment, if possible, Symantec C++ allows you to move items around from seg-
ment to segment.

Segments are units of object code that go in and out of memory. All of your
code executes in a resource, which is restricted to 32K, and that resource may
or may not be in memory. A code resource with an ID of 0 or 1 is always in
memory. A code resource with an ID of 2 or more is the actual code that you
compile. The code resources 0 and 1 figure out, when you run the program,
which of the segments the code is in. That segment is loaded into memory for
as long as you need it. The segment loader is part of the operating system of the
Toolbox. (The Toolbox is divided into two parts: the operating system, which
has the Memory Manager, and the user interface, which has the Menu Manager
and other related managers.)

51

Symantec C++ for the Macintosh: The Basics

Creating a Source File

Now that you have created a project, you need to write the source code for it.
To do this, pull down the File menu and select New. When the source code edit-
ing window appears (as shown in Fig. 3.5), type in the code as you see it in
Figure 3.5.

EN—— = MyNewProject.cp_

maing

{
SysBeep(40]y;
return O;

¥

Figure 3.5. Source Code Window for MyNewProject

After you have typed in the source code, choose Save As from the File menu,
name the file MyNewProject.cp (for C++) and press Save. Next, switch to the
Project Window.

With the Project Window open, select Add Files from the Source menu. A
dialog box like the one in Figure 3.6 will appear.

52

The Symantec C++ Environment

= Macintosh HD

[#iect]
Desktop |

[
[sese |
[

Figure 3.6. Add Files Dialog Box from the Source Menu

Click on the Add button to add the file to the MyNewProject.f project window.
You could run this project now because it does not require any special libraries,
but it is a good idea to know from the beginning how to add libraries to your
project.

Adding Libraries

Macintosh libraries are essential to most Mac programs. In fact, it is nearly im-
possible to write an application for the Mac without the Mac header files and li-
braries. The program disks that you received with Symantec C++ contain almost
all of the library functions that you’ll need. (But you may want to build your
own libraries that contain routines and functions you’ll use over and over again.)

Since you already have the Add Files dialog box open, move around the
standard file box at the top of the dialog box until you see C/C++ Libraries with-
in the Symantec C++ for Macintosh folder. Open the C/C++ folder, select ANSI

53

Symantec C++ for the Macintosh: The Basics

(or ANSI++) and click the Add button. You will see the ANSI library appear in
the lower window of the dialog box, as shown in Figure 3.7.

[c/C++ Libraries ¥
O ANSI++ > Macintosh HD

D ANSI-A4 :

O ANSI—A4++ o[fea

0O ANSI—small i [

O ANSI—small++ i

0 C headers o [
[

Desktop

O C sources
O C++ headers

ANSI

Figure 3.7. Adding Libraries to MyNewProject

You do not actually need the ANSI library to run this project, but you will need
that and other libraries for most of your applications. Adding to this project will
not affect the project.

Compiling the Program

There are a number of ways to compile your program, but the two that you will
use most are the Compile command in the Source menu and the Run command
in the Project menu. For the purposes of this project, choose Compile from
the Source menu. A dialog box shows the number of files and the number of
lines of code that are compiled (in this case, 1 file and 5 lines, if you started
your code on the top line).

54

The Symantec C++ Environment

Remember that Symantec C++, unlike traditional compilers, does not cre-
ate separate object files from your source files. Instead, it puts all the object
code into the project document.

Running the Program

Now it’s time to see if the program will run. If it compiled, you have half the
battle won. The other half is linking all parts of the program.

The good news is that this program compiles and links. The bad news is
that it is kind of a dumb program,; all it does is play your system beep sound.
You can, however, make it more exciting by changing your beep sound. If you
have one of the newer Macs with a built-in microphone, or if you have sound-
editing capability or a sound management program (like SoundMaster), you can
assign something that you really like to be your system beep. Then, when you
run this simple little program, you may even hear a Bach fugue. Just remember
to change the number inside the parentheses after SysBeep in your source code.
The number 40 only allows a 1-second sound to play. If the sound you want
to play lasts about 6 or 7 seconds, you may want to write in the number 400
to make sure the entire sound plays.

Building an Application

If you have done everything right to this point, you can now turn your project
into a stand-alone application. Choose Build Application from the Project
menu. If you have made changes in the project, the dialog box shown in
Figure 3.8 will appear.

Figure 3.8. Bringing MyNewProject Up to Date

35

Symantec C++ for the Macintosh: The Basics

Bring the project up to date by clicking on the Yes button. As soon as the pro-
gram is recompiled, the dialog box in Figure 3.9 will appear.

g MyNewProject v

L MgnawpPrajeclep 1| = Macintosh HD
L MagNewProjeodw

Eipat
Desktop

Save application as:

| |System Beep|
| [Smart Link

Figure 3.9. Saving MyNewProject as an Application

To be really creative, save your application as System Beep. Hang around for a
while and then open up the MyNewProject folder on your hard disk. You will
see the application there just as it appears in Figure 3.10.

b Wy NewProject — folder =
O MyMewProject.cp 2K THINK Project Man... —
[MyMewProject. 65K THIMNK Project Man... —
e Systemn Beep 2K application program -—

Figure 3.10. System Beep, the Application Developed from MyNewProject

Now, double click on the application icon, and voila! It may not be a spread-
sheet, database management, or word processing program, but it is a program
nevertheless.

56

The Symantec C++ Environment

Summary

In this chapter, you have learned how to:

Create a project.
Create a source file.
Add files and libraries.
Compile the program.
Run the program.

Build an application.

In Chapter 15, Using Symantec C++, we discuss the other features of the
Symantec development environment in much greater detail. Now, however,
you know the basics of the THINK Project Manager. In the next chapter, you
will learn the fundamentals of the C++ language.

Exercises

1) Install Symantec C++ on your computer if you have not done so already.
2) Perform the tutorial exercises found in the Symantec C++ manual.

57

Fundamentals
of C++

he C++ language was developed by Bjarne Stroustrup of Bell Laboratories

and Apple’s version has been available on the Macintosh since 1990.
C++ (which is contrived to mean “C incremented by 1,” or “1 better than C”)
is essentially a superset of ANSI C with many additional features. It supports
object-oriented programming via class definitions, inheritance, polymor-
phism, and more.

To understand C++, you have to be familiar with the programming basics
of the C language and how it relates to the Mac. This section introduces the
elements of the language, describes the syntax, and identifies some differ-
ences between C and C++, to help you avoid the traps and pitfalls of C.

59

Symantec C++ for the Macintosh: The Basics

Comments

Comments represent an area where C and C++ differ in a significant way. C
uses /*...*/ to define a comment. This expression is referred to as a multiline
comment. For instance:

/'
This is a comment

*/

The embedded /* is ignored. Another example follows:
/* This /* is a comment */.

In the above example, the compiler will ignore the second /*. Another example is:
/* This /* is a */ comment*/

Multiline comment pairs do not nest. That is, one comment pair cannot
occur within a second pair.

C++ uses both the star slash and the double slash—//—which is a single-
line comment. Everything on the rest of the line is ignored. For example:

a = b; // Set a equal to b.

c = d;

The compiler ignores the words, Set a equal to b.

For debugging purposes, the // makes it very easy to comment out code.
However, it is very poor style to leave commented out code in software. For
instance:

for (i = 1; i < 10; i++)
{
a = b;
// c =4d;
e = f;

g = h;

60

Fundamentals of C++

In the above example, the line // ¢ = d has been commented out; that is, the
compiler has been instructed to ignore the expression ¢ = d. This might be
done for a variety of reasons, but most likely the programmer will comment
out the line to see if the rest of the code works. The problem occurs when the
programmer, in proofing the code, does not see the all-too-easily-hidden //.

Writing comments liberally will help you identify specific areas of your
program more easily. It is always a good idea and good style to write a com-
ment or comments for each function within the program. The double slashes
are less prone to error than the /*...*/. However, the latter are useful for
block statements.

Statements

All C++ programs derive from statements, which contain expressions.
Statements are really lines of instructions that you give to the compiler. If it
isn’t a blank line, lines, or a comment, then it’s a statement. A statement in
C ++ always ends in a semicolon or a curly brace, but can span several lines.
For example, you can say:

a=Db;
or:
a
b
or:
a ™= H
c =d; The last example con-
tains a redundant state-
or: ment; that is, a state-
ment that does nothing.
a=b; e= d; This is called a no-op.

As shown in the last example, it is possible to have sev-
eral statements on the same line, separated by semicolons.

61

Symantec C++ for the Macintosh: The Basics

Another more complicated example might be:

for (i = 1; i < 10; i++)
{
a[i] = b;

or:
for (i = 1; i < 10; i++){ a[i] = b; }
or:

for (i = 1; i < 10; i++){ a[i]l = b; };

White Space

White space describes blanks, tabs, carriage returns, and line feeds embedded
in text. C++ ignores white space except inside identifiers, numbers, and any
words or symbols that belong together.

Variables

Variables are names given to memory locations. They contain values that
change with program dynamics and are written to or read from memory as
required. Variables are identifiers that can have a maximum of 127 charac-
ters in length, and all of the characters are “significant.” At one time, com-
pilers such as Fortran allowed variables up to 30 characters, but these com-
pilers only read the first seven.

Numbers, alpha characters, and underlines are valid symbols for variable
names. It is not a good practice to begin a variable name with a number or an
underline. Since the characters are case significant, always begin the first
word of a variable’s name with a lowercase letter, and then capitalize the
first letter of each significant word that follows. (This convention helps you
distinguish a variable from a function.)

62

Fundamentals of C++

Examples of the format of variables include:

myEventLoop

theControlRect

dialogPtr

Reserved Variables

There are some words that you may not use for variable or function names
because these are reserved by C++. The full list of these 54 keywords follows:

asm
auto
break
case
catch
cdecl
char
class
const
continue
default
delete
do
double
else
entry
enum
extern

far

float

for
fortran
friend
goto
huge

if

inline

int

long
near
new
overload
operator
pascal
private
protected

Predefined Variable Types

C++ has certain basic or predefined variable types. Some of the most impor-

tant of these are:

char

public
register
return
short
signed
sizeof
static
struct
switch
this
template
typedef
union
unsigned
virtual
void
volatile
while

A byte that ranges from -128 to +127. An 8-bit num-
ber. The first bit is the sign, and the following bits are

the number.

63

Symantec C++ for the Macintosh: The Basics

short A word that is 2 bytes in length. It ranges from
-32,768 to +32,767.

int In Symantec C++, the same as a short. It can be set to
either a short or a long

long A long word; i.e., 4 bytes. It ranges from
2,147,483,648 to +2,147,483,647.

float Real 1.e that ranges from -36 to +36 (precision 7 digits).

double Real 1l.e that ranges from -303 to l.e +303 (precision
13 digits).

Figure 4.1 shows some predefined variable names and their positions in
memory.

Memory Variable Names

char theChar;

short theShort;

float theFloat;

3.14159

Figure 4.1 Example of predefined variable names and their positions in memory.

Fundamentals of C++

Another way to demonstrate the size of integers is in the following list:

Typically, an int is of machine word size. However, on the 68000, this is
ambiguous (32-/16-bit microprocessor). The Macintosh Programmers
Workshop (MPW) has a 32-bit int, while THINK has a 16-bit int. The best
way to avoid confusion is to use the words short or long and never use int.

The predefined types mentioned above are primitive data types. You can
make up your own data types. Typical examples of variable types are:

main ()
{
short a;
g by Under THINK € 5.0, and
float c; Symantec C++, you can
Shur W have an option set up
to declare whether an
int is a short or a long.
&= 0 Under 4.0, a dialog box
b = 7638465; asks you to declare
c = 3.14; whether an int is a 4-
o o Ngls byte or a 2-byte int.

65

Symantec C++ for the Macintosh: The Basics

Declarations

C++ requires that you declare the type of every variable before you use it.
You declare a variable by specifying the type first and then stating the name
of the variable of that type that you want to declare. For instance, if you
want to declare 4, you must say:

short a;

Definitions

Definitions cause space to be allocated for a variable, or code to be generated
for a function. (Declarations, on the other hand, do not cause space allocation
or code generation.) Variable definitions should appear at the beginning of
each program or function. Typical definitions are:

short i = 0, j = 0;
float pi = 3.14;
char cr = 0x0D;

char space = ' ';

Initialization

You can initialize the variable in the definition statement, and you can
define a variable anywhere a normal statement may occur. Just remember
that the variable must be defined before you use it. An example showing
variable definitions directly after a declaration follows:

x = 5;

y = 6;

float t; t = x; x=y; y = t; //swap x and y.

A variable that has not been assigned a value is said to be uninitialized. An
uninitialized variable’s value is also undefined. The memory storage for the
variable is not swept clean when allocated. C++ supports two forms of vari-
able initialization, as shown here:

Fundamentals of C++

short myValue = 1024; //explicit form
or:
short myValue (1024); //implicit form

A variable may also be initialized with an arbitrarily complex expression.
Remember that all variables used in the expression must be initialized. An
example of a complex expression might be:

float price = 99.95;
float tax = 0.0825;

float total (price + (price * tax));

Signed and Unsigned

To further differentiate the variable types, you can put the modifiers signed
or unsigned before certain types of variables. For example:

main ()

{
short a;
unsigned short b;
signed char c;

unsigned char d;

= 32767;
65535;

o P
]

|al:

nZv;

0
]

o
|

}

The default for any of these variables is signed. The following list shows the
ranges for signed and unsigned variables:

67

Symantec C++ for the Macintosh: The Basics

unsigned char The range is 0 to 255 or 28 -1(still 1 byte). All 8 bits
are used for the number.

unsigned short The range is 0 to 65,535 (216 -1).
unsigned int Same as short or long, depending on the option.
unsigned long This range is O to 232 -1.

You can also have numerical constants. For instance:

long a;

a=2>5;

Constants are shorts by default. However, you can change this in Symantec
C++. If, in the example above, you change the int to a Iong, which is called a
literal constant, the 5 will be a long. (The problem with the above example is
that it has mixed types. First, you declare a as long, then set it equal to 5, -
which is normally a short. This is not good coding practice.)

Specified Constants

Following is a list of specified constants showing the individual formats:

OxFF hex char

OxFFFF hex short

OxFFFFFFFF hex long

123L long

128U unsigned (You may use U or u)
1024UL unsigned long (UL or LU)
“Macintosh” string

T char

TEXT long

1.23 double float (double precision)
1.23e2 double float (scientific)

3.14F float (single precision)

1.0L extended precision

All numbers are assumed to be short and decimal unless otherwise specified.
When you declare the variables, you may write:

68

Fundamentals of C++

short a, b; (You may have as many of
these as you wish, each sepa-
rated by a comma.)

short a = 10; . 2\
- In the statement short
' a = 10, short is the type,
short a = 10, b; (a and b are both declared a the identifier, and 10
shorts and, in addition, a is the initializer.
set to the value of 10.)

In the above example, we initialized a to be the value of 10, thereby making
10 the initializer.

Logical Values

Any value that does not equal zero is assumed to be true. If a value is zero,
then it is logically false.

Strings

C++ strings are always terminated with a null (0) character (see Figure 4.2),
and character constants—a, b, ¢, d, and e—are automatically null termi-
nated. C++ strings are usually contained in an array of chars.

T|hie M|la|c|i|n|t|o]|s|h clofm|pluflt|e|r|O

/

Pascal strings are used with the Mac ToolBox (see Figure 4.3). The first byte in
a Pascal string is the length of the string, with a maximum of 255 characters
(Str255). Pascal strings are usually contained in an array of unsigned chars.

Null Terminator

Figure 4.2 A C++ string.

22|T|h|e Mla|e|i|n|t|e|s|h clo|lm|pluflt]e|r

\

Figure 4.3 A Pascal String

Length Byte

69

Symantec C++ for the Macintosh: The Basics

String Constants

The C++ compiler places a null character at the end of every literal string
constant. An example of a string constant might be:

char *myString = "abcde";

Here, myString points to six characters.

Scope

Statements can refer to variables that are only within the same scope. Scope
is the space, domain, or world where an identifier is recognized. Figure 4.4
illustrates the areas of scope.

Operators

An operator is a unique character or set of characters that represent a specific
computer operation. An operator works on something called an operand.

In C++, there are four basic types of operators:

1. Unary
e Prefixed
e Postfixed

2. Binary
¢ Arithmetic and logical
¢ Assignment
¢ Comparison

3. Ternary

4. Comma

70

Fundamentals of C++

{#include <iostreams.h>

short q;
main () < Global Scope I
{
short a:
a = 123; < Local to main I
q=1
{
short b;
b = 123; First sublevel in main §
a = 456; - :

= 2

Innermost sublevel
in main

Figure 4.4 Scope.

Operators have a hierarchical order something like the order of operations in
mathematics. Table 4.1 shows the order or precedence for groups of operators
in descending order:

n

Symantec C++ for the Macintosh: The Basics

Table 4.1
Operator Description
3 Scope resolution
() Function call
[] Array element
Direct selection
-> Indirect selection
+ Unary plus
- Unary minus
++ Increment
-- Decrement
! Logical NOT
~ Ones complement
* Dereference
& Address of
sizeof Obiject size
(type) Cast
new New operator
delete Delete operator
* Multiplication
/ Division
% Modulus
+ Addition
- Subtraction
>> Left shift
>> Right shift

72

Fundamentals of C++

< Less than
<= Less than or equal o
> Greater than
>= Greater than or equal to
== Logical equals
I= Logical NOT equals
& Bitwise AND
I Bitwise OR
&& Logical AND
I Logical OR
2. Conditional
= Assignment
+= Addition update
—= Subtraction update
*= Multiplication update
/= Division update
%= Modulus update
<<= Left shift update
>>= Right shift update
&= Bitwise AND update
I= Bitwise OR update
A= Bitwise XOR update
, Comma

73

Symantec C++ for the Macintosh: The Basics

Unary Prefixed Operators

Operators require one, two, or three variables. Unary operators perform func-
tions on a single operand. A list of unary prefixed operators follows:

* Dereferencing
& Address of
+ Positive
- Negative
I Logical NOT
++ Increment
- Decrement
sizeof() Size of
(cast) Cast to
new New operator
delete Delete operator

Dereferencing — *

An address is a reference to a memory location. When you dereference the
address, you then have the contents contained at that address. For instance:

theValue = *thePointer;
In the above example, the statement takes the contents of the address con-
tained in thePointer and places it in theValue. Actually, the statement sets
theValue equal to *thePointer. Another example might say:

newValue = *(&oldValue);
This is the same as saying:

newValue = oldValue;
If x is a pointer

*x = 10;

the above example puts 10 in the location pointed to by x. In other words,
the contents of x equal 10.

74

Fundamentals of C++

Address of — &

The operator & is placed before a variable name to indicate that we want the
address (in memory) of that variable, not its current value. For instance:

theAddress = &myVariable;

The above statement sets the variable theAddress equal to the memory
address of myVariable.

Negative — -

The negative operator turns a number into a negative number. For example:

short a;
short b;
a=>5;

b= -a;
In this example, the value of b is equal to -5.

Ones Complement — «~
Ones Complement inverts the bits in the variable. For instance:

char a;
char b;
a = 0xAA;

b = ~a;
In this case, the value of b will be 0x55.

Logical NOT — !

A logical NOT takes the logical of its operand and inverts it. For example:

char a;
char b;
a = OxAA;

b = la;

In this case the value of b will be 0.

75

Symantec C++ for the Macintosh: The Basics

Increment — ++

This operator increases the value of a variable by 1. For example:

short a;
a = 5;

++a;
The result of this is that a = 6. The above example says the same thing as:

short a;
a=5;

a=a+1;
We could also say:

short a;
a=>5;

at++;

In this latest example, a still has the value of 6, but the ++ is now a postfixed
operator instead of a prefixed operator. (See section below on unary postfixed
operators.)

Prefixed and postfixed operators have different effects in C++. For
instance, look at the following code:

short a;
short b;
a=>5;

b = ++a;
This statement says the same thing as:

short a;
short b;
a=>5;

a=a+1l; b= a;

76

Fundamentals of C++

In the above example, a is incremented by 1 and put into
b; that is, b = ++a, which is the sameasa=a+ 1; b=a.

Now take a look at an example with a postfixed operator:

C++ takes its name

short a;

from the ++ operator.
short b; .

C++ is one step beyond
& = 3 its predecessor lan-
b = atd; guage, C.

The above example says the same thing as:

short a;
short b;
d = b

b=a; a=a + 1;

Here, the example is evaluated as b= 5 and a = 6 (b = a++;). In other words, b
is set equal to a , and then a is incremented.

Decrement — - -

This operator decreases the value of a variable by 1. For instance:

short a;
a = 53

-
The result of this is that a = 4. This is the same as:

short a;
a = b3

a = a = 1l
We could also say:

short a;
a = 5=

g~

77

Symantec C++ for the Macintosh: The Basics

In the preceding example, a still has the value of 4, but the -- is now a post-
fixed operator instead of a prefixed operator. See the explanation of the differ-
ence between prefixed and postfixed operators in the preceding section on
the increment operator.

Size of — sizeof()

The sizeof operator returns the size of a variable in bytes. For example:

short a;
short b;

b = sizeof(a):;

Here, b is equal to 2 because a is a short, and a short takes up 2 bytes. You
can also say:

short b;

b = sizeof(long);
In this example, b is equal to 4.

Cast to — (cast)
Casting transforms a variable from one type to another. For instance:

long a;
short b;
b=25;

a = b;

In this example, a may or may not be equal to 5. You cannot predict this
because there is a variable-type mismatch. To be safe, you cast it thus:

long a;
short b;
b=5;

a = (long)b;

In this case, a = 5.

78

Fundamentals of C++

New Operator — new

New is a unary operator that’s available to access memory storage. New is a
replacement for the library function malloc and is more convenient to use.
New creates memory in an area called free store, which is a system-provided
memory pool (located in the heap) for objects whose lifetime is directly man-
aged by the program. When you want to create an object in memory, you call
new. When you want to destroy that object, you use delete.

The new operator returns a pointer to the beginning of memory for the allo-
cated variable or object. If you don’t have any space in free store, the new will
return a zero-value pointer. You can then use this feature to determine whether
or not you have enough memory to allocate something. For example:

short *i;
i = new short;

*i = 20;

Here, the first line declares i to be a pointer to a short. The compiler only allo-
cates space for the pointer, not for the contents that the pointer points to.

The second line uses the new operator to obtain a short object, which is
located in the free store area. The new operator returns the address of the
short, which we place in i with the = operator.

On the third line, we set the contents that are pointed to by i to the value
of 20.

We discuss the new operator in more detail later in the book.

Delete Operator — delete

The delete operator destroys the memory space that was allocated by the
new operator. For instance, to delete the space we allocated above, write:

delete 1i;

The memory allocated by the new operator is no longer accessible. However,
the value is still there. If you use the delete again, you will delete another
word that is at the same address as i, because the address has not been elimi-
nated. Delete will also delete memory in the free store area without your
ever having allocated anything to it. You do not want to do this. To prevent
it, never use delete without first using the new operator. However, if you
delete a pointer of zero value, the delete command actually does nothing.

79

Symantec C++ for the Macintosh: The Basics

Unary Postfixed Operators

Following is a table of unary postfixed operators:

()
[]

++

Function call

Array subscript

Direct selection

Indirect selection (called an arrow)
Increment

Decrement

Function Call — ()

A function is like a piece of code or routine that you call up when you need
it. You usually declare a group of code a function when you are going to use
it many times. It makes things more understandable. In a function call (in
between the parentheses), you pass to the function a group of arguments
(variables) that are used or set by the function. Sometimes a function returns

a value. Below is an example of a call to a function:

short a;
short b;

short c;

¢ = divide(a, b);

}

This function definition would be:

short divide(short x, short y)

{

return(x / y);

80

Fundamentals of C++

A second type of call to a function might look like:

short a;
short b;
short c¢;

divide(a, b, ¢);

The function would be:

short divide(short x, short y, short & 2z)
{

z=x/vy;

}

For more information on and further examples of functions, see Chapter 6.

Array Subscript — []

An array is a collection of variables that is contiguous in memory. An array
has a name, a type, and an index. To use an array, you first have to declare it.
For instance:

long af[100];

The above declares the array as 400 bytes and sets aside the memory for it.
Even though this is declared as an array, an array in C++ is not a data type;
it’s an operator. To use the array in code, you would write:

long a[100];
a[0] = 1000;
a[1] = 1001;
a[2] = 1002;

81

Symantec C++ for the Macintosh: The Basics

a[98] = 1098;
a[99] = 1099;

Here, you've created an array that has 100 elements. The [] is an operator,
just as the + is in addition, but in the function afi] is the same thing as *(a +
i). In the example, a is actually the address of the beginning of the array or of
the first element in it. When i is added to g, the a + i combination is the ith
element in the array. So, *(a + i) is the contents of the ith element in the
array. This is exactly the same as saying afi]. Since the address of a is the
address of the first element in the array, you can obtain the contents of that
element by stating that the index is equal to 0. Therefore, arrays always start
with a/0] because that is the way you obtain the first element in the array.
The last element in the array is a[99], even though we dimensioned the array
by 100, which is the maximum index value of the value by which you
dimensioned the array. So if we addressed a/100], we would be addressing a
memory location of something that is out of the bounds of a and would be an
invalid value.

Since the [] is an operator, you do not have to declare something as an
array to use this operator.

Dynamic Arrays, New

If you wanted to create an array that is dynamic (i.e., its size is determined at
run time, as opposed to compile time), you could write:

long *a;
short n;
n = 100;
a = new long[n];

a[99] = 1099;

In the above example, the new in the statement a = new Iong[n] allocates an
array of n longs and places the address of the first element of the array in a.
This makes it dynamic. In contrast, a static array is dimensioned at compile
time—once its size is declared, it never changes. For a dynamic array, there is
no space allocated at compile time. Using the new operator, you request
space for that array.

82

Fundamentals of C++

Dynamic Arrays, Delete

To use delete to wipe out the memory in the preceding new example, you
would write the following:

delete [n] a;
This will delete n longs pointed to by a from the free store.

Direct Selection — .

To understand what direct selection is, you have to understand structure. A
structure is a way to consolidate or encapsulate a group of variables. It’s sim-
ilar to an array, but the variables that we put into this group are not all of the
same type. For instance:

typedef struct
{
long a;
char b;
short c;

} myType;

The above code creates a new variable type called myType. The variable type
that it creates is a type just as a short is a type. To use this new type, we
need to say:

myType theType;

The above line declares a variable called theType of the type myType. To set
the values contained in theType, we would use the direct selection operator.
For example:

theType.a = 8201836;
theType.b = 'm';
theType.c = 512;
When we declared theType, we created a collection of variables in memory

all associated with the identifier theType, which is a structure. It can contain
any number and combination of variable types. In the above example, it con-

83

Symantec C++ for the Macintosh: The Basics

tains a long, a character, and a short. To set the value of any of the variables
in the structure, we used the direct selection operator. You not only set the
values (as above) but you can use the values as well.

Indirect Selection — - >

Indirect selection uses the —> symbol, which is sometimes called an arrow.
Indirect selection performs almost exactly the same function as direct selec-
tion, except that the variable is an address or a pointer. For instance:

myType theType, *pTheType;
pTheType = &theType;
pTheType->a = 8201836;
pTheType->b = 'm';
pTyeType->c = 512;

On the first line of this example, we declare a structure called theType of
type myType and a variable called pTheType, which is to be used as a pointer
to something that contains a record of type myType. On the second line, we
put the address of the variable theType into pTheType. On all the other lines,
we use indirect selection to gain access to the individual members contained
in the structure.

Increment — + +

This operator increases the value of a variable by 1. For example:

short a;
a = 5;

at+;

The result is that a = 6. This says the same thing as:

short a;
a=>5;

a=a-+1;

84

Fundamentals of C++

Decrement — --
This operator decreases the value of a variable by 1. For example:

short a;
a=>5;

a--;
The result of this is that a = 4. This is the same as the following:

short a;
a=>5;

a=a - 1;

Binary Operators—Arithmetic and Logical

Binary operators function on two expressions, one on the left side of the
operator and one on the right side. A list of binary operators follows:

Arithmetic and Logical Operators

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus

& Bitwise AND

| Bitwise inclusive OR

A Bitwise exclusive OR (XOR)
<< Left shift
>> Right shift

= Equal (or replacement)

85

Symantec C++ for the Macintosh: The Basics

Addition — +

This is used simply to add two numbers together. For example:

short a;
short b;
short c;
a = 4;
b= 53

c=a+ b;

a unary operator.

The result of the above is that c = 9.

Subtraction — -

This operator is used to subtract two numbers. For instance:

short a;
short b;
short c;
The - (minus) sign is also B =
a unary operator. b= 5;

¢ =a - b3
Here, c = -1.

Multiplication — *

This operator is used to multiply two numbers. For example:

short a;

short b;

ghort ¢;
The * (asterisk) sign is a = 4
also used as the deref- b =5;
erencing unary opera- o =g ¥ B
tor.

Here, c = 20.

86

Fundamentals of C++

Division — /
This operator is used to divide two numbers. For instance:

short a;
short b;
short c;

a = 20;

b =5;
c=a/ b;

Here, c = 4.

Modulus — %

This operator is used to show the remainder when the first number is divided
by the second number. For example:

short a;
short b;
short c;
a = 22;
b =5;

c=a%b;

Here, c = 2, which isreally a - (a / b).

The modulus operator should be used with integers only; not with float-
ing point numbers. It can be used to determine if the variable is odd.

Bitwise AND — &

A bitwise AND takes each bit of the left expression and performs an ANDing
function with each bit of the right expression. For instance:

char a;
char b;
char c¢;

a = 0x55;

87

Symantec C++ for the Macintosh: The Basics

When we ANDed the
55 with a OF, the up-
per nibble of the 55 be-
came 0, and we were
left only with the low-
er nibble, which is a 5.
In a sense, we masked
out the upper nibble.
When you want to
mask out certain bits,
use a 0 in the masking
number. For those that
you want to keep un-
masked, use a 1 in the
masking number.

b = 0xO0F;
a & b;

c =

In the above example, ¢ = 0x05. In the binary system, the
numbers look like this:

a 0101 0101
b 0000 1111

Using the truth table for an AND function, the result will
be:

c 0000 0101

or:
0101 0101
& 0000 1111
0000 0101

Bitwise Inclusive OR — |

A bitwise OR takes each bit of the left expression and performs an ORing
function with each bit of the right expression. For instance:

char a;
char b;
char c;
a = 0x55;
b = 0xAA;

a | b;

c =

In the above example, ¢ = OxFF. In the binary system, the numbers look like

this:

a 0101 0101
b 1010 1010

Fundamentals of C++

Using the truth table for an OR function, the result will be:
c 11111111
or:
0101 0101

| 1010 1010
1T 11

Bitwise Exclusive OR(XOR) — 4

A bitwise XOR takes each bit of the left expression and performs an XORing
function with each bit of the right expression. For example:

char a;
char b;
char c;
a = 0x55;
b = OxFF;

c=a "’ b;

In the above example, ¢ = O0xAA. In the binary system, the numbers look like
this:

a 0101 0101
b [RRRIRRRR

Using the truth table for an XOR function, the result will be:
c 10101010
or:
0101 0101

A 11111111
10101010

89

Symantec C++ for the Macintosh: The Basics

Left Shift — <<

A left shift takes all the bits in the expression and shifts them to the left side
by the number of places indicated. For instance:

char a;
char b;
char c¢;

a = 0x55;

b =1;

¢ = a << b;

In the above example, c = OxAA. Before the shift:
a 01010101, then shifted by b (1)
After the shift:

C 1010 1010

Right Shift — >>
A right shift takes all the bits in the expression and shifts them to the right
by the number of places indicated. For example:

char a;
char b;
char c;

a = OxAA;
b=1;

c = a >> b;

In the above example, ¢ = 0xD5. Before the shift:
a 1010 1010, then shifted by b (1).

The right shift fills with Os if the left operand is unsigned. Otherwise, the fill
is a copy of the signed bit; in this case, a 1.

Fundamentals of C++

After the shift:

c 1101 0101

Equal (or replacement) — =

The equal operator totals any preceding operation(s). For example:

char a;
char b;
char c;
a = 6;
b= 2;
c = a/b;

c =3

In the above example, ¢ = 3 is the result of a division operation (a/b). The
more complex use of the = operator as an assignment operator is discussed in
the next section.

Binary Operators—Assignment

The equal is an assignment statement that has a low precedence.
Assignments are evaluated from right to left. In C++, the = symbol is an oper-
ator, although in other languages it is not. The difference is that in C++ a
statement can contain more than one = sign. For example:

short a;
short b;
short c;

a=b=c¢c=1;

The above statement assigns the value 1 to c. It sets b to be the value of c,
and sets a to be the value of b. Typically, the = assignment operator produces
assembly code for something like a= b :

MOVE b, al;
MOVE al, a;

91

Symantec C++ for the Macintosh: The Basics

Here, the assembler takes the value of b (right-hand side) and puts it into a tem-
porary register. (A register is a working storage location that’s inside the 68000
microprocessor.) It then places the contents of the temporary register into a (the
left-hand side). Therefore, in C++, as in most high-level languages, the left-hand
side of the assignment must be an expression that refers to storage in the
machine, which is referred to as an Ivalue. The right-hand side of the assignment
can be a storage value, an expression, or a constant. It is referred to as an rvalue.
(The rvalue may be read but not altered, so you can think of it as a read value.
The Ivalue is the memory location where the result is written, so you can think
of it as a location value.) Figure 2.5 shows the location of the rvalue and Ivalue.

//simple assignment |

lvalue rvalue

Figure 4.5 |and r values.
The code below illustrates the concept of the Ivalue and rvalue:

short a;
short b;
a+ 1=nb;

The above is not valid. a + 1 is not an Ivalue; that is, it is not a valid memory
location. An error message will come up saying that you have an invalid
Ivalue. Instead, it’s an expression. What would be acceptable is the following:

short *a;
short b;
*(a + 1) = b;

Here, a is a pointer to a short, and we're taking a, which is a memory
address, adding 1 to it, and placing b in the contents of that memory address.

Also, you may not say:

short a;

0 = a;

92

Fundamentals of C++

You will get the same error message because 0 is a constant, not a memory
location.

Assignment Operators

= Assignment
= Addition update
-= Subtraction update

= Multiplication update

/= Division update

Yo= Modulus update
<<= Left shift update
>>= Right shift update
&= Bitwise AND update
= Bitwise OR update
A= Bitwise XOR update

Addition Update — +=

If you want to increment a value by 1, you can do the following:

short a;

a=a+1;
Another way to do this is to use the += operator, as follows:

short a;

a += 1;

All of the other operators that contain the = symbol work in the same way. If

you write a (operator) = b, it results in a = a (operator) b. Another, more
challenging example is below:

short a = 5;

short b = 7;

93

Symantec C++ for the Macintosh: The Basics

short ¢ = 3;

a += b++ + +ic;

In this example, c is incremented by 1, so ¢ now contains the value of 4.
Then, the value of ¢ is added to b, and that result is added to a and stored
back in a. So a will be equal to 4 + 7 + 5. In addition, b will be incremented
so that after this expression is fully executed, b will have the value of 8.
Another way to state the last line is:

at=b++++tc;

However, this expression is confusing. That is why C++ rules include insert-
ing a space between binary operators and no space between the operator and
the operand for unary operators.

Binary Operators—Comparison

Comparison binary operators provide a logical result that is either true or false.
These operators are used to compare things, as in the following example:

short a;
short b;
short c;
a=2;
b= 5;

c = a < b;

The above example compares a and b. Since a is less than b, the result of the
operation is a true. (A true in C++ is defined as something that is not 0.) A
false would be 0. For all comparison operators, the result is either 1 or 0; that
is, true or false. If a is less than b, then the value of c is 1, or true. Otherwise,
cis 0, or false.

94

Fundamentals of C++

Comparison Operators

== Equality

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to
I= Inequality

&& Logical AND

Il Logical OR

The equality operator compares two variables to see if they are equal to each
other. For instance:

short a;
short b;
short c;
a = 2;
b =53

¢ = g = bs

The above example sets the value of a to the value of b, then sets the value
of ¢ to the value of a. The result is that a, b, and c all have the value of 5.
However, the statement does not perform a comparison

to see if a is equal to b and set c to true or false, depend-
ing on the result of the comparison. To do such a compar-
ison, write the following:

A common mistake

SLOTE & made in C program-
short b; ming is fo use the = op-
short c; erator when the == op-
o erator is intended. This

is especially true when
ekl the == operator is used
c=a==h; in the control state-

ments; that is, an if or
while statement.

95

Symantec C++ for the Macintosh: The Basics

In this example, a is compared to b. Because they are not equal, it sets the
value of c to false.

The <, >, <=, >=, and != operators all have the same function as the == opera-
tor; that is, they compare two variables and provide a result that is either
true or false.

Logical AND and Logical OR

These operators take the logical value of the two operands and state either,
“If a is this AND b is that, then ¢ will be true (or false),” or “If a is this OR b
is that, then c will be true (or false).”

short a;
short b;
short c;

a = 2;
b=25;

c = a && b;

In the above example, if a is not equal to O (i.e., a is true) and b is not equal
to 0, then ¢ will be set to true. This is quite different from saying:

short a;
short b;
short c;
a = 2;
b =5;

c=a & b;

The above example takes the hex number 0x0002 and performs a bitwise
AND with the number 0x0005. The result placed in ¢ will be 0x0007.

The && operator is normally used in statements like the following:

short a =2, b=5, c=7,d=1, e;
e = (a <b) && (c > 4d);

96

Fundamentals of C++

The result of the above operation is that e is equal to true.

The OR comparison (ll) operates similarly, except that it states, “This or
this,” instead of “This and this.” For example:

short a =2, b=5, ¢c=7,d=1, e;
e=(a=0») || (c ==4);

Here, if a is equal to b or c is equal to d, then e will be equal to true.
However, that is not the case, so e is equal to false.

The && and |l operators are evaluated from left to right; that is, as soon as
the result of the left-hand variable is known, the operation will determine
whether it needs to evaluate the right-hand variable. If not, it will set the
assignment to true or false immediately. The advantage of this is speed. For
efficiency’s sake, you should put the variable most likely to affect the outcome
in the left-hand position. Figure 2.6 shows this short-circuit evaluation.

if ((a ==b) || (¢ == d))

If a equals b,
then the expression (¢ == d) is not evaluated

Figure 4.6 Short<ircuit expression evaluation.

Ternary Operator — ?:

The ternary operator provides a choice between two alternatives. For instance:

short a, b, ¢, 4;

d=¢?a: b;

The above example can be expressed as d equals a if ¢ is true, otherwise b.
Thus, the value of d will be either a or b. It is not a logical value. A typical
example of this is:

short a,b,c;

c=(a<b) ?a: b;

97

Symantec C++ for the Macintosh: The Basics

This statement performs a minimum (min) function; that is, it takes the smaller
of two values, either a or b. Another example might look like the following:

short a,b,c;

c=(a>b)?a: b;

The above example describes a maximum (max) function because it takes the
larger of the two. Another example might look like:

short a,b;

b= (a<0)? -a: a;

Here, if a is less than 0 (is a negative number), then set b to —a (which is a
positive a); otherwise {a is positive), set b to a. This is referred to as an
absolute value function.

Comma Operator

The comma operator is used to separate a series of expressions. These expres-
sions are evaluated from left to right. (It is important not to confuse the
comma operator with the statement/end separator—the semicolon.) Here is an
example of the use of the comma operator in a complex statement:

short i = (ia !=0) ?

ix = 5, ia[ix] =, 1:

ix = 6, ia[ix] = ix - 1,0;
for (short i = 1, short j = 1; i < 10; i++, j++)
{

a = 100; b = 200; ¢ = 300;

98

Fundamentals of C++

Summary

In this chapter, you have learned the elements of the C++ language:

Simple statements.

Variables.

Basic data types.

Operators.

In the next chapter, we will introduce you to the basics of program flow and
will discuss C++ standards of style.

Exercises

1) Which comments are valid?

2)

a) // Macintosh

b) /* Macintosh

c) /* Macintosh */

d) /* Macintosh /* Computer */ System */
e} // Macintosh // Computer

f) {define pi 3.14 // m

g y = a*x/*p; /* simple equation */
h) “/* Macintosh */”

i) “// Macintosh”

il // /* Macintosh */

k) /* // Macintosh */

Debug the following:

main()

{

short library;
short public = 1;
short private = 2;

short 1i;

Symantec C++ for the Macintosh: The Basics

cin >> i;
if (i == 0)
{

library = public;
}
else
{

library = private;
}
return (0):;

}

3] Debug the following:
main ()
{
char system[9] = “Macintosh”;
cout << system;
return (0);

}

4) What is the value of x on each line of the code below:
main ()
{

short x;

x = 5;

x -= (4 *2) - 6;

x /= 5;

X-3

x = short(25.0);

x /=3 * 2;
x=(3*4*5)/9;
x -= (3 +4) * 2;

x = sizeof(long) + 1;

100

Fundamentals of C++

x = (3 + 4) * 2;

x = gizeof(char);

x /= (3 + 4) / 6;
}

5) Which of the following are true or false:
a) 10==15*2
b) 0 && 0
c) 12 || o
d) short a=1,b=2;a>b || b> a;

101

Controlling the
Program Flow

C++ programs derive from control structures that allow you to determine
which operations the computer will perform and in what order. The struc-
tures determine the flow of control of the program.

C. Bohm and G. Jacopini stated in Flow Diagrams, Turing Machines and
Languages with Only Two Formation Rules that any algorithm could be
coded in a computer language using only three control structures: sequential
execution, conditional execution, and looping. Sequential execution is the
most common and is usually part of a simple statement or block of state-
ments. Conditional execution and looping are more complex. All are covered
in the following subsections.

103

Symantec C++

Statements

All C++ programs are made up of statements, which are followed by a semi-
colon. The several types of statements are described below.

Expression and Null Statements

The most common statement is the expression statement. An expression is a
statement that describes the relationship between variables and operators.
For example:

short a, b, c;
a=>b+ c;

The above expresses a’s relationship to b and c using the = and + as operators.

C++ can also have a null statement, which is a statement for which no code
is generated. It is equivalent to an assembly language No-op. For instance:

short a, b, c;

a=>b+ c;;

In the above example, nothing happens between the two semicolons. This
example is not a useful one, but there are instances where a null statement
can be useful.

Beyond the expression and null statements, there are other statements in
C++ that use keywords.

Blocks

A block, or compound statement, is a collection of statements enclosed by a
pair of curly braces. Thus, from the beginning of an open curly brace to the
closed curly brace, all of the statements contained therein constitute a block.
We have used blocks in all of our code examples, although we have not always
shown the curly braces because most of the examples are code fragments. The
following is an example of a compound statement using the curly braces:

main ()

{
short a, b, ¢, d;
c =a+ b;

104

Controlling the Program Flow

d =a+c;

The three lines between the curly braces make up a block.

If

The if statement is the simplest of all the control statements. An if takes the
following form:

if (expression) statement;

The if statement simply means that the statement executes if the expression
is true; that is, if everything inside is not equal to O (the C++ definition of
true). However, you can say in the expression that something is equal to O,
and it will execute because the expression is true. The following is a simple
example of an if statement:

short a;

if (a € 0) a = -a;

The above example says that if a is less than 0, then a is equal to —a. In other
words, it takes the absolute value of a. Another way to write this is:

short a;
if (a < 0)

a = -a;

This is exactly the same as the first example but shows that C++ ignores
intervening lines and white spaces.

The statement in the if statement can be a block statement. For instance:

short a, b, c;
if (a != 0)
{

b = 10;

c = 20;

105

Symantec C++

The example above has a compound (block) statement between the curly
braces. A variation of the above example might be:

short a, b, c;
if (a)
{

b = 10;

c = 20;

This code does exactly the same thing as the previous code because the
expression still says, “if a is not equal to 0.”

It is important to note that the logical expression inside the parentheses
can be interpreted differently for the =, &, and | operators. For example, if
you are comparing variables—a equals b, and c equals d—the rational thing
to write would be:

short a, b, ¢, d, e;

if ((a =1Db) & (c = 4d)) e = 0;

This appears to say, “If a is equal to b and c is equal to d, then set e to 0.”
What actually happens is that a is set equal to b, clobbering a, and c is set
equal to d, clobbering c, and if the bitwise ANDing of a and b is not equal to
0, e will be set to 0. The correct way to write that statement is:

short a, b, c, d, e;

if ((a == b) && (c == d)) e = 0;

By using the == and &&,, the above example evaluates the logical expressions
this way: “If a is equal to b and c is equal to d, then set e equal to 0.” It com-
pares a to b and c to d rather than setting values.

Even if you intend to do an assignment in the expression part of an if
statement, the best way to write this would be:

short a, b, c;
a=>b+ 1;
if (a != 0) ¢ = 0;

106

Controlling the Program Flow

A crackerjack C++ programmer might look at that and, for conservation of
keystroke purposes, might express it in the following manner:

short a, b, c¢;

if (a=b+ 1) ¢ = 0;

This will execute the same as the first example, but it is poor style. If at
some future time you wanted to modify your code, you might not know
what was originally intended.

C++ has unusual rules for curly braces. The language allows you to write
an if statement with an else statement without braces—if there is only one
line of code after each statement. However, if you do not use braces, you
stand the chance of making a disastrous mistake. Thus, a good example of
code is:

if (4 < 0)
{

do one line

else

do another line

A bad example might be:

if (i € 0)
do one line
else

do another line

The reason that the preceding example is considered poor style is that it
lends itself to error. That is because almost every line of code in C++ has a
semicolon after it, and it is remarkably easy to insert a semicolon where one
does not belong. For instance, it would be effortless to write:

107

Symantec C++

if (a = b);

c =d;

Let’s assume that in this example you wanted to say, “If a equals b, then c
equals d.” Instead, you are saying, “If a equals b, then do nothing and always
set ¢ to d.” The best way to avoid this error is to use braces, as follows:

short a, b, ¢, d;
if (a != b)
({

c = 10;

d = 20;

Here, if you inadvertently put a semicolon after the if (a /= b) expression, the
brace on the following line automatically flags the error. (This is true only in
the Symantec compiler.)

If -Else

An if-else statement includes the alternative condition; that is, if the expres-
sion is true, execute the first statement, or else execute the second state-
ment. The syntax of the if-else is:

if (expression) first statement;

else second statement;
A simple example would be:

short a, b;
if (a < 0) b = -a;

else b = a;
An alternative way of saying the above would be:

short a, b;
if (a < 0)

b = -a;

108

Controlling the Program Flow

Even though this example is acceptable syntax in C++, it is poor style for the
reasons discussed in the previous section: Since most lines are terminated by
a semicolon, it’s easy to insert one in the wrong place. You might inadver-
tently write:

if (a € 0);
b = -a;
else

b = a;

What would happen above is that if a were less than 0, nothing would hap-
pen (this is a null statement) and b would always be set to —a. A better way
to say this is:

short a, b;
if (a € 0)
{

b = -a;
else

b = a;

This makes the statement clearer and more goof-proof. It also assures that
the compiler will pick up any mistakes.

Else-If

The else-if statement is used to implement multiple-choice statements. In
essence it says, “If the first expression is true, execute the first statement;
else if the second expression is true, execute the second statement.”

The form for an else-if statement is:

if (first expression) first statement;

109

Symantec C++

else if (second expression) second statement;

else last statement;
A simple example would be:

char answer;

short result;

if (answer == 'A') result = false;

else if (answer == 'B') result = false;
else if (answer == 'C') result = true;

else if (answer == 'D') result = false;
else if (answer == 'E') result = false;

else result = false;

The above example says: “If C is the answer, the result is true. If A, B, D, E,
or anything else is the answer, then the result is false.”

Switch

A switch statement executes a particular action depending on whether an
expression matches one of a number of constant values. A switch statement
has the following form:

switch (expression)
{
case first constant:
first statement;
case second constant:

second statement;

110

Controlling the Program Flow

default:

last statement;

In the above example of code, the lines with a case and constant (or default)
are called case labels. These end in a colon. The case and default labels can
occur in any order, but by convention the default case is usually last. You
cannot have two instances of the same case label; each must be unique.

When the switch expression matches the case constant, the statement
following that case label is executed. In addition, every statement from the
first matched statement to the last is executed. For example:

short i;

char theCharacter; WM|“°
L O B

switch (theCharacter) Alfhough the default

{
case ('4'):
i+
case ('3'):
i+
case ('2'):
drt-bg
cage ('1'):
didFg

default:

case is optional, it is
good programming
practice to have a de-
fault case in the event
that none of the other
cases maiches. This way
you know that the swiich
statement has execut-
ed properly. By con-
vention, the default case
is usually the last case
in the swifch statement.

In this example, we have two variables: theCharacter, which is some ascrib-
able ASCII value, and i, which is a short number. In the first line of code, we
set 1 to 0. In the second line, we have the variable theCharacter, which is
what we will be testing on. Each of the case expressions contains an ASCII
constant. For example, case (‘4’) is 0x34, case (‘3’) is 0x33, and so on. Let us
suppose that case (‘4’) is a match, then the line following that case label—
i++—gets executed. When that statement is executed, i is now equal to 1.
The next thing that happens is that the program falls through and executes

111

Symantec C++

the statement following the next case label and ignores the case label; in this
case (‘3’). Each additional statement under each case label, including the
default, is also executed, thereby changing the value of i in each case.

If you do not want the fall-through feature for a particular case, you must
use the switch-break statement, which is covered in the next section.

Switch-Break

The switch-break statement is just a switch statement with the addition of
a break statement. When a break statement is executed, it forces the pro-
gram to branch out of the switch statement; that is, it does not fall through.
The format for a switch statement using breaks is:

switch (expression)
{
case first constant:
first statement;
break;
case second constant:
second statement;

break;

default:
last statement;

break;

For performance purposes, put the case that is most likely to match first in the
switch-break statement (may vary from complier to compiler). An example of
a switch-break statement might be:

short i;

char theCharacter;
switch (theCharacter)
{

112

Controlling the Program Flow

case ('9'):
case ('8'):
case ('7'):
case ('6'):
case ('5'):
case ('4'):
case ('3'):
case ('2'):
case ('1'):

case ('0'):

i = theCharacter - 0x30;

break;
case ('A'):
i=10;
break;
case ('B'):
i=11;
break;
case ('C'):
i=12;
break;
case ('D'):
i=13;
break;
case ('E'):
i= 14;
break;
case ('F'):
i=15;
break;
default:
i=0;

break;

113

Symantec C++

In this example, the first 10 lines after the open curly brace are fall-through
cases; that is, they are multiple case labels attached to one statement. For
each of those cases, we have an ASCII character from which we subtract
0x30, thereby setting i to the decimal equivalent. After that, we hit the break
statement, which forces us to branch out of the switch statement and not
execute any of the other cases in the block. In the other cases—A through
F—we assign i to the decimal of the hex digits. If no match is found, the
default is executed.

For sanity’s sake, it is best to avoid fall-throughs except to prevent ineffi-
cient duplication of code lines. Fall-throughs are best used when you have
multiple labels for a single computation.

Which Do | Use—Switch or If-Else?

Since these two statements do almost the same thing, it is sometimes diffi-
cult to know which to use. We suggest that you use a switch statement if at
all possible. The following rule will help: If you are matching an expression
to a constant, use a switch statement. If you are matching an expression to
an expression, use an if-else statement. For example:

Switch:

case ('A'):
i=10;
break;

case ('B'):
i=11;
break;

case ('C'):
i=12;

break;

If-Else:
if
a=>»
else
a<b
a>hb

and so on.

114

Controlling the Program Flow

While

The while statement executes a statement as long as a
specific expression is true. The test for a logical true is
made each time before the statement is executed. If the
expression is always false, the statement is never exe-
cuted.

The format for the while statement is as follows:
while (expression) statement;

The statement can be compound. The test for the expres-
sion is always done at the top of the loop. An example of
a while statement might be:

i=0;
while (i < 100)
{

1H+;

The above statement changes the value of i by 1 each time
you go through the loop. In this example, the statement will
be executed 100 times, but the test for the expression will
be executed 101 times.

The statement has to affect the expression in some way.
Otherwise, you will have an endless loop, because the expres-
sion would always be true. At some point, the statement
has to render the expression false.

Another way to write the above example might be:

i=20;
while (i < 100)
i++;

The problem with the style of this example is the ten-
dency to put a semicolon after while (i < 100). Doing this
puts the program into an infinite loop.

Variables that retain
a value based on the
number of times through
a loop are called coun-
ters. Typically, pro-
grammers designate
these counters as i, j, k,
I, m, and n. Originally,
in Fortran (the mother
of all programming lan-
guages), the first let-
ter of any integer vari-
able had to begin with
one of those letters. This
tradition has been hand-
ed down to C++.

For the most part, the
only way out of an in-
finite loop on the
Macintosh is to restart
the machine.

115

Symantec C++

Do~While Loop

The do-while statement is similar to the while statement, except that the
test and evaluation of the expression are done at the bottom of the loop. The
format is:

do statement while (expression);

The statement can be single or compound.

Notice that the test and evaluation for the expression come at the end of
the loop. An example of a do-while statement is shown in the following:

i=0;
do
{

i+t

} while (i < 100);

Here, the statement will still be executed 100 times, and the test for the
expression will be executed 100 times as well. You only use the do-while
statement when the problem you're trying to code dictates that the state-
ment be executed at least once before the expression is evaluated.

For Loop

The for loop, while similar to the while statement, can improve the readabil-
ity of your code. It does this by confining the initialization, testing, and evalu-
ation of the loop counter on a single line. The format for the for loop is:

for (initial exp; test exp; evaluate exp) statement;
or:

initial exp;
while (test exp)
{

statement;

evaluate exp

116

Controlling the Program Flow

The test of the expression comes at the top of the loop, while the evaluation
of the expression always comes at the bottom.

To see how a for loop improves the appearance of a complicated while
statement, look at the following:

i=0;
while (i < 100) //This is a while statement
{

y[i] = ali]l * x[i] + b[i];

it++;

for (i = 0; i < 100; it++) //This is a for loop
{
y[i] = al[i]l * x [i] + b[il;

The for loop in this example keeps all the operations of the loop counter on
one line, and it also reduces the code by two lines.

If the initial expression is left blank, no initialization takes place. If the
evaluation expression is left blank, no evaluation takes place. If, however,
the test expression is left blank, the loop executes forever. An example of an
infinite for loop would be:

for (;3)
{

do stuff here ;

Another thing that C++ allows inside a for loop is use of the comma operator.
This lets you use multiple expressions on the same line. For example, look at
the following for loop without the comma operator:

j=0;
for (i = 0; i + j < 100; i++)
{

do stuff here ;

117

Symantec C++

The initialization and
evaluation expressions
do not have to be con-
nected to the test ex-
pression in any way,
although it is good prac-
tice to connect them.
The test expression,
however, has to be able
to terminate the loop
or an infinite loop will
be created.

Use the break state-
ments to terminate a
loop sparingly, because
such a construction is
not conducive to struc-
tured thinking; that is,
there is probably an-
other way to write the
loop and express the
same logic without the
use of a break. How-
ever, the break state-
ment is a necessary evil
in a swifch statement
because it is the only
way to avoid the fall-
through.

j++
}

This same loop using the comma operator would be writ-
ten this way:
for (i =0, j=0; i + j < 100; i++, j++)
{
do stuff here;

}

You use a comma instead of a semicolon because a com-
piler uses the semicolon to delineate the initialization,
test, and evaluation of expressions. In addition, the com-
piler uses the semicolon to separate multiple statements
on a single line. If you want to use multiple statements
for the initialization, test, and evaluation expressions, the
use of a semicolon would be confusing to the compiler.
Therefore, to separate multiple statements in the for
expressions, use the comma. '

While versus For

For code optimization and efficiency, it is sometimes
more desirable to use a while loop instead of a for Ioop
and vice versa. Here are a couple of rules of thumb:

£ If you have a for loop with the first and third
expressions omitted, use a while loop.

| If a loop depends on a simple comparison for
repetition and does not use an index variable, use
a while loop.

[| Otherwise, use a for loop.

Break

A break statement inside a while, do, or for loop termi-
nates the loop. The format is:

break;

118

Controlling the Program Flow

An example of a break statement is:

for (i =0; i € 100; i++) WM|“°

{

do stuff here;

Use the continue state-
ment sparingly for the

if (thiS is true) break 5 same reasons thut Y°u
do more stuff here; use the break state-
) ment sparingly.

The break can occur anywhere inside the loop. Note that a break statement
inside a switch statement that is inside a loop will terminate the switch
statement only; it will not terminate the loop.

Continue

The continue statement causes a loop to recycle by
branching to the place in the loop where the evaluation
and test occur. For example:

for (4 = 0; 4 < 1003 4++) The continue statement

{ has no effect on swiich
statements.

do stuff here;
if (this is true) continue;

do more stuff here;

In the example above, anything after the continue statement will not be exe-
cuted if the if statement is true; the loop will then test and evaluate the
expression again for continuation or termination.

Labels and Goto
Any statement may be preceded by a label. The format for a label is:

identifier:

The only use for a label is to be the target of a goto statement. A goto is a
way to transfer unconditionally to a label. The format of a goto is:

goto identifier;

119

Symantec C++

The goto statement
should be avoided as
much as possible be-
cause it misses the un-
derlying syntax of the
problem and represents
one-step thinking.

An example might be:
for (i =10; i < 100; i#¥)
{
for (j = 03 J £.100; j++)
{
do stuff here;

if (an error detected) goto fixit;

fixdit:

handle error here;

In this example, we have nested loops—that is, a loop containing a loop.
Inside the loops, we executed statements, and we have an if test to determine
if an error occurred in the calculation of those statements. If it did, we exe-
cuted the goto, transferring control unconditionally to the label fixit, where
we execute more statements to handle the error.

The above example is probably the closest to a valid use of the goto statement.
However, that same example without the goto statement could be written:

In the above example,
you could not use break
statements fo accom-
plish what the goto ac-
complishes. If you place
a break statement in
the innermost loop of
the two nested loop
statements, you would
break out of the inner
loop but remain in the
outer loop.

for (i = 0; i < 100 && error == false; i++)
{
for (j = 0; j < 100 && error == false; j++)
{
do stuff here;

if (an error detected) error = true;

}
if (error = = true)
{
handle error here;
}
In this example, we have the advantage of retaining a

structured way of thinking; the disadvantage is that we
have introduced a new variable.

120

Controlling the Program Flow

Style

Although C++ is a popular, widely used language, it can be terse and demanding,
and programmers must follow prescribed conventions. For that reason we devote
this section to a discussion of C++ programming standards.

Error from Fortran

What was intended:

DO 10 I=1, 23
do stuff here
10 CONTINUE

What was coded:

DO 10 I1.23
do stuff here
10 CONTINUE

What the compiler saw:

DO10I=1.23
do stuff here
10CONTINUE

What happened:

DO10I = 1.23
do stuff here
10 CONTINUE

This error was found in a program that was used to compute the trajectory of
a multimillion-dollar communications satellite. After launch, no trace of the
satellite was ever found.

Errors like this can happen with an old dinosaur like Fortran but can nev-
er happen with an advanced language like C++...can they? Let’s take a look.

121

Symantec C++

What was intended:

a=b/*p /* Div b by the contents of p */;
What happened:
a=>» /*/* Div b by the contents of p */;

What should have been done:
a=>b/ *p; /* Div b by the contents of p */

The point of all this is to urge you to be consistent in your methods for C++ code.

Rule 1: Placement of Curly Braces

Even the experts disagree on where the curly braces should go, as seen in the
following.

The curly brace rule according to Kernighan and Ritchie:

if (expression) {

statements

According to Plum:

if (expression)
{

statements

According to Whitesmith:

if (expression)
{

statements

122

Controlling the Program Flow

Rule 2: Use Curly Braces on All If Tests
This:

if (1 < 0)
{

do one line
else

do another line

}
Not this:

if (4 € 0)
do one line
else

do another line
Okay:

if (a == b)

c =d;
Wrong:

if (a == b);

123

Symantec C++

What the programmer thought he/she had:

if (a <= b)
if (a == b)
it
else
{
a = b;
i=1;

}
What the programmer really had:

if (a <= b)
if (a == b)
i++;
else
{
a =b;

i=1;

The fix:

if (a <= b)
if (a == b)

i++;

else

a =b;

i=1;

124

Controlling the Program Flow

Rule 3: Space Between Statement
Keywords and Parentheses

This:

for (i = 1; i <= 10; i++)
if (a == b)

Not this:

for(i = 1; i <= 10; i++)
if(a == b)

Rule 4: No Space Between Function
Name and Parentheses

This:
MyFunction(variable)
Not this:

MyFunction (variable)

Rule 5: Use Spaces Between
Binary Operators
(No Spaces Between Unary Operators)

This:
a =i+t + +j * *k
Not this:

atit++++j**k //Huh??

125

Symantec C++

Rule 6: Use Spaces After Commas
and Semicolons

This:
MyFunction(theVarl, theVar2, theVar3)
Not this:

Myfunction(theVarl,theVar2,theVar3)

This:

for (i 1; i <= 10; i++)

Not this:

for (i = 1;i <= 10;i++)

Rule 7: Capitalize Every Main Word
in a Function Name

This:
MyFunction(theVar)
Not this:
myFunction(theVar)
Or this:
myfunction(theVar)
Or this:

MYFUNCTION (theVar)

126

Controlling the Program Flow

Or this:

My_Function(theVar)

Rule: 8 Capitalize Every Main Word in a
Variable Name Except the First

This:
short eventRecord;
Not this:

short EventRecord;

Rule 9: Use Blank Lines Only When
They Convey Meaning

For example:

HLock (theHandle) ;

thePointer = *theHandle;
pi = 3.14;
£ =1.0/ (2.0 * pi * SquRoot(f * c));

*thePointer = 1.0 / £;

HUnlock (theHandle) ;

127

Symantec C++

Rule 10: Go Easy on the Use
of Underscore (_)

This:
theWindowDefProc = MyDefinitionRoutine;
Not this:

The_Window_Def_Proc = My_Definition_Routine;

Rule 11:Use a Break on the Last Case
of a Switch Statement

This:

switch (theVar)
{
case (1):
do stuff here
break;
case (2):
do more stuff here
break;
default:
break;
}

Not this:

switch (theVar)
{
case (1):

do stuff here

128

Controlling the Program Flow

break;
case (2):
do more stuff here

}

A case label that deliberately omits a break statement should in most cases
provide a comment stating that the omission is deliberate.

Rule 12: Operators in Definition and
Declaration Statements

This:
char *pl;
Not this:
char* pl;

char* pl, p2;// Could be a problem

In the above example, p1 is a pointer to a character, where p2 is a character.

Summary

B Be consistent: Choose a style and stick with it!
B Your style should help you program defensively.
B Code for readability: Be kind to those programmers who follow you.

129

Symantec C++

Exercises

1)

2)

3)

4)

5)

Write a program that will create an array on the heap, then initialize

that array to zero.

Debug the following function:
void PrintCanine(short canine)
{
switch (canine)
{
case 1: cout <K “Doberman”;
case 2: cout < “German Shepherd”;

case 3: cout < “Weimaraner”;

Debug the following program:
main()
{

short array[1000];

short 1i;

for (i = 0; i <= 1000; it++);

al[i] = i;

Write your own routines to:

a) compute the minimum and maximum of two variables.

b) compute the absolute value of a variable.

What is Wrong with the following code fragments:

a) do (i++) until (i == 100);
b) while () i++;
c) for (i = 0; i < 100; i++) i—;

130

Controlling the Program Flow

6) Create afile call MyStyle. In that file define a set of rules that describe
your coding style. The file should include:

a) how much white space you use to indent code.

b) how much white space you use before and after operators.
c) how you use characters in variable and function names.
d) any rules that apply to control statements.

131

Functions and
Variables

‘ N Je covered variables (and to some extent functions) in Chapter 4. In this
chapter, we show you how these elements interact.

133

Symantec C++for the Macintosh: The Basics

Functions

A function is a collection of statements that perform a particular task. In a well-
written program, a function will perform only one task. Functions break a pro-
gram up into parts that are reusable and can be saved in a library, which keeps you
from reinventing the wheel every time you want the same task performed. Functions
also make your code more readable and easier to maintain.

When you write a function, you might ask yourself, “Does it make the code
more readable and does it hide the code (along with all the thought processes
that go on behind it)?” If the answer is yes, write the function.

i 3
Common programming
practice on the Macintosh
is fo capitalize the first
letter of each major word
in the function name.
This is different from a
variable, which has a
lowercase letter for the
first letter of the first
word but an uppercase
letter for the first letter
of each major word fol-
lowing. An example of
a function name is
EventRecord. Some pro-
grammers like to use
underbars to replace
spaces in names of func-
tions and variables. For
example, Pen_Normal.
This style is not really
popular on the Mac,
probably because the
Toolbox does not use it.

You can think of a function as a kind of black box, with
data going in and out. The inside of the box is invisible to
the rest of the program. It is not necessary to know what is
going on; you need only know what goes in and what comes
out.

For every program, you must have at least one function,
and it must be called main. The main function controls the
execution of the program and calls other functions, which
in turn call still more functions.

When a program calls a function, control is passed to
that function; that is, when the program makes a call to the
function, it stops executing operations and passes them on
to the function, which executes until it encounters a return
or the end of the function. Figure 6.1 depicts a function call,
execution, and return to the next statement.

You call a function by stating its name followed by the
function operator. For example:

PenNormal () ;

When designing functions, try to keep them short. A func-
tion should be limited to one printout page, about 50 to 60
lines. Small functions are easier to maintain.

A Function Definition

A function that does not indicate a return type is pre-
sumed to return an int value. For example:

134

Functions and Variables

Functions

main ()
{
statement 1;
statement 2; function()
statement 3; {
statement 4; 3 statement 1;
—) statement 5; statement 2;
[statement 6; statement 3;
statement 7; statement 4;
statement 8; statement 5;
statement 6;

Figure 6.1 Function call, execution, and return.

return-type Name (argument list)
{

declarations

statements

}
A return statement provides a method for terminating the execution of a
function. The return of a zero in the main function indicates the successful
completion of the main. The form for a return statement is as follows:
return;
or:
return variable;

or:

return (variable);

135

Symantec C++for the Macintosh: The Basics

A Function Definition Example

short Name (short top, short bottom)
{
short temp2Bytes;

long temp4Bytes;

temp4Bytes = bottom - top;,
temp2Bytes = (short)temp4Bytes;

return (temp2Bytes);

Function Prototypes

A function prototype is a mechanism used in C++ to improve program relia-
bility. All functions must have their type and arguments explicitly listed be-
fore they are used or defined. If a function is not declared to the program before
it is used, a compile-time error will result.

Prototypes are also known as forward declarations. They have the follow-
ing form:

type name (argument-declaration list);

A typical example of a prototype might be:

void PenNormal (void) ;
void SetPort(GrafPtr thePort);
void SetPt(Point thePoint, short h, short v);

short StringWidth(Str255 theString);
or:

float squ(float x); //Prototype

main ()

136

Functions and Variables

float pi;
float radius;

float area;

radius = 5.0;

area = pi * sgqu(radius);

You may omit parameter names from the prototype (only the types are impor-
tant). For instance:

void setRect(Rect theRect, short top, short left,

short bottom, short right);
or:
void SetRect (Rect, short, short, short, short);

Note that in these examples the keyword void is used in prototypes and func-
tion definitions for empty argument lists and in prototypes and function defi-
nitions for null returned values. (This non-use of void in function definitions
is specific to Symantec.)

Variable Number of Arguments

An ellipsis (...) can be used to specify an unknown number and type of para- |
meters. However, argument checking is turned off when a function is de-
clared to have an unspecified number of arguments. Because of this, it is best
not to use this capability unless it is absolutely necessary.

An example of code with a variable number of arguments might be:

Prototype:

int printf(char *format, ..);

Use: The library stdarg.h

contains a set of macros
for accessing unspeci-
fied arguments.

printf("%f is sqrt of 4\n", sqrt(4));

137

Symantec C++for the Macintosh: The Basics

Passing Function Arguments

The code between the left and right parentheses in a function is called argu-
ments (or parameters). When you make a function call, the arguments that you
have placed between the parentheses are automatically available to the func-
tion. This operation is called passing arguments. For example:

main ()
{
float a,b;

a=6;
b = Square(a);

do more stuff here;

float Square(float x)
{

return(x * x);

In the above example, a is passed in to square, and inside of square it is referred
to as x.

You may pass in function arguments by three different methods: value,
pointer, and reference. Examples of each method appear below.

It is important to note that under C++ and the new ANSI standard for C,
the declaration of the arguments must be included between the parentheses of
the function declaration. Previously, the code in C would have been written as
follows:

float Square(x)
float x;

return(x * x);

J

Do not use the above style in your programming because C++ does not sup-
port it.

138

Functions and Variables

Passing by Value

main()

{
short a, b;
a=>5;
MyFunction(a) ;
b = a;

MyFunction(short x)
{

if (s == 5)

{

X = 6;

}
}

When this routine is complete, b will be equal to 5.
Passing by Pointer

main ()
{

short a, b;
a=2>5;

MyFunction(&a) ;

b = a;

MyFunction(short *x)

139

Symantec C++for the Macintosh: The Basics

if (*x == 5)
{

*x = 6;

}

When this routine is complete, b will be equal to 6.

Passing by Reference

main ()

{
short a, b;
a=>5;
MyFunction(a) ;
b =a

MyFunction(short &x)
{

if (x == 5)

{

}

When this function is complete, b is equal to 6.

140

Functions and Variables

Default Arguments

A default argument is usually a constant that occurs frequently. By using a
default argument, you save writing in a default value at each call.

short Exp(short n, short k = 2);

main ()
{

short i, a,

i=5;

a = Exp(i +

b;

5, 1);

b = Exp(i + 5, 3);

}

short Exp(short n, short k = 2)

{
if (k == 2)
return (n

else

* n);

return (Exp (n, k - 1) * n);

Remember that only trailing arguments may have a default value, as shown
in the following code:

void foo(long
void goo(long
void hoo(long
void moo(long

void noo(long

i, long j = 7)

i =3, long j)

i, long j = 3, long k = 7)

i =1, long j = w, long k = 3)
i, long j= 2, long k)

//legal
//illegal
//legal
//legal
//illegal

141

Symantec C++for the Macintosh: The Basics

Passing Multiple Values

You can also pass in multiple values. For example:

main ()
{
short a = 3, b = 4, c;

¢ = MyFunction(a, b);

short MyFunction(short a, short b)
{

return(a + b);

You can pass in any number or combination of variable types.

Explicit Void

You can explicitly ignore the result of a function by placing a void typecast in
front of the function call. You use an explicit void when you do not care about
the returned value. Note the typecast void in the following examples:

short MyFunction(short &A); //Prototype ,
Y = MyFunction(X):; //Normal

(void) MyFunction(Z); //Explicit
MyFunction(Z) ; //Implicit

The Stack

When you call a function, the address where you need to return is pushed into
a queue (waiting line) called the stack. The stack holds the return address, func-
tion arguments, and local variables. The stack is a LIFO; that is, the Last
thing that is put Into the queue is the First thing that comes Out. When the
function hits a return or comes to an end, it pops that address out of the stack
and returns to the address of that statement plus one additional statement.

142

Functions and Variables

By convention, the stack grows from high to low memory address. When
a function has finished executing, the stack consumed by the function is re-
leased, restoring the stack to the state it was in before the function was
called. In C++, all stack management is automatically done by the compiler.

Figure 6.2 shows how memory is allocated in the stack.

The Stack

High Memory High Memory High Memory

Low Memory Low Memory Low Memory

Figure 6.2 Memory in the stack.

To see how the stack manages memory in a function call, examine the fol-
lowing code:

main ()
{
do stuff here;
MyFunction(); \\ This is a function call

do more stuff here;

void MyFunction()
{

do my function’s stuff here;

143

Symantec C++for the Macintosh: The Basics

When the program starts this example, it executes statements (do stuff here) in
the main. Embedded within the statements of the main is the call to the func-
tion (MyFunction). In the process of making that call, the address where you
need to return (do more stuff here) is pushed on the stack. Next, the state-
ments in MyFunction are executed (do my function’s stuff here). Note that the
line void MyFunction() is called a function declaration. When the end of the
function is encountered, the return address is popped off the stack, and the state-
ment (do more stuff here) is executed. The handling, and even the concept, of
the stack are transparent to the C++ programmer.

You do not have to call a variable that you pass in to a function by the same
name that you use in the function declaration. This gives the function a gen-
eral-purpose capability, which means (in this case) that you do not have to write
a routine to square a particular variable; you can write a routine that squares
any variable.

When you pass in a variable to the function, you get a copy of the val-
ue of the variable; you do not get the variable itself. For example, look at
the following:

main ()

{
short a = 0, b;
MyFunction(a);
b=a+1;

void MyFunction(short a)
{
a=>5;

}

First you declare a and b and set a to 0. Then you call MyFunction, which
changes the value of a. Then you compute b as being the value of a + 1. From
a quick examination of the program, it appears that b is equal to 6, and a is
equal to 5. However, a is actually equal to 0, and b is equal to 1. The reason is
that when we called MyFunction, it created a local variable called a on the stack.
A copy of the value of the a argument being passed in from the main was placed
in that local variable. Then the local variable a was set to 5, but not the a that

144

Functions and Variables

was declared in main. When the end of MyFunction is reached, any memory
created for MyFunction on the stack is released. Therefore, the value of the a
that was set to 5 is now lost.

In order to make the program work, you must do the following:

main ()

{
short a = 0, b;
MyFunction(&a) ;
b=a+1;

void MyFunction(short *a)
{

*a = 5;

In this example, we passed the address of a as an argument to MyFunction
(which is 4 bytes). Now, in the function declaration, we declared a to be a point-
er to a short. Where *a = 5, we are saying that the contents of a are equal to
5. It works because we passed in the address of a, a copy of which was stored
as a local variable. In other words, if you want the routine to change a value,
you have to pass in the address. (This only applies to arguments being passed
in as values.)

The void means that MyFunction does not return a value. The following is
an example of a function that returns a value:

main()
{

float a;

do stuff here;
a = GetPi();

do more stuff here;

145

Symantec C++for the Macintosh: The Basics

A function that returns
nothing is called a void
function. In some lan-
guages, a void func-
tion is referred to as a
procedure, and a func-
tion that returns a val-
ve is referred to as a
function.

float GetPi()
{

return(3.14);

Here, the function returns the value of pi; that is, the func-
tion returns a float.

The returned value is not placed on the stack; it is stored in
the 68xxx microprocessor’s registers. The register (DO) is
only 4 bytes long, so the value of whatever is returned can-
not be more than 4 bytes. (See the subsection entitled Register

Variables later in this chapter.)

The Heap

The heap, which is located at the low end of memory, contains quite a variety
of data objects. The system heap, which you will not use in your programming,
contains the Operating System code, INITS, fonts, DAs, and other management
data that are part of the Mac environment. The application heap, which is the
one that you will use, contains your application resources, including the code
segments of your applications. Among other things, it is used for dynamic mem-
ory allocation. The free store operators new and delete act on the heap. Figure
6.3 shows how memory is allocated to the heap.

Remember that you have to allocate a block of memory in the heap before
you can use it, and only one application can use a block of the heap at any giv-
en time. After you have finished with the block, you deallocate it so that an-
other part of your program can then use it.

C and Pascal on the Macintosh

C programmers must have some knowledge of Pascal, specifically in the areas
of procedures, functions, and parameters. This is because the Mac is a native
speaker of Pascal. All of the Mac ROM (read-only memory) routines are defined
as if they were being called from Pascal, so users of other languages must
compensate. Note the following declarations of toolbox routines in Pascal:

146

Functions and Variables

High Memory

Stack

Unused Space

Heap

Low Memory

Figure 6.3 Memory in the heap.

PROCEDURE FrameRoundRect
(r: Rect; ovalWidth, ovalHeight: INTEGER) ;
FUNCTION StringWidth(s: Str255): INTEGER;

Procedures and Functions

Pascal has two kinds of subroutines: procedures and functions. In C, every sub-
routine is a function, and a void function is essentially a procedure, as shown

in the code below:
Pascal declaration:

PROCEDURE FrameRoundRect
(r: Rect; ovalWidth, ovalHeight: INTEGER) ;

C++ equivalent:

pascal void FrameRoundRect
(const Rect *r, short

ovalWidth, ovalHeight);
Pascal declaration:

FUNCTION StringWidth(s: Str255): INTEGER;

147

Symantec C++for the Macintosh: The Basics

C++ equivalent:

typedef const unsigned char *ConstStr255Param;

pascal short StringWidth(ConstStr255Param s);

Order of Parameters Pushed

Pascal pushes parameters to a subroutine in order from first to last. C pushes
them in reverse order, from last to first. This allows C to support a variable
number of arguments and default arguments. When calling a Pascal function
from C, you must push parameters in Pascal order. Figure 6.4 shows parame-
ter orders in Pascal and C stacks.

Foo(a,b,c);
Pascal Stack C Stack
a c
b b
c a
top —3»| return top —3»| return

Figure 6.4 Order of parameters pushed in Pascal and C++.

Used in function declarations (i.e., prototypes), the Pascal keyword tells the
compiler to push parameters in forward order just as Pascal would. Used in func-
tion definitions, the Pascal keyword tells the compiler to expect its parameters
in forward order, as shown in the following code:

pascal void ScrollUp(ControlHandle theControl,

Intl6 thePart)

Intl6é startingValue;

if (thePart == inUpButton)

{

startingValue = GetCtlValue(theControl);

// more code here

148

Functions and Variables

Type Conversion

At the machine level, all data types in memory meld into a contiguous stream
of bits carrying types of information that represent a kind of prescription: Take
x number of bits and interpret them using the following pattern.

Converting from one type to another will change the type but not the un-
derlying bit pattern. The size of the new type may be wider or narrower, and
the interpretation of the bits will change. Some type conversions are not safe;
for example, it is not safe to convert from a wider data type to a narrower one
or vice versa. Note the following inconsistencies:

float fval = 3.14159;
double dval;
dval = double(£fval);

This example requires bits beyond the size of a float.

unsigned char ucval = 255;
char cval;

cval = char(ucval);
Here, the interpretation of the bits changes.

short sval;

sval = 3.14159;

In this example, the fractional part is lost.

Variable Storage Types

Variables store data in the form of characters, numbers, strings, pointers, and
data structures. This section covers five variable storage types: automatic,
static, external, register, and const.

149

Symantec C++for the Macintosh: The Basics

“quto” Variables

In C++, local variables are known as auto (automatic) variables because C++
automatically creates memory for them on the stack each time the function
is entered. However, that space is removed from the stack after the function
is executed.

You can put the word auto in the declaration, but it is pointless to do so.
All local variables that you might declare are auto by default. Note the fol-
lowing code:

main()

{
short a = 0;
MyFunction(a);

MyFunction(a) ;

void MyFunction(short &a)
{
auto short b;

if (a == 0)

The second time MyFunction is called, the variable b is garbage.

Static Variables

Static variables, which can be internal or external, are another type of storage.
An internal static variable is local to a particular function, just as an automat-
ic (local) variable is. Unlike an automatic, it remains in existence in permanent
data storage rather than coming and going each time the function is called.
An example of a function with a static variable might be:

150

Functions and Variables

main ()

{
short a = 0;
MyFunction(&a) ;

MyFunction(&a) ;

void MyFunction(short *a)
{
static short b;

if (*a == 0)

In this example, we have set a to 0 and have given MyFunction the address of
a. The first time we call MyFunction, we pass in the address of a. Here, if the
contents of a are equal to 0, which is true in this case, we set b to 0. Then we
bump the contents of a by 1, so that the contents of a are equal to 1, and we
bump b to 10. The second time we call this function, the variable a is now equal
to 1 and we have failed the if test; we do not set b to 0. When the program is
finished (i.e., after the second call is made to MyFunction), a will be equal to 2,
and b will be equal to 20. The significance is that the value of b is retained be-
cause it is stored in the private data area; it is not popped off the stack.

External Variables

You can declare a variable to be available to every function
in your program by making it global or external. For instance:

External variables are
short b; stored in the data areq,
main () not on the stack.

{

151

Symantec C++for the Macintosh: The Basics

short a = 0;
MyFunction(a);

MyFunction(a);

void MyFunction(short &a)
{

external short b;

if (a == 0)

By declaring short b outside of any function block, you make it external and,
therefore, accessible to any function that follows. In the example above, both the
main and MyFunction know of the existence of b. If you moved the declaration
between the main and MyFunction, only MyFunction would know about b. When
you place the declaration of a variable inside a function block, the existence of
that variable is known only to the function itself; that is, it is local to that func-
tion. However, you can place the variable inside the function block and make it
global by inserting the word external before the variable. The external declara-
tion in MyFunction is required only if MyFunction is declared before b.

Register Variables

Register variables offer a fourth class of storage. When you declare a variable a
register variable, you ask the compiler, whenever possible, to store that vari-
able in a register. You may want the variable put into a register because you
will be using it frequently, and a CPU does its fastest computations on vari-
ables that are in registers. However, the compiler may not always be able to
store the variable in a register for two reasons: (1) There are only eight 4-byte
data registers in a 68xxx CPU, and these may already be in use; and (2) the vari-
able that you want to store is greater than 4 bytes. Generally, it is best to avoid
declaring register variables.

152

Functions and Variables

Figure 6.5 shows the user’s registers in a 68xxx microprocessor.

Typical register usage in C++ is as follows:

A7 Stack pointer (SP)

Aé Pointer to function’s locals (base register)
A5 Pointer to application globals

A4 Pointer to driver or code resource globals
DO Return value from function

Figure 6.5 68xxx user’s registers.

DO
Dl
D2
D3
D4
D5
Dé
D7

A0
Al
A2
A3
A4
AS
Ab
A7

PC

CCR

153

Symantec C++for the Macintosh: The Basics

Compilers are better
able to optimize now
than ever before. There-
fore, if you force the
compiler to store a vari-
able in a data register,
you may take away
that opfimization. i may
be best to leave the
choice to the discretion
of the compiler.

A0-A1 and DO-D2 are trashable registers; that is, they are
not guaranteed to remain the same after a ROM call. A2-A7
and D3-D7 are protected registers; that is, they are never
corrupted or changed by the action of a ROM routine. That
leaves only three address registers and five data registers
available for register variables. Even so, it is not likely that
the compiler could maintain more than one address regis-
ter and two or three data registers for register variables.

“const” Variables

The const keyword is a type specifier. When used alone, it
implies an int type. Any variable declared a const cannot be
changed.

If you do not initialize a const, you will get a compile-
time error. The same will happen if you try to assign the ad-
dress of a const.

An example of a const declaration is:

const false = 0;

const double pi = 3.14;
ComputeArea(float radius, const float pi);

You may declare a pointer to the address of a const, but the pointer itself is not
a const. The pointer can be changed to address a different variable of the same
type at any time, but the contents of the pointer cannot be modified through
the pointer. Note the following code:

double x;
const double *pc; //0K
*pe = &x; //0K

You can define a pointer that is a const. You can also define a const pointer to
a const, as shown below:

short i = 10;

short *const cpi = &i; //Constant pointer to short

154

Functions and Variables

const short j = 20;

const short *const cpj = &j;

; <
. A literal string is a char*,
Reference Declarations not a const char®,
Reference declarations provide a way to have a multiple
number of names refer to the same object. Modifying one is the same as mod-
ifying any other. As is the case with all variables, reference variables must be

initialized. A reference type is sometimes referred to as an alias. The format for
reference declarations is shown in the following example.

short &theAlias = theName;
unsigned char theString([256];

unsigned char &length = theString[0];

unsigned char &last = theString[255];
Another example might be:

short val = 10;
short &refVal = val;

short *pVal = &refVal;

if (*pVal == refVal && pVal == &refVal)

{

155

Symantec C++for the Macintosh: The Basics

Right-Left Rule

The right-left rule provides a method for you to see how and in what order a
function operates. Here is how it works:

Start with the identifier.

Look to the right for an attribute.

If none is found, look to the left.

If found, substitute an English keyword.

Continue right-left substitutions as you work your way out.

A

Stop when you reach the data type in the declaration.

English Keywords

() Function returns
[n] Array of n

* Pointer to

& Reference to

Now, let’s look at the following walkthrough of the right-left rule:

Signal is a...

main()
{
int (*signal(sig, pfunc)) ();

A
I

Signal is a function that returns...

main ()
{
int (*signal(sig, pfunc)) ();

A
I

156

Functions and Variables

Signal is a function that returns a pointer to a ...

main ()
{
int (*signal(sig, pfunc)) ();

A
|

Signal is a function that returns a pointer to a function that returns...

main ()
{
int (*signal(sig, pfunc)) ()

A
I

Signal is a function that returns a pointer to a function that returns an int.

main ()
{
int (*signal(sig, pfunc)) ();

A
|

Another example might be:

long *pl[2];

Here, p is an array of two pointers to a long.

157

Symantec C++for the Macintosh: The Basics

Function Overloading

In C++, it is possible to overload functions; that is, more than one function with-
in the same program can be given the same name. The correct one will auto-
matically be called during the execution of the program. Use of function over-
loading can make a program more readable. The following code makes ample
use of the function-overloading capability:

main ()
{
short a, b, c;

short sum;

a=2; b=3; c = 4;

sum = add (a, b);

sum = add (a,b,c);
}
short add(short a, short b)
{

return (a + b);
}
short add(short a, short b, short c)
{

return (a + b + ¢);

In this example, the number and the type of arguments determine which function
gets called. The reserve word overload could be placed in front of each function
declaration that is overloaded, but it is not required or recommended.

As mentioned before, the correct function to be invoked is determined by
the type and number of arguments that are being passed to the function by the
call. The return value—if any—is not taken into account. All functions over-
loaded with the same name should have the same return type.

158

Functions and Variables

Scope Resolution Operator

In C++, a function can declare an automatic (local) variable that has the same
name as a global variable. It is important to note that in that function, the lo-
cal variable will be referenced, not the global. If you want to access the global
variable, you can do this by using the scope resolution operator (::). Note the
following code:

short sameName = 5;

main ()
{
MyFunction() ;
}
void MyFunction()
{
short theValue;

short sameName = 4;

theValue = sameName * 2 //local variable

theValue = ::sameName * 2; //global variable

Inline Functions

Every call to a function slows the execution of your program to some extent.
Functions that are invoked many times may be placed inline, avoiding the over-
head of a function call. The penalty you pay is that your program consumes
more memory. You simply call an inline function like you would any other
function, as shown in the following example:

inline char LoByte(short x)
{
return (x & O0xOOFF);

159

Symantec C++for the Macintosh: The Basics

or:

inline char HiByte(short x)
{
return ((x >> 8) & 0xO0OFF);

C++ Preprocessor

A preprocessor operates on your C++ source code before presenting it to the com-
piler. The preprocessor looks for a set of keywords that begin with the oglethor-
pe (#) symbol. The following list shows the preprocessor statements:

#include
#define
#if
#else
#endif
#ifdef
#ifndef

Files may be read into your source code with the #include.Files enclosed in " "
are read in from your current folder, and files enclosed in <> are read in from a
_ specified folder. For example:

ffinclude "MyFile.h"
ffinclude <TheirFile.h>

The if, else, endif, ifdef, and ifndef are used for conditional compiles. The for-
mat for this is:

ffifdef THINK_C
do this code
ffelse
do this code for everyone else

ffendif

160

Functions and Variables

Conditional Directives

Conditional directives can be used to guard against the multiple processing of
a header file. For instance:

#ifndef _MyHeader_
fidefine _MyHeader_

MyHeader.h contents go here

ffendif

C++ Preprocessor Examples:

The define statement implements macros and supports arguments in C++. It
can also be used to define constants. Examples of macros that can be useful in
Toolbox programming follow:

fidefine SetPt(pt,hor,vert) {(pt)->h = (hor);\

(pt) ->v (vert);}
ffdefine SetRect(rect, 1, t, r, b)\

{(rect)->top = (t); (rect)->left = (1);\

(rect)->bottom = (b); (rect)->right = (r);}
ffdefine SetRGBColor(rgb,r,g,b)\

{(rgb)->red = (r); (rgb)->green = (g); (rgb)->blue = (b);}
ffdefine RectWidth(rect) ((rect)->right - (rect)->left)
ffdefine RectHeight(rect) ((rect)->bottom - (rect)->top)
ffdefine abs(x) ((x)<0?-(x):(x))
ffdefine min(x,y) ((x)<(y)?(x):(y))
ffdefine max(x,y) ((x)<(y)?(y):(x))

161

Symantec C++for the Macintosh: The Basics

In the preprocessor, the
backslash (\) allows
you to continue a macro
expression to a new
line. In C, macros had
to be on one line only.

ffdefine HiByte(x) ((x) >> 8) & O0x00FF)
jfdefine LoByte(x) ((x) & OxOOFF)
ffdefine Swap (x,y) ((x)*=(y)"*=(x)"=(y))

ffdefine arraySize(x) (sizeof(x) / sizeof

((x) [0]))

#define infinity ;;

#define versus const and inline

The advantage of defining inline functions and const definitions rather than us-
ing the #define statement is that the C++ compiler can check the same code you
see for errors. The disadvantage of defining inline functions is that it takes more
work to support arguments of various types. Note the following code:

short abs(short x)

{

return (x < 0 ? -x : X);

}

long abs(long x)

{

return (x < 0 ?2 -x : Xx);

}

float abs(float x)

{

return (x < 0 ? -x : X);

}

double abs(double x)

{

return (x < 0 ?2 -x : x);

162

Functions and Variables

The Preprocessor and Comments

Other C++ compilers may not recognize the single-line preprocessor comment,
which is:

ftdefine pi 3.14 // pi is w

Symantec C++ does recognize the double-slash preprocessor comment. If you
use the double slash, just be aware that it may not be compatible with other
compilers when you attempt to port your code.

Summary

The features discussed in this chapter were:

Exercises

Using functions in C++.

Function prototypes.

The program stack.

Pascal functions.

Variable storage types.
The right-left rule.
Function overloading.

Rules of scope.

Inline functions and preprocessor statements.

1) Recode the following using inline declarations:

a)
b)
c)
d)
€)
f)
8)

ffdefine
ffdefine
ffdefine
ffdefine
ffdefine
ftdefine
ffdefine

Min(a,b) ((a)<(b)?(a):(b))
Max(a,b) ((a)<(b)?(b):(a))
Abs(a) ((a)<0?-(a):(a))
HiByte(x) (((x) >> 8) & Ox0OFF)
LoByte(x) ((x) & O0xOOFF)
cube(x) (x) * (x) * (x)

arraySize(a) (sizeof(a) / sizeof ((a)[0]))

163

Symantec C++for the Macintosh: The Basics

2) Using the right-left rule, explain the following:
a) char (*(*p)) () [10]:
b) char *(*p) () [10];
¢c) char **p () [10];:
d) char* **p () [10];
e] char* *(**p) () [10];

3) Given the following function:
void Swap (short *x, short *y)
{
short temp;
temp = *x;
*x = *y;
*y = temp;
}

Rewrite the function using call-by-reference.

4) Create a header file. Place in the header file the following:
a) macros or consts that you feel that you will commonly use.
b) your favorite inline functions.

c) the necessary code to make sure that your header file will not
generate an error if it is included more than once.

5) Rewrite the following as an inline function. Overload the function to sup-
port shorts and longs.

ffdefine swap(x,y) short t; t = x; X = y; y = t;

164

Input/Output
Streams

he simplest examples of input/output devices on your computer are the

keyboard (input) and the screen (output). You use these devices to get in-
formation into and out of the computer in the same way that you use pens
and books. These are easy concepts to understand when you are just a computer
user. What is not quite as easy to comprehend is the way in which the com-
puter handles your input and output when you write a program.

Neither C nor C++ contains any predefined input and output operators. Both
support the infamous stdio (standard input/output) library, and C++ supports
a new library called iostream. The iostream library is far more robust than the
stdio library. You should use the iostream library for any new projects, because
C++ will not support the stdio library in the future.

165

Symantec C++for the Macintosh: The Basics

Streams

A stream is a sequence of bytes. You can extract data from a stream and place
it into a program variable with the extraction operator (>>). Conversely, you
can inset data into the stream with the insertion operator (<<).

The term escape se-
quence refers to es-
caping from a string
and going into anoth-
er mode. The backslash
represents the escape
mechanism and the
character after the back-
slash determines the
action taken.

1/0 Channels

The name of the input channel associated with the user’s
keyboard is called cin (standard input). The output associ-
ated with the computer screen is called cout (standard out-
put). Error statements may go to the user’s screen or to an
error file, which is called cerr (standard error). An example
of a string going to an output channel might be:

cout << "This goes to the output channel \n";

You may have noticed that the output line includes the char-
acter sequence \n. This is an escape sequence of control char-
acters that instructs C++ to move to a new line. This will
be a common resident in the source code of your programs.
Other escape sequences are as follows.

Escape Sequences

\\
\¢
\a
\b
\f
\n
\r
\t
\v
\l
\II
\O

Backslash

Question mark

Sound bell

Backspace

Formfeed (new page)
New line

Carriage return
Horizontal tab
Vertical tab

Single quote character
Double quote character
Null

166

Input/OQutput Streams

An example of an escape sequence might be:

cout << "\a";

cout << "\nError - press any key to continue\a\n";
The first statement sounds the system beep. The second statement moves to

anew line, displays a warning on the screen, sounds the beep, and then moves
onto another line.

Predefined 1/0O Stream Manipulator

The term endl insets a new line character into the output stream and then flush-
es the output buffer. An example might be:

cout << "\n";
use instead

cout << endl;

Generalized Escape Sequence

The format of the generalized escape sequence is 1000, where 000 represents a
sequence of up to three octal digits, as shown in the following code:

\7 //bell

\o //null
\12 //newline
\062 /12"

The format for a hex escape sequence is \xhh, where hh represents any number
of hex digits. An example is:

\x7 //bell

\x0 //null
\x0a //new line
\x32 /12!

167

Symantec C++for the Macintosh: The Basics

Formatted Output

C++ provides the capability for you to alter the format of the data you want to
display from an unformatted output to a formatted one. There are five simple
formatted output functions: chr(), dec(), oct(), hex(), and str().

Characters:
" lettter = %a'i
Hok ail St compllers cout <X letter; /! a or 977
support hex escape
sequences.
cout << chr(letter); //will output a

In the above example, the format cout << letter would most likely output 97.
By using the format chr(letter), you ensure that the output will be a.

Decimal Numbers:

float number;
number = 12.345;

cout << dec(number); // output will be 12

cout << dec (number, 20); // twenty chars wide

In the above example, the number will be right-justified (to 20 places).
Hex and Octal Numbers:

short number;
number = 16;
cout << hex(number) ; // 10

cout << oct(number); // 20

Here, if you added the statement cout << dec(number), you would get the dec-
imal number 16 as the output.

168

Input/Output Streams

Strings:

cout << str(string);

cout << str(string, 30);

When the number of characters for the field is omitted or
equal to zero, the correct amount of space required to dis-

// 30 characters yhe strings discussed

above are C strings, not
Pascal strings.

play the contents of the variable will be allocated auto-
matically. If the number allocated for the field is too small,
the output will be truncated without any warning. If the
number is negative, the output will be left-justified.

Advanced Formatting

A more complex formatted output is available through the form() function.
This function allows formatting sequences called conversion commands. An

example might be:

short number = 123;
cout <K form("%x%s", number,
cout <K form("%o0%s", number,

cout <K form("%d%s", number,

"\n"); //hex
"\n"); //octal
"\n"); //decimal

As shown in this example, you must place the appropriate formatting sequence
or sequences between double quotation marks before the values to which

they refer.

The conversion commands are as follows:

%oc
%d
%e
%f
%g
%0
7op
%s
%u
%ox

Single character

Decimal infeger

Scientific notation
Floating point value
General numerical format
Octal integer

Pointer value

String

Unsigned integer
Hexadecimal integer

169

Symantec C++for the Macintosh: The Basics

The following code is another example of advanced formatting:

float fraction;
fraction = 123.456;

cout << form("%3.2f%s", fraction, "\n");

In the last line of the example above, the numbers immediately before and af-
ter the decimal point specify the number of digits before and after the decimal
point, respectively.

Input Stream Example

With the function cin and the operator >>, you can input variables of any type
in sequence, as follows:

float fraction;
char letter;

short number;

cin >> fraction >> number >> letter;

However, cin does have a disadvantage, as you'll see in the examples below.
If your input was:

This is a string
char str[80];

cin >> str;

the input variable will contain:

str is "This"

If your input was:

This is a string
char str1[80], str2[80], str3([80], str4[80];

cin >> strl, str2, str3, stré;

170

Input/Output Streams

The input variables will contain:

strl is "This"
str2 is "is"
str3 is "a"

str4 is "string"

The variable string will hold up to 80 characters, so you might think that by
assigning the string 80 characters you would have enough field width to print .
“This is a string.” The reason that only the word “This” will be assigned to the
string is that cin recognizes a space character as the end of the variable.

1/0 on the Macintosh

Almost all input and output on the Mac should be accomplished through the
Toolbox or a class library. The C++ I/O can be useful for debugging, but the use
of a debugger is more efficient, and you don’t risk the danger of leaving cins and
couts in your code.

Summary

In this chapter, we've covered:

B Using stream operators.
What I/O channels are.
B Escape characters.

B Formatted output.

The next chapter, Chapter 8, is on advanced data structures. It is in this chap-
ter that you will begin to see firmly the relationship between data structures
and member functions in object-oriented programming.

171

Symantec C++for the Macintosh: The Basics

Exercises

1) Write a program that will prompt a user for a temperature in Fahrenheit
or Celsius, then display the temperature in both scales.

2) Write a program that will accept a book title, author, publisher and copy-
right date, then display all of the information.

172

Advanced Data
Structures

Computers only know about bits, period. But how those bits are interpret-
ed (and what is done with them) is accomplished through data structures.
C++ differs from C (and Pascal) in that it allows structures to contain member
functions as well as data, and these member functions manipulate the data con-
tained in those structures.

To understand the function of structures fully, you must comprehend point-
ers and arrays and know something of dynamic memory allocation. This chap-
ter covers those topics, then moves on to enumerating variables, structures,
and unions; operator overloading (as opposed to function overloading); and en-
capsulation.

173

Symantec C++for the Macintosh: The Basics

Pointers

A pointer is a variable that contains the address (memory location) of another
variable. Use of a pointer is called indirection because the pointer is getting in-
formation indirectly. Getting the contents of a pointer is called dereferencing.

The size of the pointer has to be large enough to contain the address for a
particular machine. For instance, a pointer on a Cray would have to be 8 bytes
(a 64-bit word), but on the Macintosh, a pointer is 4 bytes. Figure 8.1 illustrates
a pointer to memory.

Memory

/ Value
Pointer

Figure 8.1 Pointer to an address in memory.
If you want to declare something to be a pointer you, might say:
short *p;
Using the right-left rule, this example declares that p is a pointer to a short.
The only memory that is assigned here is the 4 bytes for the pointer, not the

memory that it is pointing to. Right now, the p is pointing to garbage.
If you wanted to assign an address to p, you would write:

short *p;

short a;

174

Advanced Data Structures

p = &a;

Here, we declared a pointer to a short, we declared the short,
and we set the pointer to the address of the short. As you
can see, p now points to a.

Another example of using a pointer in code might be:

long a, b, *p;

p = 10L; //same
a = 10L;

b = *p: // same

b = aj;

Initializing a Pointer

There are three ways to initialize a pointer:

By variable address:

short value = 55;

short *pl;
pl = &value;

From another pointer:

short value = 55;

short *pl, *p2;

pl = &value;
p2 = pl;

Pointers direct you to an
area in memory. You
must make sure that
those areas are safe to
use; that is, they are not
used for some other pur-
pose for which you have
no knowledge. In all the
previous examples, we've
declared a pointer and
something that it will
point to. Then we did the
following assignment:

p = &a;

This is legal. However,
a very dangerous use
of a pointer is:

short *p;

*p = 10;

In this case, p has not been
initialized and can there-
fore be pointing any-
where in memory. At the
memory location of p
we assign the value of
10, thereby overriding
anything else that may
be in that memory lo-
cation. That memory lo-
cation may hold part of
your executable code,
an 1/0O device, or any-
thing else imaginable.

175

Symantec C++for the Macintosh: The Basics

By using new operator:

short *pl;
It is illegal to take the
address of a register pl = new short;
variable; the compil- *pl = 55;

er will not allow it.

Void Pointers

Void pointers can be used to point to variables of any type. The only way a void
pointer can be initialized is by setting its value from another pointer. To
dereference a void pointer, you must cast it first.

short valuel = 55, value2, *pl;

void *vpl:

pl = &valuel;
vpl = pl; //Both point to the same place

value2 = *short(vpl);

In the above example, we declared valuel equal to 55, value2 as just a short,
and *p1 as a pointer to a short. Then we declared *vp1 as a pointer to void,
which is of unknown origin. Now we say that p1 is equal to the address of
value, and vp1 is equal to p1. Now vpI and p1 both contain the same address.
The problem is with the interpretation: p1 will always be interpreted as a point-
er to a short, and vpl is a generic pointer. It points to memory, but at the
same time it points to void. (It knows not what it points to!) There may be some
reason for using this void pointer—to change the value from a short to a long,
for instance—but the only way to use it is to cast it. This is done with the ex-
pression value2 = *short(vpl). Casting takes precedence in the order of opera-
tions here; that is, the cast vp1 is converted to a short, whose contents are then
placed in valuue2. (Remember that the right-left rule applies only to definitions.
It does not apply here.)

176

Advanced Data Structures

Arrays

An array is an accumulation of memory set aside for like-
kind variables. For example, you can have an array of 100
chars or any other valid variable type. To declare an array,
you might write:

char a[100];

This declaration reserves 100 chars in memory for your use.
If you want to access one of the chars in that array, you
would write:

a[l0] = 5;

In this example, a will be indexed by the number 10, and in
that number 10 slot, you set the value 5. From our discus-
sion of the bracket operators, another way of stating the line
a[10] = 5 would be:

*(a + 10) = 5;

Here, you take the a, which is an address or pointer, and add
an offset to it. The offset is 10, which is the index. This is au-
tomatically multiplied by the size of a char. Then you take
the contents of the combination of the address and offset and
put a 5 in that memory location. As you can see, an array is
much more concise. (See Figure 8.2.)

In the first array example, when we declared a, we set
the size of a to 100. This is known as dimensioning a. We
dimensioned a to the size of 100, but we can only index a
from 0 to 99. To get to the very first element in a4, we must
write a[0], which is the same thing as saying *(a + 0) or, sim-
ply, *a. To get to the last element in a, we write a[99], which
is the same thing as saying *(a + 99).

An example of the use
of pointers can be found
in the passing of pa-
rameters to a function.
See the section called
Passing Function Argu-
ments in Chapter 6.

If you index the array
by any number small-
er than 0 or greater than
99, you will be ad-
dressing a memory lo-
cation outside of the area
that was reserved for
the array. C++ does not
have array bounds
checking, which means
that there are no safe-
guards to prevent an
array from being over-
written. Iif your program
has many variables, you
take a chance that the
exclusive storage allo-
cated to these other vari-
ables may be over-
written by the excess
characters in the array.
As you can see, this is
fraught with the same
dangers as using a point-
er indiscriminately.

177

Symantec C++for the Macintosh: The Basics

Pointer Index

*(a + i * sizeof(a)) =5

f +<— Offset —>+
Pointer

Figure 8.2 Ease of Using an array.

Initializing Array Values

Values can be assigned to arrays by listing the values inside curly braces sepa-
rated by commas, as shown in Figure 8.3.

Memory
short set[4] = {9,8,3,4}; Set[0] 9
Set[1] 8
or
Sef{2] 3
short set[] = {9,8,3,4}; Sef[3] 4

Figure 8.3 nitializing array values.

Initializing String Arrays

You can initialize a string array by putting brackets after the type and name
and then declaring the value. For instance:

char string[6] = "Hello";

or:

char string[] = "Hello";

178

Advanced Data Structures

In the first example, we declared and initialized an array string of size 6. “Hello”
is only five characters, but the extra array element is required for the null char-
acter used to terminate C++ strings. In the second example, where we have not
declared an array size, the array will automatically be set to 6 because it is equat-
ed to a string literal.

Indexing Arrays

The definition of an array contains the number of elements in the array. The
index of the following array is from 0 to 9, the array size:

short a[10]; //10 is the array size

al0] = 1; //[0] is the array index, and 1 is the

//value

a[9] = 10;

The off by one error is a common error in C++ arrays. Just remember that
your index number will always be one behind your element number.

Array Assignment

C++ does not allow you to initialize or assign an array with any other, as shown
in the following example:

short a = {1, 2, 3, 4};
short b[4];

b= a; //error

Also, C++ does not provide any compile-time or run-time range checking of the
array. The compiler would allow the following code:

short a[10];

179

Symantec C++for the Macintosh: The Basics

for(short i = 0; i < 100; i++)
{

al[i] = 0;
}

Here, you have declared an array size of 10, but your code allows for 100 ele-
ments. As the program goes through and executes the code, it will write over
anything in memory that is in the way. It may, in fact, clobber some of your
code. The point here is to be careful that your code matches the size of your ar-
ray.

Multidimensional Arrays

Multidimensional arrays, which can be useful for scientific and graphics work,
are an extended feature in C++. Such an array declared as a formal argument
must specify the size of all its dimensions beyond the first one. Following are
examples of multidimensional arrays:

float large[10] [10][10][10]; //4 dimensions
b = sizeof(large); //10000

Here, the four-dimensional array will have 10,000 elements; that is, 10 x 10 x
10 x 10 = 10,000.

short al[4] [3] = (

{o, 1, 21},
{3, 4, 51},
{6, 7, 8},
{9, 10, 11}

or:

short a[4][3] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11};

180

Advanced Data Structures

Free Store Operators

Free store operators are used to create and destroy variables in memory. This
operation is called dynamic memory allocation. Most other variables are creat-
ed on the stack, but free store operators create memory for variables on the heap
(free store). You create this heap variable with the new operator, which returns
a pointer to the beginning of the memory allocated to the variable. For instance:

char *word = new char[20];

Here, we have reserved 20 chars on the heap pointed to by word, which is both
an array name and a pointer.

Testing for Space

If you do not have enough memory to create the variable(s) you asked for, new
will return a null (OL) pointer, as shown below:

char *word = new char[20];

if (lword) error

The last line in the example above means simply, “If word is not valid, then
error.”

Destroying Heap Variables

A heap variable can be destroyed by using the delete operator. The space con-
sumed by the variable will be returned to the heap. To destroy the variable in
the previous example, you would write:

delete [20] word;
or:

delete word;

Deleting a null pointer—that is, one with a 0 value—is always safe because it
does nothing. You can say:

181

Symantec C++for the Macintosh: The Basics

delete [20] word;
word = 0L;

Here, you have deleted word and then set its value to 0. Just after the delete,
the variable word will still have the value pointing to memory. Something else
may now be there, but word will still have that address. However, by setting
the value to 0, if you at some future time need to delete word again, it will be
okay. You will not have the horrendous error that you would otherwise have
if you attempted to delete the same memory twice.

There are other dangers in using the new and delete opera-

WARN|“O tors. Look at the following code:

For every new, there
should be a corre-
sponding delefe. If you
attempt to delete a vari-
able that has already
been deleted, the er-
ror will not be detect-
ed by the compiler, but
the bug will show up
later on. The new and
delete operators are
replacements for mal-
loc() and free().

main ()

{
for (short i = 1; i <= 10; i++)
{

MyFunction() ;

void MyFunction()
{
char *word;
word = new char [256];

}

In the above example, the function MyFunction creates a pointer on the stack
and then returns to the main, thus destroying the pointer. There is no way to
go back and delete this memory. More danger:

short *x = new short;

short *y = new short;

Fx = 263
Ry - 39

182

- Advanced Data Structures

y = x; //clobbers old y

*x = 97;

Here, the pointer’s value is overwritten, and there is no way to go back and
delete its associated memory.

When to Use Dynamic Memory Allocation

It is best to treat variables containing user data as dynamic (heap) variables.
This is especially true if you cannot foretell the amount of space they will re-
quire. Variables that you need for housekeeping while the program is running—
loop counters, flags, and so on—should be on the stack.

Enumerated Values

The enum statement creates constants, which are assigned a numerical value
starting with 0. Enumerators differ from const declarations in that there is no
addressable storage associated with an enumerator. For this reason, it is an er-
ror to apply the address-of (&) operator to an enumerator.

You declare an enumeration with the enum keyword and a comma-sepa-
rated list of enumerators enclosed in curly braces. An example of an enum state-
ment might be:

enum

false,
true
1
result = false;

result = 0 //same as above

The enum constants can be assigned numerical values starting with 0. You can
also force the values, as shown in the following code:

enum

simml = 1,

183

Symantec C++for the Macintosh: The Basics

simm2,
gimm4 = 4
}s

memory = simm2;

Here, instead of simm1 being equal to 0, we have forced it to be equal to 1. The
incrementing starts after that.

By the way, the simms in the example above refer to the memory cards that
you have in your Mac.

Enumerated Variables

We stated above that you can assign numeric values to enumerated constants.
However, if you assign any value other than the enumerated constants to an
enumerated variable you will get a compile-time error. Look at the following
example:

short hop = 4;
enum
{

jump,

run,

skip

} simonSez;

simonSez = skip; //0K

simonSez = hop; //Compile error

In this example, we have declared a variable—hop—which is a short and which
we have set equal to 4. Next, we have enumerated type with jump, run, and
skip and a variable called simonSez. We can assign simonSez a value of the enu-
merated type, but we cannot assign it any other value, such as hop.

184

Advanced Data Structures

Enumerated Types

In addition to the “built-in” data types such as char, short, and long, C++ al-
lows you to create enumerated types. For instance:

enum TrafficLight
{

red,

yellow,

green

} MarketAndGeary, MissionAnd5th;

MarketAndGeary = red;

MissionAnd5th = green;

Here, the variables MarketAndGeary and MissionAnd5th are created within
the enum. These variables are known as anonymous variables because no
new type has been defined.

V4 typ e d efll

C++ allows you to create your own variable types, which you use in the same
manner as built-in types, with the term typedef. For example:

typedef Byte char;
typedef Boolean char;

typedef Integer int;

Boolean flag;
Byte status;

Integer i;

The expression typedef can serve as a program documentation aid. It can be
used to reduce the notational complexity of a declaration and to improve the
readability of definitions of pointers to functions and class member functions.
A typical example might be:

185

Symantec C++for the Macintosh: The Basics

The variable type Rect
has already been de-
fined for you. It is used
by the Macintosh
Toolbox and is defined
in a file called
QuickDraw.h. You can
open up that file to see
what the definition of
a rectangle is. You can
also see some other
data structures used by
the Toolbox and their
definitions as well. We
also called a function
called SefRect, which is
a Toolbox call. The de-
finition of that function
is also in QuickDraw.h.
You can find an ex-
planation of how this
function works in Inside
Macintosh or the THINK
Reference™.

Structures

typedef float wages;

wages johnsPay, marysPay;

The terms in the above example tell you exactly what you're
going to get. When you use typedef with a structure, it
gets more complicated. For instance:

typedef struct

{

short top;

short left;

short bottom;

short right;

} Rect;

Here, we defined the typedef to be a rectangle rather than
a predefined type. To use this rectangle, you might say:

Rect theRect;

SetRect (&theRect, 10, 15, 100, 150);

Here, we have created a new variable called theRect of type
Rect. Then we called a function and passed the function the
address of that rectangle. The function called sets the co-
ordinates of the rectangle to the four additional values that

we passed in.

A structure provides a way to declare new variables and variable types. It con-
sists of a number of variables that are collected under one name. This is one
of the most powerful features in C++. Both C and Pascal allow you to create
structures for containing specific information, both numeric and nonnumer-
ic. In Pascal, this capability is called a record, and in C it is called a structure.
C++ differs from C and Pascal in that it allows structures to contain member
functions, which we will discuss later in this chapter. The form for a struc-

ture is:

186

Advanced Data Structures

struct identifier
{
structure declaration member list

} declared variables;

Declaring a Structure

To declare a structure, you might write:

struct Automobile //type
{

char make[20];

char model([20];

short numDoors;

long mileage;

};

Automobile usedCar; //instance of type

In this example, we declared a new type called Automobile. We then created a
variable called usedCar of type Automobile. Now look at the next code fragment:

struct Automobile //type
{

char make[20];

char model([20];

short numDoors;

long mileage;

} usedCar, *pUsedCar;

This example also creates a pointer to an Automobile type.

187

Symantec C++for the Macintosh: The Basics

Anonymous Structures

C++ allows you to create anonymous structures in much the same way that
you create anonymous types. For example:

struct Automobile //type
{

char make[20];

char model[20];

short numDoors;

long mileage;

} usedCar, newCar;

Here, the structure creates two variables called usedCar and newCar. No new
named type is defined; therefore, the structure is anonymous.

Referencing Data Elements of Individual Structures

To access the elements of individual structures, you must use the dot (.) oper-
ator. For instance:

struct Automobile //type
{

char make[20];

char model[20];

short numDoors;

long mileage;

} usedCar;

usedCar.numDoors = 4;

usedCar.mileage = 250000;

However, if you have a pointer to the structure, you may use the -> (arrow)
operator:

188

Advanced Data Structures

struct Automobile //type
{

char make[20];

char model[20];

short numDoors;

long mileage;

} usedCar, *pUsedCarl;
pUsedCar = &usedCarl;

pUsedCar->numDoors = 4&;

pUsedCar->mileage = 250000;

You may also use indirect selection (the dot operator) if you dereference the
pointer, as shown in the following code:

pUsedCar->mileage = 250000;

or:

(*pUsedCar) .mileage = 250000;

Padding

An important thing to remember about memory assignment on the Mac is that
the 68xxx is a “word” (2-byte) machine. This means that anytime you get or
use any possible variable, the address always has to begin on an even-byte bound-
ary. If you attempt to address an odd-byte variable, you will get a bomb. To
ensure that the address falls on an even-byte boundary, the machine pads the
odd byte, as shown in Figure 8.4.

189

Symantec C++for the Macintosh: The Basics

struct MyStruct What you think you have
{ a

short a; ‘

char b;

short c; c
1

What you really have

MyStruct theStruct; a
long x; b padding
x = gizeof(theStruct); ¢

xXis 6

Figure 8.4 Example of padding.

Creating an Array of Structures

Suppose that you want to create a table showing, for example, the number of
days in each month. Perhaps the easiest way to do this is to create an array of
structures. You initialize the array of structures and enclose each member in
curly braces, as in the following code:

struct

{
char *month;
short days;

} theMonths[] =
{

{"Jan", 31},
{"Feb", 28},
{"Mar", 31},
{"Apr", 30},
{"May", 31},
{"Jun", 30},
{"Jul", 31},

190

Advanced Data Structures

{"Aug", 31},
{"Sep", 301},
{"Oct", 31},
{"Nov", 30},
{"Dec", 31},

1

In this example, we have a structure that contains a pointer to some chars
(months). We have also declared some shorts (days). We then declare an array
of months and days and set them equal to the number of days in each month.

Structures and Bit Fields

Bit fields give you the ability to cut down on the kind of memory that an ordi-
nary structure might consume. Look at the following code for a table showing
the day, month, and year:

struct date

{
short day:;
short month;
short year;

};

Here, each short consumes 2 bytes for a total of 48 bits (6 bytes). Now look at
the next example:

struct date

{
unsigned day : 5;
unsigned month : 4;
unsigned year : 7;

}s:

By declaring unsigned bit fields, you have allocated an int, (2 bytes). The day
consumes 5 bits of the int, the month 4, and the year 7, for a total of 16 bits (2

191

Symantec C++for the Macintosh: The Basics

bytes), a saving of 32 bits (4 bytes) of memory. The disadvantages are that you
cannot access the address of bit fields, and things run more slowly than when
you access ordinary variables.

Unions

Unions are a way to allocate items that use the same storage area. The format
of a union is similar to a structure and looks like:

union example
{
short i;
float £;
};

As illustrated in the example above, the word union replaces struct. All mem-
bers of a union occupy the same memory space. If you address short i in mem-
ory, you will get 2 bytes, and if you address float f, you will get 4 bytes.

Suppose that you want to describe a point in a coordinate system that is
sometimes described in Cartesian coordinates and at other times in polar co-
ordinates. You cannot use both coordinate systems at the same time. Instead,
you use a union to conserve space and to describe this point. For instance:

union point
{
struct cartesian
{
short x;
short y;
)
struct polar
{
short radius;
short theta;
};
'}

192

Advanced Data Structures

Here, we created two structures inside a union. Use the first case whenever you
want to access or update the value in Cartesian coordinates and the second case
when you want to do so in polar coordinates.

To access the components of a union, you use the dot operator, as shown in the
following code:

point.cartesian.x
point.cartesian.y
point.polar.radius

point.polar.theta

Operator Overloading

To improve the extendibility of the language, C++ allows operator overload-
ing (in a similar fashion to function overloading). To overload an operator,
you must use the keyword operator. In a way, you create more uses for opera-
tors. Figure 8.5 shows the C++ operators that can be overloaded.

+ - % / % A & | - !
= < > 4= -= *= /= %= A= &=
[= << >> >>= <<= == I= <= >= &&
| ++ - 0 () new delete

Figure 8.5 Obperators that can be overloaded.

An example of operator overloading might be:

struct complex
{
float r;
float i;
};

complex a, b, c;

193

Symantec C++for the Macintosh: The Basics

a.r = 3.0; a.i = 4.0;

b.r = 7.4; b.i = -5.6;

c=a+b;
complex operator +(complex x, complex y)
{

complex temp;

temp.r = x.r + y.r;
temp.i = x.i + y.1i;
return (temp);

}

In this example, we have float r and float i, and we have declared three complex
variables: g, b, and c. We then say that the real part of a is equal to 3, the imag-
inary part of a is equal to 4, the real part of b is equal to 7.4, and the imaginary
part of b is equal to -5.6. Next, we set ¢ equal to a + b. The plus (+) symbol works
for shorts and floats, and so on, but it does not ordinarily work with a structure;
the compiler will give us an error saying that we cannot add to structures to-
gether. To get around this, we declare a new operator for the + symbol, which
will return a type complex and take as its operand on either side of the + sym-
bol x and y. Next, we create a temporary where temp.r is equal to the sum of the
real components and temp.i is equal to the sum of the imaginary components,
and then we return the temp.

Be careful in choosing the appropriate operator to be overridden. If the + op-
erator is overridden to mean multiply, the compiler will not care, but the
next person to look at your code will!

Member Functions and Structures

Member functions are functions that are added to a structure, and they have
access to the data members in the structure to which they belong. Using mem-
ber functions allows you to access the data elements that form part of the struc-
ture without the need to use code that does not belong to the structure. This
operation is known as encapsulation. Look at the following example:

194

Advanced Data Structures

struct automobile
{
char model([20];
long year;
void InData(void);
void OutData(void);
Y

void automobile::InData()
{
cout << "Enter model\n";
cin >> model;
cout << "Enter year":

cin >> year;

void automobile::QutData()

{
cout >> model >> "\n";

cout >> year >> "\n";

main ()
{

automobile mercedes, ford;

mercedes.InData();
ford.InDatal();
mercedes.OutData() ;

ford.OutDatal();

195

Symantec C++for the Macintosh: The Basics

In the example above, we have the model and year of the automobile and have
added two prototype functions: InData() and QutData(). We then declare those
functions: void automobile::InData() and void automobile::QutData(). The
first function prompts you to input the model and year, and the second func-
tion prints out what you have entered. Note that we did not need to pass in
model and year as arguments. They are inside the structure, so we have ac-
cess to them.

In main, we declared two automobiles, a mercedes and a ford (of automo-
bile type). Where we say mercedes.InData() and ford.InData, the routine will
input the data in the proper place. (The same is true with mercedes.OutData(
) and ford. OutData().) Now look at another example of the main:

main()

{
automobile *mercedes = new automobile;
automobile *ford = new automobile;
mercedes->InData() ;
ford->InData();
mercedes->OutData();

ford->0utData() ;

In this main, we have declared automobiles on the heap instead of the stack.
In other words, mercedes and ford are pointers to automobiles. That requires
us to use the indirect (->) operator.

We can also write the main using a reference operator:

main ()

{
automobile &mercedes = *new automobile;
automobile &ford = *new automobile;
mercedes.InData() ;
ford.InData();
mercedes.OutData();

ford.OutDatal();

196

Advanced Data Structures

Here, we have both mercedes and ford as references to an automobile. Even
though we declare them as references, they are really pointers. The compiler
will automatically deference them, allowing us to use the dot operator.

Summary

In this chapter, we have covered most of the advanced features of data struc-
tures:

Using pointers and arrays.

Dynamic memory allocation.

Enumerated variables, structures, and unions.
Operator overloading.

Encapsulation.

These concepts lead us nicely into classes, which the next chapter discusses in
detail.

Exercises

1)

2)

3)

Define a structure that will be able to store the following information:
book title
author

publisher
copyright date

Write a program that declares an array of books on the heap. The array
should be dynamic. Include the code you wrote in Chapter 7 to assign
values to a book.

Rewrite the program using member functions.

197

Classes
In C++

n Chapter 8, we explained that structures can contain both data elements and

member functions, satisfying some elemental requirements of object-orient-
ed programming (OOP). As powerful as C++ structures are in organizing data
and functions (representing a significant advance on C structures), they still
have some disadvantages. These can be overcome by the use of classes, which
are more advanced forms of abstract data typing.

199

Symantec C++for the Macintosh: The Basics

Defining a Class

A class definition is made up of two parts: (1) the name, composed of the key-
word class; and (2) the declaration list enclosed in curly braces. For instance:

class TAutomobile
{
private:
char fModel[20];
long fYear;
protected:
long fStickerPrice;
public:
void InData(void);
void OutData(void):;
};

The class diagram for the above example would look like this:

TAutomobile
fModel

fYear
fStickerPrice
InData

OutData

Data members are like variables in a structure. Here, they are called instance vari-
ables. Each instance of the class will have its own storage area for the data mem-
bers. Figure 9.1 shows the relationship of data members and instance variables.

Data members are typically private to the class; that is, code that is not part
of the class cannot access this data. Member functions are functions added to
a class. (You can also think of member functions as methods.)

Member functions are different from ordinary functions in that they have
access to private members of their own class. They are defined only within the
scope of their class, not within the global program scope. The class definition
contains a prototype for each member function. In Figure 9.1, these are void

200

Classes in C++

TAutomobile
fModel
class TAutomobile erf")
{ fStickerPrice
private: InData
char fModel[20]; OutData

long fYear;
protected:

long fStickerPrice;
public:

void InData(void);

void OutData(void)

Figure 9.1 Relationship Between Data Members and Instance Variables

InData(void); and void OutData(void);. One of the most important aspects

about classes is that they permit data hiding.

Classes and Structures

Classes look very much like structures except that they use the keyword class
rather than struct, and nothing in the private section can be altered or even
used except by means of the public member functions. Perhaps the ma-
jor difference between classes and structures is that all data members and data
functions in a class are private by default; everything in a structure is public

by default.

Data Hiding

Data hiding is done by placing member functions and dat<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>