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Preface

I’'ve been programming on the Macintosh nonstop for the past two years, and I am still
learning new things about the Mac almost every day. The power and elegant complexity
of the ROM still continue to amaze me. Of course other times, programming on the Mac
is a study in frustration. I have tried to put as much of that amazement and frustration
as I can into this book. I hope that it will give you lots of useful examples and help you
avoid the common and not-so-common pitfalls of Mac programming.

This book is the result of my day-to-day experiences trying to write practical work-
ing Macintosh code. Most of the examples have been extracted from complete programs,
and, as such, they tend to reveal more of the tricky details of Macintosh programming
that a more antiseptic aproach might gloss over. You should expect to get your hands dirty
with this book. I would like to think that it’s of the same genre as John Muir’s wonderful
Volkswagen repair book, How To Keep Your Volkswagen Alive, A Guide for the Compleat Idiot.
Muir’s message was that engine maintenance and rebuilding was complicated but not im-
possible. I think the same is true for Macintosh programming.

Many persons helped me out while I was writing this book. My wife and children
provided love and encouragement and saved me from total obsession. Stan Krute, author
of the infamous Teleport desk accessory, shared everything he knew about the Mac in
the finest hacker tradition. Steve Vollum, Charles Vollum, and Steve Splonskowski of Scien-
tific Enterprises kindly let me use their laser printer and spent many hours with me just
talking Mac. David Smith of MacTutor made wonderfully intelligent comments on a draft
of the manuscript and also gave permission to reprint material from his magazine in this
book. The staff of Macintosh Technical Support at Apple answered my questions and
responded to my sometimes premature bug reports with admirable patience. Finally, thanks
to the designers of the Macintosh for creating a machine with so many possibilities.




Compatibility Note

This book is a companion to my first Macintosh book, The Complete Book of Macintosh
Assembly Language Programming, Volume I, also published by Scott, Foresman and Com-
pany. I do not assume that you have read that book, but I do assume that you are some-
what familiar with the Mac ROM and have done some toolbox programming. Assembly
language is the medium through which we explore the ROM in this book, but you will
find the techniques and concepts presented here are easily applied to writing Macintosh
programs in any other programming language. As in the first book, all the program list-
ings here are in the MDS format used by Apple Computer’s Macintosh 68000 Develop-
ment System.
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CHAPTER

1

Memory Management and Debugging

Learning the ins and outs of memory management is probably the most difficult aspect
of serious Macintosh programming. Any nontrivial Macintosh program deals with dozens
of objects in memory. These objects may vary from just a few bytes long to many thou-
sands of bytes. As the program proceeds, these objects are often shifted around in memory
by the Memory Manager. Your program has no assurance that a memory object will re-
main in one spot from one instruction to another. Add to this situation the fact that the
ROM toolbox is continuously allocating and deallocating its own memory objects in the
course of its service to your program. Some Macintosh system software, such as the Print
Manager, can use as much as 30K behind your program’s back. (See Chapter 4 for more
details on the Print Manager.) On top of all this, remember that your program might poten-
tially be run on a 128K or 512K Macintosh, or on a 1024K Mac Plus, or in a 97K or
256K Switcher partition.

Macintosh memory management makes the Heisenberg uncertainty principle seem
like a sure thing. When you write Macintosh programs, you must build in flexibility so
that your programs can deal gracefully with novel memory arrangements. This chapter
will attempt to explain the fundamentals of Mac memory management and then get into
some of the debugging strategies that you can use to help ferret out memory problems
in your programs.

THE APPLICATION HEAP

The application heap (hereafter referred to as the heap) is a large contiguous block of memory
that holds the code for the current application program and data objects created by the
program and by the ROM routines called by the program. The heap also holds the con-
tents of the desk scrap. (The desk scrap generally is equivalent to the contents of the clip-
board, but see Chapter 3 for a more detailed discussion of the desk scrap.) The heap grows
upward in memory as more data objects are allocated. The stack shares the block of memory
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occupied by the heap, but the stack grows downward in memory. Figure 1.1 shows the
application heap growing upward as the stack grows downward. A problem can occur when
the stack grows so far down that it overwrites the upper part of the heap, destroying the
heap data.

On a 128K Macintosh, the maximum amount of memory that can be allocated for
the application heap, including the stack, is about 80K. On a 512K Mac, this figure is
about 440K. Of course, these figures are approximate, and your program should never
make assumptions about the amount of heap space that will be available. For instance,
Switcher divides the available memory up into several discrete heaps of unequal sizes. One
of the characteristics of the Memory Manager is that it is able to maintain a number of
application heaps, called heap zones, in memory at one time. (An underlying assumption
in all our discussions of Memory Manager routines is that they apply to the currently ac-
tive zone, even if more than one zone has been defined.) Even without Switcher, your
program must share heap space with desk accessories.

The other main characteristic of the application heap is that it is cleared each time
a new application program starts up. This means that the new application will have a fresh
heap to work with. It also means that any desk accessories that were sitting on the appli-
cation heap during the previous program will be purged when that program ends. Keep
in mind, of course, that the Finder is itself just an application program. When you quit

high memory

”’r"”l”"”’r’

application heap

low memory

FIGURE 1.1. The stack and the application heap
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one program to go back to the Finder, the application heap is cleared to make way for
the Finder. The single memory object that survives on the heap from one program to
another is the desk scrap. Don’t confuse the desk scrap with the Scrapbook desk acces-
sory. The Scrapbook allows you to archive pictures or text that have been cut or copied
from application programs. The desk scrap is the temporary intermediary between one
application and another, and between applications and desk accessories like the Scrap-
book. The persistence of the desk scrap is the foundation on which data transfer between
programs is built. See Chapter 3 for more details on this process.

A later section of this chapter will look more closely at the organization of the appli-
cation heap. The important thing to remember for now is that the application heap is
the part of memory that holds your program code; any memory objects that it allocates
at run time; objects allocated by the actions of ROM toolbox routines and desk accesso-
ries; the contents of the desk scrap; and the stack. Orchestrating the organization of all
these memory needs is the job of the Memory Manager. As your programs get more com-
plicated and demand more memory, you will have to pay more and more attention to the
state of the heap to make sure that you can always get the memory that you need.

THE SYSTEM HEAP

The system heap sits just below the application heap in memory. In a 128K Macintosh
the system heap occupies a little over 16K. On a 512K Mac the system heap occupies
48K. These figures are fixed, and the system heap does not grow according to the needs
of the system. The system heap is used by the operating system to hold device drivers
such as the serial port and sound drivers. It also holds sections of code that are used by
the system to replace or modify parts of the ROM code. These ROM patches, as they
are called, are explained more fully in Chapter 2.

As a programmer, you usually have no reason to pay much attention to the system
heap. For most purposes you can ignore the organization of the objects on the system
heap, concentrating instead on the application heap. Figure 1.2 shows the relationship
of the system and application heaps in memory.

One major difference between the system and application heaps, besides the fact
that the system heap is not expandable, is that the system heap is not cleared out when
one program terminates and another starts up. The system heap is initialized when the
system is booted, and its contents remain intact until the system is rebooted.

LOW-MEMORY GLOBALS

The Macintosh system software maintains two sets of global variables in the lower end
of memory. Your program can use these global variables to find the current values of vari-
ous system parameters. For example, a long word at memory location $16A (362 decimal)

3
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; the stack i

””””” 411:,’1111!”

application heap

system heap

FIGURE 1.2. The system heap and the application heap

is updated sixty times a second and tells how many sixtieths of a second (zicks in Macin-
tosh parlance) have elapsed since system startup. Your program can look at this memory
location to give an absolute temporz! reference for program events. The system global-
variable locations and functions are the same for the Macintosh 128K and 512K machines
with the original 64K ROMs. The Mac Plus, or a Macintosh with the new 128K ROMs
installed, adds an additional 256 bytes of system globals. The symbolic names for the sys-
tem globals are available in the symbol files that come as part of the MDS package. For
example, the Ticks global-variable address is listed in SysEqu.Txt. Including SysEqu.D
in your assembly language program gives you access to this symbolic name for the global
variable rather than having to look up the absolute addresses.

The globals are divided into two sections. The first section runs from memory loca-
tion $100 to $3FF (256 to 1023 decimal) and the second section runs from $800 to $AFF
(2048 to 2815 decimal). On the Mac Plus or any Macintosh with the 128 K ROMs installed,
the first section of globals is the same and the second section is extended to run from
$800 to $BFF (2048 to 3071 decimal). The extra globals are used by the Hierarchical File
System and other new features of the 128 K ROM:s.

Most of the time you will not need to look at the low-memory globals directly. The
most commonly needed values are available as the result of ROM functions. Other times,
however, it is useful to look at the pertinent low-memory location to get some information
about the current state of the system. For instance, by examining the low-memory globals

4
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ApplZone and HeapEnd, you can determine the size of the current application heap. Later
in this chapter you will see how the low-memory globals can be used to help identify ob-
jects on the heap during debugging. ,

This chapter will not attempt to explain all the low-memory globals and their pur-
pose, but some of the more useful ones are listed below.

Hex Address Symbolic Name Fuhction

$108

Menilop

pointer to top. of memory

$114 HeapEnd highest address in current heap
$118 TheZone pointer to current heap zone
$130 ApplLimit highest allowable heap address
$260 SdVolume sound volume level (1 byte)
$2A6 SysZone pointer to system heap

$2AA ApplZone pointer to application heap
$904 CurrentAS correct setting for register AS
$944 iPrErr Print Manager error code
$964 scrapHandle handle to desk scrap

$9D6 WindowList pointer to head of window list
$9DE WMgrPort pointer to screen grafPort
$9EE GrayRgn handle to desktop gray region
$AIC MenulList pointer to current Menu List
$AB4 TEScrpHandle handle to TE scrap

THE TRAP DISPATCH TABLE

In between the two low-memory global areas mentioned above is a 1024-byte table that
governs the operation of the ROM-based toolbox and operating system routines. This table
tells the system where to find the beginning of the code for each of the over 450 ROM
routines. On Macintoshes with the original 64K ROM installed, the table sits between
locations $400 and $7FF (1024 to 2047 decimal). On the Mac Plus, or on older Macs with
the 128K ROM upgrade, the table of ROM offsets is expanded to occupy $C00 to $13FF
(3072 to 5119 decimal) as well as $400-$7FF. The ROM dispatch table is initialized at
system boot-up and may be modified thereafter to redirect calls to individual ROM routines.

Because the dispatch table can be changed, it is easy to fix bugs in the ROM or
simply change the functions of the ROM routines. By changing an offset value in the
trap dispatch table so that it points to a location in RAM rather than ROM, modified
code sections can be substituted for the corresponding ROM code. Chapter 2 goes into
the details of the ROM trap dispatcher and the differences between the new and old ROMs.
Chapter 2 also shows how to substitute your own routines for the ROM routines by patch-
ing the dispatch table. Figure 1.3 shows the trap dispatch table and the two low-memory
global variable areas sitting just under the system heap. Notice that the enlarged trap table
for the 128 K ROMs pushes the start of the system heap upward in memory.
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000000 s S
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FIGURE 1.3. Low-memory
128 K ROMs ﬂ::l:ls and trap dispatch

64 K ROMs

THE SCREEN AND SOUND BUFFERS

At the top end of available memory are memory blocks assigned to hold the bits for the
screen image and the data used by the sound driver. We will not be concerned with the
absolute addresses of either of these buffers, as they vary in the different-memory-size
Macintoshes. We will always address these areas of memory by using ROM routines rather
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than directly reading or writing into the buffers. It is also possible to designate an
alternate screen buffer and an alternate sound buffer that sit below the primary screen
and sound buffers. Each screen buffer takes up approximately 22K, while the sound buffers
occupy about 1.5K each. In this book we won’t use alternate screen or sound buffers,
but information is available in Inside Macintosh that tells you how to do it.

THE APPLICATION GLOBALS

Just below the lowest screen buffer (usually the primary screen buffer unless your pro-
gram has explicitly activated the secondary screen buffer), the system allocates an area
of memory called the application globals. This block of memory sits between the screen
buffer and the top of the stack, as shown in Figure 1.4.

screen buffer

application globals

{ the stack

R N N

atplication heapf

low memory

FIGURE 1.4. Application globals and screen buffer
7




THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOLUME Ii

The application global area is divided into three separate areas, as shown in Figure
1.5. The highest in memory is the application’s jump table, which is used by the Segment
Loader to find subroutines in different segments of a single program. The size of the jump
table will depend on the number of externally referenced routines and the number of seg-
ments in a particular application program. The linker is responsible for constructing the

jump table.

screen buffer

segment loader
jump table

application
parameters

Register A5

application
globals

stack

PrrTTrTrTRTRRRTRTRTRTRTTRRS

low memory

FIGURE 1.5. The three areas in application globals
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Just underneath the jump table is a 32-byte memory block called the application
parameters. Most of the 32 bytes are not used by the current versions of the Mac system
software, but there is a long word, 16 bytes into the application parameter block, that
is a handle to information set up by the Finder when the program is opened from the
desktop. Your program can use this handle to get at that information in order to see if
any documents for the application were opened from the Finder desktop. See Chapter
8 of The Complete Book of Macintosh Assembly Language Programming, Volume I, for an ex-
ample program that uses the Finder information in this way.

The third section of the application globals area is called the application globals.
(I know that doesn’t make logical sense, but I didn’t make up the names.) This variable-
sized block extends downward in memory, holding global variables for the application
and QuickDraw globals. Your application program’s global variables are the ones that you
define using the DS assembler directive (as opposed to the DC directive, which allocates
a static constant within the code space on the heap).

The QuickDraw globals include predefined pen patterns, the bit-map data struc-
ture for the entire screen, and the cursor resource that defines the arrow mouse cursor.
The first four bytes of the application parameters contain a pointer to the QuickDraw
globals.

As you can see from Figure 1.5, register AS always points to the boundary between
the application parameters and the application globals. QuickDraw depends on the value
of A5 pointing to this spot so that it can find the pointer to the QuickDraw globals. You
can also use this register to get at the QuickDraw globals, as shown by this code fragment
that changes the pen pattern to one of the predefined patterns in the QuickDraw globals.
Because the pointer to the QuickDraw globals sits in the first four bytes of the application
parameters, just above the spot pointed to by register AS, the expression GrafGlobals(AS)
is the same as 0(AS). GrafGlobals is a symbolic offset defined as zero in QuickEqu.Txt
and QuickEqu.D. Once you get the pointer to the QuickDraw globals, you use another
offset constant, dkGray, to find the pattern definition for a dark gray pattern.

;PROCEDURE  PenPat(thePattern: Pattern)

MOVE.L GrafGlobals(A5),A0 ; get pointer to QD globals
PEA dkGray(A0) ; offset to predefined pattern
_PenPat

You might also find A5 useful for accessing the “screenbits” bit map for the whole screen,
which is also part of the QuickDraw globals.

Below the QuickDraw globals, the Segment Loader reserves enough room for all
the global variables defined in your program. The assembler and linker generate negative
offset values for these variables, relative to register AS. This is why you must always refer
to global variables in Macintosh assembly language programs by indexing off register AS,
as shown below.
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; if you define a global variable with the DS directive . . .

myGlobal DS.L 1 ; this 1s a variable declaration

; you must refer to it relative to A5, as in

MOVE.L myGlobal(A5),-(SP) ; get value of variable
The label that you use for the global is actually made equal to a negative offset value

that is used to index downward in memory from the location pointed to by AS. Because
both QuickDraw and your own program use AS in such crucial ways, it is very important
not to corrupt the value of AS in the course of your program. If you feel that AS may

have been altered, you can look at a low-memory location, CurrentAS ($904), to get the
correct setting for the boundary between the application parameters and application globals.

THE BIG PICTURE

Figure 1.6 (page 11) summarizes the entire memory map of the Macintosh, showing all
the major divisions that we have discussed in the preceding sections. None of the actual
addresses have been filled in on this diagram because the absolute addresses of the sec-
tions depend on the memory configuration and ROM version in the Macintosh with which
you are working.

POINTERS

A pointer is a four-byte value representing the address of a data object on the heap. The
object that is pointed to by a pointer is allocated on the heap by the program or the ROM
toolbox at run time and that may also be deallocated. A pointer object that is deallocated
gives up its space to the heap so that any other object which is subsequently allocated
may use that space. Figure 1.7 (page 12) shows the relationship between a pointer and
its associated memory block on the heap.

The key characteristic of pointer objects is that they are non-relocatable. When a
pointer object is allocated on the heap, its location is fixed until the object is deallocated.
This inflexibility makes it hard for the Memory Manager to compact memory efficiently,
as discussed in the next section on handles. Non-relocatable objects, especially when they
sit in the middle of the heap, tend to fragment the heap space available to your program
and the ROM routines that support it. Window records are a prime example of a non-
relocatable object that can be allocated on the heap by the ROM.

10
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FIGURE 1.6. Overall memory layout

There is a slight performance penalty to pay when you use handles in place of pointers,
i.e., a handle must be dereferenced twice instead of once for a pointer. In spite of this,
a slight degradation in performance is vastly preferable to a fragmented heap, especially
when your program will make heavy demands on the Memory Manager.

LL
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FIGURE 1.7. Non-relocatable object and pointer

The ROM toolbox uses non-relocatable objects to hold key data structures such as
grafPorts and window records, but these objects are usually allocated early in the pro-
gram so that they reside low on the heap and present less threat of fragmentation. Some
of these non-relocatable objects used by the ROM can be optionally allocated as applica-
tion globals, as in the case of window and dialog records. Whenever you have a choice
of allocating space for a non-relocatable data structure on the heap (usually by passing
a NIL storage parameter to a ROM routine) or passing a pointer to a global variable that
you define yourself, it is safest to allocate the storage yourself so that it sits in the applica-
tion globals area instead of on the heap.

12
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— HANDLES

A handle is a four-byte value that is the address of a master pointer, which contains the
address of the data object on the heap. A handle is a pointer to a pointer, as shown in
Figure 1.8. When a handle is allocated, the Memory Manager finds a block of memory
of the requested size, sets a master pointer to point to that block, and then makes the
handle a pointer to the master pointer. When a handle is deallocated, the memory block
is marked by the Memory Manager as unused and can be reassigned the next time a memory
allocation request is made.

high memory

R

application heap

relocatable
block

inter
@ " master pointe

application heap

low memory

FIGURE 1.8. Relocatable object and handle
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The object that is associated with the handle, via the master pointer, is relocatable.
The Memory Manager may move the object around on the heap whenever it needs to make
more room on the heap. This is sometimes necessary because even though objects are
generally allocated from the bottom of the heap upward, some of the objects allocated
lower down on the heap may be deallocated before the objects above them. When this
happens, holes are left in the available heap space, as shown by Figure 1.9. As objects
are allocated and deallocated, the available space tends to become broken up into a hodge-
podge of used and unused blocks.

Periodically, the Memory Manager needs to consolidate all the unused blocks in order
to find a block big enough to fit an allocation request. This process is called heap com-
paction. As it compacts the heap, the Memory Manager will move relocatable objects closer
to the start of the heap and consolidate unused blocks at the upper end of the heap. The
Memory Manager may also deallocate handles that are marked as purgeable. The key element

| high "memofy

i

7

non-relocatable block

, 0000
,////////A relocatable

unused space block

00000

master pointer

application heap

low memory

FIGURE 1.9. Holes in the heap usage
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of this compaction process is that the Memory Manager updates the master pointer
indicating any relocatable block that it moves. This means that the master pointer always
points to the correct address of the object, even after it has been moved.

Memory compaction can happen at almost any time during a Macintosh program.
Appendix C contains a list of ROM routines whose action can potentially trigger a heap
compaction. Your program should always assume that calling one of these routines will
result in some objects on the heap being moved. This actually presents little problem as
long as you continue to refer to the object by its handle, since the handle points to the
master pointer and the master pointer is always updated to point to the correct location
of the object.

The master pointer is a non-relocatable object on the heap. Its location never changes
during the course of a program. Master pointers are allocated in non-relocatable blocks
containing 64 master pointers. The Memory Manager automatically allocates one master
pointer block and locates it as the first object on the heap. When all 64 master pointers
in the block have been used up, then the Memory Manager will allocate another master
pointer block and place it as low on the heap as possible.

It is possible to make a relocatable object non-relocatable by using the Memory
Manager call HLock. Once locked, the object cannot be moved by the Memory Manager.
It is important to lock a handle down if you plan to dereference the handle and use the
master pointer value in calls to ROM routines that can trigger heap compaction. For
example, if you dereference the handle to get the master pointer value at entry into a routine
and the heap is compacted during the routine, the memory object may be moved and
the pointer that you got from the master pointer at routine entry will no longer be valid.
When in doubt, lock handles down before dereferencing them. But be sure to call
HUnLock as soon as you are finished with the handle so that the Memory Manager can
have maximum flexibility to get the most memory out of the heap.

Handle objects can also be marked as purgeable or non-purgeable. The default is
non-purgeable. If, however, a block is marked as purgeable, the Memory Manager may
deallocate it when compacting the heap in order to find enough space for a new allocation
request. It is often wise to mark your program’s resources as purgeable so that they will
not clutter up the heap when not in use. A purged resource object will be loaded in from
the resource file the next time it is requested by your program, so the only penalty is in
performance, but the added flexibility given to the Memory Manager may make your pro-
gram more trustworthy in various tight memory situations. (One significant exception
to this rule is MENU resources. Never define these resources as purgeable.) When deal-
ing with heap management, you must always balance speed of execution against flexi-
bility and safety. '
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A CLOSER LOOK AT THE HEAP

Let’s take a detailed look at the application heap during the execution of a program and
try to identify most of the objects on the heap. In order to look at the heap, you need
a debugger of some sort that will allow you to halt the current application program and
look at the contents of memory. We will use TMON from TMQ Software in this discussion
because it is an excellent debugger that identifies many heap objects for you. You can
also use MacsBug, which is supplied with the MDS package, to do the same sort of snoop-
ing, but MacsBug lacks the power and convenience of TMON. I highly recommend TMON
to you if you are serious about Macintosh programming and want an excellent tool for
exploring the inner workings of the machine.

Getting Ready to Look at the Heap

The first thing to do when you want to look at the heap is to install a debugger. If you
are using TMON, then you need to double-click the TMON icon in the Finder. If you
are using MacsBug, it is enough simply to have the MacsBug file on your startup disk;
the system will automatically load the debugger at system boot-up as long as the debugger
is named MacsBug. Next, run the program that you want to debug. From TMON you
can use the Launch feature; with MacsBug you will start the program from the Finder
normally. For our discussion here we will run the MultiScroll program developed in
Chapters 4-7 of The Complete Book of Macintosh Assembly Language Programming, Volume I.

Once your program is up and running, put it through its paces to fill the heap with
a normal assortment of objects. For our discussions, MultiScroll will have one window
open with some text in it, as shown in Figure 1.10.

Next, make sure that the heap is in a stable state, that is, not in the midst of a com-
paction process. The best way to do this is to interrupt the program by pressing the inter-
rupt button on the left side of the Macintosh (the interrupt is the most rearward of the
two buttons that comprise the programmer’s switch). Pressing the interrupt button will
stop the program and put you into the debugger. Now set up a trap so that the debugger
will be called the next time your program calls GetNextEvent. You can be reasonably
sure that the heap will be stable when your program is in its main event loop. You set
up the trap in TMON by using the “trap intercept” feature of the TMON user area, giving
_GetNextEvent as the input parameter on the trap intercept line. Once the trap is set,
use the exit function to return to the main program. In MacsBug you can set the trap
by using the AB GetNextEvent command followed by a G command to return control
to the program. Soon after you return to your program, the debugger should be invoked
by the main event loop calling GetNextEvent. At this point you can be assured that the
heap is in a stable state and begin your examination.
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® File Edit
[J==————= Untitled
Here is some sample text in a window

Here is some sample text in a window

R

FIGURE 1.10. MultiScroll screen at time of heap dump

Identifying Heap Objects

Figure 1.11 shows the TMON heap dump for the MultiScroll program. Since this test
was done on a 512K Macintosh, the heap starts at address $CB00. Going across from left
to right, the columns represent the following information:

Address of Object Length Size Correction Object Type Flags Identity

If you are using the heap dump (HD) feature of MacsBug, you will get a similar
display, although not as many objects will be identified for you. The ability to identify
heap objects intelligently is one of TMON’s best features; it will save you hours and hours
of time if you do a lot of heap debugging. However, if you are using MacsBug, the dis-
cussions that follow will give you methods for identifying unidentified heap objects.

17



THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOLUME II

7
Application heap is at $00CB00-$S06B9E2. OSAE7E bytes free.
*S00CB3C 000100 0 Nonrel

$00CC44 000000 4 Handle at $00CC20 (1lpr) Scrap

$00CC50 O00003E O Handle at $00CC1C (lpr) Resource map $0020
*$00CC96 O000EC6 0 Handle at $00CC18 (LPR) File $0020 'CODE' ID=$0001
*$00DB64 000100 O Nonrel
*$S00DC6C 00006C O Nonrel WmgrPort

SOODCEO 000072 0 Handle at $00DC04 (lpr)

$OODDS5A 00000A 0 Handle at $O00DBF8 (lpr) (Window @$06DA54) UpdateRgn
$00DD6C 00000A 8 Handle at $00DBF4 (lpr) (Window @$06DAS54) ContRgn
$00DD86 00004B 1 Handle at $00DBCC (1lpr)

$00DDDA 000024 0 Handle at $00DC4C (lpr) TEScrap

SO0DEO6 0002AC 0 Handle at $00DC40 (1pR) File $0002 'MDEF' ID=$0000
SOOEOBA 00000A O Handle at $00DC54 (lpr) SaveVisRgn

$O00EOCC 00004C 0 Handle at $00DC58 (lpr) GrayRgn

$00E120 000047 1 Handle at $00DC14 (1lpR) File $003E 'MENU' ID=$0002
$O00E170 000048 0 Handle at $00DC10 (1lpR) File $003E 'MENU' ID=$0003
$SO00E1CO 000D32 0 Handle at $00CC34 (1PR) File $0002 'PACK' ID=$0003
SOOEEFA 000017 1 Handle at $00DCOC (1PR) File $0002 'DLOG' ID=$F060
SO0EF1A 0000A8 O Handle at $00DCO8 (1PR) File $0002 'DITL' ID=$F060
SO0EFCA 00000A 0 Handle at $00DC60 (lpr) (WmgrPort) VisRgn
$SO0EFDC 00000A 0 Handle at $00DCS5C (lpr) (WmgrPort) ClipRgn
SO0OEFEE 000030 0 Handle at $00DBD8 (lpr) (Window @$06DAS54) Control
$00F026 00000A 0 Handle at $O00DBEO (1lpr)

SO00F038 000031 1 Handle at $00DBD4 (lpr) (Window @S$06DA54) Control
$00F072 00000A 0 Handle at $00DBDO (lpr)

$00F084 O0O0OODF 1 Handle at $00DC48 (lpr) Resource map $003E

$00F16C 000138 0 Handle at SOODBB4 (1PR) File $0002 'FKEY' ID=$0003
$SO0F2AC 00029A 0 Handle at $00DBDC (1PR) File $0002 'CDEF' ID=$0000
$SO0F54E 0000B8 0 Handle at $00DC44 (lpR) File $003E 'MENU' ID=$0001
SO0F60E 000008 0 Handle at $00DBBO (1lpR) File $0002 'PAT ' ID=$0011
SO0F61E 0004F4 0 Handle at $SOODBB8 (1PR) File $0002 'CDEF' ID=$0001
$O0FB1A 0004BO 0 Handle at $O00DBEC (lpR) File $0002 'WDEF' ID=$0000
$00FFD2 00000A 0 Handle at $00DCO0 (lpr) (Window @$06DAS54) VisRgn
$SO0OFFE4 000009 1 Handle at $00DBE8 (lpr) (Window @$06DA54) WTitle
SO0OFFF6 OOOAAE O Handle at $OODBBC (1PR) File $0002 'FONT' ID=$018C
$010AAC 00000A O Handle at $O00DBFO (lpr) (Window @$06DA54) ClipRgn
$010ABE 00002C 0 Handle at $00DBFO (lpr) (Window @$06DA54) StrucRgn
$010AF2 000066 O Handle at $00DC50 (lpr) MenulList

$010B60 O0S5AE76 0 Free

\

FIGURE 1.11. Heap dump for MultiScroll

THE MASTER POINTER BLOCK

You can see that the first object on the heap begins at address $CB3C. This object is a
master pointer block, which is easily identified by its length, $100, and the fact that it
is non-relocatable. If you are using MacsBug, the length of the master pointer block will
be listed as $108. This difference in length is because every memory block on the heap
has attached to it an eight-byte header that contains information used by the Memory
Manager. MacsBug includes this extra eight bytes in its length designations for all heap
objects, TMON does not. This first master pointer block is the one automatically allocated
by the Memory Manager when it initialized the heap.
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THE CODE 0001 RESOURCE

The next object is the desk scrap, which is empty as shown by a 0 length field. Then
comes the resource map for the application file and then the CODE resource, ID = 0001.
This CODE resource is the program code for MultiScroll. If you want to look at the code
for the program which you are debugging, you can do a disassembly starting at the loca-
tion of the CODE resource. The file number listed in the identification field refers to
the current application file, which is always number $0020. Remember that the code for
a program is just another resource in the application file. The system resource file is always
number $0002, and any other resource files that are opened are assigned other numbers.
On this heap, you can see a third resource file, number $003E. A look back at the source
code for MultiScroll shows that the program uses a separate resource file, MultiScroll. Rsrc,
to hold all the noncode resources.

You can see that the CODEO0001 resource is locked (by the asterisk in the far left
column) and that it sits very low on the heap. The CODE resource block remains locked
as long as the code within it is executing. If, however, your program has more than one
segment, then additional CODE resources may be loaded into memory, possibly result-
ing in the relocation of the original CODE objects. This topic is discussed further in the
section of this chapter on program segmentation.

After the code segment comes another master pointer block, again identified by its
size and non-relocatable status. A look back at the initialization code for MultiScroll shows
that the first action of the program is to call the ROM routine MoreMasters, which allocates
another master pointer block. It is wise to do this at least once early on in your program
so that the additional master pointer block(s) will be located low on the heap. In that loca-
tion they won’t lead to heap fragmentation.

Using the Find Command to Identify Heap Objects

The next object on the heap is the WMgrPort, a grafPort set up by the Window Manager
when we call InitWindows. This grafPort defines the graphic environment for the entire
Macintosh screen. TMON identifies this object for us, but in MacsBug you would be able
to find the pointer to this object (pointer = $DC6C) in the low-memory location WMgrPort
($9DE). Because the low-memory global assigned to hold a pointer to the Window Manager
grafPort contains a pointer to this particular object on the heap, we can assume that the
object is the Window Manager port. A confirming piece of evidence is the length of the
object, $6C, which matches the size of a grafPort given in QuickEqu.Txt. You will find
that printouts of all the EQU files included with MDS are almost essential when doing
investigative heap work.

The FIND command is especially useful for this kind of investigation. In Macs-
Bug, you would ask to F 0 B00 0600DC6C, which would search for the four-byte value
0000DC6C, starting at address 0 and searching the next B0O bytes. In other words, search
from the beginning of memory up to the beginning of the system heap for that pointer
value. If the FIND command does find the pointer in the system global area, then you
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need to look up the function of the global where it was found to identify the object. This
strategy is very useful for identifying heap objects. If you don’t find the pointer in the
low-memory globals, then you can continue searching in higher memory ranges, espe-
cially in the application heap itself and in the application global area above the applica-
tion heap. What you are looking for is some location in memory that holds a reference
to the unidentified object. Then you can figure out the context of that reference.

THE TE RECORD

Just after the WMgrPort is a $72-byte handle object that TMON does not identify for
us. Now we can do some real investigating. First, notice that there are several identified
objects on the heap that are linked to a window record at location $61DA54, which is high
in memory just below the screen buffer- the application globals area. A glance back at
the source code for MultiScroll shows that the window records for the program are indeed
allocated as global variables. Let’s assume that the unidentified object might be associated
with the window record. Use the FIND command to search for the handle to this object
($DCO04) in the same area of memory as the window record.

The FIND command does find an occurrence of the handle at location $6 DAEC.
Now take the beginning of the window record, $6DA54, and subtract it from $6DAEC
to see if the handle occurs within the window record. $6 DAEC — $6DA54 = $98, which
is the offset value for the wRefCon field of a window record. A look back at the source
code for MultiScroll reminds us that MultiScroll used the wRefCon field to store the handle
to the TERecord for the window. So now we know that the unidentified object at $DCEO0
(whose handle is at $DC04) is the Text Edit record for the single window shown in
Figure 1.10. Figure 1.12 shows the relationship of the handle reference to the window
record in memory.

Let’s do a couple of other examples to further expound on the techniques of heap-
object identification.

THE TE TEXT

The next unidentified object on the heap occurs at $DD86, handle at $DBCC. Searching
the low-memory globals and the application globals doesn’t turn up any references to this
handle, so we search the application heap itself. Sure enough, $0000DBCC shows up at
location $DDI1E. Looking at the heap objects, we find that $DDIE is inside the TERecord
that we just identified in the previous section. Subtracting the beginning of TERecord,
$DCEQ, from $DDIE results in $3E. This value corresponds to the offset to the télextH
field of a TERecord, as defined in ToolEqu.Txt. If we do a dump of the data in this object
that we now suspect is the TERecord’s text, we see that it does actually contain the text
from the window. Compare the dump window shown in Figure 1.13 to the text in Figure
1.10. The three OD values shown in the third line of Figure 1.13 represent the ASCII
value of three carriage returns separating the lines of text in Figure 1.10. In MacsBug
you can look at data in memory by using the IL (immediate list) command.
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$06DAEC (handle reference found here)

$06DAEC-$06DA54 = $98 (offset to handle)

$98 = offset to wRefCon

IEE, T8 $06DA54 (beginning of window record)

FIGURE 1.12. Computing the offset of a handle reference

4 )
DUMP FROM 00DD86
00DD86: 48 65 72 65 20 69 73 20 73 6F 6D 65 20 73 61 6D Here is some sam
00DD96 70 6C 65 20 74 65 78 74 20 69 6E 20 61 20 77 69 ple text in a wi
00DDA6 6E 64 6F 77 OD OD OD 48 65 72 65 20 69 73 20 73 ndow...Here is s
00DDB6 6F 6D 65 20 73 61 6D 70 6C 65 20 74 65 78 74 20 ome sample text
00DDC6 69 6E 20 61 20 77 69 6E 64 6F 77 46 80 00 00 2C in a windowF...,

U J

FIGURE 1.13. Dump of teTextH"*

Two More Unidentified Objects

Moving down the heap listing in Figure 1.11, the next unidentified object occurs at $F026,
handle at $DBEOQ. Once again, we look for the handle and find it at location $F00A. This
location lies within the control record that comes just before our unidentified object on
the heap. Using the subtraction method just as we did in the previous examples, we get
an offset value of $1C from the beginning of the control record to our handle reference.
This corresponds to the contrlData field of the control record, as defined in ToolEqu.Txkt.
This handle points to a block of data that is used by the Control Manager in conjunction

with one of the scroll bars in MultiScroll.
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The last unidentified object on this heap is at $F072. Because it is the same length
as the control data that we just found, and because it occurs right next to another control
record, we can safely assume that it is probably the control data for the control record
of the other scroll bar in the MultiScroll window.

Generalizing from the previous examples, you must first find an occurrence of the
handle (or pointer) somewhere in memory. Once you find a reference to the handle, estab-
lish the context of the reference. Is it in a low-memory global whose function can be
determined? Is it within an identified data structure where you can figure the offset value
and thus the particular field of the structure? Once you figure out how to use the FIND
command, how to look up the function of low-memory globals, and how to figure offsets
into data structures, you are well on your way to becoming a heap expert. The whole process
is actually fun and challenging, almost like learning to program all over again.

TMON identifies many objects on the heap that MacsBug does not, especially those
associated with window records and low-memory globals. MacsBug will identify resources
that are on the heap, much as TMON does, by listing their source, type, and ID number.
TMON is a big help if you do a lot of debugging and heap browsing, but MacsBug is
a fully functional debugger that can also help you. Using the techniques outlined above,
you can identify many of the objects on the heap that MacsBug doesn’t automatically
identify.

Other Identified Objects

Looking back at Figure 1.11, you can see objects on the heap that are identified by TMON.
Many of these objects are resources, either from the application (file $0020), from the
application’s separate resource file (file $003E), or from the system resource file (file $0002).
We already mentioned the CODE resource that constitutes the program itself. The other
interesting resources are listed below with a short explanation of their respective functions.

MDEF 0000 This is the standard definition procedure from the system file that draws
menus. It is actually a section of code that is loaded as a resource. By writing your own
MDEEF resource code, you can have custom menus.

MENU 0001, 0002, 0003 These are the resource definitions from the application’s separate
resource file. They define the elements of the three menus used by MultiScroll.

PACK 0003 This is a code resource that the Package Manager calls to do the Standard
File package dialogs. This resource is loaded into memory if your application calls
SFGetFile or SFPutFile.

DLOG FO60, DITL F060 These are the dialog and dialog item template for the Standard
File SFGetFile dialog.
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FKEY 0003 In order to get the picture in Figure 1.10, I used the command-shift-3 com-
bination to save the current screen to disk as a MacPaint document. The FKEY resource
is the code that performs that operation. You can enable your own FKEY resource by
defining a subroutine that takes no parameters and then installing it in the system file
as FKEY resource with an ID number corresponding to the number key that will trigger
it. An FKEY 0006 resource will be activated by a command-shift-6 key combination.

CDEF 0000 This is the standard button control definition procedure from the system file.
CDEF 0001 This is the standard scroll-bar control definition procedure from the system file.
PAT 0011 This is a pattern that is loaded in from the system file.

WDEF 0000 This is the standard document window-definition resource from the system
file. The code in this resource draws and maintains the title bar, go-away box, and general
appearance of a window. Other WDEF resources govern the actions of other types of

windows.

FONT 018C This is a font loaded in from the system file.

DEBUGGING STRATEGY

One of the best ways to test a program in progress is to place the following call in the
main event loop:

; FUNCTION NewHandle(logicalsize:Size):Handle
MOVE.L #3$7FFFFFFF,DO ; ask for an impossible block
_NewHandle

Calling NewHandle with an impossibly large number will cause all unlocked objects
to be compacted and all purgeable objects to be deallocated from the heap. Taking this
action every time your main event loop cycles will quickly catch any errors caused by the
use of unlocked handles. Because this action will also slow your program down immensely,
it is advised only during the development stage.

Another debugging strategy is to place a DC.W $FF00 statement in your code just
before a troublesome section that you want to debug. $FF00 will trigger an exception that
will in turn invoke the debugger. Then you can step through the problem code. You will
also find it useful to load crucial variables into registers. While in a debugger, it is much
easier to look at values in registers than to figure out their location in memory.
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If you don’t want to use a debugger, you can add to your application extra debug-
ging code that throws up dialogs containing information to help you figure out the state
of program variables and registers at key points in your program. Some programmers
routinely write these routines into their programs and use conditional assembly to strip
them out once the application is debugged. You can also use the option key to trigger
the debugging dialog. For example, say you were trying to debug a section of code that
dealt with scrolling. Normally, a click in the scroll bar would elicit the scrolling routines.
Each time the scroll bar click is processed, your debugging code can check the status of
the option key in the event record and put up the debugging dialog if it is pressed.

Debugging is one of the most creative and challenging aspects of Macintosh program-
ming. Sometimes you will beat your head against a problem for hours, or days, without
finding a solution. Other times the key to a solution will come to you just as you are fall-

" ing asleep. The most common mistakes involve corrupting the stack, either by using
parameters of incorrect size or improperly dealing with function results. The other most
prevalent mistake on the Macintosh is the careless use of dereferenced handles that haven’t
been locked.

PROGRAM SEGMENTATION

A previous section of this chapter mentioned that a program can be broken up into seg-
ments. Each segment is loaded into memory as needed, as a CODE resource. The seg-
mentation option is given to prograimmers because a single CODE segment cannot exceed
32K. If you are programming in assembly language, this restriction will probably not affect
you unless you are writing very long and complex programs. For example, the MultiScroll
program used in the previous section is a multiwindow text editor that supports scrolling
and disk file access, yet its code segment is less than 4K long.

Segmentation is also a useful option if you want to maximize free memory available
for data, since code in a segment that is used infrequently can be loaded, executed, and
then purged. The operating system takes care of loading and purging segments. As a
programmer, you can make a call to any routine in your program without worrying if it
is in the same segment or in a different segment. Whenever you make a call to a routine
that is in a segment not currently loaded, the Macintosh operating system automatically
loads in that segment and jumps to the required routine. Segments are loaded in on demand,
without any direct intervention of the program. This makes for a sort of virtual memory
storage for program code.

Despite the fact that segments are loaded in automatically on demand, as a program-
mer you must be very careful when writing a program that uses more than one segment.
If.ypu look back at the heap dump in Figure 1.11, you can see that the CODE 0001 resource
is marked as “locked” and “purgeable.” The lock attribute actually overrides the purge-
able attribute, so the memory block will not be purged as long as it is locked. As long
as the code within that segment is executing, the block remains locked and cannot be
moved or purged. If a call is made to a routine in another segment, however, the required
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segment is loaded onto the heap and locked. If the code in the new segment calls
UnLoadSeg for the CODE 0001 segment, it will be unlocked. If the new code then trig-
gers a heap compaction, it is possible that the original CODE 0001 resource will be moved,
or even purged from the heap.

Figure 1.14 shows graphically what happens when a new segment is loaded. A CODE
resource remains locked unless UnLoadSeg is called for that particular segment. Most
programs do not unload their main segment (CODE 0001), but it can be done. In order
to take advantage of segmentation, however, your program will generally want to call
UnLoadSeg for those code segments that are not executing. This allows these segments
to be moved or purged and also adds a layer of uncertainty to your run-time environment.

code segment 0004

locked
code segment 0003
locked
code segment 0003
unlocked
code segment 0002 code segment 0002
unlocked unlocked

Code executing in Segment 0004 is loaded
segment 0003 calls i in, possibly relocating
a routine in segment 0004 segment 0002 and 0003

FIGURE 1.14. Segmentation and heap compaction
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Actually, just because a code segment can become unlocked and purgeable is not
a cause for alarm, but it does mean that you must be very careful about using derefer-
enced handles during any sort of operation that might call in another segment and poten-
tially trigger a heap compaction. In a segmented program you must be much more careful
about locking handles down before using them and unlocking them when finished. In
general, segmentation tends to expose marginal memory practices that might go unno-
ticed in an unsegmented program.

Also, you must be sure never to use locations within your code (i.e., declaring vari-
ables with the DC directive and then altering those locations) as variables. Because you
might be relying on absolute addresses to access these locations, a move or purge of that
memory segment can be disastrous. If you need global variables, use the DS directive
to allocate them in the application globals area, where they will be insulated from the shifting
sands of the heap.

Chapter 7, on user items in dialogs, covers some more specific problems associated
with segmentation that occur when you install pointers to procedures as items in a dialog.
Heap compaction after a segment load can move the user item code segment and invali-
date the procedure pointers, causing the dialog to crash.

SUMMARY

I hope I have conveyed the extremely dynamic nature of Macintosh memory management.
Learning to deal with this constantly changing heap environment is the biggest hurdle
to programmers accustomed to other computers who then try to program on the Macintosh,
especially if they are coming from some other, simpler, microcomputer operating system.

Handles are the key element necessary to make effective use of the Macintosh heap.
Learning to lock a handle while you use it and then unlocking it when done will make
your program safe as well as allow the Memory Manager the flexibility that it needs. Mark-
ing resources as purgeable also helps to make memory space available for other require-
ments as the program executes.

In order to execute successfully, your program must assume that the organization
of its resource and data objects on the heap will change constantly. If you take the precau-
tions outlined in this chapter, your program should run safely in almost any environment.
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CHAPTER

2

The main reason that the Macintosh has not been “cloned” in the same way as the IBM
PC is that no one has been able to reproduce the functionality of the Macintosh ROM
without infringing on Apple’s copyright. The original Macs came with 64K of ROM. The
newer Mac Plus has 128K of ROM. GEM, which was developed by Digital Research, is
the closest approximation of the Macintosh ROM to date, but it is rather crude and takes
up almost 190K. No one has been able to duplicate all the functions and speed of the
Macintosh ROM. The Mac ROM sets a new standard because of its elegant interface defi-
nition and its efficient implementation.

This chapter discusses the mechanisms used by the Macintosh operating system to
connect user programs with the over 400 individual ROM routines. It also illustrates two
techinques for customizing the ROM routines either to extend the function of a particular
routine or to patch bugs in the original implementation of the ROM. Finally, some differ-
ences between the 64K ROM and the newer 128K ROM are discussed.

THE TOOLBOX AND THE OPERATING SYSTEM

The ROM routines are divided into two main functional groups: the toolbox and the oper-
ating system (OS). The toolbox contains all the routines that maintain the user interface,
including windows, menus, mouse movement, and event monitoring. QuickDraw is also
a part of the toolbox, forming the graphic foundation upon which all the other routines
build the illusion of the Mac interface. For the most part, toolbox routines expect to find
their parameters on the stack and return any function results on the stack.

The operating system part of the ROM is responsible for maintaining all the under-
lying system functions related to the disk drives, serial communications, other device
drivers, and memory management. OS routines generally expect to find their parameters
in registers and return results in registers.
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Within the broad toolbox and OS categories, the ROM routines are broken into
smaller functional groups such as the Window Manager and the Memory Manager. While
the dichotomy between the toolbox and the OS routines has its foundation in the actual
methods used by the system to pass parameters and function results, the collection of
routines into managers has little significance beyond the conceptual linking of related rou-
tines. Inside Macintosh is organized around these smaller groupings, so the concept is handy
for finding information in that volume, but there is a great deal of interdependency among
the various small groups in the ROM. For instance, most of the toolbox routines in the
Window Manager and the Menu Manager depend on QuickDraw to implement the visual
representation of the data structures that define windows and menus. A call to
GetNewWindow in the Window Manager will trigger calls to routines in the Resource
Manager, File Manager, Disk Driver, Memory Manager, and QuickDraw. A single ROM
call can set an enormous amount of processing in motion.

As a programmer, this kind of leverage is fantastic. Using the ROM allows you to
create programs that have the Macintosh look without having to reinvent the code involved
in maintaining that user interface. Imagine writing routines to manage multiple windows
starting at the level of turning bits on and off in the video memory.

On the other hand, the ROM contains pitfalls for you as a programmer because so
much computing takes place behind your back. Chapter 1 discussed the complexity of
memory management on the Macintosh. As mentioned in that chapter, learning to deal
with the uncertainties of Macintosh memory management is the biggest obstacle to over-
come in serious Macintosh programming projects. Unfortunately, memory management
problems often don’t show up until late in the development cycle when it is much harder
to correct the code that causes them. Using the guidelines set out in Chapter 1 can help
expose these problems early and lead to a more successful programming project.

THE TRAP MECHANISM

The 68000 processor fetches instructions from memory one 16-bit word at a time. Pro-
gram instructions are stored in memory until they are loaded into the processor for evalu-
ation. Microcode within the processor interprets the instruction words and initiates the
proper processor action. All 68000 instructions can be completely encoded in a single word,
but many of them signal the processor to fetch one or more additional words from the
memory locations immediately following the instruction to use as operands for the in-
struction. Other instruction words direct the processor to look for the operands in the
registers.

In the course of executing instructions, the processor may encounter situations where
it is asked to perform an illegal action. Examples of illegal instructions include trying to
divide by zero, to access a word or long-word value at a noneven address, or to write or
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read from a memory address that does not actually exist in the machine. If the processor
encounters an instruction word not corresponding to any legal instruction, an exception
error is generated. Many different types of errors can occur while a program is running.
The first 1024 bytes of any 68000 system contains a table of long-word pointers that tell
the system where to go in each particular error situation. These error situations are called
exceptions and the pointers in the table are called exception vectors.

For example, the long word at address $14 (20 decimal) is a pointer to the routine
that is called when a divide-by-zero instruction is encountered. Every 68000 system must
reserve this low-memory memory location to hold a pointer to an exception-handling rou-
tine, since the processor is hard-wired to look in this spot in a divide-by-zero situation.
Because the processor goes to this location looking for a poiriter to a subroutine, the com-
puter in question can be programmed to respond to this problem in any number of ways.
On the Macintosh, most of the exception vectors point to the routine that puts up the
dreaded bomb dialog, much like the one shown in Figure 2.1. When you install a debug-
ger in your system, it places pointers to itself in most of the exception vectors so that sys-
tem errors will invoke the debugger rather than the normal error-handling routines.

Motorola has reserved certain bit patterns in instruction words for special purposes.
In particular, any instruction word that contains 1010 in the highest four bits causes a
Line 1010 exception. Since the binary number 1010 can be written as the hexadecimal
digit A, this exception is also called an A-trap. An instruction that contains 1010 in the
high nibble is not an illegal instruction. Rather it is a special case that the designers of
the chip put in to allow system designers to implement instructions that are not included
in the 68000 instruction set.

The Macintosh designers used the 1010 instruction as the entry point to the ROM.
Every procedure and function within the ROM has a unique word value assigned to it.
The trap macros that you use in the assembler, such as _GetNextEvent, are translated
by the assembler into the word that corresponds to that ROM routine. These values are
called ROM trap words. All the ROM traps begin with 1010. When they are encountered
in your programs, they cause the processor to jump to the routine pointed to by the Line
1010 exception vector in low memory. The Line 1010 exception vector points to a routine
in ROM, called DSPT, which looks at the other bits of the A-trap word to determine which
particular ROM routine is being called.

. ¢ 7N
6‘ Sorry, a system error occurred.

(Résta@ @esum;}) D=1

FIGURE 2.1. The bomb dialeg
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The format of the A-trap word is shown in Figure 2.2. The highest four bits must
always be equal to 1010. Bit number 11 is set for toolbox routines and clear for operating
system routines. The lowest eight or nine bits of the trap word make up the trap number.
On toolbox traps the lowest nine bits are used to identify the requested ROM routine,
allowing recognition of 512 possible toolbox routines. Operating system calls use only the
lowest eight bits, limiting the system to 256 unique OS routines. In the old 64K ROM,
trap numbers for toolbox and operating system routines did not overlap. In the new ROM,
bit 11 is used to distinguish between toolbox and OS routines that have the same trap
number, like GetEOF ($A011) and TESelView ($A811).

The trap dispatch routine, which is pointed to by the line 1010 vector, is responsible
for examining the appropriate bits of the A-trap word and initiating the proper routine
in ROM. The following section will show how the trap dispatcher uses the trap dispatch
table to find the location of individual ROM routines.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O bit number

1 011 01 bit value

|
L

trap number, bits 0-8

512 possible traps

Toolbox trap word: bit 11 = 1

1514 13 12 11 10 9 8 7 6 5 4 3 2 1 O bit number

1 0 1 0 O bit value

trap number, bits 0-7
256 possible traps

bits 9 and 10 used
for flags (asynch,system,
etc.)

OS trap word: bit 11 =0

FIGURE 2.2. Trap word format
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TRAP DISPATCH TABLE

64K ROM

In order to execute the code for a particular ROM routine, the system must know the
address of that routine. The trap dispatch is a section of RAM that contains the address
for each of the ROM routines. This table is initialized and filled in each time the Macin-
tosh is started up. The ROM itself contains this table in compressed form, so the startup
routine goes to that section of ROM and expands the dispatch table into its proper loca-
tion in RAM memory. The trap dispatch routine then looks at this RAM table to find
the address of the ROM routine and jumps to that location to begin execution of the routine.

There are two advantages to this kind of indirect invocation scheme. First, your pro-
gram doesn’t need to know the absolute address of a ROM routine in order to use it. This
insures that you can write code that will be compatible with future versions of the ROM
even if the locations of individual routines change from one version to another. Second,
keeping the trap dispatch table in RAM allows programmers, either at the system level
or within an application program, to change the entries within the table to point to their
own routines. The RAM table is initialized at startup, but programmers are free to modify
it thereafter. These substituted routines can be used to correct bugs in the ROM code
or to offer extended functions to existing routines.

The format of the trap dispatch table in the original 64K ROM is different from
the format in the newer 128 K ROM. Each version of ROM contains a trap dispatch rou-
tine that is appropriate for the table format of that ROM. The two different formats are
discussed separately below.

The trap dispatch table for the 64K ROM is contained in 1024 bytes of low memory be-
tween locations $400 and $7FF (1024 to 2047 decimal). Each entry in the table is two
bytes long, allowing 512 possible entries. Since the table entries are only two bytes long,
they must be expanded by the trap dispatch routine to give the full four-byte ROM rou-
tine address.

The highest bit of the trap table entry tells whether the routine is in ROM (bit is
clear) or in RAM (bit is set). This distinction allows programmers to patch table entries
to point to substituted routines that reside in RAM memory.

The other 15 bits of the trap table entry are used as an offset to the routine address.
The lower 15 bits are multiplied by 2 to give an effective offset range of 64K. This mul-
tiplication makes the lowest bit equal to 0, but that is OK because ROM routines never
start at an odd address. The resulting offset value is added to the beginning of ROM ad-
dress space ($400000) for ROM-based routines. RAM-based routine addresses are found
by adding the 16-bit (64K) offset value to the beginning address of the system heap. The
code for patched routines is generally put on the system heap so as to lie within the 64K
offset limit.
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128K ROM

Because the technique used in the 64K ROM dispatch table only allowed for offset values
up to 64K, a different method is used for the 128K ROM dispatch table. Actually, for
the 128K ROM there are two dispatch tables. The OS dispatch table sits between $400
and $7FF (1024 to 2047 decimal) and the toolbox dispatch table sits between $C00 and
$13FF (3072 to 5119 decimal). Each entry in these tables is a full four-byte address that
points to the entry point of a ROM routine. Entries that are patched contain a pointer
to a RAM location, and unmodified entries contain pointers to routines in the ROM ad-
dress space. Patched routines for the 128 K ROMs may be placed anywhere in RAM memory
because there is no offset limit to worry about.

PATCHING ROM

As mentioned above, because the addresses of the ROM routines are kept in a table in
low memory, you can change, or patch, the individual routines. The easiest thing to do
is to attach a custom front-end routine to the existing ROM routine, thereby adding a
feature without having to rewrite the entire routine. To put a front end on a routine, you
get the original address of the ROM routine by calling GetTrapAddress. The original
address of the routine should be saved away in an accessible location such as a global vari-
able. Then you install a pointer to your front-end routine by calling SetTrapAddress. The
front-end routine does some preprocessing and jumps to the original address of the ROM
routine to finish off the ROM call. The front-end routine must be careful to preserve all
registers and the stack structure so that the original part of the routine will function just
as if it were called directly.

Notice that this technique works even if the ROM routine has already been patched
before we install our patch. Many of the ROM routines are patched at system startup by
INIT resources in the Apple system file to correct bugs in the ROM, and other programs,
such as Switcher, change many of the ROM routines to get special effects out of the Macin-
tosh. Our patch, once installed, can call another patch, thinking that it is the original
routine. That patch may in turn call the original routine or another patch installed previ-
ously. All this is rather transparent to us as long as we are only trying to install a front-end
procedure. If you want to completely bypass a ROM routine, then you must be more sen-
sitive to other patches that have been installed before your own.
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TRAP WORDS AND TRAP NUMBERS

Both GetTrapAddress and SetTrapAddress expect to find a trap number in register D0
as a parameter. The trap number for a particular ROM routine may be derived by looking
up the trap word in the back of Inside Macintosh. The rightmost two digits of the trap
word are the trap number unless the third digit of the trap word is 9, in which case the
trap word has a 1 appended to it as the third hex digit. For example, the trap word for
GetVollnfo is $A007. Its trap number is $07. The trap word MenuSelect, which is used
in the ROM patch examples below, is $A93D. Its trap number is $13D.

This scheme is complicated by the fact that trap numbers are not unique in the 128K
ROM. In the new ROM, GetTrapAddress and SetTrapAddress look at bits 9 and 10
of the trap number to determine if it refers to a toolbox routine or an OS routine. If bit
9 is not set, then the old trap numbers from the 64K ROM are used. Thus using $11
as a trap number would refer to GetEOF since $11 only sets bits in the 0-7 range and
the trap word for GetEOF in the 64K ROM is $A011. If you wanted to refer specifically
to the toolbox routine TESelView in the 128 K ROM, which has the trap word $A811,
you would set bits 9 and 10 of the trap number. This would make the trap number for
TESelView equal to $611. To ask specifically for the OS routine with the trap number
$11, you would use a trap number $211, which sets bit 9 and clears bit 10. You don’t
need to worry about this complication unless you are trying to patch routines that are
unique to the 128K ROM.

TWO STRATEGIES FOR PATCHING ROM

There are two ways in which you can patch the ROM. The first is to use an INIT resource
to patch the ROM when the system starts up. INIT resources with resource IDs between
0 and 31 in the system file are automatically loaded in and executed at system boot time.
An INIT resource consists of code that installs a ROM patch on the system heap. A patch
installed this way will remain valid until the system is turned off or reset; it is a system-
level ROM patch. The other way to patch ROM is to install a patch as part of the startup
procedure of your application. This method results in a ROM patch that lives only as
long as the application; the application is responsible for restoring the original ROM ad-
dresses when it terminates. Both kinds of ROM patches are discussed in detail below. The
complete source code for each patch is listed in Appendix A as initPatch. ASM and
AppPatch.ASM. These files are also included on the source code disk available from the
author.
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System-Based ROM Patch

Whenever the system starts up, it looks in the system file for resources with the type INIT.
These resources are code segments that are loaded into memory and executed as part of
the startup procedure. INIT resources are a good way to patch one or more ROM routines
before any other programs have a chance to run. Apple uses INIT resources to install ROM
patches on the system heap that fix bugs found in the ROM. Rather than manufacturing
modified ROMs, Apple fixes the bugs by bypassing the original code with a ROM patch.

The framework for an INIT routine that installs a ROM patch is outlined below.
The INIT resource is made up of two distinct sections of code. The first section actually
does the work of installing the ROM patch. The second section is the code for the patch
itself. The installation code modifies the patch code at run time to connect the patch to
the original ROM routine address, and then moves a copy of the modified patch code
into a non-relocatable block on the system heap. Finally, the installation code installs a
pointer to the patch code into the trap dispatch table so that the patch code will be called
instead of the original ROM routine.

We want our ROM patch to function only as a front-end extension to the original
ROM routine. To do this, we must be able to connect the patch code to the original rou-
tine address so that the original routine can be used to finish off the ROM call. We reserve
six bytes at the end of the actual patch code to hold a JMP instruction with a long-word
absolute-address argument. The installation part of INIT routine uses GetTrapAddress
to get the original address of the ROM routine that is to be patched. Next, that address
is installed in the patch code so that it will be the destination argument of a JMP instruc-
tion that is the last instruction of the patch. The instruction at the label “trapdoor” is
originally assembled as DC.W 0,0,0 in order to reserve six bytes: two bytes for the in-
struction word and four bytes for the long-word destination address. At run time we move
the instruction code for JMP ABS.L ($4EF9) into the first two bytes at trapdoor. Then
we move the original ROM routine address into the long-word slot following the JMP in-
struction so that it will serve as the destination address of the jump.

; File initPatch.ASM

; The code from this file must be assembled and linked
; and then packaged as an INIT resource so that it

; will install a ROM patch at system startup.

; This code patches MenuSelect so that a short beep

; is heard before the menu drops down.

; April 1986, Dan Weston

INCLUDE

trapNum

MacTraps.D

EQU $13D ; trap number that we will patch
; MENUSELECT $A93D => $13D
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Entry

;5 install the JMP ABS.L instruction at the trap door

;5 £ill in the destination address later

LEA trapdoor, A0 ; put instruction code here
MOVE.W #$4EF9, (A0) ; 68000 instruction code

; get the original trap address
; FUNCTION GetTrapAddress(trapNum:INTEGER): LONGINT
; trapNum => DO, result => AO

MOVE.W #trapNum,DO ; this is the trap we want
_GetTrapAddress

; stuff it in the JMP instruction

LEA trapdoor+2,Al ; this is part of JMP instruction
MOVE.L A0, (A1) ; install destination address

This combination of instructions skips over the two bytes occupied by the instruc-
tion word for JMP and deposits the destination argument in the right spot. Once the patch
code has been modified, we allocate a non-relocatable block on the system heap to hold
the patch code. Once the block is allocated and its pointer saved on the stack, we use
BlockMove to move the patch code from the INIT resource to the new block on the sys-
tem heap.

; allocate a block on the system heap
; FUNCTION NewPtr(logicalSize: LONGINT): Ptr
; logicalSize => DO, Ptr => AO

MOVE.L #patchend-patchstart,DO ; size of patch code
_NewPtr,SYS

MOVE.L A0,-(SP) ; save ptr on stack

; move the patch code to the new block

; PROCEDURE BlockMove(source,dest:Ptr;size: LONGINT)

; source => AO, dest => Al, size => DO

MOVE.L AO,A1 ; set as destination of move
LEA patchstart,AD ; source of move

MOVE.L #patchend-patchstart,DO ; size of patch code
_BlockMove

Finally, the installation code uses the pointer to the new block containing the patch
as an argument to SetTrapAddress. All subsequent calls to the ROM routine that we have
patched will be directed first to our patch. The actual patch code does nothing more than
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make a short beep on the speaker every time the underlying program calls MenuSelect.
The last instruction of the patch is a JMP instruction that directs the program to the original
ROM routine code, which finishes the job and returns to the calling program. This rela-
tionship is shown in Figure 2.3.

main program makes a trap dispatch table
call to the patched >
ROM routine

<

patch routine in
non-relocatable block
on system heap

JMP 000X

A original ROM code

return to main program

FIGURE 2.3. System-based ROM patch
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; install a ptr to patch in dispatch table

; PROCEDURE SetTrapAddress(trapAdd: LONGINT;trapNum: INTEGER)
; trapAdd => A0, trapNum => DO

MOVE.W #trapNum,DO ; number of trap to un-patch
MOVE.L (SP)+,A0 ; get address of new block
_SetTrapAddress

; all done now
RTS

The actual patch code is given here as a frame on which to build your own patches.
The space occupied by the call to SysBeep can be arbitrarily complicated. We use a mini-
mum example here just to illustrate the principle. It is extremely important that the con-
tents of all registers and the stack be preserved by this section of code. The original ROM
routine that is called as the final step of the patch code must receive its parameters and
register environment just as if the patch code never intervened. Of course, there are times
when you will want to modify the parameters or system environment somewhat as part
of your patch code preprocessing, but be sure that any alterations are intentional rather
than random.

; here is the patch code which will be installed on the system heap

patchstart
; save the registers

MOVEM.L A0-A1/D0-D2,-(SP)

; do the pre processing for the ROM routine
MOVE.W #1,-(SP)

_SysBeep

; restore the registers

MOVEM.L (SP)+,A0-A1/D0-D2
trapdoor

DC.W 0,0,0 ; change to JMP ABS.L
patchend

Once you have assembled the code listed above, you must link it into a relocatable
object with the linker. Coerce the output file type so that it will not assume the default
diamond-shaped application icon.
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; file initPateh.LINK
/OUTPUT initPatchCode

; set its file type so
; that it cannot be mistakenly run from the desktop.
; Link output files are usually of type APPL.

/TYPE 'CODE' 'LINK'
initPatch

$

INSTALLING THE SYSTEM ROM PATCH

The output of the linker must be packaged by RMaker as a resource of type INIT.
The INIT resource is made equivalent to the type PROC, which causes RMaker to
read in the object code from the linker file and then strip off the segment loader
bytes so that all that remains is the actual code that was originally assembled.

* File initPatch.R

¥ output file name
¥ File type, file creator

MDS2:initPatchFile
INIT??2?2?

Type INIT = PROC
ROMPatch,21 (64)
MDS2:initPatchCode

Once packaged this way as an INIT resource, there are two ways in which the ROM
patch can be installed so that it will be executed automatically on all subsequent system
startups. The first way applies to you if you are using a system file with a version number
lower than 3.0, roughly corresponding to the system software distributed before January
1986. The second method can be used with system files, version 3.0 and greater.

If you are working with an older Macintosh system file, you should use RMover
or the Resource Editor to move the INIT resource from the RMaker output file into the
system file of your startup disks. Check before you install it to make sure that the ID
number of your INIT resource doesn’t conflict with any existing INIT resources in the
system file. If a conflict exists, go ahead and change your ID number to a nonconflicting
number between 0 and 31. When the INIT resource is installed in the system file, it will
be loaded in and executed on all subsequent system startups with that system file.
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The newer system files, version 3.0 and later, contain an INIT resource number 31
(the last one to be executed) that looks in the system folder for any files with the type
INIT. Any files with that type are opened, and all INIT resources within those files are
loaded in and éxecuted. To take advantage of this feature, you must set the file type of
the RMaker output file to INIT, as we did above. If you move that file into the system
folder, your INIT resource will be loaded in and executed on all subsequent boot-ups.
If you decide that you don’t want your INIT resource to be used anymore, simply remove
the file from the system folder. Apple has added this capability in order to discourage
users from directly writing resources into the system file. With this new mechanism, your
INIT resource can be executed at every startup without needing to be installed in the sys-
tem file.

The RMaker file that we defined above is compatible with both of these methods
for INIT resource installation. If you are working with an older system file (lower than
version 3.0), then you must directly move the INIT resource into the system file, watch-
ing for conflicting ID numbers. If you are using the newer system software released with
the Mac Plus, then it is sufficient to move the RMaker output file into the system folder.
The INIT 31 mechanism will automatically load and execute your INIT resource.

The INIT capability is a good one for purposes other than installing ROM patches.
It can be used to load and initialize special drivers or other system level software. You
could also use the INIT mechanism for executing automatically some more complex task,
such as checking for mail on an Applélalk network.

A patch installed by the above technique will remain in effect from system startup
until the machine is turned off or reset. For this reason, you should exercise great care
when installing a system-based ROM patch. Generally, this type of patch is used to cor-
rect some sort of bug in the ROM that affects all programs. The next section discusses
how to install ROM patches intended to augment the functionality of a ROM routine for
the specific use of one application program.

Application-Based ROM Patch

There are many instances where you want to modify a ROM routine in order to extend
its function within a particular application program, but you don’t want the change to
extend to other application programs that may be run before the system is shut down.
In these cases you will install a ROM patch as part of your application’s startup proce-
dure, and them remove the patch when the program terminates. Switcher is a good exam-
ple of a program that changes many of the ROM routines only for the duration of its run.

In order to provide compatibility with both the 64K and 128K ROMs, you should
install your ROM patch in the system heap. (Remember that the 64K ROMs use an offset
from the beginning of the system heap to locate ROM patches, as discussed in an earlier
section.) One way to do this is to package your patch routine as a CODE resource and
load it onto the system heap, in much the same way that we did for the system-based ROM
patch. An easier method is to assemble the ROM patch as part of your main program
segment and simply place a JMP instruction in a non-relocatable block on the system
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heap with your patch code as the destination address of the jump. You then install the
address of the JMP instruction as the new trap address. Subsequent calls to the patched
routine will execute the JMP instruction and branch to your patch code on the applica-
tion heap. Figure 2.4 shows the relationship of the JMP instruction to the actual patch code.

main program makes a
call to the patched
ROM routine

——

<&

trap dispatch table

JMP X0000KX

non-relocatable block
n system heap

patch routine in code
segment 0001 on
application heap

MOVE.L  oldTrapAdd(A5),-(SP)
RTS

I

R

original ROM code

return to main program

FIGURE 2.4. Application-based ROM patch
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; AppPatch.ASM

; Include this code fragment at the end of your main segment.

; Make a JSR call to patchInstall as part of your program's

; initialization chores.

; patchInstall will put in the ROM patch and a pointer to the

; routine that will remove the patech when the program terminates.

; There are three main parts to this code

; the patch installer : patchInstall
H the patch itself : myROMpatch
H the pateh remover : ROMrestore
IAZptr EQU $33C ; system global for trap restoration
trapNum EQU $13D ; trap number that we will patch

; MenuSelect $A93D => $13D
0ldTrapAdd DS.L 1 ; space to hold old trap address
0ldIAZptr DS.L 1 ; space to hold old IAZptr
patchInstall

; FUNCTION GetTrapAddress(trapNum:INTEGER): LONGINT
; trapNum => DO, result => AO

MOVE.W #trapNum, DO ; this is the trap we want
_GetTrapAddress
MOVE.L A0,01dTrapAdd(A5) ; store the result for later

; We need to set a new trap address that is on the system heap.
; Rather than put the whole routine there, we will just put

; a JVUP.L instruction to jump to our patch code, which

; 1s sitting on the application heap in CODE segment #1.

; FUNCTION NewPtr(logicalSize: LONGINT): Ptr

; logicalSize => DO, Ptr => AQ

MOVE.L #6,D0 ; 2 bytes:JMP, 4 bytes:address
_NewPtr,SYS

MOVE.L A0,-(SP) ; save ptr on stack

MOVE.W #$4EF9, (A0)+ ; code for JMP instruction
LEA myROMpatch,Al ; get new code address

MOVE.L A1,(A0) ; destination for JMP
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; PROCEDURE SetTrapAddress(trapAdd: LONGINT;trapNum: INTEGER)
; trapAdd => AO, trapNum => DO

MOVE.W #trapNum,DO ; number of trap to un-patch
MOVE.L (SP)+,A0 ; get JMP instruction address
_SetTrapAddress

When your program installs an application-based ROM patch, it is important to make
sure that the patch is removed when the program terminates. One strategy for achieving
this is to save the original trap address of the patched routine and then restore that value
as part of your program’s Quit procedure. In most cases, this would seem to be adequate
insurance. If your program ends normally, the ROM dispatch table will be returned to
its original state by the termination procedure. In the unlikely event that your program
crashes, the system will reset and a new dispatch table will be rebuilt as part of the startup
process. Either way, you are assured that your ROM patch will not persevere.

One situation is not covered in the above examples. Many debuggers allow the user
to ExitToShell (generally to the Finder) directly without going through the underlying
program’s Quit routine. If your program installs a ROM patch, and then a user invokes
a debugger while the program is running and exits to the Finder from the debugger, your
ROM patch will remain in the dispatch table. This problem is particularly acute if the
patch in the dispatch table points to a section of code that sits on the application heap.
The application heap will be cleared when the Finder starts up, thus leaving your ROM
patch pointing at nothing.

The solution to this problem has been provided by Apple. The low-memory global
IAZNotify ($33C) contains a pointer to a routine that is executed by InitApplZone before
it clears the heap for the next application. The IAZNotify routine is called even if your
program is terminated by an ExitToShell from within a debugger. You can install a pointer
to a routine to reverse the ROM patch in IAZNotify and then be assured that it will be
called even if your program terminates in a nonstandard way.

The only restriction on the IAZNotify routine is that it must be in the main seg-
ment (CODE 0001) of your program. The main segment is always loaded and locked so
a pointer to a routine in that segment will remain valid for the life of the program.

; now make sure that this ROM patch will be removed when the

; program terminates

MOVE.L IAZptr,0ldIAZptr(A5) ; save original restoration proc
LEA ROMRestore, AQ ; address of our restoration proc
MOVE.L AO,IAZPtr ; install pointer

RTS ; all done with installation

The routine that we use as the IAZPtr procedure does four things. First, it uses
GetTrapAddress to get the address of the ROM patch on the system heap and deallocates
the non-relocatable block holding the JMP instruction.
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ROMrestore

; get the address of the ROM patch on system heap so

; that we can deallocate it

; FUNCTION GetTrapAddress(trapNum:INTEGER): LONGINT

; trapNum => DO, result => AO

MOVE.W #trapNum, DO ; this is the trap we want
_GetTrapAddress

; PROCEDURE DisposPtr(P: Ptr)
5 p => A0
_DisposPtr ; ptr already in AO

Next, it retrieves the original trap address from the global variable where we
stored it when the patch was originally installed. The trap address is restored with

SetTrapAddress.
; restore the original trap address
; PROCEDURE SetTrapAddress(trapAdd: LONGINT;trapNum: INTEGER)
; trapAdd => AO, trapNum => DO
MOVE.W #trapNum, DO ; number of trap to un-patch
MOVE.L 01dTrapAdd(A5),A0 ; original trap address
_SetTrapAddress

The original value of IAZPtr, which was also saved in a global, is also restored be-
cause after the heap is cleared, the pointer to our restoration routine will not be valid.

; reset the IAZptr to its original value
MOVE.L 01dIAZptr(A5),IAZptr ; leave everything as we found it

Finally, we call SetResLoad(TRUE) just in case the program has been interrupted
after calling SetResLoad(FALSE). If your program never uses SetResLoad, then you
can skip this step, but Apple suggests that you include a call to SetResLoad(TRUE) in
the IAZNotify routine if your program calls SetResLoad(FALSE) at any time during its
execution. Failure to do this can cause a system crash because the operating system does
not automatically reset ResLoad to TRUE when a program terminates. Subsequent pro-
grams won’t be able to load in their resources if your program sets ResLoad to FALSE
and then exits in a nonstandard way without setting ResLoad to TRUE. The IAZNotify
routine is also handy for correcting any changes you made to low-memory globals in the
course of your program.
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; make sure subsequent programs can get their resources
; PROCEDURE SetResLoad(load:BOOLEAN)

MOVE.W #$0100,-(SP) ; TRUE
_SetResLoad
RTS ; all done now

The actual ROM patch code is very much like that used for the system ROM patch.
At entry, registers are protected, the speaker is beeped, and then the registers are restored.
You can insert your own code in place of the call to SysBeep. The link to the original
ROM routine is kept as a global variable. That pointer is put on the stack so that the
final RTS instruction will jump to the original ROM routine code, which will finish the
job and return control to the main program.

;

myROMpatch

- - - --- myROMpatch

; do some preprocessing for the ROM routine
; save the registers

MOVEM.L A0-A1/D0-D2,-(SP)

; do the preprocessing for the ROM routine
MOVE.W #1,-(SP)
_SysBeep

; restore the registers

MOVEM.L (SP)+,A0-A1/D0-D2
MOVE.L 01dTrapAdd(A5),—(SP) ; get the original trap address
RTS ; Jump to it

NEW ROUTINES IN 128K ROM

A number of improvements and additions are included in the 128K ROM. Many of
the original routines from the 64K ROM have been made faster or have had bugs
fixed. Other new routines have been added to increase the functionality of the ROM.
Additionally, many commonly used resources like the Chicago font and the default
window-definition procedure formerly included in the system file are now included
within the ROM space, freeing disk space and speeding program execution by eliminat-
ing disk access for resource calls. The following paragraphs summarize information
contained in Macintosh Technical Note #57, available from Apple Computer. (See Ap-
pendix B for information about how to get Macintosh Technical Notes.)
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The Resource Manager calls have been reworked so that they are much faster than
in the original 64K ROM. A new set of calls has been added that parallels the original
routines except that the new variants search only one resource file rather than all the open
resource files. Eliminating the search of the system file and any other open resource files
speeds the search for resources. The “one-deep” Resource Manager calls look in the resource
file most recently opened or most recently passed as the parameter to UseResFile.

QuickDraw operations have been speeded up, mostly by dealing with special cases
better. Several bugs in the way QuickDraw handled complex regions have been fixed. New
fractional spacing of text is supported in order to be compatible with the LaserWriter,
and all eight transfer modes (srcOr, srcAnd, etc.) are now available for text drawing. In
addition, three new toolbox routines, SeedFill, CopyMask, and CalcMask, have been
added to give programmers the tools necessary to implement the paint-bucket pattern fill
seen in MacPaint.

The standard window definition now has an additional sensitive area, on the right-
hand side of the title bar, that allows the window to be zoomed in and out. Figure 2.5
shows the zoom box in a window. A mouse down in this area will cause FindWindow
to return a part code equal to 7 or 8. If your program detects this kind of event, you can
call TrackBox, just as you would call TrackGoAway for a mouse down in the go-away
box. If TrackBox returns TRUE, then you should call ZoomWindow. If the part code
is 8, then the window will be expanded to fill the entire screen. If the part code is 7,
the window will be zoomed down to its previous size. This feature was originally im-
plemented by Microsoft in their Macintosh products, and now Apple has incorporated
it into the ROM. Finder 5.1 uses zoom boxes on its windows. The standard window defi-
nition used to be in the system file; now it is a part of the ROM.

& File Edit Diew Special

RAM Disk £ =I5
397K in disk 90K available

>

System Folder Word 1.05
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The Menu Manager now allows for menus with more than 19 items to scroll when
the selection is dragged past the last visible item. The default menu definition procedure,
MDEEF 0, is now in ROM instead of in the system file. Also, AddResMenu, which is
used to include desk accessories and fonts in menus, now alphabetizes the items before
putting them in the menu. Two additional calls, InsMenultems and DelMenultems, have
been added to add or delete individual items from a menu.

TextEdit has several new cababilities, mostly refinements of scrolling so that edit-
text boxes in dialogs can contain more text than can be displayed within the edit-text rec-
tangle.

The Dialog Manager adds the calls HideDItem and ShowDItem to move individual
dialog items in and out of the visible area of a dialog. UpdtDialog has been added to
allow you to force an update of a dialog so that the items will be redrawn. FindDItem
returns the dialog item that lies under the point passed as a parameter.

The Memory Manager provides new high-level routines to manipulate the resource
flag bit of master pointers. HSetRBit and HCIrRBit should be used instead of directly
setting or clearing the resource bit. Apple has provided these high-level calls because the
actual bit position of this flag may change in future versions of the Memory Manager.
MaxApplZone expands the heap to its maximum size. MoveHi moves the specified han-
dle as high on the heap as possible to reduce heap fragmentation. This is especially help-
ful with code segments.

The SCSI port of the MacPlus is now supported by many new routines in ROM,
collectively called the SCSI Manager. These routines are called through a single trap word,
SCSIDispatch, which uses a selector word on the stack to select among the many availa-
ble routines, in much the same way the Package Manager uses the Pack traps.

The new HFS filing system is supported by several new routines to deal with the
unique features of the new directory structure. These routines are accessed through a sin-
gle trap, HFSDispatch, in much the same way as SCSIDispatch. In addition, variants
of the original File Manager calls can be invoked to deal specifically with HFS volumes
by setting bit 9 of the trap word for these calls. For example, the trap word for Open
is $A000. The trap word for the HFS Open is $A200. Apple advises that you avoid the
HFS-specific calls so that your program will work on either HFS or MFS systems. See
Chapter 5 for more details on HFS and MFS.

DETERMINING WHICH ROM IS INSTALLED

To determine if your program is running on a machine with the 64K ROM or the 128K
ROM, you must check the value of the global variable ROM85 ($28E). The value will
be $7FFF for 128K ROMs and $FFFF for 64K ROMs. Don’t try to use any of the new
ROM routines unless you have determined at run time that the 128 K ROMs are installed
in the machine on which your program is running. You can test for the new ROM with
a simple instruction sequence like this:
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TST.W ROM85 ; is this the new ROM
BPL newROM_OK ; positive value means 128K ROM

It is hard to duplicate many of the new features of the 128K ROM, so it is unclear
how to write programs that use many of the new features while maintaining compatibility
with the old 64K ROM. One strategy used by developers is to use double-sided 800K
disks to ship products that depend on the 128 K ROM. This strategy depends on Apple’s
continuation of the 128 K ROM/double-sided drive-upgrade program for older Macintosh
owners.

SUMMARY

In its original form, the 64K ROM represented the state of the art for system software
in microcomputers. The speed of execution and the elegance of the interface definitions
are unequaled. It is no wonder that so much Macintosh software adopts the basic build-
ing blocks of the window-based environment made available in the ROM. Two years later,
Apple released the 128K ROM, which was a significant improvement in terms of speed
and functionality.

On top of the initial quality of its ROM implementation, Apple provided hooks that
make it easy to modify, correct, or extend the individual routines that make up the ROM
toolbox and operating system. The examples in this chapter should allow you to install
your own ROM patches, either to perform tasks specific to your application or more gener-
ally at the system level for all applications.
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CHAPTER

3

The Cliphoard and Switcher:
Sharing Data Between Programs

The designers of the Macintosh created the clipboard as a standard Macintosh feature to
help users conceptualize in a concrete way the mechanics of data transfer within a single
program and between two programs. Within almost every Macintosh application you can
cut or copy information to the clipboard. That information can then be pasted into another
document or to another spot in the original document within the application. As a user,
it is not necessary for you to understand exactly what steps are being taken by the pro-
gram and underlying operating system code to put the data onto the clipboard.

" When you change from one program to another, the last data that you put onto the
clipboard in the first program is available to be pasted into the new application. The clip-
board is a familiar metaphor that tends to decomputenze the data transfer operation. Data
transfer can occur within an apphcanon, between two different applications, between an
application and a desk accessory, or between two desk accessories.

Digging in a little deeper, as a programmer you find that a data object called the
desk scrap and ROM routines from the Scrap Manager actually implement the clipboard
concept. In Chapter 1 we showed that the desk scrap resides on the application heap. The
desk scrap remains valid even when the application heap is cleared as you change from
one program to another. The persistence of the desk scrap from one application to another
is the key to interapplication data transfer on the Macintosh.

Do not confuse the desk scrap with the Scrapbook desk accessory. The desk scrap
is a temporary mechanism for holding data to facilitate transfer within and between appli-
cations and desk accessories. It is maintained at the system level by the Scrap Manager
for the use of all programs and desk accessories. The Scrapbook is the specific desk acces-
sory most suitable for archiving data. Tt uses the desk scrap as an intermediary between
itself and the underlying applications programs that call on its services. Figure 3.1 shows
how the Scrapbook and the desk scrap interact.
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4P
Cut, Copy, Application program
or Paste number 1
operations

:

Scrapbook <> Desk Scrap P Application program

number 2

Other desk
accessory

FIGURE 3.1. The role of the desk scrap

WHAT KINDS OF DATA GO ON THE CLIPBOARD?

There are two main types of data that go on the clipboard: TEXT and PICT. TEXT data
is what you would expect from the name: a sequence of letters, digits, and punctuation
marks, collectively called characters. The most obvious source of TEXT data is a word
processor or text editor. TEXT is also used to transfer information to and from spread-
sheets and data base programs. Spreadsheets and data base programs often use TAB charac-
ters within running streams of characters to separate the data fields.

PICT data, on the other hand, refers specifically to graphic information encoded
by QuickDraw so that it can be decoded according to clearly defined standard procedures
by any Macintosh program using QuickDraw. The formatting requirements for PICT data
are much more involved than for TEXT data, but the PICT standards allow diverse Macin-
tosh applications to exchange graphic images freely. Generally, you needn’t be concerned
about the internals of the PICT data type because QuickDraw provides simple procedures
for encoding and decoding pictures. Any Macintosh application that allows you to cut
or copy graphic images will place PICT data on the clipboard in a form that can be read
by other Macintosh graphics applications.

49



THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOLUME Il

Other Macintosh programs can put their own special types of data onto the clip-
board. As a user, you think of cutting or copying a single selection onto the clipboard.
The underlying program, however, may encode the data of that selection in several differ-
ent formats when it writes it out to the desk scrap. One example is Microsoft MultiPlan,
which writes out a selection from a spreadsheet as tab-delimited text and also in two for-
mats specific to MultiPlan and other Microsoft products. All three formats are put onto
the desk scrap. A program that then tries to take this data off of the desk scrap for a paste
operation must pick the data format most appropriate for it. A word processor will gener-
ally take the tab-delimited text representing the contents of the spreadsheet selection. If
the data from the clipboard is pasted into another worksheet in MultiPlan, then one of
the other formats containing more information about the relationship of the cells within
the selection will be used.

The ability to put data in more than one format onto the desk scrap allows a pro-
gram to transfer its data to a wider variety of other programs and desk accessories. Later
sections of this chapter will show how routines from the Scrap Manager can be used to
determine the type of data that is on the desk scrap.

THE DESK SCRAP AND THE PRIVATE SCRAP

To the user, the clipboard is simply the place where data goes when a cut or copy opera-
tion is executed. The clipboard is also the source of data for paste operations. Most users
don’t know if the clipboard is on the disk or in memory, and furthermore they don’t care.
We shall see in the following sections that the clipboard is often actually implemented
as two separate mechanisms, one for internal data transfer within an application, and the
other for transfers between different applications and between applications and desk ac-
cessories.

The clipboard that is responsible for interapplication data transfer is the desk scrap.
The data in the desk scrap corresponds to the data in the system file, Clipboard File, but
the desk scrap is usually kept in memory as well as in the clipboard disk file. The desk
scrap is used to facilitate data transfer between different applications and between appli-
cations and desk accessories. It is the most fundamental mechanism for this kind of data
transfer, and all Macintosh applications and desk accessories should be able to read and
write data to and from the desk scrap.

In addition to the desk scrap, many applications also keep a separate private clip-
board in memory that is used to cut, copy, and paste from one part of a document to
another within the same program. The data on this private scrap is kept separate from
the data on the desk scrap except at certain key points where the program decides that
it must communicate with a desk accessory or another program, as explained below.

A good example of a private scrap is the Text Edit scrap maintained by the Text
Edit Manager. Whenever your program uses calls from the TE Manager, such as TECut
and TECopy, the data involved is put into the TE scrap. The data is not placed into the
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desk scrap unless you specifically write program code to do so. For this reason, data cut
or copied with Text Edit routines is not automatically available to desk accessories or other
programs. Likewise, TEPaste gets its data from the TE scrap rather than from the desk
scrap.

Most applications copy the contents of the desk scrap into their own private clip-
board at program startup. That way, the contents of the desk scrap are available if you
choose to paste before giving a cut or copy command. Once you choose to cut or copy
some information from a document within the application, then that data replaces the
copy of the desk scrap data on the private clipboard. For applications that maintain their
own separate internal clipboard, the desk scrap is usually unaffected by cut or copy com-
mands given within the application.

If the user activates a desk accessory, the application must copy the contents of its
private scrap to the desk scrap just before turning over control to the desk accessory. All
desk accessories that support cut, copy, and paste use the desk scrap rather than the pri-
vate clipboard of the underlying program because thay have no way of knowing how to
access the private clipboard. The application program copies its private clipboard to the
desk clipboard in order to make the data most recently cut or copied within the applica-
tion available to the desk accessory for a paste operation. A good example of this process
is cutting out a section of a MacWrite document and then pasting it into the Scrapbook
desk accessory. The desk scrap serves as the intermediary between the application and
the desk accessory.

In the same way that it copies its private scrap out to the desk scrap when a desk
accessory is about to take control, an application program should also copy the desk scrap
onto its private scrap when the desk accessory returns control to the program. In this way,
any data that was cut or copied to the clipboard in the desk accessory will be available
for the first paste command given in the reactivating application. Actually, the applica-
tion should only copy the desk scrap into its private clipboard if a cut or copy command
was given inside the desk accessory. In other words, if you go to a desk accessory and
cut or copy some information, such as a picture from the Scrapbook, that data should
be copied into your application’s private clipboard when you go back to the application
from the desk accessory. Once the data is on the private clipboard, it is available for the
next paste command given in the application. If, however, you use a desk accessory but
do not issue a cut or copy command, then the contents of the application’s private scrap
should not be changed when you return to the program.

Underlying all this discussion, of course, is the assumption that the data being trans-
ferred is useful to the target application or desk accessory. For example, you cannot paste
PICT type data into the notepad desk accessory. There are Scrap Manager routines that
allow you to check the type of data on the clipboard before actually trying to do anything
with it. Many programs respond to a cut or copy command by saving the selected data
in more than one format. For instance, a word processor that allows many different fonts
might save a selection as straight running TEXT and also as a PICT that retains all the
font formatting information. MultiPlan saves selected data from its spreadsheets in three
different forms. When another program tries to paste from a clipboard with more than
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one form of data on it, the program can examine the data type of each format and then
choose which one to use. The example code in the second half of this chapter shows how
to check the data type of scrap data.

Finally, when you quit an application, it copies its private clipboard onto the desk
clipboard so that the next program will be able to use the data cut or copied from the
first program. This is how the clipboard can be used to transfer data from one program
to another. The relationship between the desk scrap and the application’s private clip-
board is summarized in Figure 3.2.

At program startup:

desk scrap private scrap

When a desk accessory becomes active after a program window:

-

desk scrap private scrap

When a program window becomes active after a desk accessory:

f—p
desk scrap private scrap
At program termination:
————
desk scrap private scrap

FIGURE 3.2. The desk scrap and the private scrap
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IS A PRIVATE SCRAP REALLY NECESSARY?

Actually, it is not always necessary for an application to keep its own private scrap in addi-
tion to the desk scrap. Inside Macintosh advises programmers to allocate a private scrap
to avoid the overhead of writing to the desk scrap every time a cut or copy command is
given. My experience with the clipboard leads me to believe that this overhead is very
small and that a program’s performance is not noticeably eroded by using the desk scrap
as the sole depository of data in transit. By not using a private scrap, your program doesn’t
need to copy its private scrap to the desk scrap on desk accessory activation or check to
see if the desk scrap has changed when the desk accessory returns control to the applica-
tion. In addition, since the desk scrap resides in memory already, keeping a private scrap
adds an additional memory allocation burden on your program’s heap environment.

Using the desk scrap for all cut, copy, and paste operations within a program greatly
simplifies the program logic and actually may decrease the program’s memory require-
ments. For these reasons it may be best to rely solely on the desk scrap to facilitate data
transfer unless there is some overriding reason for using a private scrap. For instance, if
you write an application that deals solely with graphic information, then you can use the
desk scrap exclusively. On the other hand, if you are using the Text Edit routines to cut,
copy, or paste, then it is best to use the default private TE scrap rather than writing your
own code to perform those functions.

DESK SCRAP IN MEMORY AND ON DISK

As mentioned above, the desk scrap usually resides on the application heap. It is possible,
however, to force the desk scrap out of memory and onto the disk if your program needs
the extra memory taken up by the scrap. The Scrap Manager routine UnLoadScrap writes
a copy of the desk scrap in memory into a disk file, usually called Clipboard File, and
frees up the memory allocated to the scrap. All other Scrap Manager calls, as described
below, operate on the scrap whether it is in memory or on the disk, so your program usually
will not have to be concerned about the scrap location except in tight memory situations.

You should be aware, however, that even if you use UnLoad Scrap to move the scrap
out of memory, the next time you ask to get information from the scrap it will be loaded
back into memory. Keeping the scrap on the disk is really only a temporary solution to
memory woes if you plan to use the facilities of the Scrap Manager.
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PUTTING INFORMATION ON THE CLIPBOARD

Regardless of whether or not the desk scrap is in memory or on the disk, the techniques
for actually writing data out to the desk scrap are the same. When you put information
on the desk scrap, you must tell the Desk Manager the length and type of the data. You
must also supply a pointer to the data. In the example below, assume that the data des-
tined for the desk scrap resides in the TE scrap, a handle to which is kept in the low-
memory global TEScrpHandl ($968, from SysEqu.Txt). Furthermore, the type of this
data is assumed to be TEXT. This sample code will give you a good model for facilitating
the communication between a private scrap and the desk scrap. The code is general enough
to adapt to other data types and sources without too much trouble. The two subroutines,
PrivateToDesk and DesKIoPrivate, that are explained in the next two sections are also
referred to in other discussions later in this chapter.

The first thing we need to do when writing the private scrap out to the desk scrap,
after saving a working register on the stack, is to find out how big the data block is by
using GetHandleSize. We save this value in register D3 so that it will be available later
when we actually write the data to the scrap.

PrivateToDesk
; save a register first
MOVE.L D3,-(SP)

; write the

private scrap to the desk scrap

; assume that a handle to private scrap is in TEscrpHandl

; firs
; FUNC
MOVE.L
_GetHa
MOVE.L

t, find out how big the handle is

TION GetHandleSize(h:handle): LONGINT

TEScrphandl, AO ; the handle
ndleSize

DO,D3 ; save size for later

Next, we clear out the old contents of the desk scrap by calling ZeroScrap so that
the new data will be placed in an empty scrap. If you leave out this step, the new data
will be appended to the scrap. If you want to put your data on the scrap in more than
one format, then you would not zero the scrap before writing the other forms of the data.
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; now clear out the desk scrap

; if you don't do this, the data will be appended to the scrap
; which might be desirable if you want to put the data

3 in the scrap in more than one format

;FUNCTION ZeroScrap :LONGINT

CLR.L -(SP)
_ZeroScrap
MOVE.L (SP)+,D0

Once the desk scrap has been cleared, you can write your data out to it by calling
PutScrap. You pass the length, type, and a pointer to your data as parameters to Put-
Scrap. If your data is accessed by a handle, be sure to lock it down before calling Put-
Scrap, since you will be dereferencing the handle to get a pointer to the data.

;PROCEDURE  HLock(h:Handle)

5 h => A0

MOVE.L TEScrpHandl, AO ; lock the private scrap
_HLock

;FUNCTION PutScrap(length:longint;thetype:ResType;source:ptr;):LONGINT

CIR.L —-(SP) ; the result

MOVE.L D3,-(SP) ; the length

MOVE.L #'TEXT',-(SP) ; the type

MOVE.L TESerpHandl, AO ; handle to the data
MOVE.L (A0),-(SP) ; convert handle to pointer
_PutScrap

MOVE.L (SP)+,D0

MOVE.L TEScrpHandl, AO ; unlock data handle
_HUnLock

Finally, restore the register and return from the subroutine. ZeroScrap and PutScrap
work whether the scrap is in memory or on the disk. If the scrap is in memory, then
a new handle containing the data is created and the low-memory global that contains the
scrap handle is updated to point to the new block. If the scrap is on the disk, then the
new data is written to the clipboard disk file.

; restore the register
MOVE.L (SP)+,D3

; all done with PrivateToDesk
RTS
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GETTING INFORMATION OFF THE CLIPBOARD

When your application wants to get information from the desk scrap, it must first look
for its preferred data type in the scrap. The scrap can contain many different types of
data, and all applications should be able to read either TEXT or PICT types, preferably
both. In the example code given below, we will look only for TEXT type data, but you
can easily modify the code to adapt it to other situations.

In order to determine if the scrap holds a particular type of data, call the Scrap
Manager routine GetScrap with a NIL storage handle and the type designation of the
desired data type. This will cause GetScrap to return information about the scrap without
actually trying to get the data in the scrap. GetScrap returns a function result that equals
the length of the data if the requested type is on the scrap, or a negative number if that
type is not on the scrap. The other parameter is a VAR long int that will contain the offset
value for the data of the requested type. This offset value is needed to locate the requested
data type if more than one type of data is on the scrap.

DeskToPrivate
' ; save a register
MOVE.L A4,—(SP)

; first find out if the scrap is the proper type

; if you pass 0O instead of a valid handle, then the

; function only returns information about the scrap

; rather than the actual scrap data

; FUNCTION GetScrap(hdest: Handle; theType:ResType; VAR offset:

; LONGINT): LONGINT

CLR.L —-(SP) ; make space

MOVE.L #0,—(SP) ; don't actually get it
MOVE.L #'TEXT',-(SP) ; this type only

PEA offset(A5) ; global for use as VAR
—GetScrap

MOVE.L (spP)+,D0 ; get the result

BMI NoPaste ; scrap not TEXT type

You can see that we push 0 on the stack for the hDest handle so that GetScrap
will not actually get the data from the scrap. Upon completion of the routine, we check
the result and branch on a negative result to an error-handling label. The negative result
means that no data of the requested type (TEXT) is on the scrap at this time.

Assuming that we get a positive result from GetScrap, we then need to call GetScrap
again with a valid hDest handle this time. We allocate a zero-length handle to use as the
hDest parameter because GetScrap will dynamically resize the handle to hold the requested
data. In the example below, we store the handle in register A4 so that it will be available
to us over the course of several ROM calls.
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; allocate a zero length handle to hold scrap
; FUNCTION NewHandle(logicalSize: Size):Handle
; logicalSize => DO, Handle => AO

MOVE.L #0,D0
_NewHandle
MOVE.L A0, A4 ; put handle in safe register

; now get the scrap
;FUNCTION GetScrap(hdest: Handle; theType:ResType; VAR offset:
; LONGINT): LONGINT

CIR.L -(SP) ; make space
MOVE.L A4 ,—(SP) ; pass new handle
MOVE.L #'TEXT',-(SP) ; this type only
PEA offset(A5) ; global for VAR
_GetScrap

MOVE.L (SsP)+,D0 ; get the result

Once GetScrap makes a copy of the scrap data into the handle in register A4, we
can make the TE scrap handle point to the new data by installing the new handle in the
low-memory global TEScrpHandl. Deallocate the old data associated with the private scrap,
and then copy the handle from A4 into the private scrap handle. One additional step that
is needed when you are working with the TE scrap is to set the low-memory location
TEScrpLengt to the length of the new TE scrap. Although Inside Macintosh lists
TEScrpLengt as a long-word value, the present version of Text Edit treats the value as
a word. You must write the length value to TEScrpLengt as a word rather than as a long
word to maintain compatibility with Text Edit. Finally, the register can be restored and
control returned to the calling procedure.

; make the private scrap handle equal to the new data just loaded in
; assume the handle to your private scrap is in global 'privateScrap(A5)'

; first, deallocate the old version of the private scrap
;PROCEDURE  DisposHandle(h: handle)

; handle => AO

MOVE.L TEScrpHandl, AO ; get handle
_DisposHandle

; now install new handle in global variable
MOVE.L A4, TEScrpHandl
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; and put a WORD length value in TEScrpLengt

; FUNCTION GetHandleSize(h:Handle): LONGINT

MOVE.L TEScrpHandl, AO ; the handle
_GetHandleSize

MOVE.W D0, TEScrpLengt

NoPaste
;restore register
MOVE.L (SP)+,A4

; all done now with DeskToPrivate
RTS

In this example we only accepted one type of data from the desk scrap. Ideally, all
Macintosh programs should be able to read both TEXT and PICT data from the desk
scrap. Obviously, some programs will not be able to attain this goal, but it is something
to strive for. The two examples, DesKIoPrivate and PrivatéIoDesk, are important because
they show how to connect the Text Edit scrap to the desk scrap. The code can be easily
generalized to fit into other situations in which a private scrap or an arbitrary data block
needs to be connected to the desk scrap.

' WHEN TO CONVERT THE CLIPBOARD

The two previous sections showed how to move the contents of the desk scrap to the pri-
vate scrap and back out again. If your program doesn’t use a private scrap, you can easily
modify those code fragments to transfer arbitrary data selections to and from the desk
scrap for all cut, copy, and paste operations. Furthermore, if your program always uses
the desk scrap exclusively, then you don’t have to worry about converting the clipboard.
But if you do maintain a private clipboard, such as the TE scrap, then you must include
some logic in your program to make sure that the clipboard is converted at the proper times.

Program Startup and Termination

As mentioned in an earlier section, your program should read the contents of the desk
scrap into its private scrap at startup so that the data cut or copied in the previous applica-
tion program is available for a paste operation in the new program. This is a straightforward
operation that can be done as part of your initialization routine. You can use the code
from DesKIoPrivate, discussed above, as a model for this operation.

Likewise your program should also write its private scrap to the desk scrap when
the user chooses to Quit. It is important to do this so that the last data cut or copied by
the user will be available to the next program that starts up. PrivatéIoDesk can be used
as a model for the code to include in your program’s termination process.
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Activate/Deactivate Events and Clipboard Conversion

Once your program has been initialized and is running, you must convert the clipboard
whenever a desk accessory becomes active and replaces a program window. This is done
so that the last data cut or copied in the application window will be available to the desk
accessory for a paste operation. You can use PrivatéloDesk as a code model to accomplish
this conversion task.

Conversely, you must copy the desk scrap to the private scrap when returning from
a desk accessory if data has been cut or copied from the desk accessory. In this way, data
can be transferred from the desk accessory to your application. The catch is that you must
be able to detect when the desk accessory has modified the contents of the desk scrap.

The low-memory system global, scrapCount (address $968), is changed every time
the contents of the desk scrap change. We need to save the value of scrapCount before
transferring control out to a desk accessory and then check it again when control returns
to our program. In the examples in the following sections, we use an application global,
myScrapCount, to save the old value of scrapCount. By comparing the old and new values
of scrapCount when control returns to the application, we can tell whether the desk ac-
cessory has taken any action to change the scrap contents. If the contents of the scrap
change while a desk accessory is active, then we must transfer the desk scrap to our pri-
vate scrap. If there has been no change, however, then we won’t have to do anything when
our program window is reactivated. You can also get the value of scrapCount by calling
the Scrap Manager ROM routine InfoScrap, but it is quicker for us just to check the low-
memory location directly.

The trickiest part of private scrap <=> desk scrap conversion is knowing when a
program window and a desk accessory window change places. There has been confusion
about this issue because of changes in Apple’s documentation. In the original editions
(3-ring binder and phone book) of Inside Macintosh, the Window Manager section sug-
gested that the key to this was the activation/deactivation events. Activation and deactiva-
tion events almost always happen in pairs, with one window becoming inactive and the
other window becoming active. According to the original documentation, whenever one
of your program windows gets an activate/deactivate event, bit #1 in the modifier field
of the event record is set if the other window in the activate/deactivate pair is a system
window (desk accessory).

Apple published example programs using this strategy to detect the switch between
program windows and desk accessory windows. The examples checked bit #1 of the modi-
fier field every time a program window was deactivated and wrote the private scrap out
to the desk scrap if a desk accessory was becoming active. Likewise, if a program window
received an activate event and bit #1 of the modify field indicated that the other window
being deactivated was a desk accessory, you were supposed to bring the contents of the
desk scrap into your private scrap.
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There were always problems with this strategy. The technique worked fine as long
as your application program always maintained at least one program window on screen
at all times. If, however, it was possible to close all the program windows on the screen
without quitting the program, then your program failed to detect certain key situations
that require the scrap to be converted.

The problem occurred in a situation like that shown in Figure 3.3. If the program
window on top is closed by the user, the desk accessory underneath becomes active when
the window goes away. Clearly, this is a situation that calls for clipboard conversion, yet
the window that is being closed does not generate a deactivate event, and the activate event
for the desk accessory is intercepted by SystemTask. The activate/deactivate event described
in the previous paragraphs will not occur. Because windows that are closing don’t gener-
ate deactivate events and because activate events for desk accessory windows are handled
by the desk accessory code, your program will not be informed of this kind of change
and the private scrap will not be transferred to the desk scrap for the activating desk ac-
cessory. Your program never gets a chance to check bit #1 of the modify field because
it never receives an activate/deactivate event pair for the windows.

Clearly, this method is not acceptable for many types of Macintosh programs. The
discussion of it is presented here mainly to clear up any confusion that may still linger
because of incorrect sample programs circulating through the developer community. Most

" & Fike Edit )

Scrapbook

Untitled

If this top window is closedj the program will not
get a deactivation event and the private scrap will
not be transferred to the desk scrap.

This is som
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FIGURE 3.3. A situation that activate/deactivate can’t handle




THE CLIPBOARD AND SWITCHER: SHARING DATA BETWEEN PROGRAMS

developers in the early days found this out the hard way. Since then, Apple has dropped
all reference to the use of bit #1 of the modify field in activate/deactivate events. The
Addison- Wesley edition of Inside Macintosh makes no mention of this technique, although
it offers no alternative way to detect the change from a program window to a desk acces-
sory window. Some other, more reliable, method is needed to detect the changing arrange-
ments of windows on the screen in order to insure that the scrap is always converted when
needed.

An Alternate Method for Controllmg Clip Conversmn

EventLoop

As discussed above, programmers cannot rely on the actwate/deacnvate techniques to trigger
clipboard conversion in all the appropriate situations. Even when the technique was sup-
ported and documented by Apple, it didn’t work very well. It is true that bit #1 of the
modify field was set correctly during a program window-desk accessory shuffle, but the
activate/deactivate event was not always made available to your program to initiate clip-
board conversion. Now that Apple has removed its support and no longer even mentions
it in its documentation, you have no assurance that future versions of the operating sys-
tem will continue to set bit #1 of the modify field during activate/deactivate events. At
the present time, Apple lists bit #1 as “reserved for future use.” Clearly, some other method
is needed. : ,

A possible solution to this problem can be framed around the PeriodicTasks subrou-
tine that is used by MultiScroll in my The Complete Book of Macintosh Assembly Language
Programming, Volume I. MultiScroll calls PeriodicTasks every time through the event loop
to take care of menu enabling and dlsabhng and also to adjust the scroll bars. Periodic-
Tasks adjusts the menus according to the current arrangement of program windows and
desk accessory windows. The logic used by PeriodicTasks to govern its menu manipula-
tions is well matched to the task of mediating scrap conversion. In fact, Inside Macintosh
recommends that menu adjustments be made at the same time as scrap conversion in the
activate/deactivate routine. Recognizing that menu adjustment and scrap conversion are
tightly entwined, but realizing that the activate/deactivate strategy is insufficient to medi-
ate the two processes reliably, let’s modify PeriodicTasks to take care of these two tasks
at the same time.

First, look at the placement of the call to PeriodicTasks. Notice that it occurs in
the main event loop before the call to GetNextEvent so that any corrections that need
to be made will happen before events can be handled.

; MAIN PROGRAM LOOP

; PROCEDURE SystemTask
_SystemTask ; update desk accessories

BSR

PeriodicTasks ; adjust the menus and convert scrap

61



@1

THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOLUME I

TST.L TEReg ; is there a valid TE record?
BEQ @1 ; if not, branch around TEIdle
; PROCEDURE TEIdle ( hTE:TEHandle);

MOVE.L TEReg,—(SP) ; get handle to text record
_TEIdle ; blink cursor etc.

; FUNCTION GetNextEvent(eventMask: INTEGER;

)

VAR theEvent: EventRecord) : BOOLEAN

PeriodicTasks finds out about the current state of the screen by calling FrontWindow
every time through the main event loop. By examining the window pointer returned by
FrontWindow, PeriodicTasks can recognize one of three situations: program window on
top, desk accessory window on top, no windows on screen. It also sets a register flag to
one of three possible values corresponding to these three situations so that it can detect
when a change occurs. For clipboard conversion, it is most important to detect two situa-
tions: a program window becoming active when a desk accessory has been the top win-
dow, and a desk accessory becoming active when the last top window was a program
window. The tricky part is detecting these situations after a period when there have been
no windows on screen.

For instance, consider a situation where information is copied to the private scrap
from a program window. That window is then closed, leaving an empty screen. If a desk
accessory is opened onto this empty screen, we need to know if the most recent window
was a program window in order to decide if the clipboard should be converted for the
desk accessory. (In other words, we must be able to distinguish this situation from one
where a desk accessory is opened and closed on an empty screen, and then another desk
accessory is opened.) This is analogous to the information in the changed bit of the event
record for an activate/deactivate event, but it involves changes from desk accessory to pro-
gram windows that are not grouped together in time. In order to do this, we need to main-
tain a global variable to show the type of the most recent active window.

The code below is a skeleton of a PeriodicTasks subroutine that concentrates on the
clipboard conversion aspects. The menu-fiddling code is not shown here. See Chapters
4-7 in The Complete Book of Macintosh Assembly Language Programming, Volume I, for de-
tails of the menu adjustment code in PeriodicTasks.

The subroutine starts by looking at FrontWindow. If the result is zero, then we know
that there are no windows on screen. The branch label for the no windows situation checks
to see if the status of the desktop has changed since the last time PeriodicTasks was run
by looking at the MenuStatusReg. Because PeriodicTasks is called for every event loop,
most of the time it will not be reacting to a change in the arrangement of the desktop,
so this check was put in to avoid needless code execution. If the code detects that this
is a new arrangement, then the MenuStatusReg is updated to reflect the new situation
and the menus are adjusted accordingly. No clipboard conversion needs to be done when
there are no windows on screen.
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; Periodic Tasks
PeriodicTasks
; check the top window for one of three possibilities
; no window on screen : disable edit menu,save, and close item
; system window on top : enable edit menu, disable save,close item
H our window on top : disable undo item, enable save,close item

5 FREHRRREHHHRRERRINHHRIHEREREREIHRRHREHRKEHRERERHRHERRRRRRRERERERRERERRERRRRRARKR
; This routine uses a flag value in MenuStatusReg to determine

; the most recent state of the desktop and to see if the new
3 status is any change. Most of the time, no change will be
; detected.

; It also uses two application globals, myScrapCount and lastTopWindow.
; myScrapCount is used to see if the desk scrap contents have been

5 changed by a desk accessory, thus necessitating clip conversion.
; lastTopWindow is used to determine if the newly activated window
H is part of a program-desk accessory pair.
R s e ey
; FUNCTION FrontWindow:WindowPtr
CIR.L —-(SP) . ; space for result
_FrontWindow ‘ v
MOVE.L (SP)+,A0 ; get the window
BEQ no_window
BPL a_window
no_window
; first check to see if this adjustment needs to be done
CMP.B #noWindow,MenuStatusReg
BEQ Periodicdone ; this is not a change

; Set the new status
MOVE.B #noWindow,MenuStatusReg

FERRRKRHRRHRRRRK KX
; do menu fiddling here, turn off most options
SRRRRRRRRRRKRNKR

BRA Periodicdone
If FrontWindow gets a positive window pointer, then we need to look at the

windowKind field of the window record to see if it is a system window (desk accessory)
or a program window. A system window is identified by a negative windowKind value.
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a_window
TST.W windowKind(AO) ; what kind of window
BMI sys_window

If the top window is one of our program’s windows, then we need to see if this reflects
a change in the desktop situation, just as we did for the no-windows case.

our_window

; now check to see if this menu adjustment needs to be done
CMP.B #ourWindow,MenuStatusReg
BEQ Periodicdone ; this is not a change

; Set the new status
MOVE.B #ourWindow,MenuStatusReg

If the logic above finds that this program window has just been brought to the fore-
front, then we need to find out if clipboard conversion needs to be done. We need to con-
vert the clipboard only if the most recent top window was a desk accessory and the contents
of the desk scrap were changed by that desk accessory. We consult our two application
globals, lastTopWindow and myScrapCount, to determine these facts. Remember from
an earlier discussion that myScrapCount is an application global variable containing the
value of the system global scrapCount just before control was passed to the desk acces-
sory. Now that a program window is being reactivated, we compare the present value of
scrapCount to the value saved in myScrapCount to see if the desk accessory modified the
desk scrap.

; see if clipboard conversion should be done
; our window is becoming active
; convert only if lastwindow was a desk accessory AND

; clipboard has changed

MOVE.W lastTopWindow(A5),D0 ; get the flag

CMP.W #sysWindow,DO ; was the last window a DA?
BNE @2 ; not a DA, don't convert clip
MOVE.W scrapCount,DO ; get low memory scrapCount
CMP.W myScrapCount(A5),D0 ; compare to saved value

BEQ @2 ; no change, don't convert

; we passed all the tests, so go ahead and convert clipboard
; from the desk scrap to our private scrap
JSR DeskToPrivate ; do conversion
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; and save new value of scrapCount for future reference

MOVE.W scrapCount,myScrapCount(A5)
@2 ; set the lastTopWindow global now, after checking its previous value
MOVE.W #ourWindow,lastTopWindow(A5)

Notice that we must also update myScrapCount and lastTopWindow so that they
will contain the most recent data the next time they are used. We also follow scrap conver-
sion with whatever menu adjustment the program requires to adapt to a program window
as the top window.

SRRRRERRRRKERKRNR

; do menu fiddling here, turn on most features
SEERRKRRRRRRRRKRKR

BRA Periodicdone

The other situation to which we need to respond is the activation of a desk accessory
window. In this case, we should convert the clipboard only if the most recent window
was a program window. The logic of the code is similar to that shown above.

sys_window
;5 first check to see if this adjustment needs to be done
CMP.B #sysWindow,MenuStatusReg
BEQ Periodicdone ; this is not a change

; Set the new status
MOVE.B #sysWindow,MenuStatusReg

; see if clipboard conversion should be done
; DA window is becoming active
; convert only if lastwindow was a program window

MOVE.W lastTopWindow(A5),D0 ; get the flag
CMP.W #ourWindow,DO ; was the last window our window?
BNE @3 ; no, don't convert clip

; we passed all the tests, so go ahead and convert clipboard
; from the private scrap to the desk scrap
JSR PrivateToDesk ; do conversion




THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOLUME Ii

@3 ; set the lastTopWindow global now, after checking its previous value
MOVE.W #sysWindow, lastTopWindow(A5)

TRRXXXXRAKRXRKRXX

; do menu fiddling here, especially turn on standard edit menu
SRERERERRRRRRRKRK

Periodicdone
RTS ; go back to event loop

The techniques outlined in the sample code above will insure that your program
correctly exchanges information between the desk scrap and its private scrap. This is done
so that a program can import and export clipboard data to and from desk accessories.
Importing the desk scrap at program startup and exporting it at termination will insure
that your program can transfer data to and from other programs. Of course, this discus-
sion will not be of much use to you if your program uses the desk scrap exclusively for
all its cut, copy, and paste operations. If that is the case, your program will always be
ready to send its clipboard data out or bring in clipboard data from a desk accessory or
another program without having to go through the logical gymnastics outlined above.

HOW DOES SWITCHER CONVERT THE CLIPBOARD?

Before Switcher, data transfer between programs on the Macintosh was a clumsy affair
at best. You had to cut or copy information in one program, Quit that program, and then
start up another program in order to complete a data transfer. Shifting from one program
to another often required several disk swaps and many frustrating minutes waiting for the
notoriously slow exit and entry procedures of most Mac programs. With Switcher, however,
you can jump directly from one program to another in a second or two, arriving with your
data on the clipboard, ready to paste into the receiving program.

Switcher allows you to have as many as eight programs in memory at the same time,
subject to memory limits. On a 512K Macintosh, the practical limit is usually three pro-
grams. The programs are co-resident in memory, but only one program is actually ex-
ecuting at any given time. The real advantage of Switcher is that it allows instant data
transfer between programs. Data in one program can be cut or copied to the clipboard.
You then can switch to another program by clicking the Switcher icon in the menu. When
the second program fills the screen, usually in less than a second or two, the data that
was cut in the first program is available to be pasted into the new program. This is a sig-
nificant improvement over the old method of Quitting the first application and starting
up the other one.
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Switcher uses two different methods, outlined below, to insure that the data placed
on the clipboard in one application will be available to the application that takes over after
a switch. The first method is useful to understand if you are using software that was writ-
ten before Switcher was released. The second method will be of interest to you if you want
to write new software that works more harmoniously with Switcher.

The Desk Accessory Ruse

FIGURE 3.4.
MultiPlan
selection just
hefore a switch

Switcher will make sure that all the applications share the same clipboard when you choose
the Convert Clipboard option. Optionally, if Convert Clipboard is not chosen, you can
still force Switcher to carry the clipboard along by holding down the option key during
a switch. The previous section pointed out that many applications use a private internal
clipboard for cut, copy, and paste operations within the program itself. Most programs
only use the desk clipboard at startup to initialize their private clipboard or when they
are transferring data to, or from, a desk accessory. In order to make sure that a program
will use the data from the shared desk clipboard rather than from its own internal clip-
board, Switcher fools the application into thinking that data is being transferred to or from
a desk accessory when a switch between applications takes place.

For example, let’s look at the situation where we have MultiPlan and Word running
in adjacent Switcher slots. The MultiPlan worksheet contains some figures on advertising
costs, as shown in Figure 3.4. We want to copy those figures out of MultiPlan and paste
them into a letter we are writing in Word.

self publishing
3 [
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Making sure that the Convert Clipboard option has been chosen, we copy the selected
area from the MultiPlan worksheet to the clipboard and then switch to Word. If you watch
the menu bar closely as the switch takes place, you will see the Edit heading briefly in-
vert, as though a selection was being made from the Edit menu in MultiPlan. This ac-
tivity is evidence of the charade that Switcher is putting on to convince MultiPlan that
a desk accessory is becoming active and that data is being pasted into the accessory. Of
course, there is no desk accessory, but Switcher generates information, including fake menu
events, to convince MultiPlan that a desk accessory wants the information from its private
clipboard. MultiPlan, falling for the ruse, copies its private clipboard onto the desk clip-
board before completing the switch to Word.

If you watch the menu bar in Word as the switch occurs, you will see a similar high-
lighting of the Word Edit menu. Switcher continues the deception at the destination end
of the switch in order to convince Word that information has been copied from a desk
accessory just before Word is activated. In the previous section we said that an application
will copy the desk scrap to its private clipboard when returning from a desk accessory

MultiPlan
Switcher
Fake DA
activation
private
scrap
desk scrap
Fake DA Word
deactivation
private . ‘
scrap

FIGURE 3.5. Sequence of events in switch from MultiPlan to Word
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if a cut or copy command was given in the desk accessory. Switcher does what is needed
to convince Word that it should transfer the contents of the desk clipboard to its private
clipboard. This means that the first paste command given in Word after the switch will
use the data copied onto the clipboard in MultiPlan. This sequence of events is shown
diagramatically in Figure 3.5.

PROBLEMS WITH THE DESK ACCESSORY RUSE

Although the desk accessory ruse is an extraordinary piece of software, it sometimes runs
into traps within the application programs that prevent it from successfully facilitating
clipboard conversion. Looking back to the MultiPlan-Word example given above, if we
make the selection range in MultiPlan larger—the whole screen for instance —then Mul-
tiPlan will put up the dialog shown in Figure 3.6. :

MultiPlan sees the fake events coming from Switcher and thinks that a desk acces-
sory wants data from the clipboard. But MultiPlan keeps several forms of the selected
data on its internal clipboard. The data is kept as tab-delimited TEXT, and also in two
forms peculiar to MultiPlan, VALU and LINK. When the amount of data is small,
MultiPlan just copies all three data formats from its private scrap to the desk scrap. The
destination program can then choose which form it wishes to use. Figure 3.7 shows the
three types of data in the scrapbook after a paste. However, when there is a lot of data
on the private scrap, MultiPlan puts up a dialog to allow the user to select which form
of the data to transfer.

Saving large clipboard

[J] Save formatted values

[ Save unformatted values

FIGURE 3.6. MultiPlan dialog for large selection
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magazine 1/2 page discount? 1/4 page discount?
RO || 15cworld $4545.00 $4545.00 $2625.00 $2625.00
& Macazine $1750.00 $1750.00 $930.00 $930.00
MacNibble $625.00 $531.25 $355.00 $301.75
............... MacTutor $360.00 $306.00 $180.00 $153.00

................ B B

................ 171 LINK, VALU, TEXT

FIGURE 3.7. Three-data format from MultiPlan in Scrapbook

This is actually a good strategy, in that it keeps the desk scrap from being over-
loaded with redundant data. Usually, this dialog is only put up when a desk accessory
is being activated or the user has chosen the Quit command. In those situations, the user
can choose the data format to allow the program to continue normally. In the Switcher
context, however, the switch to the other program occurs before the user has a chance
to click in the dialog box, so the internal scrap is not written to the desk scrap before
the switch takes place. The selected data is not made available to the other program via
the desk scrap. The only way around this situation is to make sure that you cut or copy
smaller pieces of the spreadsheet before switching.

The Switcher Event

The deceptive technique described above is undertaken because Switcher was written much
later than many of the most popular application programs for the Macintosh. The desk
accessory ruse is a marvelous piece of reverse engineering that allows these programs to
perform tasks that were not even dreamed of when the programs were written. It does,
however, have weaknesses as described above. Switcher provides a mechanism for newer
programs that allows them to respond specifically to the Switcher environment. Switcher
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DoSwitcher
; we

MOVE.

BTST
BNE

SwitchOff:

BTST
BEQ
JSR
BRA

SwitechOn:
BTST
BEQ
JSR
BRA

can generate an event that tells the application program when a switch is about to take
place. Previously, event numbers 11-15 were reserved for individual programs to define
their own event types. When Switcher sends an event #15 to an application, the high byte
of the long-word message field of the event record is equal to 1 if it is a suspend/resume
event. For the present version of Switcher, this byte is always set this way, but future ver-
sions may use event number 15 to signal other kinds of events also. Bit 0 of the message
field of the event record is set if the application is about to be activated and cleared if
the application is about to be suspended. Furthermore, bit 1 of the message field is set
if the clipboard should be converted, and cleared if the clipboard may be ignored. The
application can respond to this event by copying its private scrap to the desk scrap or by
copying the desk scrap to its own private scrap, depending on the setting of these bits.

RESPONDING TO SWITCHER EVENTS

The code that can interpret a Switcher event is listed below. Be sure to use an event mask
for GetNextEvent that allows event #15 through to your program. (The programming
examples in The Complete Book of Macintosh Assembly Language Programming, Volume I, use
#$O0FFF as an event mask. This lets only events 0-11 through. The event mask should
be changed to #$FFFF and four additional entries added to the event table to give Switcher
compuatibility.) Assuming that you have an entry to DoSwitcher in your program’s event
dispatch table for event #15, you can use the following code fragment to respond to
suspend/resume events. The subroutines DesKIoPrivate and PrivatéToDesk were explained
in an earlier section of this chapter.

come here for Switcher events (What = 15)

L Message(A5),D0 ; easier to test bits in register.
#0,D0 ; this bit set for resumption
SwitchOn ; turn ourselves back on

; otherwise, turn off

; come here for suspend event
#1,D0 ; see if clipboard conversion on
NextEvent ; we don't need to do anything
PrivateToDesk ; copy our scrap out to desk
NextEvent ; get next event

; come here for resume event
#1,D0 ; see if clipboard conversion on
NextEvent , ; we don't need to do anything
DeskToPrivate ; copy desk scrap to private
NextEvent ; get next event

n
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Of course, all this fuss over Switcher events is only necessary if your program uses
a private scrap. If you use the desk scrap all the time anyway, then you don’t have to pay
any attention to Switcher events. The contents of the desk scrap will always be available
to your program, assuming that the other programs running under Switcher know how
to put data there.

We mentioned earlier that Switcher “optionally” sends event #15 to applications to
inform them of pending activations or suspensions. Switcher looks for a SIZE resource
with ID of -1 in the resource fork of every application that it runs. The SIZE resource
contains information that tells Switcher how much memory to allocate for the application
as well as whether to send activate/suspend events and whether to save the screen image.
Most applications that were written before Switcher do not have a SIZE -1 resource. In
the absence of a SIZE -1 resource, Switcher assumes that the application is not set up
to handle Switcher events and uses the desk accessory ruse instead. In order to make
Switcher send suspend/resume events to your program, you must set a flag in a SIZE
resource with ID of —1 in your application file. If the SIZE —1 resource of your program
is configured to accept Switcher activate/suspend events, then Switcher will not generate
the series of events that make up the desk accessory ruse.

The format of the SIZE resource is shown below. To enable Switcher events, set
bit 14 of the flags word. Bit 15 instructs Switcher to save the screen of the application.

SIZE resource:

Flags:word

preferred memory size:long
minimum memory size:long

You can add a SIZE -1 resource to your program with RMaker or with the Resource
Editor. The values for the memory sizes should be 32K less than you actually want (i.e.,
96K for a 128K partition). It is a good idea to enable Switcher events for programs that
you are writing so that Switcher won't have to go through the desk accessory charade every
time a switch is made. The RMaker source file fragment shown below configures a pro-
gram to accept suspend/resume events and sets both the preferred and minimum memory
requirements to 128K.

GNRL

;; word length value to follow

;; set bit 14 to enable suspend/resume events
;; long word value to follow

55 98304 + 32 K = 128 K

;3 long word value to follow

55 98304 + 32 K = 128 K

12
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SWITCHER EVENTS: A CAVEAT

The foregoing discussion of suspend/resume events is based on the technical documenta-
tion written by Switcher programmer Andy Hertzfield. In actual practice, however, Switcher
(up to version 4.6) does not correctly send resume events to programs. The problem oc-
curs with bit 1 of the message field of the resume event. Bit 1 should be set when the
clipboard is supposed to be converted, and clear when the clipboard does not need to be
converted. This bit is controlled by the Convert Clipboard option in Switcher. If that op-
tion is turned on, then Switcher sends suspend and resume events with bit 1 of the mes-
sage field set. If that option is turned off, Switcher sends suspend and resume events with
bit 1 clear.

The problem crops up when the user tries to use the option key to change the set-
ting of the Convert Clipboard option. In other words, if the Convert option is on and
the user holds down the option key during a switch, Switcher should clear bit 1 of the
message field of the suspend and resume events so that the applications won’t convert
the clipboard. Unfortunately, Switcher fails to do this on the resume event unless the op-
tion key is held down for the duration of the switch. So while the suspended application
does not convert the clipboard, the resuming application does convert the clipboard if
the option key is not held down long enough. This aspect of Switcher is not documented
in the technical or end-user documentation.

Likewise if the Convert Clipboard option is off and the option key is held down,
both applications should convert the clipboard. Once again, the resuming application gets
the wrong message from Switcher and does not convert the clipboard if the option key .
is let up before the switch completes. Suspend events are sent correctly no matter how
long the option key is pressed.

The upshot of all this is that you cannot rely on Switcher events to mediate clip-
board conversion correctly in all cases, at least for the present versions of Switcher. One
fix for this problem is to make a special note in your program’s documentation warning
users about this undocumented behavior in Switcher. Another possible solution is not to -
configure your application to receive Switcher events, but instead to rely on the desk ac-
cessory ruse that Switcher puts out by default. Updated versions of Switcher may fix this
bug so you may be able to use Switcher events in the future.

SUMMARY

The clipboard is a very powerful metaphor for data transfer both within a single program
and between programs. This chapter has discussed the underlying data objects and ROM
routines available to manipulate the clipboard. A key concept is the relationship between
the private clipboard kept by a program for internal cutting and pasting and the desk scrap
maintained by the system to facilitate data transfer between programs, between programs
and desk accessories, and between desk accessories. The trickiest part of using the clip-
board is recognizing the situations where it is necessary to transfer data from the private
scrap to the desk scrap, and vice versa.
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We discussed two techniques allowing your program to detect the change from a
program window to desk accessory that requires conversion of the private scrap to the
desk scrap. Apple’s suggested activate/deactivate strategy was explained and its weaknesses
explored. We developed an alternative method, PeriodicTasks, that allows a more reliable
process to govern clipboard conversion. '

By including code similar to PeriodicTasks, your program can reliably orchestrate
the clipboard data between its private scrap and the desk scrap whether or not a program
window is always on screen. Of course, there are other strategies that you could use to
accomplish the same thing, but they would probably end up spreading bits of code at
many key points in the program to catch all the special cases. The advantage of PeriodicTasks
is that it centralizes the menu adjustment and clipboard conversion in one routine so that
your program is more easily maintained and modified.

Switcher introduces the possibility of running more than one program in memory
at one time and consequently the prospect of immediate interapplication data transfer via
the desk scrap. This chapter discussed the two methods whereby Switcher informs your
program that a context switch is coming. The desk accessory ruse is used by Switcher
to convince your program that it should write out its private scrap to the desk scrap. In
most cases this is an effective strategy, but we discussed some inherent weaknesses in the
technique. Switcher can also send a specific event to your program with information that
signals whether clipboard conversion is necessary. Sample code was provided to show how
programs can be enabled to receive Switcher suspend/resume events. This latter technique
offers programmers the opportunity to write new programs that are able to run smoothly
in the Switcher environment. Some shortcomings of Switcher’s handling of resume events
and clipboard conversion were discussed.

The combination of the clipboard mechanism and Switcher opens the way for pro-
grams to transfer data back and forth quickly and easily. Now that these mechanisms have
been created, it is up to the rest of us to dream up software which makes the most of
these capabilities.
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CHAPTER

4

Using the Print Manager

One of the best things about the Macintosh is that you can get paper printouts very close
in quality to the images that appear on the screen. This close correspondence between
the screen and printout makes the Mac a great tool for anyone who needs a “what you
see is what you get” work environment. From the programmer’s point of view, implement-
ing WYSIWYG in printing is remarkably easy, thanks to the Print Manager software
provided by Apple for all Macintosh systems. You can write programs that are able to
use the same imaging code to print out text and graphics to a variety of printers. This
chapter will explore and explain the Print Manager and how to use it so that your pro-
grams can work with any sort of printer attached to a Macintosh.

. AVAILABLE PRINTERS

In the first two years after releasing the Macintosh, Apple was directly supporting print-
ing to five different printers: the regular and wide-carriage model ImageWriter dot-matrix
printers; the ImageWriter II dot-matrix printer; the original LaserWriter; and the enhanced
LaserWriter Plus. Support for these printers is contained in the printer resource files that
are usually found in the system folder of Macintosh disks. Each type of printer has its
own printer resource file. The user is responsible for having the proper printing resource
file for the printer currently attached to the Macintosh. It is possible to keep several print-
ing resource files on a system disk and switch back and forth among them by using the
Chooser desk accessory, also supplied by Apple.
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The printing resource files contain information and procedures used to translate the
images from any Macintosh program into commands that can be understood by the partic-
ular printer associated with the resource file. For example, MacDraw sends a picture to
the Print Manager as a series of QuickDraw commands. If an ImageWriter is attached
to the Macintosh, those QuickDraw commands are translated by the printer resource proce-
dures into a line-by-line dot image that can be printed on the dot-matrix printhead of
the ImageWriter.

On the other hand, if a LaserWriter is attached to the Macintosh, then those same
QuickDraw commands sent out by MacDraw are translated by the printer driver into the
equivalent PostScript commands. PostScript is a computer language, similar to Forth, that
allows very precise descriptions of graphics and text images. The LaserWriter contains
a PostScript interpreter in ROM and uses PostScript commands to drive the laser printing
mechanism. Later in the chapter we will talk about how you can send PostScript com-
mands directly to the LaserWriter from within a Macintosh program.

By packaging the translation code for each kind of printer in a separate printer
resource file, Apple has been able to provide an environment in which program developers
can write printing code essentially independent of the device to which the output is directed.
Each program can define a single method of imaging a page using QuickDraw. The proce-
dures in the individual printer resource file then convert the QuickDraw commands into
instructions appropriate for the current printer.

For the ImageWriter and ImageWriter II, the printing resource file is named
“ImageWriter.” The first four version of this file were dated May 1984, March 1985, August
1985, and January 1986 (version 2.2). Each newer version supplanted the older one. The
later versions support both the original ImageWriter and the newer ImageWriter II printer.
Each new version of the ImageWriter file has been upwardly compatible with the previous
versions, so software that worked with the older versions continues to work with the new file.

The laser printers are supported by the resource files LaserWriter and LaserPrep.
LaserPrep is a file that is loaded into the RAM memory of the LaserWriter when it is
first powered on for a working session. LaserPrep contains PostScript macros, updates,
and bug fixes. LaserWriter is the printer resource file that facilitates the translation of Quick-
Draw calls into PostScript.

Several third-party developers have released printer resource files that allow you to-
use other types of printers with unmodified Macintosh software. For instance, there are
several printer resource files that facilitate the use of letter-quality daisy-wheel printers,
much prized by business users for written correspondence. Of course, these daisy-wheel
printer resource files can’t reproduce the graphics displays or fancy fonts of the Macintosh,
but they can translate simple text-drawing commands into the appropriate daisy-wheel com-
mands to put a stream of characters on paper. Other manufacturers of dot-matrix and
laser printers are releasing resource files that attempt to translate Macintosh screen images
faithfully onto paper.
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QUICKDRAW, GRAFPORTS, AND PRINTERS

The key to printer independence described in the previous section is the way that Quick-
Draw can define customized grafPorts for different drawing environments. All text and
graphics drawing on the screen is done by QuickDraw routines. Whenever a QuickDraw
routine executes, it does so within the context of the current grafPort. A grafPort is a data
structure that defines the drawing environment. Most of the time, the grafPort into which
QuickDraw is drawing is equivalent to the frontmost window on the screen. The grafPort
contains information telling QuickDraw how the various drawing commands should be
carried out.

The secret of printer resource files is that they contain customized grafPorts defining
the drawing environment of the printer so that when QuickDraw draws into the printer’s
grafPort, the commands will be interpreted in the ways that are appropriate to the printer’s
mechanism rather than to the usual screen display techniques.

. These customizations are implemented through the QuickDraw standard drawing
procedures. Even though QuickDraw consists of well over one hundred separate routine
calls, all of these can be expressed at the lowest level by just thirteen basic standard draw-
ing procedures. For example, all the routines that draw text call the low-level standard
procedure StdText. The thirteen standard calls are the foundation on which all the rest
of QuickDraw is built. So if you change the standard drawing procedures, you have changed
the action of all the QuickDraw routines.

QuickDraw allows programmers to install their own custom versions of the stan-
dard drawing procedures through the use of the routine SetStdProcs. This routine installs
pointers to the customized routines into the grafPort data structure so that any subsequent
drawing into that grafPort will use the customized low-level routines. One or more of the
thirteen standard procedures can be overridden by installing custom routines to imple-
ment the function of the replaced procedures.

When a program uses a printer resource file to print an image on a printer, code
from the resource file opens a new grafPort and installs customized standard drawing proce-
dures that are appropriate for the capabilities of the printer rather than for those of the
Macintosh screen. The program then draws the text and graphics for each page into the
customized grafPort. All the QuickDraw calls that the program issues into the printer’s
grafPort are eventually broken down to the low-level drawing procedures and thus are trans-
lated correctly for the current printer. For a dot-matrix printer, the QuickDraw commands
are ultimately expressed as a bit image that is transferred to the paper by the moving print-
head. On the LaserWriter, the QuickDraw commands are translated into equivalent Post-
Script commands that drive the laser as it writes on the photosensitive surface.

' Generally, your program doesn’t have to be concerned with the nature of the printer
or the accompanying grafPort because the customization occurs at the lowest level of Quick-
Draw and all high-level QuickDraw calls will be executed appropriately, whether for the
screen or for any of a number of printers. From the programmer’s point of view, printing
is like drawing into a screen window the size of a sheet of paper. This is a critical idea
to understand. Once this concept is grasped, the rest of the printing process is easy to follow.
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' USING THE PRINT MANAGER

Because the customized drawing procedures that we mentioned in the previous section
can change for every variety of printer, the Print Manager is not kept in ROM. Each printer
resource file is kept on disk and the necessary code to facilitate printing is loaded into
RAM memory at print time and executed. This allows a great deal of flexibility to de-
velopers of new printers for the Macintosh. All printer resource files, however, share a
common interface definition for the procedures they contain. That is to say, the Print
Manager procedures that are available to programmers must have the same names and
parameter definitions in all printer resource files. For instance, every printer resource file
must have a procedure called PrOpen, among others.

The Print Manager section of Inside Macintosh contains the definitions for the print-
ing procedures available in every printer resource file. Every printer resource file contains
code to implement the functions described in the Print Manager. This allows the program-
mer to rely on a well-defined set of procedures knowing that they will be available on
every printer.

THE GLUE ROUTINES

Assembly language programmers can get access to the procedures of the Print Manager
by linking their code with a file called PrLink.Rel. This file contains short hook routines
that route Print Manager calls to the code that has been loaded in from the printer resource
file. The PrLink code is generic, that is, it does not actually implement the Print Manager
calls but instead is able to find the correct code from the printer resource file and jump
to it. For this reason, the PrLink code can be the same for all programs, regardless of
which printer they will be run on. PrLink acts like an operator in an old-fashioned switch-
board, connecting the calling program to the requested Print Manager routine, as shown
in Figure 4.1.

If your program will be using the Print Manager routines, you must list PrLink.Rel
as one of the files in your linker control file. The other thing that you should do when
writing code that calls the Print Manager is INCLUDE PrEqu.Txt at the head of your
assembler source code so that you will have access to symbolic offsets and constants
associated with the Print Manager and its data structures. If you INCLUDE PrEqu.Txt
at the head of your printing code, then you don’t have to specifically XREF the Print
Manager routines that you plan to use because PrEqu.Txt contains a complete list of XREF
statements for all available Print Manager routines. Both PrLink.Rel and PrEqu.Txt are
on the MDS2 disk that comes with the Macintosh 68000 development system.
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FIGURE 4.1. The Print Manager

OPENING THE PRINTER RESOURCE FILE

In order to use the Print Manager procedures in.your program, you must first open the
printer resource file by issuing a call to PrOpen. This routine takes no parameters and
returns no result. It opens the printer driver and the printer resource file. You can see
if the file opened successfully by calling the Print Manager function PrError just after
calling PrOpen. A negative result indicates an error in the most recent Print Manager call.

The opening code looks something like this:

; open the print resource file and driver
; PROCEDURE PrOpen
JSR PrOpen

; test the result to make sure it went ok

; FUNCTION PrError:BOOLEAN
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CLR.W -(spP) ; space for result

JSR PrError

MOVE.W (sp)+,D0 ; get result

BNE quitprint ; get out now if you can't open it

Notice how the calls to PrOpen and PrError are made with a JSR instruction. The
PrOpen and PrError labels, which are XREFd in the PrEqu.Txt file that we INCLUDE(,
are used as the destinations for the JSR calls. All calls to Print Manager routines are made
by using JSR in a similar fashion.

The call to PrOpen can be made when your program starts up. You may leave the
printer resource file open for the duration of the program, closing it with PrClose when
the program ends. On the other hand, you can choose instead to open and close the printer
resource file each time you act on a printing request, thereby freeing up the memory oc-
cupied by the printer resources when they are not being used.

SETTING UP A PRINT RECORD

The central data structure for printing with the Print Manager is the print record. It is
120 bytes long and contains information about the paper size and orientation; resolution
in dots per inch of the printer; various printing choices made by the user in the printing
dialogs; and other information used internally by the Print Manager routines to image
each page. We will be directly interested in only a few fields of the print record. Most

the values of the print record can be different from one printer to another, it is unwise
to manipulate the fields of the print record directly. It is best to use the procedures and
dialogs of the Print Manager to handle the print record. The Print Manager routines that
use the print record always expect to get a handle to the record as a parameter.

There are two different strategies that you can follow with print records. One way
is to allocate a new handle to a print record every time you print a document. In this case,
you use the Print Manager call PrDefault to fill in the newly allocated print record with
the standard values stored in the printer resource file. The user can then be given a chance
to change the default settings by using the PrStyle and PrJob dialogs, covered in the next
section.

The other strategy for print records is to store the print record along with the docu-
ment so that subsequent printing requests will reflect the choices made by the user the
last time the document was printed. In this situation, you should call PrValidate to make
sure that the fields of the print record are compatible with the current printer. This catches
the situation where the user prints a document on the ImageWriter and then later tries
to print the same document, using the same print record, on the LaserWriter. PrValidate
will correct any fields of the print record that conflict with the current printer while preserv-
ing as many of the settings as possible. Once again, the user should be given a chance
to change the settings in the PrStyle and PrJob dialogs before actually printing the
document.
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The code for the first strategy is shown below, along with comments discussing the
second strategy. The handle to the print record is saved in a safe register, given the sym-
bolic name PrintRecReg. You may choose to do likewise or define a global variable to hold it.

; allocate a handle for the print record
; If your program saves the print record with a document,
; then you could use that print record instead of
; allocating a new one here.
; FUNCTION NewHandle(bytecount: Size):Handle
; size => DO

; Handle => AO

MOVE.L #120,D0 ; size of print record
_NewHandle

MOVE.L AO,PrintRecReg ; store in a safe register

; £ill in the print record with standard default values
; If your program saves the print record with a document
; then you would call PrValidate instead.
;PROCEDURE Printdefault(hPrint: THPrint)
MOVE.L PrintRecReg,-(SP) ; we just allocated this record
JSR PrintDefault

THE PRINT MANAGER DIALOGS

Once you have a print record filled in with the default values, you should give the user
a chance to change the settings by using the print style dialog and the print job dialog.
The print style dialog is displayed by the Page Setup menu option in most programs. The
print job dialog is generally shown when the user chooses the Print menu option.

The print style dialog for the ImageWriter, shown in Figure 4.2, allows the user to
choose the paper size and orientation, pagination, and reduction. You call up this dialog
with the Print Manager function PrStiDialog. This procedure puts up the dialog, responds
to user clicks, and then modifies the print record to reflect the user’s choices. Different
printer resource files can have different versions of this dialog to allow choices specific
to a particular printer. Figure 4.3 shows the PrStIDialog for the LaserWriter. The impor-
tant thing to realize is that this dialog takes care of setting the proper print record fields
so that printing will proceed appropriately for the printer at hand. This frees you, as a
programmer, from worrying about what sort of printers your program will encounter. The
function result of PrStiDialog is FALSE if the user clicked the Cancel button, TRUE
otherwise. The print record values are updated only for a TRUE result.

PrStiDialog expects a handle to a print record as its input parameter, as shown on
page 83. Notice how the result is checked to see if the user clicked Cancel.
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; put up the style dialog to get paper size and reduction value

If you choose to put up this dialog separately, then
you will have to allocate a permanent print record to
hold the results.

Our print record will be deallocated at the end of
this document's printing.

FUNCTION PrStlDialog(hPrint:THPrint) :BOOLEAN

CLR W —-(SP) ; space for result
MOVE.L PrintRecReg,—(SP) ; hPrint

JSR PrStlDialog ; Jump to routine
MOVE.W (SP)+,D0 ; get result

BEQ cancel_job ; user clicked cancel

FIGURE 4.4.
ImageWriter Job

The other dialog that is part of the Print Manager is called up by the function
PrJobDialog. This asks the user to specify the page range, number of copies, and print
quality. The ImageWriter version of this dialog is shown in Figure 4.4, and the Laser-
Writer version is shown in Figure 4.5. Notice that the LaserWriter version disables the
buttons corresponding to print quality. There is only one quality for the LaserWriter—
very high. This dialog should be called whenever the user chooses Print from the file menu.
PrJobDialog expects a handle to a print record for input and returns a BOOLEAN result
that is FALSE if the user clicks the Cancel button, TRUE otherwise.

r
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; Now put up the job dialog to get print quality and
; page range. Results are stored in print record.
;FUNCTION  PrJobDialog(hPrint: THPrint):BOOLEAN

CLR.W -(SP) ; space for result
MOVE.L PrintRecReg,—(SP) ; hPrint

JSR PrJobDialog ; Jump to routine
MOVE.W (SP)+,D0 ; get result

BEQ cancel_job ; user clicked cancel

OPENING THE PRINT DOCUMENT/GRAFPORT

Once the print record is filled in with the default values and modified to reflect the user’s
choices in the two printing dialogs, then you can proceed with the printing. As mentioned
in the opening sections of this chapter, the key to printing on the Macintosh is the crea-
tion of a customized grafPort tailored to the current printer. The Print Manager function
PrOpenDoc takes care of creating the new grafPort by reading information from the printer
resource file and modifying it to fit the printing parameters stored in the print record.
The result of this function is a pointer to the new grafPort. PrOpenDoc also automati-
cally tells the Macintosh system that this new grafPort is now the current grafPort, so all
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subsequent drawing commands will be directed to the printing grafPort. For this reason,
it is important to save the previous grafPort, most likely a screen window, before initializ-
ing the printing port. When printing is finished, the former grafPort can be restored.

It is important to make sure that all the printer dialogs have been used before you
open a printing port, since PrOpenDoc uses information from the print record to con-
figure the new grafPort. It won’t do any good to change the print record after the print
port has been created.

PrOpenDoc takes three parameters: a handle to the print record, a pointer to a
memory block to use for the printing grafPort record, and a pointer to a memory block
to use for disk I/0 buffering. You can pass NIL for the last two parameters and the routine
will allocate the required memory on the heap.

; save the current grafPort: this is important

CLR.L —-(SP)
PEA (SP)
_GetPort

; open a printing document port
,PROCEDURE PrOpenDoc (hPrint:THPrint; pPrPort: TPPrPort;
pIOBuf: Ptr): TPPrPort

CLR.L -(SP) ; space for result
MOVE.L PrintRecReg,—(SP) ; hPrint

CLR.L —(SP) ; NIL

CLR.L -(SP) ; NIL

JSR PrOpenDoc

MOVE.L (SP)+,PrintPortReg ; store result

THE PRINTING LOOP

Now that the printing grafPort is open, you can finally begin to print. For each page of
the document, you must call PrOpenPage, draw the contents of that page using Quick-
Draw commands, and then call PrClosePage. If the user has selected draft quality, the
QuickDraw commands will be translated and sent directly to the printer. If standard or
high-quality printing has been selected, the commands will be saved as a “spool file” on
the disk and printed subsequently with the PrPicFile procedure.

A skeletal version of this loop is shown on page 86. Later sections of this chapter
will go into more detail regarding the actual imaging code necessary to draw a page. No-
tice that both PrOpenPage and PrClosePage take a pointer to the printing grafPort as
input. In addition, PrOpenPage can take a pointer to a rectangle to define the page frame.
Normally you will pass NIL to cause the page definition rectangle from the print record
to be used.
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;open a page

;PROCEDURE PrOpenPage (pPrPort:TPPrPort;pPageFrame: TPRect)

MOVE.L PrintPortReg,—(SP) ; the port
CLR.L -(SP) ; use page rect from hPrint
JSR PrOpenPage

; draw your page image here
FRRERREHRRRRKRKR KK

; close page
; PROCEDURE PrClosePage(pPrPort: TPPrPort)
MOVE.L PrintPortReg,—(SP) ; the port
JSR PrClosePage

When all the pages have been printed, then you must close the printing port, as
shown below.

; close the printing port when we are all done

; close the printing port

;PROCEDURE PrCloseDoc(pPrPort: TPPrPort)
MOVE.L PrintPortReg,—(SP) ; the port
JSR PrCloseDoc

SPOOL PRINTING THE DOCUMENT

As mentioned above, when the user has selected standard or high-resolution printing, the
pages are not printed immediately, but are saved to a temporary file on the disk. The Print
Manager procedure PrPicFile gets the images from the disk and sends them to the printer.
You can check the PrintRecord.prJob.bJDocLoop field of the print record to see if this
print request has been spooled or not. This test also works for the LaserWriter, where
all print jobs are sent directly to the printer and not spooled.

; only call PrPicFile if we are spool printing

MOVE.L PrintRecReg, AO ; get handle to print record
MOVE.L (A0),A0 ; convert to Ptr

TST.B prJob+bjDocLoop(A0) ; is this spool printing?
BEQ nospool ; 0 means draft printing
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If print spooling is in effect, then you call PrPicFile, passing the print record handle
as the first parameter. You can pass NIL for the next three parameters and the procedure
will automatically allocate them on the heap. The last parameter, prStatus, is a 26-byte
record that is filled in as the spool-printing process proceeds. Your program can look at
this record to see how far along the printing is. In the example below, we pass a pointer
to a local variable referenced relative to a stack frame pointer in register A6. Your pro-
grams can do the same or use a global variable.

;PROCEDURE PrPicFile(hPrint: THprint: pPrPort: TPPrPort;

H

pIOBuf: Ptr;pDevBuf:Ptr; VAR prStatus: TPrStatus)

MOVE.L PrintRecReg,-(SP) ; the print record
CLR.L -(sP) ; NIL

CLR.L —(SP) ; NIL

CLR.L —-(SP) ;5 NIL

PEA statusbytes(A6) ; VAR

JSR PrPicFile

CLOSING THE PRINT MANAGER

nospool

; reset the

When all the printing activities are done, you can close the Print Manager with a call to
PrClose. This procedure closes the printer resource file and frees up the memory occupied
by those resources. As mentioned in a previous section, you can leave the Print Manager
open for the duration of your program or bracket printing operations with PrOpen and
PrClose calls.

Regardless of whether you close the Print Manager or not at the end of a particular
printing operation, it is vital that you reset the grafPort to its former setting when you
are done printing. As mentioned above, the printing process opens its own grafPort and
directs all drawing commands to that port. When the printing ends, the port is not auto-
matically restored to its former state. It is your responsibility to save the port before begin-
ning the printing, as explained in a previous section of this chapter, and then to restore
the port when exiting the printing code. Assuming that the former grafPort was saved
on the stack, you can restore it with the following code.

port to what it was before printing

; grafPort was saved on the stack
_SetPort

; PROCEDURE PrClose

JSR

PrClose
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EXAMPLE PROGRAM MODULE

The foregoing explanation presented only the most superficial outline of the Print Manager
functions. In the following sections we will develop a working code module that you can
use to print out text from a program that uses the Text Edit Manager to handle text. For
instance, you can easily join this printing module to the MultiScroll text editor, developed
in The Complete Book of Macintosh Assembly Language, Volume I, by adding a Print option
to the file menu and adding a short bit of code to call the printing routine in this module.
This printing code module will get into some of the details of using the Print Manager
that couldn’t be discussed in the opening sections of this chapter. The full source code
for this print module is included in Appendix A as PrintModule. ASM. The source code
disk for this book, available from the author, also contains the source code for this print-
ing module.

The Documentation Header

2

;

XDEF

As usual, begin the code module with a short section of comments outlining the function
of the code. In this example, we have a single entry point, PrintDoc, which expects a
TEHandle on the stack as a parameter. The code module will print out the text associated
with that TERecord. The code module is totally self-contained. It relies on no other infor-
mation from the calling program other than the TEHandle. If you use this code yourself,
you may want to modify it to integrate it somewhat more with the rest of your program.

PrintModule.ASM

This code module accepts a TEHandle as input, and then
prints out the text in that TERecord.

The user is allowed to interact with the

Style and Job dialogs to determine the

type of printing desired.

It also supports a print idle dialog procedure.

This code works for both the ImageWriter and the LaserWriter.
January 1986, Dan Weston

; XDef our entry point routine so that the linker can
make it available to the calling code module

PrintDoc ; PROCEDURE PrintDoc(hTE:TEHandle)

; get the usual symbol files, as well as the printing symbols

INCLUDE
INCLUDE
INCLUDE
INCLUDE

MACTRAPS.D
TOOLEQU.D
QUICKEQU.D
PrEqu.Txt
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; define a value for our own use
botmargin EQU 72 ; pixels for bottom margin

In the documentation header we XDEF the label PrintDoc so that the linker can
hook it up to the rest of the code modules. Then we INCLUDE the usual symbol files
and the symbol file PrEqu.Txkt for the printing manager. PrEqu.Txt includes XREF state-
ments for all the Print Manager routines available inPrLink.Rel, so we don’t have to list
them ourselves. We also define a constant value for the number of pixels in the bottom
margin to help define the coordinates of each page that we will image.

Setting Up the Stack Frame

On entry to our printing procedure, PrintDoc, we need to set up a stack frame so that
the input parameter can be located and also so that we can reserve space for local vari-
ables. Many of the local variables are kept in safe registers, but others reside on the stack.

PrintDoc ; entry point for routine
; PROCEDURE PrintDoc(hTE:TEHandle)

; set up stack frame
; input parameter offset

hTE SET 8 ; offset to hTE parameter
parambytes SET 4 ; # bytes of parameters

; locals : use some registers

PrintRecReg SET A2

PrintPortReg SET A3

textPtrReg SET A4

currentlineReg SET D3

numLinesReg SET D4

startCharReg SET D5

endCharReg SET D6

numcopiesReg SET D7

; more locals on the stack frame

scratchRect SET -8 ; local scratch rectangle
statusbytes SET -34 ; 26 bytes for PrStatus
dlgPtr SET -38 ; ptr for idle dialog
localbytes SET -38 ; # bytes of locals

LINK A6,#localbytes

;save registers
MOVEM.L A2-A4/D3-D7,-(SP)
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Opening the Print Manager

Because this module is designed to be totally self-contained, it opens and closes the Print
Manager for each printing request. The calling program has no responsibilities other than
to call PrintDoc. The code to open the Print Manager here is the same as that shown
in an earlier section of this chapter.

; open the print resource file and driver
; PROCEDURE PrOpen
JSR PrOpen

; test the result to make sure it went ok
; FUNCTION PrError:BOOLEAN

CLR.W —(SP) ; space for result

JSR PrError

MOVE.W (SP)+,D0 ; get result

BNE quitprint ; get out now if you can't open it

Filling in the Print Record

Again, because this module is self-contained, a new print record is allocated and filled
in for each printing request. The print record is deleted after each printing request is
finished. If you decide to adapt this module to your own uses, then you may want to change
this section so that the printing code uses a print record that is a more permanent part
of the main program. As it is here, the print record is allocated at the beginning of the
printing job and then deallocated when it is done, so user selections for one job are not
carried over to the next one.

; allocate a handle for the print record
; If your program saves the print record with a document,
; then you could use that print record instead of
; allocating a new one here.
; FUNCTION NewHandle(bytecount: Size):Handle
; size => DO

; Handle => AO

MOVE.L #120,D0 ; size of print record
_NewHandle

MOVE.L AO,PrintRecReg ; store in a safe register

; £ill in the print record with standard default values
; If your program saves the print record with a document
; then you would call PrValidate instead.
;PROCEDURE PrintDefault(hPrint: THPrint)
MOVE.L PrintRecReg,—(SP) ; we just allocated this record
JSR PrintDefault
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USING THE PRINT MANAGER

Now that the print record is allocated and filled in with the default values, we can put
up the two printing dialogs and get the user’s specifications for this printing operation.
Please notice that both the style dialog and the job dialog are put up in sequence here,
whereas in a normal program the style dialog is only put up in response to a Page Setup
menu choice. In this module we can’t put up the style dialog separately because the print
record is not permanent. If you want to separate the style and job dialogs, then you will
have to allocate a permanent print record as a global variable in your main program module.

; put up the style dialog to get paper size

and reduction value

; If you choose to put up this dialog separately, then
; you will have to allocate a permanent print record to

; hold the results.

; Our print record will be deallocated at the end of

; this document's printing.

; FUNCTION PrStlDialog(hPrint:THPrint):BOOLEAN

CLR.W —-(SP) H
MOVE.L PrintRecReg,—(SP) ;
JSR PrStlDialog 5
MOVE.W (spP)+,D0 H
BEQ cancel_job ;

space for result
hPrint

Jjump to routine
get result

user clicked cancel

; Now put up the job dialog to get print quality and
; page range. Results are stored in print record.
;FUNCTION  PrJobDialog(hPrint: THPrint):BOOLEAN

CLR.W ~(SP) ;
MOVE.L PrintRecReg,-(SP) ;
JSR PrJobDialog H
MOVE.W (8P)+,D0 ;

BEQ cancel_job ;

Opening the Printing Port

space for result
hPrint

jump to routine
get result

user clicked cancel

When the print record is filled in with the user’s preferences, you can open the printing
grafPort and begin to print out the document. As mentioned in an earlier section, make
sure to save the current grafPort before opening the printing port.

; save the current grafPort: this is important

CLR.L —-(SP)
PEA (sp)
_GetPort
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; open a printing document port

;PROCEDURE PrOpenDoc(hPrint:THPrint;pPrPort:

2
CLR.L
MOVE.L
CLR.L
CLR.L
JSR
MOVE.L

pIOBuf: Ptr): TPPrPort
-(8P)
PrintRecReg,—-(SP)
-(sP)
—(sP)
PrOpenDoc
(SP)+,PrintPortReg

.
)
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TPPrPort;

space for result
hPrint

NIL

NIL

store result

Since the new grafPort may not have the same font specifications as the TE record

we want to print, we must transfer the font information from the TE record to the cor-
responding fields of the new grafPort. You might easily overlook this step and be dis-
appointed when the printout came out in a different font from that of the text in the window.

; make the font characteristics of the printer grafPort the same as for
; the TERecord

MOVE.
MOVE.
MOVE.
MOVE.
MOVE.
MOVE.
MOVE.

= = = = - e

hTE(A6),A0

(A0),A0

PrintPortReg,Al
teFontStuff(A0),txFont(Al)
teFontStuff+2(A0), txFace(Al)
teFontStuff+4(A0) , txMode (A1)
teFontStuff+6(A0),txSize(Al)

Calculating the Page Size

The priInfo.rPage field of the print record contains the dimensions of the printable area
of the page for the current printer. We want to use that rectangle, along with information
about the text height, to determine how many lines of text can fit on each page. The formulas
that we use for the calculation are shown below. Notice that we subtract a constant value
for the bottom margin from the overall page height.

3
;
.
H

.
)

get TEHandle
convert to Ptr
Ptr to grafPort
install font
install face
install mode
install size

; pageheight = (rpage.bottom — rPage.top) — botmargin
= pageheight DIV lineheight_of_font

; numLines

calclines

; figure out how many lines per page, using

MOVE.L
MOVE.L
MOVE.W
MOVE.L
MOVE.L

hTE(A6),A0
(40),A0
teLineHite(A0),DO
PrintRecReg, AQ
(40),A0

lineheight and page rect
get TEHandle

convert to Ptr

get line height from record
get handle to print record
convert to Ptr
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MOVE.W prinfo+rpage+top(AQ),D2 ; get top of page rect

CLR.L D1 ; clear upper word of register

MOVE.W prinfo+rpage+bottom(A0),D1 ; get bottom of page rect

SUB.W D2,D1 ; pageheight = bottom - top

SUB.W #botmargin,D1 ; pageheight = pageheight - botmargin
DIVU DO,D1 ; numLines = pageheight DIV lineheight
MOVE.W D1,numLinesReg ; save in safe register

The other calculation that we must do is to transfer the rPage rectangle from the
print record to a scratch rectangle and then modify the right dimension of the scratch
rectangle so that it matches the width of the TE destination rectangle. Once this is done,
the scratch rectangle can be used as a destination rectangle to determine the line breaks
for the text that is being drawn into the printing port. Because the scratch rectangle will
have the same width as the TE destination rectangle, the “what you see is what you get”
fidelity will be maintained in the printout. Other printing code examples that you might
see, such as those released by Apple, may blindly use the rPage rectangle as the format-
ting rectangle for text printing. Do not be misled.

; copy the page rect from the print record into our scratch rect

MOVE.L PrintRecReg, AO ; get handle to print record
MOVE.L (40),A0 ; convert to Ptr

LEA prinfo+rpage(AQ),A0 ; Ptr to page rect

LEA scratchRect(A6),A1 ; Ptr to scratch rect
MOVE.L (A0)+, (A1)+

MOVE.L (A0)+, (AL)+ ; copy 8 bytes

; make the right edge of the scratch rect the same as
; the width of the dest rect of the TE record
; what you see is what you get

MOVE.L hTE(A6) ,A0 ; get TE handle

MOVE.L (A0),A0 ; convert to Ptr

MOVE.W teDestRect+right(A0),DO ;

MOVE.W teDestRect+left(A0),D1

SUB.W D1,D0 ; width := right - left
MOVE.W DO, scratchRect+right(A6) ; install in scratchrect.right

Determining the Number of Copies

In the print job dialog, the user is allowed to specify a variable number of copies to print.
As a programmer you check the corresponding field of the print record to determine how
to proceed. If the user has selected draft printing, then you will need to examine the num-
ber of copies field and execute your page imaging loop for each of the requested copies.
If, on the other hand, the user has selected standard or high-quality printing, then you
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need to perform your imaging loop only once. For standard and high-quality printing,
which are spooled to disk, PrPicFile takes care of printing multiple copies. In draft mode,
however, where the printed output is sent directly to the printer, you will need to continue
looping until all the multiple copies have been printed.

To determine if the current print job is draft or spooled, look at the prJob.bjDocLoop
field of the print record. A value of zero in that field signifies draft printing, while a value
of one signals spool printing. We then set the local register, numCopiesReg, to the num-
ber of copies listed in the prJob.iCopies field of the print record if this is draft printing,
or to one if we are spool printing. Whichever value we put into numCopiesReg, we then
reduce it by one since we will be using numCopiesReg as a loop counter with the 68000’s
DBRA instruction. Loop counters used with DBRA must be one less than the number
of loops desired.

; if draft printing, go around for each copy
; if spool printing, just go around once
; first, see if we are spool printing

MOVE.L PrintRecReg, AO ; get handle to print record

MOVE.L (A0),A0 ; convert to Ptr

TST.B prJob+bjDocLoop(AO) ; is this spool printing?

BEQ doDraft ; 0 means draft printing

; 1f spool printing, set numCopiesReg to 1 so we only go around once

MOVE.W #1,numCopiesReg

BRA doSpool ; branch around dodraft
doDraft

; if draft printing, then get the number of copies from job record

MOVE.L PrintRecReg, AO ; get handle to print record

MOVE.L (40),A0 ; convert to Ptr

MOVE.W prJob+iCopies(AQ) ,numCopiesReg ; install in register
doSpool

; now subtract 1 from numCopies to work as 68000 loop counter

SUB.W #1,numCopiesReg

Imaging Each Page

Now the real work can begin. For each page we need to determine the beginning and
the ending character. This is done by using the array of line starts that is attached to the
TE record. This array contains the character position for the first character of each line
in the text. By knowing the number of lines on each page, it is easy to extract the begin-
ning and ending characters for each page. We also need to keep track of the current line
so that we can work with multipage documents.

We begin by initializing the startCharReg and the currentLineReg to zero.
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CopiesLoop ; come back here to print multiple copies in draft
; initialize startCharReg and currentLineReg
MOVE.W #0,startCharReg ; start at first character
MOVE.W #0,currentLineReg ; and first line

Next, we call PrOpenPage to initialize a new drawing page within the printing
grafPort. We will do this once for each page in the document.

PageLoop
;open a page

;PROCEDURE PrOpenPage(pPrPort:TPPrPort;pPageFrame: TPRect)

MOVE.L PrintPortReg,-(SP) ; the port
CLR.L -(sp) ; use page rect from hPrint
JSR PrOpenPage

Once the page is opened, we calculate the ending character for the page. Remember
that the startcharacter position was initialized to zero outside the loop. To figure the end
character for the first page, we advance the currentLineReg, which was initialized to zero,
by the number of lines on a page. Then we check to make sure that the new value of
currentLineReg doesn’t go beyond the total number of lines in the text, as shown by the
teNLines field of the TE record. If the text does not fill an entire page, we can assume
that this is the last page of the document and simply use the teLength field of the TE
record as the value for the end character position. Otherwise, we extract the end character
position from the array of line starts, using the currentLineReg as an index into the array.

This is probably the trickiest part of this code module, so take some time and study
it until you understand how it works. The pseudocode for this process looks something

like this:
; currentLine := currentLine + numLines;
; IF currentLine > hTE* .nLines
; THEN endChar := hTE**.length
H ELSE endChar := (hTE*.lineStarts[currentLine + 1]) -1;

The assembly language is a bit more involved, but the function is the same.

; compute ending character for page, startChar is already set
H watch for special case of last page, it may be shorter
; than numLines

; advance the current line one full page
ADD.W numLinesReg,currentLineReg
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; see if this goes past the total # lines in TErecord

MOVE.L hTE(A6),A0; get TERecord

MOVE.L (A0),A0 ; convert to Ptr

MOVE.W teNLines(A0),D0 ; total # lines

CMP.W currentLineReg,D0 ; total - current

BMI lastpage ; special case, short page

; normal case, ending char 1s retrieved from array of
; line starts

MOVE.L hTE(A6), A0 ; get TERecord
MOVE.L (A0),A0 ; convert to Ptr
LEA teLines(AQ),AOQ ; get beginning of array
ADDA currentLineReg, AO ; bump index to end line
ADDA currentLineReg, AO ; add offset twice for word table
ADDA #2,A0 ; get start of next line
MOVE.W (AQ) ,endCharReg ; get char pos
SUB.W #1,endCharReg ; move back one char
BRA drawtext ; branch around lastpage
lastpage

; special case to handle last page, which may be shorter than numlines
; end char is simply equal to length of TE text

MOVE.L hTE(A6),A0 ; get TEHandle
MOVE.L (A0),40 ; convert to Ptr
MOVE.W teLength(AO),endCharReg ; get length

Now we can actually draw the text. We use TextBox to draw left justified text, run-
ning from the first char to the end char, into the scratch rect that we defined earlier. Be
sure to lock down the télext handle before using it with TextBox.

drawtext
; draw text box with this page's text
; lock down the text

MOVE.L hTE(A6),A0 ; get TEHandle
MOVE.L (A0),A0 ; convert to Ptr
MOVE.L teTextH(AO), A0 ; get handle to text
_HLock

;PROCEDURE TextBox(text:Ptr;length:LongInt;box:Rect;just:INTEGER)

MOVE.L (A0), A0 ; Ptr to text, from above

ADDA startCharReg, AO ; bump Ptr to first char on page
MOVE.L A0,-(SP) ; push text Ptr on stack

CLR.L DO ; clear out a register
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MOVE.W
SUB.W
MOVE.L
PEA
MOVE.W
_TextB

; unlo
MOVE.L
MOVE.L
MOVE.L
_HUnLo

; close page
; PROC

endCharReg, DO
startCharReg,D0 ; length = end - start
DO,-(SP) ; put long length on stack
scratchRect(A6) ; use scratch rect
#0,-(SP) ; left justification
ox
ck the text
hTE(A6),A0 ; get TEHandle
(A0),A0 ; convert to Ptr
teTextH(AO), A0 ; get handle to text
ck

TextBox uses QuickDraw commands to draw the text into the destination rectangle,
and those commands are translated by the Print Manager software into appropriate actions
for the current printer. The single call to TextBox draws the text for the entire page.

Once the page is imaged with TextBox, we call PrClosePage to tell the Print Manager
that there is nothing more to do with this page. In draft mode, this will cause a form-feed
character to be sent to the printer, ejecting the page which has just been printed. In stan-
dard and high-quality mode, closing the page affects the data structures that are being
spooled to the disk.

EDURE PrClosePage(pPrPort: TPPrPort)

MOVE.L PrintPortReg,—(SP) ; the port

JSR

PrClosePage

At the end of each page we need to manipulate some of the values used to image
the page before looping back to get the next page. The startChar is made equal to the
current endChar. You might think that the startChar should be made equal to the
endChar + 1, but because the startChar is used as an index into an array of characters,
beginning at position 0, we have to allow for the off-by-one bug. We also need to see if
this was the last page in the document. That is, is the endChar equal to the total length
of the text? If this was the last page, then we don’t want to loop back for more. Otherwise,
we go back to pageLoop to image the next page.

;startChar := endChar
MOVE.W endCharReg, startCharReg

; have we printed the last character yet?

MOVE. L hTE(A6) ,A0 ; get TEHandle
MOVE.L (A0),A0 ; convert to Ptr
CMP.W teLength(A0),endCharReg ; is end = length

BLT

pageLoop ; not done yet
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Once all the pages in the document have been imaged, we must check the number-
of-copies register to see if the entire imaging process needs to be repeated for multiple
copies. Alternatively, you might want to construct the loops so that multiple copies of

each page are printed together.

; check the number of copies loop counter
; we only go around again for multiple copies in draft mode

DBRA numCopiesReg,CopiesLoop

When all the copies have been printed and the loop terminates, you must close the
printing port before moving on. The code for closing the printing grafPort is the same

as shown earlier in this chapter.

; close the printing port when we are all done

; close the printing port

; PROCEDURE PrCloseDoc(pPrPort: TPPrPort)

MOVE.L PrintPortReg,—(SP) 5
JSR PrCloseDoc

Spool Printing

the port

When all the page imaging is done, check to see if the job needs to be spool-printed or
not. As outlined in an earlier section, the prJob.bjDocLoop field of the print record con-
tains a value that tells you whether or not you should spool-print. PrPicFile should be
called only if the current job has been spooled.

; Only call PrPicFile if we are spool printing

MOVE.L PrintRecReg,AO H
MOVE.L (A0),A0 5
TST.B prJob+bjDocLoop(A0) ;
BEQ nospool H

;PROCEDURE PrPicFile(hPrint: THprint:

pIOBuf: Ptr;pDevBuf:

b
MOVE.L PrintRecReg,—(SP) ;
CLR.L ~(sP) ;
CLR.L —-(SP) H
CLR.L -(SP) H
PEA statusbytes(A6) ;
JSR PrPicFile

nospool

get handle to print record
convert to Ptr

is this spool printing?

0 means draft printing

pPrPort: TPPrPort;

Ptr; VAR prStatus: TPrStatus)
the print record

NIL

NIL

NIL

VAR
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Cleaning Up

When all the printing tasks are done, reset the grafPort to its former state, deallocate the
print record (unless you are using a permanent print record), and close the Print Manager.
Then clean up the stack frame and return to the calling program. Notice the location of
the cancel_job and quitprint labels referenced earlier in the code module.

; reset the port to what it was before printing
; grafPort was saved on the stack
_SetPort

cancel_job
; PROCEDURE DisposHandle
MOVE.L PrintRecReg, A0
_DisposHandle

; Procedure PrClose

JSR PrClose ;3 from PrLink

quitprint
; restore registers
MOVEM. L (SP)+,A2-A4/D3-D7

; clean up stack frame and return

UNLK A6

MOVE.L (SP)+,A0

ADDA #parambytes,SP
JMP (40)

END

This module presents the basic code you need to print out vanilla text-edit text to
any sort of printer. It has been tested on the ImageWriter and the LaserWriter and works
fine on both of them. The module illustrates the generality that the Print Manager allows
you as a programmer. You can write imaging code without worrying about the type of
printer being used with your program.
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. OPTIMIZING FOR THE LASERWRITER

The thrust of the discussions above is that printing code can be written without regard
for the type of printer on which the document will eventually be printed. The advent
of the LaserWriter opens up many unique possibilities and presents some limitations to
this concept.

The resolution of the ImageWriter and the Macintosh screen is 72 dots per inch.
The LaserWriter comes in at 300 dots per inch. The scaling done by the LaserWriter driver
when it translates a 72-dpi bit image to a 300-dpi bit image will sometimes cause the image
to come out slightly smaller than it appears on the screen. Other types of drawing that
rely on QuickDraw calls and coordinates rather than bit images tend to be translated more
faithfully from the screen to the LaserWriter.

Your program also has the option of writing PostScript commands directly to the
LaserWriter to take full advantage of its higher resolution and power without going through
the QuickDraw to PostScript translation process. In order to send PostScript commands
directly, you must use the PicComment command from QuickDraw. This feature lets
you imbed comments within a QuickDraw picture definition. Picture comments allow
you to imbed program or device-specific information inside a QuickDraw picture. There
are many different kinds of picture comments, each identified by a unique integer type
number. If the application decoding the picture comes across a picture comment that it
is not specifically designed to understand, the application just ignores the comment. The
LaserWriter print driver is set up to process a variety of picture comments. In particular,
picture comments numbered 190, 191, and 192 tell the driver that the information in those
comments is raw PostScript, which can drive the laser printer directly. The ImageWriter
driver, on the other hand, will ignore picture comments having these and similar numbers.

If you have a series of PostScript commands contained in a handle and the handle
is in register A2, the following code will imbed the PostScript commands in a picture
definition that can then be drawn into a printing grafPort. A QuickDraw picture with
PostScript picture comments can also be sent safely to the ImageWriter because the Post-
Script commands within the pic comments will be ignored by the ImageWriter driver.

; assume handle to PostScript commands in A2

; Equates for PostScript pic comment identifiers
PostScriptBegin EQU 190
PostScriptEnd EQU 191
PostScript EQU 192

; FUNCTION OpenPicture(picFrame:Rect): PicHandle

CLR.L —-(SP) ; result

PEA picRect(A5) ; the picFrame
_OpenPicture

MOVE.L (SP)+,A3 ; save PicHandle
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; PROCEDURE PicComment(kind,dataSize:INTEGER;dataHandle:Handle)

MOVE.W #PostScriptBegin,-(SP) ; signal start of PostScript
MOVE.W #0,-(SP) ; no data for this comment
MOVE.L #0,-(SP)

_PicComment

; FUNCTION GetHandleSize(h:Handle):LONGINT

5 h => A0, size => DO

MOVE.L A2,A0

_GetHandleSize

; PROCEDURE PicComment(kind,dataSize:INTEGER;dataHandle:Handle)

MOVE.W #PostScript,—(SP) ; signal PostScript data
MOVE.W DO,~-(SP) ; length of data

MOVE.L A2,-(SP) ; handle to our PostScript data
_PicComment

; PROCEDURE PicComment(kind,dataSize:INTEGER;dataHandle:Handle)

MOVE.W
MOVE.W
MOVE.L
_PicCo

; PROC
_Close

#PostScriptEnd,—(SP) ; signal end of PostScript
#0,-(SP) ; no data for this comment
#0,—(SP)

mment

EDURE ClosePicture

Picture

The inclusion of other types of picture comments in your QuickDraw pictures also
allows the LaserWriter to recognize rotated text and other special cases in your drawing.
The available picture comments are too extensive to discuss fully here, but they are described
in Macintosh Technical Note #27, available from Apple. MacDraw uses many picture com-
ments in its output to produce very high quality images on the LaserWriter.

On the downside, there are some operations that run much more slowly on the Laser-
Writer than on the screen. One aspect of TextBox that makes it less than desirable for
the LaserWriter is that it calls EraseRect for the area in which the text will be printed.
While this may be a good idea on the screen, it is unnecessary and very time-consuming
for the LaserWriter to try to erase all the pixels in a given area. TextBox will work on
the LaserWriter, but if you are interested in optimizing your code to print quickly on it,
you should avoid calls to TextBox or EraseRect. In this example we have used TextBox
to illustrate the concept that printing code can be made printer-independent. The whole
concept of optimizing your printing code for the LaserWriter is covered in some detail
in Macintosh Technical Note #72, as well as in #27, mentioned above. See Appendix B
for information on how to get Macintosh Tech Notes from Apple.
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INSTALLING PRINT IDLE PROCEDURES

The Print Manager contains provisions for installing a procedure that will be called during
the printing process whenever the Print Manager code is waiting for the printer. This
so-called “idle proc” can be used to allow the user to cancel a print operation that is in
progress. There is a default idle proc that looks at the keyboard and aborts the printing
job if the command period (.) keys have been pressed. This section will show how you
can install your own idle procedure to override the default procedure.

The idle proc that we will install here puts up a dialog with a stop button, as shown
in Figure 4.6. If the user clicks the stop button, then we will call PrSetError to set the
error code in the Print Manager globals, an action that will halt the printing process and
exit gracefully, cleaning up any disk files and deallocating unneeded data structures.

All of the code listed below can be inserted into the print example shown in the
previous section.

The first thing to do is to put up the dialog. This can be done any time after the
printing process has begun. You can insert the following code just after the printing port
has been opened with PrOpenDoc. (Be sure also to include a resource definition for a
DLOG and DITL #512 in the resource file of the main program. A sample resource defini-
tion for this dialog is listed here in comment form.) We save the dialog pointer in a local
variable that needs to be added to the definition of the print module’s stack frame.

r

« WAICH Edit

Untitled

Printing

(ston) &

FIGURE 4.6. Print Idle dialog
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; Type DLOG
;print,512

3100 150 180 350
;Visible NoGoAway

;Type DITL
;print,512
32

;Button
350 80 75 120
;Stop

;StaticText
325 60 36 190
;Printing now.

idledlg EQU 512 ; id of idle dialog
; put up the print stop dialog
; FUNCTION GetNewDialog (dialogID: INTEGER; dStorage: Ptr;
behind: WindowPtr) : DialogPtr

2

CIR.L -(8P) ; space for dialog pointer
MOVE.W #idledlg,—(SP) ; identify dialog rsrc #
CLR.L -(SP) ; storage area

MOVE.L #-1,-(SP) ; dialog goes on top
_GetNewDialog ; display dialog box

MOVE.L (SP),d1gPtr(A6) ; save handle for closedialog
; PROCEDURE DrawDialog(theDialog:DialogPtr)

_DrawDialog ; Ptr still on stack

Once the dialog is drawn, post a phony mouse-down and mouse-up event in order
to correct a bug in the Print Manager. If you click in this dialog right after it is put on
the screen, then Print Manager will not be able to return gracefully from the aborted print
job. In fact, it will go off into an interminable loop. However, posting a mouse-down and
mouse-up event circumvents that problem. I confess that I don’t know why this bug fix
works, but I know that it doesn’t hurt anything and seems to make the print idle proce-
dure process more reliable.

103



THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOLUME i

; post a phony mouse-down event

MOVE.W #1,A0
MOVE.L #0,D0
_PostEvent
MOVE.W #2,A0
MOVE.L #0,D0
_PostEvent

When the dialog has been displayed, then we must install a pointer to our idle proce-
dure in the appropriate field of the print record so that our procedure will be used instead
of the default procedure.

LEA idleproc, A0 ; address of our idle procedure
MOVE.L printRecReg,Al ; get print record handle
MOVE.L (A1),A1 ; convert to Ptr

MOVE.L AO,prJob+pIdleProc(Al) ; install pointer

The idle procedure takes no parameters and returns no results. Qur procedure simply
looks at user events during printing to see if the stop button in the dialog has been pressed.
If the button is clicked, our idle procedure calls PrSetError to halt the printing process.
PrSetError sets the appropriate error code in a low-memory location reserved for the Print
Manager. The printing doesn’t actually stop until the Print Manager code resumes after
the idle procedure. The Print Manager code checks the low-memory location frequently,
watching for the abort error code. When it finds that code, it then takes care of halting
the printing job and cleaning up.

The idle procedure code shows how a nonmodal dialog can be handled. This dialog
is nonmodal because it allows user events unrelated to the dialog to take place.
IsDialogEvent is used to examine an event record to see if the event involved an active
dialog item.

idleProc
stopbutton SET 1 ; item # of stop button

; no parameters

; local variables

theEvent SET -16 ; space for Event record
theltem SET -18 ; space for ItemHit
theDialog SET -22 ; space for DlgPtr
locals SET -22

LINK A6,#locals
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; FUNCTIONGetNextEvent(eventMask: INTEGER;

H VAR theEvent: EventRecord) : BOOLEAN

CLR.W —-(SP) ; clear space for result
MOVE.W #$0FFF,—(SP) ; allow 12 standard events
PEA theEvent (A6) ; place to fill in event info
_GetNextEvent ; look for an event

MOVE.W (SP)+,DO0 ; get result code

; FUNCTION IsDIalogEvent(theEvent:EventRecord):BOOLEAN

CLR.W -(sP) ; Space for result
PEA theEvent (A6) ; the event
_IsDialogEvent

MOVE.W (SpP)+,D0 ; get result

BEQ idleexit ; not a dialog event

If IsDialogEvent returns TRUE, then we call DialogSelect, which processes an
event much like the more familiar ModalDialog, returning the number of the item involved
in the event in the VAR parameter ItemHit.

;FUNCTION DialogSelect(theEvent:EventRecord;VAR theDialog:DialogPtr;

; VAR itemHit:INTEGER) :BOOLEAN
CLR.W —-(SP) ; space for result
PEA theEvent(A6) ; the Event

PEA theDialog(A6) ; the dialog VAR

PEA theItem(A6) ; itemHit VAR
_DialogSelect

MOVE.W (spP)+,D0 ; get result

BEQ idleexit ; not an enabled item

If DialogSelect returns a value of 1 in ItemHit, then we know that the stop button
was clicked. We beep the Mac speaker to let the user know that we have received the mes-
sage, since there can be a 5-10 second delay between a user click and the idle procedure
being called to handle it. Then we call PrSetError with 128 (using the symbol iPrAbort
from PrEqu.Tkt) as input.

CMP.W #stopbutton,theltem(A6) ; did they click the stop button
BNE idleexit

MOVE.W #20,—(SP)

_SysBeep

; if user has clicked the stop button, set the print global
; with the abort code

;PROCEDURE PrSetError(errorcode: INTEGER)

MOVE.W #iPrAbort,—(SP)

JSR PrSetError
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idleexit

UNLK

RTS

Regardless of whether we detected a mouse click in the stop button or not, we exit
the same way.

A6

Of course you might want to devise more elaborate idle procedures. In particular,
you can write an idle procedure that looks at the prStatus record filled in by PrPicFile
and reports to the user in a dialog showing the progress of the spool printing.

TWEEKING THE PRINT RECORD

Even though official Apple policy recommends that you never directly change the value
of any field of the print record, there are times when you want to jump in and alter some
of the values in order to achieve a special purpose. This section will show you how to break
some of the rules and get away with it.

Consider the situation where you want to write a program to print out custom disk
labels on continuous-feed adhesive labels. The labels come on fan-fold paper, one abreast.
The distance from the top of one label to the top of the next label is exactly 3 inches.
Each label itself is 2% inches square. Since this obviously doesn’t match any of the page
sizes given in the normal print style dialog, you will have to do something to make sure
that your printouts fit the labels. The layout of the labels is shown in Figure 4.7.

The first thing you must do is allocate a print record and fill it in with the default
values, as we did in the previous example. Then, instead of putting up a style dialog,
fill in the print record values yourself to define the dimensions of the paper.

Fill in the prlnfo.rPage rectangle with the rectangle shown in Figure 4.8. This rec-
tangle defines the potential printable area of the label. When you actually draw your image
on the label, you will draw into a smaller rectangle inset from the larger rPage rectangle
that you are defining here. The inset target rectangle will correspond to the label itself.

; adjust the rPage rectangle to match the
; total printable area of the label

MOVE.L (A3),A1 ; get Ptr to print Record
LEA pageRect(Al),Al ; pageRect of hPrint
MOVE.W #0, (A1)+ ; top =0

MOVE.W #0, (A1)+ ; left = 0

MOVE.W #198, (A1) + ; bottom = 198

MOVE.W #360, (A1) ; right = 360
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FIGURE 4.7. Disk label layout

Once you have changed the prInfo.rPage rectangle, you must also copy that rectangle
into the prInfoPT.rPage record field. The prInfoPT subrecord is a copy of the prinfo
subrecord that the Print Manager uses to image the printing document at print time. Its
specific use is not publicly documented, but anytime you directly manipulate the prInfo
values, you must also change the corresponding values in the prInfoPT subrecord. If you
do anything beyond what is shown in this section of the chapter, you are on your own,
as Apple will not support print-record fiddling.
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FIGURE 4.8. prinfo.rPage rectangle

; copy prInfo.rPage to prInfoPT.rPage

MOVE.L (A3),A1 ; Ptr to print Record
LEA prinfo+rpage(Al),AQ ; start of prlnfo

LEA prInfoPT+rPage(Al),Al ; start of prInfo copy
MOVE.L (A0)+, (A1) +

MOVE. L (A0), (A1)

The other change that you must make in the print record to accommodate the labels
is to set the paper size fields of the prStl subrecord so that the Print Manager will know
how far to advance the form at the end of each page (label). The page-size fields are set
in 1/120 of an inch. For the labels, the height is set to 360 and the width is set to 540,
as shown in Figure 4.9.
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; adju
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FIGURE 4.9. Page size
st the paper size
(A3),A1 ; Ptr to print Record
#360,prStl+iPageV(Al) ; 360/120 inch
#540, prStl+IPageH (A1) ; 540/120 inch

There is one more thing you need to consider if you want to allow printing in high
resolution mode with an altered print record. The rPage field of the prInfoPT subrecord
must be twice as big as the rPage field in the prInfo subrecord when you print in hi res
mode on the ImageWriter. By checking bit 0 of the wDev field of the prStl subrecord,
you can tell if hi res printing has been selected for the ImageWriter. Because Apple doesn’t
want you to look at these kinds of details, you have to define the offsets yourself to get
at the data.
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wDev EQU 0 ; offset to prStl.wDev
hires EQU 0 ; bit # of hi res flag

; special case if high resolution

MOVE.L printRecReg, AO

MOVE.L (A0),A0 ; get Ptr to print record
MOVE.W prStl+wDev(A0),DO ; this word has all the info
BTST #HighRes,DO ; this bit set if hi res
BEQ standard

; double the size of the hi res prInfoPT.rPage

MOVE.W prinfoPT+rPage+right(A0),DO0 ; get right coordinate
MOVE.W prInfoPT+rPage+bottom(A0),D1 ; get bottom coordinate
ASL.W #1,D0 ;5 multiply by 2
ASL.W #1,D1
MOVE.W DO, prInfoPT+rPage+right(A0)
MOVE.W D1,prinfoPT+rPage+bottom(A0)

standard

Once all the substitutions have been made in the print record, you may open a printing
document/grafPort and draw your image into the rectangle corresponding to the label.
I want to emphasize that the foregoing discussion is specific to the ImageWriter printer
resource file and that it probably won’t apply if you are using some other sort of printer.
I have included this information, however, to encourage you to explore the print record
and experiment with the various settings. This kind of experimentation is probably ill-
advised for programs that you plan to release commercially, but it can be a big help if
you want to write some tools, such as the label printer, for your own use.

| SUMMARY

The most important aspect of the Print Manager is that it gives your application programs
printer independence. You can write programs that will print properly to a wide variety
of printers. This chapter has explained that the key to this flexibility is the customized
grafPort the Print Manager opens for each kind of printer. Your responsibility as a program-
mer is reduced to writing imaging code that is able to draw each page of the document
as if it were a page-sized window.
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A brief discussion was also presented on ways to optimize your printing code to take
advantage of special features of the LaserWriter and to avoid some of its limitations. This
topic really deserves more treatment, but several sources of information from Apple were
mentioned in the discussion.

Finally, this chapter discussed the possible ways in which you can manipulate the
print record directly, although the information is surrounded by strict caveats as to its
general applicability. Twweeking the print record is recommended only when you have a
very clearly defined way in which the program will interact with the printer, such as a
special-purpose label printing program. But don’t be afraid to explore the Print Manager.
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CHAPTER

HFS, MFS, and the Standard
File Package

When the Macintosh was first released, it had a 400K internal floppy disk drive with the
option of adding an additional 400K external floppy. The files on these disks were or-
ganized as a single long list of files, indexed by a single directory. The Finder provided
a semblance of hierarchy to the file organization with folders, but that conceit was only
skin deep. This flat file structure is called the Macintosh File System or MFS. Its main
drawback is its inability to deal efficiently with disk volumes much larger than 400K be-
cause it is limited to a single directory for a disk volume. Third-party manufacturers soon
began to release 10- and 20-megabyte hard-disk drives for the Macintosh, but the user
was forced to partition the hard drives into separate smaller volumes in order to deal with
the limitations of MFS. In particular, as the number of files on a larger disk grew, the
performance of the Macintosh dropped dramatically because MFS did not have the abil-
ity to hide files in hierarchical structures.

Almost two years after the original Macintosh release, Apple began to market its
own hard-disk drive, the HD20. To overcome the limitations of MFS, Apple released a
new filing system along with the HD20. This new filing system, called the Hierarchical
Filing System or HFS, organizes files on a disk volume in a hierarchical tree structure
of directories and subdirectories, much like UNIX or MS-DOS. With HFS, folders ceased
to be a cosmetic conceit and became true subdirectories. Each folder has a separate direc-
tory. A folder can contain another folder, which in turn represents a separate directory
of files. This hierarchical organization allows much more efficient management of larger
volumes. For the first time, Mac users have access to a large storage medium without hav-
ing to partition the disk into separate volumes.

HFS was originally released as a set of routines that was loaded into memory at boot
time and patched the original ROM File Manager routines. (See Chapter 2 for an expla-
nation of how to patch ROM.) At that time, your boot disk had to contain the file HD20
in order to have access to the HFS routines. Several months later, in January 1986, Apple
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released the Macintosh Plus and the new 128 K ROM. The new ROM contained the HFS
routines, so no special startup files were needed for machines running the 128K ROM.
Apple is offering to upgrade older Macintoshes with the 64K ROM to the new 128K ROM
and new 800K double-sided floppy disk drives. This upgrade results in a remarkable in-
crease in speed that is very noticeable to the user.

HFS-MFS COMPATIBILITY

HFS was a big advance, but Apple had to make sure that it was compatible with the large
base of software that had been written for the original MFS system software. The com-
patibility problem can be looked at from two perspectives, user’s and programmer’s.

From the user’s point of view, the most apparent difference between MFS and HFS
is the new interface provided by the Standard File Package dialogs included in almost all
Macintosh programs to give users access to files. In an HFS system, the dialogs have addi-
tional capabilities to open subdirectories (folders) and move around the overall-volume
tree structure in an intuitive way that is in keeping with the nature of the Macintosh user-
interface guidelines. )

Figure 5.1 (page 114) shows the Standard File dialogs, in their MFS and HFS ver-
sions. The MFS SFGetFile dialog lists all available files on a volume in its scroll box.
For large volume, this list can be much too long to view efficiently. The HFS version of
SFGetFile displays files in the current directory only. By double-clicking on a folder listed
in the scrolling window, a user may move down in the file hierarchy to view the contents
of that folder. An additional control button above the scrolling selection box allows the
user to close folders and move back up in the directory hierarchy. Apple has done a ter-
rific job of making the hierarchical structure of the filing system easy to use, especially
when you compare it to the cryptic commands and pathnames MS-DOS users must use.

The newer versions of the Standard File dialogs are equally adept at handling HFS
or MFS volumes, so it is possible to use disks from either system at the same time. At
this level, the compatibility is almost completely transparent. The switch from one sys-
tem to the other takes almost no effort on the part of the user.

The other difference that is most noticeable to the user is the fact that file names
on a disk no longer must be unique. You may have several files with the same name as
long as they are in separate directories. This is a good indication that, as we shall see in
the following sections, the File Manager treats directories almost as if they were separate
disk volumes.

For the programmer, on the other hand, the key to the compatibility solution is the
volume reference number parameter that is used in the low-level file access routines in
both MFS and HFS. In MFS a file could be uniquely identified by supplying a file name
and a volume reference number telling the File Manager on which disk fo find the file
with that name. By using a unique volume reference number for each volume on line,
MFS was able to keep track of more than one volume with the same volume name. On
any one volume, however, a given file name could appear only once.
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FIGURE 5.1. Standard File dialogs
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With HFS, a file name may be used more than once on a volume as long as it ap-
pears in different directories. In order to uniquely identify a file on an HFS volume, you
must provide a working-directory reference number and a file name. The working-directory
reference number tells the File Manager in which directory it can find the file with that
name. The working-directory reference number for the root directory of an HFS volume
is the same as the volume reference number for that volume. The root directory is equiva-
lent to the volume. Subdirectories on the volume have unique working-directory refer-
ence numbers.

The key factor that allows HFS to be compatible with MFS is that HFS can accept
either a volume reference number or a working-directory reference number when receiv-
ing a file specification. The HFS File Manager routines know how to use either of these
identification aids to find a file. As long as your program uses one of these two methods
to identify files, then it will run successfully under MFS or HFS.

The easiest way to insure compatibility is to access files only through the Standard
File routines. These routines return the required file name and volume/working-directory
reference number to your program so that you may unambiguously identify any file on
any volume, MFS or HFS. Other times, you may want to access files without going through
the Standard File dialogs, such as when you want to locate a help file or a scratch file.
In these situations, where you will be constructing the file-identifying information your-
self, you will need to pay particular attention to the differences between MFS and HFS.
Both of these compatibility paths are explained by examples in the sections that follow.

USING THE STANDARD FILE PACKAGE

As mentioned previously, the easiest way to avoid problems with HFS directories is to
access files only via the Standard File Package. The two routines, SFGetFile and SFPut-
File, of the Standard File Package allow the user to specify the disk, directory, and file
name in an unambiguous way. The SFReply record returned by these routines contains
all the information that your program needs to open a file on either an MFS or an HFS
volume.

The SFReply record returns information about the file designated by the user, in-
cluding the file name, file type, volume reference number (which may be a working-
directory reference number for HFS volumes), and the file’s version number (almost
always 0, and used only on MFS volumes). The SFReply also contains a BOOLEAN field
that is FALSE if the user clicked the Cancel button of the Standard File dialog. The off-
sets to the individual fields are listed below. You can use these equates in your assembly
language code, or INCLUDE similar constants from PackMacs.Txt. The entire SFReply
record, including space for the file name, which is tacked on to the end, is 74 bytes. You
will probably want to reserve space for one SFReply in your application globals, or you
can also allocate space in a temporary stack frame if you don’t need to keep the results
around after using them once.
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5 Offsets into SFReply record
good EQU 0
ftype EQU 2
vrefnum EQU 6
version EQU 8
fname EQU 10

There are no trap words for SFGetFile or SFPutFile. These routines must be ac-
cessed by calling the ROM routine Pack3 with the proper selector word on the stack. To
call SFGetFile, you must push the value 2 on the stack and call Pack3. To get SFPutFile,
call Pack3 with the value 1 on the stack. Pack3 is the ROM entry point to the part of
the Package Manager that is responsible for going out to the system file and loading in
the code and dialogs definitions to run the Standard File routines. To make it easy on
you, here are two macro definitions that allow high-level access to SFGetFile and SFPut-
File. You must push the required parameters for the routines onto the stack before calling
these macros, as illustrated in a following section.

; Macros

MACRO  _SFGetFile
MOVE.W #2,-(SP)
_Pack3
|

MACRO _SFPutFile
MOVE.W #1,-(SP)
_Pack3

PARAMETERS FOR SFGETFILE

Once these macros are defined, you can push the required parameters on the stack and
call the routines with the macros. The first parameter to SFGetFile designates the coor-
dinates of the top left corner of the dialog. The second parameter is a pointer to a string
to use as a prompt in the dialog. Pass a zero for this parameter to SFGetFile since it does
not use a prompt.

The third parameter for SFGetFile is a pointer to a file filter procedure that is used
to select which files should be displayed in the scrolling box of the dialog. The format
of the file filter proc is discussed separately in a subsequent section. If you don’t define
a filter proc, pass a long word equal to zero for this parameter. The fourth parameter is
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FileList
DC.L
DC.L

a number between 1 and 4, inclusive, that tells how many types of files are in the file-
type list. The file-type list contains the file types that should be displayed in the scrolling
box. This is the primary filtering mechanism for the dialog, with the filter procedure provid-
ing a secondary level of screening. If you want all types of files to be displayed, pass —1
for this parameter. The fifth parameter is a pointer to a list containing the file types allow-
able for the dialog. You can define this list with the DC assembler directive. For example,
if you wanted to look at TEXT and APPL files, you would pass a 2 for the fourth parameter
and a pointer to the list shown below as the fifth parameter:

'TEXT'
'APPL'

If you choose to allow all file types, pass a zero instead of a pointer to a valid file
list. The sixth parameter is a pointer to a dialog-filter procedure. This procedure, which
is discussed in detail below, is called every time the Standard File code calls Modal-
Dialog. The dialog-hook procedure can look at the user input to the dialog and act on
it before the Standard File code performs its default actions. This allows a great deal of
discretion on the part of the programmer when using the Standard File routines.

The final parameter is a pointer to the SFReply that will be filled in when the call
to SFGetFile returns. In the example below, we use a globally defined SFReply.

;procedure SFGetFile(where: point; prompt: str255;

.
s
.
H

.
’

filefilter: procptr;numtypes :integer;
typelist: SFlistptr; dlghook: procptr;
VAR reply : SFReply)

MOVE #100,-(SP) ; one coordinate
MOVE #100,-(SP) ; other coordinate
CLR.L -(sp) 3 no prompt

PEA FileFilter ; our file filter
MOVE #2,-(SP) ; 2 file types

PEA FileList ; ptr to typelist
PEA dialoghook ; dlghook

MOVE.L mySFReply(A5),-(SP) ; the reply record
_SFGetFile

The File Filter Procedure

The file filter is an optional, secondary means of screening files that will appear in the
scrolling selection box of the SFGetFile dialog. The file-type list is the primary filter.
For each file that agrees with the file types listed there, your file filter is called with a
pointer to a parameter block that has been filled in with GetFileInfo. Your file filter can
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examine any of the fields of the parameter block to do further filtering of the file. In the
example listed below, we look at the file creator to exclude our application from the selec-
tion list. The file creator is located four bytes from the beginning of the ioFLUsrWords
subrecord of the parameter block. This example comes from a resource modification pro-
gram I wrote where I did not want the program to be able to modify its own resources
while it was running. There are many other uses for a file filter, all based on looking at
the information in the parameter block.

The file filter must return TRUE if the file is to be excluded (filtered) from the selec-
tion box. It should return FALSE if the file can be included in the selection box. We
define a stack frame to allow easy access to the parameter and function result.

)
FileFilter

FFexit

FileFilter(p:ParmBlkPtr) : BOOLEAN

; parameter offsets

result SET 12
P SET 8
parambytes  SET 4

LINK A6,#0

; assume that the file is 0K, set result to FALSE
MOVE.W #0,result(A6)

; Don't let our application appear in SFGetFile
; by comparing the file creator to OURS

MOVE.L p(A6),A0 ; get ptr to param block

LEA ioFLUsrWords(AO0),AQ ; offset to Finder info

MOVE.L 4(A0) ,DO ; get file creator

CMP.L #'0URS',DO ; does it match our application?

BNE FFexit ; no match, let this file through
MOVE.W #$0100,result(A6) ; TRUE means this file is not OK

UNLK A6 ; SP now points to return address
MOVE.L (SP)+,A0 ; get return address

ADDA.W #parambytes,SP ; strip parameters off stack

JMP (A0) ; same as RTS
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The Dialog-Hook Procedure

When you call SFGetFile, the dialog is displayed and the Standard File code repeatedly
calls ModalDialog until the user clicks the Open or Cancel button. If you specify a dialog-
hook procedure pointer when you call SFGetFile, your dialog hook will be called just
after ModalDialog each time around the loop. This process allows your dialog hook to
respond to the events within the SFGetFile dialog before the Standard File code has a
chance to act on them. The dialog hook is passed an item number and a dialog pointer
as parameters. Figure 5.2 shows the SFGetFile dialog with the item numbers labeled.

It is possible to add your own items to the SFGetFile dialog as long as their item
numbers are different from the default items. You can use the dialog-hook procedure to
respond to clicks in your custom items. The DLOG and DITL resources for the SFGet-
File dialog both have —4000 as their resource ID number. If you define a similar DLOG
and DITL in your application’s resource fork, then your customized dialog will be used
instead of the default resources stored in the system file since your application’s resource
file is searched before the system file. In order to function properly, the first ten items
in your DITL must be the same as those in the default DITL. You may begin to add
your own dialog items beginning at item #11. The Standard File Package chapter of Inside
Macintosh and Tech Note #47 from Apple contain more information about modifying the
resources for the Standard File dialogs.

Untitled

0O Count.c Untitled *4
[ Examples.a

D puanbles. et 3 -s
0O Examples.p _ .

O Includes.a (—orive 3 6
O Includes.c g

D Instructions.c (__open 3 *1

0O Interfaces.p

O Libraries.a ( cancel 3 *3

*7

FIGURE 5.2. Item numbers for SFGetFile Dialog
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In addition to the normal item numbers passed when an item is clicked in the dia-
log, —1 is passed as the item number when the dialog is first drawn on screen, before
the first update event has caused the contents to be drawn. This — 1 item event is a good
way to modify the contents of the dialog before they are displayed. The example below
uses this event to change the title in the button that normally says “Open.”

It is important that you pass the item number parameter back out as the function
result after you are through processing it. Most of the time, the item number will elicit
no response from the dialog hook, but it must be passed out as the function result so
that the default action of the Standard File code will take place. In certain special circum-
stances, you can change the function result to be different from the item number passed
as input. For example, using 101 as a function result causes the dialog to redisplay the
file list. This can be useful if your dialog uses additional items to toggle between different
file-selection criteria.

The example below uses the —1 item event to change the Open button to read
“Modify” We define a stack frame to access the parameters, function result, and local vari-
ables. This skeleton routine can easily be expanded to customize the handling of clicks
in other dialog items. Notice how the item number passed in as a parameter is installed
as the function result before exiting the routine.

2’
DialogHook

; FUNCTION
item

- - DialogHoOK ==---—emmmmm e

DialogHook(item:INTEGER; thedialog:DialogPtr) : INTEGER
SET 12

thedialog SET 8
result SET 14
parambytes  SET 6

theltem EQU A ; VARs for GetDItem

thetype EQU -6

thebox EQU -14

locals SET -14

init SET -1

LINK A6,#locals

MOVE.W item(A6),D0 ; which item was hit

CMP.W #init,DO ; first time through we get -1
BEQ Dolnit

; otherwise, put the item in the result slot and exit
MOVE.W DO, result(A6)
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dlghookexit
UNLK A6 ; SP now points to return address
MOVE.L (SP)+,A0 ; get return address
ADDA.W #parambytes,SP ; strip parameters off stack
JMP (40) ; same as RTS
RTS

The code called when the dialog first opens uses GetDItem and SetCtiTitle to change
the title of the Open button. We use several local variables on the stack frame as VAR
parameters to GetDItem. This routine keeps the string as a part of the code. It would
be better to keep the new button title as a resource and read it in at run time before install-
ing it.

Since this routine is called by a simple BRA instruction, it can share the stack frame
with the dialog-hook routine. It returns by setting the function result and branching to
the dialog hook’s exit sequence.

; - - Dolnit -

DoInit

; change the open button to read ''Modify''

; remember that we are working with the stack frame of DialogHook here

; PROCEDURE GetDItem(thedialog:DialogPtr; itemNo: INTEGER;
H VAR type:INTEGER: VAR item: Handle;
; VAR box: Rect)

MOVE.L theDialog(A6),-(SP) ; on stack frame
MOVE.W #openbutton,—(SP) ; item

PEA theType (A6) ; VAR type

PEA theItem(A6) ; VAR item

PEA thebox (A6) ; VAR box
_GetDItem

;PROCEDURE  SetCTitle(theControl:ControlHandle;

; theTitle:Str255)

MOVE.L theItem(A6),-(SP)

PEA 'Modify'

_SetCTitle

MOVE.W #init,result(A6) ; pass the value back to SFGetFile
BRA dlghookexit
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Parameters for SFPutFile

The parameters to SFPutFile are basically a subset of the parameters described for SFGet-
File. One difference is the parameter that allows you to specify the default file name to
be displayed in the edit text box of the dialog. Generally, you will use the window title
of the active document as the default file name. You should not concatenate the volume
name with the file name the way MDS Edit does because this causes problems with HFS
volumes and directories. In addition, the prompt string parameter is used by SFPutFile
to put a prompt string such as “Save file as . . . ” in the dialog. Be sure to keep this string
in the resource file to facilitate easy translation into foreign languages. SFPutFile can take
a dialog-hook pointer parameter just like SFGetFile if you want to do preprocessing of
the dialog events.

SFPutFile will put up warning dialogs if the user tries to specify a file name that
already exists on the designated volume (or directory on HFS volumes). The warning dia-
log allows the user to overwrite the original file or choose a new name for the new file.
One thing that is not checked by Standard File code is the file type of the file being over-
written. This allows users to replace files created by other programs, a practice that is
probably not a good idea. You can use the dialog-hook procedure to check the file creator
of the designated file whenever the Save button is clicked. If the user is trying to save
with a file name of a file created by another application, then your dialog-hook procedure
can put up its own warning alert to advise the user to choose another name. In this situa-
tion, the dialog hook should pass 0 as its function result so that the Standard File code
will not act on the click in the Save button.

The information returned in the SFReply record passed to SFPutFile uniquely iden-
tifies the volume reference number (or working-directory reference number) and the file
name. This information can be used to write the data for the document out to the disk
without worrying if it is an MFS or an HFS volume.

USING THE FILE MANAGER WITH SFREPLY RECORDS

The following example shows how to use the information in an SFReply record in combi-
nation with the File Manager routines requiring information in a parameter-block record
structure. Although we will limit our discussion to calling the File Manager routine Open,
this should suffice to illustrate the principles of transferring information between the two
data structures to connect the Standard File Package to the File Manager.

In the example, we define a subroutine, OpenDoc, that expects to find a window
pointer and a pointer to a filled-in SFReply record on the stack as parameters. You can
use the window pointer to associate the disk data with a particular window. The SFReply
contains all the information necessary to open the file. This skeleton is similar to the more
complete file-handling routines described in Chapters 5 and 8 of The Complete Book of
Macintosh Assembly Language Programming, Volume I.
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The first thing to do in this subroutine is to define the stack frame to access the
parameters, function result, and local variables. We allocate 80 bytes of local variable storage
to hold our parameter block. We also use two protected registers to hold the window-pointer
and SFReply-pointer parameters for easy access during the life of the routine.

;

; FUNCTION

OpenDoc
; parameter offsets
result SET 16
W SET 12
reply SET 8

parambytes  SET 8

; offsets to local variables

; VAR

; now

paramBlock  SET -80
locals SET -80

SFReplyReg  SET A2
WindowPReg  SET A3

get into it

LINK A6,#locals

2

’

OpenDoc - -

OpenDoc (w:WindowPtr;reply:SFReply) : INTEGER

offset to function result
offset to first parameter
offset to second parameter
total # parameter bytes

offset to paramblock (80 bytes)
total # bytes for locals

use registers for these two variables

; preserve stack
; make room for locals

; save some registers for local use

MOVEM.L A2-A3,-(SP)

; get the parameters off the stack and into registers

MOVE.L w(A6) ,WindowPReg

; get window pointer in A3

MOVE.L reply(A6),SFReplyReg ; SFReply in A2

When the stack frame is allocated and the parameters stashed in protected registers,
we proceed to fill in the required fields of the parameter block for the call to Open. We
use the file name and volume reference number (which might be a working-directory refer-
ence number) from the SFReply. These two items are sufficient to uniquely identify any
file on any disk. Notice also that we specifically set the version number to 0 because our
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parameter block is allocated on the stack frame and may be filled with spurious values
left over from previous stack contents. On HFS volumes, the version number is not used,
but a bogus version number in a call to an MFS volume can prevent successful opening
of a file that is otherwise correctly described.

In addition to the information identifying the specified file, we set the ioPermssn
and ioOwnBuff fields of the parameter block to guide the action of Open.

; now open the file, all the info in SFReply (register A2) from previous call

; set up the parameter record

LEA paramBlock(A6),A0 ; set the start of p block

LEA fname(A2),Al ; file name in SFReply

MOVE.L Al,ioFileName(AO) ; stuff it in p block

MOVE.B #0,$1A(A0) ; set version # to 0

MOVE.W vrefnum(A2),ioVRefNum(AO) ; stuff vol ref num in p block
CLR.B ioPermssn(AQ) ; Wwhatever is already allowed
CLR.L ioOwnBuf(AO) ; NIL, use volume buffer

_Open

BMI Openerror ; something is wrong

Once the file is opened, your application can do whatever it wants with the file,
be it reading or writing data or modifying other information associated with the file. This
example will not go into those details. See Chapters S and 8 of The Complete Book of Macintosh
Assembly Language Programming, Volume I, for more complete examples. The call to Open
explained above describes all the essentials of the connection between the SFReply and
the parameter-block data structures. The main idea is that any file can be fully identified
by its file name and volume (or working-directory) reference number.

The rest of the OpenDoc skeleton is shown below. When your application is through
reading or writing data to the file, it should deallocate the stack frame and return to the
main program, as shown here.

5 RRHHRRRRHIRKRHK KKK
; do something with the file here .
SERRREHKRRRRRRRRR KK
OpenDone 3 - -
MOVEM.L (SP)+,A2-A3 ; restore registers

; restore stack

UNLK

A6 ; SP now points to return address
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MOVE.L (SP)+,A0 ; get return address
ADDA.W #parambytes,SP ; strip parameters off stack
JMP (80) ; same as RTS

In the event of some sort of file error, you can branch to the following error routine
to beep the speaker, try to close the file with the information that is already in the parameter
block, and return to the main program via the exit sequence shown above. This error
routine is the bare minimum; you will probably want to add code to it to examine the
error codes and put up appropriate dialogs to inform the user of the problem.

Openerror jmm——————— - - e ——————— e

; beep the speaker
; PROCEDURE SysBeep(duration:INTEGER)

MOVE.W #1,-(SP)

_SysBeep

; try and close the file, if possible

LEA paramBlock(A6),A0 ; the parameter block
_Close

; set the result to a negative number to indicate failure
; this could be made more specific
MOVE.W #-1,result(A6)

BRA OpenDone ; go back

DETERMINING IF HFS OR MFS IS ACTIVE

Most programs don’t need to know whether or not they are running in the MFS or
HFS file environment. There are times, however, when you must determine which
file system is active. This is especially true if you want to access files directly without
using the Standard File routines. The word-length low-memory system global FSFCBLen
($3F6) will contain —1 if MFS is active, and a positive number if HFS is installed.
You can use the following code to discriminate between the two states:

FSFCBLen SET $3F6 ; from FSEqu.Txt
TST.W FSFCBLen
BMI doMFS ; negative means MFS
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; HFS specific routines go here

BRA

doMFS

HFSDone

; MFS specific routines go here

HFSDone

; continuation of common code

HFS will be active if your program is running on a machine with the 128K ROMs
installed. It may also be active on a 64K ROM Macintosh if the startup disk contained
the HD20 file, which loads a RAM image of the HFS routines and patches the File Manager
routines to point to the HFS code. Either way, you will have access to the expanded capa-
bilities of HFS. All of the original MFS File Manager calls will operate appropriately in
either the MFS or HFS environments, so you can use them without checking FSFCBLen
first. If you plan to use any of the routines that are unique to HFS, be sure to check for
HFS availability before calling them, because calling an HFS-only routine in an MFS
system will cause a system crash.

Once you have determined that you are running under HFS, you may want to find
out if a particular disk is initialized as an HFS or an MFS volume. Call HGetVInfo with
its 122-byte parameter block and look at the ioVSigWord (offset 64). This field will con-
tain $4244 if the volume is an HFS volume.

SEARCHING FOR FILES DIRECTLY ON MFS VOLUMES

The first part of this chapter discussed the way that the Standard File routines uniquely
identify files on MFS and HFS volumes, allowing trouble-free disk access. The Standard
File Package is great when you want the program’s user to pick the file to be used, but
what about the situation where the program itself must define the specifications for a file,
such as a help file or a temporary scratch file? In these situations, you cannot use the
Standard File routines, and you must look at the files on the disk directly.

This section will illustrate a method whereby every file on every available MFS volume
can be examined. We index through all the volumes and index through all the files on
each volume. The example code will create a list of all volumes and files by inserting the
volume or file names into an existing TE record. The example code is a module that is
intended to be joined with an existing text-editing program. This module was tested by
combining it with the MultiScroll program described in Chapter 7 of The Complete Book
of Macintosh Assembly Language Programming, Volume I. The module is listed in its entirety
in Appendix A as MFSFileSearch. ASM and is included on the source code disk available
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from the author. The example in a succeeding section does the same thing for HFS volumes,
allowing the search to find files in subdirectories as well as the root level. Together, these
two modules might be useful building blocks for a disk librarian program.

The module is structured with a single entry point, MFSFileSearch, which is a
subroutine with no parameters. One restriction on its use is that it expects to find a valid
TEHandle in register D7 so that the volume and file names can be inserted into the text
edit record.

We begin the routine by defining the stack frame to allocate enough local variable
storage to hold the volume/file name and an 80-byte parameter block. We also define a
couple of data registers to use for other local variables.

; File MFSFileSearch.ASM

; This is a module that will search all available volumes
; and look at all files on each MFS volume.
; It expects to find a TEHandle in register D7 on entry.

INCLUDE MacTraps.D
INCLUDE SysEqu.D

XDEF MFSFileSearch
TEReg SET D7 ; we need to insert text here

MFSFileSearch

; stack frame offsets for local variables
volname SET -32 ; allow for 31 char name
pBlock SET  volname-80 ; space for parameter block

; local registers
VolIndex SET D3
FileIndex SET D4

LINK A6, #pBlock ; reserve space for locals
MOVEM.L D3-D4,-(SP) ; save registers
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The first step upon entering the code is to make sure that the TEHandle in register
D7 is not NIL to protect against trying to insert into a nonexistent text edit record. If
the handle is not valid, then we branch to the exit point for the routine.

TEReg ; crash protection
noMoreVolumes

The outer loop of this module uses GetVolInfo to get information of each available
volume. Generally, GetVolInfo expects to find a volume name or a volume reference number
in the parameter block indicating the volume about which to return information. We stuff
0 in the ioVRefNum field to make GetVolInfo use the index field instead to choose the
volume. Starting with an index of 1 will return information about the first available volume
in the volume-control-block queue maintained by the operating system. We will then incre-
ment the index by one until GetVollnfo returns an error code, indicating that all the
volumes have been searched.

; Set up parameter block for GetVolInfo

LEA pBlock(A6),A0 ; get address of parameter block
MOVE.L #0, ioCompletion(A0) ; no completion routine

LEA volname(A6),Al ; get our string ptr

MOVE.L A1, i0VNPtr(AQ) ; install in parameter block
MOVE.W #0, ioVRefNum(AO0) ; force it to use index instead

; start with volume #1

MOVE.W #1,VolIndex
volumeLoop
MOVE.W VolIndex,ioVolIndex(AO) ; install index number
_GetVolInfo
BMI noMoreVolumes ; we have looked at them all

Because GetVolInfo is an operating system ROM call, it automatically sets the con-
dition codes when it terminates. We can check the status register with a BMI instruction
to branch on a negative error code. In this indexed loop, the error code will be caused
when the index value goes beyond the number of available volumes.

Once we get the first volume information, we extract the volume name from the
local storage and insert the name into the text edit record. We also insert a carriage return
at the end of the name to advance the cursor to the following line. Because we reserved
space in our stack frame for the volume name, and passed a pointer to that space in the
parameter block ioVNPtr field, we can get the name directly from the local storage without
checking the parameter block.
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SERREREERKRKRERERERERRRERRRKRERRKRRRRRERRRRRRRKRRERERRRRRRRRERRRRRERERERERRRRRKRRKERK
; insert the volume name in the text edit record
; PROCEDURE TEInsert(text:Ptr;length:LONGINT;hTE:TEHandle)

PEA volname+1(A6) ; skip length byte
MOVE.B volname(A6),D0 ; length byte

AND.L #$000000FF, DO ; mask off upper bytes
MOVE.L D0,-(SP) ; put length on stack
MOVE.L TEReg,—-(SP) ; TEHandle

_TEInsert

; PROCEDURE TEKey(theKey:CHAR; hTE: TEHandle)

MOVE.W #13,-(SP) ; carriage return
MOVE.L TEReg,—-(SP) ; hTE

_TEKey

REEEKEAKEEERKAERRKKERERRRRRARERE KRR ERRRERERKERERRERERRKERRRERARRERXRXXRXRHRKRX

The inner loop of this module is structured like the outer loop, using an index value
beginning at 1, but it uses GetFileInfo to get information about individual files rather
than GetVollnfo to get information about volumes.

The call to GetVollnfo in the outer loop set up all the appropriate fields of the
parameter block. We need only put in the proper index value and call GetFileInfo repeat-
edly, increasing the index by one for each iteration. As with the outer loop, a negative
result indicates that all the available files on this volume have been examined.

; start with file #1

MOVE.W #1,FileIndex

fileLoop
LEA pBlock(A6),A0 ; get address of parameter block
MOVE.W FileIndex,ioFDirIndex(A0) ; install index number
_GetFilelInfo
BMI noMoreFiles ; we have looked at them all

; your application could do something with the file name now
; such as check 1t against a search string
; or insert it into a list of all files

Each time that GetFileInfo is successful, we insert the resulting file name into the
text edit record. Before each file name we also insert five spaces so that the file names
will be indented from the volume names, as shown in Figure 5.3 (page 130). When we
search HFS directories, this indentation strategy will be extended so that each subdirec-
tory is indented from its parent directory.
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Elndented MFS File ListE‘

MDS1
System
Imagewriter
Finder
ASM
LINK
Edit
RMaker
Exec

MDS2
MacTraps.D
ToolEqu.D
SysEqu.D
QuickEqu.D
MyStuff. ASM
MyStuff.LINK
MyStuff.R
MyStuff.Job

FIGURE 5.3. Indented MFS File List
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; insert five spaces to indent file names from volume name

; PROCEDURE TEInsert(text:Ptr;length:LONGINT;hTE:Handle)

PEA tab ; 5 spaces defined statically
MOVE.L #5,-(SP) ; put length on stack

MOVE.L TEReg,—(SP) ; TEHandle

_TEInsert

3 insert the volume name in the text edit record
; PROCEDURE TEInsert(text:Ptr;length:LONGINT;hTE:TEHandle)

PEA volname+1(A6) ; skip length byte
MOVE.B volname(A6),D0 ; length byte

AND.L #$000000FF, DO ; mask off upper bytes
MOVE.L DO,-(SP) ; put length on stack
MOVE.L TEReg,—(SP) ; TEHandle

_TEInsert
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; PROCEDURE TEKey(theKey:CHAR; hTE: TEHandle)

MOVE.W #13,-(SP) ; carriage return
MOVE.L TEReg,-(SP) ; hTE
_TEKey .

SEEEKERKRHEEREKEEKRARRREERRERRERKRRKR AR RRKERRARRHERREEE KR KRR R AR RRRRRRRH KRR

After inserting the current file name into the text edit record, we increment the index
and go back to the inner loop to find the next file. Notice that the check point comes
at the beginning of the loop, making it somewhat like the WHILE DO structure in Pascal.

5 increment the file index and loop again
ADD.W #1,FileIndex

BRA FileLoop ; check the next file

When all the files on a volume have been checked, the inner loop terminates and
we increment the volume index and continue the outer loop. When all available volumes
have been examined, we break out of the outer loop and execute the exit code at the label

noMoreVolumes.

noMoreFiles
; increment the volume index counter

ADD.W #1,VolIndex

BRA VolumeLoop ; 8o check another volume

noMoreVolumes

; clean up and go back

MOVEM.L (SP)+,D3-D4 ; restore registers

UNLK A6
RTS ; return to caller
tab DC.B 32,32,32,32,32

The search strategy for MFS volumes uses two nested, indexed, iterative loops. Each
loop increases the index value until an error code indicates that the index has gone beyond
the number of available volumes or files. The next section implements an HFS directory

search that relies on a recursive rather than iterative inner loop.
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SEARCHING FOR FILES DIRECTLY ON HFS VOLUMES

When working with HFS volumes, the linear iterative-search strategy is not sufficient to
find all the files which are hidden within folders. The indexed search that we used above
to find all the files on an MFS volume will only work within a single directory on an HFS
volume. Assuming that we start at the root level of an HFS volume, the MFS search strategy
will treat the folders at that level as if they were files. In order to examine the files within
a folder, we must call OpenWD to get a working-directory reference number and apply
our indexed search strategy to that folder just as if it were a new volume. This points out
the central concept of HFS volumes: working-directory reference numbers for folders are
functionally equivalent to volume reference numbers for distinct volumes. The subdirec-
tories of an HFS volume can be treated like separate volumes.

Recursion and HFS

The directories and subdirectories of an HFS volume are arranged in a hierarchical tree
data structure, as shown in Figure 5.4. The files and folders contained in a folder are shown
dangling below the parent folder. The root directory of the disk is treated just like a folder
whose name is the same as the name of the disk. The hierarchical tree is a classic recur-
sive data structure.

To understand what a recursive data structure is, compare the organization of an
MFS volume with that of an HFS volume. On an MFS system you have a volume and
you have files. The two types of objects must be treated differently. Routines that are used
to examine an MFS volume may not be used to examine an MFS file. An MFS volume
cannot contain another volume object. On an HFS volume, on the other hand, the entire
volume is treated as if it were a folder containing files and other folders. The same search
strategies applied to the volume may also be applied to folder objects that are contained
on the volume. Folders contained within folders are treated in the same way as the parent
folder. In other words, a volume is like a folder and a folder is like a volume. Recursion.
Got it? Recursion is indicated whenever a single element of a data structure may be treated
as if it were the entire data structure.

The most interesting part of an HFS file search is that the search strategy is recur-
sive. One of the basic laws of programming is that the program algorithm should match
the structure of the data structure. On an MFS volume, we used a straight iterative search
technique to match the flat structure of the volume. On an HFS volume, we will use a
recursive search procedure that will call itself whenever it encounters a new folder.
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FIGURE 5.4. Sample HFS file structure
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Anytime you encounter a folder, you will begin to examine each of its files. In the
midst of that search, you may encounter another folder. At that point, you must suspend
the original search and begin a new search of the new folder. Of course, you may encoun-
ter another folder within the new folder . . . and so on. At each level, the same search
strategy is applied. Each time the search procedure is initiated, it must keep its own
parameter block and other local variables to guide its search. As the deepest levels of the
search terminate, they deallocate their local variables and return control to the suspended
search task immediately above them in the directory tree.

With high-level languages such as Pascal and C, recursion is supported by making
a call to a procedure from within that procedure. Working in assembly language, you must
be a little more attentive to the housekeeping for local variables and return addresses so
that each invocation of the recursive procedure has its own set of parameters and locals,
and knows how to return control to its caller. Luckily, the LINK and UNLK instructions
of the 68000 make these tasks almost trivial. By defining your search procedure with a
stack frame, you can perform recursion just as if you were in a high-level language. If
you have ever had to do this sort of thing on a processor without LINK and UNLK,
you will really appreciate these instructions now. If you haven’t ever tried recursion in
another assembly language, then take my word for it, the 68000 is the best of the lot for
this kind of job.

The basic strategy for the search of HFS volumes begins with an iterative outer loop
that fetches the available volumes, just as we did for the MFS search. Because the volumes
(i.e., internal drive, external drive, hard disk, RAM disk, etc.) are kept in a sequential
list by the operating system, an iterative loop is what we need to index through all the
volumes.

Each time we find a new volume, we will pass its volume reference number to our
recursive search procedure. We will also pass a level parameter, beginning with 0 for the
root directory, to help us keep track of how deeply we have gone into the hierarchy of
subdirectories. Each time we begin to explore a new folder, the level parameter is increased
by one and the working-directory reference number for the folder is passed to the search
procedure in place of the volume-reference number parameter.

Within each folder, the available files will be examined with an indexed linear search,
~much like the one used to find all the files on an MFS volume. The difference here is
that the linear search will be interrupted every time a folder is encountered. After that
folder has been searched, control returns to the original linear search and the rest of the
files at that level can be examined. Figure 5.5 (page 135) shows how a sample search might
progress on an HFS volume.
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N

i

Search path

FIGURE 5.5. Search path on HFS volume

HFS-Specific Routines

In order to get the information you need to guide a recursive search, you must use several
File Manager routines that are only available on HFS systems (that is, systems with 128K
ROM:s or HD20 on the boot disk). Before you try to use any of the HFS-specific routines,
make sure that you test for the presence of HFS, as outlined in an earlier section.
There are two ways to get at the new routines. Some of the HFS routines are just
extensions of the original MFS File Manager routines. For example, our MFS search called
GetVolInfo to get the volume reference number of each volume. For the HFS search,
we will call the HFS variant of this routine called HGetVInfo. The two routines are very
similar, except that HGetVInfo returns additional information unique to HFS in a 122-byte
parameter block (as opposed to the 80-byte block used by GetVollnfo). In order to get
the HFS variant of an original File Manager routine, you must set bit 9 of the trap word.
For example, the trap word for GetVolInfo is $A007. The trap word for HGetVInfo is
$A207. Again, remember that the HFS variants usually require a larger parameter block.
And don’t use an HFS call unless you have checked for the presence of HFS in the system.
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The other kind of HFS-only calls are new routines that do not correspond to any
of the original File Manager entry points. All these new routines are reached through a
single trap word, HFSDispatch ($A060). In order to select one of the new routines, you
place a selector word in register DO (not on the stack!) and then call HFSDispatch. The
selector values for the new routines are listed below. For a description of the routines,
see the new File Manager chapter released by Apple as part of the December 1985 Soft-
ware Supplement.

Routine Selector Value
OpenWD 1
CloseWD 2
CatMove 5
DirCreate 6
GetWDInfo 7
GetFCBInfo 8
GetCatlnfo 9
SetCatlnfo 10
HSetVolInfo 11
LockRng 16
UnlockRng 17

HFSFileSearch Code

This module is listed in its entirety in Appendix A as HFSFileSearch. ASM and is included
on the source code disk available from the author. At the beginning of the HFS search
source code, we define some macros to help call the HFS-specific routines that we will
be using as well as some additional offset constants to identify HFS-specific fields of the
parameter block in which we will be interested. We also XREF our routine entry point
so that it can be linked with a main program module and identify the register that we
expect to hold the text edit handle, into which we will be inserting the volume, folder,
and file names.

; File HFSFileSearch.ASM

; This is a module that will search all available volumes
; and look at all files in each HFS directory.
;5 It expects to find a TEHandle in register D7.

INCLUDE
INCLUDE

MACRO

MacTraps.D
SysEqu.D

_HFSDispateh =  DC.W $A060 |
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MACRO _HGetVInfo = DC.W $A207 |

MACRO _GetCatInfo =
MOVE.W #9,D0
_HFSDispatch

MACRO _OpenWD =
MOVE.W #1,D0
_HFSDispatch

MACRO _CloseWD =
MOVE.W #2,D0
_HFSDispatch

; offset constants for HFS parameter block
ioDirID SET 48
ioDrDirID SET 48
ioWDProcID SET 28

XDEF HFSFileSearch

; global register

TEReg SET D7 ; we need to insert text here

We need to define the offset constants that allow us to allocate and access a parameter
block and other local variables on the stack frame when the HFSFileSearch procedure
is called. The definitions here are similar to those for the MFS search, except for the larger

parameter block allocated for HGetVInfo.
HFSFileSearch

; stack frame offsets for local variables

volname SET -32 ; allow for 31 char name
pBlock SET  volname-122 ; space for HFS parameter block
index SET  pBlock-2

LINK A6, #index ; reserve space for locals
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Once the stack frame is allocated, we check to make sure that there is a valid
TEHandle in register D7 before proceeding with our search. Assuming that we have a
TEHandle, we set up the necessary fields of the parameter block for the call to HGetVInfo.
The setup is the same as it was for GetVolInfo in the MFS file search. The difference
here is that HGetVolInfo will always return the volume reference number of the root direc-
tory of an HFS volume, whereas GetVolInfo will return the working-directory reference
number of a subdirectory if that directory has been made the default directory. Because
we always want to search through all the directories on a volume, we use HGetVInfo.

Just as we did for the MFS volume search, we begin our indexed search with a volume
index of 1, iterating until a negative result tells us that all the volumes have been sampled.

TST.L TEReg ;
BEQ noMoreVolumes

crash protection

; Set up parameter block for GetVolInfo

LEA pblock(A6),A0 3
MOVE.L #0, 1oCompletion(A0) ;
LEA volname(A6),Al ;
MOVE.L Al,ioVNPtr(AO) ;
MOVE.W #0, 1o0VRefNum(AO) ;
; start with volume #1
MOVE.W #1,index(A6)

volumeLoop
LEA pblock(A6),A0 ;
MOVE.W index(A6),ioVolIndex(A0)
_HGetVInfo
BMI noMoreVolumes ;

get address of parameter block
no completion routine

get our string ptr

install in parameter block
force it to use index instead

get address of parameter block
; install index number

we have looked at them all

Each time we find a volume, we insert its name and a carriage return in the text
edit record, just as we did for the MFS file search. The bytes holding the volume name
reside in the stack frame allocated for HFSFileSearch.

SEEEEERRERRARENHRARERRERERERHRRARERERERRRREREARRRRREXHRHERRRRERARRRER R ARAXK XK RN K®

; insert the volume name in the text edit record
; PROCEDURE TEInsert(text:Ptr;length:LONGINT;hTE:TEHandle)

PEA volname+1(A6) ;
MOVE.B volname(A6),D0 ;
AND.L #$000000FF, DO H
MOVE.L DO,—-(SP) H
MOVE.L TEReg,-(SP) ;
_TEInsert

skip length byte
length byte

mask off upper bytes
put length on stack
TEHandle
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; PROCEDURE TEKey(theKey:CHAR;hTE:TEHandle)

MOVE.W #13,-(SP) ; carriage return
MOVE.L TEReg,-(SP) ; hTE
_TEKey

SEERHREKREEEERKRRKEXERERREXRRRREREXARRRRRERHR XX KRR XX R XXX RAXRAHRXRRRKRRKK KX

Then for each volume we call our search procedure, SearchDir. This procedure
expects to find a volume reference number and a level indicator on the stack as parameters.
We pass the reference number for the volume, obtained by the call to HGetVInfo, and
a level value of 0 to indicate that we are starting our search at the root level of the volume.

; reset parameter block ptr

LEA pblock(A6),A0

; now go into the interesting part, search each directory
MOVE.W ioVRefNum(AO) ,~(SP) ; volRefNum of volume
MOVE.W #0,-(SP) ; top level

BSR SearchDir

The single call to SearchDir is sufficient to find all the files on a volume, although
as you shall see in the discussion of SearchDir, many things will happen before the routine
returns control to the HFSFileSearch loop. Once we do come back, the volume index
is incremented and we loop back to look for the next volume, just as we did for the MFS
search. When all the volumes have been treated in this way, we deallocate the stack frame
and return to the calling program.

3 increment the volume index counter

ADD.W #1,index(A6)
BRA VolumeLoop 3 8o check another volume
noMoreVolumes

; clean up and go back

UNLK A6 ; deallocate stack frame
RTS ; return to caller

tab DC.B 32,32,32,32,32 ; used to indent file names
.ALIGN 2 ; this is IMPORTANT!!

; otherwise, SearchDir begins
; on an odd address
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The subroutine SearchDir is set up to accept two parameters on the stack. It also
keeps a parameter block, space for file/folder names, and an index INTEGER as local
variables. All these items are maintained by setting up a stack frame and defining the offset
constants necessary to access the individual components of the stack frame. Figure 5.6
shows the stack frame for SearchDir.

previous stack contents

refnum: 2 bytes
10(A6)
level: 2 bytes
8(A6)
return address : 4 bytes
4(A6)
old A6 value: 4 bytes
(AB)
volname: 32 bytes
-32(A6)
pBlock: 108 bytes
-140(A6)
index: 2 bytes|
-142(A6)

(SP)

low memory
FIGURE 5.6. Stack frame for SearchDir
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; PROCEDURE SearchDir(refNum,level:INTEGER)
; we call this routine everytime we encounter a folder
; if a folder is found within a folder, then this is called recursively

SearchDir
; stack frame equates
; parameters
level SET 8
refNum SET 10
parambytes SET 4

; stack frame offsets for local variables

volname SET -32 ; allow for 32 char name
pBlock SET  volname-108 ; space for parameter block
index SET  pBlock-2 ; keep our index here

LINK A6,#index ; reserve space for locals

The initial strategy for this routine is similar to that used in the MFS search of a
volume. A parameter block is prepared, and the index field is set to one so that we can
step through the available files. The difference here is that we will be calling GetCatInfo
instead of GetFileInfo. GetCatInfo will return information about folders as well as files
encountered in the indexed search, while GetFileInfo will only return information about
files. One other difference is that we take the refNum parameter off the stack and install
it as the ioVRefNum field of the parameter block before calling GetCatInfo. For the root
level of a volume, the refNum parameter will be the volume reference number for the
volume. As we dig deeper into the folder, the refNum will be a working-directory reference
number.

; Set up parameter block for GetCatInfo

LEA pblock(A6),A0 ; get address of parameter block
MOVE.L #0, ioCompletion(A0) ; no completion routine

LEA volname(A6),Al ; get our string ptr

MOVE.L Al,i0VNPtr(AO) ; install in parameter block

; start with file index #1
MOVE.W #1,1index(A6)

141



THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOLUME 1

fileLoop
LEA pBlock(A6),A0 ; get address of parameter block
MOVE.W Index(A6),ioFDirIndex(A0) ; install index number
MOVE.W refNum(A6) , ioVRefNum(AO) ; this could be WDRefNum
_GetCatInfo
BMI noMoreFiles ; we have looked at them all

We continue to call GetCatlnfo until a negative result tells us that all the files and
folers on this level have been examined. Each time we find a file or folder, we insert its
name into the text edit record, as we have done for the volume names. One additional
twist we add here is that the amount of indentation is determined by the level parameter
passed to SearchDir. The volume names are inserted at the left margin of the window.
As we search the root directory, level 0, we indent the file and folder names five spaces.
If a new folder is encountered, its contents, whether files or folders, are indented an addi-
tional five spaces. The result of this strategy is shown in Figure 5.7.

BT R e R T T T S e R s P
; insert five spaces to indent file names from volume name '

; each level increases amount of indentation

MOVE.L D5,—(SP) ; save register

MOVE.W level(A6),D5 ; amount to indent

@0

; PROCEDURE TEInsert(text:Ptr;length:LONGINT;hTE:TEHandle)

PEA tab ; 5 spaces, defined statically
MOVE.L #5,-(SP) ; put length on stack

MOVE.L TEReg,~-(SP) ; TE Handle

_TEInsert

DBRA D5,@0

MOVE.L (SP)+,D5 ; restore register

; insert the file/folder name in the text edit record
; PROCEDURE TEInsert(text:Ptr;length:LONGINT;hTE:TEHandle)

PEA volname+1(A6) ; skip length byte
MOVE.B volname(A6),D0 ; length byte

AND.L #$000000FF, DO ; mask off upper bytes
MOVE.L D0, -(SP) ; put length on stack
MOVE.L TEReg,~-(SP) ; TE Handle

_TEInsert

; PROCEDURE TEKey(theKey:CHAR; hTE: TEHandle)

MOVE.W #13,-(SP) ; carriage return
MOVE.L TEReg,-(SP) ; hIE

_TEKey

B E R e e R E e TR e s et S e R R S st Tt s e E et Rt Rt R St et E e e
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FIGURE 5.7. HFS file tree and indented list
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Once the name of the file or folder has been indented and inserted, we must deter-
mine if it is a file or a folder. We can make this distinction by looking at bit number 4
of the ioFLAttrib field of the parameter block after the call to GetCatlnfo. This bit will
be set if we are looking at a folder. If it is a file, then we will simply increment the file
index and loop back to continue our linear search of this directory, as shown in Figure
5.5. If we find that this is a folder, then we must call OpenWD to get a working-directory
reference numbser for this folder and then use that WDrefNum as input to SearchDir.
This is where the power of recursion comes into play. Because a WDrefNum is the same
as a volume reference number, we can call SearchDir recursively at this point to search
the new folder in exactly the same way as SearchDir was called to search the root directory
of the volume. o -

; reset parameter block ptr

LEA

pblock(46),A0

; find out if this is a file or a folder

BTST
BEQ

#4,i0FLAttrib(A0) ; 1s this a folder?
@1 ; only a file

; if this is a folder, then call ourselves recursively
; increase the level by 1
; make the folder into a new working directory

; and pass WDRefNum as new ioVRefNum
MOVE.L #0, 10WDProcID(AOQ) ; NIL proc
_OpenWD

; 1oVRefNum now refers to the directory rather than the volume

MOVE.W ioVRefNum(AQ) ,-(SP) ; WDRefNum of folder
MOVE.W level(A6),D0 ; current level
ADD.W #1,D0 ; increase it
MOVE.W DO,-(SP) ; new level

JSR SearchDir

At the point where the recursive call is made to SearchDir, the original linear search
of the root directory by SearchDir is suspended. Because the recursive call to SearchDir
causes a new stack frame to be allocated, the parameters and locals of the two invocations
of SearchDir remain separate and do not interfere with each other. If the search of the
new folder encounters another folder, then an additional call to SearchDir, with its own
stack frame, will be initiated. You can see how this chain can continue, with each level
being suspended until the next lowest level completes its search of the subdirectory. Study
the code section shown above and the diagram in Figure 5.5 until you get a feel for how
the recursion works. Its beauty is in the consistency with which it treats repeated encoun-
ters with folders.
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When the recursive call to SearchDir returns, we increment the file index value and
continue our linear search of the current directory. It doesn’t really matter if the call to
SearchDir encountered 1 or 25 nested folders, we simply wait until our call to SearchDir
returns control and then continue with our search, using the values of the local stack frame
to guide the search. When all the files and folders in a particular directory have been
examined, we call CloseWD to match the call to OpenWD that was called just before we
searched the directory. We did not call OpenWD for the root directory, but CloseWD
has no effect when called for the root directory, so it doesn’t hurt to call it every time
we exit. It is a good idea to close working directories when you are done with them since
the operating system must maintain a lengthy data structure in memory for all open

directories.
e1 ; increment the file index and loop again
MOVE.W #1,D0
ADD.W DO, index(A6)
BRA FileLoop ; check the next file
noMoreFiles
; close the working directory for this level
; the parameter block is already set up for this
_CloseWD
UNLK A6
MOVE.L (SP)+,A0 ; get return address
ADDA #parambytes, SP ; clear parameters
JMP (A0) ; return

SUMMARY

In dealing with the differences between MFS and HFS, you can avoid most difficulties
by channeling all file access through the Standard File routines. These procedures return
all the information necessary to uniquely identify files on MFS and on HFS volumes.
Using the Standard File Package provides the user with a consistent interface to the
Macintosh’s filing system and insures that your program will have minimal problems
accessing files.

There are times, however, when you don’t want to have the user designate a file from
a Standard File dialog. In these situations, you will need to look at the available volumes
directly. At that point, you need to pay attention to the differences between MFS and HFS.

You can iterate over all the available volumes in the system by making indexed calls
to GetVolInfo or HGetVInfo. By beginning with an index of one, and continuing until
you get an error, you may get information about each volume.
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For each MFS volume, you may make a similar linear indexed search of all the files
with repeated calls to GetFileInfo. On an HFS volume, you must adopt a recursive strategy
that will search each subdirectory as it is encountered in order to touch on all the files
on a volume.

The key to this recursive strategy is the fact that a working-directory reference num-
ber, returned by OpenWD, can be used in place of a volume reference number. This allows
us to use the same routine to search directories and volumes. Actually, an HFS volume
can be thought of as a big directory. Or better yet, an HFS directory can be thought of
as a small volume. Recursion.

The allocation and deallocation of stack frames with LINK and UNLK makes the
task of writing recursive routines in assembly language almost trivial. All along we have
been writing assembler routines that accepted parameters and kept local variables. These
techniques are directly applicable to recursive routines.

You should be aware that these stack frames take up space on the system stack. The
default stack size on a Macintosh is 8K. The stack frame for our recursive search routine
occupies 154 bytes. Each time you encounter a new level of nested subdirectories, 154
bytes of the stack are eaten up. If you are running on a system where the folders are nested
very deep, you might run into problems when the stack grows beyond its 8K limit, although
the folders would have to be nested over 50 levels deep before you ran out of stack space.
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CHAPTER

Making Your Macintosh Talk

In the May 1985 issue of the Macintosh Software Supplement, Apple released a package
of tools and code units collectively called MacinTalk 1.1. With these tools programmers
can make their Macintosh programs talk without any additional hardware. In this chapter
we'll explore the general workings of MacinTalk and develop a dialog-based application
program in assembly language that will show you how to use the main features of MacinTalk
in your own programs.’

OVERVIEW OF MACINTALK

The MacinTalk system’s most basic component is a driver that contains several procedures
available to your programs, The driver is contained in a file called MacinTalk, and this
file must be on the same volume as any application that wishes to use the MacinTalk driver.
The most basic function of the driver is to convert ASCII strings of phonetic codes into
speech. You can also use another part of the driver to convert standard English text into
phonetic codes that can then be spoken by the driver. Furthermore, there are parts of
the driver that you can use to control the rate of speaking and the pitch.

Beyond the actual driver procedures you will be using in your programs, there are
a few tools that can help while you are preparing a program that will use speech. The
program Speech Lab allows you to enter English text in one window, then hear the
MacirTalk speech and see the phonetic translation in another window. This program is
very useful for learning the tricks of MacinTalk’s phonetic code system. For example, the

1Significant portions of this chapter appeared originally in the November 1985 issue of MacTutor
magazine. Permission has been granted by the publisher, David Smith, to reprint the material here.
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English sentence “This is a test” is translated into the phonetic string “DHIHS IHZ AH
TEHST.#”. This program can be used to pretranslate strings that your program will speak
when the strings are known ahead of time. It is more efficient, both in time and memory,
to feed phonetic strings directly to the MacinTalk driver rather than to rely on translation
at run time. Also, if you pretranslate you will be able to fine-tune the phonetics, because
the translation is not always perfect.

The translation of English to phonetics is governed by hundreds of phonetic and
grammatical rules contained in the MacinTalk driver, but these rules will not get every
word right. Another program in the MacinTalk 1.1 package is Exception Edit. This pro-
gram allows you to create a special file of tricky words and their correct phonetic transla-
tion. Exception Edit lets you experiment with the phonetic strings until you get them
right, and then save those translations for later use. A file created by Exception Edit can
be automatically loaded and utilized by mentioning it when the MacinTalk driver is opened,
as shown in a later section of this chapter.

~ THE MACINTALK DRIVER

Listed briefly below are seven procedures in the MacinTalk driver that your program can
call.

FUNCTION SpeechOn(ExceptionsFile: Str255; theSpeech: SpeechHandle): SpeechErr This
function opens up the driver and initializes the values for speed and pitch. If you pass
a null string for ExceptionsFile, then the translation of English to phonetics will follow
the standard rules. If you pass a valid file name for ExceptionsFile, then that file, which
must have been created by Exception Edit, will be used to help guide translation. If you
pass the string ‘noReader’ for ExceptionsFile, the driver will be opened but able only to
receive phonetic input and unable to translate English to phonetics.

PROCEDURE SpeechOff(theSpeech: SpeechHandle) This procedure closes the driver and
deallocates any storage that it has been using.

FUNCTION MacinTalk(theSpeech: SpeechHandle; Phonemes:Handle): SpeechErr The work
horse of the driver, this is where phoneme code strings are converted to speech. The handle
to the phonemes should refer to a string of ASCII phonemes without a length byte.

FUNCTION Reader(theSpeech: SpeechHandle; Englishinput: Ptr; InputLength: Longint; Pho-
neticOutput: Handle): SpeechErr This is where English strings are translated into phonetic
strings that can then be fed to MacinIalk. The Ptr to EnglishInput should 7ot point to
a length byte of a Str255. Instead it should point to the first character. The handle for
PhoneticOutput can start out as a zero-length handle, and Reader will dynamically grow
the handle to fit the output.
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PROCEDURE SpeechRate(theSpeech: SpeechHandle; theRate:INTEGER) This sets the rate
at which words are spoken in words/min. The rate must be between 85 and 425 words/min.

PROCEDURE SpeechPitch(theSpeech: SpeechHandle; thePitch: INTEGER; theMode: FO-
Mode) This sets the baseline pitch in Hz and also sets the pitch mode, either natural
or robotic. The pitch value must be between 65 and 500. A word-length parameter of
0 specifies natural mode and 256 selects robotic mode. If you want to change the pitch
while leaving the mode unchanged, then call SpeechPitch with a valid pitch parameter
value and 512 for the mode parameter. To change the mode without changing the pitch,
use 0 or 256 for the mode parameter and a value out of the defined range for the pitch
parameter.

PROCEDURE SpeechSex(theSpeech: SpeechHandle; theSex:Sex) This is not implemented
in MacinTalk 1.1.

The glue which calls the various procedures in the driver is contained in the file
SpeechASM.Rel, also available in the Software Supplement. Make sure that you include
SpeechASM.Rel in the link file for your application so that the driver routines will be
available to your code. Also, you must XREF the individual routines that you wish to
use. The second half of this chapter shows an example program using the speech driver
and the glue routines.

CHEAPTALKII: A SIMPLE SPEECH APPLICATION EXAMPLE

The Software Supplement contains the source code for a very short example program that
shows how to use the speech driver. As usual, the example program is in Pascal, so we
assembly language programmers have to muddle along and figure things out ourselves.
CheapIalKII is an assembly language application that speaks pretranslated text stored in
a resource file and also translates and speaks user input at run time. CheaplIalkII opens
a dialog and speaks the static message one time. Then it waits for the user to type English
text into an edit text box in the dialog. Hitting return or pressing a “Say it” button will
translate the English text into phonemes and then say it. The dialog box also includes
radio buttons to select natural or robotic speech and two edit text boxes to allow the rate
and pitch to be set. Figure 6.1 (page 150) shows the CheapIalkII dialog.

This application will show you how to open and close the driver and how to use
MacinTalk and Reader from assembly language. It also uses the procedures to control the
speed, pitch, and mode of the speech. The complete source files for this program, including
the assembler source, CheaplalkII. ASM; the link file, CheapIalkII. LINK; and the RMaker
file, CheapIalkIL.R are listed in Appendix A and are also available on the source code
disk from the author.
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This is a talking dialog demonstration

[This is a test of the emergency broadcasting
network. In the event of a real emergency you
would be instructed to tune to this station for
further instructions. This is only a test.

speech rate @® natural

R

speech pitch O robotic

FIGURE 6.1. CheapTalk Il dialog

The Documentation Header

The code begins with comments outlining the main functions of the program.

; CheapTalkII.ASM
; A short program to demonstrate how to
; use Macintalk 1.1 from assembly language.

; This program displays a dialog and speaks
; the written message in the dialog.

; It also will speak English strings written
; into an edit text box in the dialog.

; Edit text boxes allow user to set speech rate and pitch,
; radio buttons allow a choice of natural or robotic speech.

; Portions of this program originally appeared in
; the November 1985 issue of MacTutor magazine.

; January 1986, Dan Weston
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Making the Connection to SpeechASM.Rel

Next, we need to make the XREF statements necessary for the linker to establish the con-
nection between our routine calls and the SpeechASM.Rel code that we link with our code.

; This program uses subroutines from the file SpeechASM.rel
; You must include that file in your link file 1list
; and XREF the particular routines here.

; You must also have the file 'MacinTalk' on the same volume as
; this application program.

XREF SpeechOn ; open driver

XREF MacinTalk ; say something

XREF Reader ; translate English to phonemes
XREF SpeechPitch ; set pitch

XREF SpeechRate ; set rate

XREF SpeechOff ; close the driver

INCLUDE MacTraps.D

INCLUDE ToolEqu.D

INCLUDE SysEqu.D

SpeechASM.Rel is a code file containing the glue routines necessary to call the
individual procedures contained in the driver. SpeechASM.Rel does not contain the actual
speech routines, just short procedures to call the appropriate section of the MacinTalk
driver. All the routines of the speech driver expect their parameters on the stack. We also
include three regular symbol files here to assist in the nonspeech part of our code.

Setting Up Equates

We begin the equates section by defining the resource ID number for the dialog and the
item numbers for the individual items in the dialog. The resource compiler source code
is listed separately at the end of this chapter.

theDialog EQU 1 ; resource ID # of dialog
sayitbutton EQU 1 ; item # for 'say it '
quitbutton EQU 2 ; item # for 'quit’
usertext EQU 3 ; item # for text box
ratetext EQU 4 ; item # for rate box
pitchtext EQU 5 ; item # for pitch box
naturalbutton EQU 6 ; item # for natural button
robotbutton EQU 7 ; item # for robot button
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Next, we define some values to use with the speech driver routines. There is no
symbol file containing these values, so we define them ourselves.

; input values for SpeechPitch to change mode

noChange
robotic
natural

EQU 512
EQU 256
EQU O

; minimum and maximum values for SpeechPitch and SpeechRate

pitchMin
pitchMax
rateMin
rateMax

tabChar
backspace
CR

myDialog

EQU 65
EQU 500
EQU 85
EQU 425

We also need to define the ASCII code equivalents for three characters that we want
to treat in a special way in our dialog filter procedure. The filter proc is detailed in a later
section of this chapter.

EQU 9 ; let this char through filter
EQU 8 ; and this one and
EQU 13 ; carriage return

Finally, we define a symbolic name for a safe register in which to keep a pointer
to the main dialog. We will use this pointer many times during the program, so it is a
good idea to keep it handy in a register.

EQU A2 ; use this register to store DialogPtr

Defining Macros

Because we will be using numbers typed into edit text boxes in the dialog to set the pitch
and rate of the speech, we need to use the Package Manager routines StringloNum and
NumToString to convert back and forth between text and numeric value. Since these rou-
tines are not accessible directly as part of the ROM, we define two macros to call them
through the Package Manager routine Pack7. We do this for convenience and to increase
the readability of the code, but you could just as easily write out the necessary code each
time you needed to call one of these routines.
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MACRO _StringToNum string,num =
LEA {string},A0
MOVE.W #1,-(SP)
_Pack?7
LEA {num}, A0
MOVE.L DO, (40)
|
MACRO _NumToString num,string =
MOVE.L {num},DO
LEA {string},A0
MOVE.W #0,—(SP)
_Pack?7

Setting Up the Global Variables for Speech

Next, notice the global variable theSpeech, defined as a long word to hold the handle
to the speech globals that will be allocated when the driver is opened. We only have to
define a variable to hold the handle; the opening routine will allocate the necessary storage
for the speech globals. Other globals that we need to define include a word-length flag
that we use to show if the driver was successfully opened; a 256-byte block to hold an
English string; and a handle which will be used for phonetic output from Reader. We
also define some utility variables to use as VAR parameters with some of the dialog main-
tenance procedures.

HEE Global Variables —=-—=—--cmmmmmmmmmee
theSpeech DS.L 1 ; handle to speech driver globals
speechOK DS.W 1 ; our flag to show if driver open
theString DS.B 256 ; VAR for GetIText

phHandle DS.L 1 ; handle to phonetic string

ItemHit DS.W 1 ; VAR for ModalDialog
theType DS.W 1 ; VAR for GetDItem
theItem DS.L 1 ; VAR for GetDItem
theRect DS.W 4 ; VAR for GetDItem
theNum DS.L 1 ; VAR for StringToNum
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Initialization

We begin the code by initializing all the required managers. Since this program is dialog-
based and uses no menus, we can skip InitMenus in our initialization subroutine.

3 Initialization

BSR.W InitManagers ; at end of source file

The initialization subroutine is listed here, out of order, for your convenience. Be
sure to consult the program listing in Appendix A for the correct order of placement.

5 -- Initialize Managers Subroutine -
InitManagers
;PROCEDURE InitGraf (globalPtr: QDPtr);
PEA —4(A5) ; space created for QuickDraw's use
_InitGraf ; Init QuickDraw
_InitFonts ; Init Font Manager
_InitWindows ; Init Window Manager
;PROCEDURE InitDialogs (restartProc: ProcPtr);
CIR.L —(SP) ; NIL restart proc
_InitDialogs ; Init Dialog Manager
_TEInit
_InitCursor ; set arrow cursor
RTS ; end of InitManagers

Opening the Driver

When we call SpeechOn to open the driver, we specify the null string (a Pascal string
with length 0, which we define in the static variable area at the end of the code) for the
ExceptionsFile so that the Reader will translate English to phonetics using the default
rules. If we had created a specific exceptions file with Exception Edit, then we could pass
in the name of the specific exception file to be used. We also pass the address of our global
variable, theSpeech, so that it can be updated to hold the handle to the speech globals
that will be allocated by the Open routine.
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Open the Speech Driver

.
)

; open speech driver to use default rules

; assume that driver will open all right, set our flag to TRUE

MOVE.W

; FUNCT

b

;
CLR.W
PEA
PEA
JSR
MOVE.W
BEQ

; if d
; top

MOVE.W
; you

@1 ; bran

#1,speechOK(A5) ; set flag to TRUE

ION SpeechOn(ExceptionsFile:Str255;
VAR thespeech:Speechhandle;
): SpeechErr

-(sP) ; result

NULL ; defined at end of source code
theSpeech(A5) ; VAR theSpeech

SpeechOn ; jump to open routine

(SP)+,D0 ; check result

(ChR ; branch if ok

river open not successful then clear speechOK flag
revent further use of invalid driver

#0, speechOK(A5)
could also put an error dialog here
ch to this point if open is successful

You can see how the result code is checked after SpeechOn to see if the driver was
opened successfully. In the event of a nonzero result, implying a problem with the open-
ing, we set the speechOK flag to 0 and continue on with the program. All other parts
of the program using the speech driver first check the speechOK flag to make sure that
there is a valid driver to work with.

Opening the Dialog

Next, we need to get the dialog from the resource file and open it up on the screen. Also,
since the speech driver always begins in natural mode by default, we set the natural radio
button to the on position before drawing the items in the dialog box. GetNewDialog draws
the outline of the dialog box, but the items inside the box are not drawn until you call
DrawDialog or ModalDialog.
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............... Get the Dialog from the Resource File

;FUNCTION  GetNewDialog (dialogID: INTEGER; dStorage: Ptr;

; behind: Windo
CLR.L —(SP) ;
MOVE #theDialog,-(SP) ;
CLR.L -(SP) ;
MOVE.L #-1,-(SP) ;
_GetNewDialog ;
MOVE.L (SP)+,myDialog ;

;PROCEDURE SetPort (gp: GrafPort)
MOVE.L myDialog,—(SP) 5
_SetPort ;

We set the radio button to the on position by setting its control value to 1. We get
the handle to the radio button’s control record by using GetDItem, and then use that
handle as input to SetCtlValue. If you have any dialog that uses radio buttons or check
boxes, they can be manipulated in this way by using the appropriate Control Manager

routines.

the natural button

wPtr) : DialogPtr

clear space for DialogPtr
resource #

storage area on heap
above all others

get new dialog

move handle to A2

move DialogPtr to stack
make it the current port

;PROCEDURE  GetDItem(thedialog:DialogPtr;itemNo:INTEGER;

H VAR type:INTEGER:
H VAR box: Rect)
MOVE.L myDialog,-(SP) H
MOVE.W #naturalbutton,-(SP) 5
PEA theType(A5) H
PEA theItem(A5) 5
PEA theRect(A5) H
_GetDItem

VAR item: Handle;

we saved DialogPtr here
item

VAR type

VAR item

VAR box

;PROCEDURE SetCtlValue(theControl:ControlHandle;

theValue: INTEGER)

MOVE.L theItem(A5),-(SP)
MOVE.W #1,-(SP)
_SetCtlValue

Finally, after the control has been set to the proper setting, we draw the contents
of the dialog. Normally we would just wait until we called ModalDialog instead of forc-
ing the contents to be drawn with DrawDialog. In this program, however, we will be call-
ing on the speech driver to speak a message before going on to call ModalDialog, so it

is best to make sure that the contents get drawn here.
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; usually you would not use DrawDialog, but we need to draw the
; dialog contents once before saying them, then go to ModalDialog
; which will draw the contents again

;PROCEDURE DrawDialog(dp:DialogPtr)
MOVE.L myDialog,—(SP)
_DrawDialog

Speaking Pretranslated Speech

.
s

.
2

.
b

2

The static message in our dialog box is “This is a talking dialog demonstration” A pho-
netic translation of that string is kept in the resource file as a resource of type PHNM.
The translation was done using Speech Lab, and the resulting phonetic string put into
the RMaker source file, CheaplalkII.R. The PHNM resource type is defined as a GNRL
type using the .S designation so that the phonetic string does not have a length byte. As
a general strategy you can translate the static message of any dialog into a PHNM resource
with the same resource ID number as the dialog. That way, it is easy to display the dialog
and speak the message together.

When the PHNM resource is loaded into memory by GetResource, you get a han-
dle to the phoneme string that you can pass to MacinTalk to recite. Remember, no length
byte on phonetic strings! Generally, you should pretranslate any strings that you know
at assembly time in order not to waste time and memory translating at run time and also
to insure higher quality speech by testing and refining the phonetic strings.

We also make calls to CheckRate and CheckPitch at this time to be sure that the
speech rate and pitch setting in the speech driver match the settings shown in the edit
text boxes of the dialog. Those two subroutines are discussed in a later section of this
chapter.

Speak Pretranslated Speech

now say the static text item which has been pretranslated into

a phoneme

string with the same ID as the dialog

first, check our flag to make sure that driver is open

TST.W
BEQ

speechOK(A5) ; driver not valid
@2 ; branch around speech stuff

; driver valid, go ahead and speak
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; match the rate and pitch to the edit text boxes

BSR.W
BSR.W

; FUNCT
CLR.L
MOVE.L
MOVE.W
_GetRe
MOVE.L

; FUNCT
3
CLR.W
MOVE.L
MOVE.L
JSR
MOVE.W

@2 ; bran

CheckRate
CheckPitch
ION GetResource(theType:ResType:ID:INTEGER) :Handle
—-(SP) ; space for result
#'PHNM',-(SP) ; resource type PHNM
#theDialog,—-(SP) ; use same ID as dialog
source
(SP)+,A0 ; handle to phoneme string
ION MacInTalk(theSpeech:SpeechHandle;Phonemes:Handle)
:SpeechErr
-(SP) ; space for result code
theSpeech(A5),—-(SP) ; speech global handle
A0,—(SP) ; phonemes, from above
MacinTalk ; say it
(spP)+,D0 ; get result code

ch to here to avoid speaking with invalid driver

Notice how the speechOK flag is checked before any of the speech driver code is
used. This is important to do because trying to use the driver after an unsuccessful Speech-
On will cause a system crash. Notice also how the speech given to MacinTalk is refer-
enced by a handle, not a pointer.

This section of code is executed only once, at the beginning of the program. From
then on, all the speaking will involve translating English text from the edit text box into
phonemes and then speaking.

The Dialog Loop

Because this program is dialog-based, its main event loop is somewhat different from the
normal Macintosh program. Instead of calling GetNextEvent repeatedly, we use Modal-
Dialog to get the events and tell us which parts of the dialog are being manipulated by
the user. This makes the program easier to write, although there is a noticeable loss of
flexibility. For instance, since this program doesn’t have any menus it can’t get at desk
accessories.

Notice that we pass a pointer to a filter procedure as a parameter to ModalDialog.
The filter procedure we use checks on user key presses to make sure that no more than
three digits can be entered in the edit text boxes that set the speech rate and pitch. The
filter procedure is discussed in detail in the next section.
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; DialogLoop =--- -
; now process the dialog

dialogloop

;PROCEDURE ModalDialog (filterProc: ProcPtr;

H VAR itemHit: INTEGER)
PEA MyFilter ; filter proc
PEA ItemHit(A5) ; ItemHit Data
_ModalDialog

; see which button was pushed

CMP.W #quitbutton,ItemHit(A5) ; quit button?
BEQ closeit

CMP.W #sayitbutton,ItemHit(A5); say it?

BEQ sayit

CMP.W #naturalbutton, ItemHit(A5)

BEQ SetNatural

CMP.W #robotbutton, ItemHit(A5)

BEQ SetRobotic

BRA.W dialogloop ; go around again

When ModalDialog returns, we check the result in ItemHit to see if any significant
user action took place and branch accordingly. This loop is equivalent to the main event
loop in most Macintosh application programs.

The Dialog Filter Procedure

As mentioned above, we pass a pointer to a procedure as a parameter to ModalDialog
so that the procedure will be called every time ModalDialog executes. The filter proce-
dure is called at the beginning of ModalDialog, just after ModalDialog has called Get-
NextEvent. The filter procedure gets to take the first look at the event before the regular
code of ModalDialog has a go at it. The filter procedure is passed the dialog pointer,
the event record, and a VAR parameter for the ItemHit. It returns a BOOLEAN result.
If the filter procedure returns FALSE, then ModalDialog will go ahead and process the
event normally. If the filter procedure returns TRUE, then ModalDialog will ignore the
event, returning immediately to the calling program with its ItemHit VAR set to the value
of the filter procedure’s ItemHit. Using a filter procedure allows you to screen the events
coming into a dialog.
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In this program, we want to make sure that the user can enter into the edit text boxes
only those digits that set the speech rate and pitch. Furthermore, we want to allow a max-
imum of three digits in each of those boxes. Every time there is a key-down event, we
filter the nondigit characters out if the text is destined for one of those two edit text boxes.

We begin this procedure by setting up a stack frame in which to locate the three
parameters and function result.

Filter Procedure

H
MyFilter
; FUNCTION

b

MyFilter(theDialog:DialogPtr; VAR theEvent:EventRecord;
VAR ItemHit:INTEGER):BOOLEAN

; set up equates for stack frame
tItemHit EQU 8

tEvent EQU 12
tDialog EQU 16
result EQU 20
parambytes SET 12

; local vari
locals

;5 local regi
EventR
Dialog

LINK
MOVEM.

MOVE.L
MOVE.L

; we only fi
; ptr

CMP.W
BEQ

ables

SET O

sters

eg EQU A3
Reg EQU A4
A6,#locals
L A3-A4,-(SP) ; save registers

tEvent(A6) ,EventReg ; A3
tDialog(A6),DialogReg ; A4

Next, we look at the type of event in the evtnum field of the event record to see
if this is a key-down event. If it is a key-down event, then we branch to a section of code
to do the actual filtering. Otherwise, we fall through to InputOK, set the function result
to FALSE, and return control to ModalDialog through filterExit. Remember that a func-
tion result of FALSE tells ModalDialog to handle the event in its normal fashion.

lter key down events
to event record in A3

#keyDwnEvt,evtnum(A3) ; is it key down?
keyfilter
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InputOK
; set result to FALSE
MOVE.W #0,result(A6)

filterexit
MOVEM.L (SP)+,A3-A4 ; restore registers
UNLK A6
MOVE.L (SP)+,A0 ; get return address
ADDA.W #parambytes,SP ; strip parameters
JMP (A0) ; RIS

keyfilter

When we actually filter the key strokes to the dialog, there are many things to con-
sider. The first thing we must do is check to see if the return key was pressed. It is a
Macintosh convention to make the return key equivalent to a mouse click in item #1 of
the dialog. In this dialog, the “Say it” button is item #1. We want the user to be able
to hear the text spoken by hitting return in any of the edit text boxes. We look at the
character in the event record and branch to a special case handler if it is the return key
(ASCII code 13). Our response to the return key is to set the ItemHit VAR of the filter
proc to 1 and set the result to TRUE. The TRUE result tells ModalDialog to return im-
mediately to the calling program with ItemHit set to the filter proc’s ItemHit value.

; Ptr to event record in A3

; first check to see if the return key was pressed
; if it was, set ItemHit to 1 and return TRUE so

; that ModalDialog will return immediately with

; ItemHit set to 1

)

MOVE.W evtmessage+2(A3),D0 ; get the character
CMP.B #CR,DO ; was it the return key?
BEQ DoCR ; handle a special way

The next thing to consider is whether the cursor is currently in one of the edit text
boxes for speech rate or pitch. If the cursor is in the big edit text box that is used for
the English text, then we don’t need to filter the key strokes. We determine which edit
text box is currently selected by looking at the editField field of the dialog record. The
number in this field is one less than the item number of the edit text box currently selected.
Since the filter procedure received the dialog pointer as a parameter, we can use that to
get at the dialog record and the editField field. We add 1 to the value there to correct
for the off-by-one bug and then check to see if the current text box is either the rate box
or the pitch box. If neither of these tests succeeds, then we branch to InputOK, which
sets the function result to FALSE and returns to ModalDialog without filtering the charac-
ter further.
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; only check other characters if edit text
; is in one of the numeric boxes

MOVE.L DialogReg,AO ; get DialogPtr

MOVE.W editField(A0),DO ; which item #

ADD.W #1,D0 ; correct #

CMP.W #ratetext,DO ; is it rate box?

BEQ e1 ; ok, filter this input
CMP.W #pitchtext,DO ; is it pitch box?

BNE InputOK ; neither, go back

If we get this far, we know that we have a key press that is not the return key des-
tined for one of the two edit text boxes in our dialog that should accept only digits. There
are two more special cases that we need to check before we actually filter for digits. The
tab key is normally used to move the cursor among all the edit text boxes of a dialog,
so we want to let that character through to be processed normally by ModalDialog. In
the same way, the backspace key is used to erase the previous character, so we want to
allow that option to the user. Both of these keys (ASCII codes 8 and 9) are passed through
to InputOK so that ModalDialog can handle them in the conventional way.

MOVE.W evtmessage+2(A3),D0 ; get the character
CMP.B #tabChar,DO ; was it tab?

BEQ InputOK ; we'll let this through
CMP.B #backspace, DO ; was it delete?

BEQ InputOK ; we'll let this through

Finally, we begin to look at the character to see if it is a digit. We first check to
see if its ASCII value is less than that for 0. Then we check to see if it is greater than
the ASCII value for 9. If the character passes either of these tests, it must not be a digit
and is sent to RejectInput, which beeps the speaker rudely and sets the filter procedure
result to TRUE so that ModalDialog will ignore this key press.

CMP.B #'0',D0 ; lowest digit
BLT RejectInput ; lower than 0
CMP.B #'9',D0 ; highest digit
BGT RejectInput ; higher than 9
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The final test that we need to do, assuming that we have gotten this far, is to make
sure that no more than three digits get entered in either of the edit text boxes. To do this,
we need to examine the fields of the Text Edit record that the Dialog Manager maintains
to manage the text in the edit text boxes. For each dialog, there is a single Text Edit record
shared by all the edit text items. By getting the TEHandle from the dialog record, we
can look at the individual fields of the TE record to find out how many characters are
in the currently selected edit text box.

There are several possibilities that can occur here. First, by comparing the selection-
start and selection-end fields of the TE record, we may find that one or more characters
of the box is currently selected, as shown in the rate box in Figure 6.2. If this is the case,
then the current key press will replace the selected characters, so it is OK to let the key
press through, even though there may already be three characters in the box. Second,
if the selection range is not a range but simply an insertion point, we need to check the
teLength field to make sure there are less than three characters before letting the current
key press through. Characters that make it through this screening process are sent to
InputOK so that they will be handled in the normal fashion by ModalDialog.

This is a talking dialog demonstration

rrhis is a test of the emergency broadcasting
network. In the event of a real emergency you
would be instructed to tune to this station for
further instructions. This is only a test.

Im speech rate @® natural

h

speech pitch O robotic

FIGURE 6.2. Range of text selected in rate box
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; if we get this far, the key press is a digit
; now check to make sure that we're not getting more than 3 digits
; in the edit text item

MOVE.L DialogReg, A0 ; get DialogPtr

MOVE.L teHandle(A0),AQ ; TERecord for edit text item
MOVE.L (A0),A0 ; convert to Ptr

MOVE.W teSelStart(A0),DO ; get start of selection

MOVE.W teSelEnd(A0),D1 ; get selection end

SUB.W D1,D0 ; start - end

BMI InputOK ; this range will be replaced
CMP.W #3,teLength(AO) ; is the length equal to 3

BLT InputOK ; less than 3 chars, add another

Characters that don’t make it through the gauntlet, that is, nondigits and digits
destined for text boxes already having three digits, are passed to RejectInput. This section
of code beeps the Mac speaker briefly to let the user know that something is amiss and
then sets the result to TRUE so that ModalDialog will not process this key press.

RejectInput
; beep the speaker and return

; don't let input get to DialogSelect

;PROCEDURE SysBeep(duration:INTEGER)

MOVE.W #1,-(SP)

_SysBeep

MOVE.W #$0100, result(A6) ; set TRUE so modal ignores input
BRA.W filterexit

The last section of code is the special case handler for the return key, as discussed
above. All it does is set the ItemHit to 1 and return a function result of TRUE.

DoCR
; our filter procedure needs to recognize a carriage return and
; make it the same as a click in item # 1

MOVE.L tItemHit(A6),A0 ; ItemHit is VAR, so get Ptr
MOVE.W #1,(A0) ; set item # to 1

MOVE.W #30100, result(A6) ; set TRUE so modal ignores input
BRA.W filterexit
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The filter procedure is actually pretty involved, but it is one of the keys to writing
Macintosh programs that protect the user from entering inappropriate data. As much as
practicable, you want to make it virtually impossible for the user to do anything wrong.
Filter procedures are a good way to make dialogs even more friendly to users.

Translating English to Phonetics and Then Speaking

After saying the static dialog message upon opening, the program waits for the user to
enter English text in the edit text window of the dialog. The program watches the results
of ModalDialog until the Say it button is pushed, at which point it uses GetDItem and
GetlText to get the current English text of the edit text item.

Notice that we branch to the two subroutines, CheckRate and CheckPitch, before
actually going into the speaking part of the code.

5= Translate English to Phonetics and Speak
sayit

; first, check our flag to make sure that driver is open

TST.W speechOK(A5)
BEQ @3 ; driver not valid

; check the values in speed and pitch text boxes

; update driver to match these values

; 1f the values are outside the limits, then set to nearest end point
BSR.W CheckRate
BSR.W CheckPitch

; driver valid, go ahead and speak
; get the current text in the edit text box

;PROCEDURE  GetDItem(thedialog:DialogPtr;itemNo:INTEGER;

5 VAR type:INTEGER: VAR item: Handle;

H VAR box: Rect)

MOVE.L myDialog,—(SP) ; we saved DialogPtr here
MOVE.W #usertext,—(SP) ; the edit text item

PEA theType(A5) ; VAR type

PEA theItem(A5) ; VAR item

PEA theRect(A5) ; VAR box

_GetDItem
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;PROCEDURE GetIText(item:Handle;VAR text: Str255)

MOVE.L theItem(A5),-(SP)
PEA theString(A5)
_GetIText

; result of GetDItem
; VAR text

The Str255 text retrieved from the edit text box is fed into Reader to translate it
into a phonetic string. Please notice that when we pass the English text into Reader, we
skip over the length byte at the head of the Str255. We do, however, use the length byte,
as the length input to Reader, after coercing it to a long word. The handle used to hold
the phonetic output of Reader is initially associated with a zero-length block, but Reader
grows the block automatically to fit the output.

; set

up an empty handle first for Reader to fill with phonemes

;FUNCTION NewHandle(logicalSize: Size): Handle

; logicalSize => D0, Handle => AO

MOVEQ #0,D0 ; set up empty handle
_NewHandle

MOVE.L AO,phHandle(A5) ; save handle for later
;FUNCTION Reader(theSpeech:SpeechHandle; EnglishInput:Ptr;

H InputLength:LongInt: PhoneticOutput:Handle)

; : SpeechErr

CILR.W -(SP) ; space for result

MOVE.L theSpeech(A5) ,~(SP) ; speech globals

PEA theString+1(A5) ; Ptr to string, skip length byte
CLR.L DO ; clear out DO

MOVE.B theString(A5),D0 ; put length byte in DO

MOVE.L DO,-(SP) ; use longInt for length
MOVE.L phHandle(A5),-(SP) ; we just allocated this handle
JSR Reader ; do translation

MOVE.W (SP)+,D0 ; get result

Once we have used Reader to translate the English text into a phonetic string, we
pass the handle to the phonemes to MacinTalk, much as we did earlier, to hear it spoken.
It is important to deallocate this handle after the phonemes are spoken to avoid cluttering

up memory with old sayings.

Phonemes: Handle):SpeechErr

space for result
speech globals
handle to phonemes
say it

;FUNCTION MacinTalk(theSpeech: SpeechHandle
2

CLR.W -(sp) ;

MOVE.L theSpeech(A5) ,-(SP) ;

MOVE.L phHandle(A5),-(SP) ;

JSR MacinTalk ;

MOVE.W (SP)+,DO0 H

get result

166




MAKING YOUR MACINTOSH TALK

; deallocate
; PROCE
; h =>
MOVE.L
_Dispo

@3
BRA.W

handle
DURE DisposHandle(h: Handle)
AOQ
phHandle(A5),A0 ; this is where phonemes are
sHandle

dialogloop

This process can be generalized to other situations where you want to translate
arbitrary English text into speech. Just get a pointer to the first character of the text, get
the length of the text, allocate an empty handle, and feed it all to Reader. The phonetic
output of Reader can then be handed to MacinTalk to recite.

Checking the Rate and Pitch

CheckRate

Earlier we mentioned the two subroutines that are used to match the speech rate and pitch
to the settings of the text boxes in the dialog. This checking is done just before speaking
because there is no way to really know when a user is through entering digits in the text
box. These routines convert the text in the boxes into numeric values that are then checked
to make sure that they fall within the acceptable range for speech rate and pitch settings.
Values that fall outside the ranges are rounded to the nearest endpoint, and the value shown
in the text box is changed to reflect this correction. Once the values have been checked
and corrected, they are used to set the rate and pitch of the speech driver.

We begin the subroutine by using GetDItem and GetIText to get the text from the
edit text box. Then this text is converted to a long-word numeric value by StringloNum.

---------------------------------- CheckRate ------ocmmmmmm o

; a subroutine to make sure that the number shown in the text box
; 1s within the limits set for the rate, then sets rate to num
; this is called just before we 'say it!'

; get

dialog item,

;PROCEDURE  GetDItem(thedialog:DialogPtr;itemNo:INTEGER;

)

VAR type:INTEGER: VAR item: Handle;
VAR box: Rect)

2
MOVE.L myDialog,—(SP) ; we saved DialogPtr here
MOVE.W #ratetext,—(SP) ; item
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PEA theType(A5) ; VAR type
PEA theItem(A5) ; VAR item
PEA theRect(A5) ; VAR box
_GetDItem

; PROCEDURE GetIText(item: Handle; VAR text: Str255)

MOVE.L theItem(A5),—(SP) ; get handle from VAR
PEA theString(A5) ; string holder
_GetIText

; StringToNum
_StringToNum theString(A5) , theNum(A5)

Then we check the value against the symbolic maximum and minimum values for
speech rate, rounding if necessary.

; set within bounds of max and min, enter with rate in theNum(A5)
; set text to corrected value

; then set the rate for speech

CMP.L #rateMin, theNum(A5)
BPL @1 ; theNum is >= min

; set theNum to minimum

MOVE.L #rateMin, theNum(A5)
BRA.W @2 ; Jump ahead
@1 CMP.L #rateMax+1, theNum(A5)
BMI @2 ; theNum is <= max

; set theNum to maximum
MOVE.L #rateMax, theNum(A5)

@2 ; now we know the value in theNum is a valid one for setting rate

Once the value is known to be within acceptable limits, we write it back out to the
edit text box. We do this even when the value hasn’t changed because it seems easier just
to write it all the time rather than to insert logic to decide if it should be done or not.
We convert the long-word value back to a string with NumToString and then use SetIText
to assign the text to the edit text box. We reuse the handle to the edit text item in
theltem(AS), which we got earlier with GetDItem, because we know that its value hasn’t
changed since then.

168



MAKING YOUR MACINTOSH TALK

; set the text of the box to match corrected number, even if it doesn't need it
_NumToString theNum(A5) , theString(A5)

;PROCEDURE SetIText(item:Handle;text:Str255)
MOVE.L theItem(A5),—(SP) ; handle in VAR
PEA theString(A5)

_SetIText

Finally, we set the rate. The one tricky point to see here is that although the value
that we extracted from the text box was converted to a long-word value, SpeechRate expects
its rate parameter to be only a two-byte word. To correct for this, we move the long-word
value from theNum(AS) into register D0 and then move the low word onto the stack as
the parameter for SpeechRate.

; set rate

MOVE.L theNum(A5),D0 ; do this to get word from long
;PROCEDURE SpeechRate(theSpeech:SpeechHandle;

; theRate:INTEGER)

MOVE.L theSpeech(A5) ,~(SP)

MOVE.W DO,-(SP) ; new rate

BSR.W SpeechRate

RTS

The code for the subroutine CheckPitch closely parallels that of CheckRate, as
explained above.

; CheckPitch -

CheckPitch
; a subroutine to make sure that the number shown in the text box
; is within the limits set for the rate, then sets rate to num
; this is called just before we 'say it!

; get dialog item,
;PROCEDURE  GetDItem(thedialog:DialogPtr;itemNo:INTEGER;

5 VAR type:INTEGER: VAR item: Handle;

; VAR box: Rect)

MOVE.L myDialog,-(SP) ; we saved DialogPtr here
MOVE.W #pitchtext,-(SP) ; item

PEA theType(A5) ; VAR type

PEA theltem(A5) ; VAR item

PEA theRect(A5) ; VAR box

_GetDItem
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; PROCEDURE GetIText(item: Handle; VAR text: Str255)

MOVE.L theItem(A5),—-(SP) ; handle in VAR
PEA theString(A5) ; string holder
_GetIText

; StringToNum
_StringToNum theString(A5),theNum(A5)

;set within bounds of max and min
CMP.L #pitchMin, theNum(A5)
BPL @1 ; theNum is >= min

; set theNum to minimum

MOVE.L #pitchMin, theNum(A5)
BRA.W @2 ; jump ahead
@1 CMP.L #pitchMax+1, theNum(A5)
BMI @2 ; theNum is <= max

; set theNum to maximum
MOVE.L #pitchMax, theNum(A5)

@2 ; now we know the value in theNum is a valid one for setting pitch

; set the text of the box to match corrected number, even if it doesn't need it
_NumToString theNum(A5) , theString(A5)

;PROCEDURE SetIText(item:Handle;text:Str255)

MOVE.L theItem(A5),~-(SP) ; handle in VAR
PEA theString(A5)
_SetIText
; set pitch
MOVE.L theNum(A5),DO0

;PROCEDURE SpeechPitch(theSpeech:SpeechHandle;
thePitch: INTEGER; theMode : FOMode)

3

MOVE.L theSpeech(A5) ,~(SP)

MOVE.W D0,-(SP) ; new pitch

MOVE.W #noChange,—(SP) ; don't change mode
BSR.W SpeechPitch

RTS
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Setting the Speech Mode

When the user clicks either of the radio buttons, the program is directed to one of the
subroutines, either SetNatural or SetRobotic. These routines turn on the selected button,
turn off the other radio button, and then set the speech mode appropriately. When you
have dialogs with radio buttons, it is a convention to allow only one button in a group
to be on at a time. Your program should respond to clicks in a button by turning on the
clicked button and turning off the other buttons in the group.

For each button we get a handle to its control record with GetDItem and then use
that control handle as input to SetCtlValue. A radio button is turned on by setting its
control value to 1 and turned off by setting its control value to 0.

; --- Set Natural Speech
SetNatural

; set the natural button
;PROCEDURE  GetDItem(thedialog:DialogPtr;itemNo:INTEGER;

; VAR type:INTEGER: VAR item: Handle;

; VAR box: Rect)

MOVE.L myDialog,-(SP) ; we saved DialogPtr here
MOVE.W #naturalbutton,—(SP) ; item

PEA theType(A5) ; VAR type

PEA theItem(A5) ; VAR item

PEA TheRect(A5) ; VAR box

_GetDItem

;PROCEDURE SetCtlValue(theControl:ControlHandle;

; theValue:INTEGER)
MOVE.L theItem(45),—-(SP)
MOVE.W #1,-(SP)

_SetCtlValue

; clear the robot button

; set the natural button
;PROCEDURE  GetDItem(thedialog:DialogPtr;itemNo:INTEGER;

H VAR type:INTEGER: VAR item: Handle;

3 VAR box: Rect)

MOVE.L myDialog,-(SP) ; we saved DialogPtr here
MOVE.W #robotbutton,-(SP) ; item

PEA theType(A5) ; VAR type

PEA theItem(A5) ; VAR item

PEA theRect(A5) ; VAR box

_GetDItem
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;PROCEDURE SetCtlValue(theControl:ControlHandle;

; theValue:INTEGER)
MOVE.L theItem(A5),—(SP)

MOVE.W #0,-(SP)

_SetCtlValue

Once the cosmetic maintenance of the dialog is taken care of, we go ahead and actually
change the setting of the speech driver mode. Notice that we use the symbolic value
noChange as input to SpeechPitch so that we can change the mode without affecting the
current pitch setting.

; and set the speech driver to natural

,PROCEDURE SpeechPitch(theSpeech:SpeechHandle;
thePitch: INTEGER; theMode : FOMode)

MOVE.L theSpeech(A5) ,-(SP)

MOVE.W #noChange,—(SP) ; pitch stays the same
MOVE.W #natural,-(SP) ; set natural

BSR.W SpeechPitch

BRA.W dialogloop

The code to set the robotic mode is essentially the same as the code described above
for the natural mode. It is listed below.

R Set Robotic Speech - B
SetRobotic

; clear the natural button
;PROCEDURE  GetDItem(thedialog:DialogPtr;itemNo: INTEGER;

H VAR type:INTEGER: VAR item: Handle;

; VAR box: Rect)

MOVE.L myDialog,-(SP) ; we saved DialogPtr here
MOVE.W #naturalbutton,-(SP) ; item

PEA theType(A5) ; VAR type

PEA theItem(A5) ; VAR item

PEA theRect(A5) ; VAR box

_GetDItem

;PROCEDURE SetCtlValue(theControl:ControlHandle;

3 theValue: INTEGER)
MOVE.L theItem(A5),-(SP)
MOVE.W #0,-(SP)

_SetCtlValue
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; set the robot button

; set the natural button
;PROCEDURE  GetDItem(thedialog:DialogPtr;itemNo: INTEGER;

; VAR type:INTEGER: VAR item: Handle;

; VAR box: Rect)

MOVE.L myDialog,-(SP) ; we saved DialogPtr here
MOVE.W #robotbutton,—(SP) ; item

PEA theType(A5) ; VAR type

PEA theItem(A5) ; VAR item

PEA theRect(A5) ; VAR box

_GetDItem

;PROCEDURE  SetCtlValue(theControl:ControlHandle;
; theValue:INTEGER)

b

MOVE.L theItem(A5),-(SP)
MOVE. W #1,-(SP)
_SetCtlValue

; and set the speech driver to robotic

;PROCEDURE SpeechPitch(theSpeech:SpeechHandle;
; thePitch: INTEGER; theMode : FOMode)

)

MOVE.L theSpeech(A5) ,~(SP)

MOVE.W #noChange,-(SP) 5 piteh stays the same
MOVE.W #robotic,—(SP) ; set robotic

BSR.W SpeechPitch

BRA.W dialogloop

Ending the Program

When we leave the program, we need to close the dialog and the speech driver. Because
we originally allowed the Dialog Manager to allocate space for the dialog record on the
heap, we use DisposDialog to get rid of it.

3 Close Up Shop

closeit
;PROCEDURE  DisposDialog (theDialog: DialogPtr);
MOVE.L myDialog,—(SP) ;get Dialog Ptr to close
_DisposDialog ;close window
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Then we check the speechOK flag, calling SpeechOff if there is a driver to close.
SpeechOAf closes the driver and frees up the memory that was used by MacinTIalk. See
the discussion below on memory considerations. The last step calls ExitToShell to end
the program and go back to the Finder.

; first, check our flag to make sure that driver is open
TST.W speechOK(A5)
BEQ @4 ; driver not valid
; branch around speech stuff

; driver valid, go ahead and close it

; PROCEDURE SpeechOff(theSpeech: SpeechHandle)

MOVE.L theSpeech(A5) ,~(SP) ; handle to speech globals
JSR SpeechOff ; close it up
@4 ; branch to here to avoid closing invalid driver
_ExitToShell ; Return To Finder
Static Data

We only define a single static global constant to represent the null string.

5= - - - Static Data - - ———- -

NULL DC.W 0 ; null string

MEMORY CONSIDERATIONS

Generally, MacinTalk will use at least 20K of memory, plus dynamic buffers equal to about
800 bytes/second of uninterrupted speech (usually less than 10 seconds). In addition, Reader
utilizes 10K plus a buffer to hold the translated text. On a 512K Mac, this memory
requirement is really no problem. But on a 128K Mac or in a small Switcher partition,
MacinTalk can cramp your other code. In particular, watch out for situations where your
program tries to spool-print a job with MacirTalk in memory. You may want to insert some
code in your program that checks on the available memory before a print operation and
close the speech driver temporarily while the printing is going on.
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PUTTING IT ALL TOGETHER

You should assemble CheaplalkII.ASM, then link it with CheapTalkII. LINK. One thing
to notice about the output file from the linker is that it is not a functional application
until it is combined with the necessary resources by RMaker. Since LINK output files
are normally application type, Cheaplalk. LINK assigns a file type of CODE so that the
resulting output file will not have the characteristic diamond-shaped icon.

;File CheapTalkII.LINK
/OUTPUT CheapTalkCode

; Since this code file will not run successfully until it has been
; joined with the resources by RMaker, set its file type so

; that it cannot be mistakenly run from the desktop.

; Link output files are usually of type APPL.

/TYPE 'CODE' 'LINK'
; link our code, CheapTalkII, with the glue for the speech driver routines

CheapTalkII
SpeechASM

$

The final step of the program development is to run Cheaplalk.R through RMaker
to create the DLOG, DITL, and PHNM resources and combine them in one application
file with the output file from the linker. The output of RMaker, CheapIalkIl, will be an
independent application program that can be moved to any disk and run as long as the
driver file, MacinTalk, is also on that disk.

¥ CheapTalkII.R
* create the application CheapTalkII

¥ first define all the resources, and then include the code

* output file name
* file type, file creator

MDS2:CheapTalkII
APPLCHTK
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¥ dialog resource is a vanilla dialog
% make it preloaded (4) to speed things up

Type DLOG
1 (4)

40 50 330 450
Visible NoGoAway
1

0

1

DITL resource for dialog has one static text item,

three edit text items,

two buttons: 'Say it' and 'Quit'

two radio buttons, 'natural' and 'robotic'

the 'Say it' button is item #1 so that hitting return is
the same as clicking 'Say it!'

make it preloaded (4) to speed things up

X Kk ok ok Xk Xk XK

Type DITL
demo,1 (4)
10

Button
260 300 280 350
Say it

Button
260 50 280 100
Quit

EditText

40 30 150 370

This is a test of the emergency ++
broadcasting network. In the event ++
of a real emergency you would be ++
instructed to tune to this station ++
for further instructions. This is ++
only a test.

EditText
170 50 190 80
140
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EditText
220 50 240 80
120

radiobutton
170 250 190 350
natural

radiobutton
220 250 240 350
robotic

StaticText Disabled
170 85 190 170
speech rate

StaticText Disabled
220 85 240 170
speech pitch

StaticText Disabled
10 30 30 290
this is a talking dialog demonstration

* PHNM resource is defined by us to be a string without length byte
* it is a phonetic translation of the static text in the DITL of the

% same resource #
% make it preloaded (4) to speed things up

Type PHNM = GNRL
demo,1 (4)

.S
DHIH9S, IHZ AH TAO4KIHNX DAY6AELAA1G DIHIMUNSTREY5SHUN #

¥ now include the code produced by the linker

INCLUDE MDS2:CheapTalkCode
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SUMMARY

The program described in this chapter shows how to perform all the basic functions of
the MacinTalk driver. By cutting and pasting the appropriate parts into your own software
projects, you can add speech with a minimum of modification to the overall structure of
your programs. Other parts of this program show how to structure a dialog-based applica-
tion and how to use a filter procedure with ModalDialog.

All parts of the MacinTalk system are available in the Software Supplement or in
the DLS8 area of the Mac Developers interest group (PCS-7) on Compuserve, including
the Macinlalk 1.1 documentation that Apple provides. This documentation is a good place
to learn more about the phonetic symbols that MacinTalk uses and some of the finer points
of the available routines. The MacinTalk files and driver are also included on the source
code disk for this book, available from the author. You should also be aware that there
is a licensing fee if you distribute programs that use MacinTalk 1.1, so contact Apple before
you start shipping disks with MacinTalk on them.
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[

Dialog User Items

Dialog boxes are among the most familiar Macintosh software features. Dialogs can con-
tain static text, text that can be edited by the user, buttons, check boxes, icons, and pic-
tures. All these different kinds of dialog items can be included in a dialog by defining
DLOG and DITL resources with RMaker or the Resource Editor. Figure 7.1 (page 180)
shows a dialog with many different item types. A DLOG resource defines the overall size
and general type of the dialog window. The DLOG resource also contains a reference to
the DITL resource listing the individual items within the dialog window. An individual
item specification that is contained in a DITL resource always describes the item type
and a rectangle within which the item is to be displayed inside the dialog window. An
item description in a DITL resource can also contain information specific to the particu-
lar item type being defined. For instance, a specification of a button item must include
the text to be displayed in the button.

In addition to the standard dialog item types described above, the Dialog Manager
allows one additional general type, the user item. The standard dialog item types trigger
predefined actions when the dialog is drawn; i.e., a button item causes a standard button
control to be drawn within the specified display rectangle. User items, on the other hand,
are drawn by procedures defined by the programmer. This gives user items a flexibility
that allows a wide range of possibilities to the programmer creating custom dialogs.

Once it is connected to the user item, the user item procedure is called every time
there is an update event for the dialog window. Update events will occur when the dialog
is first opened and thereafter whenever a part of the dialog becomes uncovered after having
been obscured by another window. The user item procedure’s main task is to draw the
user item within the dialog window. It is also possible to include other tasks in a user
item procedure if you want those tasks done at update time.

The general strategy for using user items is to load the DLOG and DITL resources
into memory with a call to GetNewDialog. The DLOG should be defined as invisible
so that it will not be drawn when first loaded in. Then use GetDItem and SetDItem
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E 2

File g4t

edit [ box

Static text

ICON item

¥ O radio control
PICT item

[ check box

FIGURE 7.1. Dialog with many item types

to install the user item procedure pointer. Once the user item procedure pointer is attached
to the user item, you can call ShowWindow to draw the dialog window and trigger the
update event that will cause the user item procedure to draw the user item. This sequence
of procedure calls is illustrated in the example program developed in the following sections
of this chapter.

DEFINING USER ITEMS IN THE RESOURCE FILE

The first step in creating a dialog with a user item is to define appropriate DLOG and
DITL resources. The RMaker source file for our example program is shown below. The
program puts up a dialog with two user items and a Quit button. One of the user items
simply draws a line to separate the dialog box into two sections. The other user item resem-
bles a large rectangular button complete with shading, as shown in Figure 7.2.

The first part of the resource source file sets the output file name and file type.
Notice that we are using RMaker to create a stand-alone application rather than to create
a separate resource file that will be opened by an application.
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X

UITest.R

b3

This is my user item.

FIGURE 7.2. Dialog with two user items

create the application UserItemTest

¥ first define all the resources, and then include the code

* Xk

output file name
file type, file creator

MDS2:UserItemTest

APPL??%?

Next, we define the DLOG resource to determine the outer boundaries of the dialog
window. The key point to see here is that the DLOG is defined as invisible. This means
that it will not be drawn when it is first loaded in with GetNewDialog, allowing time
for us to install the user item procedure pointers before calling ShowWindow.
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Type DLOG
,256

50 50 250 450
InVisible NoGoAway
1

0

256

The DITL resource is where we actually specify the bounds rectangles for the two
user items in the dialog. The first item in the dialog is a standard button that the user
can click to Quit the program. The second and third DITL items are user items. For
each user item we only need to specify the bounds rectangle. Notice that the rectangle
for item #2 has the same left and right coordinates. This is the item that will simply draw
a line.

¥ DITL resource for dialog
Type DITL

»256
3

Button
90 30 120 70
Quit

UserItem
10 100 190 100

UserItem
150 120 175 380

Next, we define a string resource that will be used as the text within the second
user item. The string will be loaded into memory with GetResource and used with TextBox
to draw the text into the user-item bounds rectangle. Because the text for the user item
is kept here as a resource, it would be easy to change the text or translate it to another
language.

Type STR

,256
this is my user item
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Finally, we need to include the code produced by the linker so that the output of
RMaker will be a fully functional application. This means that RMaker must be the last
step in the programming sequence each time any changes are made to the code.

* now include the code produced by the linker

INCLUDE MDS2:UITestCode

THE DOCUMENTATION HEADER

3

As usual, we begin the assembler source code with several lines of comments explaining

the function of the program. The comments mention that a utility function, TrackRect,

is assembled separately and joined with this program by the linker. The source code for

TrackRect is discussed in a later section of this chapter. We also include the symbol files

necessary to access individual fields of data records maintained by the ROM. The com-

plete source code for UI'Test. ASM and TrackRect.ASM is listed in Appendix A and is
.included on the source code disk available from the author.

File UITest.ASM
a short program to experiment with dialog user items

This program opens a modal dialog and displays
two user items. One user item just draws a line,

the other user item draws a rectangular, shaded button.

A utility function, TrackRect, 1s assembled separately and
linked with this program.

February 1986, Dan Weston

-— - e Symbol Files

INCLUDE Mactraps.D
INCLUDE ToolEqu.D
INCLUDE QuickEqu.D
INCLUDE SysEqu.D

As mentioned above, TrackRect is a utility routine that is assembled separately and
linked with the main program. We must XREF TrackRect here to facilitate the connec-
tion of the routine to this module. A corresponding XDEF TrackRect statement must
appear in the TrackRect assembler source module.
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H External References
XREF TrackRect ; assembled separately

We have included several standard equates files to gain access to symbolic offsets
and constants associated with the ROM routines and data structures. We must also define
a few constants of our own here to identify objects that are unique to this program. We
define symbolic constants to stand for the resource ID numbers for our dialog and string
resources, and constants <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>