
"The Complete Book of Macintosh Assembly Language
Programming, Volumes I and II, are a must for anyone serious
about programming the Mac. They contain_ information not found any
where else, and cover the real-life problems e>f a software developer."

David Smith, Publisher
MacTutor

Save yourself hours of typing
A source code disk containing all the programs in this book is available from the author. Use the
card below or send $14.95 to:

Source Code Disk #3
Nerdworks
195 23rd NE
Salem, OR 97301

--
Order Form - please print
Name ______________________ _

Address----------------------

City-------------- State_ Zip __ _

Date--------------

Please enclose a check or money order for $14.95.
The price includes shipping and handling.

Send orders to:

Source Code Disk #3
Nerdworks
195 23rd NE
Salem, OR 97301

./

The Complete Book of

acintosh
Assembly Language
Programming
Volume II

/;

The Complete Book of

acintosh
Assembly Language
Programming
Volume II

Dan Weston

Scott, Foresman and Company
Glenview, Illinois London

This book is for my children,
Sarah and Asa.

ISBN 0-673-18583-4

Copyright © 1987 Scott, Foresman and Company.
All Rights Reserved.
Printed in the United States of America.

Library of Congress Cataloging-in-Publication Data
(Revised for vol. 2)

Weston, Dan
The complete book of Macintosh assembly language

programming.

Bibliography: v. 1, p. ; v. 2, p.
Includes indexes.
1. Macintosh (Computer)-Programming. 2. Assembler

language (Computer program language). I. Title.
QA76.8.M3W47 1986 5.265 86-3866
ISBN 0-673-18379-3 (v. 1)
ISBN 0-673-18583-4 (v. 2)

I 2 3 4 5 6-KPF-91 90 89 88 87 86

Apple, MacPaint, MacDraw, MacWrite, and Finder are trademarks of Apple Computer, Inc. Macin
tosh is a trademark licensed to Apple Computer Inc. Microsoft and MS-DOS are trademarks of
Microsoft Corporation. UNIX is a trademark of AT&T. GEM is a trademark of Digital Research,
Inc. PostScript is a trademark of Adobe Systems, Inc.

Notice of Liability
The information in this book is distributed on an "As Is" basis, without warranty. Neither the author nor Scott,
Foresman and Company shall have any liability to customer or any other person or entity with respect to any
liability, loss, or damage caused or alleged to be caused directly or indirectly by the programs contained herein.
This includes, but is not limited to, interruption of service, loss of data, loss of business or anticipatory profits,
or consequential damages from the use of the programs.

Scott, Foresman Professional Publishing Group books are available for bulk sales at quantity discounts. For
information, please contact: Marketing Manager, Professional Books, Professional Publishing Group, Scott, Fores
man and Company, 1900 East Lake Avenue, Glenview, IL 60025.

D
Contents

CHAPTER 1 Memory Management and Debugging 1

The Application Heap 1
The System Heap 3
Low-Memory Globals 3
The Trap Dispatch Table 5
The Screen and Sound Buffers 6
The Application Globals 7
The Big Picture 10
Pointers 10
Handles 13
A Closer Look at the Heap 16

Getting Ready to Look at the Heap 16
Identifying Heap Objects 17
Using the Find Command to Identify Heap Objects 19
Two More Unidentified Objects 21
Other Identified Objects 22

Debugging Strategy 23
Program Segmentation 24
Summary 26

CHAPTER 2 New ROM-Old ROM 27

The Toolbox and the Operating System 27
The Trap Mechanism 28
Trap Dispatch Table 31

64K ROM 31
128K ROM 32

Patching ROM 32
Trap Words and Trap Numbers 33
Two Strategies for Patching ROM 33

System-Based ROM Patch 34
Application-Based ROM Patch 39

New Routines in 128K ROM 44
Determining Which ROM Is Installed 46
Summary 47

CHAPTER 3 The Clipboard and Switcher: Sharing Data Between Programs 48

What Kinds of Data Go on the Clipboard? 49
The Desk Scrap and the Private Scrap 50
Is the Private Scrap Really Necessary? 53
Desk Scrap in Memory and on Disk 53
Putting Information on the Clipboard 54
Getting Information off the Clipboard 56
When to Convert the Clipboard 58

Program Startup and Termination 58
Activate/Deactivate Events and Clipboard Conversion 59
An Alternate Method for Controlling Clip Conversion 59

How Does Switcher Convert the Clipboard? 66
The Desk Accessory Ruse 67
The Switcher Event 70

Summary 73

CHAPTER 4 Using the Print Manager 75

Available Printers 75
QuickDraw, GrafPorts, and Printers 77
Using the Print Manager 78
The Glue Routines 79
Opening the Printer Resource File 79
Setting Up a Print Record 80
The Print Manager Dialogs 81
Opening the Print Document/grafPort 84
The Printing Loop 85
Spool Printing the Document 86
Closing the Print Manager 87
Example Program Module 88

The Documentation Header 88

Setting Up the Stack Frame 89
Opening the Print Manager 90
Filling in the Print Record 90
Using the Print Manager Dialogs 91
Opening the Printing Port 91
Calculating the Page Size 92
Determining the Number of Copies 93
Imaging Each Page 94
Spool Printing 98
Cleaning Up 99

Optimizing for the LaserWriter 100
Installing Print Idle Procedures 102
Tweeking the Print Record 106
Summary 110

CHAPTER 5 HFS, MFS, and the Standard File Package 112

HFS-MFS Compatibility 113
Using the Standard File Package 115
Parameters for SFGetFile 116

The File Filter Procedure 117
The Dialog Hook Procedure 119
Parameters for SFPutFile 122

Using the File Manager with SFReply Records 122
Determining If HFS or MFS Is Active 125
Searching for Files Directly on MFS Volumes 126
Searching for Files Directly on HFS Volumes 132

Recursion and HFS 132
HFS-Specific Routines 135
HFSFileSearch Code 136

Summary 145

CHAPTER 6 Making Your Macintosh Talk 147

Overview of MacinTalk 147
The MacinTalk Driver 148
CheapTalkII: A Simple Speech Application Example 149

The Documentation Header 150
Making the Connection to SpeechASM.Rel 151
Setting Up Equates 151

Defining Macros 152
Setting Up Global Variables for Speech 153
Initialization 154
Opening the Driver 154
Opening the Dialog 155
Speaking Pretranslated Speech 157
The Dialog Loop 158
The Dialog Filter Procedure 159
Translating English to Phonetics and Then Speaking 165
Checking the Rate and Pitch 167
Setting the Speech Mode 171
Ending the Program 173

Memory Considerations 174
Putting It All Together 175
Summary 178

CHAPTER 7 Dialog User Items 179

Defining User Items in the Resource File 180
The Documentation Header 183
Iriitialization 184
Installing User Items 186
ModalDialog Loop 188
Filter Procedure 189
Line Drawing User Item
Big Button User Item
Quitting the Program
TrackRect Utility Routine
The Lllik File 205

194
196
199

200

User Items and Segmentation: Possible Problems 205
Summary 207

CHAPTER 8 RAM Disk+ 208

RAM Disk Installer 209
Memory Layout 210
The Documentation Header 212
The Equates 213
Global Variables 214

Initialization and Entry 214
The First Pass 217
The Second Pass 226

Pevice Drivers: Overview 237
Structure of Device Drivers 237
The Driver Header 238
Entry and Exit Conventions 239

RAM Disk Driver 241
The Open Routine 242
The Prime Routine 244
The Control Routine 247
The Status Routine 250
The Close Routine 251

The Link Files 251
The Resource Compiler File: Putting It All Together 252
Summary 256

CHAPTER 9 The List Manager 257

Using PACKO to Access the List Manager 258
Creating a New List 259
Filling in the List Cells 264
Disposing of a List 265
Mouse Clicks in a Cell 266
Finding the Selected Cells 267
Changing the Size of a List Window 269
Updating a List Window 272
Activating a List Window 274
Customizing the List Manager 275

The Init Routine 278
The Draw Routine 278
The Highlight Routine 281
Creating an LDEF Resource 282

Icon Lister Program 283
Building a List of Icons 284
Setting the Selection Parameters 287

Summary 288

APPENDIX A Source Code Listing
initPatch.ASM 289
initPatch. LINK 291
initPatch.R 292
AppPatch.ASM 293
PrintModule.ASM 295
MFSFileSearch.ASM 303
HFSFileSearch.ASM 306
CheapTalkll.ASM 310
CheapTalklI.pNK 322
CheapTalkll.R 323
UITest.ASM 325
UITest.LINK 333
UITest.R 334
TrackRect.ASM 335
RD+ Install.ASM 338
RD+ Install.LINK 351
RD+ Install.R 352
RAMDisk + .ASM 355
RAMDisk +.LINK 360
ListMacros 361
Lister.ASM 364
Lister.LINK 347
Lister.R 380
LDEF2.ASM 382
LDEF2.LINK 386
lconList.ASM 387
lconList. LINK 398
lconList.R 399

APPENDIX B Other Sources of Macintosh Information 401

APPENDIX C Trap Words and Heap Compaction Information 403

D
Preface

I've been programming on the Macintosh nonstop for the past two years, and I am still
learning new things about the Mac almost every day. The power and elegant complexity
of the ROM still continue to amaze me. Of course other times, programming on the Mac
is a study in frustration. I have tried to put as much of that amazement and frustration
as I can into this book. I hope that it will give you lots of useful examples and help you
avoid the common and not-so-common pitfalls of Mac programming.

This book is the result of my day-to-day experiences trying to write practical work
ing Macintosh code. Most of the examples have been extracted from complete programs,
and, as such, they tend to reveal more of the tricky details of Macintosh programming
that a more antiseptic aproach might gloss over. You should expect to get your hands dirty
with this book. I would like to think that it's of the same genre as John Muir's wonderful
Volkswagen repair book, How To Keep Your Volkswagen Alive, A Guide for the Comp/eat Idiot.
Muir's message was that engine maintenance and rebuilding was complicated but not im
possible. I think the same is true for Macintosh programming.

Many persons helped me out while I was writing this book. My wife and children
provided love and encouragement and saved me from total obsession. Stan Krute, author
of the infamous Teleport desk accessory, shared everything he knew about the Mac in
the finest hacker tradition. Steve Vollum, Charles Voll um, and Steve Splonskowski of Scien
tific Enterprises kindly let me use their laser printer and spent many hours with me just
talking Mac. David Smith of MacTutor made wonderfully intelligent comments on a draft
of the manuscript and also gave permission to reprint material from his magazine in this
book. The staff of Macintosh Technical Support at Apple answered my questions and
responded to my sometimes premature bug reports with admirable patience. Finally, thanks
to the designers of the Macintosh for creating a machine with so many possibilities.

D
Compatibility Note

This book is a companion to my first Macintosh book, The Complete Book of Macintosh
Assembly Language Programming, Volume I, also published by Scott, Foresman and Com
pany. I do not assume that you have read that book, but I do assume that you are some
what familiar with the Mac ROM and have done some toolbox programming. Assembly
language is the medium through which we explore the ROM in this book, but you will
find the techniques and concepts presented here are easily applied to writing Macintosh
programs in any other programming language. As in the first book, all the program list
ings here are in the MDS format used by Apple Computer's Macintosh 68000 Develop
ment System.

The Complete Book of

acintosh
Assembly Language
Programming
Volume II

CHAPTER

Memory Management and Debugging

Learning the ins and outs of memory management is probably the most difficult aspect
of serious Macintosh programming. Any nontrivial Macintosh program deals with dozens
of objects in memory. These objects may vary from just a few bytes long to many thou
sands of bytes. As the program proceeds, these objects are often shifted around in memory
by the Memory Manager. Your program has no assurance that a memory object will re
main in one spot from one instruction to another. Add to this situation the fact that the
ROM toolbox is continuously allocating and deallocating its own memory objects in the
course of its service to your program. Some Macintosh system software, such as the Print
Manager, can use as much as 30K behind your program's back. (See Chapter 4 for more
details on the Print Manager.) On top of all this, remember that your program might poten
tially be run on a 128K or 512K Macintosh, or on a 1024K Mac Plus, or in a 97K or
256K Switcher partition.

Macintosh memory management makes the Heisenberg uncertainty principle seem
like a sure thing. When you write Macintosh programs, you must build in flexibility so
that your programs can deal gracefully with novel memory arrangements. This chapter
will attempt to explain the fundamentals of Mac memory management and then get into
some of the debugging strategies that you can use to help ferret out memory problems
in your programs.

i!2J THE APPLICATION HEAP

The application heap (hereafter referred to as the heap) is a large contiguous block of memory
that holds the code for the current application program and data objects created by the
program and by the ROM routines called by the program. The heap also holds the con
tents of the desk scrap. (The desk scrap generally is equivalent to the contents of the clip
board, but see Chapter 3 for a more detailed discussion of the desk scrap.) The heap grows
upward in memory as more data objects are allocated. The stack shares the block of memory

1

------ THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II ------

occupied by the heap, but the stack grows downward in memory. Figure 1.1 shows the
application heap growing upward as the stack grows downward. A problem can occur when
the stack grows so far down that it overwrites the upper part of the heap, destroying the
heap data.

On a 128K Macintosh, the maximum amount of memory that can be allocated for
the application heap, including the stack, is about 80K. On a 512K Mac, this figure is
about 440K. Of course, these figures are approximate, and your program should never
make assumptions about the amount of heap space that will be available. For instance,
Switcher divides the available memory up into several discrete heaps of unequal sizes. One
of the characteristics of the Memory Manager is that it is able to maintain a number of
application heaps, called heap zones, in memory at one time. (An underlying assumption
in all our discussions of Memory Manager routines is that they apply to the currently ac
tive zone, even if more than one zone has been defined.) Even without Switcher, your
program must share heap space with desk accessories.

The other main characteristic of the application heap is that it is cleared each time
a new application program starts up. This means that the new application will have a fresh
heap to work with. It also means that any desk accessories that were sitting on the appli
cation heap during the previous program will be purged when that program ends. Keep
in mind, of course, that the Finder is itself just an application program. When you quit

I the stack i ___ t _____________ _

application heap

FIGURE 1.1. The stack and the application heap

2

------------ MEMORY MANAGEMENT ANO DEBUGGING ------------

one program to go back to the Finder, the application heap is cleared to make way for
the Finder. The single memory object that survives on the heap from one program to
another is the desk scrap. Don't confuse the desk scrap with the Scrapbook desk acces
sory. The Scrapbook allows you to archive pictures or text that have been cut or copied
from application programs. The desk scrap is the temporary intermediary between one
application and another, and between applications and desk accessories like the Scrap
book. The persistence of the desk scrap is the foundation on which data transfer between
programs is built. See Chapter 3 for more details on this process.

A later section of this chapter will look more closely at the organization of the appli
cation heap. The important thing to remember for now is that the application heap is
the part of memory that holds your program code; any memory objects that it allocates
at run time; objects allocated by the actions of ROM toolbox routines and desk accesso
ries; the contents of the desk scrap; and the stack. Orchestrating the organization of all
these memory needs is the job of the Memory Manager. As your programs get more com
plicated and demand more memory, you will have to pay more and more attention to the
state of the heap to make sure that you can always get the memory that you need.

~ THE SYSTEM HEAP

The system heap sits just below the application heap in memory. In a 128K Macintosh
the system heap occupies a little over 16K. On a 512K Mac the system heap occupies
48K. These figures are fixed, and the system heap does not grow according to the needs
of the system. The system heap is used by the operating system to hold device drivers
such as the serial port and sound drivers. It also holds sections of code that are used by
the system to replace or modify parts of the ROM code. These ROM patches, as they
are called, are explained more fully in Chapter 2.

As a programmer, you usually have no reason to pay much attention to the system
heap. For most purposes you can ignore the organization of the objects on the system
heap, concentrating instead on the application heap. Figure 1.2 shows the relationship
of the system and application heaps in memory.

One major difference between the system and application heaps, besides the fact
that the system heap is not expandable, is that the system heap is not cleared out when
one program terminates and another starts up. The system heap is initialized when the
system is booted, and its contents remain intact until the system is rebooted.

~ LOW-MEMORY GLOBALS

The Macintosh system software maintains two sets of global variables in the lower end
of memory. Your program can use these global variables to find the current values of vari
ous system parameters. For example, a long word at memory location $16A (362 decimal)

3

------ THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II ------

application heap

system heap

FIGURE 1.2. The system heap and the application heap

is updated sixty times a second and tells how many sixtieths of a second (ticks in Macin
tosh parlance) have elapsed since system startup. Your program can look at this memory
location to give an absolute temporal reference for program events. The system global
variable locations and functions are the same for the Macintosh 128K and 512K machines
with the original 64K ROMs. The Mac Plus, or a Macintosh with the new 128K ROMs
installed, adds an additional 256 bytes of system globals. The symbolic names for the sys
tem globals are available in the symbol files that come as part of the MDS package. For
example, the Ticks global-variable address is listed in SysEqu.Txt. Including SysEqu.D
in your assembly language program gives you access to this symbolic name for the global
variable rather than having to look up the absolute addresses.

The globals are divided into two sections. The first section runs from memory loca
tion $100 to $3FF (256 to 1023 decimal) and the second section runs from $800 to $AFF
(2048 to 2815 decimal). On the Mac Plus or any Macintosh with the 128K ROMs installed,
the first section of globals is the same and the second section is extended to run from
$800 to $BFF (2048 to 3071 decimal). The extra globals are used by the Hierarchical File
System and other new features of the 128K ROMs.

Most of the time you will not need to look at the low-memory globals directly. The
most commonly needed values are available as the result of ROM functions. Other times,
however, it is useful to look at the pertinent low-memory location to get some information
about the current state of the system. For instance, by examining the low-memory globals

4

------------ MEMORY MANAGEMENT AND DEBUGGING -----------

ApplZone and HeapEnd, you can determine the size of the current application heap~ Later
in this chapter you will see how the low-memory globals can be used to help identify ob
jects on the heap during debugging.

This chapter will not attempt to explain all the low-memory globals and their pur
pose, but some of the more useful ones are listed below.

Hex Address
$108
$114
$118
$130
$260
$2A6
$2AA
$904
$944
$964
$9D6
$9DE
$9EE
$A1C
$AB4

Symbolic Name
MemTop
Heap End
TheZone
ApplLimit
SdVolume
SysZone
ApplZone
CurrentAS
iPrErr
scrap Handle
Window List
WMgrPort
GrayRgn
MenuList
TEScrpHandle

~ THE TRAP DISPATCH TABLE

Function
pointer to top of memory
highest address in current heap
pointer to current heap zone
highest allowable heap address
sound volume level (1 byte)
pointer to system heap
pointer to application heap
correct setting for register AS
Print Manager error code
handle to qesk scrap
pointer to head of window list
pointer to screen grafPort
handle to desktop gray region
pointer to current Menu List
handle to TE scrap

In between the two low-memory global areas mentioned above is a 1024-byte table that
governs the operation of the ROM-based toolbox and operating system routines. This table
tells the system where to find the beginning of the code for each of the over 450 ROM
routines. On Macintoshes with the original 64K ROM installed, the table sits between
locations $400 and $7FF (1024 to 2047 decimal). On the Mac Plus, or on older Macs with
the 128K ROM upgrade, the table of ROM offsets is expanded to occupy $COO to $13FF
(3072 to 5119 decimal) as well as $400-$7FF. The ROM dispatch table is initialized at
system boot-up and may be modified thereafter to redirect calls to individual ROM routines.

Because the dispatch table can be changed, it is easy to fix bugs in the ROM or
simply change the functions of the ROM routines. By changing an offset value in the
trap dispatch table so that it points to a location in RAM rather than ROM, modified
code sections can be substituted for the corresponding ROM code. Chapter 2 goes into
the details of the ROM trap dispatcher and the differences between the new and old ROMs.
Chapter 2 also shows how to substitute your own routines for the ROM routines by patch
ing the dispatch table. Figure 1.3 shows the trap dispatch table and the two low-memory
global variable areas sitting just under the system heap. Notice that the enlarged trap table
for the 128K ROMs pushes the start of the system heap upward in memory.

5

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

system heap
($800- ---)

system globals

($800-$AFF)

ROM trap
dispatch table

($400-$7FF)

system globals
($100-$3FF)

I 64 K ROMS I

system heap
($1400---)

ROM trap
dispatch table
($C00-$13FF)

system globals

($800-$BFF)

ROM trap
dispatch · table

($400-$7FF)

system globals
($100-$3FF)

memory

1128 K ROMS I

~ THE SCREEN AND SOUND BUFFERS

FIGURE 1.3. Low-memory
globals and trap dispatch
table

At the top end of available memory are memory blocks assigned to hold the bits for the
screen image and the data used by the sound driver. We will not be concerned with the
absolute addresses of either of these buffers, as they vary in the different-memory-size
Macintoshes. We will always address these areas of memory by using ROM routines rather

6

------------ MEMORY MANAGEMENT AND DEBUGGING -------------

than directly reading or writing into the buffers. It is also possible to designate an
alternate screen buffer and an alternate sound buffer that sit below the primary screen
and sound buffers. Each screen buffer takes up approximately 22K, while the sound buffers
occupy about 1. 5 K each. In this book we won't use alternate screen or sound buffers,
but information is available in Inside Macintosh that tells you how to do it.

e THE APPLICATION GLOBALS

Just below the lowest screen buffer (usually the primary screen buffer unless your pro
gram has explicitly activated the secondary screen buffer), the system allocates an area
of memory called the application globals. This block of memory sits between the screen
buffer and the top of the stack, as shown in Figure 1.4.

screen buffer

application globals

FIGURE 1.4. Application globals and screen buffer

7

------ THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II ------

The application global area is divided into three separate areas, as shown in Figure
1.5. The highest in memory is the application's jump table, which is used by the Segment
Loader to find subroutines in different segments of a single program. The size of the jump
table will depend on the number of externally referenced routines and the number of seg
ments in a particular application program. The linker is responsible for constructing the
jump table.

segment loader
jump table

application
parameters

1----------4<111---Register AS

application
globals

stack

8

FIGURE 1.5. The three areas In application globals

------------ MEMORY MANAGEMENT AND DEBUGGING ------------

Just underneath the jump table is a 32-byte memory block called the application
parameters. Most of the 32 bytes are not used by the current versions of the Mac system
software, but there is a long word, 16 bytes into the application parameter block, that
is a handle to information set up by the Finder when the program is opened from the
desktop. Your program can use this handle to get at that information in order to see if
any documents for the application were opened from the Finder desktop. See Chapter
8 of The Complete Book of Macintosh Assembly Language Programming, Volume I, for an ex
ample program that uses the Finder information in this way.

The third section of the application globals area is called the application globals.
(I know that doesn't make logical sense, but I didn't make up the names.) This variable
sized block extends downward in memory, holding global variables for the application
and QuickDraw globals. Your application program's global variables are the ones that you
define using the DS assembler directive (as opposed to the DC directive, which allocates
a static constant within the code space on the heap).

The QuickDraw globals include predefined pen patterns, the bit-map data struc
ture for the entire screen, and the cursor resource that defines the arrow mouse cursor.
The first four bytes of the application parameters contain a pointer to the QuickDraw
globals.

As you can see from Figure 1. S, register AS always points to the boundary between
the application parameters and the application globals. QuickDraw depends on the value
of AS pointing to this spot so that it can find the pointer to the QuickDraw globals. You
can also use this register to get at the QuickDraw globals, as shown by this code fragment
that changes the pen pattern to one of the predefined patterns in the QuickDraw globals.
Because the pointer to the QuickDraw globals sits in the first four bytes of the application
parameters, just above the spot pointed to by register AS, the expression GrafGlobals(AS)
is the same as O(AS). GrafGlobals is a symbolic offset defined as zero in QuickEqu.Txt
and QuickEqu.D. Once you get the pointer to the QuickDraw globals, you use another
offset constant, dkGray, to find the pattern definition for a dark gray pattern.

;PROCEDURE
MOVE.L
PEA
_PenPat

PenPat(thePattern: Pattern)
GrafGlobals(A5),AO get pointer to QD globals
dkGray(AO) offset to predefined pattern

You might also find AS useful for accessing the "screenbits" bit map for the whole screen,
which is also part of the QuickDraw globals.

Below the QuickDraw globals, the Segment Loader reserves enough room for all
the global variables defined in your program. The assembler and linker generate negative
offset values for these variables, relative to register AS. This is why you must always refer
to global variables in Macintosh assembly language programs by indexing off register AS,
as shown below.

g

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

; if you define a global variable with the OS directive ...

myGlobal DS.L 1 ; this is a variable declaration

you must refer to it relative to A5, as in

MOVE.L myGlobal(A5),-(SP) ; get value of variable

The label that you use for the global is actually made equal to a negative offset value
that is used to index downward in memory from the location pointed to by AS. Because
both QuickDraw and your own program use AS in such crucial ways, it is very important
not to corrupt the value of AS in the course of your program. If you feel that AS may
have been altered, you can look at a low-memory location, CurrentAS ($904), to get the
correct setting for the boundary between the application parameters and application globals.

~ THE BIG PICTURE

Figure 1.6 (page 11) summarizes the entire memory map of the Macintosh, showing all
the major divisions that we have discussed in the preceding sections. None of the actual
addresses have been filled in on this diagram because the absolute addresses of the sec
tions depend on the memory configuration and ROM version in the Macintosh with which
you are working.

~POINTERS
A pointer is a four-byte value representing the address of a data object on the heap. The
object that is pointed to by a pointer is allocated on the heap by the program or the ROM
toolbox at run time and that may also be deallocated. A pointer object that is deallocated
gives up its space to the heap so that any other object which is subsequently allocated
may use that space. Figure 1. 7 (page 12) shows the relationship between a pointer and
its associated memory block on the heap.

The key characteristic of pointer objects is that they are non-relocatable. When a
pointer object is allocated on the heap, its location is fixed until the object is deallocated.
This inflexibility makes it hard for the Memory Manager to compact memory efficiently,
as discussed in the next section on handles. Non-relocatable objects, especially when they
sit in the middle of the heap, tend to fragment the heap space available to your program
and the ROM routines that support it. Window records are a prime example of a non
relocatable object that can be allocated on the heap by the ROM.

10

------------ MEMORY MANAGEMENT AND DEBUGGING ------------

sound buffer sound buffer

screen buffer screen buffer

application globals application globals

stack stack

application heap

application heap system heap

system heap
ROM dispatch table

system globals system globals

ROM dispatch table ROM dispatch table

system globals system globals

exception vectors exception vectors

I 64KROMs I 128 K ROMs

FIGURE 1.6. Overall memory layout

There is a slight performance penalty to pay when you use handles in place of pointers,
i.e., a handle must be dereferenced twice instead of once for a pointer. In spite of this,
a slight degradation in performance is vastly preferable to a fragmented heap, especially
when your program will make heavy demands on the Memory Manager.

11

------ THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II ------

pointer

application heap

non-relocatable
block

application heap

FIGURE 1.7. Non-relocatable object and pointer

The ROM toolbox uses non-relocatable objects to hold key data structures such as
grafPorts and window records , but these objects are usually allocated early in the pro
gram so that they reside low on the heap and present less threat of fragmentation. Some
of these non-relocatable objects used by the ROM can be optionally allocated as applica
tion globals, as in the case of window and dialog records. Whenever you have a choice
of allocating space for a non-relocatable data structure on the heap (usually by passing
a NIL storage parameter to a ROM routine) or passing a pointer to a global variable that
you define yourself, it is safest to allocate the storage yourself so that it sits in the applica
tion globals area instead of on the heap.

12

------------ MEMORY MANAGEMENT AND DEBUGGING ------------

~HANDLES
A handle is a four-byte value that is the address of a master pointer, which contains the
address of the data object on the heap. A handle is a pointer to a pointer, as shown in
Figure 1.8. When a handle is allocated, the Memory Manager finds a block of memory
of the requested size, sets a master pointer to point to that block, and then makes the
handle a pointer to the master pointer. When a handle is deallocated, the memory block
is marked by the Memory Manager as unused and can be reassigned the next time a memory
allocation request is made.

handle

application heap

relocatable
block

master pointer

FIGURE 1.8. Relocatable object and handle

13

------ THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II ------

The object that is associated with the handle, via the master pointer, is relocatable.
The Memory Manager may move the object around on the heap whenever it needs to make
more room on the heap. This is sometimes necessary because even though objects are
generally allocated from the bottom of the heap upward, some of the objects allocated
lower down on the heap may be deallocated before the objects above them. When this
happens, holes are left in the available heap space, as shown by Figure 1. 9. As objects
are .allocated and deallocated, the available space tends to become broken up into a hodge
podge of used and unused blocks.

Periodically, the Memory Manager needs to consolidate all the unused blocks in order
to find a block big enough to fit an allocation request. This process is called heap com
paction. As it compacts the heap, the Memory Manager will move relocatable objects closer
to the start of the heap and consolidate unused blocks at the upper end of the heap. The
Memory Manager may also deallocate handles that are marked as purgeable. The key element

unused space

FIGURE 1.9. Holes in the heap usage

14

------------ MEMORY MANAGEMENT ANO DEBUGGING ------------

of this compaction process is that the Memory Manager updates the master pointer
indicating any relocatable block that it moves. This means that the master pointer always
points to the correct address of the object, even after it has been moved.

Memory compaction can happen at almost any time during a Macintosh program.
Appendix C contains a list of ROM routines whose action can potentially trigger a heap
compaction. Your program should always assume that calling one of these routines will
result in some objects on the heap being moved. This actually presents little problem as
long as you continue to refer to the object by its handle, since the handle points to the
master pointer and the master pointer is always updated to point to the correct location
of the object.

The master pointer is a non-relocatable object on the heap. Its location never changes
during the course of a program. Master pointers are allocated in non-relocatable blocks
containing 64 master pointers. The Memory Manager automatically allocates one master
pointer block and locates it as the first object on the heap. When all 64 master pointers
in the block have been used up, then the Memory Manager will allocate another master
pointer block and place it as low on the heap as possible.

It is possible to make a relocatable object non-relocatable by using the Memory
Manager call HLock. Once locked, the object cannot be moved by the Memory Manager.
It is important to lock a handle down if you plan to dereference the handle and use the
master pointer value in calls to ROM routines that can trigger heap compaction. For
example, if you dereference the handle to get the master pointer value at entry into a routine
and the heap is compacted during the routine, the memory object may be moved and
the pointer that you got from the master pointer at routine entry will no longer be valid.
When in doubt, lock handles down before dereferencing them. But be sure to call
HUnLock as soon as you are finished with the handle so that the Memory Manager can
have maximum flexibility to get the most memory out of the heap.

Handle objects can also be marked as purgeable or non-purgeable. The default is
non-purgeable. If, however, a block is marked as purgeable, the Memory Manager may
deallocate it when compacting the heap in order to find enough space for a new allocation
request. It is often wise to mark your program's resources as purgeable so that they will
not clutter up the heap when not in use. A purged resource object will be loaded in from
the resource file the next time it is requested by your program, so the only penalty is in
performance, but the added flexibility given to the Memory Manager may make your pro
gram more trustworthy in various tight memory situations. (One significant exception
to this rule is MENU resources. Never define these resources as purgeable.) When deal
ing with heap management, you must always balance speed of execution against flexi
bility and safety.

15

------ THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II ------

~ A CLOSER LOOK AT THE HEAP

Let's take a detailed look at the application heap during the execution of a program and
try to identify most of the objects on the heap. In order to look at the heap, you need
a debugger of some sort that will allow you to halt the current application program and
look at the contents of memory. We will use TMON from TMQ Software in this discussion
because it is an excellent debugger that identifies many heap objects for you. You can
also use MacsBug, which is supplied with the MDS package, to do the same sort of snoop
ing, but MacsBug lacks the power and convenience of TMON. I highly recommend TMON
to you if you are serious about Macintosh programming and want an excellent tool for
exploring the inner workings of the machine.

Getting Ready to Look at the Heap
The first thing to do when you want to look at the heap is to install a debugger. If you
are using TMON, then you need to double-click the TMON icon in the Finder. If you
are using MacsBug, it is enough simply to have the MacsBug file on your startup disk;
the system will automatically load the debugger at system boot-up as long as the debugger
is named MacsBug. Next, run the program that you want to debug. From TMON you
can use the Launch feature; with MacsBug you will start the program from the Finder
normally. For our discussion here we will run the MultiScroll program developed in
Chapters 4-7 of The Complete Book of Macintosh Assembly Language Programming, Volume I.

Once your program is up and running, put it through its paces to fill the heap with
a normal assortment of objects. For our discussions, MultiScroll will have one window
open with some text in it, as shown in Figure 1.10.

Next, make sure that the heap is in a stable state, that is, not in the midst of a com
paction process. The best way to do this is to interrupt the program by pressing the inter
rupt button on the left side of the Macintosh (the interrupt is the most rearward of the
two buttons that comprise the programmer's switch). Pressing the interrupt button will
stop the program and put you into the debugger. Now set up a trap so that the debugger
will be called the next time your program calls GetNextEvent. You can be reasonably
sure that the heap will be stable when your program is in its main event loop. You set
up the trap in TMON by using the "trap intercept" feature of the TMON user area, giving
_GetNextEvent as the input parameter on the trap intercept line. Once the trap is set,
use the exit function to return to the main program. In MacsBug you can set the trap
by using the AB GetNextEvent command followed by a G command to return control
to the program. Soon after you return to your program, the debugger should be invoked
by the main event loop calling GetNextEvent. At this point you can be assured that the
heap is in a stable state and begin your examination.

16

------------ MEMORY MANAGEMENT AND DEBUGGING ------------

,.. s File Edit

Untitled

Here is some sample text in a window

Here is some sample text in a window

~

FIGURE 1.10. MultiScroll screen at time of heap dump

Identifying Heap Objects
Figure 1.11 shows the TMON heap dump for the MultiScroll program. Since this test
was done on a 512K Macintosh, the heap starts at address $CBOO. Going across from left
to right, the columns represent the following information:

Address of Object Length Size Correction Object Type Flags Identity

If you are using the heap dump (HD) feature of MacsBug, you will get a similar
display, although not as many objects will be identified for you. The ability to identify
heap objects intelligently is one ofTMON's best features; it will save you hours and hours
of time if you do a lot of heap debugging. However, if you are using MacsBug, the dis
cussions that follow will give you methods for identifying unidentified heap objects.

17

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

r
Application heap is at $00CB00-$06B9E2. 05AE7E bytes free.
*$00CB3C 000100 0 Nonrel

$00CC44 000000 4 Handle at $00CC20 (lpr) Scrap
$00CC50 00003E 0 Handle at $00CC1C (lpr) Resource map $0020

*$00CC96 OOOEC6 0 Handle at $00CC18 (LPR) File $0020 'CODE' ID=$0001
*$00DB64 000100 0 Nonrel
*$00DC6C 00006C 0 Nonrel WmgrPort

$00DCEO 000072 0 Handle at $00DC04 (lpr)
$00DDSA OOOOOA 0 Handle at $00DBF8 (lpr) (Window @$06DA54) UpdateRgn
$00DD6C OOOOOA 8 Handle at $00DBF4 (lpr) (Window @$06DA54) ContRgn
$00DD86 00004B 1 Handle at $00DBCC (lpr)
$00DDDA 000024 0 Handle at $00DC4C (lpr) TEScrap
$00DE06 0002AC 0 Handle at $00DC40 (lpR) File $0002 'MDEF' ID=$0000
$00EOBA OOOOOA 0 Handle at $00DC54 (lpr) SaveVisRgn
$00EOCC 00004C 0 Handle at $00DC58 (lpr) GrayRgn
$00El20 000047 1 Handle at $00DC14 (lpR) File $003E 'MENU' ID=$0002
$00E170 000048 0 Handle at $00DC10 (lpR) File $003E 'MENU' ID=$0003
$00E1CO 000032 0 Handle at $00CC34 (lPR) File $0002 'PACK' ID=$0003
$00EEFA 000017 1 Handle at $00DCOC (lPR) File $0002 'DLOG' ID=$F060
$00EF1A OOOOA8 0 Handle at $00DC08 (lPR) File $0002 'DITL' ID=$F060
$00EFCA OOOOOA 0 Handle at $00DC60 (lpr) (WmgrPort) VisRgn
$00EFDC OOOOOA 0 Handle at $00DC5C (lpr) (WmgrPort) ClipRgn
$00EFEE 000030 0 Handle at $00DBD8 (lpr) (Window @$06DA54) Control
$00F026 OOOOOA 0 Handle at $00DBEO (lpr)
$00F038 000031 1 Handle at $00DBD4 (lpr) (Window @$06DA54) Control
$00F072 OOOOOA 0 Handle at $00DBDO (lpr)
$00F084 OOOODF 1 Handle at $00DC48 (lpr) Resource map $003E
$00F16C 000138 0 Handle at $00DBB4 (lPR) File $0002 1 FKEY' ID=$0003
$00F2AC 00029A 0 Handle at $00DBDC (lPR) File $0002 'CDEF' ID=$0000
$00F54E OOOOB8 0 Handle at $00DC44 (lpR) File $003E 'MENU' ID=$0001
$00F60E 000008 0 Handle at $00DBBO (lpR) File $0002 'PAT I ID=$0011
$00F61E 0004F4 0 Handle at $00DBB8 (lPR) File $0002 'CDEF' ID=$0001
$00FB1A 0004BO 0 Handle at $00DBEC (lpR) File $0002 'WDEF' ID=$0000
$00FFD2 OOOOOA 0 Handle at $00DCOO (lpr) (Window @$06DA54) VisRgn
$00FFE4 000009 1 Handle at $00DBE8 (lpr) (Window @$06DA54) WTitle
$00FFF6 OOOAAE 0 Handle at $00DBBC (lPR) File $0002 'FONT' ID=$018C
$010AAC OOOOOA 0 Handle at $00DBFO (lpr) (Window @$06DA54) ClipRgn
$010ABE 00002C 0 Handle at $00DBFO (lpr) (Window @$06DA54) StrucRgn
$010AF2 000066 0 Handle at $00DC50 (lpr) MenuList
$010B60 05AE76 0 Free

FIGURE 1.11. Heap dump for MultlScroll

THE MASTER POINTER BLOCK
You can see that the first object on the heap begins at address $CB3C. This object is a
master pointer block, which is easily identified by its length, $100, and the fact that it
is non-relocatable. If you are using MacsBug, the length of the master pointer block will
be listed as $108. This difference in length is because every memory block on the heap
has attached to it an eight-byte header that contains information used by the Memory
Manager. MacsBug includes this extra eight bytes in its length designations for all heap
objects, TMON does not. This first master pointer block is the one automatically allocated
by the Memory Manager when it initialized the heap.

18

""

------------ MEMORY MANAGEMENT AND DEBUGGING ------------

THE CODE 0001 RESOURCE
The next object is the desk scrap, which is empty as shown by a 0 length field. Then
comes the resource map for the application file and then the CODE resource, ID = 0001.
This CODE resource is the program code for MultiScroll. If you want to look at the code
for the program which you are debugging, you can do a disassembly starting at the loca
tion of the CODE resource. The file number listed in the identification field refers to
the current application file, which is always number $0020. Remember that the code for
a program is just another resource in the application file. The system resource file is always
number $0002, and any other resource files that are opened are assigned other numbers.
On this heap, you can see a third resource file, number $003E. A look back at the source
code for MultiScroll shows that the program uses a separate resource file, MultiScroll.Rsrc,
to hold all the noncode resources.

You can see that the CODEOOOI resource is locked (by the asterisk in the far left
column) and that it sits very low on the heap. The CODE resource block remains locked
as long as the code within it is executing. If, however, your program has more than one
segment, then additional CODE resources may be loaded into memory, possibly result
ing in the relocation of the original CODE objects. This topic is discussed further in the
section of this chapter on program segmentation.

After the code segment comes another master pointer block, again identified by its
size and non-relocatable status. A look back at the initialization code for MultiScroll shows
that the first action of the program is to call the ROM routine MoreMasters, which allocates
another master pointer block. It is wise to do this at least once early on in your program
so that the additional master pointer block(s) will be located low on the heap. In that loca
tion they won't lead to heap fragmentation.

Using the Find Command to Identify Heap Objects
The next object on the heap is the WMgrPort, a grafPort set up by the Window Manager
when we call lnitWindows. This grafPort defines the graphic environment for the entire
Macintosh screen. TMON identifies this object for us, but in MacsBug you would be able
to find the pointer to this object (pointer = $DC6C) in the low-memory location WMgrPort
($9DE). Because the low-memory global assigned to hold a pointer to the Window Manager
grafPort contains a pointer to this particular object on the heap, we can assume that the
object is the Window Manager port. A confirming piece of evidence is the length of the
object, $6C, which matches the size of a grafPort given in QuickEqu.Txt. You will find
that printouts of all the EQU files included with MDS are almost essential when doing
investigative heap work.

The FIND command is especially useful for this kind of investigation. In Macs
Bug, you would ask to F 0 BOO OOOODC6C, which would search for the four-byte value
OOOODC6C, starting at address 0 and searching the next BOO bytes. In other words, search
from the beginning of memory up to the beginning of the system heap for that pointer
value. If the FIND command does find the pointer in the system global area, then you

19

------ THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

need to look up the function of the global where it was found to identify the object. This
strategy is very useful for identifying heap objects. If you don't find the pointer in the
low-memory globals, then you can continue searching in higher memory ranges, espe
cially in the application heap itself and in the application global area above the applica
tion heap. What you are looking for is some location in memory that holds a reference
to the unidentified object. Then you can figure out the context of that reference.

THE TE RECORD
Just after the WMgrPort is a $72-byte handle object that TMON does not identify for
us. Now we can do some real investigating. First, notice that there are several identified
objects on the heap that are linked to a window record at location $6DA54, which is high
in memory just below the screen buffer- the application globals area. A glance back at
the source code for MultiScroll shows that the window records for the program are indeed
allocated as global variables. Let's assume that the unidentified object might be associated
with the window record. Use the FIND command to search for the handle to this object
($DC04) in the same area of memory as the window record.

The FIND command does find an occurrence of the handle at location $6DAEC.
Now take the beginning of the window record, $6DA54, and subtract it from $6DAEC
to see if the handle occurs within the window record. $6DAEC - $6DA54 = $98, which
is the offset value for the wRefCon field of a window record. A look back at the source
code for MultiScroll reminds us that MultiScroll used the wRefCon field to store the handle
to the TERecord for the window. So now we know that the unidentified object at $DCEO
(whose handle is at $DC04) is the Text Edit record for the single window shown in
Figure 1.10. Figure 1.12 shows the relationship of the handle reference to the window
record in memory.

Let's do a couple of other examples to further expound on the techniques of heap
object identification.

THE TE TEXT
The next unidentified object on the heap occurs at $DD86, handle at $DBCC. Searching
the low-memory globals and the application globals doesn't turn up any references to this
handle, so we search the application heap itself. Sure enough, $0000DBCC shows up at
location $DD1E. Looking at the heap objects, we find that $DD1E is inside the TERecord
that we just identified in the previous section. Subtracting the beginning of TERecord,
$DCEO, from $DD1E results in $3E. This value corresponds to the offset to the teTextH
field of a TERecord, as defined in ToolEqu.Txt. If we do a dump of the data in this object
that we now suspect is the TERecord's text, we see that it does actually contain the text
from the window. Compare the dump window shown in Figure 1.13 to the text in Figure
1.10. The three OD values shown in the third line of Figure 1.13 represent the ASCII
value of three carriage returns separating the lines of text in Figure 1.10. In MacsBug
you can look at data in memory by using the IL (immediate list) command.

20

------------ MEMORY MANAGEMENT AND DEBUGGING ------------

$0000DC04

Window Record
@$06DA54

T $06DAEC (handle reference found here)

$06DAEC-$06DA54 = $98 (offset to handle)

_L $98 = offset to wRefCon

$06DA54 (beginning of window record)

FIGURE 1.12. Computing the offset of a handle reference

DUMP FROM 00DD86
00DD86: 48 65 72 65 20 69 73 20 73 6F 6D 65 20 73 61 6D Here is some sam
00DD96 70 6C 65 2Q 74 65 78 74 20 69 6E 20 61 20 77 69 ple text in a wi
00DDA6 6E 64 6F 77 OD OD OD 48 65 72 65 20 69 73 20 73 ndow ... Here is s
00DDB6 6F 6D 65 20 73 61 60 70 6C 65 20 74 65 78 74 20 ome sample text
00DDC6 69 6E 20 61 20 77 69 6E 64 6F 77 46 80 00 00 2C in a windowF ... ,

FIGURE 1.13. Dump of teTextH"

Two More Unidentified Objects
Moving down the heap listing in Figure 1.11, the next unidentified object occurs at $F026,
handle at $DBEO. Once again, we look for the handle and find it at location $FOOA. This
location lies within the control record that comes just before our unidentified object on
the heap. using the subtraction method just as we did in the previous examples, we get
an offset value of $1C from the beginning of the control record to our handle reference.
This corresponds to the contrlD;ata field of the control record, as defined in ToolEqu.Txt.
This handle points to a block of data that is used by the Control Manager in conjunction
with one of the scroll bars in MultiScroll. ·

. 21

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

The last unidentified object on this heap is at $F072. Because it is the same length
as the control data that we just found, and because it occurs right next to another control
record, we can safely assume that it is probably the control data for the control record
of the other scroll bar in the MultiScroll window.

Generalizing from the previous examples, you must first find an occurrence of the
handle (or pointer) somewhere in memory. Once you find a reference to the handle, estab
lish the context of the reference. Is it in a low-memory global whose function can be
determined? Is it within an identified data structure where you can figure the offset value
and thus the particular field of the structure? Once you figure out how to use the FIND
command, how to look up the function of low-memory globals, and how to figure offsets
into data structures, you are well on your way to becoming a heap expert. The whole process
is actually fun and challenging, almost like learning to program all over again.

TMON identifies many objects on the heap that MacsBug does not, especially those
associated with window records and low-memory globals. MacsBug will identify resources
that are on the heap, much as TMON does, by listing their source, type, and ID number.
TMON is a big help if you do a lot of debugging and heap browsing, but MacsBug is
a fully functional debugger that can also help you. Using the techniques outlined above,
you can identify many of the objects on the heap that MacsBug doesn't automatically
identify.

Other Identified Objects
Looking back at Figure I. I I, you can see objects on the heap that are identified by TMON.
Many of these objects are resources, either from the application (file $0020), from the
application's separate resource file (file $003E), or from the system resource file (file $0002).
We already mentioned the CODE resource that constitutes the program itself. The other
interesting resources are listed below with a short explanation of their respective functions.

MDEF 0000 This is the standard definition procedure from the system file that draws
menus. It is actually a section of code that is loaded as a resource. By writing your own
MDEF resource code, you can have custom menus.

MENU 0001, 0002, 0003 These are the resource definitions from the application's separate
resource file. They define the elements of the three menus used by MultiScroll.

PACK 0003 This is a code resource that the Package Manager calls to do the Standard
File package dialogs. This resource is loaded into memory if your application calls
SFGetFile or SFPutFile.

DLOG F060, DITL F060 These are the dialog and dialog item template for the Standard
File SFGetFile dialog.

22

------------ MEMORY MANAGEMENT AND DEBUGGING ------------

FKEY 0003 In order to get the picture in Figure 1.10, I used the command-shift-3 com
bination to save the current screen to disk as a MacPaint document. The FKEY resource
is the code that performs that operation. You can enable your own FKEY resource by
defining a subroutine that takes no parameters and then installing it in the system file
as FKEY resource with an ID number corresponding to the number key that will trigger
it. An FKEY 0006 resource will be activated by a command-shift-6 key combination.

CDEF 0000 This is the standard button control definition procedure from the system file.

CDEF 0001 This is the standard scroll-bar control definition procedure from the system file.

PAT 0011 This is a pattern that is loaded in from the system file.

WDEF 0000 This is the standard document window-definition resource from the system
file. The code in this resource draws and maintains the title bar, go-away box, and general
appearance of a window. Other WDEF resources govern the actions of other types of
windows.

FONT 018C This is a font loaded in from the system file.

!!21 DEBUGGING STRATEGY

One of the best ways to test a program in progress is to place the following call in the
main event loop:

FUNCTION NewHandle(logicalsize:Size):Handle
MOVE.L #$7FFFFFFF,DO ; ask for an impossible block
_NewHandle

Calling NewHandle with an impossibly large number will cause all unlocked objects
to be compacted and all purgeable objects to be deallocated from the heap. Taking this
action every time your main event loop cycles will quickly catch any errors caused by the
use of unlocked handles. Because this action will also slow your program down immensely,
it is advised only during the development stage.

Another debugging strategy is to place a DC.W $FFOO statement in your code just
before a troublesome section that you want to debug. $FFOO will trigger an exception that
will in turn invoke the debugger. Then you can step through the problem code. You will
also find it useful to load crucial variables into registers. While in a debugger, it is much
easier to look at values in registers than to figure out their location in memory.

23

------ THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II ------

If you don't want to use a debugger, you can add to your application extra debug
ging code that throws up dialogs containing information to help you figure out the state
of program variables and registers at key points in your program. Some programmers
routinely write these routines into their programs and use conditional assembly to strip
them out once the application is debugged. You can also use the option key to trigger
the debugging dialog. For example, say you were trying to debug a section of code that
dealt with scrolling. Normally, a click in the scroll bar would elicit the scrolling routines.
Each time the scroll bar click is processed, your debugging code can check the status of
the option key in the event record and put up the debugging dialog if it is pressed.

Debugging is one of the most creative and challenging aspects of Macintosh program
ming. Sometimes you will beat your head against a problem for hours, or days, without
finding a solution. Other times the key to a solution will come to you just as you are fall
ing asleep. The most common mistakes involve corrupting the stack, either by using
parameters of incorrect size or improperly dealing with function results. The other most
prevalent mistake on the Macintosh is the careless use of dereferenced handles that haven't
been locked.

f!2l PROGRAM SEGMENTATION

A previous section of this chapter mentioned that a program can be broken up into seg
ments. Each segment is loaded into memory as needed, as a CODE resource. The seg
mentation option is given to progntinmers because a single CODE segment cannot exceed
32K. If you are programming in assembly language, this restriction will probably not affect
you unless you are writing very long and complex programs. For example, the MultiScroll
program used in the previous section is a multiwindow text editor that supports scrolling
and disk file access, yet its code segment is less than 4K long.

Segmentation is also a useful option if you want to maximize free memory available
for data, since code in a segment that is used infrequently can be loaded, executed, and
then purged. The operating system takes care of loading and purging segments. As a
programmer, you can make a call to any routine in your program without worrying if it
is in the same segment or in a different segment. Whenever you make a call to a routine
that is in a segment not currently loaded, the Macintosh operating system automatically
loads in that segment and jumps to the required routine. Segments are loaded in on demand,
without any direct intervention of the program. This makes for a sort of virtual memory
storage for program code.

Despite the fact that segments are loaded in automatically on demand, as a program
mer you must be very careful when writing a program that uses more than one segment.
l(ypu look back at the heap dump in Figure I. I I, you can see that the CODE OOOI resource
is marked as "locked" and "purgeable:' The lock attribute actually overrides the purge
able attribute, so the memory block will not be purged as long as it is locked. As long
as the code within that segment is executing, the block remains locked and cannot be
moved or purged. If a call is made to a routine in another segment, however, the required

24

------------ MEMORY MANAGEMENT AND DEBUGGING ------------

segment is loaded onto the heap and locked. If the code in the new segment calls
UnLoadSeg for the CODE 0001 segment, it will be unlocked. If the new code then trig
gers a heap compaction, it is possible that the original CODE 0001 resource will be moved,
or even purged from the heap.

Figure 1.14 shows graphically what happens when a new segment is loaded. A CODE
resource remains locked unless UnLoadSeg is called for that particular segment. Most
programs do not unload their main segment (CODE 0001), but it can be done. In order
to take advantage of segmentation, however, your program will generally want to call
UnLoadSeg for those code segments that are not executing. This allows these segments
to be moved or purged and also adds a layer of uncertainty to your run-time environment.

code segment 0003

locked

code segment 0002

unlocked

Code executing in
segment 0003 calls
a routine in segment 0004

FIGURE 1.14. Segmentation and heap compaction

25

code segment 0004

locked

code segment 0003

unlocked

code segment 0002

unlocked

Segment 0004 is loaded
in, possibly relocating
segment 0002 and 0003

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

Actually, just because a code segment can become unlocked and purgeable is not
a cause for alarm, but it does mean that you must be very careful about using derefer
enced handles during any sort of operation that might call in another segment and poten
tially trigger a heap compaction. In a segmented program you must be much more careful
about locking handles down before using them and unlocking them when finished. In
general, segmentation tends to expose marginal memory practices that might go unno
ticed in an unsegmented program.

Also, you must be sure never to use locations within your code (i.e., declaring vari
ables with the DC directive and then altering those locations) as variables. Because you
might be relying on absolute addresses to access these locations, a move or purge of that
memory segment can be disastrous. If you need global variables, use the DS directive
to allocate them in the application globals area, where they will be insulated from the shifting
sands of the heap.

Chapter 7, on user items in dialogs, covers some more specific problems associated
with segmentation that occur when you install pointers to procedures as items in a dialog.
Heap compaction after a segment load can move the user item code segment and invali
date the procedure pointers, causing the dialog to crash.

f!2I SUMMARY

I hope I have conveyed the extremely dynamic nature of Macintosh memory management.
Learning to deal with this constantly changing heap environment is the biggest hurdle
to programmers accustomed to other computers who then try to program on the Macintosh,
especially if they are coming from some other, simpler, microcomputer operating system.

Handles are the key element necessary to make effective use of the Macintosh heap.
Learning to 1 lock a handle while you use it and then unlocking it when done will make
your program safe as well as allow the Memory Manager the flexibility that it needs. Mark
ing resources as purgeable also helps to make memory space available for other require
ments as the program executes.

In order to execute successfully, your program must assume that the organization
of its resource and data objects on the heap will change constantly. If you take the precau
tions outlined in this chapter, your program should run safely in almost any environment.

26

CHAPTER

New ROM - Old ROM

The main reason that the Macintosh has not been "cloned" in the same way as the IBM
PC is that no one has been able to reproduce the functionality of the Macintosh ROM
without infringing on Apple's copyright. The original Macs came with 64K of ROM. The
newer Mac Plus has 128K of ROM. GEM, which was developed by Digital Research, is
the closest approximation of the Macintosh ROM to date, but it is rather crude and takes
up almost 190K. No one has been able to duplicate all the functions and speed of the
Macintosh ROM. The Mac ROM sets a new standard because of its elegant interface defi
nition and its efficient implementation.

This chapter discusses the mechanisms used by the Macintosh operating system to
connect user programs with the over 400 individual ROM routines. It also illustrates two
techinques for customizing the ROM routines either to extend the function of a particular
routine or to patch bugs in the original implementation of the ROM. Finally, some differ
ences between the 64K ROM and the newer 128K ROM are discussed.

~ THE TOOLBOX AND THE OPERATING SYSTEM

The ROM routines are divided into two main functional groups: the toolbox and the oper
ating system (OS). The toolbox contains all the routines that maintain the user interface,
including windows, menus, mouse movement, and event monitoring. QuickDraw is also
a part of the toolbox, forming the graphic foundation upon which all the other routines
build the illusion of the Mac interface. For the most part, toolbox routines expect to find
their parameters on the stack and return any function results on the stack.

The operating system part of the ROM is responsible for maintaining all the under
lying system functions related to the disk drives, serial communications, other device
drivers, and memory management. OS routines generally expect to find their parameters
in registers and return results in registers.

27

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

Within the broad toolbox and OS categories, the ROM routines are broken into
smaller functional groups such as the Window Manager and the Memory Manager. While
the dichotomy between the toolbox and the OS routines has its foundation in the actual
methods used by the system to pass parameters and function results, the collection of
routines into managers has little significance beyond the conceptual linking of related rou
tines. Inside Macintosh is organized around these smaller groupings, so the concept is handy
for finding information in that volume, but there is a great deal of interdependency among
the various small groups in the ROM. For instance, most of the toolbox routines in the
Window Manager and the Menu Manager depend on QuickDraw to implement the visual
representation of the data structures that define windows and menus. A call to
GetNewWindow in the Window Manager will trigger calls to routines in the Resource
Manager, File Manager, Disk Driver, Memory Manager, and QuickDraw. A single ROM
call can set an enormous amount of processing in motion.

As a programmer, this kind of leverage is fantastic. Using the ROM allows you to
create programs that have the Macintosh look without having to reinvent the code involved
in maintaining that user interface. Imagine writing routines to manage multiple windows
starting at the level of turning bits on and off in the video memory.

On the other hand, the ROM contains pitfalls for you as a programmer because so
much computing takes place behind your back. Chapter I discussed the complexity of
memory management on the Macintosh. As mentioned in that chapter, learning to deal
with the uncertainties of Macintosh memory management is the biggest obstacle to over
come in serious Macintosh programming projects. Unfortunately, memory management
problems often don't show up until late in the development cycle when it is much harder
to correct the code that causes them. Using the guidelines set out in Chapter I can help
expose these problems early and lead to a more successful programming project.

121 THE TRAP MECHANISM

The 68000 processor fetches instructions from memory one 16-bit word at a time. Pro
gram instructions are stored in memory until they are loaded into the processor for evalu
ation. Microcode within the processor interprets the instruction words and initiates the
proper processor action. All 68000 instructions can be completely encoded in a single word,
but many of them signal the processor to fetch one or more additional words from the
memory locations immediately following the instruction to use as operands for the in
struction. Other instruction words direct the processor to look for the operands in the
registers.

In the course of executing instructions, the processor may encounter situations where
it is asked to perform an illegal action. Examples of illegal instructions include trying to
divide by zero, to access a word or long-word value at a noneven address, or to write or

28

--------------- NEW ROM-OLD ROM ---------------

read from a memory address that does not actually exist in the machine. If the processor
encounters an instruction word not corresponding to any legal instruction, an exception
error is generated. Many different types of errors can occur while a program is running.
The first 1024 bytes of any 68000 system contains a table of long-word pointers that tell
the system where to go in each particular error situation. These error situations are called
exceptions and the pointers in the table are called exception vectors.

For example, the long word at address $14 (20 decimal) is a pointer to the routine
that is called when a divide-by-zero instruction is encountered. Every 68000 system must
reserve this low-memory memory location to hold a pointer to an exception-handling rou
tine, since the processor is hard-wired to look in this spot in a divide-by-zero situation.
Because the processor goes to this location looking for a poiriter to a subroutine, the com
puter in question can be programmed to respond to this problem in any number of ways.
On the Macintosh, most of the exception vectors point to the routine that puts up the
dreaded bomb dialog, much like the one shown in Figure 2.1. When you install a debug
ger in your system, it places pointers to itself in most of the exception vectors so that sys
tem errors will invoke the debugger rather than the normal error-handling routines.

Motorola has reserved certain bit patterns in instruction words for special purposes.
In particular, any instruction word that contains 1010 in .the highest four bits causes a
Line 1010 exception. Since the binary number 1010 can be written as the hexadecimal
digit A, this exception is also called an A-trap. An instruction that contains 1010 in the
high nibble is not an illegal instruction. Rather it is a special case that the designers of
the chip put in to allow system designers to implement instructions that are not included
in the 68000 instruction set.

The Macintosh designers used the 1010 instruction as the entry point to the ROM.
Every procedure and function within the ROM has a unique word value assigned to it.
The trap macros that you use in the assembler, such as _GetNextEvent, are translated
by the assembler into the word that corresponds to that ROM routine. These values are
called ROM trap words. All the ROM traps begin with 1010. When they are encountered
in your programs, they cause the processor to jump to the routine pointed to by the Line
1010 exception vector in low memory. The Line 1010 exception vector points to a routine
in ROM, called DSPT, which looks at the other bits of the A-trap word to determine which
particular ROM routine is being called.

Sorry, a system error occurred.

(Restartj f!(~sunu~ ID= 11

FIGURE 2.1. The bomb dialog

29

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

The format of the A-trap word is shown in Figure 2.2. The highest four bits must
always be equal to 1010. Bit number 11 is set for toolbox routines and clear for operating
system routines. The lowest eight or nine bits of the trap word make up the trap number.
On toolbox traps the lowest nine bits are used to identify the requested ROM routine,
allowing recognition of 512 possible toolbox routines. Operating system calls use only the
lowest eight bits, limiting the system to 256 unique OS routines. In the old 64K ROM,
trap numbers for toolbox and operating system routines did not overlap. In the new ROM,
bit 11 is used to distinguish between toolbox and OS routines that have the same trap
number, like GetEOF ($AOI 1) and TESelView ($A81 l).

The trap dispatch routine, which is pointed to by the line 1010 vector, is responsible
for examining the appropriate bits of the A-trap word and initiating the proper routine
in ROM. The following section will show how the trap dispatcher uses the trap dispatch
table to find the location of individual ROM routines.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 bit number

I 1 I 0 I 1 I 011 I I I I I I I I I I I I bit value

I I
~---- trap number, bits 0-8

512 possible traps

Toolbox trap word: bit 11 = 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 l O bit number

I 1 I 0 I 1 I 0 I 0 I I I I I I I I I I I I bit value

I I
trap number, bits 0-7

256 possible traps

'------------ bits 9 and 10 used
for flags (a synch, system,
etc.)

OS trap word: bit 11 = O

FIGURE 2.2. Trap word format

30

-------------- NEW ROM-OLD ROM--------------

f!2I TRAP DISPATCH TABLE

64K ROM

In order to execute the code for a particular ROM routine, the system must know the
address of that routine. The trap dispatch is a section of RAM that contains the address
for each of the ROM routines. This table is initialized and filled in each time the Macin
tosh is started up. The ROM itself contains this table in compressed form, so the startup
routine goes to that section of ROM and expands the dispatch table into its proper loca
tion in RAM memory. The trap dispatch routine then looks at this RAM table to find
the address of the ROM routine and jumps to that location to begin execution of the routine.

There are two advantages to this kind of indirect invocation scheme. First, your pro
gram doesn't need to know the absolute address of a ROM routine in order to use it. This
insures that you can write code that will be compatible with future versions of the ROM
even if the locations of individual routines change from one version to another. Second,
keeping the trap dispatch table in RAM allows programmers, either at the system level
or within an application program, to change the entries within the table to point to their
own routines. The RAM table is initialized at startup, but programmers are free to modify
it thereafter. These substituted routines can be used to correct bugs in the ROM code
or to offer extended functions to existing routines.

The format of the trap dispatch table in the original 64K ROM is different from
the format in the newer 128K ROM. Each version of ROM contains a trap dispatch rou
tine that is appropriate for the table format of that ROM. The two different formats are
discussed separately below.

The trap dispatch table for the 64K ROM is contained in 1024 bytes of low memory be
tween locations $400 and $7FF (1024 to 2047 decimal). Each entry in the table is two
bytes long, allowing 512 possible entries. Since the table entries are only two bytes long,
they must be expanded by the trap dispatch routine to give the full four-byte ROM rou
tine address.

The highest bit of the trap table entry tells whether the routine is in ROM (bit is
clear) or in RAM (bit is set). This distinction allows programmers to patch table entries
to point to substituted routines that reside in RAM memory.

The other 15 bits of the trap table entry are used as an offset to the routine address.
The lower 15 bits are multiplied by 2 to give an effective offset range of 64K. This mul
tiplication makes the lowest bit equal to 0, but that is OK because ROM routines never
start at an odd address. The resulting offset value is added to the beginning of ROM ad
dress space ($400000) for ROM-based routines. RAM-based routine addresses are found
by adding the 16-bit (64K) offset value to the beginning address of the system heap. The
code for patched routines is generally put on the system heap so as to lie within the 64K
offset limit.

31

_____ THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

128K ROM
Because the technique used in the 64K ROM dispatch table only allowed for offset values
up to 64K, a different method is used for the 128K ROM dispatch table. Actually, for
the 128K ROM there are two dispatch tables. The OS dispatch table sits between $400
and $7FF (1024 to 204 7 decimal) and the toolbox dispatch table sits between $COO and
$13FF (3072 to 5119 decimal). Each entry in these tables is a full four-byte address that
points to the entry point of a ROM routine. Entries that are patched contain a pointer
to a RAM location, and unmodified entries contain pointers to routines in the ROM ad
dress space. Patched routines for the 128K ROMs may be placed anywhere in RAM memory
because there is no offset limit to worry about.

~ PATCHING ROM

As mentioned above, because the addresses of the ROM routines are kept in a table in
low memory, you can change, or patch, the individual routines. The easiest thing to do
is to attach a custom front-end routine to the existing ROM routine, thereby adding a
feature without having to rewrite the entire routine. To put a front end on a routine, you
get the original address of the ROM routine by calling GetTrapAddress. The original
address of the routine should be saved away in an accessible location such as a global vari
able. Then you install a pointer to your front-end routine by calling SetTrapAddress. The
front-end routine does some preprocessing and jumps to the original address of the ROM
routine to finish off the ROM call. The front-end routine must be careful to preserve all
registers and the stack structure so that the original part of the routine will function just
as if it were called directly.

Notice that this technique works even if the ROM routine has already been patched
before we install our patch. Many of the ROM routines are patched at system startup by
INIT resources in the Apple system file to correct bugs in the ROM, and other programs,
such as Switcher, change many of the ROM routines to get special effects out of the Macin
tosh. Our patch, once installed, can call another patch, thinking that it is the original
routine. That patch may in turn call the original routine or another patch installed previ
ously. All this is rather transparent to us as long as we are only trying to install a front-end
procedure. If you want to completely bypass a ROM routine, then you must be more sen
sitive to other patches that have been installed before your own.

32

--------------- NEW ROM-OLD ROM---------------

~ TRAP WORDS AND TRAP NUMBERS

Both GetTrapAddress and SetTrapAddress expect to find a trap number in register DO
as a parameter. The trap number for a particular ROM routine may be derived by looking
up the trap word in the back of Inside Macintosh. The rightmost two digits of the trap
word are the trap number unless the third digit of the trap word is 9, in which case the
trap word has a 1 appended to it as the third hex digit. For example, the trap word for
GetVollnfo is $A007. Its trap number is $07. The trap word MenuSelect, which is used
in the ROM patch examples below, is $A93D. Its trap number is $13D.

This scheme is complicated by the fact that trap numbers are not unique in the 128K
ROM. In the new ROM, GetTrapAddress and SetTrapAddress look at bits 9 and 10
of the trap number to determine if it refers to a toolbox routine or an OS routine. If bit
9 is not set, then the old trap numbers from the 64K ROM are used. Thus using $11
as a trap number would refer to GetEOF since $11 only sets bits in the 0-7 range and
the trap word for GetEOF in the 64K ROM is $A011. If you wanted to refer specifically
to the toolbox routine TESelView in the 128K ROM, which has the trap word $A811,
you would set bits 9 and 10 of the trap number. This would make the trap number for
TESelView equal to $611. To ask specifically for the OS routine with the trap number
$11, you would use a trap number $211, which sets bit 9 and clears bit 10. You don't
need to worry about this complication unless you are trying to patch routines that are
unique to the 128K ROM.

~ TWO STRATEGIES FOR PATCHING ROM

There are two ways in which you can patch the ROM. The first is to use an INIT resource
to patch the ROM when the system starts up. INIT resources with resource IDs between
0 and 31 in the system file are automatically loaded in and executed at system boot time.
An INIT resource consists of code that installs a ROM patch on the system heap. A patch
installed this way will remain valid until the system is turned off or reset; it is a system
level ROM patch. The other way to patch ROM is to install a patch as part of the startup
procedure of your application. This method results in a ROM patch that lives only as
long as the application; the application is responsible for restoring the original ROM ad
dresses when it terminates. Both kinds of ROM patches are discussed in detail below. The
complete source code for each patch is listed in Appendix A as initPatch.ASM and
AppPatch.ASM. These files are also included on the source code disk available from the
author.

33

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II ____ _

System-Based ROM Patch
Whenever the system starts up, it looks in the system file for resources with the type INIT.
These resources are code segments that are loaded into memory and executed as part of
the startup procedure. INIT resources are a good way to patch one or more ROM routines
before any other programs have a chance to run. Apple uses INIT resources to install ROM
patches on the system heap that fix bugs found in the ROM. Rather than manufacturing
modified ROMs, Apple fixes the bugs by bypassing the original code with a ROM patch.

The framework for an INIT routine that installs a ROM patch is outlined below.
The INIT resource is made up of two distinct sections of code. The first section actually
does the work of installing the ROM patch. The second section is the code for the patch
itself. The installation code modifies the patch code at run time to connect the patch to
the original ROM routine address, and then moves a copy of the modified patch code
into a non-relocatable block on the system heap. Finally, the installation code installs a
pointer to the patch code into the trap dispatch table so that the patch code will be called
instead of the original ROM routine.

We want our ROM patch to function only as a front-end extension to the original
ROM routine. To do this, we must be able to connect the patch code to the original rou
tine address so that the original routine can be used to finish off the ROM call. We reserve
six bytes at the end of the actual patch code to hold a JMP instruction with a long-word
absolute-address argument. The installation part of INIT routine uses GetTrapAddress
to get the original address of the ROM routine that is to be patched. Next, that address
is installed in the patch code so that it will be the destination argument of a JMP instruc
tion that is the last instruction of the patch. The instruction at the label "trapdoor" is
originally assembled as DC.W 0,0,0 in order to reserve six bytes: two bytes for the in
struction word and four bytes for the long-word destination address. At run time we move
the instruction code for JMP ABS.L ($4EF9) into the first two bytes at trapdoor. Then
we move the original ROM routine address into the long-word slot following the JMP in
struction so that it will serve as the destination address of the jump.

File initPatch.ASM
The code from this file must be assembled and linked
and then packaged as an INIT resource so that it
will install a ROM patch at system startup.
This code patches MenuSelect so that a short beep
is heard before the menu drops down.

April 1986, Dan Weston

INCLUDE MacTraps.D

trapNum EQU $1JD trap number that we will patch
MENUSELECT $A9JD => $1JD

34

--------------- NEW ROM-OLD ROM ---------------

Entry
; install the JMP ABS.L instruction at the trap door
; fill in the destination address later
LEA trapdoor,AO put instruction code here
MOVE.W #$4EF9,(AO) ; 68000 instruction code

get the original trap address
FUNCTION GetTrapAddress(trapNum:INTEGER): LONGINT
trapNum => DO, result => AO

MOVE.W #trapNum,DO ; this is the trap we want
_GetTrapAddress

; stuff it in the JMP instruction
LEA trapdoor+2,A1
MOVE.L AO,(Al)

this is part of JMP instruction
install destination address

This combination of instructions skips over the two bytes occupied by the instruc
tion word for JMP and deposits the destination argument in the right spot. Once the patch
code has been modified, we allocate a non-relocatable block on the system heap to hold
the patch code. Once the block is allocated and its pointer saved on the stack, we use
BlockMove to move the patch code from the INIT resource to the new block on the sys
tem heap.

allocate a block on the system heap
FUNCTION NewPtr(logicalSize: LONGINT): Ptr
logicalSize => DO, Ptr => AO

MOVE.L #patchend-patchstart,DO size of patch code
_NewPtr,SYS
MOVE.L AO,-(SP) save ptr on stack

move the patch code to the new block
PROCEDURE BlockMove(source,dest:Ptr;size:LONGINT)
source => AO, dest => Al, size => DO

MOVE.L AO,Al set as destination of move
LEA
MOVE.L
__BlockMove

patchstart,AO
#patchend-patchstart,DO

source of move
size of patch code

Finally, the installation code uses the pointer to the new block containing the patch
as an argument to SetTrapAddress. All subsequent calls to the ROM routine that we have
patched will be directed first to our patch. The actual patch code does nothing more than

35

_____ THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II ____ _

make a short beep on the speaker every time the underlying program calls MenuSelect.
The last instruction of the patch is a JMP instruction that directs the program to the original
ROM routine code, which finishes the job and returns to the calling program. This rela
tionship is shown in Figure 2.3.

main program makes a trap dispatch table
call to the patched .. 1--
ROM routine -..

~

~ patch routine in
non-relocatable block

on system heap

JMP xxxxxxxx 1----.

~
~~

original ROM code

1--

return to main program

FIGURE 2.3. System-based ROM patch

36

---------------NEW ROM-OLD ROM---------------

install a ptr to patch in dispatch table
PROCEDURE SetTrapAddress(trapAdd: LONGINT;trapNum: INTEGER)
trapAdd => AO, trapNum => DO

MOVE.W #trapNum,DO number of trap to un-patch
get address of new block MOVE.L (SP)+,AO

_SetTrapAddress

; all done now
RTS

The actual patch code is given here as a frame on which to build your own patches.
The space occupied by the call to SysBeep can be arbitrarily complicated. We use a mini
mum example here just to illustrate the principle. It is extremely important that the con
tents of all registers and the stack be preserved by this section of code. The original ROM
routine that is called as the final step of the patch code must receive its parameters and
register environment just as if the patch code never intervened. Of course, there are times
when you will want to modify the parameters or system environment somewhat as part
of your patch code preprocessing, but be sure that any alterations are intentional rather
than random.

here is the patch code which will be installed on the system heap

patchstart
; save the registers

MOVEM.L AO-Al/DO-D2,-(SP)

; do the pre processing for the ROM routine
MOVE.W #1,-(SP)
_sysBeep

; restore the registers
MOVEM.L (SP)+,AO-Al/DO-D2

trapdoor
DC.W

patchend
0,0,0 change to JMP ABS.L

Once you have assembled the code listed above, you must link it into a relocatable
object with the linker. Coerce the output file type so that it will not assume the default
diamond-shaped application icon.

37

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGUMMING, VOWME II -----

; file initPatch.LINK

/OUTPUT initPatchCode

set its file type so
that it cannot be mistakenly run from the desktop.
Link output files are usually of type APPL.

/TYPE 'CODE' 'LINK'

initPatch

$

INSTALLING THE SYSTEM ROM PATCH
The output of the linker must be packaged by RMaker as a resource of type INIT.
The INIT resource is made equivalent to the type PROC, which causes RMaker to
read in the object code from the linker file and then strip off the segment loader
bytes so that all that remains is the actual code that was originally assembled.

* File initPatch.R

* output file name
* File type, file creator

MDS2:initPatchFile
!NIT????

Type !NIT = PROC
ROMPatch,21 (64)
MDS2:initPatchCode

Once packaged this way as an INIT resource, there are two ways in which the ROM
patch can be installed so that it will be executed automatically on all subsequent system
startups. The first way applies to you if you are using a system file with a version number
lower than 3.0, roughly corresponding to the system software distributed before January
1986. The second method can be used with system files, version 3.0 and greater.

If you are working with an older Macintosh system file, you should use RMover
or the Resource Editor to move the INIT resource from the RMaker output file into the
system file of your startup disks. Check before you install it to make sure that the ID
number of your INIT resource doesn't conflict with any existing INIT resources in the
system file. If a conflict exists, go ahead and change your ID number to a nonconflicting
number between 0 and 31. When the INIT resource is installed in the system file, it will
be loaded in and executed on all subsequent system startups with that system file.

38

---------------NEW ROM-OLD ROM---------------

The newer system files, version 3.0 and later, contain an INIT resource number 31
(the last one to be executed) that looks in the system folder for any files with the type
INIT. Any files with that type are opened, and all INIT resources within those files are
loaded in and executed. To take advantage of this feature, you must set the file type of
the RMaker output file to INIT, as we did above. If you move that file into the system
folder, your INIT resource will be loaded in and executed on all subsequent boot-ups.
If you decide that you don't want your INIT resource to be used anymore, simply remove
the file from the system folder. Apple has added this capability in order to discourage
users from directly writing resources into the system file. With this new mechanism, your
INIT resource can be executed at every startup without needing to be installed in the sys
tem file.

The RMaker file that we defined above is compatible with both of these methods
for INIT resource installation. If you are working with an older system file (lower than
version 3.0), then you must directly move the INIT resource into the system file, watch
ing for conflicting ID numbers. If you are using the newer system software released with
the Mac Plus, then it is sufficient to move the RMaker output file into the system folder.
The INIT 31 mechanism will automatically load and execute your INIT resource.

The INIT capability is a good one for purposes other than installing ROM patches.
It can be used to load and initialize special drivers or other system level software. You
could also use the INIT mechanism for executing automatically some more complex task,
such as checking for mail on an AppleTalk network.

A patch installed by the above technique will remain in effect from system startup
until the machine is turned off or reset. For this reason, you should exercise great care
when installing a system-based ROM patch. Generally, this type of patch is used to cor
rect some sort of bug in the ROM that affects all programs. The next section discusses
how to install ROM patches intended to augment the functionality of a ROM routine for
the specific use of one application program.

Application-Based ROM Patch
There are many instances where you want to modify a ROM routine in order to extend
its function within a particular application program, but you don't want the change to
extend to other application programs that may be run before the system is shut down.
In these cases you will install a ROM patch as part of your application's startup proce
dure, and them remove the patch when the program terminates. Switcher is a good exam
ple of a program that changes many of the ROM routines only for the duration of its rim.

In order to provide compatibility with both the 64K and 128K ROMs, you should
install your ROM patch in the system heap. (Remember that the 64K ROMs use an offset
from the beginning of the system heap to locate ROM patches, as discussed in an earlier
section.) One way to do this is to package your patch routine as a CODE resource and
load it onto the system heap, in much the same way that we did for the system-based ROM
patch. An easier method is to assemble the ROM patch as part of your main program
segment and simply place a JMP instruction in a non-relocatable block on the system

39

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

heap with your patch code as the destination address of the jump. You then install the
address of the JMP instruction as the new trap address. Subsequent calls to the patched
routine will execute the JMP instruction and branch to your patch code on the applica
tion heap. Figure 2.4 shows the relationship of the JMP instruction to the actual patch code.

main program makes a
call to the patched
ROM routine

trap dispatch table

JMP XXXXXXXX

patch routine in code
segment 0001 on
application heap

MOVE.L oldTrapAdd(AS),-(SP)
ATS

original ROM code

return to main program

FIGURE ZA. Appllcatlon·based ROM patch

40

non-relocatable block
n system heap

AppPatch.ASM
Include this code fragment at the end of your main segment.
Make a JSR call to patchinstall as part of your program's
initialization chores.
patchinstall will put in the ROM patch and a pointer to the
routine that will remove the patch when the program terminates.

There are three main parts to this code
the patch installer patchinstall
the patch itself myROMpatch
the patch remover

IAZptr
trapNum

EQU
EQU

oldTrapAdd DS.L
oldIAZptr DS.L

patchinstall

$33C
$1JD

1
1

ROMrestore

system global for trap restoration
trap number that we will patch
MenuSelect $A9JD => $1JD

space to hold old trap address
space to hold old IAZptr

; FUNCTION GetTrapAddress(trapNum:INTEGER): LONGINT
; trapNum => DO, result => AO
MOVE.W #trapNum,DO this is the trap we want
_GetTrapAddress
MOVE.L AO,oldTrapAdd(A5) store the result for later

We need to set a new trap address that is on the system heap.
Rather than put the whole routine there, we will just put
a JMP.L instruction to jump to our patch code, which
is sitting on the application heap in CODE segment #1.
FUNCTION NewPtr(logicalSize: LONGINT): Ptr
logicalSize => DO, Ptr => AO

MOVE.L #6,DO 2 bytes:JMP, 4 bytes:address
_NewPtr,SYS
MOVE.L

MOVE.W
LEA
MOVE.L

AO,-(SP)

#$4EF9,(AO)+
myROMpatch,Al
Al,(AO)

save ptr on stack

code for JMP instruction
get new code address
destination for JMP

41

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

; PROCEDURE SetTrapAddress(trapAdd: LONGINT;trapNum: INTEGER)
; trapAdd => AO, trapNum => DO
MOVE.W #trapNum,DO number of trap to un-patch
MOVE.L (SP)+,AO get JMP instruction address
_SetTrapAddress

When your program installs an application-based ROM patch, it is important to make
sure that the patch is removed when the program terminates. One strategy for achieving
this is to save the original trap address of the patched routine and then restore that value
as part of your program's Quit procedure. In most cases, this would seem to be adequate
insurance. If your program ends normally, the ROM dispatch table will be returned to
its original state by the termination procedure. In the unlikely event that your program
crashes, the system will reset and a new dispatch table will be rebuilt as part of the startup
process. Either way, you are assured that your ROM patch will not persevere.

One situation is not covered in the above examples. Many debuggers allow the user
to ExitToShell (generally to the Finder) directly without going through the underlying
program's Quit routine. If your program installs a ROM patch, and then a user invokes
a debugger while the program is running and exits to the Finder from the debugger, your
ROM patch will remain in the dispatch table. This problem is particularly acute if the
patch in the dispatch table points to a section of code that sits on the application heap.
The application heap will be cleared when the Finder starts up, thus leaving your ROM
patch pointing at nothing.

The solution to this problem has been provided by Apple. The low-memory global
IAZNotify ($33C) contains a pointer to a routine that is executed by InitApplZone before
it clears the heap for the next application. The IAZNotify routine is called even if your
program is terminated by an ExitToShell from within a debugger. You can install a pointer
to a routine to reverse the ROM patch in IAZNotify and then be assured that it will be
called even if your program terminates in a nonstandard way.

The only restriction on the IAZNotify routine is that it must be in the main seg
ment (CODE 0001) of your program. The main segment is always loaded and locked so
a pointer to a routine in that segment will remain valid for the life of the program.

now make sure that this ROM patch will be removed when the
program terminates

MOVE.L IAZptr,oldIAZptr(A5)

LEA
MOVE.L

RTS

ROMRestore,AO
AO,IAZPtr

save original restoration proc

address of our restoration proc
install pointer

all done with installation

The routine that we use as the IAZPtr procedure does four things. First, it uses
GetTrapAddress to get the address of the ROM patch on the system heap and deallocates
the non-relocatable block holding the JMP instruction.

42

ROMrestore

get the address of the ROM patch on system heap so
that we can deallocate it
FUNCTION GetTrapAddress(trapNum:INTEGER): LONGINT
trapNum => DO, result => AO

MOVE.W #trapNum,DO
_GetTrapAddress

; PROCEDURE
; p => AO
_DisposPtr

DisposPtr(P: Ptr)

; this is the trap we want

; ptr already in AO

Next, it retrieves the original trap address from the global variable where we
stored it when the patch was originally installed. The trap address is restored with
SetTrapAddress.

restore the original trap address
PROCEDURE SetTrapAddress(trapAdd:
trapAdd => AO, trapNum => DO

MOVE.W #trapNum,DO
MOVE.L oldTrapAdd(A5),AO
-8etTrapAddress

LONGINT;trapNum: INTEGER)

number of trap to un-patch
original trap address

The original value of IAZPtr, which was also saved in a global, is also restored be
cause after the heap is cleared, the pointer to our restoration routine will not be valid.

reset the IAZptr to its original value
MOVE.L oldIAZptr(A5),IAZptr leave everything as we found it

Finally, we call SetResLoad(TRUE) just in case the program has been interrupted
after calling SetResLoad(FALSE). If your program never uses SetResLoad, then you
can skip this step, but Apple suggests that you include a call to SetResLoad(TRUE) in
the IAZNotify routine if your program calls SetResLoad(FALSE) at any time during its
execution. Failure to do this can cause a system crash because the operating system does
not automatically reset ResLoad to TRUE when a program terminates. Subsequent pro
grams won't be able to load in their resources if your program sets ResLoad to FALSE
and then exits in a nonstandard way without setting ResLoad to TRUE. The IAZNotify
routine is also handy for correcting any changes you made to low-memory globals in the
course of your program.

43

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

; make sure subsequent programs can get their resources
; PROCEDURE SetResLoad(load:BOOLEAN)
MOVE.W #$0100,-(SP) ; TRUE
_SetResLoad

RTS ; all done now

The actual ROM patch code is very much like that used for the system ROM patch.
At entry, registers are protected, the speaker is beeped, and then the registers are restored.
You can insert your own code in place of the call to SysBeep. The link to the original
ROM routine is kept as a global variable. That pointer is put on the stack so that the
final RTS instruction will jump to the original ROM routine code, which will finish the
job and return control to the main program.

;---------------------------------- myROMpatch ----------------------------------
myROMpatch

do some preprocessing for the ROM routine
save the registers

MOVEM.L AO-Al/D0-02,-(SP)

; do the preprocessing for the ROM routine
MOVE.W #1,-(SP)
_SysBeep

; restore the registers
MOVEM.L (SP)+,AO-Al/D0-02

MOVE.L
RTS

oldTrapAdd(A5),-(SP) get the original trap address
jump to it

~ NEW ROUTINES IN 128K ROM

A number of improvements and additions are included in the 128K ROM. Many of
the original routines from the 64K ROM have been made faster or have had bugs
fixed. Other new routines have been added to increase the functionality of the ROM.
Additionally, many commonly used resources like the Chicago font and the default
window-definition procedure formerly included in the system file are now included
within the ROM space, freeing disk space and speeding program execution by eliminat
ing disk access for resource calls. The following paragraphs summarize information
contained in Macintosh Technical Note #57, available from Apple Computer. (See Ap
pendix B for information about how to get Macintosh Technical Notes.)

44

---------------NEW ROM-OLD ROM---------------

The Resource Manager calls have been reworked so that they are much faster than
in the original 64K ROM. A new set of calls has been added that parallels the original
routines except that the new variants search only one resource file rather than all the open
resource files. Eliminating the search of the system file and any other open resource files
speeds the search for resources. The "one-deep" Resource Manager calls look in the resource
file most recently opened or most recently passed as the parameter to UseResFile.

QuickDraw operations have been speeded up, mostly by dealing with special cases
better. Several bugs in the way QuickDraw handled complex regions have been fixed. New
fractional spacing of text is supported in order to be compatible with the LaserWriter,
and all eight transfer modes (srcOr, srcAnd, etc.) are now available for text drawing. In
addition, three new toolbox routines, SeedFill, CopyMask, and CalcMask, have been
added to give programmers the tools necessary to implement the paint-bucket pattern fill
seen in MacPaint.

The standard window definition now has an additional sensitive area, on the right
hand side of the title bar, that allows the window to be zoomed in and out. Figure 2.5
shows the zoom box in a window. A mouse down in this area will cause FindWindow
to return a part code equal to 7 or 8. If your program detects this kind of event, you can
call TrackBox, just as you would call TrackGoAway for a mouse down in the go-away
box. If TrackBox returns TRUE, then you should call ZoomWindow. If the part code
is 8, then the window will be expanded to fill the entire screen. If the part code is 7,
the window will be zoomed down to its previous size. This feature was originally im
plemented by Microsoft in their Macintosh products, and now Apple has incorporated
it into the ROM. Finder 5.1 uses zoom boxes on its windows. The standard window defi
nition used to be in the system file; now it is a part of the ROM.

,.. s File Edit Uiew Special

D A
~

Word 1.05

FIGURE 2.5. Zoom box

!J -. -
chapt 2

45

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

The Menu Manager now allows for menus with more than 19 items to scroll when
the selection is dragged past the last visible item. The default menu definition procedure,
MDEF 0, is now in ROM instead of in the system file. Also, AddResMenu, which is
used to include desk accessories and fonts in menus, now alphabetizes the items before
putting them in the menu. Two additional calls, InsMenultems and DelMenultems, have
been added to add or delete individual items from a menu.

TextEdit has several new cababilities, mostly refinements of scrolling so that edit
text boxes in dialogs can contain more text than can be displayed within the edit-text rec
tangle.

The Dialog Manager adds the calls HideDitem and ShowDltem to move individual
dialog items in and out of the visible area of a dialog. UpdtDialog has been added to
allow you to force an update of a dialog so that the items will be redrawn. FindDitem
returns the dialog item that lies under the point passed as a parameter.

The Memory Manager provides new high-level routines to manipulate the resource
flag bit of master pointers. HSetRBit and HClrRBit should be used instead of directly
setting or clearing the resource bit. Apple has provided these high-level calls because the
actual bit position of this flag may change in future versions of the Memory Manager.
MaxApplZone expands the heap to its maximum size. MoveHi moves the specified han
dle as high on the heap as possible to reduce heap fragmentation. This is especially help
ful with code segments.

The SCSI port of the MacPlus is now supported by many new routines in ROM,
collectively called the SCSI Manager. These routines are called through a single trap word,
SCSIDispatch, which uses a selector word on the stack to select among the many availa
ble routines, in much the same way the Package Manager uses the Pack traps.

The new HFS filing system is supported by several new routines to deal with the
unique features of the new directory structure. These routines are accessed through a sin
gle trap, HFSDispatch, in much the same way as SCSIDispatch. In addition, variants
of the original File Manager calls can be invoked to deal specifically with HFS volumes
by setting bit 9 of the trap word for these calls. For example, the trap word for Open
is $AOOO. The trap word for the HFS Open is $A200. Apple advises that you avoid the
HFS-specific calls so that your program will work on either HFS or MFS systems. See
Chapter 5 for more details on HFS and MFS.

[!2l DETERMINING WHICH ROM IS INSTALLED

To determine if your program is running on a machine with the 64K ROM or the 128K
ROM, you must check the value of the global variable ROM85 ($28E). The value will
be $7FFF for 128K ROMs and $FFFF for 64K ROMs. Don't try to use any of the new
ROM routines unless you have determined at run time that the 128K ROMs are installed
in the machine on which your program is running. You can test for the new ROM with
a simple instruction sequence like this:

46

---------------NEW ROM-OLD ROM---------------

TST.W
BPL

ROM85
newROM.._OK

is this the new ROM
positive value means 128K ROM

It is hard to duplicate many of the new features of the 128K ROM, so it is unclear
how to write programs that use many of the new features while maintaining compatibility
with the old 64K ROM. One strategy used by developers is to use double-sided SOOK
disks to ship products that depend on the 128K ROM. This strategy depends on Apple's
continuatipn of the 128K ROM/double-sided drive-upgrade program for older Macintosh
owners.

9suMMARY

In its original form, the 64K ROM represented the state of the art for system software
in microcomputers. The speed of execution and the elegance of the interface definitions
are unequaled. It is no wonder that so much Macintosh software adopts the basic build
ing blOcks of the window-based environment made available ill the ROM. Two years later,
Apple released the 128K ROM, which was a significant improvement in terms of speed
and functionality.

On top of the initial quality ofits ROM implementation, Apple provided hooks that
make it easy to modify, correct, or extend the individual routines that make up the ROM
toolbox and operating system. The examples in this· chapter should allow you to install
your own ROM patches, either to perform tasks specific to your application or more gener
ally at the system level for all applications.

47 /

CHAPTER

The Clipboard and Switcher:
Sharing Data Between Programs

The designers of the Macintosh created the clipboard as a standard Macintosh feature to
help users conceptualize in a concrete way the mechanics of data transfer within a single
program and between two programs. Within almost every Macintosh application you can
cut or copy information to the clipboard. That information can then be pasted into another
document or to another spot in the original document within the application. As a user,
it is not necessary for you to understand exactly what steps are being taken by the pro
gram and underlying operating system code to put the data onto the clipboard.

When you change from one program to another, the last data that you put onto the
clipboard in the first program is available to be pasted into the new application. The clip
board is a familiar metaphor that tends to decomputerize the data transfer operation. Data
transfer can occur within an applicatjon, beriveen two different applications, between an
application and a desk accessory, or· between two desk accessories. ·

Digging in a little deeper, as a programmer you find that a data object called the
desk scrap and ROM routines from the Scrap Manager actually implement the clipboard
concept. In Chapter I we showed that the.desk scrap resides on the application heap. The
desk scrap remains valid even v.vh~n the application heap is cleared as' you change from
one program to another. The persistence of the desk scrap from one application to another
is the key to interapplication ·data transfer on the Macintosh.

Do not confuse the desk scrap with the Scrapbook desk accessory. The desk scrap
is a temporary mechanism for holding data to facilitate transfer within and between appli
cations and desk accessories. It is maintained at the system level by the Scrap Manager
for the use of all programs and desk accessories. The Scrapbook is the specific desk acces
sory most suitable for archiving data. lt uses the desk scrap as an intermediary between
itself and the underlying applications programs that call on its servkes. Figure 3. I shows
how the Scrapbook and the desk scrap interact.

48

-------- THE CLIPBOARD AND SWITCHER: SHARING OATA BETWEEN PROGRAMS --------

4 • Cut, Copy, Application program
or Paste number 1
operations

~· ,,
Scrapbook Desk Scrap Application program

number 2

... ,,
Other desk
accessory

FIGURE 3.1. The role of the desk scrap

fSJ: WHAT KINDS OF DATA GO ON THE CLIPBOARD?

There are two main types of data that go on the clipboard: TEXT and PICT. TEXT data
is what you would expect from the name: a sequence of letters, digits, and punctuation
marks, collectively called characters. The most obvious source of TEXT data is a word
processor or text editor. TEXT is also used to transfer information to and from spread
sheets and data base programs. Spreadsheets and data base programs often use TAB charac
ters within running streams of characters to separate the data fields.

PICT data, on the other hand, refers specifically to graphic information encoded
by QuickDraw so that it can be decoded according to clearly defmed standard procedures
by any Macintosh program using QuickDraw. The formatting requirements for PICT data
are much more involved than for TEXT data, but the PICT standards allow diverse Macin
tosh applications to exchange graphic images freely. Generally, you needn't be concerned
about the internals of the PICT data type because QuickDraw provides simple procedures
for encoding and decoding pictures. Any Macintosh application that allows you to cut
or copy graphic images will place PICT data on the clipboard in a form that can be read
by other Macintosh graphics applications.

49

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

Other Macintosh programs can put their own special types of data onto the clip
board. As a user, you think of cutting or copying a single selection onto the clipboard.
The underlying program, however, may encode the data of that selection in several differ
ent formats when it writes it out to the desk scrap. One example is Microsoft MultiPlan,
which writes out a selection from a spreadsheet as tab-delimited text and also in two for
mats specific to MultiPlan and other Microsoft products. All three formats are put onto
the desk scrap. A program that then tries to take this data off of the desk scrap for a paste
operation must pick the data format most appropriate for it. A word processor will gener
ally take the tab-delimited text representing the contents of the spreadsheet selection. If
the data from the clipboard is pasted into another worksheet in MultiPlan, then one of
the other formats containing more information about the relationship of the cells within
the selection will be used.

The ability to put data in more than one format onto the desk scrap allows a pro
gram to transfer its data to a wider variety of other programs and desk accessories. Later
sections of this chapter will show how routines from the Scrap Manager can be used to
determine the type of data that is on the desk scrap.

~ THE DESK SCRAP AND THE PRIVATE SCRAP

To the user, the clipboard is simply the place where data goes when a cut or copy opera
tion is executed. The clipboard is also the source of data for paste operations. Most users
don't know if the clipboard is on the disk or in memory, and furthermore they don't care.
We shall see in the following sections that the clipboard is often actually implemented
as two separate mechanisms, one for internal data transfer within an application, and the
other for transfers between different applications and between applications and desk ac
cessories.

The clipboard that is responsible for interapplication data transfer is the desk scrap.
The data in the desk scrap corresponds to the data in the system file, Clipboard File, but
the desk scrap is usually kept in memory as well as in the clipboard disk file. The desk
scrap is used to facilitate data transfer between different applications and between appli
cations and desk accessories. It is the most fundamental mechanism for this kind of data
transfer, and all Macintosh applications and desk accessories should be able to read and
write data to and from the desk scrap.

In addition to the desk scrap, many applications also keep a separate private clip
board in memory that is used to cut, copy, and paste from one part of a document to
another within the same program. The data on this private scrap is kept separate from
the data on the desk scrap except at certain key points where the program decides that
it must communicate with a desk accessory or another program, as explained below.

A good example of a private scrap is the Text Edit scrap maintained by the Text
Edit Manager. Whenever your program uses calls from the TE Manager, such as TECut
and TECopy, the data involved is put into the TE scrap. The data is not placed into the

50

-------- THE CLIPBOARD AND SWITCHER: SHARING DATA BETWEEN PROGRAMS --------

desk scrap unless you specifically write program code to do so. For this reason, data cut
or copied with Text Edit routines is not automatically available to desk accessories or other
programs. Likewise, TEPaste gets its data from the TE scrap rather than from the desk
scrap.

Most applications copy the contents of the desk scrap into their own private clip
board at program startup. That way, the contents of the desk scrap are available if you
choose to paste before giving a cut or copy command. Once you choose to cut or copy
some information from a document within the application, then that data replaces the
copy of the desk scrap data on the private clipboard. For applications that maintain their
own separate internal clipboard, the desk scrap is usually unaffected by cut or copy com
mands given within the application.

If the user activates a desk accessory, the application must copy the contents of its
private scrap to the desk scrap just before turning over control to the desk accessory. All
desk accessories that support cut, copy, and paste use the desk scrap rather than the pri
vate clipboard of the underlying program because thay have no way of knowing how to
access the private clipboard. The application program copies its private clipboard to the
desk clipboard in order to make the data most recently cut or copied within the applica
tion available to the desk accessory for a paste operation. A good example of this process
is cutting out a section of a MacWrite document and then pasting it into the Scrapbook
desk accessory. The desk scrap serves as the intermediary between the application and
the desk accessory.

In the same way that it copies its private scrap out to the desk scrap when a desk
accessory is about to take control, an application program should also copy the desk scrap
onto its private scrap when the desk accessory returns control to the program. In this way,
any data that was cut or copied to the clipboard in the desk accessory will be available
for the first paste command given in the reactivating application. Actually, the applica
tion should only copy the desk scrap into its private clipboard if a cut or copy command
was given inside the desk accessory. In other words, if you go to a desk accessory and
cut or copy some information, such as a picture from the Scrapbook, that data should
be copied into your application's private clipboard when you go back to the application
from the desk accessory. Once the data is on the private clipboard, it is available for the
next paste command given in the application. If, however, you use a desk accessory but
do not issue a cut or copy command, then the contents of the application's private scrap
should not be changed when you return to the program.

Underlying all this discussion, of course, is the assumption that the data being trans
ferred is useful to the target application or desk accessory. For example, you cannot paste
PICT type data into the notepad desk accessory. There are Scrap Manager routines that
allow you to check the type of data on the clipboard before actually trying to do anything
with it. Many programs respond to a cut or copy command by saving the selected data
in more than one format. For instance, a word processor that allows many different fonts
might save a selection as straight running TEXT and also as a PICT that retains all the
font formatting information. MultiPlan saves selected data from its spreadsheets in three
different forms. When another program tries to paste from a clipboard with more than

51

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

one form of data on it, the program can examine the data type of each format and then
choose which one to use. The example code in the second half of this chapter shows how
to check the data type of scrap data.

Finally, when you quit an application, it copies its private clipboard onto the desk
clipboard so that the next program will be able to use the data cut or copied from the
first program. This is how the clipboard can be used to transfer data from one program
to another. The relationship between the desk scrap and the application's private clip
board is summarized in Figure 3.2.

At program startup:

... ..
desk scrap private scrap

When a desk accessory becomes active after a program window:

....
desk scrap private scrap

When a program window becomes active after a desk accessory:

...
- ...

desk scrap private scrap

At program termination:

....
desk scrap private scrap

FIGURE 3.2. The desk scrap and the private scrap

52

-------- THE CLIPBOARD AND SWITCHER: SHARING DATA BETWEEN PROGRAMS --------

1!2J 1s A PRIVATE SCRAP REALLY NECESSARY?

Actually, it is not always necessary for an application to keep its own private scrap in addi
tion to the desk scrap. Inside Macintosh advises programmers to allocate a private scrap
to avoid the overhead of writing to the desk scrap every time a cut or copy command is
given. My experience with the clipboard leads me to believe that this overhead is very
small and that a program's performance is not noticeably eroded by using the desk scrap
as the sole depository of data in transit. By not using a private scrap, your program doesn't
need to copy its private scrap to the desk scrap on desk accessory activation or check to
see if the desk scrap has changed when the desk accessory returns control to the applica
tion. In addition, since the desk scrap resides in memory already, keeping a private scrap
adds an additional memory allocation burden on your program's heap environment.

Using the desk scrap for all cut, copy, and paste operations within a program greatly
simplifies the program logic and actually may decrease the program's memory require
ments. For these reasons it may be best to rely solely on the desk scrap to facilitate data
transfer unless there is some overriding reason for using a private scrap. For instance, if
you write an application that deals solely with graphic information, then you can use the
desk scrap exclusively. On the other hand, if you are using the Text Edit routines to cut,
copy, or paste, then it is best to use the default private TE scrap rather than writing your
own code to perform those functions.

l!2J DESK SCRAP IN MEMORY AND ON DISK

As mentioned above, the desk scrap usually resides on the application heap. It is possible,
however, to force the desk scrap out of memory and onto the disk if your program needs
the extra memory taken up by the scrap. The Scrap Manager routine UnLoadScrap writes
a copy of the desk scrap in memory into a disk file, usually called Clipboard File, and
frees up the memory allocated to the scrap. All other Scrap Manager calls, as described
below, operate on the scrap whether it is in memory or on the disk, so your program usually
will not have to be concerned about the ss;rap location except in tight memory situations.

You should be aware, however, that even if you use UnLoad Scrap to move the scrap
out of memory, the next time you ask to get information from the scrap it will be loaded
back into memory. Keeping the scrap on the disk is really only a temporary solution to
memory woes if you plan to use the facilities of the Scrap Manager.

53

------ THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II ------

f!2l PUTTING INFORMATION ON THE CLIPBOARD

Regardless of whether or not the desk scrap is in memory or on the disk, the techniques
for actually writing data out to the desk scrap are the same. When you put information
on the desk scrap, you must tell the Desk Manager the length and type of the data. You
must also supply a pointer to the data. In the example below, assume that the data des
tined for the desk scrap resides in the TE scrap, a handle to which is kept in the low
memory global TEScrpHandl ($968, from SysEqu.Txt). Furthermore, the type of this
data is assumed to be TEXT. This sample code will give you a good model for facilitating
the communication between a private scrap and the desk scrap. The code is general enough
to adapt to other data types and sources without too much trouble. The two subroutines,
PrivateToDesk and DeskToPrivate, that are explained in the next two sections are also
referred to in other discussions later in this chapter.

The first thing we need to do when writing the private scrap out to the desk scrap,
after saving a working register on the stack, is to find out how big the data block is by
using GetHandleSize. We save this value in register D3 so that it will be available later
when we actually write the data to the scrap.

PrivateToDesk

; save a register first
MOVE.L D3,-(SP)

write the private scrap to the desk scrap
assume that a handle to private scrap is in TEscrpHandl

; first, find out how big the handle is
; FUNCTION GetHandleSize(h:handle): LONGINT
MOVE.L TEScrphandl,AO the handle
_GetHandleSize
MOVE.L DO,D3 save size for later

Next, we clear out the old contents of the desk scrap by calling ZeroScrap so that
the new data will be placed in an empty scrap. If you leave out this step, the new data
will be appended to the scrap. If you want to put your data on the scrap in more than
one format, then you would not zero the scrap before writing the other forms of the data.

54

-------- THE CUPBOARD AID SYll'lalER: SHARING DATA BETWEEN PROGUMS --------

now clear out the desk scrap
if you don't do this, the data will be appended to the scrap
which might be desirable if you want to put the data
in the scrap in more than one format

;FUNCTION ZeroScrap :LONGINT
CLR.L -(SP)
....ZeroScrap
MOVE.L (SP)+,DO

Once the desk scrap has been cleared, you can write your data out to it by calling
PutScrap. You pass the length, type, and a pointer to your data as parameters to Put
Scrap. If your data is accessed by a handle, be sure to lock it down before calling Put
Scrap, since you will be dereferencing the handle to get a pointer to the data.

;PROCEDURE HLock(h:Handle)
; h => AO
MOVE.L TEScrpHandl,AO
JI Lock

lock the private scrap

;FUNCTION PutScrap(length:longint;thetype:ResType;source:ptr;):LONGINT
CLR.L -(SP) the result
MOVE.L DJ,-(SP) the length
MOVE.L #'TEXT' ,-(SP) the type
MOVE.L TEScrpHandl,AO handle to the data
MOVE.L (AO),-(SP) convert handle to pointer
JutScrap
MOVE.L

MOVE.L
JIUnLock

(SP)+,DO

TEScrpHandl,AO unlock data handle

Finally, restore the register and return from the subroutine. ZeroScrap and PutScrap
work whether the scrap is in memory or on the disk. If the scrap is in memory, then
a new handle containing the data is created and the low-memory global that contains the
scrap handle is updated to point to the new block. If the scrap is on the disk, then the
new data is written to the clipboard disk file.

restore the register
MOVE.L (SP)+,DJ

; all done with PrivateToDesk
RTS

55

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

!!2J GETTING INFORMATION OFF THE CLIPBOARD

When your application wants to get information from the desk scrap, it must first look
for its preferred data type in the scrap. The scrap can contain many different types of
data, and all applications should be able to read either TEXT or PICT types, preferably
both. In the example code given below, we will look only for TEXT type data, but you
can easily modify the code to adapt it to other situations.

In order to determine if the scrap holds a particular type of data, call the Scrap
Manager routine GetScrap with a NIL storage handle and the type designation of the
desired data type. This will cause GetScrap to return information about the scrap without
actually trying to get the data in the scrap. GetScrap returns a function result that equals
the length of the data if the requested type is on the scrap, or a negative number if that
type is not on the scrap. The other parameter is a VAR long int that will contain the offset
value for the data of the requested type. This offset value is needed to locate the requested
data type if more than one type of data is on the scrap.

DeskToPrivate
; save a register
MOVE.L A4,-(SP)

first find out if the scrap is the proper type
if you pass 0 instead of a valid handle, then the
function only returns information about the scrap
rather than the actual scrap data
FUNCTION GetScrap(hdest: Handle; theType:ResType; VAR offset:

CLR.L
; LONGINT): LONGINT
-(SP) make space

MOVE.L
MOVE.L

#0,-(SP)
#'TEXT' ,-(SP)
offset(A5)

don't actually get it
this type only

PEA global for use as VAR
_GetScrap
MOVE.L
BM!

(SP)+,DO
NoPaste

get the result
scrap not TEXT type

You can see that we push 0 on the stack for the hDest handle so that GetScrap
will not actually get the data from the scrap. Upon completion of the routine, we check
the result and branch on a negative result to an error-handling label. The negative result
means that no data of the requested type (TEXT) is on the scrap at this time.

Assuming that we get a positive result from GetScrap, we then need to call GetScrap
again with a valid hDest handle this time. We allocate a zero-length handle to use as the
hDest parameter because GetScrap will dynamically resize the handle to hold the requested
data. In the example below, we store the handle in register A4 so that it will be available
to us over the course of several ROM calls.

56

-------- THE CLIPBOARD AND SWITCHER: SHARING DATA BETWEEN PROGRAMS --------

allocate a zero length handle to hold scrap
FUNCTION NewHandle(logicalSize: Size):Handle
logicalSize => DO, Handle => AO

MOVE.L #0,DO
_NewHandle
MOVE.L AO,A4

; now get the scrap
;FUNCTION GetScrap(hdest: Handle;

CLR.L
MOVE.L
MOVE.L
PEA
_GetScrap
MOVE.L

; LONGINT): LONGINT
-(SP)
A4,-(SP)
#'TEXT' ,-(SP)
offset(A5)

(SP)+,DO

put handle in safe register

theType:ResType; VAR offset:

make space
pass new handle
this type only
global for VAR

get the result

Once GetScrap makes a copy of the scrap data into the handle in register A4, we
can make the TE scrap handle point to the new data by installing the new handle in the
low-memory global TEScrpHandl. Deallocate the old data associated with the private scrap,
and then copy the handle from A4 into the private scrap handle. One additional step that
is needed when you are working with the TE scrap is to set the low-memory location
TEScrpLengt to the length of the new TE scrap. Although Inside Macintosh lists
TEScrpLengt as a long-word value, the present version of Text Edit treats the value as
a word. You must write the length value to TEScrpLengt as a word rather than as a long
word to maintain compatibility with Text Edit. Finally, the register can be restored and
control returned to the calling procedure.

make the private scrap handle equal to the new data just loaded in
assume the handle to your private scrap is in global 'privateScrap(A5)'

; first, deallocate the old version of the private scrap
;PROCEDURE DisposHandle(h: handle)
; handle => AO
MOVE.L TEScrpHandl,AO get handle
_DisposHandle

; now install new handle in global variable
MOVE.L A4,TEScrpHandl

57

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

; and put a WORD length value in TEScrpLengt
; FUNCTION GetHandleSize(h:Handle): LONGINT
MOVE. L TEScrpHandl, AO ; the handle
_GetHandleSize
MOVE.W DO,TEScrpLengt

NoPaste
;restore register
MOVE.L (SP)+,A4

; all done now with DeskToPrivate
RTS

In this example we only accepted one type of data from the desk scrap. Ideally, all
Macintosh programs should be able to read both TEXT and PICT data from the desk
scrap. Obviously, some programs will not be able to attain this goal, but it is something
to strive for. The two examples, DeskToPrivate and PrivateToDesk, are important because
they show how to connect the Text Edit scrap to the desk scrap. The code can be easily
generalized to fit into other situations in which a private scrap or an arbitrary data block
needs to be connected to the desk scrap.

f!g} WHEN TO CONVERT THE CLIPBOARD

The two previous sections showed how to move the contents of the desk scrap to the pri
vate scrap and back out again. If your program doesn't use a private scrap, you can easily
modify those code fragments to transfer arbitrary data selections to and from the desk
scrap for all cut, copy, and paste operations. Furthermore, if your program always uses
the desk scrap exclusively, then you don't have to worry about converting the clipboard.
But if you do maintain a private clipboard, such as the TE scrap, then you must include
some logic in your program to make sure that the clipboard is converted at the proper times.

Program Startup and Termination
As mentioned in an earlier section, your program should read the contents of the desk
scrap into its private scrap at startup so that the data cut or copied in the previous applica
tion program is available for a paste operation in the new program. This is a straightforward
operation that can be done as part of your initialization routine. You can use the code
from DeskToPrivate, discussed above, as a model for this operation.

Likewise your program should also write its private scrap to the desk scrap when
the user chooses to Quit. It is important to do this so that the last data cut or copied by
the user will be available to the next program that starts up. PrivateToDesk can be used
as a model for the code to include in your program's termination process.

58

-------- THE CLIPBOARD AND SWITCHER: SHARING DATA BETWEEN PROGRAMS --------

Activate/Deactivate Events and Clipboard Conversion
Once your program has been initialized and is running, you must convert the clipboard
whenever a desk accessory becomes active and replaces a program window. This is done
so that the last data cut or copied in the application window will be available to the desk
accessory for a paste operation. You can use PrivateToDesk as a code model to accomplish
this conversion task.

Conversely, you must copy the desk scrap to the private scrap when returning from
a desk accessory if data has been cut or copied from the desk accessory. In this way, data
can be transferred from the desk accessory to your application. The catch is that you must
be able to detect when the desk accessory has modified the contents of the desk scrap.

The low-memory system global, scrapCount (address $968), is changed every time
the contents of the desk scrap change. We need to save the value of scrapCount before
transferring control out to a desk accessory and then check it again when control returns
to our program. In the examples in the following sections, we use an application global,
myScrapCount, to save the old value of scrapCount. By comparing the old and new values
of scrapCount when control returns to the application, we can tell whether the desk ac
cessory has taken any action to change the scrap contents. If the contents of the scrap
change while a desk accessory is active, then we must transfer the desk scrap to our pri
vate scrap. If there has been no change, however, then we won't have to do anything when
our program window is reactivated. You can also get the value of scrapCount by calling
the Scrap Manager ROM routine lnfoScrap, but it is quicker for us just to check the low
memory location directly.

The trickiest part of private scrap <=> desk scrap conversion is knowing when a
program window and a desk accessory window change places. There has been confusion
about this issue because of changes in Apple's documentation. In the original editions
(3-ring binder and phone book) of Inside Macintosh, the Window Manager section sug
gested that the key to this was the activation/deactivation events. Activation and deactiva
tion events almost always happen in pairs, with one window becoming inactive and the
other window becoming active. According to the original documentation, whenever one
of your program windows gets an activate/deactivate event, bit #1 in the modifier field
of the event record is set if the other window in the activate/deactivate pair is a system
window (desk accessory).

Apple published example programs using this strategy to detect the switch between
program windows and desk accessory windows. The examples checked bit # 1 of the modi
fier field every time a program window was deactivated and wrote the private scrap out
to the desk scrap if a desk accessory was becoming active. Likewise, if a program window
received an activate event and bit #1 of the modify field indicated that the other window
being deactivated was a desk accessory, you were supposed to bring the contents of the
desk scrap into your private scrap.

59

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

There were always problems with this strategy. The technique worked fine as long
as your application program always maintained at least one program window on screen
at all times. If, however, it was possible to close all the program windows on the screen
without quitting the program, then your program failed to detect certain key situations
that require the scrap to be converted.

The problem occurred in a situation like that shown in Figure 3.3. If the program
window on top is closed by the user, the desk accessory underneath becomes active when
the window goes away. Clearly, this is a situation that calls for clipboard conversion, yet
the window that is being closed does not generate a deactivate event, and the activate event
for the desk accessory is intercepted by Systenffitsk. The activate/deactivate event described
in the previous paragraphs will not occur. Because windows that are closing don't gener
ate deactivate events and because activate events for desk accessory windows are handled
by the desk accessory code, your program will not be informed of this kind of change
and the private scrap will not be transferred to the desk scrap for the activating desk ac
cessory. Your program never gets a chance to check bit #1 of the modify field because
it never receives an activate/deactivate event pair for the windows.

Clearly, this method is not acceptable for many types of Macintosh programs. The
discussion of it is presented here mainly to clear up any confusion that may still linger
because of incorrect sample programs circulating through the developer community. Most

r S Fi~ Edit

Untitled

This is som If this top window is closedJ the program will not
get a deactivation event and the private scrap will
not be transferred to the desk scrap.

FIGURE 3.3. A situation that activate/deactivate can't handle

60

,

-------- THE CLIPBOARD AND SWITCHER: SHARING DATA BETWEEN PROGRAMS --------

developers in the early days found this out the hard way. Since then, Apple has dropped
all reference to the use of bit #1 of the modify field in activate/deactivate events. The
Addison-Wesley edition of Inside Macintosh makes no mention of this technique, although
it offers no alternative way to detect the change from a program window to a desk acces
sory window. Some other, more reliable, method is needed to detect the changing arrange
ments of windows on the screen in order to insure that the scrap is always converted when
needed.

An Alternate Method for Controlling Clip Conversion

EventLoop

As discussed above, programmers cannot rely on the activate/deactivate techniques to trigger
clipboard conversion in.all the appropriate situations. Even when the technique was sup
ported and documented by Apple, it didn't work very well. It is true that bit #1 of the
modify field was set correctly during a program window-desk accessory shuffle, but the
activate/deactivate event was not always made available to your program to initiate clip
board conver8ion. Now thi.t Apple has removed its sµpport and no longer even mentions
it in its documentation, you have no assurance that future versions of the operating sys
tem will continue to set bit #1 of the modify field during activate/deactivate events. At
the present time, Apple lists bit #1 as "reserved for future use:' Clearly, some other method
is needed.

A possible solution to this problem can be framed around the PeriodicTasks subrou
tine that is used by MultiScroll in my The Complete Book of Macintosh Assembly Language
Programming, Volume I. MultiScroll calls PeriodicTasks every time through the event loop
to take care.of menu enabling and. disabling and also to adjust the scroll bars. Periodic
Tasks adjusts the menus according to the current arrangement of program windows and
desk accessory windows. The logic used by PeriodicTasks to govern its menu manipula
tions is well matched to the task of mediating scrap conversion. In fact, Inside Macintosh
recommends that menu adjustments be made at the same time as scrap conversion in the
activate/deactivate routine. Recognizing that menu adjustment and scrap conversion are
tightly entwined, but realizing that the activate/deactivate strategy is insufficient to medi
ate the two processes reliably, let's modify PeriodicTasks to take care of these two tasks
at the same time.

First, look at the placement of the call to PeriodicTasks. Notice that it occurs in
the inain event loop before the call to GetNextEvent so that any corrections that need
to be made will happen before events can be handled.

; MAIN PROGRAM LOOP

;PROCEDURE SystemTask
_SystemTask update desk accessories

BSR PeriodicTasks adjust the menus and convert scrap

61

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

@1

TST.L
BEQ

TEReg
@1

is there a valid TE record?
if not, branch around TEidle

; PROCEDURE TEidle (hTE:TEHandle);
MOVE.L TEReg,-(SP) get handle to text record
_TEidle ; blink cursor etc.

FUNCTION GetNextEvent(eventMask: INTEGER;
VAR theEvent: EventRecord) : BOOLEAN

PeriodicTasks fmds out about the current state of the screen by calling FrontWindow
every time through the main event loop. By examining the window pointer returned by
FrontWindow, PeriodicTasks can recognize one of three situations: program window on
top, desk accessory window on top, no windows on screen. It also sets a register flag to
one of three possible values corresponding to these three situations so that it can detect
when a change occurs. For clipboard conversion, it is most important to detect two situa
tions: a program window becoming active when a desk accessory has been the top win
dow, and a desk accessory becoming active when the last top window was a program
window. The tricky part is detecting these situations after a period when there have been
no windows on screen.

For instance, consider a situation where information is copied to the private scrap
from a program window. That window is then closed, leaving an empty screen. If a desk
accessory is opened onto this empty screen, we need to know if the most recent window
was a program window in order to decide if the clipboard should be converted for the
desk accessory. (In other words, we must be able to distinguish this situation from one
where a desk accessory is opened and closed on an empty screen, and then another desk
accessory is opened.) This is analogous to the information in the changed bit of the event
record for an activate/deactivate event, but it involves changes from desk accessory to pro
gram windows that are not grouped together in time. In order to do this, we need to main
tain a global variable to show the type of the most recent active window.

The code below is a skeleton of a PeriodicTasks subroutine that concentrates on the
clipboard conversion aspects. The menu-fiddling code is not shown here. See Chapters
4-7 in The Complete Book of Macintosh Assembly Langu.age Programming, Volume I, for de
tails of the menu adjustment code in PeriodicTasks.

The subroutine starts by looking at FrontWindow. If the result is zero, then we know
that there are no windows on screen. The branch label for the no windows situation checks
to see if the status of the desktop has changed since the last time PeriodicTasks was run
by looking at the MenuStatusReg. Because PeriodicTasks is called for every event loop,
most of the time it will not be reacting to a change in the arrangement of the desktop,
so this check was put in to avoid needless code execution. If the code detects that this
is a new arrangement, then the MenuStatusReg is updated to reflect the new situation
and the menus are adjusted accordingly. No clipboard conversion needs to be done when
there are no windows on screen.

62

-------- THE CLIPBOARD AND SWITCHER: SHARING DATA BETWEEN PROGRAMS --------

;-------------------------------- Periodic Tasks --------------------------------
PeriodicTasks

check the top window for one of three possibilities
no window on screen
system window on top
our window on top

disable edit menu,save, and close item
enable edit menu, disable save,close item
disable undo item, enable save,close item

;***
This routine uses a flag value in MenuStatusReg to determine

the most recent state of the desktop and to see if the new
status is any change. Most of the time, no change will be
detected.

It also uses two application globals, myScrapCount and lastTopWindow.
myScrapCount is used to see if the desk scrap contents have be.en

changed by a desk accessory, thus necessitating clip conversion.
lastTopWindow is used to determine if the newly activated window

is part of a program-desk accessory pair.

;***
;FUNCTION FrontWindow:WindowPtr
CLR.L -(SP) space for result
_Front Window
MOVE.L
BEQ
BPL

no_window

(SP)+,AO
no_window
a..:.window

get the window

; first check to see if this adjustment needs to be done
CMP.B #noWindow,MenuStatusReg
BEQ Periodicdone ; this is not a change

; Set the new status
MOVE.B #noWindow,MenuStatusReg

;**************
; do menu fiddling here, turn off most options
i**************

BRA Periodic done

If FrontWindow gets a positive window pointer, then we need to look at the
window Kind field of the window record to see if it is a system window (desk accessory)
or a program window. A system window is identified by a negative window Kind value.

63

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

a_ window
TST.W
BMI

our_window

windowKind(AO)
sys_window

what kind of window

If the top window is one of our program's windows, then we need to see if this reflects
a change in the desktop situation, just as we did for the no-windows case.

; now check to see if this menu adjustment needs to be done
CMP.B #ourWindow,MenuStatusReg
BEQ Periodicdone ; this is not a change

; Set the new status
MOVE.B #ourWindow,MenuStatusReg

If the logic above finds that this program window has just been brought to the fore
front, then we need to find out if clipboard conversion needs to be done. We need to con
vert the clipboard only if the most recent top window was a desk accessory and the contents
of the desk scrap were changed by that desk accessory. We consult our two application
globals, lastTopWindow and myScrapCount, to determine these facts. Remember from
an earlier discussion that myScrapCount is an application global variable containing the
value of the system global scrapCount just before control was passed to the desk acces
sory. Now that a program window is being reactivated, we compare the present value of
scrapCount to the value saved in myScrapCount to see if the desk accessory modified the
desk scrap.

see if clipboard conversion should be done
our window is becoming active
convert only if lastwindow was a desk accessory AND

clipboard has changed

MOVE.W lastTopWindow(A5),DO get the flag
CMP.W #sysWindow,DO was the last window a DA?
BNE @2 not a DA, don't convert clip

MOVE.W scrapCount,DO get low memory scrapCount
CMP.W myScrapCount(A5),DO compare to saved value
BEQ @2 no change, don't convert

; we passed all the tests, so go ahead and convert clipboard
; from the desk scrap to our private scrap
JSR DeskToPrivate ; do conversion

64

-------- THE CLIP•RD AND SWITCHER: SHARING DATA BETWEEN PROGRAMS --------

; and save new value of scrapCount for future reference
MOVE.W scrapCount,myScrapCount(A5)

@2 ; set the lastTopWindow global now, after checking its previous value
MOVE.W #ourWindow,lastTopWindow(A5)

Notice that we must also update myScrapCount and lastTopWindow so that they
will contain the most recent data the next time they are used. We also follow scrap conver
sion with whatever menu adjustment the program requires to adapt to a program window
as the top window.

;***************
; do menu fiddling here, turn on most features

;***************

BRA Periodicdone

The other situation to which we need to respond is the activation of a desk accessory
window. In this case, we should convert the clipboard only if the most recent window
was a program window. The logic of the code is similar to that shown above.

sys_window
; first check to see if this adjustment needs to be done
CMP.B #sysWindow,MenuStatusReg
BEQ Periodicdone ; this is not a change

; Set the new status
MOVE.B #sysWindow,MenuStatusReg

see if clipboard conversion should be done
DA window is becoming active
convert only if lastwindow was a program window

MOVE.W
CMP.W
BNE

lastTopWindow(A5),DO
#ourWindow,DO
@J

get the flag
was the last window our window?
no, don't convert clip

; we passed all the tests, so go ahead and convert clipboard
; from the private scrap to the desk scrap
JSR PrivateToDesk ; do conversion

65

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

@J ; set the lastTopWindow global now, after checking its previous value
MOVE.W #sysWindow,lastTopWindow(A5)

:***************
; do menu fiddling here, especially turn on standard edit menu

;***************

Periodicdone
RTS go back to event loop

The techniques outlined in the sample code above will insure that your program
correctly exchanges information between the desk scrap and its private scrap. This is done
so that a program can import and export clipboard data to and from desk accessories.
Importing the desk scrap at program startup and exporting it at termination will insure
that your program can transfer data to and from other programs. Of course, this discus
sion will not be of much use to you if your program uses the desk scrap exclusively for
all its cut, copy, and paste operations. If that is the case, your program will always be
ready to send its clipboard data out or bring in clipboard data from a desk accessory or
another program without having to go through the logical gymnastics outlined above.

f!2l HOW DOES SWITCHER CONVERT THE CLIPBOARD?

Before Switcher, data transfer between programs on the Macintosh was a clumsy affair
at best. You had to cut or copy information in one program, Quit that program, and then
start up another program in order to complete a data transfer. Shifting from one program
to another often required several disk swaps and many frustrating minutes waiting for the
notoriously slow exit and entry procedures of most Mac programs. With Switcher, however,
you can jump directly from one program to another in a second or two, arriving with your
data on the clipboard, ready to paste into the receiving program.

Switcher allows you to have as many as eight programs in memory at the same time,
subject to memory limits. On a 512K Macintosh, the practical limit is usually three pro
grams. The programs are co-resident in memory, but only one program is actually ex
ecuting at any given time. The real advantage of Switcher is that it allows instant data
transfer between programs. Data in one program can be cut or copied to the clipboard.
You then can switch to another program by clicking the Switcher icon in the menu. When
the second program fills the screen, usually in less than a second or two, the data that
was cut in the first program is available to be pasted into the new program. This is a sig
nificant improvement over the old method of Quitting the first application and starting
up the other one.

66

-------- THE CLIPBOARD AND SWITCHER: SHARING DATA BETWEEN PROGRAMS --------

Switcher uses two different methods, outlined below, to insure that the data placed
on the clipboard in one application will be available to the application that takes over after
a switch. The first method is useful to understand if you are using software that was writ
ten before Switcher was released. The second method will be of interest to you if you want
to write new software that works more harmoniously with Switcher.

The Desk Accessory Ruse

FIGURE 3.4.
MultlPlan
selectlon just
before a switch

Switcher will make sure that all the applications share the same clipboard when you choose
the Convert Clipboard option. Optionally, if Convert Clipboard is not chosen, you can
still force Switcher to carry the clipboard along by holding down the option key during
a switch. The previous section pointed out that many applications use a private internal
clipboard for cut, copy, and paste operations within the program itself. Most programs
only use the desk clipboard at startup to initialize their private clipboard or when they
are transferring data to, or from, a desk accessory. In order to make sure that a program
will use the data from the shared desk clipboard rather than from its own internal clip
board, Switcher fools the application into thinking that data is being transferred to or from
a desk accessory when a switch between applications takes place.

For example, let's look at the situation where we have MultiPlan and Word running
in adjacent Switcher slots. The MultiPlan worksheet contains some figures on advertising
costs, as shown in Figure 3.4. We want to copy those figures out of MultiPlan and paste
them into a letter we are writing in Word.

r S File Edit Select Format Options Calculate

self publishing
3 4 5 6

I•

;~:~~~~:~~7;~~7;,~1;~~:~~~=-:~~~~:~~:-~:~~~=-:-:::-:-:-:::-=-:~~T~:-~:-:::-:-:-:::-=-:~T:~~: ?: :
... :). ro9.11,ll : $.'?7.!'!9.-R9 .. : $.'?J.~7 .. A::> .. : $.49.~9 . .QQ. .: $.49.Q? .. l::> .. : .
. :?. ro9.11'll~ : $7.1. ?.49 . .QQ. .: $7.1. ?.~~ .. n .: ... M4n9.W .. : H 49.'.:??.·A::> .. 1.
-- : I

~~: ~~:t:~1:~ :'1:i~~:~~~ :0~9~~:~1:~ ::::: : : : :::::: : :::::: : : ::::::::::::::::::::::::::::::::::: ::: :::: : ::::::::: : :::: : : ::
.. : J. ro9.11,ll : $.47.~? . .QQ.. : $.4?.f!? .. A::> .. : $.1. ~.~? . .QQ.. : $.1.?.!'!9::> .. : .
. :?. !"(19f!'I)~ : $.!l7.Q? . .Q9. .: $.'??.~ U::> .. : $.4?.~? .. Q9 .. : $.4 J.!?~ .. A::> .. I .

: : : : : I
·· ···· ·· · ·· ·· ··· · ·:············· · ····:······ ·· · ·········:····· · ······ ·· ··· ·: ········ · · ··· · ····:····· · · •·00•00••·· 1·
...... : • •.• .•........ : : : : 1.

67

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

Making sure that the Convert Clipboard option has been chosen, we copy the selected
area from the MultiPlan worksheet to the clipboard and then switch to Word. If you watch
the menu bar closely as the switch takes place, you will see the Edit heading briefly in
vert, as though a selection was being made from the Edit menu in MultiPlan. This ac
tivity is evidence of the charade that Switcher is putting on to convince MultiPlan that
a desk accessory is becoming active and that data is being pasted into the accessory. Of
course, there is no desk accessory, but Switcher generates information, including :take menu
events, to convince MultiPlan that a desk accessory wants the information from its private
clipboard. MultiPlan, falling for the ruse, copies its private clipboard onto the desk clip
board before completing the switch to Word.

If you watch the menu bar in Word as the switch occurs, you will see a similar high
lighting of the Word Edit menu. Switcher continues the deception at the destination end
of the switch in order to convince Word that information has been copied from a desk
accessory just before Word is activated. In the previous section we said that an application
will copy the desk scrap to its private clipboard when returning from a desk accessory

Switcher
Multi Plan

Fake DA
activation _..

@ --
® private

scrap

,,
desk scrap

Fake DA Word
deactivation

_..

®
...

private e
scrap

FIGURE 3.5. Sequence of events In switch from MuHIPlan to Word

68

-------- THE CLIPBOARD AND SWITCHER: SHARING DATA BETWEEN PROGRAMS --------

if a cut or copy command was given in the desk accessory. Switcher does what is needed
to convince Word that it should transfer the contents of the desk clipboard to its private
clipboard. This means that the first paste command given in Word after the switch will
use the data copied onto the clipboard in MultiPlan. This sequence of events is shown
diagramatically in Figure 3.5.

PROBLEMS WITH THE DESK ACCESSORY RUSE
Although the desk accessory ruse is an extraordinary piece of software, it some~imes runs
into traps within the application programs that prevent it from successfully facilitating
clipboard conversion. Looking back to the MultiPlan-Word example give:p. above, if we
make the selection range in MultiPlan larger- the whole screen for instance - then Mul
tiPlan will put up the dialog shown in Figure 3.6.

MultiPlan sees the fake events coming from Switcher and thinks that a desk acces
sory wants data from the clipboard. But MultiPlan keeps several forms of the selected
data on its internal clipboard. The data is kept as tab-delimited TEXT, and also in two
forms peculiar to MultiPlan, VALU and LINK. When the amount of data is small,
MultiPlan just copies all three data formats from its private scrap to the desk scrap. The
destination program can then choose which form it wishes to use. Figure 3.7 shows the
three types of data in the scrapbook after a paste. However, when there is a lot of data
on the private scrap, MultiPlan puts up a dialog to allow the user to select which form
of the data to transfer.

[13 Sauing large clipboard

D Saue formatted ualues

D Saue unformatted ualues

Cancel

FIGURE 3.6. MultiPlan dialog for large selection

69

..,

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

,.. s File Edit Select Format Options Calculate

Scrapbook

t~vertising:

magazine 1/2 page discount? 1/4 page discount?

MacWorld $4545.00 $4545.00 $2625.00 $2625.00
Macazine $1750.00 $1750.00 $930.00 $930.00
MacNibble $625.00 $531.25 $355.00 $301 .75
MacTutor $360.00 $306.00 $180.00 $153.00

1¢1 191
19
20 1 I 1 LINK, VALU, TEXT

FIGURE 3.7. Three-data format from MultlPlan in Scrapbook

This is actually a good strategy, in that it keeps the desk scrap from being over·
loaded with redundant data. Usually, this dialog is only put up when a desk accessory
is being activated or the user has chosen the Quit command. In those situations, the user
can choose the data format to allow the program to continue normally. In the Switcher
context, however, the switch to the other program occurs before the user has a chance
to click in the dialog box, so the internal scrap is not written to the desk scrap before
the switch takes place. The selected data is not made available to the other program via
the desk scrap. The only way around this situation is to make sure that you cut or copy
smaller pieces of the spreadsheet before switching.

The Switcher Event
The deceptive technique described above is undertaken because Switcher was written much
later than many of the most popular application programs for the Macintosh. The desk
accessory ruse is a marvelous piece of reverse engineering that allows these programs to
perform tasks that were not even dreamed of when the programs were written. It does,
however, have weaknesses as described above. Switcher provides a mechanism for newer
programs that allows them to respond specifically to the Switcher environment. Switcher

70

-------- THE CLIPBOARD AND SWITCHER: SHARING DATA BETWEEN PROGRAMS --------

DoSwitcher

can generate an event that tells the application program when a switch is about to take
place. Previously, event numbers 11-15 were reserved for individual programs to define
their own event types. When Switcher sends an event #15 to an application, the high byte
of the long-word message field of the event record is equal to 1 if it is a suspend/resume
event. For the present version of Switcher, this byte is always set this way, but future ver
sions may use event number 15 to signal other kinds of events also. Bit 0 of the message
field of the event record is set if the application is about to be activated and cleared if
the application is about to be suspended. Furthermore, bit 1 of the message field is set
if the clipboard should be converted, and cleared if the clipboard may be ignored. The
application can respond to this event by copying its private scrap to the desk scrap or by
copying the desk scrap to its own private scrap, depending on the setting of these bits.

RESPONDING TO SWITCHER EVENTS
The code that can interpret a Switcher event is listed below. Be sure to use an event mask
for GetNextEvent that allows event #15 through to your program. (The programming
examples in The Complete Book of Macintosh Assembly Language Programming, Volume I, use
#$0FFF as an event mask. This lets only events 0-11 through. The event mask should
be changed to #$FFFF and four additional entries added to the event table to give Switcher
compatibility.) Assuming that you have an entry to DoSwitcher in your program's event
dispatch table for event #15, you can use the following code fragment to respond to
suspend/resume events. The subroutines DeskToPrivate and PrivateToDesk were explained
in an earlier section of this chapter.

; we come here for Switcher events (What = 15)
MOVE.L Message(A5),DO easier to test bits in register.
BTST #0,DO this bit set for resumption
BNE SwitchOn

SwitchOff: come here for suspend
BTST #1,DO
BEQ NextEvent
JSR PrivateToDesk
BRA NextEvent

SwitchOn: come here for resume
BTST #1,DO
BEQ NextEvent
JSR DeskToPrivate
BRA NextEvent

event

event

turn ourselves back on
otherwise, turn off

see if clipboard conversion on
we don't need to do anything
copy our scrap out to desk
get next event

see if clipboard conversion on
we don't need to do anything
copy desk scrap to private
get next event

71

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II ____ _

TYPE SIZE
,-1

.I
16384
.L
98304
.L
98304

Of course, all this fuss over Switcher events is only necessary if your program uses
a private scrap. If you use the desk scrap all the time anyway, then you don't have to pay
any attention to Switcher events. The contents of the desk scrap will always be available
to your program, assuming that the other programs running under Switcher know how
to put data there.

We mentioned earlier that Switcher "optionally" sends event #15 to applications to
inform them of pending activations or suspensions. Switcher looks for a SIZE resource
with ID of - 1 in the resource fork of every application that it runs. The SIZE resource
contains information that tells Switcher how much memory to allocate for the application
as well as whether to send activate/suspend events and whether to save the screen image.
Most applications that were written before Switcher do not have a SIZE -1 resource. In
the absence of a SIZE -1 resource, Switcher assumes that the application is not set up
to handle Switcher events and uses the desk accessory ruse instead. In order to make
Switcher send suspend/resume events to your program, you must set a flag in a SIZE
resource with ID of -1 in your application file. If the SIZE -1 resource of your program
is configured to accept Switcher activate/suspend events, then Switcher will not generate
the series of events that make up the desk accessory ruse.

The format of the SIZE resource is shown below. To enable Switcher events, set
bit 14 of the flags word. Bit 15 instructs Switcher to save the screen of the application.

SIZE resource:
Flags:word
preferred memory size:long
minimum memory size:long

You can add a SIZE - 1 resource to your program with RMaker or with the Resource
Editor. The values for the memory sizes should be 32K less than you actually want (i.e.,
96K for a 128K partition). It is a good idea to enable Switcher events for programs that
you are writing so that Switcher won't have to go through the desk accessory charade every
time a switch is made. The RMaker source file fragment shown below configures a pro
gram to accept suspend/resume events and sets both the preferred and minimum memory
requirements to 128K.

GNRL

' '
word length value to follow

' '
set bit 14 to enable suspend/resume events

' ' long word value to follow
; ; 98304 + 32 K = 128 K

' ' long word value to follow

' ' 98304 + 32 K = 128 K

72

-------- THE CLIPBOARD AND SWITCHER: SHARING DATA BETWEEN PROGRAMS --------

SWITCHER EVENTS: A CAVEAT
The foregoing discussion of suspend/resume events is based on the technical documenta
tion written by Switcher programmer Andy Hertzfield. In actual practice, however, Switcher
(up to version 4.6) does not correctly send resume events to programs. The problem oc
curs with bit 1 of the message field of the resume event. Bit 1 should be set when the
clipboard is supposed to be converted, and clear when the clipboard does not need to be
converted. This bit is controlled by the Convert Clipboard option in Switcher. If that op
tion is turned on, then Switcher sends suspend and resume events with bit 1 of the mes
sage field set. If that option is turned off, Switcher sends suspend and resume events with
bit 1 clear.

The problem crops up when the user tries to use the option key to change the set
ting of the Convert Clipboard option. In other words, if the Convert option is on and
the user holds down the option key during a switch, Switcher should clear bit 1 of the
message field of the suspend and resume events so that the applications won't convert
the clipboard. Unfortunately, Switcher fails to do this on the resume event unless the op
tion key is held down for the duration of the switch. So while the suspended application
does not convert the clipboard, the resuming application does convert the clipboard if
the option key is not held down long enough. This aspect of Switcher is not documented
in the technical or end-user documentation.

Likewise if the Convert Clipboard option is off and the option key is held down,
both applications should convert the clipboard. Once again, the resuming application gets
the wrong message from Switcher and does not convert the clipboard if the option key
is let up before the switch completes. Suspend events are sent correctly no matter how
long the option key is pressed.

The upshot of all this is that you cannot rely on Switcher events to mediate clip
board conversion correctly in all cases, at least for the present versions of Switcher. One
fix for this problem is to make a special note in your program's documentation warning
users about this undocumented behavior in Switcher. Another possible solution is not to
configure your application to receive Switcher events, but instead to rely on the desk ac
cessory ruse that Switcher puts out by default. Updated versions of Switcher may fix this
bug so you may be able to use Switcher events in the future.

~SUMMARY
The clipboard is a very powerful metaphor for data transfer both within a single program
and between programs. This chapter has discussed the underlying data objects and ROM
routines available to manipulate the clipboard. A key concept is the relationship between
the private clipboard kept by a program for internal cutting and pasting and the desk scrap
maintained by the system to facilitate data transfer between programs, between programs
and desk accessories, and between desk accessories. The trickiest part of using the clip
board is recognizing the situations where it is necessary to transfer data from the private
scrap to the desk scrap, and vice versa.

73

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

We discussed two techniques allowing your program to detect the change from a
program window to desk accessory that requires conversion of the private scrap to the
desk scrap. Apple's suggested activate/deactivate strategy was explained and its weaknesses
explored. We developed an alternative method, PeriodicTasks, that allows a more reliable
process to govern clipboard conversion. ·

By including code similar to PeriodicTasks, your program can reliably orchestrate
the clipboard data between its private scrap and the desk scrap whether or not a program
window is always on screen. Of course, there are other strategies that you could use to
accomplish the same thing, but they would probably end up spreading bits of code at
many key points in the program to catch all the special cases. The advantage of PeriodicTusks
is that it centralizes the menu adjustment and clipboard conversion in one routine so that
your program is more easily maintained and modified.

Switcher introduces the possibility of running more than one program in memory
at one time and consequently the prospect of immediate interapplication data transfer via
the desk scrap. This chapter discussed the two methods whereby Switcher informs your
program that a context switch is coming. The desk accessory ruse is used by Switcher
to convince your program that it should write out its private scrap to the desk scrap. In
most cases this is an effective strategy, but we discussed some inherent weaknesses in the
technique. Switcher can also send a specific event to your program with information that
signals whether clipboard conversion is necessary. Sample code was provided to show how
programs can be enabled to receive Switcher suspend/resume events. This latter technique
offers programmers the opportunity to write new programs that are able to run smoothly
in the Switcher environment. Some shortcomings of Switcher's handling of resume events
and clipboard conversion were discussed.

The combination of the clipboard mechanism and Switcher opens the way for pro
grams to transfer data back and forth quickly and easily. Now that these mechanisms have
been created, it is up to the rest of us to dream up software which makes the most of
these capabilities.

74

CHAPTER

Using the Print Manager

One of the best things about the Macintosh is that you can get paper printouts very close
in quality to the images that appear on the screen. This close correspondence between
the screen and printout makes the Mac a great tool for anyone who needs a "what you
see is what you get'' work environment. From the programmer's point of view, implement
ing WYSIWYG in printing is remarkably easy, thanks to the Print Manager software
provided by Apple for all Macintosh systems. You can write programs that are able to
use the same imaging code to print out text and graphics to a variety of printers. This
chapter will explore and explain the Print Manager and how to use it so that your pro
grams can work with any sort of printer attached to a Macintosh.

19. AVAILABLE PRINTERS

In the first two years after releasing the Macintosh, Apple was directly supporting print
ing to five different printers: the regular and wide-carriage model ImageWriter dot-matrix
printers; the ImageWriter II dot-matrix printer; the original LaserWriter; and the enhanced
LaserWriter Plus. Support for these printers is contained in the printer resource files that
are usually found in the system folder of Macintosh disks. Each type of printer has its
own printer resource file. The user is responsible for having the proper printing resource
file for the printer currently attached to the Macintosh. It is possible to keep several print
ing resource files on a system disk and switch back and forth among them by using the
Chooser desk accessory, also supplied by Apple.

75

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

The printing resource files contain information and procedures used to translate the
images from any Macintosh program into commands that can be understood by the partic
ular printer associated with the resource file. For example, MacDraw sends a picture to
the Print Manager as a series of QuickDraw commands. If an ImageWriter is attached
to the Macintosh, those QuickDraw commands are translated by the printer resource proce
dures into a line-by-line dot image that can be printed on the dot-matrix printhead of
the ImageWriter.

On the other hand, if a LaserWriter is attached to the Macintosh, then those same
QuickDraw commands sent out by MacDraw are translated by the printer driver into the
equivalent PostScript commands. PostScript is a computer language, similar to Forth, that
allows very precise descriptions of graphics and text images. The LaserWriter contains
a PostScript interpreter in ROM and uses PostScript commands to drive the laser printing
mechanism. Later in the chapter we will talk about how you can send PostScript com
mands directly to the LaserWriter from within a Macintosh program.

By packaging the translation code for each kind of printer in a separate printer
resource file, Apple has been able to provide an environment in which program developers
can write printing code essentially independent of the device to which the output is directed.
Each program can define a single method of imaging a page using QuickDraw. The proce
dures in the individual printer resource file then convert the QuickDraw commands into
instructions appropriate for the current printer.

For the ImageWriter and ImageWriter II, the printing resource file is named
"ImageWriter." The first four version of this file were dated May 1984, March 1985, August
1985, and January 1986 (version 2.2). Each newer version supplanted the older one. The
later versions support both the original ImageWriter and the newer ImageWriter II printer.
Each new version of the ImageWriter file has been upwardly compatible with the previous
versions, so software that worked with the older versions continues to work with the new file.

The laser printers are supported by the resource files LaserWriter and LaserPrep.
LaserPrep is a file that is loaded into the RAM memory of the LaserWriter when it is
first powered on for a working session. LaserPrep contains PostScript macros, updates,
and bug fixes. LaserWriter is the printer resource file that facilitates the translation of Quick
Draw calls into PostScript.

Several third-party developers have released printer resource files that allow you to .
use other types of printers with unmodified Macintosh software. For instance, there are
several printer resource files that facilitate the use of letter-quality daisy-wheel printers,
much prized by business users for written correspondence. Of course, these daisy-wheel
printer resource files can't reproduce the graphics displays or fancy fonts of the Macintosh,
but they can translate simple text-drawing commands into the appropriate daisy-wheel com
mands to put a stream of characters on paper. Other manufacturers of dot-matrix and
laser printers are releasing resource files that attempt to translate Macintosh screen images
faithfully onto paper.

76

--------------USING THE PRINT MANAGER--------------

l!2J QUICKDRAW, GRAFPORTS, AND PRINTERS

The key to printer independence described in the previous section is the way that Quick
Draw can defme customized grafPorts for different drawing environments. All text and
graphics drawing on the screen is done by QuickDraw routines. Whenever a QuickDraw
routine executes, it does so within the context of the current grafPort. A grafPort is a data
structure that defmes the drawing environment. Most of the time, the grafPort into which
QuickDraw is drawing is equivalent to the frontmost window on the screen. The grafPort
contains information telling QuickDraw how the various drawing commands should be
carried out.

The secret of printer resource files is that they contain customized grafPorts defming
the drawing environment of the printer so that when QuickDraw draws into the printer's
gratPort, the commands will be interpreted in the ways that are appropriate to the printer's
mechanism rather than to the usual screen display techniques.

. These customizations are implemented through the QuickDraw standard drawing
procedures. Even though QuickDraw consists of well over one hundred separate routine
calls; ~l of these can be expressed at the lowest level by just thirteen basic standard draw
ing pi:ocedures. For example, all the routines that draw text call the low-level standard
procedure Std'Iext. The thirteen standard calls are the foundation on which all the rest
of QuickDraw is built. So if you change the standard drawing procedures, you have changed
the action of all the QuickDraw routines.

QuickDi:aw allows programmers to install their own custom versions of the stan
dard drawing procedures through the use of the routine SetStdProcs. This routine installs
pointers to the customized routines into the grafPort data structure so that any subsequent
drawing into that gratPort will use the customized low-level routines. One or more of the
thirteen standard procedures cari be overridden by installing custom routines to imple
n.ient the function of the replaced procedures.

When a program uses a printer resource file to print an image on a printer, code
from the resource file opens a new ~rt and installs customized standard drawing proce
dures that are appropriate for the capabilities of the printer rather than for those of the
Macintosh screen. The program then draws the text and graphics for each page into the
customized grafPort. All the QuickDraw calls that the program issues into the printer's
gr8fPort are eventually broken down to the low-level drawing procedures and thus are trans
lated correctly for the current printer. For a dot-matrix printer, the QuickDraw commands
are Ultimately expressed as a bit image that iS transferred to the paper by the moving print
head. On the LaserWriter~ the Ql.1-ickDraw commands are translated into equivalent Post
Script commands that drive the laser as it writes on the photosensitive surface.
· Generally, your program doesn't have to be concerned with the nature of the printer
or the accompanying grafPoit because the customization occurs at the lowest level of Quick
Draw and all high-level QuickDraw calls will be executed appropriately, whether for the
screen or for any of a nuinber of printers. From the programmer's point of view, printing
is like drawing into a screen window the size of a sheet of paper. This is a critical idea
tO J,1Dderstand. Once this concept is gnisped, the rest of the printing process is easy to follow.

77

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

i!2l USING THE PRINT MANAGER

Because the customized drawing procedures that we mentioned in the previous section
can change for every variety of printer, the Print Manager is not kept in ROM. Each printer
resource file is kept on disk and the necessary code to facilitate printing is loaded into
RAM memory at print time and executed. This allows a great deal of flexibility to de
velopers of new printers for the Macintosh. All printer resource files, however, share a
common interface definition for the procedures they contain. That is to say, the Print
Manager procedures that are available to programmers must have the same names and
parameter definitions in all printer resource files. For instance, every printer resource file
must have a procedure called PrOpen, among others.

The Print Manager section of Inside Macintosh contains the definitions for the print
ing procedures available in every printer resource file. Every printer resource file contains
code to implement the functions described in the Print Manager. This allows the program
mer to rely on a well-defined set of procedures knowing that they will be available on
every printer.

i!2l THE GWE ROUTINES

Assembly language programmers can get access to the procedures of the Print Manager
by linking their code with a file called PrLink.Rel. This file contains short hook routines
that route Print Manager calls to the code that has been loaded in from the printer resource
file. The Pi:Link code is generic, that is, it does not actually implement the Print Manager
calls but instead is able to fmd the correct code from the printer resource file and jump
to it. For this reason, the PrLink code can be the same for all programs, regardless of
which printer they will be run on. PrLink acts like an operator in an old-fashioned switch
board, connecting the calling program to the requested Print Manager routine, as shown
in Figure 4.1.

If your program will be using the Print Manager routines, you must list PrLink.Rel
as one of the files in your linker control file. The other thing that you should do when
writing cOde that calls the Print Manager is INCLUDE PrEqu.Txt at the head of your
assembler source code so that you will have access to symbolic offsets and constants
associated with the Print Manager and its data structures. If you INCLUDE PrEqu.Txt
at the head of your printing code, then you don't have to specifically XREF the Print
Manager routines that you plan to use because PrEqu.Txt contains a complete list of XREF
statements for all available Print Manager routines. Both PrLink.Rel and PrEqu.Txt are
on the MDS2 disk that comes with the Macintosh 68000 development system.

78

--------------USING THE PRINT MANAGER--------------

application program

lmagewriter
resource file

FIGURE 4.1. The Print Manager

LaserWriter
resource file

fg OPENING THE PRINTER RESOURCE FILE

Print Manager

In order to use the Print Manager procedures in. your program, you must first open the
printer resource file by issuing a call to PrOpen. This routine takes no parameters and
returns no result. It opens the printer driver and the printer resource file. You can see
if the file opened successfully by calling the Print Manager function PrError just after
calling PrOpen. A negative result indicates an error in the most recent Print Manager call.

The opening code looks something like this:

open the print resource file and driver
; PROCEDURE PrOpen
JSR PrOpen

test the result to make sure it went ok
FUNCTION PrError:BOOLEAN

79

------ THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II ------

CLR.W
JSR
MOVE.W
BNE

-(SP) space for result
Pr Error
(SP)+,DO get result
quitprint get out now if you can't open it

Notice how the calls to PrOpen and PrError are made with a JSR instruction. The
PrOpen and PrError labels, which are XREFd in the PrEqu.Txt file that we INCLUDEd,
are used as the destinations for the JSR calls. All calls to Print Manager routines are made
by using JSR in a similar fashion.

The call to PrOpen can be made when your program starts up. You may leave the
printer resource file open for the duration of the program, closing it with PrClose when
the program ends. On the other hand, you can choose instead to open and close the printer
resource file each time you act on a printing request, thereby freeing up the memory oc
cupied by the printer resources when they are not being used.

~ SETTING UP A PRINT RECORD

The central data structure for printing with the Print Manager is the print record. It is
120 bytes long and contains information about the paper size and orientation; resolution
in dots per inch of the printer; various printing choices made by the user in the printing
dialogs; and other information used internally by the Print Manager routines to image
each page. We will be directly interested in only a few fields of the print record. Most
of the rest of it is initialized and manipulated by the Print Manager itself. Actually, because
the values of the print record can be different from one printer to another, it is unwise
to manipulate the fields of the print record directly. It is best to use the procedures and
dialogs of the Print Manager to handle the print record. The Print Manager routines that
use the print record always expect to get a handle to the record as a parameter.

There are two different strategies that you can follow with print records. One way
is to allocate a new handle to a print record every time you print a document. In this case,
you use the Print Manager call PrDefault to fill in the newly allocated print record with
the standard values stored in the printer resource file. The user can then be given a chance
to change the default settings by using the PrStyle and PrJob dialogs, covered in the next
section.

The other strategy for print records is to store the print record along with the docu
ment so that subsequent printing requests will reflect the choices made by the user the
last time the document was printed. In this situation, you should call PrValidate to make
sure that the fields of the print record are compatible with the current printer. This catches
the situation where the user prints a document on the ImageWriter and then later tries
to print the same document, using the same print record, on the LaserWriter. PrValidate
will correct any fields of the print record that conflict with the current printer while preserv
ing as many of the settings as possible. Once again, the user should be given a chance
to change the settings in the PrStyle and PrJob dialogs before actually printing the
document.

80

-------------USING THE PRINT MANAGER-------------

The code for the first strategy is shown below, along with comments discussing the
second strategy. The handle to the print record is saved in a safe register, given the sym
bolic name PrintRecReg. You may choose to do likewise or define a global variable to hold it.

allocate a handle for the print record
If your program saves the print record with a document,
then you could use that print record instead of
allocating a new one here.
FUNCTION NewHandle(bytecount: Size):Handle
size => DO
Handle => AO

MOVE.L #120,DO size of print record
_NewHandle
MOVE.L AO,PrintRecReg store in a safe register

fill in the print record with standard default values
; If your program saves the print record with a document
; then you would call PrValidate instead.
;PROCEDURE Printdefault(hPrint: THPrint)
MOVE.L PrintRecReg,-(SP) ; we just allocated this record
JSR PrintDefault

~ THE PRINT MANAGER DIALOGS

Once you have a print record filled in with the default values, you should give the user
a chance to change the settings by using the print style dialog and the print job dialog.
The print style dialog is displayed by the Page Setup menu option in most programs. The
print job dialog is generally shown when the user chooses the Print menu option.

The print style dialog for the lmageWriter, shown in Figure 4.2, allows the user to
choose the paper size and orientation, pagination, and reduction. You call up this dialog
with the Print Manager function PrStlDialog. This procedure puts up the dialog, responds
to user clicks, and then modifies the print record to reflect the user's choices. Different
printer resource files can have different versions of this dialog to allow choices specific
to a particular printer. Figure 4.3 shows the PrStlDialog for the LaserWriter. The impor
tant thing to realize is that this dialog takes care of setting the proper print record fields
so that printing will proceed appropriately for the printer at hand. This frees you, as a
programmer, from worrying about what sort of printers your program will encounter. The
function result of PrStlDialog is FALSE if the user clicked the Cancel button, TRUE
otherwise. The print record values are updated only for a TRUE result.

PrStlDialog expects a handle to a print record as its input parameter, as shown on
page 83. Notice how the result is checked to see if the user clicked Cancel.

81

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II _____ _

FIGURE 4.2.
lmageWriter
style dialog

FIGURE 4.3.
LaserWriter
style dialog

r S Edit

lmageWriter (1/11)

Paper: @ US Letter
O us Legal
O Computer Paper

0 A4 Letter
O International Fanfold

Orientation: @Tall O Tall Adjusted QWide

K OK ll

(Cancel)

Pagination: @ Normal pages 0 No breaks between pages

Reduction: @None O 50 percent

Paper: @ US Letter O A4 Letter

O US Legal O B5 Letter
Reduce or lrnrnl 3
Enlarge:

Orientation: @ Portrait O Landscape

~Font Substitution? ~Smoothing?

print out text to various printer~

82

v2 .0

.,

.,

--------------USING THE PRINT MANAGER--------------

put up the style dialog to get paper size and reduction value
If you choose to put up this dialog separately, then
you will have to allocate a permanent print record to
hold the results.
Our print record will be deallocated at the end of
this document's printing.
FUNCTION PrStlDialog(hPrint:THPrint):BOOLEAN

CLR.W -(SP) space for result
MOVE.L PrintRecReg,-(SP) hPrint
JSR PrStlDialog jump to routine
MOVE.W (SP)+,DO get result
BEQ cancel_j ob user clicked cancel

The other dialog that is part of the Print Manager is called up by the function
PrJobDialog. This asks the user to specify the page range, number of copies, and print
quality. The ImageWriter version of this dialog is shown in Figure 4.4, and the Laser
Writer version is shown in Figure 4.5. Notice that the LaserWriter version disables the
buttons corresponding to print quality. There is only one quality for the LaserWriter
very high. This dialog should be called whenever the user chooses Print from the file menu.
PrjobDialog expects a handle to a print record for input and returns a BOOLEAN result
that is FALSE if the user clicks the Cancel button, TRUE otherwise.

FIGURE 4.4.
lmageWriter Job
dialog

lmageWriter (1/11)

QHigh

Page Range: @ All

D

@ Standard O Draft

O From: D To: D
@Automatic O Hand Feed

83

.,

(Cancel)

------ THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II ------

FIGURE 4.5.
laserWriter
Job dialog

Pages: @ All O From:CJ To:O

@Paper Cassette O Manual Feed

... · ··--· - . ··· - ·- - .. --·- --- - . ··- -- --- ··- -·· -··· - '"-
print out text to various printer~

Now put up the job dialog to get print quality and
page range. Results are stored in print record.

;FUNCTION PrJobDialog(hPrint: THPrint):BOOLEAN
CLR.W -(SP) space for result
MOVE .L PrintRecReg,-(SP) hPrint
JSR PrJobDialog jump to routine
MOVE .W (SP)+,DO get result
BEQ cancel_j ob user clicked cancel

~ OPENING THE PRINT DOCUMENT/GRAFPORT

.,

Once the print record is filled in with the default values and modified to reflect the user's
choices in the two printing dialogs, then you can proceed with the printing. As mentioned
in the opening sections of this chapter, the key to printing on the Macintosh is the crea
tion of a customized grafPort tailored to the current printer. The Print Manager function
PrOpenDoc takes care of creating the new grafPort by reading information from the printer
resource file and modifying it to fit the printing parameters stored in the print record.
The result of this function is a pointer to the new grafPort. PrOpenDoc also automati
cally tells the Macintosh system that this new grafPort is now the current grafPort, so all

84

--------------USING THE PRINT MANAGER--------------

subsequent drawing commands will be directed to the printing gratPort. For this reason,
it is important to save the previous gratPort, most likely a screen window, before initializ
ing the printing port. When printing is finished, the former gratPort can be restored.

It is important to make sure that all the printer dialogs have been used before you
open a printing port, since PrOpenDoc uses information from the print record to con
figure the new gratPort. It won't do any good to change the print record after the print
port has been created.

PrOpenDoc takes three parameters: a handle to the print record, a pointer to a
memory block to use for the printing gratPort record, and a pointer to a memory block
to use for disk I/O buffering. You can pass NIL for the last two parameters and the routine
will allocate the required memory on the heap.

save the current grafPort: this is important
CLR.L -(SP)
PEA (SP)
_GetPort

; open a printing document port
;PROCEDURE PrOpenDoc(hPrint:THPrint;pPrPort: TPPrPort;

pIOBuf: Ptr): TPPrPort
CLR.L -(SP)
MOVE.L PrintRecReg,-(SP)

space for result
hPrint

CLR.L -(SP) NIL
CLR.L -(SP) NIL
JSR PrOpenDoc
MOVE.L (SP)+,PrintPortReg store result

!!2J THE PRINTING LOOP

Now that the printing gratPort is open, you can finally begin to print. For each page of
the document, you must call PrOpenPage, draw the contents of that page using Quick
Draw commands, and then call PrClosePage. If the user has selected draft quality, the
QuickDraw commands will be translated and sent directly to the printer. If standard or
high-quality printing has been selected, the commands will be saved as a "spool file" on
the disk and printed subsequently with the PrPicFile procedure.

A skeletal version of this loop is shown on page 86. Later sections of this chapter
will go into more detail regarding the actual imaging code necessary to draw a page. No
tice that both PrOpenPage and PrClosePage take a pointer to the printing grafPort as
input. In addition, PrOpenPage can take a pointer to a rectangle to define the page frame.
Normally you will pass NIL to cause the page definition rectangle from the print record
to be used.

85

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

;open a page

;PROCEDURE PrOpenPage(pPrPort:TPPrPort;pPageFrame: TPRect)
MOVE.L PrintPortReg,-(SP) the port
CLR.L -(SP) ; use page rect from hPrint
JSR PrOpenPage

draw your page image here

;****************

close page
; PROCEDURE PrClosePage(pPrPort: TPPrPort)
MOVE.L PrintPortReg,-(SP) ; the port
JSR PrClosePage

When all the pages have been printed, then you must close the printing port, as
shown below.

close the printing port when we are all done

close the printing port
;PROCEDURE PrCloseDoc(pPrPort: TPPrPort)
MOVE.L PrintPortReg,-(SP) ; the port
JSR PrCloseDoc

l!2J SPOOL PRINTING THE DOCUMENT

As mentioned above, when the user has selected standard or high-resolution printing, the
pages are not printed immediately, but are saved to a temporary file on the disk. The Print
Manager procedure PrPicFile gets the images from the disk and sends them to the printer.
You can check the PrintRecord.prJob.bJDocLoop field of the print record to see if this
print request has been spooled or not. This test also works for the LaserWriter, where
all print jobs are sent directly to the printer and not spooled.

only call PrPicFile if we are spool printing
MOVE.L PrintRecReg,AO get handle to print record
MOVE.L (AO),AO convert to Ptr
TST.B prJob+bjDocLoop(AO) is this spool printing?
BEQ nospool 0 means draft printing

86

--------------USING THE PRINT MANAGER --------------

If print spooling is in effect, then you call PrPicFile, passing the print record handle
as the first parameter. You can pass NIL for the next three parameters and the procedure
will automatically allocate them on the heap. The last parameter, prStatus, is a 26-byte
record that is filled in as the spool-printing process proceeds. Your program can look at
this record to see how far along the printing is. In the example below, we pass a pointer
to a local variable referenced relative to a stack frame pointer in register A6. Your pro
grams can do the same or use a global Vllriable.

;PROCEDURE PrPicFile(hPrint: THprint: pPrPort: TPPrPort;
pIOBuf: Ptr;pDevBuf:Ptr; VAR prStatus: TPrStatus)

MOVE.L PrintRecReg,-(SP) the print record
CLR.L -(SP) NIL
CLR.L -(SP) NIL
CLR.L -(SP) NIL
PEA statusbytes(A6) VAR
JSR PrPicFile

l!2J CLOSING THE PRINT MANAGER

no spool

When all the printing activities are done, you can close the Print Manager with a call to
PrClose. This procedure closes the printer resource file and frees up the memory occupied
by those resources. As mentioned in a previous section, you can leave the Print Manager
open for the duration of your program or bracket printing operations with PrOpen and
PrClose calls.

Regardless of whether you close the Print Manager or not at the end of a particular
printing operation, it is vital that you reset the grafPort to its former setting when you
are done printing. As mentioned above, the printing process opens its own grafPort and
directs all drawing commands to that port. When the printing ends, the port is not auto
matically restored to its former state. It is your responsibility to save the port before begin
ning the printing, as explained in a previous section of this chapter, and then to restore
the port when exiting the printing code. Assuming that the former grafPort was saved
on the stack, you can restore it with the following code.

reset the port to what it was before printing
; graf Port was saved on the stack
_SetPort

; PROCEDURE PrClose
JSR PrClose

87

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

l!2J EXAMPLE PROGRAM MODULE

The foregoing explanation presented only the most superficial outline of the Print Manager
functions. In the following sections we will develop a working code module that you can
use to print out text from a program that uses the Text Edit Manager to handle text. For
instance, you can easily join this printing module to the MultiScroll text editor, developed
in The Complete Book of Macintojh Assembly Language, Volume I, by adding a Print option
to the file menu and adding a short bit of code to call the printing routine in this module.
This printing code module will get into some of the details of using the Print Manager
that couldn't be discussed in the opening sections of this chapter. The full source code
for this print module is included in Appendix A as PrintModule.ASM. The source code
disk for this book, available from the author, also contains the source code for this print
ing module.

The Documentation Header
As usual, begin the code module with a short section of comments outlining the function
of the code. In this example, we have a single entry point, PrintDoc, which expects a
TEHandle on the stack as a parameter. The code module will print out the text associated
with that TERecord. The code module is totally self-contained. It relies on no other infor
mation from the calling program other than the TEHandle. If you use this code yourself,
you may want to modify it to integrate it somewhat more with the rest of your program.

PrintModule.ASM
This code module accepts a TEHandle as input, and then
prints out the text in that TERecord.
The user is allowed to interact with the
Style and Job dialogs to determine the
type of printing desired.
It also supports a print idle dialog procedure.

This code works for both the ImageWriter and the LaserWriter.
January 1986, Dan Weston

XDef our entry point routine so that the linker can
make it available to the calling code module

XDEF PrintDoc ; PROCEDURE PrintDoc(hTE:TEHandle)
; get the usual symbol files, as well as the printing symbols
INCLUDE MACTRAPS.D
INCLUDE
INCLUDE
INCLUDE

TOOLEQU.D
QUICKEQU.D
PrEqu.Txt

88

--------------USING THE PRINT MANAGER--------------

define a value for our own use
botmargin EQU 72 ; pixels for bottom margin

In the documentation header we XDEF the label PrintDoc so that the linker can
hook it up to the rest of the code modules. Then we INCLUDE the usual symbol files
and the symbol file PrEqu.Txt for the printing manager. PrEqu.Txt includes XREF state
ments for all the Print Manager routines available inPrLink.Rel, so we don't have to list
them ourselves. We also define a constant value for the number of pixels in the bottom
margin to help define the coordinates of each page that we will image.

Setting Up the Stack Frame
On entry to our printing procedure, PrintDoc, we need to set up a stack frame so that
the input parameter can be located and also so that we can reserve space for local vari
ables. Many of the local variables are kept in safe registers, but others reside on the stack.

PrintDoc ; entry point for routine

PROCEDURE PrintDoc(hTE:TEHandle)

set up stack frame
; input parameter offset
hTE SET 8
parambytes SET 4

; locals : use
PrintRecReg
PrintPortReg
textPtrReg
currentlineReg
numLinesReg
startCharReg
endCharReg
numcopiesReg

some registers
SET A2
SET A3
SET A4

; more locals
scratchRect
statusbytes
dlgPtr
local bytes

on

SET D3
SET D4
SET D5
SET D6
SET D7

the stack
SET -8
SET -34
SET -38
SET -38

LINK A6,#localbytes

;save registers

frame

MOVEM.L A2-A4/D3-D7,-(SP)

offset to hTE parameter
bytes of parameters

local scratch rectangle
26 bytes for PrStatus
ptr for idle dialog
bytes of locals

89

------ THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II ------

Opening the Print Manager
Because this module is designed to be totally self-contained, it opens and closes the Print
Manager for each printing request. The calling program has no responsibilities other than
to call PrintDoc. The code to open the Print Manager here is the same as that shown
in an earlier section of this chapter.

open the print resource file and driver
; PROCEDURE PrOpen
JSR PrOpen

; test the result to make sure it went ok
; FUNCTION PrError:BOOLEAN
CLR.W -(SP) space for result
JSR Pr Error
MOVE.W (SP)+,DO get result
BNE quitprint get out now if you can't open it

Filling in the Print Record
Again, because this module is self-contained, a new print record is allocated and filled
in for each printing request. The print record is deleted after each printing request is
finished. If you decide to adapt this module to your own uses, then you may want to change
this section so that the printing code uses a print record that is a more permanent part
of the main program. As it is here, the print record is allocated at the beginning of the
printing job and then deallocated when it is done, so user selections for one job are not
carried over to the next one.

allocate a handle for the print record
If your program saves the print record with a document,
then you could use that print record instead of
allocating a new one here.
FUNCTION NewHandle(bytecount: Size):Handle
size => DO
Handle => AO

MOVE.L #120,DO size of print record
__NewHandle
MOVE.L AO,PrintRecReg store in a safe register

fill in the print record with standard default values
; If your program saves the print record with a document
; then you would call PrValidate instead.
;PROCEDURE PrintDefault(hPrint: THPrint)
MOVE.L PrintRecReg,-(SP) ; we just allocated this record
JSR PrintDefault

90

-------------- USING THE PRINT MANAGER--------------

Using the Print Manager Dialogs
Now that the print record is allocated and filled in with the default values, we can put
up the two printing dialogs and get the user's specifications for this printing operation.
Please notice that both the style dialog and the job dialog are put up in sequence here,
whereas in a normal program the style dialog is only put up in response to a Page Setup
menu choice. In this module we can't put up the style dialog separately because the print
record is not permanent. If you want to separate the style and job dialogs, then you will
have to allocate a permanent print record as a global variable in your main program module.

put up the style dialog to get paper size and reduction value
If you choose to put up this dialog separately, then
you will have to allocate a permanent print record to
hold the results.
Our print record will be deallocated at the end of
this document's printing.
FUNCTION PrStlDialog(hPrint:THPrint):BOOLEAN

CLR.W -(SP) space for result
MOVE.L PrintRecReg,-(SP) hPrint
JSR PrStlDialog jump to routine
MOVE.W (SP)+,DO get result
BEQ cancel_job user clicked cancel

; Now put up the job dialog to get print quality and
; page range. Results are stored in print record.
;FUNCTION PrJobDialog(hPrint: THPrint):BOOLEAN
CLR.W -(SP) space for result
MOVE.L PrintRecReg,-(SP) hPrint
JSR PrJobDialog jump to routine
MOVE.W (SP)+,DO get result
BEQ cancel_job user clicked cancel

Opening the Printing Port
When the print record is filled in with the user's preferences, you can open the printing
grafPort and begin to print out the document. As mentioned in an earlier section, make
sure to save the current grafPort before opening the printing port.

save the current grafPort: this is important
CLR.L -(SP)
PEA (SP)
_GetPort

91

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

; open a printing document port
;PROCEDURE PrOpenDoc(hPrint:THPrint;pPrPort:

CLR.L
MOVE.L
CLR.L
CLR.L
JSR
MOVE.L

pIOBuf: Ptr): TPPrPort
-(SP)
PrintRecReg,-(SP)
-(SP)
-(SP)
PrOpenDoc
(SP)+,PrintPortReg

TPPrPort;

space for result
hPrint
NIL
NIL

store result

Since the new gratPort may not have the same font specifications as the TE record
we want to print, we must transfer the font information from the TE record to the cor
responding fields of the new grafPort. You might easily overlook this step and be dis
appointed when the printout came out in a different font from that of the text in the window.

make the font characteristics
the TERecord

of the printer graf Port the same as for

MOVE.L hTE(A6),AO
MOVE.L (AO),AO
MOVE.L
MOVE.W
MOVE.W
MOVE.W
MOVE.W

PrintPortReg,Al
teFontStuff(AO),txFont(Al)
teFontStuff+2(AO),txFace(Al)
teFontStuff+4(AO),txMode(Al)
teFontStuff+6(AO),txSize(Al)

Calculating the Page Size

get TEHandle
convert to Ptr
Ptr to graf Port
install font
install face
install mode
install size

The prlnfo.rPage field of the print record contains the dimensions of the printable area
of the page for the current printer. We want to use that rectangle, along with information
about the text height, to determine how many lines of text can fit on each page. The formulas
that we use for the calculation are shown below. Notice that we subtract a constant value
for the bottom margin from the overall page height.

pageheight = (rpage.bottom - rPage.top) - botmargin
numLines = pageheight DIV lineheight_of_font

calclines
; figure out how many lines per page, using lineheight and page rect
MOVE.L hTE(A6),AO get TEHandle
MOVE.L (AO),AO
MOVE.W teLineHite(AO),DO
MOVE.L
MOVE.L

PrintRecReg,AO
(AO) ,AO

92

convert to Ptr
get line height from record
get handle to print record
convert to Ptr

--------------USING THE PRINT MANAGER--------------

MOVE.W
CLR.L
MOVE.W
SUB.W
SUB.W
DIVU
MOVE.W

prinfo+rpage+top(AO),D2
Dl
prinfo+rpage+bottom(AO),Dl
D2,D1
#botmargin,Dl
DO,Dl
Dl,numLinesReg

get top of page rect
clear upper word of register
get bottom of page rect
pageheight = bottom - top
pageheight = pageheight - botmargin
numLines = pageheight DIV lineheight
save in safe register

The other calculation that we must do is to transfer the rPage rectangle from the
print record to a scratch rectangle and then modify the right dimension of the scratch
rectangle so that it matches the width of the TE destination rectangle. Once this is done,
the scratch rectangle can be used as a destination rectangle to determine the line breaks
for the text that is being drawn into the printing port. Because the scratch rectangle will
have the same width as the TE destination rectangle, the "what you see is what you get"
fidelity will be maintained in the printout. Other printing code examples that you might
see, such as those released by Apple, may blindly use the rPage rectangle as the format
ting rectangle for text printing. Do not be misled.

copy the page rect from the print record
MOVE.L PrintRecReg,AO
MOVE.L (AO),AO
LEA prinfo+rpage(AO),AO
LEA scratchRect(A6),A1
MOVE.L (AO)+,(Al)+
MOVE.L (AO)+,(Al)+

into our scratch rect
get handle to print record
convert to Ptr
Ptr to page rect
Ptr to scratch rect

copy 8 bytes

make the right edge of the scratch rect the same as
the width of the dest rect of the TE record
what you see is what you get

MOVE.L hTE(A6),AO
MOVE.L (AO),AO
MOVE.W teDestRect+right(AO),DO
MOVE.W teDestRect+left(AO),Dl
SUB.W Dl,DO
MOVE.W DO,scratchRect+right(A6)

Determining the Number of Copies

get TE handle
convert to Ptr

width := right - left
install in scratchrect.right

In the print job dialog, the user is allowed to specify a variable number of copies to print.
As a programmer you check the corresponding field of the print record to determine how
to proceed. If the user has selected draft printing, then you will need to examine the num
ber of copies field and execute your page imaging loop for each of the requested copies.
If, on the other hand, the user has selected standard or high-quality printing, then you

93

------ THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II ------

need to perform your imaging loop only once. For standard and high-quality printing,
which are spooled to disk, PrPicFile takes care of printing multiple copies. In draft mode,
however, where the printed output is sent directly to the printer, you will need to continue
looping until all the multiple copies have been printed.

To determine if the current print job is draft or spooled, look at the prJob. bjDocLoop
field of the print record. A value of zero in that field signifies draft printing, while a value
of one signals spool printing. We then.set the local register, numCopiesReg, to the num
ber of copies listed in the pr]ob.iCopies field of the print record if this is draft printing,
or to one if we are spool printing. Whichever value we put into numCopiesReg, we then
reduce it by one since we will be using numCopiesReg as a loop counter with the 68000's
DBRA instruction. Loop counters used with DBRA must be one less than the number
of loops desired.

if draft printing, go around for each copy
; if spool printing, just go around once
; first, see if we are spool printing
MOVE.L PrintRecReg,AO
MOVE.L (AO),AO
TST.B prJob+bjDocLoop(AO)
BEQ doDraft

get handle to print record
convert to Ptr
is this spool printing?
0 means draft printing

; if spool printing, set numCopiesReg to 1 so we only go around once
MOVE.W #1,numCopiesReg
BRA doSpool ; branch around dodraft

doDraft
if draft printing, then get the number of copies from job record

MOVE.L PrintRecReg,AO get handle to print record
MOVE.L (AO),AO convert to Ptr
MOVE.W prJob+iCopies(AO),numCopiesReg install in register

doSpool
; now subtract 1 from numCopies to work as 68000 loop counter
SUB.W #1,numCopiesReg

Imaging Each Page
Now the real work can begin. For each page we need to determine the beginning and
the ending character. This is done by using the array of line starts that is attached to the
TE record. This array contains the character position for the first character of each line
in the text. By knowing the number of lines on each page, it is easy to extract the begin
ning and ending characters for each page. We also need to keep track of the current line
so that we can work with multipage documents.

We begin by initializing the startCharReg and the currentLineReg to zero.

94

--------------USING THE PRINT MANAGER--------------

Copies Loop ; come back here to print multiple copies in draft

; initialize startCharReg and currentLineReg
MOVE.W #0,startCharReg start at first character
MOVE.W #0,currentLineReg ; and first line.

PageLoop

Next, we call PrOpenPage to. initialize a new drawing page within the printing
grafPort. We will do this once for each page in the document.

;open a page

;PROCEDURE PrOpenPage(pPrPort:TPPrPort;pPageFrame: TPRect)
MOVE.L PrintPortReg,-(SP) the port
CLR.L -(SP) ; use page rect from hPrint
JSR PrOpenPage

Once the page is opened, we calculate the ending character for the page. Remember
that the startcharacter position was initialized to zero outside the loop. To figure the end
character for the first page, we advance the currentLineReg, which was initialized to zero,
by the number of lines on a page. Then we check to make sure that the new value of
currentLineReg doesn't go beyond the total number of lines in the text, as shown by the
teNLines field of the TE record. If the text does not fill an entire page, we can assume
that this is the last page of the document and simply use the teLength field of the TE
record as the value for the end character position. Otherwise, we extract the end character
position from the array of line starts, using the currentLineReg as an index into the array.

This is probably the trickiest part of this code module, so take some time and study
it until you understand how it works. The pseudocode for this process looks something
like this:

currentLine := currentLine + numLines;
IF currentLine > hTEAA.nLines

THEN endChar := hTEAA.length
ELSE endChar := (hTEAA.lineStarts[currentLine + 1]) -1;

The assembly language is a bit more involved, but the function is the same.

compute ending character for page, startChar is already set
watch for special case of last page, it may be shorter
than numLines

; advance the current line one full page
ADD.W numLinesReg,currentLineReg

95

------ THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II ------

; see if this goes past the total # lines in TErecord
MOVE.L hTE(A6),AO; get TERecord
MOVE.L (AO),AO convert to Ptr
MOVE.W teNLines(AO),DO total # lines
CMP.W currentLineReg,DO total - current
BMI lastpage special case, short

; normal case, ending char
; line starts

is retrieved from array of

MOVE.L hTE(A6),AO
MOVE.L (AO),AO

get TERecord
convert to Ptr

page

LEA teLines(AO),AO
ADDA currentLineReg,AO

get beginning of array
bump index to end line

ADDA currentLineReg,AO
ADDA #2,AO

add offset twice for word table
get start of next line

MOVE.W (AO),endCharReg get char pos
SUB.W
BRA

#1,endCharReg
drawtext

move back one char
branch around lastpage

lastpage
; special
; end char
MOVE.L
MOVE.L
MOVE.W

case to handle last page, which may be shorter than numlines
is simply equal to length of TE text
hTE(A6),AO get TEHandle
(AO),AO convert to Ptr
teLength(AO),endCharReg get length

Now we can actually draw the text. We use TextBox to draw left justified text, run
ning from the first char to the end char, into the scratch rect that we defined earlier. Be
sure to lock down the teText handle before using it with TextBox.

drawtext
; draw text box with this page's text
; lock down the text
MOVE.L hTE(A6),AO
MOVE.L (AO),AO
MOVE.L teTextH(AO),AO
_HLock

get TEHandle
convert to Ptr
get handle to text

;PROCEDURE TextBox(text:Ptr;length:Longint;box:Rect;just:INTEGER)
MOVE.L (AO),AO Ptr to text, from above
ADDA startCharReg,AO bump Ptr to first char on page
MOVE.L AO,-(SP) push text Ptr on stack
CLR.L DO clear out a register

96

--------------USING THE PRINT MANAGER--------------

MOVE.W endCharReg,DO
SUB.W startCharReg,DO length = end - start
MOVE.L DO,-(SP) put long length on stack

use scratch rect PEA scratchRect(A6)
MOVE.W #0,-(SP) left justification
_TextBox

; unlock the text
MOVE.L hTE(A6),AO get TEHandle

convert to Ptr MOVE.L (AO),AO
MOVE.L teTextH(AO),AO get handle to text
_HUnLock

close page

TextBox uses QuickDraw commands to draw the text into the destination rectangle,
and those commands are translated by the Print Manager software into appropriate actions
for the current printer. The single call to TextBox draws the text for the entire page.

Once the page is imaged with TextBox, we call PrClosePage to tell the Print Manager
that there is nothing more to do with this page. In draft mode, this will cause a form-feed
character to be sent to the printer, ejecting the page which has just been printed. In stan
dard and high-quality mode, closing the page affects the data structures that are being
spooled to the disk.

PROCEDURE PrClosePage(pPrPort: TPPrPort)
MOVE.L PrintPortReg,-(SP) ; the port
JSR PrClosePage

At the end of each page we need to manipulate some of the values used to image
the page before looping back to get the next page. The startChar is made equal to the
current endChar. You might think that the startChar should be made equal to the
end Char+ 1, but because the startChar is used as an index into an array of characters,
beginning at position O, we have to allow for the off-by-one bug. We also need to see if
this was the last page in the document. That is, is the endChar equal to the total length
of the text? If this was the last page, then we don't want to loop back for more. Otherwise,
we go back to pageLoop to image the next page.

;startChar := endChar
MOVE.W endCharReg,startCharReg

; have we printed the last character yet?
MOVE.L hTE(A6),AO get TEHandle
MOVE.L (AO),AO convert to Ptr
CMP.W
BLT

teLength(AO),endCharReg is end= length
pageLoop not done yet

97

----- THE COMPLETE BOOK OF MACINlOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

Once all the pages in the document have been imaged, we must check the number
of-copies register to see if the entire imaging process needs to be repeated for multiple
copies. Alternatively, you might want to construct the loops so that multiple copies of
each page are printed together.

check the number of copies loop counter
we only go around again for multiple copies in draft mode

DBRA numCopiesReg,CopiesLoop

When all the copies have been printed and the loop terminates, you must close the
printing port before moving on. The code for closing the printing grafPort is the same
as shown earlier in this chapter.

close the printing port when we are all done

; close the printing port
;PROCEDURE PrCloseDoc(pPrPort: TPPrPort)
MOVE.L PrintPortReg,-(SP) ; the port
JSR PrCloseDoc

Spool Printing
When all the page imaging is done, check to see if the job needs to be spool-printed or
not. As outlined in an earlier section, the prJob. bjDocLoop field of the print record con
tains a value that tells you whether or not you should spool-print. PrPicFile should be
called only if the current job has been spooled.

Only call PrPicFile if we are spool printing
MOVE.L PrintRecReg,AO get handle to print record
MOVE.L (AO),AO convert to Ptr
TST.B prJob+bjDocLoop(AO) is this spool printing?
BEQ nospool 0 means draft printing

;PROCEDURE PrPicFile(hPrint: THprint: pPrPort: TPPrPort;
pIOBuf: Ptr;pDevBuf:Ptr; VAR prStatus: TPrStatus)

MOVE.L PrintRecReg,-(SP} the print record
CLR.L -(SP) NIL
CLR.L -(SP) NIL
CLR.L -(SP) NIL
PEA statusbytes(A6) VAR
JSR PrPicFile

nospool

98

·'
-------------- USING THE PRINT MANAGER--------------

Cleaning Up
When all the printing tasks are done, reset the gratPort to its former state, deallocate the
print record (unless you are using a permanent print record), and close the Print Manager.
Then clean up the stack frame and return to the calling program. Notice the location of
the canceLjob and quitprint labels referenced earlier in the code module.

reset the port to what it was before printing
graf Port was saved on the stack

-8etPort

cancel_job
;PROCEDURE DisposHandle
MOVE.L PrintRecReg,AO
_DisposHandle

; Procedure PrClose
JSR PrClose

quitprint
; restore registers
MOVEM.L (SP)+,A2-A4/DJ-D7

; clean up stack frame and return
UNLK A6
MOVE.L (SP)+,AO
ADDA #parambytes,SP
JMP (AO)

END

from PrLink

This module presents the basic code you need to print out vanilla text-edit text to
any sort of printer. It has been tested on the ImageWriter and the LaserWriter and works
fine on both of them. The module illustrates the generality that the Print Manager allows
you as a programmer. You can write imaging code without worrying about the type of
printer being used with your program.

99

----- THE COMPLETE •K GF MAClmSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

l!2J OPTIMIZING FOR THE LASERWRITER

The thrust of the discussions above is that printing code can be written without regard
for the type of printer on which the document will eventually be printed. The advent
of the LaserWriter opens up many unique possibilities and presents some limitations to
this concept.

The resolution of the ImageWriter and the Macintosh screen is 72 dots per inch.
The LaserWriter comes in at 300 dots per inch. The scaling done by the LaserWriter driver
when it translates a 72-dpi bit image to a 300-dpi bit image will sometimes cause the image
to come out slightly smaller than it appears on the screen. Other types of drawing that
rely on QuickDraw calls and coordinates rather than bit images tend to be translated more
faithfully from the screen to the LaserWriter.

Your program also has the option of writing PostScript commands directly to the
LaserWriter to take full advantage of its higher resolution and power without going through
the QuickDraw to PostScript translation process. In order to send PostScript commands
directly, you must use the PicComment command from QuickDraw. This feature lets
you imbed comments within a QuickDraw picture definition. Picture comments allow
you to imbed program or device-specific information inside a QuickDraw picture. There
are many different kinds of picture comments, each identified by a unique integer type
number. If the application decoding the picture comes across a picture comment that it
is not specifically designed to understand, the application just ignores the comment. The
LaserWriter print driver is set up to process a variety of picture comments. In particular,
picture comments numbered 190, 191, and 192 tell the driver that the information in those
comments is raw PostScript, which can drive the laser printer directly. The ImageWriter
driver, on the other hand, will ignore picture comments having these and similar numbers.

If you have a series of PostScript commands contained in a handle and the handle
is in register A2, the following code will imbed the PostScript commands in a picture
definition that can then be drawn into a printing grafPort. A QuickDraw picture with
PostScript picture comments can also be sent safely to the ImageWriter because the Post
Script commands within the pie comments will be ignored by the ImageWriter driver.

assume handle to Postscript commands in A2

Equates for Postscript pie comment identifiers
PostScriptBegin EQU 190
PostScriptEnd EQU 191
Postscript EQU 192

; FUNCTION
CLR.L

OpenPicture(picFrame:Rect): PicHandle
-(SP) result

PEA picRect(A5) the picFrame
_OpenPicture
MOVE.L (SP)+,AJ save PicHandle

100

-------------- USING THE PRINT MANAGER--------------

; PROCEDURE
MOVE.W
MOVE.W
MOVE.L
_PicComment

PicComment(kind,dataSize:INTEGER;dataHandle:Handle)
#PostScriptBegin,-(SP) signal start of Postscript
#0,-(SP) ; no data for this comment
#0,-(SP)

; FUNCTION GetHandleSize(h:Handle):LONGINT
; h => AO, size => DO
MOVE.L A2,AO
_GetHandleSize

; PROCEDURE
MOVE.W
MOVE.W
MOVE.L
_PicComment

; PROCEDURE
MOVE.W
MOVE.W
MOVE.L
_FicComment

PicComment(kind,dataSize:INTEGER;dataHandle:Handle)
#PostScript,-(SP) signal Postscript data
DO,-(SP) length of data
A2,-(SP) handle to our Postscript data

PicComment(kind,dataSize:INTEGER;dataHandle:Handle)
#PostScriptEnd,-(SP) signal end of Postscript
#0,-(SP) ; no data for this comment
#0,-(SP)

; PROCEDURE ClosePicture
_ClosePicture

The inclusion of other types of picture comments in your QuickDraw pictures also
allows the LaserWriter to recognize rotated text and other special cases in your drawing.
The available picture comments are too extensive to discuss fully here, but they are described
in Macintosh Technical Note #27, available from Apple. MacDraw uses many picture com
ments in its output to produce very high quality images on the LaserWriter.

On the downside, there are some operations that run much more slowly on the Laser
Writer than on the screen. One aspect of TextBox that makes it less than desirable for
the LaserWriter is that it calls EraseRect for the area in which the text will be printed.
While this may be a good idea on the screen, it is unnecessary and very time-consuming
for the LaserWriter to try to erase all the pixels in a given area. TextBox will work on
the LaserWriter, but if you are interested in optimizing your code to print quickly on it,
you should avoid calls to TextBox or EraseRect. In this example we have used TextBox
to illustrate the concept that printing code can be made printer-independent. The whole
concept of optimizing your printing code for the LaserWriter is covered in some detail
in Macintosh Technical Note #72, as well as in #27, mentioned above. See Appendix B
for information on how to get Macintosh Tech Notes from Apple.

101

------ THE COMPLETE BOOK OF MACINmSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II ------

~ INSTALLING PRINT IDLE PROCEDURES

The Print Manager contains provisions for installing a procedure that will be called during
the printing process whenever the Print Manager code is waiting for the printer. This
so-called "idle proc" can be used to allow the user to cancel a print operation that is in
progress. There is a default idle proc that looks at the keyboard and aborts the printing
job if the command period(.) keys have been pressed. This section will show how you
can install your own idle procedure to override the default procedure.

The idle proc that we will install here puts up a dialog with a stop button, as shown
in Figure 4.6. If the user clicks the stop button, then we will call PrSetError to set the
error code in the Print Manager globals, an action that will halt the printing process and
exit gracefully, cleaning up any disk files and deallocating unneeded data structures.

All of the code listed below can be inserted into the print example shown in the
previous section.

The first thing to do is to put up the dialog. This can be done any time after the
printing process has begun. You can insert the following code just after the printing port
has been opened with PrOpenDoc. (Be sure also to include a resource definition for a
DLOG and DITL #512 in the resource file of the main program. A sample resource defini
tion for this dialog is listed here in comment form.) We save the dialog pointer in a local
variable that needs to be added to the definition of the print module's stack frame .

.,

Printing

FIGURE 4.6. Print Idle dialog

102

-------------- USING THE PRINT MANAGER --------------

;Type DLOG
;print,512

;100 150 180 350
;Visible NoGoAway
;1
;O
;512

;Type DITL
;print,512
;2

;Button
;50 80 75 120
;Stop

;StaticText
;25 60 36 190
;Printing now.

idledlg EQU 512
put up the print stop dialog

; id of idle dialog

; FUNCTION GetNewDialog (dialogID: INTEGER; dStorage: Ptr;
behind: WindowPtr) : DialogPtr

CLR.L -(SP) space for dialog pointer
MOVE.W #idledlg,-(SP) identify dialog rsrc #
CLR.L -(SP) storage area
MOVE.L #~1,-(SP) dialog goes on top
_GetNewDialog display dialog box
MOVE.L (SP),dlgPtr(A6) save handle for closedialog
; PROCEDURE DrawDialog(theDialog:DialogPtr)
_DrawDialog ; Ptr still on stack

Once the dialog is drawn, post a phony mouse-down and mouse-up event in order
to correct a bug in the Print Manager. If you click in this dialog right after it is put on
the screen, then Print Manager will not be able to return gracefully from the aborted print
job. In fact, it will go off into an interminable loop. However, posting a mouse-down and
mouse-up event circumvents that problem. I confess that I don't know why this bug fix
works, but I know that it doesn't hurt anything and seems to make the print idle proce
dure process more reliable.

103

------ THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II ------

post a phony mouse-down event
MOVE.W #1,AO
MOVE.L #0,DO
JostEvent

MOVE.W
MOVE.L
JostEvent

#2,AO
#0,DO

When the dialog has been displayed, then we must install a pointer to our idle proce
dure in the appropriate field of the print record so that our procedure will be used instead
of the default procedure.

LEA
MOVE.L
MOVE.L
MOVE.L

idleproc,AO
printRecReg,Al
(Al),Al
AO,prJob+pldleProc(Al)

address of our idle procedure
get print record handle
convert to Ptr
install pointer

idleProc

The idle procedure takes no parameters and returns no results. Our procedure simply
looks at user events during printing to see if the stop button in the dialog has been pressed.
If the button is clicked, our idle procedure calls PrSetError to halt the printing process.
PrSetError sets the appropriate error code in a low-memory location reserved for the Print
Manager. The printing doesn't actually stop until the Print Manager code resumes after
the idle procedure. The Print Manager code checks the low-memory location frequently,
watching for the abort error code. When it finds that code, it then takes care of halting
the printing job and cleaning up.

The idle procedure code shows how a nonmodal dialog can be handled. This dialog
is nonmodal because it allows user events unrelated to the dialog to take place.
IsDialogEvent is used to examine an event record to see if the event involved an active
dialog item.

stopbutton SET 1 item # of stop button

no parameters

local variables
theEvent SET -16
theltem SET -18
theDialog SET -22

locals SET -22

LINK A6,#locals

space for Event record
space for ItemHit
space for DlgPtr

104

-------------USING THE PRINT MANAGER-------------

; FUNCTIONGetNextEvent(eventMask: INTEGER;
VAR theEvent: EventRecord) : BOOLEAN

CLR.W -(SP) clear space for result
MOVE.W #$0FFF,-(SP) allow 12 standard events
PEA theEvent(A6) place to fill in event info
_GetNextEvent look for an event
MOVE.W (SP)+,DO get result code

;FUNCTION IsDialogEvent(theEvent:EventRecord):BOOLEAN
CLR.W -(SP) space for result
PEA theEvent(A6) the event
_IsDialogEvent
MOVE.W (SP)+,DO get result
BEQ idleexit not a dialog event

If IsDialogEvent returns TRUE, then we call DialogSelect, which processes an
event much like the more fiuniliar ModalDialog, returning the number of the item involved
in the event in the VAR parameter ItemHit.

;FUNCTION DialogSelect(theEvent:EventRecord;VAR theDialog:DialogPtr;
VAR itemHit:INTEGER):BOOLEAN

CLR.W
PEA
PEA
PEA

-(SP)
theEvent(A6)
theDialog(A6)
theitem(A6)

_DialogSelect
MOVE.W (SP)+,DO
BEQ idleexit

space for result
the Event
the dialog VAR
itemHit VAR

get result
not an enabled item

If DialogSelect returns a value of 1 in ltemHit, then we know that the stop button
was clicked. We beep the Mac speaker to let the user know that we have received the mes
sage, since there can be a 5-10 second delay between a user click and the idle procedure
being called to handle it. Then we call PrSetError with 128 (using the symbol iPrAbort
from PrEqu.Txt) as input.

CMP.W
BNE

MOVE.W
-8ysBeep

#stopbutton,theitem(A6) ; did they click the stop button
idleexit

#20,-(SP)

; if user has clicked the stop button, set the. print global
; with the abort code
;PROCEDURE PrSetError(errorcode:INTEGER)
MOVE.W #iPrAbort,-(SP)
JSR PrSetError

105

--------------USING THE PRINT MANAGER--------------

idleexit

Regardless of whether we detected a mouse click in the stop button or not, we exit
the same way.

UNLK A6
RTS

Of course you might want to devise more elaborate idle procedures. In particular,
you can write an idle procedure that looks at the prStatus record filled in by PrPicFile
and reports to the user in a dialog showing the progress of the spool printing.

{!gl TWEEKING THE PRINT RECORD

Even though official Apple policy recommends that you never directly change the value
of any field of the print record, there are times when you want to jump in and alter some
of the values in order to achieve a special purpose. This section will show you how to break
some of the rules and get away with it.

Consider the situation where you want to write a program to print out custom disk
labels on continuous-feed adhesive labels. The labels come on fan-fold paper, one abreast.
The distance from the top of one label to the top of the next label is exactly 3 inches.
Each label itself is 21h inches square. Since this obviously doesn't match any of the page
sizes given in the normal print style dialog, you will have to do something to make sure
that your printouts fit the labels. The layout of the labels is shown in Figure 4. 7.

The first thing you must do is allocate a print record and fill it in with the default
values, as we did in the previous example. Then, instead of putting up a style dialog,
fill in the print record values yourself to defme the dimensions of the paper.

Fill in the prlnfo.rPage rectangle with the rectangle shown in Figure 4.8. This rec
tangle defmes the potential printable area of the label. When you actually draw your image
on the label, you will draw into a smaller rectangle inset from the larger rPage rectangle
that you are defining here. The inset target rectangle will correspond to the label itself.

adjust the rPage rectangle to match the
total printable area of the label

MOVE.L
LEA
MOVE.W
MOVE.W
MOVE.W
MOVE.W

(AJ) ,Al
pageRect(Al),Al
#0, (Al)+
#0, (Al)+
#198,(Al)+
#J60, (Al)

106

get Ptr to print Record
pageRect of hPrint
top = 0
left = 0
bottom = 198
right = J60

--------------USING THE PRINT MANAGER--------------

0 0

0 0

0 0

0 3" 0

0 0

0
\,,. .,,I

0

t
0 /' ""\ 0

0 0

0 0

0 0

0 0

0
\,,. .,,I

0

FIGURE 4.7. Disk label layout

Once you have changed the prlnfo.rPage rectangle, you must also copy that rectangle
into the prlnfoPT.rPage record field. The prlnfoPT subrecord is a copy of the prlnfo
subrecord that the Print Manager uses to image the printing document at print time. Its
specific use is not publicly documented, but anytime you directly manipulate the prlnfo
values, you must also change the corresponding values in the prlnfoPT subrecord. If you
do anything beyond what is shown in this section of the chapter, you are on your own,
as Apple will not support print-record fiddling.

107

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

0

0

0

0

0

0

(0,0)

~--------~----------------------' ~'''''''~'''''''''''''''''''''''

..................... ,
' \
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\ ,

0

0

0

0

0

0

0 (198,360) 0

0

0

0

0

0

right
right

bottom
bottom

FIGURE 4.8. prlnfo.rPage rectangle

4.5 inches * 80 pixels/inch
360 pixels

2. 75 inches * 72 pixels/inch
198 pixels

; copy prlnfo.rPage to prlnfoPT.rPage
MOVE.L (AJ),Al
LEA prinfo+rpage(Al),AO
LEA prlnfoPT+rPage(Al),Al
MOVE.L (AO)+,(Al)+
MOVE.L (AO),(Al)

Ptr to print Record
start of prlnfo
start of prlnfo copy

0

0

0

0

0

The other change that you must make in the print record to accommodate the labels
is to set the paper size fields of the prStl subrecord so that the Print Manager will know
how far to advance the form at the end of each page (label). The page-size fields are set
in 1/120 of an inch. For the labels, the height is set to 360 and the width is set to 540,
as shown in Figure 4. 9.

108

-------------USING THE PRINT MANAGER-------------

0

0

0

0

0

0

, , ... ,

540 1/120"

,,,,,,,,,,,,,,,,,,.,.I'._ ,

360

, , , , , , , , , , ,
•
, , , , , , , , , , , ,

0
,,,,,,,,,,,,.,_

---------------------- -------- j

0

0

0

0

0

FIGURE 4.9. Page size

; adjust the paper size
MOVE.L (AJ),Al
MOVE.W #J60,prStl+iPageV(A1)
MOVE.W #540,prStl+IPageH(Al)

Ptr to print Record
360/120 inch
540/120 inch

0

0

0

1/120"

0

0

0

0

0

0

0

0

There is one more thing you need to consider if you want to allow printing in high
resolution mode with an altered print record. The rPage field of the prlnfoPT subrecord
must be twice as big as the rPage field in the prlnfo subrecord when you print in hi res
mode on the ImageWriter. By checking bit 0 of the wDev field of the prStl subrecord,
you can tell if hi res printing has been selected for the lmageWriter. Because Apple doesn't
want you to look at these kinds of details, you have to define the offsets yourself to get
at the data.

109

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

wDev
hires

EQU
EQU

0
0

offset to prStl.wDev
bit # of hi res flag

special case
MOVE.L
MOVE.L
MOVE.W
BTST
BEQ

if high resolution
printRecReg,AO
(AO),AO
prStl+wDev(AO),DO
#HighRes,DO
standard

get Ptr to print record
this word has all the info
this bit set if hi res

; double the size of the hi res prinfoPT.rPage
MOVE.W prinfoPT+rPage+right(AO),DO get right coordinate

get bottom coordinate
multiply by 2

MOVE.W prinfoPT+rPage+bottom(AO),Dl
ASL.W #1,DO
ASL.W #1,Dl
MOVE.W DO,prinfoPT+rPage+right(AO)
MOVE.W Dl,prinfoPT+rPage+bottom(AO)

standard

Once all the substitutions have been made in the print record, you may open a printing
document/grafPort and draw your image into the rectangle corresponding to the label.
I want to emphasize that the foregoing discussion is specific to the lmageWriter printer
resource file and that it probably won't apply if you are using some other sort of printer.
I have included this information, however, to encourage you to explore the print record
and experiment with the various settings. This kind of experimentation is probably ill
advised for programs that you plan to release commercially, but it can be a big help if
you want to write some tools, such as the label printer, for your own use.

~SUMMARY
The most important aspect of the Print Manager is that it gives your application programs
printer independence. You can write programs that will print properly to a wide variety
of printers. This chapter has explained that the key to this flexibility is the customized
grafPort the Print Manager opens for each kind of printer. Your responsibility as a program
mer is reduced to writing imaging code that is able to draw each page of the document
as if it were a page-sized window.

110

-------------USING THE PRINT MANAGER-------------

A brief discussion was also presented on ways to optimize your printing code to take
advantage of special features of the LaserWriter and to avoid some of its limitations. This
topic really deserves more treatment, but several sources of information from Apple were
mentioned in the discussion.

Finally, this chapter discussed the possible ways in which you can manipulate the
print record directly, although the information is surrounded by strict caveats as to its
general applicability. Tweeking the print record is recommended only when you have a
very clearly defined way in which the program will interact with the printer, such as a
special-purpose label printing program. But don't be afraid to explore the Print Manager.

111

CHAPTER

HFS, MFS, and the Standard
File Package

When the Macintosh was first released, it had a 400K internal floppy disk drive with the
option of adding an additional 400K external floppy. The files on these disks were or
ganized as a single long list of files, indexed by a single directory. The Finder provided
a semblance of hierarchy to the file organization with folders, but that conceit was only
skin deep. This flat file structure is called the Macintosh File System or MFS. Its main
drawback is its inability to deal efficiently with disk volumes much larger than 4QOK be
cause it is limited to a single directory for a disk volume. Third-party manufacturers soon
began to release 10- and 20-megabyte hard-disk drives for the Macintosh, but the user
was forced to partitio~ the hard drives into separate smaller volumes in order to deal with
the limitations of MFS. In particular, as the number of files on a larger disk grew, the
performance of the Macintosh dropped dramatically because MFS did not have the abil
ity to hide files in hierarchical structures.

Almost two years after the original Macintosh release, Apple began to market its
own hard-disk drive, the HD20. To overcome the limitations of MFS, Apple released a
new filing system along with the HD20. This new filing system, called the Hierarchical
Filing System or HFS, organizes files on a disk volume in a hierarchical tree structure
of directories and subdirectories, much like UNIX or MS-DOS. With HFS, folders ceased
to be a cosmetic conceit and became true subdirectories. Each folder has a separate direc
tory. A folder can contain another folder, which in turn represents a separate directory
of files. This hierarchical organization allows much more efficient management of larger
volumes. For the first time, Mac users have access to a large storage medium without hav
ing to partition the disk into separate volumes.

HFS was originally released as a set of routines that was loaded into memory at boot
time and patched the original ROM File Manager routines. (See Chapter 2 for an expla
nation of how to patch ROM.) At that time, your boot disk had to contain the file HD20
in order to have access to the HFS routines. Several months later, in January 1986, Apple

112

----------- HFS, MFS, AND THE Sl'ANDARD FILE PACKAGE -----------

released the Macintosh Plus and the new 128K ROM. The new ROM contained the HFS
routines, so no special startup files were needed for machines running the 128K ROM.
Apple is offering to upgrade older Macintoshes with the 64K ROM to the new 128K ROM
and new SOOK double-sided floppy disk drives. This upgrade results in a remarkable in
crease in speed that is very noticeable to the user.

~ HFS·MFS COMPATIBILITY

HFS was a big advance, but Apple had to make sure that it was compatible with the large
base of software that had been written for the original MFS system software. The com
patibility problem can be looked at from two perspectives, user's and programmer's.

From the user's point of view, the most apparent difference between MFS and HFS
is the new inter&ce provided by the Standard File Package dialogs included in almost all
Macintosh programs to give users access to files. In an HFS system, the dialogs have addi
tional capabilities to open subdirectories (folders) and move around the overall-volume
tree structure in an intuitive way that is in keeping with the nature of the Macintosh user
inter&ce guidelines.

Figure 5.1 (page 114) shows the Standard File dialogs, in their MFS and HFS ver
sions. The MFS SFGetFile dialog lists all available files on a volume in its scroll box.
For large volume, this list can be much too long to view efficiently. The HFS version of
SFGetFile displays files in the current directory only. By double-clicking on a folder listed
in the scrolling window, a user may move down in the file hierarchy to view the contents
of that folder. An additional control button above the scrolling selection box allows the
user to close folders and move back up in the directory hierarchy. Apple has done a ter
rific job of making the hierarchical structure of the filing system easy to use, especially
when you compare it to the cryptic commands and pathnames MS-DOS users must use.

The newer versions of the Standard File dialogs are equally adept at handling HFS
or MFS volumes, so it is possible to use disks from either system at the same time. At
this level, the compatibility is almost completely transparent. The switch from one sys
tem to the other takes almost no effort on the part of the user.

The other difference that is most noticeable to the user is the fact that file names
on a disk no longer must be unique. You may have several files with the same name as
long as they are in separate directories. This is a good indication that, as we shall see in
the following sections, the File Manager treats directories almost as if they were separate
disk volumes.

For the programmer, on the other hand, the key to the compatibility solution is the
volume reference number parameter that is used in the low-level file access routines in
both MFS and HFS. In MFS a file could be uniquely identified by supplying a file name
and a volume reference number telling the File Manager on which disk to find the file
with that name. By using a unique volume reference number for each volume on line,
MFS was able to keep track of more than one volume with the same volume name. On
any one volume, however, a given file name could appear only once.

113

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROIRAMMING, VOWME II -----

CJ EHamples.a
CJ EHan~lles.c
CJ EHamples.p
CJ Includes.a
CJ lncludes.c
D I nstructlons.c
CJ I nterfaces.p
CJ Libraries.a

Filelister.Map
Filelister.R llllll
FSEqU.THt i!!!ii
HFSF·1 S h :I.I:; 1 e earc •••• i!!!ii
HFSFileSearch ••• lili!i
MFSFileSearch •••

"' I lg) Untitled I
D Cotm1.<
CJ EHamples.a
Cl EHamples.c
CJ EHamples.p
CJ Includes.a
CJ I ncludes.c

Saue document as

Saue document as

Saue ~Cancel

FIGURE 5.1. Standard Fiie dialogs

Open

Cancel

Q

I

11, ;;11·
!i!ill

!11111

lg) Untitled

Eject

Driue

Open

Cancel

MDS2

Eject

Dril\9

lg) Untitled

Eject

Driue

Saue

Cancel

MDS2

Eject

Driue

114

----------- HFS, MFS, AND THE STANDARD FILE PACKAGE-----------

With HFS, a file name may be used more than once on a volume as long as it ap
pears in different directories. In order to uniquely identify a file on an HFS volume, you
must provide a working-directory reference number and a file name. The working-directory
reference number tells the File Manager in which directory it can find the file with that
name. The working-directory reference number for the root directory of an HFS volume
is the same as the volume reference number for that volume. The root directory is equiva
lent to the volume. Subdirectories on the volume have unique working-directory refer
ence numbers.

The key factor that allows HFS to be compatible with MFS is that HFS can accept
either a volume reference number or a working-directory reference number when receiv
ing a file specification. The HFS File Manager routines know how to use either of these
identification aids to fmd a file. As long as your program uses one of these two methods
to identify files, then it will run successfully under MFS or HFS.

The easiest way to insure compatibility is to access filqs only through the Standard
File routines. These routines return the required file name and volume/working-directory
reference number to your program so that you may unambiguously identify any file on
any volume, MFS or HFS. Other times, you may want to access files without going through
the Standard File dialogs, such as when you want to locate a help file or a scratch file.
In these situations, where you will be constructing the file-identifying information your
self, you will need to pay particular attention to the differences between MFS and HFS.
Both of these compatibility paths are explained by examples in the sections that follow.

~ USING THE STANDARD FILE PACKAGE

As mentioned previously, the easiest way to avoid problems with HFS directories is to
access files only via the Standard File Package. The two routines, SFGetFile and SFPut
File, of the Standard File Package allow the user to specify the disk, directory, and file
name in an unambiguous way. The SFReply record returned by these routines contains
all the information that your program needs to open a file on either an MFS or an HFS
volume.

The SFReply record returns information about the file designated by the user, in
cluding the file name, file type, volume reference number (which may be a working
directory reference number for HFS volumes), and the file's version number (almost
always O, and used only on MFS volumes). The SFReply also contains a BOOLEAN field
that is FALSE if the user clicked the Cancel button of the Standard File dialog. The off
sets to the individual fields are listed below. You can use these equates in your assembly
language code, or INCLUDE similar constants from PackMacs.Txt. The entire SFReply
record, including space for the file name, which is tacked on to the end, is 74 bytes. You
will probably want to reserve space for one SFReply in your application globals, or you
can also allocate space in a temporary stack frame if you don't need to keep the results
around after using them once.

115

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

;------------------------- Offsets into SFReply record -------------------------
good EQU 0
ftype EQU 2
vrefnum EQU 6
version EQU 8
fname EQU 10

There are no trap words for SFGetFile or SFPutFile. These routines must be ac
cessed by calling the ROM routine Pack3 with the proper selector word on the stack. To
call SFGetFile, you must push the value 2 on the stack and call Pack3. To get SFPutFile,
call Pack3 with the value 1 on the stack. Pack3 is the ROM entry point to the part of
the Package Manager that is responsible for going out to the system file and loading in
the code and dialogs definitions to run the Standard File routines. To make it easy on
you, here are two macro definitions that allow high-level access to SFGetFile and SFPut
File. You must push the required parameters for the routines onto the stack before calling
these macros, as illustrated in a following section.

;------------------------------------ Macros ------------------------------------

MACRO _8FGetFile =
MOVE.W #2,-(SP)
JackJ
I

MACRO _8FPutFile =
MOVE.W #1,-(SP)
JackJ
I

l2J PARAMETERS FOR SFGETFILE

Once these macros are defmed, you can push the required parameters on the stack and
call the routines with the macros. The first parameter to SFGetFile designates the coor
dinates of the top left corner of the dialog. The second parameter is a pointer to a string
to use as a prompt in the dialog. Pass a zero for this parameter to SFGetFile since it does
not use a prompt.

The third parameter for SFGetFile is a pointer to a file filter procedure that is used
to select which files should be displayed in the scrolling box of the dialog. The format
of the file filter proc is discussed separately in a subsequent section. If you don't defme
a filter proc, pass a long word equal to zero for this parameter. The fourth parameter is

116

----------- HFS, MFS, AND THE STANDARD FILE PACKAGE -----------

FileList
DC.L
DC.L

a number between 1 and 4, inclusive, that tells how many types of files are in the file
type list. The file-type list contains the file types that should be displayed in the scrolling
box. This is the primary filtering mechanism for the dialog, with the filter procedure provid
ing a secondary level of screening. If you want all types of files to be displayed, pass - 1
for this parameter. The fifth parameter is a pointer to a list containing the file types allow
able for the dialog. You can define this list with the DC assembler directive. For example,
if you wanted to look at TEXT and APPL files, you would pass a 2 for the fourth parameter
and a pointer to the list shown below as the fifth parameter:

'TEXT'
'APPL'

If you choose to allow all file types, pass a zero instead of a pointer to a valid file
list. The sixth parameter is a pointer to a dialog-filter procedure. This procedure, which
is discussed in detail below, is called every time the Standard File code calls Modal
Dialog. The dialog-hook procedure can look at the user input to the dialog and act on
it before the Standard File code performs its default actions. This allows a great deal of
discretion on the part of the programmer when using the Standard File routines.

The final parameter is a pointer to the SFReply that will be filled in when the call
to SFGetFile returns. In the example below, we use a globally defined SFReply.

;procedure SFGetFile(where: point; prompt: str255;
filefilter: procptr;numtypes :integer;
typelist: SFlistptr; dlghook: procptr;
VAR reply SFReply)

MOVE #100,-(SP) one coordinate
MOVE #100,-(SP) other coordinate
CLR.L -(SP) no prompt
PEA FileFilter our file filter
MOVE #2,-(SP) 2 file types
PEA FileList ptr to typelist
PEA dialoghook dlghook
MOVE.L mySFReply(A5),-(SP) the reply record
-8FGetFile

The File Filter Procedure
The file filter is an optional, secondary means of screening files that will appear in the
scrolling selection box of the SFGetFile dialog. The file-type list is the primary filter.
For each file that agrees with the file types listed there, your file filter is called with a
pointer to a parameter block that has been filled in with GetFilelnfo. Your file filter can

117

----- THE COMPLETE BOOK OF MAClll'IDSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

examine any of the fields of the parameter block to do further filtering of the file. In the
example listed below, we look at the file creator to exclude our application from the selec
tion list. The file creator is located four bytes from the beginning of the ioFLU srWords
subrecord of the parameter block. This example comes from a resource modification pro
gram I wrote where I did not want the program to be able to modify its own resources
while it was running. There are many other uses for a file filter, all based on looking at
the information in the parameter block.

The file filter must return TRUE if the file is to be excluded (filtered) from the selec
tion box. It should return FALSE if the file can be included in the selection box. We
defme a stack frame to allow easy access to the parameter and function result.

;----------------------- FileFilter(p:ParmBlkPtr):BOOLEAN ----------------------
FileFilter

FFexit

; parameter off sets
result SET 12
p SET 8
parambytes SET 4

LINK A6,#0

; assume that the file is OK, set result to FALSE
MOVE.W #0,result(A6)

; Don't let our application appear in SFGetFile
; by comparing the file creator to OURS
MOVE.L p(A6),AO get ptr to param block
LEA ioFLUsrWords(AO),AO offset to Finder info
MOVE.L 4(AO),DO get file creator
CMP.L #'OURS I ,DO does it match our application?
BNE FFexit no match, let this file through

MOVE.W #$0100,result(A6) TRUE means this file is not OK

UNLK A6 SP now points to return address

MOVE.L (SP)+,AO get return address
ADDA.W #parambytes,SP strip parameters off stack
JMP (AO) same as RTS

118

----------- HFS, MFS, AND THE STANDARD FILE PACKAGE-----------

The Dialog-Hook Procedure
When you call SFGetFile, the dialog is displayed and the Standard File code repeatedly
calls ModalDialog until the user clicks the Open or Cancel button. If you specify a dialog
hook procedure pointer when you call SFGetFile, your dialog hook will be called just
after ModalDialog each time around the loop. This process allows your dialog hook to
respond to the events within the SFGetFile dialog before the Standard File code has a
chance to act on them. The dialog hook is passed an item number and a dialog pointer
as parameters. Figure 5.2 shows the SFGetFile dialog with the item numbers labeled.

It is possible to add your own items to the SFGetFile dialog as long as their item
numbers are different from the default items. You can use the dialog-hook procedure to
respond to clicks in your custom items. The DLOG and DITL resources for the SFGet
File dialog both have -4000 as their resource ID number. If you define a similar DLOG
and DITL in your application's resource fork, then your customized dialog will be used
instead of the default resources stored in the system file since your application's resource
file is searched before the system file. In order to function properly, the first ten items
in your DITL must be the same as those in the default DITL. You may begin to add
your own dialog items beginning at item # 11. The Standard File Package chapter of Inside
Macintosh and Tech Note #47 from Apple contain more information about modifying the
resources for the Standard File dialogs.

lg) Untitled #4
D EHamples.a
D EHan~1les.c

I
Eject #5

D EHamples.p Driue #6
D Includes.a
D lncludes.c ... #9

D I nstructions.c Open ... ,
D I nterfaces.p

Cancel #3 D Libraries.a

FIGURE 5.2. Item numbers for SFGetFlle Dialog

119

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

In addition to the normal item numbers passed when an item is clicked in the dia
log, - 1 is passed as the item number when the dialog is first drawn on screen, before
the first update event has caused the contents to be drawn. This - 1 item event is a good
way to modify the contents of the dialog before they are displayed. The example below
uses this event to change the title in the button that normally says "Open:'

It is important that you pass the item number parameter back out as the function
result after you are through processing it. Most of the time, the item number will elicit
no response from the dialog hook, but it must be passed out as the function result so
that the default action of the Standard File code will take place. In certain special circum
stances, you can change the function result to be different from the item number passed
as input. For example, using 101 as a function result causes the dialog to redisplay the
file list. This can be useful if your dialog uses additional items to toggle between different
file-selection criteria.

The example below uses the - 1 item event to change the Open button to read
"Modify:• We define a stack frame to access the parameters, function result, and local vari
ables. This skeleton routine can easily be expanded to customize the handling of clicks
in other dialog items. Notice how the item number passed in as a parameter is installed
as the function result before exiting the routine.

;---------------------------------- DialogHook ----------------------------------
DialogHook

FUNCTION DialogHook(item:INTEGER;thedialog:DialogPtr):INTEGER
item
thedialog
result
parambytes

the Item
the type
the box
locals

init

LINK

MOVE.W

CMP.W
BEQ

SET 12
SET 8
SET 14
SET 6

EQU -4 VARs for GetDitem
EQU -6
EQU -14
SET -14

SET -1

A6,#locals

item(A6),DO which item was hit

#init,DO first time through we get -1
Doinit

; otherwise, put the item in the result slot and exit
MOVE.W DO,result(A6)

120

----------- HFS, MFS, AND THE STANDARD FILE PACKAGE-----------

dlghookexit
UNLK A6 SP now points to return address

MOVE.L
ADDA.W

(SP)+,AO
#parambytes,SP

get return address
strip parameters off stack

JMP

RTS

(AO) same as RTS

The code called when the dialog first opens uses GetDltem and SetCtlTitle to change
the title of the Open button. We use several local variables on the stack frame as VAR
parameters to GetDitem. This routine keeps the string as a part of the code. It would
be better to keep the new button title as a resource and read it in at run time before install
ing it.

Since this routine is called by a simple BRA instruction, it can share the stack frame
with the dialog-hook routine. It returns by setting the function result and branching to
the dialog hook's exit sequence.

;------------------------------------ Dolnit ------------------------------------
Dolnit

change the open button to read ''Modify''
remember that we are working with the stack frame of DialogHook here

;PROCEDURE GetDitem(thedialog:DialogPtr;itemNo:INTEGER;
VAR type:INTEGER: VAR item: Handle;

MOVE.L
MOVE.W
PEA
PEA
PEA
_GetDitem

VAR box: Rect)
theDialog(A6),-(SP)
#openbutton,-(SP)
theType(A6)
theltem(A6)
thebox(A6)

on stack frame
item
VAR type
VAR item
VAR box

;PROCEDURE SetCTitle(theControl:ControlHandle;
theTitle:Str255)

MOVE.L theltem(A6),-(SP)
PEA 'Modify'
_8etCTitle

MOVE.W #init,result(A6) pass the value back to SFGetFile

BRA dlghookexit

121

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

Parameters for SFPutFile
The parameters to SFPutFile are basically a subset of the parameters described for SFGet
File. One difference is the parameter that allows you to specify the default file name to
be displayed in the edit text box of the dialog. Generally, you will use the window title
of the active document as the default file name. You should not concatenate the volume
name with the file name the way MDS Edit does because this causes problems with HFS
volumes and directories. In addition, the prompt string parameter is used by SFPutFile
to put a prompt string such as "Save file as . . . " in the dialog. Be sure to keep this string
in the resource file to facilitate easy translation into foreign languages. SFPutFile can take
a dialog-hook pointer parameter just like SFGetFile if you want to do preprocessing of
the dialog events.

SFPutFile will put up warning dialogs if the user tries to specify a file name that
already exists on the designated volume (or directory on HFS volumes). The warning dia
log allows the user to overwrite the original file or choose a new name for the new file.
One thing that is not checked by Standard File code is the file type of the file being over
written. This allows users to replace files created by other programs, a practice that is
probably not a good idea. You can use the dialog-hook procedure to check the file creator
of the designated file whenever the Save button is clicked. If the user is trying to save
with a file name of a file created by another application, then your dialog-hook procedure
can put up its own warning alert to advise the user to choose another name. In this situa
tion, the dialog hook should pass 0 as its function result so that the Standard File code
will not act on the click in the Save button.

The information returned in the SFReply record passed to SFPutFile uniquely iden
tifies the volume reference number (or working-directory reference number) and the file
name. This information can be used to write the data for the document out to the disk
without worrying if it is an MFS or an HFS volume.

l!2J USING THE FILE MANAGER WITH SFREPLY RECORDS

The following example shows how to use the information in an SFReply record in combi
nation with the File Manager routines requiring information in a parameter-block record
structure. Although we will limit our discussion to calling the File Manager routine Open,
this should suffice to illustrate the principles of transferring information between the two
data structures to connect the Standard File Package to the File Manager.

In the example, we define a subroutine, OpenDoc, that expects to find a window
pointer and a pointer to a filled-in SFReply record on the stack as parameters. You can
use the window pointer to associate the disk data with a particular window. The SFReply
contains all the information necessary to open the file. This skeleton is similar to the more
complete file-handling routines described in Chapters 5 and 8 of The Complete Book of
Macintosh Assembly Language Programming, Volume I.

122

----------- HFS, MFS, AND THE STANDARD FILE PACKAGE -----------

The first thing to do in this subroutine is to define the stack frame to access the
parameters, function result, and local variables. We allocate 80 bytes of local variable storage
to hold our parameter block. We also use two protected registers to hold the window-pointer
and SFReply-pointer parameters for easy access during the life of the routine.

;----------------------------------- OpenDoc -----------------------------------
; FUNCTION OpenDoc(w:WindowPtr;reply:SFReply):INTEGER
OpenDoc

; parameter off sets
result SET
w SET
reply SET
parambytes SET

16
12
8
8

offset to function result
offset to first parameter
offset to second parameter
total # parameter bytes

offsets to local variables

;VAR
paramBlock SET
locals SET

SFReplyReg SET
WindowPReg SET

-80
-80

A2
AJ

offset to paramblock (80 bytes)
total # bytes for locals

use registers for these two variables

now get into it

LINK A6,#locals preserve stack
make room for locals

; save some registers for local use
MOVEM.L A2-AJ,-(SP)

; get the parameters off the stack and into registers
MOVE.L w(A6),WindowPReg get window pointer in AJ
MOVE.L reply(A6),SFReplyReg ; SFReply in A2

When the stack frame is allocated and the parameters stashed in protected registers,
we proceed to fill in the required fields of the parameter block for the call to Open. We
use the file name and volume reference number (which might be a working-directory refer
ence number) from the SFReply. These two items are sufficient to uniquely identify any
file on any disk. Notice also that we specifically set the version number to 0 because our

123

------ THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II ------

parameter block is allocated on the stack frame and may be filled with spurious values
left over from previous stack contents. On HFS volumes, the version number is not used,
but a bogus version number in a call to an MFS volume can prevent successful opening
of a file that is otherwise correctly described.

In addition to the information identifying the specified file, we set the ioPermssn
and ioOwnBuff fields of the parameter block to guide the action of Open.

now open the file, all the info in SFReply (register A2) from previous call

; set up the parameter record
LEA paramBlock(A6),AO set the start of p block
LEA fname(A2),Al file name in SFReply
MOVE.L Al,ioFileName(AO) stuff it in p block
MOVE.B #0,$1A(AO) set version # to 0
MOVE.W vrefnum(A2),ioVRefNum(AO) stuff vol ref num in p block
CLR.B
CLR.L
_Open
BM!

ioPermssn(AO) whatever is already allowed
ioOwnBuf(AO) NIL, use volume buffer

Open error something is wrong

Once the file is opened, your application can do whatever it wants with the file,
be it reading or writing data or modifying other information associated with the file. This
example will not go into those details. See Chapters 5 and 8 of The Compkte Book of Macintosh
Assembly Language Programming, Volume I, for more complete examples. The call to Open
explained above describes all the essentials of the connection between the SFReply and
the parameter-block data structures. The main idea is that any file can be fully identified
by its file name and volume (or working-directory) reference number.

The rest of the OpenDoc skeleton is shown below. When your application is through
reading or writing data to the file, it should deallocate the stack frame and return to the
main program, as shown here.

;*****************
; do something with the file here ...

;*****************

OpenDone
MOVEM.L

;--
(SP)+,A2-A3

; restore stack
UNLK A6

124

; restore registers

SP now points to return address

----------- HFS, MFS, AND THE STANDARD FILE PACKAGE -----------

MOVE.L
ADDA.W

(SP)+,AO
#parambytes,SP

get return address
strip parameters off stack

JMP

Openerror

(AO) same as RTS

In the event of some sort of file error, you can branch to the following error routine
to beep the speaker, try to close the file with the information that is already in the parameter
block, and return to the main program via the exit sequence shown above. This error
routine is the bare minimum; you will probably want to add code to it to examine the
error codes and put up appropriate dialogs to inform the user of the problem.

;--
; beep the speaker
; PROCEDURE SysBeep(duration:INTEGER)
MOVE.W #1,-(SP)
_SysBeep

; try and close the file, if possible
LEA paramBlock(A6),AO ; the parameter block
_Close

; set the result to a negative number to indicate failure
; this could be made more specific
MOVE.W #-1,result(A6)

BRA OpenDone go back

~ DETERMINING IF HFS OR MFS IS ACTIVE

Most programs don't need to know whether or not they are running in the MFS or
HFS file environment. There are times, however, when you must determine which
file system is active. This is especially true if you want to access files directly without
using the Standard File routines. The word-length low-memory system global FSFCBLen
($3F6) will contain - 1 if MFS is active, and a positive number if HFS is installed.
You can use the following code to discriminate between the two states:

FSFCBLen SET $3F6 ; from FSEqu.Txt

TST.W
BMI

FSFCBLen
doMFS negative means MFS

125

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

doHFS
; HFS specific routines go here

BRA HFSDone

doMFS
; MFS specific routines go here

HFSDone
continuation of common code

HFS will be active if your program is running on a machine with the 128K ROMs
installed. It may also be active on a 64K ROM Macintosh if the startup disk contained
the HD20 file, which loads a RAM image of the HFS routines and patches the File Manager
routines to point to the HFS code. Either way, you will have access to the expanded capa
bilities of HFS. All of the original MFS File Manager calls will operate appropriately in
either the MFS or HFS environments, so you can use them without checking FSFCBLen
first. If you plan to use any of the routines that are unique to HFS, be sure to check for
HFS availability before calling them, because calling an HFS-only routine in an MFS
system will cause a system crash.

Once you have determined that you are running under HFS, you may want to find
out if a particular disk is initialized as an HFS or an MFS volume. Call HGetVInfo with
its 122-byte parameter block and look at the ioVSigWord (offset 64). This field will con
tain $4244 if the volume is an HFS volume.

~ SEARCHING FOR FILES DIRECTLY ON MFS VOWMES

The first part of this chapter discussed the way that the Standard File routines uniquely
identify files on MFS and HFS volumes, allowing trouble-free disk access. The Standard
File Package is great when you want the program's user to pick the file to be used, but
what about the situation where the program itself must define the specifications for a file,
such as a help file or a temporary scratch file? In these situations, you cannot use the
Standard File routines, and you must look at the files on the disk directly.

This section will illustrate a method whereby every file on every available MFS volume
can be examined. We index through all the volumes and index through all the files on
each volume. The example code will create a list of all volumes and files by inserting the
volume or file names into an existing TE record. The example code is a module that is
intended to be joined with an existing text-editing program. This module was tested by
combining it with the MultiScroll program described in Chapter 7 of The Complete Book
of Macintosh Assembly Language Programming, Volume I. The module is listed in its entirety
in Appendix A as MFSFileSearch.ASM and is included on the source code disk available

126

----------- HFS, MFS, AND THE STANDARD FILE PACKAGE -----------

from the author. The example in a succeeding section does the same thing for HFS volumes,
allowing the search to find files in subdirectories as well as the root level. Together, these
two modules might be useful building blocks for a disk librarian program.

The module is structured with a single entry point, MFSFileSearch, which is a
subroutine with no parameters. One restriction on its use is that it expects to fmd a valid
TEHandle in register D7 so that the volume and file names can be inserted into the text
edit record.

We begin the routine by defming the stack frame to allocate enough local variable
storage to hold the volume/file name and an 80-byte parameter block. We also defme a
couple of data registers to use for other local variables.

File MFSFileSearch.ASM

This is a module that will search all available volumes
and look at all files on each MFS volume.
It expects to find a TEHandle in register D7 on entry.

INCLUDE
INCLUDE

MacTraps.D
SysEqu.D

XDEF MFSFileSearch
TEReg SET D7

MFSFileSearch

we need to insert text here

; stack frame offsets for local variables
volname SET -32 allow for Jl char name
pBlock SET volname-80 ; space for parameter block

; local registers
Volindex SET DJ
Fileindex SET D4

LINK
MOVEM.L

A6,#pBlock
DJ-D4,-(SP)

reserve space for locals
save registers

127

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

TST.L
BEQ

The first step upon entering the code is to make sure that the TEHandle in register
D7 is not NIL to protect against trying to insert into a nonexistent text edit record. If
the handle is not valid, then we branch to the exit point for the routine.

TEReg
noMoreVolumes

; crash protection

The outer loop of this module uses GetVollofo to get information of each available
volume. Generally, GetVollnfo expects to find a volume name or a volume reference number
in the parameter block indicating the volume about which to return information. We stuff
0 in the ioVRefNum field to make GetVollofo use the index field instead to choose the
volume. Starting with an index of 1 will return information about the first available volume
in the volume-control-block queue maintained by the operating system. We will then incre
ment the index by one until GetVollofo returns an error code, indicating that all the
volumes have been searched.

Set up parameter block for GetVollnfo
LEA pBlock(A6),AO get address of parameter block

no completion routine MOVE.L #0,ioCompletion(AO)
LEA volname(A6),Al get our string ptr
MOVE.L Al,ioVNPtr(AO) install in parameter block

force it to use index instead MOVE.W #0,ioVRefNum(AO)

; start with volume #1
MOVE.W #1,Vollndex

volume Loop
MOVE.W Vollndex,ioVollndex(AO) install index number
_GetVollnfo
BMI noMoreVolumes we have looked at them all

Because GetVollofo is an operating system ROM call, it automatically sets the con
dition codes when it terminates. We can check the status register with a BMI instruction
to branch on a negative error code. In this indexed loop, the error code will be caused
when the index value goes beyond the number of available volumes.

Once we get the first volume information, we extract the volume name from the
local storage and insert the name into the text edit record. We also insert a carriage return
at the end of the name to advance the cursor to the following line. Because we reserved
space in our stack frame for the volume name, and passed a pointer to that space in the
parameter block ioVNPtr field, we can get the name directly from the local storage without
checking the parameter block.

128

----------- HFS, MFS, AND THE STANDARD FILE PACKAGE-----------

;**
; insert the volume name in the text edit record
; PROCEDURE TEinsert(text:Ptr;length:LONGINT;hTE:TEHandle)
PEA volname+l(A6) skip length byte
MOVE.B volname(A6),DO length byte
AND.L #$000000FF,DO mask off upper bytes
MOVE.L DO,-(SP) put length on stack
MOVE.L TEReg,-(SP) TEHandle
_TEinsert

; PROCEDURE TEKey(theKey:CHAR;hTE:TEHandle)
MOVE.W #13,-(SP) carriage return
MOVE.L TEReg,-(SP) ; hTE
_TEKey

;**

The inner loop of this module is structured like the outer loop, using an index value
beginning at 1, but it uses GetFilelnfo to get information about individual files rather
than GetVollnfo to get information about volumes.

The call to GetVollnfo in the outer loop set up all the appropriate fields of the
parameter block. We need only put in the proper index value and call GetFilelnfo repeat
edly, increasing the index by one for each iteration. As with the outer loop, a negative
result indicates that all the available files on this volume have been examined.

start with file #1
MOVE.W #1,Fileindex

fileLoop
LEA pBlock(A6),AO get address of parameter block

; install index number MOVE.W Fileindex,ioFDirindex(AO)
_GetFileinfo
BMI noMoreFiles we have looked at them all

your application could do something with the file name now
such as check it against a search string
or insert it into a list of all files

Each time that GetFilelnfo is successful, we insert the resulting file name into the
text edit record. Before each file name we also insert five spaces so that the file names
will be indented from the volume names, as shown in Figure 5.3 (page 130). When we
search HFS directories, this indentation strategy will be extended so that each subdirec
tory is indented from its parent directory.

129

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

Indented MFS File List

MDS1
System
lmagewriter
Finder
ASM
LINK
Edit
RMaker
Exec

MDS2
MacTraps.D
ToolEqu.D
SysEqu.D
QuickEqu.D
MyStuff.ASM
MyStuff.LINK
MyStuff.R
MyStuff.Job

FIGURE 5.3. Indented MFS Fiie list

;**
insert five spaces to indent file names from volume name

PROCEDURE TEinsert(text:Ptr;length:LONGINT;hTE:Handle)
PEA tab 5 spaces defined statically
MOVE.L #5,-(SP) put length on stack
MOVE.L TEReg,-(SP) TEHandle
_TEinsert

; insert the volume name in the text edit record
; PROCEDURE TEinsert(text:Ptr;length:LONGINT;hTE:TEHandle)
PEA volname+1(A6) skip length byte
MOVE.B volname(A6),DO length byte
AND.L #$000000FF,DO mask off upper bytes
MOVE.L DO,-(SP) put length on stack
MOVE.L TEReg,-(SP) TEHandle
_TE Insert

130

----------- HFS, MFS, AND THE STANDARD FILE PACKAGE -----------

; PROCEDURE
MOVE.W
MOVE.L
_TEKey

TEKey(theKey:CHAR;hTE:TEHandle)
#lJ,-(SP) carriage return
TEReg,-(SP) ; hTE

;**

After inserting the current file name into the text edit record, we increment the index
and go back to the inner loop to find the next file. Notice that the check point comes
at the beginning of the loop, making it somewhat like the WHILE DO structure in Pascal.

increment the file index and loop again
ADD.W #1,Fileindex
BRA FileLoop ; check the next file

noMoreFiles

When all the files on a volume have been checked, the inner loop terminates and
we increment the volume index and continue the outer loop. When all available volumes
have been examined, we break out of the outer loop and execute the exit code at the label
noMoreVolumes.

; increment the volume index counter
ADD.W #1,Volindex
BRA VolumeLoop go check another volume

noMoreVolumes

; clean up and go back
MOVEM.L (SP)+,DJ-D4 restore registers
UNLK A6
RTS return to caller

tab DC.B J2,J2,J2,J2,J2

The search strategy for MPS volumes uses two nested, indexed, iterative loops. Each
loop increases the index value until an error code indicates that the index has gone beyond
the number of available volumes or files. The next section implements an HFS directory
search that relies on a recursive rather than iterative inner loop.

131

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

i!2l SEARCHING FOR FILES DIRECTLY ON HFS VOWMES

When working with HFS volumes, the linear iterative-search strategy is not sufficient to
find all the files which are hidden within folders. The indexed search that we used above
to find all the files on an MFS volume will only work within a single directory on an HFS
volume. Assuming that we start at the root level of an HFS volume, the MFS search strategy
will treat the folders at that level as if they were files. In order to examine the files within
a folder, we must call OpenWD to get a working-directory reference number and apply
our indexed search strategy to that folder just as if it were a new volume. This points out
the central concept of HFS volumes: working-directory reference numbers for folders are
functionally equivalent to volume reference numbers for distinct volumes. The subdirec
tories of an HFS volume can be treated like separate volumes.

Recursion and HFS
The directories and subdirectories of an HFS volume are arranged in a hierarchical tree
data structure, as shown in Figure 5.4. The files and folders contained in a folder are shown
dangling below the parent folder. The root directory of the disk is treated just like a folder
whose name is the same as the name of the disk. The hierarchical tree is a classic recur
sive data structure.

To understand what a recursive data structure is, compare the organization of an
MFS volume with that of an HFS volume. On an MFS system you have a volume and
you have files. The two types of objects must be treated differently. Routines that are used
to examine an MFS volume may not be used to examine an MFS file. An MFS volume
cannot contain another volume object. On an HFS volume, on the other hand, the entire
volume is treated as if it were a folder containing files and other folders. The same search
strategies applied to the volume may also be applied to folder objects that are contained
on the volume. Folders contained within folders are treated in the same way as the parent
folder. In other words, a volume is like a folder and a folder is like a volume. Recursion.
Got it? Recursion is indicated whenever a single element of a data structure may be treated
as if it were the entire data structure.

The most interesting part of an HFS file search is that the search strategy is recur
sive. One of the basic laws of programming is that the program algorithm should match
the structure of the data structure. On an MFS volume, we used a straight iterative search
technique to match the flat structure of the volume. On an HFS volume, we will use a
recursive search procedure that will call itself whenever it encounters a new folder.

132

----------- HFS, MFS, AND THE STANDARD FILE PACKAGE -----------

Folder #1

Folder #3

Folder #5

Doc #6

Root
folder

Doc #3

Doc #7

FIGURE 5A. Sample HFS file structure

Folder #2

Folder #4

Doc #4 Doc #5

Doc #8

133

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

Anytime you encounter a folder, you will begin to examine each of its files. In the
midst of that search, you may encounter another folder. At that point, you must suspend
the original search and begin a new search of the new folder. Of course, you may encoun
ter another folder within the new folder . . . and so on. At each level, the same search
strategy is applied. Each time the search procedure is initiated, it must keep its own
parameter block and other local variables to guide its search. As the deepest levels of the
search terminate, they deallocate their local variables and return control to the suspended
search task immediately above them in the directory tree.

With high-level languages such as Pascal and C, recursion is supported by making
a call to a procedure from within that procedure. Working in assembly language, you must
be a little more attentive to the housekeeping for local variables and return addresses so
that each invocation of the recursive procedure has its own set of parameters and locals,
and knows how to return control to its caller. Luckily, the LINK and UNLK instructions
of the 68000 make these tasks almost trivial. By defining your search procedure with a
stack frame, you can perform recursion just as if you were in a high-level language. If
you have ever had to do this sort of thing on a processor without LINK and UNLK,
you will really appreciate these instructions now. If you haven't ever tried recursion in
another assembly language, then take my word for it, the 68000 is the best of the lot for
this kind of job.

The basic strategy for the search ofHFS volumes begins with an iterative outer loop
that fetches the available volumes, just as we did for the MPS search. Because the volumes
(i.e., internal drive, external drive, hard disk, RAM disk, etc.) are kept in a sequential
list by the operating system, an iterative loop is what we need to index through all the
volumes.

Each time we find a new volume, we will pass its volume reference number to our
recursive search procedure. We will also pass a level parameter, beginning with 0 for the
root directory, to help us keep track of how deeply we have gone into the hierarchy of
subdirectories. Each time we begin to explore a new folder, the level parameter is increased
by one and the working-directory reference number for the folder is passed to the search
procedure in place of the volume-reference number parameter.

Within each folder, the available files will be examined with an indexed linear search,
much like the one used to find all the files on an MPS volume. The difference here is
that the linear search will be interrupted every time a folder is encountered. After that
folder has been searched, control returns to the original linear search and the rest of the
files at that level can be examined. Figure 5.5 (page 135) shows how a sample search might
progress on an HFS volume.

134

----------- HFS, MFS, AND THE STANDARD FILE PACKAGE -----------

Search path

FIGURE 5.5. Search path on HFS volume

HFS-Specific Routines
In order to get the information you need to guide a recursive search, you must use several
File Manager routines that are only available on HFS systems (that is, systems with 128K
ROMs or HD20 on the boot disk). Before you try to use any of the HFS-specific routines,
make sure that you test for the presence of HFS, as outlined in an earlier section.

There are two ways to get at the new routines. Some of the HFS routines are just
extensions of the original MPS File Manager routines. For example, our MFS search called
GetVollnfo to get the volume reference number of each volume. For the HFS search,
we will call the HFS variant of this routine called HGetVInfo. The two routines are very
similar, except that HGetVInfo returns additional information unique to HFS in a 122-byte
parameter block (as opposed to the 80-byte block used by GetVollnfo). In order to get
the HFS variant of an original File Manager routine, you must set bit 9 of the trap word.
For example, the trap word for GetVollnfo is $A007. The trap word for HGetVInfo is
$A207. Again, remember that the HFS variants usually require a larger parameter block.
And don't use an HFS call unless you have checked for the presence of HFS in the system.

135

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

The other kind of HFS-only calls are new routines that do not correspond to any
of the original File Manager entry points. All these new routines are reached through a
single trap word, HFSDispatch ($A060). In order to select one of the new routines, you
place a selector word in register DO (not on the stack!) and then call HFSDispatch. The
selector values for the new routines are listed below. For a description of the routines,
see the new File Manager chapter released by Apple as part of the December 1985 Soft
ware Supplement.

Routine

OpenWD
CloseWD
CatMove
DirCreate
GetWDlnfo
GetFCBlnfo
GetCatlnf o
SetCatlnfo
HSetVollnfo
LockRng
UnlockRng

Selector Value

1
2
5
6
7
8
9

10
11
16
17

HFSFHeSearch Code
This module is listed in its entirety in Appendix A as HFSFileSearch.ASM and is included
on the source code disk available from the author. At the beginning of the HFS search
source code, we define some macros to help call the HFS-specific routines that we will
be using as well as some additional offset constants to identify HFS-specific fields of the
parameter block in which we will be interested. We also XREF our routine entry point
so that it can be linked with a main program module and identify the register that we
expect to hold the text edit handle, into which we will be inserting the volume, folder,
and file nalnes.

File HFSFileSearch.ASM

This is a module that will search all available volumes
and look at all files in each HFS directory.
It expects to find a TEHandle in register D7.

INCLUDE
INCLUDE

MACRO

MacTraps.D
SysEqu.D

JIFSDispatch = DC.W $A060 I

136

----------- HFS, MFS, AND THE STANDARD FILE PACKAGE -----------

MACRO

MACRO

MACRO

MACRO

_HGetVInfo =

_GetCatinfo
MOVE.W
_HFSDispatch
I

_Open WO
MOVE.W
_HFSDispatch
I

_Close WO
MOVE.W
_HFSDispatch
I

DC.W $A207 I

#9,DO

#1,DO

#2,DO

; offset constants for HFS parameter block
ioDirID SET 48
ioDrDirID SET 48
ioWDProcID SET 28

XDEF HFSFileSearch

global register
TEReg SET 07 ; we need to insert text here

We need to define the offset constants that allow us to allocate and access a parameter
block and other local variables on the stack frame when the HFSFileSearch procedure
is called. The definitions here are similar to those for the MPS search, except for the larger
parameter block allocated for HGetVInfo.

HFSFileSearch

; stack frame offsets for local variables
volname SET -32 allow for Jl char name
pBlock SET volname-122 ; space for HFS parameter block
index SET pBlock-2

LINK A6,#index reserve space for locals

137

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

TST.L
BEQ

Once the stack frame is allocated, we check to make sure that there is a valid
TEHandle in register 07 before proceeding with our search. Assuming that we have a
TEHandle, we set up the necessary fields of the parameter block for the call to HGetVlnfo.
The setup is the same as it was for GetVollnfo in the MFS flle search. The difference
here is that HGetVollnfo will always return the volume reference number of the root direc
tory of an HFS volume, whereas GetVollnfo will return the working-directory reference
number of a subdirectory if that directory has been made the default directory. Because
we always want to search through all the directories on a volume, we use HGetVlnfo.

Just as we did for the MFS volume search, we begin our indexed search with a volume
index of 1, iterating until a negative result tells us that all the volumes have been sampled.

TEReg
noMoreVolumes

; crash protection

; Set up parameter block for GetVollnfo
LEA pblock(A6),AO get address of parameter block
MOVE.L #0,ioCompletion{AO) no completion routine
LEA volname(A6),Al get our string ptr
MOVE.L Al,ioVNPtr(AO) install in parameter block
MOVE.W #0,ioVRefNum(AO) force it to use index instead

; start with volume #1
MOVE.W #1,index(A6)

volumeLoop
LEA
MOVE.W

pblock(A6),AO ; get address of parameter block
index(A6),ioVollndex(AO) ; install index number

JIGetVInfo
BM! noMoreVolumes we have looked at them all

Each time we find a volume, we insert its name and a carriage return in the text
edit record, just as we did for the MFS file search. The bytes holding the volume name
reside in the stack frame allocated for HFSFileSearch.

;**
; insert the volume name in the text edit record
; PROCEDURE TEinsert(text:Ptr;length:LONGINT;hTE:TEHandle)
PEA volname+l(A6) skip length byte
MOVE.B volname(A6),DO length byte
AND.L #$000000FF,DO mask off upper bytes
MOVE.L DO,-(SP) put length on stack
MOVE.L TEReg,-(SP) TEHandle
_TE Insert

138

----------- HFS, MFS, AND THE STANDARD FILE PACKAGE -----------

; PROCEDURE TEKey(theKey:CHAR;hTE:TEHandle)
MOVE.W #lJ,-(SP) carriage return
MOVE.L TEReg,-(SP) ; hTE
_TEKey

;**

Then for each volume we call our search procedure, SearchDir. This procedure
expects to find a volume reference number and a level indicator on the stack as parameters.
We pass the reference number for the volume, obtained by the call to HGetVlnfo, and
a level value of 0 to indicate that we are starting our search at the root level of the volume.

reset parameter block ptr
LEA pblock(A6),AO

; now go into the interesting part, search each directory
MOVE.W ioVRefNum(AO),-(SP) volRefNum of volume
MOVE.W #0,-(SP) ; top level
BSR SearchDir

The single call to SearchDir is sufficient to find all the files on a volume, although
as you shall see in the discussion of SearchDir, many things will happen before the routine
returns control to the HFSFileSearch loop. Once we do come back, the volume index
is incremented and we loop back to look for the next volume, just as we did for the MFS
search. When all the volumes have been treated in this way, we deallocate the stack frame
and return to the calling program.

increment the volume index counter
ADD.W #1,index(A6)
BRA VolumeLoop go check another volume

noMoreVolumes

; clean up and go back

UNLK
RTS

A6

tab DC.B J2,J2,J2,J2,J2

.ALIGN 2

deallocate stack frame
return to caller

used to indent rile names

this is IMPORTANT!!
otherwise, SearchDir begins
on an odd address

139

I

------ THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II ------

The subroutine SearchDir is set up to accept two parameters on the stack. It also
keeps a parameter block, space for file/folder names, and an index INTEGER as local
variables. All these items are maintained by setting up a stack frame and defining the offset
constants necessary to access the individual components of the stack frame. Figure 5.6
shows the stack frame for SearchDir.

level:

return address : 4 bytes

old AG value: 4 bytes

volname: 32 bytes

pBlock: 1 08 bytes

10(AG)

S(AG)

4(AG)

(AG)

-32(A6)

-140(AG)

-142(AG)

(SP)

FIGURE 5.6. Stack frame for SearchDir

140

----------- HFS, MFS, AND THE STANDARD FILE PACKAGE -----------

;--
PROCEDURE SearchDir(refNum,level:INTEGER)
we call this routine everytime we encounter a folder
if a folder is found within a folder, then this is called recursively

SearchDir

stack frame equates

parameters
level SET 8
refNum SET 10
parambytes SET 4

; stack frame offsets for local variables
volname SET -32 allow for 32 char name
pBlock SET volname-108 space for parameter block
index SET pBlock-2 keep our index here

LINK A6,#index reserve space for locals

The initial strategy for this routine is similar to that used in the MFS search of a
volume. A parameter block is prepared, and the index field is set to one so that we can
step through the available files. The difference here is that we will be calling GetCatlnfo
instead of GetFilelofo. GetCatlnfo will return information about folders as well as files
encountered in the indexed search, while GetFilelofo will only return information about
files. One other difference is that we take the refNum parameter off the stack and install
it as the ioVRefNum field of the parameter block before calling GetCatlofo. For the root
level of a volume, the refNum parameter will be the volume reference number for the
volume. As we dig deeper into the folder, the refNum will be a working-directory reference
number.

; Set up
LEA
MOVE.L
LEA
MOVE.L

parameter block for GetCatinfo
pblock(A6),AO get address of parameter block
#0,ioCompletion(AO) no completion routine
volname(A6),Al get our string ptr
Al,ioVNPtr(AO) install in parameter block

; start with file index #1
MOVE.W #1,index(A6)

141

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

fileLo<;>p
LEA
MOVE.W
MOVE.W
_GetCatinfo
BMI

pBlock(A6),AO
Index(A6),ioFDirindex(AO)
refNum(A6),ioVRefNum(AO)

noMoreFiles

get address of parameter block
install index number

; this could be WDRefNum

we have looked at them all

We continue to call GetCatlnfo until a negative result tells us that all the files and
folers on this level have been examined. Each time we find a file or folder, we insert its
name into the text edit record, as we have done for the volume names. One additional
twist we add here is that the amount of indentation is determined by the level parameter
passed to SearchDir. The volume names are inserted at the left margin of the window.
As we search the root directory, level O, we indent the file and folder names five spaces.
If a new folder is encountered, its contents, whether files or folders, are indented an addi
tional five spaces. The result of this strategy is shown in Figure 5.7.

;**
insert five spaces to indent file names from volume name
each level increases amount of indentation

MOVE.L D5,-(SP) save register
MOVE.W level(A6),D5 ; amount to indent

; PROCEDURE TEinsert(text:Ptr;length:LONGINT;hTE:TEHandle)
@O PEA tab 5 spaces, defined statically

MOVE.L #5,-(SP) put length on stack
MOVE.L TEReg,-(SP) TE Handle
_TEinsert
DBRA
MOVE.L

05,@0
(SP)+,D5 ; restore register

; insert the file/folder name in the text edit record
; PROCEDURE TEinsert(text:Ptr;length:LONGINT;hTE:TEHandle)
PEA volname+l(A6) skip length byte
MOVE.B volname(A6),DO length byte
AND.L #$000000FF,DO mask off upper bytes
MOVE.L DO,-(SP) put length on stack
MOVE.L TEReg,-(SP) TE Handle
_TEinsert

; PROCEDURE
MOVE.W
MOVE.L
_TEKey

TEKey(theKey:CHAR;hTE:TEHandle)
#lJ,-(SP) carriage return
TEReg,-(SP) ; hTE

;**

142

----------- HFS, MFS, AND THE STANDARD FILE PACKAGE -----------

Indented File List

Root folder
Folder #1

Folder #3
Folder #5

Doc#6
Doc#?
Doc#S

Doc#3
Doc #1
Folder #2

Folder #4
Doc#4
Doc #5

Doc #2

FIGURE 5.7. HFS file tree and indented list

143

Doc #2

Doc #8

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

Once the name of the file or folder has been indented and inserted, we must deter
mine if it is a file or a folder. We can make this distinction by looking at bit number 4
of the ioFLAttrib field of the parameter block after the call to GetCatlnfo. This bit will
be set if we are looking at a folder. If it is a file, then we will simply increment the file
index and loop back to continue our linear search of this directory, as shown in Figure
5.5. If we fmd that this is a folder, then we must call OpenWD to get a working-directory
reference number for this folder and then use that WnrefNum as input to SearchDir.
This is where the power of reeursion comes into play. Because a WDrefNum is the same
as a volUm.e reference number, w.e can call SearchDir recursively at this point to search
the new folder in exactly the Sam.~ way as SearchDir was called to search the root directory
of the volume.

reset parameter block ptr
LEA pblock(A6),AO

; find out if this is a file or a folder
BTST #4,ioFLAttrib(AO) is this a folder?
BEQ @1 ; only a file

if this is a folder, then call ourselves recursively
increase the level by 1
make the folder into a new working directory
and pass WDRefNum as new ioVRefNum

MOVE.L
_Open WO

#0,ioWDProcID(AO) NIL proc

; ioVRefNµm now refers to the directory rather than the volume
MOVE.W ioVRefNum(AO),-(SP) WDRefNum of folder
MOVE.W level(A6),DO current level
ADD.W #1,DO increase it
MOVE.W DO,-(SP) new level
JSR SearchDir

At the point where the recursive call is made to SearchDir, the original linear search
of the root directory by SearchDir is suspended. Because the recursive call to SearchDir
causes a new stack frame to be allocated, the parameters and locals of the two invocations
of SearchDir remain separate and do not interfere with each other. If the search of the
new folder encounters another folder, then an additional call to SearchDir, with its own
stack frame, will be initiated. You can see how this chain can continue, with each level
being suspended until the next lowest level completes its search of the subdirectory. Study
the code section shown above and the diagram in Figure 5 .5 until you get a feel for how
the recursion works. Its beauty is in the consistency with which it treats repeated encoun
ters with folders.

144

----------- HFS, MFS, AND THE STANDARD FILE PACKAGE -----------

When the recursive call to SearchDir returns, we increment the file index value and
continue our linear search of the current directory. It doesn't really matter if the call to
SearchDir encountered 1 or 25 nested folders, we simply wait until our call to SearchDir
returns control and then continue with our search, using the values of the local stack frame
to guide the search. When all the files and folders in a particular directory have been
examined, we call CloseWD to match the call to OpenWD that was called just before we
searched the directory. We did not call OpenWD for the root directory, but CloseWD
has no effect when called for the root directory, so it doesn't hurt to call it every time
we exit. It is a good idea to close working directories when you are done with them since
the operating system must maintain a lengthy data structure in memory for all open
directories.

@1 increment the file index and loop again
MOVE.W #1,DO
ADD.W DO,index(A6)
BRA FileLoop check the next file

noMoreFiles

; close the working directory for this level
; the parameter block is already set up for this
_CloseWD

UNLK
MOVE.L
ADDA
JMP

~SUMMARY

A6
(SP)+,AO
#parambytes,SP
(AO)

get return address
clear parameters
return

In dealing with the differences between MFS and HFS, you can avoid most difficulties
by channeling all file access through the Standard File routines. These procedures return
all the information necessary to uniquely identify files on MFS and on HFS volumes.
Using the Standard File Package provides the user with a consistent interface to the
Macintosh's filing system and insures that your program will have minimal problems
accessing files.

There are times, however, when you don't want to have the user designate a file from
a Standard File dialog. In these situations, you will need to look at the available volumes
directly. At that point, you need to pay attention to the differences between MFS and HFS.

You can iterate over all the available volumes in the system by making indexed calls
to GetVollnfo or HGetVInfo. By beginning with an index of one, and continuing until
you get an error, you may get information about each volume.

145

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

For each MFS volume, you may make a similar linear indexed search of all the files
with repeated calls to GetFdelnfo. On an HFS volume, you must adopt a recursive strategy
that will search each subdirectory as it is encountered in order to touch on all the files
on a volume.

The key to this recursive strategy is the fact that a working-directory reference num
ber, returned by OpenWD, can be used in place of a volume reference number. This allows
us to use the same routine to search directories and volumes. Actually, an HFS volume
can be thought of as a big directory. Or better yet, an HFS directory can be thought of
as a small volume. Recursion.

The allocation and deallocation of stack frames with LINK and UNLK makes the
task of writing recursive routines in assembly language almost trivial. All along we have
been writing assembler routines that accepted parameters and kept local variables. These
techniques are directly applicable to recursive routines.

You should be aware that these stack frames take up space on the system stack. The
default stack size on a Macintosh is SK. The stack frame for our recursive search routine
occupies 154 bytes. Each time you encounter a new level of nested subdirectories, 154
bytes of the stack are eaten up. If you are running on a system where the folders are nested
very deep, you might run into problems when the stack grows beyond its 8K limit, although
the folders would have to be nested over SO levels deep before you ran out of stack space.

14&

CHAPTER

Making Your Macintosh Talk

In the May 1985 issue of the Macintosh Software Supplement, Apple released a package
of tools and code units collectively called MacinTalk 1.1. With these tools programmers
can make their Macintosh programs talk without any additional hardware. In this chapter
we'll explore the general workings of MacinTalk and develop a dialog-based application
program in assembly language that will show you how to use the main features of MacinTalk
in your own programs. 1

l!2J OVERVIEW OF MACINTALK

The MacinTalk system's most basic component is a driver that contains several procedures
available to your programs. The driver is contained in a file called Macmralk, and this
file must be on the same volume as any application that wishes to use the MacinTalk driver.
The most basic function of the driver is to convert ASCII strings of phonetic codes into
speech. You can also use another part of the driver to convert standard English text into
phonetic codes that can then be spoken by the driver. Furthermore, there are parts of
the driver that you can use to control the rate of speaking and the pitch.

Beyond the actual driver procedures you will be using in your programs, there are
a few tools that can help while you are preparing a program that will use speech. The
program Speech Lab allows you to enter English text in one window, then hear the
MacinTalk speech and see the phonetic translation in another window. This program is
very useful for learning the tricks of MacinTalk's phonetic code system. For example, the

'Significant portions of this chapter appeared originally in the November 1985 issue of MacTutor
magazine. Permission has been granted by the publisher, David Smith, to reprint the material here.

147

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

English sentence "This is a test" is translated into the phonetic string "DHIHS IHZ AH
TEHST.#". This program can be used to pretranslate strings that your program will speak
when the strings are known ahead of time. It is more efficient, both in time and memory,
to feed phonetic strings directly to the MacinTalk driver rather than to rely on translation
at run time. Also, if you pretranslate you will be able to fine-tune the phonetics, because
the translation is not always perfect.

The translation of English to phonetics is governed by hundreds of phonetic and
grammatical rules contained in the MacinTalk driver, but these rules will not get every
word right. Another program in the MacinTalk 1.1 package is Exception Edit. This pro
gram allows you to create a special file of tricky words and their correct phonetic transla
tion. Exception Edit lets you experiment with the phonetic strings until you get them
right, and then save those translations for later use. A file created by Exception Edit can
be automatically loaded and utilized by mentioning it when the MacinTalk driver is opened,
as shown in a later section of this chapter.

~] THE MACINTALK DRIVER

Listed briefly below are seven procedures in the MacinTalk driver that your program can
call.

FUNCTION SpeechOn(ExceptionsFile: Str255; theSpeech: SpeechHandle): SpeechErr This
function opens up the driver and initializes the values for speed and pitch. If you pass
a null string for ExceptionsFile, then the translation of English to phonetics will follow
the standard rules. If you pass a valid file name for ExceptionsFile, then that file, which
must have been created by Exception Edit, will be used to help guide translation. If you
pass the string 'noReader' for ExceptionsFile, the driver will be opened but able only to
receive phonetic input and unable to translate English to phonetics.

PROCEDURE SpeechOff(theSpeech: SpeechHandle) This procedure closes the driver and
deallocates any storage that it has been using.

FUNCTION MacinTalk(theSpeech: SpeechHandle; Phonemes:Handle): SpeechErr The work
horse of the driver, this is where phoneme code strings are converted to speech. The handle
to the phonemes should refer to a string of ASCII phonemes without a length byte.

FUNCTION Reader(theSpeech: SpeechHandle; Englishlnput: Ptr; lnputl.ength: Longlnt; Pho
neticOutput: Handle): SpeechErr This is where English strings are translated into phonetic
strings that can then be fed to MacinTalk. The Ptr to Englishlnput should not point to
a length byte of a Str255. Instead it should point to the first character. The handle for
PhoneticOutput can start out as a zero-length handle, and Reader will dynamically grow
the handle to fit the output.

148

------------- MAKING YOUR MACINTOSH TALK -------------

PROCEDURE SpeechRate(theSpeech: SpeechHandle; theRate:INTEGER) This sets the rate
at which words are spoken in words/min. The rate must be between 85 and 425 words/min.

PROCEDURE SpeechPltch(theSpeech: SpeechHandle; thePitch: INTEGER; theMode: FO·
Mode) This sets the baseline pitch in Hz and also sets the pitch mode, either natural
or robotic. The pitch value must be between 65 and 500. A word-length parameter of
0 specifies natural mode and 256 selects robotic mode. If you want to change the pitch
while leaving the mode unchanged, then call SpeechPitch with a valid pitch parameter
value and 512 for the mode parameter. To change the mode without changing the pitch,
use 0 or 256 for the mode parameter and a value out of the defined range for the pitch
parameter.

PROCEDURE SpeechSex(theSpeech: SpeechHandle; theSex:Sex) This is not implemented
in MacinTalk 1.1.

The glue which calls the various procedures in the driver is contained in the file
SpeechASM.Rel, also available in the Software Supplement. Make sure that you include
SpeechASM.Rel in the link file for your application so that the driver routines will be
available to your code. Also, you must XREF the individual routines that you wish to
use. The second half of this chapter shows an example program using the speech driver
and the glue routines.

lg CHEAPTALKll: A SIMPLE SPEECH APPLICATION EXAMPLE

The Software Supplement contains the source code for a very short example program that
shows how to use the speech driver. As usual, the example program is in Pascal, so we
assembly language programmers have to muddle along and figure things out ourselves.
CheapTalkll is an assembly language application that speaks pretranslated text stored in
a resource file and also translates and speaks user input at run time. CheapTalkll opens
a dialog and speaks the static message one time. Then it waits for the user to type English
text into an edit text box in the dialog. Hitting return or pressing a "Say it" button will
translate the English text into phonemes and then say it. The dialog box also includes
radio buttons to select natural or robotic speech and two edit text boxes to allow the rate
and pitch to be set. Figure 6.1 (page 150) shows the CheapTalkll dialog.

This application will show you how to open and close the driver and how to use
MacinTalk and Reader from assembly language. It also uses the procedures to control the
speed, pitch, and mode of the speech. The complete source files for this program, including
the assembler source, CheapTalkll.ASM; the link file, CheapTalkll.LINK; and the RMaker
file, CheapTalkll.R are listed in Appendix A and are also available ori the source code
disk from the author.

149

_____ THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II ------

This is a talking dialog demonstration

~his is a test of the emergency broadcasting
network. In the euent of a real emergency you
would be instructed to tune to this station for
further instructions. This is only a test.

~speech rate @natural

~

~speech pitch 0 robotic

Quit (Say it)

FIGURE 6.1. CheapTalk II dialog

The Documentation Header
The code begins with comments outlining the main functions of the program.

CheapTalkII.ASM
A short program to demonstrate how to
use Macintalk 1.1 from assembly language.

This program displays a dialog and speaks
the written message in the dialog.

It also will speak English strings written
into an edit text box in the dialog.

Edit text boxes allow user to set speech rate and pitch,
radio buttons allow a choice of natural or robotic speech.

Portions of this program originally appeared in
the November 1985 issue of MacTutor magazine.

January 1986, Dan Weston

150

------------- MAKING YOUR MACINTOSH TALK -------------

Making the Connection to SpeechASM.Rel
Next, we need to make the XREF statements necessary for the linker to establish the con
nection between our routine calls and the SpeechASM.Rel code that we link with our code.

This program uses subroutines from the file SpeechASM.rel
You must include that file in your link file list
and XREF the particular routines here.

You must also have the file 'MacinTalk' on the same volume as
this application program.

XREF
XREF
XREF
XREF
XREF
XREF

INCLUDE
INCLUDE
INCLUDE

SpeechOn open driver
MacinTalk say something
Reader translate English to phonemes
SpeechPitch set pitch
SpeechRate set rate
SpeechOff close the driver

MacTraps.D
ToolEqu.D
SysEqu.D

SpeechASM.Rel is a code file containing the glue routines necessary to call the
individual procedures contained in the driver. SpeechASM.Rel does not contain the actual
speech routines, just short procedures to call the appropriate section of the MacinTalk
driver. All the routines of the speech driver expect their parameters on the stack. We also
include three regular symbol files here to assist in the nonspeech part of our code.

Setting Up Equates
We begin the equates section by defining the resource ID number for the dialog and the
item numbers for the individual items in the dialog. The resource compiler source code
is listed separately at the end of this chapter.

----- THE COMPLETE BOOK OF MACINmSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

Next, we define some values to use with the speech driver routines. There is no
symbol file containing these values, so we define them ourselves.

input values
noChange
robotic
natural

for SpeechPitch to change mode
EQU 512
EQU 256
EQU 0

; minimum and maximum values for SpeechPitch and SpeechRate
pitchMin EQU 65
pitchMax EQU 500
rateMin EQU 85
rateMax EQU 425

tab Char
backspace
CR

myDialog

We also need to define the ASCII code equivalents for three characters that we want
to treat in a special way in our dialog filter procedure. The filter proc is det.ailed in a later
section of this chapter.

EQU 9
EQU 8
EQU 1.3

let this char through filter
and this one and
carriage return

Finally, we define a symbolic name for a safe register in which to keep a pointer
to the main dialog. We will use this pointer many times during the program, so it is a
good idea to keep it handy in a register.

EQU A2 ; use this register to store DialogPtr

Defining Macros
Because we will be using numbers typed into edit text boxes in the dialog to set the pitch
and rate of the speech, we need to use the Package Manager routines StringToNum and
NumToString to convert back and forth between text and numeric value. Since these rou
tines are not accessible directly as part of the ROM, we define two macros to call them
through the Package Manager routine Pack7. We do this for convenience and to increase
the readability of the code, but you could just as easily write out the necessary code each
time you needed to call one of these routines.

152

------------- MAKING YOUR MACINTOSH TALK -------------

MACRO _StringToNum string,num
LEA {string},AO
MOVE.W #1,-(SP)
Jack?
LEA
MOVE.L
I

{num},AO
DO, (AO)

MACRO _NumToString num,string
MOVE.L {num},DO
LEA {string},AO
MOVE.W #0,-(SP)
_Pack?

I

Setting Up the Global Variables for Speech

theSpeech
speechOK
theString
phHandle

ItemHit
the Type
the Item
theRect

theNum

Next, notice the global variable theSpeech, defined as a long word to hold the handle
to the speech globals that will be allocated when the driver is opened. We only have to
define a variable to hold the handle; the opening routine will allocate the necessary storage
for the speech globals. Other globals that we need to define include a word-length flag
that we use to show if the driver was successfully opened; a 256-byte block to hold an
English string; and a handle which will be used for phonetic output from Reader. We
also define some utility variables to use as VAR parameters with some of the dialog main
tenance procedures.

Global Variables

DS.L 1 handle to speech driver globals
DS.W 1 our flag to show if driver open
DS.B 256 VAR for GetIText
DS.L 1 handle to phonetic string

DS.W 1 VAR for ModalDialog
DS.W 1 VAR for GetDitem
DS.L 1 VAR for GetDitem
DS.W 4 VAR for GetDitem

DS.L 1 VAR for StringToNum

153

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

Initialization

BSR.W

We begin the code by initializing all the required managers. Since this program is dialog
based and uses no menus, we can skip InitMenus in our initialization subroutine.

Initialization -------------------------------

InitManagers ; at end of source file

The initialization subroutine is listed here, out of order, for your convenience. Be
sure to consult the program listing in Appendix A for the correct order of placement.

;------------------------ Initialize Managers Subroutine -----------------------
InitManagers

;PROCEDURE InitGraf (globalPtr: QDPtr);
PEA -4(A5) space created for QuickDraw's use
_InitGraf Init QuickDraw
_InitFonts Init Font Manager
_InitWindows Init Window Manager
;PROCEDURE InitDialogs (restartProc: ProcPtr);
CLR.L -(SP) NIL restart proc
_InitDialogs Init Dialog Manager
_TEinit
_InitCursor
RTS

Opening the Driver

set arrow cursor
end of InitManagers

When we call SpeechOn to open the driver, we specify the null string (a Pascal string
with length O, which we defme in the static variable area at the end of the code) for the
ExceptionsFile so that the Reader will translate English to phonetics using the default
rules. If we had created a specific exceptions file with Exception Edit, then we could pass
in the name of the specific exception file to be used. We also pass the address of our global
variable, theSpeech, so that it can be updated to hold the handle to the speech globals
that will be allocated by the Open routine.

154

------------- MAKING YOUR MACINTOSH TALK -------------

--------------------------- Open the Speech Driver ---------------------------

open speech driver to use default rules

assume that driver will open all right, set our flag to TRUE

MOVE.W #1,speechOK(A5) ; set flag to TRUE

;FUNCTION SpeechOn(ExceptionsFile:Str255;
VAR thespeech:Speechhandle;
): SpeechErr

CLR.W -(SP) result
PEA NULL defined at end of source
PEA theSpeech(A5) VAR theSpeech
JSR SpeechOn jump to open routine
MOVE.W (SP)+,DO check result
BEQ @1 branch if ok

if driver open not successful then clear speechOK flag
to prevent further use of invalid driver

MOVE.W #O,speechOK(A5)

you could also put an error dialog here

@1 branch to this point if open is successful

code

You can see how the result code is checked after SpeechOn to see if the driver was
opened successfully. In the event of a nonzero result, implying a problem with the open
ing, we set the speechOK flag to 0 and continue on with the program. All other parts
of the program using the speech driver first check the speechOK flag to make sure that
there is a valid driver to work with.

Opening the Dialog
Next, we need to get the dialog from the resource file and open it up on the screen. Also,
since the speech driver always begins in natural mode by default, we set the natural radio
button to the on position before drawing the items in the dialog box. GetNewDialog draws
the outline of the dialog box, but the items inside the box are not drawn until you call
DrawDialog or ModaIDialog.

155

------ THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II ------

;-------------------- Get the Dialog from the Resource File --------------------

;FUNCTION GetNewDialog (dialogID: INTEGER; dStorage: Ptr;
behind: WindowPtr) : DialogPtr

CLR.L
MOVE
CLR.L
MOVE.L

-(SP)
#theDialog,-(SP)
-(SP)
#-1,-(SP)

_GetNewDialog
MOVE.L (SP)+,myDialog

;PROCEDURE SetPort (gp: GrafPort)
MOVE.L myDialog,-(SP)
_SetPort

clear space for DialogPtr
resource #
storage area on heap
above all others
get new dialog
move handle to A2

move DialogPtr to stack
make it the current port

We set the radio button to the on position by setting its control value to 1. We get
the handle to the radio button's control record by using GetDitem, and then use that
handle as input to SetCtlValue. If you have any dialog that uses radio buttons or check
boxes, they can be manipulated in this way by using the appropriate Control Manager
routines.

set the natural button
;PROCEDURE GetDitem(thedialog:DialogPtr;itemNo:INTEGER;

VAR type:INTEGER: VAR item: Handle;
VAR box: Rect)

MOVE.L myDialog,-(SP) we saved DialogPtr here
MOVE.W #naturalbutton,-(SP) item
PEA theType(A5) VAR type
PEA theitem(A5) VAR item
PEA theRect(A5) VAR box
_GetDitem

;PROCEDURE SetCtlValue(theControl:ControlHandle;
theValue:INTEGER)

MOVE.L theitem(A5),-(SP)
MOVE.W #1,-(SP)
_SetCtlValue

Finally, after the control has been set to the proper setting, we draw the contents
of the dialog. Normally we would just wait until we called ModalDialog instead of forc
ing the contents to be drawn with DrawDialog. In this program, however, we will be call
ing on the speech driver to speak a message before going on to call ModalDialog, so it
is best to make sure that the contents get drawn here.

156

------------- MAKING YOUR MACINTOSH TALK -------------

usually you would not use DrawDialog, but we need to draw the
dialog contents once before saying them, then go to ModalDialog
which will draw the contents again

;PROCEDURE DrawDialog(dp:DialogPtr)
MOVE.L myDialog,-(SP)
_DrawDialog

Speaking Pretranslated Speech
The static message in our dialog box is "This is a talking dialog demonstration:' A pho
netic translation of that string is kept in the resource file as a resource of type PHNM.
The translation was done using Speech Lab, and the resulting phonetic string put into
the RMaker source file, CheapTalkil.R. The PHNM resource type is defined as a GNRL
type using the . S designation so that the phonetic string does not have a length byte. As
a general strategy you can translate the static message of any dialog into a PHNM resource
with the same resource ID number as the dialog. That way, it is easy to display the dialog
and speak the message together ..

When the PHNM resource is loaded into memory by GetResource, you get a han
dle to the phoneme string that you can pass to MacinTalk to recite. Remember, no length
byte on phonetic strings! Generally, you should pretranslate any strings that you know
at assembly time in order not to waste time and memory translating at run time and also
to insure higher quality speech by testing and refining the phonetic strings.

We also make calls to CheckRate and CheckPitch at this time to be sure that the
speech rate and pitch setting in the speech driver match the settings shown in the edit
text boxes of the dialog. Those two subroutines are discussed in a later section of this
chapter.

;-------------------------- Speak Pretranslated Speech --------------------------

now say the static text item which has been pretranslated into
a phoneme string with the same ID as the dialog

first, check our flag to make sure that driver is open

TST.W
BEQ

speech0K(A5)
@2

driver valid, go ahead and speak

driver not valid
branch around speech stuff

157

------ THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II ------

match the rate and pitch to the edit text boxes
BSR.W CheckRate
BSR.W CheckPitch

;FUNCTION
CLR.L
MOVE.L
MOVE.W

GetResource(theType:ResType:ID:INTEGER):Handle
-(SP) space for result
#'PHNM',-(SP) resource type PHNM
#theDialog,-(SP) use same ID as dialog

_GetResource
MOVE.L (SP)+,AO handle to phoneme string

;FUNCTION MacinTalk(theSpeech:SpeechHandle;Phonemes:Handle)
:SpeechErr

CLR.W -(SP) space for result code
MOVE.L theSpeech(A5),-(SP) speech global handle
MOVE.L AO,-(SP) phonemes, from above
JSR MacinTalk say it
MOVE.W (SP)+,DO get result code

@2 ; branch to here to avoid speaking with invalid driver

Notice how the speechOK flag is checked before any of the speech driver code is
used. This is important to do because trying to use the driver after an unsuccessful Speech
On will cause a system crash. Notice also how the speech given to MacinTalk is refer
enced by a handle, not a pointer.

This section of code is executed only once, at the beginning of the program. From
then on, all the speaking will involve translating English text from the edit text box into
phonemes and then speaking.

The Dialog Loop
Because this program is dialog-based, its main event loop is somewhat different from the
normal Macintosh program. Instead of calling GetNextEvent repeatedly, we use Modal
Dialog to get the events and tell us which parts of the dialog are being manipulated by
the user. This makes the program easier to write, although there is a noticeable loss of
flexibility. For instance, since this program doesn't have any menus it can't get at desk
accessories.

Notice that we pass a pointer to a filter procedure as a parameter to ModalDialog.
The filter procedure we use checks on user key presses to make sure that no more than
three digits can be entered in the edit text boxes that set the speech rate and pitch. The
filter procedure is discussed in detail in the next section.

158

-------------MAKING YOUR MACINTOSH TALK-------------

;--------------------------------- DialogLoop ---------------------------------
; now process the dialog

dialogloop

;PROCEDURE ModalDialog (filterProc: ProcPtr;
VAR itemHit: INTEGER)

PEA
PEA

MyFilter
ItemHit(A5)

filter proc
ItemHit Data

_ModalDialog

see which button was pushed
CMP.W #quitbutton,ItemHit(A5) quit button?
BEQ closeit

CMP.W
BEQ

CMP.W
BEQ

CMP.W
BEQ

BRA.W

#sayitbutton,ItemHit(A5); say it?
sayit

#naturalbutton,ItemHit(A5)
SetNatural

#robotbutton,ItemHit(A5)
SetRobotic

dialogloop ; go around again

When ModalDialog returns, we check the result in ItemHit to see if any significant
user action took place and branch accordingly. This loop is equivalent to the main event
loop in most Macintosh application programs.

The Dialog Filter Procedure
As mentioned above, we pass a pointer to a procedure as a parameter to ModalDialog
so that the procedure will be called every time ModalDialog executes. The filter proce
dure is called at the beginning of ModalDialog, just after ModalDialog has called Get
NextEvent. The filter procedure gets to take the first look at the event before the regular
code of ModalDialog has a go at it. The filter procedure is passed the dialog pointer,
the event record, and a VAR parameter for the ltemHit. It returns a BOOLEAN result.
If the filter procedure returns FALSE, then ModalDialog will go ahead and process the
event normally. If the filter procedure returns TRUE, then ModalDialog will ignore the
event, returning immediately to the calling program with its ItemHit VAR set to the value
of the filter procedure's ltemHit. Using a filter procedure allows you to screen the events
coming into a dialog.

159

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

In this program, we want to make sure that the user can enter into the edit text boxes
only those digits that set the speech rate and pitch. Furthermore, we want to allow a max
imum of three digits in each of those boxes. Every time there is a key-down event, we
filter the nondigit characters out if the text is destined for one of those two edit text boxes.

We begin this procedure by setting up a stack frame in which to locate the three
parameters and function result.

;------------------------------- Filter Procedure
MyFilter
;FUNCTION MyFilter(theDialog:DialogPtr;VAR theEvent:EventRecord;

VAR ItemHit:INTEGER):BOOLEAN
; set up equates for stack frame

titemHit EQU 8
tEvent EQU 12
tDialog EQU 16
result EQU 20

parambytes SET 12

local variables

locals SET 0

local registers
EventReg EQU AJ
DialogReg EQU A4

LINK A6,#locals
MOVEM.L AJ-A4,-(SP) ; save registers

MOVE.L tEvent(A6),EventReg ; AJ
MOVE.L tDialog(A6),DialogReg ; A4

Next, we look at the type of event in the evtnum field of the event record to see
if this is a key-down event. If it is a key-down event, then we branch to a section of code
to do the actual filtering. Otherwise, we fall through to lnputOK, set the function result
to FALSE, and return control to ModalDialog through filterExit. Remember that a func
tion result of FALSE tells ModalDialog to handle the event in its normal fashion.

we only filter key down events
; ptr to event record in AJ

CMP.W
BEQ

#keyDwnEvt,evtnum(AJ)
keyfilter

is it key down?

160

------------- MAKING YOUR MACINTOSH TALK -------------

InputOK
set result to FALSE

MOVE.W #O,result(A6)

filterexit
MOVEM.L
UNLK
MOVE.L
ADDA.W
JMP

(SP)+,AJ-A4
A6
(SP)+,AO
#parambytes,SP
(AO)

restore registers

get return address
strip parameters
RTS

keyfilter

When we actually filter the key strokes to the dialog, there are many things to con
sider. The first thing we must do is check to see if the return key was pressed. It is a
Macintosh convention to make the return key equivalent to a mouse click in item #1 of
the dialog. In this dialog, the "Say it" button is item #1. We want the user to be able
to hear the text spoken by hitting return in any of the edit text boxes. We look at the
character in the event record and branch to a special case handler if it is the return key
(ASCII code 13). Our response to the return key is to set the ItemHit VAR of the filter
proc to 1 and set the result to TRUE. The TRUE result tells ModalDialog to return im
mediately to the calling program with ItemHit set to the filter proc's ItemHit value.

Ptr to event record in AJ
first check to see if the return key was pressed
if it was, set ItemHit to 1 and return TRUE so
that ModalDialog will return immediately with
ItemHit set to 1

MOVE.W evtmessage+2(AJ),DO get the character

CMP.B
BEQ

#CR,DO
Do CR

was it the return key?
handle a special way

The next thing to consider is whether the cursor is currently in one of the edit text
boxes for speech rate or pitch. If the cursor is in the big edit text box that is used for
the English text, then we don't need to filter the key strokes. We determine which edit
text box is currently selected by looking at the editField field of the dialog record. The
number in this field is one less than the item number of the edit text box currently selected.
Since the filter procedure received the dialog pointer as a parameter, we can use that to
get at the dialog record and the editField field. We add 1 to the value there to correct
for the off-by-one bug and then check to see if the current text box is either the rate box
or the pitch box. If neither of these tests succeeds, then we branch to InputOK, which
sets the function result to FALSE and returns to ModalDialog without filtering the charac
ter further.

161

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

@1

; only check other characters if edit text
; is in one of the numeric boxes
MOVE.L DialogReg,AO get DialogPtr

which item # MOVE.W editField(AO),DO
ADD.W #1,DO correct #
CMP.W #ratetext,DO is it rate box?
BEQ @1 ok, filter this input

CMP.W
BNE

#pitchtext,DO
InputOK

is it pitch box?
neither, go back

If we get this far, we know that we have a key press that is not the return key des
tined for one of the two edit text boxes in our dialog that should accept only digits. There
are two more special cases that we need to check before we actually filter for digits. The
tab key is normally used to move the cursor among all the edit text boxes of a dialog,
so we want to let that character through to be processed normally by ModalDialog. In
the same way, the backspace key is used to erase the previous character, so we want to
allow that option to the user. Both of these keys (ASCII codes 8 and 9) are passed through
to lnputOK so that ModalDialog can handle them in the conventional way.

MOVE.W evtmessage+2(AJ),DO get the character

CMP.B
BEQ

CMP.B
BEQ

CMP.B
BLT

CMP.B
BGT

#tabChar,DO was it tab?
InputOK we'll let this through

#backspace,DO was it delete?
InputOK we'll let this through

Finally, we begin to look at the character to see if it is a digit. We first check to
see if its ASCII value is less than that for 0. Then we check to see if it is greater than
the ASCII value for 9. If the character passes either of these tests, it must not be a digit
and is sent to Rejectlnput, which beeps the speaker rudely and sets the filter procedure
result to TRUE so that ModalDialog will ignore this key press.

1 0' ,DO
Rejectlnput

19' ,DO
Rejectlnput

lowest digit
lower than 0

highest digit
higher than 9

162

-------------- MAKING YOUR MACINTOSH TALK --------------

The final test that we need to do, assuming that we have gotten this far, is to make
sure that no more than three digits get entered in either of the edit text boxes. To do this,
we need to examine the fields of the Text Edit record that the Dialog Manager maintains
to manage the text in the edit text boxes. For each dialog, there is a single Text Edit record
shared by all the edit text items. By getting the TEHandle from the dialog record, we
can look at the individual fields of the TE record to find out how many characters are
in the currently selected edit text box.

There are several possibilities that can occur here. First, by comparing the selection
start and selection-end fields of the TE record, we may find that one or more characters
of the box is currently selected, as shown in the rate box in Figure 6.2. If this is the case,
then the current key press will replace the selected characters, ~o it is OK to let the key
press through, even though there may already be three characters in the box. Second,
if the selection range is not a range but simply an insertion point, we need to check the
teLength field to make sure there are less than three characters before letting the current
key press through. Characters that make it through this screening process are sent to
lnputOK so that they will be handled in the normal fashion by ModalDialog.

This is a talking dialog demonstration

~his is a test of the emergency broadcasting
network. In the euent of a real emergency you
would be instructed to tune to this station for
further instructions. This is only a test.

11u•1 speech rate @natural

~

~speech pitch 0 robotic

Quit (Say it)

FIGURE 6.2. Range of text selected in rate box

163

.,

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

if we get this far, the key press is a digit
now check to make sure that we're not getting more than J digits
in the edit text item

MOVE.L
MOVE.L
MOVE.L
MOVE.W
MOVE.W
SUB.W
BMI

CMP.W
BLT

DialogReg,AO get DialogPtr
teHandle(AO),AO TERecord for edit text item
(AO) ,AO convert to Ptr
teSelStart(AO),DO get start of selection
teSelEnd(AO),Dl get selection end
Dl,DO start - end
InputOK this range will be replaced

#J,teLength(AO) is the length equal to J
InputOK less than J chars, add another

Characters that don't make it through the gauntlet, that is, nondigits and digits
destined for text boxes already having three digits, are passed to Rejectlnput. This section
of code beeps the Mac speaker briefly to let the user know that something is amiss and
then sets the result to TRUE so that ModalDialog will not process this key press.

Rejectinput
beep the speaker and return
don't let input get to DialogSelect

Do CR

;PROCEDURE SysBeep(duration:INTEGER)
MOVE.W #1,-(SP)
_sysBeep

MOVE.W
BRA.W

#$0100,result(A6)
filterexit

set TRUE so modal ignores input

The last section of code is the special case handler for the return key, as discussed
above. All it does is set the ItemHit to 1 and return a function result of TRUE.

our filter procedure needs to recognize a carriage return and
make it the same as a click in item # 1

MOVE.L titemHit(A6),AO
MOVE.W #1,(AO)

MOVE.W #$0100,result(A6)

BRA.W filterexit

ItemHit is VAR, so get Ptr
set item # to 1

set TRUE so modal ignores input

164

------------- MAKING YOUR MACINTOSH TALK -------------

The filter procedure is actually pretty involved, but it is one of the keys to writing
Macintosh programs that protect the user from entering inappropriate data. As much as
practicable, you want to make it virtually impossible for the user to do anything wrong.
Filter procedures are a good way to make dialogs even more friendly to users.

Translating English to Phonetics and Then Speaking
After saying the static dialog message upon opening, the program waits for the user to
enter English text in the edit text window of the dialog. The program watches the results
of ModalDialog until the Say it button is pushed, at which point it uses GetDitem and
GetIText to get the current English text of the edit text item.

Notice that we branch to the two subroutines, CheckRate and CheckPitch, before
actually going into the speaking part of the code.

;------------------- Translate English to Phonetics and Speak ------------------
sayit

first, check our flag to make sure that driver is open

TST.W
BEQ

speechOK(A5)
@J driver not valid

check the values in speed and pitch text boxes
update driver to match these values
if the values are outside the limits, then set to nearest end point

BSR.W CheckRate
BSR.W CheckPitch

driver valid, go ahead and speak
get the current text in the edit text box

;PROCEDURE GetDitem(thedialog:DialogPtr;itemNo:INTEGER;
VAR type:INTEGER: VAR item: Handle;
VAR box: Rect)

MOVE.L myDialog,-(SP) we saved DialogPtr here
MOVE.W #usertext,-(SP) the edit text item
PEA theType(A5) VAR type
PEA theitem(A5) VAR item
PEA theRect(A5) VAR box
_GetDitem

165

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

;PROCEDURE GetIText(item:Handle;VAR text: Str255)
MOVE.L theitem(A5),-(SP) result of GetDitem
PEA theString(A5) ; VAR text
_Get I Text

The Str2SS text retrieved from the edit text box is fed into Reader to translate it
into a phonetic string. Please notice that when we pass the English text into Reader, we
skip over the length byte at the head of the Str2SS. We do, however, use the length byte,
as the length input to Reader, after coercing it to a long word. The handle used to hold
the phonetic output of Reader is initially associated with a zero-length block, but Reader
grows the block automatically to fit the output.

set up an empty handle first for Reader to fill with phonemes
;FUNCTION NewHandle(logicalSize: Size): Handle
; logicalSize => DO, Handle => AO
MOVEQ #0,DO set up empty handle
_NewHandle
MOVE.L AO,phHandle(A5) save handle for later

;FUNCTION Reader(theSpeech:SpeechHandle; Englishinput:Ptr;
InputLength:Longint: PhoneticOutput:Handle)

CLR.W
MOVE.L
PEA
CLR.L
MOVE.B
MOVE.L
MOVE.L
JSR
MOVE.W

: SpeechErr
-(SP) space for result
theSpeech(A5),-(SP) speech globals
theString+l(A5) Ptr to string, skip length byte
DO clear out DO
theString(A5),DO put length byte in DO
DO,-(SP) use longint for length
phHandle(A5),-(SP) we just allocated this handle
Reader do translation
(SP)+,DO get result

Once we have used Reader to translate the English text into a phonetic string, we
pass the handle to the phonemes to MacinTalk, much as we did earlier, to hear it spoken.
It is important to deallocate this handle after the phonemes are spoken to avoid cluttering
up memory with old sayings.

;FUNCTION MacinTalk(theSpeech: SpeechHandle
Phonemes: Handle):SpeechErr

CLR.W
MOVE.L
MOVE.L
JSR
MOVE.W

-(SP)
theSpeech(A5),-(SP)
phHandle(A5),-(SP)
MacinTalk
(SP)+,DO

space for result
speech globals
handle to phonemes
say it
get result

166

------------- MAKING YOUR MACINTOSH TALK -------------

@3

deallocate handle
;PROCEDURE DisposHandle(h: Handle)
; h => AO
MOVE.L phHandle(A5),AO
_DisposHandle

BRA.W dialogloop

this is where phonemes are

This process can be generalized to other situations where you want to translate
arbitrary English text into speech. Just get a pointer to the first character of the text, get
the length of the text, allocate an empty handle, and feed it all to Reader. The phonetic
output of Reader can then be handed to MacinTalk to recite.

Checking the Rate and Pitch
Earlier we mentioned the two subroutines that are used to match the speech rate and pitch
to the settings of the text boxes in the dialog. This checking is done just before speaking
because there is no way to really know when a user is through entering digits in the text
box. These routines convert the text in the boxes into numeric values that are then checked
to make sure that they fall within the acceptable range for speech rate and pitch settings.
Values that fall outside the ranges are rounded to the nearest endpoint, and the value shown
in the text box is changed to reflect this correction. Once the values have been checked
and corrected, they are used to set the rate and pitch of the speech driver.

We begin the subroutine by using GetDitem and GetIText to get the text from the
edit text box. Then this text is converted to a long-word numeric value by StringToNum.

;---------------------------------- CheckRate ----------------------------------

CheckRate
a subroutine to make sure that the number shown in the text box
is within the limits set for the rate, then sets rate to num
this is called just before we 'say it'

get dialog item,
;PROCEDURE GetDitem(thedialog:DialogPtr;itemNo:INTEGER;

VAR type:INTEGER: VAR item: Handle;
VAR box: Rect)

MOVE.L myDialog,-(SP) we saved DialogPtr here
MOVE.W #ratetext,-(SP) item

167

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

@1

PEA
PEA
PEA
_GetDitem

theType(A5)
theitem(A5)
theRect(A5)

VAR type
VAR item
VAR box

; PROCEDURE GetIText(item: Handle; VAR text: Str255)
MOVE.L theitem(A5),-(SP) get handle from VAR
PEA theString(A5) ; string holder
_Get I Text

; StringToNum
--8tringToNum theString(A5),theNum(A5)

Then we check the value against the symbolic maximum and minimum values for
speech rate, rounding if necessary.

set within bounds of max and min, enter with rate in theNum(A5)
set text to corrected value
then set the rate for speech

CMP.L
BPL

#rateMin,theNum(A5)
@1

; set theNum to minimum
MOVE.L #rateMin,theNum(A5)
BRA.W @2

CMP.L
BMI

#rateMax+l,theNum(A5)
@2

; set theNum to maximum
MOVE.L #rateMax,theNum(A5)

theNum is >= min

jump ahead

theNum is <= max

@2 now we know the value in theNum is a valid one for setting rate

Once the value is known to be within acceptable limits, we write it back out to the
edit text box. We do this even when the value hasn't changed because it seems easier just
to write it all the time rather than to insert logic to decide if it should be done or not.
We convert the long-word value back to a string with Nunil'oString and then use SetIText
to assign the text to the edit text box. We reuse the handle to the edit text item in
theltem(AS), which we got earlier with GetDitem, because we know that its value hasn't
changed since then.

168

-------------MAKING YOUR MACINTOSH TALK-------------

set the text of the box to match corrected number, even if it doesn't need it
_NumToString theNum(A5),theString(A5)

;PROCEDURE Set!Text(item:Handle;text:Str255)
MOVE.L theltem(A5),-(SP) ; handle in VAR
PEA theString(A5)
_Set I Text

Finally, we set the rate. The one tricky point to see here is that although the value
that we extracted from the text box was converted to a long-word value, SpeechRate expects
its rate parameter to be only a two-byte word. To correct for this, we move the long-word
value from theNum(AS) into register DO and then move the low word onto the stack as
the parameter for SpeechRate.

set rate
MOVE.L theNum(A5),DO ; do this to get word from long

;PROCEDURE

MOVE.L
MOVE.W
BSR.W

RTS

SpeechRate(theSpeech:SpeechHandle;
theRate:INTEGER)

theSpeech(A5),-(SP)
DO,-(SP) new rate
SpeechRate

The code for the subroutine CheckPitch closely parallels that of CheckRate, as
explained above.

;---------------------------------- CheckPitch ----------------------------------

CheckPitch
a subroutine to make sure that the number shown in the text box
is within the limits set for the rate, then sets rate to num
this is called just before we 'say it'

get dialog item,
;PROCEDURE GetDitem(thedialog:DialogPtr;itemNo:INTEGER;

VAR type:INTEGER: VAR item: Handle;

MOVE.L
MOVE.W
PEA
PEA
PEA
_GetDitem

VAR box: Rect)
myDialog,-(SP)
#pitchtext,-(SP)
theType(A5)
theltem(A5)
theRect(A5)

we saved DialogPtr here
item
VAR type
VAR item
VAR box

169

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

; PROCEDURE Get!Text(item: Handle; VAR text: Str255)
MOVE.L theltem(A5),-(SP) handle in VAR
PEA theString(A5) ; string holder
_Get I Text

; StringToNum
_StringToNum theString(A5),theNum(A5)

;set within bounds of max and min

@1

CMP.L #pitchMin,theNum(A5)
BPL @1

; set theNum to minimum
MOVE.L #pitchMin,theNum(A5)
BRA.W @2

CMP.L
BM!

#pitchMax+1,theNum(A5)
@2

; set theNum to maximum
MOVE.L #pitchMax,theNum(A5)

theNum is >= min

jump ahead

theNum is <= max

@2 ; now we know the value in theNum is a valid one for setting pitch

set the text of the box to match corrected number, even if it doesn't need it
_NumToString theNum(A5),theString(A5)

;PROCEDURE Set!Text(item:Handle;text:Str255)
MOVE.L theltem(A5),-(SP) ; handle in VAR
PEA theString(A5)
_Set!Text

set pitch
MOVE.L

;PROCEDURE

MOVE.L
MOVE.W
MOVE.W
BSR.W

RTS

theNum(A5),DO

SpeechPitch(theSpeech:SpeechHandle;
thePitch:INTEGER;theMode:FOMode)

theSpeech(A5),-(SP)
DO,-(SP) new pitch
#noChange,-(SP) don't change mode
SpeechPitch

170

------------- MAKING YOUR MACINTOSH TALK -------------

Setting the Speech Mode
When the user clicks either of the radio buttons, the program is directed to one of the
subroutines, either SetNatural or SetRobotic. These routines turn on the selected button,
turn off the other radio button, and then set the speech mode appropriately. When you
have dialogs with radio buttons, it is a convention to allow only one button in a group
to be on at a time. Your program should respond to clicks in a button by turning on the
clicked button and turning off the other buttons in the group.

For each button we get a handle to its control record with GetDitem and then use
that control handle as input to SetCdValue. A radio button is turned on by setting its
control value to 1 and turned off by setting its control value to 0.

----------------------------- Set Natural Speech -----------------------------
SetNatural

set the natural button
;PROCEDURE GetDitem(thedialog:DialogPtr;itemNo:INTEGER;

VAR type:INTEGER: VAR item: Handle;

MOVE.L
MOVE.W
PEA
PEA
PEA
_GetDitem

VAR box: Rect)
myDialog,-(SP)
#naturalbutton,-(SP)
theType(A5)
theltem(A5)
TheRect(A5)

we saved DialogPtr here
item
VAR type
VAR item
VAR box

;PROCEDURE SetCtlValue(theControl:ControlHandle;
theValue:INTEGER)

MOVE.L theltem(A5),-(SP)
MOVE.W #1,-(SP)
-8etCtlValue

clear the robot button

; set the natural button
;PROCEDURE GetDitem(thedialog:DialogPtr;itemNo:INTEGER;

VAR type:INTEGER: VAR item: Handle;

MOVE.L
MOVE.W
PEA
PEA
PEA
_GetDitem

VAR box: Rect)
myDialog,-(SP)
#robotbutton,-(SP)
theType(A5)
theltem(A5)
theRect(A5)

we saved DialogPtr here
item
VAR type
VAR item
VAR box

171

------ THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II ------

;PROCEDURE

MOVE.L
MOVE.W

SetCtlValue(theControl:ControlHandle;
theValue:INTEGER)

theitem(A5),-(SP)
#0,-(SP)

_SetCtlValue

Once the cosmetic maintenance of the dialog is taken care of, we go ahead and actually
change the setting of the speech driver mode. Notice that we use the symbolic value
noChange as input to SpeechPitch so that we can change the mode without affecting the
current pitch setting.

and set the speech driver to natural

;PROCEDURE SpeechPitch(theSpeech:SpeechHandle;
thePitch:INTEGER;theMode:FOMode)

MOVE.L theSpeech(A5),-(SP)
MOVE.W #noChange,-(SP) pitch stays the same
MOVE.W #natural,-(SP) set natural
BSR.W SpeechPitch

BRA.W dialogloop

The code to set the robotic mode is essentially the same as the code described above
for the natural mode. It is listed below.

----------------------------- Set Robotic Speech ----------------------------
SetRobotic

clear the natural button
;PROCEDURE GetDitem(thedialog:DialogPtr;itemNo:INTEGER;

VAR type:INTEGER: VAR item: Handle;

MOVE.L
MOVE.W
PEA
PEA
PEA
_GetDitem

VAR box: Rect)
myDialog,-(SP)
#naturalbutton,-(SP)
theType(A5)
theitem(A5)
theRect(A5)

we saved DialogPtr here
item
VAR type
VAR item
VAR box

;PROCEDURE SetCtlValue(theControl:ControlHandle;
theValue:INTEGER)

MOVE.L theitem(A5),-(SP)
MOVE.W #0,-(SP)
_SetCtlValue

172

------------- MAKING YOUR MACll1USH TALK -------------

set the robot button

; set the natural button
;PROCEDURE GetDitem(thedialog:DialogPtr;itemNo:INTEGER;

VAR type:INTEGER: VAR item: Handle;

MOVE.L
MOVE.W
PEA
PEA
PEA
_GetDitem

VAR box: Rect)
myDialog,-(SP)
#robotbutton,-(SP)
theType(A5)
theltem(A5)
theRect(A5)

we saved DialogPtr here
item
VAR type
VAR item
VAR box

;PROCEDURE SetCtlValue(theControl:ControlHandle;
theValue:INTEGER)

MOVE.L theltem(A5),-(SP)
MOVE.W #1,-(SP)
-8etCtlValue

and set the speech driver to robotic

;PROCEDURE SpeechPitch(theSpeech:SpeechHandle;
thePitch:INTEGER;theMode:FOMode)

MOVE.L theSpeech(A5),-(SP)
MOVE.W #noChange,-(SP) pitch stays the same
MOVE.W #robotic,-{SP) set robotic
BSR.W SpeechPitch

BRA.W dialogloop

Ending the Program
When we leave the program, we need to close the dialog and the speech driver. Because
we originally allowed the Dialog Manager to allocate space for the dialog record on the
heap, we use DisposDialog to get rid of it.

;-------------------------------- Close Up Shop --------------------------------

close it
;PROCEDURE DisposDialog (theDialog: DialogPtr);
MOVE.L myDialog,-(SP) ;get Dialog Ptr to close
_DisposDialog ; close window

173

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

Then we check the speechOK flag, calling SpeechOff if there is a driver to close.
SpeechOff closes the driver and frees up the memory that was used by MacinTalk. See
the discussion below on memory considerations. The last step calls ExitToShell to end
the program and go back to the Finder.

first, check our flag to make sure that driver is open

TST.W
BEQ

speech0K(A5)
@4 driver not valid

branch around speech stuff
driver valid, go ahead and close it

; PROCEDURE SpeechOff(theSpeech: SpeechHandle)
MOVE.L theSpeech(A5),-(SP) handle to speech globals
JSR SpeechOff ; close it up

@4 ; branch to here to avoid closing invalid driver

_ExitToShell ; Return To Finder

Static Data
We only define a single static global constant to represent the null string.

;--------------------------------- Static Data ---------------------------------

NULL DC.W 0 ; null string

~ MEMORY CONSIDERATIONS

Generally, MacinTalk will use at least 20K of memory, plus dynamic buffers equal to about
800 bytes/second of uninterrupted speech (usually less than 10 seconds). In addition, Reader
utilizes IOK plus a buffer to hold the translated text. On a 512K Mac, this memory
requirement is really no problem. But on a 128K Mac or in a small Switcher partition,
MacinTalk can cramp your other code. In particular, watch out for situations where your
program tries to spool-print a job with MacinTalk in memory. You may want to insert some
code in your program that checks on the available memory before a print operation and
close the speech driver temporarily while the printing is going on.

174

------------- MAKllG YOUR MACllTOSH TALK-------------

!2J PUTTING IT ALL TOGETHER

You should assemble CheapTalkll.ASM, then link it with CheapTalkll.LINK. One thing
to notice about the output file from the linker is that it is not a functional application
until it is combined with the necessary resources by RMaker. Since LINK output files
are normally application type, CheapTalk.LINK assigns a file type of CODE so that the
resulting output file will not have the characteristic diamond-shaped icon.

;File CheapTalkII.LINK

/OUTPUT CheapTalkCode

Since this code file will not run successfully until it has been
joined with the resources by RMaker, set its file type so
that it cannot be mistakenly run from the desktop.
Link output files are usually of type APPL.

/TYPE 'CODE' 'LINK'

; link our code, CheapTalkII, with the glue for the speech driver routines

CheapTalkII
SpeechASM

$

The final step of the program development is to run CheapTalk.R through RMaker
to create the DLOG, DITL, and PHNM resources and combine them in one application
file with the output file from the linker. The output of RMaker, CheapTalkll, will be an
independent application program that can be moved to any disk and run as long as the
driver file, MacinTalk, is also on that disk.

* CheapTalkII. R
* create the application CheapTalkII

* first define all the resources, and then include the code

* output file name
* file type, file creator

MDS2:CheapTalkII
APPLCHTK

175

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II ____ _

* dialog resource is a vanilla dialog
* make it preloaded (4) to speed things up

Type DLOG
'1 (4)

40 50 JJO 450
Visible NoGoAway
1
0
1

* DITL resource for dialog has one static text item,
* three edit text items,
* two buttons: 'Say it' and 'Quit'
* two radio buttons, 'natural' and 'robotic'
* the 'Say it' button is item #1 so that hitting return is
* the same as clicking 'Say it'
* make it preloaded (4) to speed things up

Type DITL
demo,1 (4)
10

Button
260 JOO 280 J50
Say it

Button
260 50 280 100
Quit

EditText
40 JO 150 J70
This is a test of the emergency ++
broadcasting network. In the event ++
of a real emergency you would be ++
instructed to tune to this station ++
for further instructions. This is ++
only a test.

EditText
170 50 190 80
140

176

------------- MAKING YOUR MACINmSH TALK -------------

EditText
220 50 240 80
120

radio button
170 250 190 J50
natural

radiobutton
220 250 240 J50
robotic

StaticText Disabled
170 85 190 170
speech rate

StaticText Disabled
220 85 240 170
speech pitch

StaticText Disabled
10 JO JO 290
this is a talking dialog demonstration

* PHNM resource is defined by us to be a string without length byte
* it is a phonetic translation of the static text in the DITL of the
* same resource #
* make it preloaded (4) to speed things up

Type PHNM = GNRL
demo,1 (4)
.s
DHIH9S, !HZ AH TA04KIHNX DAY6AELAA1G DIH1MUNSTREY5SHUN #

* now include the code produced by the linker

INCLUDE MDS2:CheapTalkCode

177

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

9suMMARY

The program described in this chapter shows how to perform all the basic functions of
the MacinTalk driver. By cutting and pasting the appropriate parts into your own software
projects, you can add speech with a minimum of modification to the overall structure of
your programs. Other parts of this program show how to structure a dialog-based applica
tion and how to use a filter procedure with ModalDialog.

All parts of the MacinTalk system are available in the Software Supplement or in
the DL8 area of the Mac Developers interest group (PCS-7) on Compuserve, including
the MacinTalk 1.1 documentation that Apple provides. This documentation is a good place
to learn more about the phonetic symbols that MacinTalk uses and some of the fmer points
of the available routines. The MacinTalk files and driver are also included on the source
code disk for this book, available from the author. You should also be aware that there
is a licensing fee if you distribute programs that use MacinTalk 1.1, so contact Apple before
you start shipping disks with MacinTalk on them.

178

CHAPTER

Dialog User Items

Dialog boxes are among the most familiar Macintosh software features. Dialogs can con
tain static text, text that can be edited by the user, buttons, check boxes, icons, and pic
tures. All these different kinds of dialog items can be included in a dialog by defining
DLOG and DITL resources with RMaker or the Resource Editor. Figure 7 .1 (page 180)
shows a dialog with many different item types. A DLOG resource defines the overall size
and general type of the dialog window. The DLOG resource also contains a reference to
the DITL resource listing the individual items within the dialog window. An individual
item specification that is contained in a DITL resource always describes the item type
and a rectangle within which the item is to be displayed inside the dialog window. An
item description in a DITL resource can also contain information specific to the particu
lar item type being defined. For instance, a specification of a button item must include
the text to be displayed in the button.

In addition to the standard dialog item types described above, the Dialog Manager
allows one additional general type, the user item. The standard dialog item types trigger
predefined actions when the dialog is drawn; i.e., a button item causes a standard button
control to be drawn within the specified display rectangle. User items, on the other hand,
are drawn by procedures defined by the programmer. This gives user items a flexibility
that allows a wide range of possibilities to the programmer creating custom dialogs.

Once it is connected to the user item, the user item procedure is called every time
there is an update event for the dialog window. Update events will occur when the dialog
is first opened and thereafter whenever a part of the dialog becomes uncovered after having
been obscured by another window. The user item procedure's main task is to draw the
user item within the dialog window. It is also possible to include other tasks in a user
item procedure if you want those tasks done at update time.

The general strategy for using user items is to load the DLOG and DITL resources
into memory with a call to GetNewDialog. The DLOG should be defined as invisible
so that it will not be drawn when first loaded in. Then use GetDltem and SetDltem

179

------ THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

Static teHt

PICT item

FIGURE 7.1. Dialog with many item types

edittmlboH

'"

(button) [13
ICON item

0 radio control

D check boH

.,

to install the user item procedure pointer. Once the user item procedure pointer is attached
to the user item, you can call ShowWindow to draw the dialog window and trigger the
update event that will cause the user item procedure to draw the user item. This sequence
of procedure calls is illustrated in the example program developed in the following sections
of this chapter.

19 DEFINING USER ITEMS IN THE RESOURCE FILE

The first step in creating a dialog with a user item is to define appropriate DLOG and
DITL resources. The RMaker source file for our example program is shown below. The
program puts up a dialog with two user items and a Quit button. One of the user items
simply draws a line to separate the dialog box into two sections. The other user item resem
bles a large rectangular button complete with shading, as shown in Figure 7.2.

The first part of the resource source file sets the output file name and file type.
Notice that we are using RMaker to create a stand-alone application rather than to create
a separate resource file that will be opened by an application.

180

----------------DIALOG USER ITEMS----------------

r

This is my user item.

FIGURE 7.2. Dialog with two user Items

* UITest.R
* create the application UseritemTest

* first define all the resources, and then include the code

* output file name
* file type, file creator

MDS2:UseritemTest
APPL????

.,

Next, we define the DLOG resource to determine the outer boundaries of the dialog
window. The key point to see here is that the DLOG is defined as invisible. This means
that it will not be drawn when it is first loaded in with GetNewDialog, allowing time
for us to install the user item procedure pointers before calling ShowWindow.

1111

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

Type DLOG
,256

50 50 250 450
Invisible NoGoAway
1
0
256

The DITL resource is where we actually specify the bounds rectangles for the two
user items in the dialog. The first item in the dialog is a standard button that the user
can click to Quit the program. The second and third DITL items are user items. For
each user item we only need to specify the bounds rectangle. Notice that the rectangle
for item #2 has the same left and right coordinates. This is the item that will simply draw
a line.

* DITL resource for dialog
Type DITL

,256
J

Button
90 JO 120 70
Quit

User Item
10 100 190 100

User Item
150 120 175 J80

Type STR

,256

Next, we defme a string resource that will be used as the text within the second
user item. The string will be loaded into memory with GetResource and used with TextBox
to draw the text into the user-item bounds rectangle. Because the text for the user item
is kept here as a resource, it would be easy to change the text or translate it to another
language.

this is my user item

182

----------------DIALOG USER ITEMS----------------

Finally, we need to include the code produced by the linker so that the output of
RMaker will be a fully functional application. This means that RMaker must be the last
step in the programming sequence each time any changes are made to the code.

* now include the code produced by the linker

INCLUDE MDS2:UITestCode

l!2J THE DOCUMENTATION HEADER

As usual, we begin the assembler source code with several lines of comments explaining
the function of the program. The comments mention that a utility function, TrackRect,
is assembled separately and joined with this program by the linker. The source code for
TrackRect is discussed in a later section of this chapter. We also include the symbol files
necessary to access individual fields of data records maintained by the ROM. The com
plete source code for UITest.ASM and TrackRect.ASM is listed in Appendix A and is

. included on the source code disk available from the author.

File UITest.ASM
a short program to experiment with dialog user items

This program opens a modal dialog and displays
two user items. One user item just draws a line,
the other user item draws a rectangular, shaded button.

A utility function, TrackRect, is assembled separately and
linked with this program.

February 1986, Dan Weston

-------------------------------- Symbol Files --------------------------------
INCLUDE
INCLUDE
INCLUDE
INCLUDE

Mactraps.D
ToolEqu.D
QuickEqu.D
SysEqu.D

As mentioned above, TrackRect is a utility routine that is assembled separately and
linked with the main program. We must XREF TrackRect here to facilitate the connec
tion of the routine to this module. A corresponding XDEF TrackRect statement must
appear in the TrackRect assembler source module.

183

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

;----------------------------- External References -----------------------------

XREF TrackRect ; assembled separately

We have included several standard equates files to gain access to symbolic offsets
and constants associated with the ROM routines and data structures. We must also define
a few constants of our own here to identify objects that are unique to this program. We
define symbolic constants to stand for the resource ID numbers for our dialog and string
resources, and constants corresponding to the item numbers of the individual items within
the dialog. We also define a symbolic name for a safe register in which to store the dialog
pointer for the duration of the program.

;----------------------------------- Equates -----------------------------------
theDialog
quitbutton
lineitem

buttonitem
myString

myDialog

EQU 256
EQU 1
EQU 2

EQU 3
EQU 256

EQU A2

resource ID # of dialog
item # for 'quit'
item # of line user item

item # for button user item
item # for STR resource

use this register to store DialogPtr.

We also define some global variables to use as VAR parameters for ModalDialog
and GetDltem. These variables will be allocated in the application globals area, accessed
through the pointer in register AS.

---------------------------- Global Variable Storage ----------------------------

itemHit
the Type
the Item
theRect

DS.W 1
DS.W 1
DS.L 1
DS.W 4

VAR for ModalDialog
VAR for GetDitem
VAR for GetDitem
VAR for GetDitem

~ INITIALIZATION

We begin the actual code for the program by initializing the necessary parts of the ROM.
Since this program doesn't use menus, we can skip calling InitMenus, but all the other
major sections of ROM are initialized here.

184

---------------DIALOG USER ITEMS---------------

------------------------------- Initialization

; PROCEDURE
PEA
_InitGraf
_InitFonts
_Initwindows
; PROCEDURE
CLR.L
_InitDialogs

InitGraf (globalPtr: QDPtr);
-4(A5) space created for QuickDraw's use

Init QuickDraw
Init Font Manager
Init Window Manager

InitDialogs (restartProc: ProcPtr);
-(SP) NIL restart proc

Init Dialog Manager
; procedure TEinit
_TEinit
_InitCursor ; set arrow cursor

After initializing the toolbox, we get the dialog resource from the resource file by
calling GetNewDialog. Because the dialog is defined as invisible, it will not be displayed
when loaded in this way. We pass NIL for the dStorage parameter to let the Dialog Manager
allocate space for the dialog record on the heap. Since a dialog record is a non-relocatable
object, it is usually better to allocate space for the dialog record in the application globals
area if your program tends to use a lot of memory. For this program, since memory utiliza
tion is not a problem, it is easier to let the space be allocated on the heap.

Once we have called GetNewDialog, we use the dialog pointer as a parameter to
SetPort. A dialog record is an expanded form of a window record and a window record
is an expanded form of a grafPort. So we can use a dialog record pointer just like a grafPtr.

;-------------------- Get the Dialog from the Resource File --------------------

; FUNCTION GetNewDialog (dialogID: INTEGER; dStorage: Ptr;
behind: WindowPtr) : DialogPtr

CLR.L
MOVE
CLR.L
MOVE.L

-(SP)
#theDialog,-(SP)
-(SP)
#-1,-(SP)

_GetNewDialog
MOVE.L (SP)+,myDialog

; PROCEDURE SetPort (gp: grafPort)
MOVE.L myDialog,-(SP)
_SetPort

clear space for dialogPtr
resource #
storage area on heap
above all others
get new dialog
move handle to A2

move DialogPtr to stack
make it the current port

185

------ THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II ------

~ INSTALLING USER ITEMS

Because the dialog is defined as invisible, it is not drawn on the screen yet, even though
its dialog pointer has been used to set the grafPort. Before we allow the dialog to be drawn,
we must install the pointers to our two user item procedures so that the user items can
be drawn inside the dialog box.

The user item procedures are subroutines within our code. They must be constructed
to accept two parameters on the stack. The first parameter is a pointer to the dialog record
in which the user item resides. The second parameter is the item number for the user
item. This information is used by the user item procedure to guide its drawing of the
user item.

In order to install the user item procedure pointers into the dialog item list, we must
call GetDitem and SetDitem for each user item in our dialog. The call to GetDitem
fills in the VAR parameters corresponding to the item type and the bounds rectangle for
the item. Then we use SetDitem to fill in the item handle slot with a pointer to our user
item procedure. We also pass the type and bounds rectangle values obtained from GetDltem
back into SetDitem as parameters. We use the global variables defmed at the beginning
of the program as the VAR parameters to GetDitem.

now install first user item in dialog record

PROCEDURE GetDitem(thedialog:DialogPtr;itemNo:INTEGER;
VAR type:INTEGER: VAR item: Handle;
VAR box; Rect)

MOVE.L myDialog,-(SP) we saved DialogPtr here
MOVE.W #lineitem,-(SP) item
PEA theType(A5) VAR type
PEA theltem(A5) VAR item
PEA theRect(A5) VAR box
_GetDitem

PROCEDURE SetDitem(thedialog:DialogPtr;itemNo:INTEGER;
type:INTEGER: item: Handle;

MOVE.L
MOVE.W
MOVE.W
PEA
PEA
-8etDitem

box: Rect)
myDialog,-(SP)
#lineitem,-(SP)
theType(A5),-(SP)
itemProc
theRect(A5)

we saved DialogPtr here
item
type
pointer to procedure
box

186

Notice that theType(AS) is passed to GetDitem with a PEA instruction because it
is a VAR parameter, but it is passed to SetDitem with a MOVE.W instruction because
it is a value parameter for that procedure. TheRect(AS) is passed with a PEA instruction
both times because it refers to an eight-byte rectangle record, and therefore cannot be passed
by value. Notice also how PEA itemProc is used to pass a pointer to a procedure label
that occurs in our code.

The code which installs the user item procedure pointer for the second user item
is essentially the same as the code shown above. The only difference is that a different
itemNo parameter is passed to GetDitem and SetDltem and we pass a pointer to a differ
ent subroutine label to SetDitem.

now get the other one
PROCEDURE GetDitem(thedialog:DialogPtr;itemNo:INTEGER;

VAR type:INTEGER: VAR item: Handle;

MOVE.L
MOVE.W
PEA
PEA
PEA
_GetDitem

VAR box: Rect)
myDialog,-(SP)
#buttonitem,-(SP)
theType(A5)
theitem(A5)
theRect(A5)

we saved DialogPtr here
item
VAR type
VAR item
VAR box

PROCEDURE SetDitem(thedialog:DialogPtr;itemNo:INTEGER;
type:INTEGER: item: Handle;
box: Rect)

MOVE.L myDialog,-(SP) we saved DialogPtr here
MOVE.W #buttonitem,-(SP) item
MOVE.W theType(A5),-(SP) type
PEA bigbutton pointer to procedure
PEA theRect(A5) box
-8etDitem

After installing the procedure pointers for the two user items, we can draw the dialog
with ShowWindow. This ROM procedure will actually draw only the outline of the dialog
window, but it will generate an update event for the dialog window. The update event
will be intercepted by a subsequent call to ModalDialog that will then cause the items
within the dialog to be drawn.

now show the dialog

; PROCEDURE ShowWindow(theWindow:WindowPtr)
MOVE.L myDialog,-(SP)
-8howWindow

187

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGUMMING, VOWME II -----

[!gl MODALDIALOG LOOP

This program uses ModalDialog to function as the main event loop. Because ModalDialog
doesn't pay any attention to events not directly affecting the dialog, this program can't
use menus. It is generally not a good idea to base an entire program on a ModalDialog
loop because it prevents the program from using desk accessories. Many persons com
plain about Apple's Font/DA Mover program because it is based on a single modal dialog.
In that program, however, denying access to desk accessories from the menu bar is a good
idea because the program is actively modifying the system file, and trying to use a desk
accessory that had just been removed from the system file could cause severe problems.
In our example program, it is used mainly for convenience and to shorten the code. You
should look at this program code as a model for installing and using user items rather
than as a model for a complete application.

ModalDialog calls GetNextEvent and responds to update and activate events, mouse
clicks, and key presses. When ModalDialog sees an update event for a dialog window,
it draws all the items in that dialog. For the standard items, such as button and static
text items, ModalDialog uses standard predefined procedures to draw the items. For user
items, ModalDialog employs the procedures installed with SetDltem to draw the items.
This is why it is important to install the user-item procedure pointers before allowing the
dialog to be drawn.

ModalDialog returns an item number in its itemHit VAR parameter to tell the pro
gram which dialog item has been involved in the most recent event. For example, if the
user clicks the mouse inside the Quit button of our dialog, ModalDialog will return with
itemHit equal to 1 because the Quit button is item #1 in the dialog item list. The program
can examine the value in itemHit after each call to ModalDialog and respond accordingly.

ModalDialog also allows a procedure pointer to be passed as its filterProc parameter.
The filter procedure is called by ModalDialog just after GetNextEvent. The filter proce
dure can look at the current event and handle certain kinds of events in a special way.
For instance, in our program, the filter procedure responds to mouse clicks in the button
user item by calling TrackRect. The filter procedure returns a BOOLEAN result to
ModalDialog. A TRUE result tells ModalDialog that it should not do any further process
ing of the event. In this case, the filter procedure will have set the value of itemHit. If
the filter procedure returns FALSE, then ModalDialog goes ahead and processes the event
in the normal way and sets itemHit accordingly. We use our filter procedure to make
ModalDialog ignore mouse clicks in the button user item where the user releases the mouse
button outside the button. The code for the filter procedure is discussed in the next section.

ItemHit is a global variable that is passed by pointer to serve as a VAR parameter.
MyFilter is the label of our filter procedure, also passed by pointer. When ModalDialog
is done, the value of itemHit is checked to see if the Quit button or the user item button
have been clicked. The Quit button causes a branch to a termination routine. The user
item button simply causes the program to beep the speaker briefly and then go around
for more events.

188

---------------DIALOG USER ITEMS---------------

;---------------------------------- dialogloop ----------------------------------
dialogloop

; PROCEDURE ModalDialog (filterProc: ProcPtr;
VAR itemHit: INTEGER)

PEA
PEA

myFilter
itemHit(A5)

filter proc
item Hit Data

.....ModalDialog

see which button was pushed
CMP.W #quitbutton,itemHit(A5) quit button?
BEQ closeit

CMP.W
BEQ

BRA

#buttonitem,itemHit(A5)
DoUserClick

dialogloop ; go around agaiii

;--------------------------------- DoUserClick ---------------------------------

DoUserClick
We come here if the user clicks in the button user item.
The filter proc makes sure that this item # is returned
only when the mouse button is released inside item.

MOVE.W
_sysBeep

#1,-(SP)

BRA dialogloop

~ FILTER PROCEDURE

Filter procedures called from ModalDialog must be defmed to take three parameters
on the stack and return a BOOLEAN result. The first parameter is a dialog pointer,
The next parameter is a VAR EventRecord pointer. EventRecord is passed as a VAR
so that the filter procedure may change the fields of the event before passing it on
to ModalDialog. Our filter procedure will not alter the event record, but you should
be aware that the possibility exists. The third parameter is an itemHit VAR. The
filter procedure can use this parameter to set the itemHit parameter passed back by
ModalDialog.

189

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

We begin our filter procedure definition by declaring a set of symbolic constants
to allow easy access to parameters and results on a LINK stack frame. We also define
offsets to some local variables on the stack frame. Figure 7.3 shows the arrangement of
the stack frame at routine entry.

previous stack contents

result
result(A6) 20(A6)

the Dialog
tDialog(A6) 16(A6)

parameters the Event
tEvent(A6) 12(A6)

item Hit
tltemHit(A6) 8(A6)

return address
4(A6)

previous A6
(A6)

itype

ibox.right
itype(A6) -2(A6)

ibox.bottom
iBox+right(A6) -4(A6)

ibox.left
iBox+bottom(A6) -6(A6)

local
iBox.top

i8ox+left(A6) -8(A6)
variables iBox(A6) -1 O(A6)

iHdl
iHdl(A6) -14(A6)

iPoint(A6) -18(A6)

(SP)

FIGURE 7.3. Stack frame for fllter procedure

190

---------------DIALOG USER ITEMS---------------

;------------------------------- Filter Procedure -------------------------------
MyFilter
;FUNCTION MyFilter(theDialog:dialogPtr;VAR theEvent:EventRecord;

VAR itemHit:INTEGER):BOOLEAN

set up equates for stack frame
titemHit SET 8
tEvent SET 12
tDialog SET 16
result SET 20

parambytes SET 12

; use some local variables
iType SET -2
iBox SET -10
iHdl SET -14
iPoint SET -18
locals SET -18

LINK A6,#locals

Once the stack frame is set up, we can go to work on the event. The only real func
tion of this filter procedure is to see if a mouse click in the dialog is inside the bounds
rect of the button user item. The first thing we do is use the dialog pointer passed to
the filter procedure as a parameter to get the bounds rect for the user item with GetDitem.
We use one of our local variables to store the rectangle.

get the bounds rectangle for the button user item
so we can see if the mouse has been clicked there

;PROCEDURE

MOVE.L
MOVE.W
PEA
PEA
PEA
_GetDitem

GetDitem(thedialog:DialogPtr;itemNo:INTEGER;
VAR type:INTEGER: VAR item: Handle;
VAR box: Rect)

tDialog(A6),-(SP)
#buttonitem,-(SP)
iType(A6)
iHdl(A6)
iBox(A6)

DialogPtr here
item #
VAR type
VAR item
VAR box

Next, we look at the event record to see if this is a mouse-down event. We will ignore
all other event types. All events except mouse-downs are passed to lnputOK, which sets
the result to FALSE so that ModalDialog will handle them in the normal way.

191

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

now check the event record, passed to this procedure as a parameter,
to see if this is a mouse-down event

MOVE.L
MOVE.W
CMP.W
BNE

tEvent(A6),AO
evtNum(AO),DO
#mButDwnEvt,DO
InputOK

get event record
what kind of event is it
is it a mouse down?
ignore other events

If we detect a mouse-down event, then we copy the point field of EventRecord to
a local variable. We copy the point so that we can use GlobalToLocal on the copy rather
than on the original value in EventRecord. We don't want to alter the value of the point
field because ModalDialog may subsequently try to use this value.

if it is a mouse-down event, copy the point to a local variable

LEA
LEA
MOVE.L

evtMouse(AO),AO
iPoint(A6),Al
(AO)+,(Al)+

get address of point
our local
copy point to local var

now call GlobalToLocal with our copy of the point
;PROCEDURE GlobalToLocal(VAR p:Point)
PEA iPoint(A6)
_GlobalToLocal

When our copy of the click point has been converted to local coordinates, we test
it to see if the click was inside the user item rectangle. We use the converted point and
the rectangle retrieved earlier by GetDitem as inputs to the ROM routine PtlnRect. If
PtlnRect returns FALSE, then we branch to InputOK and let ModalDialog handle the
mouse click since it is not within our user item. If PtlnRect returns TRUE, then we fall
through and call our utility routine, TrackRect.

and find out if the point is in the user item rect

; FUNCTION PtlnRect(p:Point; r:Rect):BOOLEAN
CLR.W -(SP) function result
MOVE.L iPoint(A6),-(SP) the point
PEA iBox(A6) the rect
_FtlnRect
MOVE.W (SP)+,DO get result
BEQ InputOK

192

--------------DIALOG USER ITEMS--------------

TrackRect is written to imitate the ROM routine 'IhtckControl. It is called with a
rectangle as a parameter. It then tracks the mouse for as long as the button remains down.
The rectangle is inverted as long as the mouse remains inside the rectangle. When the
mouse is moved out of the rectangle, the rectangle is returned to its normal state. The
routine keeps looping until the mouse button is let up. It then returns TRUE if the mouse
button was released inside the rectangle, FALSE otherwise. The rectangle is returned to
its original state when the routine ends.

We use TrackRect here in response to a click in the user item. We pass the user item
bounds rectangle as the parameter to TrackRect and examine the result to see if the user
released the mouse button inside the user item.

If the user lets up on the button inside the user item, then we simply branch to
lnputO~ so that ModalDialog will pass on the click in the user item to the main pro
gram. If the user releases the button outside the user item, then we set the result of the
filter procedure to TRUE and set itemHit to 0 so that the main program will not see the
click in the user item. This has the effect of allowing the user to back out of a click in
the user item button. Remember from the ModalDialog loop that a click in the button
user item beeps the speaker. The main program will detect a hit in the user item only
if TrackRect returns TRUE here.

We get to this point if the click is in the user item.
Call our utility function to track the mouse inside the user item.
If the result of TrackRect is TRUE (BNE), then the user released
the mouse button inside the button and we can just let the mouse
down event through to ModalDialog, which will set itemHit to the
user item #.
If TrackRect returns FALSE, then the user released the button
outside the user item, so we need to set the itemHit to O and
tell ModalDialog not to handle this event.

; xFUNCTION TrackRect(r:Rect):BOOLEAN
CLR.W -(SP) function result
PEA ibox(A6) the rect
JSR TrackRect
MOVE.W (SP)+,DO get result
BNE InputOK let mouse down through

; otherwise, user backed out of selection
MOVE.W #O,titemHit(A6) set item to 0
MOVE.W #$0100,result(A6) stop Modal from handling

this event
BRA filterexit

193

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGUMMING, VOWME II -----

The last part of our filter procedure is the branch label that sets the result to FALSE
so that ModalDialog will handle the event. The remaining code simply cleans up the
stack frame and returns control to ModalDialog.

InputOK
; set result to FALSE
MOVE.W #O,result(A6)

filterexit

UNLK
MOVE.L
ADDA.W
JMP

A6
(SP)+,AO
#parambytes,SP
(AO)

l!2J LINE DRAWING USER ITEM

get return address
strip parameters
RTS

ItemProc is a subroutine that draws the first user item in the dialog. We installed a pointer
to this subroutine with SetDitem at the outset of this program. As a user item procedure,
ItemProc must adhere to specific guidelines set forth in the Dialog Manager section of
Inside Macintosh. A user item procedure must be set up to take two parameters on the stack:
a dialog pointer and an item number. We use LINK to set up a stack frame to provide
easy access to these parameters and also to hold some local variables.

;----------------------------- User Item Procedure -----------------------------
ItemProc(theDialog:DialogPtr;theltem:INTEGER)

this procedure is called to draw the user item for every update
event for the dialog

ItemProc
; set up equates for stack frame
tltem SET 8
tDialog SET 10

parambytes SET 6

; use some local variables
iType SET -4

194

---------------DIALOG USER ITEMS---------------

iBox
iHdl

locals

LINK

SET -12
SET -16

SET -16

A6,#locals

Because the main job of a user item procedure is to draw the user item, the first
thing we need to do is get the bounds rectangle for the user item. We use our local variables
on the stack frame as VAR parameters to GetDltem to get information about the item.
Remember that the dialog pointer and the item number were passed to the user item proce
dure as input parameters, so we can use those values as inputs to GetDltem.

;PROCEDURE GetDitem(thedialog:DialogPtr;itemNo:INTEGER;
VAR type:INTEGER: VAR item: Handle;
VAR box: Rect)

MOVE.L tDialog(A6),-(SP) DialogPtr here
MOVE.W titem(A6),-(SP) item#
PEA iType(A6) VAR type
PEA iHdl(A6) VAR item
PEA iBox(A6) VAR box
_GetDitem

Once the bounds rectangle for the user item is installed in the local variable iBox,
we can use its coordinates to draw a single line along the left-hand edge of the box. This
line drawing technique is handy for dividing dialog boxes into discrete sections. You might
also want to set the pen pattern to gray before drawing the line for a more subtle effect.

the only thing this user item does is draw a line along the left
edge of its bounds rectangle.
it is useful for separating parts of a dialog

; PROCEDURE
MOVE.W
MOVE.W
__Move To

MoveTo(h,v:INTEGER)
1Box+left(A6),-(SP)
iBox+top(A6),-(SP)

; PROCEDURE LineTo(h,v:INTEGER)
MOVE.W 1Box+left(A6),-(SP)
MOVE.W iBox+bottom(A6),-(SP)
_Line To

iBox.left
iBox.top

!Box.left
!Box.bottom

195

_____ THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II _____ _

UNLK
MOVE.L
ADDA.W
JMP

Finally, we clean up the stack frame and return to the calling procedure. User item
procedures do not return function results.

A6
(SP)+,AO
#parambytes,SP
(AO)

get return address
strip parameters
RTS

~ BIG BUTTON USER ITEM

The other user item in our dialog draws a shaded, rectangular box with a legend inside.
The box coordinates match the user item bounds rectangle, and the legend text is
retrieved from a STR resource in the resource file. This user item is a takeoff from
the standard button control. We have already seen how the filter procedure is used
to track the mouse when it is clicked inside this user button. This user item procedure
shows how to draw the button.

The procedure begins by setting up a stack frame on which to locate its parameters
and local variables, just as the previous user item procedure did. It also calls GetDltem
to fill in the iBox local with the bounds rectangle of the user item.

;-------------------------- Button User Item Procedure -------------------------
ItemProc(theDialog:DialogPtr;theitem:INTEGER)

this procedure is called to draw the user item for every update
event for the dialog

bigbutton
; set up equates for stack frame
titem SET 8
tDialog SET 10

parambytes SET 6

; use some local variables
itype SET -4
iBox
iHdl

locals

SET -12
SET -16

SET -6

LINK A6,#locals

196

---------------DIALOG USER ITEMS---------------

;PROCEDURE GetDitem(thedialog:DialogPtr;itemNo:INTEGER;
VAR type:INTEGER: VAR item: Handle;
VAR box: Rect)

MOVE.L tDialog(A6),-(SP) DialogPtr here
MOVE.W tltem(A6),-(SP) item#
PEA iType(A6) VAR type
PEA iHdl(A6) VAR item
PEA iBox(A6) VAR box
_GetDitem

Using the local variable iBox as the rectangle, we frame a rectangle outline, then
move the rectangle up and to the left with OffsetRect. Then we draw a filled white rectangle
at the offset position. This gives the characteristic Macintosh shaded-window look to our
user item. We also need to frame the white rectangle to give a final border around the item.

now that we know the bounds rect of the user item, iBox,
do some drawing

; draw the main outline
;PROCEDURE FrameRect(r:Rect)
PEA iBox(A6)
_FrameRect

bounds rect of item

; now move up and left to get shaded effect
; PROCEDURE OffsetRect(r:Rect; dh,dv:INTEGER)
PEA iBox(A6) bounds rects of item
MOVE.W #-1,-(SP) move left
MOVE.W #-1,-(SP) move up
_OffsetRect

;PROCEDURE
PEA
MOVE.L
PEA
_FillRect

FillRect(r:Rect;pat:Pattern)
iBox(A6) bounds rect of item
grafGlobals(A5),AO get QD globals
white(AO) get the white pattern

;PROCEDURE FrameRect(r:Rect)
PEA iBox(A6) bounds rect of item
_FrameRect

Then we move the rectangle back down and right to its original location by calling
OffsetRect again. Next, in preparation for the call to Tuxt:Box we shrink the vertical and
horizontal dimensions of the rectangle with InsetRect.

197

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

; move the rectangle back to its original spot
; PROCEDURE OffsetRect(r:Rect; dh,dv:INTEGER)
PEA iBox(A6) bounds rect of item
MOVE.W #1,-(SP) move right
MOVE.W #1,-(SP) move down
_Off setRect

; inset it from the edges to get ready for TextBox
; PROCEDURE InsetRect(r:Rect; dh,dv: INTEGER)
PEA iBox(A6)
MOVE.W #2,-(SP)
MOVE.W #2,-(SP)
_InsetRect

The legend text that goes inside the user item button is stored in a STR resource.
We use GetResource to retrieve the string. The handle to the string is placed in the local
variable, iHdl. Since we will be using a pointer to the string resource, we lock the handle
down before dereferencing it.

get a string to go inside the button
FUNCTION GetResource(theType:ResType;theID:INTEGER) :Handle

CLR.L -(SP) space for result
MOVE.L #1STR 1 ,-(SP) get STR type
MOVE.W #myString,-(SP) ID of string
_GetResource
MOVE.L (SP)+,iHdl(A6) put handle in local

; PROCEDURE HLock(h:Handle)
; h => AO
MOVE.L iHdl(A6),AO retrieve STR handle
-1fLock

TextBox requires a pointer to a block of text without a length byte. Since the STR
resource formats the string in normal Str255 fashion, we must skip over the first byte
of the resource when we pass the pointer to TextBox. We pass the length byte to TextBox
after converting it to a long integer value to be compatible with the formal parameter list.
The bounds rectangle of the user item, which has been inset, is used as the box parameter.
We pass 1 as a parameter to specify center justification for the text.

PROCEDURE TextBox(Text:Ptr;length:Longint;
box:Rect;just:INTEGER)

MOVE.L iHdl(A6),AO get string handle
MOVE.L (AO),AO convert to Ptr
PEA l(AO) skip length byte

198

---------------DIALOG USER mMS ---------------

CLR.L
MOVE.B
MOVE.L
PEA
MOVE.W
_TextBox

DO
(AO),DO
DO,-(SP)
iBox(A6)
#1,-(SP)

get length byte
use a long word version
item's bounds
center text

After drawing the legend in the user item with TextBox, we unlock the resource
handle, clean up the stack frame, and return to the calling procedure.

PROCEDURE HUnLock(h:Handle)
h => AO

MOVE.L iHdl(A6),AO
J:!UnLock

UNLK
MOVE.L
ADDA.W
JMP

A6
(SP)+,AO
#parambytes,SP
(AO)

QUITTING THE PROGRAM

retrieve STR handle

get return address
strip parameters
RTS

If the user clicks in the Quit button, we branch to this code section that closes the dialog
and calls ExitToSbell, returning control to the Finder. Notice that we use DisposDialog
instead of OoseDialog because the dialog record space was originally allocated on the heap.

;----------------------------------- closeit -------------------~---------------

closeit
;PROCEDURE DisposDialog (theDialog: DialogPtr);
MOVE.L myDialog,-(SP) get dialog pointer to close
....DisposDialog Close Window

_ExitToShell return to Finder

END

199

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

TRACKRECT UTILITY ROUTINE
In order to mimic the action of standard button controls, we define TrackRect. This proce
dure is similar to the ROM routine TrackControl, in that, once called with a rectangle
input parameter, it retains control until the mouse button is let up. As long as the mouse
is inside the rectangle, TrackRect inverts the rectangle. When the mouse moves outside
the rectangle, TrackRect returns the rectangle to its original state, as shown in Figure 7.4.

TrackRect returns a BOOLEAN result value that is TRUE if the mouse button is
released inside the rectangle and FALSE otherwise. The rectangle is restored to its origi
nal state, whatever the function result.

We define TrackRect in a separate assembly language file, assemble it, and then link
it with the user item test file explained in the previous sections. Because this routine will
be called from another module, we must XDEF it here.

File TrackRect.ASM

This is a utility routine that you can link with
other programs .

FUNCTION TrackRect(r:Rect):BOOLEAN

XDEF TrackRect

It tracks the mouse inside a specified rectangle.
The rectangle is inverted as long as the mouse stays
inside the rect with the button down.

This is my user item.

This is my user item. I

FIGURE 7.4. TrackRect highlighting

200

---------------DIALOG USER ITEMS---------------

if the mouse moves outside the rect, the rect is
inverted back to normal.

The function returns TRUE if the user releases the mouse
button inside the rect, FALSE otherwise.

The pseudocode for TrackRect is shown below. This is a good example of how you
can conceptualize a routine in a high-level language and then translate that concept into
assembly language code. Of course, we will use LINK and UNLK to set up a stack frame
to facilitate parameter passing and local variables.

pseudocode:
;REPEAT

BEGIN
IF (NOT PtinRect(mousePt,r)) THEN

BEGIN
IF inverted THEN

END

BEGIN
invertRect(r);
inverted .- FALSE;

END;

ELSE IF NOT inverted THEN{ we already know pt is inside rect}
BEGIN

INCLUDE

invertRect(r);
inverted := TRUE;

END;
UNTIL NOT StillDown;
IF inverted THEN

BEGIN
invertRect(r);
TrackRect .- TRUE;

END
ELSE

TrackRect .- FALSE;

MacTraps.D

TrackRect

r SET
result SET
parambytes SET

8
12
4

offset to parameter
offset to function result

201

----- THE COMPLETE BOOK Of MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

mouse Pt
inverted

Locals

LINK

SET -8
SET -10

SET -10

A6,#locals

local var for Point
local BOOLEAN

; set up stack frame

We use the local variable, inverted, as a flag to show whether the rectangle is inverted
or in its original state. Upon entry to the routine, we initialize inverted to FALSE. Then
we call GetMouse to get the current mouse position in local coordinates. We use another
local variable, mousePt, as the VAR parameter to GetMouse.

MOVE.W #$0,inverted(A6) ; set to FALSE

; REPEAT BEGIN
checkl

;PROCEDURE GetMouse(VAR thePt: Point)
PEA mousePt(A6) our local VAR
_GetMouse

Next, we check to see if the mouse is inside the rectangle by calling PtlnRect. If
the mouse is not inside the rectangle and the rectangle has been inverted, we call InvertRect
and set the local variable, inverted, to FALSE. This returns the rectangle to its original
state whenever the mouse is outside the rectangle.

IF (NOT PtinRect(mousePt,r)) THEN
BEGIN

IF inverted THEN

END

FUNCTION

BEGIN
invertRect(r);
inverted := FALSE;

END;

PtinRect(p:Point; r:Rect):BOOLEAN
CLR.W -(SP) function result
MOVE.L mousePt(A6),-(SP) the point
MOVE.L r(A6),-(SP) the rect
JtinRect
MOVE.W (SP)+,DO get result

BNE check2 branch if pt is in rect

202

-------------- DIAl8G USER ITEMS--------------

check2

; we get this far if mouse is outside rect
TST.W inverted(A6) is it already inverted?

BEQ checkout not inverted, do nothing more

;PROCEDURE InvertRect(r:Rect)
MOVE.L r(A6),-(SP) the input rectangle
_InvertRect this sets it back to normal

MOVE.W #O,inverted(A6) set flag to FALSE

BRA checkout

If the mouse point is inside the rectangle and the rectangle is not inverted, we call
InvertRect and set inverted to TRUE. This highlights the rectangle as long as the mouse
cursor is inside the rectangle.

ELSE IF NOT inverted { we know pt is inside rect }
THEN BEGIN

InvertRect(r);
inverted := TRUE;

END;

we come here if mouse is inside rect
TST.W inverted(A6) is it inverted already?

BNE checkout already inverted, do nothing

;PROCEDURE InvertRect(r:Rect)
MOVE.L r(A6),-(SP) the input rectangle
_InverRect this inverts the rectangle

MOVE.W #$0100,inverted(A6) set flag to TRUE

We continue looping and checking the mouse point as long as the mouse button
is held down by checking StillDown at the end of the loop.

checkout
UNTIL NOT StillDown;

FUNCTION StillDown:BOOLEAN
CLR.W -(SP)

203

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

-8til1Down
MOVE.W (SP)+,DO
BNE checkl loop as long as

mouse down

When the user finally lets up on the button, we need to set the function result and
make sure that the rectangle is set back to its original state. We use the local variable inverted
to decide whether the mouse was inside the rectangle when the mouse button was let up.

here is the exit stuff, make sure we return the rect to normal
and set the BOOLEAN result

IF inverted THEN BEGIN
inverRect(r);
TrackRect := TRUE;
END;

ELSE
TrackRect := FALSE;

TST.W
BEQ

set TRUE

inverted(A6)
setFALSE

;PROCEDURE InvertRect(r:Rect)
MOVE.L r(A6),-(SP)
_InverRect

MOVE.W #$0100,result(A6)
BRA exit

setFALSE

exit

MOVE.W

UNLK
MOVE.L
ADDA.W
JMP

END

#O,result(A6)

A6
(SP)+,AO
#parambytes,SP
(AO)

the input rectangle

set flag to TRUE

set flag to FALSE

get return address
strip parameters
RTS

You can use TrackRect in your own programs by linking the TrackRect.Rel file with
your program. Make sure that your program has a XREF TrackRect statement so that
the linker can make the necessary connections between the two modules.

204

---------------DIALOG USER ITEMS---------------

~ THE LINK FILE

The link file is used to join the main program module, UITest.Rel, with TrackRect.Rel.
The only interesting thing about the link file is that the output file is coerced to have
a type of'CODE' instead of the normal default APPL type. We do this because the code
will not run properly until it is·joined with the resources by the RMaker file listed in the
first part of this chapter.

File UITest.LINK

/OUTPUT UITestCode

Since this code file will not run successfully until it has been
joined with the resources by RMalcer, set its file type so
that it cannot be mistalcenly run from the desktop.
Link output files are usually of type APPL.

/TYPE 'CODE' 'LINK'

UITest
TrackRect
$

l!2J USER ITEMS AND SEGMENTATION: POSSIBLE PROBLEMS

Installing user-item procedure pointers is usually a straightforward exercise, as shown in
the example program. If your program uses more than one code segment, there is one
particular situation where you may have problems with user item pointers. The problem
occurs when the code segment in which your user item procedure resides is moved by
the Memory Manager, thus invalidating the pointer you have installed for the user item.
Figure 7 .5 (page 206) illustrates how this situation could arise.

Code segment 2 contains the user item procedure and the code which oversees the
dialog containing the user item. ·A pointer to the user item procedure is installed with
SCtDl1em 'when the dialog is opened .. As long as the code in segment 2 continues to execute,
the segment will remain locked in memory and there will be no problem. The problem
occurs if the dialog cause1;1 a call to ·a routine in another code segment. For example, the
res.ponse to a click in one of the dialog items might be to call a routine in code segment
3. If code in segment 3 calls UnLOadSeg for segment 2, then segment 2 will be unlocked,
marked as purgeable, and can be relocated or pui-ged by the Memory Manager. If control

205

------ THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II ------

user item proc

dialog code Dialog code calls
routine in segment 3,
causing segment 2
to be unlocked and
relocated.

FIGURE 7.5. User items and segmentation problems

code segment 2

user item proc

dialog code

Dangling
user item
pointer no
longer point:
to user item
procedure

is subsequently passed back to the dialog handling routine in code segment 2, the user
item procedure pointer will no longer be valid if the code segment has been relocated.
This is a subtle problem to figure out, but it will cause your program to crash dramat
ically when the Dialog Manager tries to use the invalid pointer to draw the user item.
Notice that a code segment will only be relocated if UnLoadSeg is called for that seg
ment. While you may be able to control this sort of thing in your own code, be especially
careful if you are using a library of routines from a third party, such as the database program
mer's packages that exist for the Mac.

206

--------------- DIAlDG USER ITEMS---------------

!SlsuMMARY

User items constitute one of the most flexible techniques available to Macintosh program
mers searching for ways to add unique touches to their programs. User items can be simple,
such as the line drawing example in this chapter, or more complex, like the rectangular
button example.

This chapter illustrated how user item procedures can be defined and installed in
dialogs. It also demonstrated how to construct a filter procedure for ModalDialog in order
to extend the functionality of your dialogs.

207

CHAPTER

RAM Disk+

A RAM disk is a large contiguous section of RAM memory that is made to act just like
a disk drive. By creating the appropriate device driver, data which would normally go to
or come from a mechanical disk drive can be directed to a static section of the Macintosh's
memory instead. Because the mechanical aspect of the storage is removed, RAM disks
are superfast, with almost instantaneous data transfer rates. A RAM disk can give you
a significant speed advantage over floppy and hard disks. For a situation where you are
switching back and forth between several programs, such as MDS, putting all the pro
grams on a RAM disk reduces the transfer time to one or two seconds. Once you have
experienced the Edit/ASM/Link/RMaker cycle on a RAM disk, you will never want to
work without one again. This chapter shows you how to write a RAM disk and install
it in your Macintosh. You will be able to use it on a 512K Macintosh, a I-megabyte
Macintosh Plus, or a Macintosh modified with a third-party 2-megabyte memory upgrade.
Additionally, this RAM disk will operate in both the HFS and MFS file environments.

Once installed, the RAM disk appears to the system as just another disk drive device.
Figure 8.1 shows the RAM disk icon on the Finder desktop. Because the RAM disk device
driver inter\renes bet:Ween the system and the actual details of how the data is stored, the
RAM disk can be addressed with all the normal File Manager and Device Manager routine
calls. Once installed, the RAM disk remains active until the power is shut off or the
MacintOsh is reset. This is one of the drawbacks of using a RAM disk. (The other dis
advantage is that the memory reserved for the RAM disk can't be used in any other way.)
You must be careful to copy any data files from the RAM disk to non-volatile storage before
turning the computer off. In day-to-day use, especially during program development where
system crashes happen frequently, this meap.s that the RAM disk should be used to hold
only the system folder and application programs. Data files are best kept on regular floppy
disks or hard disk drives.

208

----------------- RAM DISK+

r s File Edit Lliew Special

FIGURE 8.1. RAM disk on desktop

In order to create a RAM disk, we need to develop the device driver and an applica
tion program to install the device driver in the system. The first part of this chapter will
discuss the installation program and memory manipulation techniques necessary to put
a RAM disk into memory. The second half of the chapter will cover the RAM disk driver,
explaining some of the more general aspects of driver writing along the way.

e RAM DISK INSTALLER

The application program that installs the RAM disk must run two times to accomplish
its task. The first time through, the installer figures out how much memory is available
and puts up a dialog to let the user choose the size of the RAM disk, as shown in Figure
8.2. The maximum value is calculated to leave the same amount of useable memory as
on a 128K Macintosh. Once the user has filled in the desired size of the RAM disk in
the edit text box of the dialog and clicked Install, the installer program places the size
of the RAM disk in a long-word system global variable, adjusts a system global pointer
to reserve the required memory for the RAM disk, and then launches itself again. On

209

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

MaHimum disk size = 800 K

lmmlll K: Actual size

Ram disk+

(Install) Dan Weston

March 1986 (Cancel)

FIGURE 8.2. First pass dialog

the second run through, the installation program actually opens the RAM disk driver and
informs the system that a new disk device is now attached. At the conclusion of the second
pass of the program, the RAM disk will be recognized by the system and the Finder,
as shown in Figure 8.1. The details of these processes are covered in the sections that follow.

Memory layout
The key element in our installation scenario is the system global variable bufPtr ($10C).
BufPtr is used by the Segment Loader to determine the top of useable memory. BufPtr
points to the address where the Segment Loader begins building the jump table down
ward in memory. The application parameters, application globals, and QuickDraw globals
are placed underneath the jump table, as explained in Chapter 1. The stack and the appli
cation heap come immediately underneath the QuickDraw globals. Because the size of
the jump table and application globals is determined by the particular application pro
gram running at the time, the difference between the start of the application heap zone
and the address pointed to by bufPtr is the most accurate indicator of the memory that
is useable by that application.

The exact value of bufPtr is highly variable, depending on the configuration of the
system. In the simplest case, bufPtr points to the bottom of the main screen buffer. Many
other factors can affect the setting of bufPtr, however. If you have a debugger installed,
then it will adjust bufPtr downward to make room for itself. On the Macintosh Plus, using
the control panel to turn disk caching on will also move bufPtr downward to make room
for the cache buffers. If your program uses the alternate screen and sound buffers, bufPtr
will be adjusted downward accordingly, taking useable memory away from the applica
tion. Figure 8.3 shows how bufPtr fits into a possible memory layout.

210

----------------RAM DISK+ ----------------

debugger
bufPtr

application parameters

application globals

QuickDraw globals

stack

useable memory

application heap

theZone
FIGURE 8.3. Useable memory

211

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

Our installation program will adjust bufPtr downward to reserve room for the RAM
disk. This effectively removes the RAM disk memory from the useable memory of the
Macintosh because all subsequent programs loaded by the Segment Loader will respect
the value in bufPtr as the true top of useable memory.

The other system global variables that we rely on to install our RAM disk occupy
12 bytes starting at ApplScratch ($A78). These bytes are reserved for use by application
programs; they are never changed by any system actions. We use the ApplScratch bytes
to pass messages between the first and second pass of our installation program. Because
the second pass is initiated by a Launch command from within the first pass, we can
be assured that the values set up by the first pass in ApplScratch will still be valid on
the second pass.

We leave two messages in the ApplScratch area. The first is a calling card to tell
the program that we have already completed the first pass. The four-byte value RDWH
(RAM Disk Was Here) is placed in ApplScratch at the conclusion of the first pass. When
the second pass begins, it checks to see if the calling card is in ApplScratch, giving confir
mation that the second pass should continue. The other message that we leave is a four
byte value that gives the length of the RAM disk. This value is placed at Appl Scratch+ 4
and is used by the RAM disk driver itself to determine how much memory to initialize
for the RAM disk.

The Documentation Header
The installation program begins with a section of documentary comments. This section
also INCLUDEs some standard symbol files and defines two macro definitions to facili
tate the use of the number conversion utilities contained in the Package Manager.

File RD+Install.ASM

This application installs a RAM disk

This program makes two passes:
The first pass examines memory and sets the appropriate low-memory
globals to prepare for the RAM disk. Then the program launches
itself, leaving crucial information behind in low-memory globals.

The second pass opens the RAM disk driver and installs it in memory.

Dan Weston April, 1986

INCLUDE
INCLUDE
INCLUDE

MacTraps.D
ToolEqu.D
SysEqu.D

212

MACRO _stringToNum string,num =
LEA {string},AO
MOVE.W #1,-(SP)
Jack7
LEA
MOVE.L
I

{num},AO
DO, (AO)

MACRONumToString num,string =
MOVE.L {num},DO
LEA {string},AO
MOVE.W #0,-(SP)
Jack7
I

The Equates
We define many symbolic constants in addition to the symbols included from the stan
dard equates files shown above. MinHeap is the size, deduced empirically, of useable
memory on a 128K Macintosh. It is the minimum amount of memory that the installation
program will alloW to remain after a RAM disk has been installed. You can change this
value before assembly to increase or decrease the maximum size of your RAM disk.

;----------------------------------- EQUATES -----------------------------------
minHeap EQU 88320 ; useable memory of 128K MAC

The rest of the equates are associated with the dialogs that the installation program
uses to communicate with the user.

GetinfoD EQU 256 dialog ID for first dialog
InstallingD EQU 257 dialog for installing disk
tooSmallD EQU 258 too small dialog
badmountD EQU 259 if DI.Zero fails
tooLateD EQU 260 if a RAM disk is already installed

mydialog EQU A2 register for dialog pointer

InstalLbutton EQU 1
actualsize EQU 2
CanceLbutton EQU J
OILbutton EQU 1

backspace EQU 8
CR EQU lJ

213

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

Global Variables
We also define some application global variables to use as VAR parameters and hold other
values. The use of these variables is explained at the point where they are used in the
discussion of the code that follows. One thing to note is that the global variables defined
here do not maintain their values from the first pass to the second pass. That is why we
rely on the low-memory system globals instead to pass messages between the two runs
of the program.

;------------------------------- Global Variables -------------------------------

MaxSize DS.L 1 maximum size allowable (in K)

ItemHit DS.W 1 VAR for modal dialog
the Type DS.W 1 VAR for GetDitem
the Item DS.L 1 VAR for GetDitem
theRect DS.W 4 VAR for GetDitem

theNum DS.L 1 scratch long int
theString DS.B 256 scratch string

Launchlnfo DS.W 3 ptr and flag for Launch call

pBlock DS.B 80 parameter block for opening driver

Initialization and Entry
The program begins by initializing the RAM managers. This subrov.tine is the standard
generic application initialization stuff so it will not be discussed here. See the listing of
RD+ Install.ASM in Appendix A for the text of the InitManagers subroutine. The com
plete source code for RD+ Install.ASM is also included on the source code disk available
from the author.

Initialization -------------------------------

BSR.W InitManagers ; at end of source file

214

-----------------RAM DISK+ -----------------

After initializing the ROM managers, the application must determine if this RAM
disk has already been installed so that the installation program won't try to install a sec
ond one. We do this by sending a status call to all the drives currently in the operating
system's drive queue. The drive queue is a linked list of records, as shown in Figure 8.4,
containing information about each disk drive device. The low-memory global DrvQHdr+ 2
holds a pointer to the first element of this list. The first field (q Link) of each list element
in turn contains a pointer to the succeeding element. The last element in the list contains
a zero in the qLink field.

Our RAM disk driver is set up so that if it receives a status message #99, it responds
by placing the word 'HERE' in the csParam field of the parameter block passed to it with
the status call. Our installation program goes through the drive queue and sends each
drive a #99 status call and waits for the 'HERE' response. If we get all the way to the
end of the drive queue list without getting the correct response, then we know that our
RAM drive isn't installed and that we can go on with the installation program. If we do
get a 'HERE' response, then we branch to a dialog error handler to let the user know
that only one RAM disk can be installed at a time.

Each drive queue element contains several fields of information. For this search,
we are only interested in the dqDrive and the dqRefNum fields, which we pass as
parameters to the status call. We know that we have checked all the elements when we
get to an element with zero in the qLink field.

DrvQ Hdr+2 system global in low memory

non-relocatable objects
Ion ..---- on system heap

word i
word
word Ion
word
word word

word
word
word
word

FIGURE U. The Drive Queue

215

Ion

word
word
word
word
word

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

;------------------------------------ Entry ------------------------------------
Make sure that this RAM disk is not already installed.
Walk through the drive queue and send a #99 status message to each drive.
If the drive responds 'HERE', then we know that we can't install another
RAM disk.

; Get into the drive queue
MOVE.L DrvQHdr+qHead,A2 ; get ptr to first element

checkelement
; use fields
LEA
MOVE.L
MOVE.W
MOVE.W
MOVE.W
_status
BMI

CMPI.L
BEQ

checknext
TST.L
BEQ

MOVE.L
BRA

noRamDrive

of the drive queue element to fill in parameter block
pBlock(A5),AO our parameter block
#0,ioCompletion(AO) no completion routine
dqDrive(A2),ioVRefNum(AO) drive number
dqRefNum(A2),ioRefNum(AO) driver ref num
#99,csCode(AO) our special code

checknext this drive isn't ours

#'HERE',csParam(AO) did we get the magic message
tooLate abort,RAM drive already exists

q1ink(A2) is this the last element
noRAMDrive we've not been here before

qLink(A2),A2 get ptr to next element
checkelement go back and test this element

If we find our drive already installed, we branch to the routine at tool.ate, display
the dialog shown in Figure 8.5, and then exit to the Finder. You might want to give the
user some options at that time, such as destroying the old RAM drive and installing a
new one.

R RRM disk is already installed.

FIGURE L5. The Tool.ate dialog

216

Assuming that we didn't find a RAM disk already in the drive queue, we proceed
with the installation by determining if this is the first or the second pass. If this is the
second pass, the value RDWH will be found in ApplScratch. The program looks at the
value there and jumps to do the second pass code if the calling card is found. Otherwise,
we proceed with the first pass. Both the first and the second pass have the same entry point.

Find out if we are in the first pass or the second by examining the
value in AppleScratch. If this is the second pass, our calling card,
RDWH (RAM disk was here), will be there.

MOVE.L
MOVE.L
CMP.L
BEQ

ApplScratch,DO
#'RDWH' ,Dl
Dl,DO
DoPass2

get value from low memory
get this constant, RDWH
have we been here recently?
go ahead and install the disk

The First Pass
If this is the first pass, then the program looks at the current value of bufPtr to get the
top of useable memory. It also looks at the system global theZone to get a pointer to the
beginning of the application heap. By subtracting the heap start from bufPtr, the pro
gram calculates the total available memory. The minHeap constant is then subtracted from
this total to give the maximum amount of memory that can be devoted to a RAM disk.
If the available memory for the RAM disk is below 5 K, then the installation program
displays a dialog telling the user that a RAM disk can't be installed, as shown in Figure 8.6.

;----------------------------------- DoPassl -----------------------------------
DoPassl

Look at various low-memory globals and determine the current state
of the machine.
How much useable memory is there?

There is not enough memory to install
a RAM disk.

FIGURE 8.8. The TooSmall dlalog

217

----- THE COMPLETE BOOK Of MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

; How big can the RAM disk be?
MOVE.L theZone,Dl ptr to application zone

top of useable memory
total useable memory

MOVE.L bufPtr,DO
SUB.L Dl,DO
SUB.L #minHeap,DO leave enough room to fake a 128K mac

minimum of 5K CMP.L #5*1024,DO
BMI tooSmall don't put disk on a dinky machine

If the value is larger than SK, then we proceed with the installation process. The
maximum size value shifted right by ten bits, which is equivalent to division by 1024,
so that the size can be manipulated as a multiple of 1 K. This conversion is done because
the size is displayed in the dialogs with values like SOOK, as shown in Figure 8.2. This
value is stored in the application global maxSize for future reference.

MOVE.L
ASR.L
MOVE.L

#10,Dl put shift value in register
Dl,DO ; truncate to K value
DO,maxSize(A5) ; save the value here

Once the system has been examined and the limits of the RAM disk determined,
the program puts up the dialog shown in Figure 8.2. The dialog is stored as a resource
in the application file.

now put up a dialog and tell the user how big the RAM disk can be

;FUNCTION GetNewDialog (dialogID: INTEGER; dStorage: Ptr;
behind: WindowPtr) : DialogPtr

CLR.L
MOVE
CLR.L
MOVE.L

-(SP)
#GetinfoD,-(SP)
-(SP)
#-1,-(SP)

_GetNewDialog
MOVE.L (SP)+,myDialog

;PROCEDURE SetPort (gp: grafPort)
MOVE.L myDialog,-(SP)
-8etPort

clear space for DialogPtr
resource #
storage area on heap
above all others
get new dialog
move handle to A2

; move dialog pointer to stack
; make it the current port

The static text item appearing at the top of the dialog is defined in the RMaker file
as "maximum size = AO". Using AO in a text definition for a dialog item makes the text
easy to change at run time. Parani1Cxt is a ROM routine that accepts four string pointers
as inputs. When ParamText is called, all dialog text items are searched for the markers,
AO,AI,A2, or A3. If any of these markers are found, the corresponding string given to
Paranil'ext will be substituted for the marker. We take the value stored in the application
global maxSize and convert it to string with Nunil'oString. Then we pass that string to
Paranil'ext as the first parameter so that AO will be changed to our maximum size. Using
Paranil'ext is much easier than trying to go in and change the text of a dialog item directly.

218

----------------UM DISK+ ----------------

now set the maximum size text item

MOVE.L
....NumToString

maxSize(A5) ,DO
DO,theString(A5)

get max size from our globals
convert the number to a string

; use the string to change the static text item AO
;PROCEDURE ParamText(pO,pl,p2,pJ:Str255)
PEA theString(A5)
CLR.L -(SP)
CLR.L -(SP)
CLR.L -(SP)
JaramText

We also need to change the text in the edit text box that allows the user to specify
the actual size of the RAM disk. Unfortunately, Paranil'ext only works for static text items,
so we need to change the edit text item directly. We get the handle to the edit text item
with GetDitem and then use SedText to change the text to match the maximum size
shown in the static text item.

and set the edit text item to show the maximum size

; get dialog item,
;PROCEDURE GetDitem(thedialog:DialogPtr;itemNo:INTEGER;

VAR type:INTEGER: VAR item: Handle;

MOVE.L
MOVE.W
PEA
PEA
PEA
_GetDitem

VAR box: Rect)
myDialog,-(SP)
#actualsize,-(SP)
theType(A5)
theltem(A5)
theRect(A5)

we saved DialogPtr here
item
VAR type
VAR item
VAR box

;PROCEDURE SetIText(item:Handle;text:Str255)
MOVE.L theltem(A5),-(SP) ; handle in VAR
PEA theString(A5)
_BetIText

One final touch here, which is not really necessary but makes the dialog easier to
use, is to select the entire range of digits in the edit text item so that the user may simply
begin typing digits to replace the default value rather than having to move the mouse to
select the text. We do this by getting the Text Edit record handle from the dialog record,
and setting the selection start and end fields of the TE record directly.

219

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

; set the selection range so that the entire # is selected
MOVE.L
MOVE.L
MOVE.L
MOVE.W
MOVE.W

myDialog,AO get dialog ptr
teHandle(AO),AO TERecord for edit text item
(AO),AO convert to Ptr
#0,teSelStart(AO) set start of selection
#4,teSelEnd(AO) set selection end

One thing to note about all this manipulation of the dialog items is that only the
outline of the dialog is drawn by the call to GetNewDialog. The contents are not drawn
until you call DrawDialog, or until ModalDialog processes the update event triggered
by the dialog's appearance.

THE DIALOG LOOP
Once the text items of the dialog are set correctly, we call ModalDialog and process the
user input to the dialog. We use a filter procedure to look at the user key presses to make
sure that only digits get entered into the edit text item specifying the actual RAM disk
size. The structure of the filter procedure is very similar to the one used in Chapter 6
for the CheapTalk dialog. You are referred to RD+ Install.ASM in Appendix A for the
source code of the filter procedure, and to Chapter 6 for an explanation of how a filter
procedure can screen out nondigits.

Each time ModalDialog returns, we check the itemHit global variable to see which
item has clicked. Since so much of the work is done by the filter procedure, we really
need to check only to see if the Install button or the Cancel button have been clicked.

;------------------------------------ Dialog Loop ------------------------------------
Now process the dialog.

; Let the user pick the size for the RAM disk.

dialog loop

;PROCEDURE ModalDialog (filterProc: ProcPtr;
VAR itemHit: INTEGER)

PEA
PEA

MyFilter
i temHit(A5)

_ModalDialog

see which button was pushed

filter proc
itemHit Data

the filter proc takes care of the key presses inside the size box

CMP.W
BEQ

#Cancel_button,itemHit(A5)
DoCancel

220

; cancel button?

-----------------RAM DISK+ -----------------

CMP.W
BEQ

#Install_button,itemHit(A5)
Do Install

time to install it

BRA dialog loop go around again

INSTALLING THE RAM DISK
If the user clicks the Install button or presses the return key, then we branch to the Doln
stall part of the program. The first thing to do is to make sure that the actual size entered
by the user is not larger than the maximum size, rounding down the actual size if necessary.

;---------------------------------- Doinstall ----------------------------------
Doinstall

If use picked install, then fill in the bytes in ApplScratch to
allow communication with the subsequent run of this program.

First, make sure that size in edit text item is not larger than maximum
size. Round down if necessary.

; get dialog item,
;PROCEDURE GetDitem(thedialog:DialogPtr;itemNo:INTEGER;

VAR type:INTEGER: VAR item: Handle;

MOVE.L
MOVE.W
PEA
PEA
PEA
_GetDitem

VAR box: Rect)
myDialog,-(SP)
#actualsize,-(SP)
theType(A5)
theitem(A5)
theRect(A5)

we saved DialogPtr here
actual size item
VAR type
VAR item
VAR box

; PROCEDURE GetIText(item: Handle; VAR text: Str255)
MOVE.L theitem(A5),-(SP) get handle from VAR
PEA theString(A5) ; string holder
_Get I Text

-8tringToNum theString(A5),theNum(A5)

user input in theNum(A5) now

get the max value
MOVE.L maxSize(A5),DO

CMP.L
BPL

theNum(A5),DO
SizeOK

; set theNum to maximum
MOVE.L maxSize(A5),theNum(A5)

from our globals

compare actual and max
actual size within limits

from our globals

221

------ THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II ------

set the text of the box to match corrected number
_NumToString theNum(A5),theString(A5)

;PROCEDURE Set!Text(item:Handle;text:Str255)
MOVE.L theltem(A5),-(SP) ; handle in VAR
PEA theString(A5)
_Set I Text

SizeOK

When we have made sure that the size requested by the user is within the acceptable
limits, we leave that value in the low-memory globals for the second pass of the program.
We put our calling card, RDWH, in ApplScratch.

ApplScratch+O = RDWH
MOVE.L #'RDWH' ,ApplScratch ; leave a calling card

The size of the RAM disk, held in theNum(AS) as the number of 1024-byte blocks
(e.g., 400K), is converted to the actual long-word size, in bytes, of the RAM disk by shift
ing the value to the left by 10 bits. This reverses the right shift done at the beginning
of the program. This actual size value is placed in the low memory global at
ApplScratch + 4.

App1Scratch+4 = size of RAM disk
MOVE.L theNum(A5),DO
MOVE.L #10,Dl
ASL.L Dl,DO
MOVE.L DO,App1Scratch+4

(Longlnt)

put shift value in register
convert back to bytes
leave the size, in bytes

Then we adjust butPtr downward by the size of the RAM disk so that the memory
will be reserved exclusively for the RAM disk and not be available for subsequent pro
grams, as shown in Figure 8.7.

Adjust bufPtr to make room for the RAM disk.
; bufPtr = bufPtr - RAM disk size
MOVE.L bufPtr,Dl get ptr from low memory

RAM disk size still in DO
put adjusted ptr back

SUB.L DO,Dl
MOVE.L Dl,bufPtr

Finally, at the end of pass one we launch ourselves again. Launch expects to find
a pointer to a launch information data structure in register AO. The launch info structure
contains a pointer to the application name to be launched and a word length flag that
determines if space should be allocated for the alternate sound and screen buffers. Since
we can't be sure that the name of the installation program is still RD + Install, we get

222

debugger

reserved for
RAM disk

application parameters

application globals

QuickDraw globals

stack

application heap

FIGURE 8.7. buf Plr and RAM disk

old bufPtr

new bufPtr

useable memory

theZone

223

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY UNGUAGE PROGRAMMING; VOWME II -----

a pointer to the current application name that the system maintains in the low-memory
global curApName and install the pointer in our launch info record. CurApName is a
32-byte block that contains the name, so we use LEA curApName,AO to get a pointer
to the name. We also pass 0 for the flag word because we want the normal primary sound
and screen buffers only. Then we call Launch, which causes the install program to start
up again. On that run it will find the calling card in ApplScratch and know that it should
branch to the second pass section of the code.

Launch ourself again

; get our name, just in case some bozo changed it
LEA curApName,AO low-memory space for ap name
MOVE.L AO,Launchinfo{A5) install ptr for Launch
MOVE.W #O,Launchinfo+4(A5) use primary sound and screen
LEA Launchinfo(A5),AO
_Launch

TOOSMALL DIALOG
As mentioned in an earlier section, if the first pass of the program discovers that there
is less than 5 K available for a RAM disk, it branches to a routine to put up a dialog shown
in Figure 8.6 (page 217) and then terminates the program. The code that handles that
task is straightforward and requires no further explanation. This section of code also con
tains the DoCancel label that is the exit point if the user clicks the Cancel button of the
main dialog.

;----------------------------------- TooSmall -----------------------------------
TooSmall

come here if no room for RAM disk
; Put up a dialog

;FUNCTION GetNewDialog (dialogID: INTEGER; dStorage: Ptr;
behind: WindowPtr) : DialogPtr

CLR.L
MOVE
CLR.L
MOVE.L

-(SP)
#tooSmallD,-{SP)
-(SP)
#-1,-(SP)

_GetNewDialog
MOVE.L (SP)+,myDialog

;PROCEDURE SetPort (gp: grafPort)
MOVE.L myDialog,-{SP)
--8etPort

clear space for DialogPtr
resource #
storage area on heap
above all others
get new dialog
move handle to A2

move DialogPtr to stack
make it the current port

224

-----------------RAM DISK+ -----------------

;PROCEDURE DrawDialog(dp:DialogPtr)
MOVE.L myDialog,-(SP)
_Draw Dialog

; wait for a mouse click ... nonstandard way of doing this
@1 CLR.W -(SP)

_Button
MOVE.W
BEQ

DoCancel
JxitToShell

(SP)+,DO
@1

TOOLATE DIALOG
Figure 8.S (page 216) shows the dialog put up by the program if it discovers that a RAM
disk is already installed, as discussed earlier. The code to do that and exit to the Finder
is shown below. It is essentially the same as the code for the TooSmall dialog.

;----------------------------------- TooLate -----------------------------------
TooLate

come here if a RAM disk is already installed
; Put up a dialog

;FUNCTION GetNewDialog (dialogID: INTEGER; dStorage: Ptr;
behind: WindowPtr) : DialogPtr

CLR.L
MOVE
CLR.L
MOVE.L

-(SP)
#tooLateD,-(SP)
-(SP)
#-1,-(SP)

_GetNewDialog
MOVE.L (SP)+,myDialog

;PROCEDURE SetPort (gp: grafPort)
MOVE.L myDialog,-(SP)
-8etPort

clear space for DialogPtr
resource #
storage area on heap
above all others
get new dialog
move handle to A2

move DialogPtr to stack
make it the current port

;PROCEDURE DrawDialog(dp:DialogPtr)
MOVE.L myDialog,-(SP)
_Draw Dialog

225

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME 11 -----

; wait for a mouse ••. nonstandard way of doing this
@1 CLR.W -(SP)

_Button
MOVE.W
BEQ

_ExitToShell

(SP)+,DO
@1

The Second Pass

go back to Finder

The second pass begins by fetching the RAM disk length from ApplScratch + 4, right
shifting it so that it refers to 1024-byte blocks rather than bytes, and displaying the value
in a dialog, as shown in Figure 8.8. We use Paranil'ext and NumToString to put the size
of the RAM disk into the dialog, as discussed in an earlier section.

;----------------------------------- DoPass2 -----------------------------------
DoPass2

tell the user what is going on
find out how big the RAM disk is and display the size in a dialog

MOVE.L
MOVE.L

App1Scratch+4,DO
#10,Dl

ASR.L Dl,DO
_NumToString DO,theString(A5)

get size from global
put shift size in reg
truncate to K size
convert the number to a string

; use the string to change the static text item AQ

;PROCEDURE ParamText(pO,p1,p2,pJ:Str255)
PEA theString(A5)

Installing a 400 K RAM disk.

FIGURE U. Second pass dlalog

226

----------------RAM DISK+ ----------------

CLR.L -(SP)
CLR.L -(SP)
CLR.L -(SP)
JaramText

;FUNCTION GetNewDialog (dialogID: INTEGER; dStorage: Ptr;
behind: WindowPtr) : DialogPtr

CLR.L
MOVE
CLR.L
MOVE.L

-(SP)
#InstallingD,-(SP)
-(SP)
#-1,-(SP)

_GetNewDialog
MOVE.L (SP)+,myDialog

;PROCEDURE SetPort (gp: grafPort)
MOVE.L myDialog,-(SP)
-8etPort

clear space for DialogPtr
resource #
storage area on heap
above all others
get new dialog
move handle to A2

move DialogPtr to stack
make it the current port

;PROCEDURE DrawDialog(dp:DialogPtr)
MOVE.L myDialog,-(SP)
J)rawDialog

OPENING THE DRIVER
When installing a driver in the system, you must be careful not to use a resource ID num
ber that will conflict with any other drivers in the system file. Our RAM disk driver is
defmed with an ID of 11 in the RMaker file, but we do not have to be stuck with that
number if a conflict arises at run time. The DRVR numbers 0 through 10 are reserved
by Apple for their hard disk, floppy disk, print, sound, serial, and AppleTalk drivers.
The DRVR numbers from 11-31 are open for use by third-party developers. The way
to avoid conflict is to search through the system file and use GetResource to try to load
drivers with ID numbers between 11and31. Generally, the numbers from 12-26 are used
by desk accessory drivers, but other types of drivers can also use numbers in this range.
If there is a number between 11 and 31 for which GetResource fails to fmd a DRVR
resource, then we can use that number for our RAM disk driver.

The first thing to do is to call SetResload to FALSE so that the calls to GetResource
won't actually load the resources into memory but will merely give an indication as to
whether they are available or not. Next, we want to restrict the Resource Manager calls
so that they only search the system file, leaving our installation program's resource fork
out. We first save the path number for our application's resource file with CurResFile,
and then SetResFile to zero to specify the system file.

227

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

now find an unused DRVR number

; make sure all the resources aren't read into memory
; PROCEDURE SetResLoad(load:BOOLEAN)
MOVE.W #0,-(SP) ; FALSE
-8etResLoad

get the path number to our application resource file
we will need to reset it later
FUNCTION CurResFile: INTEGER

CLR.W -(SP) result
_CurResFile
MOVE.W (SP)+,DJ save it here

; use the system file only
; PROCEDURE UseResFile(refNum: INTEGER)
MOVE.W #0,-(SP) ; 0 for system file
_UseResFile

Now that the search is limited to the system file, we begin to try and load in the
drivers, starting with number 11. If GetResource returns NIL as the resource handle,
then we know that the DRVR resource with that ID number does not exist in the system
file and we branch to testTable to do one more test on the ID number. If GetResource
returns a valid handle, then we bump the ID number up by one, check it to make sure
that we haven't gone beyond ID number 31, and loop back to try and load that driver.
If we fmd a driver for every slot between 11and31, we branch to an error-handling rou
tine to put up a dialog warning the user and abort the installation process.

now look at all the drivers, until we find an unused ID #
MOVE.W #11,D4 ; start with #11

DRVRloop
; FUNCTION
CLR.L
MOVE.L
MOVE.W
_GetResource

GetResource(type:ResType;ID:INTEGER) : Handle
-(SP) result
#'DRVR',-(SP) look for DRVR
D4,-(SP) check this ID #

MOVE.L (SP)+,DO get handle
BEQ testTable this DRVR does not exist

228

-----------------RAM DISK+ -----------------

inc ID
ADO.'W
CMP.'W

#1,04
#32,04

try the next number
don't search past 31

BLT ORVRloop

noIDfree
; we get here if all the ORVR slots between 11 and 31 are taken

BSR

BRA.'W

testTable

fixResFile clean up after ourselves

badinit use error dialog

Assuming that an unused driver number is found, the corresponding slot in the unit
table must be checked. The system maintains a 128-byte table on the system heap that
holds handles to the device-control entry data records for each driver between 0 and 31.
Even if we find no DRVR with a particular ID number, we must also check the unit table
to make sure that a driver with that number was not installed from a source other than
the system file. Our driver, for instance, would not show up in the search of the system
file because it is contained in an application file. The unit table is the final check that
you must make before using a driver number.

Each driver is allocated a four-byte entry in the unit table. To fmd the entry for a
particular driver number, multiply the driver ID number by 4 and use that value as an
offset from the beginning of the unit table. The low-memory global UTableBase ($11C)
contains a pointer to the unit table on the system heap. We use this pointer, along with
the ID number in register D4, to check the appropriate entry in the unit table. If this
entry is zero, then we can go ahead and use this number for our driver. If the slot in the
unit table is taken, then we branch back to the resource searching code and try the next
number. The Device Manager section of Inside Macintosh contains more information on
the unit table.

; there
MOVE.L
MOVE.'W
ASL.'W
ADOA.'W
TST.L
BNE

isn't a ORVR with this
UTableBase,AO
04,00
#2,00
00,AO
(AO)
inc Id

ID, but check the unit table too
get ptr to unit table
get unit number
long word table
bump ptr
is this slot filled?
go back and look for DRVRs

229

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

Now that we have a valid ID number for our driver, we set SetResLoad to TRUE
and reset the Resource Manager so that our application file will be the first source for
all Resource Manager calls. The subroutine FixResFile does these two tasks.

we get to this point if a DRVR ID number is not in the system
file or in the unit table

BSR FixResFile ; get back to our app file

Then we check to see if the unused ID number is 11. If it is 11, then we don't have
to change anything since our RAM disk driver is already defined with that number. If
the number is not 11, then we load in the RAM disk driver with GetNamedResource
and then change its ID number with SetReslnfo. This change only affects the DRVR
resource in memory- the change has not been made to the file contents. In order to make
sure that the change is not written out to the file, we also clear the attributes word of
the resource file with SetResFileAttrs. See the Resource Manager section of Inside Macin
tosh for the details of attribute bit settings.

change the resource ID of the RAM disk driver (unless 11 is free)
CMP.W #11,D4 ; do we need to change it
BEQ nochange ; whew!

;FUNCTION
CLR.L
MOVE.L

GetNamedResource(theType:ResType;name:Str255):Handle
-(SP) space for result
#'DRVR',-(SP) type

PEA ramdiskName the name
_GetNamedResource
MOVE.L (SP)+,D5 save handle here

change the ID number of the DRVR in the resource map
PROCEDURE SetResinfo(theResource:Handle;theID:INTEGER;

name:Str255)
MOVE.L
MOVE.W
MOVE.L
_SetResinfo

D5,-(SP)
D4,-(SP)
#0,-(SP)

res handle
new number
don't change name

; but make sure that the change is not written to the file
;PROCEDURE SetResFileAttrs(refNum:INTEGER;attrs:INTEGER)
MOVE.W DJ,-(SP) application res file
MOVE.W #0,-(SP) ; clear all bits
_SetResFileAttrs

no change
BRA openDRVR ; now go ahead

230

----------------RAM DISK+ ----------------

FixResFile

The subroutine FixResFile mentioned above is shown below. It makes a call to
SetResLoad(TRUE) and also calls UseResFile with the path number for our applica
tion's resource file, which we saved earlier after a call to CurResFile.

THIS IS VERY IMPORTANT

PROCEDURE UseResFile(refNum: INTEGER)
MOVE.W DJ,-(SP) ; our application file
_UseResFile

; make sure all the resources ARE read into memory
; PROCEDURE SetResLoad(load:BOOLEAN)
MOVE.W #$0100,-(SP) ; TRUE
--8etResLoad

RTS

Assuming that all went well in the search for an unused driver number, we can now
open the driver. We first set up the proper fields of a parameter block that is reserved
in our application globals. We supply the name of the driver (.ramdisk) and call Open.
Upon completion, Open returns a driver reference number in the ioRefNum field of the
parameter block. We save the ref num away in a safe register so that we can use it later
to install the drive in the drive queue. The Open call will get the DRVR resource and
send it an Open message to initialize it. See the second half of this chapter for details
on the driver's Open routine.

If the Open call was not successful, the negative status flag will be set. We check
the status codes with BMI instruction and branch to an error routine if Open failed. The
error routine displays the dialog shown in Figure 8.9, adjusts bufPtr back up by the size
of the proposed RAM disk, and exits to the Finder. It is important to reset bufPtr in this
error situation. Otherwise, the memory can not be reclaimed without rebooting the system.

I can't mount this uolume.

FIGURE 8.9. The badlnlt dialog

231

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

;--
openDRVR

; Open the RAM disk driver

LEA pBlock(A5),AO our parameter block
MOVE.L #0,ioCompletion(AO) no completion routine
LEA ramdiskName,Al get ptr to name
MOVE.L Al,ioFileName(AO) put name ptr in p block
MOVE.B #J,ioPermssn(AO) allow read and write
MOVE.L #0,ioOwnBuf(AO) use default buffer
_Open

BM! badinit ; can't open driver

save reference number for this driver in D4
MOVE.W ioRefNum(AO),D4

If the driver opens successfully, we want to make sure that it stays around on the
system heap. We get a handle to the DRVR resource and then call DetachResource so
that the DRVR resource will not be purged when the application terminates.
DetachResource severs the connection between the resource and the resource map so that
the Resource Manager can't find the detached resource when it deallocates all of an appli
cation's resource at termination.

detach it so it will stay around even when the application closes

;FUNCTION
CLR.L
MOVE.L
PEA

GetNamedResource(theType:ResType;name:Str255):Handle
-(SP) space for result
#'DRVR' ,-(SP) type
lramdiskName the name

_GetNamedResource

;PROCEDURE DetachResource(theResource:Handle)
_DetachResource ; handle still on stack

ADDING THE DRIVE TO THE DRIVE QUEUE
The operating system maintains a linked list containing information about all the disk
drive devices attached to the system, as discussed earlier. The structure of the drive queue
is shown in Figure 8.4 (page 215). We used the drive queue in the first pass to find out
if a RAM disk was already installed. In this part of the program we must add our RAM
disk to the drive queue.

232

-----------------RAM DISK+ -----------------

Disk drives are assigned integer drive numbers, starting with 1 for the internal floppy,
2 for the external floppy, and so on. The first thing we need to do is find an unused drive
number for our RAM disk. We start by assuming that 3 will be a good drive number.
Then we look at each element in the drive queue to see if any other drive is using that
number. If we get all the way to the end of the drive queue without a match, then our
drive number is unique and we assign it to the RAM disk. If we fmd a drive in the drive
queue that is using our number, we increment our drive number by 1 and start searching
at the head of the drive queue again. We continue this search pattern until we fmd a drive
number that is not being used by any other drive in the drive queue.

Use Figure 8.4 to help understand how the code below walks through the drive queue
to fmd the drive numbers. Linked lists are a very interesting data structure that can be
used for any sort of situation where the number of elements to be stored is variable.

add the drive to the drive queue
search the drive queue for an unused drive #
pick a likely # and search through the drive queue for it
if you don't find an occurrence of that #, then use it for new drive
otherwise, increment the # and search the queue again

start with drive #J
MOVE.W #J,DO

; get into the drive queue
getHead

MOVE.L DrvQHdr+qHead,AO

check It
CMP.W
BNE

dqDrive(AO),DO
keep looking

get ptr to first element

is this # the same as ours?
not our drive #, search rest of queue

; bump our drive # and go back to the head of the queue
ADD.W #1,DO
BRA getHead

keep looking
TST.L
BEQ

qLink(AO)
foundDrive

is this the last element
our drive # is OK

233

----- THE COMPLETE •K OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

MOVE.L
BRA

foundDrive

qLink(AO),AO
check It

get ptr to next element
go back and test this element

; the drive number is in register DO
MOVE.W DO,DJ store drive # here

At this point, we have the driver reference number in registerD4 and the drive number
in register D3. The driver reference number is the complement of the DRVR resource
ID (i.e., resource ID 11 = > ref num -12) and the drive number is the result of the search
detailed above. Now we are ready to add our drive to the drive queue. First we need to
allocate an 18-byte drive queue element on the system heap for our drive. Then we need
to fill in some information in the new drive queue element to match our newly allocated
RAM disk. We set the flags field of the drive queue element so that the RAM disk can't
be ejected and fill in the size of the drive, in 512-byte blocks. We also set the dqFSID
field to show that our drive will use the normal File Manager routines for all accesses.

The only tricky part of filling in the drive queue element is that the long word con
taining the flags actually comes four bytes ahead of where the element starts. When we
refer to the drive queue element, we always use a pointer indicating the qLink field of
the element, as shown in Figure 8.4. When we allocate the new drive queue element,
however, we begin with register AO pointing to the flags field. We stuff in the flags value
and increment the pointer so that it points to the qLink field and continue to use that
pointer as our point of reference to fill in the other fields.

get space for a new drive queue element
FUNCTION NewPtr(logicalsize:Longint):Ptr
size => DO Ptr => AO

MOVE.L #18,DO size of DQel, including flags
....NewPtr,Sys

; fill in the drive queue element
MOVE.L #$00080000,(AO)+
MOVE.W #0,dqFSID(AO)
MOVE.L App1Scratch+4,DO
DIVU #512,DO
MOVE.W DO,DQDrvSize(AO)

on system heap

flags: no eject allowed
local file system
get size of drive, in bytes
convert to blocks
install size

Once our drive queue element is filled in, we call AddDrive to actually add the drive
queue element to the drive queue. AddDrive is not documented in Inside Macintosh. It
requires a pointer to the new drive queue element in register AO. Furthermore, the low
word of register DO must contain the reference number of the driver and the high word
of DO must hold the drive number.

234

;PROCEDURE AddDrive(DQE:DrvQEl;driveNwn,refNwn:INTEGER)
; DQE => AO driveNwn => high word DO, refNwn => low word DO
MOVE.W DJ,DO put drive # in upper word
SWAP DO
MOVE.W

....AddDrive
D4,DO driver ref # in low word

INITIALIZING THE DIRECTORY: HFS OR MFS
Now that the drive is installed in the drive queue, we call the Disk Initialization Package
routine DIZero to write a default volume information block and blank directory onto the
disk. By using DIZero, we avoid having to figure out the contents of the initial directory
ourselves. One additional advantage of using DIZero is that if you are running in an HFS
system you will get an MFS volume for a RAM disk of 400K or less, and an HFS volume
if the disk is over 400K. You can also make DIZero create an HFS volume of under 400K
by holding down the option key while the directory information is being written. Since
DIZero doesn't put up its own dialog, to execute this option you should hold down the
option key all during the installation dialog shown in Figure 8.8 (page 226).

DIZero is part of the Disk Initialization Package, so it is called by calling Pack2
with 10 on the stack as the routine selector. See the Package Manager section of Inside
Macintosh for more details.

make the disk initialization package write the volwne info
FUNCTION DIZero(drNwn:INTEGER;vo1Name:Str255):0SErr

CLR.W -(SP) result
MOVE.W DJ,-(SP) drive #
PEA 'RAM Disk' volwne name
MOVE.W #10,-(SP) routine selector
Jack2
MOVE.W
BM!

....ExitToShell

(SP)+,DO
badinit

check result

Using DIZero to initialize the volume greatly simplifies this part of the program.
Trying to write the necessary volume information yourself requires quite a few calcula
tions based on the size of the disk, and while the required information is well documented
for MFS, the techniques for creating an HFS directory are not immediately obvious. In
addition, DIZero calls MountVol, which adds the new drive to the volume control block
(VCB) list.

235

------ THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II ------

HANDLING ERRORS
The dialog shown in Figure 8.9 (page 231) is used if Open fails to open the driver. The
same dialog is used if DIZero returns a negative result, indicating that it couldn't write
the proper volume information or mount the volume. This error-handling routine resets
bufPtr to its original setting, freeing up the memory that was reserved in the first pass
for the RAM disk.

;----------------------------------- badinit -----------------------------------
badinit

come here if DIZero fails
; put up a dialog

;FUNCTION GetNewDialog (dialogID: INTEGER: dStorage: Ptr;
behind: WindowPtr) : DialogPtr

CLR.L
MOVE
CLR.L
MOVE.L

-(SP)
#badmountD,-(SP)
-(SP)
#-1,-(SP)

_GetNewDialog
MOVE.L (SP)+,myDialog

;PROCEDURE SetPort (gp: GrafPort)
MOVE.L myDialog,-(SP)
_SetPort

clear space for DialogPtr
resource #
storage area on heap
above all others
get new dialog
move handle to A2

move dialog pointer to stack
make it the current port

;PROCEDURE DrawDialog(dp:DialogPtr)
MOVE.L myDialog,-(SP)
_Draw Dialog

; reset bufPtr to mitigate the side effects of pass 1
MOVE.L App1Scratch+4,DO size of proposed RAM disk
ADD.L DO,bufPtr ; adjust it upward to original value

; wait for a mouse click ... nonstandard way of doing this
@1 CLR.W -(SP)

_Button
MOVE.W
BEQ

_ExitToShell

(SP)+,DO
@1

236

----------------RAM DISK+ ----------------

STATIC DATA
We keep the name of the RAM disk driver here in static storage so that it can be used
as an input parameter for Open. Notice that driver names always begin with a period(.).

;--------------------------------- static data ---------------------------------
ramdiskName

DC.B 8 length
DC.B '.ramdisk' driver name

l!2J DEVICE DRIVERS: OVERVIEW

The Macintosh operating system communicates with peripheral devices through device
drivers. For example, say that the operating system makes a call to an external device to
read 41 512 bytes, beginning at byte number 65536. The device driver for that device
receiv~ the request and d~s what is neces8ary to actually get the bytes from the device.
For a regular floppy disk drive device, the driver is concerned with controlling the mechan
ical components of the driv~ to correctly position the read/write head of the drive over
the proper sector and track ~n the disk to get the requested bytes. The device driver then
delivers the data back to the system. Our RAM disk driver is much simpler since no
mechanical manipulation· is necessary.

The important aspect of device drivers is that they hide the details of device manipu
lation from the system. The operating system is able to make generic requests of devices
without being concerned about the particular variety of device holding the data. On a
Macintosh it is quite normal to have a floppy disk, a hard disk, and a RAM disk all on
line at the same time. The operating system is able to treat all these devices in a similar
fashion because the device drivers provide a consistent interface between the system and
the· device.

On the Macintosh, drivers are used to communicate with disk drives, printers, and
serial devices such as modems. Additionally, tlie sound driver provides the means by which
the Macintosh communicates with its sound generation hardware. Finally, desk accessories
are a special form of device driver, sharing many of the structural characteristics of device
drivers to be discussed in the sections that follow.

Structure of Device Drivers
All deyice drivers must adhere to well-defined structural guidelines. The driver must consist
of five parts listed below:

OPEN This routine is called when the driver is opened. It is responsible for initializing
the driver and allocating any private memory that the driver will maintain.

237

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

PRIME This routine is responsible for handling Read and Write calls. This routine is
especially important for 1/0 oriented devices like disk drives or serial ports. Desk acces
sories, on the other hand, are not expected to be able to handle Read or Write calls.

CONTROL The operating system often needs to issue commands that control the state of
a peripheral device. For example, the operating system can send a message to a mechan
ical disk drive telling it to eject the disk. The Control routine must respond to these calls.

STATUS Other times the operating system issues calls to the device driver that request
information about the device. The Status routine responds to these calls.

CLOSE The device driver must know how to close itself, deallocating any memory that
was allocated when it opened.

The Driver Header
The first eight bytes of a device driver make up a four-word flags header that ·defines charac
teristics of the driver. The first word indicates what kind of messages the driver is set
up to handle. We set up our driver to receive read, write, control, and status calls. We
also set the proper bit in this word to make the operating system lock this driver down
in memory when it is loaded. See the device driver section of Inside Macintosh for all the
variations that can be manipulated with this word. The next word of the flags header con
tains the number of ticks (1/60 second) between periodic messages, if any. For our disk
driver, this word is set to zero since we don't want to receive periodic messages. The third
word is an event mask, with each bit standing for one of the 16 standard event types.
This field is used by desk accessory drivers to filter the kinds of events that get sent to
the desk accessory for action. Our disk driver contains zero in this field. Finally, the fourth
word of the flags header contains a menu resource ID number for a menu that is installed
by the driver. This field is most applicable to desk accessories, so our disk driver contains
zero in this field too.

The next five words contain offset values to each of the five main driver parts men
tioned above. The offset values tell how far each driver part lies from the beginning of
the driver. You must provide an offset value for each of the five parts, even if that part
has no real purpose in your driver.

Following the last word of the offset table you should place a Pascal string (that is,
with a leading length byte) containing the name of the driver. This string is listed in the
specifications as optional, but it is handy for finding your driver code in memory when
debugging.

238

----------------RAM DISK+ ----------------

Entry and Exit Conventions
When a driver is called, one of the five main parts is specified by the operating system.
For instance, an OS Read call selects the Prime routine of the driver. Whenever a call
is made to a driver, register AO contains a pointer to a parameter block data structure and
register Al contains a pointer to the device driver's device control entry (DCE). These
two data structures are covered completely in the File Manager and Device Manager chapters
of Inside Macintosh, so we will concentrate here on the specific fields affecting our RAM
disk driver.

The parameter block is an 80-byte record that contains information about the rou
tine call and also returns information from the driver. For instance, on a Write call, the
dCtlPosition field of the parameter block contains a long word defining the byte position
from which to begin writing on the device. The ioByteCount field contains a long word
telling the driver how many bytes to write to the device. The ioBuffer field contains a pointer
to a buffer in memory where the bytes to be written reside. All this information can be
obtained by the driver by indexing off the pointer to the parameter block contained in
register AO. Likewise the driver is expected to return in the ioNumDone field of the
parameter block the actual number of bytes written.

The DCE is used to hold information about the driver itself that generally does not
change from one call to another. We will be most interested in the dCtlStorage field of
the DCE because it holds a handle to the four bytes of private memory that our RAM
disk driver allocates when it is first opened. We store a pointer to the start of the RAM
disk memory in the driver's private memory, as shown in Figure 8.10 (page 240), so that
we can remember where the RAM disk starts from one call to the next.

There are two ways for a driver to return control to the calling program. For Open
and Close routines, the driver should put a result value (0 = success) into the low word
of register DO and then return with an RTS instruction. The open and close parts of a
driver are always called synchronously. The calling program makes the call and then waits
for the driver to finish before continuing. The closing instructions of a driver's Open rou
tine might look like this:

MOVE.W
RTS

#noErr,DO set result
all done with Open

The Prime, Control, and Status routines, on the other hand, are often called
asynchronously. When a program makes an asynchronous call to a driver, the call is placed
in a task queue maintained by the operating system. The calling program is then free to
continue on its way without waiting for the driver to complete the call. Since the return
address for the driver call may not be properly aligned on the stack for an asynchronous
call, you must use a different method to return from the Prime, Control, and Status routines
of a driver. The operating system global variable JIODone contains a pointer to a routine

239

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGUMMING, VGWME II -----

Ram disk memory

DCE

... -

dCtlStorage ..
master _mr .Ql'ivate memoty_ }---J -~L

FIGURE 8.10. Keeping a ptr to UM disk

that will handle the return from an asynchronous driver call. At the end of the Prime,
Control, and Status routines, you must make sure that the DCE pointer is in register Al,
the result code for the routine in the low word of DO, and then jump to the routine address
held in JIODone. This technique works even if the routine was called synchro~ously. _The
clQSing instructions for the Prime routine look something like this:

restore registers
MOVE.L A4,Al

MOVEM.L

MOVE.W
MOVE.L
RTS

(SP)+,A2-A4

#noErr,DO
JIODone,-(SP)

make sure DCE is restored

set error code to OK
get return vector
jump to it

240

----------------RAM DISK+ ----------------

It is important to make sure that the DCE pointer is in register Al before jumping
to JIODone. You will see in the RAM disk driver code how to save the DCE pointer at
routine entry and restore it before exiting.

The ramifications of synchronous and asynchronous driver calls are much more
extensive than what is discussed here, although we now know enough to write our driver
successfully. See the File Manager and Device Manager sections of Inside Macintosh for
more details.

f!2l RAM DISK DRIVER

The code for the RAM disk driver is surprisingly simple. The installation program, which
is covered in the first half of this chapter, is actually more complicated than the driver
itself. The Open routine of the driver simply zeroes out the memory that has been reserved
for the RAM disk by the installation program and allocates four bytes of private memory
to hold a pointer to the RAM disk memory. The Prime routine does some simple trans
formations of values in the parameter block to get an address of the data and then does
a single block move. The Control routine handles KillIO calls and a special call issued
by the Finder to fetch the icon used by the RAM disk, as shown in Figure 8.1 (page 209).
The Status routine is set up to respond to message number 99 by returning the value
'HERE', as explained in an earlier section. The Close routine only needs to deallocate the
private storage.

Let's begin with the documentation header, the flags header, and the offset table
that must accompany all drivers. We INCLUDE several equates files and also defme our
own constants.

RAMDisk+.ASM
a RAM disk driver to use on the Mac Plus or Mac 512

this driver is installed by RD+Install.ASM

March 1986 Dan Weston

INCLUDE MacTraps.D
INCLUDE SysEqu.D
INCLUDE ToolEqu.D

controlErr EQU -17
statusErr EQU -18
no Err EQU 0
ARdCmd EQU 2

241

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

Header
DC.W
DC.W
DC.W
DC.W

OffsetTable

DC.W
DC.W
DC.W
DC.W
DC.W

Next, define the four flags words that mark the actual beginning of the driver code.
We mark this driver so that it will be locked down in memory when it is loaded on to
the system heap, and set it up to receive read, write, control, and status calls. Following
the flags words comes the five-word offset table that points out the location of each of
the five parts of the driver, relative to the beginning. The offset table is followed by the
name of the driver.

$4FOO
0
0
0

Open-Header
Prime-Header
Control-Header
Status-Header
Close-Header

locked,read,write,control,status
no time needed
no event mask
no menu

initialization routine
read and write calls
control calls
status calls
close up shop

The Open Routine
As mentioned above, the Open routine has two tasks. First, it must examine the low
memory global, Appl Scratch+ 4, to find the length of the RAM disk that the user has
selected. Another low-memory global, bufPtr, contains the pointer to the beginning of
the memory set aside for the RAM disk. Both of these globals were set up by the installa
tion program in its first pass. The Open routine of the driver is called when the installa
tion program calls Open during its second pass. Knowing the length and starting address
of the RAM disk, the driver's Open routine fills the RAM disk memory with zeroes to
initialize the 'disk'. Notice that we do a long-word fill, which noticeably speeds up this
part of the initialization process.

;------------------------------------- Open -------------------------------------
on entry, AO points to parameter block

Al points to DCE
on exit DO contains result code (0 = OK)

Open

the open routine has two jobs:
zero the RAM disk memory
save a ptr to the RAM disk in the driver's private memory

242

; save registers

MOVEM.L
MOVE.L
MOVE.L

A2-A4,-(SP)
AO,AJ
Al,A4

fill the RAM disk memory with zeroes
bufPtr points to start
App1Scratch+4 contains length

save pblock ptr
save DCE ptr

both values were set by install program
MOVE.L bufPtr,A2 get address of RAM disk space
MOVE.L App1Scratch+4,DO get size of RAM disk
ASR.L #2,DO divide by 4 for long word fill

zero loop
MOVE.L
SUB.L
BNE

#0, (A2)+
#1,DO
zero loop

stuff zero
decrement counter
loop around until counter = 0

The other task for the Open routine is to allocate four bytes of private memory and
store the handle in the dCtStorage field of the DCE. The Open routine uses this private
memory to store a pointer to the first byte of the RAM disk. At the time the Open routine
runs, bufPtr contains the RAM disk pointer, but other programs can alter bufPtr after
the RAM disk is initialized, so the driver can't depend on that global to hold a valid pointer
on subsequent driver calls. For example, bufPtr is adjusted by debuggers, which move
it downward to make room for themselves. Putting the RAM disk pointer in the DCE's
private memory means that the driver will be able to get the correct address on all succeeding
calls.

allocate some private memory on the system heap to hold pointer to
the beginning of the RAM disk. Other programs can change bufPtr
FUNCTION NewPtr(logicalsize:Longint):Ptr
size => DO Ptr => AO

MOVE.L #4,DO
....NewHandle,SYS

MOVE.L
MOVE.L
MOVE.L

AO,dCtlStorage(A4)
(AO),AO
bufPtr, (AO)

just enough space for ptr
on system heap

install in DCE
convert handle to ptr
install RAM disk ptr in handle

243

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

Then the Open routine restores some registers that it saved at entry, sets the result
code to noErr (O), and executes an RTS to return to the calling program.

restore registers
MOVEM.L (SP)+,A2-A4

MOVEQ
RTS

#noErr,DO set result
all done with Open

The Prime Routine
The Prime routine is responsible for handling read and write calls to the driver. On entry,
we need to save the parameter block pointer and the DCE pointer so that they will be
in safe registers for the duration of the routine.

;------------------------------------ Prime ------------------------------------
on entry, AO points to parameter block

Al points to DCE
on exit DO contains result code (0 = OK)

this routine handles read and write calls

Prime
; save a few registers

MOVEM.L
MOVE.L
MOVE.L

A2-A4,-(SP)
AO,AJ
A1,A4

save param block ptr here
save DCE for exit

Then we look at the driver's private storage to get the starting location of the RAM
disk memory. The dCtlStorage field of the DCE contains a handle to the private memory.
We fetch this handle, dereference it, and put the pointer to the RAM disk into register A2.

figure
MOVE.L
MOVE.L
MOVE.L

out the position within the RAM disk
dCtlStorage(Al),AO get handle to private memory
(AO),AO convert to ptr
(AO),A2 beginning of RAM disk

Next, we look at the dCtlPosition field of the DCE to figure the byte offset into
the RAM disk. On a regular floppy disk, data is organized into 512-byte blocks. A disk
driver must read or write an entire block of data for any particular call. On a regular disk,
these blocks are laid out in physical tracks and sectors, as shown in Figure 8.11. Each
sector contains 512 bytes. The regular disk driver translates the offset position from the
DCE into a track and sector location for the data.

244

-----------------RAM DISK+ -----------------

FIGURE 8.11. Sample disk track, sector, and byte relaUonshlp

On a RAM disk, there are no tracks or sectors-the 512-byte blocks simply follow
one another in memory. So for a RAM disk the driver uses the dCtlPosition value as an
offset from the starting address of the RAM disk memory. This is much easier than the
computation required of a regular disk driver.

The only tricky part of all this is that the Read or Write must always start on a 512-byte
boundary. In other words, if the read request comes through specifying that the driver
should read 46 bytes, beginning at byte number 512, the disk driver will actually read
512 bytes, beginning at byte number 512. The caller is responsible for extracting the exact
bytes requested from this block .. Fortunately, the details of that extraction process are
irrelevant to the driver. We need only round down the starting position to a multiple of
512 and add that offset to the starting address of the RAM disk memory.

245

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

MOVE.L
ANDI.L
ADD.L

dCtlPosition(Al),DO
#$FFFFFEOO,DO
DO,A2

get byte pos from DCE
round down to multiple of 512
add off set to RAM disk start

Once the location within the RAM disk has been calculated, we examine the
ioByteCount field of the parameter block to find out how many bytes to read or write.
Because a RAM disk is a block device, we round the ioByteCount value up to a multiple
of 512 in order to read or write entire blocks. Before rounding, we set the ioNumDone
field of the parameter block to show that the requested number of bytes has been moved.
We can do this now because there is really very little that can go wrong from here on.

get ready to read or write
first, get the number of bytes to be read

MOVE.L ioByteCount(AJ),DO
MOVE.L DO,ioNumDone(AJ)
ADD.L #511,DO
ANDI.L #$FFFFFEOO,DO

from parameter block
set number done in pBlock
round up to multiple of 512
use this value for BlockMove

All of this calculation has proceeded without concern as to whether this is a read
or write call. At this point we need to decide if we will be transferring data from the RAM
disk to the 1/0 buffer or vice versa. We begin by assuming that this is a read call, and
set the RAM disk as the source and the 1/0 buffer as the destination for a BlockMove
call. BlockMove is a ROM routine that expects to find the source pointer in register AO,
the destination in register Al, and the number of bytes to move in register DO. Register
DO is already set up from the previous section of code that examined the ioByteCount
field of the parameter block, so we concentrate here on the two address registers. The
ioBuffer field of the parameter block contains the pointer to the buffer set up by the call
ing program for the data.

The strategy is to assume that this is a read call and set the BlockMove registers
so that the source is the RAM disk and destination is the ioBuffer. Then we check the
byte value in the low word of the ioTrap field of the parameter block (ioTrap + l(A3)) to
see if this is really a read command. If it is, then we branch ahead and call BlockMove.
If this call is a write command, then we exchange registers AO and Al, switching the source
and destination, and fall through to execute the BlockMove call.

set up buffers for BlockMove, assume that it is a read
MOVE.L A2,AO source is in RAM disk
MOVE.L ioBuffer(AJ),Al ; desk buffer from param block

; is this really a read operation?
CMP.B #ARdCmd,ioTrap+l(AJ)
BEQ transferData

check param block for flag
our assumption was right

246

----------------- RAM DISK+

; otherwise, this is a write, switch source and destination
EXG AO,Al ; dest now in RAM disk

TransferData
; all the parameters for BlockMove have been set above
_BlockMove

After moving the data, we restore the saved registers, paying particular attention
to make sure that the DCE pointer is returned to register Al. The pointer contained in
JIODone is placed on the stack as the return address and an RTS instruction takes us
back to the calling program.

restore registers
MOVE.L A4,Al

MOVEM.L

MOVEQ
MOVE.L
RTS

(SP)+,A2-A4

#noErr,DO
JIODone,-(SP)

make sure DCE is restored

set error code to OK
get return vector
jump to it

You can see how simple the read and write calls to a RAM disk are. They rely on
straightforward linear offsets from the beginning of the RAM disk memory. All of the
details concerning file directory lookup is handled at a higher level by the File Manager.
The File Manager translates all the directory information into the dCtlPosition value, which
it then passes on to the driver. The driver knows nothing about files or directories, only
absolute position within the device. This makes our job of writing the driver relatively easy.

The Control Routine
Our disk driver is set up to handle only two types of control calls: KillIO and the Finder
icon inquiry. The particular type of control call requested can be determined by looking
at the word-length value in the CSCode field of the parameter block that is passed in register
AO.

KillIO is called to cancel all asynchronous calls pending for a particular driver. It
is a special situation requiring a special response. In order to return from a KillIO call,
the driver should save the status register onto the stack and execute an RTE (Return from
Exception) instruction.

247

------ THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II ------

;----------------------------------- Control -----------------------------------

Control
control needs to respond to KillIO calls and requests from
the Finder for a disk icon definition
on entry, AO points to parameter block

Al points to DCE
on exit DO contains result code (0 = OK)

MOVE.W
CMP.W
BNE

CSCode(AO),DO
#KillCode,DO
@1

what kind of control call is this?
is it KillIO (#1)
ignore all other calls

; here is where we handle a KillIO call
MOVE.W SR,-(SP) ; this is special for KillIO
RTE

The other control call that we handle is issued by the Finder when it discovers a
new drive in the drive queue. When the new drive is added, the Finder sends out a con
trol call with CSCode equal to 21. The driver should respond by placing a pointer to an
ICN # definition and string description in the CSParam field of the parameter block. Figure
8.1 (page 208) shows the RAM disk icon on the Finder desktop. We store the ICN # bytes
and the descriptive string as static data within the code of the driver. After the ICN #
was designed in Resource Editor, the byte values were handcopied into the source file for
the driver.

handle the other control call that we know about
@1 we send back an icon if the Finder sends a control call

with CSCode = 21
MOVE.L Al,-(SP) save DCE ptr

CMP.W
BNE

LEA
MOVE.L

MOVE.L

MOVEQ
MOVE.L
RTS

#21,DO
controldone

our!con,Al
Al,CSParam(AO)

(SP)+,Al

#noErr,DO
JIODone,-(SP)

is the Finder calling?
not the Finder

get ptr to our icon
return it via parameter block

get DCE back off of stack

set result to OK
get return vector
jump to it

248

----------------RAM DISK+

control done
MOVE.L

MOVEQ
MOVE.L
RTS

(SP)+,Al

#controlErr,DO
JIODone,-(SP)

get DCE back off of stack

can't respond to this call
get return vector
jump to it

If the control call is not one of the two types that we support, then we set register
DO to contain an error code, telling the calling program that we couldn't handle the call,
as shown under the controldone label above.

The definition for the disk driver's icon and descriptor string are listed below. They
are assembled as part of the driver code, sitting in between the Control routine and the
Status routine.

;--------------------------------- Static Data ---------------------------------

Our icon

We send this ICN # definition to the Finder in
response to a control call. The Finder will then
use this icon to represent the RAM disk on the desktop.

DC.L $00000000,$00000000
DC.L $00000000,$00000000
DC.L $00000000,$00000000
DC.L $00000000,$00000000
DC.L $00000000,$00000000
DC.L $00000000,$7FFF8000
DC.L $48024000,$24012000
DC.L $12FC9000,$09004800
DC.L $049BA400,$02401200
DC.L $012FC900,$00900480
DC.L $004FFE40,$00200020
DC.L $0011FE10,$00089D08
DC.L $00044E84,$00022042
DC.L $0001FFFF,$00000000
DC.L $00000000,$00000000
DC.L $00000000,$00000000
DC.L $00000000,$00000000
DC.L $00000000,$00000000
DC.L $00000000,$00000000
DC.L $00000000,$00000000
DC.L $00000000,$00000000

249

----- THE COMPLETE BOOK OF MACINTUSH ASSEMBLY LANGUAGE PROGUMMllG, VOWME II -----

DC.L $00000000,$7FFF9FFO
DC.L $7FFFCOOO,$JFFFEOOO
DC.L $1FFFF000,$0FFFF8FE
DC.L $07FFFC00,$0JFFFEOO
DC.L $01FFFF00,$00FFFF8F
DC.L $007FFFC0,$00JFFFEO
DC.L $001FFFF0,$000FFFF8
DC.L $0007FFFC,$000JFFFE
DC.L $0001FFFF,$00000000
DC.L $00000000,$00000000
DC.L $00000000,$00000000

; we are also supposed to send a descriptor string along
DC.B JO ; length byte
DC.B 'RAMdisk+,Dan Weston,March 1986'

.ALIGN 2 ; make sure Status is on word break

The Status Routine
We only support one type of status call, as described earlier in the section of code that
determined if a RAM disk was already installed. The Status routine must respond to #99
status calls by putting the long word 'HERE' into the csParam field of the parameter block.
We respond to all other status calls by returning the statusErr code in register DO.

;------------------------------------ Status ------------------------------------

Status
on entry, AO points to parameter block

Al points to DCE
on exit DO contains result code (0 = OK)

we respond to status message 99 by putting 'HERE' in csParam
this is done so that the installer program won't try to install
two RAM disks

MOVE.W
CMPI.W
BNE

MOVE.L

csCode(AO),DO
#99,DO
status done

1HERE 1 ,csParam(AO)

get type of status call
is it roll call?
not for us

say "HERE"

250

RAM DISK+

MOVEQ #noErr,DO set result to OK
MOVE.L JIODone,-(SP) get return vector
RTS jump to it

statusdone

MOVEQ #statusErr,DO can't respond to this call
MOVE.L JIODone,-(SP) get return vector
RTS jump to it

The Close Routine
The Close routine, although it will probably not be called in any normal circumstances,
is responsible for deallocating the four bytes of private memory allocated by the Open
routine. Since the Close routine is always executed synchronously, we can return with a
normal RTS instruction.

;--------------------------------------- Close ---------------------------------------

Close

enter with paramblock in AO
DCE in Al

deallocate the private memory
PROCEDURE DisposHandle(h:Handle)
h => AO

MOVE.L dCtlStorage(Al),AO
_DisposHandle

MOVEQ
RTS

#0,DO

this was allocated by open

set error code to OK

f!2l THE LINK FILES

We make separate link modules for the installation program and for the RAM disk driver.
Each one is packaged in a CODE file so that it will not have the type APPL. We don't
want either of these link modules to be run from the desktop. The two code packages
will be incorporated into the final application by RMaker, as explained in the next section.

The link file for the driver is shown on the next page.

251

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

; File RAMDisk+.LINK

/OUTPUT RAMDiskDriver

Since this code file will not run successfully until it has been
joined with the resources by RMaker, set its file type so
that it cannot be mistakenly run from the desktop.
Link output files are usually of type APPL.

/TYPE 'CODE''LINK'

RAMDisk+

$

Here is the link file for the installation program discussed in the first half of the
chapter.

File RD+Install.LINK

/OUTPUT RD+InstallCode

Since this code file will not run successfully until it has been
joined with the resources by RMaker, set its file type so
that it cannot be mistakenly run from the desktop.
Link output files are usually of type APPL.

/TYPE 'CODE' 'LINK'

RD+ Install

$

l!2i THE RESOURCE COMPILER FILE: PUTTING IT ALL mGETHER

Assuming that you have assembled and linked the installation program and the driver
described in the preceding sections, you are now ready to use RMaker to create the appli
cation program RAM Disk+ . This program contains the linked RAM disk driver code
as a DRVR resource and the installation code from RD+ Install.ASM. When RAM Disk+
runs, the installation code causes the DRVR resource to be loaded into memory and opens
the driver as a RAM disk device, as explained in the first half of this chapter.

The first part of the resource file designates the output file name and sets its file
type to be APPL (application) and its file creator to ???? (generic application creator).

252

-----------------RAM DISK+

* File RD+Install.R

* output file name
* File type, file creator

MDS2:RAM Disk+
APPL????

The next resource definition takes the RAM disk driver code output from the linker
and packages it as a DRVR resource with the name .ramdisk and ID# 11. We also specify
a resource attribute value of 64 so that the resource will be loaded onto the system heap.
This is very important because objects on the application heap are destroyed each time
a new program starts up.

Type DRVR = PROC
.ramdisk,11 (64)
MDS2:RAMdiskDriver

Next, we define the DLOG and DITL resources for the installation program's dia
logs. These definitions are straightforward except for the static text items in the DITL
resources. If you look at the fourth item in DITL resource 256, you will see "Maximum
disk size = AQ". The AQ is a marker which will be replaced at run time by the values given
to the ROM routine ParamText. This process is explained in the first part of the chapter
in the discussion of the installation program. Here you can see how the resource defini
tion must be set up in order to take advantage of this feature of the Dialog Manager.

Type DLOG
,256

40 100 240 400
Visible NoGoAway
1
0
256

* DITL resource for dialog

Type DITL
,256

7

Button
110 200 140 290
Install

253

------ THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II ------

EditText
50 20 65 60
0400

Button
150 200 180 290
Cancel

StaticText Disabled
10 20 JO 290
Maximum disk size = AQ K

StaticText Disabled
50 70 65 290
K: Actual Size

StaticText Disabled
100 20 120 190
RAM Disk+

StaticText Disabled
130 20 170 190
Dan Weston March 1986

Type DLOG
,257 (4)

40 100 140 400
Visible NoGoAway
1
0
257

Type DITL
,257 (4)

1

StaticText
30 30 50 290
Installing a AO K RAM disk.

Type DLOG
,258 (4)

254

----------------RAM DISK+ ----------------

40 100 140 400
Visible NoGoAway
1

0
258

Type DITL
,258 (4)

1

StaticText
30 30 90 290
There is not enough memory to install a RAM disk.

Type DLOG
,259 (4)

40 100 140 400
Visible NoGoAway
1

0
259

Type DITL
,259 (4)

1

Static Text
JO JO 90 290
I can't mount this volume.

Type DLOG
,260

40 100 140 400
Visible NoGoAway
1

0
260

Type DITL
,260

1

255

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

StaticText
30 30 90 290
A RAM disk is already installed.

The last instruction in the resource compiler file includes the code for the installa
tion program so that the output of RMaker will be a functional application program.

* now include the code produced by the linker

INCLUDE MDS2:RD+Instal1Code

~SUMMARY
It is surprising how simple the actual driver routines are for a RAM disk driver. The hardest
part is installing the driver in the system so that the new disk will be incorporated into
the operating system. This chapter has discussed the structure of the drive queue main
tained by the operating system and shown you how to install a new disk drive into that
queue. This chapter explained a method that can be used to avoid conflict between driver
ID numbers in the system unit table. We also saw how to use the disk initialization pack
age routine DIZero to write the default volume and directory information onto the new
RAM disk.

The RAM disk described in this chapter was used extensively in the writing of this
book. I used the RAM disk to hold Edit, ASM, LINK, RMaker, and the system folder
while writing the programs for the book. I also used the RAM disk to hold my word
processing program when actually writing the text. I got spoiled by the speed of a RAM
disk, and I think you will too.

This chapter also discussed how the resource ID number of the driver may be changed
at run time to avoid any conflict with other drivers in the system file or in the unit table.
There is a problem with this technique, however, because the RAM disk driver, once in
stalled, remains on the system heap even when the system file changes. A new system
file could contain a DRVR or desk accessory with the same ID number as the RAM disk
driver. I see no work-around to this problem at this point, but the RAM disk remains
a useful tool even with this inherent problem.

256

CHAPTER

The List Manager

In January 1986, Apple released version 3.1 of the system file for the Macintosh. The
release of the new system file coincided with the introduction of the Mac Plus and the
128K ROM. One of the most important additions to the system file, beginning with ver
sion 3.1, is a set of routines collectively called the List Manager. The List Manager rou
tines are accessed through the previously unused PackO ROM hook. The List Manager
allows programmers to create and manipulate scrolling lists of data, just like the selection
window in the SFGetFile dialog. The routines of the List Manager take care of the scroll
bars and selection of items within the list in a way that allows you to ignore most of the
housekeeping chores that maintain the list.

The List Manager is a great way to implement any sort of choosing situation where
the user selects from a series of items. The default format of the list items is text strings,
but you can modify the List Manager to display almost any sort of data. This flexibility
makes the List Manager one of the most useful tools available to Mac programmers. Now
it is easy to create choosing situations which conform to the type of interface that Mac
users have come to expect. The first half of the chapter will explain the basic operations
of the List Manager by developing a sample program that creates a two-dimensional list
of text inside a window with horizontal and vertical scroll bars. This example will show
how the List Manager moderates the selection and scrolling of items within the window.
This program will also show how the data associated with a selected item in a list can
be identified and manipulated. The second half of the chapter shows how to modify the
List Manager to create lists of icons that are displayed graphically, in much the same way
as with the Resource Editor. This ability to display data in arbitrary ways is the most ex
citing and open-ended thing about the List Manager.

257

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

~ USING PACKO m ACCESS THE LIST MANAGER

Because the List Manager is implemented through the PackO ROM call, the actual code
for the routines is kept in the system resource file (version 3.1 and later) on the startup
disk. The routines are only loaded into memory when they are called by an application
program or desk accessory. The entire List Manager Package takes up about SK, exclud
ing the memory that may be necessary to hold the data that makes up your lists. The
26 separate List Manager routines are called by supplying a selector word on the stack
before calling PackO. In order to make the List Manager routines easier to call, we can
defme a set of macros to put the proper selector word on the stack. A fragment of the
macro file, ListMacros, is shown below. It is listed in its entirety in Appendix A and on
the source code disk available from the author. Once we have the text for the macros en
tered into this file, we can INCLUDE it in any program to get easy access to the List
Manager routines.

File ListMacros
a complete list of macros for the routines of the List Manager

MACRO _LActivate =
MOVE.W #0,-(SP)
JACKO
I

MACRO _LAddColumn =
MOVE.W #4,-(SP)
JACKO
I

MACRO _LAddRow =
MOVE.W #8,-(SP)
JACKO
I

MACRO _LAddToCell =
MOVE.W #12,-(SP)
JACKO
I

The selector words for the routines start at zero and increase by four for each rou
tine. The last List Manager routine has a selector value of 100. You will need to put the
parameters for each particular routine onto the stack before calling the macro that invokes
that routine, as illustrated in the sample programs that follow.

258

--------------- THE LIST MANAGER---------------

~ CREATING A NEW LIST

In order to use the List Manager routines, you must first initialize a new list data struc
ture by calling ListNew. (Although all the routines in the List Manager begin with the
word List, we have defined our macros to simply begin with the letter L. Our macro for
ListNew is LNew.) ListNew uses the information in its parameters to create a list record
and returns a handle to that data record. The structure of the list record is shown below.

ListRec = RECORD
rView: Rect;
port: GrafPtr;

indent: Point;
cellSize: Point;

visible: Rect;

vScroll: ControlHandle;
hScroll: ControlHandle;

selFlags: BOOLEAN;
active: BOOLEAN;
myFlags: BOOLEAN;
spare: BOOLEAN;

clikTime: LONGINT;
clikLoc: LONGINT;
mouseLoc: LONGINT;
LClikProc: Ptr;
lastClick: Cell;

refCon: LONGINT;

listDefProc: Handle;
userHandle: Handle;

dataBounds: Rect;
cells: dataHandle;

{rect in which we are viewed}
{grafPort that owns us}

{indent pixels in cell}
{cell size}

{visible row/column bounds}

{vertical scroll bar (or NIL)}
{horizontal scroll bar (or NIL)}

{defines selection characteristics}
{active or not}
{internally used flags}
{unused byte}

{save time of last click}
{save position of last click}
{current mouse position}
{routine called during ListClick}
{the last cell clicked in}

{Ref con}

{handle to the defProc}
{general purpose handle for user}

{total number of rows/columns}
{handle to data}

maxindex: INTEGER; {index past the last element}
cellArray: ARRAY [1 .. 1] OF INTEGER; {offsets to elements}

END;

259

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

For the most part, high-level routines are provided in the List Manager for acces
sing the individual fields of the list record, so we will not be too concerned with the inter
nal structure of the record. In the second half of the chapter, where we will modify the
underlying routines of the List Manager, we will be more interested in looking at certain
values in the list record directly.

In your program that uses the List Manager, you do not need to allocate space for
the list record; this is done for you by the List Manager. You should have some way of
keeping the resulting handle to the list record around, however, either in a safe register
or a global variable, because the list record handle is used in every List Manager routine.

When you initialize a new list with ListNew, you must provide lots of information
to define the characteristics of the list. The interface definition for ListNew is shown below:

;FUNCTION ListNew(r, bounds: Rect; cSize: Point;
theProc: INTEGER; theWindow: WindowPtr;

drawit,HasGrow,ScrollHoriz,ScrollVert: BOOLEAN): ListHandle;

The first parameter is a rectangle defining the area within a window in which the
list will be displayed. If you want the list to have scroll bars, then you must inset the view
ing rectangle at least 15 pixels on the right and bottom edges from the edges of your window.

The next parameter, bounds, is a rectangle that defines the dimensions of the list.
The List Manager can deal with two-dimensional lists, that is, with columns and rows.
In order to defme a list with 10 columns and 30 rows, you would define a rectangle with
the coordinates (0,0,30,10), in keeping with the rectangle defmition of (top,left,
bottom,right).

In a similar way, the third parameter, cSize, defines the pixel dimensions of a single
element (called a cell) within the list. The Point data type is used for this parameter, with
two word-length values representing the vertical and horizontal dimensions. The height
of the cell comes first and then the width. A cell 20 pixels high and 60 pixels wide is
defined by the point (20,60).

The fourth parameter to ListNew is an integer that defmes which LDEF procedure
to use when drawing the items in the list. If you pass 0 for this parameter, the default
LDEF procedure, which is kept in the system resource file as the LDEF 0 resource, will
be used to display the cell data as text. It is possible to defme your own LDEF procedure
resources with ID numbers other than 0 and pass their ID numbers to ListNew to cus
tomize the List Manager, as the second half of this chapter demonstrates. It is also pos
sible to write your own LDEF 0 procedure to override the default system resource.

The fifth parameter is a window pointer that tells in which window to display the
list. This window pointer can be a dialog pointer also, since the first part of a dialog record
is the same as a window record. In our example program we open a window before calling
ListNew.

260

---------------THE LIST MANAGER---------------

The next four parameters are BOOLEAN words that determine if the list elements
should be drawn as they are added, whether or not the window has a grow box, and whether
or not the List Manager should supply a vertical and horizontal scroll bar. It is usually
a good idea to turn drawing off by passing FALSE for the draw It parameter when initializing
a list, because the drawing can slow down the initialization process. You will see below
how we tum drawing back on after all the list elements are assigned and then allow the
update event to draw the contents of the list.

We begin our source code for this sample program by defining the dimensions of
our array and the dimensions of a single cell. (Note: The discussions that follow present
only the parts of the program that pertain directly to the List Manager. A complete listing
of this program can be found in Appendix A under Lister.ASM or on the source code
disk available from the author.)

;----------------------------------- EQUATES -----------------------------------
arrayColumns
array Rows

EQU 10
EQU JO

; dimensions of list array

celldepth
cell width

EQU 20
EQU 60

dimensions of cell

ViewRect
arrayRect
myCell

The constants defined above will be passed to ListNew to help define the charac
teristics of the list. Isolating these values at the beginning in constant definitions makes
it easy to change these parameters without actually messing with the source code.

In order to implement the List Manager, we also need to defme some global vari
ables that can be used as parameters to the List Manager routines. We allocate two rec
tangles to defme the viewing rectangle and the list array dimensions. We also defme a
long word, myCell, to hold the coordinates of a single cell that needs to be identified.
A cell can be uniquely identified by giving its row and column number; these values fit
into a long word with the row number in the high word and the column number in the
low word.

DS.L 2
DS.L 2
DS.L 1

bounds of list window
dimensions of list array
all purpose list cell

Once the constants and global variables are defined, we can begin to build our list.
The first thing to do is extract the portRect from our window and shrink it to define the
viewing rectangle for our list. Figure 9 .1 (page 262) shows the window and its list. You
can see how the list occupies the entire window, but we must allow space on the right
and bottom edges for the scroll bars. We copy the portRect into our global ViewRect and
then modify its right and bottom coordinates.

261

______ THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II - -----

,..

" File Edit

Li ste r
l~-3 1 1 # Ce ll # Ce ll #

Ce ll # Cell# Ce ll#

Ce ll # Ce ll # Ce ll #

Ce ll # Cell# Ce ll #

Ce l l# Ce ll # Ce ll #

Ce ll # Cell # Ce ll #

Ce ll# Ce ll # Ce ll #

Ce ll #

FIGURE 9.1. The Lister screen

;--- - --- - - -------- - ---- - - - --------- Bui l dList --- - ----------- - - - ------------- - - -

; set up t he input parameters to ListNew
; first
MOVE .L
LEA

cal cul ate the vi ew
WindowReg,AO
portRect(AO),AO
Vi ewRect(A5),Al
(AO)+,(Al)+
(AO)+,(Al)+

rect f r om wi ndow portRect

LEA
MOVE .L
MOVE .L

LEA
MOVE .W
SUB.W
SUB.W

ViewRect(A5),AO
#15,DO
DO,ri ght(AO)
DO,bottom(AO)

get our wi ndow
and its portRect
and our ViewRect
portRect -> ViewRect

now modify ViewRect
allow space for scroll bars
right = right - 15
bottom = bottom - 15

262

--------------THE LIST MANAGER--------------

Next we use the constants defined earlier to initialize the rectangle that defmes the
bounds of our list array. We also use constants to fill in the value of the point that will
defme the dimensions of a single cell. We put the vertical dimension of the cell in the
high word of a data register and the horizontal dimension in the low word.

now set the dimensions of the list array (O,O,depth,width)
LEA arrayRect(A5),AO now set dimensions of array

top and left always zero
arrayRows deep

MOVE.L #0,(AO)+
MOVE.W #arrayRows,(AO)+
MOVE.W #arrayColumns,(AO)+ arrayColumns wide

; set the size of an individual cell (depth,width)
MOVE.W #celldepth,DO depth
SWAP DO move to high word
MOVE.W #cellwidth,DO width

Finally, we call ListNew, using the variables that we have initialized above as
parameters. We pass values for the other parameters that defme a list with vertical and
horizontal bars and a grow box, as discussed above.

;FUNCTION ListNew(r, bounds: Rect; cSize: Point;
theProc: INTEGER; theWindow: WindowPtr;

CLR.L
PEA
PEA
MOVE.L
MOVE.W
MOVE.L
MOVE.W
MOVE.W
MOVE.W
MOVE.W
_LNew
MOVE.L

drawit,HasGrow,ScrollHoriz,ScrollVert: BOOLEAN): ListHandle;
-(SP) result
ViewRect(A5) view rect
arrayRect(A5) dimensions of list
00,-(SP) cell dimensions
#0,-(SP) use LDEF 0
WindowReg,-(SP) our window
#FALSE,-(SP) don't draw it yet
#TRUE,-(SP) has grow
#TRUE,-(SP) has h scroll
#TRUE,-(SP) has v scroll

(SP)+,ListReg store list handle

We save the resulting list handle into a safe register, symbolically named ListReg.
ListNew is responsible for initializing a new list data record that corresponds to the
parameters you provide. It does not, however, fill in the data for the individual cells in
the list. At this point in the program, the list has been allocated but it is still empty. The
next section shows how to fill in the data for the cells.

263

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

l!2J FILLING IN THE LIST CELLS

Once the list data structure has been defined, you need to walk through the cells and
set the value of each one. ListSetCell is used to associate an arbitrary block of data with
a single cell. ListNextCell is used to walk through all the cells in the list, visiting all the
columns in a single row and then wrapping to the next row, much like a cursor in a word
processor. We construct a loop that starts at the upper left cell (0,0) and sets the value
of each cell with the same static string, just for example purposes. The program in the
second half of this chapter shows how to write unique data to cells.

The key to this loop is that ListNextCell sets the coordinates of a VAR cell parameter
to point to the next cell in the list, as outlined above. The next cell in the list is the next
in the row, or the first cell in the next row if we have reached the last cell in a row. We
begin the loop by initializing our global variable, myCell, to point to the top left cell. There
after the coordinates of that variable will be modified by ListNextCell.

now create the list elements
start with the first cell

MOVE.L #Q,myCell(A5)

buildloop

;PROCEDURE ListSetCell(p: Ptr; 1:
PEA contents
MOVE.W #6,-(SP)
MOVE.L myCell(A5),-(SP)
MOVE.L ListReg,-(SP)
_LSetCell

cell 0,0

INTEGER; c: Cell; h: ListHandle);
statically defined string
length
the cell
the list

;FUNCTION ListNextCell(hNext,vNext: BOOLEAN;
VAR c: Cell; h: ListHandle): BOOLEAN;

CLR.W -(SP) result
MOVE.W #TRUE,-(SP) look at all cells
MOVE.W #TRUE,-(SP)
PEA myCell(A5) this is a VAR
MOVE.L ListReg,-(SP) the list
_LNextCell
MOVE.W (SP)+,DO result
BNE buildloop do the next cell

By passing TRUE for the hNext or vNext parameters to ListNextCell, we specify
that the search should cover the entire list. If only hNext is made TRUE, then the search
will be limited to a single row. If only vNext is TRUE, then the search will only cover
a single column. ListNextCell returns FALSE when it goes beyond the last cell within
the search area. We watch the result and keep looping as long as the result is TRUE.

264

--------------THE LIST MANAGER--------------

Each time we call ListSetCell, the data is added to the data block maintained by
the List Manager for this list. The cells field of the list record contains a handle to this
memory block, which is dynamically sized to hold the data as they are added to the list.
The List Manager also maintains a list of offset values able to locate the data for a partic
ular cell within the data block. You do not need to concern yourself with these details,
however, since high-level List Manager routines exist to access the data associated with
each cell. In the second half of this chapter, we will be using the offsets and data block
to access cell data directly.

Once all the cells have been filled in, we drop out of the loop and turn drawing
on for the list with a call to ListDoDraw. Remember that we specified that the list con
tents should not be drawn when we called ListNew. Now that the initialization process
is over, we tum the drawing flag back on.

we drop through to here when all cells have been visited
turn list drawing on

;PROCEDURE ListDoDraw(drawlt:
MOVE.W #TRUE,-(SP)
MOVE.L ListReg,-(SP)
_LDoDraw

BOOLEAN; h:ListHandle);
now we can draw it

; the list

The call to ListDoDraw does not actually draw the contents of the list, but it allows
other List Manager routines to do the drawing. When the drawing flag is off, the drawing
routines have no effect even if they are called. Within the context of our sample program,
the list building routine comes after the window has been opened, but before entering
the main event loop. The update event that is associated with opening the window is still
waiting in the event queue to be processed. We will use that update event to trigger the
drawing of the contents of the list. It is enough right now to simply turn the drawing flag on.

~ DISPOSING OF A LIST

The counterpart to the list initialization process outlined above is ListDispose, which
deallocates the list record and any data structures associated with it. ListDispose will
deallocate the cell data block and the memory associated with the scroll bars as well as
the list record itself. In our example program, the list is deallocated when the program
terminates, but you can write a program that allocates and deallocates many lists without
Quitting. You may also have many lists defined simultaneously, using the list record handles
to access them individually.

265

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

Quit ; otherwise, go ahead and Quit

;PROCEDURE ListDispose (h: ListHandle);
MOVE.L ListReg,-(SP)
_I.Dispose

MOVE.W
RTS

#TRUE,doneFlag(A5) signal Quit
This is RTS for original call
to DoEvent

~ MOUSE CLICKS IN A CELL

DoContent

Whenever your program detects a mouse down in the content region of the list window,
you should call ListClick to process the event. ListClick expects to get a mouse-down
point in local coordinates; the modifiers word from the event record to tell it if the shift
or command keys are held down; and a handle to the list record. Given this information,
ListClick will retain control until the mouse button is let up. If the click occurred in one
of the list's scroll bars, then ListClick will scroll the list items appropriately. If the click
is in the content area of the list, then ListClick will select and highlight the cell under
the mouse cursor, extending the selection depending on the state of the shift and com
mand keys. The List Manager allows many different strategies for selecting more than
one cell, which will be explained in more detail in the last part of this chapter. If the mouse
is pulled outside the list content area while the button is down, the list automatically scrolls
to follow the mouse, in much the same way that text in a word processor will scroll when
the cursor is dragged outside the window.

ListClick packs a lot of operations into one routine. You can also use it to detect
a double click in a cell. ListClick returns TRUE when the click is the second click of
a double click, FALSE otherwise. In our sample program we respond to a double click
by simply beeping the speaker, but you can insert your own program steps into the frame
provided below.

the click was in the content area of a window.
call QuickDraw to get local coordinates

; PROCEDURE GlobalToLocal (VAR pt:Point);
PEA Point(A5) ; Mouse Point
_GlobalToLocal

;FUNCTION ListClick(pt: Point; modifiers: INTEGER; h: ListHandle): BOOLEAN;
CLR.W -(SP) space for result
MOVE.L Point(A5),-(SP) ; pt

266

---------------THE LIST MANAGER---------------

MOVE.W
MOVE.L
_LC lick
MOVE.W
BEQ

Modify(A5),-(SP)
ListReg,-(SP)

(SP)+,DO
NextEvent

; deal with a double click here
MOVE.W #1,-(SP)
-8ysBeep
BRA NextEvent

l!2J FINDING THE SELECTED CELLS

modifiers

get result
not a double click

In the last section we showed how to find out if a cell had been double-clicked. In this
section you can see how to find out which cells in a list are selected and then manipulate
the data in those cells. In the default mode, the List Manager allows multiple selections,
so you must construct a loop that looks at all the current selections. It is possible, as illus
trated by the icon-listing program in the last part of this chapter, to modify the List Manager
so that only one cell may be selected at any one time.

In the current example program, however, we can have more than one cell selected,
and the selection range may be made discontinuous by holding down the command key
during a mouse click, as shown in Figure 9.2 (page 268).

We use the List Manager routine ListGetSelect to find the selected cells. We pass
it cell 0,0 to begin with so that it will find the first selected cell in the list. Because the
cell we pass is a VAR parameter, it will be set to point to the first selected cell. At that
point we call ListClrCell with that cell as input since this routine is called in response
to a Clear menu item. Your program could use this cell value to extract the cell contents
with ListGetCell. Notice that we check the result of ListGetSelect to make sure that
a valid selection has been found, breaking out of the loop if it returns FALSE.

loop until all the selected cells are cleared
start at the upper left corner
although we are clearing each selected cell
you could perform some other operation with this
generalized loop

MOVE.L #O,myCell(A5) cell 0,0

getSelectLoop
;FUNCTION ListGetSelect (next: BOOLEAN; VAR c: Cell; h: ListHandle)

BOOLEAN;

267

------ THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II _____ _

,.. s File Edit
.,

FIGURE 9.2. Discontinuous, non-rectangular selection

CLR .W -(SP) result
MOVE.W #TRUE,-(SP) look at all selected cells
PEA myCell(A5) VAR
MOVE .L ListReg,-(SP) the list
_LGetSelect
MOVE .W (SP)+,DO result, 0 = no more selected
BEQ @2 break out of loop

; PROCEDURE ListClrCell(c: Cell; h: ListHandle);
MOVE .L myCell(A5),-(SP) the selected cell
MOVE.L ListReg,-(SP) ; the list
_LClrCell

After we deal with the first selected cell, we increment the cell past the selected cell
with ListNextCell and loop back to call ListGetSelect again. Because ListGetSelect
returns the first selected cell greater than or equal to the input cell, we must bump the
cell past each selection once we have processed it or we will keep getting the same cell
back again. We check the result of ListNextCell, breaking out of the loop when all avail
able cells have been visited.

268

@2

; advance to the next cell
;FUNCTION ListNextCell(hNext,vNext: BOOLEAN;

VAR c: C~ll; h: ListHandle): BOOLEAN;

CLR.W -(SP) result
MOVE.W #TRUE,-(SP) look at all cells
MOVE.W #TRUE,-(SP)
PEA myCell(A5) this is a VAR
MOVE.L ListReg,-(SP) the list
J.NextCell
MOVE.W (SP)+,DO result

BRA GetSelectLoop get the next cell

BRA MenuReturn

Combining this routine with the double-click detection in the previous section gives
you a good way to initiate a procedure on a particular cell in response to a user's double
click or a menu selection. In many programs you will probably want to limit the selection
process so that only one cell can be selected at a time to simplify the way that you deal
with the selection;

l!2] CHANGING THE SIZE OF A LIST WINDOW

DoGrow

One of the parameters that is passed to ListNew when the list is initialized tells the List
Manager if the window will have a gro\v box or not. If you pass TRUE for this parameter,
the µst: ~ger will place its scroll bars to leave room for the grow box. It will not,
however, draw the grow box for you. Your program code must handle all actions associated
With the grow b~x. The next three sections show how to grow the Window, and how to
make sure that the grow box is drawn· correctly in update and activate situations.

· When your program detects a mouse down in the grow region of the list window,
you should brarich to· a Grow routine s~ to the one shown below. The first thing to

do. is include the Sc:roll bars area in the update region of the window so that they will
bC correctly redrawn by the update action that will follow the resizing of the window. This
process is vital to the correct functioning of the Grow routine. We use the subroutine
InvalidScroll, discussed separately below, to do this.

user clicked in grow region, WWindow(A5) holds the WindowPtr
track the mouse with outline of new window size
resize window when user lets up on mouse

first include the scroll bar and grow region in update region
BSR InvalidScroll

269

----- THE COMPLETE •K OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

Next, we save some registers and call the ROM routine GrowWindow, which tracks
the mouse and draws a gray outline of the window to show the user the new size. When
the mouse button is released, GrowWindow returns a long integer containing the new
vertical and horizontal dimensions of the window. If there was no change in the window
size, the result is zero. We check for the zero result and bypass some of the code if the
size hasn't changed. Otherwise, we take the new dimensions off the stack and place them
into working registers.

here is where we actually grow the window
; save a couple of registers
MOVEM.L D4/D5,-(SP) ; DJ is ListReg

;FUNCTION GrowWindow(theWindow:WindowPtr;startPt:Point;
sizeRect:Rect):LONGINT

CLR.L -(SP) space for result
MOVE.L WWindow(A5),-(SP) the Window
MOVE.L Point(A5),-(SP) startPt
PEA growbounds(A5) sizeRect
_GrowWindow
MOVE.L (SP),DO check for no change
BEQ noGrow
MOVE.W (SP)+,D5 new vertical dimension
MOVE.W (SP)+,D4 new horizontal dimension

Now that we know the new size of the window, we can use those dimensions as the
input parameters to SizeWindow, which redraws the window frame to its new size. We
also include the scroll areas of the new window in the update region once again to make
sure that these areas will be correctly drawn by the update action.

now draw it to the new size

;PROCEDURE SizeWindow(theWindow:WindowPtr;w,h:INTEGER;
fUpdate:BOOLEAN)

MOVE.L WWindow(A5),-(SP) theWindow
MOVE.W D4,-(SP) width
MOVE.W D5,-(SP) height
MOVE.W #TRUE,-(SP) fUpdate
-8izeWindow

once again include the scroll bars and grow region in update region

BSR InvalidScroll

270

All the previous grow code is taken directly from a multiple window example pro
gram in The Complete Book of Macintosh Assembly Language Programming, Volume I. Now,
once the window has been resized, we can go to work on the list part of the window. The
only thing we need to do is pass the new size of the viewing rectangle for the list. We
take the vertical and horizontal dimensions in registers 04 and DS and shrink them by
15 pixels to allow room for the scroll bars. These modified dimensions are then passed
to ListSize, which modifies the list record to match the new window size. Notice that
none of these routines actually redraw any of the contents of the window or the list. The
redrawing is left to the Update routine which will be called as a result of the resizing of
the window.

allow for scroll bars
SUB.W #15,D4
SUB.W #15,D5

;PROCEDURE ListSize (w,h: INTEGER; lh: ListHandle);
MOVE.W D4,-(SP) width
MOVE.W D5,-(SP) ; height
MOVE.L ListReg,-(SP)
_I.Size

growExit
MOVEM.L (SP)+,D4/D5

BRA NextEvent

noGrow
CLR.L
BRA

(SP)+
growExit

restore regs

get result off stack
get out of routine

The subroutine that we use to include the scroll bar areas in the update region of
the window extracts the rectangles that enclose the scroll bars by looking at the portRect
of the window. These rectangles are then passed to InvalRect to force them into the update
region.

InvalidScroll ---
InvalidScroll

first do the vertical section
; get port rect of window
MOVE.L WWindow(A5),AO
LEA portRect(AO),AO
LEA tRect(A5),Al

from FindWindow
this is the port rect
this is our temp rect

271

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

; adjust the values of tRect
MOVE.W top(AO),top(Al)
MOVE.W bottom(AO),bottom(Al)
MOVE.W right(AO),right(Al)
MOVE.W right(AO),DO
SUB.W #15,DO
MOVE.W DO,left(Al)

;PROCEDURE InvalRect(badRect:Rect)
PEA tRect(A5)
_InvalRect

now do the same for the horizontal section
; get port rect of window
MOVE.L WWindow(A5),AO
LEA portRect(AO),AO
LEA tRect(A5),Al

; adjust
MOVE.W
MOVE.W
MOVE.W
MOVE.W
SUB.W
MOVE.W

the values of tempRect
left(AO),left(Al)
right(AO),right(Al)
bottom(AO),bottom(Al)
bottom(AO),DO
#15,DO
DO,top(Al)

;PROCEDURE InvalRect(badRect:Rect)
PEA tRect(A5)
_InvalRect

all done with InvalidScroll
RTS

iSl UPDATING A LIST WINDOW

from FindWindow
this is the port rect
this is our temp rect

In all our code for the example program so far, we haven't yet done anything to actually
draw the list items in the window. When we added data to the list with ListSetCell, the
drawing flag was off so the normal drawing action of that routine was circumvented. Once
we added all the data, we called ListDoDraw to set the drawing flag back on, but that
routine only affects the setting of the flag; ii doesn't actually draw the list. The routine
that does most of the drawing for us in this program is ListUpdate. Whenever we get

272

_______________ THE LIST MANAGER---------------

Do Update

an update event for the list window, we call ListUpdate to draw the contents of the list
within a specified region of the window. Since we don't want to do any more drawing
than necessary, we call BeginUpdate to make the vis region equal to the update of the
window. Then we use the vis region of the window as the input parameter to ListUpdate.

When the program starts up, we allocate a window and create the list before enter
ing the main event loop. The first update event for the window will include the entire
window area in the update region, so the entire visible portion of the list will be drawn.
Thereafter, the update region will only include areas that have been covered by other win
dows or desk accessories. In some situations the update region will include areas that we
have explicitly included, such as the scroll bar areas after a resizing event.

One other thing we must do during an update event is redraw the grow icon, since
the List Manager doesn't handle this for us.

; PROCEDURE BeginUpdate (theWindow: WindowPtr);
MOVE.L Message(A5),-(SP) get pointer to window
_BeginUpDate begin the update

MOVE.L
MOVE.L

Message(A5),AO
visRgn(AO),AO

get window record
handle to vis region

;PROCEDURE ListUpdate(r: RgnHandle; h: ListHandle
MOVE.L AO,-(SP) the region
MOVE.L ListReg,-(SP) ; the list
_LUpdate

;PROCEDURE DrawGrowicon(theWindow:WindowPtr)
MOVE.L Message(A5),-(SP) ; the window
__DrawGrowicon

; PROCEDURE EndUpdate (theWindow: WindowPtr);
MOVE.L Message(A5),-(SP) get pointer to window
__EndUpdate ; and end the update

BRA NextEvent

273

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

r!2J ACTIVATING A LIST WINDOW

The activation and deactivation of a list window is pretty straightforward. ListActivate
is called with a BOOLEAN parameter that is TRUE for activate events and FALSE for
deactivate events. We must also see that the grow box is drawn correctly to reflect the
activation status of the window.

;---------------------------------- DoActivate. ----------------------------------
DoActivate

;PROCEDURE DrawGrowicon(theWindow:WindowPtr)
MOVE.L Message(A5),-(SP) ; the window
__DrawGrowicon

see if it is activate or deactivate
BTST #ActiveFlag,ModifyReg Activate?
BEQ Deactivate No, go do Deactivate

to activate a window
update the WindowReg for new front window

MOVE.L Message(A5),WindowReg ; this is the window becoming active

and set the port here

; PROCEDURE SetPort (gp: grafPort) set the port to us
MOVE.L WindowReg,-(SP)
-8etPort

;PROCEDURE ListActivate(act: BOOLEAN; h: ListHandle);
MOVE.W #TRUE,-(SP) activate it
MOVE.L ListReg,-(SP) ; the list
_I.Activate

all done with Activate
BRA NextEvent

Deactivate ;---

;PROCEDURE ListActivate(act: BOOLEAN; h: ListHandle);
MOVE.W #FALSE,-(SP) deactivate it
MOVE.L ListReg,-(SP) ; the list
_LActivate

BRA NextEvent ; go get next event

274

---------------THE LIST MANAGER---------------

~ CUSTOMIZING THE LIST MANAGER

The foregoing discussions outline the major tasks that the List Manager can manage for
you. It can initialize a list and stuff values into the cells. It will handle mouse clicks and
mediate selection, scrolling, and double clicks. The List Manager will deal with resizing,
updating, and activating windows that contain lists. Even if it did only this much, it would
be a very powerful addition to the Mac programmer's bag of tricks. But there is still much
more to say about the List Manager. The sections that follow discuss the methods by which
you can modify the basic LDEF procedure and use the List Manager to manipulate nontext
lists. A sample program graphically displaying a list of icons is developed. Because the
LDEF procedure is short and easy to understand, you can use the example that we develop
as a springboard to your own customized list programs.

From the earlier discussions of ListNew, remember that you must specify a resource
ID for the LDEF procedure to use when drawing the list. In the first example program,
we passed zero for this parameter in order to use LDEF O, the default text-drawing proce
dure included in the system resource file. In the following example, we will write our own
LDEF resource procedure, LDEF 2, and use it to draw and highlight the icon item within
a list.

In order to create an LDEF resource, we must first write an assembly language routine
that conforms to the interface specifications for LDEF procedures. Next we will link that
routine into an executable object file. The output of the linker must then be passed through
RMaker and packaged as an LDEF resource. The process is not unlike the process used
to create desk accessories that are DRVR resources. The interface parameters for the LDEF
procedure are shown below.

PROCEDURE ListProc(LMessage:INTEGER; LSelect:BOOLEAN; LRect:Rect; LCell:Cell;
LDataOffset, LDataLen:INTEGER; LHandle:Handle);

The procedure must be set up to accept seven parameters. The LDEF procedure
is usually called to perform an operation on a single cell. The first parameter is an
INTEGER between 0 and 3 specifying one of the four basic functions that the LDEF
must perform. The four possible actions are discussed separately below. The second
parameter is a BOOLEAN that tells whether the cell that is to be operated on is selected
or not. The third parameter is the rectangle surrounding the cell. The fourth parameter
gives the row and column coordinates that identify the cell within the list. The fifth
parameter is an INTEGER offset value that allows us to find the data for this cell within
the data block maintained by the List Manager. The sixth parameter gives the length of
the data for this cell. The last parameter is a handle to the list record, which is locked
down before the LDEF procedure is called.

The four possible actions for an LDEF procedure are initialization, drawing a cell,
highlighting a cell, and closing. We use the Initialization routine to set the indent fields
of the list record. The indent fields tell the other parts of the List Manager how far to
indent from the cell rectangle when drawing the cell's contents. For our example here,

275

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

we want to indent eight pixels in both the vertical and horizontal dimensions. The Draw
ing and Highlighting routines have obvious functions. Our LDEF does not have a Close
routine, although you would probably want to use a Close routine if your Initialization
routine allocated any private memory.

We begin our LDEF procedure with some documentary comments.

File LDEF2. ASM

This list def proc can be used to graphically display a list of ICONs.
It expects to find a handle to an ICON resource as the data in each cell.

It uses Ploticon to draw the contents of a cell.

It frames the cell rect when the cell is selected.

The init procedure sets the indent to 8,8.

Close has no particular use for this procedure.

After linking, the code should be packaged as an LDEF resource
within your program's resource file with the RMaker instructions:

Type LDEF = PROC
,2

diskname:LDEF2

PROCEDURE ListProc(LMessage:INTEGER; LSelect:BOOLEAN; LRect:Rect; LCell:Cell;
LDataOffset, LDataLen:INTEGER, LHandle:Handle);

We also include some symbol files and define a few constants of our own to get at
specific fields of the list record and identify the control messages that are passed to us
as a parameter to the LDEF procedure.

INCLUDE MacTraps.D
INCLUDE QuickEqu.D

; constants we need for list stuff
cells EQU 80 offset to data handle
indent EQU 12 indent dimensions

InitMsg EQU 0 constants for message
DrawMsg EQU 1
HiliteMsg EQU 2
CloseMsg EQU 3

276

---------------THE LIST MANAGER---------------

Next, we define offset constants for our parameters and allocate a stack frame with
a scratch rectangle as a local variable. You can use all of this preliminary stuff in your
own LDEF code without too much modification. Once the stack frame is established,
we dereference the list record handle to get a pointer to the list record. Remember that
the list record is locked down before it is passed to us, so we can use the pointer without
fear. We keep the list record pointer in register A2. The Draw and Highlight routines
will expect to find it there.

Stack Frame definition for ListProc

LHandle SET 8
LDataLen SET LHandle+4
LDataOffset SET LDataLen+2
LC ell SET LDataOffset+2
LRect SET LCell+4
LSelect SET LRect+4
LMessage SET LSelect+2
parambytes SET LMessage+2-8

local variables
scratchRect SET -8

entry point

LINK
MOVE.L
MOVE.L
MOVE.L

A6,#scratchRect
A2,-(SP)
LHandle(A6),A2
(A2) ,A2

handle to list data record
length of data
offset to data
cell that was hit
rect to draw in
1 = selected, 0 = not selected
6 = Init, 1 = Draw, 2 = Hilite, 3 = Close
of bytes of parameters

all purpose rectangle

set up a stack frame
save register
get handle to list record
get pointer to (locked) record

Then we look at the LMessage parameter to see which of the four actions we should
perform. The exit code that follows this restores register A2 and deallocates the stack frame.

MOVE.W LMessage(A6),DO get the message

CMP.W #InitMsg,DO case out on the message
BEQ Doinit
CMP.W #DrawMsg,DO
BEQ DoDraw
CMP.W #HiliteMsg,DO
BEQ DoHilite
CMP.W #CloseMsg,DO
BEQ Do Close

277

----- THE COMPLETE BOOK OF MAClllUSH ASSEMBLY LANGUAGE PROGUMMllG, VOWME II -----

LDefExit
MOVEM.L
UNLK
MOVE.L
ADD.L
JMP

(SP)+,A2
A6
(SP)+,AO
#parambytes,SP
(AO)

restore the register
deallocate stack frame
get return address
strip off parameters
and return

The lnit Routine
The initialization message is sent to the LDEF procedure when the list record is first
created with ListNew. The Init routine can be used to modify fields of the list record
or allocate private memory to assist with the drawing of the list. In our example LDEF,
we set the indent field of the list record so that subsequent drawing will be inset eight
pixels from the cell's bounding rectangle. The default text LDEF uses the Init routine
to set the indent to match the font size being used in the list window. The indent field
is declared as a Point, but we set the vertical and horizontal components of the Point
separately.

;------------------------------------ poinit ------------------------------------
Doinit

; enter with ptr to locked list record in A2

MOVE.W
MOVE.W

#8,indent(A2)
#8,indent+2(A2)

BRA LDefExit

set the indent
fields of list record

The Draw Routine
The Draw routine is called any time the contents of a cell need to be drawn. Other parts
of the List Manager handle all the difficult stuff like calculating the bounds rectangle after
a scrolling operation. By the time the LDEF procedure is called to actually draw the cell's
contents, the operation is almost trivial. In this example LDEF, each cell contains a handle
to an ICON definition. We use the ICON handle to draw the icon within the cell's bounds
rectangle. We take the cell's bounds rectangle and copy it into our local scratch rectangle.
Then the scratch rectangle is inset by the indent amount by calling InsetRect. The original
cell dimensions are 144 x 144. By insetting by eight pixels on all sides, we end up with
a 128 x 128 destination rectangle that allows us to draw the 32 x 32 pixel icon exactly
four times larger than normal. We perform the InsetRect on our local copy of the cell's
bounds rect because you should not directly change the coordinates of the cell's bounds
rectangle.

278

;------------------------------------ DoDraw ------------------------------------
DoDraw

enter with ptr to list record in register A2
the data for the cell is a handle to the ICN

copy the
MOVE.L
LEA
MOVE.L
MOVE.L

cell rectangle to our scratch rect
LRect(A6),AO source
scratchRect(A6),A1 dest
(AO)+,(Al)+ copy it
(AO)+, (Al)+

in order to indent it.

; now inset the rectangle by the indent amount
;PROCEDURE InsetRect(VAR r:Rect;dh,dv:INTEGER)
PEA scratchRect(A6) our local rect
MOVE.L indent(A2),-(SP) ; get both dimensions
_InsetRect

Once the destination rectangle is derived from the bounds rectangle and the indent
values, we extract the ICON handle from the cell data and pass it to Plodcon to draw
the icon in the cell. The cell data is obtained by using the handle in the cells field of the
list record in combination with the offset value passed as a parameter to the LDEF
procedure.

get the
MOVE.L
MOVE.L
MOVE.W
ADDA.W

data for this cell
cells(A2),AO
(AO),AO
LData0ffset(A6),DO
DO,AO

AO points to cell data

get handle to data
convert to ptr
get off set to this cell

; ·bump ptr

use the inset rectangle as the destination for Plotlcon
PROCEDURE Plotlcon(theRect:Rect;thelcon:Handle)

PEA scratchRect(A6) our local rect
MOVE.L (AO),-(SP) ; use ICN handle
_Flot Icon

When the icon is drawn within its cell, we also need to check to see if it should
be highlighted to indicate that it is selected. There are many ways to indicate that a cell
is selected. In this example, we draw an enclosing rectangle inset slightly from the cell's
bounding rectangle but still outside the edges of the icon, as shown in Figure 9.3. We
use the local scratch rectangle to modify the original coordinates of the cell rectangle.

279

------ THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II ------

'"· s File

FIGURE 9.3. Icon lister and selected cell

; check to
MOVE.W
BEQ
; copy the
MOVE.L
LEA
MOVE.L
MOVE.L

; now inset
;PROCEDURE
PEA
MOVE.W
MOVE.W
_InsetRect

see if we should select it also
LSelect(A6),DO select or deselect?
LDefExit 0 means not selected

cell rectangle to our scratch rect in order to indent it
LRect(A6),AO source
scratchRect(A6),Al dest
(AO)+, (Al)+ copy it
(AO)+, (Al)+

the scratch rectangle by a small amount
InsetRect(VAR r:Rect;dh,dv:INTEGER)
scratchRect(A6) local rect
#2,-(SP) ; make it smaller
#2,-(SP)

280

.,

---------------THE LIST MANAGER---------------

PROCEDURE FrameRect(r:Rect)
PEA scratchRect(A6) the local rect

frame it _FrameRect

BRA LDefExit and return

You can use this Draw routine to build your own LDEF procedure to deal with
any sort of data. This routine is predicated on a list that contains a series of handles to
ICON definitions. Your procedure can be structured to draw any other sort of data. The
key ingredients of the Draw routine are the nature of the cell data, the cell bounds rec
tangle, the indent value, and whether or not the item should be highlighted after drawing it.

The Highlight Routine
Although the Draw routine takes care of highlighting an item when it is first drawn in
the window, there are times when the selection status of an item changes after it has been
drawn. In these situations, the Highlight routine is called. The LSelect parameter to the
LDEF procedure is TRUE when the item is selected and FALSE when it is not selected.
The Highlight routine must be able to deal with both of these situations.

In our example, because the Highlight routine is only called when an item is chang
ing from selected to de-selected or vice versa, we can handle both situations with the same
code. We extract the cell bounds rectangle and indent it by two pixels, just as we did in
the Draw routine. Then set the pen mode to XOR so that the selection rectangle that
we draw around the item will change the setting of the pixels over which it passes. In
other words, if a selection rectangle is already there, drawing a new rectangle with an XOR
pen will erase the previous rectangle, de-selecting the item. If no rectangle was there, then
our rectangle will be drawn in black, selecting the item. Make sure to set the pen back
to its original setting after using the XOR pen.

;----------------------------------- DoHilite -----------------------------------

DoHilite
enter with ptr to list record in register A2

copy the
MOVE.L
LEA
MOVE.L
MOVE.L

cell rectangle to our
LRect(A6),AO
scratchRect(A6),Al
(AO)+, (Al)+
(AO)+,(Al)+

scratch rect in order to indent it
source
de st
copy it

281

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

;now inset the scratch rectangle by a small amount
;PROCEDURE InsetRect(VAR r:Rect;dh,dv:INTEGER)
PEA scratchRect(A6) local rect
MOVE.W #2,-(SP) make it smaller
MOVE.W #2,-(SP)
_InsetRect

; PROCEDURE PenMode(mode:INTEGER)
MOVE.W #patXor,-(SP)
JenMode

; PROCEDURE FrameRect(r:Rect)
PEA scratchRect(A6)
_FrameRect

; PROCEDURE PenMode(mode:INTEGER)
MOVE.W #patCopy,-(SP)
JenMode

BRA LDefExit all done

END

the local rect
frame it

Creating an LDEF Resource
When you have entered the LDEF code above, assemble it to produce a relocatable code
module. Then use the following link file to create an executable code file.

File LDEF2.link
It links a single .REL file into a code file
April 1986

/type 'CODE' 'LINK'

; list of files to link, .REL extension assumed

LDEF2

$

282

---------------THE LIST MANAGER---------------

When the code file has been produced by the linker, it must be passed through
RMaker so that it can be included in the resource file of your program. The following
sections describe this process in the context of an example program that uses the LDEF
procedure. Here are the isolated RMaker instructions that you can use to package the code
module from the linker into an LDEF resource. In this example we give the LDEF an
ID of 2, but you can pick any INTEGER value as long as you use that ID when specify
ing the LDEF procedure to use with ListNew.

Type LDEF = PROC
,2

MDS2:LDEF2

That is all there is to writing an LDEF procedure. I was certainly surprised to see
how easy it is to modify the List Manager to display customized lists. I hope you will
be able to use this LDEF as a model on which to base your own LDEF procedures. The
next section shows how to use the LDEF procedure described above in a short example
program.

~ ICON LISTER PROGRAM

Icon Lister is a short example program that demonstrates the use of the customized LDEF
procedure described in the preceding sections. This program also shows how to allocate
a list when you don't know ahead of time how many items it will contain. In this program
we will initially allocate a single column list with no rows in it. Each time we add an item
we will call ListAddRow to make room for the new item. This kind of operation is probably
more useful than the static array dimensions presented in the first example program.

Here we will only discuss the sections of this program that differentiate it from the
first example program. The complete source code is listed in Appendix A as IconList.ASM
and on the source code disk available from the author.

We begin, as before, by defining some constants that describe the dimensions of
our list and the dimensions of each cell within the list. The list array is initialized to con
tain 'Cme column and zero rows. A new row will be added for each item. The cell dimen
sions are 144 x 144 to allow for a 128 x 128 icon drawing and an eight-pixel margin
all around the icon. We also declare some global variables to assist in initializing the list
and its data.

arrayColwnns EQU 1 dimensions of list array
arrayRows EQU 0 we will expand this as needed

celldepth EQU 144 dimensions of cell
cellwidth EQU 144

283

------ THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II ------

ViewRect
arrayRect
myCell
mylconH

DS.L 2
DS.L 2
DS.L 1
DS.L 1

Building a List of Icons

bounds of list window
dimensions of list array
all purpose list cell
hold icon handle

Just as in the previous example, we begin by setting up the parameters to ListNew. We
move our constants into global rectangles and modify the viewing rectangle to leave room
for the scroll bars and the grow box. Actually, the window in this program does not have
a grow box or a horizontal scroll bar, but you must still indent the viewing rectangle 15
pixels from the bottom edge of the window so that the vertical scroll bar will not extend
down into the area normally used by the grow box. If you allow the scroll bar into the
grow box area, then clicks in the down arrow will not be interpreted correctly by the List
Manager.

;---------------------------------- BuildList ----------------------------------
set up the input parameters to ListNew

; first calculate the view rect form window portRect
MOVE.L WindowReg,AO get our window
LEA portRect(AO),AO and its portRect
LEA ViewRect(A5),Al and our ViewRect
MOVE.L (AO)+,(Al)+ portRect -> ViewRect
MOVE.L (AO)+,(Al)+

LEA
MOVE.W
SUB.W
SUB.W

; now set
LEA
MOVE.L
MOVE.W
MOVE.W

ViewRect(A5),AO
#15,DO
DO,right(AO)
DO,bottom(AO)

the dimensions of the
arrayRect(A5),AO
#0,(AO)+
#arrayRows,(AO)+
#arrayColumns,(AO)+

now modify ViewRect
allow space for scroll bar
right = right - 15
bottom = bottom - 15

list array (0,0,depth,width)
now set dimensions of array
top and left always zero
arrayRows deep
arrayColumns wide

; set the size of an individual cell (depth,width)
MOVE.W #celldepth,DO depth
SWAP DO move to high word
MOVE.W #cellwidth,DO width

284

---------------THE LIST MANAGER---------------

Once the parameters are prepared, we pass them to ListNew to initialize our list
data structure. Notice that we pass FALSE for two parameters to indicate the absence
of the grow box and horizontal scroll bar. Notice also that we pass 2 for the theProc
parameter to tell the List Manager to use our custom LDEF procedure that we will include
in the program's resource file.

;FUNCTION ListNew(r, bounds: Rect; cSize: Point;
theProc: INTEGER; theWindow: WindowPtr;

drawit,HasGrow,ScrollHoriz,ScrollVert: BOOLEAN): ListHandle;
CLR.L -(SP) result
PEA ViewRect(A5) viewing rectangle
PEA arrayRect(A5) dimensions of list
MOVE.L DO,-(SP) cell dimensions
MOVE.W #2,-(SP) use LDEF 2
MOVE.L WindowReg,-(SP) our window
MOVE.W #FALSE,-(SP) don't draw it as you go
MOVE.W #TRUE,-(SP) has grow
MOVE.W #FALSE,-(SP) has no h scroll
MOVE.W #TRUE,-(SP) has v scroll
_LNew
MOVE.L (SP)+,ListReg store list handle

When the list has been initialized, we must then assign values to the individual cells
in the list. Our first example program began with a fixed-size list and iterated through
all the items, assigning an arbitrary value to each one until all the cells had been visited,.
In the current example, the limiting factor is the amount of data available for cells. We
search all open resource files for ICON resources and allocate a new cell each time we
find an ICON resource. This process continues until we can't find any more ICONs.

The ICONs are found by repeatedly calling GetlndResource, beginning with an
index value of 1 and looping until a NIL result indicates that the routine has failed to
find an icon. Each time we do find an ICON, we place the handle into a global variable,
mylcon(AS). Then we add a row to the list with ListAddRow. The function result of
ListAddRow is the row number of the new row. We use that value to change the vertical
coordinate of myCell so that it points to the new cell. The horizontal coordinate of myCell
always remains 0. The ICON handle is then identified as the data for that cell by calling
ListSetCell.

now create the list elements
start with the first cell

MOVE.L #O,myCell(A5) cell 0,0

MOVE.W #1,D5 initialize index

285

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

geticonLoop

; now get each individual icon
; FUNCTION GetindResource(theType:ResType;index:INTEGER):Handle
CLR.L -(SP) result
MOVE.L #'ICON',-(SP) the type
MOVE.W D5,-(SP) index
_GetindResource
MOVE.L (SP)+,myiconH(A5) get handle
BEQ @1 no more icons

; FUNCTION
CLR.W
MOVE.W
MOVE.W
MOVE.L
_LAddRow

MOVE.W

ListAddRow(count, rowNum: INTEGER; h: ListHandle): INTEGER;
-(SP)
#1,-(SP)
#$7FFF,-(SP)
ListReg,-(SP)

(SP)+,DO

; set the new row number of cell
MOVE.W DO,mycell(A5)

result
add 1 row
add it as last row
the list

get result: the row number

; myCell.v := newRow

;PROCEDURE ListSetCell(p: Ptr; 1: INTEGER; c: Cell; h: ListHandle);
PEA myiconH(A5) ptr to icon handle

length of icon handle
the cell

MOVE.W #4,-(SP)
MOVE.L myCell(A5),-(SP)
MOVE.L ListReg,-(SP) the list
_LSetCell

ADD.W
BRA

#1,D5
geticonLoop

increment index
still more to go

We continue this loop until GetlndResource can't find any more icons. This proce
dure retrieves all ICON definitions from all open resource files, which are most likely
to be the application's resource file and the system resource file. You could further differ
entiate the ICON resources with respect to their origin by calling HomeResFile with each
of the ICON handles if you wanted to list only the ICONs from one particular file.

Once all the cells are filled in, we set the drawing flag on and fall into the main
event loop, where an update event will draw the contents of the list.

286

---------------THE LIST MANAGER---------------

@1
; we come here when all cells have been visited
;PROCEDURE ListDoDraw(drawit: BOOLEAN; h:ListHandle);
MOVE.W #TRUE,-(SP) now we can draw it
MOVE.L ListReg,-(SP) ; the list
_LDoDraw

Setting the Selection Parameters
One aspect of the List Manager that we have mentioned several times in the preceding
sections is the variety of ways in which selections can be extended. The default selection
method allows the user to extend the selection by shift-clicking a cell. This creates a con
tinuous rectangular selection from the last selected cell to the current cell. By holding
down the command key while clicking, the user can create an extended selection that is
not continuous or rectangular, more like the fat bits option in MacPaint. There are several
other combination options of these basic selection patterns, all of which are controlled
by the selFlags byte in the list record. Figure 9.4 shows the bits of the selFlags byte and
the significance of each. The default mode is set by the List Manager by clearing all the
bits of this byte. In this example program, we want to set bit number 7 to allow only one
cell to be selected at a time. This way, we can act on a double click in a selection with
the assurance that the double click refers to a single cell. You might want to implement
an icon editor that used the icon list to allow selection of the icon to be edited.

The selFlags byte is set by either placing an appropriate value there or by directly
using BSET to set the bits.

selFlags byte

0 has no meaning
1 1 to not highlight empty cells
2 1 for shift to pay attention to setting of first cell clicked
3 1 to extend selections not as rectangles
4 1 to not extend shift clicks
5 1 to turn off multiple selections with a click
6 1 for auto dragging without shift key
7 1 to allow only one selection at a time

FIGURE 9.4. Bit meanings In selFlags byte

287

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

selFlags EQU 36

; now set up selection parameters
MOVE.L ListReg,AO
MOVE.L (AO),AO
MOVE.B #128,selFlags(AO)

[!gj SUMMARY

get list record handle
convert to ptr
set bit 7, only 1 selection

The List Manager is great. It takes care of so many details that it makes implementing
scrolling lists too easy to pass up. Because all Macintosh users are used to the scrolling
list metaphor used in the Standard File dialogs, it is a good idea to use similar lists in
other parts of your programs where a choice must be made from a series. This similarity
of interface can make the operation of your program more transparent to the user, allow
ing full concentration on the task at hand, rather than on the mechanics of computer opera
tion. After all, isn't that what the Macintosh is all about?

This chapter showed how to use the basic features of the List Manager in programs.
It also showed how to create custom LDEF procedures to extend the functionality of the
List Manager to display nontextual items. I have used the List Manager to implement
a bitmap editor. Although it was too slow to be really useful, it was very easy to code because
the List Manager performed most of the tasks I would normally have to attend to. The
only other real limitation of the List Manager is the 32 K limit placed on the data associated
with any one list. With this limit in mind, however, a customized LDEF procedure could
be written that knew how to interpret and display the records of a database program. The
List Manager is a very powerful tool for Macintosh programmers. Let your imagination
take you away.

288

~ INITPATCH.ASM

File initPatch.ASM
the code from this file must be assembled and linked
and then packaged as an INIT resource so that it
will install a ROM patch at system startup
This code patches MenuSelect so that a short beep
is heard before the menu drops down

April 1986, Dan Weston

INCLUDE MacTraps.D

trapNum EQU $13D trap number that we will patch
MENUSELECT $A93D => $13D

Entry
; install the JMP ABS.L
; fill in the destination
LEA trapdoor,AO
MOVE.W #$4EF9, (AO)

instruction at the trap door
address later

put instruction code here
; 68000 instruction code

get the original trap address
FUNCTION GetTrapAddress(trapNum:INTEGER): LONGINT
trapNum => DO, result => AO

MOVE.W #trapNum,DO ; this is the trap we want
_GetTrapAddress

; stuff it in the JMP instruction
LEA trapdoor+2,Al
MOVE.L AO, (Al)

this is part of JMP instruction
install destination address

allocate a block on the system heap
FUNCTION NewPtr(logicalSize: LONGINT): Ptr
logicalSize => DO, Ptr => AO

289

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

MOVE.L #patchend-patchstart,DO size of patch code
_NewPtr,SYS
MOVE.L AO,-(SP) save ptr on stack

move the patch code to the new block
PROCEDURE BlockMove(source,dest:Ptr;size:LONGINT)
source => AO, dest => Al, size => DO

MOVE.L AO,Al set as destination of move
LEA patchstart,AO
MOVE.L #patchend-patchstart,DO
_BlockMove

source of move
size of patch code

install a ptr to patch in dispatch table
PROCEDURE SetTrapAddress(trapAdd: LONGINT;trapNum:
trapAdd => AO, trapNum => DO

INTEGER)

MOVE.W #trapNum,DO
MOVE.L (SP)+,AO

number of trap to un-patch
get address of new block

_setTrapAddress

; all done now

RTS

; here is the patch code which will be installed on the system heap

patchstart
; save the registers

MOVEM.L AO-Al/D0-02,-(SP)

; do the pre processing for the ROM routine
MOVE.W #1,-(SP)
_SysBeep

; restore the registers
MOVEM.L (SP)+,AO-Al/00-02

trapdoor
OC.W

patchend
o,o,o change to JMP ABS.L

290

---------------- INITPATCH.LINK ----------------

f!2l 1NITPATCH.LINK

; file initPatch.LINK

/OUTPUT initPatchCode

; set its file type so
; that it cannot be mistakenly run from the desktop.
; Link output files are usually of type APPL

/TYPE 'CODE' 'LINK'

initPatch

$

291

----- THE COMPLETE •K OF MACIN1USH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

~ INITPATCH.R

* File initPatch.R

* output file name
* File type, file creator

MDS2:initPatchFile
!NIT????

Type !NIT = PROC
ROMPatch,21 (64)
MDS2:initPatchCode

292

----------------- APPPATCH.ASM -----------------

r!2J APPPATCH.ASM
AppPatch,ASM
Include this code fragment at the end of your main segment
Make a JSR call to patchinstall as part of your program's
initialization chores.
patchinstall will put in the ROM patch and a pointer to the
routine that will remove the patch when the program terminates

There are three main parts
the patch installer
the patch itself
the patch remover

IAZptr EQU $33C
trapNum EQU $13D

oldTrapAdd DS.L 1
oldIAZptr DS.L 1

patchinstall

to this code
patchinstall
myROMpatch
ROMrestore

system global for trap restoration
trap number that we will patch
MeunSelect $A93D => $13D

space to hold old trap address
space to hold old IAZptr

; FUNCTION GetTrapAddress(trapNum:INTEGER): LONGINT
; trapNum => DO, result => AO
MOVE.W #trapNum,DO this is the trap we want

GetTrapAddress
MOVE.L AO,oldTrapAdd(AS) store the result for later

We need to set a new trap address that is on the sytem heap.
Rather than put the whole routine there, we will just put
a JMP.L instruction to jump to our patch code, which
is sitting on the application heap in CODE segment #1
FUNCTION NewPtr(logicalSize: LONGINT): Ptr
logicalSize => DO, Ptr => AO

MOVE.L #6,DO 2 bytes:JMP, 4 bytes:address
_NewPtr,SYS
MOVE.L

MOVE.W
LEA
MOVE.L

AO,-(SP)

#$4EF9, (AO)+
myROMpatch,Al
Al, (AO)

save ptr on stack

code for JMP instruction
get new code address
destination for JMP

; PROCEDURE SetTrapAddress(trapAdd: LONGINT;trapNum: INTEGER)
; trapAdd => AO, trapNum => DO
MOVE.W #trapNum,DO
MOVE.L (SP)+,AO
_setTrapAddress

number of trap to un-patch
get JMP instruction address

; now make sure that this ROM patch will be removed when the
; program terminates
MOVE.L IAZptr,oldIAZptr(A5) save original restoration proc

LEA
MOVE.L

ROMRestore,AO
AO,IAZPtr

address of our restoration proc
intall pointer

293

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

RTS all done with installation

ROMrestore

get the address of the ROM patch on system heap so
that we can deallocate it
FUNCTION GetTrapAddress(trapNwn:INTEGER): LONGINT
trapNwn => DO, result => AO

MOVE.W #trapNum,DO ; this is the trap we want
_GetTrapAddress

; PROCEDURE DisposPtr(P: Ptr)
; p => AO
_DisposPtr

restore the original trap address

ptr already in AO

PROCEDURE SetTrapAddress(trapAdd: LONGINT;trapNwn: INTEGER)
trapAdd => AO, trapNum => DO

MOVE.W #trapNum,DO
MOVE.L oldTrapAdd(A5),A0
_SetTrapAddress

number of trap to un-patch
original trap address

; reset the IAZptr to its original value
MOVE.L oldIAZptr(A5),IAZptr ; leave everything as we found it

; make sure subsequent programs can get their resources
; PROCEDURE SetResLoad(load:BOOLEAN)
MOVE.W #$0100,-(SP) ; TRUE
_SetResLoad

RTS ; all done now

;----------------------------- myROMpatch ----------------------------------
myROMpatch

do some pre processing for the ROM routine
save the registers

MOVEM.L A0-Al/D0-D2,-(SP)

; do the pre processing for the ROM routine
MOVE.W #1,-(SP)
_SysBeep

; restore the registers
MOVEM.L (SP)+,AO-Al/DO-D2

MOVE.L
RTS

oldTrapAdd(A5),-(SP) get the original trap address
jwnp to it

294

-------------- PRINTMODULE.ASM --------------

[!2l PRINTMODULE.ASM

PrintModule.ASM
This code module accepts a TEHandle as input, and then
prints out the text in that TERecord.
The user is allowed to interact with the
Style and Job dialogs to determine the
type of printing desired.
It also supports a print idle dialog procedure

This code works for both the Imagewriter and the LaserWriter.
January 1986, Dan Weston

XDef our entry point routine so that the linker can
make it available to the calling code module

XDEF PrintDoc ; PROCEDURE PrintDoc(hTE:TEHandle)

; get the usual
INCLUDE

symbol files,
MACTRAPS.D
TOOLEQU.D
QUICKEQU.D
PrEqu.Txt

as well as the printing symbols

INCLUDE
INCLUDE
INCLUDE

define a value for our own use
botmargin EQU 72

idledlg EQU 512

pixels for bottom margin

id of idle dialog

PrintDoc ; entry point for routine

PROCEDURE PrintDoc(hTE:TEHandle)

set up stack frame
; input parameter off set
hTE SET 8
parambytes SET 4

; locals : use
PrintRecReg
PrintPortReg
textPtrReg
currentlineReg
numLinesReg
startCharReg
endCharReg
numcopiesReg

some registers
SET A2
SET A3
SET A4
SET D3
SET D4
SET DS
SET D6
SET D7

; more locals on
scratchRect
statusbytes
dlgPtr
localbytes

the stack frame
SET -8
SET -34
SET -38
SET -38

LINK A6,#localbytes

;save registers

offset to hTE parameter
bytes of parameters

local scratch rectangle
26 bytes for PrStatus
ptr for idle dialog
bytes of locals

295

------ THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II ------

MOVEM.L A2-A4/D3-D7,-(SP)

open the print resource file and driver
; PROCEDURE PrOpen
JSR PrOpen

; test the
; fUNCTION
CLR.W

result to make sure it went ok
PrError:BOOLEAN
-(SP) space for result

JSR
MOVE.W
BNE

PrError
(SP)+,DO
quit print

allocate a handle for the print record

get result
get out now if you can't open it

If your program saves the print record with a document,
then you could use that print record instead of
allocating a new one here
FUNCTION NewHandle(bytecount: Size) :Handle
size => DO
Handle => AO

MOVE.L #120,DO size of print record
NewHandle

MOVE.L AO,PrintRecReg store in a safe register

fill in the print record with standard default values
; If your program saves the print record with a document
; then you would call PrValidate instead
;PROCEDURE Printdefault(hPrint: THPrint)
MOVE.L PrintRecReg,-(SP) ; we just allocated this record
JSR PrintDefault

put up the style dialog to get paper size and reduction value
If you choose to put up this dialog separately, then
you will have to allocate a permanent print record to
hold the results
Our print record will be deallocated at the end of
this document's printing
FUNCTION PrStlDialog(hPrint:THPrint) :BOOLEAN

CLR.W -(SP) space for result
MOVE.L PrintRecReg,-(SP) hPrint
JSR PrStlDialog jump to routine
MOVE.W (SP)+,DO get result
BEQ cancel_job user clicked cancel

; now put up the job dialog to get print quality and
; page range. Results are stored in print record
;FUNCTION PrJobDialog(hPrint: THPrint) :BOOLEAN
CLR.W -(SP) space for result
MOVE.L PrintRecReg,-(SP) hPrint
JSR PrJobDialog jump to routine
MOVE.W (SP) +,DO get result
BEQ cancel_job user clicked cancel

save the current grafPort: this is important
CLR.L -(SP)
PEA (SP)

296

---------------- PRINTMODULE.ASM ----------------

GetPort

; open a printing document port
;PROCEDURE PrOpenDoc(hPrint:THPrint;pPrPort: TPPrPort;

pIOBuf: Ptr): TPPrPort
CLR.L -(SP) space for result
MOVE.L PrintRecReg,-(SP) hPrint
CLR.L -(SP) NIL
CLR.L -(SP) NIL
JSR PrOpenDoc
MOVE.L (SP)+,PrintPortReg store result

; make the font characteristics of the printer grafPort the same as for
; the TERecord
MOVE.L hTE(A6),AO get TEHandle

convert to Ptr
Ptr to grafPort
install font
install face
install mode

MOVE.L (AO).,AO
MOVE.L PrintPortReg,Al
MOVE.W teFontStuff(AO),txFont(Al)
MOVE.W teFontStuff+2(AO),txFace(Al)
MOVE.W teFontStuff+4(A0),txMode(Al)
MOVE.W teFontStuff+6(A0),txSize(Al) install size

pageheight = (rpage.bottom - rPage.top) - botmargin
numlines pageheight DIV lineheight_of_font

calclines
; figure
MOVE.L
MOVE.L
MOVE.W
MOVE.L
MOVE.L
MOVE.W
CLR.L
MOVE.W
SUB.W
SUB.W
DIVU
MOVE.W

out how many lines per page, using linehite and page rect

copy the page
MOVE.L
MOVE.L
LEA
LEA
MOVE.L
MOVE.L

hTE(A6),A0 get TEHandle
(AO), AO Convert to Ptr
teLineHite(AO),DO get line height from record
PrintRecReg,AO get handle to print record
(AO), AO convert to Ptr
prinfo+rpage+top(A0),D2 get top of page rect
Dl clear upper word of register
prinfo+rpage+bottom(AO),Dl ; get botton of page rect
D2,Dl pageheight = bottom - top
#botmargin,Dl pageheight = pageheight - botmargin
DO,Dl numlines = pageheight DIV linehite
Dl,numLinesReg save in safe register

rect from the print record into our scratch rect
PrintRecReg,AO get handle to print record
(AO) , AO convert to Pt r
prinfo+rpage(AO),AO Ptr to page rect
scratchRect(A6),Al Ptr to scratch rect
(AO)+, (Al)+
(AO)+, (Al)+ copy 8 bytes

make the right edge of the scratch rect the same as
the width of the dest rect of the TE record
what you

MOVE.L
MOVE.L
MOVE.W
MOVE.W
SUB.W

see is what you get.
hTE(A6),A0
(AO) ,AO
teDestRect+right(AO),DO
teDestRect+left(AO),Dl
Dl,DO

get TE handle
convert to Ptr

width := right - left

297

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

MOVE.W D0,scratchRect+right(A6) install in scratchrect.right

put up the print stop dialog
; FUNCTION GetNewDialog (dialogID: INTEGER; dStorage: Ptr;

CLR.L -(SP)
MOVE.W #idledlg,-(SP)
CLR.L -(SP)
MOVE.L #-1,-(SP)
_GetNewDialog
MOVE.L (SP),dlgPtr(A6)

behind: WindowPtr) : DialogPtr
Space For dialog pointer
Identify dialog rsrc t
Storage area
Dialog goes on top
Display dialog box
save handle for closedialog

; PROCEDURE DrawDialog(theDialog:DialogPtr)
_DrawDialog ; ptr still on stack

post a phony mouse down event
MOVE.W #1,AO
MOVE.L #0,DO

PostEvent

MOVE.W
MOVE.L

PostEvent

#2,AO
#0,DO

idleproc,AO
printRecReg,Al

LEA
MOVE.L
MOVE.L
MOVE.L

(Al) ,Al
AO,prJob+pidleProc(Al)

address of our idle procedure
get print record handle
convert to ptr
install pointer

if draft printing, go around for
; if spool printing, just go
; first, see if we are spool
MOVE.L PrintRecReg,AO
MOVE.L (AO),AO

each copy
around once
printing

get handle to print record
convert to Ptr

TST.B prJob+bjDocLoop(AO) is this spool printing?
0 means draft printing BEQ doDraft

; if spool printing, set numCopiesReg to 1 so we only go around once
MOVE.W #1,numCopiesReg
BRA doSpool branch around dodraft

doDraft
if draft printing, then get the number of copies from job record

MOVE.L PrintRecReg,AO ; get handle to print record
MOVE. L (AO) , AO ; convert to Ptr
MOVE.W prJob+iCopies(AO),numCopiesReg ; install in register

do Spool
now subtract l from numCopies to work as 68000 loop counter

SUB.W #1,numCopiesReg

Copies Loop ; come back here to print multiple copies in draft

; initialize startCharReg and currentLineReg
MOVE.W #0,startCharReg start at first character
MOVE.W #0,currentLineReg ; and first line

298

--------------- PRINTMGDULE.ASM ---------------

Page Loop
;open a page

;PROCEDURE
MOVE.L
CLR.L

PrOpenPage(pPrPort:TPPrPort;pPageFrame: TPRect)
PrintPortReg,-(SP) the port
-(SP) ; use page rect from hPrint

JSR PrOpenPage

currentLine := currentLine + numLines;
IF currentLine > hTEAA.nLines

THEN endChar := hTEAA.length
ELSE endChar := (hTEAA.lineStarts[currentLine + 1]) -1;

compute ending character for page, startchar is already set.
watch for special case of last page, it may be shorter
than numLines

; advance the current line one full page
ADD.W numLinesReg,currentLineReg

; see if this goes past the total t lines in TE record
MOVE.L hTE(A6),AO get TERecord
MOVE.L (AO) ,AO convert to Ptr
MOVE.W TeNLines(AO),DO total t lines
CMP.W currentLineReg,DO total - current
BMI last page special case, short

; normal case, ending char is retrieved from array of
; line starts
MOVE.L hTE(A6),AO get TERecord
MOVE.L (AO) ,AO convert to Ptr

page

LEA teLines(AO),AO get beginning of array
ADDA currentLineReg,AO bump index to end line
ADDA currentLineReg,AO add offset twice for word table
ADDA t2,AO get start of next line
MOVE.W (AO),endCharReg get char pos
SUB.W tl,endCharReg move back one char
BRA drawtext branch around lastpage

last page
; special
; end char
MOVE.L
MOVE.L
MOVE.W

case to handle last page, which may be shorter
length of TE text

drawtext
; draw text
; lock down
MOVE.L
MOVE.L
MOVE.L

HLock

is simply equal to
hTE(A6),A0
(AO) ,AO
teLength(AO),endCharReg

box with this page's text
the text
hTE(A6),A0
(AO) ,AO
teTextH(AO),AO

get TEHandle
convert to Ptr
get length

get TEHandle
convert to Ptr
get handle to text

than numlines

;PROCEDURE TextBox(text:Ptr;length:Longint;box:Rect;just:INTEGER)

299

----- THE COMPLETE •DK OF MACll18SH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

MOVE.L
ADDA
MOVE.L
CLR.L
MOVE.W
SUB.W
MOVE.L
PEA
MOVE.W
_TextBox

; unlock
MOVE.L
MOVE.L
MOVE.L
_HUnLock

close page

(AO) ,AO
startCharReg,AO
AO,-(SP)
DO
endCharReg,DO
startCharReg,DO
DO,-(SP)
scratchRect (A6)
#0,-(SP)

the text
hTE(A6),AO
(AO) ,AO
teTextH(AO),AO

Ptr to text, from above
bump Ptr to first char on page
push text Ptr on stack
clear out a register

length = end - start
put long length on stack
use scratch rect
left justification

get TEHandle
convert to Ptr
get handle to text

; PROCEDURE
MOVE.L

PrClosePage(pPrPort: TPPrPort)
PrintPortReg,-(SP) ; the port

JSR PrClosePage

;startChar := endChar
MOVE.W endCharReg,startCharReg

; have
MOVE.L
MOVE.L
CMP.W
BLT

we printed the last character
hTE(A6),AO
(AO) ,AO
teLength(AO),endCharReg
page Loop

yet?
get TEHandle
convert to Ptr
is end = length
not done yet

; check the number of copies loop counter
; we only go around again for multiple copies in draft mode
DBRA numCopiesReg,CopiesLoop

close the printing port when we are all done

close the printing port
;PROCEDURE PrCloseDoc(pPrPort:
MOVE.L PrintPortReg,-(SP)
JSR PrCloseDoc

Only call PrPicFile if we are spool
MOVE.L PrintRecReg,AO
MOVE.L (AO),AO
TST.B prJob+bjDocLoop(AO)
BEQ no spool

TPPrPort)
; the port

printing
get handle to print record
convert to Ptr
is this spool printing?
0 means draft printing

;PROCEDURE PrPicFile(hPrint: THprint: pPrPort: TPPrPort;
pIOBuf: Ptr;pDevBuf :Ptr; VAR prStatus: TPrStatus)

MOVE.L PrintRecReg,-(SP) the print record
CLR.L -(SP) NIL
CLR. L - (SP) NIL
CLR.L -(SP) NIL
PEA statusbytes (A6) VAR
JSR PrPicFile

300

--------------- PRINTMODULE.ASM ---------------

nospool
deallocate the print idle dialog

;PROCEDURE DisposDialog(theDialog:DialogPtr)
MOVE. L dlgPtr (A6), - (SP) ; the dialog ptr
_DisposDialog

reset the port to what it was before printing
; grafPort was saved on the stack
SetPort

cancel_job
;PROCEDURE DisposHandle
MOVE.L PrintRecReg,AO
_DisposHandle

; Procedure PrClose
JSR PrClose

quit print
; restore registers
MOVEM.L (SP)+,A2-A4/D3-D7

; clean up stack frame and return
UNLK A6
MOVE.L (SP)+,AO
ADDA #parambytes,SP
JMP (AO)

from PrLink

;------------------------------ idleProc -----------------------
idleProc

stopbutton SET 1

no parameters

local variables
theEvent SET -16
theitem SET -18
theDialog SET -22

locals SET -22

LINK A6,#locals

; item # of stop button

space for Event record
space for ItemHit
space for DlgPtr

; FUNCTION GetNextEvent(eventMask: INTEGER;
VAR theEvent: EventRecord) : BOOLEAN

CLR.W -(SP) Clear space for result
MOVE.W #$0FFF,-(SP) Allow 12 standard events
PEA theEvent(A6) Place to fill in event info
GetNextEvent Look for an event

MOVE.W (SP)+,DO Get result code

;FUNCTION IsDialogEvent(theEvent:EventRecord) :BOOLEAN
CLR.W -(SP) space for result
PEA theEvent(A6) the event

IsDialogEvent
MOVE.W (SP)+,DO get result

301

------ THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II ------

BEQ idleexit ; not a dialog event

;FUNCTION DialogSelect(theEvent:EventRecord;VAR theDialog:DialogPtr;
VAR itemHit:INTEGER) :BOOLEAN

CLR.W -(SP)
PEA theEvent(A6)
PEA theDialog(A6)
PEA the!tem(A6)
_DialogSelect
MOVE.W (SP)+,DO
BEQ idleexit

CMP.W
BNE

MOVE.W
_SysBeep

#stopbutton,theitem(A6)
idleexit

#20,-(SP)

space for result
the Event
the dialog VAR
itemHit VAR

get result
not an enabled item

did they click the stop button

; if user has clicked the stop button, set the print global
; witb. the abort code
;PROCEDURE PrSetError(errorcode:INTEGER)
MOVE.W #iPrAbort,-(SP)
JSR PrSetError

idleexit
UNLK
RTS

END

A6

302

--------------- MFSFILESEARCH.ASM ---------------

~ MFSFILESEARCH.ASM

File MFSFileSearch.ASM

This is a module that will search all available volumes
and look at all files on each MFS volumes
It expects to find a TE Handle in register D7 on entry

INCLUDE
INCLUDE

MacTraps.D
SysEqu.O

XOEF MFSFileSearch

TEReg SET 07 we need to insert text here

MFSFileSearch

; stack frame off sets for local variables
volname SET -32 allow for 31 char name
pBlock SET volname-80 ; space for parameter block

; local registers
Vol Index SET
File Index SET

03
04

LINK
MOVEM.L

TST.L
BEQ

A6,#pBlock
03-04,-(SP)

TEReg
noMoreVolumes

Set up parameter block for GetVolinfo
LEA pBlock(A6),AO
MOVE.L #0,ioCompletion(AO)
LEA volname(A6),Al
MOVE.L Al,ioVNPtr(AO)
MOVE.W #0,ioVRefNum(AO)

; start with volume #1
MOVE.W #1,Volindex

volume Loop
MOVE.W Volindex,ioVolindex(AO)

Get Vol Info
BMI noMoreVolumes

reserve space for locals
save registers

crash protection

get address of parameter block
no completion routine
get our string ptr
install in parameter block
force it to use index instead

install index number

we have looked at them all

;**
; insert the volume name in the text edit record
; PROCEDURE TEinsert(text:Ptr;length:LONGINT;hTE:TEHandle)
PEA volname+l(A6) skip length byte
MOVE.B volname(A6),00 length byte
ANO.L #$000000FF,OO mask off upper bytes
MOVE.L 00,-(SP) put length on stack
MOVE.L TEReg,-(SP) TE Handle

TE Insert

303

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

; PROCEDURE
MOVE.W
MOVE.L
_TEKey

TEKey(theKey:CHAR;hTE:TEHandle)
#13,-(SP) carriage return
TEReg,-(SP) ; hTE .

;**

; start with file #1
MOVE.W #1,Fileindex

fileLoop
LEA pBlock(A6),AO
MOVE.W Fileindex,ioFDirindex(AO)
_GetFileinfo
BMI noMoreFiles

get address of parameter block
install index number

we have looked at them all

your application could do something with the file name now
such as check it against a search string
or insert it into a list of all files

;**
insert five spaces to indent file names from volume name

PROCEDURE TEinsert(text:Ptr;length:LONGINT;hTE:TEHandle)
PEA tab 5 spaces defined statically
MOVE.L #5,-(SP) put length on stack
MOVE.L TEReg,-(SP) TE Handle
_TE Insert

; insert the volume name in the text edit record
; PROCEDURE TEinsert(text:Ptr;length:LONGINT;hTE:TEHandle)
PEA volname+l(A6) skip length byte
MOVE.B volname(A6),DO length byte
AND.L #$000000FF,DO mask off upper bytes
MOVE.L DO,-(SP) put length on stack
MOVE.L TEReg,-(SP) TE Handle
_TE Insert

; PROCEDURE
MOVE.W
MOVE.L
_TEKey

TEKey(theKey:CHAR;hTE:TEHandle)
#13,-(SP) carriage return
TEReg,-(SP) ; hTE

;**

; increment the file index and loop again
ADD.W #1,Fileindex
BRA FileLoop ; check the next file

noMoreFiles
; increment the volume index counter
ADP.W #1,Volindex
BRA VolumeLoop go check another volume

304

--------------- MFSFILESEARCH.ASM ---------------

noMoreVolumes

; clean up and go back
MOVEM.L (SP)+,D3-D4 restore registers
UNLK A6
RTS return to caller

tab DC.B 32,32,32,32,32

305

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

~ HFSFILESEARCH.ASM

File HFSFileSearch.ASM

This is a module that will search all available volumes
and look at all files in each HFS directory
It expects to find a TE Handle in register D7

INCLUDE
INCLUDE

MACRO

MACRO

MACRO

MACRO

MACRO

MacTraps.D
SysEqu.D

_HFSDispatch

_HGetVInfo =

GetCatinfo
MOVE.W
_HFSDispatch
I

_OpenWD
MOVE.W
_HFSDispatch
I

_CloseWD
MOVE.W
_HFSDispatch
I

DC.W $A060

DC.W $A207

#9,DO

#1,DO

#2,DO

; offset constants for HFS parameter block
ioDirID SET 48
ioDrDirID SET 48
ioWDProcID SET 28

XDEF HFSFileSearch

global register
TEReg SET D7

HFSFileSearch

we need to insert text here

; stack frame off sets for local variables
volname SET -32 allow for 31 char name
pBlock SET volname-122 ; space for HFS parameter block
index SET pBlock-2

LINK

TST.L
BEQ

A6,#index

TEReg
noMoreVolumes

reserve space for locals

crash protection

; Set up parameter block for GetVolinfo
LEA pblock(A6),AO get address of parameter block
MOVE.L #0,ioCompletion(AO) no completion routine
LEA volname(A6),Al get our string ptr

306

--------------- HFSFILESEARCH.ASM ---------------

MOVE.L
MOVE.W

Al,ioVNPtr(AO)
#0,ioVRefNum(AO)

; start with volume #1
MOVE.W #l,index(A6)

install in parameter block
force it to use index instead

volume Loop
LEA
MOVE.W
_HGetVInfo
BMI

pblock(A6),AO
index(A6),ioVolindex(A0)

noMoreVolumes

get address of parameter block
; install index number

we have looked at them all

;**
; insert the volume name in the text edit record
; PROCEDURE TEinsert(text:Ptr;length:LONGINT;hTE:TEHandle)
PEA volname+l(A6) skip length byte
MOVE.B volname(A6),DO length byte
AND.L #$000000FF,DO mask off upper bytes
MOVE.L DO,-(SP) put length on stack
MOVE.L TEReg,-(SP) TE Handle

TE Insert

; PROCEDURE
MOVE.W
MOVE.L
_TEKey

TEKey(theKey:CHAR;hTE:TEHandle)
#13,-(SP) carriage return
TEReg,-(SP) ; hTE

;**

; reset parameter block ptr
LEA pblock(A6),A0

; now go
MOVE.W
MOVE.W
BSR

into the interesting part,
ioVRefNum(AO),-(SP)
#0,-(SP)
SearchDir

; increment the volume index counter
ADD.W #l,index(A6)

search each directory
volRefNum of volume

; top level

BRA VolumeLoop go check another volume

noMoreVolumes

; clean up and go back

UNLK A6 deallocate stack frame
RTS return to caller

tab DC.B 32,32,32,32,32 used to indent file names

.ALIGN 2 this is IMPORTANT! !
otherwise, SearchDir begins
on an odd address

·--'

307

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

PROCEDURE SearchDir(refNum,level:INTEGER)
we call this routine everytime we encounter a folder
if a folder is found within a folder, then this is called recursively

SearchDir

stack frame equates

parameters
level SET 8
refNum SET 10
parambytes SET 4

; stack
volname
pBlock
index

frame offsets
SET -32

for local variables

LINK

; Set up
LEA
MOVE.L
LEA
MOVE.L

SET volname-108
SET pBlock-2

A6,#index

allow for 32 char name
space for parameter block
keep our index here

reserve space for locals

parameter block for GetCatinfo
pblock(A6),A0 get address of parameter block
#0,ioCompletion(AO) no completion routine
volname(A6),Al get our string ptr
Al,ioVNPtr(AO) install in parameter block

; start with file index #1
MOVE.W #l,index(A6)

fileLoop
LEA
MOVE.W
MOVE.W
GetCatinfo

pBlock(A6),AO
Index(A6),ioFDirindex(AO)
refNum(A6),ioVRefNum(AO)

BMI noMoreFiles

get address of parameter block
install inde~ number

; this could be WDRefNum

; we have looked at them all

:***
insert five spaces to indent file names from volume name

@0

each level increases amount of indentation
MOVE.L D5,-(SP) save register
MOVE.W level(A6),D5 ; amount to indent

; PROCEDURE
PEA
MOVE.L
MOVE.L

TE Insert
DBRA
MOVE.L

TEinsert(text:Ptr;length:LONGINT;hTE:TEHandle)
tab 5 spaces, defined statically
#5,-(SP) put length on stack
TEReg,-(SP) TE Handle

D5,@0
(SP)+,DS ; restore register

; insert the file/folder name in the text edit record
; PROCEDURE TEinsert(text:Ptr;length:LONGINT;hTE:TEHandle)
PEA volname+l(A6) skip length byte
MOVE.B volname(A6),DO ; length byte

308

--------------- HFSFILESEARCH.ASM ---------------

AND.L
MOVE.L
MOVE.L
_TElnsert

; PROCEDURE
MOVE.W
MOVE.L
-'-TEKey

#$000000FF,DO
DO,-(SP)
TEReg, - (SP)

mask off upper bytes
put length on stack
TE Handle

TEKey(theKey:CHAR;hTE:TEHandle)
#13, - (SP) ; carriage return
TEReg,-(SP) ; hTE

;***

@1

; reset parameter block ptr
LEA pblock(A6),A0

; Find out if this is a file or a folder
BTST #4,ioFLAttrib(AO) is this a folder?
BEQ @1 ; only a file

if this is a folder, then call ourselves recursively
Increase the level by 1
Make the folder into a new working directory
and pass WDRefNum as new ioVRefNum

MOVE.L
_OpenWD

; ioVRefNum
MOVE.W
MOVE.W
ADD.W.
MOVE.W
JSR

; increment
MOVE.W
ADD.W
BRA

#0,ioWDProcID(AO) NIL proc

now refers to the directory rather than the volume
ioVRefNum(AO~,-(SP) WDRefNum of folder
lev~l(A6),DO current level
#1,DO increase it
DO,-(SP) new level
SearchDir

the file index and loop again
n,Do
DO, index (A6)
FileLoop check the next file

noMoreFiles

; close the working directory for this level
; the parameter block is already set up for this
_CloseWD

UNLK
MOVE.L
ADDA
JMP

A6
(SP)+,AO
#parambytes,SP
(AO)

get return address
clear parameters
return

309

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME 11 -----

9 CHEAPTALKll.ASM

CheapTalkII.ASM
A short program to demonstrate how to
use Macintalk 1.1 from assembly language

This program displays a dialog and speaks
the written message in the dialog

It also will speak English strings written
into an edit text box in the dialog

Edit text boxes allow user to set speech rate and pitch
radio buttons allow a choice of natural or robotic speech

Portions of this program originally appeared in
the November 1985 issue of MacTutor magazine.

January 1986, Dan Weston

This program uses subroutines from the file SpeechASM.rel
You must include that file in your link file list
and XREF the particular routines here

You must also have the file 'MacinTalk' on the same volume as
this application program

XREF SpeechOn
XREF Mac in Talk
XREF Reader
XREF SpeechPitch
XREF SpeechRate
XREF SpeechOff

INCLUDE Mactraps.D
INCLUDE ToolEqu.D
INCLUDE SysEqu.D

theDialog EQU 1
sayitbutton EQU 1
quitbutton EQU 2
usertext EQU 3
ratetext EQU 4
pitchtext EQU 5
naturalbutton EQU 6
robotbutton EQU 7

open driver
say something
translate English to phonemes
set pitch
set rate
close the driver

resource ID * of dialog
item * for 'say it '
item* for 'quit'
item * for text box
item * for rate box
item * for pitch box
item * for natural button
item * for robot button

; input values
noChange
robotic
natural

for SpeechPitch to change mode
EQU 512

; minimum
pitchMin
pitchMax
rateMin
rateMax

EQU 256
EQU 0

and maximum
EQU
EQU
EQU
EQU

values
65
500
85
425

for SpeechPitch and SpeechRate

310

---------------- CHEAPTALlll.ASM ----------------

tabChar
backspace
CR

myDialog

EQU
EQU
EQU

EQU

9
8
13

A2

MACRO StringToNum string,num
LEA {string},AO
MOVE.W #1,-(SP)

Pack7
LEA
MOVE.L
I

{num} ,AO
DO, (AO)

MACRO NumToString num,string
MOVE.L {num) ,DO
LEA {string), AO
MOVE.W #0,-(SP)

Pack7
T

let this char through filter
and this one and
carriage return

use this register to store dialog ptr.

--------------- Global Variables -------------------

the Speech DS.L 1 handle to speech driver globals
speechOK DS.W 1 our flag to show if driver open
theString DS.B 2S6 VAR for GetIText
phHandle DS.L 1 handle to phonetic string

ItemHit DS.W 1 VAR for ModalDialog
the Type DS.W 1 VAR for GetDitem
the Item DS.L 1 VAR for GetDitem
theRect DS.W 4 VAR for GetDitem

theNum DS.L 1 VAR for StringToNum

--------------- Initialization ---

BSR.W InitManagers ; at end of source file

--------------------- Open the Speech Driver ---------------------------

Open speech driver to use default rules

assume that driver will open alright, set our flag to TRUE

MOVE.W

;FUNCTION

CLR.W
PEA
PEA
JSR
MOVE.W
BEQ

U, speechOK (AS) set flag to TRUE

SpeechOn(ExceptionsFile:Str2SS;
VAR thespeech:Speechhandle;
) : SpeechErr

-(SP)
NULL
theSpeech (AS)
Speech On
(SP)+,DO

@1

result
defined at end of source code
VAR theSpeech
jump to to open routine
check result
branch if ok

311

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

If driver open not successful then clear speechOK flag
to prevent further use of invalid driver

MOVE.W #O,speechOK(A5)

You could also put an error dialog here

@1 branch to this point if open is successful

;--------------------- Get the Dialog from the Resource file --------------

;FUNCTION GetNewDialog (dialogID: INTEGER; dStorage: Ptr;
behind: WindowPtr) : DialogPtr

CLR.L -(SP)
MOVE #theDialog~-(SP)
CLR.L ~(SP)
MOVE.L #-1,-(SP)

GetNewDialog
MOVE.L (SP)+,myDialog

;PROCEDURE SetPort (gp: GrafPort)
MOVE.L myDialog,-(SP)
_SetPort

;Clear Space For DialogPtr
; Resource #
;Storage Area on heap
;Above All Others
;Get New Dialog
;Move Handle To A2

;Move Dialog Pointer To Stack
;Make It The Current Port

set the natural
;PROCEDURE

button
GetDitem(thedialog:DialogPtr;itemNo:INTEGER;

VAR type:INTEGER: VAR item: Handle;

MOVE.L
MOVE.W
PEA
PEA
PEA
~GetDitem

VAR box: Rect1
myDialog,-(SP)
#naturalbutton,-(SP)
theType(A5)
theitem (A5)
theRect(A5)

we saved
item
VAR type
VAR item
VAR box

DialogPtr here

;PROCEDURE SetCtlValue(theControl:ControlHandle;
theValue:INTEGER)

MOVE.L theitem(A5),-(SP)
MOVE.W #1,-(SP)
_setCtlValue

usual_ly you would not use DrawDialog, but we need to draw the
dialog contents once before saying them, then go to Modal dialog
which will draw the contents again

;PROCEDURE
MOVE.L
_DrawDialog

DrawDialog(dp:DialogPtr)
myDialog,-(SPl

;-------------------------- Speak pre-translated speech -------------------

now Say the static text item which has been pre-translated into
a phoneme string with the same ID as the dialog

first, check our flag to make sure that driver is open

312

---------------- CHEAPTALKll.ASM ----------------

TST.W
BEQ

speechOK (A5)
@2

driver valid, go ahead and speak

driver not valid
branch around speech stuff

match the rate and pitch to the edit text boxes
BSR.W CheckRate
BSR.W CheckPitch

;FUNCTION GetResource(theType:ResType:ID:INTEGER) :Handle
CLR.L -(SP) space for result
MOVE.L #'PHNM',-(SP) resource type PHNM
MOVE.W #theDialog,-(SP) use same ID as dialog
_Get Resource
MOVE.L (SP)+,AO handle to phoneme string

;FUNCTION

CLR.W
MOVE.L
MOVE.L
JSR
MOVE.W

MacinTalk(theSpeech:SpeechHandle;Phonemes:Handle)
:SpeechErr

-(SP)
theSpeech(AS),-(SP)
AO,-(SP)
MacinTalk
(SP)+,DO

space for result code
speech global handle
phonemes, from above
say it
get result code

@2 ; branch to here to avoid speaking with invalid driver

·------------------------------- Dialog loop ------------------------------'
; now process the dialog

dialog loop

;PROCEDURE ModalDialog (filterProc: ProcPtr;

PEA MyFilter
PEA ItemHit (AS)

VAR itemHit: INTEGER)
;filter proc
;Item Hit Data

_ModalDialog

see which button was pushed
CMP.W #quitbutton,ItemHit(A5)
BEQ close it

CMP.W
BEQ

CMP.W
BEQ

CMP.W
BEQ

#sayitbutton,ItemHit(AS)
say it

#naturalbutton,ItemHit(AS)
setNatural

#robotbutton,ItemHit(A5)
setRobotic

quit button?

say it?

BRA.W dialog loop ; go around again

;-------------------------- Filter Procedure
MyFilter
;FUNCTION

'

MyFilter(theDialog:dialogPtr;VAR theEvent:EventRecord;
VAR itemHit:INTEGER) :BOOLEAN

; set up equates for stack frame

313

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY UNIUAGE PRO&RAMMING, VOWME II -----

titemHit EQU 8
tEvent EQU 12
tDialog EQU 16
result EQU 20

parambytes SET 12

local variables

locals SET 0

local registers
Event reg EQU A3
Dialogreg EQU A4

LINK A6,#locals
MOVEM.L A3-A4,-(SP) ; save registers

MOVE.L tEvent(A6),EventReg ;A3
MOVE.L tDialog(A6),Dialogreg ;A4

we only filter key down events
; ptr to event record in A3

CMP.W
BEQ

InputOK

#keyDwnEvt,evtnum(A3)
keyfilter

set result to FALSE
MOVE.W #O,result(A6)

filterexit
MOVEM.L
UNLK
MOVE.L
ADDA.W
JMP

keyfilter

(SP)+,A3-A4
A6
(SP)+,AO
#parambytes,SP
(AO)

Ptr to event record in A3

is it key down?

restore registers

get return address
strip parameters
RTS

first check to see if the return key was pressed
if it was, set ItemHit to 1 and return TRUE so
that ModalDialog will return immediately with
ItemHit set to 1

MOVE.W evtmessage+2(A3),DO get the character

CMP.B
BEQ

#CR,DO
DoCR

; only check other characters if
; is in one of the numeric boxes
MOVE.L dialogreg,AO
MOVE.W editField(A0),00
ADD.W #1,DO
CMP.W #ratetext,DO
BEQ @1

was it the return key?
handle a special way

edit text

get dialog ptr
which item t
correct t
is it rate box?
ok, filter this input

314

---------------- CHEAPTALKll.ASM ----------------

@l

CMP.W
BNE

MOVE.W

CMP.B
BEQ

CMP.B
BEQ

CMP.B
BLT

CMP.B
BGT

#pitchtext,DO
Input OK

evtmessage+2(A3),DO

#tabChar,DO
InputOK

#backspace, DO
Input OK

#I 0 I' DO
Reject Input

#I 9 I' DO
Reject Input

is it pitch box?
neither, go back

get the character

was it tab?
we'll let this through

was it delete?
we'll let this through

lowest digit
lower than 0

highest digit
higher than 9

if we get this far, the key press is a digit
now check to make sure that we're not getting more than 3 digits
in the edit text item

MOVE.L dialogreg,AO get dialog ptr
MOVE.L teHandle(AO),AO TErecord for edit text
MOVE.L (AO),AO convert to Ptr
MOVE.W teSelStart(AO),DO get start of selection
MOVE.W teSelEnd(AO),Dl get selection end
SUB.W Dl,DO start - end

item

BMI Input OK this range will be replaced

CMP.W B, teLength (AO) is the length equal to 3
BLT InputOK less than 3 chars, add another

Reject Input
beep the speaker and return
don't let input get to DialogSelect

Do CR

;PROCEDURE
MOVE.W
_sysBeep

MOVE.W

BRA.W

SysBeep(duration:INTEGER)
U,-(SP)

#$0100,result(A6)

filterexit

our filter procedure needs to recognize a
make it the same as a click in item # 1

MOVE.L titemHit(A6),AO
MOVE.W #1, (AO)

MOVE.W #$0100,result(A6)

BRA.W filterexit

set TRUE so modal ignores input

carriage return and

itemHit is VAR, so get Ptr
set item # to 1

set TRUE so modal ignores input

;-------------------- Translate English to Phonetics and speak -----------
sayit

315

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PRO&RAMMING, VOWME II -----

first, check our flag to make sure that driver is open

TST.W
BEQ

speechOK(AS)
@3 driver not valid

check the values in speed and pitch text boxes
update driver to match these values
if the values are outside the limits, then set to nearest end point

BSR.W CheckRate
BSR.W CheckPitch

driver valid, go ahead and speak
get the current text in the edit text box

;PROCEDURE

MOVE.L
MOVE.W
PEA
PEA
PEA
_GetDitem

;PROCEDURE
MOVE.L
PEA
_GetIText

GetDitem(thedialog:DialogPtr;itemNo:INTEGER;
VAR type:INTEGER: VAR item: Handle;
VAR box: Rect)

myDialog,-(SP)
fusertext,-(SP)
theType(AS)
theitem(AS)
theRect (AS)

we saved
the edit
VAR type
VAR item
VAR box

DialogPtr here
text item

GetIText(item:Handle;VAR text: Str255)
theitem(AS),-(SP) result of GetDitem
theString(A5) ; VAR text

set up an empty handle first for Reader to fill with phonemes
;FUNCTION NewHandle(logicalSize: Size): Handle
; logicalSize => DO, Handle => AO
MOVEQ #0,DO set up empty handle
_NewHandle
MOVE.L AO,phHandle(AS) save Handle for later

;FUNCTION

CLR.W
MOVE.L
PEA
CLR.L
MOVE.B
MOVE.L
MOVE.L
JSR
MOVE.W

;FUNCTION

CLR.W
MOVE.L
MOVE.L
JSR

Reader(theSpeech:SpeechHandle; Englishinput:Ptr;
InputLength:Longint: PhoneticOutput:Handle)
: SpeechErr

-(SP)
theSpeech(AS),-(SP)
theString+l(A5)
DO
theString(AS),DO
DO,-(SP)
phHandle(AS),-(SP)
Reader
(SP)+,DO

space for result
speech globals
Ptr to string, skip length byte
clear out DO
put length byte in DO
use longint for length
we just allocated this handle
do translation
get result

MacinTalk(theSpeech: SpeechHandle
Phonemes: Handle) :SpeechErr

-(SP)
theSpeech(AS),-(SP)
phHandle(AS),-(SP)
MacinTalk

space for result
speech globals
handle to phonemes
say it

316

--------------- CHEAPTALKll.ASM ---------------

@3

MOVE.W (SP)+,DO

deallocate handle
;PROCEDURE DisposHandle(h: Handle)
; h => AO
MOVE.L phHandle(AS),AO
_DisposHandle

BRA.W dialog loop

get result

this is where phonemes are

;---------------------------- checkrate -----------------------------------

checkRate

@l

a subroutine to make sure that the number shown in the text box
is within the limits set for the rate, then sets rate to num
this is called just before we 'say it'

get dialog item,
;PROCEDURE GetDitem(thedialog:DialogPtr;itemNo:INTEGER;

VAR type: INTEGER: VAR item: Handle;

MOVE.L
MOVE.W
PEA
PEA
PEA

GetDitem

VAR box: Rect)
myDialog,-(SP)
tratetext,-(SP)
theType (AS)
theitem(AS)
theRect (AS)

we saved
item
VAR type
VAR item
VAR box

DialogPtr here

; PROCEDURE GetIText(item: Handle; VAR text: Str255)
MOVE.L theitem(AS),-(SP) get handle from VAR
PEA theString(AS) ; string holder
GetIText

; stringtonum
_StringToNum theString(AS),theNum(AS)

set within bounds of max and min, enter with rate in theNum(AS)
set text to corrected value
then set the rate for speech

CMl? .L trateMin,theNum(AS)
BPL @l theNum is >= min

; set theNum to minimum
MOVE.L trateMin,theNum(AS)
BRA.W @2 jump ahead

CMP.L #rateMax+l,theNum(AS)
BMI @2 theNum is <= max

; set theNum to maximum
MOVE.L trateMax,theNum(AS)

@2 ; now we Know the value in theNum is a valid one for setting rate

; set the text of the box to match corrected number, even if it doesn't need it

317

----- THE COMPLETE BOOK OF MAClllTOSH ASSEMBLY LAIGUAGE PROGRAMMlllG, VOIUME II -----

_NumToString

;PROCEDURE
MOVE.L
PEA
_Set I Text

set rate

theNum(A5),theString(A5)

SetIText(item:Handle;text:Str255)
theitem(A5),-(SP) ; handle in VAR
theString(A5)

MOVE.L theNum(AS),DO '; do this to get word from long

;PROCEDURE SpeechRate(theSpeech:SpeechHandle;
theRate:INTEGER)

MOVE.L theSpeech(AS),-(SP)
MOVE.W DO,-(SP) new rate
BSR.W SpeechRate

RTS

;------------------------------- checkpitch -------------------------------

checkPitch
a subroutine to make sure that the number shown in the text box
is within the limits set for the rate, then sets rate to num
this is called just before we 'say it'

get dialog item,
;PROCEDURE GetDitem(thedialog:DialogPtr;itemNo:INTEGER;

VAR type: INTEGER: VAR item: Handle;

MOVE.L
MOVE.W
PEA
PEA
PEA
_GetDitem

VAR box: Rect)
myDialog,-(SP)
#pitchtext,-(SP)
theType (AS)
the Item (AS)
theRect (AS)

we saved
item
VAR type
VAR item
VAR box

DialogPtr here

; PROCEDURE GetIText(item: Handle; VAR text: Str25S)
MOVE.L theitem(AS),-(SP) handle in VAR
PEA theString(AS) ; string holder
_Get I Text

; stringtonum
_StringToNum theString(AS),theNum(AS)

;set within bounds of max and min

@1

CMP.L #pitchMin,theNum(AS)
BPL @1

; set theNum to minimum
MOVE.L #pitchMin,theNum~A5)
BRA.W @2

CMP.L
BMI

#pitchMax+l,theNum(AS)
@2

; set theNum to maximum

theNum is >= min

jump ahead

theNum is <= max

318

---------------- CHEAPTALKll.ASM ----------------

MOVE.L #pitchMax,theNum(AS)

@2 ; now we Know the value in theNum is a valid one for setting pitch

; set the text of the box to match corrected number, even if it doesn't need it
_NumToString theNum(AS),theString(AS)

;PROCEDURE
MOVE.L
PEA
_Set I Text

set pitch
MOVE.L

;PROCEDURE

MOVE.L
MOVE.W
MOVE.W
BSR.W

RTS

setNatural

; set the natural
;PROCEDURE

MOVE.L
MOVE.W
PEA
PEA
PEA

GetDitem

SetIText(item:Handle;text:Str2SS)
theltem(AS),-(SP) ; handle in VAR
theString(AS)

theNum(AS),DO

SpeechPitch(theSpeech:SpeechHandle;
.thePitch:INTEGER;theMode:FOMode)

theSpeech(AS),-(SP)
DO,-(SP)
#noChange,-(SP)
SpeechPitch

new pitch
don't change mode

set natural speech ------------------------------

button
GetDitem(thedialog:DialogPtr;itemNo:INTEGER;

VAR type:INTEGER: VAR item: Handle;
VAR box: Rect)

myDialog,-(SP)
#naturalbutton,-(SP)
theType (AS)
the Item (AS)
theRect (AS)

we saved DialogPtr here
item
VAR type
VAR item
VAR box

;PROCEDURE SetCtlValue(theControl:ControlHandle;
theValue:INTEGER)

MOVE.L theltem(AS),-(SP)
MOVE.W #1,-(SP)

SetCtlValue

clear the robot button

set the natural button
;PROCEDURE GetDitem(thedialog:DialogPtr;itemNo:INTEGER;

VAR type: INTEGER: VAR item: Handle;

MOVE.L
MOVE.W
PEA
PEA
PEA
_GetDitem

VAR box: Rect)
myDialog,-(SP)
#robotbutton,-(SP)
theType (AS)
theltem(AS)
theRect (AS)

we saved
item
VAR type
VAR item
VAR box

319

DialogPtr here

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

;PROCEDURE SetCtlValue(theControl:ControlHandle;
theValue:INTEGER)

MOVE.L theitem(AS),-(SP)
MOVE.W #0,-(SP)
_SetCtlValue

and set the speech driver to natural

;PROCEDURE SpeechPitch(theSpeech:SpeechHandle;
thePitch:INTEGER;theMode:FOMode)

MOVE.L theSpeech(AS),-(SP)
MOVE.W #noChange,-iSP) pitch stays the same
MOVE.W #natural,-(SP) set natural
BSR.W SpeechPitch

BRA.W dialogloop

------------------------- set robotic speech ----------------------------
setrobotic

clear the natural button
;PROCEDURE GetDitem(thedialog:DialogPtr;itemNo:INTEGER;

VAR type:INTEGER: VAR item: Handle;

MOVE.L
MOVE.W
PEA
PEA
PEA

GetDitem

VAR box: Rect)
myDialog,-(SP)
#naturalbutton,-(SP)
theType (AS)
theitem(AS)
theRect (AS)

we saved
item
VAR type
VAR item
VAR box

DialogPtr here

;PROCEDURE SetCtlValue(theControl:ControlHandle;
theValue:INTEGER)

MOVE .. L the Item (AS), - (SP)
MOVE.W #0,-(SP)
_SetCtlValue

set the robot button

; set the natural button
;PROCEDURE GetDitem(thedialog:DialogPtr;itemNo:INTEGER;

VAR type:INTEGER: VAR item: Handle;

MOVE.L
MOVE.W
PEA
PEA
PEA

GetDitem

VAR box: Rect)
myDialog,-(SP)
#robotbutton,-(SP)
theType (AS)
theitem(AS)
theRect (AS)

we saved
item
VAR type
VAR item
VAR box

DialogPtr here

;PROCEDURE SetCtlValue(theControl:ControlHandle;
theValue:INTEGER)

MOVE.L theitem(AS),-(SP)
MOVE.W #1,-(SP)

SetCtlValue

320

----------------- CHEAP1'Al.lll.ASM -----------------

and set the speech driver to robotic

;PROCEDURE

MOVE.L
MOVE.W
MOVE.W
BSR.W

BRA.W

SpeechPitch(theSpeech:SpeechHandle;
thePitch:INTEGER;theMode:FOMode)

theSpeech(AS),-(SP)
itnoChange,-(SP)
itrobotic,-(SP)
SpeechPitch

dialog loop

pitch stays the same
set robotic

;--------------------------- Close up shop --------------------------------

close it
;PROCEDURE DisposDialog (theDialog: DialogPtr);
MOVE.L myDialog,-(SP) ;Get Dialog Pointer To Close
_DisposDialog ; Close Window

first, check our flag to make sure that driver is open

TST.W
BEQ

speechOK(AS)
@4 driver not valid

branch around speech stuff
driver valid, go ahead and close it

; PROCEDURE SpeechOff(theSpeech: SpeechHandle)
MOVE.L theSpeech(AS),-(SP) handle to speech globals
JSR SpeechOff ; close it up

@4 ; branch to here to avoid closing invalid driver

ExitToShell ;Return To Finder

;----------------------- Initialize Managers Subroutine
InitManagers

;PROCEDURE InitGraf (globalPtr: QDPtr);
PEA -4 (AS)

InitGraf
-InitFonts
-InitWindows
7PROCEDURE InitDialogs
CLR.L -(SP)

InitDialogs
-TEinit
-InitCursor
RTS

;---------------------------
NULL DC.W 0

;Space Created For Quickdraw's Use
;Init Quickdraw
;Init Font Manager
;Init Window Manager

(restartProc: ProcPtr);
; NIL restart proc
;Init Dialog Manager

; set arrow cursor
; end of InitManagers

Static Data ----------------------------------

; null string

321

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

f!2l CHEAPTALKll.LINK

;File CheapTalkII.LINK

/OUTPUT CheapTalkCode

Since this code file will not run successfully until it has been
joined with the resources by RMaker, set its file type so
that it cannot be mistakenly run from the desktop.
Link output files are usually of type APPL

/TYPE 'CODE' 'LINK'

; link our code, CheapTalkII, with the glue for the speech driver routines

CheapTalkII
SpeechASM

$

322

---------------- CHEAPTALKll.R ----------------

~ CHEAPTALKll.R

* CheapTalkII. R
* create the application CheapTalkII

* First define all the resources, and then include the code

* output file name
* File type, file creator

MDS2:CheapTalkII
APPLCHTK

* dialog resource is a vanilla dialog
* make it pre-loaded (4) to speed things up

Type DLOG
t 1 (4)

40 50 330 450
Visible NoGoAway
1
0
1

* DITL resource for dialog has one static text item,
* three edit text item,
*two buttons: 'Say it' and 'Quit'
* two radio buttons, 'natural' and 'robotic'
* The 'Say it' button is item #1 so that hitting return is
* the same as clicking 'Say it'
* make it pre-loaded (4) to speed_things up

Type DITL
demo,1 (4)
10

Button
260 300 280 350
Say it

Button
260 50 280 100
Quit

Edit Text
40 30 150 370
This is a test of the emergency ++
broadcasting network. In the event ++
of a real emergency you would be ++
instructed to tune to this station ++
for further instructions. This is ++
only a test.

Edit Text
170 50 190 80
140

323

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

Edit Text
220 50 240 80
120

radiobutton
170 250 190 350
natural

radiobutton
220 250 240 350
robotic

StaticText Disabled
170 85 190 170
speech rate

StaticText Disabled
220 85 240 170
speech pitch

StaticText Disabled
10 30 30 290
This is a talking dialog demonstration

* PHNM resource is defined by us to be a string without length byte
* it is a phonetic translation of the static tect in the DITL of the
* same resource #
* make it pre-loaded (4) to speed things up

Type PHNM = GNRL
demo, 1 (4)
.s
DHIH9S, IHZ AH TA04KIHNX DAY6AELAA1G DIH1MUNSTREY5SHUN #

* now include the code produced by the linker

INCLUDE MDS2:CheapTalkCode

324

~ UITEST.ASM

File UITest.ASM
a short program to experiment with dialog user items

This program opens a modal dialog and displays
two user items. One user item just draws a line
the other user item draws a rectangular, shaded button

A utility function, TrackRect, is assembled separately and
linked with this program.

February 1986, Dan Weston

------------------------------ Symbol files ---------------------------

INCLUDE
INCLUDE
INCLUDE
INCLUDE

Mactraps.D
ToolEqu.D
QuickEqu.D
SysEqu.D

;------------------------------- External references --------------------

XREF TrackRect ; assembled separately

;--------------------------------- Equates ------------------------------

theDialog EQU 256 resource ID # of dialog
quitbutton EQU 1 item # for 'quit'
lineitem EQU 2 item # of line user item
buttonitem EQU 3 item * for button user item
myString EQU 256 item * for STR resource

myDialog EQU A2 use this register to store dialog

;-------------------------- Global varialble storage ---------------------

ItemHit
the Type
the Item
theRect

DS.W 1
DS.W 1
DS.L 1
DS.W 4

VAR for ModalDialog
VAR for GetDitem
VAR for GetDitem
VAR for GetDitem

---------------------------- Initialization ----------------------------

;PROCEDURE
PEA

InitGraf (globalPtr: QDPtr);

InitGraf
-InitFonts

-4(A5) ;Space Created For Quickdraw's Use
;Init Quickdraw

-InitWindows
7PROCEDURE InitDialogs
CLR.L -(SP)

InitDialogs
;procedure TEinit

TEinit
-InitCursor

;!nit Font Manager
;!nit Window Manager

(restartProc: ProcPtr);
; NIL restart proc
;Init Dialog Manager

; set arrow cursor

;--------------------- Get the Dialog from the Resource file

325

ptr.

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

;FUNCTION GetNewDialog (dialogID: INTEGER; dStorage: Ptr;
behind: WindowPtr) : DialogPtr

CLR.L -(SP)
MOVE #theDialog,-(SP)
CLR.L -(SP)
MOVE.L #-1,-(SP)

GetNewDialog
MOVE.L (SP)+,myDialog

;PROCEDURE SetPort (gp: GrafPort)
MOVE.L myDialog,-(SP)

SetPort

Clear Space For DialogPtr
Resource #
Storage Area on heap
Above All Others
Get New Dialog
Move Handle To A2

Move Dialog Pointer To Stack
Make It The Current Port

now install first user item in dialog record

;PROCEDURE GetDitem(thedialog:DialogPtr;itemNo:INTEGER;
VAR type: INTEGER: VAR item: Handle;
VAR box: Rect)

MOVE.L myDialog,-(SP) we saved DialogPtr here
MOVE.W #lineitem,-(SP) item
PEA theType (AS) VAR type
PEA theltem(A5) VAR item
PEA theRect(A5) VAR box
_GetDitem

;PROCEDURE SetDitem(thedialog:DialogPtr;itemNo:INTEGER;
type:INTEGER: item: Handle;

MOVE.L
MOVE.W
MOVE.W
PEA
PEA

box: Rect)
myDialog,-(SP)
#lineitem,-(SP)
theType(AS),-(SP)
itemProc

we saved DialogPtr here

theRect (AS)
SetDitem

now get the other one

item
type
pointer
box

to procedure

;PROCEDURE GetDitem(thedialog:DialogPtr;itemNo:INTEGER;
VAR type:INTEGER: VAR item: Handle;
VAR box: Rect)

MOVE.L myDialog,-(SP) we saved DialogPtr here
MOVE.W #buttonitem,-(SP) item
PEA theType (AS) VAR type
PEA theltem(AS) VAR item
PEA theRect (AS) VAR box

GetDitem

;PROCEDURE SetDitem(thedialog:DialogPtr;itemNo:INTEGER;
type:INTEGER: item: Handle;
box: Rect)

MOVE.L myDialog,-(SP) we saved DialogPtr here
MOVE.W #buttonitem,-(SP) item
MOVE.W theType(AS),-(SP) type
PEA bigbutton pointer to procedure
PEA theRect (AS) box

SetDitem

326

----------------- UITEST.ASM -----------------

now show the dialog

; PROCEDURE ShowWindow(theWindow:WindowPtr)
MOVE.L myDialog,-(SP)

ShowWindow

;-------------------------- dialog loop -----------------------------------
dialogloop

;PROCEDURE ModalDialog

PEA myFilter
PEA ItemHit (AS)
_ModalDialog

(filterProc: ProcPtr;
VAR itemHit: INTEGER)

;filter proc
;Item Hit Data

see which button was pushed
CMP.W #quitbutton,ItemHit(AS)
BEQ close it

CMP.W
BEQ

BRA

#buttonitem,ItemHit(AS)
DoUserClick

dialog loop

quit button?

; go around again

;--------------------------- DoUserClick --------------------------------

DoUserClick
we come here if the user clicks in the button user item.
The filter proc makes sure that this item # is returned
only when the mouse button is released inside item

MOVE.W
_SysBeep

BRA

U,-(SP)

dialog loop

;-------------------------- Filter Procedure
MyFilter
;FUNCTION MyFilter(theDialog:dialogPtr;VAR theEvent:EventRecord;

VAR itemHit:INTEGER) :BOOLEAN

set up equates for stack frame
titemHit SET 8
tEvent SET 12
tDialog SET 16
result SET 20

parambytes SET 12

; use some local variables
itype SET -2
iBox SET -10
iHdl SET -14
iPoint SET -18
locals SET -18

327

----- THE COMPLETE BOOK OF MAClllTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

LINK A6,#locals

get the bounds rectangle for the button user item
so we can see if the mouse has been clicked there

;PROCEDURE

MOVE.L
MOVE.W
PEA
PEA
PEA
_GetDitem

GetDitem(thedialog:DialogPtr;itemNo:INTEGER;
VAR type:INTEGER: VAR item: Handle;
VAR box: Rect)

tDialog(A6),-(SP)
#buttonitem,-(SP)
iType (A6)
iHdl (A6)
iBox(A6)

DialogPtr
item#
VAR type
VAR item
VAR box

here

now check the event record, passed to this procedure as a parameter,
to see if this is a mouse down event'

MOVE.L
MOVE.W
CMP.W
BNE

tEvent(A6),AO
evtNum(AO),DO
#mButDwnEvt,DO
Input OK

get event record
what kind of event is it
is it a mouse down?
ignore other events

if it is a mouse down event, copy the point to a local variable

LEA
LEA
MOVE.L

evtMouse(AO),AO
iPoint(A6),Al
(AO)+, (Al)+

get address of point
our local
copy point to local var

now call GlobalToLocal with our copy of the point
;PROCEDURE GlobalToLocal(VAR p:Point)
PEA ipoint (A6)
_GlobalToLocal

and find out if the point is in the user item rect

; FUNCTION
CLR.W
MQYE.L
PEA
_Pt;InRect
MOVE.W
BEQ

PtinRect(p:Point;
-(SP)
iPoint(A6),-(SP)
iBox(A6)

~SP)+,DO
Input OK

r:Rect) :BOOLEAN
function result
the point
the rect

get result

We get to this point if the click is in the user item
Call our utility function to track the mouse inside the user item
If the result of TrackRect is TRUE (BNE) then the user released
the mouse button inside the button and we can just let the mouse
down event through to ModalDialog, which will set ItemHit to the
user item #.
If TrackRect returns FALSE, then the user released the button
outside the user item, so we need to set the ItemHit to 0 and
tell ModalDialog not to handle this event.

; xFUNCTION TrackRect(r) :BOOLEAN

328

----------------- UITEST.ASM -----------------

CLR.W
PEA
JSR
MOVE.W
BNE

-(SP)
ibox(AG)
TrackRect
(SP)+,DO
Input OK

; otherwise, user backed out of
MOVE.W #0,titemHit(AG)
MOVE.W #$0100,result(AG)

BRA filterexit

Input OK
set result to FALSE

MOVE.W #0,result(AG)

filterexit

UNLK
MOVE.L
ADDA.W
JMP

AG
(SP) +,AO
#parambytes,SP
(AO)

function result
the rect

get result
let mouse down through

selection
set item to 0
stop Modal from handling
this event

get return address
strip parameters
RTS

;------------------------ User item procedure -----------------------------

ItemProc(theDialog:DialogPtr;theitem:INTEGER)

this procedure is called to draw the user item for every update
event for the dialog

ItemProc
; set up equates for stack frame
titem SET 8
tDialog SET 10

parambytes SET G

; use some local variables
itype SET -4
iBox SET -12
iHdl SET -lG

locals SET -16

LINK AG,#locals

;PROCEDURE GetDitem(thedialog:DialogPtr;itemNo:INTEGER;
VAR type: INTEGER: VAR item: Handle;
VAR box: Rect)

MOVE.L tDialog(AG),-(SP) DialogPtr here
MOVE.W titem(AG),-(SP) item#
PEA iType (AG) VAR type
PEA iHdl (AG) VAR item
PEA iBox (AG) VAR box

GetDitem

the only thing this user item does is draw a line along the left

329

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME 11 -----

edge of its bounds rectangle.
it is useful for separating parts of a dialog

PROCEDURE
MOVE.W
MOVE.W
_MoveTo

MoveTo(h,v:INTEGER)
iBox+left(A6),-(SP)
iBox+top{A6),-(SP)

; PROCEDURE LineTo(h,v:INTEGER)
MOVE.W iBox+left(A6),-(SP)
MOVE.W iBox+bottom{A6),-(SP)
_LineTo

UNLK
MOVE.L
ADDA.W
JMP

A6
(SP)+,AO
#parambytes,SP
(AO)

iBox.left
iBox.top

iBox.left
iBox.bottom

get return address
strip parameters
RTS

;------------------------ button user item procedure ---------------------------

ItemProc(theDialog:DialogPtr;theitem:INTEGER)

this procedure is called to draw the user item for every update
event for the dialog

bigbutton
; set up equates for stack frame
tltem SET 8
tDialog SET 10

parambytes SET 6

; use
itype
iBox
iHdl

locals

some local
SET
SET
SET

SET

variables
-4
-12
-16

-16

LINK A6,#locals

;PROCEDURE GetDitem(thedialog:DialogPtr;itemNo:INTEGER;
VAR type:INTEGER: VAR item: Handle;
VAR box: Rect)

MOVE.L tDialog(A6),-(SP) DialogPtr here
MOVE.W tltem(A6),-(SP) item#
PEA iType (A6) VAR type
PEA iHdl (A6) VAR item
PEA iBox (A6) VAR box
_GetDitem

now that we know the bounds rect of the user item, iBox,
do some drawing

; draw the main outline
;PROCEDURE FrameRect(r:Rect)

330

----------------- UITEST.ASM -----------------

PEA
_FrameRect

iBox(A6) bounds rect of item

; now move up and left to get shaded effect
; PROCEDURE OffsetRect(r:Rect; dh,dv:INTEGER)
PEA iBox(A6) bounds rect of item
MOVE.W #-1,-(SP) move left
MOVE.W #-1,-(SP) move up
_OffsetRect

;PROCEDURE
PEA
MOVE.L
PEA
_FillRect

FillRect(r:Rect;pat:Pattern)
iBox(A6) bounds rect of item
grafGlobals(A5),AO get QD globals
white(AO) get the white pattern

;PROCEDURE FrameRect(r:Rect)
PEA iBox(A6) bounds rect of item
_FrameRect

; move the rectangle back to its original spot
; PROCEDURE OffsetRect(r:Rect; dh,dv:INTEGER)
PEA iBox (AG) bounds rect of item
MOVE.W #1,-(SP) move right
MOVE.W #1,-(SP) move down
_OffsetRect

; inset it from the edges to get ready for TextBox
; PROCEDURE InsetRect(r:Rect; dh,dv: INTEGER)
PEA iBox (A6)
MOVE.W #2,-(SP)
MOVE.W #2,-(SP)
_InsetRect

; get a string to go inside the button
; FUNCTION GetResource(theType:ResType;theID:INTEGER) :Handle
CLR.L -(SP) space for result
MOVE.L #'STR ',-(SP) get STR type
MOVE.W #myString,-(SP) ID of string

GetResource
MOVE.L (SP)+,iHdl(A6)

; PROCEDURE HLock(h:Handle)
; h => AO
MOVE.L iHdl(A6),AO
_HLock

put handle in local

retrieve STR handle

; PROCEDURE TextBox(Text:Ptr;length:Longint;
box:Rect;just:INTEGER)

MOVE. L iHdl (AG) , AO get string handle
MOVE.L (AO) ,AO convert to Ptr
PEA l(AO) skip length byte
CLR.L DO
MOVE. B (AO) , DO get length byte
MOVE.L DO,-(SP) use a long word version

331

----- THE COMPLETE BOOK OF MACl1110SH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

PEA
MOVE.W
_TextBox

iBox(A6)
#1, - (SP)

; PROCEDURE HUnLock(h:Handle)
; h => AO
MOVE.L iHdl(A6),AO
_HUnLock

UNLK
MOVE.L
ADDA.W
JMP

A6
(SP) +,AO
#parambytes,SP
(AO)

item's bounds
center text

retrieve STR handle

get return address
strip parameters
RTS

;----------------------------- closeit ------------------------------------

closeit
;PROCEDURE DisposDialog (theDialog: DialogPtr);
MOVE.L myDialog,-(SP) ;Get Dialog Pointer To Close
_DisposDialog ;Close Window

_ExitToShell ;Return To Finder

END

332

----------------- UITEST.LINK -----------------

f!2I UITEST.LINK

; File UITest.LINK

/OUTPUT UITestCode

Since this code file will not run successfully until it has been
joined with the resources by RMaker, set its file type so
that it cannot be mistakenly run from the desktop.
Link output files are usually of type APPL

/TYPE 'CODE' 'LINK'

UITest
TrackRect
$

333

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

f9 UITEST.R

* UITest.R
~ create the application UseritemTest

* First define all the resources, and then include the code

* output file name
* File type,. file creator

MDS2:UseritemTest
APPL????

Type DLOG
,256

50 50 250 450
InVisible NoGoAway
l
0
256

* DITL resource for dialog
Type DITL

,256
3

Button
90 30 120 70
Quit

Useritem
10 100 190 100

Useritem
150 120 175 380

Type STR
,256

This is my user item.

* now include the code produced by the linker

INCLUDE MDS2:UITestCode

334

---------------- TRACKRECT.ASM ----------------

f!2I TRACKRECT.ASM

File TrackRect.ASM

this is a utility routine that you can link with
other programs

FUNCTION TrackRect(r:Rect) :BOOLEAN

XDEF TrackRect

It tracks the mouse inside a specified rectangle
The rectangle is inverted as long as the mouse stays
inside the rect with the button down

if the mouse moves outside the rect the rect is
inverted back to normal

The function returns TRUE if the user releases the mouse
button inside the rect, FALSE otherwise

psuedocode:
;REPEAT

BEGIN
IF (NOT PtinRect(mousePt,r)) THEN

BEGIN
IF inverted THEN

END

BEGIN
invertRect(r);
inverted := FALSE;

END;

ELSE IF NOT inverted THEN{ we already know pt is inside rect}
BEGIN

INCLUDE

invertRect(r);
inverted := TRUE;

END;
UNTIL NOT StillDown;
IF inverted THEN

BEGIN
invertRect (r);
TrackRect := TRUE;

END
ELSE

TrackRect := FALSE;

MacTraps.D

TrackRect

r SET 8
result SET 12
parambytes SET 4

mousePt SET -8
inverted SET -10

offset to parameter
offset to function result

local var for Point
local BOOLEAN

335

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

Locals SET -10

LINK A6,itlocals set up stack frame

MOVE.W #$0,inverted(A6) set to FALSE

; REPEAT BEGIN
checkl

check2

;PROCEDURE GetMouse(VAR thePt: Point)
PEA mousePt(A6) ; our local VAR

GetMouse

IF (NOT PtinRect(mousePt,r)) THEN
BEGIN

IF inverted THEN
BEGIN

invertRect (r);
inverted := FALSE;

END;
END

FUNCTION PtinRect(p:Point; r:Rect) :BOOLEAN
CLR.W -(SP) function result
MOVE.L mousePt(A6),-(SP) the point
MOVE.L r(A6),-(SP) the re ct

PtinRect
MOVE.W (SP)+,DO get result

BNE check2 branch if pt is

; we get this far if mouse is outside rect

in re ct

TST.W inverted(A6) is it already inverted?

BEQ checkout not inverted, do nothing more

;PROCEDURE InvertRect(r:Rect)
MOVE.L r(A6),-(SP) the input rectangle
_InverRect this sets it back to normal

MOVE.W it0,inverted(A6) set flag to FALSE

BRA checkout

ELSE IF NOT inverted { we know pt is inside rect}
THEN BEGIN

invertRect (r);
inverted := TRUE;

END;

we come here if mouse is inside rect
TST.W inverted(A6) is it inverted already?

BNE checkout already inverted, do nothing

;PROCEDURE InvertRect(r:Rect)

336

---------------- TRACKRECT.ASM ----------------

MOVE.L r(AG),-(SP)
InverRect

MOVE.W #$0100,inverted(AG)

checkout
UNTIL NOT StillDown;

FUNCTION StillDown:BOOLEAN
CLR.W -(SP)

StillDown
MOVE.W
BNE

(SP) +,DO
checkl

the input rectangle
this inverts the rectangle

set flag to TRUE

; loop as long as
; mouse down

here is the
and set the

exit stuff, make sure we return the rect to normal
BOOLEAN result

IF inverted THEN BEGIN
invertRect (r);
TrackRect TRUE;
END;

ELSE
TrackRect := FALSE;

TST.W inverted (AG)
BEQ set FALSE

set TRUE
;PROCEDURE InvertRect(r:Rect)
MOVE.L r (AG), - (SP)

InverRect -
MOVE.W #$0100,result(AG)
BRA exit

set FALSE

MOVE.W #0, result (AG)

exit
UNLK AG
MOVE.L (SP)+,AO
ADDA.W #parambytes,SP
JMP (AO)

END

the input rectangle

set flag to TRUE

set flag to FALSE

get return address
strip parameters
RTS

337

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

~ RD+ INSTALL.ASM

File RD+Install.ASM

This application installs a RAM disk

This program makes two passes:
The first pass examines memory and sets the appropriate low memory
globals to prepare for the RAM disk. Then the program launches
itself, leaving crucial information behind in low memory globals

The second pass opens the RAM disk driver and installs it in memory

Dan Weston April, 1986

INCLUDE
INCLUDE
INCLUDE

MACRO

MacTraps.D
ToolEqu.D
SysEqu.D

StringToNum string,num
LEA {string} ,AO
MOVE.W #1,-(SP)

Pack?
LEA
MOVE.L
I

{num} ,Ao
DO, (AO)

MACRO NumToString num,string
MOVE.L {num},DO
LEA (string},AO
MOVE.W #0,-(SP)

Pack?
I

;------------------------- EQUATES
minHeap EQU 88320

GetinfoD EQU 256
InstallingD EQU 257
toosmallD EQU 258
badmountD EQU 259
tooLateD EQU 260

mydialog EQU A2

Install button EQU 1
actualsize EQU 2
Cancel button EQU 3
OK button EQU 1

backspace EQU 8
CR EQU 13

; useable memory of 128 K MAC

dialog ID for first dialog
dialog for installing disk
too small dialog
if DIZero fails
if a RAM disk is already installed

register for dialog pointer

·------------------------ Global variables -------------------------

338

RD+ INSJALL.ASM

MaxSize DS.L 1 maximum size allowable (in Kl

ItemHit DS.W 1 VAR for modal dialog
the Type DS.W 1 VAR for GetDitem
theitem DS.L 1 VAR for GetDitem
theRect DS.W 4 VAR for GetDitem

theNum DS.L 1 scratch long int
theString DS.B 256 scratch string

Launchinfo DS.W 3 ptr and flag for Launch call

pBlock DS.B 80 parameter block for opening driver

--------------- Initialization ---

BSR.W InitManagers ; at end of source file

;------------------------- Entry -----------------------------------
Make sure that that this RAM disk is not already installed.
Walk through the drive queue and send a #99 status message to each drive
if the drive responds "HERE", then we know that we can't install another
RAM disk

; Get into the drive queue
MOVE.L DrvQHdr+qHead,A2 get ptr to first element

checkelement
; use fields of the drive queue element to fill in parameter block
LEA pBlock(A5),AO our parameter block
MOVE.L #0,ioCompletion(AO) no completion routine
MOVE.W dqDrive(A2),ioVRefNum(AO) ; drive number
MOVE.W dqRefNum(A2),ioRefNum(AO) ; driver ref num
MOVE.W #99,csCode(AO) our special code
Status

BMI

CMPI.L
BEQ

checknext
TST.L
BEQ

MOVE.L
BRA

noRamDrive

checknext

#'HERE',csParam(AO)
tooLate

qLink(A2)
noRamDrive

qLink(A2),A2
checkelement

this drive isn't ours

did we get the magic message
abort,RAM drive already exists

is this the last element
we've not been here before

get ptr to next element
go back and test this element

Find out if we are in the first pass or the second by examining the
value in ApplScratch. If this is the second pass, our calling card,
RDWH (RAM disk was here), will be there.

MOVE.L ApplScratch,DO get value from low memory

339

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LAN&UAGE PROGRAMMING, VOWME II -----

MOVE.L
CMP.L
BEQ

it'RDWH' ,Dl
Dl,DO
DoPass2

get this constant, RDWH
have we been here recently?
go ahead and install the disk

;-------------------------- DoPassl ---------------------------------
DoPassl

Look at various low memory globals and determine the current state
of the machine.
How much useable memory is there?
Is HFS available, either in ROM or as a RAM patch from HD20 file

; How big
MOVE.L
MOVE.L
SUB.L
SUB.L
CMP.L
BMI

MOVE.L
ASR.L
MOVE.L

can the RAM disk
theZone,Dl
bufPtr,DO
Dl,DO
itminHeap,DO
#5*1024,DO
tooSmall

UO,Dl
Dl,DO
DO,maxSize(A5)

be?
ptr to application zone
top of useable memory
total useable memory
leave enough room to fake a 128K mac
minimum of SK
don't put disk on a dinky machine

put shift value in register
truncate to K value
save the value here

Now put up a dialog and tell the user how big the RAM disk can be

;FUNCTION GetNewDialog (dialogID: INTEGER; dStorage: Ptr;
behind: WindowPtr) : DialogPtr

CLR.L -(SP)
MOVE itGetinfoD,-(SP)
CLR.L -(SP)
MOVE.L it-1,-(SP)
_GetNewDialog
MOVE.L (SP)+,myDialog

;PROCEDURE SetPort (gp: GrafPort)
MOVE.L myDialog,-(SP)

Set Port

now set the maximum size text item

MOVE.L maxSize(AS),DO
_NumToString DO,theString(A5)

;Clear Space For DialogPtr
;Resource it
;Storage Area on heap
;Above All Others
;Get New Dialog
;Move Handle To A2

;Move Dialog Pointer To Stack
;Make It The Current Port

get max size from our globals
; convert the number to a string

; use the string to change the static text item AO
;PROCEDURE ParamText(pO,pl,p2,p3:Str255)
PEA theString(AS)
CLR.L -(SP)
CLR.L -(SP)
CLR.L -(SP)

ParamText

and set the edit text item to show the maximum size

; get dialog item,
;PROCEDURE GetDitem(thedialog:DialogPtr;itemNo:INTEGER;

340

---------------- RD+INSTALL.ASM ----------------

MOVE.L
MOVE.W
PEA
PEA
PEA
_GetDitem

;PROCEDURE
MOVE.L
PEA
_setIText

; set the
MOVE.L
MOVE.L
MOVE.L
MOVE.W
MOVE.W

VAR type: INTEGER:
VAR box: Rect)

myDialog,-(SP)
#actualsize,-(SP)
the Type (AS)
theitem(AS)
theRect (AS)

VAR item: Handle;

we saved DialogPtr here
item
VAR type
VAR item
VAR box

SetIText(item:Handle;text:Str2SS)
theitem(AS),-(SP) ; handle in VAR
theString (AS)

selection range so
MyDialog,AO
teHandle(AO),AO
(AO) ,AO
#0,teSelStart(AO)
#4,teSelEnd(AO)

that the entire # is selected
get dialog ptr
TErecord for edit text item
convert to Ptr
set start of selection
set selection end

------------------------------- Dialog loop ------------------------------
Now process the dialog
Let the user pick the size for the RAM disk

dialog loop

;PROCEDURE ModalDialog (filterProc: ProcPtr;

PEA MyFilter
PEA ItemHit (AS)
_ModalDialog

VAR itemHit: INTEGER)
;filter proc
;Item Hit Data

see which button was·pushed
the filter proc takes care of the key presses inside the size box

CMP.W
BEQ

CMP.W
BEQ

BRA

#Cancel button,ItemHit(AS)
DoCanceI

#Install button,itemHit(AS)
Do Install

; cancel button?

time to install it

dialog loop ; go around again

;-------------------------- Filter Procedure
MyFilter

FUNCTION MyFilter(theDialog:dialogPtr;VAR theEvent:EventRecord;
VAR itemHit:INTEGER) :BOOLEAN

set up equates for stack frame
titemHit EQU 8
tEvent EQU 12
tDialog EQU 16
result EQU 20

parambytes SET 12

341

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

local variables

locals

local registers

we

Event reg
Dialog reg

LINK
MOVEM.L

MOVE.L
MOVE.L

only filter

CMP.W
BEQ

Input OK

SET 0

EQU A3
EQU A4

A6,#locals
A3-A4,-(SP)

tEvent(A6),EventReg
tDialog(A6),Dialogreg

key down events

#keyDwnEvt,evtnum(A3)
keyfilter

set result to FALSE
MOVE.W #O,result(A6)

filterexit
MOVEM.L
UNLK
MOVE.L
ADDA.W
JMP

keyfilter

(SP)+,A3-A4
A6
(SP) +,AO
#parambytes,SP
(AO)

Ptr to event record in A3

; save registers

;A3
;A4

is it key down?

restore registers

get return address
strip parameters
RTS

first check to see if the return key was pressed
if it was, set ItemHit to 1 and return TRUE so
that ModalDialog will return immediately with
ItemHit set to 1

MOVE.W evtmessage+2(A3),DO get the character

CMP.B
BEQ

CMP.B
BEQ

CMP.B
BLT

CMP.B
BGT

#CR,DO
Do CR

#backspace, DO
Input OK

#' 0', DO
reject Input

#I 9', DO
reject Input

was it the return key?
handle a special way

was it delete?
we'll let this through

lowest digit
lower than O

highest digit
higher than 9

if we get this far, the key press is a digit
now check to make sure that we're not getting more than 4 digits
in the edit text item

MOVE.L
MOVE.L

dialogreg,AO
teHandle(AO),AO

get dialog ptr
TErecord for edit text item

342

----------------- RD+INSTALL.ASM -----------------

MOVE.L
MOVE.W
MOVE.W
SUB.W
BMI

CMP.W
BLT

(AO) ,AO
teSelStart(AO),DO
teSelEnd(AO),Dl
Dl,DO
Input OK

14, teLength (AO)
Input OK

convert to Ptr
get start of selection
get selection end
start - end
this range will be replaced

is the length equal to 4
less than 4 chars, add another

Reject Input
beep the speaker and return
don't let input get to DialogSelect

;PROCEDURE
MOVE.W
_sysBeep

SysBeep(duration:INTEGER)
U,-(SP)

MOVE.W t$0100,result(A6) set TRUE so modal ignores input

BRA.W filterexit

DoCR
our filter procedure needs to recognize a
make it the same as a click in item t 1

carriage return and

MOVE.L tltemHit(A6),AO
MOVE.W tl, (AO)

itemHit is VAR, so get Ptr
set item t to 1

MOVE.W t$0100,result(A6) set TRUE so modal ignores input

BRA.W filterexit

;--------------------------- Dolnstall ------------------------------
Dolnstall

If user picked install, then fill in the bytes in ApplScratch to
allow communication with the subsequent run of this program.

First, make sure that size in edit text item is not larger than maximum
size. Round down if necessary

; get dialog item,
;PROCEDURE GetDitem(thedialog:DialogPtr;itemNo:INTEGER;

VAR type: INTEGER: VAR item: Handle;

MOVE.L
MOVE.W
PEA
PEA
PEA
_GetDitem

VAR box: Rect)
myDialog,-(SP)
tactualsize,-(SP)
theType (A5)
the Item (A5)
theRect (A5)

we saved DialogPtr
actual size item
VAR type
VAR item
VAR box

; PROCEDURE GetIText(item: Handle; VAR text: Str255)
MOVE.L theltem(A5),-(SP) get handle from VAR
PEA theString(A5) ; string holder
_GetIText

_stringToNum theString(A5),theNum(A5)

343

here

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PRO&UMMING, VOWME 11 -----

; user input in theNum(AS) now

; get the max value
MOVE.L maxSize(AS),DO

CMP.L
BPL

theNum(AS),DO
SizeOK

; set theNum to maximum

from our globals

compare actual and max
actual size within limits

MOVE.L maxSize(AS),theNum(AS) ; from our globals

set the text of the box to match corrected number
_NumToString theNum(A5),theString(A5)

;PROCEDURE
MOVE.L
PEA
_setIText

SetIText(item:Handle;text:Str255)
theitem(AS),-(SP) ; handle in VAR
theString (AS)

SizeOK

ApplScratch+O = RDWH
MOVE.L t'RDWH',ApplScratch ; leave a calling card

; App1Scratch+4 = size of ram disk (longint)
MOVE.L theNum(AS),DO
MOVE.L #10,Dl
ASL.L Dl,DO
MOVE.L DO,App1Scratch+4

put shift value in register
convert back to bytes
leave the size, in bytes

Adjust bufPtr to make room for the RAM disk.
; bufPtr = bufPtr - RAM disk size
MOVE.L bufPtr,Dl
SUB.L DO,Dl
MOVE.L Dl,bufPtr

Launch ourself again

get ptr from low memory
RAM disk size still in DO
put adjusted ptr back

; get our
LEA
MOVE.L
MOVE.W
LEA
_Launch

name, just in case some
curApName,AO
AO,Launchinfo(AS)
tO,Launchinfo+4(A5)
Launchinfo(A5),AO

bozo changed it
low memory space for ap name
install ptr for Launch
use primary sound and screen

;---------------------------- TooSmall -----------------------------------
TooSmall

come here if no room for RAM disk
; Put up a dialog

;FUNCTION GetNewDialog (dialogID: INTEGER; dStorage: Ptr;

CLR.L
MOVE
CLR.L

behind: WindowPtr) : DialogPtr
-(SP)
ttoosmallD,-(SP)
-(SP)

;Clear Space For DialogPtr
;Resource t
;Storage Area on heap

344

----------------- RD+INSTALL.ASM -----------------

MOVE.L t-1,-(SP)
GetNewDialog

MOVE.L (SP)+,rnyDialog

;PROCEDURE
MOVE.L
_setPort

;PROCEDURE
MOVE.L
_DrawDialog

SetPort (gp: GrafPort)
myDialog,-(SP)

DrawDialog(dp:DialogPtr)
myDialog,-(SP)

;Above All Others
;Get New Dialog
;Move Handle To A2

;Move Dialog Pointer To Stack
;Make It The Current Port

; wait for a mouse click ... non-standard way of doing this
@1 CLR.W -(SP)

_Button
MOVE.W
BEQ

DoCancel

ExitToShell

(SP)+,DO
@1

;---------------------------- TooLate -----------------------------------
Too Late

come here if a RAM disk is already installed
Put up a dialog

;FUNCTION GetNewDialog (dialogID: INTEGER; dStorage: Ptr;
behind: WindowPtr) : DialogPtr

CLR.L -(SP)
MOVE #toolateD,-(SP)
CLR.L -(SP)
MOVE.L #-1,-(SP)

GetNewDialog
MOVE.L (SP)+,myDialog

;PROCEDURE SetPort (gp: GrafPort)
MOVE.L myDialog,-(SP)
_SetPort

;PROCEDURE
MOVE.L
_DrawDialog

DrawDialog(dp:DialogPtr)
myDialog,-(SP)

;Clear Space For DialogPtr
;Resource #
;Storage Area on heap
;Above All Others
;Get New Dialog
;Move Handle To A2

;Move Dialog Pointer To Stack
;Make It The Current Port

; wait for a mouse click ... non-standard way of doing this
@1 CLR.W -(SP)

_Button
MOVE.W
BEQ

_ExitToShell

(SP)+,DO
@l

;-------------------------- DoPass2
DoPass2

tell the user what is going on

; go back to Finder

find out how big the RAM disk is and display the size in a dialog

345

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

MOVE.L App1Scratch+4,DO
MOVE.L flO,Dl
ASR.L Dl,DO
_NumToString DO,theString(AS)

get size from global
put shift size in reg
truncate to K size
convert the number to a string

; use the string to change the static text item AO
;PROCEDURE ParamText(p0,pl,p2,p3:Str255)
PEA theString(A5)
CLR.L -(SP)
CLR.L -(SP)
CLR.L -(SP)
_ParamText

;FUNCTION GetNewDialog (dialogID: INTEGER; dStorage: Ptr;
behind: WindowPtr) : DialogPtr

CLR.L -(SP)
MOVE finstallingD,-(SP)
CLR.L -(SP)
MOVE.L f-1,-(SP)

GetNewDialog
MOVE.L (SP)+,myDialog

;PROCEDURE SetPort (gp: GrafPort)
MOVE.L myDialog,-(SP)

SetPort

;Clear Space For DialogPtr
;Resource t
;Storage Area on heap
;Above All Others
;Get New Dialog
;Move Handle To A2

;Move Dialog Pointer To Stack
;Make It The Current Port

;PROCEDURE DrawDialog(dp:DialogPtr)
MOVE.L myDialog,-(SP)
_DrawDialog

now find an unused DRVR number

; make sure all the resources aren't read into memory
; PROCEDURE SetResLoad(load:BOOLEAN)
MOVE.W tO,-(SP) ; FALSE

SetResLoad

; get the path number to our application resource file
; we will need to reset it later
; FUNCTION CurResFile: INTEGER
CLR.W -(SP) result
CurResFile

MOVE.W (SP)+,03 save it here

; use the system file only
; PROCEDURE UseResFile(refNum: INTEGER)
MOVE.W 10,-(SP) ; 0 for system file
UseResFile

; now look at all the drivers, until we find an unused IOI
MOVE.W 111,04 ; start with Ill

DRVRloop
; FUNCTION GetResource(type:ResType;ID:INTEGER): Handle

34&

--------------- RD+INSTALL.ASM ---------------

inc ID

CLR.L -(SP)
MOVE.L #'DRVR',-(SP)
MOVE.W D4,-(SP)

GetResource
MOVE.L (SP)+,DO
BEQ test Table

ADD.W
CMP.W
BLT

#1,D4
#32,D4
DRVRloop

result
look for DRVR
check this ID t

get handle
this DRVR does not exist

try the next number
don't search past 31

no ID free
; we get here if all the DRVR slots between 11 and 31 are taken

BSR fixResFile clean up after ourselves

BRA.W badinit use error dialog

test Table
; there
MOVE.L
MOVE.W
ASL.W
ADDA.W
TST.L
BNE

isn't a DRVR with this ID,
UTableBase,AO

but check the unit table too
get ptr to unit table

D4,DO get unit number
#2,DO long word table
DO,AO bump ptr
(AO) is this slot filled?
inc Id go back and look for DRVRs

we get to this point if a DRVR ID number is not in the sytem
file or in the unit table

BSR FixResFile ; get back to our app file

; change the resource ID of the ram disk driver (unless 11 is free)
CMP.W #11,D4 do we need to change it
BEQ nochange ; whew!

;FUNCTION GetNamedResource(theType:ResType;name:Str255) :Handle
CLR.L -(SP) space for result
MOVE.L #'DRVR',-(SP) type
PEA ramdiskName the name

GetNamedResource
MOVE.L (SP) +,D5 save handle here

change the ID number of the DRVR in the resource map
PROCEDURE SetResinfo(theResource:Handle;theID:INTEGER;

name: Str255)
MOVE.L
MOVE.W
MOVE.L

Set Res Info

; but make
;PROCEDURE
MOVE.W
MOVE.W

D5,-(SP)
D4,-(SP)
#0,-(SP)

res handle
new number
don't change name

sure that the change is not written to the file
SetResFileAttrs(refNum:INTEGER;attrs:INTEGER)
D3,-(SP) application res file
#0,-(SP) ; clear all bits

347

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME 11 -----

_SetResFileAttrs

nochange
BRA

FixResFile

openDRVR

THIS IS VERY IMPORTANT

now go ahead

PROCEDURE UseResFile(refNum: INTEGER)
MOVE.W D3,-(SP) ; our application file
_UseResFile

; make sure
; PROCEDURE
MOVE.W
_setResLoad

all the resources ARE read into memory
SetResLoad(load:BOOLEAN)
#$0100,-(SP) ; TRUE

RTS

;--
openDRVR

; Open the RAM disk driver

LEA
MOVE.L
LEA
MOVE.L
MOVE.B
MOVE.L
_Open

BMI

pBlock(AS),AO
#0,ioCompletion(AO)
ramdiskName,Al
Al,ioFileName(AO)
#3,ioPermssn(AO)
#0,ioOwnBuf(AO)

badinit

our parameter block
no completion routine
get ptr to name
put name ptr in p block
allow read and write
use default buffer

; can't open driver

save reference number for this driver in 04
MOVE.W ioRefNum(A0),04

Detach it so it will stay around even when the application closes
;FUNCTION GetNamedResource(theType:ResType;name:Str255) :Handle
CLR.L -(SP) space for result
MOVE.L #'DRVR',-(SP) type
PEA ramdiskName the name
_GetNamedResource

;PROCEDURE DetachResource(theResource:Handle)
_DetachResource ; handle still on stack

add the drive to the drive queue
search the drive queue for an unused drive #
Pick a likely # and search through the drive queue for it
if you don't find an occurance of that f, then use it for new drive
otherwise, increment the f and search the queue again

start with drive t3
MOVE.W #3,DO

348

---------------- RD+INSTALL.ASM ----------------

; Get into the drive queue
getHead

MOVE.L DrvQHdr+qHead,AO

check It
CMP.W
BNE

dqDrive(AO),DO
keep looking

get ptr to first element

is this f the same as ours?
not our drive t, search rest of queue

; Bump our drive f and go back to the head of the queue
ADD.W fl,DO
BRA get Head

keep looking
TST.L
BEQ

MOVE.L
BRA

foundDrive

qLink (AO)
foundDrive

qLink(AO),AO
check It

is this the last element
our drive f is OK

get ptr to next element
go back and test this element

; the drive number is in register DO
MOVE.W DO,D3 store drive f here

get space for a new drive queue element
FUNCTION NewPtr(logicalsize:Longint) :Ptr
size => DO Ptr => AO

MOVE.L f18,DO
_NewPtr,Sys

size of DQel, including flags
on system heap

; fill in
MOVE.L
MOVE.W
MOVE.L
DIVU
MOVE.W

the drive queue element
#$00080000, (AO)+
fO,dqFSID(AO)
App1Scratch+4,DO
#512,DO
DO,DQDrvSize(AO)

flags: no eject allowed
local file system
get size of drive, in bytes
convert to blocks
install size

;PROCEDURE
; DQE => AO
MOVE.W

AddDrive(DQE:DrvQEl;driveNum,refNum:INTEGER)
driveNum => high word DO, refNum => low word DO

D3,DO put drive f in upper word
SWAP
MOVE.W
_AddDrive

make the
FUNCTION

CLR.W
MOVE.W
PEA
MOVE.W
_Pack2
MOVE.W
BMI

_ExitToShell

DO
D4,DO driver ref f in low word

disk initialization package write the volume
DIZero(drNum:INTEGER;volName:Str255) :OSErr
-(SP) result
D3,-(SP) drive f
'RAM Disk' volume name
flO,-(SP) routine selector

(SP)+,DO
badinit

check result

349

info

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY UNGUAGE PROGRAMMING, VOWME 11 -----

;---------------------------- badinit -------------------------------------
badinit

come here if DIZero fails
Put up a dialog

;FUNCTION GetNewDialog (dialogID: INTEGER; dStorage: Ptr;
behind: WindowPtr) : DialogPtr

CLR.L -(SP)
MOVE fbadmountD,-(SP)
CLR.L -(SP)
MOVE.L #-1,-(SP)

GetNewDialog
MOVE.L (SP)+,myDialog

;PROCEDURE SetPort (gp: GrafPort)
MOVE.L myDialog,-(SP)
_setPort

;PROCEDURE DrawDialog(dp:DialogPtr)
MOVE.L myDialog,-(SP)
_DrawDialog

;Clear Space For DialogPtr
;Resource f
;Storage Area on heap
;Above All Others
;Get New Dialog
;Move Handle To A2

;Move Dialog Pointer To Stack
;Make It The Current Port

; reset bufPtr to mitigate the side effects of pass 1
MOVE.L App1Scratch+4,DO ; size of proposed RAM disk
ADD.L DO,bufPtr ; adjust it upward to original value

; wait for a mouse click ... non-standard way of doing this
@l CLR.W -(SP)

_Button
MOVE.W
BEQ

_ExitToShell

(SP)+,DO
@l

; ---------------------------- Initialization ----------------------------
InitManagers

;PROCEDURE
PEA

InitGraf (globalPtr: QDPtr);

InitGraf
-InitFonts

-4(A5) ;Space Created For Quickdraw's
;Init Quickdraw

-InitWindows
7PROCEDURE InitDialogs
CLR.L -(SP)

InitDialogs
;procedure TEinit

TEinit
-InitCursor
RTS

;Init Font Manager
;Init Window Manager

(restartProc: ProcPtr);
; NIL restart proc
;Init Dialog Manager

; set arrow cursor

;--------------------------- static data -----------------------------
ramdiskName

DC.B
DC.B

8
'.ramdisk'

length
driver name

350

Use

--------------- RD+INSTALL.LINK ---------------

f!2l RD+ INSTALL.LINK

; File RD+Install.LINK

/OUTPUT RD+InstallCode

Since this code file will not run successfully until it has been
joined with the resources by RMaker, set its file type so
that it cannot be mistakenly run from the desktop.
Link output files are usually of type APPL

/TYPE 'CODE' 'LINK'

RD+ Install

$

351

----- THE COMPLETE BOOK OF MACINmSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

~ RD+ INSTALL.R

* File RD+Install.R

* output file name
* File type, file creator

MDS2:RAM Disk+
APPL????

Type DRVR = PROC
.ramdisk, 11 (64)
MDS2:RAMdiskDriver

Type DLOG
,256

40 100 240 400
Visible NoGoAway
1
0
256

* DITL resource for dialog

Type DITL
,256

7

Button
110 200 140
Install

Edit Text
50 20 65 60
0400

Button

290

150 200 180 290
Cancel

StaticText Disabled
10 20 30 290
Maximum disk size = AO K

StaticText Disabled
50 70 65 290
K: Actual size

StaticText Disabled
100 20 120 190
RAM Disk+

StaticText Disabled
130 20 170 190
Dan Weston March 1986

352

---------------- RD+INSTALL.R ----------------

Type DLOG
,257 (4)

40 100 140 400
Visible NoGoAway
1
0
257

Type DITL
,257 (4)

1

StaticText
30 30 50 290
Installing a AO K RAM disk.

Type DLOG
,258 (4)

40 100 140 400
Visible NoGoAway
1
0
258

Type DITL
,258 (4)

1

StaticText
30 30 90 290
There is not enough memory to install a RAM disk.

Type DLOG
,259 (4)

40 100 140 400
Visible NoGoAway
1
0
259

Type DITL
,259 (4)

1

StaticText
30 30 90 290
I can't mount this volume.

Type DLOG
, 260

40 100 140 400
Visible NoGoAway
1

353

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

0
260

Type DITL
,260

1

StaticText
30 30 90 290
A RAM disk is already installed.

* now include the code produced by the linker

INCLUDE MDS2:RD+Instal1Code

354

---------------- RAMDISK+.ASM -~--------------

[SJ RAMDISK + .ASM

RAMDisk+.ASM
A Ram disk driver to use on the Mac Plus or Mac 512

This driver is installed by RD+Install.ASM

March 1986 Dan Weston

INCLUDE
INCLUDE
INCLUDE

controlErr
statusErr
noErr
ARdCmd

Header
DC.W
DC.W
DC.W
DC.W

Offset Table

DC.W
DC.W
DC.W
DC.W
DC.W

MacTraps.D
SysEqu.D
ToolEqu.D

EQU
EQU
EQU
EQU

$4FOO
0
0
0

-17
-18
0
2

Open-Header
Prime-Header
Control-Header
Status-Header
Close-Header

locked,read,write,control,status
no time needed
no event mask
no menu

initialization routine
read and write calls
control calls
status calls
Close up shop

;------------------------ Open ---
on entry, AO points to parameter block

Al points to DCE
on exit DO contains result code (0 OK)

Open

the open routine has two jobs:
zero the RAM disk memory
save a ptr to the RAM disk in the driver's private memory

save registers

MOVEM.L
MOVE.L
MOVE.L

A2-A4,-(SP)
AO,A3
Al,A4

save pblock ptr
save DCE ptr

fill the RAM disk memory with zeros
bufPtr points to start
App1Scratch+4 contains length
both values were set by install

MOVE.L bufPtr,A2
MOVE.L App1Scratch+4,DO

program
get address of RAM disk space

; get size of RAM disk

355

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

ASR.L #2,DO divide by 4 for long word fill

zero loop
MOVE.L
SUB.L
BNE

#0, (A2) +
#1,DO
zero loop

stuff zero
decrement counter
loop around until counter = O

allocate some private memory on the system heap to hold pointer to
the beginning of the RAM disk. Other programs can change bufPtr
FUNCTION NewPtr(logicalsize:Longint) :Ptr
size => DO Ptr => AO

MOVE.L #4,DO
_NewHandle,SYS

MOVE.L
MOVE.L
MOVE.L

AO,dCtlStorage(A4)
(AO) ,AO
bufPtr, (AO)

; restore registers
MOVEM.L (SP)+,A2-A4

MOVEQ
RTS

#noErr,DO

just enough space for ptr
on system heap

install in DCE
convert handle to ptr
install RAM disk ptr in handle

set result
all done with Open

;----------------------- Prime --
on entry, AO points to parameter block

Al points to DCE
on exit DO contains result code (0 = OK)

This routine handles read and write calls

Prime
; save a few registers

MOVEM.L
MOVE.L
MOVE.L

; figure
MOVE.L
MOVE.L
MOVE.L

MOVE.L
ANDI.L
ADD.L

A2-A4,-(SP)
A0,A3
Al,A4

out the position within
dCtlStorage(Al),AO
(AO),AO
(AO) ,A2

dCtlPosition(Al),DO
#$FFFFFEOO,DO
DO,A2

; get ready to read or write
; first, get the number of bytes
MOVE.L ioByteCount(A3),DO
MOVE.L DO,ioNumDone(A3)
ADD.L #511,DO
ANDI.L #$FFFFFEOO,DO

save param block ptr here
save DCE for exit

the RAM disk
get handle to private memory
convert to ptr
beginning of RAM disk

get byte pos from DCE
round down to multiple of 512
add offset to RAM disk start

to be read
from parameter block
set number done in pBlock
round up to multiple of 512
use this value for BlockMove

; set up buffers for BlockMove, assume that it is a read
MOVE.L A2,AO ; source is in RAM disk

356

---------------- RAMDISK+.ASM ----------------

MOVE.L ioBuffer(A3),Al

; is this really a read operation?
CMP.B #ARdCmd,ioTrap+l(A3)
BEQ transferData

desk buff er from param block

check param block for flag
our assumption was right

; otherwise, this is a write, switch source and destination
EXG AO,Al ; dest now in RAM disk

TransferData
; all the parameters for BlockMove have been set above
_BlockMove

; restore registers
MOVE.L A4,Al

MOVEM.L

MOVEQ
MOVE.L
RTS

(SP)+,A2-A4

#noErr,DO
JIODone,-(SP)

make sure DCE is restored

set error code to OK
get return vector
jump to it

;----------------------- Control ---------------------------------------

Control
control needs to respond to Kill IO calls and requests from
the Finder for a disk icon definition
on entry, AO points to parameter block

Al points to DCE
on exit DO contains result code (0 OK)

MOVE.W
CMP.W
BNE

CSCode(AO),DO
#KillCode,DO
@l

what kind of control call is this?
is it Kill IO (#1)
ignore all other calls

; here is where we handle a Kill IO call
MOVE.W SR,-(SP) ; this is special for Kill IO
RTE

Handle the other control call that we know about
@l We send back an icon if the Finder sends a control call

with CSCode = 21
MOVE.L Al,-(SP) save DCE ptr

CMP.W #21,DO
BNE controldone

LEA ouricon,Al
MOVE.L Al,CSParam(AO)

MOVE.L (SP)+,Al

MOVEQ #noErr,DO
MOVE.L JIODone,-(SP)

is the Finder calling?
not the Finder

get ptr to our icon
return it via parameter block

get DCE back off of stack

set result to OK
get return vector

357

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

RTS

controldone
MOVE.L

MOVEQ
MOVE.L
RTS

(SP)+,Al

tcontrolErr,DO
JIODone,-(SP)

jump to it

get DCE back off of stack

can't respond to this call
get return vector
jump to it

;-------------------------- Static Data --------------------------------

Our Icon

We send this ICN# definition to the Finder in
response to a control call. The Finder will then
use this icon to represent the RAM disk on the desk top

DC.L $00000000,$00000000
DC.L $00000000,$00000000
DC.L $00000000,$00000000
DC.L $00000000,$00000000
DC.L $00000000,$00000000
DC.L $00000000,$7FFF8000
DC.L $48024000,$24012000
DC.L $12FC9000,$09004800
DC.L $049BA400,$02401200
DC.L $012FC900,$00900480
DC.L $004FFE40,$00200020
DC.L $0011FE10,$00089D08
DC.L $00044E84,$00022042
DC.L $0001FFFF,$00000000
DC.L $00000000,$00000000
DC.L $00000000,$00000000
DC.L $00000000,$00000000
DC.L $00000000,$00000000
DC.L $00000000,$00000000
DC.L $00000000,$00000000
DC.L $00000000,$00000000
DC.L $00000000,$7FFF9FFO
DC.L $7FFFC000,$3FFFEOOO
DC.L $1FFFF000,$0FFFF8FE
DC.L $07FFFC00,$03FFFEOO
DC.L $01FFFF00,$00FFFF8F
DC.L $007FFFC0,$003FFFEO
DC.L $001FFFF0,$000FFFF8
DC.L $0007FFFC,$0003FFFE
DC.L $0001FFFF,$00000000
DC.L $00000000,$00000000
DC.L $00000000,$00000000

; we are also supposed to send a descriptor string along
DC.B 30 ; length byte
DC.B 'RAMdisk+,Dan Weston,March 1986'

.ALIGN 2 ; make sure Status is on word break

358

---------------- RAMDISK+.ASM ----------------

;----------------------- Status --

Status
on entry, AO points to parameter block

Al points to DCE
on exit DO contains result code (0 = OK)

we respond to status message 99 by putting 'HERE' in csParam
this is done so that the installer program won't try to install
two RAM disks

MOVE.W
CMPI.W
BNE

MOVE.L

MOVEQ
MOVE.L
RTS

statusdone

MOVEQ
MOVE.L
RTS

csCode(AO),DO
#99,DO
statusdone

#'HERE',csParam(AO)

#noErr,DO
JIODone,-(SP)

#statusErr,DO
JIODone,-(SP)

get type of status call
is it roll call?
not for us

say "HERE"

set result to OK
get return vector
jump to it

can't respond to this call
get return vector
jump to it

;----------------------- Close ---

Close

enter with paramblock in AO
DCE in Al

deallocate the private memory
PROCEDURE DisposHandle(h:Handle)
h => AO

MOVE.L dCtlStorage(Al),AO
_DisposHandle

MOVEQ
RTS

#0,DO

this was allocated by open

set error code to OK

359

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME 11 -----

~ RAMDISK +.LINK

; File RAMDisk+.LINK

/OUTPUT RAMDiskDriver

Since this code file will not run successfully until it has been
joined with the resources by RMaker, set its file type so
that it cannot be mistakenly run from the desktop.
Link output files are usually of type APPL

/TYPE 'CODE' 'LINK'

RAMDisk+

$

360

\

E2J LISTMACROS

File ListMacros
· ; a complete list of macros for the routines of the List Manager

MACRO LActivate
MOVE.W #0,-(SP)

PACKO
I

MACRO LAddColumn
MOVE.W #4,-(SP)
_PACKO
I

MACRO LAddRow
MOVE.W #8,-(SP)

PACKO
I

MACRO _LAddToCell
MOVE.W #12,-(SP)
_PACKO
I

MACRO LAutoScroll
MOVE.W

PACKO
T

MACRO LCellSize
MOVE.W
_PACKO
I

MACRO LClick
MOVE.W

PACKO
T

MACRO _LClrCell
MOVE.W

PACKO
I

MACRO _LDelColwnn

#16,-(SP)

#20,-(SP)

#24,-(SP)

#28, - (SP)

MOVE.W #32,-(SP)
_PACKO
I

MACRO _LDelRow
MOVE.W

PACKO
T

#36,-(SP)

361

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME 11 ____ _

MACRO _LDispose
MOVE.W #40, - (SP)
_PACKO
I

MACRO LDoDraw
MOVE.W #44,-(SP)

PACKO
T

MACRO _LDraw
MOVE.W 448, - (SP)
_PACKO
I

MACRO _LFind =
MOVE.W #52,-(SP)

PACKO
T

MACRO LGetCell
MOVE.W #56,-(SP)
_PACKO
I

MACRO LGetSelect
MOVE.W #60,-(SP)
_PACKO
I

MACRO _LLastClick
MOVE.W #64,-(SP)
_PACKO
I

MACRO _LNew
MOVE.W #68,- (SP)
_PACKO
I

MACRO _LNextCell
MOVE.W #72,-(SP)

PACKO
T

MACRO _LRect
MOVE.W #76,-(SP)

PACKO
T

MACRO _LScroll
MOVE.W #80,-(SP)

PACKO
T

MACRO _LSearch

362

----------------- USTMACROS -----------------

MOVE.W
_PACKO
I

MACRO _LSetCell

#84,-(SP)

MOVE.W #88,-(SP)
PACKO

T
MACRO _LSetSelect

MOVE.W #92,-(SP)
PACKO

T
MACRO LSize

MOVE.W #96,-(SP)
PACKO

I

MACRO _LUpdate
MOVE.W #100,-(SP)

PACKO
I

363

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

[!gl LISTER.ASM

Lister.ASH
A sample program to test the List manager

This version has three menus:
Apple menu

About Lister
File menu

Quit
Edit menu

Clear

April 1986, Dan Weston
;------------------------------ INCLUDES --------------------------------

INCLUDE MacTraps.D
INCLUDE ToolEqu.D
INCLUDE QuickEqu.D

;------------------------------- EQUATES
arrayColumns EQU 10
arrayRows EQU 30

celldepth EQU 20
cell width EQU 60

TRUE EQU $0100
FALSE EQU 0
cmdKey EQU B
ActiveFlag EQU 0

mywindow EQU 1
WindowReg EQU A2

MenuReg EQU A3
MenuitemReg EQU A4

ListReg EQU D3
ModifyReg EQU D4

ApplemenuID EQU 1
about Item EQU 1

FilemenuID EQU 2
quit Item EQU 1

EditMenuID EQU 3
clearitem EQU 1

aboutdialog EQU 256
Buttonitem EQU 1

Use System and ToolBox traps
symbolic off sets and constants
Quickdraw symbols

; dimensions of list array

dimensions of cell

value for true
value for false
Bit pos of command key in Modify(AS)
Bit pos of activate/deactivate flag

Window is WIND resource #1
storage for windowpointer

storage for current menu
storage for current menu item

handle to list record
easier to BTST register

resource ID for menu #1
first item is About
resource ID for menu #2
only item is Quit
resource ID for menu #3
only item is Clear

ID# for about dialog
item number in Dialog

------------------------ List Manager Macros --------------------

INCLUDE ListMacros

;------------------------- Global Variables -----------------------

364

----------------- LISTER.ASM -----------------

Variables declared using DS are placed in a global space relative to
AS. When these variables are referenced, AS must be explicitly
mentioned.

EventRecord DS.W
What: DS.W
Message: DS.L
When: DS.L
Point: DS.L
Modify: DS.W

WWindow DS.L

WindowStorage DS.B

DStorage DS.B

ItemHit DS.W

grafporttemp DS.L

doneflag DS.W

dragbounds DS.L
growbounds DS.L

ViewRect DS.L
arrayRect DS.L
myCell DS.L

scratchStr DS.L
tRect DS.L

0
1
1
1
1
1

1

Windowsize

DWindlen

1

1

1

2
2

2
2
1

64
2

NextEvent's Record,place holder
Event number
Additional information
Time event was posted
Mouse coordinates
State of keys and button

FindWindow's VAR

Storage for Window

storage for dialog

VAR for ModalDialog

temp storage for GrafPtr

global BOOLEAN

Rect for dragwindow
Rect for growwindow

bounds of list window
dimensions of list array
all purpose list cell

all purpose string
all purpose scratch Rect

;------------------------------- Main Program ---------------------------

Start

BSR
BSR
BSR
BSR
BSR

InitManagers
OpenResFile
SetupMenus
SetupWindow
MiscSetup

Initialize managers
Open the resource file
get the menus and draw them
Open Window
a few more chores

----------------------------- BuildList -------------------------------

set up the input parameters to ListNew
; first calculate the view rect from
MOVE.L WindowReg,AO
LEA portRect(AO),AO
LEA ViewRect(AS),Al
MOVE.L (AO)+, (Al)+
MOVE.L (AO)+, (Al)+

LEA
MOVE.W
SUB.W
SUB.W

ViewRect(AS),AO
US,DO
DO,right(AO)
DO,bottom(AO)

window portRect
get our window
and its portRect
and our ViewRect
portRect -> ViewRect

now modify ViewRect
allow space for scoll bars
right = right - lS
bottom = bottom - lS

365

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

; now set
LEA
MOVE.L
MOVE.W
MOVE.W

the dimensions of the
arrayRect(A5),AO
to, (AO)+
tarrayRows, (AO)+
tarrayColumns, (AO)+

list array (O,O,depth,width)
now set dimensions of array
top and left always zero
arrayRows deep
arrayColumns wide

; set the
MOVE.W
SWAP
MOVE.W

size of an individual
#celldepth,DO

cell (depth,width)
depth

;FUNCTION

CLR.L
PEA
PEA
MOVE.L
MOVE.W
MOVE.L
MOVE.W
MOVE.W
MOVE.W
MOVE.W
_LNew
MOVE.L

DO
tcellwidth,DO

; move to high word
; width

ListNew(r, bounds: Rect; cSize: Point;
theProc: INTEGER; theWindow: WindowPtr;

drawit,HasGrow,ScrollHoriz,ScrollVert: BOOLEAN): ListHandle;
-(SP) result
viewRect(A5) viewing rectangle
arrayRect(A5) dimensions of list
DO,-(SP) cell dimensions
#0,-(SP) use LDEF 0
WindowReg,-(SP) our window
#FALSE,-(SP) don't draw it yet
#TRUE,-(SP) has grow
#TRUE,-(SP) has h scroll
#TRUE,-(SP) has v scroll

(SP)+,ListReg store list handle

; now create the list elements
; start with the first cell
MOVE.L #0,myCell(AS) cell O,O

buildloop

;PROCEDURE
PEA
MOVE.W
MOVE.L
MOVE.L
_LSetCell

ListSetCell(p: Ptr; 1:
contents

INTEGER; c: Cell; h: ListHandle);
statically defined string
length #6,-(SP)

myCell(A5),-(SP)
ListReg,-(SP)

the cell
the list

;FUNCTION ListNextCell(hNext,vNext: BOOLEAN;
VAR c: Cell; h: ListHandle): BOOLEAN;

CLR.W
MOVE.W
MOVE.W
PEA
MOVE.L

LNextCell
MOVE.W
BNE

-(SP)
#TRUE,-(SP)
tTRUE,-(SP)
myCell (AS)
ListReg,-(SP)

(SP)+,DO
buildloop

result
look at all cells

this is a VAR
the list

result
do the next cell

; we drop through to here when all cells have been visited
; turn list drawing on
;PROCEDURE ListDoDraw(drawit:
MOVE.W #TRUE,-(SP)
MOVE.L ListReg,-(SP)

BOOLEAN; h:ListHandle);
now we can draw it

; the list

366

----------------- LISTER.ASM -----------------

LDoDraw

;------------------------- Main Event Loop ------------------------------

first set the done flag to FALSE
MOVE.W fFALSE,doneflag(AS)

Event Loop ; MAIN PROGRAM LOOP

; FUNCTION GetNextEvent(eventMask: INTEGER;
VAR theEvent: EventRecord) : BOOLEAN

CLR.W -(SP) Clear space for result
MOVE.W f$0FFF,-(SP) Allow 12 standard events
PEA EventRecord(AS) Place to fill in event info

GetNextEvent Look for an event
MOVE.W (SP)+,DO Get result code
BEQ EventLoop Null event loop back
BSR DoEvent Go deal with the event

If Quit was selected, it sets doneflag to TRUE

TST.W
BEQ

doneflag(AS)
Event Loop

time to quit yet?
Not Quit, loop back

_ExitToShell Quit, exit to Finder

;------------------------- Event Handling Routines ----------------------

Do Event

Use the What field of the EventRecord as an index into the Event table.
All 12 standard event types are in the table, but we only really deal
with a few of them.

MOVE.W
MOVE.W
ADD.W
MOVE.W
JMP

Event Table

Modify(AS),ModifyReg
What(AS),DO
DO,DO
EventTable(DO),DO
Event Table (DO)

easier to BTST in register
Get event number
mult by 2 for word length
get off set to the routine
Jump relative to EventTable

This table lists the 12 possible standard event types
All routines called from this table should 'return
eventually through NextEvent

DC.W NextEvent-EventTable Null Event (Not used)
DC.W DoMouseDown-EventTable Mouse Down
DC.W NextEvent-EventTable Mouse Up (Not used)
DC.W DoKeyDown-EventTable Key Down
DC.W NextEvent-EventTable Key Up (Not used)
DC.W NextEvent-EventTable Auto Key (Not used)
DC.W DoUpdate-EventTable Update
DC.W NextEvent-EventTable Disk (Not used)
DC.W DoActivate-EventTable Activate
DC.W NextEvent-EventTable Abort (Not used)
DC.W NextEvent-EventTable Network (Not used)

367

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

DC.W NextEvent-EventTable I/O Driver (Not used)

NextEvent

RTS ; return to EventLoop

;--------------------Mouse Down Events And Their Actions----------------
DoMouseDown

Use FindWindow to determine what part of the desk top go the click.
Branch to appropriate routine from table of possible click spots.

; FUNCTION

CLR.W
MOVE.L
PEA
_FindWindow
MOVE.W
ADD.W
MOVE.W
JMP

WindowTable

FindWindow (thePt: Point;
VAR whichWindow: WindowPtr) : INTEGER;

-(SP)
Point(A5),-(SP)
WWindow (AS)

(SP)+,DO
DO,DO
WindowTable(DO),DO
WindowTable (DO)

Space for result
Get mouse coordinates, global
variable to hold windowptr
where is the click?
Get region number
mult by 2 for word length
get off set to routine
Jump relative to WindowTable

This table lists all the possible results of FindWindow
All routines called from this table should eventually
return via NextEvent

DC.W NextEvent-WindowTable In Desk (Not used)
DC.W DoMenu-WindowTable In Menu Bar
DC.W NextEvent-WindowTable System Window (Not used)
DC.W DoContent-WindowTable In Content
DC.W DoDrag-WindowTable In Drag
DC.W DoGrow-WindowTable In Grow
DC.W DoQuit-WindowTable In Go Away

;------------------------ DoMenu --
DoMenu

The click was in the menu bar. First find out which menu it was,
then find out which item.

; FUNCTION
CLR.L
MOVE.L
_MenuSelect
MOVE.W
MOVE.W

(startPt:Point) : Longint; Menu Select
-(SP)
Point(A5),-(SP)

(SP)+,MenuReg
(SP)+,MenuitemReg

Get Space For
Mouse At Time
Menu Select
Save Menu
and Menu Item

Menu Choice
Of Event

WhichMenu ;---
Enter this routine with info from MenuSelect:
This routine is also called from Command key

Resource ID of menu is in low word of MenuReg
Item number is in low word of MenuitemReg

All routines selected from here should return with a BRA MenuReturn

CMP.W
BEQ

tAppleMenuID,MenuReg
InAppleMenu

Is It In Apple Menu?
Go do Apple Menu

368

----------------- LISTER.ASM -----------------

CMP.W
BEQ
CMP.W
BEQ

fFileMenuID,MenuReg
InFileMenu
fEditMenuID,MenuReg
InEditMenu

Is It In File Menu?
Go do File Menu
Is It In Edit Menu?
Go do Edit Menu

MenuReturn ;---

BSR
BRA

UnHiliteMenu
Next Event

Unhighlight the menu bar
Go get next event

UnhiliteMenu ;---
; PROCEDURE HiLiteMenu (menuID: INTEGER);
CLR.W -(SP) All Menus

HiLiteMenu ; UnHilite Them All
RTS

InAppleMenu ;--

Selection in the Apple menu. This program doesn't support desk
accessories, so it must be about

About

CMP.W
BNE

fAboutitem,MenuitemReg
MenuReturn

Is It About?
this shouldn't happen ...

; save the current grafport in a global variable
;PROCEDURE GetPort(VAR gp: GrafPtr)
PEA grafporttemp(AS) ; one of our globals
_GetPort

; FUNCTION GetNewDialog (dialogID: INTEGER; dStorage: Ptr;
behind: WindowPtr) : DialogPtr

CLR.L - (SP)
MOVE.W fAboutDialog,-(SP)
PEA DStorage (AS)
MOVE.L f-1,-(SP)

GetNewDialog
MOVE.L (SP),-(SP)

; PROCEDURE SetPort (gp: GrafPort)
_setPort

Space For dialog pointer
Identify dialog rsrc f
Storage area
Dialog goes on top
Display dialog box
Copy handle for Close

DialogPtr = GrafPtr
Make dialog box the port

WaitforOK

; PROCEDURE ModalDialog (filterProc: ProcPtr.;
VAR itemHit: INTEGER);

CLR.L -(SP)
PEA ItemHit (AS)
_ModalDialog

MOVE.W
CMP.W
BNE

ItemHit(AS),DO
fButtonitem,DO
Waitf orOK

no filter proc
Storage for item hit
Wait for a response

Look to see what was hit
was it OK?
No, wait for OK

; PROCEDURE CloseDialog (theDialog: DialogPtr);

369

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME 11 -----

_CloseDialog

; now reset the grafport
;PROCEDURE SetPort(gp: GrafPtr)
MOVE.L grafporttemp(AS),-(SP)
_setPort

BRA MenuReturn

Handle already on stack

we saved it here before

InFileMenu ;---

Check choices in the file menu:
CMP.W #quititem,MenuitemReg
BNE MenuReturn

Quit ; otherwise, go ahead and quit

is it quit?
highly unlikely

;PROCEDURE ListDispose(h: ListHandle);
MOVE.L ListReg,-(SP)
_LDispose

MOVE.W
RTS

#TRUE,doneFlag(AS) signal Quit
This is RTS for original call
to DoEvent

InEditMenu ;--

CMP.W
BNE

#Clearitem,MenuitemReg
MenuReturn

Is it Clear?
highly unlikely

Loop until all the selected cells are cleared
start at the upper left corner
Although we are clearing each selected cell
you could perform some other operation with this
generalized loop

MOVE.L

getSelectLoop
;FUNCTION

BOOLEAN;
CLR.W
MOVE.W
PEA
MOVE.L
_LGetSelect
MOVE.W
BEQ

;PROCEDURE
MOVE.L
MOVE.L
_LClrCell

#0,myCell (AS) cell 0,0

ListGetSelect (next: BOOLEAN; VAR c: Cell; h: ListHandle):

-(SP)
#TRUE,-(SP)
myCell (AS)
ListReg,-(SP)

(SP)+,DO
@2

result
look at all selected cells
VAR
the list

result, O= no more selected
break out of loop

ListClrCell(c: Cell; h: ListHandle);
myCell(AS),-(SP) the selected cell
ListReg,-(SP) ; the list

advance to the next cell
FUNCTION ListNextCell(hNext,vNext: BOOLEAN;

VAR c: Cell; h: ListHandle): BOOLEAN;

370

----------------- LISTER.ASM -----------------

CLR.W
MOVE.W
MOVE.W
PEA
MOVE.L

LNextCell
MOVE.W

BRA

@2 BRA

-(SP)
#TRUE,-(SP)
#TRUE,-(SP)
myCell (AS)
ListReg,-(SP)

(SP)+,DO

GetSelectLoop

MenuReturn

result
look at all cells

this is a VAR
the list

result

get the next cell

;------------------------ content ---------------------------------------
DoContent

The click was in the content area of a window.
call Quickdraw to get local coordinates,

; PROCEDURE GlobalToLocal (VAR pt:Point);
PEA Point (AS) Mouse Point
_GlobalToLocal ; Global To Local

;FUNCTION
CLR.W
MOVE .. L
MOVE.W
MOVE.L

ListClick(pt: Point; modifiers: INTEGER; h: ListHandle) : BOOLEAN;

LC lick
MOVE.W
BEQ

-(SP)
Point(AS),-(SP)
Modify(A5),-(SP)
ListReg,-(SP)

(SP)+,DO
Next Event

; deal with a double click here
MOVE.W #1,-(SP)
_sysBeep
BRA Next Event

space for result
pt
modifiers

get result
not a double click

;---------------------------- DoDrag ------------------------------------
DoDrag
; The click was in the drag bar of the window. Drag it.

; DragWindow (theWindow:WindowPtr; startPt: Point; boundsRect: Rect);
MOVE.L WWindow(A5),-(SP) Pass window pointer
MOVE.L Point(A5),-(SP) mouse coordinates
PEA dragbounds(A5) and boundaries
_DragWindow Drag Window

BRA Next Event Go get next event

;---------------------------- DoDrag ------------------------------------
DoGrow

user clicked in grow region, WWindow(A5) holds the windowPtr
Track the mouse with outline of new window size
resize window when user lets up on mouse

first include the scroll bar and grow region in update region
BSR InvalidScroll

371

------ THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II ------

here is where we actually grow the window
: save a couple of registers
MOVEM.L D4/D5,-(SP) D3 is ListReg

;FUNCTION GrowWindow(theWindow:WindowPtr;startPt:Point;
sizeRect:Rect) :LONGINT

CLR.L -(SP) space for result
MOVE.L WWindow(A5),-(SP) theWindow
MOVE.L Point(A5),-(SP) startPt
PEA growbounds (AS) sizeRect

GrowWindow
MOVE.L (SP),DO check for no change
BEQ noGrow
MOVE.W (SP)+,D5 new vertical dimension
MOVE.W (SP)+,D4 new horizontal dimension

now draw it to the new size

;PROCEDURE SizeWindow(theWindow:WindowPtr;w,h:INTEGER;
fUpdate:BOOLEAN)

MOVE.L WWindow(A5),-(SP) theWindow
MOVE.W D4,-(SP) width
MOVE.W D5,-(SP) height
MOVE.W JtTRUE,-(SP) fUpdate

SizeWindow

once again include the scroll bars and grow region in update region

BSR InvalidScroll

; allow for scroll bars
SUB.W Jtl5,D4
SUB.W Jt15,D5

;PROCEDURE
MOVE.W
MOVE.W
MOVE.L
_LSize

w,h: INTEGER; lh: ListHandle);
width

ListSize(
D4,-(SP)
D5,-(SP)
ListReg,-(SP)

growExit
MOVEM.L

BRA

noGrow
CLR.L
BRA

(SP)+,D4/D5

Next Event

(SP)+
growExit

; height

restore regs

get result off stack
get out of routine

InvalidScroll --
InvalidScroll

first do the vertical section
; get port rect of window
MOVE.L WWindow(A5),AO
LEA portRect(AO),AO
LEA tRect(A5),Al

from FindWindow
this is the port rect
this is our temp rect

372

----------------- USJER.ASM -----------------

; adjust
MOVE.W
MOVE.W
MOVE.W
MOVE.W
SUB.W
MOVE.W

the values of tRect
top(AO),top(Al)
bottom(AO),bottom(Al)
right(AO),right(Al)
right(AO),DO
US,DO
DO,left(Al)

;PROCEDURE
PEA
_InvalRect

InvalRect(badRect:Rect)
tRect (AS)

now do the same for the horizontal section
; get port rect of window
MOVE.L
LEA
LEA

; adjust
MOVE.W
MOVE.W
MOVE.W
MOVE.W
SUB.W
MOVE.W

WWindow (AS) , AO
portRect (AO) , AO
tRect(AS),Al

the values of tempRect
left(AO),left(Al)
right(AO),right(Al)
bottom(AO),bottom(Al)
bottom(AO),DO
US,DO
DO,top(Al)

;PROCEDURE InvalRect(badRect:Rect)
PEA tRect(AS)

InvalRect

all done with InvalidScroll
RTS

from FindWindow
this is the port rect
this is our temp re ct

;--------------------------- DoQuit -------------------------------------
Use TrackGoAway here to allow user to back out of clicking in GoAway box.

; If the user releases mouse button inside box, branch to Quit routine

DoQuit
function TrackGoAway(thewindow:windowptr;thept:Point) :BOOLEAN

CLR.W -(SP) space for result
MOVE.L WindowReg,-(SP) the window pointer
MOVE.L Point(AS),-(SP) the point

TrackGoAway
MOVE.W (SP)+,DO get result
BEQ Next Event user released outside box

BRA Quit same exit point as from menu

;----------------------- DoKeyDown --------------------------------------
Since this is a totally graphic application, the only reason to pay

; to keydown events is to catch command key menu commands

DoKeyDown
BTST
BEQ

tCmdKey,ModifyReg
NextEvent

Is command key down?
not a command key, ignore it

373

----- THE COMPLETE BOOK OF MACINlOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

CommandDown ;--

The command key was down.
Call MenuKey to find out if it was the command key equivalent for a
menu command.
Pass the menu and item numbers to Whichmenu, just as if the choice had
been made from the menu with the mouse.

; FUNCTION
CLR.L
MOVE.W

MenuKey
MOVE.W
MOVE.W
BRA

MenuKey (ch:CHAR): Longint;
-(SP) Space for Menu and Item
Message+2(A5),-(SP) Get character

(SP) +,MenuReg
(SP)+,MenuitemReg
Whichmenu

See if it's a command
Save Menu
and Menu Item
Go dispatch command

;--------------------------------- DoUpdate -------------------------------
DoUpdate

; PROCEDURE BeginUpdate (theWindow: WindowPtr);
MOVE.L Message(AS),-(SP) Get pointer to window
_BeginUpDate Begin the update

MOVE.L
MOVE.L

Message(AS),AO
visRgn(AO),AO

get window record
handle to vis region

;PROCEDURE
MOVE.L
MOVE.L
_LUpdate

ListUpdate(r: RgnHandle; h: ListHandle
AO,-(SP) the region
ListReg,-(SP) ; the list

;PROCEDURE DrawGrowicon(theWindow:WindowPtr)
MOVE.L Message(AS),-(SP) ; the window
_DrawGrowicon

; PROCEDURE EndUpdate (theWindow: WindowPtr);
MOVE.L Message(AS),-(SP) Get pointer to window
_EndUpdate ; and end the update

BRA NextEvent

;--------------------------------- DoActivate -----------------------------
DoActivate

;PROCEDURE
MOVE.L

DrawGrowicon(theWindow:WindowPtr)
Message(AS),-(SP) ; the window

DrawGrowlcon

see if it is activate or deactivate
BTST #ActiveFlag,ModifyReg Activate?
BEQ Deactivate No, go do Deactivate

To activate a window

374

update the WindowReg for new front window

MOVE.L Message(AS),WindowReg ;this is the window becoming active

and set the port here

; PROCEDURE SetPort (gp: GrafPort) Set the port to us
MOVE.L WindowReg,-(SP)
_SetPort

;PROCEDURE ListActivate(act: BOOLEAN; h: ListHandle);
MOVE.W tTRUE,-(SP) activate it
MOVE.L ListReg,-(SP) ; the list
_LActivate

all done with Activate
BRA Next Event

Deactivate ;--

;PROCEDURE ListActivate(act: BOOLEAN; h: ListHandle);
MOVE.W tFALSE,-(SP) deactivate it
MOVE.L ListReg,-(SP) ; the list

LActivate

BRA Next Event ; Go get next event

;------------------------------- InitManagers -----------------------------

InitManagers

_MoreMasters ; prevent heap fragmentation

; FUNCTION NewHandle(LogicalSize: Size) :Handle
; LogicalSize => DO, Handle => AO
MOVE.L f$8FFFFFFF,DO
_NewHandle

;PROCEDURE InitGraf(globalPtr:QDPtr)
PEA -4(A5)
_InitGraf

;PROCEDURE InitFonts
_InitFonts

;PROCEDURE InitWindows
!nit Windows

;PROCEDURE InitMenus
InitMenus

;PROCEDURE TEinit
_TEinit

ask for a huge amount of memory
to compact heap

Quickdraw•s global area
!nit Quickdraw

!nit Font Manager

!nit Window Manager

!nit Menu Manager

; !nit Text Edit

;PROCEDURE InitDialogs(reswneProc:ProcPtr)

375

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

CLR.L -(SP)
_InitDialogs

no restart procedure
Init Dialog Manager

;PROCEDURE FlushEvents(whichMask,stopMask:INTEGER)
; stopMask => high word DO
; whichMask => low word DO
MOVE.L f$0000FFFF,DO Flush all events
_FlushEvents

_InitCursor Turn on arrow cursor

RTS

;------------------------------- OpenResFile ----------------------------

OpenResFile

Resources are kept in a separate file during development
Once the code is complete, resources can be combined
with code into a single file.

; FUNCTION OpenResFile (fileName: str255) : INTEGER;
CLR.W -(SP)
PEA 'MDS2:Lister.Rsrc'
OpenResFile

AoDQ #2,SP
RTS

;-------------------------------SetupMenus
SetupMenus

Space for refNum
Name of resource file
Open it
Discard refNum

Resource definitions for each menu are in resource file
Build a menu bar for an application is by reading
each menu in from the resource file and then inserting it into the
menu bar. DrawMenuBar when all menus have been inserted

Apple Menu Set Up.

FUNCTION
CLR.L
MOVE.W

GetRMenu

GetMenu (menu ID: INTEGER): MenuHandle;
-(SP)
#AppleMenuID,-(SP)

Space for menu handle
Apple menu resource ID
get handle to menu
leave on stack for insert

; PROCEDURE InsertMenu (menu:MenuHandle; beforeID: INTEGER);
CLR.W -(SP) ; Append to menu
_InsertMenu

File Menu Set Up

; FUNCTION
CLR.L
MOVE.W
_GetRMenu

GetMenu (menu ID: INTEGER): MenuHandle;
-(SP)
#FileMenuID,-(SP)

Space for menu handle
File Menu Resource ID
Get File menu handle

; PROCEDURE InsertMenu
leave on stack for insert

(menu:MenuHandle; beforeID: INTEGER);
Append to list CLR.W -(SP)

_InsertMenu ; After everything

376

----------------- USJER.ASM -----------------

Edit Menu Set Up

; FUNCTION
CLR.L
MOVE.W

GetMenu (menu ID: INTEGER): MenuHandle;

_GetRMenu

-(SP)
#EditMenuID,-(SP)

Space for menu handle
Edit menu resource ID
Get handle to menu
Leave on stack for Insert

; PROCEDURE InsertMenu (menu:MenuHandle; beforeID: INTEGER);
CLR.W -(SP) Append to list
_InsertMenu

;PROCEDURE DrawMenuBar
_DrawMenuBar

RTS

; After everything

Display the menu bar

;------------------------------ SetupWindow -----------------------------

SetupWindow

The window description is stored in our resource file. Read it from
the file and draw the window, then set the grafport to that window.

; FUNCTION GetNewWindow (windowID: INTEGER; wStorage: Ptr;
behind: WindowPtr) : WindowPtr;

CLR.L -(SP)
MOVE.W #mywindow,-(SP)
PEA WindowStorage(A5)
MOVE.L #-1,-(SP)

GetNewWindow
MOVE.L (SP),WindowReg

; PROCEDURE SetPort (gp: GrafPort)
_SetPort

RTS

Space for window pointer
Resource ID for window
Storage for window
Make it the top window
Draw the window
save windowptr for later

Pointer still on stack
Make it the current port

;------------------------ Misc. set up routines ------------------------

MiscSetUp

; set the value of dragbounds and growbounds to match the screen size
; get OD globals
MOVE.L grafGlobals(A5),AO
LEA screenbits+bounds(AO),AO ; ptr to bounds rect
LEA growbounds(A5),Al
MOVE.L (AO)+, (Al)+ copy it to growbounds
MOVE.L (AO)+, (Al)+

MOVE.L
LEA
LEA
MOVE.L
MOVE.L

RTS

grafGlobals(A5),AO
screenbits+bounds(AO),AO ; ptr to bounds rect
dragbounds(A5),Al
(AO)+, (Al)+ copy it to dragbounds
(AO)+, (Al)+

end of MiscSetUp subroutine

contents DC.W 'Cell #'

END

377

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

f!2l LISTER.LINK

File Lister.link
This is the text file that controls the linking for
the application program Lister
It links a single .REL file into an application file
April 1986

list of files to link, .Rel extension assumed

Lister

$

378

----------------- LISJER.R -----------------

~ LISTER.R

* This is the resource file for the example program called Lister
* * The first non-comment line is the output file, notice disk name, MDS2:

MDS2:Lister.Rsrc

* WIND resources define window characteristics
* Window is drawn by call to GetNewWindow

* Template format:
* Type WIND
* <optional name>,<resource ID#>
* <window title>
* <top left bottom right>
* <visible/invisible> <GoAway/NoGoAway>
* <Window definition procedure ID>
* <RefCon value>

Type WIND
listwindow,1
Lister
50 40 300 450
Visible GoAway
0
0

* Menu resources define titles, items, and keyboard equivalents for menus
* Menus are loaded into memory by call to GetRMenu

* Menu definitions
* Template
* Type MENU
* <optional name>,<resource ID #>
* < menu title>
* < menu items, one per line>
* \14 designates ASCII code 14 for the Apple character

Type MENU
,1

\14
About Lister

,2
File

Quit/Q

,3
Edit

Clear

,, first item

,, first item, keybd equivalent

, , first item

* Dialog Resource #256 defines general characteristics of Dialog box
* The last line of the DLOG is a DITL IDt that defines the contents.

379

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME 11 -----

* Dialogs are loaded into memory by call to GetNewDialog

Type DLOG
,256

100 100 190 400
Visible NoGoAway
1
0
256

;; resource ID

,, display rectangle: global coordinates

;; proc ID
,, ref con
,, which DITL to use

* DITL resources list the contents of an associated Dialog box

Type DITL
,256

3 ,, number of items in list

Button
60 230 80 290
OK

StaticText
15 20 36 300
This sample program was written

StaticText
35 20 56 300
to test the List Manager.

380

l!2J LDEF2.ASM

File LDEF2.ASM

This list def proc can be used to graphically display a list of ICONs
it expects to find a handle to an ICON resource as the data in each cell

It uses Ploticon to draw the contents of a cell

It frames the cell rect when the cell is selected

The init procedure sets the indent to 8,8

Close has no particular use for this procedure

After linking, the code should be packaged as an LDEF resource
within your program's resource file with the RMaker instructions:

Type LDEF = PROC
,2

diskname:LDEF2

PROCEDURE ListProc(LMessage:INTEGER; LSelect:BOOLEAN; LRect:Rect; LCell:Cell;
LDataOffset, LDataLen:INTEGER; LHandle:Handle);

INCLUDE
INCLUDE

MacTraps.D
QuickEqu.D

; constants we need for list stuff
cells EQU 80
indent EQU 12

InitMsg
DrawMsg
HiliteMsg
CloseMsg

EQU
EQU
EQU
EQU

0
1
2
3

Stack Frame definition for ListProc

LHandle SET
LDataLen SET
LDataOf f set SET
LCell SET
LRect SET
LS elect SET
LMessage SET
parambytes SET

local variables
scratchRect SET

entry point

8
LHandle+4
LDataLen+2
LDataOff set+2
LCell+4
LRect+4
LSelect+2
LMessage+2-8

-8

LINK A6,tscratchRect

offset to data hanvle
indent dimensions

constants for message

Handle to list data record
length of data
offset to data
cell that was hit
rect to draw in
l=selected, O=not selected
O=Init, l=Draw, 2=Hilite, 3=Close
t of bytes of parameters

all purpose rectangle

set up a stack frame

381

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME 11 -----

MOVE.L
MOVE.L
MOVE.L

MOVE.W

CMP.W
BEQ
CMP.W
BEQ
CMP.W
BEQ
CMP.W
BEQ

LDefExit
MOVEM.L
UNLK
MOVE.L
ADD.L
JMP

A2,-(SP)
LHandle(A6),A2
(A2),A2

LMessage(A6),DO

#InitMsg,DO
Doinit
#DrawMsg,DO
DoDraw
#HiliteMsg, DO
DoHilite
#CloseMsg,DO
DoClose

(SP)+,A2
A6
(SP)+,AO
#parambytes,SP
(AO)

save register
get handle to list record
get pointer to (locked) record

get the message

case out on the message

restore the register
deallocate stack frame
get return address
strip off parameters
and return

;--------------------------- Doinit -----------------------------------
Doinit

; enter with ptr to locked list record in A2

MOVE.W
MOVE.W

BRA

#8,indent(A2)
#8,indent+2(A2)

LDefExit

set the indent
fields of List record

;---------------------------- DoDraw ----------------------------------
DoDraw

enter with ptr to List record in register A2
the data for the cell is a handle to the ICN

copy the
MOVE.L
LEA
MOVE.L
MOVE.L

; now inset
;PROCEDURE
PEA
MOVE.L
_InsetRect

cell rectangle to our scratch rect in order to indent it
LRect (A6) ,AO
scratchRect(A6),Al
(AO)+, (Al)+
(AO)+,(Al)+

source
dest
copy it

the rectangle by the indent amount
InsetRect(VAR r:Rect;dh,dv:INTEGER)
scratchRect(A6) our local rect
indent(A2),-(SP) ; get both dimensions

; get the
MOVE.L
MOVE.L
MOVE.W

data for this cell
cells (A2) , AO get handle to data

convert to ptr (AO) ,AO
LDataOffset(A6),DO get off set to this cell

382

ADDA.W DO,AO bump ptr

AO points to cell data
use the inset rectangle as the destination for Ploticon
PROCEDURE Ploticon(theRect:Rect;theicon:Handle)

PEA scratchRect(A6) our local rect
MOVE.L (AO),-(SP) ; use ICN handle
_Plot Icon

; check to see if we should select it also
MOVE.W LSelect(A6),DO select or deselect?
BEQ LDefExit 0 means not selected

; copy the
MOVE.L
LEA
MOVE.L
MOVE.L

cell rectangle to our scratch rect in order to indent it
LRect(A6),AO
scratchRect(A6),Al
(AO)+, (Al)+
(AO)+, (Al)+

source
de st
copy it

; now inset
;PROCEDURE
PEA

the scratch rectangle by a small amount amount
InsetRect(VAR r:Rect;dh,dv:INTEGER)
scratchRect (A6) local rect

MOVE.W
MOVE.W

InsetRect

#2,-(SP) make it smaller
*2, - (SP)

; PROCEDURE FrameRect(r:Rect)
PEA scratchRect(A6) the local rect

frame it FrameRect

BRA LDefExit and return

;-------------------------- DoHilite ----------------------------------

DoHilite
enter with ptr to List record in register A2

copy the
MOVE.L
LEA
MOVE.L
MOVE.L

; now inset
;PROCEDURE
PEA
MOVE.W
MOVE.W

InsetRect

cell rectangle to our
LRect(A6),AO
scratchRect(A6),Al
(AO)+, (All+
(AO)+, (Al)+

scratch rect in order to indent it
source
de st
copy it

the scratch rectangle by a small amount amount
InsetRect(VAR r:Rect;dh,dv:INTEGER)
scratchRect,(A6) local rect
#2,-(SP) make it smaller
*2,-(SP)

; PROCEDURE PenMode(mode:INTEGER)
MOVE.W tpatXor,-(SP)
_PenMode

383

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

; PROCEDURE FrameRect(r:Rect)
PEA scratchRect (AG) the local re ct

FrameRect frame it

; PROCEDURE PenMode(mode:INTEGER)
MOVE.W #patCopy,-(SP)

PenMode

BRA LDefExit all done

;---------------------------- DoClose ----------------------------------
DoClose

; we don't need to do anything to close

BRA LDefExit and return

END

384

----------------- LDEF2.LllK -----------------

f!2I LDEF2.LINK

; File LDEF2.link
; It links a single .REL file into an code file
; April 1986
/type 'CODE' 'LINK'

; list of files to link, .Rel extension assumed

LDEF2

$

385

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

l2J 1CONLIST.ASM

IconList.ASM
A sample program to test the List manager

This program uses a custom LDEF proc to graphically list icons
This version has 2 menus:

Apple menu
About IconList

File menu
Quit

April 1986, Dan Weston
;------------------------------ INCLUDES --------------------------------

INCLUDE
INCLUDE
INCLUDE

MacTraps.D
ToolEqu.D
QuickEqu.D

Use System and ToolBox traps
symbolic off sets and constants
Quickdraw symbols

define an offset constant for the List record
cells EQU 80 ; offset to data handle

------------------------ List Manager Macros --------------------

INCLUDE ListMacros
;------------------------------- EQUATES -------------------------------

arrayColumns
arrayRows

celldepth
cell width

TRUE
FALSE
cmdKey
ActiveFlag

mywindow
WindowReg

MenuReg
MenuitemReg

List Reg
ModifyReg

ApplemenuID
about Item

FilemenuID
quit Item

aboutdialog
Buttonitem

EQU 1
EQU 0

EQU 144
EQU 144

EQU $0100
EQU 0
EQU 8
EQU 0

EQU 1
EQU A2

EQU A3
EQU A4

EQU D3
EQU D4

EQU 1
EQU 1
EQU 2
EQU 1

EQU 256
EQU 1

dimensions of list array
we will expand this as needed

dimensions of cell

value for true
value for false
Bit pos of command key in Modify(AS)
Bit pos of activate/deactivate flag

Window is WIND resource #1
storage for windowpointer

storage for current menu
storage for current menu item

handle to list record
easier to BTST register

resource ID for menu #1
first item is About
resource ID for menu 12
only item is Quit

IDt for about dialog
item number in Dialog

386

---------------- ICONLIST.ASM ----------------

;------------------------- Global Variables -----------------------

Variables declared using DS are placed in a global space relative to
AS. When these variables are referenced, AS must be explicitly
mentioned.

Event Record DS.W 0 NextEvent's Record, place holder
What: DS.W 1 Event number
Message: DS.L 1 Additional information
When: DS.L 1 Time event was posted
Point: DS.L 1 Mouse coordinates
Modify: DS.W 1 State of keys and button

WWindow DS.L 1 FindWindow's VAR

WindowStorage DS.B Window Size Storage for Window

DStorage DS.B DWindlen storage for dialog

ItemHit DS.W 1 VAR for ModalDialog

grafporttemp DS.L 1 temp storage for Graf Ptr

donef lag DS.W 1 global BOOLEAN

ViewRect DS.L 2 bounds of list window
arrayRect DS.L 2 dimensions of list array
myCell DS.L 1 all purpose list cell
myiconH DS.L 1 hold icon handle

;------------------------------- Main Program ---------------------------

Start

BSR
BSR
BSR
BSR

InitManagers
OpenResFile
SetupMenus
SetupWindow

Initialize managers
Open the resource file
get the menus and draw them
Open Window

----------------------------- BuildList -------------------------------

set up the input parameters to ListNew
; first calculate the view rect from
MOVE.L WindowReg,AO
LEA portRect(AO),AO
LEA ViewRect(A5),Al
MOVE.L (AO)+, (Al)+
MOVE.L (AO)+, (Al)+

LEA
MOVE.W
SUB.W
SUB.W

ViewRect(A5),AO
ns,oo
DO,right(AO)
DO,bottom(AO)

window portRect
get our window
and its portRect
and our ViewRect
portRect -> ViewRect

now modify ViewRect
allow space for scoll bar
right = right - 15
bottom = bottom - 15

; now set the dimensions of the list array (0,0,depth,width)
LEA arrayRect(A5),AO now set dimensions of array
MOVE.L #0, (AO)+ ; top and left always zero

387

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

MOVE.W #arrayRows, (AO)+ arrayRows deep
MOVE.W #arrayColumns, (AO)+ arrayColumns wide

; set the size of an individual cell (depth, width)
MOVE.W #celldepth, DO depth
SWAP DO move to high word
MOVE.W #cellwidth,DO width

;FUNCTION ListNew(r, bounds: Rect; cSize: Point;
theProc: INTEGER; theWindow: WindowPtr;

drawit,HasGrow,ScrollHoriz,ScrollVert: BOOLEAN): ListHandle;
CLR.L -(SP) result
PEA viewRect(A5) viewing rectangle
PEA arrayRect(AS) dimensions of list
MOVE.L DO,-(SP) cell dimensions
MOVE.W #2,-(SP) use LDEF 2
MOVE.L WindowReg,-(SP) our window
MOVE.W #FALSE,-(SP) don't draw it as you go
MOVE.W #TRUE,-(SP) has grow
MOVE.W #FALSE,-(SP) has no h scroll
MOVE.W #TRUE,-(SP) has v scroll

LNew
MOVE.L (SP)+,ListReg

now create the list elements
start with the first cell

MOVE.L #0,myCell (AS)

MOVE.W U,DS

geticonLoop

; now get each individual icon

store list handle

cell 0,0

initialize index

; FUNCTION GetindResource(theType:ResType;index:INTEGER) :Handle
CLR.L -(SP) result
MOVE.L #'ICON',-(SP) the type
MOVE.W DS,- (SP) index
_GetindResource
MOVE.L (SP)+,myiconH(AS) get handle
BEQ @ 1 no more icons

;FUNCTION
CLR.W
MOVE.W
MOVE.W
MOVE.L

ListAddRow(count, rowNum:
-(SP)

INTEGER; h: ListHandle) : INTEGER;
result

LAddRow
MOVE.W

U,- (SP)
#$7FFF,-(SP)
ListReg,-(SP)

(SP)+,DO

; set the new row number of cell
MOVE.W DO,mycell(AS)

add 1 row
add it as last row
the list

get result: the row number

; myCell.v := newRow

;PROCEDURE ListSetCell(p: Ptr; 1: INTEGER; c: Cell; h: ListHandle);
PEA myiconH (AS) ptr to icon handle
MOVE.W #4,-(SP) ; length of icon handle

388

---------------- ICONLIST.ASM ----------------

@l

MOVE.L
MOVE.L

LSetCell

ADD.W
BRA

myCell(AS),-(SP)
ListReg,-(SP)

n,Ds
geticonLoop

the cell
the list

increment index
still more to go

; we come here when all cells have been visited
;PROCEDURE ListDoDraw(drawit: BOOLEAN; h:ListHandle);
MOVE.W fTRUE,-(SP) now we can draw it
MOVE.L ListReg,-(SP) ; the list

LDoDraw

selFlags

; now set
MOVE.L
MOVE.L
MOVE.B

EQU 36

up selection parameters
ListReg,AO
(AO) ,AO
#128,selFlags(AO)

get list record handle
convert to ptr
set bit 7, only 1 selection

;------------------------- Main Event Loop ------------------------------

first set the done flag to FALSE
MOVE.W fFALSE,doneflag(AS)

EventLoop ; MAIN PROGRAM LOOP

; FUNCTION GetNextEvent(eventMask: INTEGER;
VAR theEvent: EventRecord) : BOOLEAN

CLR.W -(SP) Clear space for result
MOVE.W f$0FFF,-(SP) Allow 12 standard events
PEA EventRecord(AS) Place to fill in event info

GetNextEvent Look for an event
MOVE.W (SP) +,DO Get result code
BEQ EventLoop Null event loop back
BSR DoEvent Go deal with the event

If Quit was selected, it sets donef lag to TRUE

TST.W
BEQ

doneflag(AS)
Event Loop

time to quit yet?
Not Quit, loop back

ExitToShell Quit, exit to Finder

;------------------------- Event Handling Routines ----------------------

DoEvent

Use the What field of the EventRecord as an index into the Event table.
All 12 standard event types are in the table, but we only really deal
with a few of them.

MOVE.W
MOVE.W
ADD.W

Modify(AS),ModifyReg
What(AS),DO
DO,DO

easier to BTST in register
Get event number
mult by 2 for word length

389

----- THE COMPLETE BOOK .OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

MOVE.W
JMP

Event Table

EventTable(DO),DO
EventTable(DO)

get offset to the routine
Jump relative to EventTable

This table lists the 12 possible standard event types
All routines called from this table should return
eventually through NextEvent

DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W

Next Event

RTS

NextEvent-EventTable
DoMouseDown-EventTable
NextEvent-EventTable
DoKeyDown-EventTable
NextEvent-EventTable
NextEvent-EventTable
DoUpdate-EventTable
NextEvent-EventTable
DoActivate-EventTable
NextEvent-EventTable
NextEvent-EventTable
NextEvent-EventTable

Null Event (Not used)
Mouse Down
Mouse Up (Not used)
Key Down
Key Up (Not used)
Auto Key (Not used)
Update
Disk (Not used)
Activate
Abort (Not used)
Network (Not used)
I/O Driver (Not used)

; return to EventLoop

;--------------------Mouse Down Events And Their Actions----------------
DoMouseDown

Use FindWindow to determine what part of the desk top go the click.
Branch to appropriate routine from table of possible click spots.

; FUNCTION

CLR.W
MOVE.L
PEA
_FindWindow
MOVE.W
ADD.W
MOVE.W
JMP

WindowTable

FindWindow (thePt: Point;
VAR whichWindow: WindowPtr): INTEGER;

- (SP)
Point(AS),-(SP)
WWindow (AS)

(SP)+,DO
DO,DO
WindowTable(DO),DO
WindowTable (DO)

Space for result
Get mouse coordinates, global
variable to hold windowptr
where is the click?
Get region number
mult by 2 for word length
get off set to routine
Jump relative to WindowTable

This table lists all the possible results of FindWindow
All routines called from this table should eventually
return via NextEvent

DC.W NextEvent-WindowTable In Desk (Not used)
DC.W DoMenu-WindowTable In Menu Bar
DC.W NextEvent-WindowTable System Window (Not used)
DC.W DoContent-WindowTable In Content
DC.W NextEvent-WindowTable In Drag (Not used)
DC.W NextEvent-WindowTable In Grow (Not used)
DC.W DoQuit-WindowTable In Go Away

;------------------------ DoMenu --
DoMenu

390

_________________ ICONLIST.ASM ----------------

The click was in the menu bar. First find out which menu it was,
then find out which item.

; FUNCTION
CLR.L
MOVE.L

MenuSelect
MOVE.W
MOVE.W

(startPt:Point) : Longint; MenuSelect
-(SP)
Point(A5),-(SP)

(SP)+,MenuReg
(SP)+,MenuitemReg

Get Space For
Mouse At Time
Menu Select
Save Menu
and Menu Item

Menu Choice
Of Event

WhichMenu ;---
Enter this routine with info from MenuSelect:
This routine is also called from Command key

Resource ID of menu is in low word of MenuReg
Item number is in low word of MenuitemReg

All routines selected from here should return with a BRA MenuReturn

CMP.W
BEQ
CMP.W
BEQ

#AppleMenuID,MenuReg
InAppleMenu
#FileMenuID,MenuReg
InFileMenu

Is It In Apple Menu?
Go do Apple Menu
Is It In File Menu?
Go do File Menu

MenuReturn ;---

BSR
BRA

UnHiliteMenu
NextEvent

Unhighlight the menu bar
Go get next event

UnhiliteMenu ;---
; PROCEDURE HiLiteMenu (menuID: INTEGER);
CLR.W -(SP) All Menus

HiLiteMenu ; UnHilite Them All
RTS

InAppleMenu ;--

Selection in the Apple menu. This program doesn't support desk
accessories, so it must be about

About

CMP.W
BNE

#Aboutitem,MenuitemReg
MenuReturn

Is It About?
this shouldn't happen ...

; save the current grafport in a global variable
;PROCEDURE GetPort(VAR gp: GrafPtr)
PEA grafporttemp(A5) ; one of our globals
_GetPort

; FUNCTION GetNewDialog (dialogID: INTEGER; dStorage: Ptr;
behind: WindowPtr) : DialogPtr

CLR.L -(SP)
MOVE.W #AboutDialog,-(SP)

Space For dialog pointer
Identify dialog rsrc #
Storage area PEA DStorage(A5)

MOVE.L #-1,-(SP)
GetNewDialog

MOVE.L (SP),-(SP)

Dialog goes on top
Display dialog box
Copy handle for Close

391

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

; PROCEDURE SetPort (gp: GrafPort)
_Set Port

WaitforOK

DialogPtr = GrafPtr
Make dialog box the port

; PROCEDURE ModalDialog (filterProc: ProcPtr;
VAR itemHit: INTEGER);

CLR.L -(SP)
PEA ItemHit (AS)
_ModalDialog

MOVE.W
CMP.W
BNE

ItemHit(AS),DO
#Buttonitem,DO
WaitforOK

no filter proc
Storage for item hit
Wait for a response

Look to see what was hit
was it OK'?
No, wait for OK

; PROCEDURE CloseDialog (theDialog: DialogPtr);
_CloseDialog ; Handle already on stack

; now reset the grafport
;PROCEDURE SetPort(gp: GrafPtr)
MOVE.L grafporttemp(AS),-(SP)
_SetPort

BRA MenuReturn

we saved it here before

InFileMenu ;---

Check choices in the file menu:
CMP.W #quititem,MenuitemReg
BNE MenuReturn

Quit ; otherwise, go ahead and quit

is it quit?
highly unlikely

;PROCEDURE ListDispose(h: ListHandle);
MOVE.L ListReg,-(SP)
_LDispose

MOVE.W
RTS

#TRUE,doneFlag(AS) signal Quit
This is RTS for original call
to DoEvent

;------------------------ content ---------------------------------------
DoContent

The click was in the content area of a window.
call Quickdraw to get local coordinates,

; PROCEDURE GlobalToLocal (VAR pt:Point);
PEA Point (AS) Mouse Point
_GlobalToLocal ; Global To Local

;FUNCTION
CLR.W
MOVE.L
MOVE.W
MOVE.L

LC lick

ListClick(pt: Point; modifiers: INTEGER; h: ListHandle) : BOOLEAN;
-(SP)
Point(AS),-(SP)
Modify(AS),-(SP)
ListReg,-(SP)

space for result
pt
modifiers

392

---------------- ICONLIST.ASM ----------------

MOVE.W (SP)+,DO get result
BEQ NextEvent not a double click

; deal with a double click here
MOVE.W U,-(SP)
_SysBeep
BRA Next Event

;--------------------------- DoQuit -------------------------------------
Use TrackGoAway here to allow user to back out of clicking in GoAway box.

; If the user releases mouse button inside box, branch to Quit routine

DoQuit
function TrackGoAway(thewindow:windowptr;thept:Point) :BOOLEAN

CLR.W -(SP) space for result
MOVE.L WindowReg,-(SP) the window pointer
MOVE.L Point(A5),-(SP) the point

TrackGoAway
MOVE.W (SP)+,DO get result
BEQ Next Event user released outside box

BRA Quit same exit point as from menu

;----------------------- DoKeyDown --------------------------------------
Since this is a totally graphic application, the only reason to pay

; to keydown events is to catch command key menu commands

DoKeyDown
BTST
BEQ

#CmdKey,ModifyReg
NextEvent

Is command key down?
not a command key, ignore it

CommandDown ;--

The command key was down.
Call MenuKey to find out if it was the command key equivalent for a
menu command.
Pass the menu and item numbers to Whichmenu, just as if the choice had
been made from the menu with the mouse.

; FUNCTION
CLR.L
MOVE.W
_MenuKey
MOVE.W
MOVE.W
BRA

MenuKey (ch:CHAR): Longint;
-(SP) Space for Menu and Item
Message+2(A5),-(SP) Get character

(SP)+,MenuReg
(SP)+,MenuitemReg
Whichmenu

See if it's a command
Save Menu
and Menu Item
Go dispatch command

;--------------------------------- DoUpdate -------------------------------
DoUpdate

; PROCEDURE BeginUpdate (theWindow: WindowPtr);
MOVE.L Message(A5),-(SP) Get pointer to window
_BeginUpDate ; Begin the update

393

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGUMMING, VOWME II -----

MOVE.L
MOVE.L

Message(AS),AO
visRgn (AO) , AO

get window record
handle to vis region

;PROCEDURE
MOVE.L
MOVE.L
_LUpdate

ListUpdate(r: RgnHandle; h: ListHandle)
AO,-(SP) the vis region
ListReg,-(SP) : the list

; PROCEDURE EndUpdate (theWindow: WindowPtr);
MOVE.L Message(AS),-(SP) Get pointer to window
_EndUpdate ; and end the update

BRA NextEvent

:--------------------------------- DoActivate -----------------------------
DoActivate

; see if it is activate or deactivate
BTST fActiveFlag,ModifyReg Activate?
BEQ Deactivate No, go do Deactivate

To activate a window
update the WindowReg for new front window

MOVE.L Message(AS),WindowReg this is the window becoming active

and set the port here

; PROCEDURE SetPort (gp: GrafPort) Set the port to us
MOVE.L WindowReg,-(SP)
_SetPort

;PROCEDURE ListActivate(act: BOOLEAN; h: ListHandle);
MOVE.W fTRUE,-(SP) activate it
MOVE.L ListReg,-(SP) ; the list

LActivate

all done with Activate
BRA Next Event

Deactivate ;--

;PROCEDURE ListActivate(act: BOOLEAN; h: ListHandle);
MOVE.W fFALSE,-(SP) deactivate it
MOVE.L ListReg,-(SP) ; the list
_LActivate

BRA NextEvent ; Go get next event

:------------------------------- InitManagers -----------------------------

InitManagers

_MoreMasters prevent heap f raqrnentation

394

; FUNCTION NewHandle(LogicalSize: Size) :Handle
; LogicalSize => DO, Handle => AO
MOVE.L f$8FFFFFFF,DO

NewHandle
ask for a huge amount of memory
to compact heap

;PROCEDURE InitGraf(globalPtr:QDPtr)
PEA -4 (AS)
_InitGraf

;PROCEDURE InitFonts
InitFonts

;PROCEDURE InitWindows
_InitWindows

;PROCEDURE InitMenus
InitMenus

;PROCEDURE TEinit
TEI nit

Quickdraw's global area
!nit Quickdraw

!nit Font Manager

!nit Window Manager

!nit Menu Manager

; !nit Text Edit

;PROCEDURE InitDialogs(resumeProc:ProcPtr)
CLR.L -(SP) no restart procedure
_InitDialogs ; !nit Dialog Manager

;PROCEDURE FlushEvents(whichMask,stopMask:INTEGER)
; stopMask => high word DO
; whichMask => low word DO
MOVE.L f$0000FFFF,DO Flush all events
_FlushEvents

_InitCursor Turn on arrow cursor

RTS

;------------------------------- OpenResFile ----------------------------

OpenResFile

Resources are kept in a separate file during development
Once the code is complete, resources can be combined
with code into a single file.

; FUNCTION OpenResFile (fileName:
CLR.W -(SP)
PEA 'MDS2:IconList.Rsrc'

OpenResFile
AoDQ #2,SP
RTS

str255) : INTEGER;
Space for refNum
Name of resource file
Open it
Discard refNum

;-------------------------------SetupMenus ------------------------------
SetupMenus

Resource definitions for each menu are in resource file
Build a menu bar for an application is by reading
each menu in from the resource file and then inserting it into the

395

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

menu bar. DrawMenuBar when all menus have been inserted

Apple Menu Set Up.

FUNCTION
CLR.L
MOVE.W

GetMenu (menu ID: INTEGER): MenuHandle;

_GetRMenu

-(SP)
fAppleMenuID,-(SP)

Space for menu handle
Apple menu resource ID
get handle to menu
leave on stack for insert

; PROCEDURE InsertMenu (menu:MenuHandle; beforeID: INTEGER);
CLR. W - (SP) ; Append to menu

InsertMenu

File Menu Set Up

; FUNCTION
CLR.L
MOVE.W

GetMenu (menu ID: INTEGER): MenuHandle;

_GetRMenu

-(SP)
fFileMenuID,-(SP)

Space for menu handle
File Menu Resource ID
Get File menu handle
leave on stack for insert

; PROCEDURE InsertMenu (menu:MenuHandle; beforeID: INTEGER);
CLR.W -(SP) Append to list
_InsertMenu After everything

;PROCEDURE DrawMenuBar
_DrawMenuBar Display the menu bar

RTS
;------------------------------ SetupWindow -----------------------------

SetupWindow

The window description is stored in our resource file. Read it from
the file and draw the window, then set the grafport to that window.

; FUNCTION GetNewWindow (windowID: INTEGER; wStorage: Ptr;
behind: WindowPtr) : WindowPtr;

CLR.L -(SP)
MOVE.W tmywindow,-(SP)
PEA WindowStorage(AS)
MOVE.L f-1,-(SP)

GetNewWindow
MOVE.L (SP),WindowReg

; PROCEDURE SetPort (gp: GrafPort)
SetPort

RTS

END

Space for window pointer
Resource ID for window
Storage for window
Make it the top window
Draw the window
save windowptr for later

Pointer still on stack
Make it the current port

396

---------------- ICONLISJ.LINK ----------------

~ ICONLIST.LINK

File IconList.link
This is the text file that controls the linking for
the application program Lister
It links a single .REL file into an application file

Dan Weston April 1986

list of files to link, .Rel extension assumed

IconList

$

397

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

f9 ICONLIST.R

* This is the resource file for the example program called IconList
*
* The first non-comment line is the output file, notice disk name

MDS2:IconList.Rsrc

* WIND resources define window characteristics
* Window is drawn by call to GetNewWindow

* Template format:
* Type WIND
* <optional name>,<resource ID#>
* <window title>
* <top left bottom right>
* <visible/invisible> <GoAway/NoGoAway>
* <Window definition procedure ID>
* <RefCon value>

Type WIND
iconwindow,l
Icon List
50 32 209 191
Visible GoAway
0
0

* Menu resources define titles, items, and keyboard equivalents for menus
* Menus are loaded into memory by call to GetRMenu

* Menu definitions
* Template
* Type MENU
* <optional name>,<resource ID #>
* < menu title>
* < menu items, one per line>
* \14 designates ASCII code 14 for the Apple character

Type MENU
, 1

\14
About IconList

,2
File

Quit/Q

,3
Edit

Clear

,, first item

,, first item, keybd equivalent

,, first item

* Dialog Resource #256 defines general characteristics of Dialog box
* The last line of the DLOG is a DITL ID# that defines the contents.

398

* Dialogs are laoded into memory by call to GetNewDialog

Type DLOG
,256

100 100 190 400
Visible NoGoAway
1
0
256

;; resource ID

,, display rectangle: global coordinates

;; proc ID
;; ref con
,, which DITL to use

* DITL resources list the contents of an associated Dialog box

Type DITL
,256

3 ,, number of items in list

Button
60 230 80 290
OK

StaticText
15 20 36 300
This sample program was written

StaticText
35 20 56 300
to test a custom list def procedure.

Type LDEF PROC
,2

MDS2:LDEF2

399

APPENDIX

Other Sources of Macintosh Information

1. Inside Macintosh, Volumes 1-3, 1985, Addison-Wesley.

The bible for Mac programmers, for better or for worse. The Addison-Wesley version
really is better than the older phone-book edition. I recommend the hardcover edition
because a single index covers all three volumes. Also, if you use it as much as I do,
the hardcover set will last longer than the paperback edition.

2. Macintosh Technical Notes, published bimonthly by Apple Computer.

These notes give helpful hints on the toolbox and often explain features that were previ
ously undocumented. The notes are well-written and always useful. Many of the chap
ters in this book were built upon information in the tech notes. They provide the most
up-to-date information that you can get. The tech notes are also available on several
on-line services, such as Compuserve and Genie, but I recommend that you send $25.00
annually to Apple and get them directly. Send subscription information to:

Macintosh Technical Notes
Apple Computer Mailing Facility
467 Saratoga Ave. Suite 621
San Jose, CA 95129

3. Macintosh Technical Support via MCI mail.

Anyone can send technical questions to Apple using MCI electronic mail. The MCI
address for the technical support people there is Mactech. Make your questions as
specific as possible, and you will usually get an answer back within a day or two. Highly
recommended. You can become a user of MCI mail by calling 1-800-424-6677. At about
$1.00 per message, MCI is a great bargain. You only pay when you send a message;
reading the answer doesn't cost anything.

400

----------- DJHER SOURCES OF MACINTOSH INFORMATION -----------

4. MaCibtor magazine.

The unofficial Mac hacker's journal is a great place to find lots of example programs
that illustrate a wide range of Macintosh topics and languages. Every issue contains
useful information. No gloss, no fluff, but not stodgy. Subscription information from:

MacTutor
PO Box 846
Placentia, CA 92670
(714)-630-3730

401

APPENDIX

~-----
ROM Trap Words and
Heap Compaction Flags

Trap Name Trap WVrd Possible Heap Compact

AddDrive $A078
AddPt $A87E
AddReference $A9AC x
AddResMenu $A94D x
AddResource $A9AB
Alert $A985 x
Allocate $A016
AngleFromSlope $A8C4
AppendMenu $A933 x
BackColor $A863
BackPat $A87C
BeginUpDate $A922 x
BitAnd $A858
BitCir $A85F
BitNot $ASSA
BitOr $A85B
BitSet $A85E
BitShift $A85C
BitTst $A85D
BitXOr $A859
BlockMove $A046
BringToFront $A920 x
Button $A974 x
CalcMenuSize $A948 x
CalcVBehind $A90A x
Cale Vis $A909 x
CautionAlert $A988 x

402

---------- ROM TRAP WORDS AND HEAP COMPACTION FLAGS ----------

Trap Name

Chain
ChangedResource
CharWidth
Checkltem
CheckUpDate
ClearMenuBar
ClipAbove
ClipRect
Close
CloseDeskAcc
Close Dialog
ClosePgon
Close Picture
Close Port
CloseResFile
CloseRgn
CloseWindow
CmpString
ColorBit
CompactMem
Control
Copy Bits
CopyRgn
Could.Alert
CouldDialog
CountMitems
CountResources
Count Types
Create
CreateResFile
CurResFile
Date2Secs
Debugger
Delay
Delete
DeleteMenu
DeltaPoint
De Queue
DetachResource
DialogSelect
DiffRgn
Disableltem

Trap W&rd

$A9F3
$A9AA
$A88D
$A945
$A911
$A934
$A90B
$A87B
$A001
$A9B7
$A982
$A8CC
$A8F4
$A87D
$A99A
$A8DB
$A92D
$A060
$A864
$A076
$A004
$A8EC
$A8DC
$A989
$A979
$A950
$A99C
$A99E
$A008
$A9Bl
$A994
$A9C7
$A9FF
$A059
$A009
$A936
$A94F
$A96E
$A992
$A980
$A8E6
$A93A

403

Possible Heap Compact

x
x
x
x
x

x
x

x

x
x
x
x
x

x
x

x
x
x

x

x
x

THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II

Trap Name Trap W&rd Possible Heap Compact

DisposControl $A955 x
DisposDialog $A983 x
DisposHandle $A035 x
DisposMenu $A932 x
DisposPtr $A031 x
DisposRgn $A8D9 x
DisposWindow $A914 x
DragControl $A967 x
DragGrayRgn $A905 x
DragI'heRgn $A926 x
DragWindow $A925 x
DrawChar $A883 x
DrawControls $A969
Draw Dialog $A981 x
DrawGrowlcon $A904 x
DrawMenuBar $A937 x
Draw New $A90F x
Draw Picture $A8F6 x
DrawString $A884 x
Draw Text $A885 x
Drvrlnstall $A061 x
DrvrRemove $A062 x
Eject $A023 x
Elems68K $A9EC
Empty Handle $A043 x
EmptyRect $A8AE
EmptyRgn $A8E2
Enableltem $A939
EndUpDate $A923 x
En Queue $A96F
EqualPt $A881
EqualRect $A8A6
EqualRgn $A8E3
EraseArc $A8CO x
Erase Oval $A8B9 x
ErasePoly $A8C8 x
EraseRect $A8A3 x
EraseRgn $A8D4 x
EraseRoundRect $A8B2 x
ErrorSound $A98C
EventAvail $A971 x
ExitToShell $A9F4 x

404

--------- ROM TRAP WORDS AND HEAP COMPACTION FLAGS ---------

Trap Name

FillArc
Fill Oval
FillPoly
FillRect
FillRgn
FillRoundRect
Find Control
Find Window
FlnitQueue
FixMul
FixRatio
FixRound
FlashMenuBar
FlushEvents
FlushFile
Flush Vol
FMSwapFont
ForeColor
FP68K
FrameArc
FrameOval
FramePoly
FrameRect
FrameRgn
FrameRoundRect
FreeAlert
FreeDialog
FreeMem
FrontWindow
GetAppParms
GetClip
GetCRefCon
GetCTitle
GetCtlAction
GetCtlValue
GetCursor
GetDitem
GetEOF
GetFilelnfo
GetFName
GetFNum
GetFontlnfo

Trap W&rd

$A8C2
$A8BB
$A8CA
$A8A5
$A8D6
$A8B4
$A96C
$A92C
$A022
$A868
$A869
$A86C
$A94C
$A050
$A069
$A019
$A901
$A862
$A9EB
$A8BE
$A8B7
$A8C6
$A8Al
$A8D2
$ASBO
$A98A
$A97A
$A028
$A924
$A9FS
$A87A
$A95A
$A95E
$A96A
$A960
$A9B9
$A98D
$A017
$A012
$A8FF
$A900
$A88B

405

Possible Heap Compact

x
x
x
x
x
x
x

x

x
x

x
x
x
x
x
x
x
x
x

x

x
x

x
x

THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II

Trap Name Trap WOrd Possible Heap Compact

GetFPos $A024
GetHandleSize $A037
Gedeon $A9BB x
GedndResource $A99D x
Gednd'J.Ype $A99F
Gedtem $A946
GetIText $A990
Gedtmlcon $A93F
GedtmMark $A943
GedtmStyle $A941
GetKeys $A976 x
GetMaxCtl $A962
GetMenuBar $A93B x
GetMHandle $A949
GetMinCtl $A961
GetMouse $A972 x
GetNamedResource $A9Al x
GetNewControl $A9BE x
GetNewDialog $A97C x
GetNewMBar $A9CO x
GetNewWindow $A9BD x
GetNextEvent $A970 x
GetOSEvent $A049
GetPattem $A9B8 x
GetPen $A89A
GetPenState $A898
GetPicture $A9BC x-
GetPixel $A865
GetPort $A874
GetPtrSize $A033
GetResAttrs $A9A6
GetResFileAttrs $A9F6
GetReslnfo $A9A8
GetResource $A9AO x
GetRMenu $A9BF x
GetScrap $A9FD x
GetString $A9BA x
Get'IrapAddress $Al70
Get Vol $A020
GetVollnfo $A007
Get Window Pie $A92F
GetWMgrPort $A910

406

ROM TRAP WORDS AND HEAP COMPACTION FLAGS

Trap Name Trap WVrd Possible Heap Compact

GetWRefCon $A917
GetWTitle $A919
GetZone $Al26
GlobalToLocal $A871
GrafDevice $A872
GrowWindow $A92B x
HandAndHand $A9E4 x
HandleZone $Al38
Hand To Hand $A9El x
HideControl $A958 x
HideCursor $A852
Hide Pen $A896
Hide Window $A916 x
HiliteControl $A9SD x
HiliteMenu $A938 x
HiliteWindow $A91C x
Hi Word $A86A
HLock $A041
HNoPu,rge $A074
HomeResFile $A9A4
HPurge $A073
HUnLock $A042
InfoScrap $A9F9
InitAllPacks $A9E6 x
lnitApplZone $A044 x
lnitCursor $A8SO
InitDialogs $A97B
InitFonts $A8FE
InitGraf $A86E
InitMenus $A930 x
InitPack $A9ES x
InitPort $A86D x
InitResources $A995 x
InitUtil $A063
lnitWindows $A912 x
InitZone $A02S x
InsertMenu $A~35 x
InsertResMenu $A951 x
InSetRect $A8A9
InSetRgn $A8El x
InvalRect $A928 x
InvalRgn $A927 x

407

THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II

Trap Name Trap Wbrd Possible Heap Compact

InverRect $A8A4 x
InverRgn $A8D5 x
InverROundRect $A8B3 x
InvertArc $A8Cl x
InvertOval $A8BA x
InvertPoly $A8C9 x
IsDialogEvent $A97F
Kill Controls $A956 x
KillIO $A006
KillPicture $A8F5 x
KillPoly $A8CD x
Launch $A9F2 x
Line $A892 x
LineTo $A891 x
LoadResource $A9A2 x
LoadSeg $A9FO x
LocalToGlobal $A870
Lode Scrap $A9FB
LongMul $A867
Lo Word $A86B
Map Poly $A8FC
MapPt $A8F9
MapRect $A8FA
MapRgn $A8FB x
MaxMem $Al29
MenuKey $A93E x
MenuSelect $A93D x
ModalDialog $A991 x
MoreMasters $A054
Mount Vol $A015 x
Move $A894
MoveControl $A959 x
MovePortTo $A877
MoveTo $A893
Move Window $A91B x
Munger $A9EO x
NewControl $A954 x
NewDialog $A97D x
New Handle $A134 x
NewMenu $A931 x
NewPtr $Al30 x
NewRgn $A8D8 x

408

ROM TRAP WO• AND HEAP COMPACl'ION FLAGS

Trap Name Trap W&rd Possible Heap Compact

NewString $A906 x
NewWindow $A913 x
NoteAlert $A987 x
ObscureCursor $A856
OftLine $AOS3 x
OffSetPoly $A8CE
OffSetRect $A8A8
OffSetRgn $A8EO
Open $AOOO x
OpenDeskAcc $A9B6 x
OpenPicture $A8F3 x
OpenPoly $A8CB x
OpenPort $A86F x
OpenResFile $A997 x
OpenRF $A010 x
OpenRgn $A8DA x
OSEventAvail $A048
PackO $A9E7 x
Packl $A9E8 x
Pack2 $A9E9 x
Pack3 $A9EA x
Pack4 $A9EB x
PackS $A9EC x
Pack6 $A9ED x
Pack7 $A9EE x
PackBits $A8CF
PaintArc $A8BF x
PaintBehind $A90D x
PaintOne $A90C x
PaintOval $A8B8 x
PaintPoly $A8C7 x
PaintRect $A8A2 x
PaintRgn $A8D3 x
PaintRoundRect $A8Bl x
Paranil'ext $A98B x
PenMode $A89C
PenNormal $A89E
PenPat $A89D

. PenSize $A89B
PicComment $A8F2 x
PinRect $A94E
Plotlcon $A94B x

409

THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME 11

Trap Name Trap Wflrd Possible Heap Compact

PortSize $A876
PostEvent $A047
Pt2Rect $A8AC
PtlnRect $ASAD
PtlnRgn $A8E8
PtrAndHand $A9EF
PtrToHand $A9E3 x
Ptil'oXHand $A9E2 x
PtrZone $A172
PtToAngle $A8C3
PurgeMem $A077 x
PutScrap $A9FE
Random $A861
RDrvrlnstall $A079
Read $A002
ReadDateTime $A057
RealFont $A902 x
ReAllocHandle $A039 x
Recover Handle $A140 x
RectlnRgn $A8E9
RectRgn $A8DF x
ReleaseResource $A9A3 x
ReName $A011
ResError $A9AF
ResrvMem $A064 x
RmveReference $A9AE x
RmveResource $A9AD x
RsrcZonelnit $A996 x
RstFilLock $A066
SaveOld $A90E x
Scale Pt $A8F8
ScrollRect $A8EF
Secs2Date $A9C6
SectRect $A8AA
SectRgn $A8E4 x
Select Window $A91F x
SelIText $A97E x
SendBehind $A921 x
SetAppBase $A087 x
SetApplLimit $A045
SetClip $A879 x
SetCRefCon $A95B

410

ROM TRAP WORDS AND HEAP COMPACTION FLAGS

Trap Name Trap U:Vrd Possible Heap Compact

SetCTitle $A9SF x
SetCtlAction $A96B
SetCtlValue $A963 x
SetCursor $A851
SetDateTime $AOS8
SetDitem $A98E x
SetEmptyRgn $A8DD x
SetEOF $A018
SetFilelnfo $A013
SetFilLock $A065
SetFilType $A067
SetFontLock $A903 x
SetFPos $A068
SetGrowZone $A075
SetHandleSize $A036 x
Setltem $A947 x
SetIText $A98F x
Setltmlcon $A940 x
SetltmMark $A944 x
SetltmStyle $A942 x
SetMaxCtl $A965
SetMenuBar $A93C
SetMFlash $A94A
SetMinCtl $A964
SetOrigin $A878
SetPBits $A875
SetPenState $A899
SetPort $A873
SetPt $A880
SetPtrSize $A032 x
SetRecRgn $A8DE x
SetRect $A8A7
SetResAttrs $A9A7
SetResFileAttrs $A9F7
SetReslnfo $A9A9 x
SetResLoad $A99B
SetResPurge $A993
SetStdProcs $A8EA
SetString $A907 x
SetTrapAddress $A071
Set Vol $A021
SetWindowPic $A92E

411

THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II

Trap Name Trap WVrd Possible Heap Compact

SetWRefCon $A91B
SetWTitle $A91A x
SetZone $A027
Shield Cursor $ABSS
ShowControl $A957 x
ShowCursor $AB53
Show Hide $A90B x
Show Pen $AB97
ShowWindow $A915 x
SizeControl $A95C x
SizeRsrc $A9AS
SizeWindow $A91D x
SlopeFromAngle $ABBC
SpaceExtra $ABBE
Status $A005
StdArc $ABBD x
StdBits $ABEB x
Std Comment $ABF1 x
StdGetPic $ABEE
StdLine $AB90 x
Std Oval $ABB6 x
StdPoly $ABCS x
StdPutPic $ABFO x
StdRect $ABAO x
StdRgn $ABDI x
StdRRect $ABAF x
Std Text $ABB2 x
Std'IXMeas $ABED x
StillDown $A973 x
StopAlert $A9B6 x
StringWidth $ABBC x
Stuftllex $AB66
Sub Pt $AB7F
SysBeep $A9CB x
SysEdit $A9C2 x
SysError $A9C9 x
System Click $A9B3 x
SystemEvent $A9B2
SystemMenu $A9BS x
SystemTask $A9B4
TEActivate $A9DB x
TE Cal Text $A9DO x

412

ROM TRAP WORDS AND HEAP COMPACTION FLAGS

Trap Name Trap WVrd Possible Heap Compact

TE Click $A9D4 x
TE Copy $A9DS x
TECut $A9D6 x
TEDeactivate $A9D9 x
TEDelete $A9D7 x
TE Dispose $A9CD x
TEGetText $A9CB x
TE Idle $A9DA x
TEinit $A9CC x
TE Insert $A9DE x
TE Key $A9DC x
TENew $A9D2 x
TEPaste $A9DB x
TE Scroll $A9DD x
TESetJust $A9DF x
TESetSelect $A9Dl x
TESetText $A9CF
TestControl $A966 x
TEUpdate $A9D3 x
TextBox $A9CE x
TextFace $A888
TextFont $A887
TextMode $A889
TextSize $A88A
Text Width $A886 x
TickCount $A975 x
'ThlckControl $A968 x
TrackGoAway $A91E x
UnionRect $A8AB
UnionRgn $A8ES x
UniqueID $A9Cl
UnLoadSeg $A9Fl x
UnlodeScrap $A9FA x
UnMountVol $A014
UnpackBits $A8DO
UpdateResFile $A999
UprString $A084
UseResFile $A998
ValidRect $A92A x
ValidRgn $A929 x
Vlnstall $A051
VRemove $A052

413

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

Trap Name

WaitMouseUp
Write
WriteParam
WriteResource
XOrRgn
ZeroScrap

Trap W&rd

$A977
$A003
$A056
$A9BO
$A8E7
$A9FC

414

Possible Heap Compact

x

x
x

D
Index

AS. See Registers.
A-trap, 29-30
AddDrive, 234-235
AddResMenu, 46
APPL, 251-252
Application globals, 7-10, 12, 26, 64, 115, 185,

210, 214, 218, 231
Application heap. See Heap.
ApplLimit, 5
ApplScratch, 212, 217, 222, 224
ApplZone, 5
AppPatch, 293-294
Assembler, 9

BeginUpdate, 273
BlockMove, 35, 246
BMI, 128, 231
BOOLEAN, 83, 159, 188-189, 200, 261, 274-275
BRA, 121
BSET, 287
BufPtr, 210-212, 217, 222-223, 231, 236, 242-243

CalcMask, 45
CatMove, 136
CDEF, 22
CheapTalkll, 149-150, 157, 175-177, 220,

310-324
CheckPitch, 157, 165, 169-170, 318
CheckRate, 157, 165, 167, 169, 317
Chooser. See Desk accessories.

415

Clipboard, 1, 48-52, 54-56, 58-62, 64-69, 71,
73-74

Close, 238-239, 241, 251, 276, 359
CloseDialog, 199
CloseWD, 136, 145
CODE, 19, 22, 24-25, 39, 42, 175, 205, 251
Control, 238-241, 247-249, 357-358
Control Manager, 21, 156
CopyMask, 45
CurrentAS, 5, 10
CurrentLineReg, 94-95
CurResFile, 227, 231
Cursor, 9

DBRA, 94
DC, 9, 26, 117
Debuggers, 16-17, 22-24, 29, 42, 210, 238, 243
DelMenultems, 46
Desk accessories, 2-3, 46, 48, 50-51, 53, 58,

61-64, 66, 73-74, 158, 188, 237-238, 256,
258, 273, 275

Chooser, 75
and clipboard conversion, 67-70, 72-74
Scrapbook, 3, 48, 70

Desk Manager, 54
Desk scrap. See Scrap.
DeskToPrivate, 54, 56, 58, 71
DetachResource, 232
Device drivers, 27, 147, 215, 227-229, 232-233,

237, 239, 242, 248

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II -----

and DCE, 239-241, 243-244, 247
disk driver, 28, 238, 244-245, 249, 256
print driver, 79, 90, 100
RAM disk driver. See RAM.
serial port, 3, 238
sound driver, 3, 6, 237
speech driver, 149-158, 167, 172-174, 311-312

Device Manager, 208
Dialog box, 70, 149, 155, 157, 179-181, 186, 195
Dialog filter procedure, 152, 159-163, 165,

188-191, 193-194, 196, 207, 220
Dialog-hook procedure, 117, 119-122
Dialog Manager, 46, 163, 173, 179, 185, 194,

206, 253
Dialogs, 184-185, 187-188, 191, 194, 196, 199,

205-207, 209-210, 213, 217-220, 224, 226,
325-327

UITest, 325-334
and user items, 179-182, 186-188, 191-197,

199, 205-207, 329-330
DialogSelect, 105
DirCreate, 136
Disk Initialization Package, 235
DisposDialog, 173, 199
DITL, 102, 119, 175, 179-181, 253
DIZero, 235-236, 256
DLOG, 22, 102-103, 119, 175, 179-182, 253
DoCancel, 224
Dolnstall, 221-222, 343-344
DrawDialog, 155-157, 220
Draw, 276-278, 281
DRVR, 227-232, 234, 252-253, 256, 275
DS, 9, 26
DSPT, 29

Edit text boxes, 46, 122, 149, 152, 157-158,
160-163, 166, 167-168, 209, 219

Englishlnput, 148
EraseRect, 101
Event mask, 71, 238
EventRecord, 189, 192
Exception Edit, 148, 154
Exception vectors. See Pointers.
ExitToShell, 42, 174, 199

File filter, 116-118
File Manager, 28, 46, 112-113, 115, 122, 126,

135-136, 208, 234, 247

416

FilterProc. See Parameters.
FIND, 19-20, 22
FindDltem, 46
Finder, 2, 3, 9, 16, 42, 112, 174, 199, 208, 210,

216, 225, 231, 241, 247-248
FindWindow, 45
FixResFile, 230-231
FKEY, 22
FONT, 22
Forth, 76
FrontWindow, 62-63

GetCatlnfo, 136, 141-142, 144
GetDitem, 121, 156, 167-168, 171, 179, 184,

186-187, 191-192, 195-196, 219
GetEOF, 30, 33
GetFCBinfo, 136
GetFilelnfo, 117, 129, 141, 145
GetHandleSize, 54
GetlndResource, 285-286
GetlText, 165, 167
GetMouse, 202
GetNamedResource, 230
GetNewDialog, 155, 179, 181, 185, 220
GetNewWindow, 28
GetNextEvent, 16, 29, 61, 71, 158-159, 188
GetResource, 157, 182, 198, 227-228
GetScrap. See Scrap.
GetTrapAddress, 32-34, 42
GetVollnfo, 33, 128-129, 135, 138, 145
GetWDinfo, 136
Global variables, 3-5, 9-10, 12, 19-20, 22, 26,

32, 42-44, 46, 81, 87, 91, 153-154, 184, 186,
188, 209-210, 212, 214, 220, 239, 260-261,
264, 283, 285, 311, 325, 338-339, 364-365,
387

GlobalToLocal, 192
Go-away box, 45
GrafGlobals, 9
GrafPorts, 5, 12, 19, 77, 84-85, 87, 91-92, 95,

98-100, 110, 185-186
GrayRgn, 5
Grow, 269
Grow box, 261, 263, 269, 274, 284-285
GrowWindow, 270

Handles, 5, 9, 11, 13-15, 20-22, 46, 54, 56-57,
80-81, 83, 85, 90, 100, 148, 153-154,

156-158, 166-168, 171, 219, 228-229, 232,
243-244, 259-260, 263, 265-266, 277-279,
281, 285

locked and unlocked, 23-26, 55, 198-199, 275
non-purgeable, 15
and print record, 87
purgeable, 14-15, 23-24, 26

HClrRBit, 46
Heap, 9-15, 17-19, 22, 26, 43, 46, 85, 87, 173,

185, 199
application heap, 1-5, 16, 20, 42, 48, 53, 210,

217, 253
compaction, 14-16, 23, 25-26, 402-414
heap dump (HD), 17-18, 20-21, 24
heap zones, 2, 5, 210
system heap, 3-5, 19, 31, 31-35, 37, 39-40, 42,

229, 232, 234, 242-243, 253, 256
HeapEnd, 5
HFS, 3, 46, 112-113, 115, 122, 124-127,

131-136, 143, 145-146, 208, 235
HFSDispatch, 46, 136
HFSFileSearch, 136-139, 306-309
HGetVInfo, 126, 135, 137-139, 145
HideDitem, 46
Highlight, 276-277, 281-282
HLock, 15
HomeResFile, 286
HSetRBit, 46
HSetVollnfo, 136
HUnLock, 15, 199

IAZNotify, 42-43
IAZPtr, 42-43
ICON, 278-279, 281, 285-286
Icon Lister, 283
IconList. See List Manager.
IL (immediate list), 20
InfoScrap. See Scrap.
INIT, 32-35, 38-39, 278
InitApplZone, 42
Initialization, 275-276, 311, 325, 339, 350
InitManagers, 214, 375, 394-395
InitMenus, 154, 184
InitPatch, 289-292
InitWindows, 19
InputOK, 191-194
InsetRect, 197, 278

417

InsMenuitems, 46
INTEGER, 140, 275, 283
InvalidScroll, 269, 272-373
InvalRect, 271
InvertRect, 202-203
IoFLUsrWords, 118
IPrErr, 5
IsDialogEvent, 104-105
ItemHit, 105, 159, 161, 163, 188-189, 193, 220
ItemProc, 194

JIODone, 239-241, 247
JMP, 34-36, 39-40, 42
JSR, 80
Jump table, 8-9, 210

KillIO, 241, 247

LastTopWindow, 64-65
Launch, 16, 212, 222, 224
LDEF, 260, 275-279, 281-283, 285, 288, 381-385
LINK, 69, 134, 146, 175, 190, 194, 201, 256
Linker, 8-9, 37-38, 89, 150, 175, 183, 204, 253,

256, 275, 283
List Manager, 257-260, 262, 265-267, 269, 273,

275, .278, 283-285, 287-288, 364, 386
IconList, 386-399
Lister, 364-380
ListMacros, 361-363

List window. See Windows.
ListActivate, 274
ListAddRow, 283, 285
ListClick, 266
ListClrCell, 267
ListDispose, 265
ListDoDraw, 265, 272
ListGetCell, 267
ListGetSelect, 267-268
ListNew, 259-261, 263, 265, 269, 275, 278,

283-285
ListNextCell, 264, 268
ListReg, 263
ListSetCell, 264-265, 272
ListSize, 271
ListUpdate, 272-273
LockRng, 136

----- THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME 11 -----

MacDraw, 76, 101
MacinTalk, 147-150, 157-1S8, 166-167, 174, 178
MacPaint, 22, 4S, 287
MacsBug, 16-20, 22
Master pointer, 13-lS, 18-19, 46
MaxApplZone, 46
MDEF, 22, 46
Memory, 1-2, 4-6, 8, 10-11, 16, 19-20, 22, 24,

28, 53, 66, 8S, 14S, 174, 185, 209-213, 217,
222, 227, 236, 241-24S, 2S8, 26S

block of, 1, 6-7, 9-10, 13, 18, 24, 8S
Memory Manager, 1-3, 10-lS, 18, 26, 28, 46, 205
MemTop, S
MENU, lS, 22
Menu Manager, 28, 46
MenuList, S
MenuSelect, 33, 36
MenuStatusReg, 62
MFS, 46, 113, llS, 122, 124-126, 130-132,

134-13S, 139, 141, 14S-146, 208, 23S
MFSFileSearch, 127, 137, 303-30S
MinHeap, 213, 217
ModalDialog, lOS, 117, 119, lSS-156, 1S8-16S,

178, 184, 187-189, 191-194, 207, 220
MoreMasters, 19
MountVol, 23S
MOVE.W, 187
MoveHi, 46
MultiPlan, SO-Sl
MultiScroll, 16-22, 24, 61, 88, 126
MyFilter, 188
MyScrapCount, S9, 64-6S

NewHandle, 22
NumCopiesReg, 94
NumToString, 152, 168, 218, 226

Objects
non-relocatable, 10, 12, lS, 18-19, 34-3S, 39,

42, 185
relocatable, 13-lS, 37

OffsetRect, 197
Offsets, 21-22, 31, 39, 56, 109, 116, 136-137,

140, 183, 190, 229, 238, 245, 247, 265, 27S,
277, 279

Open, 46, 122-124, 1S4, 231, 236, 237, 239,
241-244, 2Sl, 3SS-356

OpenDoc, 122-124
OpenWD, 132, 136, 144-146

PACK, 22, 46
Pack2, 23S
Pack3, 116
Pack7, 1S2
Package Manager, 22, 46, 116, 152, 212
PackMacs.Txt, llS
PackO, 2S7-2S8
Parameters, 16, 24, 37, 4S-46, SS, 84, 89, 104,

116, 119-120, 134, 142, 144, 146, 192-19S,
201, 218, 237, 2S9, 263, 269-270, 273,
27S-277, 279, 284-285

application parameters, 9-10, 28, 210
block of, 117-118, 122-12S, 127-129, 134-138,

140-141, 144, 21S, 231, 239, 241, 244,
247-248, 2SO

dStorage, 18S
filterProc, 188
handle, 80-81, 87
hNext and vNext, 264
LSelect, 281
pointer, 8S, 117, 1S8-1S9, 191
rectangle, 193, 198, 200, 260-261
register-based, 33
stack-based, 27, 88, 139-140, lSl, 160, 186,

189-190, 194, 196, 2S8
value, 3, 169
VAR, 56, lOS, 121, 1S3, 1S9, 161, 184,

186-189, 19S, 202, 214, 264, 267
ParamText, 218-219, 226, 2S3
PAT, 22
Patches, 3, 31-40, 42-44, 47, 112, 294
PEA, 187
PeriodicTasks, 61-63, 74
Phonemes, 148-149, 1S7-158, 166
PHNM, 1S7, 17S
PhoneticOutput, 148
PicComment, 100-101
PICT, 49, Sl, 56-S7
Plotlcon, 279
Pointers, S, 9-13, 19-20, 22, 29, 32, 34-3S, 37,

42-44, S4-SS, 62, 84-8S, 87, 102, 104, 117,
122, 128, 1S2, 1S8-1S9, 161, 167, 179, 181,
184-189, 191, 194-19S, 198, 20S-206, 215,
217, 222, 224, 229, 234, 239, 241-244, 246,
248, 260, 277

DCE. See Device drivers.
exception vectors, 29
LMessage, 277

PortRect, 261, 271
PostScript, 76-77, 100
PrClose, 80, 87
PrClosePage, 85, 97
PrDefault, 80
PrEqu.Txt, 105
PrError, 79-80
Prime, 238-241, 244, 356-357
PrlnfoPT, 107, 109
Print idle, 102-106
Print Manager, 1, S, 75-76, 79-81, 83-84, 86-91,

97, 99, 102-104, 107-108, 110-111
PrintDoc, 88-90
PrintModule, 295-302
PrintRecReg, 81
PrivateToDesk, 54, 57, 59, 71
PrJob, 80
PrJobDialog, 83-84
PrOpen, 79-80, 87
PrOpenDoc, 84-85, 102
PrOpenPage, 85, 95
PrPicFile, 85-87, 94, 98, 106
PrSetError, 102, 104-105
PrStatus, 87, 106
PrStl, 108-109
PrStlDialog, 81-82
PrStyle, 80
PrValidate, 80
PtlnRect, 192, 202
PutScrap. See Scrap.

QuickDraw, 9-10, 26, 28, 45, 49, 76-77, 85, 97,
100-101, 210

QuickEqu.Txt, 19

RAM, 30, 32, 214
RAM disk, 208-210, 212-213, 215-219,

221-227, 230-237, 239-256, 355-360
RD+ Install, 338-355

RDWH, 212, 217, 222
Read, 238-239, 245-246
Reader, 148-149, 153-154, 166-167, 174
Recursion, 132, 134-135, 144, 146
RefNwn, 141

419

Registers, 27, 32, 37, 44, 54-55, 123-124, 127,
136, 240, 244, 247, 270

Register AS, S, 9, 10, 57, 184
safe register, 81, 89, 152, 184, 231, 260, 263

Resource Editor, 38, 72, 179, 248, 257
Resource Manager, 28, 45, 227, 230, 232
RMaker, 38-39, 72, 149, 157, 175, 179-180, 183,

205, 218, 227, 251-252, 256, 275, 283
RMover, 38
ROM, 29, 31, 34, 44-47, 113, 183-184, 215, 257

operating system, 3, S, 24, 27-28, 30, 32-33,
43, 128, 134, 215, 232, 238-239, 256

toolbox, 1, 3, S, 10, 12, 27-28, 30, 32-33, 45,
185, 400

RTE, 247
RTS, 44, 239, 244, 247, 251

Scrap
desk scrap, 1-3, S, 19, 48-56, 58-61, 64, 66,

69-74
GetScrap, S6-S7
InfoScrap, 59
private scrap, SO-S4, S7-60, 62, 66, 69, 71-74
PutScrap, SS
and Text Exit (TE), 50-51, 53-54, 58
ZeroScrap, 54-SS

Scrap Manager, 48, 50-51, 53, 56, 59
Scrapbook. See Desk accessory.
ScrapCount, 59, 64
ScrapHandle, S
Screen buffer, 6-7, 20, 210, 222, 224
SCSI Manager, 46
SCSIDispatch, 46
SdVolume, S
SearchDir, 139-142, 144-145
SeedFill, 45
Segment Loader, 8-9, 38, 210, 212
Segmentation, 19, 24-26, 205-206
SetCatlnfo, 136
SetCtltitle, 121
SetCtlValue, 156, 171-172
SetDitem, 179, 186-188, 194, 205
SetIText, 168, 219
SetNatural, 171, 319-320
SetPort, 18S
SetResFile, 227
SetResFileAttrs, 230
SetResinfo, 230

------ THE COMPLETE BOOK OF MACINTOSH ASSEMBLY LANGUAGE PROGRAMMING, VOWME II ------

SetResLoad, 43, 227, 230-231
SetRobotic, 171-173, 320-321
SetStdProcs, 77
SetTrapAddress, 32-33, 3S, 42-43
SFGetFile, 22, 113, llS-117, 119, 122, 2S7
SFPutFile, 22, llS-116, 122
SFReply, llS-117, 122-124
ShowDitem, 46
ShowWindow, 180-181, 187
SIZE, 72
SizeWindow, 270
Sound buffer, 6-7, 210, 222, 224
Speech driver. See Device drivers.
Speech Lab, 147, 1S7
SpeechOff, 148, 174
SpeechOn, 148, 1S4-1SS, 1S8
SpeechPitch, 149, 172
SpeechRate, 149, 169
SpeechSex, 149
Stack, 1-3, 7, 24, 27, 3S, 37, 44, S4, 87-89, 116,

122, 136, 139-140, lSO, 169, 186, 189, 194,
210, 23S, 247, 258, 270

Stack frame, 89, 99, 102, llS, 118, 120-121,
123-124, 127-128, 134, 137-140, 144-146,
160, 190-191, 194-196, 199, 201, 277

Standard File, 113-117, 119-120, 122, 12S-126,
14S, 288

StartCharReg, 94
Status, 238-241, 249-2Sl, 3S9
StdText, 77
StillDown, 203
STR, 196, 198
StringToNum, 1S2-1S3, 167
Switcher, 2, 32, 39, 66-67, 69-74, 174
SysBeep, 37, 44
SysEqu.D, 44
SysEqu.Txt, 4
SystemTask, 60
SysZone, S

TE Manager, SO, 88
TE Scrap. See Scrap.
TECopy, SO
TECut, SO
TEHandle, 88, 127-128, 138, 163
TEPaste, Sl
TERecord, 20, 88, 92, 92-96, 126
TEScrpHandl, S, 54, 57

420

TEScrpLent, S7
TESelView, 30, 33
TEXT, 49, Sl, S4, S6-S7, 69
Text edit, 46, S3, S7, 127-130, 136, 138, 142,

163, 219
TextBox, 96-97, 101, 182, 197-199
TheZone, S
TMON, 16-20, 22
Tool.ate, 216-217, 22S-226, 34S
ToolEqu.Txt, 20-21
TooSmall, 217, 224-22S, 344-34S
TrackBox, 45
TrackControl, 193, 200
TrackGoAway, 45
TrackRect, 183, 188, 192-193, 200-201, 204,

33S-337
Traps, 28-30, 33, 40, 42-43, 46, 402-414

trap dispatch table, S-6, 30-32, 34, 37, 42
trap dispatcher, 5, 30-31

UNLK, 134, 146, 200
UnLoadScrap, S3
UnLoadSeg, 25, 205-206
U nlockRng, 136
Update, 271
UpdtDialog, 46
UseResFile, 4S, 231

VALU, 69
VAR. See Parameters.
ViewRect, 261

WDEF, 22, 44-4S
WDrefNum, 144
Window Manager, 19, 28
Window List, S
Windows, 28, 59-65, 74, 110, 122, 284

and dialogs, 179-181, 187-188
list window, 2S7, 260-261, 269-275, 278

WMgrPort, S, 19-20
Write, 238-239, 24S-246

XDEF, 89, 183, 200
XOR pen, 281
XREF, 80, 89, 136, 149-150, 183, 204

ZeroScrap. See Scrap.
Zoom box, 45

More Macintosh Books from Scott, Foresman and Company

The Complete Book of
Macintosh Assembly
Language Programming,
Volume I

by
Dan Weston
568 pages
softbound
$25.95
code: 18379

Written for experienced programmers who are new to assembly language, The
Complete Book of Macintosh Assembly Language Programming, Volume I, in
troduces and explains key concepts with a series of fully functional computer pro
grams. This book develops and builds on such useful examples as a simple,
window-based doodle program, a text editor that reads and writes disk files , and four
handy desk accessories.

The Complete Book of Macintosh Assembly language Programming,
Volume I, shows you how to

• use the 68000 Development System, its Editor, Assembler, and Linker
• construct programs with over 400 ROM subroutines
• open windows, use dialog, and write desk accessories
• draw with the QuickDraw routines
• create your own unique icons

This comprehensive guide shows you how to use the many examples in the book as a
basis for your own projects, and includes complete source code for all the programs,
along with debugger hints and a wealth of other helpful technical information.

More Macintosh Books from Scott, Foresman and Company

Programming the
Macintosh:
An Advanced Guide

by
Bill Twitty
384 pages
softbound
$19.95
code: 18250

L

~I

PROGRAMMING THE I
MACINTOSH
An Advanced Guide
W illiam B. Twitty

One of the first Macintosh books written for experienced programmers, this hand
book explores the fundamentals of the Macintosh and its operating system in-depth.
Inside, you'll discover a wealth of technical information on Macintosh hardware, soft
ware, and peripherals.

Programming the Macintosh

• shows you how to use Macintosh systems software
• offers an introduction to the 68000 microprocessor
• explains how to program in Macintosh Pascal and Microsoft BASIC
• discusses each of the compilers available for the Macintosh
• shows how to use the system routines that control menus and windows, and

more!

Packed with useful information, this book gives you a comprehensive understandin~
of the inner workings of the Macintosh.

More Macintosh Books from Scott, Foresman and Company

The Magic of Macintosh:
Programming Graphics
and Sound

by
Bill Twitty
368 pages
softbound
$19.95
code: 18253

THE MAGIC OF
MACINTOSH
Programming Graphics
and Bound
William.a. 'IWltty

"This is the best Mac programming book that I have read to date by any
author . . . I have been a programmer for many years and have worked for Apple
Computer also for many years and this book is just what the doctor ordered. The
programming examples are not only useful, but are fun. I found myself wanting
more:'- Ricky N . Kurtz

This comprehensive tutorial shows programmers how to work wonders with graphics
and sound on the Macintosh. Bill Twitty explains how to use QuickDraw and the
other ROM software that supports music, graphics, and windows. The Magic of
Macintosh also shows you how to work with fonts, how to work with coordinate sys
tems and data structures, and how to produce music on the Macintosh, and more.

This book also covers such advanced topics as spline curves, fractals, and CAD
systems.

With this helpful guide, you can start writing your own graphics programs
immediately.

More Macintosh Books from Scott, Foresman and Company

Programming C
on the Macintosh

by
Terry A. Ward
384 pages
softbound
$21.95
code: 18274

Terry A. H'anl

C is rapidly becoming the language of choice for serious microcomputer program
mers. The first C book specifically for Macintosh users, Programming C on the
Macintosh offers a thorough introduction to the C language and to important princi
ples of structured programming and software design.

Written for experienced programmers and for software developers using the Macin
tosh, this definitive reference book

• evaluates five major C compilers for the Mac
• explains the Toolbox in detail, including QuickDraw and routines for menus,

windows, text editing, and event management
• includes a handy resource guide to additional sources of C products, articles, and

software
• provides dozens of program examples and illustrations
• concludes with a series of applications programs which show the Toolbox routines

in action

Master C on your Macintosh with this comprehensive guide.

More Macintosh Books from Scott, Foresman and Company

Learning
Macintosh Pascal:
A Guide for Programmers

by
Joseph Boyle Wikert and Sam Davis
356 pages
softbound
$19.95
code: 18333

Macintosh Pascal is an easy-to-learn computer language, yet it is powerful enough to
create sophisticated programs. This comprehensive tutorial helps beginning and ex
perienced programmers master Pascal on the Macintosh.

Learning Macintosh Pascal '\t.

• focuses on the unique features of MacPascal, showing how to create windows and
program the mouse

• provides dozens of short program examples and screen displays
• explains major concepts of structured programming and top-down design
• shows how to program graphics, animation, sound, and music
• clearly explains such advanced topics as pointers, linked lists, trees, stacks, and

recursion
• includes four useful applications programs which apply important topics discussed

in the book

In an informal, readable style, the authors discuss the fundamentals of MacPascal in
detail- from the basic structure of a Pascal program to procedures, data types, varia
bles, and arrays. If you want to learn MacPascal, this is the book for you.

/

___________ Here's How to Order __________ _

. Contact your local bookstore or send this form to:

Scott, Foresman and Company
Professional Publishing Group
1900 East Lake Avenue
Glenview, IL 60025
(312) 729-3000

Qty. Code#

Total Order

State and/or Local Taxes

6% of Total before taxes for postage*

Total

Please check method of payment:

In Canada, contact:
Macmillan of Canada
164 Commander Blvd.
Agincourt, Ontario
MIS 3C7

Title

D Check/Money Order D MasterCard D VISA

Amount enclosed $. ______ _

Price

$

$

$

$

Credit Card No.------------ Exp. Date-----------

Signature--------------

Name (please print)--------------------------

Address-----------------------------~

City------------------ State ____ Zip-------

*If you enclose a check with your order, there is no charge for postage.

Full payment must accompany your order. Prices subject to change without notice.

Al8583

> $22 .'95

The Ultimate Boo on i~ac Assembly Language Programming
T:be Complete Book of Macintosh h!>:it.'lllbly Language Programminr,, Volume Il, is designed for experienced
programmers and software developers. This book provides you with the~ in-depth knowledge you need to communi
cate directly with the Mac and access its full programming power.

In this comprehensive book, you'll find valuable information that you won't find anywhere else, together with prac
tical working examples that you can immediately incorporate into your own programs.

The Complett.- .. look of Macinto·;h Assembly Languag ' Programmi ~' Volume II

covers the new ROMs of Macintosh Plus
gives Instructions for programming the print manager, the list manager, and the speech driver
shows how the clipboard is used and how it is converted by Switcher
expliins how to use the new hierarchical file system (HFS)
includes complete source code listings in the appendix

lume I of I lite Complt:~e Bonk of l>~~ILi:osh Assembly Languar:e Programming starts off with a definitive
i1~troduction to Mac programming and prepares you for the more advanced concepts and techniques found in Volume
l . Together, these two books provide the best, most comprehensive approach to Macintosh assembly language
p ogramming available.

I you want to master Macintosh Assembly Language Programming, ~ b.e Ct>mpkte Boo!' o~ Mac.nto'>_ Asi. mb y
I guage Prot· ~-1..i .-i.in 7, V1,i me,, - ; L .=i r are for you.

<->-• 1! ~ Jn is a professional software developer in Salem, Oregon. A member of
Apple's Certified Developers Group, he has bern writing assembly language on the
Macintosh sin August 1984. A former teacher who is still involved in computer
training, Mr. Weston has given many workshops oil Macintosh assembly language
to numerous computer users. He is alrn the author of THE COMPLETE BOOK
OF MACIN10SH ASSEMBLY LANGUAGJ; PROGRA.\1.MING, VOLUME I,
and THE SECOND LOGO BOOK, both published by Scott, Foresman and
Company.

ISBN 0-673-18583-4 ,

