
Apple® Technical Introduction
to the Macintosh® Family

•

S. Macintosh® Technical Introduction

...
~

to the Macintosh Family

Addison-Wesley Publishing Company, Inc.
Reading, Massachusetts Menlo Park, California New York Don Mills,
Ontario Wokingham, England Amsterdam Boill?. Sydney Singapore
Tokyo Madrid San Juan

S APPLE COMPlITER, INC.

Copyright © 1987 by Apple
Computer, Inc.

All rights reserved. No part of
this publication may be repro
duced, stored in a retrieval
system, or transmitted, in any
form or by any means, mechan
ical, electronic, photocopying,
recording, or otherwise, without
prior written permission of
Apple Computer, Inc. Printed
in the United States of America.

Apple, the Apple logo,
AppleShare, AppleTalk,
Apple IIGS, A/UX, ImageWriter,
LaserWriter, Lisa, MacApp,
Macintosh, and SANE are
registered trademarks of Apple
Computer, Inc.

AppleLine, Apple Desktop Bus,
EtherTalk, Finder, MultiFinder,
and Switcher are trademarks of
Apple Computer, Inc.

1-2-3 is a trademark ofLotus
Development Corp.

Ethernet is a registered
trademark of Xerox
Corporation.

Fedit Plus is a registered
trademark of MacMaster
Systems.

Helvetica and Times are
registered trademarks of the
Allied Corporation.

Illustrator, POSTSCRIPT, and
Transcript are registered
trademarks of Adobe Systems,
Incorporated.

ITC Avant Garde Gothic, ITC
Garamond, and ITC Zapf
Dingbats are registered
trademarks of International
Typeface Corporation.

MacDraw, MacPaint, and
MacWrite are registered
trademarks of CLARIS
Corporation.

Microsoft and MS-DOS are
registered trademarks of
Microsoft Corporation.

Motorola is a trademark of
Motorola, Inc.

NFS is a trademark of Sun
Microsystems, Inc.

NuBus is a trademark of Texas
Instruments.

UNIX is a registered trademark
of AT&T Information Systems.

Simultaneously published in the
United States and Canada.

ISBN 0-201-17765-X
DEFGHI]-D0-89

Fourth Printing, December 1988

Contents

Figures and taoles ix

Preface xiii
About this book xiii
About the Macintosh technical documentation xv
Some conventions xviii
Programming the Macintosh xix

Chapter 1 The Macintosh Family 1

The evolving Macintosh 2
Macintosh Plus 3
Macintosh SE 4
Macintosh II 5
International versions 6

Software compatibility 7
Hardware compatibility 9

Chapter 2 Introduction to the Macintosh Software 13

Oveiview of the Macintosh ROM 14
Versions of the Macintosh ROM 16
The Toolbox 18
The Operating System 21
The trap mechanism 24
Interface and library files 25

Types of Macintosh programs 26
Macintosh system software 26
Event-driven programming 27

Structure of an event-driven program 29

Iii

Iv Contents

Chapter 3 The User Interface Toolbox 33

Overview: the desktop interface 34
User interface guidelines 35
What's in the Toolbox 35

Managing Toolbox events 36
Types of events 37
System events 39
Priority of events 39
Keyboard events 40

How character codes are processed 42
Auto-key events 43

Menus 44
Menus and resources 44
How menus work 45
Keyboard equivalents for commands 47

Windows 48
Windows and resources 48
How windows work 49
Window regions 51
How a window is drawn 52

Controls 53
Controls and resources 54
How controls work 54

Dialogs and alerts 56
Dialogs and resources 57
Alerts 59

Text editing 6o
Lists 61
Cutting and pasting 63

Types of desk scrap data 64
Private scraps 66

Chapter 4 Resources 67

Structure of a Macintosh file 68
Overview of resources 69

An application's resource file 70
Other types of resource files 71
How resources are accessed 72

Resource types 75
The system resource file 77

Patches 79
Initialization resources 79

Resource editing tools 79

Chapter 5 Macintosh Graphics 81

Video principles 82
QuickDraw graphics 83

QuickDraw pictures 87
The mathematical model 87
Pixels and bits 89

Bit images 89
The drawing environment: graphics ports 91

What a graphics port contains 91
Color graphics ports 94

Some graphics entities: patterns, cursors, and icons 95
Color 97

The Color Toolbox 97
Color QuickDraw 99
Color principles 100

Fonts 102
Fonts and resources 103
Font names and numbers 106
Characters in a font 106
Font scaling lo6
Fractional character widths 107
Format of a font 108

Using non-Roman writing systems 110
Printing 113

Methods of printing 115
Printing from the Finder 116
QuickDraw and PostScript 117
LaserWriter fonts 118

Chapter 6 System Software 121

The System Folder 122
Contents of the System Folder 122
Switch launching: which System Folder is active? 123

The Finder 124
Versions of the Finder 125

MultiFinder 125
Launching an application 126
Finder-related resources 127

File types 127
Files and icons 128
The Desktop file 129

Contents v

vi Contents

System desk accessories 130
The Control Panel 130

Parameter RAM settings 131
The Chooser 133

Operation of the Chooser 134
The Color Picker 134

The Switcher 135

Chapter 7 Macintosh Memory 139

Memory organization 140
Macintosh Memory management 144

The stack and the heap 144
How heap space is allocated 147
Pointers and handles 149

The Segment Loader 150

Chapter 8 Files and Volumes 153

Overview of files and volumes 154
Macintosh file systems 155

The Standard File interface 157
Filenames and pathnames 158
Accessing files and volumes 158
Data organization on volumes 160
Disks and drivers 162

Disk initialization 162
The Macintosh Disk Driver 163

Chapter 9 The Macintosh Operating System 165

Overview of the Operating System 166
Devices and device drivers 167
Sound 167

The Macintosh Sound Driver 170
The Macintosh II Sound Manager 172

Sound Manager synthesizers 173
The SCSI bus 175
Serial communication 176
The AppleTalk network 179

Networking applications 180
AppleTalk network architecture 181

Numerics 184
System startup and shutdown 184
Timing of system operations 185

Vertical retrace tasks 185
The Time Manager 186

System errors 187
Recovering from system errors 188
System error messages 189

Chapter 10 The Macintosh Family Hardware 191

Overview of the Macintosh hardware 192
The classic Macintosh hardware 193
The Macintosh SE hardware 200
The Macintosh II hardware 200

The microprocessor 202
Address space 203

68000 address space 203
68020 address space 204

Hardware memory management on the Macintosh II 206
Virtual memory 206

Macintosh II floating-point coprocessor (MC68881) 207
Macintosh SE expansion connector 208
Macintosh II expansion slots 209
Memory 211

Macintosh RAM 211
RAM access time 211
Adding RAM 212

The Macintosh ROM 213
The video interface 214

Integral Macintosh video 214
Macintosh II video 216

I/O devices 216
Interrupts 217
Macintosh Plus block diagram 217
Macintosh SE block diagram 219
Macintosh II block diagram 219
The VIA 222
The real-time clock 222

The sound generator 223
Macintosh Plus and Macintosh SE sound 223
The Macintosh II sound chip 225

The disk interface 226
SOOK floppy disk drive 227

The SCSI interface 227
Serial I/ 0 228

Macintosh SE and Macintosh serial port differences 229
Macintosh keyboards 229

The Macintosh Plus keyboard 230
The Apple Desktop Bus 230
ADB keyboards 232

Contents vii

The mouse 233
Classic Macintosh mouse operation 233
ADB mouse 235

Chapter 11 The UNIX Operating System 237

About the UNIX operating system 238
Features 238
Memory requirements 241

Overview of the A/UX system 242
Device 1/0 243

The A/UX Toolbox 243
Software development environment 245
Document development applications 246
Communications 246

Serial communications 246
TCP /IP network 247
Network File System (NFS) 248

Simplified system administration 248
Automatic device configuration 249
Automated startup and crash recovery 249

Appendix A Macintosh Famlly Specifications 251

Macintosh Plus specifications 251
Macintosh SE specifications 252
Macintosh II specifications 254

Appendix B For More Information 256

viii Contents

Where to write for more information 256
Apple Programmer's and Developer's Association (APDA) 256
User groups 257
Apple Developer Services 257

Apple technical documentation 257
Original Inside Macintosh (Volumes 1-5) 258
Inside Macintosh Library 258
General documentation 259
Development system documentation 259

Further reading 260

Glossary 261
Index 283

Figures and tables

Preface xiii

Figure P-1

Table P-1

Roadmap to the Macintosh technical
documentation xvii
Macintosh technical documentation xvi

Chapter 1 The Macintosh Family 1

Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4

Table 1-1

The Macintosh Plus computer 3
The Macintosh SE computer 4
The Macintosh II computer 6
Relationship between Macintosh hardware
and software 8
Macintosh family hardware comparison 9

Chapter 2 Introduction to the Macintosh Software 13

Figure 2-1

Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6

Components of the Toolbox and the Operating
System 17
Parts of the Toolbox 18
The trap mechanism 24
Some common event types 28
The Event Managers 29
Event-driven programming: typical
program now 30

Chapter 3 The User Interface Toolbox 33

Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5

Figure 3-6
Figure 3-7
Figure 3-8
Figure 3-9
Figure 3-10
Figure 3-11

Elements of the Macintosh user interface 34
Macintosh ·character set 41
The menu bar 44
A standard menu 45
A hierarchical menu before and after a submenu
appears 46
Scrolling menu indicator 46
An active document window 48
Overlapping document windows 50
Document window regions and frame 52
Some sample controls 53
Highlighted active controls 55

Ix

Figure 3-12
Figure 3-13
Figure 3-14
Figure 3-15
Figure 3-16
Figure 3-17

Chapter 4 Resources 67

Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6
Table 4-1
Table 4-2
Table 4-3

Inactive controls 55
A typical dialog box 56
Dialogs and associated resources 58
A typical alert box 59
A sample list 62
Inter-application cutting and pasting 65

Structure of a Macintosh file 68
An application file 70
Structure of the system resource file 71
Structure of a document file 72
Resource file searching 74
Cursor editor from ResEdit 80
Resource attributes 73
Some standard resource types 75
System resources (as of System 4.1) 77

Chapter 5 Macintosh Graphics 81

x Figures and tables

Figure 5-1

Figure 5-2
Figure 5-3
Figure 5-4
Figure 5-5
Figure 5-6
Figure 5-7
Figure 5-8

Figure 5-9
Figure 5-10
Figure 5-11
Figure 5-12

Figure 5-13
Figure 5-14
Figure 5-15
Figure 5-16
Figure 5-17
Figure 5-18
Figure 5-19
Figure 5-20
Figure 5-21
Figure 5-22

Relationship of QuickDraw to other parts of the
Toolbox 84
Examples of shapes drawn by QuickDraw 85
Regions 86
The coordinate plane 88
A bit image 90
GrafPort regions 92
A graphics pen 93
QuickDraw characters and some terms associated
with drawing text 94
Cursors 96
Macintosh II Color Toolbox 98
RGB space 101
Communication between the Font Manager and
QuickDraw 102
Font size 103
Effects of font scaling 107
Character images 108
Partial bit image for a font 109
Key Caps b'l'arabiyya 110
How a typical Script Manager call is processed 111
Printing overview 114
Example Print dialog 115
Printing on the LaserWriter 117
Effects of font scaling on the LaserWriter 119

Chapter 6 System Software 121

Figure 6-1
Figure 6-2
Figure 6-3
Figure 6-4
Figure 6-5
Figure 6-6
Figure 6-7
Figure 6-8
Figure 6-9
Table 6-1

The Finder screen 124
The MultiFinder screen 125
The Finder's default icons 128
Icon and mask 128
The Control Panel window 130
The Chooser window 133
Color Picker dialog box 135
Switcher screen 136
Switcher's use of memory 137
Parameter RAM settings 131

Chapter 7 Macintosh Memory 139

Figure 7-1
Figure 7-2
Figure 7-3
Figure 7-4
Figure 7-5
Figure 7-6
Figure 7-7

Macintosh Plus RAM allocation 141
Macintosh II RAM allocation 143
The stack 144
The stack and the heap 146
Heap fragmentation and heap compaction 148
A pointer to a nonrelocatable block 149
A handle to a nonrelocatable block 150

Chapter 8 Files and Volumes 153

Figure 8-1
Figure 8-2
Figure 8-3
Figure 8-4
Figure 8-5

Flat and hierarchical directories 156
A Standard File dialog box 157
Disk-Switch alert box 159
Organization of an 800K volume 160
Relationship of the File Manager to disk devices 164

Chapter 9 The Macintosh Operating System 165

Figure 9-1
Figure 9-2
Figure 9-3
Figure 9-4
Figure 9-5
Figure 9-6
Figure 9-7
Figure 9-8
Figure 9-9
Figure 9-10
Figure 9-11
Table 9-1

Layers of the Operating System 167
Example of communication with devices 168
Waveform 170
Types of waveforms 171
Path of a Sound Manager command 174
Format of data used in serial communication 177
Serial input and output drivers 178
An AppleTalk network 179
AppleTalk Manager protocols 182
Bearer of bad tidings 187
System startup alert 188
System error messages and startup alert messages 189

Figures and tables x I

Chapter 10 The Macintosh Family Hardware 191

Figure 10-1
Figure 10-2
Figure 10-3
Figure 10-4
Figure 10-5
Figure 10-6
Figure 10-7
Figure 10-8
Figure 10-9
Figure 10-10
Figure 10-11
Figure 10-12
Figure 10-13
Figure 10-14
Figure 10-15
Figure 10-16
Figure 10-17
Figure 10-18
Figure 10-19

Inside the Macintosh Plus 194
Inside the Macintosh SE 196
Inside the Macintosh II 198
Macintosh II 1/0 201
68000 address space 204
68020 address space (24- to 32-bit mapping) 205
Relationship of SANE to the 68881 coprocessor 207
Macintosh SE expansion connector 209
Macintosh II expansion slots 210
SIMMs and RAMs 212
Video scanning pattern 215
Macintosh Plus block diagram 218
Macintosh SE block diagram 220
Macintosh II block diagram 221
Sound signals 224
The Apple Desktop Bus 231
Apple (ADB) keyboard layout 232
Apple extended keyboard layout 232
Mouse mechanism 234

Chapter 11 The UNIX Operating System 237

xii Figures and tables

Figure 11-1
Figure 11-2
Figure 11-3

A/UX features 240
Layers of the A/UX system 242
Relationship of the A/UX Toolbox to the rest of the
system 244

Preface

With the introduction of the second generation of Apple® Macintosh® computers,
the Macintosh SE and the Macintosh II, Apple has broadened the definition of the
Macintosh system with two open machines. These machines add significant new
capabilities to the Macintosh family, at the same time fitting well within the flexible
Macintosh software architecture. This book describes that software architecture, as
well as the hardware architectures of the various Macintosh machines.

About this book
Technical Introduction to the Macintosh Family introduces the hardware and
software design of the Macintosh family of computers and serves as a starting point to
the Macintosh technical documentation. The discussion is primarily oriented toward
the Macintosh Plus, Macintosh SE, and Macintosh II computers, but it also touches
on earlier versions of the Macintosh where these differ from the Macintosh Plus. The
information in this book can provide a starting point for programmers, particularly
those who are new to the Macintosh. This book can also serve as a stand-alone
handbook for technically minded users and system administrators.

Note that this book will not tell you how to write a Macintosh application. That task is
undertaken by a second short volume, Programmer's Introduction to the
Macintosh Family.

xiii

In describing the architecture of the Macintosh system, this book follows an
"outside-in" plan, beginning with the parts of the system seen by the user and
proceeding to the lower-level details of the Operating System and the hardware:

o Chapters 1 and 2 introduce the basic pieces of the system hardware and software.

o Chapter 3 describes the graphical, window-based interface that the Macintosh
presents to the user, beginning with a discussion of how mouse and keyboard
actions are interpreted. Chapter 4 expands upon the discussion of this interface
by describing resources, specially formatted chunks of data that are used to store
user interface elements such as menus, windows, and icons.

o Chapters 5 through 8 describe other elements of the Macintosh
software-graphics, the Macintosh Finder and system software, the Macintosh's
use of memory, and files. Chapter 9 finishes the discussion of the Macintosh
software by describing the low-level stuff of the Macintosh Operating System: the
managers and device drivers that talk directly to the computer's hardware.

o Chapter 10 describes the hardware itself, contrasting the Macintosh Plus, the
Macintosh SE, and the Macintosh IL

o Chapter 11 concludes the book by outlining the A!UX® operating system, Apple's
implementation of the AT&T UNIX® Operating System for the
Macintosh IL

This book surveys only the surface of the Macintosh hardware and software. If this
book were presented interactively, as a piece of Macintosh software, it would
represent no more than the Macintosh desktop, where each item could be double
clicked to reveal many deeper levels of information. You can find these deeper levels
of information in the other volumes of the Instde Macintosh Library.

xiv Preface

About the Macintosh technical documentation
Apple Computer has produced several books that explain the hardware and software
of the Macintosh family of computers. There are Inside Macintosh Volumes 1
through 5, books about single aspects of the Macintosh, introductory books, and
Macintosh-related books.

The original Macintosh documentation consisted solely of the noble tome Inside
Macintosh, a three-volume compendium covering the whole of the Macintosh
Toolbox and Operating System for the original 64K Macintosh ROM, together with
user interface guidelines and hardware information. With the introduction of the
Macintosh Plus (128K ROM), Volume 4 of Inside Macintosh was released. A fifth
volume has now been added, covering the Macintosh SE and Macintosh II
computers (both containing 256K of ROM). Volumes 4 and 5 are delta guides; that
is, they explain only what is different about the new machines. Taken all together, the
five volumes of Inside Macintosh provide a comprehensive reference for the
Macintosh family of computers.

With the growth of the Macintosh family, some of the material in Inside Macintosh
is starting to appear in single-subject books. Each of those books provides complete
information about its subject, including information that may appear in one or more
volumes of Inside Macintosh.

For people who are new to the Macintosh world, Apple has created two introductory
books, Technical Introduction to the Macintosh Family and Programmer's
Introduction to the Macintosh Family. These books provide explanations and
guidelines for using the features described in Inside Macintosh.

In addition to the books about the Macintosh itself, there are books on related
subjects, including books about the user interface and Apple's floating-point
numerics, and the reference books for the Macintosh Programmer's Workshop.

Table P-1 gives a brief description of each of the books in the Macintosh technical
documentation. The books are described in more detail in Appendix B, together
with a more extensive bibliography.

Figure P-1 is a roadmap to the Macintosh technical documentation. Starting with this
book, Technical Introduction to the Macintosh Family, the paths in the roadmap
show the relationships among books. For example, it's logical to read Programmer's
Introduction to the Macintosh Family before you start on Inside Macintosh.

About the Macintosh technical documentation x v

Table P·l
Macintosh technical documentation

Orlglnal Inside Macintosh :

Inside Macintosh, Volumes 1-3

Inside Macintosh, Volume 4

Inside Macintosh, Volume 5

Introductory books:
Technical Introduction
to the Macintosh Family

Programmer's Introduction
to the Macintosh Family

Single-subject books:

Macintosh Family Hardware
Reference

Designing Cards and Drivers for
Macintosh II and Macintosh SE

Related books:

Human Interface Guidelines:
The Apple Desktop Interface

Apple Numerics Manual

Macintosh Programmer's
Workshop 2.0 Reference

Complete reference to the Macintosh Toolbox and Operating
System for the original 64K ROM

Delta guide to the Macintosh Plus (128K ROM)

Delta guide to the Macintosh SE and Macintosh II (256K ROM
versions)

Introduction to the Macintosh software and hardware for all
Macintosh computers: the original Macintosh,
Macintosh Plus, Macintosh SE, and Macintosh II

Introduction to programming the Macintosh system for
programmers who are new to it

Reference to the Macintosh hardware for all Macintosh
computers, excluding the Macintosh XL

Hardware and device driver reference to the expansion
capabilities of the Macintosh II and the Macintosh SE

Detailed guidelines for developers implementing the
Macintosh user interface

Description of the Standard Apple Numerics Environment
(SANE®), an IEEE-standard floating-point environment
supported by all Apple computers

Description of the Macintosh Programmer's Workshop
(MPW), Apple's software development environment for all
Macintosh computers

These books are described in more detail in Appendix B, together with a more
extensive bibliography.

xvi Preface

Designing
Cards and
Drivers for
Macintosh II
and
Macintosh SE

Macintosh
Programmer's
Workshop

Macintosh
Programmer's
Workshop
Assembler
Reference

c
Reference

Figure P-1

Technical
Introduction
to the
Macintosh
Family

Macintosh
Programmer's
Workshop
Pascal
Reference

MacApp
Programmer's
Reference

Macintosh
Programmer's
Workshop
Reference

Human
Interface
Guidelines:
The Apple
Desktop
Interface

Apple
Numerics
Manual

Roadmap to the Macintosh technical documentation

Programmer's
Introduction
to the
Macintosh
Family

Inside
Macintosh
Volumes 1-111

Inside
Macintosh
Volume IV

Inside
Macintosh
VolumeV

xvii

Some conventions
This book discusses several generations of Macintosh computers, describing their
similarities and differences. On the software side, the architecture of the various
machines is quite similar. On the hardware side, the differences multiply, but there
are still broad family resemblances. The Macintosh Plus in particular is much like the
original Macintosh, but faster and more powerful. The following terminological
conventions have therefore been adopted:

o Unless otherwise indicated, the discussion refers to all Mactntosh computers. The
term Macintosh is used generically to refer to the entire product line.

o Unless otherwise indicated, information relating to the Macintosh Plus also holds
true for the original 128K Macintosh, the Macintosh 512K, and the 512K
enhanced (512K e).

+ Note: The Macintosh XL differs in many respects from the other Macintosh
computers and is not described in this book. The Macintosh XL is based on the
Lisa hardware, with RAM-based software that emulates the operation of the
Macintosh 64K ROM.

Numerous special terms are introduced throughout this book. Those terms appear in
boldface type and are defined in the glossary at the end of the book.

xviii Preface

Programming the Macintosh
Programming the Macintosh can be quite unlike programming other computers.
This book touches on some of the ways the Macintosh is different, but without going
into detail about how you would program those features.

In order to program the Macintosh, you'll need the original five volumes of Inside
Macintosh. You'll also need a Macintosh development system such as the Macintosh
Programmer's Workshop (MPW), Apple's own Macintosh development system. The
MPW system includes Pascal and C compilers and a 68000/68020/68030 assembler,
together with Pascal, C, and assembly-language interfaces to the Macintosh Toolbox
and Operating System. MPW also includes a programmable shell/editor and
numerous utilities, such as a linker, resource editor, and resource compiler. Many
other language compilers and interpreters are also available, from COBOL to
SmallTalk, and including almost everything in between. Apple also provides an
expandable application, MacApp®, which automatically implements most of the
standard features of the Macintosh user interface.

There are also ways you can easily write programs on the Macintosh short of
producing a full-fledged application. Macintosh Pascal, for instance, is an
application that provides a complete environment so that you can write simple
Pascal programs that execute within Macintosh windows.

For valuable information about how to approach the process of programming the
Macintosh, refer to the Programmer's Introduction to the Macintosh Family. For
additional information and support, you can contact the Apple Programmer's and
Developer's Association (APDA ™) and Apple's certified developer program. See
Appendix B for addresses and telephone numbers.

Programming the Macintosh x Ix

Chapter 1

The Macintosh
Family

This chapter introduces the various Macintosh computers and outlines their
similarities and differences. It explains both what is involved in software
compatiblity and which peripherals are compatible with which computers. The
chapter ends with a point-by-point comparison of the hardware features of the
Macintosh Plus, Macintosh SE, and Macintosh II.

This chapter provides only the broadest overview of the Macintosh computers.
Detailed information about the hardware features of each of the Macintosh machines
can be found in Chapter 10.

The evolving Macintosh
The Macintosh computer was introduced in January 1984. The original Macintosh
was built around a Motorola MC68000 microprocessor, with 128K of RAM and 64K of
ROM containing a programmer's toolbox: hundreds of routines providing powerful
graphics support, user-interface features, and much more.

Seen from the level of the hardware, the various Macintosh machines present many
important differences, but from the level of software, the Macintosh systems show
one continuous evolution. In fact, many new software features that are not tied to
hardware have been "back-fitted" onto the older machines by including them in
updated versions of the Macintosh System file. (The System file is discussed further
in Chapter 2.) This means that properly written applications can run on any version
of the Macintosh.

From its inception up through the Macintosh Plus, the Macintosh went through the
following revisions:

o original Macintosh (Macintosh 128K), with 128K of RAM and 64K of ROM
(version $69)

o Macintosh 512K (same as the original Macintosh, but with 512K of RAM)

o Macintosh 512K enhanced, which includes a new 800K disk drive with the new
128K Macintosh Plus ROM, containing a hierarchical file system and other new
features

o Macintosh Plus, which includes an 800K disk drive, a new 128K ROM (version
$75), 1 megabyte (1 MB) of RAM, and new I/0 ports, as explained in the following
section

Collectively, these Macintosh models are known as the classic Macintosh. The
Macintosh Plus embodies a number of new software and hardware features, but can
still be thought of as a bigger, faster version of the original Macintosh. In fact, any of
the first three machines listed above can easily be upgraded to a Macintosh Plus.

•:• Note: Throughout the rest of this manual, the classic Macintosh is described
from the standpoint of the Macintosh Plus. In the few instances in which there
are important differences in the software or hardware between the earlier
machines and the Macintosh Plus, the fact is pointed out explicitly.

2 Chapter 1: The Macintosh Family

Macintosh Plus
The Macintosh Plus, introduced in January 1986, is a much enhanced version of the
original Macintosh, containing many new routines in a larger 128K ROM, more
RAM, more disk storage, and several other new features. Figure 1-1 shows the
Macintosh Plus, which is almost identical in appearance to the original Macintosh.

Figure 1-1
The Macintosh Plus computer

The features of the Macintosh Plus (not found in the Macintosh 128K and 512K) are

o 128K ROM (version $75; this ROM is also on the Macintosh 512K enhanced)

D 1 MB of RAM, expandable to 2 MB, 2.5 MB, or 4 MB

o an BOOK internal disk drive (also on Macintosh 512K enhanced)

o a Small Computer System Interface (SCSI) port for high-speed parallel
communications with peripheral devices such as hard disks

o two Mini-8 connectors for serial ports, replacing the two 9-pin D-type connectors
found on the Macintosh 128K, 512K, and 512K enhanced

o a keyboard with built-in cursor keys and numeric keypad

The evolving Macintosh 3

Macintosh SE
The Macintosh SE is the first Macintosh computer to provide for internal expansion
via an internal expansion slot. Although the Macintosh SE is superficially similar to
the Macintosh Plus, most of its components are new. A new ROM (now 256K)
supports all of the old Macintosh features, and much more besides. Figure 1-2 shows
the external appearance of the Macintosh SE.

Figure 1-2
The Macintosh SE computer

The new features of the Macintosh SE are

o 256K Macintosh SE ROM (version $76) containing new Operating System and
Toolbox software

o Optional internal 20 MB SCSI hard disk, or optional second BOOK internal floppy
disk drive

P Much faster hard disk access, doubling the maximum transfer rate over the
Macintosh Plus

o 25 percent greater speed when accessing RAM

o One expansion slot, providing for an internal custom expansion card to
communicate with the MC68000 bus. A removable accessory access port in the
rear housing allows access to custom I/0 connectors on an expansion card

4 Chapter 1: The Macintosh Family

o Increased capacity power supply to provide power for an internal hard disk and
expansion card

o Fan to provide cooling for internal disk and expansion card

o Apple Desktop Bus™ (ADB) for connecting the keyboard, mouse, and optional
input devices

Like the classic Macintosh, the Macintosh SE is based on the Motorola MC68000
microprocessor, and is fully compatible with almost all existing Macintosh software.

Macintosh II

The Macintosh II, shown in Figure 1-3, is a big, open-architecture Macintosh, the
most powerful computer in the Macintosh family. It offers hardware flexibility while
retaining compatibility with most existing Macintosh software. The Macintosh II is
more powerful than any previous Macintosh, with a fast 16-megahertz (16 MHz),
32-bit MC68020 microprocessor that can directly address up to 4 gigabytes (4 GB, or
4096 MB), teamed with an MC68881 floating-point coprocessor for numerics
support.

The most important new features of the Macintosh II are

o 256K Macintosh II ROM (version $78), a superset of the Macintosh SE ROM that
adds full color support

o MC68020 full 32-bit microprocessor

o MC68881 floating-point coprocessor for high-speed, precise numerics support

o Optional MC68851 Paged Memory Management Unit to support multitasking
operating systems

o Optional internal SCSI hard disk, as well as an optional second BOOK internal disk
drive

o Six NuBus™ expansion slots (described below)

o Apple Desktop Bus (ADB), as on the Macintosh SE

The most significant innovation on the Macintosh II is the addition of six NuBus slots
for expansion cards. The Macintosh II has no built-in video; instead, one or more of
the slots can be used" for a video card. A variety of video cards and monitors provides
a range of video options, including high-resolution color and gray-scale
capabilities. (Macintosh II video capabilities are explained in Chapter 5.)

The evolving Macintosh 5

Figure 1-3
The Macintosh II computer

The Macintosh II is, in fact, a desktop computer with near-minicomputer
capabilities. In its native mode, the Macintosh II runs the Macintosh Operating
System, but it can also run the UNIX Operating System, which provides full
multitasking, multiuser support. Under the UNIX system, multiple terminals can be
attached to the Macintosh II. (Apple's implementation of UNIX, A/UX, is outlined
in Chapter 11.)

The many new hardware features of the Macintosh II are detailed in Chapter 10.

International versions
Except for different keyboards, the hardware of the base Macintosh machines is
identical for all international versions of the machine: the only real difference is in
software. ·

6 Chapter 1: The Macintosh Family

No particular language is built into the Macintosh ROM; rather, localized versions of
the Macintosh System file contain the appropriate information for each language.
For example, the Japanese version of the Macintosh System file includes complete
support for kanji and kana characters, as well as for Roman characters. The versions
of the Macintosh sold in Japan do include additional ROM, but the ROM only
contains fonts that would otherwise be stored on a disk. (For more information, see
the section "Using Non-Roman Writing Systems" in Chapter 5.) With a minimum of
resource editing, which is easily done by a nonprogrammer, properly written
applications can function equally well in any language. Chapter 4 gives more details
about resources.

On the Macintosh Plus, there are two versions of the power supply, for 110 and 220
volts. On the Macintosh II and Macintosh SE, a universal power supply can function
at either voltage.

Software compatibility
The Macintosh system software is organized so that programs are insulated from the
actual hardware of the computer. That is, rather than directly accessing the
hardware, a program calls the Macintosh Toolbox and Operating System, which in
turn perform the necessary hardware operations. Programmers can also read from a
set of global variables, stored in low memory, and use them in place of direct
hardware addresses. By taking advantage of these techniques, an application
program can be fully compatible with all of the Macintosh machines.

Figure 1-4 is a simplified diagram of the relationship between the Macintosh
hardware and software. At the highest level is the user who directly manipulates the
execution of the application program that runs on the machine. The application, in
turn, interacts directly with lower levels of software-the built-in Toolbox and
Operating System. The Toolbox provides the standard Macintosh user interface.
Operating System routines directly manipulate the registers and input/output devices
that constitute the computer's hardware. (For further discussion of the Toolbox and
Operating System, refer to Chapter 2.)

Software compatibility 7

User

Application program

User Interface Toolbox

Operating System

Hardware

Figure 1-4
Relatlonshlp between Macintosh hardware and software

Most Macintosh software will run on any of the Macintosh computers; Apple has
gone to great lengths, testing hundreds of programs, to ensure that this is the case. Of
course, programs that don't follow the guidelines given throughout Inside
Macintosh will need to be reworked to run on newer computers such as the
Macintosh II. These include programs that directly access the hardware, instead of
using low-memory global variables or system calls. Software that follows the Inside
Macintosh guidelines is likely to work on the Macintosh SE and Macintosh II, while
benefitting from the increased speed and memory.

8 Chapter 1 : The Macintosh Family

Hardware compatibility
The Macintosh Plus, Macintosh SE, and Macintosh II all support the standard Apple
peripherals, including

o Apple LaserWriter® and LaserWriter Plus® laser printers

o Apple Image Writer® and Image Writer II® dot-matrix printers

o the Apple Personal Modem

o SCSI hard disks: the Apple Hard Disk 20SC, Hard Disk 40SC, and Hard Disk 80SC
(20, 40, and 80 megabytes). (SCSI disks are not supported by the original
Macintosh, which has no SCSI port.)

o the Apple Tape Backup 40SC SCSI tape backup unit

o the AppleTalk® network (and AppleShare® file server)

The Macintosh Plus and Macintosh SE also include an external disk drive port,
supporting the Macintosh external disk drives (the Apple external 400K and SOOK
floppy disk drives, and the Apple Hard Disk 20).

Important

The Macintosh II does not support the Apple external floppy disk drives or the
Apple Hard Disk 20. (It has two Internal floppy disk connectors but no external
floppy disk connector.)

For quick reference, Table 1-1 lists the features of the Macintosh Plus, Macintosh SE,
and Macintosh II computers. Many new hardware features are merely mentioned in
this table. The reader who is interested an a detailed explanation of the hardware
differences between the machines is invited to look ahead to Chapter 10, "The
Macintosh Family Hardware."

Table 1-1
Macintosh family hardware comparison

Feature

Processor

Addressing

Clock
frequency

Macintosh Plus

MC68000 CPU

24/32 bit

7.8336 MHz

Macintosh SE

MC68000 CPU

24/32 bit

7.8336 MHz

Macintosh II

MC68020
CPU

True 32 bit
(24-bit mode
for software
compatibility)

15.6672 MHz

(continued)

Hardware compatibility 9

Table 1-1 (continued)
Macintosh family hardware comparison

Feature Macintosh Plus Macintosh SE Macintosh II

Coprocessor None None built-in Built-in
MC68881
floating-
point
coprocessor

Hardware None None Built-in
memory 24/32-bit
management hardware

unit for
address
translation;
optional
MC68851
Paged
Memory
Management
Unit (PMMU)

Internal SOOK internal SOOK internal with SOOK internal
floppy disk optional second with optional

SOOK internal second SOOK
drive internal drive

External Optional 400K Optional 400K No built-in
floppy disk external drive; external drive; support

optional BOOK optional BOOK
external drive external drive

High-speed SCSI port SCSI port SCSI port
peripherals (not available on

pre-Macintosh
Plus machines)

Hard disk Optional Hard Optional Hard Optional
Disk 20 (external); Disk 20 (external); SCSI hard
optional SCSI optional SCSI disk
hard disk (external) hard disk (internal/

(internal/external) external)

10 Chapter 1: The Macintosh Family

Table 1-1 (continued)
Macintosh family hardware comparison

Feature Macintosh Plus Macintosh SE Macintosh II

Serial ports Two Mini-8 built-in Two Mini-8 built-in TwoMini-8
serial ports serial ports built-in
(DB-9 connnectors (slightly enhanced serial ports
were used on pre- over the Macintosh (same as
Macintosh Plus Plus serial ports) Macintosh SE)
machines)

Slot expansion No slots SE-bus (68000-bus) Six slots with
expansion NuBus
connector architecture

Sound Macintosh sound Macintosh sound Custom
chip four-voice chip four-voice Apple Sound

Chip (ASC)
four-voice

RAM 1 MB expandable 1 MB expandable lMB
to 4 MB RAM to4MBRAM expandable

to 128MB
RAM(when
available) on
motherboard;
expandable
to 2 GB in
NuBus slots

ROM 128K ROM 256K ROM 256KROM
(optional 256K) (optional

512K on
motherboard)

Keyboard Macintosh Plus Apple Keyboard Apple
keyboard with or Apple Extended Keyboard or
built-in numeric Keyboard, via Apple
keypad (compatible Apple Desktop Bus Extended
with original (allows additional Keyboard,
Macintosh input devices, via Apple
keyboard/keypad) such as a Desktop Bus

graphics tablet) (same as
Macintosh SE)

(continued)

Hardware compatlblllty 11

Table 1-1 (continued)
Macintosh family hardware comparison

Feature Macintosh Plus Macintosh SE Macintosh II

Mouse Macintosh mouse Apple Desktop Bus Apple
(same as lisa mouse Desktop Bus
mouse) mouse

Video display Built-in monitor: Built-in monitor: External
9 inch, 512 x 342 9 inch, 512 x 342 monitor:
pixel, pixel, video
black-and-white black-and-white circuitry is on

aNuBus
expansion
card

The full specifications for each computer are given in Appendix A.

12 Chapter 1 : The Macintosh Family

Chapter 2

Introduction
to the
Macintosh
Software

13

This chapter introduces the software that makes the Macintosh work-the Macintosh
ROM and RAM-based system software-and briefly describes how this software
relates to your application software. The chapter begins by introducing the contents
of the ROM-the User Interface Toolbox and the Operating System-and then
describes how ROM calls work. It then discusses the RAM-based system software,
including the Finder and System file, and concludes with a discussion of event-driven
programs; that is, how standard application programs operate in the Macintosh
environment.

The Macintosh software has been designed to allow a program to run on any
Macintosh, and this chapter describes information that is common to all Macintosh
computers. The Toolbox, Operating System, and system software are discussed at
greater length in the chapters that follow.

Overview of the Macintosh ROM
Above all else, it's the Macintosh ROM that makes the Macintosh unique. The
Macintosh ROM contains over 700 routines for performing operating system and
user interface functions. These routines can be broken down into two general
categories: the Macintosh Operating System and the User Interface Toolbox. The
Operating System is at the lowest level; it takes care of basic tasks such as input and
output, memory management, and interrupt handling. The User Interface
Toolbox is a level above the Operating System; it enables programs to implement
the standard Macintosh user interface. The Macintosh user interface consists of the
pull-down menus, windows, dialog boxes, and standard control mechanisms that
allow all Macintosh software to have the same look and feel.

From the point of view of the user, the Toolbox provides a standard, intuitive way of
doing things across applications:

o Instead of remembering and typing commands, you use a mouse to select
commands from menus. Parameters to commands are specified by using dialog
boxes.

o Instead of remembering and typing filenames, you select icons, or select names
from a Standard File dialog box.

o High-resolution bit-mapped graphics unify the presentation of text and graphics
so that bit-mapped images can be copied and pasted between different types of
applications. Macintosh graphics also make possible the window environment
which displays multiple open files on the screen.

14 Chapter 2: Introduction to the Macintosh Software

All Macintosh applications rely on the Toolbox to provide their user interface. For
managing files and disks, a system application called the Macintosh Finder™
presents a graphical model of a desktop where you use the mouse to select and drag
graphic objects, rather than having to type commands in response to a traditional
command-line prompt.

From the point of view of the programmer, the Macintosh system can be compared
to a minicomputer or mainframe system in the size and complexity of its built-in
libraries. ROM routines are provided for implementing the entire Macintosh user
interface. Another novel feature is the use of resources, which provide templates
for the standard Toolbox objects, such as menus and windows, and separate these
objects from the application's code. The Macintosh also provides sophisticated
memory management, which allows large programs to run with relatively little
memory while enabling programs to automatically take advantage of machines with
more memory.

In addition to the distinction between the Toolbox and the Operating System, the
routines available to Macintosh programmers are further divided according to
function into a set of software managers, as shown in Figure 2-1. Each manager is a
set of routines and data structures needed for the performance of a related set of
tasks. For example, the Window Manager provides routines for drawing and
manipulating windows on the screen.

Almost all of the Toolbox and Operating System routines are contained in the
Macintosh ROM. However, newer versions of routines may frequently be based in
RAM until the next ROM revision, as explained in the next section. From the
standpoint of the program, this difference is not important: the program calls the
routine in exactly the same way, wherever the routine's code may actually be.

Overview of the Macintosh ROM 15

Versions of the Macintosh ROM
As we indicated in Chapter 1, the Macintosh ROM has gone through two significant
revisions since it was first introduced. The original 64K ROM contains more than 500
routines (together with another hundred or so RAM-based routines in the Macintosh
System file).

The 128K Macintosh Plus ROM incorporated many of the RAM-based routines into
the ROM and added major new functions, such as a new File Manager that supports a
hierarchical file system. The 128K ROM is also provided on the
Macintosh 512K enhanced.

The Macintosh SE and Macintosh II both include 256K of ROM, although the ROMs
for the two machines are not identical. As Figure 2-1 indicates, many functions are
new to these ROM versions. In addition, several packages and software managers that
were previously based in RAM (that is, located in the System file) have been built into
the 256K ROMs of the Macintosh SE and Macintosh II. Note that the Macintosh II
ROM includes software for color and slot support that is lacking on the Macintosh SE
(70K to SOK of the Macintosh SE ROM is not utilized).

In between major ROM revisions, new routines and corrected versions of old
routines are provided by revising the System file. Because they work so closely
together, the System file and Finder are usually revised in tandem. From the
standpoint of a program that calls a ROM routine, there is no functional difference
between a routine in ROM and a routine in the System file. The system's dispatch
mechanism for determining which routine to call is explained later in this chapter
under "The Trap Mechanism."

In Figure 2-1, an asterisk (•) indicates that the software is new in the 2S6K
(Macintosh II/Macintosh SE) ROMs. Two asterisks (..) indicate that the software is
found only in the Macintosh II ROM.

16 Chapter 2: Introduction to the Macintosh Software

A Macintosh appllcatton program

t ROMcalls

The User Interface Toolbox (in ROM)

Resource Manager
QulckDraw
··color Manager
Font Manager
*Script Manager
Toolbox Event Manager
Window Manager
Control Manager
Menu Manager
TextEdlt
Dialog Manager

Desk Manager
Scrap Manager
Toolbox Utilities
Package Manager
Binary-Decimal Conversion Package
International Utilities Package
standard Fiie Package
**Palette Manager

The Operating System

Memory Manager
Segment Loader
OS Event Manager
Fiie Manager
Device Manager
Disk Driver
SCSI Manager
Sound Manager
Serial Drivers
System Error Handler
Operating System Utilities
Printing Manager

**Slot Manager
•start Manager
*Shutdown Manager
•Apple Desktop Bus Manager
**Video Driver
.. Color Picker Package
Vertical Retrace Manager
AppleTalk Manager
Disk lnltlallzatlon Package
Floating-Point Arithmetic Package
Transcendental Functions Package

The Macintosh hardware

Figure 2-1
Components of the Toolbox and the Operating System

I

The Toolbox calls the Operating System to do low-level operations; the Operating
System may also call the Toolbox. Applications call both the Toolbox and the
Operating System directly.

Overview of the Macintosh ROM 17

The Toolbox
The User Interface Toolbox gives programmers hundreds of routines that provide the
means for creating applications that conform to the standard Macintosh user
interface. By offering a common set of routines that every application calls, the
Toolbox ensures familiarity and consistency for the user. For the programmer, the
Toolbox can reduce both the application's code size and development time. At the
same time, it allows plenty of flexibility: if necessary, an application can use its own
code instead of a Toolbox routine, and can define its own types of windows, menus,
and so on.

Figure 2-2 shows the various parts of the Toolbox in a very rough approximation of
their relationship. There are many more interconnections between these parts than
can be shown diagrammatically. The higher-level segments call those at the lower
levels, but the reverse may also be true.

I Dialog Manager

I Menu Manager I I window Managerl I Control Manager I I __ T_ext_E_d_lt _ _,

Scrap Manager Toolbox Event Manager Desk Manager

QuickDraw

Font Manager 11 Color Manager

Script Manager 11 Package Manager I

Resource Manager

Figure 2-2
.Parts of the Toolbox

A brief description of the most important parts of the Toolbox is given below. For
more details about each aspect of the Toolbox, see Chapter 3, "The User Interface
Toolbox."

18 Chapter 2: Introduction to the Macintosh Software

Event Manager

Resource Manager

QuickDraw

Color Manager

Palette Manager

Font Manager

Script Manager

Reports events to an application. An application decides
what to do from moment to moment by examining input
from the user in the form of mouse and keyboard actions.
It learns of such actions by repeatedly calling the Toolbox
EventManager, which in turn calls another, lower-level
Event Manager in the Operating System.

Locates and delivers the resources needed by a program.
Resources are chunks of static data, such as menus,
cursors, window templates, and much more; even the
application's code segments are stored as resources. The
other parts of the Toolbox listed below also rely on the
Resource Manager. Resources are discussed at greater
length in Chapter 4.

Performs all screen display operations on the Macintosh,
including graphics and text. Applications call QuickDraw
to draw inside a window, or just to set up constructs like
rectangles that are needed for other Toolbox calls. Other
parts of the Toolbox also call QuickDraw. QuickDraw's
underlying concepts, like those of the Resource Manager,
are key to the Macintosh system. All versions of QuickDraw
support a limited version of color for optional color output
devices. The Macintosh II ROM includes a new Color
QuickDraw, for greatly enhanced color support.

Supplies color-selection support for Color QuickDraw and
provides a consistent way to produce color displays on the
Macintosh II. The Color Manager supports a variety of
color formats and representations, allowing programs to
make full use of the color capabilities available on different
video cards and devices. (Macintosh II only)

Supports the use of a collection of colors when you draw
objects with Color QuickDraw. The Palette Manager
provides routines to manage shared color resources, to
provide exact colors for imaging, or to initiate color table
animation. (Macintosh II only)

Supports the drawing of text by QuickDraw. Before drawing
text, QuickDraw calls the Font Manager, which does the
background work necessary to make a variety of character
fonts available in various sizes and styles.

Enables applications to function correctly with non
Roman writing systems (or scripts) such as Japanese and
Arabic, as well as with Roman-based writing systems such
as English.

Overview of the Macintosh ROM 19

Window Manager

Control Manager

Menu Manager

TextEdit

Scrap Manager

Dialog Manager

Desk Manager

Package Manager

Manages windows on the Macintosh screen. All
information presented by a standard Macintosh
application appears in windows. Window Manager
routines create windows, move them, resize them, and
close them. The Window Manager also keeps track of
overlapping windows, so that you can manipulate windows
without concern for how they overlap, and tells the
Toolbox Event Manager when a window must be redrawn.

Creates controls, such as buttons, check boxes, and scroll
bars. When the Window Manager informs a program that
the user clicked the mouse button inside a window
containing controls, the Control Manager can find out
which control the mouse button was clicked in, if any.

Sets up and manages menus in the menu bar. When the
user selects a menu item or types a keyboard equivalent for
a menu command, the Menu Manager finds out which
command was selected.

Accepts and displays text typed by the user and provides
the standard editing capabilities, including cutting and
pasting text via the Clipboard. Also handles basic
formatting functions such as word wraparound and
justification.

Supports the use of the Clipboard for cutting and pasting
text or graphics between programs.

Creates and presents dialog and alert boxes, and returns
the user's responses to the application. When an
application needs more information from the user about a
command, it presents a dialog box. In case of errors or
potential mishaps, the application uses Dialog Manager
calls to alert the user with a box containing a message or
with sound from the Macintosh's speaker.

Supports desk accessories, which are small programs
that can be run from within an application. The user opens
desk accessories through the Apple menu. When the Event
Manager learns that the user has pressed the mouse button
in a desk accessory window, it passes that information on
to the accessory by calling the Desk Manager.

Supports the use of special pieces of system software called
packages. For example, the List Manager is stored as a
package. (Packages were originally based in RAM, but a
number of packages have been built into the 128K and
256K versions of the ROM.)

20 Chapter 2: Introduction to the Macintosh Software

Standard File Package

List Manager

Presents the standard user interface for locating and
specifying a document file. The Standard File Package is
called by every application whose File menu includes the
standard Open, Save, and Save As commands. (The actual
file operations are performed by the Operating System's
File Manager.)

Supports the use of one-dimensional and two-dimensional
lists by applications.

A number of miscellaneous functions are also available. These include operations
such as fixed-point arithmetic, string manipulation, and logical operations on bits.
The routines that perform these functions are collectively known as the Toolbox
Utilities.

Two of the Macintosh packages can be seen as extensions to the Toolbox Utilities: the
Binary-Decimal Conversion Package converts integers to decimal strings and
vice versa, and the International Utilities Package helps to make applications
independent of country-specific information, such as the formats for numbers,
currency, dates, and times.

The Operating System
The Macintosh Operating System provides the low-level support that applications
need in order to use the Macintosh hardware. Just as the Toolbox provides a
program's interface to the user, the Operating System provides its interface to the
computer.

The most important parts of the Operating System are briefly described below.

Memory Manager

Segment Loader

OS Event Manager

Dynamically allocates and releases memory for the use of
applications and other parts of the Operating System.
Most of the memory that programs use is in an area called
the heap; the code of the program itself occupies space in
the heap. Memory space in the heap must be obtained
through the Memory Manager.

Loads pieces of an application's code into memory to be
executed. An application can be loaded all at once, or it
may be divided into dynamically loaded code segments
to economize on the use of memory. The Segment Loader
also serves as a bridge between the Finder and the
application, letting the application know whether it has to
open or print a document when it starts up.

Reports low-level, hardware-related events, such as
mouse-button presses and keystrokes. The Toolbox Event
Manager then passes these events to the application.

Overview of the Macintosh ROM 21

File Manager

Device Manager

Device Drivers

Sound Manager

SCSI Manager

AppleTalk Manager

Slot Manager

ADB Manager

Provides the routines for file 1/0.

Provides the routines for device 1/0.

Performs the task of making the various types of devices
present the same type of interface to the application. The
Operating System includes several built-in drivers:

o The DJsk Driver controls data storage and retrieval on
3.5-inch floppy disks and the Apple Hard Disk 20.

o The Sound Driver controls sound and music
generation in the Macintosh Plus.

o The Serial Driver reads and writes asynchronous data
through the two serial ports, providing communication
between applications and serial peripheral devices, such
as a modem or printer.

The preceding drivers are all in ROM. Several other
drivers are RAM-based:

o The Printer Driver in RAM enables applications to
print information on different kinds of printers via the
same interface (called the Printing Manager).

o On the Macintosh II, a Video Driver enables a
particular video device to communicate with the rest of
the system.

More RAM drivers can be added independently or built on
the existing drivers (by calling the routines in those
drivers). For example, the Printer Driver was built on the
Serial Driver, and a music driver could be built on the
Sound Driver.

Supports sound and music generation on the Macintosh II.
(Macintosh II only)

Supports the Small Computer System Interface (SCSI) for
hard disks and other high-speed peripheral devices.

Provides an interface to a set of AppleTalk drivers that
enable programs to send and receive information over an
AppleTalk network.

Enables programs to communicate with expansion cards
in NuBus slots. (Macintosh II only)

Supports the Apple Desktop Bus, which is used for
connecting low-speed input devices, including the mouse
and keyboard, to the Macintosh SE and Macintosh II.
(Macintosh SE and Macintosh II)

22 Chapter 2: Introduction to the Macintosh Software

Vertical Retrace
Manager

Time Manager

System Error Handler

Start Manager

Shutdown Manager

Packages

The built-in video circuitry generates a vertical retrace
interrupt 60 times a second. An application can schedule
routines to be executed at regular intervals based on this
system "heartbeat." The Vertical Retrace Manager handles
the scheduling and execution of tasks during the vertical
retrace interval. (On the Macintosh II, the vertical retrace
interrupt is emulated for compatibility with previous
machines.)

Provides a hardware-independent means of timing
program operations.

Assumes control if a system error occurs. The System Error
Handler displays a "bomb" box containing an error
message and provides a mechanism for the user to restart
the system or attempt to resume execution of the
application.

Orchestrates all of the activities related to system testing
and startup.

Provides the ability to restart the Macintosh or tum it off.

Three Macintosh packages perform low-level operations:

o The Disk InitJalization Package, which the Standard
File Package calls to initialize and name disks

o The Floating-Point Arithmetic Package, which
supports extended-precision arithmetic according to
Standard 754 of the Institute of Electrical and Electronics
Engineers OEEE)

o The Transcendental Functions Package, which
contains trigonometric, logarithmic, exponential, and
financial functions, as well as a random number
generator

('These two numerics packages support the Standard Apple
Numeric Environment [SANE™].)

The Operating System Utilities provide several assorted functions. These include
utilities for miscellaneous operations, such as getting the date and time, setting user
preferences (for example, the speaker volume), and doing simple string
comparison.

The following section describes how Operating System and Toolbox calls are actually
dispatched when an application is running.

Overview of fhe Macintosh ROM 23

The trap mechanism
The Toolbox and Operating System reside mainly in ROM. However, to allow
flexibility for future development, application code must be kept free of any specific
ROM addresses. For this reason, all references to Toolbox and Operating System
routines are made indirectly through the trap dispatcher, which looks up the
addresses of the routines in the trap dispatch table in RAM. The trap dispatch
mechanism allows the routines themselves to be moved to different locations in
ROM, or be replaced altogether by RAM-based routines, without disturbing the
operation of programs that depend on them. Figure 2-3 shows the flow of control
when an application calls a Toolbox or Operating System routine.

Application code

Trap dispatcher
F983D7487652CA63427A238735C
47E25F78309824BC8036A388D46
2F46570092A64736884767E843C
D3468F734D38269AOOB364063C5 Trap

Toolbox or OS call 1------~~
(trap) '"'"'.'""

A67083582509E27544C238BA 139
F983D7487652CA63427A23B735C
47E25F78309824BC8036A388046
2F46570092A84736884767E843C
D3468F734038269AOOB364063CS
4808234A93458930EF023D5837F
37 A9345F382609472E9748739FO
A670835B2509E27544C2388A 139
F983D7487652CA63427A238735C
47E25F783D9824BC8036A388D46
2F46570092A84736884767E843C

F983D7487652CA63427A238735C
47E2SF783D9824BC8036A388046
2F46570092A64736884767EB43C

Figure 2-3
The trap mechanism

Address

System code

A67083582509E27544C238BA 139
F98307487652CA63427A238735C

47E25F783098248C8036A388D46
2F46570092A84736884767E843C
D3468F734038269AC08364063C5

4808234A93458930EF023D5837F

Toolbox or OS
routine

A67083582509E27544C238BAl39
F93307487662CA63427A238735C
47E25F783098248C8036A388D46
2F46570092A84736B84767E843C
D3468F734038269A008364063C5
4808234A93458930EF023D5837F
37A9345F382609472E9748739FO
A67083582509E27544C2388A139
F983D7487652CA63427A238735C
47E25F78309824BC8036A388046

AIJ7083582509E27544C238BA139
F983074B7652CA63427A238735C

Information about the locations of the various Toolbox and Operating System
routines is encoded in compressed form in the ROM itself. When the system starts
up, this encoded information is expanded to form the trap dispatch table. Because
the trap dispatch table resides in RAM, individual entries in the table can be patched
to point to addresses other than the original ROM address. This allows changes to be
made in the ROM code: at startup time, the system can load corrected versions of
individual routines from the System file into RAM, and then patch the trap dispatch
table to point to them. This means that the ROM can be fixed, in effect, with a new
System file. This mechanism also allows an application to replace specific Toolbox
and Operating System routines with its own custom versions.

24 Chapter 2: Introduction to the Macintosh Software

The trap mechanism is directly supported by the Macintosh computer's MC68000 (or
MC68020) microprocessor. A trap is a kind of microprocessor exception that arises
directly from the execution of a machine-language instruction. Calls to the Toolbox
and Operating System are implemented by means of the 68000's 1010 emulator trap.
In the 68000 instruction set, instruction words that begin with binary 1010
(hexadecimal $A-so-called A-line instructions) don't correspond to any valid
machine-language instruction and are known as unimplemented instructions.
These unimplemented instructions can be used to augment the processor's native
instruction set with additional operations that are emulated in software instead of
being executed directly by the hardware. That is, calls to the Macintosh Toolbox and
Operating System look like machine-language instructions, but actually cause the
execution of software routines. On a Macintosh, A-line instructions provide access to
the Toolbox and Operating System routines.

When a program attempts to execute such an instruction, it causes a trap to the trap
dispatcher. The trap dispatcher examines the bit pattern of the trap word to
determine what operation it stands for, looks up the address of the corresponding
routine in the trap dispatch table, and jumps to the routine. A trap word always
begins with the hexadecimal digit $A; the rest of the word identifies the routine your
program is calling, along with some additional information pertaining to the call.

Interface and library files
In order to write Macintosh programs, most software developers need high-level
language access to the routines available in the Toolbox and Operating System. This
is made possible by a set of interface flies (or include flies) provided as part of a
development system, like the Macintosh Programmer's Workshop (MPW). Interface
files define the variables, constants, data structures, and routine names that are used
in programming with the Toolbox and Operating System.

Programmers may also need to link their applications with particular library files,
which contain executable code for performing certain run-time functions. Note that
the Macintosh ROM can also be thought of as a library of routines. Library files
simply contain system code that was not included in the ROM or in the System file,
either because it is rarely used, or because it is specific to a single programming
language.

For more information about programming with the Toolbox and Operating System,
see the Programmer's Introduction to the Macintosh Family and the
documentation for Macintosh Programmer's Workshop (MPW) or another
development system. The rest of this chapter discusses the various kinds of
Macintosh programs.

OveNiew of the Macintosh ROM 25

Types of Macintosh programs
There are two standard kinds of Macintosh application programs:

o Applications are stand-alone programs, such as MacPaint™ or the Finder, that
take control of the machine when they are launched. All of the familiar Macintosh
programs-word processors, graphics programs, and so on-are implemented as
applications.

o Desk accessories, such as the Chooser or Key Caps, are mini-applications,
implemented as device drivers, that can be run from within an application. Desk
accessories may perform quite sophisticated functions but are limited in size.

Two other types of programs are also worth mentioning. Device drivers were
introduced in the section "The Operating System." Device drivers other than desk
accessories perform functions such as driving a printer or the video display.
Although they are invisible to the user, they provide the application's interface to a
peripheral device. Some standard device drivers are built into the Macintosh ROM
or provided in the System Folder; others may be supplied by third-party developers.
MPW tools are utility programs that execute only within the MPW environment.
These tools provide only a limited user interface and perform useful utility functions
for programmers and system developers.

Macintosh system software
In addition to the ROM-based software, the Macintosh also depends upon certain
disk-based software. This system software, contained in the System Folder on the
startup disk, consists of the following:

o The System file, which contains resources available to all applications,
including fonts and desk accessories. The System file also contains parts of the
Toolbox and Operating System. Newer versions of the System file contain features
from newer versions of the ROM, enabling these features to be used on machines
with older ROMs.

o The Finder, the application that maintains the Macintosh desktop. The Finder
provides the user interface for traditional operating system functions, such as
managing files and disks and starting other applications.

o Printer drivers (also called printing resources), which provide the interface
to particular printers, such as the LaserWriter or ImageWriter.

o The Clipboard file, which holds data that is cut and pasted between applications.

This system software is universal: the same files are used for all Macintosh
computers, no matter what version of the ROM the computer may contain.

26 Chapter 2: Introduction to the Macintosh Software

•
Additional RAM-based software allows you to have several applications in memory at
the same time. Switcher™, a Macintosh application, allows you to instantly switch
from one application to another. MultiFinder™, a special Finder option available
with Finder version 6.0, goes a step further by allowing multiple applications to be
open simultaneously on the Macintosh desktop.

The contents of the System file are described in "The System Resource File" in
Chapter 4. The Finder and the rest of the Macintosh system software are discussed at
greater length in Chapter 6.

Event-driven programming
Just as all well-written Macintosh programs look similar to the user, they also have the
same internal structure. However, when compared to conventional applications
software, Macintosh applications are built upon a very different structure: instead of
being program-driven, Macintosh programs are event-driven, which is to say,
user-driven. This means that the Macintosh user guides the interaction with the
program rather than vice versa. Where conventional programs will simply solicit
user input through a fixed series of prompts, Macintosh programs must be able to
respond to a wide range of events. (Events include keyboard events, mouse-button
events, and network events.) This kind of programming obviously requires
considerably more design work, but it results in a user interface that is both more
flexible and more efficient, allowing a style of interaction that is less mechanistic and
more creative.

Figure 2-4 illustrates some of the most common types of events.

Event-driven programming 27

e-

~ , ,
'

~ l.. AppleTalkevents

• 1: '.)iii]

\ J
Activate and update events

Disk-Inserted events

Keyboard events Mouse-down events

Figure 2-4
Some common event types

At first glance, the situation of the application surrounded by potential events may
remind you of a kung-fu fighter surrounded by members of the rival kung-fu school.
But where the fighter is aided only by the ancient kung-fu movie convention that
opponents shall attack one at a time, the application has material assistance in the
form of the Macintosh Event Manager, which enforces the one-at-a-time rule.
(There are actually two Event Managers: one in the Operating System and one in the
Toolbox.) The Operating System Event Manager performs its task by placing the
events in an event queue, where the program can respond to them more or less at its
leisure.

This process is shown in Figure 2-5. As the figure shows, the Toolbox Event Manager
passes events on to the program, along with higher-level, software-generated events
added at the Toolbox level. Note that programs ordinarily deal only with the
Toolbox Event Manager and rarely call the Operating System Event Manager
directly.

28 Chapter 2: Introduction to the Macintosh Software

Hardware events

Operating System Event Manager
(event mask)

Figure 2-5

, Event queue

Toolbox Event Manager
(event mask, priority decision)

The Event Managers

Toolbox events and the Toolbox Event Manager are discussed further in the next
chapter.

Structure of an event-driven program

Macintosh programs are built around a main event loop: the program simply goes
through a cycle, waiting for events and then responding to them appropriately.
Figure 2-6 illustrates the typical program flow for a Macintosh program. The content
of each program is unique, but this sort of a structure underlies all Macintosh
applications.

Event-driven programming 29

make standard initialization calls
put up window
begin main event loop ###
wait for events

key-down event?
Command key down?

yes: do a command
no: accept typing from user

mouse-down event?
where is the mouse?

in one of my windows?
is it the front window?

no: bring it to the front
yes: user is selecting something

in a desk accessory window?
pass event to the Desk Manager

in the menu bar?
call Menu Manager, then do command

in the window's title bar?
call Window Manager to drag the window

in the window's size box ?
call Window Manager to resize the window

in a control (button, scroll bar, .. l
call Control Manager to find out which control
then act on that cont r o 1

activate event? (a new window is being activated)
enable some menu items, disable others, etc.

update event? (part of a window needs to be redrawn)
redraw the window

repeat until the user chooses "Quit" from the File menu

Figure 2-6
Event-driven programming: typlcal program flow

At the beginning of a program, various parts of system software must be initialized
and pending events are flushed from the event queue. Additional initialization
needed by the program follows. This includes setting up the menus and the menu bar
and creating the application's document window (by reading its description from the
resource file and displaying it on the screen).

The heart of the program is the main event loop, which repeatedly calls the Toolbox
Event Manager to get events and then responds to them. The most common event is
a press of the mouse button (called a mouse-down event). Depending on where
the mouse button was pressed, as reported by the Window Manager, the program
may execute a command, move the document window, or make the window active.

30 Chapter 2: Introduction to the Macintosh Software

Events are generated not only as a direct result of user actions, but indirectly as a side
effect of those actions. For example, when a window changes from active to inactive
or vice versa, the Window Manager tells the Toolbox Event Manager to report it to
the application. A similar process happens when all or part of a window needs to be
updated (that is, redrawn).

The main event loop terminates when the user takes some action to leave the
program, as in the example shown in Figure 2-6, when the Quit command is chosen.

That's it. Of course, the program structure becomes more complicated as the
application becomes more complex, but each program will be based on the structure
illustrated here.

For a more detailed description of event-driven programming, refer to the
Programmer's Introduction to the Macintosh Family.

As you may by now have surmised, the Macintosh is a software-intensive machine:
relatively more processing takes place in software than is the case on previous types
of computers. This allows for a very flexible system architecture, enabling high
performance application software to run on machines with differing hardware. As we
indicated at the outset of this chapter, the next seven chapters go into detail about the
various parts of the Macintosh software, beginning again with the Toolbox.

Event-driven programming 31

Chapter 3

The User
Interface
Toolbox

33

This chapter discusses the main parts of the Macintosh User Interface Toolbox, the
set of routines that enables applications to present the unified Macintosh interface.
The chapter begins with a discussion of the principles of the Macintosh user
interface. It then discusses the Toolbox Event Manager, which is the part of the
Toolbox that relates user actions to the other elements of the Toolbox. Following that
is a discussion of each of those elements: menus, windows, controls, and dialogs.

Some aspects of the Toolbox are not discussed in this chapter. Menus, windows,
controls, and dialogs are all stored as resources in resource files. More information
about resources can be found in the next chapter. This chapter also doesn't discuss
QuickDraw or the Font Manager, which provide the graphical basis for the Macintosh
Toolbox; that discussion is deferred to Chapter 5.

Overview: the desktop interface
One of the great strengths of the Macintosh is a carefully considered user interface,
which can be used by all programs. The Macintosh interface is based on the
metaphor of a working surface, the desktop, where documents are presented within
windows. Actions are performed by moving objects on the screen, selecting
commmands from menus, or by manipulating controls, such as check boxes and
scroll bars. Some of these user-interface elements are illustrated in Figure 3-1.

· Edit Uiew Special ~~~~~~~~~~+- Menu

system Folder

LaserWriter Page Setup

Paper: @ US Letter O A4 Letter
0 US Legal O BS Letter

A educe or llliml 3 [Cancel]
Enlarge : . .

Orientation

Figure 3-1

Printer Effects : (Options J

lZJ Font Substitution?
lZJ Smoothing?
lZI Faster Bitmap Printing?

98K application

70K application

104K .application

Elements of the Macintosh user Interface

34 Chapter 3: The User Interface Toolbox

Window

Contro ls

Dialog
box

Control

Close attention to the many ways that people use computers has resulted in a set of
specific ergonomic principles that should be studied by all Macintosh programmers.
These guidelines, published in Human Interface Gutdeltnes: 1he Apple Desktop
Interface, describe the shared interface ideas of Macintosh applications, so that
developers of new applications can gain leverage from the time spent developing
and testing existing applications.

User interface guidelines
The Macintosh is designed to appeal to the broadest possible audience of
nonprogrammers, including people who have previously feared and distrusted
computers. To achieve this goal, Macintosh applications should be easy to learn and
to use. Applications should build on skills that people already have, not force them
to learn new ones. The user should feel in control of the computer, not the other way
around. These goals are achieved in applications that embody three cardinal
interface virtues: responsiveness, permissiveness, and consistency.

o Responstveness means that the user's actions tend to have direct results. The user
should be able to accomplish things spontaneously and intuitively, rather than by
having to work out some long series of commands. For example, with pull-down
menus, the user can choose the desired command directly and instantaneously.

o Permtssiveness means that the application tends to allow the user to do anything
reasonable. The user, not the system, decides what to do next. It also means that
the user should be able to undo any changes made to a document.

o Consistency is the third and most important principle. Because Macintosh users
usually divide their time among several applications, they would be confused and
irritated if they had to learn a completely new interface for each application.

Consistency is easier to achieve on the Macintosh than on most other computers,
because the routines used to implement the user interface are supplied in the
Macintosh User Interface Toolbox. Because Macintosh programs don't rely on the
more-or-less arbitrary conventions that conventional programs make do with,
learning time is reduced to a small fraction of that required with other systems.

Each of these principles is elaborated into a specific set of recommendations in
Human Interface Guidelines: 1he Apple Desktop Interface.

What's in the Toolbox
The various Toolbox managers were introduced in Chapter 2. Each manager consists
of a set of data structures together with a set of associated routines.

Overview: the desktop Interface 35

It's important to understand the primacy of these data structures in the organization
of the Toolbox; in fact, most ROM routines operate on data structures. For example,
a window is represented in a window record, which applications manipulate
indirectly via high-level Window Manager calls. Toolbox objects such as windows are
referred to via pointers or handles; objects that are referred to by handles can be
relocated in memory, as described in Chapter 7. A Toolbox object can also be
stored on a disk as a resource, as described in Chapter 4. A Toolbox object is created
by another resource called its definition procedure, as described later in this
chapter.

However, before discussing the particular elements of the desktop interface, it will be
helpful to return to the subject of events, and the Toolbox Event Manager, which
links user actions with the various elements of the user interface.

Managing Toolbox events
The Toolbox Event Manager is the application's link to its user. Whenever the user
presses the mouse button, types on the keyboard, or inserts a disk in a disk drive, the
application is notified by means of an event. A typical Macintosh application
program is event-driven: it decides what to do from moment to moment by asking
the Event Manager for events and responding to them one-by-one in whatever way is
appropriate. Event-driven programs have a main loop that repeatedly calls a
Toolbox Event Manager routine (named GetNextEvent) to retrieve the next available
event, and then takes whatever action is appropriate for each type of event.

Although the Event Manager's main purpose is to monitor the user's actions and pass
them on to the application in an orderly way, it also serves as a mechanism for
sending signals to other parts of the Toolbox. For instance, the Window Manager
uses events to coordinate the ordering and display of windows as the user activates
and deactivates them and moves them around on the screen.

The Toolbox Event Manager calls the Operating System Event Manager and serves as
an interface between it and the application. (The Operating System's Event Manager
detects low-level, hardware-related events: mouse, keyboard, disk-inserted, device
driver, and network events. In this section, all references to the Event Manager
should be understood to refer to the Toolbox Event Manager.)

Most events waiting to be processed are kept in an event queue, where they're
posted, or stored, by the Operating System (OS) Event Manager. The Toolbox
Event Manager retrieves events from this queue and also reports other events that
aren't kept in the queue, such as those related to windows. Events are collected from a
variety of sources and reported at the application's demand, one at a time. Events
aren't necessarily reported in the order they occurred; some have a higher priority
than others.

36 Chapter 3: The User Interface Toolbox

Other Event Manager functions include

D directly reading the current state of the keyboard and mouse button

o monitoring the location of the mouse

o finding out how much time has elapsed since the system last started up

The Event Manager dispatches system events to the appropriate part of the system,
including sending desk accessory events to desk accessories.

The Event Manager also provides a journaling mechanism. By using this
mechanism, a program can decouple the Event Manager from the user and feed it
events from some other source. Such a source might be a file that has been used to
record all the events that occurred during some portion of a user's session with the
Macintosh. These events can then be played back to the Event Manager by a special
device driver. This journaling capability is especially useful for recording macros
and for the development of on-line demonstrations or tutorials.

Types of events
Events are of various types. Some events are handled by the system before the
application ever sees them; others are left for the application to handle in its own
way. An application can use an event mask to restrict some Event Manager routines
to handle only certain event types, in effect disabling the other types.

The most important types of events record actions by the user:

• Mouse-down and mouse-up events occur when the user presses or releases the
mouse button.

• Key-down and key-up events occur when the user presses or releases a key on
the keyboard or keypad. Auto-key events are generated when the user holds
down a repeating key. Together, these event types are called keyboard events.

• Disk-inserted events occur when the user inserts a disk into a disk drive or takes
any other action that requires a volume to be mounted. For example, a hard disk
that contains several volumes may also post a disk-inserted event

Mere movements of the mouse are not reported as events. If necessary, an
application can keep track of them by periodically asking the Event Manager for the
current location of the mouse.

The following event types are generated by the Window Manager to coordinate the
display of windows on the screen:

• Activate events are generated whenever an inactive window becomes active or an
active window becomes inactive. They generally occur in pairs (that is, one
window is deactivated and another is activated).

• Update events occur when a window's contents need to be drawn or redrawn,
usually as a result of the user's opening, closing, activating, or moving a window.

Managing Toolbox events 37

Another event type, device driver events, may be generated by device drivers in
certain situations. For example, a driver might be set up to report an event when its
transmission of data is interrupted.

A network event may be generated by the AppleTalk Manager, which is described
in Chapter 9.

One final type of event is the null event, which is what the Event Manager returns if it
has nothing else to report. In addition, an application may define as many as four
event types of its own and use them for any purpose.

The Event Manager also handles two other types of events internally, without the
knowledge of the application:

o Alarm clock events. If the alarm is set and the current time is the alarm time, the
alarm goes off-that is, a beep is generated, followed by blinking the Apple
symbol in the menu bar. The user can set the alarm with the Alarm Clock desk
accessory.

o Command-Shift-number key combinations. ('The standard keys are 1 and 2 for
ejecting the disk in the internal or external drive, and 3 and 4 for writing a
snapshot of the screen to a MacPaint document or to the printer.)

+ Note: On the Macintosh SE and Macintosh II keyboards, the Command key
symbol (K) has been replaced by two symbols, the outline Apple symbol (0)
and the Command symbol, for compatibility with all Apple computers. The
owner's guides now refer to the key as the Apple key, but its functionality is
identical to the Command key on the classic Macintosh keyboard. For
consistency with the technical documentation, this guide will continue to refer to
the key as the Command key. More information about keyboard events is given
later in this chapter.

•:• Note: Advanced programmers can implement their own code to be executed in
response to Command-Shift-number combinations (except for Command
Shift-1 and 2, which can't be changed). The code corresponding to a particular
number is stored in a resource whose type is 'Fl<EY' and whose ID is the number
itself. The system resource file contains code for the numbers 3 and 4.

Every event is represented internally by an event record containing all pertinent
information about that event. The event record includes the following information:

o the type of event

o the time the event was posted (in ticks since system startup)

o the location of the mouse at the time the event was posted

o the state of the mouse button and modifier keys at the time the event was posted

o any additional information required for a particular type of event, such as which
key the user pressed or which window is being activated

38 Chapter 3: The User Interface Toolbox

System events
Before reporting an event to the application, the Event Manager first calls the Desk
Manager to see whether the system wants to intercept and respond to the event The
Desk Manager intercepts the following events:

o activate and update events directed to a desk accessory

D mouse-up and keyboard events, if the currently active window belongs to a desk
accessory

In each case, the event is intercepted by the Desk Manager only if the particular desk
accessory can handle that type of event.

The Desk Manager also intercepts all disk-inserted events and attempts to mount the
volume on the disk by calling the File Manager. All other events (including all
mouse-down events, regardless of which window is active) are left for the application
to handle.

•:• Note: When running under the MultiFinder, update events cause the MultiFinder
to switch in an application whenever an update event occurs for one of the
application's windows. See "Versions of the Finder" in Chapter 6.

Priority of events
The event queue is a first-in, first-out (FIFO) list; that is, events are normally
retrieved from the queue in the order they were originally posted. However, the way
that various types of events are generated and detected causes some events to have
higher priority than others. Furthermore, when a program asks the Event Manager
for an event, it can specify particular types of events, causing some events to be
passed over in favor of others that were actually posted later.

The Event Manager always returns the highest-priority event available of the types
requested by the application. The priority ranking is as follows:

1 . Activate events. The Event Manager always returns a window activate event if one
is available.

2 . Mouse events, key-down, key-up, disk-inserted, network, device driver, and
appltcatton-deftned events. Within this large category, events are retrieved from
the event queue in the order that they were posted.

3. Auto-key events. If no event is available in categories 1 and 2, the Event Manager
reports an auto-key event, if the appropriate conditions hold. (These conditions
are described in the next section, "Keyboard Events.")

Managing Toolbox events 39

4. update events. If no higher-priority event is available, the Event Manager checks
for windows whose contents need to be drawn. If two or more windows need to be
updated, an update event will be returned for the frontmost window.

5 . Null events. Finally, if no other event is available, the Event Manager returns a
null event.

The event queue normally has a capacity of 20 events. If the queue becomes full, the
OS Event Manager will begin discarding old events to make room for new ones as
they are posted. The events discarded are always the oldest ones in the queue.
(However, activate events and update events are not kept in the event queue, and
events will be discarded only in an unusually busy environment.)

+ Note: The capacity of the event queue is determined by the system startup
information stored on a volume. Utilities such as Fedit Plus allow you to modify
a volume's system startup blocks. (Fedit Plus is available from the Apple
Programmer's and Developer's Association [APDA]; see Appendix B for the
address.)

Some Event Manager routines can be restricted to operating only on specific types of
events. To specify which event types a particular Event Manager call applies to, a
program supplies an event mask. For instance, a program can specifically ask for the
next keyboard event instead of just requesting the next available event.

Keyboard events
I

The character keys on the Macintosh keyboard and numeric keypad generate key
down and key-up events when pressed and released. Character keys include all keys
except Shift, Caps Lock, Command, and Option, which are called modifier keys.
Modifier keys are treated specially, as we'll describe in a moment, and they generate
no keyboard events of their own.

When the ,user presses, holds down, or releases a character key, the character
generated by that key is identified internally with a character code. Character codes
are given in the extended version of the American Standard Code for Information
Interchange (ASCII) used by the Macintosh. A table showing the hexadecimal
character codes for the standard Macintosh character set appears in Figure 3-2. The
first digit of a character's hexadecimal value is shown at the top of the table, the
second down the left side. For example, character code $47 stands for "Gn, which
appears in the table at the intersection of column 4 and row 7.

The printing characters (codes $20 through $D8) shown in Figure 3-2 can be
generated with the Option or Shift and Option keys, as described in the computer's
owner's guide.

40 Chapter 3: The User Interface Toolbox

Second
digit First digit

i 0 2 3 4 5 6 7 8 9 A B c D E F

0 0 @ p p A e t l

A Q a q A e 0 ±

2 2 B R b c; ¢ ::; ...,

3 3 c s c s E £ ~ " 4 4 D T d t N T § ¥ f
5 5 E u e u 6 • µ =

6 6 F v f v 0 ri 11 a d +

7 7 G w g w a 6 B I: ((0

8 8 H x h x a 6 ® n)) y

9 9 y y a 0 © 7t

A J z z 0 6 TM J
B K k a 0 g A
c < L \ a u g A.

= M m 9 u * n 0

E > N A n e 0 .A: ca a
F I ? 0 0 e Q 0 0 ce

...... stands for a nonbreaking space, the same width as a digit.
The shaded characters cannot normally be generated from
the Macintosh keyboard or keypad.

Figure 3-2
Macintosh character set

Managing Toolbox events 41

Nonprinting or control characters ($00 through $1F, as well as $7F) are identified
in Figure 3-2 by their traditional ASCII abbreviations; the shaded ones have no
special meaning on the Macintosh and cannot normally be generated from the
Macintosh Plus keyboard. ('They are available on the Apple Desktop Bus keyboards
used with the Macintosh SE and Macintosh II; see "ADB Keyboards" in Chapter 10
for details.) The control characters that can be generated from the keyboard are as
follows:

Code

$03
$08
$09
$OD
$1B
$1C
$1D
$1E
$1F

Abbreviation

ETX
BS
HT
CR
ESC
FS
GS
RS
us

Key

Enter key (keyboard or keypad)
Backspace key
Tab key
Return key
Clear key (Esc key on ADB keyboards)
Left Arrow key
Right Arrow key
Up Arrow key
Down Arrow key

How character codes are processed

The association between characters and keys on the keyboard and keypad is defined
by a keyboard mapping procedure, a routine that is usually stored as a resource in
the system resource file. The particular character that's generated by a character key,
then, depends on three things:

o the character key being pressed

o which, if any, of the modifier keys were held down when the character key was
pressed

o the keyboard mapping procedure currently in effect

The modifier keys don't generate keyboard events themselves; rather, they modify
the meaning of the character keys by changing the character codes that those keys
generate. For example, under the standard U.S. keyboard configuration, the C key
generates any of the following, depending on which modifier keys are held down:

Key(s) pressed Character generated

C by itself Lowercase c

C with Shift down Capital C

C with Option down Lowercase c with a cedilla(~)

C with Option and Shift down Capital C with a cedilla (~)

The state of each of the modifier keys is also reported individually in a field of the
event record, where the application can examine it directly. (Although the Caps Lock
key is reported independently of the Shift key, it has the same effects.)

42 Chapter 3: The User Interface Toolbox

•:• Note: As described in the owner's guide, some accented characters are
generated by pressing Option along with another key for the accent, and then
typing the character to be accented. In these cases, a single key-down event
occurs for the accented character; there's no event corresponding to the typing
of the accent, which is known as a dead key.

Under the standard keyboard configuration, only the Shift, Caps Lock, and Option
keys actually modify the character code generated by a character key on the
keyboard; the Command key has no effect on the character code generated.
Similarly, character codes for the keypad are affected only by the Shift key.

For keyboard events, the event message contains the ASCII character code generated
by the key or combination of keys that was pressed or released. The event message
also contains a key code that represents the character key that was pressed or
released. This value is always the same for any given character key, regardless of the
modifier keys pressed along with it.

•:• Note: In some cases the key codes for the U.S. and international keyboards are
quite different; for example, the codes for space and Enter are reversed.

Two system resources are responsible for mapping keys to ASCII codes: a 'KMAP'
resource maps the physical positions of the keys to key codes, and a 'KCHR' resource
maps key codes to ASCII codes.

Auto-key events

In addition to key-down and key-up events, auto-key events are posted whenever all
of the following conditions apply:

o Auto-key events haven't been disabled.

o No higher-priority event is available.

D The user is currently holding down a character key.

D The appropriate time interval has elapsed since the last key-down or auto-key
event.

Two different time intervals are associated with auto-key events. If the user holds
down a character key, the initial auto-key event is generated after a certain time
(called the auto-key threshold) has elapsed. The default threshold is 16 ticks, with
each tick equalling one-sixtieth of a second. Subsequent auto-key events are then
generated each time a certain repeat interval (determined by the auto-key rate) has
elapsed. The default auto-key rate is once every four ticks. The user can change these
two settings with the Control Panel desk accessory by adjusting the keyboard touch
and the rate of repeating keys.

Managing Toolbox events 43

Menus
Menus allow users to examine all choices available to them at any time without being
forced to choose one of them, and without having to remember command words or
special keys. The Toolbox's Menu Manager supports the use of menus. This section
describes both what the Menu Manager does and how menus are commonly
implemented on the Macintosh.

As shown in Figure 3-3, the menu bar always appears at the top of the Macintosh
screen; nothing but the cursor ever appears in front of it. The menu titles in it are
always in the system font and the system font size (normally Chicago 12 in Roman
based writing systems).

Figure 3-3
The menu bar

Menus and resources
The general appearance and behavior of a menu is determined by a routine called its
menu definition procedure, which is stored as a resource in a resource file. The
standard menu definition procedure is part of the system resource file . It lists the
menu items vertically, and each item may have an icon, a check mark or other
symbol, a keyboard equivalent, a particular character style, or a dimmed
appearance, as described in the next section. On the Macintosh II, the menu
definition procedure has been extended by a new resource that provides support for
color, pop-up, and hierarchical menus.

Resource files are also used to store the contents of menus. This practice allows the
menus to be edited or translated to another language without affecting the
application's source code. (For more information about resources, see Chapter 4.)

The following section describes how menus behave, as defined by the standard menu
definition procedure. Note that this standard behavior can be modified by programs
that provide their own custom menu definition procedures. For example, a program
may create menus with extra graphics or a nonlinear text arrangement. Custom
menus still respond to the standard Menu Manager calls.

44 Chapter 3: The User Interface Toolbox

How menus work
When the Macintosh user positions the cursor in the menu bar and presses the mouse
button over a menu title, the application calls the Menu Manager, which highlights
that title (by inverting it) and pulls down the menu below it. The menu is displayed as
long as the mouse button is held down. Dragging the mouse through the menu causes
each of its menu items (commands) to be highlighted in turn.

If the mouse button is released over an item, that item is chosen: the item blinks
briefly to confirm the choice, and the menu disappears. When the user chooses an
item, the Menu Manager tells the application which item was chosen, and the
application performs the corresponding action. When the application completes
the action, it removes the highlighting from the menu title, indicating to the user that
the operation is complete.

If the user moves the cursor out of the menu with the mouse button held down, the
menu remains visible, though no menu items are highlighted. If the mouse button is
released outside the menu, the menu just disappears and the application takes no
action. The user can always look at a menu without causing any changes in the
document or on the screen.

A menu may be temporarily disabled, so that none of its items can be chosen. A
disabled menu can still be pulled down so that the menu items can be viewed, but its
title and all the items in it are dimmed.

A menu item may be the text of a command, or just a line dividing groups of choices
(see Figure 3-4). An ellipsis (. ..) following the text of an item indicates that selecting
the item will bring up a dialog box requesting further information before the
command is executed. The keyboard equivalents to the right of each menu item will
be discussed in a moment.

--- ___ vW~_:~ wr_a_~~rD'!!J!l - --- -- - ------ --- ____ _

Figure 3-4
A standard menu

Hierarchical menus are also available in the Macintosh SE and Macintosh II
ROMs. (Like other new software features, hierarchical menus have also been back
fitted to the Macintosh Plus via version 4.1 of the System file .) Figure 3-5 shows· a
hierarchical menu.

Menus 45

.,IP lain S!IP
.. Bold 008

.,1Align Left Siil
Align Middle 00
Align Right OOR
Justify OOJ

Underline S!IU
romQDHmrn
~lil!!Jlil©l!D

.. ~ ... -----
.,1Single Space

1-1 /2 Space
Double Space

Figure 3·5
A hierarchical menu before and
after a submenu appears

Although five levels of hierarchical menus are available using the new Menu Manager
routines, one level or hierarchy should suffice for most needs.

When there are too many items to fit on the screen, a menu becomes scrollable.
When this happens, a scrolling arrow appears in place of the last item to show that
there are more items below (see Figure 3-6). If the cursor is moved into this scrolling
arrow, the menu scrolls. As soon as the menu scrolls, a scrolling arrow appears in
place of the top item to show that there are now more items above.

-~~~ -.;iirr ___ -J-
Pa1atino
Symbol
Times ...

Figure 3·6

P~1-afino-
symbo1
Times
Uenice
Zapf Dingbats

Scrolling menu Indicator

The text of a menu item always appears in the system font and the system font size.
Each item can have a few visual variations from the standard appearance:

o An icon to the left of the item's text, to provide visual clues to the item's function.

o A check mark or other character to the left of the item's text, to indicate whether a
software setting indicated by the item is selected or not.

o The Command key (propeller) symbol along with another character, both placed
to the right of the item's text to show that the item can be invoked from the
keyboard (that is, it has a keyboard equivalent). Pressing the indicated key while
holding down the Command key invokes the item just as if it had been chosen
from the menu.

46 Chapter 3: The User Interface Toolbox

o A character style such as bold, italic, or underline.

o A dimmed appearance to indicate that the item is disabled and can't be chosen.
(The Cut, Copy, and Clear commands in Figure 3-4 are disabled.)

The first menu in an application should be the standard Apple menu, which contains
the names of all available desk accessories. When the user chooses a desk accessory
from the menu, the title of a menu belonging to the desk accessory may appear in the
menu bar for as long as the desk accessory is active, or the entire menu bar may be
replaced by menus belonging to the desk accessory.

The 256K ROMs (and System file 4.1) also support another new feature: pop-up
menus. A pop-up menu isn't in the menu bar; it appears somewhere else on the
screen (usually in a dialog box) when the user presses in a particular place. A pop-up
menu may also have submenus. Pop-up menus are typically used for lists of items,
for example, a list of fonts.

Keyboard equivalents for commands
A program can set up a keyboard equivalent for any of its menu commands, so that
the menu item can be invoked by holding down the Command key and pressing
another character key. (Recall that the Command key is referred to as the Apple key
in some of the user documentation.) The character specified for a keyboard
equivalent will usually be a letter; the user can type the letter in either uppercase or
lowercase.

A program can also specify characters other than letters for keyboard equivalents.
However, the Shift key will be ignored when the equivalent is typed. For example,
Command-+ is read as Command-=.

•> Note: Command-Shift-number combinations are not keyboard equivalents.
They're detected and handled by the Toolbox Event Manager and are never
returned to the program. (This is how disk ejection with Command-Shift-1 or
Command-Shift-2 is implemented.)

The standard keyboard equivalents Command-Z, Command-X, Command-C, and
Command-V should always be used for the editing commands Undo, Cut, Copy,
and Paste, or editing won't work correctly in desk accessories, which share these
menu items with the application.

Menus 47

Windows
A window is an object on the desktop that presents information, such as a document
or a message. Windows can be any size, shape, or color and there can be one or
many of them, depending on the application. The Toolbox's Window Manager is a
set of data structures and routines that programs use for dealing with windows on the
Macintosh screen. This section will briefly explain how the Window Manager
helps applications manage windows as well as some conventions of window
implementation on the Macintosh.

With the Window Manager, an application can easily create standard types of
windows as well as define its own types of windows. Some windows are created
indirectly by other parts of the Toolbox. For example, the Dialog Manager uses a
window to display an alert box.

Windows and resources
Some standard types of windows are predefined. One of these is the document
window, as illustrated in Figure 3-7. Every document window has a title bar
containing a title in the system font and system font size. A document window may
also have a close box, a size box, or scroll bars. (Scroll bars are controls and are
supported by the Control Manager.)

Scroll bar--+--------. !Ill\'

Scroll bar

Size box

Figure 3-7
An active document window

48 Chapter 3: The User Interface Toolbox

The general appearance and behavior of a window is determined by a routine called
its window definition function, which is stored as a resource in a resource file, and
accessed through the Resource Manager. The system resource file includes window
definition functions for the standard document window and other standard types of
windows. Nonstandard window types can also be defined.

To create a window, the Window Manager needs to know information such as the
resource ID of the window definition, the window title (if any), its location, and its
plane. The needed information is usually stored in a single resource called a window
template. Window templates make it easy for programs to create a number of
windows of the same type. What's more, they allow the isolation of specific window
descriptions. Translation of window titles to another language, for example, then
requires only a simple change to the resource file. (For more information about
resources and resource files, see Chapter 4.)

+ Note: Color windows are supported in the Macintosh II ROM, in a fashion fully
compatible with previous versions of the Window Manager.

How windows work

The document window shown in Figure 3-7 is the active (frontmost) window, the one
that will be acted on when the user types, gives commands, or whatever. Its title bar is
highlighted-displayed in a distinctive way-so that the window will stand out from
other, inactive windows that may be on the screen. Since a close box, size box, zoom
box, and scroll bars can affect only the active window, these elements don't appear
in an inactive window (see Figure 3-8).

Windows 49

Job Titles

~D Recounts

Figure 3-8

Memo

Ch~rges
Inactive
windows

------- The
active
window

Overlapping document windows

An important function of the Window Manager is to keep track of overlapping
windows. This allows programs to draw in any window without running over onto
other windows in front of it, to move windows on the screen, to change their plane
(their front-to-back ordering), or to change their size, all without concern for how
the various windows overlap. The Window Manager keeps track of any newly exposed
areas and provides a mechanism to ensure that they're properly redrawn.

A number of Window Manager routines change the state of a window from inactive to
active or vice versa. For each such change, the Window Manager generates an
activate event. The Toolbox Event Manager, in turn, passes the event on to the
application. Activate events have the highest priority of any type of event.

Usually when one window becomes active, another becomes inactive, so that activate
events are commonly generated in pairs. When this happens, the Window Manager
generates first the event for the window becoming inactive, and then the event for the
window becoming active.

A window can never be moved completely off the screen: by convention, it can't be
moved such that the visible area of the title bar is less than four pixels square. (If
multiple screens are connected to the computer, the window can be moved from one
screen to another.)

50 Chapter 3: The User Interface Toolbox

Window regions
When the user clicks the mouse button, the Window Manager indicates which part of
which window it was clicked in. Clicking anywhere in an inactive window makes it the
active window. The Window Manager brings the window to the front and highlights its
title bar.

It's easy for applications to use windows; to the application, a window is a QuickDraw
graphics port that it can draw into with QuickDraw routines. (For more information,
see the discussion of graphics ports in Chapter 5.)

There is, however, more to a window than just the graphics port that the application
draws in. In a standard document window, for example, the title bar and outline of
the window are drawn by the Window Manager, not by the application. The part of a
window that the Window Manager draws is called the window frame, since it usually
surrounds the rest of the window.

Every window has the following two regions:

o The content region is the area that the application draws in. This is where an
application presents information and where the size box and scroll bars of a
document window are located.

o The structure region is the entire window (the content region plus the window
frame).

A window may additionally have any of the regions listed below:

o A go-away region (close box) within the window frame. Clicking in this region of
the active window closes the window.

o A drag region within the window frame. Dragging in this region moves the
window and makes it the active window (if it isn't already), unless the Command
key was held down.

o A grow region (size box). Dragging in this region of the active window changes
the size of the window.

o A zoom region within the window frame. Clicking in this region zooms the
window so that it fills the entire screen.

Figure 3-9 illustrates the various regions of a standard document window and its
window frame.

Windows 51

Window frame

Go-away
region

Figure 3-9

+

Drag
region

Content region Structure region

•

'- Grow~---
region

Document window regions and frame

Another important window region is the update region. The Window Manager keeps
track of all areas of the content region that have to be redrawn and accumulates them
into the update region. For example, if you bring to the front a window that was
overlapped by another window, the Window Manager adds the newly exposed area of
the front window's content region to its update region.

How a window is drawn

A two-step process usually takes place when a window is drawn or redrawn:

1 . The window definition procedure draws the window frame.

2. The application draws the window's contents.

To perform the first step, the Window Manager calls the window definition function.
It manipulates regions of the Window Manager port (that is, the entire desktop) as
necessary before calling the window definition function, in order to ensure that only
what should and must be drawn is actually drawn on the screen. (See Figure 5-6,
"Grafport Regions," in Chapter 5 for an illustration.)

To perform the second step, the Window Manager generates an update event to get
the application to draw the window's contents; this event is passed to the application
by the Toolbox Event Manager. The Event Manager periodically checks to see if
there's any window whose update region is not empty; if it finds one, it reports to the
application that an update event has occurred. The application is then responsible
for updating the window.

52 Chapter 3: The User Interface Toolbox

Controls
Controls are objects on the Macintosh screen, such as buttons, check boxes, and
scroll bars, which the user manipulates with the mouse. Controls can cause instant
action with visible results, or they can change software settings to modify a future
action. Except for scroll bars, most controls appear only in dialog or alert boxes.

The Control Manager is the part of the Toolbox that deals with controls.
Applications create, read, and manipulate controls by calling Control Manager
routines. The Control Manager carries out the actual operations.

Controls may be of various types, each with its own characteristic appearance on the
screen and responses to the mouse (see Figure 3-10).

•:• Note: The Macintosh II ROM version of the Control Manager has been extended
to support color controls. This version of the Control Manager is fully
compatible with previous versions.

(Button 1)

(Button 2)

181 Check BoH 1

181 Check BoH 2

D Check BoH 3

O Radio Button 1

® Radio Button 2

0 Radio Button 3

Figure 3-10
Some sample controls

Dials

Controls 53

Controls and resources
The relationship between controls and resources is analogous to the relationship
between windows and resources: just as there are window definition functions and
window templates, there are control definition functions and control
templates.

Each type of control has a control definition function that determines how controls
of that type look and behave. The system resource file includes definition functions
for the standard control types (buttons, check boxes, radio buttons, and scroll bars).
Nonstandard control types require their own control definition functions.

How controls work
Certain standard types of controls are predefined. An application can also define its
own custom control types. Among the standard control types are the following:

o Buttons cause an action when clicked or pressed with the mouse. They appear on
the screen as rounded-comer rectangles with a title centered inside.

o Check boxes retain and display a setting, which is either checked (on) or
unchecked (ofO; clicking with the mouse reverses the setting. Check boxes are
frequently used to control or modify some future action, instead of causing an
immediate action of their own.

o Radio buttons also retain and display an on-or-off setting, and are used to offer a
choice among several alternatives. They're organized into groups, with the
provision that only one button in the group can be on at a time, like the buttons on
a car radio.

Another important category of controls is dials, which display a value, magnitude,
or position in a pseudoanalog form, such as the position of a sliding switch or the
angle of a needle on a gauge. (The setting may be displayed digitally as well.) The
user may be able to change a dial's setting by dragging its indicator with the mouse,
or the dial may simply display a value not under the user's direct control, such as the
amount of free space remaining on a disk.

One type of dial is predefined: the standard Macintosh scroll bars. An application
can define other dials of any shape or complexity.

Every control belongs to a particular window: the control appears within the
window's content region, and it acts on that window.

Buttons and check boxes are normally used in dialog or alert windows only. Such
windows are created with the Dialog Manager, and the Dialog Manager takes care of
drawing the controls and letting the program know whether the user clicked one of
them.

54 Chapter 3: The User Interface Toolbox

A control may be active or inactive. Active controls respond to the user's mouse
actions; inactive controls don't. When an active control is clicked or pressed, it's
usually highlighted (see Figure 3-11). Standard button controls are inverted, but
some control types may use other forms of highlighting, such as making the outline
heavier.

Button

~Check BoH

'it Radio Button

Figure 3-11
Highlighted active controls

A control is made inactive when it has no meaning or effect in the currei;it context
An inactive control remains visible, but it is highlighted in some special way,
depending on its control type (see Figure 3-12). For example, the title of an inactive
button, check box, or radio button is dim.med (drawn in gray rather than black).

(Uu11on)

D [IH~l:k lhHI

O Hndio Uui ion

1¢1
Figure 3-12
Inactive controls

1¢1

Controls 55

Dialogs and alerts
Dialogs are a mechanism for displaying information or program settings and
soliciting user input As shown in Figure 3-13, a dialog box typically resembles a
paper form on which the user checks boxes and fills in blanks.

=Lo=s=e=rW=r=it=e=r=P='og~e=S=e=tu=p===========v=4.0=== ([OK)J
Poper: @us Letter O A4 Letter Reduce or lnrml%

0 US Legol O 85 Letter Enlorge: .,..;,i [Concel J

Orientotion

Figure 3-13
A typical dialog box

Printer Effects:
181 Font Substitution?
181 Smoothing?
181 Foster Bitmop Printing?

[options]

Help

Alerts are a subset of dialogs, used to report errors or give warnings. The Dialog
Manager allows programs to implement dialog boxes and alerts.

A dialog box may contain any or all of the following:

o informative text

o rectangles in which text may be entered (initially blank or containing default text
that can be edited)

o controls of any kind, as defined in the preceding section

o graphics (icons or QuickDraw pictures)

o anything else as defined by the application

The user provides the necessary information in the dialog box by entering text or
manipulating controls. There's usually a control button labeled OK to tell the
application to accept the information provided and perform the command, as well
as a control button labeled Cancel to cancel the command. There may be more than
one button that will perform the command, each in a different way.

A dialog may have a default button, outlined in bold, which is the preferred (safest)
button to use in the current situation. Pressing the Return key or the Enter key has the
same effect as clicking the outlined button (or the OK button, if no button is
outlined).

Most dialog boxes can be categorized as modal dialog boxes; that is, they require the
user to respond before doing anything else. This type is called modal because it puts
the user in the state or "mode" of being able to work only inside the dialog box.
Clicking outside the dialog box only causes a beep from the Macintosh's speaker. A
modal dialog box usually has the same general appearance as the dialog box shown
earlier in Figure 3-13.

56 Chapter 3: The User Interface Toolbox

Other dialog boxes do not require the user to respond before performing another
action; these are called modeless dialog boxes. A modeless dialog box looks like a
document window. It can be moved, made inactive and active again, or closed like
any document window. The user can, for example, work in document windows on the
desktop before clicking a button in the dialog box, and modeless dialog boxes can be
set up to respond to the standard editing commands in the Edit menu.

Dialog boxes may in fact require no response at all. For example, while an
application is performing a time-consuming process, it can display a dialog box that
contains only a message telling what it's doing; then, when the process is complete,
it can simply remove the dialog box.

A dialog box appears in a dialog window, which a program can manipulate just like
any other window with Window Manager or QuickDraw routines.

Dialogs and resources
The Dialog Manager gets most of the descriptive information about the dialo~ and
alerts from resources in a resource file. As necessary, the Dialog Manager calls the
Resource Manager to read what it needs from the resource file into memory.

To create a dialog, the Dialog Manager needs the same information about the dialog
window as the Window Manager needs when it creates a new window. The Dialog
Manager also needs to know what items the dialog box contains. The required
information can be stored as a resource in a resource file. This type of resource,
which is called a dJalog template, is analogous to a window template. The Dialog
Manager calls the Resource Manager to read the dialog template from the resource
file. It then incorporates the information in the template into a dialog data structure
in memory, called a dialog record, analogous to a window record. like window
templates, dialog templates isolate descriptive information from your application
code for ease of modification or translation to other languages.

The information about all the items (text, controls, or graphics) in a dialog or alert
box is stored in an item list in a resource file. As illustrated in Figure 3-14, the dialog
template includes the resource ID of the item list. The item list in turn contains the
resource IDs of any icons or QuickDraw pictures in the dialog box, and possibly the
resource IDs of control templates for controls in the box. After calling the Resource
Manager to read a dialog or alert template into memory, the Dialog Manager calls
the Resource Manager again to read in the item list. It then makes a copy of the item
list and uses that copy. Finally, the Dialog Manager calls the Resource Manager to
read in any individual items as necessary.

Dialogs and alerts 57

Dialog template

lhJglkugllugh;o l'p9h'poflkJ;oj'poJ

hyHuygolugpoulhubulolozcpomd

lkubdcusdcplousdplosculbd8hwis

o ldvlihcsknscvlhdfldclxcksdllhdllc

kusaugsdclbsducbscbsdkuhsdlhs

kusdkulSdlnscnsdnksl lhscrullsdds

kjsdlnsdlnlcln!slcnisknl!sdolcnoslc
lh)g lkugllugh;ol'p9h'poj'lkJ:o j'poJ

h.,..r.uvgolugpoulhubu!olozcpomd

lkubdcusdcplousdploscuibd8hwis Dialog item list

Resource ID of f---dialog item list
lhJglkugliugh;ol'p9h'pofl kJ ;oJ'poJ

sdjygsuygsacygsucygusygusyus

lhjglkugllugh:ol'p9h'poj' lkj;Oj'poj

Resource ID of
picture
~

lhJglkugllugh:oi'p9h'poJ'lkJ:oj'poJ

hytfuygolugpouihubufoiozcpomd

lkubdcusdcplousdploscuibd8hwls

Resource ID of
icon

lhjglkugliugh;o l'p9h'poj'lkj:oj'poj

hyttuygolugpouihubufo!ozcpomd

lkubdcusdcplousdplosculbd8hwis

Resource ID of
control template

lhjg lkugllugn;ol 'p9h'poj'!kj;oj'poj

sdjygsuygsdcygsucygusygusyus

Figure 3-14
Dialogs and associated resources

f---

r----

J-

Picture

lhJglkugllugh:ol 'p9h'poJ'lkJ;oj'poJ

hytfuygolugpoulhubulolozcpomd

lkubdcusdcplousdplosculbd8hwls

Jsdubsdubsdusdcubsdubslubsdub

Icon

lh]g lkugllugh;o l'p9h'poJ'lkj:o)'poj

hytfuygolugpoulhubt.Jtolozcpomd

lkubdcusdcpiousdplosculbd8hwis

jsdubsdubsdusdcubsdubsiubsdub

Control template

lh}glkugliugh ;oi 'p9ti 'poj'lkj:o j"po)

hytfuygolu gpou!hubufo lozcpomd

lkubdcusdcplousdp!osculbd8hwis

ok:Mihcsk:nscvlhdlldclxcksdlihdllc

kusougsdcubsducbscbsdkuhsdihs

kusdkulsdlnscr.sdnkslihscnsllsdds

kJSdlNdinlc lnlslcnlsk:nl lsdolcnosk

lhJglkugliugh:o l'p9h'poj'lkJ :oJ 'poJ

hyttuygolugpoulhubulolozcpomd

lkubdcusdcplousdpiosculbd8hwls

An item list contains an entry for each item, giving the item's type (control, text, or
whatever), a pointer or handle to the item, and a rectangle that determines the
location of the item within the dialog box.

The text of an editable item may initially be either default text or empty. Text entry
and editing is handled in the conventional way, as in TextEdit; in fact, the Dialog
Manager calls TextEdit to handle it. (TextEdit is discussed in the next section.) The
user can press the Tab key to advance to the next editable text item in the item list,
wrapping around to the first if there aren't any more.

58 Chapter 3: The User Interface Toolbox

Alerts
The alert mechanism provides applications with a means of reporting errors or
giving warnings (Figure 3-15). An alert box is a type of a modal dialog box, but it
appears only when something has gone wrong or must be brought to the user's
attention. Every alert has four stages. Different actions may take place at different
stages.

Replace items with the same names
with the selected items?

ll OK U (Cancel J

Figure 3-15
A typical alert box

There are three standard kinds of alerts-Stop, Note, and Caution-each indicated
by a particular icon in the top-left corner of the alert box. Figure 3-15 illustrates a
Caution alert. The icons identifying Stop and Note alerts are similar. (In earlier
versions of the System file, these were represented by a question mark, exclamation
point, and asterisk, respectively.) Other alerts can have anything in the the top-left
corner, including blank space.

The alert mechanism also provides sound from the Macintosh's speaker. The alert
sounds are determined by a sound procedure that emits one of up to four tones or
sequences of tones. The volume of each beep depends on the current speaker volume
setting, which the user can adjust with the Control Panel desk accessory. If the user
has set the speaker volume to zero, the menu bar will blink once in place of each
beep.

When the Dialog Manager detects a click outside an alert box or a modal dialog box,
it doesn't perform any actions beyond emitting the sound associated with stage 1 of
the alert. (For consistency with Human Interface Guidelines: The Apple Desktop
Interface, this sound should be a single beep.)

Dialogs and alerts 59

Text editing
Text:Edlt is a set of built-in Toolbox routines and data types that make it simple for
programs to provide basic text editing and formatting capabilities. These
capabilities include

o inserting new text

o deleting characters that are backspaced over

o translating mouse activity into text selection

o automatic scrolling of text within a window

o deleting selected text and possibly inserting it elsewhere, or copying text without
deleting it

o automatic movement of the insertion point with the keyboard arrow keys (with the
System file version 3.0 or later)

The TextEdit routines follow Human Interface Gutdeltnes: The Apple Desktop
Interface; using them ensures that an application will present a consistent user
interface. The Dialog Manager also uses TextEdit for text editing in dialog boxes.
TextEdit fully supports the Script Manager, providing complete international
support for any writing system.

+ Note: Because of the special needs of word processing programs, they generally
do not use TextEdit.

TextEclit supports these standard features:

o Using more than one font, color, or stylistic variation in a single block of text (this
feature is new with the 256K ROMs and System file 4.1).

D Selecting text by clicking and dragging with the mouse, double-clicking to select
words. To TextEdit, a word is any series of printing characters, excluding spaces
(ASCII code $20) but including nonbreaking spaces (ASCII code $CA).

o Extending or shortening the selection by Shift-clicking.

o Inverse highlighting of the current text selection or display of a blinking vertical
bar at the insertion point.

o Word wraparound, which prevents a word from being split between lines when
text is drawn.

o Cutting (or copying) and pasting within an application via the Clipboard. TextEd'
puts text you cut or copy into the desk scrap. (Earlier versions of TextEclit used a
separate TextEdit scrap. See the section "Cutting and Pasting" in this chapter for :
discussion of scraps.)

60 Chapter 3: The User Interface Toolbox

Although TextEdit is useful for most standard text-editing operations, there are some
additional features that it doesn't support. TextEdit does not support

o fully justified text (text aligned with both the left and right margins)

o intelligent cut and paste (adjusting spaces between words during cutting and
pasting)

o tabs

TextEdit does provide software hooks for implementing features such as automatic
scrolling or a more precise definition of a word for purposes of selection by double
clicking.

Lists
The Toolbox's Ilst Manager is a package that creates, displays, and manipulates
lists. The List Manager contains routines for storing and updating elements of data
within a list and for displaying the list in a rectangle within a window. It handles all
selection and scrolling of list elements within that list. Because a list element is
simply a group of consecutive bytes of data, it can be used to store anything: a name,
the bits of an icon, or the resource ID of an icon. There's no specific restriction on
the size of a list element, but the total size of a list cannot exceed 32K.

In its simplest form, the List Manager can be used to display a text-only list of names.
With some additional effort, it can be used to display an array of images and
text-for example, in a spreadsheet application.

Warning

The List Manager Package Is found only In System 3.0 and later versions of the
System file.

The List Manager Package is automatically read into memory from the system
resource file when one of its routines is called; it occupies a total of about 5K bytes.

As shown in Figure 3-16, a list is drawn in a rectangle within a window. The rectangle
can take up the entire area of the window's content region (except for the space
needed by scroll bars, if any), or it can occupy only a small portion of the content
region.

Lists 61

~D R Sample
Cell 0,0 Cell 1,0 Cell 2,0 Cell 3 ,0 Ce ll 4 ,0
Cell 0, 1 Cell 1, 1 Cell 2 , 1 Cell 3 , I Ce ll 4, 1
Cell 0,2 m•• Cell 2,2 Cell 3,2 Cell 4 ,2
Cell 0 ,3 Cell 1,3 It Cell 2 ,3 Cell 3 ,3 Cell 4 ,3
Cell 0,4 Cel l 1,4 Cel l 2 ,4 Cell 3 ,4 Cell 4 ,4
Cell 0,5 Cell 1,5 Cell 2 ,5 Cell 3 ,5 Cell 4,5
Cell 0,6 Cell 1,6 Cell 2 ,6 Cell 3,6 Ce ll 4 ,6
Cell 0, 7 Cell 1,7 Cell 2 , 7 Cell 3,7 Cell 4,7
Cell 0,8 Cell 1,8 Cell 2,8 Cell 3,8 Cell 4 ,8
Cell 0 ,9 Cell 1,9 Cell 2 ,9 Cell 3,9 Cell 4,9
Cell 0 , 10 Celll , 10 Cell 2 , 10 Cell 3 , 10 Cell 4, 10
Cell 0, 11 Cell I , 11 Cell 2 , 11 Cell 3 , I I Ce ll 4, 11
Cell 0 , 12 Cell I , 12 Cell 2 , 12 Cell 3 , 12 Cell 4 , 12
Cell 0, 13 Cell I , 13 Cell 2 , 13 Cell 3 , 13 Cell 4 , 13
Cell 0, 14 Cell I , 14 Cell 2 , 14 Cell 3 , 14 Cell 4 , 14
Cell 0, 15 Cell I , 15 Cell 2, 15 Cell 3 , 15 Cell 4, 15
Cell 0, 16 Cell I , 16 Cell 2 , 16 Cell 3 , 16 Cell 4, 16

Figure 3-16
A sample list

List elements are displayed in cells, which provide the basic structure of a list. While
list elements (the actual data) may vary in length, the cells in which they're displayed
are the same size for any given list.

As with the parts of the Toolbox we've already discussed, the appearance and
behavior of a list is determined by a routine called its list definition procedure,
which is stored as a resource in a resource file. The system resource file includes a list
definition procedure for a standard text-only list. A program can also define a
custom list definition procedure.

Like TextEdit, the List Manager makes it easy for applications to implement the
techniques described in Human Interface Guidelines: The Apple Desktop Interface.
The default algorithm used by the List Manager for user selection of cells implements
these techniques as follows:

1 . If neither the Shift nor the Command key is held down, a dick selects a cell,
causing all current selections to be deselected. While the mouse button is held
down and the mouse is moved arounu, only the cell under the cursor is selected.

2 . If the Shift key is held down, as long as the mouse button is down, the List Manager
expands and shrinks a selected rectangle defined by the mouse location and the
anchor. When the mouse is first pressed, the List Manager calculates the smallest
rectangle that encloses all selected cells. If the dick is above or to the left of this
rectangle (or on the top-left corner), the bottom-right corner of the rectangle
becomes the anchor; otherwise, the top-left corner becomes the anchor.

3. If the Command key is held down, as long as the mouse button is also held down,
all cells the mouse passes over are either selected or deselected. Like MacPaint
FatBits, if the initial cell was off, cells are turned on; otherwise they're turned off.

An application programmer can also choose to change the way selections work by
implementing a custom list definition procedure.

62 Chapter 3: The User Interface Toolbox

Cutting and pasting
The desk scrap is the vehicle for transferring data between two programs; it can also
be used for transferring data that's cut and pasted within a program. The Scrap
Manager is a set of Toolbox routines and data types that supports cutting and pasting
among applications and desk accessories through the use of the desk scrap.

From the user's point of view, all data that's cut or copied resides in the Clipboard,
whether the data is stored in the desk scrap or in a private scrap provided by the
application. The Cut command deletes data from a document and places it in the
Clipboard; the Copy command copies data into the Clipboard without deleting it
from the document. The next Paste command-whether applied to the same
document or another, in the same application or another-inserts the contents of
the Clipboard at a specified place. Applications may also provide a Clipboard
window for displaying the current contents of the scrap.

The desk scrap is usually stored in memory, but it can be stored on the disk (in the
Oipboard file, or scrap file) if there's not enough room for it in memory. The desk
scrap may remain on the disk throughout the use of the application, but it must be
read back into memory when the application terminates, because the user may then
remove that disk and insert another.

Note also that the desk scrap is written on the system startup volume-the volume that
contains the currently open System file-rather than the default volume, as it was in
the original 64K ROM version of the Scrap Manager. With hierarchical volumes, the
Clipboard file is placed in the folder containing the currently open System file.

+ Note: The Scrap Manager was designed to transfer small amounts of data;
attempts to transfer very large amounts of data may fail due to lack of memory.
(The desk scrap can never be larger than half that amount of memory allocated
for the stack and the application heap.) Applications may use a private scrap to
transfer large amounts of data.

The nature of the data to be transferred varies according to the application. For
example, in a text processor, the data is text; in a graphics application, it's a picture.
The amount of information that is retained about the data being transferred also
varies. Between two text applications, text can be cut and pasted without any loss of
information; however, if the user of a graphics application cuts a picture consisting
of text and then pastes it into a word processor document, the text in the picture may
not be editable in the word processor, or it may be editable but not look exactly the
same as in the graphics application. The Scrap Manager allows for a variety of data
types and provides a mechanism so that applications can control how much
information is retained when data is transferred.

Cutting and pasting 63

Types of desk scrap data
From the user's point of view, there can be only one thing in the Clipboard at a time.
However, applications may store more than one version of the same information in
the scrap, each representing the same Clipboard contents in a different form. For
example, text cut hy a word processor may be stored in the desk scrap both as text
and as a QuickDraw picture.

Desk scrap data types, like resource types, are a sequence of four characters. Two
standard types of data are defined:

o 'TEXT': a series of ASCII characters.

o 'PICT': a QuickDraw picture, which is a saved sequence of drawing commands that
can be played back with a QuickDraw command and that may include picture
comments. (QuickDraw pictures are discussed in Chapter 5.)

Applications must write at least one of these standard types of data to the desk scrap
and must be able to read both types.

An application reading the desk scrap will look for its preferred data type. If its
preferred type isn't there, or if it's there but was written by an application with a
different preferred type, the receiving application may or may not be able to convert
the data to the type it needs. If not, some information may be lost in the transfer
process. For example, a graphics application can easily convert text to a picture, but
the reverse isn't true.

Figure 3-17 illustrates this situation: a picture consisting of text is cut from a graphics
application, and then pasted into a word processor document.

If the graphics application-like application A in Figure 3-17-writes only its
preferred data type (a picture) to the desk scrap, then the text in the picture will not
be editable in the word processor because it will be seen as just a series of drawing
commands and not as a sequence of characters. (MacDraw® is an example of an
application that does this.) On the other hand, if the graphics application takes the
trouble to recognize whtch characters have been drawn in the picture, and writes
them out to the desk scrap both as a picture and as text-like application B in
Figure 3-17-the word processor will be able to treat them as editable text. In this
case, however, any part of the picture that isn't text will be lost.

64 Chapter 3: The User Interface Toolbox

Graphics application A
?

- ', --
lh}glkugllugh:ofp9h'poflkj;Oj'p

hytfuygolugpoulhubufOlozcpo

lkubdcusdcplousdploscuibd8h

oldlllihcsknscvbtcksdlihd
kusougsdcubsducbscbsdkuhsdl
kusdkulsdinscnsdnksfihscnsllsd

'C! '

• I :a

\j J
1. Picture consisting of text

Graphics application B

•

lhJglkugllugh;ol'p9h'pofllcJ;Of P
hytfuygolugpoulhubulolozcpo
lkubdcusdcplou$dploscuibd8h

ok:Mhcsknscvlhdbtcksdlihd
kusoug:sdcubsducbscbsdlcuhsdi

kusdkulsdlnScnsdnksllhscnslbd

1. Picture consisting of text

Figure 3-17

Desk
Cut scrap

v
Picture J

Desk
scrap p t

I Picture I~
I Text I~

Inter-application cutting and pasting

•

Word processor

lhJglkugtlugh;oi 'p9h'pofll<j:o]'p

hyttuygolugpoulhubu1olozcpo
lkubdcusdcpiousdplosculbd8h
ok:MihcsknscvlhdfldcixckSdlihd

kusougsdcubsducbscbsdkuhsdi

kusdkuisdlnscnsdnkSlihscnsHsd

\~--~J
2. Picture consisting of text

•

Word processor

lhJg!kugllugh;ol'p9h'poj'lkj:Of P

hyttuygolugpouit ubufolozcpo
lkubdcusdeplo1..' idplosculbd8h

olc:Mihcsknscvlt .dfidclxcksdlihd

kusougsdcubs.Jucbscbsdkuhsdi

kusdkulsdlnscnsdnks.'ihscnsl!sd

\1~------,--J

2. Editable text

In addition to the two standard data types, the desk scrap may also contain
application-specific types of data. If several applications are to support the transfer
of a private type of data, each one will write and read that type, but they still must
write at least one of the standard types and be able to read both standard types.

Cutting and pasting 65

Private scraps
Instead of using the desk scrap for storing data that is cut and pasted within an
application, some programs may set up a private scrap for this purpose. In
applications that use the standard 'TEXT' or 'PICT' data types, it's simpler to use the
desk scrap, but if an application defines its own private type of data, or if it's likely
that very large amounts of data will be cut and pasted, using a private scrap may result
in faster cutting and pasting within the application. (The application must, however,
be able to convert data between the format of its private scrap and the format of the
desk scrap.)

As the preceding discussion makes clear, graphics are a key element of the
representation of data by the Macintosh. You may also have read between the lines
and seen that text display is only a special form of graphics. On the Macintosh, all
text and graphics-including the desktop, menus, and windows-are drawn by a set
of graphics procedures called QuickDraw. QuickDraw's handling of text is in turn
supported by the Toolbox's Font Manager and Script Manager. All of these Toolbox
managers are discussed in Chapter 5. But before going on to the subject of graphics,
we'll return to a topic we've already touched upon many times: resources, upon
which the rest of the Toolbox is built

66 Chapter 3: The User Interface Toolbox

Chapter 4

Resources

67

This chapter outlines the structure of a Macintosh file and introduces resources,
one of the keys to the design of the Macintosh software. It discusses the functions of
the Resource Manager, the part of the Toolbox responsible for keeping track of and
accessing resources, and briefly lists the various standard resources that you'll find in
Macintosh applications. This chapter also describes the system resource file , which
contains resources shared by different parts of the system, and concludes by
introducing some of the tools that you can use to edit resources.

The information in this chapter applies equally to all Macintosh machines.

Structure of a Macintosh file
A Macintosh volume is a piece of storage medium, normally a disk; information on
a volume is divided into files . A file is a named, ordered sequence of bytes. There
are two parts or forks to a Macintosh file: the data fork and the resource fork
(Figure 4-1).

Resource
map

Resource
data

Figure 4-1

Resource fork

Structure of a Macintosh file

File
I

I

II
II

II
Ill
Ill

Data fork

Ill Ill Ill Ill
Ill Ill Ill Ill
Ill Ill Ill Ill
Ill Ill Ill Ill
Ill Ill Ill Ill
Ill Ill Ill Ill
Ill Ill Ill Ill
Ill Ill Ill Ill
Ill Ill Ill Ill
Ill Ill Ill I ll
Ill Ill Ill Ill
Ill Ill Ill Ill

Ill Ill Ill Ill
Ill Ill Ill Ill
Ill Ill Ill Ill
Ill Ill Ill Ill
Ill Ill Ill Ill
Ill Ill Ill Ill
Ill Ill Ill Ill
Ill Ill Ill Ill
Ill Ill Ill Ill
Ill Ill Ill Ill
Ill Ill Ill Ill
Ill Ill Ill Ill

Ill
Ill
Ill
Ill
Ill
Ill
Ill
Ill
Ill
Ill
Ill
Ill

Il l

Ill
Ill
Il l
Il l
I ll

I ll
I ll
Ill
Ill
Ill
Il l

Ill
Ill
Ill
Ill
Ill
Ill
Ill
Ill
Ill
Ill
Ill
Ill

Ill
Ill
Il l

Ill
Ill
Ill
Ill
Ill
Ill
Ill
Ill
Ill

Sequential data,
accessed through
the File Manager

Resources are specially formatted chunks of data stored in the resource fork of a
Macintosh file and accessed via the Resource Manager. Typical resources are pieces
of static text, static graphics, or static code. For an application file, for instance, the
resource fork normally contains the resources used by the application, such as
menus, fonts, and icons, and also the application code itself. The data fork can
contain anything an application wants to store there (often nothing).

68 Chapter 4: Resources

Either fork of a file may be empty.

Because it's functionally like a file in many ways, the resource fork is often referred to
simply as a resource file. As Figure 4-1 shows, the resource fork itself is internally
divided into the resource map and the resource data. The resource map is the
index that the Resource Manager uses to locate individual resources in the file; the
resource data is the actual contents of the resources themselves.

The information in the data fork of a file is separately accessed via the File Manager,
which is discussed in Chapter 8.

Overview of resources
Resources form the foundation of every Macintosh application; in fact, a Macintosh
program is a collection of resources. Objects such as menus, fonts, and icons are
stored as resources; an application's code is also stored as resources. The term
resource can be taken literally: a resource may be anything that is of use to a program
or to the system. A resource can be almost any chunk of data; in fact, that's all that
the various types of resources have in common. An icon, for example, resides in a
resource file as a 32-by-32 bit image, and a font as a large bit image containing the
characters of the font. In some cases the resource consists of descriptive
information, such as, for a menu, the menu title, the text of each command in the
menu, and so on.

The resources used by the application are created, stored, and changed separately
from the application's code for flexibility and ease of maintenance. This separation
is the great advantage of the resource file scheme. Menus, for example, are stored
separately from code so that they can be edited or translated without the code having
to be recompiled. Resources also allow different programs to get standard data, such
as the I-beam pointer for inserting text, from a shared system resource file.
Resources also facilitate responsive memory management because a program is
made up of lots of little pieces rather than a few large blocks.

Resources are grouped logically by function into resource types, which are
identified by four-character names. For example, menus are stored as resources of
type 'MENU'. Within a resource type, individual resources are identified by the
resource ID number. Resource types and IDs are described in greater detail later in
this chapter.

Overview of resources 69

An application's resource file
Each application is stored in a resource file, which contains the resources specific to
that application, including the application code, as shown in Figure 4-2. The cod~
may be divided into different segments, each of which is a resource. This allows
various parts of the program to be dynamically loaded and unloaded (as descnbed
in Chapter 7). .

The application's
resources
(which Include
Its code) ·

Resource fork
Cresource file")

Initially empty;
the application
may store data
here

Data fork

Appllcatlon flle

Figure 4-2
An appllcatlon flle

As we've mentioned, the resource approach enables easy editing of resources without
affecting the way the resource functions in the program. For example, menus and
dialogs can be easily translated into a foreign language. On non-Macintosh
environments, translating an application would involve substantial changes to the
application's actual code and recompilation, a slow and laborious process.)
Properly written applications store all localization-sensitive data (and operations) as
resources. For example, menu items, text strings, and so on are all stored as
resources.

+ Note: Because an application may be shared on a file server, default settings
should stay with individual document files rather than with the application.

Resource editing is introduced later in this chapter.

70 Chapter 4: Resources

Other types of resource files
Resource files aren't limited to applications; anything stored in a file can have its own
resources.

The system resource ftle (the file named System, located in the System Folder)
contains standard resources shared by all applications. These common resources
are called system resources. (Shared resources are usually stored in the system
resource file, but other resource files may also contain shared resources.) As shown
in Figure 4-3, the system resource file has the same structure as an application file.

The system· s
resources

Resource fork
c·resource file·)

System code:
patches to ROM
routines

Data fork

System resource flle

Figure 4-3
Structure of the system resource flle

For more information about what's in the system resource file, see the section "The
System Resource File• later in this chapter.

Figure 4-4 shows the structure of a document file; the resource fork contains the
document's resources and the data fork contains the data that comprise the
document Special resources needed by a document may also be included in the
document's resource file. For instance, an unusual font used in only one document
can be included in the resource file for that document rather than in the system
resource file.

Overview of resources 71

Figure 4-4

The document's
resources

Resource fork
("resource file")

Document file

Structure of a document file

The data in the
document

Data fork

How resources are accessed
The Resource Manager keeps track of resources in resource files and provides
routines so that applications and other parts of the Toolbox can access them. The
Resource Manager knows nothing about the formats of the individual types of
resources. To the Resource Manager, all resources are just sequences of bytes; the
contents of the resource are meaningful only to the software that uses the resource.

It's also important to note that applications often access resources indirectly through
other parts of the Toolbox, such as the Menu Manager and the Font Manager, which
in turn call the Resource Manager to do low-level resource operations.

Given a resource specification, the Resource Manager will read the resource into
memory and return a handle to it (A handle is a pointer to a relocatable block in
memory; see Chapter 7 for details.) In effect, resources provide a form of virtual
memory on the Macintosh: from the standpoint of the program that is requesting the
resource, it is unimportant whether the resource is in memory or on the disk. The
Resource Manager handles all the details of delivering the resource to the calling
program.

As we indicated earlier, a resource file consists primarily of a resource map and
resource data. The resource map is an index to the resource data; it contains an
entry for each resource that provides the location of its resource data. Each entry in
the map gives the offset of the resource data in the file and contains a handle to the
data if it's in memory. The resource data consists of the resources themselves (for
example, the bit image for an icon or the title and commands for a menu).

72 Chapter 4: Resources

Resource data is normally read into memory when needed, though a program can
specify that it be read in as soon as the resource me is opened. When read in,
resource data is stored in a relocatable block in the heap (see "How Heap Space is
Allocated" in Chapter 7). The entries in the resource map that identify and locate the
resources in a resource me are known as resource references. Every resource
reference includes the type, ID number, and optional name of the resource.

Every resource reference also contains certain resource attributes that determine
how the resource should be dealt with. Table 4-1 lists these attributes and explains
what they mean.

Table 4-1
Resource attributes

Resource attribute

System heap

Purgeable

Locked

Protected

Preload

Changed

Meaning

Indicates that the resource will be loaded into the system heap.
This attribute should not be set for an application's resources.

Indicates whether a resource may be purged by the Memory
Manager.

Indicates whether a resource may be moved by the Memory
Manager. Since a locked resource is neither relocatable nor
purgeable, the Locked attribute overrides the Purgeable
attribute.

If the Protected attribute is set, the application can't use
Resource Manager routines to change the ID number or name
of the resource, modify its contents, or remove the resource
from the resource file.

Tells the Resource Manager to read this resource into memory
immediately after opening the resource file.

Tells the Resource Manager whether this resource has been
changed. (This attribute is set by the Resource Manager; a
program should never set it directly.)

Resources are designated in the resource map as being either purgeable or
unpurgeable; if purgeable, they may be removed from the heap when space is
required by the Memory Manager, as explained in Chapter 7. Larger resources are
usually designated as purgeable.

Overview of resources 73

The system resource file is opened at system startup. When you start up an
application, its resource file is also opened. In fact, a large number of resource files
may be open at one time. The Resource Manager normally searches the files in the
reverse of the order that they were opened, beginning with the most recently opened
resource file. When the Resource Manager is called upon to get a certain resource, it
therefore looks first in the application's resource file and then, if the search isn't
successful, in the system resource file, as shown in in Figure 4-5. (Although for
simplicity we say that the Resource Manager searches resource files, it actually
searches the resource maps that were read into memory, and not the resource files
on the disk.)

Understanding this search order makes it easy to share resources among applications
and also to override a system resource with a custom resource. A program can
redirect the search to start at any file.

Usual search - ~

Opened last

Document
resource file

Opened second----1
Application
resource file

Opened first -----------1

Figure 4-5
Resource file searching

74 Chapter 4: Resources

System
resource file

Resource types
The resource type is a sequence of any four characters, printing or nonprinting. To
give you an idea of the many ways resources may be used, Table 4-2 lists most of the
standard Macintosh resource types. (By convention, resource types are shown
enclosed in single quotation marks; the quotation marks are not part of the name.)

Table 4-2
Some standard resource types

Resource type

'ALRT'
'BNDL'

'CDEF'
'CNTL'
'CODE'
'CURS'
'DITI'
'DLOG'
'DRVR'
'DSAT'
'FKEY'
'FOND'
'FONT'
'FREF'
'FRSV'
'FWID'

'ICN#'
'ICON'
'INIT'
'INTL'
'MBAR'
'MDEF'
'MENU'
'NFNT'
'PACK'
'PAT'
'PAT#'
'PDEF'

Meaning

Alert template
Bundle (associates files and their icons for the Finder)
Control definition function
Control template
Application code segment
Cursor
Item list in a dialog or alert
Dialog template
Desk accessory or other device driver
System error alert table
Command-Shift-number routine
Font familiy
Font
File reference
IDs of fonts reserved for system use
Font widths
Icon list
Icon
Initialization resource
International resource
Menu bar
Menu definition procedure
Menu
Font
Package (RAM-based system software)
QuickDraw pattern (the space is part of the name)
Pattern list
Printing code

(continued)

Resource types 75

Table 4·2 (continued)
Some standard resource types

Resource type

'PICT'
'PREC'
'SERD'
'STR I

'STR#'
'WDEF'
'WIND'

Meaning

Picture
Print record
RAM Serial Driver
String (the space is part of the name)
String list
Window definition function
Window template

Macintosh II resource types:
'actb' Alert color table
'dctb' Dialog color table
'wctb' Window color table
'cctb'
'mctb'
'mbdf'
'crsr'
'pllt'
'ppat'
'cicn'
'clut'
'scrn'

Control color table
Menu color information table
Menu bar definition procedure (also in System 4.1)

Color cursor
Color palette resource
Pixel pattern
Color icon
Color lookup table
Screen configuration

•:• Note: Uppercase and lowercase letters are distinguished in resource types. For
example, 'Menu' will not be recognized as the resource type for menus. By
convention, new resource types defined by Apple are given lowercase names.

Notice that some of the resources listed above are templates. As we explained in the
previous chapter; Toolbox objects such as menus and windows are associated with
resources that describe their contents (templates) and how they are built (definition
procedures). A template is a list of the parameters used to build a Toolbox object; it is
not the object itself. For example, a window template contains information
specifying the size and location of the window, its title, whether it's visible, and so on.
After the Window Manager has used this information to build the window in memory,
the template isn't needed again until the next window using that template is created.

Every resource has an ID number, or resource ID. The resource ID should be
unique within each resource type, but resources of different types may have the same
ID.

While most access to resources is read-only, certain applications may want to modify
resources.

76 Chapter 4: Resources

The system resource file
The System file, also known as the system resource file, contains standard
resources that are shared by all applications and by the Macintosh Toolbox and
Operating System. The System file can be modified by the user with the Installer and
Font/ DA Mover programs.

Warning
You should not add resources to, or delete resources from, the system resource
file directly. Use only the Installer or Font /DA Mover to do so.

Some of the resources in the system resource file, such as the Floating-Point
Arithmetic Package and the Chicago 12 font, are also contained in the 128K or 256K
ROM. They're duplicated in the system resource file for compatibility with machines
that are not equipped with the newer ROMs. For instance, System file version 4.1 and
later includes many new features of the 256K ROM that are also compatible with the
Macintosh Plus. Other resources, such as fonts, are put in the system resource file
because they are too large to be put in ROM.

Table 4-3 shows some of the contents of the system resource file .

Table 4-3
System resources (as of System 4.1)

Resource Description and owned resources

Standard Macintosh packages
and the resources they use:

'PACK' 0 List Manager Package and standard list definition
procedure ('LDEF' 0)

'PACK' 2

'PACK' 3

'PACK' 4

'PACK' 5

'PACK' 6

'PACK' 7

'PACK' 12

Disk Initialization Package and code (resource type 'FMTR')
used in formatting disks

Standard File Package and resources used to create its alerts
and dialogs (resource types 'ALRT', 'DITL', and 'DLOG')

Floating-Point Arithmetic Package

Transcendental Functions Package

International Utilities Package

Binary-Decimal Conversion Package

Color Picker Package

(continued)

The system resource file 77

Table 4-3 (continued)
System resources (as of System 4.1)

Resource Description and owned resources

Device drivers (lncludlng desk accessories)
and the resources they use:

'DRVR' 2 .PRINT driver that communicates between the Printing
Manager and the printer

'DRVR's 9 and 10 .MPP and .ATP drivers used by AppleTalk

'DRVR' 12

'DRVR' 1~

'DRVR' 14

'DRVR' 15

'DRVR' 16

Calculator desk accessory

Alarm Clock desk accessory

Key Caps desk accessory

Control Panel desk accessory and the dialogs, item lists,
list definition procedures, and other resources used in
displaying its various options

Chooser desk accessory and the dialogs, item lists, list
definition procedures, and other resources that it uses (or
owns)

Other general resources:

'WDEF', 'MDEF', etc.

'FONT' and 'FOND'

'ICON'

'PTCH'

'INIT'

'FKEY's 3 and 4

'mcky' and 'MMAP'

'ADBS', 'KMAP',
and 'KCHR'

Standard definition procedures for creating windows,
menus, controls, lists, and so on

System fonts and font families

System icons

Code for patching ROM routines (described below)

Initialization resources (described below) used during
system startup

Screen utility resources, which create a MacPaint snapshot
of the screen when Command-Shift-3 is pressed and print a
screen dump when Command-Shift-4 is pressed

Mouse tracking resources, which provide parameters for
various mouse tracking setups

ADB keyboard mapping resources, which implement
keyboard mapping in conjunction with the Apple Desktop
Bus on the Macintosh SE and Macintosh II. There is a
different 'KCHR' resource for each language. Note that
'INIT' resources 1 and 2, which used to handle key
translation, now point to the 'ADBS'-'KCHR' system
instead.

78 Chapter 4: Resources

Patches
For each version of the Macintosh ROM, there are two patch resources (type 'PTCH')
that provide updates for ROM routines. At startup, the machine's ROM is checked
and the appropriate 'PTCH' resources are installed in the system heap. 11le 'PTCH'
resources are

'PTCH' 0

'PTCH' 105

'PTCH' 117

'PTCH' 630

'PTCH' 375

All ROMS

Original 64K ROM (version $69)

Macintosh Plus ROM (128K ROM, version $75)

Macintosh SE ROM (256K ROM, version $76)

Macintosh II ROM (256K ROM, version $78)

Initialization resources
As indicated in Table 4-2, the system resource file contains initialization resources
(resource type 'INIT') used during system startup. During startup, 'INIT' resources are
loaded into the system heap immediately after patch resources.

Applications should not normally add resources to the system resource file. A
mechanism has been provided so that applications can supply code to be executed
during system startup by placing the code in a separate file with a file type of 'INIT' or
'RDEV'. A special initialization resource in the System file searches the System Folder
of the system startup volume for files of type 'INIT' or 'RDEV'. When it finds such a
file, it opens the file, gets all resources in that file of type 'INIT', and executes them.

Resource editing tools
Resources can be put in a resource file with the aid of a resource editor or compiler,
or with whatever other tools are provided by a particular development system. You
can change the content of a resource or its ID number, name, or other
attributes-everything except its type. To modify a resource, you change the
resource data or resource map in memory. The change becomes permanent only
when you save the file to a disk.

A number of resource editing tools are available from Apple:

o ResEdit, an interactive resource editor. ResEdit is very useful for exploring the
contents of resource files . Note that ResEdit allows you to change any resource at
all, which can have dangerous consequences.

o REdit, another interactive editor. Although less comprehensive than ResEdit,
REdit is safer and better suited to international localization.

Resource editing tools 79

o Rez and DeRez, a textually oriented resource compiler and decompiler that run
under the Macintosh Programmer's Workshop (MPW).

Various font editors are also available from third parties.

Warning

Changing certain resources In a file can cause unpredictable and disastrous
results. Never change the resources In your only copy of a file; always edit a
backup copy.

Figure 4-6 illustrates the ResEdit resource editor.

a File Edit Cursor

HD
System Folder

S stem

Figure 4-6
Cursor editor from ResEdlt

For more information about creating, editing, and decompiling resources,
programmers can refer to Macintosh Programmer's Workshop 2.0 Reference.

80 Chapter 4: Resources

Chapter 5

Macintosh
Graphics

81

Everything on the Macintosh, including text, is presented graphically: there is no
separate text mode as there was in earlier types of computers. High-resolution bit
mapped graphics makes possible the graphical user interface of the Macintosh. It
also means that characters can be presented in any size or style and are not even
limited to alphabetic characters. For instance, a Macintosh program can display
Chinese characters almost as easily as it can display English text. The unification of
text and graphics also makes it possible to transport text and graphics across
applications via the Macintosh Clipboard.

This chapter introduces the graphics capabilities of the Macintosh computers,
including color, the use of fonts, non-Roman writing systems (or scripts) such as
Chinese or Arabic, and printing.

Video principle·s
The Macintosh uses a high-resolution bit-mapped display. That is, in monochrome
mode, each bit in a certain part of the computer's memory is displayed as a dot on
the screen. With a monochrome display, bits whose value is 0 are displayed as white
dots (background), and bits whose value is 1 are displayed as black. The electron
beam in the picture tube turns on and off as it scans to create the screen image,
turning on or off individual dots on the screen. (In color or gray-scale, the situation
is more complex, because more than one bit is required to represent a single color
pixel on the screen, as discussed later in the "Color" section of this chapter.)

Because the video display is continually being refreshed (that is, generated over and
over), the data being used to generate the display must be available all the time. This
means that the computer must have memory set aside for storing the screen data.
This area in memory is called the screen buffer; it occupies 22K on the
Macintosh Plus and the Macintosh SE. A program draws by writing to the screen
buffer. On the Macintosh, however, this is not done directly, but through a powerful
set of graphics procedures called QuickDraw.

The operation of the video hardware is discussed in the "Video" section of
Chapter 10.

82 Chapter 5: Macintosh Graphics

QuickDraw graphics
The speed and responsiveness of the Macintosh graphical interface are due mainly to
the speed of the QuickDraw graphics package, a set of data structures and routines in
the Macintosh ROM. As shown in Figure 5-1, the rest of the Toolbox and Operating
System rely on QuickDraw for graphical operations. QuickDraw's mathematical
model-a global coordinate system that associates points and rectangles with
physical pixels on the screen-underlies the entire Macintosh user interface. For
instance, mouse-down commands are defined in terms of QuickDraw coordinates
within a particular rectangle. In short, everything that happens on the screen is
processed through QuickDraw.

QuickDraw not only supports the Macintosh video display, but also provides the
means for writing to output devices such as printers. On the Macintosh II, an
extended version of QuickDraw, Color QuickDraw, provides general support for a
wide range of color devices, even allowing a program to draw to multiple display
devices at one time. (Color QuickDraw is described at the end of this section.)

The rest of this section is a broad-brushed sketch of QuickDraw's salient features,
which are portrayed in grainy detail in the Chapter 6, Volume I, of Instde
Mactntosh.

QulckDraw graphics 83

Figure 5-1

Appllcatton program

Window
Manager

Quick Draw

Printing
Manager

l

Relationship of QulckDraw to other parts of the Toolbox

84 Chapter 5: Macintosh Graphics

QuickDraw allows Macintosh programmers to perform complicated graphical
operations quickly and easily. Graphical operations include fast interactive graphics,
complex yet speedy text displays, and animation. QuickDraw can draw many types of
graphic objects, including

o text characters in a number of proportionally spaced fonts, with variations that
include boldfacing, italicizing, underlining, and outlining of characters

o straight lines of any length, width, and pattern

o a variety of shapes, including rectangles, rounded-corner rectangles, circles and
ovals, and polygons, all either outlined and hollow or filled in with a pattern

o arcs of ovals, or wedge-shaped sections filled in with a pattern

o any other arbitrary shape or collection of shapes

o a picture composed of any combination of the above, drawn with just a single
procedure call

Some of these graphic objects are illustrated in Figure 5-2.

Text Lines Rectangles Ovals

Bold DD 0 0 /lalic
Underline

@l!!JllD~liillll •D •@ ~ ' '

Round Reels Wedges Polygons Regions

00
, ;,,, cza c?tP <<'>

•@ .;::- Ir& -~ ,, ,,

Figure 5-2
Examples of shapes drawn by QulckDraw

QuickDraw can perform the following graphic operations on rectangles, rounded
corner rectangles, ovals, arcs/wedges, regions, and polygons:

o frame, to outline the shape using the current pen pattern and size

o paint, to fill the shape using the current pen pattern

o erase, to erase the shape (actually paints the shape using the current background
pattern)

o invert, to invert the pixels in the shape (that is, black pixels are changed to white
and vice versa; in color a pixel is changed to the color defined as its inverse, such
as from red to green)

o fill, to fill the shape with a specified pattern

QulckDraw graphics 85

QuickDraw also has some features that you won't find in many other graphics
packages, including:

• Graphics ports. An application can define many distinct ports on the screen.
Each port has its own complete drawing environment-that is, its own coordinate
system, drawing location, character set, location on the screen, and so on. Each
window, for instance, is a separate graphics port. You can easily switch from one
drawing port to another.

• Clipping. QuickDraw provides full and complete clipping to arbitrary areas, so
that drawing will occur only where you want. Each graphics port includes a
clipping region which limits where graphics will be drawn. Programmers don't
have to worry about accidentally drawing over something else on the screen, or
drawing off the screen and trashing memory.

• Off-screen drawing. Anything you can draw on the screen, you can also draw
into an off-screen buffer. This makes it possible to prepare an image for an output
device without disturbing the screen or to prepare a picture and move it onto the
screen very quickly.

• Regions. Unlike most graphics packages that can manipulate only simple
geometric structures, QuickDraw can gather an arbitrary set of points into a
structure called a region and perform complex yet rapid manipulations and
calculations on such structures. A program defines a region by calling routines
that draw lines and shapes (and even other regions). A region can consist of
one area or many disjoint areas and can even have holes in the middle (see
Figure 5-3). A region can be expanded or shrunk, and given any two regions,
QuickDraw can find their union, intersection, difference, and exclusive-OR. It
can also determine whether a given point intersects a region, and so on.

Regions

Figure 5-3
Regions

-=

86 Chapter 5: Macintosh Graphics

• Pictures and polygons. QuickDraw can also save a sequence of drawing
commands and play them back later with a single procedure call. There are two
such mechanisms: one for drawing any picture to scale in a specified destination
rectangle, and another for drawing polygons.

QuickDraw pictures
QuickDraw pictures are used to record and play back complex drawing
sequences. A picture in QuickDraw is a transcript of calls to routines that draw
something-anything-in a bit image. Pictures make it easy for one program to draw
something defined by another program, without knowing the details about what's
being drawn.

For each picture, the program must specify a rectangle, called the picture frame,
that surrounds the picture. When a program later calls the procedure to play back the
saved picture, it supplies a destination rectangle. QuickDraw then scales the picture
so that its frame is completely aligned with the destination rectangle. Thus, the
picture may be expanded or shrunk to fit its destination rectangle. For example, if the
picture is a circle inside a square picture frame and the destination rectangle is not
square, the picture will be drawn as an oval.

QuickDraw also allows a programmer to intersperse picture comments with the
definition of a picture. These comments, which are ignored by QuickDraw, can be
used to provide additional information about the picture when it's played back. This
is especially valuable when pictures are transmitted from one application to another.
Programmers can also use picture comments to send commands to the PostScript
processor contained in the ROM of the Apple LaserWriter. (PostScript is a page
description language used to drive the LaserWriter; for details, see the "Printing"
section later in this chapter.)

The mathematical model
This section discusses the mathematical foundation of QuickDraw. It introduces
some simple data types-the point and the rectangle-that are fundamental to
QuickDraw operations.

All information about location or movement is given to QuickDraw in terms of
coordinates on a plane. The coordinate plane is a two-dimensional grid, 65535 by
65535 in extent, as illustrated in Figure 5-4.

QulckDraw graphics 87

-32767

-32767

~i~i~i~i~l~i~i~i~i~i~i~i~i~i~
I I I I 0,0 I I I I I I I I I
I I I I

- . - . - . - . - l-1-1-t--+-+-+-+--+--+--
I I I I

- . - . - . - . - l-t-t--+-+-+-+-+--+--+--
1 I I I

- . - . - . - . - 1-1--+--+--+--+--+---+---+---+-

I I I I
- . - . - ' - - 1--1--+--+--+--+---+---+---+---+-

I I I I
- . - . - . - - 1-1--+--+--+--+---+---+---+---+-

I I I I
- . - . - . - . - 1--1--+--+--+--+---+---+---+---+-

I I I I
- . - . - . - . - 1-1--+--+--+--+---+---+---+---+-

I I I I

32767

Screen
area

i
- . - . - . - . - l-t-+--+-+-+-+--t---1t--i<--

-:-:-:-:- ' ', j: Point

32767 \ n-Pi,el

Figure 5-4
The coordinate plane

There are 4,294,836,224 unique points on the coordinate plane. Each point is at the
intersection of a horizontal grid line and a vertical grid line. As the grid lines are
infinitely thin, so a point is infinitely small. Of course, there are many more points
on this grid than there are dots on the Macintosh screen. As a programmer using
QuickDraw, you associate small parts of the grid with areas on the screen.

Figure 5-4 also shows the relationship between points, grid lines, and pixels, the
physical dots on the screen. Note that pixels lie between points, not on them. Pixels
correspond to bits in memory, as described in the next section.

The coordinate origin (O,Q) is in the middle of the grid. Horizontal coordinates
increase as you move right from the origin, and vertical coordinates increase as you
move down. This is the way both a 1V screen and a page of Greco-Roman text are
scanned: from the top left to the bottom right. For this reason, the lower-right
quadrant of the coordinate plane is ordinarily the quadrant associated with the
screen.

Recall that points, rectangles, and regions are all mathematical models rather than
actual graphic elements. That is, they're data types that QuickDraw uses for drawing,
but they don't actually appear on the screen. Other entities that do have a direct
graphic interpretation are the bit image, bit map, pattern, and cursor. The next
section describes some of these graphic entities and relates them to the
mathematical constructs mentioned above.

88 Chapter 5: Macintosh Graphics

Pixels and bits
In the standard monochrome mode, each pixel on the screen represents one bit in a
bit image. Extra bits per pixel allow gray scale, smoothing, and color displays.

•!• Note: In monochrome mode, bit and pixel are synonymous if the bit image is
the screen (or to be precise, the active screen buffer). This discussion often
refers to pixels on the screen where the discussion could apply equally to bits in
an off-screen bit image.

Bit images

A bit image is a collection of bits in memory that represent a two-dimensional
space, as follows. Take a collection of 16-bit words in memory and lay them end to
end so that the lowest-numbered word is on the left and the highest-numbered word
is on the far right. Then take this array of bits and divide it, on word boundaries, into
a number of equal-sized rows. Stack these rows vertically so that the first row is on the
top and the last row is on the bottom. The result is a matrix like the one shown in
Figure 5-5--rows and columns of bits, with each row containing the same number of
bytes. The offset from a byte in one row to the corresponding byte in the next row of
the bit image is called the row width of that image.

The screen itself is one large visible bit image. On the Macintosh Plus and
Macintosh SE, the screen is a 512-by-342 bit image, with a row width of 64 bytes.
These 21,888 bytes of memory are displayed as a matrix of 175,104 pixels on the
screen, each bit corresponding to a single pixel. If a bit's value is 0, its pixel is white;
if the bit's value is 1, the pixel is black.

On the Macintosh 11, graphics may be represented by a simple monochrome bit
image or by a pixel image that conveys additional information for each bit, either
color or gray scale. (QuickDraw color models and multiplane bit images are
discussed in the "Color" section later in this chapter.)

QulckDraw graphics 89

/First byte

rtl 11111

F t byt L1rs e

F t byt e Lirs

1 2 3

4 5 6 7 8
~ ~

7 Last byte

Figure 5-5
A bit Image

I I

1- First row

_tJext row Last row

I-

I I I

First row

Row width
(offset)
is 8 bytes

Last row

I I

L~st 1byt1e~0

•!• Note: To allow for any version of the Macintosh, programs should never use
explicit numbers for screen dimensions. Rather, they should refer to a
QuickDraw global variable named screenBits, which gives the correct screen
dimensions, whatever version of the Macintosh is being used. Properly written
programs will thus work correctly no matter what the screen size.

On the Macintosh, each pixel on the screen is square, and there are 72 pixels per
inch in each direction. (The measurement on the screen may not be exactly 72 pixels
per inch, but that's the value QuickDraw uses when calculating the size of printed
output.)

90 Chapter 5: Macintosh Graphics

Although the term bit map is generally used in the same sense as bit image, in
QuickDraw, bit map refers to a QuickDraw data structure that defines a physical bit
image in terms of the coordinate plane. A QuickDraw bit map has three parts: a
pointer to a bit image, the row width of that image, and a boundary rectangle that
gives the bit map both its dimensions and a coordinate system. There can be several
bit maps pointing to a single bit image (such as the screen), each imposing a
different coordinate system on it. For instance, the dimensions of each graphics port
are defined by a bit map, as explained in the next section. On Color QuickDraw, bit
maps have been extended to pixel maps, which include a pixel depth-a number of
bits per pixel-for representing colors or shades of gray.)

The drawing environment: graphics ports
All graphic operations are performed in graphics ports. A graphics port is a
complete drawing environment that defines where and how graphic operations will
take place. Graphics ports are the structures upon which a program builds windows,
which are fundamental to the Macintosh user interface with its overlapping windows.
In an application that uses multiple windows, each window is a separate graphics
port.

Many graphics ports may be open at once-each one has its own local coordinate
system, fill pattern, background pattern, graphics pen, character font, and bit map
in which drawing takes place. Programs can instantly switch from one port to
another. Besides being used for windows on the screen, graphics ports are used for
printing and for off-screen drawing. A graphics port is specified in a QuickDraw data
structure of type grafPort. A special printing grafPort is used for drawing to a printer.

What a graphics port contains

This section describes some of the information that's included in a grafPort. On
program terms, each of these individual items is a field in a data structure of type
grarPort.)

Device Information: Each grafPort contains device-specific information that is used
by the Font Manager to achieve the best possible results when drawing text in the
port In other words, there may be physical differences in the same font for different
output devices in order to ensure the highest-quality printing on the device being
used.

QulckDraw graphics 91

Dimensions: The dimensions of a graphics port are defined by a bit map, boundary
rectangle, port rectangle, visible region (the area not covered by another window),
and clipping region (typically the window's content region minus the scroll bars).
Figure 5-6 illustrates a typical case.

J
Boundary rectangle of bit map
for graf Port A

Visible region of grafPort A

Figure 5-6
Graf Port regions

Graf Ports

Port rectangle of graf Port A

Clipping region of grafPort B

Pattern: Each port has a background pattern and a fill pattern, as described in the
next section.

92 Chapter 5: Macintosh Graphics

Graphics pen: Each grafPort has a graphics pen, which is used for drawing lines,
shapes, and text. The pen has four characteristics: a location, a size (height and
width), a drawing pattern, and a drawing mode. The first three of these elements are
illustrated by Figure 5-7.

t:ocatlon~
Pattern ---l!E:l } Height

~Width

Figure 5-7
A graphics pen

The pen location is the point that defines the top-left corner of the pen; the pen
hangs below and to the right of this point. The pen pattern is like the ink in the pen.
This pattern, like all other patterns drawn in the grafPort, is always aligned with the
port's coordinate system, so that adjacent areas of the same pattern will blend into
one continuous pattern.

The pen mode determines how the pen pattern is to affect what's already in the bit
image when lines or shapes are drawn. When the pen draws, QuickDraw first
determines what bits in the bit image will be affected and finds their corresponding
bits in the pattern. It then does a bit-by-bit comparison based on the pen mode,
which specifies one of eight Boolean operations to perform. The resulting bit is
stored into its proper place in the bit image.

Text characteristics: Each grafPort contains several fields that determine how text
will be drawn: the font number, style, and size of characters and how they will be
placed in the bit image. QuickDraw can draw characters as quickly and easily as it
draws lines and shapes, and in many prepared fonts. Font means the complete set of
characters of one typeface. The characters may be drawn in any size and character
style (that is, with stylistic variations such as boldfacing, italics, and underlining).
Figure 5-8 shows two characters drawn by QuickDraw and some terms associated with
drawing text.

QulckDraw graphics 93

Ascent line

Ascent

Base line
Descent

Descent line

Character width

Figure 5-8
QulckDraw characters and some terms associated with drawing text

Text is drawn with the baseline positioned at the current pen location.

A font is defined by a collection of images that make up the individual characters of
the font. The characters can be of unequal widths, and they're not restricted to their
cells: the lower curl of a lowercase j, for example, can stretch back under the previous
character (typographers call this kerning). A font can consist of up to 255 distinct
characters, yet not all characters need to be defined in a single font. In addition,
each font contains a missing symbol to be drawn in case of a request to draw a
character that's missing from the font. (For more information about fonts, see the
"Fonts" section later in this chapter.)

Color: All grafPorts, both old and new (Color QuickDraw), include information
specifying a foreground color and a background color. (This relatively limited color
model has been supplanted on the Macintosh II by a new color graphics port,
described in the next section.)

GrafForts also include a number of other miscellaneous fields, described in detail in
Inside Macintosh, Volumes 1-3.

Color graphics ports

Color QuickDraw on the Macintosh II provides powerful color support via a new data
structure called a color graphics port. Drawing in a color graphics port works the
same way as in a conventional graEPort. All the original QuickDraw commands work
in color graEPorts, and the new Color QuickDraw commands work in the original
grafPorts. However, the power of the new data structures can only be fully exercised
in a color grafFort.

94 Chapter 5: Macintosh Graphics

Color ports are generally created indirectly, by opening a color window with the new
Window Manager routines. (The earlier Window Manager routines open a regular
grafPort by default) A color grafPort may also be opened when certain resources are
used. For instance, when a dialog box uses a 'dctb' (dialog color table) resource, a
color grafPort will be opened for that dialog.

The new color grafPort structure is the same size as the old-style grafPort and most of
its fields are unchanged. A detailed discussion can be found in the "Color
QuickDraw" chapter of Instde Macintosh, Volume 5. The Macintosh II color
architecture is treated at greater length in the "Color" section later in this chapter.

Some graphic entities: patterns, cursors, and icons
This section describes some of the graphical images used by all applications:
patterns, cursors, and icons.

Patterns and cursors are usually stored in a resource file and read in when needed.
Each cursor is usually stored as a resource of type 'CURS'. Standard cursors and
patterns are available through the global variables provided by QuickDraw or as
system resources stored in the system resource file. (QuickDraw itself operates
independently of the Resource Manager, so it doesn't contain routines for accessing
graphics-related resources.)

Besides patterns and cursors, two other graphic entities that may be stored in
resource files are an icon, a 32-by-32 bit image that is used to graphically represent
an object, concept, or message, and a QuickDraw picture, discussed earlier in this
chapter.

The idea of a pattern was already introduced in the discussion of a grafPort's graphics
pen. A pattern is a 64-bit image, organized as an 8-by-8-bit square, that is used to
define a repeating design (such as stripes or plaid) or a tone (such as gray). Patterns
can be used to draw lines and shapes or to fill areas on the screen.

When a pattern is drawn, it's aligned so that adjacent areas of the same pattern in the
same graphics port will blend with it into a single continuous pattern. QuickDraw
provides predefined patterns in global variables; any other 64-bit variable or
constant can also be used as a pattern.

A cursor is a small image that appears on the screen and is controlled by the mouse.
It appears only on the screen, never in an off-screen bit image.

•:• Note: Macintosh user manuals call this image a potnter, since it points to a
location on the screen. To avoid confusion with other meanings of pointer in the
technical documentation, we use the alternate term cursor.

QulckDraw graphics 95

A cursor is defined as a 256-bit image, organized as a 16-by-16-bit square. Figure 5-9
illustrates four cursors.

16

•••
·-11111-·

I I
a a

Figure S-9
Cursors

As defined in a program, a cursor has three elements: a data field that contains the
image itself, a mask field that contains information about the screen appearance of
each bit of the cursor, and a hot spot point that determines the point in the cursor
that corresponds with the mouse location.

The appearance of each bit of the 16-by-16-bit square is determined by the
corresponding bits in the data and mask and, if the mask bit is 0, by the pixel under
the cursor.

The cursor's hot spot aligns a point (not a bit) in the image with the mouse location.
Whenever you move the mouse, the low-level interrupt-driven mouse routines move
the cursor so that its hot spot is aligned with the new mouse location.

QuickDraw supplies a predefined cursor in the global variable named Arrow; this is
the standard arrow cursor illustrated in Figure 5-9.

96 Chapter 5: Macintosh Graphics

Color
In the Macintosh II hardware, color graphics are supported by slot-based graphics
cards of varying capabilities and resolutions. This wide variety is supported in
software by an extended version of QuickDraw, called Color QuickDraw, together
with several other software entities collectively known as the Color Toolbox.

As mentioned in Chapter 3, the Window Manager, Menu Manager, Dialog Manager,
and Control Manager in the Macintosh II ROM have also been extended to support
color.

The Color Toolbox

Color QuickDraw passes its requests for colors to the Color Manager software. The
Color Manager, in turn, accesses any necessary information on the video card,
including a color lookup table for translating QuickDraw's color specifications into
hardware terms. This process is, for the most part, transparent to the user or
application designer. Figure 5-10 portrays the various components involved in
producing a color picture on a display device.

Color 97

Color
Manager

Application

Color QulckDraw

Fl~ure 5-10
Macintosh II Color Toolbox

98 Chapter 5: Macintosh Graphics

Display
device

Color QuickDraw
The main difference between the original QuickDraw and the new Macintosh II ROM
version of QuickDraw is enhanced color and gray-scale support. (Limited color
support was already present in the original version of QuickDraw.)

Color QuickDraw, like the original version of QuickDraw, exists to provide an
environment for drawing to bit maps. Although enhanced color capabilities add a
level of complexity to QuickDraw, most QuickDraw functions remain essentially
unchanged.

Features that are new to Color QuickDraw include

o a color lookup-table mechanism via the Color Manager (discussed in the next
section)

o support fo~ high-resolution and very-high-resolution color

o new data structures such as color pixel maps (a multiple-bit-per-pixel bit map)
and color graphics ports

o new QuickDraw calls provided to support color graphics ports

o use of RGB (red-green-blue) color space for internal representation (as explained
in the next section)

o multiple-color drawing modes, such as replace with transparency, additive,
subtractive, maximum and minimum, and average

o support of color output devices such as printers and plotters; gray-scale
conversion for the LaserWriter

These features are discussed more fully in the following section.

The Macintosh II provides two models for representing color. The simplest graphics
model, used by the original QuickDraw software, represents each pixel on the ~creen
as a single bit in memory. As a single bit can have two values, 0 or 1, a pixel mapped
to a single bit can have two values: off or on (white or black on the Macintosh
screen). To produce color graphics, more bits per pixel are required. If 2 bits are
available per pixel, 22 colors can be displayed; with 4 bits per pixel, z4 or 16 colors
can be displayed; and 8 bits per pixel allow z8 or 256 colors. Color QuickDraw is
designed to support as many as 48 bits of color information per pixel, providing a
theoretical total of 248 colors.

On the Macintosh II, these bits are stored in RAM on a video card rather than in the
main memory of the computer. Thus the quality of the graphics depends on the
capabilties of the video card. Each pixel will usually have 4 or 8 bits of color data per
pixel (that is, 16 or 256 colors), depending on the video card. A color lookup-table
mechanism is provided (by the Color Manager) to allow absolute RGB colors to be
mapped to the 4- or 8-bit colors actually supported in hardware.

Color 99

Color principles
The primary colors used in computer graphics-red, blue, and green-are called the
additive primaries. On a video screen, three kinds of phosphors produce light of
the primary colors that add together to produce the desired color.

For color video, a separate signal is generated for each of the primary colors. This
approach is called RGB (red, green, blue). If the signal for each color has just two
states (off and on), the display will have eight possible colors, as follows:

Red Green Blue Result

Black

On Red

On Green

On Blue

On On Yellow

On On Magenta

On On Cyan

On On On White

Such a display requires three bits of memory for each dot on the screen, three times
as much as a black-and-white display. Additional bits per pixel make possible more
colors; for example, 6 bits per pixel (2 per color) gives 4 possible intensities for each
color, for a total of 64 possible colors. To allow for flexibility, the screen buffer on ·
the Macintosh II has been moved onto the video card. On the standard Macintosh II
video card, up to eight bits per pixel are provided, allowing for 256 colors.

In Color QuickDraw, colors are represented in terms of RGB space. These
components can be visualized as a three-dimensional Cartesian space, as shown in
Figure 5-11.

Three 16-bit integers may be used to describe a single pixel. The additive RGB color
is the sum of the three components. A color is displayed as black if all three
components have a value equal to 0, and white if all the components have the
maximum value of 65535. Values between these two extremes can be combined to
yield all the possible colors for a given device. The Color Picker package allows the
user to experiment with the possible color combinations. (This package can also be
incorporated into individual applications.)

100 Chapter 5: Macintosh Graphics

Blue=
0,0,65535

Black= •
0,0,0

Figure 5-11
RGB space

White=
65535,65535.65535

• • • "'- Shades of
gray

Green=
0,65535,0

As we've mentioned, Color QuickDraw supports the definition of as many as z48
colors. The actual colors used for a given application will be a subset of the possible
colors. When used with the Macintosh II video card, Color QuickDraw can be used to
display up to 256 colors or shades of gray on the screen at once.

Color QuickDraw stores RGB components in a color lookup table, supported by the
Color Manager. QuickDraw specifies an RGB value (or absolute color value) in RGB
space. This color is independent of the display device being used. The color table
maps this value to a pixel value (or concrete color value), a representation of the
absolute color in terms of the current display device.

The Color Manager performs a color-table lookup by building a table of all possible
RGB values. For each position in the table, it selects the closest match available on
the current display device. Each drawing routine converts the source and destination
pixels to their RGB components, performs an operation or comparison on the
components to provide a new RGB value for the destination, and then assigns the
destination a pixel value closest to the calculated RGB value.

Color 101

Fonts
On the Macintosh, text is displayed as graphics. That is, QuickDraw graphics
routines actually draw the text on the screen, as described in the previous section.
The Macintosh Font Manager supports the use of various character fonts by
QuickDraw; whenever QuickDraw needs to do anything with text, it requests
information from the Font Manager about the characters. The Font Manager
performs any necessary calculations and returns the information to QuickDraw,
which then draws the characters. The Font Manager may also need to communicate
with the device driver of the device on which the characters are being drawn or
printed. These interactions are sketched out in Figure 5-12.

QuickDraw

Font
Manager

Device Driver

Figure 5-12
Communication between the Font Manager and QulckDraw

A foni means the complete set of characters of one typeface. Every font has a name
(such as Helvetica); the font name is what identifies a font in an application's Font
menu. Fonts are identified internally by a font number.

102 Chapter 5: Macintosh Graphics

The size of the characters, called the font size, is given in points. Here this term
doesn't have the same meaning as the "point" that's an intersection of lines on the
QuickDraw coordinate plane, but instead it is a typographical term that stands for
approximately 1/72 of an inch. The font size measures the distance between the
ascent line of one line of text and the ascent line of the next line of single-spaced text
(see Figure 5-13). Theoretically, the size may range from 1 point to 127 points.
However, the practical font size limit for a full font is about 40 points.

•> Note: The actual font size on a particular output device may be slightly different
from what it would be in normal typography. Also be aware that two fonts with the
same font size may not actually be the same size on the screen. The font size is
more useful for distinguishing different sizes within the same font; this is true
even in typography.

Font
size

Leading

Figure 5-13
Font size

Ascent line

Base line

Descent line

The leading is the amount of blank space to draw between lines of single-spaced
text-that is, the distance between the descent line of one line of text and the ascent
line of the next line of text.

Fonts and resources
Fonts are stored as resources in resource files; the Font Manager calls the Resource
Manager to read a font into memory. Fonts known to the system are stored in the
system resource file (by using the Font/DA Mover). Customized fonts may also be
included in an application's resource file or even in the resource file for a document
(For a description of resources and resource files, refer to Chapter 4.)

Every size of a font is stored as a separate resource, and any number of sizes of a
single font may be stored in a resource file. The resource type for a font is 'FONT' or
'NFNT'.

Fonts 103

Font resources contain a separate bit image for every character in the font. For this
reason, fonts occupy a large amount of storage: a 12-point font typically occupies
about 3K bytes, and a 24-point font, about lOK bytes. Fonts for use on a high
resolution output device such as the I.aserWriter can take up four times as much space
as that (up to 32K bytes). Fonts are normally purgeable, which means they may be
removed from the heap when space is required by the Memory Manager.

In the 64K ROM version of the Font Manager, a font ('FONT' resource) usually doesn't
include stylistic variations, such as bold and italic. That is, fonts are defined in the
plain style and stylistic variations are applied to them by QuickDraw. For example,
the italic style simply slants the plain characters.

In the 128K version of the Macintosh ROM, the definition of a font was broadened to
include stylistic variations. That is, a separate font ('NFNT' resource) can be defined
for certain stylistic variations of a particular typeface, such as Helvetica or Times.
The set of available fonts for a given typeface is known as a font family. Font families
allow a greater number of fonts than was possible with the 64K ROM version of the
Font Manager. They also provide some new features: fractional character widths
(character widths expressed as fixed-point numbers rather than simple integers),
and the option of disabling font scaling for improved speed and legibility. (Font
scaling is the derivation of a particular font size from a font of another size.)

A font family allows QuickDraw to use an actual font instead of modifying a plain
font, thereby improving speed and readability. For example, suppose the user
selects a phrase in 12-point Times Roman and chooses the italic style from a menu.
QuickDraw asks the Font Manager for an italic Times, and, assuming the proper font
resources are available, the Font Manager returns a 12-point Times Italic font.
QuickDraw can then draw the phrase from an actual italic font rather than having to
slant the plain font (QuickDraw will still perform the standard stylistic variations if
they're not available as actual fonts.)

Intrinsic fonts are fonts whose characteristics are entirely defined in a 'FONT' or
'NFNT' font resource. The plain-style font of any family is an intrinsic font. Other
styles may or may not be intrinsic. An intrinsic font can be used by QuickDraw or the
I.aserWriter without modification. Derived fonts are fonts whose characteristics are
partially determined by modifying an intrinsic font. A derived font might be one
whose characters are scaled from an intrinsic font to achieve a desired size or slanted
to achieve an italic style.

As we've stated, information about fonts is stored as resources of type 'FONT' or
'NFNT'. The information about a font family is stored as a resource of type 'FOND'.
The 'FOND' resource includes the resource IDs of all the fonts in the family.

•> 64K ROM note: The 64K ROM can only handle 'FONT' resources; it ignores
resources of type 'NFNT' and 'FOND'.

104 Chapter 5: Macintosh Graphics

When QuickDraw requests a font, the Font Manager first looks for a 'FOND' resource
matching the ID of the requested font or font family. If it finds one, it searches the
family record's font association table for an 'NFNT' or 'FONT' resource matching
the requested style and size. If it can match the size but not the style, it returns a font
that matches as many properties as possible, giving priority first to italic, then to
bold. Quickdraw must then add any additional stylistic variations that are needed.

If the Font Manager can't find a 'FOND' resource, it looks for a 'FONT' resource with
the requested font number and size. (It doesn't look for a 'NFNT' resource since these
occur only in conjunction with 'FOND' resources.)

If the Font Manager cannot find a font for a particular style, the Font Manager and
QuickDraw derive a font, as in the 64K ROM version.

•:• 64K ROM note: In the 64K ROM version of the Font Manager, font numbers are
limited to the range 0 to 255. Therefore, only font families with family numbers in
this range are recognized by the 64K ROM version of the Font Manager. All fonts
with family numbers from 0 through 255 are stored as resources of type 'FONT', so
that the 64K ROM's version of the Font Manager can recognize them.

An application can also use the 'NFNT' resource type to mask all but plain fonts from
appearing in a font menu. In this way, the system resource file can contain Times,
Times Italic, Times Bold, and Times Bold Italic, yet only Times will appear on the
Font menu. (The user would choose the Times Italic font by choosing Italic from the
Style menu.)

All new fonts have a corresponding 'FOND' resource. A minimal 'FOND' resource can
be made for a font by using the Font/DA Mover (version 3.0 or later) to copy the font
into a different file that has no font with the same name; the Font/DA Mover will
automatically create an appropriate 'FOND' resource. For details, see the Font
Manager chapter of Volume 4 of Inside Macintosh.

Warning

When a 'FOND' Is present. the Font Manager uses It exclusively to determine
which fonts are available. Fonts should be added to or deleted from the System
file only with a tool like the Font/DA Mover, which correctly updates the 'FOND'
as well as the 'FONT' resource.

Fonts 105

Font names and numbers
Fonts can be accessed by number as well as name. (A list of font numbers is given in
the Font Manager chapters of Inside Macintosh, Volumes 1-3, and the Macintosh
Famtly Toolbox Reference.) When the Font/DA Mover moves a font or font family
into a file in which there's already a font (or font family) with that number (but with a
different name), the new font (or font family) is automatically renumbered.

The system font (font O) is so called because it's the font used by the system (for
drawing menu titles and commands in menus, for example). The name of the system
font is Chicago. The size of text drawn by the system in this font is fixed at 12 points.
(Of course, the system font is different when another writing system is used; for
example, with the Japanese Interface System, the system font is Kyoto 18.)

The application font (font 1) is the font an application will use unless you specify
otherwise. Unlike the system font, the application font isn't a separate font but a
reference to another font-Geneva, by default (The application font number is
determined by a value that you can set in parameter RAM; see "The Control Panel"
section of Chapter 6.)

Characters In a font
A font can consist of up to 255 distinct characters. Every character in a font need not
be defined. (The standard printing characters on the Macintosh and their ASCII
codes are shown in Figure 3-2 in the "Keyboard Events" section of Chapter 3.)

+ Note: Codes $00 through $1F and code $7F are normally nonprinting characters
(see the "Keyboard Events" section of Chapter 3 for details).

In addition to its maximum of 255 characters, every font contains a missing
symbol (0) that's drawn in case of a request to draw a character that's missing from
the font.

Font scaling
If a font is needed in a size that's not available as a resource, the Font Manager takes
the font in an available size and scales it to the requested size.

The information QuickDraw passes to the Font Manager includes the font size and the
scaling factors QuickDraw wants to use. If the requested size isn't available, the Font
Manager looks for a font that's twice the size or half the size, and scales that size. If
there's no font that's twice or half the size, it looks for any other size and scales it If
the font isn't available in any size at all, the Font Manager uses the application font
instead, scaling the font to the size requested. If the application font isn't available,
the Font Manager uses the system font as a last resort, scaling it to the size requested.

106 Chapter 5: Macintosh Graphics

Figure 5-14 shows the effects of font scaling. Scaling looks best when the scaled size is
an even multiple of an available size.

Chicago -- 12 11oint scaled to 1 O point
Chicago -- 12 point scaled to 11 poin1
Chicago -- 12 point
Chicago -- 1 2 point scaled to 13. point
Chicago -- 12 point scitled to 14 point
C:hitago -- 12 poin1 scaled to 1 Si point
ChitiElgo -- 12 point stiElled to 1 6 point
Chicago -- 1 2 point scaled ta 1 7 paint
C:hic:ogo -- 1 2 point sc:oled to 1 H point
Figure 5-14
Effects of font scaling

Font scaling can also be disabled by a program (disabled for display on the screen,
that is, not on the printer). If the Font Manager can't find a font of the requested size
and font scaling is disabled, the Font Manager uses a smaller font closest to the
requested size but uses the widths for the requested size. Thus, QuickDraw draws the
smaller font with the spacing of the larger, requested font. This is generally
preferable to font scaling since it's faster and more readable. Also, it accurately
mirrors the word spacing and line breaks that the document will have when printed,
especially if fractional character widths are used.

Fractional character widths
The use of fractional character widths allows more accurate character placement on
high-resolution output devices such as the LaserWriter. Although QuickDraw cannot
actually draw a letter 3.5 pixels wide, for instance, the Font Manager can store the
locations of characters more accurately than any particular screen can display.

Given exact widths for characters, words, and lines, the LaserWriter can print faster
and give better spacing. A price must be paid, however; since screen characters are
made up of whole pixels, spacing between characters and words will be uneven as the
fractional parts are rounded off. The extent of the distortion depends on the font size
relative to the screen resolution.

For further discussion of printer fonts on the LaserWriter, see the section
"LaserWriter Fonts" at the end of this chapter.

Fonts 107

Format of a font
Each character in a font is defined by bits arranged in rows and columns. This bit
arrangement, which is called a character image, is the image inside each of the
character rectangles, as shown in Figure 5-15.

origin

Character
origin

Character width

Image width

Character width

Image width

Figure 5-15
Character Images

Ascent line

Character
rectangle

Baseline

Descent line

Ascent line

Character
rectangle

Baseline

Descent line

Font
height

Font
height

The baseline is a horizontal line coincident with the bottom of each character,
excluding descenders. The character origin is a point on the baseline used as a
reference location for drawing the character. Conceptually, the character origin is
the point where the graphics pen starts drawing.

108 Chapter 5: Macintosh Graphics

The character rectangle is a rectangle enclosing the character image; its sides are
defined by the image width and the font height:

o The tmage width is the width of the character image, which varies among
characters in the font. It may or may not include space on either side of the
character.

o The font height is the distance from the ascent line to the descent line. The font
height is the same for all characters in the font.

The image width is different from the character width, which is the distance to
move the pen from this character's origin to the next character's origin while
drawing. The character width may be 0, in which case the following character will be
superimposed onto it (useful for accents, underscores, and so on). Characters whose
image width is 0, such as a space, can have a nonzero character width. Characters in
a proportional font have character widths proportional to their image width,
whereas characters in a fixed-width font all have the same character width.

Characters can kern; that is, they can overlap adjacent characters. They character
in Figure 5-15 doesn't kern, but the/character kerns left.

Every font has a bit image that contains a complete sequence of all its character
images (see Figure 5-16). The number of rows in the bit image is equivalent to the
font height. The character images in the font are stored in the bit image as though the
characters were laid out horizontally (in ASCII order, by convention) along a
common baseline.

I
Font
height

L
Figure 5-16
Partial bit Image for a font

Fonts 109

Using non-Roman writing systems
Roman writing systems, or scripts, are writing systems whose alphabets have
evolved from Latin. Non-Roman writing systems, such as Japanese, Chinese, and
Arabic, have quite different characteristics. For example, Roman scripts generally
have less than 256 characters, whereas the Japanese language utilizes more than
40,000. Characters of Roman scripts are relatively independent of each other, but
Arabic characters change form depending on surrounding characters.

The Script Manager is a set of extensions to the Macintosh Toolbox and Operating
System that enables applications to function correctly with non-Roman writing
systems, such as Japanese, Chinese, Korean, Arabic, Hebrew, and Indian scripts, as
well as with Roman (or Latin-based) alphabets, such as English, French, and
German. The Script Manager provides standard, easy-to-use tools for the
sophisticated manipulation of ordinary text and makes it easy to translate an
application into another writing system. The Script Manager is built into the ROMs of
the Macintosh SE and Macintosh II; it is back-fitted to previous Macintosh models
via the system resource file. Script Manager capabilities make the Macintosh the first
truly international machine.

Most applications do not need to call the Script Manager routines directly, since they
can handle text by means of TextEdit, which functions correctly with the Script
Manager. Applications that need to call the Script Manager routines are those that
directly manipulate text, such as word processors or programs that parse text.

•:• Note: The process of adapting an application to different languages, called
localization, is made easier if certain principles are kept in mind when the
application is written. General guidelines for writing applications that are easy to
localize are presented in Human Interface Guidelines: The Apple Desktop
Interface.

For example, Figure 5-17 shows how the Key Caps desk accessory looks with Arabic
script. (This desk accessory is the same for all systems; it automatically displays
keyboard characters in the current script system.)

Figure 5-17
Key Caps bTarabiyya

110 Chapter 5: Macintosh Graphics

The Script Manager is the low-level software that enables Macintosh applications to
work with such different scripts. In order for an application to use a particular script,
a script interface system to support that script must also be present. All the
currently available script interface systems are written by Apple. The Macintosh
normally uses the Roman script, so the Roman Interface System CRIS) is always
present.

At this writing, script interface systems are also available for Japanese, Chinese,
Arabic, and Hebrew. The Japanese Interface System (also called KanjiTalk) is based
in ROM in machines sold in Japan (otherwise, it is based in RAM). The Kanji ROMs
differ from the Macintosh Plus ROMs only in that the Japanese font is built in.

The Script Manager uses established International Standards Organization OSO)
conventions for the representation of Arabic and Hebrew characters.

A script interface system typically provides the following:

o fonts for the target language

o keyboard mapping tables

o special routines to perform character input, conversion, sorting, and text
manipulation

o a desk accessory utility for system maintenance and control

The Script Manager calls a script interface system to perform specific procedure calls
for a given script. Figure 5-18 shows how a typical Script Manager call is passed from
an application through the Script Manager to a script interface system and back.

Application

Script Manager

Script Interface
System

Figure 5-18
How a typical Script Manager call is processed

Using non-Roman writing systems 111

In many cases the versatility provided by script interface systems allows applications
to be localized for non-Roman languages with no change at all to their program code
(assuming they were written to permit localization to Roman script). Up to 64
different script interface systems can be installed at one time on the Macintosh,
allowing an application to switch back and forth between different scripts. When
more than one script interface system is installed, an icon symbolizing the script in
use appears at the right side of the menu bar.

The Script Manager provides the functions needed to extend the Macintosh's text
manipulation capabilities beyond any implicit assumptions that would limit it to
Roman scripts. Some of the limitations that have been overcome are

• Character set size. Large character sets, such as Japanese, require two-byte
codes for computer storage in place of the one-byte codes that are sufficient for
Roman scripts. Script Manager routines permit applications to run without
knowing whether one- or two-byte codes are being used.

• Writing direction. The Script Manager provides the capability to write from right
to left, as required by Arabic, Hebrew, and other languages, and to mix right-to
left and left-to-right directions within lines and blocks of text.

• Context dependence. Context dependence means that characters may be
modified by the values of preceding and following characters in the input stream.
In Arabic, for example, many characters change their form depending on other
characters they are next to. Context analysis is usually handled by the appropriate
script interface system under the control of the Script Manager.

• Word demarcation. Words in Roman scripts are generally delimited by spaces
and punctuation marks. In contrast, Japanese scripts may have no word
delimiters, so the Script Manager provides a more sophisticated method of
finding word boundaries. TextEdit calls may be intercepted by the Script
Manager, which calls the appropriate script interface system routines to perform
selection, highlighting, dragging, and word wrapping correctly for the current
script.

• Text justification. Justification (spreading text out to fill a given line width) is
usually performed in Roman text by increasing the size of the interword spaces.
Arabic, however, inserts extension bar characters between joined characters and
widens blank characters to fill any remaining gap. The Script Manager provides
routines that take these alternate justification methods into account when drawing,
measuring, or selecting text.

For more information about the Script Manager, see Chapter 15 of Inside
Macintosh, Volume V. The individual script interface systems such as Kanji or
Arabic are being distributed through APDA (see Appendix B).

112 Chapter 5: Macintosh Graphics

Printing
Because text and graphics are completely integrated, printing from the Macintosh
must address many of the same problems presented by writing to the screen. In fact,
the same high-level QuickDraw calls are used in both printing and in video display.

The Printing Manager is a set of routines and data types that allow a program to use
standard QuickDraw routines to print text or graphics on a printer. The Printing
Manager calls the Printer Driver, a device driver in RAM.

•:• Note: Prior to the 256K ROM, the Printing Manager wasn't in the Macintosh
ROM. To access the Printing Manager routines, programmers had to link their
applications with a library object file or files provided with a Macintosh
development system.

The Printing Manager is designed so that applications don't need to know what kind
of printer is connected to the Macintosh; applications call the same printing
routines, regardless of the printer. This printer independence is possible because the
actual printing code, which is different for different printers, is contained in a
separate printer resource file on the user's disk. The printer resource file contains
a device driver, called the Printer Driver, that communicates between the Printing
Manager and the printer. When the user chooses a printer, the printer's device
driver becomes the active Printer Driver.

The user installs a new printer by making sure the proper printer driver file is present
in the System Folder, and by then selecting the printer with the Chooser desk
accessory, which gives the Printing Manager a new printer resource file. This process
is transparent to applications, and it absolves the application of the need to make
assumptions about the printer type.

Figure 5-19 shows the flow of control for printing on the Macintosh.

Printing 113

Image Writer
hardware

Figure 5-19
Printing overview

Printing Manager

LaserWriter
hardware

Other
printer

The image to be printed is defined in a data structure called a printing grafPort, a
QuickDraw grafPort with additional fields that customize it for printing. The
application prints text and graphics by drawing into the printing port with
QuickDraw, just as if it were drawing on the screen. The Printing Manager installs its
own versions of QuickDraw's low-level drawing routines in the printing grafPort;
higher-level QuickDraw calls drive the printer instead of drawing on the screen.

On the Apple ImageWriter dot-matrix printer, QuickDraw calls are translated
directly into a bit image. On the LaserWriter, QuickDraw calls are translated into the
PostScript page description language, as described in a following section,
"QuickDraw and Postscript."

114 Chapter 5: Macintosh Graphics

The Macintosh user prints a document by choosing the Print command from the
application's File menu; a dialog then requests information such as the print quality
and number of copies. The Page Setup command in the File menu lets the user
specify formatting information, such as the page size, that rarely needs to be
changed and is saved with the document. The Printing Manager provides
applications with two standard dialogs for obtaining page setup and print
information. Figure 5-20 shows the standard Print dialog for the LaserWriter.

LaserWriter <Roter Mai> v4.o ll OK]

Copies:l•I Pages:@ Rll 0 From: D To: D [Cancel J

Couer Page: @ No O First Page 0 Last Page [Help]

Paper Source:@ Paper Cassette O Manual Feed

Figure 5-20
Example Print dlalog

•:• Note: Whenever an application saves a document, it may write an appropriate
print record in the document's resource file. This lets the document remember
its own printing parameters for use the next time it's printed.

The user can also print directly from the Finder by selecting one or more documents
and choosing Print from the Finder's File menu. The Print dialog is then applied to
all of the documents selected, as discussed in a following section, "Printing from the
Finder."

Methods of printing

There are two basic methods of printing documents: immediate printing and
deferred printing. Immediate printing (sometimes called draft printing) means
that the document will be printed immediately. Deferred printing means that
printing may be deferred: the Printing Manager writes out a representation of the
document's printed image to a disk file. This information is later converted into a bit
image and printed.

These two methods are implemented in different ways for different printers. In
immediate printing, QuickDraw calls are converted directly into command codes
the printer understands, which are then immediately used to drive the printer.

o On the ImageWriter, immediate printing is used for printing quick, low-quality
drafts of text documents that are printed straight down the page from top to
bottom and left to right. On the ImageWriter, deferred printing is used for
standard or high-quality printing, which requires more memory.

o On the LaserWriter, immediate printing is the only method used, and it produces
high-quality output. (This typically uses 15K of memory for data and printing
code.)

Printing 115

Deferred printing is a two-stage process. First, the Printing Manager spools your
document; that is, writes out a representation of your document's printed image to a
disk file or to memory. This information is then converted into a bit image and
printed. Spooling and printing are done in separate stages because of memory
considerations. Spooling a document takes only about 3K of memory, but may
require large portions of the application's code and data in memory; printing the
spooled document typically requires from 20K to 40K for the printing code, buffers,
and fonts, but most of the application's code and data are no longer needed. (This
use of the term spooling should not be confused with spooling to a print server
connected over AppleTalk, such as Apple's LaserShare™ spooler.)

•:• Note: Spool files can be identified by their file type ('PFIL') and creator ('PSYS').
The internal format of spool files is private to the Printing Manager and may vary
from one printer to another. This means that spool files destined for one printer
can't be printed on another. In spool files for the ImageWriter, for instance,
each page is stored as a QuickDraw picture.

Normally an application's printing code is a separate program segment that is
loaded into memory during printing and unloaded when printing is finished (see
"The Segment Loader" section of Chapter 7).

Printing from the Finder
The Macintosh user can choose to print from the Finder as well as from within an
application. To print a document from the Finder, the user selects the document's
icon and chooses the Print command from the File menu. You can select more than
one document (by Shift-clicking or dragging) or even a document and an
application-for instance, when printing a 'TEXT' file using an application other
than its creator.

When the Print command is chosen, the Finder starts up the application and passes
information to it indicating that the document is to be printed rather than opened
(this is the Finder information discussed in Chapter 6). The application must
verify that it can print the document before proceeding. It should then call the Print
dialog. If the user selected more than one document, the same Print dialog can be
applied to all of the documents.

116 Chapter 5: Macintosh Graphics

QuickDraw and Postscript
PostScript is an industry-standard page description language used to drive the
LaserWriter and LaserWriter Plus. When printing to the LaserWriter, QuickDraw calls
are translated into Postscript by the LaserWriter driver. Figure 5-21 shows the
relationship between the Macintosh printing software and the LaserWriter.

Macintosh

LaserWriter

Figure 5-21

Apple Talk
network

Application

Printing
Manager

LaserWrlter
Driver

Postscript
(In LaserWriter ROM)

LaserWrlter hardware

Printing on the LaserWrlter

PostScript offers many capabilities not present in QuickDraw; it's possible to send
Postscript commands directly to the LaserWriter, as explained in the LaserWrlter
Reference manual.

Printing 117

LaserWriter fonts
The resolution of the Macintosh Plus screen is about 72 dots per irich. In contrast,
the LaserWriter can print 300 dots per inch. Fonts designed to be displayed on the
Macintosh screen are known as screen fonts; fonts designed for printing on the
LaserWriter are known as printer fonts.

Screen fonts are the ordinary Macintosh fonts we've already described; they're
defined as bit maps, where a bit image of each character in the font is stored in
memory. When the user types a character, each pixel of the character is drawn on the
screen as specified by the corresponding bit in memory. The bit-mapped approach
works well for a screen display, but storing a bit image for a single font requires about
30K. Enabling the user to freely specify different sizes of characters requires either a
bit image for each size or a mechanism for enlarging and reducing bit images. (As
indicated earlier in this chapter, both methods are used by the Macintosh.)

LaserWriter printer fonts are not defined as bit images. The image of a character is
instead defined as a series of Bezier curves, or B-splines. These curves are stored as
mathematical constructs that form the outline of the character. The LaserWriter
printer draws this outline and then simply fills it.

This type of character definition has several advantages:

o Drawing the image of the character takes much less time than constructing the
image from a bit map.

o The sizes of the curves are easily reduced or enlarged, producing a clear image of
the character, regardless of its size.

o Because one definition specifies all sizes of a character, less memory is required to
store many sizes of a font.

o The definition is device-independent and can be reproduced on any PostScript
printer or phototypesetter. The resolution of the output device determines the
quality of the printed image.

The LaserWriter has a number of built-in printer font families in its ROM, including
several intrinsic bold and italic fonts. In addition, the LaserWriter Plus can use fonts
that are downloaded to it. Fonts can be temporarily downloaded either on a per
document basis or permanently downloaded until the printer's power is turned off.
The user can have as many downloadable fonts on the printer as the LaserWriter
Plus's virtual memory allows. Depending on the size of the downloadable font files,
the limit is usually between two and five.

118 Chapter 5: Macintosh Graphics

At the beginning of every document, the LaserWriter Printer Driver asks the
LaserWriter to list all the fonts it has. The driver stores this information in a
temporary font cache. Whenever the driver encounters a new font in a document, it
checks this cache. If the desired font is in the cache, the driver switches the printer to
that font. If it is not, the driver searches the disk(s) on-line for a font file to download
to the printer. If it finds an appropriate printer font, it downloads it to the printer and
enters the font name in the cache.

If the driver does not find a printer font, it gets a bit-mapped version of the font and
downloads that to the printer. At this point, the differences between screen and
printer fonts become painfully obvious. If the user selects a character in a size that is
not defined in the screen font's bit map, QuickDraw attempts to resize the character
by scaling the font, as discussed earlier in this chapter. This may result in distorted
characters, with rough curves and jagged edges. This image is sent to the LaserWriter,
which accurately reproduces the bit map on the printed page. Figure 5-22 shows the
difference in quality between a true printer font and a bit-map font. As in the case of
printer fonts, the font name is entered in the temporary font cache.

36-pt printer f ant
36-pt scaled bit map
Figure 5-22
Effects of font scaling on the LaserWrlter

For more information about printing with the LaserWriter, see the LaserWriter
Reference manual.

This chapter completes the discussion of the Macintosh User Interface Toolbox and
its foundations in resources and graphics. The next chapter describes another aspect
of the Macintosh user interface: the RAM-based system software that provides the
user's interface to some of the functions of the Operating System.

Printing 119

Chapter 6

System
Software

121

This chapter discusses the RAM-based system software that enables the Macintosh to
operate. It begins by describing the contents of the Macintosh System Folder and
explaining how the Macintosh may switch between multiple system folders . It then
describes the operation of the Finder, the application that is responsible for
maintaining the Macintosh desktop and for launching other applications. The
chapter concludes by discussing some other applications and desk accessories that
perform system utility functions on the Macintosh. The System file, which contains
system resources shared by all applications, is discussed separately in Chapter 4,
"Resources."

•:• Note: The term system software is often used in a general sense to include the
Toolbox and Operating System-that is, all of the software that makes the
Macintosh work. Here the term is used in a more restrictive sense to refer only to
the RAM-based software contained in the System Folder.

The System Folder
In order for the Macintosh to start up, it needs certain RAM-based software in
addition to the built-in Toolbox and Operating System. This software is located in
the System Folder on the user's startup disk. (A startup disk, or bootable disk, may
be any disk that contains a system folder.)

In particular, the Macintosh requires a startup application for it to run; ordinarily,
this application is the Finder. The Macintosh also needs the system resource file
(named System) described in Chapter 4. The System file and the Finder are revised
much more frequently than the ROM, and the System file contains newer versions of
many of the ROM routines (through the patch mechanism, discussed earlier).

It's important to note that the Macintosh System Folder is unive~a/: the same System
file and Finder are used for all Macintosh computers.

Contents of the System Folder

The System Folder is actually defined as the folder (that is, the directory) containing
both a System file and a Finder file . This folder need not be named System Folder
since the Macintosh uses the first such folder that it encounters-that is, it uses the
first folder that contains a System file and a Finder. In searching for such a folder, the
Macintosh looks for a startup disk, first in the internal drive, and then in an external
hard disk or floppy drive. A setting stored in battery-powered parameter RAM tells
the Macintosh which disk is the preferred startup disk. You can change this setting
with the Control Panel desk accessory.

122 Chapter 6: System Software

The files in the System Folder include the following:

o System file

o Finder file

o Printing resources, including LaserWriter, LaserPrep, ImageWriter, and
AppleTalk ImageWriter files

o Files used by desk accessories: Scrapbook File and.Note Pad File

o Clipboard File for cutting and pasting across applications

o Control Panel device files: Keyboard, Mouse, and additional files on the
Macintosh II (see "The Control Panel" section of this chapter)

The System file and printer files were discussed in previous chapters. The Finder is
discussed later in this chapter in the section "The Finder."

Switch-launching: which System Folder Is active?
Because more than one version of the system folder may be on-line at one time, it's
important to understand how the Macintosh decides which system folder is active. If
you launch an application from a disk containing a system folder on a floppy-disk
only system, the Macintosh will normally switch system folders. You can prevent this
switch-launching by holding down the Option key when you start the application.

Switch-launching is done to optimize the system for users who are running the
Macintosh from floppy disks so that the system won't continue asking you to reinsert
the original disk. However, switching system folders is generally undesirable if you
are running from a hard disk. Version 5.0 and later versions of the Finder will not
switch launch from a hard disk unless you hold down the Option key.

You may occasionally want to switch system folders in order to use a System file
configured with particular fonts or desk accessories or to use a script interface system
such as Apple's Kanji Interface System. You can also force the system to switch
system folders by holding down the Option and Command keys and double-clicking
on the Finder icon in the system folder that you wish to make active.

The System Folder 123

The Finder
The Finder is the Macintosh application that maintains the desktop and provides the
user interface to Operating System functions such as moving, copying, and deleting
files, and launching other applications. Figure 6-1 shows the standard Finder screen,
the familiar Macintosh desktop.

Special

HD
12 items 13, 968K in disk

LJ LJ LJ LJ
System Formats Applications MP 'YI

Figure 6-1
The Finder screen

The Finder maintains the graphical desktop and manages files by calling on
QuickDraw and the Macintosh File Manager, described in Chapter 8. In order to
launch other applications, the Finder must also know which applications are
associated with which document files. It does this by maintaining information in an
invisible file called the Desktop file, described later in this chapter.

As mentioned earlier, the Finder is not the Macintosh Operating System; it's only an
application. When you launch another application, the standard version of the
Finder is no longer present; when you quit from another application, the Finder is
relaunched. Ordinarily, the Finder is designated as the startup application, that is,
the application that takes control when the system is first started up. The user can
change the boot-blocks entry that designates the startup application via the Finder's
Set Startup menu item. The Finder is also normally designated as the shell
application, that is, the application that takes control when you quit from another
application. (This setting is stored in the shell entry of a volume's boot blocks; see
"Data Organization on Volumes" in Chapter 8.)

124 Chapter 6: System Software

•!• 64K ROM note: In the original 64K ROM (that is, prior to the hierarchical file
system), the user's perceived desktop hierarchy of folders and files is essentially
an illusion maintained by the Finder. In the 128K and 256K ROM versions of the
File Manager, this hierarchy is recorded in the file directory itself, relieving the
Finder of the task of maintaining this information.

Unlike the standard Finder, the MultiFinder option, described below, does remain
present while you are running other applications.

Versions of the Finder
The Finder has been revised many times, generally in tandem with the System file.
The Finder supports an option called MiniFinder, which uses less memory and
therefore may be useful on smaller machines. Finder version 6.0 and later support an
option called MultiFinder, which represents a major step toward the full integration
of the variety of Macintosh applications.

Multi Finder

MultiFinder is a virtual multitasking system available as an option in version 6.0 and
later versions of the Finder. Like the Switcher (discussed later in this chapter),
MultiFinder allows you to have multiple applications open at once, limited only by
the computer's available memory. Unlike the case with the Switcher, applications run
under MultiFinder can all share the same screen. As shown in Figure 6-2, MultiFinder
provides continual access to the Finder, presenting applications within Finder
windows. Clicking in an application's window opens that application.

s File Edit Uiew Special

Outline of Ch . 5

.. ~ .. 1 1 ...• ... L. • .. .1.? •... 1 ... • ... 1... •... 11.~ •... 11 L. • ... J.1 ... 1 L. 1 l.

~ ~ 0 6 l ines/ inch ~ §:] §)
lntroduct ion
Thi s chapter describes the meriostet kremmi s, wi
special emphasis on querulity en d morphel de wnw

S stem Folder
Applications 0§ K available

13 ,9 18K in disk

MacDraw Mao'W' r-it~ MacPaint

Figure 6-2
The MultlFlnder screen

The Finder 125

Great care has been taken to introduce the MultiFfoder functionality without
disturbing the Macintosh programming model. However, as with the Switcher,
certain programming techniques will place an application beyond the pale of
MultiFinder compatibility. In particular, applications that make assumptions about
the size and location of the system and application heaps in memory will not work,
because MultiFinder reallocates memory. (See Chapter 7 for more information
about memory management.)

Launching an application
From the Finder, the Macintosh user launches an application by selecting and
opening the application's resource file itself or by opening a document file that the
application created. By selecting the Print command rather than the Open
command, it's possible to specify that a file should only be printed. It's also possible
to select more than one file to be opened or printed from the Finder; this can be
done by Shift-clicking or dragging.

When the Finder starts up an application, it passes along a list of the documents that
the user has selected to be printed or opened; this information is called the Finder
information. It's then up to the application to access the Finder information and
open or print the documents selected by the user.

If no documents are listed in the Finder information, the application normally starts
up with an empty untitled document on the desktop. If one or more documents are to
be opened, the application should open each document (up to its maximum number
of documents). If a document can be printed and Print was selected instead of Open,
the application should display the standard Print dialog box, print each document,
and quit.

Every application is identified to the Finder by a unique resource type called its
signature; every file also contains two fields called the file type and the creator
field. Signatures and file types identify the relationship between files and the
applications that created them; they work together to enable the user to open or print
a document from the Finder. A document file's creator field is normally set to the
signature of the application that created it. When the user asks the Finder to open or
print a file, the Finder starts up the application whose signature is the file's creator
and passes the file type to the application along with other identifying information,
such as the filename . (Signatures and file types will be explained in more detail in the
next section.)

126 Chapter 6: System Software

Finder-related resources
This section describes some of the !@sources that the Finder uses to keep track of the
relationships between applications, files, and the Macintosh desktop.

To establish the proper interface with the Finder, every application's resource file
must identify the application and provide version information. Most applications
also include resources that provide information about icons and files related to the
application. A document file must provide information identifying its type and the
application that created it.

An application's resource file contains a special resource called the version data of
the application. The resource type of the version data is actually the application's
signature: a unique four-character code identifying the application. The version data
itself is typically a string that gives the name, version number, and creation date of
the application, but it can in fact be any data at all.

When an application creates a file, it sets two fields in the file's Finder Information:
the creator and file type fields. Normally the application sets the creator field to its
own signature, so that the Finder will know which application to launch when the file
is opened. Obe creator '????' is used to indicate files that aren't to be opened or
printed from the Finder, as may be the case for certain data files used by
applications.) The application sets the file type to a four-character code that
identifies the type of file. For example, MPW sets its document files to type 'TEXT'
and creator 'MPS'· (Signatures and custom file types must be registered with
Macintosh Technical Support to ensure uniqueness.)

For each application that it finds, the Finder copies the application's version data
into a resource file named Desktop. The Desktop file is where the Finder looks to
find out about the application to be opened; this file is described in the section "The
Desktop File" later in this chapter.

+ Note: Additional, related resources may be copied into the Desktop file; see the
section "Files and Icons" for more information.

File types

An application may create its own special types of files. When the user chooses Open
from an application's File menu, the application will display (via the Standard File
Package) the names of all files of a specified type or types, regardless of which
application created the files. By using a unique file type for its own files, an
application can ensure that only the names of those files will be displayed for
opening. Some applications will also display all files of a general type, such as 'TEXT'
(ASCII files) or 'PICT' (QuickDraw pictures).

The file type for an application itself is always 'APPL'.

The Finder 127

Files that consist only of text-a stream of extended ASCII characters, with Return
characters at the ends of paragraphs or lines-should be given the standard file type
'TEXT'. This is the type that editors such as MacWrite® or the MPW &litor give to
text-only files they create. Most applications will accept text-only files, regardless of
the file creator. The file's creator field still differentiates various 'TEXT' files so that
the proper application will be called to open or print the file when the user requests
this from the Finder.

Files and icons

For each application, the Finder needs to know the icon to display on the desktop, if
this icon is different from the Finder's default icon for applications (shown in
Figure 6-3). If the application creates its own files, the Finder also needs to know the
icon to display for each type of file the application creates, if this icon is different
from the Finder's default icon for documents.

The Finder learns this information from resources called flle references ('PREF'
resources) in the application's resource file. Each file reference contains two things:
a file type, such as we've just discussed, and an ID number that identifies the icon to
be displayed for that type of me.

Replication ~ D Document

Figure 6-3
The Finder's default Icons

The ID number in a file reference corresponds not to a single icon but to an icon list
in the application's resource file. As shown in Figure 6-4, the icon list consists of two
icons: the actual icon to be displayed on the desktop, and a mask usually consisting
of that icon's outline filled with black. (The relationship between a graphic object
and its mask is touched on in Chapter 5.)

Icon <J ~Mask
Figure 6-4
Icon and mask

A bunclle (resource type 'BNDL') in the application's resource file binds together all
the Finder-related resources. It specifies the application's signature-that is, its
version data-together with the resource IDs of the icon lists, and the resource IDs
for the file references themselves.

128 Chapter 6: System Software

When the Finder first encounters an application, it normally copies the applicai:ion's
version data, bundle, icon lists, and file references from the application's resource
file into the invisible Desktop file mentioned earlier. If there are any resource ID
conflicts between the icon lists and file references in the application's resource file
and those in the Desktop file, the Finder will change those resource IDs in Desktop.
The Finder does this same resource copying and ID conflict resolution when you
transfer an application to another volume.

The Desktop file

Most of the information used by the Finder is kept in a resource file named Desktop.
(To ensure that it won't be tampered with, the Finder doesn't display this file on the
Macintosh desktop.)

With nonhierarchical volumes, the Finder enumerates the entire volume; this means
that it locates a particular application by scanning through all the file objects in
memory. With hierarchical volumes, the Finder searches only open folders, so
there's no guarantee that it will see the application. For this reason, the Finder also
maintains an application list in the Desktop file so that applications can be launched
from their documents. For each application in the list, an entry is maintained that
includes the name and signature of the application, as well as the directory ID of the
folder containing it.

Whenever an application is moved or renamed, its old entry in the application list is
removed, and a new entry is added to the top of the list. The list is rebuilt when the
Finder rebuilds the desktop; this makes the process of rebuilding the desktop much
slower since the entire volume must be scanned.

+ Note: The user can control this search order in the sense that the most recently
moved or added applications will be at the top of the list and will be matched first.

The Desktop file ordinarily retains information for every application that has ever
been on a disk. On a hard disk, this may result in some congestion over time, slowing
down the process of launching an application. You can rebuild a volume's Desktop
file by holding down the Command and Option keys when the disk is first mounted.

Note, however, that rebuilding the desktop will remove all Finder Get Info
comments. In addition, on 400K nonhierarchical volumes your folders will also be
renamed. This results because on 400K nonhierarchical volumes the Desktop file
stores some file and folder information in resources known as file objects (resources
of type 'FOBJ'). On hierarchical volumes, the only file data remaining in the Desktop
file are the Get Info comments created via the Finder's Get Info dialog; all the other
information about files and folders is maintained by the File Manager. (On
nonhierarchical volumes, folders do not represent directories as they do on
hierarchical volumes.) For more details about the file system, see the section
"Overview of Files and Volumes" in Chapter 8.

The Finder 129

System desk accessories
A pair of desk accessories in the system resource file, the Control Panel and the
Chooser, work together so that the user can access peripheral devices such as
printers and file servers. The Control Panel is also where the user sets a number of
preferences that are stored in the battery-powered parameter RAM. On the
Macintosh II, the Color Picker desk accessory allows the user to select colors for the
display.

The Control Panel

The Control Panel desk accessory, pictured in Figure 6-5, controls a variety of
software and hardware seltings.

Keyboard

... ,
~

Mouse

3.0

Figure 6-5

Rate of Inser tion
Point Bl inking

DE-sktop Pattern 0 @ 0
Slow Fas t

Menu Blinking Time C9

'I ~
18:04:12 6 -

5 -
0 12 hr . @ 24 hr . 4 -.

3

0 00 @ Date lliiJ 2 -
I -

Off I 2 3 4123187 0 -

RAM Cach• [ill[] !;) @ 0 Speaker

On Off Volume

The Control Panel window

As of version 4.1 of the System file, a new, extensible Control Panel has been added.
As shown in Figure 6-5, a scrollable list of icons appears in the left quarter of the
window. Selecting an icon brings up a display of the controls for that icon on the
right side of the panel.

130 Chapter 6: System Software

Each controllable item is controlled by a Control Panel device resource, called a
'cdev'. Each 'cdev' resource is contained in a separate resource file in the System
Folder. The following 'cdev' files are supplied by Apple; they're listed in order of
appearance:

General
Color Card
Keyboard
Monitors
Mouse
Sound
Startup Device

All Macintosh computers
Macintosh II only
All Macintosh computers
Macintosh II only
All Macintosh computers
Macintosh II only
Macintosh SE and Macintosh II

When the Control Panel is first brought up, it scans the System Folder for resource
files of type 'cdev'. Upon finding a 'cdev' file, it takes the file's icon and name and
adds it to the scrollable icon list.

Parameter RAM settings

Various user settings need to be preserved when the Macintosh is off so that they will
still be present at the next system startup. This information is kept in parameter RAM,
located in the computer's dock chip, which is discussed in Chapter 10. The clock
chip is powered by a battery when the system is off, thereby preserving all the settings
stored in it. You can change most of the values in parameter RAM by using the
Control Panel desk accessory.

The date and time setting is also maintained by the clock chip. It's stored as the
number of seconds since "antiquity"-midnight January 1, 1904-and is updated
every second. (You can set the date and time with the Alarm Clock desk accessory as
well as with the Control Panel.)

The default values contained in the parameter RAM are shown in Table 6-1.

Table 6-1
Parameter RAM settings

Parameter

Information used by the AppleTalk Manager
Node ID hint for modem port
Node ID hint for printer port

Information indicating which device or
devices may use each of the serial ports

Modem port configuration

Printer port configuration

Default value and meaning

0
0

0 (both ports)

9600 baud, 8 data bits,
2 stop bits, no parity*

Same as for modem port

(continued)

System desk accessories 131

Table 6-1 (continued)
Parameter RAM settings

Parameter

Printer connection: indicates whether
the printer (if any) is connected to the
printer port (O) or the modem port (1)

Alarm setting (in seconds since
midnight, January 1, 1904)

Application font number minus 1

Auto-key threshold: the length of time the key
must be held down before it begins to repeat

Auto-key rate: the rate of the repeat when a
character key is held down

Speaker volume: ranges from silent (O) to loud (7)

Double-click time: the greatest interval between
a mouse-up and mouse-down event that would
qualify two mouse clicks as a double-click

Caret-blink time: the interval between blinks
of the caret that marks the insertion point in text

Mouse scaling (described in "The Mouse"
section in Chapter 10)

Preferred system startup disk: indicates
whether the preferred startup disk is in the
internal (0) or the external (1) drive

Menu blink: a value from 0 to 3 designating
how many times a menu item will blink when
it's chosen

Default value and meaning

0 (printer port)

0 (midnight, January 1, 1904)

2 (Geneva)t

6 (24 ticks, or sixtieths of a
second)

3 (6 ticks)

3 (medium)*

8 (32 ticks)

8 (32 ticks)

1 (on)

0 (internal drive)S

3

• These terms are explained in the "Serial Communication» section of Chapter 9.
t See the Font Manager chapter of Inside Macintosh, Volumes 1-3, for a list of font numbers.
*The speaker volume can also be changed by the Sound Driver, without affecting the setting

in parameter RAM, so it's possible for the actual volume to be different from the Control
Panel setting.

§ If there's any problem using the disk in the specified drive, the other drive will be used.

Note that the AppleTalk information that was formerly set by the Control Panel is now
set by the Chooser, described in the next section.

132 Chapter 6: System Software

The Chooser
The Chooser is a desk accessory that provides a standard interface so that devices can
solicit and accept choices from the user. It allows new device drivers to prompt the
user for choices such as which serial port to use, which AppleTalk zone to
communicate with, and which LaserWriter to use. The Chooser window is pictured in
Figure 6-6.

~~
AppleTalk I... 1mage'w'riter

iiiiii
~

14¥44@

AppleT al k Zones :

EDDIE S I
EDDIES2
EDDIES3

EDDIE S5

Figure 6-6
The Chooser window

Chooser
Select a LaserWr iter:

Zi ppy
Te chnoWhich
Frank Ll oyd Wri te

App l eT alk
@Ac ti ve

O Inactive
3

.
1

Under the Chooser, each device is represented by a device resource file in the
System Folder on the user's system startup disk. (This is an extension of the concept
of printer resource files, described in Chapter 4.) The Chooser accepts three types of
device resource files to identify different kinds of devices:

Fiie type

'PRES'
1PRER1

1RDEV1

Device type

Serial printer (including the LaserWriter and ImageWriter)
Nonserial printer
Other devices

In addition to any actual driver code, each device resource file of type 1PRER1 or
1RDEV1 contains a set of resources that tells the Chooser how to handle the device.
These resources include a device package (resource type 'PACK') that contains the
driver code.

Each device type should have a distinctive icon, since this may be the only way that
devices are identified in the Chooser's screen display.

Device resource files of type 'PRES' (serial printers) contain only the driver code,
without any additional resources. The configuration of such devices is implemented
entirely by the Chooser.

System desk accessories 133

The Chooser relies heavily on the List Manager for creating, displaying, and
manipulating possible user selections.

Operation of the Chooser

When the user selects the Chooser from the desk accessory menu, the Chooser first
searches the System Folder of the startup disk for device resource files (resource files
of type 'PRER', 'PRES', or 'RDEV'). For each one that it finds, it opens the file, fetches
the device's icon, displays it in the Chooser's window, and closes the file. If the
device is an AppleTalk device and AppleTalk is not connected, the Chooser grays the
device's icon.

When the user selects a device icon that is not grayed, the Chooser reopens the
corresponding device resource file. It then does the following:

o If the device is type 'PRER' or 'PRES', it sets the current printer type to that device.

o It labels the device's list box with the string in the resource 'STR ' with an ID of
-4091.

o If the device is a local printer, the Chooser fills its list box with the two icons for the
printer port and modem port serial drivers. Later it will record the user's choice
(in low memory and parameter RAM).

o If the device is an AppleTalk device, the Chooser initiates a routine that
interrogates the current AppleTalk zone for all devices of the type specified. As
responses arrive, the Chooser updates the list box.

o Whenever the user selects or deselects a device, the Chooser will call the device
package with the appropriate message.

When the Chooser is deactivated, it updates the device resource file and flushes the
system startup volume.

When the user chooses a different device type icon or closes the Chooser, the
Chooser calls the device with the terminate message. After this check, the Chooser
closes the device resource file if the device is not the current printer and flushes the

,system startup volume.

The Color Picker

On the Macintosh II, the Color Picker desk accessory allows applications to present a
standard user interface for selecting colors. Once the user chooses a color, the Color
Picker returns it to the application, leaving the graphics device in its original state.
The application can then do what it likes with the color selection, with as much or as
little attention to the available graphics hardware as it deems appropriate. On most
hardware, such as Apple's color graphics card, the Color Picker takes advantage of
the hardware, displaying the exact color by borrowing a color table entry. (For more
information about the color table, see the section "Color" in Chapter 5.)

134 Chapter 6: System Software

Figure 6-7 shows the Color Picker window.

Pick a color, any color ...

Hue fEDI [;)
Saturation 56174 [;)
Brightness 57344 [;)

Red 57344 [;)
Green 40960 [;)

n J) [Cancel J Blue 8192 [;) OK

Figure 6-7
Color Picker dialog box

The Color Picker dialog allows the user to pick a color from the entire range that the
hardware can produce. The color wheel allows users to select a given hue and
saturation simultaneously. The center of the wheel is zero saturation (no hue mixed
in); the outer boundary is maximum saturation (pure hues). The scroll bar controls
the brightness of the wheel. The range of the values is 0 to 65535; larger values are
clipped to the maximum after the user exits the field.

The Switcher
Like the new MultiFinder, the Switcher is a program that allows multiple applications
to reside in memory at the same time. The Switcher assumes some of the functions
normally performed by the Finder and Segment Loader (described in the next
chapter), supervising the selection and launching of applications. By thus
interposing itself between applications and the Operating System, the Switcher allows
a number of applications to coexist in memory without the applications being aware
of the difference.

The Switcher 135

The user launches the Switcher like an application; the Switcher changes the
allocation of memory and then launches other applications selected by the user.
Figure 6-8 shows the Switcher screen.

Finder

MacWri te

• MacPaint

Figure 6-8
Switcher screen

Double-click here to launch an application ...

To applications that run under it, the Switcher appears in the guise of a desk
accessory. Each application that runs under the Switcher runs normally, as if it were
in complete control of the machine, because the Switcher intercepts certain calls to
the Operating System so that it can control the allocation of memory to each
program.

At installation time, as pictured in Figure 6-8, the Switcher lets you allocate memory
space for each application. The Switcher partitions the total Macintosh application
space into separate blocks for each application. It gives each application its own
small world, creating a separate stack and heap for each. Figure 6-9 shows a memory
map of the application space when four applications are running under the Switcher.
(The stack and the heap are discussed in the next chapter. You may want to refer to
Figure 6-9 again after reading that discussion.)

136 Chapter 6: System Software

Application 1

Application 2

Application 3

Application 4

Figure 6-9
Switcher's use of memory

I
Application

space

Note that to an individual application, running under the Switcher may be like
running on a Macintosh with 128K of RAM, and this can affect performance. (A
special 'SIZE' resource allows applications to set their own preferred and minimum
memory sizes.) The Switcher works, as it were, with mirrors, and unpredictable
things will happen if an application doesn't do things (especially memory
management) in the expected way. The wise user will recognize this and save changes
more frequently when running under the Switcher than otherwise.

In the last four chapters, we've seen a broad outline of the higher-level parts of the
Macintosh system. The next two chapters delve into some important lower-level
topics: how the Macintosh Operating System dynamically manages the computer's
built-in volatile memory and how it manages disk storage.

The Switcher 137

Chapter 7

Macintosh
Memory

139

Built-in memory in the Macintosh consists of RAM and ROM. As described in
Chapter 2, the Macintosh ROM contains the Macintosh Toolbox and Operating
System. Certain devices within the computer also have their own RAM and ROM.

This chapter discusses the organization and management of memory on the
Macintosh. On the various Macintosh machines, the amount of RAM memory can
range from 128K on the original Macintosh to a theoretical limit of 2 gigabytes on the
Macintosh II. The Macintosh Memory Manager enables a program to run with any
size of memory by dynamically loading pieces of a program into and out of memory
and moving them within memory as needed.

Memory organization
RAM is the working memory of the system. Up to 4 megabytes (4 MB) of RAM can be
installed on the Macintosh Plus and the Macintosh SE; the standard configuration is
1 MB. As of this writing, up to 8 MB can be accommodated on the Macintosh II main
circuit board (the theoretical limit is 128 MB, as higher-density RAMs become
available), and more than 2 gigabytes (2 GB) on expansion cards. For information
about adding more memory to your machine, see Chapter 10 and the Macintosh
Family Hardware Reference.

Each time you turn on the computer, the system software does a memory test and
determines how much RAM is present in the machine.

The organization of the Macintosh RAM is shown in Figure 7-1.

•:• Note: The Macintosh SE memory map is identical to the memory map pictured in
Figure 7-1, except that the alternate sound buffer has been eliminated. On the
Macintosh II, the sound buffer and screen buffers have been eliminated altogether,
as explained below.

140 Chapter 7: Macintosh Memory

Application
space

Figure 7-1

High memory

Main sound buffer

System Error Handler use

Main screen buffer

Altemate 'sound buffer

Alternate screen buffer

Jump table

Application parameters
r-------------- ---- -----

Application globals
r-----------------------

QuickDraw globals r-----------------------j Stack

rl----------------------
Appllcatlon heap

System heap

System globals

Exception vectors

Low memory

Macintosh Plus RAM allocation

The first 256 bytes of RAM (starting from low memory) are used by the MC68000
microprocessor as exception vectors; these are the addresses of the routines that
gain control whenever an exception such as an interrupt or a trap occurs. (The
Macintosh Operating System and Toolbox routines are implemented as 68000
exceptions; interrupts and traps are explained in Chapter 2.)

The next 2K bytes are used for the system global variables, immediately followed by
the system heap, which contains resources used by the system.

Memory organization 141

The application space is memory available for dynamic allocation by applications.
Most of the application space is shared between the stack and the application heap,
with the heap growing forward from the bottom of the space and the stack growing
backward from the top. ('The stack and the heap are explained in the next section of
this chapter.) The remainder of the application space is occupied by QuickDraw's
global variables, the application's global variables, and the application's jump
table. ('The jump table is discussed in "The Segment Loader" section of this chapter.)

On the Macintosh Plus and Macintosh SE, the following hardware devices also share
the use of RAM with the 68000:

o The video display, which reads the bit image to be displayed on the Macintosh
screen from one of two screen buffers. (Note that the alternate screen buffer is
only present if it's being used; normally, the application space begins below the
main screen buffer.)

o The sound generator, which reads its information from a sound buffer.

o The disk speed controller for 400K floppy disk drives, which shares its data space
with the sound buffer.

The sound buffer is near the top end of the Macintosh RAM. The area between the
main screen and sound buffers is used by the System Error Handler. Some special
applications may also use the alternate screen buffer on the Macintosh Plus and
Macintosh SE and the alternate sound buffer on the Macintosh Plus. For more
information about these devices, see the discussion of hardware in Chapter 10.

On the Macintosh II, things are done differently (see Figure 7-2). The video interface
is through NuBus to a video card, and the video screen buffers do not appear in
system RAM. Instead, they are located on a card in the NuBus slot address space, as
explained in the "Address Space" section of Chapter 10. Macintosh II sound is also
not mapped into RAM: the sound buffer is on the custom Apple Sound Chip rather
than in main memory.

142 Chapter 7: Macintosh Memory

Application
space

Figure 7-2

High memory

Low memory

Macintosh II RAM Allocation

Memory addresses and screen size differ on the various Macintoshes. The Macintosh
software has been designed to allow a program to run without modification on any
Macintosh. To maintain software compatibility across the Macintosh line and to
allow for future changes to the hardware, software developers should always use the
Toolbox and Operating System routines. For referencing hardware, a set of low
memory global variables is available; by using these variables, a program never
needs to use absolute addresses, which would tie it down to a particular machine.
(Complete guidelines for software development can be found in the five volumes of
Instde Mactntosh.

When programmers need to use addresses in their code, they specify them as relative
offsets from the appropriate global variables. For instance, a global variable named
ScrnBase always points to the beginning of the screen buffer in memory, no matter
how much memory is installed in the Macintosh-indeed, without the program
having to know whether the screen buffer is even in main memory at all. (On the
Macintosh II, the RAM for the screen buffer is located on a separate video card.) Of
course, writing directly to the screen buffer in this fashion would only be necessary if
a program were bypassing QuickDraw for its graphic operations.

Memory organization 143

Macintosh memory management
Memory management is the allocation and deallocation of objects in memory.
These objects may be a program's code, data, or other resources needed by the
program or system. Macintosh memory management means that only what is being
used needs to be in memory, making it possible for large programs to run on
machines with limited memory. (Even on a Macintosh Plus or larger machine,
programs may be running in only 128K of memory-for instance, when they are
running under the Switcher or with a RAM cache.)

Memory management is one of the most powerful features of the Macintosh system,
but it can also be one of the most difficult to program.

The stack and the heap
A running program can dynamically allocate and release memory in two places: the
stack or the heap. The stack is an area of memory that can grow or shrink at one end
while the other end remains fixed, as shown in Figure 7-3. This means that space on
the stack is always allocated and released in last-in, first-out (LIFO) order: the last
item allocated is always the first to be released. Thus, the allocated area of the stack is
always contiguous. Space is released only at the top of the stack, never in the middle,
so there can never be any unallocated holes in the stack.

Figure 7-3
The stack

Low memory i Low memory : Low memory

D Stock D Free space

By convention, the stack grows from high toward low memory addresses. The end of
the stack that grows and shrinks is usually referred to as the top of the stack, even
though it's actually at the lower memory address.

144 Chapter 7: Macintosh Memory

When programs in high-level languages declare static variables, such as with the
Pascal VAR declaration, those variables are allocated on the stack. The stack is also
used by ROM routines for temporary storage.

The UFO nature of the stack makes it especially convenient for memory allocation
connected with the activation and deactivation of routines (procedures and
functions). Each time a routine is called, space is allocated for a stack frame. The
stack frame holds the routine's parameters, local variables, and return address. After
the routine is done executing, the stack frame is released, restoring the stack to the
state it was in when the routine was called.

In Pascal, for example, all stack management is automatically done by the compiler.
When a program calls a routine, the compiler generates code to reserve space for a
function result (if necessary), places the parameter values and return address on the
stack, and jumps to the routine. The routine can then allocate space on the stack for
its own local variables. Before returning, the routine releases the stack space
occupied by its local variables, return address, and parameters. If the routine is a
Pascal function, it leaves its result on the stack for the calling program. In C, the
caller is responsible for cleaning up the stack. For an explanation of the parameter
passing conventions in C and Pascal, see the Macintosh Programmer's Workshop C
2.0 Reference and Macintosh Programmer's Workshop Pascal 2.0 Reference
manuals.

The other method of dynamic memory allocation is from the heap. A program's
code and resources are all loaded into the heap. System resources are also placed in
the heap. The Memory Manager is a set of Operating System routines that control
the dynamic allocation of memory space in the heap. Using the Memory Manager, a
program can maintain one or more independent areas of heap memory (called
heap zones) and use them to allocate blocks of memory of any desired size. Other
parts of the Toolbox also rely on the Memory Manager to allocate space for their own
data structures. Heap space is allocated and released only at the program's explicit
request, through calls to the Memory Manager.

The Memory Manager always maintains at least two heap zones: a system heap
zone that's used by the Operating System and an application heap zone used by the
Toolbox and the application program.

The application heap and the stack share the same area in memory, growing toward
each other from opposite ends (see Figure 7-4). Naturally it would be disastrous for
either to grow so far that it collides with the other. To help prevent such collisions,
the Memory Manager enforces a limit on how far the application heap can grow
toward the stack.

Macintosh memory management 145

Stack

Unused
space

Application
heap

Figure 7-4

1---------i Application
heap limit

Low memory

The stack and the heap

The application heap limit marks the boundary between the space available for the
application heap zone and the space reserved exclusively for the stack. At the start of
each application program, the limit is initialized to allow BK bytes for the stack (16K
on a Macintosh II). Notice that the limit applies only to expansion of the heap; it has
no effect on how far the stack can expand. Athough the heap can never expand
beyond the limit into space reserved for the stack, there's nothing to prevent the
stack from crossing the limit.

Regardless of the setting of the application heap limit, however, the application heap
zone is never allowed to grow to closer than within lK of the current end of the stack.
This gives a little extra protection in case the stack is approaching the boundary or
has crossed over onto the heap's side, and it allows some safety margin for the stack
to expand even further.

To help detect collisions between the stack and the heap, a routine called the stack
sniffer is run 60 times a second, during the Macintosh's vertical retrace interval. (See
"Timing of System Operations" in Chapter 9.) This routine compares the current
ends of the stack and the heap and invokes the System Error Handler in case of a
collision. In this case, the System Error Handler puts up the bomb box. Although
this may not be the happiest result, it's far better than allowing a program to continue
with the possibility of permanently corrupting files.

Note that the stack sniffer can't prevent collisions; it can only detect them after the
fact. A lot of computation can take place in a sixtieth of a second; in fact, the stack
can easily expand into the heap, overwrite it, and then shrink back again before the
next activation of the stack sniffer, escaping detection completely. In rare cases, the
error may not be detected until a call is made to the trashed section of memory, at
which time the computer may appear to bomb "out of a clear blue sky."

146 Chapter 7: Macintosh Memory

How heap space is allocated
The initial size of the system heap zone is determined by the system startup
information stored on a volume. Objects in the system heap remain allocated even
when one application terminates and another starts up.

A program's code typically resides in the application zone, in space allocated for it
by the Segment Loader (introduced in the next section). Similarly, the Resource
Manager requests space in the application zone to hold resources it has read into
memory from a resource file. Toolbox routines that create new entities such as
windows and menus also call the Memory Manager to allocate the space they need in
the application zone.

The application heap zone is automatically reinitialized at the start of each new
application program, and the previous contents are lost.

Space within a heap zone is divided into contiguous pieces called blocks. The blocks
in a zone fill it completely: every byte in the zone is part of exactly one block, which
may be either allocated (reserved for use) or free (available for allocation). A block
can be of any size, limited only by the size of the heap zone itself.

The Memory Manager does all the necessary housekeeping to keep track of the blocks
as they're allocated and released. Unlike stack space, which is always allocated and
released in strict last-in, first-out (LIFO) order, blocks in the heap can be allocated
and released in any order, according to a program's needs. So instead of growing
and shrinking in an orderly way like the stack, the heap tends to become fragmented
into a patchwork of allocated and free blocks, as shown in the first part of Figure 7-5.

An allocated block may be relocatable or nonrelocatable. If all blocks in the heap
were nonrelocatable, there would be no way to prevent the heap's free spare from
becoming fragmented. Because the Memory Manager needs to pe able to move
blocks around in order to compact the heap, it also uses relocatable blocks.

Relocatable blocks can be moved around within the heap zone to create space for
other blocks; nonrelocatable blocks can never be moved. These are permanent
properties of a block. If relocatable, a block may be locked or unlocked; locking a
relocatable block prevents it from being moved. If unlocked, a block may be
purgeable or unpurgeable. Making a block purgeable allows the Memory Manager
to remove it from the heap zone, if necessary, to make room for another block. A
newly allocated relocatable block is initially unlocked and unpurgeable. These
attributes can be set and changed as necessary.

The Memory Manager allocates space for relocatable blocks according to a "first fit"
strategy: as soon as it finds a free block big enough, it allocates the requested number
of bytes from that block.

Macintosh memory management 147

When the heap becomes fragmented, it may be impossible to satisfy an application's
request to allocate a new block of a certain size, even though there's enough free
space available, because the space is broken up into blocks smaller than the
requested size. If a single free block can't be found that's big enough, the Memory
Manager will try to create the needed space by compacting the heap: that is, by
moving allocated blocks together in order to collect the free space into a single larger
block (see Figure 7-5). Only relocatable, unlocked blocks are moved. The
compaction continues until either a free block of at least the requested size has been
created or the entire heap zone has been compacted.

Low memory

Before compaction
(fragmented heap)

Figure 7·5

D Relocatable blocks

Iii Nonrelocatable blocks

D Free blocks

Low memory

After compaction

Heap fragmentation and heap compaction

Nonrelocatable blocks (and relocatable ones that are temporarily locked) interfere
with the compaction process by forming immovable islands in the heap. This can
prevent free blocks from being collected together and lead to fragmentation of the
available free space, as shown in the first part of Figure 7-5. To minimize this
problem, the Memory Manager tries to keep all the nonrelocatable blocks together at
the bottom of the heap zone. When a program allocates a nonrelocatable block, the
Memory Manager will try to make room for the new block near the bottom of the
heap zone, by moving other blocks upward, by expanding the zone, or by purging
blocks from the zone.

If the Memory Manager can't satisfy an allocation request after compacting the entire
heap zone, it next tries expanding the zone by the requested number of bytes
(rounded up to the nearest lK bytes).

Next the Memory Manager tries to free space by purging blocks from the zone. Only
relocatable blocks can be purged, and then only if they're explicitly marked as
unlocked and purgeable. Purging a block removes it from its heap zone and frees the
space it occupies.

148 Chapter 7: Macintosh Memory

Finally, if all else fails, the Memory Manager calls the grow-zone function, if any,
for the current heap zone. This is an optional routine that an application can provide
to take any last-ditch measures to try to "grow" the zone by freeing some space in it
The grow-zone function can try to create additional free space by purging blocks that
were previously marked unpurgeable, unlocking previously locked blocks, and so on.
The Memory Manager will call the grow-zone function repeatedly, compacting the
heap again after each call, until either it finds the space it's looking for or the grow
zone function has exhausted all possibilities. In the latter case, the Memory Manager
will finally give up and report that it's unable to satisfy the allocation request. The
application should handle the error and display an error message to the user.

Pointers and handles
Programs refer to relocatable and nonrelocatable blocks in different ways:
nonrelocatable blocks by pointers, relocatable blocks by handles (a pointer to a
pointer). When the Memory Manager allocates a new block, it returns a pointer or
handle to the contents of the block (not to the block's header) depending on whether
the block is nonrelocatable (Figure 7-6) or relocatable (Figure 7-7).

Heap zone

Pointer

Figure 7-6
A pointer to a nonrelocatable block

Macintosh memory management 149

A pointer to a nonrelocatable block never changes, since the block itself can't move.
A pointer to a relocatable block can change, however, since the block can move. For
this reason, the Memory Manager maintains a single nonrelocatable master
pointer to each relocatable block. The master pointer is created at the same time as
the block and is set to point to it. When you allocate a relocatable block, the Memory
Manager returns a pointer to the master pointer, called a handle to the block (see
Figure 7-7). If the Memory Manager moves the block later, it only has to update the
master pointer to point to the block's new location.

Heap zone

Ha ndle I
I ~

Master pointer
.------

L._. Relocatable
block

Figure 7-7
A handle to a relocatable block

•:• Note: Relocatable blocks are moved only by the Memory Manager, and only at
well-defined, predictable times. (For more information, see the Memory Manager
chapter of Inside Macintosh, Volumes 1-3.

The Segment Loader
The Segment Loader is the part of the Operating System that makes it possible to
divide an application's code into several parts, or segments, and have only some
of them in memory at a time. The Finder starts up an application by calling a
Segment Loader routine that loads in the main segment (the one containing the
main program). Other segments are loaded in automatically when they're needed.
An application can call the Segment Loader to have these segments removed from
memory when they're no longer needed.

The Segment Loader enables programs to be larger than 32K bytes, the maximum
size of a single segment. Also, any code that isn't executed often, such as code for
printing, needn't occupy memory when it isn't being used, but can instead be placed
in a separate segment that's loaded when needed.

150 Chapter 7: Macintosh Memory

This mechanism may remind you of the resources of an application, which the
Resource Manager reads into memory when necessary. An application's segments
are in fact stored as resources; their resource type is 'CODE'. A loaded segment has
been read into memory by the Resource Manager and locked so that it's neither
relocatable nor purgeable. When a segment is unloaded, it's made relocatable and
purgeable. However, it's not actually purged until the memory space is needed, as
described earlier.

The Segment Loader also provides the routines that programs use to access Finder
information about documents that the user has selected to be opened or printed.

In Macintosh programs, entry points to code are not hard-coded into the program.
Because segments may be loaded into different locations in memory, dispatching is
done via a jump table in the system heap.

The loading and unloading of segments is implemented through the application's
jump table. The jump table contains one entry for every externally referenced
routine in every segment. (An externally referenced routine is a routine called by
code in another segment.) If the segment is loaded, the jump-table entry contains
code that jumps to the routine. If the segment isn't loaded, the entry contains code
that loads the segment.

When a program is constructed, the jump table is created by a utility program called
a linker.

When an application starts up, its jump table is read in from segment 0, which is the
'CODE' resource with an ID of 0. The Segment Loader then executes the first entry in
the jump table, which loads the main segment ('CODE' resource 1) and starts the
application.

As we've seen, the Memory Manager dynamically allocates heap memory in
cooperation with the Segment Loader, the Resource Manager, and the other parts of
the Toolbox that maintain objects in memory. As explained in Chapter 4, resources,
such as program segments, are permanently stored in resource files on a disk.
Operations on closed files are performed by the Macintosh File Manager, which also
contains routines for accessing the information in the data fork of a Macintosh file.
The next chapter provides an overview of the Macintosh file system.

The Segment Loader 151

Chapter 8

Files and
Volumes

153

This chapter describes file input and output on the Macintosh, normally controlled
by the Macintosh File Manager. The File Manager controls the exchange of
information between a Macintosh application and files on block devices such as disk
drives. (Block devices are discussed in the "Devices and Device Drivers" section of
Chapter 9.)

The File Manager contains routines used to manipulate volumes and to create and
delete entire files . The File Manager also contains routines for reading from and
writing to the data fork of a Macintosh file. (Resources, stored in the resource fork
of a file, are accessed differently, through the Resource Manager described in
Chapter 4.) This chapter begins by describing volumes and the files contained on
them. In addition, the chapter describes some software packages-the Standard File
Package and the Disk Initialization Package-which perform other functions with files
and volumes.

-
Overview of files and volumes
A Macintosh volume is a piece of storage medium, such as a disk, formatted to
contain files. A volume can be an entire disk or only part of a disk. A 3.5-inch
Macintosh disk is one volume. Larger storage devices, such as hard disks and file
servers, can contain one or many volumes.

As described in Chapter 4, Macintosh files consist of two parts: a resource fork and a
data fork. The resource fork consists of indexed chunks of data, called resources,
which are accessed by the Macintosh Resource Manager. In contrast, the data fork is
an untyped sequence of numbered bytes that are accessed by the File Manager. This
section discusses the data fork of a Macintosh file .

•:• Note: For simplicity, the term file is used instead of data fork in this chapter.

Any byte or group of bytes in the sequence composing a file can be accessed
individually; that is, a program can read or write data anywhere in a file. The size of a
file is limited only by the size of the volume it's on. Every volume contains
descriptive information about itself, including information about the files contained
on the volume.

154 Chapter 8: Flies and Volumes

Macintosh file systems
The original (64K ROM) version of the File Manager used a flat file system, with the
file directory organized as a simple, unsorted list of file names. Volumes initialized
by the 64K ROM have such a flat file directory. (The 128K ROM and later versions of
the File Manager continue to support all operations on flat file directories.)

With the introduction of larger storage devices (several megabytes per volume)
containing thousands of files each, the flat file directory became inadequate, since
an exhaustive, linear search of all the files is very time-consuming. An important
novelty of the 128K Macintosh Plus ROM was a new version of the File Manager that
provided a hierarchical file system (HFS), significantly speeding up access to
large volumes.

The SOOK double-sided Macintosh disks always use the hierarchical file system. The
single-sided 400K disks usually use the flat file system, but the hierarchical file system
may also be placed on 400K disks.

The hierarchical file directory allows a volume to be divided into smaller units known
as directories. Directories can contain files as well as other directories. Directories
contained within directories are known as subdirectories.

The hierarchical directory structure matches the user's perceived desktop hierarchy,
where folders contain files or additional folders. In the 64K ROM version of the File
Manager, this desktop hierarchy was essentially an illusion maintained completely
by the Finder, at considerable expense. The introduction of an actual hierarchical
directory containing subdirectories greatly enhances the performance of the Finder
by relieving it of this task. In other words, folders on the desktop are now completely
equivalent to directories.

Figure 8-1 illustrates these two ways of organizing the files on a volume.

Overview of files and volumes 155

Flat file directory

Hierarchical file directory

Figure 8·1
Flat and hlerarchlcal directories

156 Chapter 8: Flies and Volumes

The Standard File interface
The Standard File Package provides applications with the standard user interface
for specifying a file to be opened or saved.

Standard Macintosh applications have a File menu from which the user can save and
open documents via the Save, Save As, and Open commands. In response to these
commands, the application can call the Standard File Package to find out the
document name and let the user switch disks if desired. As described below, a dialog
box is presented for this purpose (see Figure 8-2).

leMEMDsl

Cl Don't Fear the Linker
D hi···n~s ~
D)ml··ns···2
D)ml.memo
Cl letters

Saue Current Document as: =HD

~ Saue ' fjPC1

D Te Ht Only D Make Backup Cancel Driue

Figure 8-2
A Standard Fiie dialog box

The disk name displayed in the dialog box is the name of the current disk, initially the
disk from which the application was started. The user can switch disks by clicking the
Drive button, or eject the current disk and insert another, which then becomes the
current disk. The Drive button is inactive whenever there's only one disk inserted.
Clicking the Drive button (or pressing the Tab key) causes Standard File to cycle
through all volumes in drives currently connected to the Macintosh.

When the user selects an application's Open command, the Standard File dialog
displays all files of a specified type or types (see "File Types" in Chapter 6.)

If an uninitialized or otherwise unreadable disk is inserted, the Standard File Package
calls the Disk Initialization Package to provide the standard user interface for
initializing and naming a disk.

The Standard File Package resides in the system resource file. The Standard File
Package and the resources it uses are automatically read into memory when one of its
routines is called. If a disk is ejected, the Standard File Package loads the Disk
Initialization Package into memory, just in case an uninitialized disk is inserted next.

The Standard File Interface 157

Filenames and pathnames
Volumes, directories, and files all have names. A volume name such as a disk name
consists of any sequence of 1 to 27 printing characters, excluding colons (:).
Filenames and directory names consist of 31 printing characters other than colons.
A pathname is a concatenated series of names beginning with a volume name and
ending with a directory name or filename. Pathnames are never typed by users
except in programming systems such as the Macintosh Programmer's Workshop, but
are indicated via a Standard File dialog. You can use uppercase and lowercase letters
in names, but the File Manager ignores case when comparing names. It doesn't
ignore diacritical marks such as an apostrophe (') or diaeresis ("").

Internally, volume names and directory names are followed by a colon (:), to
distinguish them from filenames. The colon after a volume name is used only by a
program calling File Manager routines and is never seen by the user (except in
systems such as MPW).

•:• Note: In the 64K ROM version of the File Manager, filenames had a practical limit
of 64 characters. For compatibility with newer versions of the File Manager,
filenames should never be longer than 31 characters.

Each file is further identified by a file type (such as 'TEXT' or 'PICT') and a creator
(such as 'WORD'). File types and creators are explained in "Launching an
Application" in Chapter 6.

Accessing files and volumes
A file can be open or closed. An application can perform certain operations, such
as reading and writing, only on open files. Other operations, such as file deletion,
can be performed only on closed files . When a file is opened, the File Manager
creates an access path, a description of the route to be followed when accessing the
file . The access path specifies the volume on which the file is located and the location
of the file on the volume. The access path is stored in a file control block in
memory, as described in the next section.

When an application requests that data be read from a file, the File Manager reads
the data from the file and transfers it to the application's data buffer in memory.
When an application writes data to a file, the File Manager transfers the data from the
application's data buffer and writes it to the file.

A volume can be mounted or unmounted. A volume becomes mounted when it's
inserted in a disk drive and the File Manager reads descriptive information about the
volume (the volume information, described below) into memory. Only mounted
volumes are known to the File Manager, and an application can only access
information on mounted volumes. A volume becomes unmounted when the File
Manager releases the memory used to store the descriptive information.

158 Chapter 8: Flies and Volumes

The number of volumes that can be mounted at one time is limited only by the
number of drives attached and available memory. Disk drives connected to the
Macintosh are opened when the system starts up, and information describing each is
placed in the drive queue, a standard Operating System queue. On-line volumes in
disk drives can be referred to via the drive number of the drive on which the volume
is mounted. The internal drive is number 1, the external drive is number 2, and any
additional drives connected to the Macintosh will have larger numbers. On a
Macintosh SE with two internal drives, the lower internal drive is drive 1 and the
upper internal drive is drive 2.

Note that a mounted volume can be on-line or off-line. That is, a disk may be
ejected from a drive without being unmounted: the File Manager still has knowledge
of it ('This is necessary for copying disks in a system with only one disk drive.) A
mounted volume is on-line as long as the volume buffer and all the descriptive
information read from the volume when it was mounted remain in memory (about
lK to 1.5K bytes); it becomes off-line when all but a few bytes of descriptive
information is released. (The off-line volume will appear as a "ghost" icon on the
Macintosh desktop.)

When an application ejects a volume from a drive, the File Manager automatically
places the volume off-line. You can access information on on-line volumes
immediately, but off-line volumes must be placed on-line (that is, inserted in a
drive) before their information can be accessed. Whenever the File Manager needs
to access a mounted volume that's been ejected from its drive, the alert box shown in
Figure 8-3 is displayed, and the File Manager waits for the user to insert the disk
named volName into a drive.

,.. ...•
181181 Please insert the disk:
~'

uolName

Figure 8-3
Disk-Switch alert box

To prevent spurious disk requests in a two-drive system, it's generally better for the
user to unmount off-line volumes. The user can do this by dragging the disk icon to
the Trash. Note that an application may itself place a volume off-line.

Volumes and files can be locked to prevent them from being written to. Locking a
volume involves either setting a software flag on the volume or physically changing
some part of the volume (for example, sliding a tab from one position to another on
a 3.5-inch disk). This ensures that none of the data on the volume can be changed.

An application can also lock a file to prevent unauthorized writing to it; this ensures
that none of the data in it can be changed. This lock is distinct from the user
accessible lock maintained by the Finder's Get Info command, which won't let you
rename or delete a locked file but will let you change the data contained in the file.

Accessing flies and volumes 159

Data organization on volumes
The information on all block-formatted volumes is organized in logical blocks,
which contain 512 bytes of standard information (on Macintosh volumes) and some
additional information specific to the Disk Driver. (See "The Disk Drivern section at
the end of this chapter for more information.)

A Macintosh-initialized volume contains system startup information in logical
blocks 0 and 1, also known as the volume's boot blocks (see Figure 8-4). This
information is read in at system startup and consists of certain configurable system
parameters, such as the capacity of the event queue, the initial size of the system
heap, and the number of open files allowed. Utility programs such as Fedit can be
used to modify the system startup blocks on a volume.

Figure 8-4 shows the organization of an SOOK (hierarchical) volume; the rest of this
section discusses some of the information on a volume that is used by the File
Manager. Note that not all of this information applies to flat (nonhierarchical)
volumes, which have a simpler organization.

Logical block 0 System startup ____ --i
1------ Information

Logical block 1

Logical block 2 Volume information

Logical block 3

Volume bit map

Logical block n

Logical block n + 1

File contents

Logical block 1599

Figure 8-4
Organization of an SOOK volume

160 Chapter 8: Flies and Volumes

Logical block 2 of a volume contains the volume information (see Figure 8-4). The
volume information includes a number of fields used by the File Manager, such as the
volume name and the number of files on the volume. Logical block 3 of a volume
begins the volume bit map, which records whether each block on the volume is
used or unused. The rest of the logical blocks on a volume contain files or garbage,
such as parts of deleted files.

The volume information is written on the volume when it's initialized and modified
thereafter by the File Manager. Each time a volume is mounted, its volume
information is read from it and is used to build a new volume control block in the
system heap (unless an off-line volume is being remounted). A volume control block
is a nonrelocatable block that contains information about the volume, including
whether the volume has unsaved changes, the date and time of initialization, date
and time of last backup, volume attributes, information describing the file directory,
and so forth. The system heap contains a volume control block for each mounted
volume. When a volume is unmounted, its volume control block is removed from the
volume-control-block queue.

The volume bit map has one bit for each allocation block on the volume; if a
particular block is in use, its bit is set. On hierarchical volumes, the volume bit map
replaces the volume allocation block map that was used on flat (non-HFS)
volumes. A copy of the volume bit map is also read from each on-line volume and
placed in the system heap, and a volume buffer is created in the system heap. When a
volume is placed off-line, its buffer and bit map are released.

A file extent is a series of contiguous allocation blocks. Ideally, a file would be
stored in a single extent. However, except for preallocated or small files, the
contents of a file are usually stored in more than one extent on different parts of a
volume. With the hierarchical file system, a separate file known as the extents tree
file contains the locations of files on the volume. The extents tree file records the
location and size of the varous extents that comprise a file. Another file, the catalog
tree file, is responsible for maintaining the hierarchical directory structure; it
corresponds in function to the file directory found on non-HFS volumes.

The exact format of the volume information, volume bit map, and the associated
files is explained in the File Manager chapter of Inside Macintosh, Volume 4.

Each time a file is opened, the file's directory entry is used to build a file control
block in the file-control-block buffer in the system heap, which contains
information about all access paths. Each open fork of a file requires one access path.
Two additional access paths are used for the system resource file and the application
resource file, whose resource forks are always open. On the Macintosh Plus, the
normal capacity is 40 file control blocks. The size of the file-control-block buffer is
determined by the system startup information stored on a volume.

•!• Note: Some of the file information is used by the Finder. File information used by
the Finder includes the file's type, creator, location, and information about the
file's icon. (See "Finder-related Resources" in Chapter 6.)

Data organization on volumes 161

Disks and drivers
The File Manager communicates with device drivers that read and write data to
devices containing Macintosh-initialized volumes. (Macintosh-initialized volumes
are volumes initialized by the Disk Initialization Package.) The actual type of volume
and device is unimportant to the File Manager; the only requirements are that the
volume was initialized by the Disk Initialization Package and that the device driver is
able to communicate via block-level requests.

•:• Note: To access files on non-Macintosh volumes, an application must provide its
own external file system and volume-initializing program. A properly written
external file system can be used with the Macintosh File Manager.

Disk initialization

The Disk Initialization Package initializes disks by way of the Finder's Erase Disk menu
item, formatting the disk medium and writing the appropriate file directory structure
on the disk. The Disk Initialization Package can format a 3.5-inch disk on either one
or both sides, creating a 400K or an 800K volume. It will format other devices, such
as hard disks, as well.

•:• Note: Original versions of the Disk Initialization Package did not support 800K
disks.

The Disk Initialization Package is found in the system resource file . The package and
its resources together occupy about 5.3K bytes.

When the HFS version of the File Manager is present, all volumes except the 400K,
single-sided disks are automatically given hierarchical file directories. (Even the
400K disks can be given a hierarchical directory if the user holds down the Option key
while selecting the Format command.) If the HFS version of the File Manager is not
present, all volumes are given flat file directories.

•:• Note: With older versions of the Disk Initialization Package, if the user places a
double-sided disk into a single-sided drive, an error is returned and the message
"This disk is unreadable" is displayed; if the user tries to erase or format a disk that's
write-protected, the message "Initialization failed!" is displayed.

With other types of devices, the user can choose to eject the volume or format it with
a size determined by the driver.

162 Chapter 8: Flies and Volumes

The Macintosh Disk Driver
The Disk Driver is a Macintosh device driver used for storing and retrieving
information on Macintosh 3.5-inch disks and on the Apple Hard Disk 20. The Disk
Driver does not format disks-that task is accomplished by the Disk Initialization
Package.

Information on disks is stored in 512-byte sectors, which correspond to the logical
blocks known to the File Manager. There are 1600 sectors on a double-sided SOOK
Macintosh disk, and 800 sectors on a single-sided (400K) disk. Consecutive sectors
on a disk are grouped into tracks. There are 80 tracks on one 400K Macintosh disk.
Track 0 is the outermost and track 79 is the innermost. On SOOK double-sided disks,
there are also 80 tracks (or cylinders as they are sometimes called when information
is distributed vertically as well as laterally). However, there are twice as many sectors
per track on 800K disks, since sectors for a given track are stored on both sides of the
disk.

Macintosh disks are formatted in a manner that allows a more efficient use of disk
space than most microcomputer formatting schemes. The tracks on each side are
divided into 5 groups of 16 tracks each, and each group of tracks is accessed at a
different rotational speed from the other groups. Those at the edge of the disk are
accessed at slower rotational speeds than those toward the center, so the linear speed
of the media as it passes under the drive head remains constant.

The Disk Driver can read or write data in whole sectors only. When the application
specifies the data to be read or written, the Disk Driver automatically calculates which
sector to access.

As Figure 8-5 indicates, the 3.5-inch floppy drives on the Macintosh (both internal
and external) are accessed via the Disk Driver. Other Macintosh-initialized volumes
on Small Computer System Interface (SCSI) devices and other types of devices
require their own device drivers. (Although typically used for hard disks, the SCSI bus
can be used for a variety of 1/0 devices. For this reason, the SCSI Manager is
discussed separately in the next chapter.)

Disks and drivers 163

File Manager

Macintosh 3.5-lnch disk SCSI hard disk
or Apple Hard Disk 20

Figure 8-5
Relationship of the Fiie Manager to disk devices

This chapter completes the overview of how data is stored on the Macintosh, both in
volatile memory and on a disk. We've also seen an outline of how the File Manager
relates to device drivers in order to communicate with various types of disk drives.
The next chapter steps back and looks at the use of device drivers in more general
terms, discussing the interactions of the Operating System as a whole.

164 Chapter 8: Flies and Volumes

Chapter 9

The Macintosh
Operating
System

165

This chapter surveys the components of the Macintosh Operating System, the set of
routines that form the bridge between an application and the computer's hardware.
Unlike some conventional operating systems, the Macintosh Operating System is not
an executable program or set of programs. Rather, it is a decentralized set of routines
and data structures, most of which reside in ROM, and many of which rely on other
Operating System routines.

Several of the most important Operating System topics-printing, memory
management, and file 1/0-have already been introduced in previous chapters and
are only discussed in passing in this chapter. This chapter begins with a discussion of
the remaining 1/0 topics: device drivers, sound, SCSI, serial, and AppleTalk
communication. It wraps up by touching on some other important Operating System
topics: numerics support, system startup and shutdown, the timing of system
operations, and the treatment of system errors.

Overview of the Operating System
Conventionally, a computer's operating system has been a low-level program that is
always resident in memory and includes an interactive monitor mode and various
utility routines for handling files, disks, and other I/ 0 functions . In the Macintosh
system, the responsibility for keeping things moving has been shifted to the
application, which has at its disposal the many routines in the Macintosh ROM.

The Macintosh never runs without an application. On the Macintosh, there is no
such thing as an operating-system mode, no sphinx-like system prompt to mutely
challenge the user. The modeless design of the Macintosh means that the user is
always at the highest level. Although the Finder handles many of the traditional
functions of an operating system, it is just another application, and is no longer
present when other applications are run. (The MultiFinder, however, does remain
active while other applications are running. Like the Switcher, it intercepts some
Operating System calls; nevertheless, it is an application and not part of the
Operating System.)

As stated above, the Macintosh Operating System is a decentralized set of routines.
Because the Operating System is composed of a multitude of ROM routines, there is
no simple hierarchy of programs: almost any routine can call any other. Figure 9-1 is
one possible view of the rough hierarchy of the parts of the Operating System that are
related to I/ 0 functions . At the core is the application, whose contact with the
outside world (the user and hardware devices) is mediated through the various
software managers, device drivers, and I/0 ports.

166 Chapter 9: The Macintosh Operating System

Figure 9-1
Layers of the Operating System

Devices and device drivers

Apple Talk
hardware

A device is a part of the Macintosh or a piece of external equipment that can transfer
information into or out of the computer. Macintosh devices include disk drives, I/0
ports, and printers.

•!• Note: On the Macintosh Plus and Macintosh SE, the display screen is not a device
in the usual sense: drawing on the screen is handled directly by QuickDraw without
the mediation of a device driver. On the Macintosh II, the display screen is a
device, because some QuickDraw calls are translated through a video driver.

There are two kinds of devices: character devices and block devices.

o A character device is a device such as a serial port or printer that reads or writes a
stream of characters, or bytes, one at a time. It can neither skip bytes nor go back
to a previous byte. Character devices are used to communicate with the world
outside the computer's operating system and memory. A character device can be
an input device, an output device, or an input/output device.

o Block devices, such as disk drives, read and write entire blocks of bytes at a time. A
block device can read or write any accessible block on demand. Block devices are
usually used to store and retrieve information.

Devices and device drivers 167

Applications communicate with devices through a set of routines called the Device
Manager. Applications may talk to devices directly through the Device Manager or
indirectly, through another part of the Operating System or Toolbox, which in turn
calls the Device Manager. For example, an application can communicate with a disk
drive directly by means of Device Manager calls or indirectly by calling the File
Manager.

Device Driver

Printer Driver

lmageWriter hardware Macintosh 3.5-inch disk
or Apple Hard Disk 20

Figure 9-2
Example of communication with devices

168 Chapter 9: The Macintosh Operating System

The Device Manager doesn't manipulate devices directly; it calls device drivers that
do (see Figure 9-2). Device drivers are programs that take data coming from the
Device Manager and convert them into actions by the device, or convert device
actions into data for the Device Manager to process. This arrangement provides a
standard interface to higher-level parts of the software, making it possible for one
general set of calls to drive a variety of hardware devices.

The Operating System includes the following standard device drivers in ROM:

o the Disk Driver, for reading and writing to Macintosh disks

o the Sound Driver, for generating sound on the Macintosh Plus and Macintosh SE

o the Serial Driver, for controlling serial 1/0 through the Modem and Printer ports

There are also a number of standard RAM drivers, including

o the printer drivers

o the AppleTalk drivers

o desk accessories

RAM drivers are resources and are read from the system resource file as needed. The
resource type for drivers is 'DRVR'. The resource name is the driver name. (By
convention, driver names always begin with a period.) Desk accessories are a special
type of device driver and are manipulated via the routines of the Desk Manager.

A programmer can add other drivers independently or build on the existing drivers.
For example, the Printer Driver is built on the Serial Driver. (Note that drivers are
usually written in assembly language.)

A device driver can be either open or closed. The Sound Driver and Disk Driver are
opened when the system starts up; other drivers are opened at the specific request of
an application. After a driver has been opened, an application can read data from
and write data to it. The application can close device drivers that aren't in use and
recover the memory they were using.

Upcoming sections of this chapter discuss input and output via the Sound Driver and
Sound Manager, the Serial Driver, the SCSI Manager, and the AppleTalk Manager.
(Some device drivers have already been discussed in previous chapters. Printer
drivers and Macintosh II video drivers were discussed in Chapter 5, and the Disk
Driver was discussed in Chapter 8.)

Sound
Prior to the introduction of the Macintosh II, sound generation on the Macintosh was
controlled by the Macintosh Sound Driver. A new Sound Manager on the
Macintosh II replaces the Sound Driver, providing additional functionality.

Sound 169

The Macintosh Sound Driver
The Sound Driver is a device driver in the ROM of the Macintosh Plus and the
Macintosh SE that is used to synthesize sound and music in a Macintosh application.
The sound driver contains three different sound synthesizers that enable it to
generate sounds characterized by any kind of waveform:

o The four-tone synthesizer is used to make simple musical tones, with up to four
voices producing sound simultaneously. It requires about SO percent of the
microprocessor's attention during the time the sound is being produced.

o The square-wave synthesizer is used to produce less musical sounds, such as
beeps. It requires about 2 percent of the processor's time.

o The free-form synthesizer is used to make complex music and speech. It
requires about 20 percent of the processor's time.

Figure 9-3 depicts the waveform of a typical sound wave and the terms used to
describe it.

Figure 9-3
Waveform

Period T (sec)

Wavelength

One cycle

Q)
u
::::>

:!::::
a.
E
<(

Frequency f (Hz) := +

170 Chapter 9: The Macintosh Operating System

The magnitude is the vertical distance between any given point on the wave and the
horizontal line about which the wave oscillates; you can think of the magnitude as the
volume level. The amplitude is the maximum magnitude of a periodic wave. The
wavelength is the horizontal extent of one complete cycle of the wave. Magnitude
and wavelength can be measured in any unit of distance. The period is the time
elapsed during one complete cycle of a wave. The frequency is the reciprocal of the
period, or the number of cycles per second, which is also called hertz (Hz). The
phase is some fraction of a wave cycle (measured from a fixed point on the wave).

There are many different types of waveforms, three of which are depicted in
Figure 9-4. Stne waves are generated by objects that oscillate at a single frequency
(such as a tuning fork). Square waves are generated by objects that toggle instantly
between two states at a single frequency (such as an electronic beep). Free-form
waves, the most common of all, are generated by objects that vibrate at rapidly
changing frequencies with rapidly changing magnitudes (such as your vocal cords).

L..........J L-...J L.....-J L..........J

Sine wove
Square wove

Free-form wove

Figure 9-4
Types of waveforms

Sound 171

The Sound Driver represents waveforms digitally, so all waveforms must be
converted from their analog representation to a digital representation. A digital
representation of a waveform is simply a sequence of wave magnitudes measured at
fixed intervals. This sequence of magnitudes is stored in the Sound Driver as a
sequence of bytes, each one of which specifies an instantaneous voltage to be sent to
the speaker. The bytes are stored in a waveform description, contained in a data
structure called a synthesizer buffer. A synthesizer buffer contains the duration,
pitch, phase, and waveform of the sound the synthesizer will generate. The exact
structure of a synthesizer buffer differs for each type of synthesizer being used.

The four-tone synthesizer is used to produce harmonic sounds such as music. It can
simultaneously generate four different sounds, each with its own frequency, phase,
and waveform.

The free-form synthesizer is used to synthesize complex music and speech. The
sound to be produced is represented as a single waveform whose complexity and
length are limited only by available memory.

The Macintosh II Sound Manager
On the Macintosh II, the Sound Manager replaces the original Sound Driver. While
supporting the old Sound Driver routines and synthesizers, the Sound Manager offers
more flexibility and new features, and requires less programming effort.

A major advantage of the Sound Manager is that sounds and music can be created
independent of the particular hardware used to play them. In addition, the Sound
Manager synthesizers, utilizing the power of the new Apple Sound Chip, use much
less of the MC68020's processing time.

Another innovation is the introduction of resource types for sounds and
synthesizers, providing simple, portable solutions for incorporating sound into any
application. The Sound Manager supports two new resource types: 'snth' and 'snd ':

o A 'snd ' resource can describe a sound to be played, an instrument, or both,
making it possible to produce sounds, music, and even speech by calling a single
procedure. Cre;tting sound resources requires some understanding of sound
theory; using these resources, however, requires no more than passing the
resource ID.

o The 'snth' resources contain the executable code for synthesizers and, in some
cases, modifiers (described in the next section).

The MIDI synthesizer provides all the functionality of the current MIDI specification.
The Musical Instrument Data Interface is a worldwide standard for controlling music
synthesizers. It allows synthesizers to be played remotely (from a computer or
another synthesizer). In addition, many parameters of a synthesizer can be altered
and controlled in real time. Each Sound Manager channel that uses the MIDI
synthesizer corresponds to 1 of the 16 MIDI channels.

172 Chapter 9: The Macintosh Operating System

Sound Manager synthesizers

With the Sound Manager, sound is produced by sending commands to synthesizers
via channels. A Sound Manager synthesizer is like a device driver. A channel is a
queue that's used to pass commands to a particular synthesizer. To produce complex
sounds like music and speech, an application must generate multiple sounds at the
same time; for this reason, multiple channels can be created. Commands are placed
one after another into the channel. At the other end, they're taken from the channel
one at a time, processed by the synthesizer, and played on the hardware associated
with that synthesizer. If three channels are open, the synthesizer will receive three
commands at a time, process them, and produce the three sounds simultaneously.

There are four standard synthesizers available with the Sound Manager; each is
capable of producing its own type of sound and providing different degrees of
expressive control:

o The note synthesizer lets you generate simple melodies and informative sounds
such as error warnings. (The note synthesizer is functionally equivalent to the old
square-wave synthesizer.) The melody must be monophonic; that is, only one
note can play at a time. Each note has the attributes of frequency, amplitude, and
duration. At any time in a melody, the timbre can be changed to one of several
different sounds.

o The wave-table synthesizer produces more complex sounds and multipart
music. (Using the old four-tone synthesizer results in four channels of wave-table
synthesis.) The wave-table synthesizer plays out monophonic or polyphonic
sounds using wave-table lookup synthesis. Polyphony can be achieved with several
monophonic channels or one polyphonic channel.

o The MIDI synthesizer provides a way to play out music on an external
synthesizer via a Musical Instrument Data Interface (MIDI) adapter connected to
one of the serial ports. This synthesizer can be polyphonic if the external
synthesizer allows it.

o The sampled-sound synthesizer plays out prerecorded or precomputed
sounds. The sounds are passed to the synthesizer in buffers containing samples of
the sound to be played. (The sampled-sound synthesizer is functionally equivalent
to the old free-form synthesizer.) The buffers can be played out at either the
original sampling rate or at higher or lower rates, effecting the same pitch, a
higher pitch, or a lower pitch, respectively. The rate can be changed over time.

A basic set of commands is understood by all four synthesizers; these commands
produce similar results within the limits of the particular synthesizers. All four
synthesizers ignore commands that they don't understand.

Sound 173

An enormous range of sounds is possible with this synthesizer. The results depend
largely on the external equipment and its current state. This also means that it's
possible that the sound will be incomprehensible or that no sound will result at all if
the equipment is set to an unexpected state.

A synthesizer is a complex piece of software that's not easily modified. For this
reason, the Sound Manager provides hooks for smaller routines, called modifiers,
which can process commands as they pass through a channel. Figure 9-5 shows the
entire path a command might take from an application to the Sound Manager.

I Application I

"4}. 11 1F

3 or more channels

MIDI
synthesizer

External Synthesizer

Figure 9-5

other
synthesizers

Path of a Sound Manager command

17 4 Chapter 9: The Macintosh Operating System

The SCSI bus
The Small Computer System Interface (SCSI, or "scuzzy" in daily parlance) is an
industry-standard specification, based on the ANSI X3T9.2/82-2 draft proposal, of a
set of mechanical, electrical, and functional standards for connecting small
computers with intelligent peripherals, such as hard disks, tape drives, high-speed
line printers, and optical disks. The SCSI Manager provides routines and data
structures for controlling the exchange of information between a Macintosh and
peripheral devices connected to a SCSI bus.

In addition to the Macintosh itself, up to seven devices can be connected in a daisy
chain configuration to a SCSI bus.

When two SCSI devices communicate with each other, one acts as the initiator and
the other as the target. The initiator asks the target to perform a certain operation,
such as reading a block of data. A SCSI device typically has a fixed role as an initiator
or target; for instance, the Macintosh always acts as initiator to one or more
peripherals, such as hard disks, that act as targets. There may also be intelligent
peripherals capable of acting as initiators. Multiple initiators and multiple targets are
allowed on a SCSI bus, but only one Macintosh computer can be connected to a SCSI
bus at a time.

Each device on the bus has a unique ID, which is an integer from 0 to 7. The
Macintosh always has an ID of 7; an internal SCSI hard disk on the Macintosh SE or
Macintosh II is given ID O; peripheral devices should use other numbers.

At any given time, the Apple SCSI bus is in one of seven phases:

• Bus-free phase. When no SCSI device is actively using the bus, the bus is in the
bus-free phase.

• Arbitration phase. Since there may be multiple initiators on the bus, an initiator
must first gain control of the bus; this process is called the arbitration phase. If
more than one initiator arbitrates for use of the bus at the same time, the initiator
with the higher ID gains control first. Once an initiator, regardless of ID, gains
control of the bus, no other device can interrupt that session.

• Selection phase. Once the initiator has gained control of the bus, it selects the
target device that will be asked to perform a certain operation. This phase, known
as the selection phase, includes an acknowledgment from the target that it has been
selected. On the event that the target suspends the communication, an optional
reselection phase lets the target reconnect to the initiator.)

• Command phase. In the command phase, the initiator tells the target what
operation to perform.

The SCSI bus 17 5

• Data phase. This is when the actual transfer of data between initiator and target
takes place.

• Status and message phases. When the data transfer is completed, the target
sends two completion bytes. The first byte contains status information and the
second contains a message.

A typical communication might involve a Macintosh requesting a block of data to be
read from a hard disk connected to a SCSI bus. The Macintosh waits for a bus-free
phase to occur and then arbitrates for use of the bus. It selects the hard disk as target
and sends the command for the read operation. Tue hard disk transfers the
requested data back to the Macintosh and completes the session by sending the status
and message bytes.

At system startup time, the Macintosh loads the driver for each SCSI device. The
system startup procedure first tries to select the target device on the bus having the
highest ID, beginning with the device having an ID of 6. After finding the driver and
reading it into the system heap, it calls the driver and checks the device having the
next lower ID on the bus. As of System file version 4.1, the user can use the Control
Panel to choose which SCSI device is the default startup device.

Each SCSI device must have certain data structures in the first two physical blocks to
identify its device driver (or drivers) and to describe the allocation of blocks on the
device for different partitions or operating systems. The drivers themselves can be
located anywhere else on the device and can be as large as necessary.

On the Macintosh SE and Macintosh II, the SCSI Manager supports hardware
handshaking for much faster access times.

Serial communication
The Macintosh Serial Driver is a device driver in ROM for handling serial
communication. The Serial Driver allows Macintosh applications to communicate
with serial devices via the two serial ports on the back of the Macintosh. Tue Serial
Driver supports other device drivers such as the Printer Driver and the AppleTalk
drivers.

•:• 64K ROM note: Previous to the 128K ROM, there were two serial drivers: one in
ROM and one in RAM. If the 128K (or 256K) ROM is present, the new driver is
automatically substituted for the old ones.

176 Chapter 9: The Macintosh Operating System

The Serial Driver supports full-duplex asynchronous serial communication. Serial
data is transmitted over a single-path communication line, one bit at a time (as
opposed to parallel data, which is transmitted over a multiple-path communication
line, multiple bits at a time). Full-duplex communication means that the
Macintosh and another serial device connected to it can transmit data
simultaneously (as opposed to half-duplex operation, in which data can be
transmitted by only one device at a time). Asynchronous communication means
that the Macintosh and other serial devices communicating with it don't share a
common timer, and no timing data is transmitted. The time interval between
characters transmitted asynchronously can be of any length.

When a transmitting serial device is not sending data, it maintains the transmission
line in the idle state, as shown in Figure 9-6. The transmitting device may begin
sending a character at any time by sending a start bit. The start bit tells the receiving
device to prepare to receive a character. The transmitting device then transmits 5, 6,
7, or 8 data bits, optionally followed by a parity bit for error checking. The value of
the parity bit is chosen such that the number of 1 's among the data and parity bits is
even or odd, depending on whether the parity is even or odd. Finally, the
transmitting device sends 1, 1.5, or 2 stop bits, indicating the end of the character.
The measure of the total number of bits sent over the transmission line per second is
called the bit rate and measured in baud. The time elapsed from the start bit to the
last stop bit is called a frame. Figure 9-6 illustrates the format of asynchronous serial
data used by the Serial Driver.

Frame

Idle l
!.. - - - Idle

Start Data Data Data Parity stop Stop
bit bit 1 bit2

...
bitn bit bit 1 bit2

- - -

Figure 9·6
Format of data used In serial communication

If a parity bit is set incorrectly, the receiving device will note a parity error. After the
stop bits, the transmitting device may send another character or maintain the line in
the idle state.

The Serial Driver actually consists of four drivers: one input driver and one output
driver for the modem port, and one input driver and one output driver for the
printer port (see Figure 9-7). Each input driver receives data via a serial port and
transfers it to the application. Each output driver takes data from the application
and sends it out through a serial port. The input and output drivers for a port are
closely related and share some of the same routines. An individual port can both
transmit and receive data at the same time. The serial ports are controlled by the
Macintosh's Serial Communications Controller (SCC): channel A of the SCC
controls the modem port, and channel B controls the printer port.

Serial communication 177

Application

External serial device External serial device

Figure 9·7
Serial Input and output drivers

Data received via a serial port passes through a three-character buffer in the SCC and
then into a buffer in the input driver for the port. Characters are removed from the
input driver's buffer each time an application issues a read call to the driver. Each
input driver's buffer can initially hold up to 64 characters, but an application can
specify a larger buffer if necessary. If the sec buffer ever overflows because the input
driver doesn't read it often enough, a hardware overrun error occurs. If an input
driver's buffer ever overflows because the application doesn't issue read calls to the
driver often enough, a software overrun error occurs.

Both ports can be operated up to about 256K baud using the internal baud-rate
generator, or up to about 1 megabaud using an externally supplied clock. The only
difference between the two ports is that the modem port has a slightly higher priority
in the SCC chip. For example, AppleTalk runs at 256K baud using the printer port to
provide the LaserWriter connection. On the Macintosh SE and Macintosh II, the
modem port only can use a new incoming handshake line as a second external clock
source to support synchronous modems requiring separate receive and transmit
clocks. (For information about the serial communications hardware, see "Serial
Communication" in this chapter and the Macintosh Family Hardware Reference
manual.)

All four drivers default to 9600 baud, eight data bits per character, no parity bit, and
two stop bits. You can change any of these options. The Serial Driver supports Clear
To Send (CTS) hardware handshake and XOn/XOff software flow control.

178 Chapter 9: The Macintosh Operating System

The AppleTalk network
AppleTalk is Apple's local-area network for connecting Apple and other
manufacturers' computers with each other and with shared resources, such as
printers, file servers, and the many facilities available on wide-area networks.

AppleTalk is a simple, easily installed, and very low-cost local-area network system
that delivers all the benefits of multiuser communication and shared resources at a
fraction of the cost usually associated with these features.

A single AppleTalk network, as shown in Figure 9-8, connects up to 32 workstations,
or nodes. A node is a device that is attached to and communicates over an
AppleTalk network. Nodes are easily added and removed from an AppleTalk
network; if an AppleTalk connector box is already in place, this can be done without
disrupting service to other nodes. A node can even fail without disturbing network
communications. You can connect Macintosh computers to AppleTalk by plugging
an AppleTalk connector into the printer port (&~rial port B) of the Macintosh; other
devices such as a LaserWriter are just as easily connected.

D D D

•
D D

Flgur~ 9-8
An Apple Talk network

The AppleTalk network 179

In designing AppleTalk, careful attention has been paid to small workgroups, where
small cluster networks feed into large backbone networks, resulting in a mixture of
networks and technologies. AppleTalk supports larger networks, both local- and
wide-area, through the use of bridging devices and gateways.

AppleTalk communicates via channel B of the Serial Communications Controller
(SCC). When the Macintosh is started up, the status of serial port B (the printer port)
is checked. If port B isn't being used by another device driver and is available for use
by AppleTalk, the AppleTalk drivers are loaded into the system heap, as described in
the next section.

Important

For software reasons, It's Imperative that the Macintosh be connected to the
AppleTalk network through serial port B (the printer port) before being switched
on.

Networking applications
Apple provides a number of networking products that support the AppleTalk network;
many more are available from other manufacturers. The Apple products include

o The AppleShare® File Server, which allows several users to share the same files
and applications. AppleShare is a software package that allows you to set up any
Macintosh with a hard disk as a dedicated file server.

o The LaserShare™ Print Spooler, a program that offloads LaserWriter printing tasks
to a server, thereby freeing the Macintosh for other work.

o The EtherTalk™ card, an expansion card for the Macintosh II, which enables the
Macintosh II to communicate over an EtherNet network or to run AppleTalk over
the EtherNet hardware.

o The AppleTalk PC card, a half-sized expansion card for MS-DOS-based personal
computers. This card enables MS-DOS machines to share information on an
AppleTalk network and access shared resources, such as a LaserWriter. This card
supports the conversion of several file formats, including ASCII, Lotus 1-2-3,
Microsoft Word, and Postscript.

o The Apple DCA filter, a utility that translates documents in the IBM DCA
(Document Content Architecture) RFT file format to and from the Macintosh
format.

D The AppleLine™ 3270 File Transfer program, a utility program for transferring
files between the IBM 3270 mainframe environment and the Macintosh
environment.

180 Chapter 9: The Macintosh Operating System

AppleTalk network architecture
Sockets are software entities within the nodes of a network. On a single AppleTalk
network, a socket is uniquely identified by its AppleTalk address-that is, its socket
number together with its node ID.

Two or more AppleTalk networks can form an internet. Internets are formed by
interconnecting AppleTalk networks via intelligent nodes called bridges. A network
number uniquely identifies a network in an internet. A socket's AppleTalk address
together with its network number provide a unique internet-wide identifier called an
internet address.

Sockets are owned by socket clients, which are typically software processes in the
node. Socket clients are also known as network-visible entities, because they're
the primary accessible entities on an internet

The AppleTalk Manager is an interface to a set of device drivers that allow
Macintosh programs to send and receive information over an AppleTalk network.
There are two AppleTalk device drivers in ROM, one named .MPP and one named
.ATP. The AppleTalk Manager and all of the AppleTalk drivers are included in the
256K ROM.

On startup, the .MPP driver installs its own interrupt handlers, installs a task into the
vertical retrace queue, and prepares the Serial Communications Controller (SCC)
chip for use. It then chooses a node ID for the Macintosh and confirms that the node
ID isn't already being used by another node on the network.

The AppleTalk Manager provides a variety of services that allow Macintosh programs
to interact with programs in devices connected to an AppleTalk network. This
interaction, achieved through the exchange of variable-length blocks of data (known
as packets), follows well-defined sets of rules known as protocols.

As shown in Figure 9-9, the AppleTalk system architecture consists of a number of
protocols arranged in layers. Each protocol in a specific layer provides services to
higher-level layers by building on the services provided by lower-level layers. A
Macintosh program can use services provided by any of the layers in order to
construct more sophisticated or specialized services.

The AppleTalk network 181

. ,,,

Apple Talk Presentation

Filing Protocol layer

~

s L
-"- '

Apple Talk J ~ Printer J Session
Session Protocol Access Protocol layer

Zone lnforma~io1
~

Protocol

~ , i> ~ i>

L
t------" f-1 t-- s f--i ~ r> ' Apple Talk Routing Table Transport

Echo Transaction Name-Binding Maintenance layer
Protocol Protocol Protocol Protocol

z: ~ ~
-,.-

-"" "
~

t---1 $> ~ rt·

NetwOrtc ,,Aiffi\\%1 l layer · >··I
Datagram Delivery Protocol

L
~ 1

~£ ~ ~ £_

L ~
' --:;- T

l
Unkaccess

Apple Talk Link layer
IM> Access Protocol :<'.\.~','

~

7 \
' . Physlcdl

l Apple Talk
layer

hardware '

Figure 9-9
AppleTalk Manager protocols

182 Chapter 9: The Macintosh Operating System

These protocols serve a number of functions:

o The AppleTalk Link Access Protocol (ALAP) provides the lowest-level AppleTalk
services, providing its clients with node-to-node delivery of data frames on a
single AppleTalk network. (A data frame is a variable-length packet of data
preceded and followed by control information referred to as the frame header
and frame trailer. An ALAP frame can contain up to 600 bytes of client data.)

This protocol's main function is to control access to the AppleTalk network among
various competing devices. ALAP can have multiple clients in a single node.

o The Datagram Delivery Protocol (DDP) provides the next higher-level protocol
in the AppleTalk architecture, managing socket-to-socket delivery of datagrams
over AppleTalk internets. DDP uses the node-to-node delivery service provided
by ALAP to send and receive datagrams. Datagrams are packets of data
transmitted by DDP. A DDP datagram can contain up to 586 bytes of client data.

o Bridges on AppleTalk internets use the Routing Table Maintenance Protocol
(RTMP). This protocol is used internally to maintain tables for routing datagrams
through the internet.

o The Name-Binding Protocol (NBP) converts entity names to their internet socket
addresses. NBP maintains a name table in each node that contains the name and
internet address of each entity in that node.

o The AppleTalk Transaction Protocol (ATP) uses the services provided by DDP to
transmit requests and responses with guaranteed delivery. ALAP and DDP provide
best-effort delivery services with no recovery mechanism when packets are lost or
discarded because of errors. Although such a service suffices for many situations,
ATP provides a reliable loss-free transport service. ATP continues to transmit a
transaction request until it receives a complete response, thus allowing for
recovery from the loss of a packet.

o The Printer Access Protocol (PAP) supports the use of the Apple LaserWriter
printer.

o The AppleTalk Filing Protocol (AFP) provides support for file servers such as the
AppleShare file server.

Detailed information about AppleTalk protocols is available in Inside AppleTalk (see
Appendix B).

This concludes the discussion of Macintosh I/0 functions. The rest of this chapter
covers the remaining parts of the Operating System: numerics support, system
startup and shutdown, timing of system operations, and the handling of system
errors.

The AppleTalk network 183

Numerics
The Macintosh computers provide several levels of numerics support for
applications. The options range from fast fixed-point operations for graphics, to
very precise floating-point operations supported in software, to (on the
Macintosh II) floating-point operations supported by a hardware floating-point unit,
the Motorola MC68881.

In software, the Floating-Point Arithmetic Package and the Elementary
Functions Package provide facilities for extended-precision floating-point
arithmetic and advanced numerical applications programming. These two packages
support the Standard Apple Numeric Environment (SANE), which is designed in
strict accordance with IEEE Standard 754 for binary floating-point arithmetic.

On the Macintosh II, fixed-point routines and the numerics packages have been
written to exploit the 68881 coprocessor. Programs using either fixed-point or the
numerics packages will enjoy much improved performance even if they are unaware
of the 68881. Each MPW programming language provides the option of generating
either numerics package call or direct 68881 code. See the section "~facintosh II
Floating-Point Coprocessor (MC68881)" in Chapter 10 for further details.

•!• Note: Most programmers will rarely, if ever, need to deal explicitly with either the
numerics packages or the 68881. These facilities are built into MPW (and many
other) programming languages; that is, the language compilers recognize SA.'\"'E
data types, and automatically make floating-point calls for standard arithmetic
operations(+,-,•, I) as well as for data type conversion. Mathematical functions
that aren't built in can be accessed through a run-time library.

For more information about SA:'\"E, refer to the Apple :Vumerics Manual, the
standard reference guide to SAl"\'E.

System startup and shutdown
When power is first supplied to the ~1acintosh computer, a ca refully orchestrated
sequence of events takes place:

1 . First, a series of hardware circuits get the system ready for operation. The
MC68000 and the various l/O chips are initialized , and the mapping of ROM and
RAM is temporarily altered by causing an image of the ROM to appear at the
location where RAM normally starts (address 0), while RAM is moved to a location
higher in memory. Under this mapping scheme, the Macintosh software still
executes out of the normal ROM locations, but the MC68000 can obtain some
critical low-memory vectors from the ROM image it finds at address O.

2. After the system is initialized, the software maps the syste m RAM back where it
belongs, starting at address 0.

184 Chapter 9: The Macintosh Operating System

3. Next, software performs a number of tests and determines how much RAM is
present in the machine. After the system is fully tested, the disk startup process
begins.

4. The first step in the disk startup process is to check the disk in the internal drive
(drive 1), or on the Macintosh SE and Macintosh II, the disk indicated by the user
as the startup device (via the Control Panel desk accessory). If a disk is already
present, the system attempts to read it and looks for a System file . If a floppy disk
with no System file is found, the disk is ejected, and the search continues. If no disk
is found in the internal floppy drive, the system looks for a disk in the external
drive, and then for a disk connected to the SCSI port, starting with the device that
has an ID of 6 and counting down. If no startup disk is found, the question-mark
disk icon is displayed until a disk is inserted. If the disk startup fails for some
reason, the "sad Macintosh" icon is displayed and the Macintosh goes into an
endless loop until it's turned off again.

5. Once a readable disk has been found, the system reads in the first two sectors of
the disk, which contain the system startup blocks . At this point, the normal disk
load begins.

Timing of system operations
For the Macintosh to run, numerous internal and external operations must be
perfectly coordinated. These operations include refreshing the built-in screen
(except on the Macintosh II), tracking the cursor, checking for events, and various
time-dependent actions by the application. These operations are scheduled by the
Vertical Retrace Manager and the Time Manager.

Vertical retrace tasks

Sixty times a second, the electron beam of the video display tube returns from the
bottom of the screen to the top to display the next frame . At this time, the built-in
Macintosh video circuitry generates a vertical retrace interrupt, also known as the
vertical blanking (VBL) interrupt. This interrupt is used as a convenient time for
performing a number of recurrent system tasks.

•:• Note: Because the video is not built-in on the Macintosh II, the VBL interrupt is not
related to actual video. It's still generated, but by a separate timer, for compatibility
with the other Macintosh machines.

The Vertical Retrace Manager schedules and performs recurrent tasks during vertical
retrace interrupts. Tasks performed during the vertical retrace interrupt are known as
VBL tasks.

Timing of system operations 185

The following sequence of recurrent tasks executes at regular intervals based on the
VBL "heartbeat" of the Macintosh:

1. Increment the number of ticks since system startup (every interrupt).

2. Check whether the stack has expanded into the heap; if so, the task calls the System
Error Handler (every interrupt).

3. Handle cursor movement (every interrupt).

4. Post a mouse event if the state of the mouse button has changed from its previous
state and has then remained unchanged for four interrupts (every other interrupt).
(Macintosh Plus only.)

5. Reset the keyboard if it's been reattached after having been detached (every 32
interrupts). (Macintosh Plus only.)

6. Post a disk-inserted event if the user has inserted a disk or taken any other action
that requires a volume to be mounted (every 30 interrupts).

Information describing each VBL task is contained in the vertical retrace queue, a
standard Macintosh Operating System queue. An application can add any number of
its own VBL tasks for the Vertical Retrace Manager to execute. VBL tasks can be set to
execute at any frequency (up to once per vertical retrace interrupt). For example, an
electronic mail application might add a VBL task that checks every tenth of a second
(every six interrupts) to see if it has received any messages.

+ Note: When interrupts are disabled (during a disk access, for example), or when
VBL tasks take longer than about a sixtieth of a second to perform, one or more
vertical retrace interrupts may be missed, thereby affecting the performance of
certain VBL tasks. For instance, while a disk is being accessed, the updating of the
cursor movement may be irregular.

For more information about how the screen itself is refreshed, see "The Video
Interface" section of Chapter 10.

The Time Manager
The Time Manager makes it possible for a program to schedule a routine to be
executed after a given number of milliseconds has elapsed. The Time Manager also
provides the user with an asynchronous "wakeup" service with one-millisecond
accuracy; it can have any number of outstanding wakeup requests. Because the Time
Manager is independent of clock speed or interrupts, it provides a hardware
independent means of timing program operations, thus ensuring compatibility with
the different Macintosh machines.

186 Chapter 9: The Macintosh Operating System

System errors
When a fatal system error occurs, the System Error Handler (the "Bomb
Manager") assumes control. Its main function is to display an alert box with an error
message called a system error alert and to provide a mechanism for the
application to resume execution, if possible. Figure 9-10 shows the ugly form of a
system error alert.

Sorry, a system error occurred.

(Restart) (Resume) ID= 12

Figure 9-10
Bearer of bad tidings

Such alerts notify the user of system errors. The bottom-right corner of a user alert
contains a system error ID that identifies the error. Usually the message "Sorry, a
system error occurred," a Restart button, and a Resume button are also shown. If the
Finder can't be found on a disk, the message "Can't load the Finder" and a Restart
button will be shown. The Macintosh will attempt to restart if the user clicks the
Restart button, and the application will attempt to resume execution if the user clicks
the Resume button.

+ Note: The system error alerts simply identify the type of problem encountered and,
in some cases, the part of the Toolbox or Operating System involved. They don't
tell you where in the application code the failure occurred.

Because a system error results from a failure in a very low-level part of the system, the
System Error Handler uses as little of the system as possible. To do its job, the System
Error Handler requires only the following conditions:

o The trap dispatcher is operative.

o The Font Manager has been initialized (this occurs when the system starts up).

o Register A7 (the stack pointer) points to a reasonable place in memory (for
example, not to the main screen buffer).

o A few important system data structures aren't too badly damaged.

Note that the System Error Handler doesn't require the Memory Manager to be
operative.

System errors 187

If a program writes to video RAM or the sound buffer, there may be nothing the
System Error Handler can do. In this case, the screen may go haywire as the
computer's software dies, making horrible "machine gun" noises. If this happens,
just press the Reset switch or turn off the computer's power.

The content of the alert box displayed is determined by a system error alert table,
a resource stored in the system resource file. There are two different system error
alert tables: a system startup alert table used when the system starts up and a user alert
table for informing the user of system errors.

The system startup alerts are used to display messages at system startup, such as the
"Welcome to Macintosh" message (see Figure 9-11). They're displayed by the
System Error Handler instead of the Dialog Manager because the System Error
Handler needs very little of the system to operate.

Welcome to Macintosh.

Figure 9-11
System startup alert

The "Please insert the disk" and power-off messages are also user alerts.

Table 9-1 in the section "System Error Messages" lists the system error IDs for the
various user alerts and explains the meanings of these errors. The table also lists the
system startup alert messages.

Recovering from system errors
An application recovers from a system error by means of a resume procedure.
When the user clicks the Resume button in a system error alert, the System Error
Handler attempts to restore the state of the system and then calls the resume
procedure designated by the application. (This is typically extremely difficult for an
application to do.)

If there isn't a resume procedure, the Resume button in the system error alert will be
dimmed.

188 Chapter 9: The Macintosh Operating System

System error messages
Table 9-1 lists the system error alerts on the Macintosh. The explanations for some
of these errors list assembly-language instructions that may have caused the error.
None of this information will help you to recover from a system error at the time it
occurs; it only gives you some idea where your program may have gone wrong.

Table 9-1
System error messages and startup alert messages

ID Explanation or message

1 Bus error: Invalid memory reference (Macintosh II and Macintosh XL
only).

2 Address error. A word or long-word reference has been made to an odd
address.

3 Illegal instruction. The MC68000 received an instruction it didn't recognize.

4 Zero divide. A divide instruction (DIVS or DIVU) with a divisor of 0 was
executed.

5 Check exception. A Check Register Against Bounds (CHK) instruction was
executed and failed. Pascal "value out of range" errors are usually reported
in this way.

6 TrapV exception. A Trap On Overflow (TRAPV) instruction was executed
and failed.

7 Privilege violation. The Macintosh Plus and Macintosh SE always run in
supervisor mode; perhaps an erroneous Return From Execution (RTE)
instruction was executed.

8 Trace exception. The trace bit in the 68000's status register is set.

9 Line 1010 exception. The 1010 trap dispatcher has failed.

10 Line 1111 exception. Unimplemented 68000 instruction.

11 Miscellaneous exception. All other 68000 exceptions.

12 Unimplemented core routine. An unimplemented trap number was
encountered.

13 Spurious interrupt. The interrupt vector table entry for a particular level of
interrupt is NIL. This usually occurs with level 4, 5, 6, or 7 interrupts.

14 1/0 system error. The File Manager or Device Manager encountered an
error.

(continued)

System errors 189

Table 9· 1 (continued)
System error messages and startup alert messages

ID

15

16

17-24

25

26

27

28

30

41

100

32767

Explanation or message

Segment Loader error. A call to read a segment into memory failed.

Floating-point error. The halt bit in the floating-point environment word
was set.

Can't load package. A call to read a package into memory failed.

Can't allocate requested memory block in the heap.

Segment Loader error. A call to read 'CODE' resource 0 into memory
failed; usually indicates a nonexecutable file.

File map destroyed. A logical block number was found that is greater than
the number of the last logical block on the volume or less than the logical
block number of the first allocation block on the volume.

Stack overflow error. The stack has expanded into the heap.

"Please insert the disk." File Manager alert.

The ftle named "Finder" can't be found on the disk.

Can't mount system startup volume. The system couldn't read the system
resource file into memory.

"Sorry, a system error occurred." Default alert message.

System startup alert messages

"Welcome to Macintosh"
"Disassembler installed"
"MacsBug installed"
"Warning-this startup disk is not usable"

In surveying the Macintosh software over the last eight chapters, we've seen that the
Macintosh Operating System and Toolbox are essentially the same for all Macintosh
computers. In fact, a major achievement of the Macintosh Operating System is the
provision of a unified software interface to a variety of Macintosh machines.

On Macintosh computers that provide for hardware expansion (the Macintosh SE
and the Macintosh IO there is the possibility of running another operating system as
an alternative to the Macintosh Operating System. Currently, Apple provides one
such alternative operating system for the Macintosh II: A/UX, an enhanced
implementation of the standard AT&T UNIX Operating System, which includes
support for the Macintosh Toolbox. But before outlining the features of the A/UX
Operating System, we'll explain the Macintosh hardware itself, describing in some
detail the specific differences between each of the Macintosh machines.

190 Chapter 9: The Macintosh Operating System

Chapter 10

The Macintosh
Family Hardware

191

This chapter describes the hardware features of the Macintosh Plus, Macintosh SE,
and Macintosh II computers. Much of the discussion is common to all Macintosh
computers, but the particulars of each machine are also described.

Every subject touched on here is explained in greater detail in the Macintosh Family
Hardware Reference, which describes the hardware for the Macintosh,
Macintosh Plus, Macintosh SE, and Macintosh II . Specifications for each of the
Macintosh machines can be found in Appendix A.

Overview of the Macintosh hardware
The hardware architectures of all Macintosh machines share many similarities. In
particular, the integral Macintosh machines-the original Macintosh,
Macintosh Plus, and Macintosh SE-follow the same general line of evolution: they
are all compact machines with built-in video. However, the Macintosh SE is
distinguished by several important innovations, including an expansion slot, as we 'll
describe in a moment.

Each of the Macintosh computers is built around a Motorola 68000-family
microprocessor, together with random-access memory (RAM), read-only memory
(ROM), and several chips that enable the computer to communicate with external
devices.

The Macintosh II hardware, while based on many of the same components used in
the other machines, marks a significant departure from previous Macintosh models,
above all in its use of expansion slots and a separate video card. The Macintosh II
still uses the same processor family, the same Operating System software, and the
same disks, serial ports, device drivers, and bit-mapped graphics, which remain
black-and-white by default.

Macintosh programs communicate with devices by using memory-mapped I/O,
which means that a program accesses each device in the system by reading or writing
to specific locations in the address space of the computer. (For a discussion, see the
section "Address Space" later in this chapter.) The following chips handle external
I/O functions on the Macintosh computers:

o A Versatile Interface Adapter (VIA) chip for the mouse, keyboard, and
miscellaneous other functions. (The Macintosh II includes a second VIA chip for
handling interrupts from NuBus slots.)

o A Serial Communications Controller (SCC) chip for serial communication

o An Apple custom chip, called the IWM (Integrated Woz Machine), for floppy
disk control

192 Chapter l 0: The Macintosh Family Hardware

o A Small Computer System Interface (SCSI) chip for high-speed parallel
communication with devices such as hard disks. (This chip is not found on the
Macintosh 128K and Macintosh 512K or 512K enhanced.)

o The Apple Sound Chip (ASC) on the Macintosh II. (On the Macintosh Plus and
Macintosh SE, the Sony sound chip is not an addressable I/0 device, as explained
in a later section, "The Sound Generator.")

The video display is built-in on the Macintosh Plus and Macintosh SE. On the
Macintosh II, an external video monitor is controlled by a NuBus video card.

A separate section of this chapter is dedicated to each of the devices listed above.

The classic Macintosh hardware

As explained in Chapter 1, the Macintosh Plus hardware differs in only a few
particulars from the earlier Macintosh hardware: the new 128K ROM, more RAM, the
BOOK floppy disk drive, the SCSI port, and a new type of connector for the serial
ports .

The microprocessor, RAM, ROM, and the various I/0 chips and connectors are
located on the Macintosh digital board (also called the main logic board). The
upright analog board contains the power supply and video circuitry for the built-in
monitor. Figure 10-1 illustrates these components.

As in the preceding chapters, the rest of this Chapter describes the classic Macintosh
hardware from the standpoint of the Macintosh Plus. In cases where earlier models
differ, this fact is called out in a separate note.

Overview of the Macintosh hardware 193

Figure 10·1
Inside the Macintosh Plus

194 Chapter l O: The Macintosh Family Hardware

OveNlew of the Macintosh hardware 195

f\gure 'o-2
\ns\de the Macintosh SE

196 Chapter 1 O: lhe Macintosh FarnllY Hardware

Overview of the Macintosh hardware 197

~=================

Figure 10-3
Inside the Macintosh II

198 Chapter l 0: The Macintosh Family Hardware

OveNlew of the Macintosh hardware 199

The Macintosh SE hardware
The basic layout of the Macintosh SE is similar to that of the Macintosh Plus, but
aside from the built-in monitor and 1/0 chips, most of the components are new. The
most noTable new features of the Macintosh SE are

D new 256K ROM

o change in the processor/video display interleave, resulting in faster RAM access

o improved hardware interface with the SCSI chip, resulting in faster hard-disk
access

o use of the Apple Desktop Bus™ (ADB) for keyboard and mouse support

o second internal disk drive: either an internal 20 MB SCSI hard disk or a second
built-in floppy drive

D provision for an internal expansion card to communicate directly with the 68000
bus

D a removable accessory access port to allow access to custom connectors on an
expansion card

To handle the needs of an internal hard disk and expansion card, an upgraded power
supply and a cooling fan have been added. Figure 10-2 shows how the pieces fit
together.

Numerous other new features not listed here are described in later sections of this
chapter.

The Macintosh II hardware

The Macintosh II is a big, open-architecture Macintosh based on the MC68020
microprocessor. The main logic board of the Macintosh II contains the 68020
microprocessor, RAM, ROM, and various 1/0 chips and connectors. There is also a
built-in 3.5-inch floppy disk drive and an optional second floppy drive, as well as an
optional internal SCSI hard disk. Six NuBus slots and the enclosed power supply
complete the picture (Figure 10-3).

As you can see, the video monitor is no longer built into the Macintosh II. A variety
of monochrome or color monitors can be used with the system.

Figure 10-4 illustrates how 1/0 devices connect to the Macintosh II system. As shown
in the figure, the Macintosh II has six built-in I/0 ports: the sound connector (output
only), two low-speed serial ports for the Apple Desktop Bus (ADB), two high-speed
serial ports for AppleTalk, printers, modems, and so on, and a SCSI parallel port.
Additional I/0 devices may be present on expansion cards in the NuBus slots. (At
least one of these slots ordinarily contains a video card; the other five slots may
contain other sorts of I/0 devices, coprocessors, or memory.)

200 Chapter 10: The Macintosh Family Hardware

External sound line

ADB keyboard

Figure 10-4
Macintosh II 1/0

External
video
monitor

Modem line

External SCSI
hard disk

ADBmouse

NuBus slots

Interior SCSI
connector

t
These connectors
are inside the box

t r---l

iooi
Interior disk

drive connectors

Overview of the Macintosh hardware 201

I

The next four major sections of this Chapter discuss the core of the Macintosh
hardware design: the microprocessors, the expansion slots, built-in memory, and
the Macintosh 1/0 devices in general. Subsequent sections will treat each of the
Macintosh I/O subsystems in turn: video, sound, floppy disk 1/0, SCSI I/0, serial
I/0, the keyboard, and the mouse.

The microprocessor
The Macintosh computers are built around the 68000 family of microprocessors,
known among assembly-language programmers for their elegant instruction set and
high performance.

The heart of the Macintosh Plus and Macintosh SE is a Motorola MC68000
microprocessor clocked at 7.8336 megahertz (MHz). The 68000 chip has a 16-bit
external data bus and a 24-bit external address bus. Internal address and data
registers are all 32 bits wide. The 24-bit addressing means that the 68000 can directly
access up to 16 megabytes (MB) of address space (that is, memory or I/O devices,
as explained in the next section).

The Macintosh II uses the more powerful MC68020 processor, clocked at 15.6672
MHz, which is twice the speed of the microprocessor on the other Macintoshes. The
68020 instruction set is a superset of the 68000 instructions, which means that
programs written for the 68000 will also run on the 68020. The 68020 chip provides a
full 32-bit architecture, and thus can address up to 4 gigabytes (or 4096 MB) of
address space. The 68020 provides the following advantages:

o A true 32-bit microprocessor. Address bus, data bus, and internal registers are all
32 bits wide. This means that applications specially written for 32-bit mode will go
very fast. Other features , such as the internal code cache, make the system go even
faster.

D Virtual paging of memory (with the MC68851 PMMU). This is required for
multitasking systems such as UNIX. (See the section "Hardware Memory
Management on the Macintosh II" in this Chapter for more details.)

o Downward compatibility with the 68000 chip used in the other Macintosh
computers. Even in 24-bit mode, software runs faster.

o Extended instruction set. New instructions can do more in less time compared to
the instructions used on the 68000. (Of course, new 68020 instructions won't work
on the 68000.)

It's important to note, however, that certain 68000 instructions don't work the same
way on the 68020. For information, see the chapter on compatibility guidelines of
Inside Macintosh, Volume 5.

202 Chapter l 0: The Macintosh Family Hardware

A full description of the two processors can be found in the Motorola MC68000
16/32-Bit Microprocessor Programmer's Reference Manual and the MC68020
Programmer's Reference Manual.

One of the major design advantages of the 68000 family is the provision for traps.
Calls to the Macintosh Toolbox and Operating System are implemented as
unimplemented 68000 instructions and work with either version of the
microprocessor. (See the section "The Trap Mechanism" in Chapter 2.)

Address space
As we've mentioned, the Macintosh uses memory-mapped 1/0, which means that
software communicates with each device in the system by reading or writing to
specific locations in the address space of the computer.

The address space reserved for the 1/0 devices contains blocks devoted to each of
the devices within the computer: the SCSI chip, the Serial Communications
Controller (SCC) chip, the disk controller chip (IWM), the VIA chip(s), and, on the
Macintosh II, devices in NuBus slots.

68000 address space

The MC68000 can directly access 224 addresses, or 16 megabytes (MB) of address
space. In the Macintosh Plus and Macintosh SE computers, the 16 MB of
addressable space is divided into four equal sections, as shown in Figure 10-5. The
first 4 MB megabytes of address space are for addressing RAM, the second 4 MB are
for ROM and the SCSI interface, the third are for the SCC, and the last 4 MB are for
the IWM and the VIA.

The microprocessor 203

IWMandVIA

sec

ROM
(and SCSI)

RAM

Figure 10-5
68000 address space

$COOOOO

$80 0000

$400000

$00 0000

Since the devices within each block may actually have far fewer than 4 MB of
individually addressable locations or registers, the addressing for a device may be
repeated within its block, as described further in the Macintosh Family Hardware
Reference manual.

Recall that in the Macintosh system, programs can remain compatible with all
machines by avoiding the use of "hard" addresses. Programs normally access
hardware locations by using a set of predefined assembly-language constants,
defined as offsets from locations pointed to by global variables.

68020 address space

The MC68020 processor can directly access 232 addresses, or 4 gigabytes (GB) of
address space. Address space is used for RAM, ROM, NuBus, the SCSI chip, the SCC,
the IWM, the VIAs, and the Apple Sound Chip (ASC), a custom sound chip on the
Macintosh II. The division of address space is shown in Figure 10-6.

•:• Note: The MC68881 floating-point coprocessor and the MC68851 Paged
Memory Management Unit (described in the next two sections) are also address
mapped, but not in the same map with the RAM, ROM, I/0 devices, and NuBus.
See the Macintosh Family Hardware Reference for details.

204 Chapter l 0: The Macintosh Family Hardware

24-Bit logical
address space

1/0

NuBus

(1 MB per slot:
6 MB total)

ROM

RAM

Figure 10-6

SFO 0000

$900000

$80 0000

$000000

32-Bit physical
address space

Standard
NuBusspace

Reserved

Nu Bus

(256 MB per slot:
1.5 GB total)

1/0

ROM

RAM

68020 address space (24- to 32-bit mapping)

$60000000

$50000000

$40000000

$0000 0000

Some programs written for the 68000-based Macintosh machines make use of the
high-order 8 bits of the 32-bit internal address registers, knowing that only the lower
24 bits will appear on the external address bus. To provide compatibility with those
programs, the Macintosh II has provided a 24-bit external addressing mode that
ignores the 8 upper bits. It is usually possible to run Macintosh software on the
Macintosh II in the 24-bit mode. A set of Operating System Utilities calls provide for
switching between the 24-bit mode (16 MB address space) and the 32-bit mode (4 GB
address space).

The microprocessor 205

Hardware memory management on the Macintosh II
On the Macintosh II, a built-in 24- to 32-bit Address Mapping Unit (AMU) handles
the job of switching from 24-bit mode to 32-bit mode. As we mentioned in the
previous section, the high-order 8 bits are ignored in 24-bit mode, and all bits are
used in the 32-bit mode. This 24- to 32-bit address translation allows for running
existing Macintosh software on the Macintosh II.

However, multitasking operating systems such as UNIX rely on virtual memory and
require a logical-to-physical translation of an address from the processor. To handle
that need, the Macintosh II supports an optional Paged Memory Management
Unit (PMMU), the Motorola MC688Sl. The PMMU supports the usual 24- to 32-bit
switching, as well as providing hardware memory management and virtual memory
support The PMMU can be installed in a socket on the main logic board of the
Macintosh II, replacing the existing 24- to 32-bit address mapping unit.

The 68851 PMMU is designed to support a demand-paged virtual memory
environment with the MC68020, as explained in the next section. It also provides
some protection so that an application can't write to places that it shouldn't, such as
to memory belonging to another task that is currently running. The PMMU is a
coprocessor to the 68020; the interface is transparent to the programmer so that the
PMMU registers and instructions are an extension of the 68020's. For more
information, see the Motorola MC68851 User's Manual.

Virtual memory

Compared to the microprocessor's addressing range, only a relatively limited
amount of RAM (physical memory) is available; however, a far larger virtual
memory can be maintained on disk. Virtual memory is a technique that evolved on
mainframe and minicomputers and has now been implemented on 32-bit
microcomputers. Virtual memory means that a program can behave as if the 68020's
entire logical addressing range were available to it.

The 60020 and PMMU together provide support for virtual paging of memory,
required for multitasking by systems such as UNIX. A page is a fixed-size chunk of
memory that is swapped in and out from the disk; the PMMU keeps track of 64 pages
in memory. When the 68020 tries to access a memory location that's not in RAM
(that is, data not in one of the 64 pages), a page fault is generated, and the page
containing the data is swapped in from the disk to RAM.

For more information about Apple's implementation of UNIX for the Macintosh II,
see Chapter 11.

206 Chapter l 0: The Macintosh Family Hardware

Macintosh II floating-point coprocessor (MC68881)
The Motorola MC68881 floating-point coprocessor (also called a Floating-Point
Unit or FPU) is built-in on the Macintosh II. The floating-point coprocessor greatly
benefits calculation-intensive applications such as accounting, 3-D modeling,
CAD/CAM, and scientific programs.

The 68881 coprocessor is a high-performance floating-point device designed to have
a high degree of compatibility with the 68000 and 68020. The 68881 uses the 68020's
coprocessor interface to operate in parallel with 68020 program execution. When the
68020 encounters a 68881 floating-point instruction, it passes it directly to the
coprocessor.

A version of the Standard Apple Numerics Environment (SANE) works with the
68881 coprocessor. (SANE was introduced in the "Numerics" section of Chapter 9.)
Figure 10-7 shows the relationship between SANE and the floating-point chip. Many
of the operations performed by SANE are taken over by the 68881, although some
operations continue to be performed in software.

Operations
In hardware

Figure 10-7

Operations
in software

SANE

Relationship of SANE to the 68881 coprocessor

The microprocessor 207

On the Macintosh II, all floating-point operations and even some fixed-point
operations are assisted by the 68881. Programs that have used the standard SANE
interface can expect an automatic speed improvement of 5 to 50 times for floating
point operations (with an average speed gain of about 10 times over the
Macintosh Plus). Programs using the SANE interface will run on all Macintosh
computers and will deliver results that are bit-for-bit identical on any machine.

If developers use the 68881 directly, the improvement can be anywhere from 40 to
700 times (with an average speed gain of about 100 over the Macintosh Plus).
Macintosh II developers can make their programs access the 68881 by using
assembly-language calls or by requesting the MC68881 option from any MPW
programming language. Note however that such programs will not run on Macintosh
computers without a 68881, nor will they deliver results that are bit-for-bit identical
with other Macintosh computers. For more information, see the Macintosh
Programmer's Workshop Pascal 2.0 Reference, Macintosh Programmer's
Workshop C 2 .0 Reference, or Macintosh Programmer's Workshop Assembler
Reference (Revision 2.0).

Macintosh SE expansion connector
The Macintosh SE is the first member of the Macintosh family to provide the
capability for internal hardware expansion. The Macintosh SE expansion connector
makes it possible to connect an expansion card with dimensions of approximately 4
inches by 8 inches directly to the 68000 microprocessor bus. Such an expansion card
can also be connected to devices external to the computer through a snap-out
accessory access port in the rear of the case. The design of the Macintosh SE also
provides for the physical requirements of expansion cards through the addition of an
upgraded power supply and a cooling fan.

•:• Note: Third-party products that adhere to the recommended expansion
guidelines, use the Apple-supplied expansion features, and do not require
physical alteration of the Macintosh SE will not void the Apple Limited
Warranty. See Designing Cards and Drivers for Macintosh II and
Macintosh SE for guidelines.

The expansion connector is a 96-pin connector that provides power, timing, and
direct access to the 68000 bus. Figure 10-8 shows an illustration of this connector.

208 Chapter l 0: The Macintosh Family Hardware

Macintosh SE logic board

Figure 10-8
Macintosh SE expansion connector

Macintosh II expansion slots

0 0 ---------

Expansion
connector

The Macintosh II has six expansion slots; each slot consists of a 96-pin DIN
connector and uses the NuBus interface. NuBus is a 32-bit wide address and data bus
based on a Texas Instruments specification. The Apple implementation of NuBus is
supported in software by the Macintosh Slot Manager.

Figure 10-9 shows the layout of NuI3us slots on the Macintosh 11.

Macintosh II expansion slots 209

Expansion
connectors

Figure 10-9
Macintosh II expansion slots

id p I

Macintosh II logic board

Cards that can go in the NuBus slots include (but are not limited to):

o video cards

o processor cards

o extra memory cards

o network interface and other I/0 cards

NuBus cards are self-configuring: the slots are mapped into different address ranges,
and the ROM on each card provides the operating system with information about its
parameters and drivers . The Control Panel desk accessory displays the hardware
configuration and allows you to configure the peripheral cards in the slots and to set
their parameters, as provided by the software that supports the cards. At startup
time, the system automatically configures the cards according to the parameters
specified in the Control Panel.

In the Macintosh II ROM, the Slot Manager software consists of several system
routines that communicate with the configuration ROM contained on each NuBus
card .

For more information on NuBus, see Designing Cards and Drivers for Macintosh II
and Macintosh SE.

Like other Macintosh I/0 devices, devices in Nu Bus slots are addressed by writing to
locations in the computer's address space. They can also send interrupts to the
microprocessor, as explained in the section "I/0 Devices" later in this chapter.

210 Chapter 10: The Macintosh Family Hardware

Memory
Built-in memory in the Macintosh consists of RAM and ROM. Certain devices within
the computer, such as the Apple Sound Chip and the video card on the Macintosh II,
also have their own RAM and ROM.

Macintosh RAM

RAM is the working memory of the system. Up to 4 megabytes (MB) of RAM can be
installed on the Macintosh Plus and the Macintosh SE. ('The standard configuration
is 1 MB.) As of this writing, up to 8 MB can be accommodated on the Macintosh II
main logic board; the theoretical limit is 128 MB, as higher-density RAMs become
available. More than two gigabytes can be accommodated on expansion cards.

Each time you turn on the computer, the system software does a memory test and
determines how much RAM is present in the machine. ('Ibis Figure is available to
programs via a global variable.)

The RAM is divided into the application space and the space used by the system for
information such as the system globals and for the screen buffer (on the Macintosh
models with built-in video). The organization of the Macintosh RAM is discussed in
Chapter 7, and a memory map is given in Figure 7-1.

RAM access time

On the Macintosh Plus, the microprocessor's accesses to RAM are interleaved
(alternated) with the video display's accesses during the active portion of a screen
scan line. (Video scanning is described in the next section.) The sound generator
and disk speed controller are given the first access after each scan line. At all other
times, the MC68000 has uninterrupted access to RAM, yielding an average RAM
access rate of about 2.56 MB per second.

RAM access has been speeded up by some 25 percent on the Macintosh SE. This is
done by allowing the 68000 three accesses during the active portion of the screen
scan line, and then allocating one long-word access to the video display, for an
average RAM access rate of 3.22 MB per second.

The Macintosh II uses faster RAM ICs that are not interchangeable with the type of
RAM normally used in the Macintosh Plus and Macintosh SE. (The access time for
the Macintosh II RAM ICs is 120 nanoseconds; the Macintosh Plus and Macintosh SE
normally use slower 150-nanosecond memory ICs, although 120-nanosecond ICs
can also be used.) The RAM access rate on the Macintosh II is further speeded up
because the 68020's accesses to RAM are not interleaved with the video display's
accesses, yielding an average RAM access rate of 12.53 MB per second.
(Macintosh II video RAM is located on the video card in one of the expansion slots.)

Memory 211

Adding RAM

On the Macintosh Plus, Macintosh SE, and Macintosh II, RAM is provided in
packages known as Single In-line Memory Modules (SIMMs). The Macintosh Plus
and Macintosh SE contain two or four SIMMs; the Macintosh II contains four or
eight. Each SIMM contains eight surface-mounted RAM ICs on a small printed circuit
board with electrical "finger" contacts along one edge, as shown in Figure 10-10.

RAMIC
Cl of 8)

Figure 10-10
SIMMS and RAMs

0

Various RAM configurations are possible depending on how many SIMMs are used
and on the density of the RAM ICs that are mounted on the SIMMs. On the
Macintosh Plus and Macintosh SE, the standard configuration provides 1 megabyte
(MB) of RAM (four SIMMs containing 256 kilobit RAM chips). Using 1 megabit RAM
ICs will provide up to 4 MB of RAM on the Macintosh Plus or Macintosh SE.

On the Macintosh II, RAM is divided into two banks of four SIMM sockets each. The
standard configuration, 1 MB of RAM, consists of four SIMMs containing 256 kilobit
RAM ICs. Using 1 megabit RAM ICs will provide up to 8 MB of RAM. In the future,
even denser RAM ICs will allow up to 128 MB of RAM in the SIMM sockets. Even more
RAM (up to a theoretical maximum of 2 GB) may be added via expansion cards in
NuBus slots.

The SIMMs can be changed by simply releasing one and snapping in another.
However, there are also two resistors on the logic board in the Macintosh Plus and
Macintosh SE that must be installed or removed to tell the electronics how much
RAM is installed.

•:• Note: Opening the case of the classic Macintosh or Macintosh SE requires
special tools; it also voids your warranty.

212 Chapter 10: The Macintosh Family Hardware

Some configurations, such as a single SIMM or mixing different-density RAM ICs in a
pair of SIMMs, are not allowed. If different-density RAM ICs are used, their
placement in the SIMM sockets is critical. Also recall that the SIMMs used in the
Macintosh Plus or Macintosh SE can only be used in a Macintosh II if the SIMMs
contain 120 nanosecond or faster RAM. (Macintosh II SIMMs can always be used in a
Macintosh Plus or Macintosh SE.) For exact instructions about installing more
memory in your computer, refer to the Macintosh Family Hardware Reference.

Warning

Because the video monitor Is built-In, there are dangerous voltages Inside the
case of the original Macintosh, Macintosh Plus, and Macintosh SE computers. In
particular, the video tube and video circuitry may hold dangerous charges long
after the computer's power Is turned off. Only qualified service personnel should
reconfigure the computer's RAM.

The Macintosh ROM

ROM is the system's permanent read-only memory. Two ROM chips on the
Macintosh Plus contain 128K of carefully hand-crafted system code. This code,
which consists of over 700 routines written in assembly language, comprises the core
of the Macintosh computer's Operating System and Toolbox, and the various system
traps. Unlike RAM, the ROM is used exclusively by the microprocessor and is always
accessed at the maximum rate of 3.92 MB per second.

The Macintosh Plus has 128K bytes of ROM, contained in two 512-kilobit ROM chips.
The Macintosh Plus ROM sockets, however, can accept ROM chips of up to 1 megabit
in size. A configuration of two 1 megabit ROM chips would provide 256K bytes of
ROM. (For instance, the Japanese kanji version of the Macintosh Plus uses the
1 megabit ROMs to provide kanji and kana fonts in ROM.)

•!• Note: 128K is the largest size of ROM that can be installed in a Macintosh 128K,
512K, or 512K enhanced.

The Macintosh SE and Macintosh II computers each have a 256K of ROM,
containing many new routines as well as improved versions of older ones. Many
parts of the system software that were RAM-based on the Macintosh Plus have been
put into the 256K ROM. The Macintosh SE and Macintosh II ROMs are not identical,
however-the Macintosh II ROM includes color, sound, and NuBus support not
found in the Macintosh SE ROM, which is only partially full.

111e Macintosh II ROM consists of four 512-kilobit ROM chips. The four Macintosh II
ROM sockets can also accommodate 1 megabit ROM chips; a configuration of four
1 megabit ROM chips would provide 512K bytes of ROM.

An optional configuration for the Macintosh II ROM is the installation of a 64-pin
Single In-line Memory Module (SIMM) in the SIMM socket on the Macintosh II main
logic board. The ROM SIMM option provides another way to upgrade your ROM.

Memory 213

The video interface
As described in Chapter 5, the Macintosh video display is driven in software by
QuickDraw, which presents substantially the same program interface on a color
Macintosh II as on the original monochrome models with built-in video. In video
hardware, however, the Macintosh II is completely different from the
Macintosh Plus and Macintosh SE, as the following sections explain.

Integral Macintosh video

The Macintosh video display is created by a moving electron beam that scans across
the screen; as it scans, it turns on and off in order to create black-and-white pixels.
Each pixel is a square, approximately 1/74 of an inch on a side. (This comes close to
the points used in typography, which measure 1/72 of an inch.)

To create a screen image, the electron beam starts at the top-left corner of the
screen. The beam scans horizontally across the screen from left to right, creating a
line of graphics. Each time the scanning beam reaches the right edge of the picture,
it flicks invisibly back to the left edge and down a pixel to the beginning of the next
line, much as you move your eyes when you read a Hne of print. This technique is
called raster scanning. (Raster is Latin for rake and means a group of equally
spaced lines.)

When the scanning beam reaches the bottom of the picture, it flicks back to the
beginning of the top line and repeats the entire process. The time between the last
pixel on the bottom line and the first one on the top line is called the vertical
blanking interval. At the beginning of the vertical blanking interval, the VIA chip
generates a vertical blanking interrupt.

The electron beam's video scanning pattern is shown in Figure 10-11.

214 Chapter 10: The Macintosh Family Hardware

Vertical blanking
ends here

Black border -----1•

Vertical blanking

Horizontal
blanking
ends here

'Scan lineO

Horizontal
blanking

starts here

·------ 512 pixels wide ----..i

starts here __ ,,i;;.,.-----..,...,.....,,,,,,,..,.,.,,..,...----------'

Figure 10-11
Video scanning pattern

Each full scan line takes 44.93 microseconds, which means the horizontal scan rate is
22.25 kilohertz (KHz). An entire screen scan, including the vertical blanking interval,
takes 16.6 milliseconds, for a frame rate of 60.1 hertz (Hz).

On the Macintosh Plus and Macintosh SE, the video generator uses 21K of RAM
(called the screen buffer) to compose a bit-mapped video image 512 pixels wide by
342 pixels tall. Each bit in this range controls a single pixel in the image: a 0 bit is
white and a 1 bit is black.

Each scan line of the screen displays the contents of 32 consecutive words of memory
(64 bytes), each word controlling 16 horizontally adjacent pixels; 64 bytes times 342
scan lines yields 21888, or 21K bytes, the size of the screen buffer. Recall that a
program may use a much larger area of memory for graphic operations, using
QuickDraw to create off-screen images so that they can be displayed more rapidly.
QuickDraw takes care of associating areas in graphics space with the screen buffer: by
default, a grafPort's bit map points to the screen buffer in memory, and drawing to
the grafPort writes to the screen. A program can change this to write to another area
in memory (for later moving onto the screen, for instance.)

The video Interface 215

On the Macintosh Plus and Macintosh SE, there are actually two screen buffers: the
main buffer and the alternate buffer. The hardware displays the contents of one or
the other, depending on how software sets a bit in the VIA. This lets a program create
an image in the buffer not being displayed, and then instantly flash it on the screen,
which is useful for animation.

Macintosh II video
On the Macintosh II, video is no longer an integral part of the computer as it was on
all previous machines. The Macintosh II system supports a wide variety of color or
monochrome video devices, which are connected to the system through interface
cards plugged into NuBus expansion slots. The screen buffer is located on the video
card. Each device must also have its own specialized device driver for
communication with the rest of the system.

Like all slot-based expansion cards, a video card must include information in its
ROM about its capabilities and possible configurations. Video cards also have their
own parameter RAM. For instance, you can use the Control Panel desk accessory to
set the pixel depth; this information is stored in the card's paramenter RAM.

At this writing, Apple is providing two video monitors for the Macintosh II:

o 12" 640-pixel by 480-pixel black-and-white monitor

o 13" 640-by-480 color monitor

As on previous Macintosh computers, graphics on the Macintosh II is supported by
QuickDraw, which has been extended to provide sophisticated color support, as we
outlined in Chapter 5. While providing full color support, Color QuickDraw remains
compatible with existing applications.

1/0 devices
In the Macintosh system, external peripheral devices communicate with the
computer via one of the following I/O chips:

o a Versatile Interface Adapter (VIA) for miscellaneous, including the mouse,
keyboard, and real-time clock. On the classic Macintosh, the mouse and
keyboard are handled directly through the VIA; on the Macintosh SE and
Macintosh II, they are controlled by an Apple Desktop Bus chip, which is
addressed through the VIA.

o a second VIA on the Macintosh II for handling interrupts from Nu Bus slots

o a Serial Communications Controller (SCC) for serial communication

o an Apple custom chip, the IWM (Integrated Waz Machine), for floppy disk control

216 Chapter 10: The Macintosh Family Hardware

o a Small Computer System Interface (SCSI) chip for high-speed parallel
communication with up to seven devices

o the custom Apple Sound Chip on the Macintosh II

The Macintosh communicates with VO devices by writing to locations in the
computer's address space, as we outlined earlier. Devices can initiate
communication with the Macintosh by sending interrupts to the microprocessor.

Interrupts
An interrupt is an exception that is signaled to the processor by a hardware device (as
opposed to a trap, which arises directly from the execution of an unimplemented
instruction). An exception is an error or abnormal condition detected by the
processor in the course of program execution.

On the Macintosh Plus, three devices can initiate interrupts: the Versatile Interface
Adapter (VIA), the Serial Communications Controller (SCC), and the programmer's
interrupt switch. On the Macintosh SE, the SCSI controller can also generate an
interrupt, as can devices connected through the expansion connector. On the
Macintosh II, slot devices can also initiate interrupts, which are transmitted through
a second VIA chip. All of these devices use interrupts to notify the processor of a
change in the device's condition, such as the completion of an 1/0 request.

An interrupt causes the processor to suspend normal execution, save the address of
the next instruction and the processor's internal status on the stack, and execute a
routine called an interrupt handler. Each device indicates to the processor which
device is interrupting, and which interrupt handler should be executed. On
completion of a particular task, the handler restores the internal status of the
processor from the stack and resumes normal execution from the point at which
processing was suspended.

The block diagrams given in the following sections illustrate how all these elements fit
together on the various machines. The VIA, which figures in much of the computer's
VO activity, is discussed following the block diagrams.

Macintosh Plus block diagram
Figure 10-12 shows a functional block diagram of the Macintosh Plus computer.

1/0 devices 217

MC6800
(8 MHz)

Data bus

Interrupt
switch

Figure 10-12
Macintosh Plus block diagram

Video shift
register

RAM RAM Data

Sound
PWM

Disk
PWM

data bus tmlRdBRBB&~1
buffers

RAM
address

mux's

Built-in
monitor

Internal
speaker

External
audio port

1-----.•

RAM
l-4MB

ROM

(To floppy
disk ports)

128 or 256 KB

VIA Real-time
clock

Keyboard
port

Mouse
port

sec Channel A Drivers Port A (modem)
and

Channel B receivers Port B (printer)

SCSI
port

SCSI

Internal
floppy disk External

port floppy disk
...... port

IWM

The only real difference between the layout shown in Figure 10-13 and the
corresponding figure for a Macintosh 128K or 512K is a different-sized RAM and
ROM, the use of a new type of serial port on the Macintosh Plus, and the addition of
the SCSI port on the Macintosh Plus.

Macintosh SE block diagram
A functional block diagram of the Macintosh SE is presented in Figure 10-13.

A comparison of this figure with the block diagram of the Macintosh Plus in
Figure 10-12 will reveal some differences. The chief differences are a pair of new
devices:

o A custom gate-array chip, called the BBU, that handles RAM, video, sound, and
that selects devices and performs other functions.

o An Apple Desktop Bus (ADB) controller chip, handled through the VIA. ADB is a
low-speed serial bus for the keyboard, mouse, and other input devices.

The system has also been modified to handle additional disk drives. An internal SCSI
connector is provided, and the IWM chip can now handle up to three 3.5-inch
floppy disk drives.

Macintosh II block diagram
A functional block diagram of the Macintosh II is presented in Figure 10-14.

219

e

Address map ~
~VIA

Built-In ED
96-pln llWM

t4 xpanslon board
Video connector

~occ Video

m
CD0-15) sec 1 board

~= (Al-23) ROM ri lnlemal
OD RAM speaker Extemal

~ audio port

CAll~68000 I (Device SoundPWM
Amp. •

sel=-J lines plus power
and clocks) (A9. 17.

BBU DlskPWM (To external 19-23)
Custom ,..

floppy disk port)
gate array """"' !ill

CAl-8.
10-16. 18) RAM RAM addresses

Address
(RA 0-9) RAM

CPU Address bus mux's Read-write memory
Motorola .5 or l MB (256 K SIMMs);
MC68000 CA 1-23) (D0-15) RAM RAM data 2 or 4 MB Cl MB SIMMs);
(7.8MHZ) Data bus 2.5 MB (two each size)

buffers CRDQ0-15)
Data bus

Interrupts CD0-15)
(D0-15)

ROM
Read-only

(A 1-17)
memory Apple /IPLl /IPL2 lnterrup~ -~~-·~--- 1--·--· 256K Desktop

switch ports
ADI

Custom ..
l

. .
/IPLO /IRQ VIA ~ + Apple Desktop

Custom Bus transceiver
(D8-15) versatile

Interface
CA9-12) adapter RTC

--~,. _ _,_ ~ .. -----·--' Custom
real time clock

SCSI
SCSI l IRQ NCR5380

Port for small Interrupt J
computer lntemal hard disk External mask (D8-15)

system [: : : : : : :: ::] SCSI port
(A4-6) Interface :I ·::::::::]

~"'""""""'"''~·

Port for Port for
IWM lower lntemal upper lntemal External

(00-7) Custom floppy disk floppy disk floppy disk
floppy
~ ~

port
(A9-12) disk

--~·--~~~-.,~- ~-~--~·,··~~ controller

/IRQ
sec Serial

Zllog8530 ports
serial Channel A Port A (modem)

communl- Drivers ~
(D8-15)

cations Channel B and Port B (printer)
(Al.2) controller reclevers ~

"' ·------·-
Figure 10-13
Macintosh SE block diagram

MC68020
16 MHz

PMMU/
AMU

ADB (Apple Desktop Bus)
serial, low-speed bus for
keyboard, mouse, etc.

RTC (Real Time Clock)
256 bytes of
parameter RAM

SCSI (Small Computer System l/F)
8-bit, parallel, 8 devices

sec <Zllog 8530)
chan-A: AppleTalk, Async,

'Sync'
chan-B: AppleTalk, Async

IWM (Integrated Waz Machine)
Interfaces Sony SOOK
floppy disks

ASC (Apple Sound Chip)
4 voices, 1 or 2 channels
(stereo via external jack)

Figure 10-14
Macintosh II block diagram

Nu Bus

lnts

9 A B c

Slot Interrupts

RAM
1-2 MB (256 Kbit chips)
4-8 MB (1 Mblt chips)

VIAl

VIA2

SCSI

sec

IWM

ROM
256K

IRQDRQ

D E

20/40/80 MB

Floppy dlsk(s)

ASC

221

The most notable change with the Macintosh II is the addition of the six NuBus slots
and the removal of the video interface to a device in one of the slots. Two new I/0
chips have been added: a second VIA chip to handle interrupts from slot devices,
and the custom Apple Sound Chip (ASC) for enhanced sound production.

The VIA
The Versatile Interface Adapter (VIA), as its name suggests, controls a variety of
functions on the various Macintoshes.

On the classic Macintosh, a single VIA chip controls the keyboard, internal real-time
clock, parts of the disk, sound, and mouse interfaces, and various internal Macintosh
signals. The Macintosh SE also uses a single VIA chip, although a few of its signals
have changed due to the addition of the Apple Desktop Bus and other new features.

The many new features of the Macintosh II required the addition of a second VIA
chip. The VIAl chip provides most of the signals from the original Macintosh
configuration, ensuring maximum compatibility with existing Macintosh software.
The VIAl chip also provides access to new features, including the Apple Desktop Bus
and a signal for synchronous modem support. The VIA2 chip provides control of the
24- to 32-bit address mapping unit (the AMU), decoding for the NuBus slot
interrupts, a SCSI interrupt, and other new features .

The real-time clock

The Macintosh real-time clock is a custom chip whose interface lines are controlled
by the VIA. The clock contains a four-byte counter that is incremented once each
second, as well as a line that can be used by the VIA to generate an interrupt once
each second.

The clock chip also contains 256 bytes of battery-powered RAM. These RAM bytes,
called parameter RAM, contain important data that needs to be preserved even
when the Macintosh is turned off. The clock chip is powered by a battery when the
system is off, thereby preserving all the settings stored in it. You can change most of
the values in parameter RAM via the Control Panel desk accessory. (The values

· contained in the parameter RAM are discussed in "The Control Panel" section of
Chapter 6.)

The date and time setting is also copied at system startup from the clock chip into a
low-memory location. This setting is stored as the number of seconds since
"antiquity"-midnight January 1, 1904-and is updated every second.

The clock chip on the Macintosh SE and Macintosh II is powered by a long-life
(seven- to ten-year) lithium battery mounted on the main circuit board, so its
parameter RAM remains valid even if you do not turn your computer on for extended
periods of time.

222 Chapter l 0: The Macintosh Family Hardware

The sound generator
As with video, the sound capabilities of the Macintosh II represent a major departure
from the sound provided by the Macintosh Plus and Macintosh SE. As indicated in
"The Sound Manager" section of Chapter 9, the Macintosh II continues to support
software written for the original Sound Driver used on the Macintosh Plus and
Macintosh SE.

Macintosh Plus and Macintosh SE sound
On the integral Macintoshes, the sound circuitry and the disk speed controller
circuitry share a special 740-byte buffer in memory, of which the sound circuitry uses
the 370 even-numbered bytes to generate sound. Every horizontal blanking interval
(every 44.93 microseconds-when the beam of the display tube moves from the right
edge of the screen to the left), the MC68000 automatically fetches two bytes from this
buffer and sends the high-order byte to the sound circuitry.

•:• Note: The period of any four-tone or free-form sound generated by the Sound
Driver is a multiple of this 44.93-microsecond interval. The highest frequency is
11128 hertz (Hz), which corresponds to twice this interval.

By storing a range of values in the sound buffer, a program can create the
corresponding waveform in the output sound channel. This signal drives a small
speaker inside the Macintosh and is connected to the external sound jack on the back
of the computer. The external sound line can drive a load of 600 or more ohms-that
is, the input of almost any audio amplifier, but not a directly connected external
speaker. You can disable the internal speaker by inserting a plug into the external
sound jack.

The sound generator 223

Every vertical blanking interval (every 16.6 milliseconds-when the beam of the
display tube moves from the bottom of the screen to the top), the Sound Driver fills
its half of the buffer with the next set of 370 values, each specifying the sound
amplitude for one 44.93-microsecond interval. For square-wave sound, the buffer
is filled with a constant value; for more complex sound, it's filled with many values.

The sound generator uses a form of pulse-width encoding to create sounds. The
pulses come at fixed 44.93 microsecond intervals; the wtdth of each pulse conveys
the amplitude of the sound wave. The Sony Sound Chip integrates the pulse train to
make a smoothly varying amplitude for the sound output. Figure 10-15 shows the
relationship between the pulse width and the amplitude of the sound wave.

Sound
wave

Digital
pulses

Figure 10-15
Sound signals

The sound circuitry reads one word in the sound buffer during each horizontal
blanking interval, including the virtual intervals during vertical blanking, and uses
the high-order byte of the word to generate a pulse of electricity whose duration, or
width, is proportional to the value of the byte.

224 Chapter 10: The Macintosh Family Hardware

The Sony Sound Chip converts this pulse into a voltage that is attenuated or reduced
by a value from the VIA. This reduction corresponds to the current setting of the
volume level. After attenuation, the pulses are integrated, or smoothed, and the
resulting sound signal is passed to the audio output line.

+ Note: The low-order byte of each word in the sound buffer is used to control the
speed of the motor for the original single-sided floppy disk drives. Any sound
information stored there will interfere with the single-sided disk i/o.

On the Macintosh Plus, there are two sound buffers in RAM, just as there are two
screen buffers. The alternate sound buffer is not supported in the Macintosh SE and
Macintosh II. On Macintosh II, the sound buffer is located on the Apple Sound Chip
(ASC).

The Macintosh II sound chip
The Macintosh II sound circuit uses the Apple Sound Chip (ASC) and two Sony sound
chips to drive the internal speaker or external stereo rnini-phono jack. The Apple
Sound Chip generates a stereo/audio signal. This signal pair is then filtered and
buffered by the Sony sound chips, and output via the speaker or stereo rnini-phono
jack.

The Apple Sound Chip allows superior sound generation that is compatible with
existing Macintosh software. In addition to the previous Macintosh sound
capabilities, the Apple Sound Chip offers

o four-voice hardware synthesis (this mode is a hardware implementation of the
four-voice driver in the Macintosh ROMs)

o stereo free-form sound

o increased fidelity

A new set of ROM tools (the Sound Manager) provides new options and features;
however, ASC sound generation will work with existing Macintosh software.

In place of a single RAM address space, the ASC adds two 1024-byte first-in, first-out
memories to accept the sound values. This removes much of the time-critical nature
of sound generation and gives stereo sound.

The sound generator produces sound in two ways: through the on-board speaker,
and through the external headphone jack. The internal speaker is a 2-1/4-inch
speaker, driven by a power amplifier.

The sound generator 225

The headphone jack is a stereo mini-jack, compatible with headphones for portable
cassette recorders. It will not drive a speaker directly. As on other Macintosh
models, the speaker is disconnected if a plug is inserted in the external sound
connector. If no plug is inserted in the jack, the default sound mode will be switched
to monaural to allow both channels of the stereo sound to play through the
Macintosh II internal speaker. The jack is capable of driving headphones of 8 to 600
ohms and is short-circuit protected.

The sample rate is 22.25454 KHz, for a useful bandwidth of approximately 7 KHz.
Volume is controlled in eight increments of 8.75 decibels each, for a total output
dynamic range of 70 decibels .

The disk interface
The Macintosh disk interface uses a design similar to that used on the Apple II and
Apple III computers, employing the Apple custom IWM chip. On the classic
Macintosh, another custom chip called the Analog Signal Generator (ASG) reads the
disk speed buffer in RAM and generates voltages that control the disk speed for
single-sided disk drives. (On the Macintosh SE, this function has been integrated
into the custom gate array chip, the SELU.)

Together with the VIA, these chips generate all the signals necessary to read, write,
format, and eject the 3.5-inch disks used by all Macintoshes. On the Macintosh Plus
and Macintosh SE, the disk interface can also support an external Apple Hard
Disk 20.

•:• Note: The external double-sided drive can be attached to a Macintosh 512K
through the back of an Apple Hard Disk 20. The software on the Hard Disk 20
Startup disk contains a device driver for this drive as well as the HFS (128K ROM)
version of the File Manager.

On the Macintosh SE, the IWM can handle up to three floppy disk drives and
operates at 16 MHz. On the Macintosh II, it handles two floppy disk drives and
operates at 16 MHz.

In software, disk 1/0 is supported by the Macintosh Disk Driver. The Macintosh File
Manager supports higher-level file access.

226 Chapter l 0: The Macintosh Family Hardware

SOOK floppy disk drive
The Macintosh Plus, Macintosh SE, and Macintosh II each contain a built-in
double-sided 3.5-inch disk drive. The double-sided drive can format, read, and
write both BOOK double-sided disks and 400K single-sided disks. A single mechanism
positions two read/ write heads-one above the disk and one below-so that the drive
can access two tracks simultaneously. (For 400K disks, the double-sided drive
restricts its operation to one side of the disk.)

On the Macintosh Plus and Macintosh SE, you can also attach an external double
sided drive or one of the older single-sided drives. On the Macintosh SE and
Macintosh II, a second internal floppy drive can be added. On the Macintosh II,
however, there is no external disk drive port: the task of handling external disk I/O is
taken over fully by the SCSI port.

•:• Note: By default, single-sided disks do not use the hierarchical file system (HFS).
You can place the HFS on a single-sided disk by holding down the Option key
when you select the format command.

•:• Note: On the older 400K disk drives, a buffer in RAM (actually the low-order
bytes of words in the sound buffer) is read by the Analog Signal Generator (ASG)
to generate a pulse-width modulated signal, like the sound signal, that controls
the speed of the disk motor. This speed variation is responsible for the
characteristic humming of the disk drive. The Macintosh Operating System uses
this speed control to store more sectors of information in the tracks closer to the
edge of the disk by running the disk motor at slower speeds. On the BOOK drives,
the variable disk speed is automatically controlled by the disk drive hardware.

The SCSI interface
The Macintosh Plus, Macintosh SE, and Macintosh II computers each have a buiit-in
SCSI port for high-speed parallel communications. Small Computer System
Interface (SCSI) is an industry-standard interface, defined by the American
National Standards Institute (ANSI). The SCSI interface can communicate with up to
seven SCSI devices, such as hard disks, streaming tapes, and high-speed line
printers. The external SCSI port is a DB-25 connector on the back of the computer.

The SCSI port on the Macintosh SE and Macintosh II is identical to the SCSI port on
the Macintosh Plus, except that faster transfer rates are supported by special
hardware.

The SCSI port is controlled by an NCR 5380 SCSI chip. The SCSI controller chip is
connected to an internal SCSI-standard 50-pin ribbon connector and the external
DB-25 connector. The SCSI port can be used to implement the full SCSI interface as
defined by the ANSI X3T9.2 committee. The Macintosh Pius 's SCSI port differs from
the ANSI committee's standard in two ways:

The SCSI Interface 227

o First, it uses a DB-25 connector instead of the standard 50-pin ribbon connector.
You can convert the DB-25 connector to the standard 50-pin connector with an
Apple adapter cable.

o Second, power for termination resistors is not provided at the SCSI connector nor
are termination resistors provided in the Macintosh Plus SCSI circuitry. This
means the SCSI bus must have a termnation pack somewhere outside the
Macintosh Plus. The termination pack must be powered by the external SCSI
device, which must be turned on before turning on the computer.

Warning

Never connect an RS-232 device to the SCSI port. Even though the connector
looks like an RS-232 port. It Is not a serial port or a parallel printer Interface.
Don't plug anything but a SCSI device Into that connector. The SCSI Interface Is
designed to use standard TIL logic levels of 0 and +5 volts. but RS-232 devices
may Impose levels of -25 and +25 volts on some lines. thereby frying the SCSI
chip.

The Macintosh Plus SCSI port supports approximate transfer rates of 142K bytes per
second for nonblind transfers and 312K bytes per second for blind transfers.
(With nonblind transfers, the SCSI chip is is polled, or checked for the successful
transfer of each byte.) The Macintosh SE and Macintosh II, where blind transfers
have been made more secure, support maximum rates of approximately 600
kilobytes per second and 1.2 megabytes per second, respectively.

The SCSI bus is supported in software by the SCSI Manager, introduced in Chapter 9.

Serial 1/0
All Macintosh computers have two RS-422 serial I/0 ports for printers, modems, and
other standard I/0 devices. The Macintosh Plus, Macintosh SE, and Macintosh II
use two Mini-8 connectors for the two serial ports.

•!• Note: The Macintosh 128K, 512K, and 512K enhanced used the larger DB-9
connectors for the two serial ports. An Apple adapter is available for connecting
the two types of connectors.

The two serial ports are controlled by a Serial Communications Controller (SCC)
chip. The port known as SCC port A is the one with the modem icon on the back of
the Macintosh; SCC port B is the one with the printer icon.

The two serial ports are identical except that the modem port (port A) has a higher
interrupt priority, making it more suitable for high-speed communication. The user
can select which port to use by means of the Chooser desk accessory. (Recall that, for
software reasons, devices connected over AppleTalk must use port B, the printer
port.)

228 Chapter 10: The Macintosh Family Hardware

Macintosh serial ports conform to the EIA (Electronics Industry Association)
standard RS-422, which differs from the more common RS-232C standard. While
RS-232C modulates a signal with respect to a common ground (called single-ended
transmission), RS-422 modulates two signals against each other (called differential
transmission). The RS-232C receiver senses whether the received signal is sufficiently
negative with respect to ground to be a logic "1," whereas the RS-422 receiver simply
senses which line is more negative than the other. This makes RS-422 more immune
to noise and interference, and more versatile over longer distances.

If you ground the positive side of each RS-422 receiver and leave the positive side of
each transmitter unconnected, you've converted to EIA standard RS-423, which can
be used to communicate with most RS-232C devices over distances up to 50 feet or so.

•:• Note: The Mini-8 connectors provide an output handshake signal, but do not
provide the +5 volts and +12 volts found on the Macintosh 128K, 512K, and 512K
enhanced serial ports.

See the Macintosh Family Hardware Reference manual for the serial port pinouts.

Macintosh SE and Macintosh II serial port differences

The Macintosh SE and the Macintosh II accept an extra input handshake signal on
their serial ports. This new input allows for a number of improvements, including the
ability to choose a second input clock on port A and the ability to choose different
transfer protocols, allowing for faster data transfer rates and the ability to
communicate with more different kinds of modems and computers. The
Macintosh SE and Macintosh II can now use a synchronous modem on SCC
channel A (the modem port).

Applications that use the Macintosh Serial Driver won't experience any problems
because of these changes. (The Serial Driver is discussed in the "Serial
Communication" section of the previous chapter.)

Macintosh keyboards
In surveying the topography of Macintosh keyboards, the introduction of the Apple
Desktop Bus (ADB) on the Macintosh SE and Macintosh II appears as a watershed.
The keyboards on the original Macintosh and Macintosh Plus are fully
interchangeable with each other but arc not compatible with the ·ADB connectors
used on the Macintosh SE and Macintosh II.

In software, keyboard events are detected by the Operating System Event Manager
and passed in turn to the Toolbox Event Manager, as described in Chapter 3.

Macintosh keyboards 229

The Macintosh Plus keyboard

The Macintosh Plus keyboard, which includes a built-in numeric keypad, contains an
Intel 8021 microprocessor that scans the keys. The 8021 chip contains ROM and RAM
and is programmed to conform to the Macintosh keyboard's interface protocol. (On
older models, the detached numeric keypad also has its own 8021 chip.)

+ Note: The Macintosh Plus keyboard reproduces all of the key-down transitions
produced by the keyboard and optional keypad used by earlier Macintoshes.
These keyboards are completely interchangeable.

The Macintosh Plus keyboard plugs into the machine through a four-wire RJ-11
telephone-style jack. If a separate numeric keypad is installed in the system, the
keyboard plugs into the keypad and the keypad in turn plugs into the Macintosh.

International keyboards may have different arrangements of keys but are otherwise
identical with the U.S. keyboard. Keyboard mapping is handled in software, as
explained in the "Keyboard Events" section of Chapter 3.

The Apple Desktop Bus

On the Macintosh SE and Macintosh II, the keyboard and mouse are supported by a
new input bus, the Apple Desktop Bus (ADB). The ADB is a serial communications
bus designed to accommodate low-speed input devices. ADB has three functions in
the Macintosh II and Macintosh SE:

o supporting the detached keyboard

o supporting the mouse

o supporting additional input devices, such as graphics tablets and light pens

The ADB is also used on the Apple IIGS computer, meaning that the Apple IIGS
keyboard and mouse are completely compatible with the keyboards and mouse
devices used with the Macintosh SE and Macintosh IL

ADB can theoretically support up to 16 devices, although performance will probably
deteriorate if more than 3 devices are daisy-chained to an ADB bus (giving an
effective total of 6 devices). Even though there are two ADB ports, there is only one
ADB bus: the two ADB connectors are attached in parallel on the same bus.
Figure 10-16 shows the Apple Desktop Bus.

230 Chapter l 0: The Macintosh Family Hardware

I
ADB connector

Macintosh II
main unit

ADB keyboard

ADB mouse or
other ADB device
(daisy-chained)

---...,__
Figure 10-16
The Apple Desktop Bus

~~--./

ADB mouse or
other ADB device
(daisy-chained)

Additional
ADB devices
(daisy chained)

The ADB is controlled by an independent microprocessor accessed through the VIA
chip, and is supported in software by mouse and keyboard drivers, which pass mouse
and keyboard events to the Toolbox Event Manager.

ADB devices typically default to the same address or device number on power-up or
reset. At startup time, devices are randomly assigned new, distinct addresses, and
software then talks to them at those addresses.

Warning

Do not connect a device to the Apple Desktop Bus while the system Is on.
Connecting the device will reset all devices on the bus to their power-up
addresses, which may cause the system to lose the addresses of Input devices.
Only the mouse and keyboard default to and keep known addresses, so they
may not be affected by being plugged In or reset.

Macintosh keyboards 231

ADB keyboards
On the Macintosh SE and Macintosh II, two ADB keyboards are supported. The
standard keyboard, named the Apple Keyboard, is pictured in Figure 10-17. This
keyboard has a new key cap for the Command (propeller) key, which now features the
Open Apple symbol as well. (This key is the equivalent of the Command key on the
Macintosh Plus keyboard.)

I .
clear! =

7 8 9 +

4 v 0 -
1 2 3 enter

0

Figure 10-17
Apple (ADB) keyboard layout

Another ADB keyboard, the Apple Extended Keyboard, can also be used with the
Macintosh SE and Macintosh II. This keyboard, mimicking the keyboards used on
traditional computer terminals, includes 15 programmable function keys, an Alt key,
and many additional keys, as shown in Figure 10-18.

Figure 10-18
Apple extended keyboard layout

Ins. n
help~ pg"'

del.
[D end pgdl

t

rumlk
clear

7

4

1

0

I .
=

8 9 -
5 6 +

2 3

Jent er

The function keys generate key codes just like character keys; software can map these
key codes to whatever character code is desired. (See the "Keyboard Events" section
of Chapter 3.)

232 Chapter l 0: The Macintosh Family Hardware

The mouse
On the Macintosh and Macintosh Plus, the D B-9 connector labeled with the mouse
icon connects to the mouse. (Apple II, Apple III, Lisa®, and classic Macintosh
mouse devices are electrically identical.) The ADB mouse used on the Macintosh SE
and Macintosh II is different, as we'll explain shortly.

Classic Macintosh mouse operation
The classic Macintosh mouse generates four signals that describe the amount and
direction of the mouse's travel. Interrupt-driven routines in the Macintosh ROM
convert this information into the corresponding motion of the pointer on the
screen.

You can change the amount of screen pointer motion that corresponds to a given
mouse motion with the mouse scaling option in the Control Panel desk accessory.
Mouse scaling may be on or off-initially it's turned on. (This setting is stored in
parameter RAM, described in "The Real-Time Clock" section of this chapter.) If
mouse scaling is on, the system looks every sixtieth of a second at whether the mouse
has moved. If the sum of the mouse's horizontal or vertical changes in position in
that time exceeds the mouse-scaling threshold (normally six pixels), the cursor
will move twice as far horizontally and vertically as it would if mouse scaling were off.

Unlike input devices such as graphics tablets or light pens, the mouse is a relative
motion device; that is, it doesn't report where it is, only how far and in which
direction it's moving.

•:• Note: When graphics tablets, touch screens, light pens, or other absolute
position devices are connected to the mouse port, software must either convert
their coordinates into motion information or provide custom device-handling
routines.

The mouse 233

The mouse operates by sending square-wave trains of information to the Macintosh
that change as the velocity and direction of motion change. The rubber-coated steel
ball in the mouse contacts two capstans, each connected to an interrupter wheel.
Motion along the mouse's X-axis rotates one of the wheels and motion along the
Y-axis rotates the other one (Figure 10-19).

Lamp

Figure 10-19
Mouse mechanism

Quadrature
levels

VIA

Motion
interrupts

sec

The Macintosh uses a scheme known as quadrature encoding to detect which
direction the mouse is moving along each axis . There is a row of slots on an
interrupter wheel, and two beams of infrared light shine through the slots, each one
aimed at a photo~ransistor detector. The detectors are offset just enough so that as
the wheel turns, they produce two square-wave signals (called the inte171,(.pt signal and
the quadrature signal) 90 degrees out of phase. The quadrature signal precedes the
interrupt signal by 90 degrees when the wheel turns one way, and trails it when the
wheel turns the other way.

The mouse's signals are interpreted by the VIA and SCC, and translated by software
into the movement of the pointer on the Macintosh screen.

•:• Note: On the Macintosh SE and Macintosh II, motion signals are processed by
the mouse itself, and translated by the ADB controller chip, as explained in the
next section.

234 Chapter 10: The Macintosh Family Hardware

ADB mouse
The Apple Desktop Bus mouse used on the Macintosh SE and Macintosh II
communicates with the system through the ADB. The mouse can be plugged directly
into either of the ADB ports or into the ADB keyboard (that is, "daisy-chained").
The ADB controller chip keeps track of the mouse and provides position and status
information to the system. The mouse also has its own little microprocessor on
board.

This use of a peripheral processor is a departure from other Macintosh computers,
which use the SCC and the VIA. The intelligent ADB mouse handles the quadrature
mechanism on its own: the mouse's microprocessor sends the motion information
to the ADB chip, which in turn sends it tp the VIA, where the computer can read it.
On the Macintosh Plus, the CPU itself must monitor the keyboard and mouse to see if
anything has happened. The ADB controller on the Macintosh SE and Macintosh II
takes over that function, freeing up the CPU for other work, and making it less likely
that keyboard or mouse activity will be missed when the processor is busy.

An additional improvement with the ADB mouse is that mouse-scaling is multilevel
(rather than on or off as on the Macintosh Plus), giving the user closer control over
the relationship between mouse movement and the movement of the cursor on the
screen.

ADB mouse devices do their own processing of motion signals, allowing more things
to happen simultaneously in the Macintosh system. On the Macintosh II, the 68020
CPU and the optional 68851 memory management unit make possible true
multitasking at the software level. This means that the Macintosh II can run a
multitasking operating system such as UNIX, which is described in the next chapter.

The mouse 235

Chapter 11

The UNIX
Operating
System

237

This chapter introduces A/UX, Apple's implementation of the UNIX operating
system for the Macintosh II computer. For more detail, and for a guide to the UNIX
documentation suite, refer to the AIUX System Overoiew.

About the UNIX operating system
A/UX is an enhanced implementation of the industry-standard UNIX operating
system, designed to run on the Macintosh II computer as an alternative to the
Macintosh Operating System. To accommodate UNIX's high performance
demands, the PMMU chip must be added to the base Macintosh II machine; a
minimum of 2 MB of RAM and an Apple HD 80SC hard disk are also required.

A/UX is based on the AT&T System V, Release 2 version of UNIX. Besides offering all
of the features of the System V version of UNIX, A/UX adds important extensions
from the Berkeley Software Distribution (BSD) 4.2 version of UNIX, as well as Apple's
own enhancements.

Originally developed by Bell Laboratories, UNIX is a general-purpose time-sharing
system that has become a standard in university computing environments, on high
end engineering workstations, and in government computer installations. Businesses
have also applied the multiuser, multitasking capabilities of UNIX to a great variety of
tasks, particularly in the fields of computer-aided design, data base management,
and publishing.

UNIX provides a vast and powerful operating system for many types of hardware, and
developers have ported versions of UNIX to a multitude of machines. This has been
accomplished quickly because UNIX is written almost entirely in C, a high-level
language that makes the system relatively easy to read, understand, and modify.

The full distribution of A/UX, including executable programs, language compilers,
libraries, programming tools, and on-line documentation, amounts to more than 40
MB, and the full documentation set is nearly 6000 pages long.

Features

A/UX provides the following features :

• Multitasking capability. You can run multiple jobs simultaneously.

• Multiuser capability. A/UX supports up to 16 users working simultaneously. Users
can easily share files and tools without sacrificing system security or reliability.

• Macintosh user interface and powerful graphics capabilities. Although the
standard video mode is terminal emulation, applications developed under A/UX
can incorporate the Macintosh user interface. The Macintosh User Interface
Toolbox is available to applications running under A/ UX through the A/UX
Toolbox.

238 Chapter 11: The UNIX Operating System

• Hardware-independent development environment. UNIX software is portable
and can run on different manufacturers' hardware. Software developed on any
type of UNIX machine can be easily ported by recompiling the source code on
another UNIX machine.

• Flexible command interpreters. The command shell interface to A/UX can be
tailored to suit your individual needs.

• Useful applications. A/UX includes powerful tools for such tasks as document
preparation and software development. Several MPW tools including the Rez
resource compiler and DeRez decompiler are also supported.

• Hierarchical file system. The UNIX file system permits flexible organization and
facilitates file sharing for group projects.

• Networking capabilities. Through serial lines, moderns, and Ethernet
connections, you can share files, tools, and hardware resources with users across
local-area and wide-area networks.

• Simplified system administration. By automating many of the usual UNIX
administration tasks and by providing documentation aimed at nonprogrammers,
A/UX reduces special system administration requirements.

UNIX has developed along two branches, and two de facto standards now exist:
System V, AT&T's own UNIX specification, and the Berkeley Software Distribution
(BSD), adapted from AT&T UNIX at the University of California and adding many
enhancements to UNIX.

A/UX adheres fully to the System V Interface Definition, AT&T's formal specification
for UNIX systems, and includes important Berkeley extensions, allowing it to
maintain source code compatibility with software running under BSD 4.2 and 4.3.
A/UX incorporates the following features of the BSD versions of UNIX:

o selected kernel extensions

o BSD 4.3 Transmission Control Protocol/Internet Protocol (TCP /IP) network
protocols

o C shell (an alternative shell)

o BSD 4.3 sockets (a network communication mechanism implemented for TCP /IP)

o important utilities

Additionally, Apple has incorporated many of its own enhancements into A/UX:

o Macintosh User Interface Toolbox

o LaserWriter support (via TranScript, a set of programs for printing to Postscript
printers)

o Network File System (NFS) support (developed and licensed by Sun Microsystems,
Inc.)

o Apple Desktop Bus (ADB) support

About the UNIX operating system 239

o floating-point support (for the Macintosh II's MC68881 floating-point
coprocessor)

o automatic startup and crash recovery

o automatic device configuration

Figure 11-1 illustrates some of the most important features of the A/UX system.

BSD 4.2 enhancements
Cshell
TCP/IP (4.3)
Sockets (4.3)
Utility programs
Selected kernel
extensions

Apple enhancements

A/UX Toolbox
Automated crash
recovery
Automatic device
configuration
LaserWriter support
Apple Desktop Bus
Network File System
(NFS)*

Major System V components

Kernel
Bourne shell
Korn shell**
Utility programs
Text editing tools
Text processing tools (DWB 2.0**)
Program development tools
STREAMS support••

• Licensed by Sun Microsystems, Inc.

··Separately licensed AT&T developments are not part of System V, release 2

Figure 11-1
A/UX features

240 Chapter 11: The UNIX Operating System

Apple peripherals are fully supported, including the LaserWriter and Image Writer
printers, the SCSI tape backup unit, SCSI hard disks, and Apple modems.

Memory requirements

UNIX is a huge system, and the A/UX implementation is even larger than most, due
to the addition of the Berkeley extensions and Apple enhancements to a complete
System V, Release 2 system. The full A/UX distribution, including object code and
on-line documentation, amounts to more than 40 MB.

However, most actual installations will not be so large. You may, for example, delete
utilities that you don't use. If your workstation is connected to other hosts across a
network, you may store data or system files on other computers.

Given the versatility of A/ UX and the many possible configurations, the following
will give you a rough idea of the memory resources your system may require:

o kernel size, from 800K to over 1.5 MB of RAM

o swap space, at least an additional 8 MB of free disk space to accommodate page
swapping (moving code between disk memory and RAM as needed)

o user space, 3 to 5 MB of free disk space for each user's individual files; 2 MB of
RAM for each additional user

As you can see, a s~ngle 80-MB hard disk might be adequate for a single user system.
Accommodating additional users, however, requires either extra disk storage or else
a pared-bad~ configuration of A/ UX. (Additional disk storage need not necessarily
be attached directly to your Macintosh II; the disk could belong to another machine
connected over a network.)

About the UNIX operating system 241

Overview of the A/UX system
Figure 11-2 presents a spatial metaphor for the layout of the A/UX system.

Shell

Figure 11-2
Layers of the A/UX system

The Macintosh II hardware is at the core of the system, the pearl in the oyster of
A/UX. A program called the kernel controls this hardware. The A/UX kernel
manages files, communicates with peripherals, and handles other low-level,
machine-dependent details.

The kernel insulates the hardware from the utilities, so that applications software can
be written independent of specific hardware. This allows you to easily transport a
UNIX application from one machine to another, regardless of differences in their
architectures, by recompiling the source code.

A/UX's basic utilities constitute the first layer generally available to the user. Utilities
include commands for file manipulation, process management, user communication,
software development and maintenance, and other housekeeping functions.

The shell reads and interprets the commands that users type; it forms the interface
between users and the rest of the system. A/UX offers three of these command
interpreters: the Bourne shell, the C shell, and the Korn shell. With its own internal
commands, the shell also acts like a high-level, interpreted programming language
that handles variables, case statements, subroutines, parameter passing, and
interrupt handling. This programming capability allows you to easily compose and
perform complex commands and procedures known as shell scripts.

242 Chapter 11: The UNIX Operating System

Device 1/0
The hierarchical UNIX file system treats devices like files. The output of a software
process (that is, the output of an executing program) can be directed to a device,
such as a printer, as easily as to a file. Likewise, the input from a device such as a
modem or the console can be sent to a process as easily as data from a file.
Removable mass storage media can be mounted and unmounted from the system as
easily as files are added and removed.

The A/UX Toolbox
The A/UX Toolbox is a set of libraries and programs that bridges the gap between
A/UX and the standard Macintosh environment. The A/UX Toolbox gives programs
running under A/UX access to the Macintosh User Interface Toolbox and to most of
the Macintosh Operating System, actually making it possible for the same Macintosh
program to run in both environments.

The A/UX Toolbox performs two basic functions:

• Translation of Toolbox calls. A/UX Toolbox calls are translated into Macintosh
ROM calls, thereby providing full support for menus, windows, dialogs, and the
rest of the Macintosh user interface.

• Reimplementation of the Macintosh Operating System. Macintosh OS calls
are redirected to A/UX libraries. These libraries include new implementions of
the Memory Manager, the Segment Loader, the Vertical Retrace and Time
Managers, and much of the File Manager. (Note, however, that several of the
Operating System managers connected to input and output are not currently
available; see AIUX Toolbox: Macintosh ROM Interface for details.)

Currently, the Finder is also unavailable and desk accessories are not supported.

The A/UX Toolbox 243

Figure 11-3 shows how the Toolbox libraries fit into the A/UX system.

A/UX libraries
(Toolbox, NFS)

Figure 11-3

Shell, utilities, and applications

System calls

Kernel

Hardware

System
libraries

' 0/.2,
selected 4.2 BSD)

Relationship of the A/UX Toolbox to the rest of the system

With the A/UX Toolbox, you can port a binary Macintosh application to A/UX, but
only if the application follows the recommendations in Instde Mactntosh, Volumes I
through V, and in AIUX Toolbox: Macintosh ROM Inteiface. Applications that
bypass the Macintosh User Interface Toolbox to manipulate memory and hardware
directly are not compatible with the A/UX Toolbox. With some modifications, most
Macintosh applications can be made to run with A/UX.

The A/UX Toolbox includes special utilities both for porting Macintosh applications
to A/UX and for developing A/UX applications that take advantage of the Macintosh
User Interface Toolbox. Several MPW tools, including the resource compiler and
decompiler, have been ported to A/UX.

244 Chapter 11: The UNIX Operating System

Software development environment
One of the strengths of UNIX lies in its software development environment. Because
A/UX adheres to the System V Interface Definition, it can be used to write
application software that is independent of specific computer hardware. This allows
you to port your UNIX programs to other UNIX machines. A/UX also offers a good
environment for cross-development of programs for other personal computers,
including Apple II and MS-DOS machines, and for developing Macintosh-like
programs under UNIX. The Macintosh family's powerful native development
environment, the Macintosh Programmer's Workshop (MPW), combines many of
the elements of the UNIX development environment and the Macintosh interface. As
we mentioned in the previous section, A/UX also supports several MPW tools,
including the resource compiler and decompiler.

The programming tools of A/UX include C and Fortran compilers together with
utility programs and subroutine libraries that simplify program creation and
maintenance, including tools for configuration management, automating program
builds, and debugging.

C is the main A/UX system programming tool. C is a portable, high-level language
that also offers very low-level operations, making it a flexible and efficient language
for both application and system programming. In fact, like other UNIX systems,
almost all of A/DX-including the C compiler itself-is written in C. NUX provides
the complete set of standard C libraries, compiler preprocessor directives, and
operators associated with the System V version of UNIX, as well as many BSD
extensions.

A/UX's C compiler supports the 68881 floating-point hardware, user-defined data
types, arbitrary-length variable names, pointer variables and address arithmetic, a
full macro processor, fully recursive procedures, and the run-time library that gives
access to all system facilities.

A/UX also supports the Fortran-77 programming language through its f77 compiler.
Fortran-77 is a high-level language that is especially useful for scientific and
mathematical applications. The efl compiler is also included with A/UX.

Software development environment 245

Document development applications
A/UX supplies a variety of text editing tools, which allow you to create and modify
text files . Also provided is the Documentor's Workbench (DWB 2.0), a set of util ity
programs that can format text files for output to a variety of devices. A/UX's
extensive printer and typesetter support includes postprocessor filters for the APS-5
phototypesetter, for the Xerox 9700 printer, as well as for the Apple LaserWriter and
Image Writer.

Communications
A/UX supports a variety of networking solutions, including serial communications,
TCP/IP, and NFS (Network File System). These facilities make it possible to share
computers, terminals, files, printers, modems, software, electronic mail, and other
resources with other network users.

Serial communications
The standard Macintosh II configuration includes two Mini-8 RS-422 serial ports.
Additional serial ports can be added via the computer's NuBus expansion slots. By
connecting a serial line from one of these ports to another computer running a
standard version of UNIX, you can use A/UX utilities to connect to a remote UI\TJX
system, send files from one UNIX system to another, and enter commands from
A/ UX that are executed on a remote UNIX system.

246 Chapter 11: The UNIX Operating System

TCP /IP network
I

The BSD 4.3 networking package is standard with every NUX distribution. Called
B-NETon this implementation, this network uses Ethernet coaxial cable as the
physical medium that links computers and requires that an optional Apple EtherTalk
card be installed in your Macintosh II. B-NET supports the widely used Transmission
Control Protocol/Internet Protocol (TCP /IP) suite.

TCP/IP supports both local-area and wide-area configurations, and NUX's B-NET
implementation supports Internet domains and subnetwork address routing. TCP/IP
has found its way from the university and research facilities' ARPANET network,
across the Defense Data Network, and into commercial applications, office
automation, and personal computer networks.

B-NET applications allow you to communicate with other TCP/IP-supported
computers on your network, regardless of their operating systems. These
applications include

• telnet, a virtual terminal program, allows you to log into and use remote
computeJ"S as if your terminal were directly connected to those computers

• ftp, a file transfer facility, allows you to transfer ASCII and binary files between
computers on your network. You do not need to know the remote host's operating
system to transfer files between it and your local NUX computer.

• mail, the network mail facility, gives you electronic mail service to users across the
network.

B-NET also offers a set of network commands, in many ways more convenient thari
telnet and ftp, which can be used between computers running operating systems like
A/UX that support a derivative of the BSD 4.2 or 4.3 networking package. These
utilities include a log-in facility to remote computers, a remote shell facility that
allows users to execute UNIX commands on remote computers, a utility for copying
files between computers, a communication program that copies lines from your
terminal to that of another user, and utilities that report on the status of each
computer and on who is logged on to the local network.

Besides offering these standard applications, AIUX also provides the tools for you to
develop your own custom network applications based on the TCP/IP protocols.

Communications 247

Network File System (NFS)

Besides the serial and B-NET network applications, NUX also provides client
support for the Network File System (NFS), designed and licensed by Sun
Microsystems, Inc. NFS helps to solve the problem of file sharing in a network of
heterogeneous machines and operating systems by making various file systems
transparently accessible to users across the network.

Like A/ UX's B-NET, NFS operates on an Ethernet local-area network and requires the
optional Apple EtherTalk controller board.

The major bene fit NFS brings to a network is file sharing. Files on a computer with
large disk storage can be accessed and shared by many other users at their
workstations. This consistency creates a more efficient work environment because the
problems of multiple copies of a file are eliminated. The result can be substantial
storage savings. For instance, ten NUX workstations on a network can save over
200 MB of disk storage by sharing the on-line manuals, the standard utility
programs, the spelling dictionary, and so on, all stored on another NUX
workstation with larger storage facilities.

NFS is especially useful in a mixed-workstation network since it prevents you from
becoming tied to one particular workstation family by providing access to the files
and the work environments of other types of computers.

Transparent access to file systems is achieved by mounting file systems from remote
machines onto your local A/UX file system. You can then access and manipulate
remote files with NUX commands. Other computers can also access A/UX files
through their own commands.

Simplified system administration
The complexities of dealing with UNIX systems have traditionally required highly
trained system administrators to keep things running. But with UNIX systems
proliferating on smaller workstations, not every user at every workstation can be
expected to possess the training and skills of a UNIX guru.

One of Apple's goals in the development of A/UX has been the simplification of
system administration. Several of the other ways in which NUX simplifies system
administration are described below.

248 Chapter 11 : The UNIX Operating System

Automatic device configuration

Since device drivers must be integrated at the kernel level, adding devices to UNIX
systems normally requires considerable system knowledge. NUX has greatly
simplified this task by automatically configuring devices upon system startup.

When you attach a new device, you log into A!UX under the privileged superuser
account, place the disk containing the device's installation software into the drive,
and enter a command to run a shell script that automatically installs the software.
You will then shutdown A/UX and power down the Macintosh II to install the device's
controller board.

When you restart NUX, routines in the Macintosh II ROM determine that the new
hardware is not configured to the kernel. A/UX then begins to build a new kernel for
itself, locating the new device name and the new device driver, both of which were
installed with the software. It then links the device's object modules into the new
kernel. When it's done configuring the system for the new device, NUX shuts down
and reboots the newly configured kernel.

Automated startup and crash recovery
Under NUX, you have the option of bringing up the system manually or letting it
automatically boot itself up to multiuser mode. While the automated boot procedure
takes a little longer than manually booting the system, the automated procedure does
not require a system expert to perform it and will bring up a working multiuser system
if at all possible.

The automated approach is especially useful for restarting a system that has crashed,
and enables Apple to provide a reliable version of the UNIX system that can be
started up by almost anyone. Because redundant copies of critical files are
maintained on separate areas of the disk, and because several critical UNIX utilities
have been made stand-alone, upon reboot A/ UX can check and repair file system
corruption, fix bad blocks on the disk, and replace missing files.

Having considered the Macintosh II implementation of UNIX, we conclude the
discussion of the Macintosh architecture. NUX provides a strong alternative
operating system for Macintosh II users who need access to UNIX-based software or
UNIX-based computing resources available over a network. The A/ UX system also
provides an entry from the UNIX world to the Macintosh system, allowing UNIX
applications to implement the standard Macintosh interface described earlier in this
volume.

Simplified system administration 249

Appendix A

Macintosh Family
Specifications

This appendix gives the specifications for the Macintosh Plus, Macintosh SE, and
Macintosh II computers.

Macintosh Plus specifications
Processor

RAM memory

ROM memory

Floppy disk

Hard disk

Screen

Interfaces

Sound generator

Keyboard

MC68000, 32-bit internal architecture, 16-bit external data bus,
24-bit external address bus, 7.8336 MHz clock frequency

1 MB RAM (expandable to 4 MB)
256 bytes of user-settable parameter memory

128K ROM (expandable to 256K)

SOOK on double-sided 3.5-inch floppy disks, one built-in,
optional external

Optional external Apple Hard Disk 20
Optional external 20 MB, 40 MB, and 80 MB SCSI hard disks

9-inch diagonal, high-resolution, 512-pixel by 342-pixel bit
mapped display (built-in)

Synchronous serial keyboard bus
Two RS-232/ RS-422 serial ports, 230.4K baud maximum (up to
0.920 megabit per second if clocked externally)
Mouse interface
External floppy disk interface SCSI interface
Sound port for external audio amplifier

4-voice sound with 8-bit digital-analog conversion using 22
KHz sample rate

Macintosh Plus keyboard

251

Mouse

Clock/ calendar

Line input

Size and weight

Weight

Main unit 7.5 kg

Mechanical tracking, optical shaft encoding 3.54 pulses per
mm (90 pulses per inch) of travel

CMOS custom chip with rechargeable 4.5 volt (Eveready No.
523 or equivalent) user-replaceable battery backup

Line voltage: 200-240 volts AC, RMS
Frequency: 50 or 60 Hz
Power: 6o watts

Height Width Depth

344 mm 246 mm 276mm
(16 lbs 8 oz) 03.5 in) (9.7 in) (10.9 in)

Keyboard 1.2 kg 65 mm 395.4 mm 146 mm
(2 lbs 10 oz) (2.6 in) (15.6 in) (5.8 in)

Mouse .2 kg 37 mm 60 mm 109 mm
(7 oz) (1 .45 in) (2.4 in) (4.3 in)

Environment

Operating temperature
Storage temperature
Relative humidity
Altitude

10° C to 40° C (50° F to 104° F)
-40° C to +50° C (-40° F to 122° F)
5% to 95% (noncondensing)
0 to 4615 m (O to 15,000 ft)

Macintosh SE specifications
Processor

RAM memory

ROM memory

Floppy disk

Hard disk

Screen

MC68000, 32-bit internal architecture, 16-bit external data bus,
24-bit external address bus, 7.8336 MHz clock frequency

1 MB RAM (expandable to 4 MB)
256 bytes of user-settable parameter memory

256K ROM

800K on double-sided 3.5-inch floppy disks, one built-in,
optional second internal and external drives

20 MB on optional internal hard disk
Optional external Hard Disk 20
Optional external 20 MB, 40 MB, and 80 MB SCSI hard disks

9-inch diagonal, high-resolution, 512-pixel by 342-pixel bit
mapped display (built-in)

252 Appendix A: Specifications

Interfaces Two Apple Desktop Bus connectors for communication with
keyboard, mouse, and other devices over low-speed,
synchronous serial bus
Two RS-232/RS-422 serial ports, 230.4K baud maximum (up to
0.920 megabit per second if clocked externally), synchronous
modem support on one port
External floppy disk interface
Expansion connector (CPU bus connector)
SCSI interface
Sound port for external audio amplifier

Sound generator 4-voice sound with 8-bit digital-analog conversion using 22 KHz
sample rate

Keyboards Apple Keyboard or Apple Extended Keyboard (Apple Desktop
Bus)

Mouse Apple Desktop Bus mouse; mechanical tracking, optical shaft
encoding 3.54 pulse per mm (90 pulse per inch) of travel

Clock/calendar CMOS custom chip with 7-year lithium battery

Line input Line voltage: 200-240 volts AC, RMS
Frequency: 50 or 60 Hz
Power: 6o watts

Fan 10 CFM cross clow

Size and weight

Weight Height Width

Main unit 7.7-10 kg• 344mm 246 mm
(17-22 lbs_.) (13.55 in) (9.69 in)

Apple
Keyboard 1.0 kg 44.5 mm 418.3 mm

(2 lbs 4 oz) (1.75 in) (16.48 in)

Mouse .%kg 37mm 6o mm
Ooz) (1.45 in) (2.36 in)

Apple
Extended
Keyboard
(optional) 1.6 kg 56.4 mm 486 mm

(3 lb 10 oz) (2.25 in) (19.125 in)

Depth

276mm
(10.87 in)

140.0 mm
(5.52 in)

109 mm
(4.29 in)

188mm
(7.4 in)

•weight varies depending on installed optional hard disk or second 3.5-inch floppy disk drive.

Macintosh SE specifications 253

Environment

Operating temperature
Storage temperature
Relative humidity
Altitude

10° C to 40° C (50° F to 104° F)
-40° C to +47° C (-40° F to 116.6° F)
5% to 95% (noncondensing)
0 to 4572 m (Oto 15,000 ft)

Macintosh II specifications
Processor

RAM memory

ROM memory

Coprocessor

Memory management

Floppy disk

Hard disk

External monitors

Interfaces

Sound generator

Keyboards

MC68020, 32-bit architecture, 15.6672 MHz clock
frequency

1 MB, expandable to 8 MB on board (eventually to 128
MB); expandable to 2 GB in NuBus slots 256 bytes of
user-settable parameter memory

256K (standard), expandable to 512K on board

MC68881 floating-point unit (IEEE standard 754 and
proposed standard p854)

Optional MC68851 Paged Memory Management Unit
(PMMU)

800K on double-sided disk 3.5-inch floppy disks optional
second internal disk drive

Optional internal and external 20 MB, 40 MB, and 80 MB
SCSI hard disks

Apple options include 12-inch, 640-by-480 pixel
monochrome monitor and 13-inch, 640-by-480 pixel
RGB monitor

Two Apple Desktop Bus connectors for communication
with keyboard, mouse, and other devices over low
speed, synchronous serial bus. Two mini-8 serial
(RS-422) ports
Six NuBus internal slots supporting full 32-bit address and
data lines
SCSI interface (one internal port, one external port)
Sound port for external audio amplifier

Apple custom sound chip (ASC) including 4-voice wave
table synthesis and stereo sampling generator capable of
driving stereo mini-phono jack headphones or stereo
equipment

Apple Keyboard or Apple Extended Keyboard (Apple
Desktop Bus)

254 Appendix A: Specifications

Mouse

Clock/ calendar

Line input

Size and weight

Main unit

Apple
Keyboard

Mouse

Apple
Extended
Keyboard
(optional)

Apple High-
Resolution
Monochrome
Monitor

Apple High-
Resolution
RGB Monitor

Environment

Weight

Apple Desktop Bus mouse; mechanical tracking, optical
shaft encoding 3. 54 pulses per mm (90 pulses per inch) of
travel

CMOS custom chip with 7-year lithium battery

Voltage: 90 to 140 VAC and 170 to 270 VAC,
automatically configured
Frequency: 48 to 62 Hz
Max power: 230 watts, not including monitor power

Height Width Depth

10.9 to 11.8 kg 140 mm 474 mm 365mm
(24 to 26 lbs) (5.51 in) (18.66 in) (14.37 in)

1.0 kg 44.5 mm 418.3 mm 142mm
(2 lbs 4 oz) (1.75 in) (16.5 in) (5.6 in)

.17kg 27.9 mm 53.3 mm 96.5 mm
(6 oz) (1.1 in) (2.1 in) (3.8 in)

1.6 kg 56.4 mm 486 mm 188mm
(3 lbs 10 oz) (2.25 in) (19.125 in) (7.4 in)

7.7 kg 255 mm 310 mm 373mm
(17 lbs) (10.04 in) (12.2 in) (14.68 in)

15.45 kg 281 mm 344 mm 402mm
(34 lbs) (11.06 in) (13.54 in) (15.83 in)

Operating temperature 10° C to 35° C (50° F to 95° F)
Storage temperature -40° C to 47° C (-40° F to 116.6° F)
Relative humidity 5% to 95% (noncondensing)
Altitude 0 to 3048 m (O to 10,000 ft)

Macintosh II specifications 255

Appendix B

For More Information

This appendix introduces some valuable information resources for Macintosh
programmers: books, user groups, and developer support from Apple.

Where to write for more information
Several organizations exist to provide support for Macintosh programmers and
users.

Apple Programmer's and Developer's Association (APDA)

Many of Apple's official technical manuals and developer-oriented products pave
only a limited audience and are not available in stores. The Apple Programmer's
and Developer's Association (APDA) in Renton, Washington, is an organization that
makes these books and development tools available through mail-order. Apple
works closely with APDA to ensure that technical tools and information is available
on a timely basis. APDA membership is open to anyone. You can get more
information by contacting APDA at the following address:

APDA
290 SW 43rd Street
Renton, WA 98055
(206) 251-6548

256

User groups

For information about Apple user groups in your area, call this toll-free number:
(800) 538-9696, and ask for extension 500.

Apple Developer Services

For information about getting started as a Macintosh developer, contact Apple
Developer Services at the following address:

Apple Developer Services
Mailstop 27-S
Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014

Apple Developer Services also publishes a series of Macintosh Technical Notes
containing useful information for programmers.

Apple technical documentation
To program the Macintosh, you 'll need, as a minimum, the original Inside
Macintosh:

o Inside Macintosh, Volumes 1-5

You may also find the following books helpful.

o Programmer's Introduction to the Macintosh

o Macintosh Family Hardware Reference

o Human lnterf ace Guidelines: The Apple Desktop Interface

You'll also need a Macintosh development system and the supporting
documentation.

The following sections describe the entire Macintosh technical library, including the
books we've just listed.

Apple technical documentation 257

Original Inside Macintosh (Volumes 1-5)

The original Inside Macintosh books consist of the following:

• Volumes 1-3. Definitive guide to the Macintosh Toolbox and Operating System
for the original 64K ROM. Volume 3 also includes hardware information and
comprehensive summaries.

• Volume 4. A delta guide to the Macintosh Plus, introducing the hierarchical file
system (HFS), the Small Computer System Interface (SCSI), and the other new
features available with the 128K Macintosh Plus ROM.

• Volume 5. A delta guide to the Macintosh SE and Macintosh II, introducing
color, slots, new sound capabilities, the new Apple Desktop Bus (ADB), and all
the other features available with the 256K versions of the ROM.

These books are published by Addison-Wesley and are available at bookstores or
through APDA.

Inside Macintosh Library

These books are published by Addison-Wesley and are available in bookstores or by
mail-order through APDA.

Besides the present manual, the Inside Macintosh Library consists of the following
books:

• Programmer's Introduction to the Macintosh Family. A short guide replete
with examples, illustrating the ins and outs of Macintosh programming.

• Macintosh Family Hardware Reference. Describes the hardware of the
various Macintosh machines. It provides the information you'll need to connect
non-Apple devices to the computer and to write device drivers or other low-level
programs. The book consists of three parts, which comprehensively describe the
classic Macintosh (Macintosh and Macintosh Plus), the Macintosh SE, and the
Macintosh II .

• Designing Cards and Drivers for Macintosh II and Macintosh SE. A guide to
developers who are creating hardware products that will plug into the expansion
slots of the Macintosh II and Macintosh SE. In the Macintosh II, the interfacing is
to NuBus; in the Macintosh SE, to the MC68000 bus. Parts of this book are also
important to application software developers who need to understand slot
devices .

258 Appendix B: For More Information

General documentation
These manuals describe features that are now supported by all Apple computers:

• Human Interface Gutdeltnes. A description of the Apple user interface for the
benefit of people who want to develop applications.

• Apple Numerics Manual. A guide to the Standard Apple Numerics Environment
(SANE), a full implementation of the IEEE floating-point standard, for developers
who need high-precision floating-point support.

Development system documentation
Apple's Macintosh development system, the Macintosh Programmer's Workshop
(MPW), is documented in the following manuals:

• Macintosh Programmer's Workshop 2.0 Reference. A, heart-pounding ride
through the MPW shell and utilities, including the resource editor (ResEdit),
resource compiler (Rez), linker, Make facility, and debugger.

• Macintosh Programmer's Workshop Assembler Reference (Revtston 2.0).
A guide to the MPW macro assembler for the MC68000 family. (You'll also need
the appropriate microprocessor documentation from Motorola.)

• Macintosh Programmer's Workshop C 2.0 Reference. A guide to the MPW C
compiler. (For a guide to the C language itself, you'll need The C Programmtng
Language by B. Kernighan & D. Ritchie, or a similar C manual.)

• Macintosh Programmer's Workshop Pascal 2.0 Reference. A guide to the
MPW Pascal compiler.

• MacApp Programmer's Refe'l'ence. A guide to MacApp, an expandable
Macintosh application based on Object Pascal.

Apple technical documentation 259

Further reading
In addition to the Inside Macintosh Library, you can benefit from reading some of
the useful books listed in this section.

Macintosh programming:

o Scott Knaster, How to Write Macintosh Software (Howard W. Sams & Co., 1986)

o Steve Chernicoff, Macintosh Revealed, Volumes 1 and 2 (Hayden Book
Company, 1985)

Object-oriented programming:

o Kurt Schmucker, Object-Oriented Programming for the Macintosh (Howard W.
Sams & Co., 1986)

C programming:

o Jim Takatsuka, Fred A. Huxham, and David Burnard, Using the Macintosh
Toolbox with C (Sybex Books, Inc., 1985)

Assembly-language programming:

o Dan Weston, The Complete Book of Macintosh Assembly Language
Programming, Volumes 1 and 2 (Scott, Foresman and Co., 1986)

o Gerry Kane, Doug Hawkins, and Lance Leventhal, 68000 Assembly Language
Programming (Osborne/McGraw-Hill, 1981)

o Motorola, Inc., M68000 16132-Btt Microprocessor Programmer's Reference
Manual (Prentice-Hall, 1984)

AppleTalk and networking:

o Apple Computer, Inside AppleTalk (APDA, 1987)

The UNIX Operating System:

o Maurice J. Bach, The Design of the UNIX Operating System (Prentice Hall, 1986)

o S. R. Bourne, The UNIX System (Addison-Wesley, 1983)

o Brian W. Kernighan and Rob Pike, The UNIX Programming Environment
(Prentice-Hall, 1984)

260 Appendix B: For More Information

Glossary

access path: A description of the route that the
File Manager follows to access a file; created when
a file is opened.

activate event: An event generated by the
Window Manager when an inactive window
becomes the active window.

active window: The frontmost window on the
desktop.

ADB: See Apple Desktop Bus.

additive color primaries: Three colors of light
(red, green, and blue) that can be combined to
produce a wide range of other colors; not the
same as the subtractive primaries (magenta,
yellow, and cyan) used with colored pigments.

address: A number that specifies a location in
memory .

Address Mapping Unit (AMU): The IC in the
Macintosh II that performs 24- to 32-bit address
mapping. Can be replaced by the optional
PMMU.

address space: The set of all addresses a
computer is capable of generating. In a
Macintosh, the address space includes not only
all of the memory, but the address-mapped I/0
devices as well.

alert: A warning or report of an error, in the
form of an alert box, sound from the Macintosh's
speaker, or both.

alert box: A modal dialog box that appears on
the screen to convey an alert.

A-line instructions: Unimplemented
68000-family instructions, used by the Macintosh
to implement Toolbox and Operating System
calls.

allocate: To reserve an area of memory for use.

allocation block: Volume space composed of
multiples of logical blocks.

amplitude: The amount by which a time-varying
quantity, such as sound pressure, deviates from
some reference point, such as zero pressure.

analog board: The circuit board in a Macintosh
that contains the power supply and video circuits.
See digital board.

Apple Desktop Bus (ADB): A low-speed serial
bus that connects the keyboard, mouse, and
optional input devices to the Macintosh SE and
Macintosh II.

Apple Sound Chip (ASC): A custom IC with dual
waveform buffers and pulse-width modulators for
enhanced sound capability on the Macintosh II.

AppleTalk Manager: An interface to a pair of
device drivers that enables programs to send and
receive information via an AppleTalk network.

application: A Macintosh program, such as
MacPaint or the Finder, that runs stand-alone. An
application's file type is 'APPL'.

261

application font: The font your application will
use unless you specify otherwise-Geneva, by
default.

application heap: The portion of the heap
available to the running application program and
the Toolbox.

application list: A data structure, kept in the
Desktop file, for launching applications from their
documents in the hierarchical file system. For
each application in the list, an entry is maintained
that includes the name and signature of the
application, as well as the directory ID of the
folder containing it.

application space: The area of memory that is
available for dynamic allocation by applications.

ascent: The vertical distance from a font's base
line to its ascent line.

ascent line: A horizontal line that coincides with
the tops of the tallest characters in a font.

asynchronous communication: A method of
data transmission where the receiving and sending
devices don't share a common timer, and no
timing data is transmitted.

asynchronous execution: After calling a
routine asynchronously, a program is free to
perform other tasks until the routine is completed.

auto-key event: An event generated repeatedly
when the user presses and holds down a character
key on the keyboard or keypad.

auto-key rate:· The rate at which a character key
repeats after it has begun to do so.

auto-key threshold: The length of time a
character key must be held down before it begins
to repeat.

A/UX: Apple's enhanced implementation of the
standard AT&T UNIX operating system.

baseline: A horizontal line that coincides with
the bottom of each character in a font, excluding
descenders (such as the tail of a p).

262 Glossary

baud: The unit of measure of bit rate. See bit
rate.

Binary-Decimal Conversion Package: A
Macintosh package for converting integers to
decimal strings and vice versa.

bit image: A collection of bits in memory that
represent a two-dimensional surface. For
example, the screen is a visible bit image.

bit map: A set of bits that represents the position
and binary state of a corresponding set of items.
(See bit image.) In QuickDraw, a bitMap is a
special data type consisting of a pointer to a bit
image, the row width of that image, and its
boundary rectangle.

bit rate: The information capacity of a
communications channel, measured in baud, or
the number of bits-both data and
nondata-carried by the channel per second. Bit
rate is often miscalled baud rate. See baud.

blind transfer: On a SCSI device, a data transfer
without polling of the receiving device to confirm
the success of the transfer.

block: A group regarded as a unit; usually refers
to data or memory in which data is stored.

block device: A device that reads and writes
blocks of bytes at a time. It can read or write any
accessible block on demand. {

boot blocks: The first two logical blocks of a
volume, which contain the system startup
information.

bridge: An intelligent link between two or more
AppleTalk networks.

buffer: A holding area in RAM where
information can be stored temporarily.

bundle: A resource (of type 'BNDL') that maps
local IDs of resources to their actual resource IDs;
used to associate file references and icon lists for
the Finder.

button: A standard Macintosh control that
causes some immediate or continuous action
when clicked or pressed with the mouse. See radio
button.

catalog tree file: A file that maintains the
relationships between the files and directories on
a hierarchical directory volume. It corresponds to
the file directory on a flat directory volume.

cell: The basic component of a list from a
structural point of view; a cell is a box in which a
list element is displayed.

channel: A queue that's used by an application
to send commands to the Sound Manager.

character code: An integer representing the
character that a key or combination of keys on the
keyboard stands for.

character device: A device that reads or writes a
stream of characters, one at a time. It can neither
skip characters nor go back to a previous
character.

character image: An arrangement of bits that
defines a character in a font.

character key: A key that generates a keyboard
event when pressed; that is, any key other than a
modifier key.

character offset: The horizontal separation
between a character rectangle and a font
rectangle; that is, the position of a given character
within the font's bit image.

character origin: The point on a baseline used
as a reference location for drawing a character.

character positio_n: An index into an array
containing text, starting at zero for the first
character.

character rectangle: A rectangle enclosing an
entire character image. Its sides are determined
by the image width and the font height.

character style: A set of stylistic variations, such
as bold, italic, and underline.

character width: The distance to move the pen
from one character's origin to the next character's
origin.

check box: A standard control that displays a
setting, either checked (on) or unchecked (ofO.
Clicking inside a check box reverses its setting.

Chooser: A desk accessory that provides a
standard interface so that device drivers can
solicit and accept specific choices from the user.

classic Macintosh: A term encompassing the
original Macintosh (128K and 512K models), the
Macintosh 512K enhanced, and the
Macintosh Plus.

Clipboard file: The file used by the Scrap
Manager and applications for holding data that is
cut and pasted.

clipping: Limiting drawing to within the bounds
of a particular area.

clipping region: The region to which an
application limits drawing within a graphics port.

clock chip: A special chip in which parameter
RAM and the current date and time are stored.
This chip is powered by a battery when the system
is off, thus keeping correct time and preserving the
parameter RAM information.

closed file: A file without an access path. Closed
files cannot be read from or written to.

code resource: A resource that contains a
program's code-most commonly a resource of
type 'CODE' (for applications and MPW tools),
but other resource types such as 'DRVR' and 'PDEF'
also contain code.

code segment: An individual 'CODE' resource,
comprising part of the code of a Macintosh
application. Segments are loaded in and out of
memory by the Segment Loader.

color lookup table: A table that translates color
specifications into their corresponding hardware
values.

Glossary 263

Color Picker: The desk accessory that enables
the user to select colors for the display.

Color QuickDraw: An expanded version of
QuickDraw that performs the graphic operations
on the color display of the Macintosh II.

command file: (MPW, UNIX) A file consisting
of executable commands that can be run from the
shell. Also called a script.

compaction: The process of moving allocated
blocks within a heap zone in order to collect the
free space into a single block.

content region: The area of a window that the
application draws in.

control: An object in a window on the Macintosh
screen with which the user, using the mouse, can
cause instant action with visible results or change
settings to modify a future action. The control is
internally represented in a control record.

control character: A nonprinting character that
controls or modifies the way information is
printed or displayed. In the Apple II computer
family, control characters have ASCII values
between 0 and 31, and are typed from a keyboard
by holding down the Control key while pressing
some other key. In the Macintosh family, the
Command key performs a similar function.

control definition function: A function called
by the Control Manager when it needs to perform
type-dependent operations on a particular type of
control, such as drawing the control.

Control Manager: The part of the Toolbox that
provides routines for creating and manipulating
controls, such as buttons, check boxes, and scroll
bars.

Control Panel: A desk accessory that lets you
change the speaker volume, the keyboard repeat
speed and delay, mouse tracking, and other
features.

264 Glossary

control template: A resource that contains
information from which the Control Manager
can create a control.

coordinate plane: A two-dimensional grid. In
QuickDraw, the grid coordinates are integers
ranging from -32767 to 32767, and all grid lines
are infinitely thin.

creator: One of the fields in a file that helps to
identify the file. In a document file, the creator
field normally contains the signature of the
application that created the document. See
signature.

cursor: A 16-by-16 bit image that appears on the
screen and is controlled by the mouse; called the
"pointer" in Macintosh user manuals.

data bits: Data communications bits that encode
transmitted characters.

data buffer: Heap space containing information
to be written to a file or device driver from an
application, or to be read fr om a file or device
driver to an application.

data fork: The part of a file that contains data
accessed via the File Manager.

data frame: A packet plus accompanying frame
control information, the form in which data is
handled at the lowest level of AppleTalk. See
packet.

Datagram: A packet in AppleTalk.

data rate: The number of data bits carried by a
communication channel per second. Not the
same as bit rate. See baud, bit rate.

date/time record: An alternate representation
of the date and time, which is stored on the clock
chip in seconds since midnight, January 1, 1904.

dead key: A key press for which there is no
corresponding event; for example, the
combination of the Option key and another key
that generates an accent for the next character
typed. (The accented character is reported as a
single key-down event.)

declaration ROM: Read-only memory on a
NuBus expansion card that contains information
about the card and may also contain code or other
data.

default button: In an alert or modal dialog, the
button whose effect will occur if the user presses
Return or Enter.

deferred printing: Writing a representation of a
document's printed image to disk or to memory,
and then printing it (as opposed to immediate
printing).

definition function: A function, stored as a
resource, that determines the appearance and
behavior of a particular Toolbox object such as a
window.

definition procedure: A procedure, stored as a
resource, that determines the appearance and
behavior of a particular Toolbox object such as a
menu.

delta guide: A description of something new in
terms of its differences from something the reader
already knows about. The name comes from the
way mathematicians use the Greek letter delta (A)
to represent a difference.

derived font: A font modified, as by scaling or
slanting, before it is drawn on the screen.

descent: The vertical distance from a font's base
line to its descent line.

descent line: A horizontal line that coincides
with the bottoms of the characters in a font.

desk accessory: A "mini-application,"
implemented as a device driver, that can be run at
the same time as an application. Desk accessories
are files of type 'DFIL' and creator 'DMOV', and
are installed by using the Font/DA Mover.

Desk Manager: The part of the Toolbox that
supports the use of desk accessories from an
application.

desk scrap: The place where data is stored when
it is cut (or copied) and pasted among
applications and desk accessories.

desktop: The screen as a surface for doing work
on the Macintosh.

Desktop file: A resource file in which the Finder
stores the version data, bundle, icons, and file
references for each application on the volume.

device: A part of the Macintosh, or a piece of
external equipment, that can transfer information
into or out of the Macintosh.

device driver: A program that controls the
exchange of information between an application
and a device.

device driver event: An event generated by one
of the Macintosh's device drivers.

Device Manager: The part of the Operating
System that supports device 1/0.

device resource fl.le: An extension of the
printer resource file, this file contains all the
resources needed by the Chooser for operating a
particular device (including the device driver
code).

dial: A control with a movable indicator that
displays a quantitative setting or value. Depending
on the type of dial, the user may be able to change
the setting by dragging the indicator with the
mouse.

dialog: Same as dialog box.

dialog box: A box that a Macintosh application
displays in order to request information, or in
order to report that it is waiting for a process to
complete. A dialog is internally represented in a
dialog record.

Dialog Manager: The part of the Toolbox that
provides routines for implementing dialogs and
alerts.

Glossary 265

dialog record: The internal representation of a
dialog, where the Dialog Manager stores all the
information it needs to operate on that dialog.

dialog template: A resource that contains
information from which the Dialog Manager can
create a dialog.

digital board: The circuit board in a Macintosh
that contains- the RAM, ROM, microprocessor,
and other digital logic circuits. Also called the
main logic board. See analog board.

dimmed: Drawn in gray rather than black.

directory: A subdivision of a volume that can
contain files as well as other directories;
equivalent to a folder.

disabled: A disabled menu item or menu is one
that cannot be chosen; the menu item or menu
title appears dimmed. A disabled item in a dialog
or alert box has no effect when clicked.

Disk Driver: The device driver that controls data
storage and retrieval on 3.5-inch floppy disks.

Disk Initiali7.ation Package: A Macintosh
package for initializing and naming new disks;
called by the Standard File Package.

disk-inserted event: An event generated when
the user inserts a disk in a disk drive or takes any
other action that requires a volume to be
mounted.

document window: The standard Macintosh
window for presenting a document

double-click time: The greatest interval between
a mouse-up and mouse-down event that would
qualify two mouse clicks as a double-click.

draft printing: Another term for immediate
printing.

drag region: A region in a window frame.
Dragging inside this region moves the window to a
new location and makes it the active window unless
the Command key is down.

266 Glossary

drive number: A number used to identify a disk
drive. The internal drive is number 1, the external
drive is number 2, and any additional drives have
larger numbers.

drive queue: A list of disk drives connected to
the Macintosh.

driver 1/0 queue: A queue containing the
parameter blocks of all 1/0 requests for one device
driver.

driver name: A sequence of up to 255 printing
characters used to refer to an open device driver.
Driver names always begin with a period (.).

edit record: A complete editing environment in
TextEdit, which includes the text to be edited, the
grafPort and rectangle in which to display the text,
the arrangement of the text within the rectangle,
and other editing and display information.

Elementary Functions Package: A Macintosh
package that supports transcendental functions in
extended-precision arithmetic according to the
IEEE Standard 754.

empty handle: A handle that points to a NIL
master pointer, signifying that the underlying
relocatable block has been purged.

event: A notification to an application of some
occurrence that the application may want to
respond to.

event-driven: A style of programming in which
program actions are based on events generated by
the user, rather than on some sort of fixed script.

Event Manager: See Toolbox Event Manager
or Operating System Event Manager.

event mask: A parameter passed to an Event
Manager routine to specify which types of events
the routine should apply to.

event queue: The Operating System Event
Manager's list of pending events.

event record: The internal representation of an
event, through which your program learns all
pertinent information about that event.

exception: An error or abnormal condition
detected by the processor in the course of
program execution; includes interrupts and traps.

exception vector: One of 64 vectors in low
memory that point to the routines that are to get
control should an exception occur.

exclusive OR: A logical operation that produces
a true result if one of its operands is true and the
other false, and a false result if its operands are
both true or both false.

extents tree file: Contains the locations and
sizes of the extents making up a file on a volume.
See file extent.

external reference: A reference to a routine or
variable defined in a separate compilation or
assembly.

file: A named, ordered sequence of bytes; a
principal means by which data is stored and
transmitted on the Macintosh. A file consists of a
data fork and a resource fork.

file control block: A fixed-length data structure,
contained in the file-control-block buffer, where
information about an access path is stored.

file directory: The part of a volume that
contains descriptions and locations of all the files
and directories on the volume. There are two
types of file directories: hierarchical file
directories and flat file directories.

file extent: A series of contiguous allocation
blocks.

File Manager: The part of the Operating System
that supports file I/O.

filename: A sequence of up to 31 printing
characters (excluding colons), which identifies a
file. See pathname.

file object: A resource of type 1FOBJ1•

file reference: A resource (type 1FREF1) that
provides the Finder with file and icon information
about an application.

file tags: Information associated with each
logical block, designed to allow reconstruction of
files on a volume whose directory or other file
access information has been destroyed.

file type: A four-character sequence, specified
when a file is created, that identifies the type of
file. (Examples: 'TEXT', 'APPL', 'MPST'.)

Finder: The application that maintains the
Macintosh desktop and launches other programs.
The Finder is also the default startup application.

Finder information: Information that the
Finder provides to an application upon starting it,
telling it which documents to open or print

fixed-point number: A signed 32-bit quantity
containing an integer part in the high-order word
and a fractional part in the low-order word.

fixed-width font: A font whose characters all
have the same width.

-~

flat file system: The nonhierarchical file system
used on 400K disks and Macintosh XL hard disks.

Floating-Point Arithmetic Package: A
Macintosh package that supports extended
precision arithmetic according to IEEE Standard
754.

floating-point coprocessor (MC68881): A
coprocessor chip on the Macintosh II that
provides high-speed support for extended
precision arithmetic.

folder: A holder of documents and applications
on the desktop. Folders, like subdirectories, allow
you to organize information in any way you want.

fond: A resource of type 'FOND' containing
information about a family of fonts and used by
the Font Manager to provide the appropriate fonts
to an application.

Glossary 267

font: A complete set of characters of one
typeface. A font may be restricted to a particular
size and style, or may comprise multiple sizes or
multiple sizes and styles.

font association table: The table of font
resources in a fond.

font characterization table: A table of
parameters in a device driver that specifies how
best to adapt fonts to that device.

Font/DA Mover: An application, available on
the System Tools disk, used for installing desk
accessories in the System file.

font family: A group of fonts of one basic design
but with variations in, for example, weight and
slant.

font height: The vertical distance from a font's
ascent line to its descent line.

Font Manager: The part of the Toolbox that
supports the use of various character fonts for
QuickDraw when it draws text.

font number: The number by which you
identify a font to QuickDraw or the Font Manager.

font record: A data structure, derived from a
font resource, that contains all the information
describing a font.

font scaling: Deriving a font from a larger or
smaller font by shrinking or expanding it. Scaled
fonts in larger sizes are usually not as attractive as
the installed font.

font size: The size of a font in points; equivalent
to the distance between the ascent line of one line
of text and the ascent line of the next line of single
spaced text.

fork: One of the two parts of a file; see data fork
and resource fork.

four-tone record: A data structure describing
the tones produced by a four-tone synthesizer.

268 Glossary

four-tone synthesizer: The part of the Sound
Driver used to make simple harmonic tones, with
up to four "voices" producing sound
simultaneously.

fractional character widths: A font attribute
that improves the spacing of characters.

frame: The time elapsed from the start bit to the
last stop bit during serial communication.

frame pointer: A pointer to the end of the local
variables within a routine's stack frame.

free block: A memory block containing space
available for allocation.

free-form synthesizer: The part of the Sound
Driver used to make complex music and speech.

frequency: The number of cycles per second
(also called hertz) at which a wave oscillates.

full-duplex communication: A method of data
transmission in which two devices transmit data
simultaneously.

full pathname: A pathname beginning from the
root directory. A full pathname is a pathname that
contains embedded colons but no leading colon.

global coordinate system: The coordinate
system based on the top-left corner of the bit
image at (O,O).

global variable: A variable that is valid for all
applications.

go-away region: A region in a window frame.
Clicking inside this region of the active window
makes the window close or disappear.

grafl>ort: A data structure in QuickDraw that
contains a complete drawing environment,
including such elements as a bit map, a character
font, and patterns.

graphics port: A complete drawing
environment in QuickDraw (data type grafPott),
including such elements as a bit map, a character
font, patterns for drawing and erasing, and other
graphics characteristics.

grow region: A window region, usually within
the content region, where dragging changes the
size of an active window.

handle: A pointer to a master pointer, which
designates a relocatable block in the heap by
double indirection.

heap: The area of memory in which space is
dynamically allocated and released on demand
by means of the Memory Manager.

heap zone: An area of memory initialized by the
Memory Manager for heap allocation.

HFS: See hierarchical file system.

hierarchical file system (HFS): The file system
used on hard disks and SOOK floppy disks.

hierarchical menu: A menu in which an
individual menu item can spawn a submenu.

highlight: To display an object on the screen in
a distinctive visual way, such as inverting it.

horizontal blanking interval: The time
between the display of the right-most pixel on one
line and the left-most pixel on the next line.

hot spot: The point in a cursor that is aligned
with the mouse location.

icon: A 32-by-32 bit image that graphically
represents an object, concept, or message.

icon list: A resource (type 'ICN ') consisting of a
list of icons.

icon number: A digit from 1 to 255 to which the
Menu Manager adds 256 to get the resource ID of
an icon associated with a menu item.

image width: The width of a character image.

immediate printing: Printing a document
immediately as it is drawn in the printing grafPort.

initiator: When two SCSI devices communicate
with each other, the one that issues commands is
the initiator. A SCSI device typically has a fixed
role as an initiator or target; for instance, the
Macintosh always acts as initiator to one or more
peripherals, such as hard disks, that act as targets.
See target.

input driver: A device driver that receives serial
data via a serial port and transfers it to an
application.

insertion point: An empty selection range; that
is, the character position where text will be
inserted (marked with a blinking vertical bar).

interface routine: A routine called from Pascal
whose purpose is to trap to a certain ROM or
library routine.

International Utilities Package: A Macintosh
package that provides country-independent
routines for formatting for numbers, currency,
dates, times, and so on.

internet: An interconnected group of AppleTalk
networks.

internet address: The AppleTalk address and
network number of a socket.

interrupt: An exception that's signaled to the
processor by a device in order to notify the
processor of a change in condition of the device,
such as the completion of an I/0 request.

interrupt handler: A routine that services
interrupts.

interrupt vector: A pointer to an interrupt
handler.

intrinsic font: A font displayed without
modification. See derived font.

invert: To highlight by changing white pixels to
black and vice versa.

Glossary 269

1/0 request: A request for input from or output
to a file or device driver; caused by calling a File
Manager or Device Manager routine
asynchronously.

item: In dialog and alert boxes, a control, icon,
picture, or piece of text, each displayed inside its
own display rectangle. See menu item.

item list: A list of information about all the items
in a dialog or alert box.

IWM: Acronym for Integrated Woz Machine, the
custom chip that controls the 3.5-inch floppy disk
drives.

journaling mechanism: A mechanism that
allows a program to feed events to the Toolbox
Event Manager from some source other than the
user.

jump table: A table that contains one entry for
every routine in an application or MPW tool and
that is the means by which the loading and
unloading of segments is implemented.

justification: The horizontal placement of lines
of text relative to the edges of the rectangle in
which the text is drawn.

kern: To draw part of a character so that it
overlaps an adjacent character.

kernel: The program in A/UX that operates at
the lowest level, handling machine-depe!J.dent
operations such as file management and
peripheral I/O.

key code: An integer representing a key on the
keyboard or keypad, without reference to the
character that the key stands for.

keyboard configuration: A resource that
defines a particular keyboard layout by associating
a character code with each key or combination of
keys on the keyboard or keypad.

keyboard equivalent: The combination of the
Command key and another key, used to invoke a
menu item from the keyboard.

270 Glossary

keyboard event: An event generated when the
user presses a character key on the keyboard. A
key-down event is generated when the user presses
a character key; a key-up event is generated when
the user releases a character key. Auto-key events
are repeatedly generated when the user holds
down a character key.

keyboard mapping procedure: A routine,
stored as a resource, that determines the character
code for each key on the keyboard.

leading: The amount of blank vertical space
between the descent line of one line of text and the
ascent line of the next line of single-spaced text.

library file: A code file that contains procedures
and functions available to a program.

ligature: A character that combines two letters.

linker: A program that connects program
segments compiled or assembled at separate
times so that they can be executed together.

list definition procedure: A procedure called
by the List Manager that determines the
appearance and behavior of a list.

list element: The basic component of a list.
From a logical point of view, a list element is
simply bytes of data.

List Manager: The part of the Operating System
that provides routines for creating, displaying,
and manipulating lists.

list record: The internal representation of a list,
where the List Manager stores all the information
to operate on that list.

local coordinate system: The coordinate
system local to a grafPort, imposed by the
boundary rectangle defined in its bit map.

localization: The process of adapting an
application to different languages, which may ,
include conversion to a non-Roman script
system.

lock: To temporarily prevent a relocatable block
from being moved during heap compaction.

locked file: A file whose data cannot be
changed.

locked volume: A volume whose data cannot be
changed. Volumes can be locked by either a
software flag or a hardware setting.

logical block: Volume space composed of 512
consecutive bytes of standard information and an
additional number of bytes of information
specific to the Disk Driver.

magnitude: The vertical distance between any
given point on a wave and the horizontal line
about which the wave oscillates.

main event loop: In a standard Macintosh
application program, a loop that repeatedly calls
the Toolbox Event Manager to get events and that
then responds to them as appropriate.

main segment: The segment containing the
main program.

manager: The term used to characterize a set of
data structures and routines that perform a set of
related Toolbox or Operating System functions.
For instance, the Window Manager handles the
display and manipulation of windows on the
Macintosh screen.

master pointer: A single pointer to a
relocatable block, maintained by the Memory
Manager and updated whenever the block is
moved, purged, or reallocated. All handles to a
relocatable block refer to it by double indirection
through the master pointer.

memory block: An area of contiguous memory
within a heap zone.

Memory Manager: The part of the Operating
System that dynamically allocates and releases
memory space in the heap.

menu: A list of menu items that appears when
the user points to a menu title in the menu bar and
presses the mouse button. Dragging through the
menu and releasing over an enabled menu item
chooses that item. A menu is internally
represented in a menu record.

menu bar: The horizontal strip at the top of the
Macintosh screen that contains the menu titles of
all menus in the menu list.

menu definition procedure: A procedure,
stored as a resource, that is called by the Menu
Manager and determines the appearance and
behavior of a particular menu.

menu item: A choice in a menu, usually a
command to the current application.

Menu Manager: The part of the Toolbox that
deals with setting up menus and letting the user
choose from them.

MIDI synthesizer: A Sound Manager
synthesizer that interfaces with external
synthesizers via a Musical Instrument Data
Interface (MIDI) adapter connected to one of the
serial ports.

missing symbol: A character (0) to be drawn in
case of a request to draw a character that is missing
from a particular font.

modal dialog: A dialog that requires the user to
respond before doing any other work on the
desktop.

modeless dialog: A dialog that allows the user to
work elsewhere on the desktop before responding.

modifier: A program that interprets and
processes Sound Manager commands as they pass
through a channel.

modifier key: A key (Shift, Caps Lock, Option,
or Command) that generates no keyboard events
of its own but that changes the meaning of other
keys or mouse actions.

Glossary 271

mounted volume: A volume that has been
inserted into a disk drive and has had descriptive
information read from it by the File Manager.

mouse event: An event generated when the user
presses and releases the mouse button. A mouse
down event is generated when the user presses the
mouse button. A mouse-up event is generated
when the user releases the mouse button.

mouse scaling: A feature that causes the cursor
to move farther during a mouse stroke than it
would have otherwise, provided that the change in
the cursor's position exceeds the mouse-scaling
threshold.

mouse-scaling threshold: A number of pixels
that, if exceeded by the changes in the cursor
position within one tick after the mouse is moved,
causes mouse scaling to occur (if that feature is
turned on). On the Macintosh Plus, this is
normally six pixels.

MPW: The Macintosh Programmer's Workshop,
Apple's software development system for the
Macintosh family.

MPW Shell: The application that provides the
environment within which the other parts of the
Macintosh Programmer's Workshop operate. The
Shell combines an editor, command interpreter,
and built-in commands.

MPW tool: An executable program (file type
'MPST') that is integrated with the MPW Shell
(contrasted with an application, which runs stand
alone).

MultiFinder: A special Finder option available
with Finder version 6.0 that allows more than one
Macintosh application to be open simultaneously.

network event: An event generated by the
AppleTalk Manager.

network-visible entity: A named socket client
on an internet. See internet and socket client.

272 Glossary

newline character: Any character, but usually
Return (ASCII code $OD), that indicates the end of
a sequence of bytes.

newline mode: A mode of reading data in
which the end of the data is indicated by a newline
character (and not by a specific byte count).

node: A device that's attached to and
communicates by means of an AppleTalk network.

nonbllnd transfer: On a SCSI device, a data
transfer followed by polling of the receiving
device to confirm the success of the transfer.

nonbreaking space: The character with ASCII
code $CA; drawn as a space the same width as a
digit, but interpreted as a nonblank character for
the purposes of word wraparound and selection.

non-HFS: The "flat" file system, used on 400K
disks and Macintosh XL hard disks.

nonrelocatable block: A block whose location
in the heap is fixed and can't be moved during
heap compaction.

note synthesizer: Functionally equivalent to
the Sound Driver's square-wave synthesizer, the
note synthesizer generates simple melodies and
other sounds.

NuBus: A computer bus specification created by
Texas Instruments and used in the Macintosh II to
support six expansion slots.

NuBus slots: Expansion slots in the
Macintosh II, designed according to the NuBus
standard created by Texas Instruments.

null event: An event reported when there are no
other events to report.

off-line volume: A mounted volume with all but
the volume control block released.

off-screen drawing: Drawing an image in an
area of RAM other than the display, making it
possible to prepare an image without disturbing
the screen.

on-line volume: A mounted volume with its
volume buffer and descriptive information
contained in memory.

open driver: A driver that can be read from and
written to.

open file: A file with an access path. Open files
can be read from and written to.

Operating System: The lowest-level software in
the Macintosh. It does basic tasks such as 1/0,
memory management, and interrupt handling.

Operating System Event Manager: The part of
the Operating System that reports hardware
related events, such as mouse-button presses and
keystrokes.

Operating System Utilities: Operating System
routines that perform miscellaneous tasks, such as
getting the date and time, finding out the user's
preferred speaker volume and other preferences,
and doing simple string comparison.

output driver: A device driver that transfers data
from an application via a serial port.

overrun error: See hardware overrun error
and software overrun error.

package: A set of routines and data types that
forms a part of the Toolbox or Operating System
and is stored as a resource. On the original
Macintosh, all packages were disk-based and
brought into memory only when needed; some
packages are now in ROM.

Package Manager: The part of the Toolbox that
lets you access Macintosh packages.

packet: A standardized, variable-length block of
data sent over a network.

page: A contiguous segment of main memory.

page fault: A condition that occurs in a virtual
memory system whenever the processor tries to
access a location that is not currently in RAM, and
that normally causes the system to initiate a page
swap from the disk.

Paged Memory Management Unit (PMMU):
The Motorola 68851 Paged Memory Management
Unit, an optional integrated circuit that provides
full memory mapping in the Macintosh II,
including 24- to 32-bit address mapping and
virtual memory support. See AMU.

parameter RAM: Battery-powered RAM
contained in the clock chip, where settings such as
those made with the Control Panel desk accessory
are preserved.

parity bit: A data communications bit used to
verify that data bits received by a device match the
data bits transmitted by another device.

parity error: The condition resulting when the
parity bit received by a device isn't what was
expected.

partial pathname: A pathname beginning from
any directory other than the root directory. A
partial pathname either contains no colons or has
a leading colon.

patch: To replace a piece of ROM code with
other RAM-based system code by "patching" a
new entry into the trap dispatch table. Also, a
resource of type 'PTCH' containing the patched
code.

pathname: A series of concatenated directory
and filenames that identifies a given file or
directory. See also partial pathname and full
pathname.

path reference number: A number that
uniquely identifies an individual access path;
assigned when the access path is created.

pattern: An 8-by-8 bit image used to define a
repeating design (such as stripes) or tone (such as
gray).

period: The time elapsed during one complete
cycle of a wave.

phase: The amount by which the cycles of one
wave precede or lag behind the cycles of another
wave of the same frequency.

Glossary 273

picture: A saved sequence of QuickDraw drawing
commands (and, optionally, picture comments)
that you can play back later with a single procedure
call; also, the image resulting from these
commands.

picture comments: Data stored in the
definition of a picture that doesn't affect the
picture's appearance but may be used to provide
additional information about the picture when it's
played back.

picture frame: A rectangle, defined as part of a
picture, that surrounds the picture and gives a
frame of reference for scaling when the picture is
played back.

pixel: An individual dot on the screen. For
simple monochrome, the visual representation of
a single bit in the video RAM (white if the bit is 0,
black if it's 1). For color or gray-scale video, each
pixel on the screen may represent several bits in
the RAM image.

pixel value: The definition of a color as
parameter values for a particular display device.

plane: The front-to-back position of a window on
the desktop.

point: The intersection of a horizontal grid line
and a vertical grid line on the coordinate plane,
defined by a horizontal and a vertical coordinate;
also, a typographical term meaning
approximately 1/72 of an inch.

pointer: An item of information consisting of
the memory address of some other item.

polygon: A sequence of connected lines defined
by QuickDraw line-drawing commands.

port: See graphics port.

post: To place an event in the event queue for
later processing.

PostScript: The page-description language used
with the LaserWriter.

27 4 Glossary

print record: A record containing all the
information needed by the Printing Manager to
perform a particular printing job.

Printer Driver: The device driver for the
currently installed printer.

printer font: A font designed for printing on the
LaserWriter and having character shapes defined
as curved outlines.

printer resource file: A file containing all the
resources needed to run the Printing Manager with
a particular printer.

printing grafl>ort: A special grafPort
customized for printing instead of drawing on the
screen.

Printing Manager: The routines and data types
that enable applications to communicate with the
Printer Driver to print on any variety of printer via
the same interface.

proportional font: A font whose characters all
have character widths that are proportional to
their image width.

protocol: A well-defined set of communications
rules.

pulse-width encoding: A method of creating
sound waves by generating a stream of pulses at a
constant (ultrasonic) rate while varying the widths
of successive pulses. When the pulse stream is low
pass filtered, the different-width pulses create the
different amplitudes of the sound wave.

purge: To remove a relocatable block from the
heap, leaving its master pointer allocated but set
to NIL.

purgeable block: A relocatable block that can be
purged from the heap.

queue: A list of identically structured entries
linked together by pointers.

QuickDraw: The part of the Toolbox that
performs all graphic operations on the Macintosh
screen.

radio button: A standard control, one of a set of
buttons, only one of which can be on at any one
time. Clicking inside a radio button automatically
turns off the other buttons in the set.

RAM: The Macintosh's random-access memory,
which contains exception vectors, buffers used by
hardware devices, the system and application
heaps, the stack, and other information used by
applications.

raster: The pattern of parallel lines making up
the image on a video display screen. The image is
produced by controlling the brightness of
successive points on the individual lines of the
raster.

raster scanning: The process of generating a
video image by moving an electron beam rapidly
and repeatedly in a pattern of closely spaced
parallel lines. See raster.

read/write permission: Information
associated with an access path that indicates
whether the file can be read from, written to, both
read from and written to, or whatever the file's
open permission allows.

reallocate: To allocate new space in the heap for
a purged block, updating its master pointer to
point to its new location.

region: An arbitrary area or set of areas on the
QuickDraw coordinate plane. The outline of a
region should be one or more closed loops.

relocatable block: A block that can be moved
within the heap during compaction.

resource: Data or code stored in a resource file
and managed by the Resource Manager.

resource attribute: One of several
characteristics, specified by bits in a resource
reference, that determine how the resource should
be dealt with.

Resource Compiler: A program that creates
resources from a textual description. The
Resource Compiler in MPW is named Rez.

resource data: In a resource file, the data that
comprises a resource.

resource description file: A text file that can be
read by the Resource Compiler and compiled into
a resource file. The Resource Decompiler
disassembles a resource file, producing a resource
description file as output.

resource file: Common parlance for the
resource fork of a Macintosh file.

resource fork: ,The part of a file that contains
data used by an application, such as menus, fonts,
and icons. An executable file's code is also stored
in the resource fork.

resource header: At the beginning of a resource
file, data that gives the offsets to and lengths of the
resource data and resource map.

resource ID: A number that, together with the
resource type, identifies a resource in a resource
file. Every resource has an ID number.

Resource Manager: The part of the Toolbox that
reads and writes resources.

resource map: In a resource file, data that is
read into memory when the file is opened and
that, given a resource specification, leads to the
corresponding resource data.

resource name: A string that, together with the
resource type, identifies a resource in a resource
file. A resource may or may not have a name.

resource reference: In a resource map, an
entry that identifies a resource and contains either
an offset to its resource data in the resource file or
a handle to the data if it's already been read into
memory.

resource type: The type of a resource in a
resource file, designated by a sequence of four
characters inside single quotation marks, such as
'MENU' for a menu resource.

resume procedure: A procedure within an
application that allows the procedure to recover
from system errors.

Glossary 275

RGB color: A method of displaying color video
by transmitting the three primary colors (red,
green, and blue: thus, RGB) as three separate
signals.

RGB space: The color space defined by
coordinate axes corresponding to red, green, and
blue.

RGB value: The definition of a color as the
coordinates of a point in RGB space.

ROM: The Macintosh's permanent read-only
memory, which contains the routines for the
Toolbox and Operating System and the various
system traps.

root directory: The directory at the base of a file
catalog.

row width: The number of bytes in each row of a
bit image.

sampled-sound synthesizer: Functionally
equivalent to the Sound Driver's free-form
synthesizer, the sampled-sound synthesizer can
play prerecorded or application-generated
sounds.

scaling factor: A value, given as a fraction, that
specifies the amount a character should be
stretched or shrunk before it is drawn.

SCC: See Serial Communications Controller.

scrap: A place such as the desk scrap where cut or
copied data is stored.

scrap file: The.file containing the desk scrap
(usually named "Clipboard File").

Scrap Manager: The part of the Toolbox that
enables cutting and pasting between applications,
desk accessories, or an application and a desk
accessory.

screen buffer: A block of memory from which
the video display reads the information to be
displayed.

276 Glossary

screen font: A font designed for printing on the
screen or on an ImageWriter and character shapes
defined as bit maps.

script: A writing system, such as Chinese or
Arabic. This book is printed in the Roman script.

script: (MPW and UNIX) Same as command
file.

script interface system: A set of routines and
data structures the Script Manager uses to support
a particular wirting system or script.

Script Manager: A set of extensions to the
Macintosh Toolbox and Operating System that
enables applications to use non-Roman writing
systems, such as Japanese, Chinese, Arabic, and
Hebrew, as well as Latin-based alphabets, such as
English, French, and German.

SCSI: See Small Computer System
Interface.

SCSI Manager: The part of the Operating System
that controls the exchange of information between
a Macintosh and peripheral devices connected
through the Small Computer System Interface
(SCSI).

SE Logic Unit (SELU): A custom gate-array chip
on the Macintosh SE that handles RAM, video,
sound, and that selects devices and performs
other functions.

sector: Disk space composed of 512 consecutive
bytes of standard information and 12 bytes of file
tags.

segment: One of several parts into which the
code of an application may be divided. Not all
segments need to be in memory at the same time.

Segment Loader: The part of the Operating
System that loads the code of an application into
memory, either as a single unit or divided into
dynamically loaded segments.

selection or selection range: A series of
characters, or a character position, at which the
next editing operation will occur. Selected
characters in the active window are inversely
highlighted.

Serial Communications Controller
(SCC): The chip that handles serial 1/0 through
the modem and printer ports.

serial data: Data communicated over a single
path communication line, one bit at a time.

Serial Driver: A device driver that controls
communication, via serial ports, between an
application and serial peripheral devices.

shell: An application or development program
that interprets commands from the user and
provides an environment in which other
programs are executed.

shell application: The application that takes
control when you quit another application. See
also shell, startup application.

shell program: A program that runs in the
environment provided by a shell.

shell script: A stored sequence of commands
that can be executed by a shell to carry out a
complex operation such as the compiling and
linking of several program segments.

signature: A four-character sequence that
uniquely identifies an application to the Finder.

SIMM: see Single In-line Memory Module.

Single In-line Memory Module (SIMM): A
memory-expansion module used in some models
of Macintosh, consisting of a small printed-circuit
card with eight (sometimes nine) surface-mount
RAM !Cs and with electrical contacts along one
edge for insertion into a connector on the main
logic board.

Slot Manager: On the Macintosh II, the part of
the Operating System that controls the exchange
of information between a Macintosh and cards
installed in the expansion slots.

Small Computer System Interface (SCSI): A
specification of mechanical, electrical, and
functional standards for connecting small
computers with intelligent peripherals such as
hard disks, printers, and optical disks.

sockets: Software entities within the nodes of a
network.

socket clients: A software process in a node that
owns a socket; see network-visible entity.

sound buffer: A block of memory from which
the sound generator reads the information to
create an audio waveform.

Sound Driver: The device driver that controls
sound generation in an application. (Superseded
by the Sound Manager on the Macintosh II.)

Sound Manager: The device driver that controls
sound generation on the Macintosh II. It supports
all the functions of the older Sound Driver and
makes it easier to produce music and speech. See
Sound Driver.

sound procedure: A procedure associated with
an alert that will emit one of four sounds from the
Macintosh's speaker. Its integer parameter ranges
from 0 to 3 and specifies which sound.

spooling: See spool printing.

spool printing: Storing a representation of a
document's printed image on a disk or in
memory, then printing it later.

square wave: A type of sound wave produced by
switching between two constant amplitudes at an
even rate. A similar wave with uneven switching
such that the time at one level is different from that
at the other is called a rectangular wave.

square-wave synthesizer: The part of the
Sound Driver used to produce less harmonic
sounds than the four-tone synthesizer, such as
beeps.

stack: The area of memory in which space is
allocated and released in last-in, first-out (LIFO)
order.

Glossary 277

stack-based routine: A Toolbox or Operating
System routine that receives its parameters and
returns its results, if any, on the stack.

stack frame: The area of the stack used by a
routine for its parameters, return address, local
variables, and temporary storage.

Standard Apple Numeric Environment
(SANE): The set of methods that provides the
basis for floating-point calculations in Apple
computers. SANE meets all requirements for
extended-precision, floating-point arithmetic as
prescribed by IEEE Standard 754 and ensures that
all floating-point operations are performed
consistently and return the most accurate results
possible.

Standard File Package: A Macintosh package
for presenting the standard user interface when a
file is to be saved or opened.

start bit: A serial data communications bit that
signals that the next bits transmitted are data bits.

startup application: The application that takes
control when the system is first started up.

stop bit: A serial data communications bit that
signals the end of data bits.

structure region: A window, in the sense of its
entire structure.

style: See character style.

subdirectory: Any directory other than the root
directory.

switch-launch: To launch an application from a
disk containing a system folder on a floppy-disk
only system, causing the Macintosh to switch
folders.

Switcher: A Macintosh application that allows
you to keep more than one application loaded in
memory and to switch from one application to
another instantly.

278 Glossary

synchronous communication: A method of
data transmission where the receiving and sending
devices share a common timer.

synchronous execution: After calling a routine
synchronously, an application cannot continue
execution until the routine is completed.

synchronous modem: A modem that provides
two clocks for synchronous communication with
its host computer--one clock for sending data
from the host computer to the modem, and a
second clock for sending data from the modem to
the host computer.

synthesizer: A program that, like a device
driver, interprets Sound Manager or Sound Driver
commands and produces sound.

synthesizer buffer: A description of the sound
to be generated by a synthesizer.

system error alert: An alert box displayed by
the System Error Handler.

system error alert table: A resource that
determines the appearance and function of system
error alerts.

System Error Handler: The part of the
Operating System that assumes control when a
fatal system error occurs.

system error ID: An ID number that appears in
a system error alert to identify the error.

system event mask: A global event mask that
controls which types of events get posted into the
event queue.

System file: Same as system resource file.

System Folder: The folder that contains the
System file and the Finder.

system font: The font that the system uses (in
menus, for example). In Roman-based writing
systems, the system font is Chicago, and the
system font size is 12 points.

system heap: The portion of the heap reserved
for use by the Operating System.

system resource: A resource in the system
resource file.

system resource file: A resource file
containing standard resources, accessed if a
requested resource wasn't found in any of the
other resource files that were searched. See
System file.

system software: The term used to describe the
contents of the System Folder: the RAM-based
software that the Macintosh needs in order to run.

system startup information: Certain
configurable system parameters that are stored in
the first two logical blocks of a volume and that are
read in at system startup.

system window: A window in which a desk
accessory is displayed.

target: When two SCSI devices communicate
with each other, the device that carries out an
operation at the command of the other. A SCSI
device typically has a fixed role as an initiator or
target; for instance, the Macintosh always acts as
initiator to one or more peripherals, such as hard
disks, that act as targets. See initiator.

TextEdit: The part of the Toolbox that supports
the basic text entry and editing capabilities of a
standard Macintosh application.

TextEdit scrap: The place where certain
TextEdit routines store the characters most
recently cut or copied from text.

tick: A sixtieth of a second (approximately).

Time Manager: The part of the Operating
System that lets you schedule a routine to be
executed after a given number of milliseconds
have elapsed.

Toolbox: Same as User Interface Toolbox.

Toolbox Event Manager: The part of the
Toolbox that allows your application program to
monitor the user's actions with the mouse,
keyboard, and keypad.

Toolbox Utilities: The part of the Toolbox that
performs generally useful operations such as
fixed-point arithmetic, string manipulation, and
logical operations on bits.

track: Disk space composed of 8 to 12
consecutive sectors. A track corresponds to one
ring of constant radius around the disk.

Transcendental Functions Package: A
Macintosh package that contains trigonometric,
logarithmic, exponential, and financial
functions, as well as a random number generator.

trap: A microprocessor exception caused by
instruction execution.

trap dispatch table: A table in RAM containing
the addresses of all Toolbox and Operating
System routines in encoded form.

trap dispatcher: The part of the Operating
System that examines a trap word to determine
what operation it stands for, looks up the address
of the corresponding routine in the trap dispatch
table, and jumps to the routine.

trap macro: A macro that assembles into a trap
word and that is used for calling a Toolbox or
Operating System routine from assembly
language.

trap number: The identifying number of a
Toolbox or Operating System routine; an index
into the trap dispatch table.

trap word: An unimplemented instruction
representing a call to a Toolbox or Operating
System routine.

unimplemented instruction: An instruction
word that doesn't correspond to any valid
machine-language instruction but instead causes a
trap.

Glossary 279

UNIX: The AT&T UNIX operating system, an
enhanced version of which is implemented on the
Macintosh II under the name A/UX.

unlock: To allow a relocatable block to be moved
during heap compaction.

unmounted volume: A volume that hasn't been
inserted into a disk drive and had descriptive
information read from it, or a volume that
previously was mounted and has since had the
memory used by it released.

unpurgeable block: A relocatable block that
can't be purged from the heap.

update event: An event generated by the
Window Manager when a window's contents need
to be redrawn.

update region: A window region consisting of all
areas of the content region that have to be
redrawn.

User Interface Toolbox: The software in the
Macintosh ROM that helps you implement the
standard Macintosh user interface in your
application.

VBL task: A task to be executed during the
vertical retrace interval. See vertical retrace
queue.

vector table: A table of interrupt vectors in low
memory.

Versatile Interface Adapter (VIA): The I/0
chip that handles the ADB, real-time clock, and
various other control signals and interrupts. On
the Macintosh II', a second VIA handles control
and interrupts for RAM, SCSI, and NuBus.

version data: In an application's resource file, a
resource that has the application's signature as its
resource type; typically a string that gives the
name, version number, and date of the
application.

280 Glossary

vertical blanking (VBL): An interrupt signal
generated by the video timing circuit each time it
finishes a vertical scan, 60 times a second. See
vertical retrace interrupt.

vertical blanking interval: The time between
the display of the last pixel on the bottom line of
the screen and the first one on the top line; see
VBL and vertical retrace interrupt.

vertical retrace interrupt: An interrupt
generated 60 times a second by the Macintosh
video circuitry while the beam of the display tube
returns from the bottom of the screen to the top;
also known as the vertical blanking interrupt.

Vertical Retrace Manager: The part of the
Operating System that schedules and executes
tasks during the vertical retrace interval.

vertical retrace queue: A list of tasks to be
executed during the vertical retrace interrupt.

VIA: See Versatile Interface Adapter.

Video Driver: The device driver that handles the
interface between QuickDraw and a slot-based
video device. (Macintosh II only.)

virtual memory: A technique for making a
computer's memory seem larger than it actually
is, by keeping programs and data on a mass
storage device and automatically loading parts of
them into main memory in such a way that the
programs run as if all the data were in main
memory all the time.

volume: A piece of storage medium formatted to
contain files; usually a disk or part of a disk. A
3.5-inch Macintosh disk is one volume.

volume allocation block map: A list of entries,
one for each allocation block, that indicate
whether the block is currently allocated to a file or
free for use, and which block is next in the file.

volume attributes: Information contained on
volumes and in memory indicating whether the
volume is locked, whether it's busy (in memory
only), and whether the volume control block
matches the volume information (in memory
only).

volume bit map: Records whether blocks are
used or unused.

volume control block: A nonrelocatable block
that contains volume-specific information,
including the volume information from the master
directory block.

volume information: Volume-specific
information contained on a volume, including the
volume name and the number of files on the
volume.

volume name: A sequence of up to 27 printing
characters that identifies a volume; followed by a
colon (:) in File Manager routine calls to
distinguish it from a filename.

waveform: The shape of a wave (a graph of a
wave's amplitude over time).

waveform description: A sequence of bytes
describing a waveform.

wavelength: The extent of one complete cycle
ofa wave.

wave-table synthesizer: Similar to the Sound
Driver's four-tone synthesizer, the wave-table
synthesizer produces complex sounds and
multipart music.

window: An object on the desktop that presents
information, such as a document or a message.
Each window is internally represented in a window
record.

window definition fun·ction: A function,
stored as a resource, that is called by the Window
Manager and determines the appearance and
behavior of a particular window.

window frame: The structure region of a window
minus its content region.

Window Manager: The part of the Toolbox that
provides routines for creating and manipulating
windows.

Window Manager port: A grafl>ort that has the
entire screen as its portRect and is used by the
Window Manager to draw window frames.

window template: A resource (type 'WIND')
that contains information from which the Window
Manager can create a window.

word: A group of bits that is treated as a unit; the
number of bits in a word is a characteristic of each
particular computer.

word wraparound: The process of keeping
words from being split between lines when drawing
text on the screen.

working directory: An alternative way of
referring to a directory. When opened as a
working directory, a directory is given a working
directory reference number that is used to refer to
it in File Manager calls.

wraparound: The automatic' continuation of text
from the end of one line to the beginning of the
next, so that you don't have to press the Return key
at the end of each line as you type.

Glossary 281

A
access path 158
activate event 37, 39, 50
active window 49
additive primary 100
address error 189
Address Mapping Unit (AMU) 206
address space 192, 202, 203-205
Alarm Clock 38, 78, 131
alarm clock event 38
alarm setting 132
alert 56, 59
alert box 59
A-line instruction 25
allocated block 147
American National Standards

Institute (ANSI) 227
amplitude, waveform 171
Analog Signal Generator (ASG) 226
apostrophe 158
Apple DCA filter 180
Apple Desktop Bus (ADB) 5, 200,

229, 230-231
keyboards 232
Manager 22
mouse 235

Apple Developer Services 257
Apple Hard Disk 20 226
Apple Hard Disk 20SC 9
Apple Hard Disk 40SC 9
Apple Hard Disk 80SC 9
Apple key 38
AppleLine 3270 File Transfer

program 180
Apple Personal Modem 9

Index

Apple Programmer's and
Developer's Association
(APDA) 256

AppleShare 9
AppleShare File Server 180
Apple Sound Chip (ASC) 142, 172,

217, 222, 225
Apple symbol 38, 232
AppleTalk 9, 116, 133, 134,

179-183, 228, 246
address 181
architecture 181-183
drivers 169, 176

AppleTalk Filing Protocol (AFP)
183

AppleTalk Link Access Protocol
(ALAP) 183

AppleTalk Manager 22, 38, 131,
181

protocols 181-183
AppleTalk PC card 180
AppleTalk Transaction Protocol

(ATP) 183
Apple Tape Backup 40SC 9
Apple technical documentation

257-259
application 26
application-defined event 39
application file 70
application font 106
application font number 132
application heap 142
application heap zone 145
application list 129
application space 142, 211
Arabic Interface System 111

arbitration phase 175
arithmetic operation 184
ARPANET 247
Arrow 96
ASCII 40, 180, 247

codes 43
asynchronous communication 177
auto-key event 37, 39, 43
auto-key rate 43, 132
auto-key threshold 43, 132
A/UX Operating System 190

communications 246-248
document development

applications 246
features 238-241
memory requirements 241
software development

environment 245
system administration 248-249

§aseline 94, 108
baud 177
Binary-Decimal Conversion Package

21, 77
bit 89-91
bit image 89-91
bit map 91
bit-mapped display 82
bit rate 177
blind transfer 227
block 147
block device 167
B-NET 247

283

boot block 160
bridge 181, 183
bundle 128
bus error 189
bus-free phase 175
button 20, 53, 54

dimmed 55

c
c 245
Calculator 78
Caps Lock key 40, 42, 43
caret-blink time 132
catalog tree file 161
caution alert 59
cell 62
channel 173
character code 40

processing 42-43
character device 167
character image 108
character key 40, 42
character origin 108
character rectangle 109
character set size 112
character style 93
character width 109
check box 20, 34, 53, 54

dimmed 55
check exception 189
Check Register Against Bounds

(CHK) instruction 189
Chinese Interface System 111
Chooser 26, 78, 130, 133-134,

228
window 133

classic Macintosh . 2
Clear To Send (CTS) 178
Clipboard 20, 60, 63, 63

file 26, 63
clipping 86
clock chip 131
closed device driver 169
closed file 158
code segment 21

284 Index

colon 158
color 100-101
color graphics port 94-95
color lookup table 97
Color Manager 19, 101
Color Picker 130, 134-135

dialog box 135
Color Picker Package 77, 100
Color QuickDraw 83, 97, 99
Color Toolbox 97-98
color wheel 135
Command-C 47
Command-~ 47
Command key 40, 43, 46, 62,

123, 129, 232
command phase 175
Command-+ 47
Command-Shift-1 47
Command-Shift-2 47
Command-Shift-number key

combination 38, 47
Command symbol 38
Command-V 47
Command-X 47
Command-Z 47
compacting 148
content region 51
context dependence 112
control 20, 34, 48, 53-55

highlighted 55
inactive 55

control character 42
control definition function 54
Control Manager 20, 48, 53, 97
Control Panel 43, 59, 78, 122,

130-131, 185, 210, 233
control template 54
coordinate origin 88
coordinate plane 87-88
Copy 47, 63
creator 126, 158
cursor 46, 95-96, 186
Cut 47, 63
cutting 63-66

D
data bit 177
data buffer 158
data fork 68, 154
data frame 183
datagram 183
Datagram Delivery Protocol (DDP)

183
data phase 176
dead key 43
declaration ROM 210
default button 56
default error message 190
Defense Data Network 247
deferred printing 115
definition procedure 36
DeRez 80
derived font 104
desk accessory 20, 26, 47,

130-135, 169
Desk Manager 20, 39, 169
desk scrap 60, 63
desktop 34

interface 34-36
Desktop file 124, 127, 129
device 167-169
device driver 22, 168-169
device driver event 38, 39
Device Manager 22, 168, 189
device resource file 133
diaeresis 158
dial 54
dialog 56-58
dialog box 14, 47, 53, 56-57
Dialog Manager 20, 48, 54, 56-58,

97, 188
dialog record 57
dialog template 57
directory 155
disk drive 159, 227
Disk Driver 22, 160, 163, 169, 226
Disk Initialization Package 23, 77,

154, 157, 162
disk-inserted event 37, 39, 186
disk interface 226-227

disk speed controller 142
Disk-Switch alert box 159
display screen 167
divide instruction 1B9
document file 71-72
Documentor's Workbench (DWB 2.0)

246
document window 4B

overlapping 50
regions and frame 52

double-dick time 132
draft printing 115
drag region 51
Drive button 157
drive number 159
drive queue 159

E
BOOK disk 163
BOOK floppy disk drive 227
BOOK volume 160, 162
Elementary Functions Package

1B4
ellipsis 45
Enter key 56
EtherTalk lBO, 247
event-driven program 36

structure 29-31
event-driven programming 27-29
event 19, 27-2B, 36

posted 36
priority 39-40
system 39
types 37-3B

event mask 37
event queue 36, 40
event record 3B
exception 217
exception vector 141
exclusive-OR B6
expansion slot 209-210
extents tree file 161

F
Fedit 160
file 68, 154

access 15B-159
file-control block 15B, 161
file-control-block buffer 161
file extent 161
File Manager 16, 22, 39, 124,

154-155, 15B-164, 16B, 1B9,
226

alert 190
filename 15B
file object 129
file reference 12B
file type 126, 127-12B, 15B
Finder 15, 26, 122, 124-129, 135,

159, 161, 166
default icon 12B
screen 124

Finder information 116, 126, 127,
151

fixed-width font 109
flat directory 156
flat file system 155
Floating-Point Arithmetic Package

23, 77, 1B4
floating-point error 190
floating-point operation 20B
folder 155
font 69, 7B, 93, 102-109
font association table 105
Font/DA Mover 77, 103, 105
font family 104
font height 109
Font Manager 19, 72, 102-107,

1B7
font number 102
font resource 104
font scaling 104, 106-107, 119
font size 103
fork 6B
Fortran 245
Fortran-77 245
400K disk 163
400K volume 162
four-tone synthesizer 170, 172

fractional character width 104, 107
frame 177
free block 147
free-form synthesizer 170, 172
free-form wave 171
frequency 171
ftp 247
full -duplex communication 177

G
Get Info 159
global variable 7
go-away region 51
grafPort 91-95, 114, 215

regions 92
graphics pen 93, lOB
graphics port 51, B6, 91-95
grow region 51
grow-zone function 149

H

handle 36, 72, 149-150
hardware overrun error 17B
heap 21 , 145-146
heap space 147-149
heap zone 145
Hebrew Interface Syste m 111
hierarchical directory 156
hierarchical file system (HFS) 155
hierarchical menu 45-46
hierarchical volume 161
highlighting 49, 55
hot spot 96

icon 14, 69, 7B, 95
icon list 12B
illegal instruction 1B9
image width 109
ImageWriter 9, 26, 114, 115, 133,

241, 246
ImageWriter II 9
immediate printing 115
include file 25
initialization resource 7B, 79
initiator 175
input driver 177-17B

Index 285

Installer 77
intrinsic font 104
Intel 8021 microprocessor 230
interface file 25
International Standards Organization

(ISO) 111
International Utilities Package 21,

77
internet 181
internet address 181
interrupt 217
interrupt handler 217
interrupt signal 234
I/0 device 216-222
I/0 system error 189
item 57
item list 57
IWM (Integrated Woz Machine) 192,

216, 226

J
Japanese Interface System 111
journaling mechanism 37
jump table 142, 151
justification 112

K
KanjiTalk 111
kernel 242
kerning 94, 109
keyboard 229-232
keyboard equivalent 46, 47
keyboard event 37, 40-43
keyboard mapping procedure 42
keyboard mapping resource 78
Key Caps 26, 78, 110
key code 43
key-down event 37, 39, 40, 43
key-up event 37, 39, 40

286 Index

L
LaserShare 116

Print Spooler 180
LaserWriter 9, 26, 87, 104, 107,

114-115, 117, 133, 179,
241, 246

fonts 118-119

LaserWriter Plus 9, 117
fonts 118

launch utility 244
leading 103
library file 25
line 1010 exception 189
line 1111 exception 189
linker 151
list 61-62
list definition procedure 62
list element 61-62
List Manager 21, 61-62, 134
List Manager Package 61, 77
localization 110
locked block 147
locked file 159
locked volume 159
logical block 160
Lotus 1-2-3 180
lowercase 76, 158

M
MacDraw 63
Macintosh

classic 2
hardware/software relationship

7-8
Macintosh character set 41
Macintosh 512K 2
Macintosh 512K enhanced 2, 16
Macintosh Plus 2, 3, 194-195

block diagram 217-219
display screen 167
hardware compatibility 9-12
keyboard 230
power supply 7
RAM 140
sound 223-225
specifications 251-252

Macintosh Programmer's Workshop
(MPW) 80, 158, 245

Macintosh ROM 14-17
Macintosh SE 4-5, 16, 196-197

block diagram 219, 220
display screen 167
expansion connector 208-209
hardware 200
hardware compatibility 9-12
power supply 7
RAM 140
sound 223-225
specifications 252-254

Macintosh II 5-6, 16, 198-199
block diagram 219, 221
Color Toolbox 98
expansion slots 209-210
floating-point coprocessor

207-208
hardware 200-202
hardware compatibility 9-12
I/0 201
memory management 206
power supply 7
RAM 140
sound chip 225-226
specifications 254-255
video 216

MacPaint 26
MacWrite 128
magnitude, waveform 171
mail 247
main event loop 29
main segment 150
manager 15
master pointer 150
memory 211-213
memory management 144-150
Memory Manager 21, 73, 140,

145-151, 187
menu 14, 20, 34, 44-47, 69

disabled 45
menu bar 20, 44, 47
menu blink 132
menu definition procedure 44
menu item 45

Menu Manager 72, 97
message phase 176
Microsoft Word 180
MIDI synthesizer 173
MiniFinder 125
miscellaneous exception 189
missing symbol 94, 106
modal dialog box 56, 59
modeless dialog box 57
modem 229

port configuration 131
modifier 174
modifier key 40, 42
Motorola MC68000 5, 25, 141,

189, 192, 202-203
address space 203-204
expansion connector 208-209

Motorola MC68020 25, 172, 200,
202-203

address space 204-205
Motorola MC68851 206
Motorola MC68881 184, 207-208,

240
mounted volume 158
mouse 233-235
mouse-down event 29, 37, 39
mouse scaling 132, 233
mouse-scaling threshold 233
mouse-tracking resource 78
mouse-up event 37, 39
MPWtool 26
MultiFinder 27, 39, 125-126, 166

screen 125
multitasking 206, 238
Musical Instrument Data Interface

(MIDI) 173

N
Name-Binding Protocol (NBP) 183
network event 38, 39
Network File System (NFS)

247-248
network-visible entity 181
node 179
nonblind transfer 227
nonrelocatable block 147

note alert 59
note synthesizer 173
NuBus 5, 209-210

slot address space 142
null event 38, 40

0
off-line volume 159
off-screen drawing 86
on-line volume 159
Open 126, 157
Open Apple symbol 38, 232
open device driver 169
open file 158
Operating System 6, 7, 14-15,

21-23, 166
components 17
layers 167

Operating System Event Manager
21, 28, 36, 40, 229

Operating System Utilities 23
Option key 40, 43, 43, 123, 129
output driver 177-178

p
package 20, 23
PackageManager 20
page 206
Paged Memory Management Unit

(PMMU) 206
page fault 206
Palette Manager 19
parameter RAM 106, 130, 222

settings 131-132
parity bit 177
parity error 177
Pascal stack management 145
Paste 47, 63
pasting 63-66
patch 79
pathname 158
pattern 95
period 171
phase 171

picture 87, 95
picture comment 87
picture frame 87
pixel 88-91
pixel image 90
pixel map 91
pixel value 101
point 88, 103
pointer 36, 95, 149-150
polygon 87
pop-up menu 47
port 86
Postscript 87, 117, 180
Print 126
Print dialog 115, 116
Printer Access Protocol (PAP) 183
printer connection 132
Printer Driver 22, 26, 113, 169,

176
printer font 118
printer port configuration 131
printer resource file 113
printing 113-119

methods 115-116
printing character 40
printing grafFort 114
Printing Manager 113-116
printing resource 26
privilege violation 189
proportional font 109
protocol 181-183
pulse-width encoding 224
purgeable block 147
purgeable resource 73
purging 148

Q

quadrature encoding 234
quadrature signal 234
QuickDraw 19, 51, 57, 63, 66, 82,

102, 104, 105, 107, 114-117,
119, 124, 142, 143, 215, 216,

graphics 83-97

Index 287

r

R
radio button 54

dimmed 55
RAM 2, 140-143, 211-213
RAM driver 169
raster scanning 214
real-time clock 222
REdit 79
region 86

grafPort 92
relocatable block 147
ResEdit 79

resource editor 80
resource 15, 19, 34, 66, 68, 154

access 72-74
resource attribute 73
resource data 69, 72
resource editing tool 79-80
resource file 44, 57, 69, 70, 74
resource fork 68
resource ID 69, 76
Resource Mariager 19, 49, 57, 68,

72-74, 103, 151, 154
resource map 69, 72
resource reference 73
resource type 69, 75-76
Resume button 188
resume procedure 188
Return From Execution (RTE)

instruction 189
Return key 56
Rez 80
RGB 99, 100
RGB space 100
RGB value 101
ROM 2, 14-17, .213
Routing Table Maintenance Protocol

(RTMP) 183
rowwidth 89
RS-232C 229
RS-422 228-229

288 Index

s
sampled-sound synthesizer 173
Save 157
Save As 157
scrap file 63
Scrap Manager 20, 63
screen buffer 82, 142, 215
screen font 118
screen utility resource 78
script 19, 82, 110
script interface system 111
Script Manager 19, 110-112
ScrnBase 143
scroll bar 20, 34, 48, 53, 54
scrolling arrow 46
scrolling menu indicator 46
sector 163
segment 150
Segment Loader 21, 135, 147,

150-151
error 190

selection phase 175
serial communication 176-178, 246
Serial Communications Controller

(SCC) 177-178, 180, 181,
192, 216, 217, 228

serial data 177
Serial Driver 22, 169, 176-178,

229
serial VO 228-229
serial port 131
shell 242
shell application 124
shell script 242
Shift key 40, 43, 47, 62
Shutdown Manager 23
signature 126
sine wave 171
Single In-Line Memory Module

(SIMM) 212-213
Slot Manager 22, 209
Small Computer System Interface

(SCSI) 3, 163, 175-176, 217,
227-228

Manager 22, 175-176

socket 181
socket client 181
software overrun error 178
Sony Sound Chip 224-225
sound buffer 142, 188
Sound Driver 22, 169, 170-172
sound generator 142, 223-226
Sound Manager 22, 169, 172-174

synthesizers 173-174
sound synthesizer 170
speaker volume 132
spooling 116
spurious attempt 189
square wave 171
square-wave sound 224
square-wave synthesizer 170
stack 142, 144-146
stack frame 145
stack overflow error 190
Standard Apple Numeric

Environment (SANE) 184,
207-208

Standard File 14
Standard File Package 21, 77, 154,

157-158
dialog box 157

start bit 177
Start Manager 23
startup application 124
status phase 176
Stop alert 59
stop bit 177
structure region 51
subdirectory 155
Switcher 27, 135-137
switch-launching 123
synchronous modem 229
synthesizer buffer 172
system error 187-190

recovery 188
system error alert table 188
System Error Handler 23, 142,

146, 186, 187-188
system error ID 187
system error messages 189-190
system event 39
System file 2, 16, 26, 59, 77-79,

122

System Folder 122-123, 131, 133, U
134 Undo 47

system font 106
system heap 141
system heap zone 145
system resource 71, 77-78
system resource file 38, 71,

77-79, 157
system shutdown 184-185
system software 26-27, 122
system startup 184-185

alert messages 190
system startup disk 132, 133
system startup information 40, 160
System V Interface Definition 239,

245

T
Tab key 157
target 175
telnet 247
template 76
TextEdit 20, 58, 60-62, 110, 112
text editing 60-61
text justification 112
tick 43
Time Manager 23, 185, 186
Toolbox Event Manager 19, 28-29,

36-38, 47, 50, 52, 229, 231
Toolbox Menu Manager 20, 44, 45
Toolbox Utilities 21
trace exception 189
track 163
Transcendental Functions Package

23, 77
Transmission Control
Protocol/Internet Protocol
(TCP /IP) 247
trap 25, 217
trap dispatcher 24
trap dispatch table 24
trap mechanism 24-25
Trap on Overflow (TRAPV)

instruction 189

unimplemented core routine 189
unimplemented instruction 25
UNIX Operating System 6, 206,

238-249
unlocked block 147
unmounted volume 158
unpurgeable block 147
update event 37, 40, 52
update region 52
uppercase 76, 158
user groups 257
User Interface Toolbox 7, 14-15,

18-21
components 17

v
VBL task 185
Versatile Interface Adapter (VIA)

192, 216, 217, 222
version data 127
vertical blanking interrupt 185, 214
vertical blanking interval 214
vertical retrace interrupt 23, 185
Vertical Retrace Manager 23,

185-186
vertical retrace queue 186
video display 82, 142
Video Driver 22
video interface 214-216
video RAM 188
video scanning 215
virtual memory 206
virtual paging 202
volume 68, 154

access 158-159
volume allocation block map 161
volume bit map 161
volume control block 161
volume information 158, 161
volume name 158

w
waveform 170-172
waveform description 172
wavelength 171
wave-table synthesizer 173
window 34, 48-52

regions 51-52
window definition function 49
window frame 51, 52
Window Manager 20, 29, 36, 37,

48-52, 57, 76, 95, 97
window template 49
word 60
word demarcation 112
word wraparound 60
writing direction 112

x
XOn/XOff 178

z
zero divide 189
zoom region 51

Index 289

®

Apple® Technical Introduction > $19. 95 FPT
USA

The Official
Publication from

Apple Compute1; Inc.

to the Macintosh® Family

Technical Introduction to the Macintosh Family is an overview of the technical features
of the Apple® Macintosh® family of computers. Written for experienced Macintosh users
as well as beginning Macintosh programmers, this book can provide an entry point for
designers who want to develop software or hardware for the Macintosh.

With the introduction of the Macintosh SE and Macintosh II, Apple has broadened the
definition of the Macintosh system with two open machines that add significant new
hardware and software capabilities to the Macintosh family. This book describes the
flexible Macintosh software and the hardware architectures of the various models.

Technical Introduction to the Macintosh Family discusses general hardware design,
system architecture, and ROM design.
· It introduces the basic components of the system hardware and software.
· It describes the graphics-based interface that the Macintosh presents to the user,
including mouse and keyboard actions, menus, windows, and icons.
· It describes such unique elements of the Macintosh as Macintosh graphics, system
software, memory and file management, and the Macintosh Operating System.
· It describes the Macintosh hardware, comparing the Macintosh Plus, SE, and II.
· It includes a one-chapter description of the Al~ operating system, Apple's
implementation of the AT&T UNIX® operating system for the Macintosh II.

Whether you're an experienced developer for other Apple computers or a newcomer,
this book provides a starting point for learning and using the software and hardware
features of the Macintosh computers.

About the cover: This design represents a new look for the original edition of
Technical Introduction to the Macintosh Family and all the other books in the Apple
Technical Library. None of the contents have been changed.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, California 95014
(408) 996-1010
TIX 171-576

Addison-Wesley Publishing Company, Inc.

Printed in USA.

51995

9 780201 177657

ISBN 0-201-17765-X

