
•

PAULA.SAND

THE FIRST BOOK OF MACINTOSH™ PASCAL

THE FIRST BOOK OF
MACINTOSH™ PASCAL

Paul A. Sand

Osborne McGraw-Hill
Berkeley, California

Published by
Osborne McGraw-Hill
2600 Tenth Street
Berkeley, California 94710
U.S.A.

For information on translations and book
distributors outside of the U.S.A., please write to
Osborne McGraw-Hill at the above address.

Copy II Mac is a trademark of Central Point Software, Inc.
Macintosh is a trademark of Apple Computer, Inc.

THE FIRST BOOK OF MACINTOSH™ PASCAL

Copyright © 1985 by McGraw-Hill, Inc. All rights reserved. Printed in the
United States of America. Except as permitted under the Copyright Act of
1976, no part of this publication may be reproduced or distributed in any
form or by any means, or stored in a data base or retrieval system, without
the prior written permission of the publisher, with the exception that the
program listings may be entered, stored, and executed in a computer system,
but they may not be reproduced for publication.

234567890 DODO 898765

ISBN 0-07-881165-1

Cindy Hudson, Acquisitions Editor
Paul Hoffman, Technical Editor
Catherine Pearsall, Copy Editor
Cheryl Creager, Composition
Yashi Okita, Cover Design

CONTENTS

Introduction vii

Chapter 1 Getting Started With Macintosh Pascal 1

Chapter 2 Variables and Loops 29

Chapter 3 Macintosh Pascal: Editing and Disk Use 83

Chapter 4 Decision Making 101

Chapter 5 Macintosh Pascal Debugging Aids 131

Chapter 6 More Data Types 151

Chapter 7 Introduction to Library Functions 175

Chapter 8 Introduction to Library Procedures 213

Chapter 9 Your Own Procedures and Functions 257

Chapter 10 Your Own Data Types 289

Chapter 11 Structured Data Types: Arrays,

Records, and Sets 303

Chapter 12 Macintosh Pascal Structured Types 349

Index 403

INTRODUCTION

This book is an introduction to the Pascal programming lan
guage and to the version of that language on the Apple
Macintosh computer. You can use this book regardless of your
level of expertise in computer programming. If you are an
absolute beginner, don't worry; it is our assumption that you
know nothing about either programming in general or Pascal
in particular. We will explain everything you need to know in
order to write, enter, and run programs in Pascal on the
Macintosh.

Even if you already have some familiarity with the Pascal
programming language, you will find this book useful.
Macintosh Pascal is like no other version of Pascal you have
ever used-just as the Macintosh itself is like no other com
puter you have used. We will attempt to explain and demon
strate many of the major features of Macintosh Pascal, espe
cially thos·e that aren't found in "Standard" Pascal.

Book Philosophy

Computer programming is a skill that is learned by doing. No
book yet written can take the place of the actual experience
you will gain in designing and writing your own programs.
Realizing this, we will not. promise that simply reading this
book will make you a seasoned expert in Macintosh Pascal;
our goals are more modest. This book will

• Provide you with a description of Macintosh Pascal's fea
tures and how these features are used in programs.

vii

• Give you the rules of the language: what is legal, what
isn't legal.

• Show you many examples of Macintosh Pascal pro
grams that demonstrate how the language can be used
to access many of the hardware and software features of
the Macintosh itself.

• Provide you with some suggestions for changing the
programs presented here as well as ideas for your own
programs. Ideally, this should get you started in learn
ing how to program on your own.

In general, the emphasis in this book will be on the final
two points: to show you how Macintosh Pascal works and to
spark your own curiosity enough to discover more on your
own. We will lean heavily on example programs throughout
the text to accomplish this.

Somewhat less emphasis will be placed on the more "for
mal" aspects of Pascal: the precise rules that make one Pas
cal statement legal and another one unacceptable. Many of
the formal rules of Pascal are designed to make sense of very
unusual program constructions, ones unlikely to occur in
everyday programming. We will forego explaining such rules
in all their mind-numbing detail. Instead, we will concentrate
on developing your intuitive sense for what's right and what's
wrong in Pascal.

As a user of Macintosh Pascal, you own or have access to
the documentation provided with the Macintosh Pascal soft
ware. You should look upon this book as a supplement to the
Macintosh Pascal documentation, not as a replacement. The
Macintosh Pascal reference manuals are complete, concise,
and rigorous. This approach has the advantage that you may
look there for the exact rules on what you may or may not do
in your Pascal programs. The disadvantage is that it is diffi
cult for programming novices and other programmers not
familiar with Macintosh Pascal to sort through the descrip
tions of every last nit-picking rule and restriction to extract
the truly useful information present in the reference
manuals: the knowledge you will need every time you write a
Pascal program.

In this text, we provide a more leisurely and less formal
introduction to Macintosh Pascal. We concentrate on the
"good parts" of Macintosh Pascal: those that can be used eas
ily by both programmers unfamiliar with either Pascal and

viii The First Book of Macintosh Pascal

programmers who know Pascal but may not be acquainted
with the Macintosh's version of the language.

Why Learn to Program?

As you probably know, everything the Macintosh (or any
other computer) does is controlled by its software: programs
that tell the computer what to do in various situations and
how to accomplish useful tasks. Learning to program is,
simply stated, discovering how to tell the computer to "do
things."

For many people, computer use is restricted to using pro
grams someone else has written. Given the increasing sophis
tication and usefulness of commercially available computer
software, this is a perfectly workable strategy for many, if not
most, computer users. You have an inalienable right not to
learn to program your computer, if you so choose.

Having said that, however, here are some reasons why you
might, after all, want to undertake the task of writing your
own programs:

• Learning to program will give you a better idea of how
the computer works and what it can and cannot do.

• Programming is, like mathematics, an intellectual dis
cipline that is inherently worth knowing.

• Knowing how to program can stand you in good stead
when a computer problem arises at work or at home for
which no available prewritten software applies. Depend
ing on your expertise, you may be able to write a pro
gram to solve the problem, often with less time and
expense than if you had sought commercially available
software for the same purpose.

• Programming can be profitable. People who don't know
how (or don't have time) to program will pay you money
to make their computer jump through designated hoops.

• Last, but not least, programming is fun-a truly end
less source of amusement. If you enjoy intellectual chal
lenge, thinking a problem through to its solution, and
the sense of accomplishment that occurs when some
thing works as it should, you will find programming to
be immensely enjoyable. In a sense, programming is the
ultimate computer game.

Introduction ix

Why Learn Pascal?

If you decide to learn to program, you need to learn at least
one programming language. In this book, obviously, we are
suggesting you learn the programming language called Pas
cal. Pascal was developed in the late 1960s by Niklaus Wirth.
His aims were to produce a language suitable for teaching
programming concepts clearly and systematically and to
make the language usable on a large number of computers.
His success is obvious: Pascal's popularity has increased
rapidly since its introduction, and versions of the language
are available on many computers, ranging from small, inex
pensive personal computers to large mainframe systems.

Why is Pascal so popular? The primary reason is that Pas
cal makes the job of writing, reading, and modifying comput
er programs easier than do many other programming
languages.

Here are some ways in which Pascal is a convenient lan
guage for programmers. (You need not worry if you don't
understand all or any items on this list, by the way. We'll be
seeing how all these things work later.)

• Pascal has "structured" control statements (while,
repeat, for, case, and if-then-else) that allow the pro
grammer to write clear and concise code with the flow
of control proceeding from top to bottom. The control
flow in programs written in languages lacking these
structured control statements often contains complex
webs of if tests and goto statements. Such programs are
often called "spaghetti code" because they are so diffi
cult for even experienced programmers to untangle.

• Pascal permits the programmer to break up a large
program into smaller, relatively independent procedures
and functions, each one of which performs a single, eas
ily understood task. Each procedure or function can
have its own set of "private" variables that are only used
when that procedure or function is executed. Each
procedure or function has well-defined input and output
parameters used for communicating with its calling
routine. This decomposition of a large program into
modules greatly aids the programmer in both the initial
design of the program and also in any subsequent modi
fications to the program; the modules can also be reused

x The First Book of Macintosh Pascal

in subsequent programs, decreasing the overall pro
gramming effort.

• Pascal allows programmers to define their own data
types and data structures in addition to those already
built into the language. Judicious use of this feature can
make a program more compact and easy to understand.

• Pascal allows the use of long identifiers for variables,
procedures, and functions. This allows the programmer
to use names with mnemonic significance, another aid
in understanding a program.

Although Pascal is a good computer language, it is not a
perfect one. And it isn't suitable for all applications. Rather
than go into Pascal's deficiencies here, however, we'll merely
note that a good deal of serious software development is car
ried out in Pascal. And even if Pascal isn't your programming
language of choice, you will find that learning Pascal will
make learning and using other programming languages
much easier.

Why Learn Macintosh Pascal?

As we will see in the first chapter, the "programming envi
ronment" provided by the Macintosh Pascal software is extra
ordinarily easy to use. In order to write Pascal programs on a
typical computer system, you have to learn how to use a
number of different programs, each with its own set of hard
to-remember commands and rules. This, fortunately, isn't the
case with Macintosh Pascal: there are no complex command
sequences to memorize, nor are there separate "editor,"
"compiler," or "debugger" programs to master. You need only
learn to use the Macintosh Pascal software in order to be able
to enter, run, and modify your own Pascal programs.

Macintosh Pascal uses most of the conventional elements
of the Macintosh user interface: pull-down menus, multiple
overlapping windows on the screen, mouse selection, and so
on. In fact, if you know how to use a word processing program
like Mac Write or Microsoft Word, you already know nearly
everything you need in order to enter your Pascal programs
into the computer.

Macintosh Pascal is therefore an excellent way to learn

Introduction xi

the Pascal language. But that's not all: built into Macintosh
Pascal is the capability for you to control nearly all aspects of
your computer's operations. These capabilities include some
not offered with languages costing many times more than
Macintosh Pascal. (As before, you shouldn't worry if you don't
understand everything-or anything-on this list as yet.)

• Macintosh Pascal provides a variety of numeric data
types that make it possible to write precise and reliable
computational programs.

• Macintosh Pascal supplies a number of extensions to the
Standard Pascal language that make writing common
application programs easier: there is a built-in string
data type, an otherwise clause .on the case statement,
sophisticated memory management, and direct-access
file I/0 routines, to name a few. (These final two topics
are relatively advanced, however, and won't be consid
ered in this text.)

• Macintosh Pascal allows programs to access most of the
capabilities of the Macintosh; for example, built-in rou
tines callable from Pascal programs allow your pro
grams to manipulate windows, use the mouse, the clock,
and the sound generator.

• Probably the most interesting feature is Macintosh Pas
cal's ability to call the QuickDraw routines and other
software contained in the Macintosh's read-only memory.
QuickDraw is an extensive "library" of routines that
allows your programs to perform awesome feats of
graphics magic.

Macintosh Pascal, while an excellent learning environ
ment, is not suited to writing large application programs. In
computer jargon, Macintosh Pascal is an interpreted lan
guage, rather than a compiled one. Compared to programs
written in other languages, you may observe that your Macin
tosh Pascal programs are rather slow. (They may very well be
fast enough for your purposes, however.) Also, your Pascal
programs can't run "by themselves"; the Macintosh Pascal
system must be present in the computer's memory at the
same time. This imposes a relatively restrictive upper limit
on the size of your Pascal programs.

On balance, however, Macintosh Pascal is an excellent
learning and programming tool for all but the most demand
ing applications.

xii The First Book of Macintosh Pascal

Hardware Requirements

Macintosh Pascal will run on any Apple Macintosh computer;
it will also run on an Apple Macintosh XL (Lisa) computer
system set up with the Mac Works Macintosh-emulation soft
ware. You may run Macintosh Pascal on a bare-minimum
Macintosh system with 128K bytes of memory and the single
built-in disk drive.

As with most software for the Macintosh, additional
hardware will make working with Macintosh Pascal easier. A
second disk drive, while not required, will greatly decrease
the time you spend on the drudgery of removing and insert
ing disks. If you add a printer to the system, you'll be able to
get listings of your Pascal programs on paper. Expansion to
512K bytes of memory will permit you to write and use much
larger programs under Macintosh Pascal than is possible
with a 128K system. (Memory expansion will also allow your
other Macintosh software to handle large amounts of data
more easily.) All programs in this book will fit easily in a
128K Macintosh, however.

How to Read the Rest of the Book

As previously indicated, computer programming is one of
those subjects that can't be learned by simply reading a book
(even a good book). So in order to get the most out of this
book, you should read it in front of your computer. Try the
example programs in each chapter as you read. Don't be
afraid to experiment with the example programs; we'll even
suggest some possible experiments to you as we go along.

Even more important to learning a computer language is
the ability to take the descriptions and examples of the lan
guage elements given here and apply them when the time
comes to write programs of your own. This, too, is an ability
that only comes with practice. In addition to the experiments
you can try out on our example programs, we'll suggest some
problems you can try to solve by writing your own programs
"from scratch."

If you are a novice to programming, simply start at the
beginning. You will find that the material in most chapters
depends heavily on information from previous chapters, so

Introduction xiii

skipping ahead to a seemingly more interesting chapter is
generally a bad idea.

If you already know some other version of the Pascal lan
guage, you will probably not want to plod through the chap
ters of this book that contain material you already know.
Macintosh Pascal is Pascal, after all, and if you know Pascal,
you already know an appreciable fraction of the material
covered in this book. You might find it more interesting to
take a fast track through "Macintosh Pascal-only" parts of
the book, skimming or skipping sections that cover material
you already know.

We will make it easy for you to do just that. Material in
this book that applies only to Macintosh Pascal will usually
be confined to individual sections and chapters, not scattered
throughout the text. For easy identification, these sections
and chapters will all have the word "Macintosh" in their
titles.

Chapter One will introduce you to Macintosh Pascal, tak
ing you through a step-by-step example of writing and run
ning a simple program. All readers should probably work
through this chapter.

Chapter Two introduces the fundamental concepts of Pas
cal: constants, variables, integer, real, and Boolean types,
assignment statements, expressions, operator precedence,
simple input and output operations, and looping control struc
tures. This chapter contains very little Macintosh-specific
material.

Chapter Three discusses advanced editing techniques
you'll use in Macintosh Pascal: selecting, cutting, pasting,
and copying blocks of text, finding and replacing pieces of
your program, and general disk housekeeping. Much of this
material will be familiar to those acquainted with other
Macintosh software, but some Macintosh Pascal-only rules
are discussed.

Chapter Four discusses Pascal's decision control structures:
if-then-else, case, and goto; it contains very little Macintosh
only material.

Chapter Five covers Macintosh Pascal's marvelous debug
ging aids: the Observe and Instant windows, program break
points, and step-by-step program execution.

Chapter Six explores six additional Macintosh Pascal data
types: characters, strings, long integers, and three additional
kinds of real numbers: computational, double, and extended.

xiv The First Book of Macintosh Pascal

Of these six data types, only characters are present in Stan
dard Pascal.

Chapter Seven is an introduction to built-in or library
functions available for use in your Pascal programs. This
includes both standard functions built into nearly every ver
sion of Pascal, and Macintosh Pascal functions to accomplish
tasks such as string manipulation, binary arithmetic, and
other special Macintosh operations.

Chapter Eight considers built-in library procedures in
Macintosh Pascal, including the first description of Quick
Draw routines.

Chapter Nine discusses how to go about programming
your own procedures and functions. This is mostly Standard
Pascal material.

Chapter Ten introduces the concept of defining your own
data types and illustrates the principle using enumerated and
subrange types.

Chapter Eleven covers Pascal's "structured" types: ar
rays, sets, and records, including variant records.

Chapter Twelve discusses many of Macintosh Pascal's
predefined types and how they are used to access additional
QuickDraw capabilities, as well as other Macintosh features.

Not covered in this text are "advanced" Pascal topics such
as recursion, file 1/0, pointers, and handles. Our coverage of
QuickDraw, while sufficient to allow you to write useful pro
grams that generate sophisticated graphics, doesn't cover
many powerful aspects of QuickDraw that are less easy to
use. Advanced sound generation using the four-voice synthes
izer, event management, direct "in-line" calls to the Macin
tosh's ROM Toolbox routines, and use of the Standard Apple Numeric
Environment (SANE) library are also not discussed in this
book.

Recommended Reading

The original definition of the Pascal language was described
in Pascal User Manual and Report by Kathleen Jensen and
Niklaus Wirth (Springer-Verlag, 1978). This book contains a
concise but well-written description of the legalities of the
Pascal language. It remains a good introduction to Pascal for
those who are familiar with another computer language.

Introduction xv

Recently both the American National Standards Institute
(ANSI) and the International Standards Organization (ISO)
have approved Pascal standards that clear up the minor
ambiguities contained in the original Jensen and Wirth Pas
cal. The "Level O" ISO Standard is equivalent to the ANSI
standard. A good, readable description is found in Standard
Pascal User Reference Manual by Doug Cooper (W.W. Norton,
1983).

In nearly all cases there is no difference between
ANSI/ISO Pascal and Jensen and Wirth Pascal. When we use
the term "Standard Pascal," we will be referring to either
one. In cases where there is a difference, we will explicitly
say which interpretation we are using.

xvi The First Book of Macintosh Pascal

GETTING
STARTED WITH
MACINTOSH PASCAL

A REVIEW OF

The first program to write is the same in all
languages ...

-B. Kernighan and D. Ritchie
The C Programming Language

(Prentice-Hall, 1978)

Our goal in this chapter is to acquaint you with most of the
basic operations you'll be performing every time you program
in Macintosh Pascal. You will learn how to enter programs
into the computer and how to correct the inevitable mistakes
you will make in the process. The chapter discusses how to
run your program once you have typed it in and how to make
further modifications to your program. You'll find out how to
save programs on disk and how to print them on your printer.

MACINTOSH FUNDAMENTALS

This book will assume that you have at least some experience
in operating the Macintosh. Since Macintosh Pascal and most
Macintosh applications use the same basic operations, if you
have used any other Macintosh program, you already know

1

just about everything you need to know to use Macintosh
Pascal.

If you are a complete novice to the Macintosh, we suggest
that you take time to explore the features of the Macintosh,
either by using the excellent "Guided Tour" casette tapes pro
vided with your computer or by following the more tradi
tional method of reading the Macintosh user manual.

In order to use Macintosh Pascal, you should be acquainted
with the following topics and terms:

• Moving the mouse. By moving the mouse around your
desktop, you move the pointer around the Macintosh
screen. Usually the pointer is an arrow pointing north
by northwest, but its shape changes depending on where
it is pointing and what the Macintosh is doing at the
time. (When necessary, the text will refer to the point
er's shape, for example the I-beam pointer.)

• Clicking. Many operations involve moving the pointer to
a certain object and then pressing and quickly releasing
the mouse button. In Macintosh jargon, this is called
clicking the object. For example, to "click the Pascal
disk icon" means to move the pointer to the picture of
the Pascal disk on the screen and then press and quickly
release the mouse button. Like most operations on the
Macintosh, this is far easier done than said.

• Dcruble-clicking. This operation only differs from click
ing in that you press and release the mouse button twice
in quick succession after positioning the pointer.

• Pressing. To press something means to move the pointer
to it and then hold down the mouse button without mov
ing the mouse.

• Dragging. To drag, you position the pointer on an object;
press the mouse button and, holding it down, move the
mouse to another position; then release the button. The
object to which you originally pointed will move to the
new pointer location.

• Menu selection. A menu (a list of possible command
choices) is displayed when you pr~ss one of the words or
phrases in the menu bar at the top of the screen. To
choose one of the commands, drag to the command you
want and release the mouse button. For example, if you
were instructed to "choose Go from the Run menu," you
would (1) move the pointer to the word "Run" in the

2 The First Book of Macintosh Pascal

menu bar, (2) press and hold the mouse button, (3) move the
pointer downward in the displayed menu until the word
"Go" was highlighted, and (4) release the mouse button.
Again, this sounds more complex than it actually is.

• Opening icons. Application programs, your own pro
grams and word processing documents, pictures, and
other material stored on the disks are often represented
as little pictures called icons on the Macintosh screen.
Some icons are shown in Figure 1-1 .. Disks themselves
are also represented as disk icons. The most commor,
operation on these icons is to apen them. Opening an icon
creates a window through which you can view the con
tents of the icon. (What precisely happens depends on
what the icon represents.) To open an icon, you select the
icon by clicking it and then choose Open from the File
menu. A faster method is simply to double-click the icon.

---- Close box

~--- Active window title bar

Window title

78K in folder 279K available

m
Rocke1~ ~

CS VAX

Scroll box

Fonts

Size box

Figure 1-1.

Window anatomy

Getting Started With Macintosh Pascal 3

• Making a window active. There may be an arbitrary
number of windows open on the Macintosh screen at one
time. Most operations on windows only work on the
active window. The active window is the one with the
horizontal lines highlighting the title bar; Figure 1-1
shows a typical active window. To make a window active,
simply click on a visible part of the window. An active
window will overlap any other window on the screen.

• Closing a window. If you have created a window by
opening an icon, you will often be able to close it again
by making it active (if necessary) and then clicking the
close box, which is in the upper-left corner of the win
dow. (See Figure 1-1 for the position of the close box.)

• Changing a window's size. You may change an active
window's size by dragging the window's size box (see
Figure 1-1) to a new position. The window's upper-left
corner will remain in the same position; only the posi
tion of the window's lower-right corner is changed.

• Moving a window. You can move the active window
somewhere else on the screen by dragging its title bar
(see Figure 1-1).

• Scrolling the window. If the active window is too small
to display all the information in it, one or both of the
scroll bars will change from an all white to a gray bar
with a small white scroll box inside (see Figure 1-1). The
white box indicates the relative position of the part of
the window you can see with respect to the entire win
dow. Bringing other parts of the window into view is
called scrolling the window. You may do this in one of
three ways: (1) Press one of the scroll arrows to move
the small white box a short distance in the direction
indicated. (2) Click in the scroll bar on either side of the
scroll box; this will move the scroll box a windowful at a
time. (3) Drag the scroll box to the desired position
within the scroll bar. One of these methods will usually
be more suited than the other two to any particular kind
of movement within the window.

These essential operations are all you need to know in
order to get started with Macintosh Pascal. Additional opera
tions such as selecting, cutting, and pasting will be discussed
as the need arises.

4 The First Book of Macintosh Pascal

YOUR FIRST PROGRAM

Turn your Macintosh on and then insert the Macintosh Pascal
disk in the internal drive. After a good amount of disk whir
ring, you'll see the normal Macintosh desktop environment
displayed on the screen. A disk icon labeled "Pascal" should
be in the upper-right corner of the screen.

If your Macintosh Pascal disk has previously been used,
the disk icon may automatically open to show the disk con
tents in a window labeled "Pascal." If only the disk icon
appears, you will need to open it yourself: double-click the
Pascal disk icon to open it. The results should look something
like this:

s File Edit Uiew Speciol

Macintosh Pascal

Information Sy sh•m F" old tr Tools

The specific arrangement of icons in the window is not
important, and your window may look slightly different. If
someone has used the disk previously, there may be a differ
ent arrangement of the icons or even missing or extra icons.
It is only important that the fingers-on-keyboard Macintosh
Pascal icon be present somewhere in the window.

Double-click the Macintosh Pascal icon; this opens (runs)
Macintosh Pascal. After some more disk whirring, you should
see the following display.

Getting Started With Macintosh Pascal 5

s File Edit Seorch Run Windows

~D~ Untitled=

progrom l_l1 1t1tl 8 •l .

: '/ (11.w 1j8 1: l :-:lr .:it_ 11:•ri::
begin

:· ,·1:i111 (1r 1) 9 r.11 11 ·: t ::i l i:- 1r18 n l :J

end

I

Te Ht

Orowing

~-----------1..::;.i.'2l-1!.1t.....--------.1.-1

When you start Macintosh Pascal, three windows are dis
played: the Program window (here labeled "Untitled"), the
Text window, and the Drawing window. A prototype Pascal
program is shown highlighted in the Program window; we
won't be using it, so press the BACKSPACE key to erase it.
There should be a blinking vertical line in the upper-left
corner of the Program window, and nothing else. This blink
ing line is called the insertwn point because it indicates
where any characters you type at the keyboard will appear on
the screen.

You are now ready to work with your first Macintosh Pas
cal program. Here it is (but don't type it in just yet):

program hello;
{My first Pascal program)

begin {hello J
writeln('Hello there, world.')

end.

This program is intentionally short and simple. When run, it
displays the following output:

Hello there, world.

Such a simple program will allow you to concentrate on
the mechanics of entering, running, and modifying Macintosh

6 The First Book of Macintosh Pascal

Pascal programs without worrying about the language itself.
(There will be time for that later.)

Before you start entering the program, note the following
rules that apply to typing Macintosh Pascal programs:

• Pressing the BACKSPACE key on the keyboard erases the
character preceding the insertion point. If you notice a
typing mistake, you can always press BACKSPACE until
the error is erased; then simply continue typing from
that point. This method of correcting typing errors
always works, even if your mistake is a number of lines
above your current insertion point, but it is most conve
nient for fixing mistakes closely preceding the insertion
point. We'll discuss more advanced editing tricks in a bit.

• Don't worry about the boldfaced words program, begin,
and end in the program listing. You don't need to type
any special command to make these words boldface;
Macintosh Pascal will automatically change them (and
other special words) to boldface once it realizes they
have been typed. These special words are called reserved
words in Pascal.

• Don't worry about any special positioning of the indi
vidual program lines. For example, you'll notice that the
line

writeln('Hello there, world.')

is indented from the lines below and above it. This
indentation is supplied by Macintosh Pascal; you won't
have to type it yourself.

• For now, press the RETURN key after every line you
enter. (In certain cases, Macintosh Pascal will automatic
ally skip down to another line, but you'll learn later how
to use this.)

• Often you'll need to type spaces in a program to sepa
rate words from one another; in this program, you'll
need to type at least one space between the word pro
gram and the word "hello."

• The marks on either side of the words

Hello there, world.

are apostrophes; the apostrophe key is found next to the
RETURN key on the Macintosh keyboard. Don't confuse

Getting Started With Macintosh Pascal 7

the apostrophe (') with the double quotation mark (")or
the grave accent (').

Keeping these simple rules in mind, type in the sample
program. Try to avoid spelling errors and other mistakes;
remember, Pascal is very picky about innocent errors in
punctuation and spelling. Once you finish, double-check your
program to make sure it looks like the one here; if there are
any differences, use BACKSPACE to change them.

Once you have your program typed in, choose the Go
option from the Run menu. Many things will happen: the disk
will whir, the pointer will momentarily change its shape into
a crosshair, and most of the menu titles will dim briefly. But
most importantly, the words "Hello there, world" should
appear in the Text window. You have successfully written and
run your first Macintosh Pascal program.

If something went wrong, you probably made some error
in typing in the program. If you are a programming novice, it
is easy to feel frustrated or confused at this point. Don't let
these feelings discourage you; making mistakes is a fact of
programming life.

If Macintosh Pascal detects a bug in your program, you'll
see a message box describing the problem. After reading the
message, click inside the box to make it disappear. Review
the program entry rules previously listed; did you follow
them all? Compare your program carefully with the one
shown here. If you find the mistake in your program, use
BACKSPACE to correct it, retype the remainder of the pro
gram, and choose Go from the Run menu once more. Eventu
ally, you'll get things to work.

If you can't find the error by reading Macintosh Pascal's
error message, reviewing the rules, and examining your pro
gram, you may want to skip ahead to the discussion of pro
gram errors and simple program editing in the next two sec
tions, which should help. If all else fails, ask a friend for
assistance; often others can detect problems that you have
overlooked.

SIMPLE PROGRAM EDITING

Until now, we have only discussed one way to modify your
program: pressing the BACKSPACE key until you erase what

8 The First Book of Macintosh Pascal

you don't want and then retyping the remainder of the pro
gram from that point. A little thought should tell you that you
will want far easier ways to make changes to your programs;
you shouldn't have to erase and retype a large amount of pro
gram text in order to correct an error you made a number of
lines earlier.

You will also want to modify your programs, both to cor
rect errors and to make improvements to a working program.
The process of typing in or changing a program is called edit
ing. If you're like most programmers, most of the time you
spend in front of the Macintosh will be devoted to editing
your programs. In general, you will want to decrease the
amount of time it takes to rnake program changes so you can
spend more time writing programs.

Let's work on the Hello program to demonstrate how the
simplest kind of program editing works.

The first thing you'll want to know is how to move the
blinking vertical bar insertion point to another place in your
program text. The answer will be familiar to anyone who has
used a word processing program like MacWrite or has used
the Note Pad desktop accessory: move the pointer to the spot
in your program where you want to place the insertion point.
(You move the pointer on the screen by moving the mouse on
your desktop.) Note the pointer is the shape of an I-beam
when it's inside the program window. When the pointer is
where you want the insertion point to be, click the mouse but
ton once; this will move the insertion point to the place
indicated.

Use this technique to move the insertion point to between
the "d" and the period in 'Hello there, world.' (lf you don't get
the insertion point to the desired spot, just try again.) Once
the insertion point has been moved, press and release the
BACKSPACE key; you'll see that it erases the character preced
ing the insertion point every time you press it, just as it did
when you were entering the program the first time. (The
BACKSPACE key automatically repeats if you hold it down, so
don't let your attention wander.) Use BACKSPACE to erase the
entire word "world:' but don't erase anything else.

Let's make this program a little more personal. Type in
your own name or that of a friend. Notice that each character
you type is inserted into the text: all characters following the
insertion point move over to make room for the new text you
type. Your program will now look something like this:

Getting Started With Macintosh Pascal 9

program hello;
(My first Pascal program }

begin (hello}
writeln('Hello there, Colette.')

end.

Make sure you didn't accidentally erase the final apos
trophe. (If you did, just BACKSPACE and retype until what you
have matches what you see here.) Once more choose Go from
the Run menu. Your program should display your new mes
sage in the Text window.

You have just learned three simple but vital program
editing techniques:

• Insertion point movement. To move the insertion point to
a new position, just click the desired position.

• Deleting text. To delete one or more characters preced
ing the insertion point, press the BACKSPACE key one or
more times.

• Inserting text. Typed characters are inserted at the cur
rent insertion point position.

You now know just about everything to make minor
changes anywhere in your program: simply delete what you
don't want and insert what you do want. For practice, change
your program to read

program hello;
(My first Pascal program }

begin (hello}
writeln('Bonjour, guten Tag, and aloha, too.')

end.

Notice the changed line is too long to fit into the Program
window all at once; this will give you some practice using the
scroll bar at the bottom of the Program window. When you're
done, run your program by choosing Go from the Run menu.

SYNTAX ERRORS

If you have been lucky, you either have made no typing mis
takes or have successfully corrected them before you tried to

10 The First Book of Macintosh Pascal

run your program. In this section, we will create some errors
in our program to see how Macintosh Pascal deals with such
mistakes.

Move the insertion point just after the period following the
word end on the last line of your program. Press BACKSPACE

once to delete the period. Now try to run your program. You
should see the following on your screen:

w File Edit search Windows

~ R period (.) Is required following the last END of the program but m one hes not been found.

beg1n {hello J
writeln('Elonjour, guten Teig, and ciloh

end
Drawing

You now have a bug in your program; hence the insect pic
ture in the box accompanying the error message. The error
message is brief and to the point: you deleted the final period
in the program, and that's why Pascal is refusing to run your
program. Such an error is called a syntax error because it is
a violation of the language rules of Pascal.

Notice also the picture of a hand in the left margin of your
program at the bottom of the Program window. This is actu
ally a "thumbs down" picture used by Pascal to tell you where
it detected the syntax error. (Unfortunately you can't see the
thumb, which is hidden by the bottom edge of the window.)
Pascal not only tells you what kind of error you had; it also
shows you where in the program the error was detected. In
this case, Pascal searched for the period you deleted all the
way down to the end of the window; this is why the hand is at
the bottom of the window rather than up near the actual
error.

You may get rid of the bug box by clicking anywhere
within it. Once you have done that, put back the period follow-

Getting Started With Macintosh Pascal 11

ing end and run your program. Everything should now pro
ceed normally.

At this point, experiment a little bit on your own to see
what Pascal considers to be an error. You may not understand
the reasons for the error, but you should try to see how
Macintosh Pascal identifies errors for you. Try each of the
following; after you see what happens in each instance, undo
the change you made and go on to the next experiment. Note
that with some of these changes you will see the thumbs down
error indicator in its entirety. (Don't worry if the words in
your program suddenly change to an "outline" font; that's
part of Macintosh Pascal's error-detection scheme.)

• Delete the o from the word program in the first line.
This produces a syntax error; Pascal always expects the
word program at the beginning of a program.

• Delete the space between the word program and "hello."
This produces the same error as before; Pascal requires
at least one space between words to recognize them as
separate words.

• Change the word after program from hello to greetings.
This works fine; you have only changed the name of the
program, and within certain restrictions, you may call
your program by any name you want.

• Delete the semicolon at the end of the first line. This
doesn't work. You'll remember that Pascal was picky
about punctuation, and this is another example of how
picky it can be.

• Add an extra e to the word begin at any position you
choose. Again, this is a syntax error. Pascal expects the
word begin at this point in the program; instead it finds
something it considers to be a completely different word.

• Delete the "r" from ''writeln." Pascal fails to understand
the word "witeln"; it is not part of the Pascal language,
and you have not defined it.

• Change "writeln" to "write." Considering the previous
experiment, you might not expect this to work. On the
contrary, the program seems to work exactly as before.
You'll see why later in the chapter.

After you have tried these changes, see if you can make
legal and illegal changes of your own. Remember to restore
your program to a working state if you make a change that
Pascal considers to be unacceptable.

12 The First Book of Macintosh Pascal

These experiments should convince you that Pascal can be
a very demanding language; minor errors in punctuation,
spacing, or spelling can stop your programs from working.
Because Pascal (and other computer languages) demand per
fection, not even experienced programmers entirely avoid
syntax errors in their programs. As you continue program
ming, you can be certain that you'll get your share of bugs in
the programs you write. (Be assured, however, that you will
improve with experience.)

The good news here is that syntax errors are nothing spe
cial to worry about. Macintosh Pascal does its best to tell you
what the error is and where it was detected. These clues will
usually be enough to allow you to figure out the changes
necessary for your program to work. By now you should be
convinced that the mechanics of making changes to your pro
grams will be easy.

PROTECTING YOUR WORK

The program you have written is temporarily stored in the
computer's memory. We say "temporarily" because if you run
another program or turn off the computer at this point, your
program will be gone and unrecoverable. In order to save
your program between sessions on the computer, you need to
move it from temporary storage in memory to long-term
storage on disk.

Saving your program on disk is rather easy. (First, how
ever, make sure that you have undone all the changes from
the previous section and that you have a working program.)
Choose the Save as ... option from the File menu. A dialog
box will appear on your screen:

Saue your program as Pascal

ll Eject

Cancel Oriue

(If you do not have an external disk drive, the rectangle
marked Drive will be absent. If an external drive is installed

Getting Started With Macintosh Pascal 13

but empty, the rectangle marked Drive will be dimmed.) The
dialog box is often used in Macintosh Pascal (and other
Macintosh software) to allow you to give commands, enter
certain pieces of information, make choices, and set parame
ters. It's worthwhile to discuss the Save as ... box in detail
because it is typical of other dialog boxes you'll see while
running Macintosh Pascal.

Your first step is to type a name into the rectangular area
marked "Save your program as." There is a blinking insertion
point cursor in this space, indicating the point where any
typed characters will be inserted. For now, type in the name
"Hello"; use BACKSPACE to correct typing errors. Note that
when you begin typing a name, the rounded rectangle
marked "Save,'' which was dimmed, turns into a normal font.

In Macintosh terminology, the rounded rectangles in a
dialog box containing words are buttons. To execute the
command word contained in a button, simply click the but
ton. Dimmed buttons represent commands that you cannot
give at this point. (That's why the Save button was dimmed
until you began typing a name under which to save your
program.)

Another button in the Save as. . . box is Cancel; if you
change your mind about saving your program, click this
button.

Do not store any programs on your Pascal disk; always use
separate disks to store your programs. This will reduce wear
and tear on your valuable Pascal disk.

Macintosh Pascal displays the name of the disk where
your program will be saved on the right side of the box.
There are also two buttons that allow you to save your pro
gram on another disk. The Eject button is useful if you want
to save your program on a disk not currently in a drive. Click
ing Eject causes the Macintosh to eject the current disk. If
you have a single-drive system, you should eject the Pascal
disk and then insert the disk on which you want to save your
program. Macintosh Pascal gives appropriate prompts if the
disk needs to be initialized.

If your Macintosh has an external disk drive and you
haven't inserted a disk there, the Drive button will be pres
ent, but dimmed. Otherwise, you may click the Drive button
to save your program onto the other disk. Clicking the Drive
button acts as a toggle switch; you may click it again to
switch back to your Pascal disk (although that is not
recommended).

14 The First Book of Macintosh Pascal

When you are convinced your program will be saved on
the correct disk, click the Save button. After the disk spins
for a while, the dialog box will disappear and you'll be back
to Macintosh Pascal's "normal" state. (If you ejected the Pas
cal disk while saving your program, you'll be prompted to re
insert it.) Your program window should have changed its title
from "Untitled" to "Hello."

There are two instances in which this would not have hap
pened. Let's consider the simpler one first: If there had
already been a program named Hello on the disk, you would
have been warned about replacing a previously existing file:

Replace eHisting "Hello"
?

Yes (No B

If this happens, you have the choice of clicking either the
Yes button or the No button. If you click the Yes button,
Macintosh Pascal will save your program under the name
Hello, destroying any program of that name previously exist
ing on the disk. The recommended alternative is to click No
(that's why the No button is emphasized); this sends you back
to the Save as. . . box where you can choose another name or
disk to save your program under. To do this, just click No,
erase the name Hello using BACKSPACE, type in another name
(your choice), and click the Save button. Unless you are per
versely unlucky at choosing names, this should work.

The other case where Macintosh Pascal will not save your
program is if you try to store it on a disk that has no room to
accommodate it. In this case, Macintosh Pascal displays a
bug box:

~ The File Manager has detected that all allocation blocks on the
lli uolume 11re full.

This is not one of Macintosh Pascal's clearest error mes
sages; all it me~ns is "Sorry, I can't do what you asked
because the disk is full." If you get this error message, click

Getting Started With Macintosh Pascal 15

the bug box to make it go away. Then try the Save as ...
option again. This time, however, use the Eject or Drive but
ton just described to save your program on a different disk.

All this detail on how to save your work may at first look a
little daunting. In fact, everything discussed here takes very
little time to do and becomes very natural. (Easier done than
said, once more.)

To verify that your work has been saved, let's exit from
Macintosh Pascal. Choose Quit from the File menu. After a
moment, you'll be back where you were before you ran Macin
tosh Pascal.

Close any open windows on the Macintosh screen by click
ing their close boxes. Eject the Pascal disk by clicking its
icon, and then choose Eject from the File menu. (If you have a
second disk drive with a disk inserted, eject that disk as well,
using the same method.) Turn off the Macintosh.

Had you neglected to save your program, it would have
been erased from the computer's memory; if you wanted to
run it again, you would have to type it in again. While this is
no great hardship for simple programs like Hello, it could
lead to problems when you begin to write larger programs.
We'll see how to retrieve your program from storage in the
next section.

RETRIEVING YOUR WORK

Turn your Macintosh back on and reinsert the Macintosh
Pascal disk in the internal disk drive. Once more, you'll see
the Pascal disk icon; double-click it, which will open the disk
window. You'll remember that we previously double-clicked
the Macintosh Pascal fingers-on-keyboard icon at this point to
run Maeintosh Pascal. Do that again.

After a few seconds, the normal Macintosh Pascal envi
ronment will appear with an Untitled program window.
Before you retrieve your program you need to tell Macintosh
Pascal that you will not be using this window. To do this,
choose Close from the File menu; the Untitled window will
vanish. Then choose the Open ... option from the File menu.
You should see something like the following dialog box:

16 The First Book of Macintosh Pascal

Open program named

*Bouncing Ball g
*Bullseye

I
[OrHm) Pascal

*Calligraphy
*NeuerStops [Eject)
•oscillation
*Pipeline [Cancel) [Driue)
*Walter

This dialog box allows you to specify which program to
bring into memory from disk. If necessary, you can retrieve
programs from different disks by using the Eject and Drive
buttons on the right side of the box.

• If you have a second disk drive, insert in it the disk on
which you saved Hello. (If necessary, use the Drive and
Eject buttons to remove any other disk currently in the
drive.) Then click the Drive button to display the Pascal
programs on that disk. If the disk contains other pro
grams, Hello may not be visible in the window labeled
"Open program named"; the window can only show
seven program names at a time. If necessary, use the
scroll bar in this window to bring Hello into view.

• If you have no second drive, click the Eject button to
eject the Pascal disk from the internal drive. Insert the
disk on which you saved Hello; you should then find
Hello in the "Open program named" window.

Once you find the Hello program in the window, click the
word "Hello." The word will be highlighted and the Open but
ton will return to normal brightness. Now click the Open but
ton. After a bit of disk reading, your program will be
retrieved and displayed in its window, just as you typed it. (If
you ejected the Pascal disk, you'll be prompted to reinsert as
necessary.) If you want, run your program to convince your
self that it has really been returned to you safe and sound.

PRINTING YOUR PROGRAM

If you have a printer hooked up to your computer, you will
often want to get listings of your Pascal programs. Let's see

Getting Started With Macintosh Pascal 1 7

how this is done. We'll assume in the following that you have
successfully installed a printer on your system and that you
have loaded the program you want to list into memory. If you
have been following our discussion in this chapter, the Hello
program is now in memory.

Choose the Page Setup option from the File menu. The
following dialog box will be displayed:

Paper: ®US Letter O R4 Letter OK
0 US L"gal O International Fanfold

Orientation: ®Tall O Tall Adjusted O Wide (Cancel)

You have a choice of four paper sizes on which to print
your program:

• US Letter-standard 8 1/2 inches wide by 11 inches tall.

• US Legal-8 1/2 inches wide by 14 inches tall.

• A4 Letter-8 1/4 inches wide by 112/3 inches tall. (This
is the standard size outside the U.S.)

• International Fanfold-8 l/4 inches wide by 12 inches tall.

The small hollow circles preceding each choice of paper
size are called check boxes. One check box should contain a
black dot; this indicates which paper size Macintosh Pascal
currently expects you to be using. To specify another paper
size (if necessary), click the check box next to the desired size.

You also have a choice of orientation:

• Tall-Your program will be printed upright with the
top line at the top of the page.

• Tall Adjusted-Same as Tall, but it correctly propor
tions graphics pictures from the Macintosh screen. Not
applicable when you are printing text only.

• Wide- Your program is printed sideways on the page,
the first line on each page going down the right side of
the paper. (You should try this at least once.)

Click the check box that corresponds to the orientation you
want. Normally, this will be Tall. Once you've chosen the two
check boxes, click either the OK button to confirm the choices
you made or the Cancel button to revert to the previous
settings.

You only need to choose the Page Setup option if you want
to change the previous setup; Macintosh Pascal remembers

18 The First Book of Macintosh Pascal

the last decisions you made, even between sessions on the
computer.

The next step is to choose Print from the File menu. You'll
see a dialog box like this:

Quality: QHigh @Standard 0 Draft [OK l
Page Range: @Rll O from: D To: D
Copies: D
Paper feed: @Continuous O Cut Sheet [Cancel)

You have three choices for the "quality" of your program
listing; click a check box for one of the following:

• High-Your program is printed in high-resolution mode.
This is the slowest printing method, but the results are
very attractive.

• Standard- Your program is printed with the same
resolution as you see on the Macintosh screen. This is
approximately twice as fast as the high-resolution mode.

• Draft-Your program is printed quickly, but the print
quality is inferior to High or Standard quality. You may
want to consider this choice when you are in a hurry and
don't care too much about your listing's appearance.

You may also choose whether to print all of your program
or only a certain page range. Click the check box for All to
print the whole program. If you only want a range, click the
check box to the left of the From: box. Then enter the
numbers of the first and last pages you want to print in the
From: and To: boxes by clicking in each box to set the inser
tion point and then typing in the desired numbers.

Normally, the number of copies specified in the Copies:
box will be 1. To change it to something else, click in the box,
use BACKSPACE to delete the old number, and type in the
number of copies desired.

Finally, you may select a check box that governs the paper
feed. Choose the Continuous check box if you are printing on
fanfold or other continuous paper. If you are printing on sin
gle sheets, choose the Cut Sheet check box.

As soon as you have set up your selections, you may click
either the OK button to begin printing or the Cancel button if
you no longer want to print the program. If you click OK,
you'll see the following self-explanatory box:

Getting Started With Macintosh Pascal 19

The layout information about 'Hello' is being saued to
disk and printed.

Hold the X key down and press 'period' to stop the
printing process.

Your printer will then begin printing. If you selected Cut
Sheet paper feed, you'll be prompted each time it's necessary
for you to insert another sheet of paper.

Please Insert the neHt sheet of paper. n OK B
Click OK to continue, Cancel to terminate ~ ~

printing. (cancel)

After each page you have the choice of clicking OK to con
tinue printing or Cancel to stop.

If your printer is turned off or is not ready to receive data,
or if there is some other kind of hardware problem, you'll
hear a warning beep and see the following dialog box:

The Printer is not responding. Check the
cable, printer switches etc. Click OK to
continue, Cancel to terminate printing.

ll OK J
(Cancel)

If you see this box, check to make sure your printer is
turned on. Make sure it is on-line; on the Apple Imagewriter,
for example, the green SELECT light should be on. Check the
cables to see if the printer is connected to the computer.

Another problem that can occur when you are trying to
print is running out of space on disk. Macintosh Pascal saves
information to disk before printing begins; if there's no room
on the disk to store the information, the print is cancelled.
(There's no dialog box to tell you what's going on, unfortu
nately; all you hear is a warning beep.) If this happens, you'll
need to remove some files from the Macintosh Pascal disk;
the methods for doing so are discussed in Chapter 3.

20 The First Book of Macintosh Pascal

ANATOMY OF YOUR FIRST PROGRAM

So far we have not discussed the Pascal language at all; the
program you typed in might have been just so many mumbo
jumbo magic words as far as you were concerned. The impor
tant thing to remember is that a program is simply a means
of telling the computer what to do. The original program told
the computer to perform the following action:

print the words •Hello there, world.•

Unfortunately, the Macintosh can't understand English;
more precisely, it can't take English commands and translate
them into actions it can perform. That's why we need pro
gramming languages like Pascal. The Macintosh can under
stand the Pascal language; it will do what you want it to do if
you can express your wishes in the form of a Pascal program.

Let's consider your first program line-by-line to see what
makes it tick. Here is the first line:

program hello;

A line like this, known as the program header, will be the
first line of every Pascal program you write. The word pro
gram tells Macintosh Pascal that this is the beginning of
your program. The word program is a Pascal reserved word;
you may not use it for any other purpose in your program.
Figure 1-2 shows a list of all reserved words in Macintosh
Pascal.

Macintosh Pascal Reserved Words

and down to if otherwise string while
array else in packed then with
begin end label procedure to
case file mod program type
const for nil record until
div function not repeat uses
do goto or set var

Figure 1-2.

Macintosh Pascal reserved words

Getting Started With Macintosh Pascal 21

The word "hello" gives your program a name. The pro
gram's name must be a legal Pascal identifier, but otherwise
it can be any name you want. Macintosh Pascal has the fol
lowing broad rules governing what you can pick as an
identifier:

• An identifier must begin with a letter.

• After the first letter, an identifier must contain only let
ters, digits, or the underline character. Any other char
acters are illegal in an identifier.

• An identifier must not be a Pascal reserved word.

• An identifier must have between 1 and 255 characters.

Identifiers are used for many other things in Pascal pro
grams besides program names, so these rules will be impor
tant for you to remember.

All characters in a Macintosh Pascal identifier are signif
icant; even if you have two 255-character identifiers in your
program that only differ in their 255th character, Macintosh
Pascal will not get them confused. (You, on the other hand,
probably will.)

Macintosh Pascal also ignores the case of the letters in an
identifier. You may spell the identifier "apple" as "Apple",
"APPLE", or even "aPpLe". Pascal considers all of these to be
the identifier "apple."

To continue the examination of your program, note that
the semicolon at the end of the first line after the program
name is mandatory. Pascal requires certain punctuation in
certain spots, and this is one of them. A quick aside: many
versions of Pascal would require you to write the first line of
your program something like this:

program hello(input, output>;

In Macintosh Pascal, the

(input, output)

words are optional. They don't bother anything if you put
them in, but it's recommended that you omit them. It's just
one less thing you need to remember-a blessing when you're
trying to learn a difficult subject. ·

Now consider the next line

22 The First Book of Macintosh Pascal

(My first Pascal program J

This is called a comment. Pascal ignores any characters
typed between a left brace ({) and a right brace (}). There
fore, comments are entirely irrelevant to the operation of the
program. A program with comments does exactly the same
thing as the same program with comments deleted. Although
comments don't affect the computer, they can be useful to
you. The comments are explanatory notes that can be read
days, weeks, or months later when you or others are trying to
figure out the inner workings of a dimly remembered
program.

Macintosh Pascal allows alternative symbols for comment
begin and end markers: you can use (* instead of { and *)
instead of). Macintosh Pascal insists that all comments you
type in your programs be either on a line by themselves or at
the end of a line. If you type a comment in the middle or
beginning of a program line, Macintosh Pascal will move it to
the end. And if, while typing a comment, you press the
RETURN key before you type the right brace, Macintosh Pas
cal will supply the closing brace for you as well as an opening
brace on the next line. Even if you are an old hand at Pascal,
you'll no doubt want to experiment with this yourself. The
formal rule for comment placement is that you can put a
comment anywhere you can legally put a space, and vice
versa.

The third line in our program (after the comment) is
blank. Although Pascal is extremely picky about punctuation
and spelling, it will allow you to have as many blank lines in
your program as you want, wherever you want. Use blank
lines to separate major portions of your program; this makes
your program easier to read and understand. (You'll see more
complex examples later.)

The next line signals Pascal that we are about to specify
the "action" part of the program:

begin { hello J

The reserved word begin says that what follows is the
executable part of the program: Pascal statements that will
tell the computer "what to do." The comment { hello } is
ignored by Pascal; it serves to remind whoever is reading the
program that "begin marks the beginning of the executable

Getting Started With Macintosh Pascal 23

part of the Hello program." This fact may seem too obvious to
deserve a comment in such a small program. But in larger
programs where the begin and the program will be separ
ated by many lines, it's worthwhile to clearly label the start of
the executable part of the program.

We just said that the executable part of a Pascal program
follows the word begin. In this case, the executable part of
the latest version of Hello consists of this single statement:

writeln("Hello there, world.')

Pascal uses the writeln command to print out information.
If you've been paying attention to what you have been doing,
you may have speculated that writeln would print anything
you put between the apostrophes. This is just about correct. In
Pascal, any number of characters typed between apostrophes
is known as a character string (or, informally, just as a string).
To print out any string in Pascal, you simply put it inside
parentheses following the writeln command.

Be careful, however, in printing a string containing an
apostrophe like this one:

writeln('This isn't Jack's car.')

Try it. Delete the current string in the program and
replace it with this one. Then try to run the program. The
result is another bug box signaling that something is amiss.
The problem is that Pascal thinks that the first embedded
apostrophe ends the string; when it tries to make sense out of
what follows, chaos results.

The correct solution is to type in two apostrophes for each
actual apostrophe in the striqg:

writeln('This isn"t Jack"s car.')

Fix and test your program by inserting the additional
apostrophes and trying to run it once more.

Another thing one might reasonably expect to work is the
following "natural" method of writing on two lines at once:

writeln('This isn"t
Jack"s car.')

One might expect this to give the following output.

24 The First Book of Macintosh Pascal

This isn't
Jack's car.

Test this by inserting a return after the word "isn"t" in the
string and then trying to run the program. Again, Macintosh
Pascal cannot make sense out of your program. It is against
the rules of Pascal to continue a string onto another line by
inserting a return.

If you want your output on two lines, you need to issue two
writeln commands. Try your hand at modifying your pro
gram so that these lines appear between the begin and the
end:

writeln('This isn"t');
writeln('Jack"s car.')

Note the required semicolon at the end of the first writeln.
Once you have done this, run the program; this one should
work.

This is a program containing two statements. The reason a
semicolon was necessary between the two writeln statements
is that, under the syntax rules of Pascal, a semicolon is neces
sary between any two statements. In the jargon, semicolons
act as "statement separators" in Pascal. The begin and the
end don't count as statements, however; a semicolon is never
needed either after begin or before end.

If you carried out the experiments suggested in the section
called "Syntax Errors," you may remember that changing the
writeln statement to "write" seemed to have no effect what
soever on your program; the program still worked and the
output was indistinguishable from that produced using writeln.

Try the same experiment on the program you currently
have in memory; change the first writeln command to a
write:

writeCThis isn"t');
writeln('Jack"s car.')

The result is the message "This isn't.Jack's car." all on one
line with no space between the words "isn't" and "Jack's." A
little thought should tell you the difference between write and
writeln: writeln skips down to the beginning of the next line
after writing, and write doesn't. (How would you insert a
space to correct the words run together in the output?)

Getting Started With Macintosh Pascal 25

/,------- Program name

program hello;
{My first Pescel program} • /Comments

Reserved .
words begin {hello } -------

Figure 1-3.

Pascal program anatomy

WINDING UP

writeln('Hello there, world.') Statement
end.

The last line in your program is end. This tells Pascal that
there are no more statements in your program; you should
think of it as being paired off with the begin above it. To
remind you of what you learned earlier in the chapter, the
period following the end is required by Pascal.

Figure 1- 3 is a summary of Pascal program structure
you've learned so far.

For a final review of what you've learned about editing
and about the Pascal language, modify your program to look
like this:

program row;
{write vs. writeln J

begin {row J
write('Row, ');
write('row, ');
writeln('row your boat,');
write('Gently down the');
write ln('stream.')

end.

Try to predict what this program will do before you run it.

Macintosh Pascal is protective of programs you have typed in.
If you do not have a current version of the program in

26 The First Book of Macintosh Pascal
'

memory saved on disk, Macintosh Pascal will not allow you to
exit until you have verified that you really want to discard the
version of the program in memory. You will be given another
chance to save the program.

To see how this works, choose Quit from the File menu. If
you have been following along in the chapter and have a
changed version of the Hello program in memory, you'll see
the following dialog box:

Do you want to saue or discard the changes
to your program before quitting?

(Saue J (Discard) Cancel

This dialog box gives you the following choices:

• Save the program in memory. If you click this button, the
new version of your program will be saved, replacing
the old version; you'll then be returned to the Macintosh
desktop environment. (If there was no previous version
of your program, you will be taken through the Save
as ... dialog described previously.)

• Discard the program. Clicking this button simply returns
you to the Macintosh desktop; the original version of
your program, if any, remains intact on the disk.

• Cancel the Quit command. Click this button if you
change your mind about leaving Macintosh Pascal.

Once you leave Macintosh Pascal, you may either run other
applications or turn off the computer. Don't forget to eject all
disks from their drives before you turn off the computer.

Getting Started With Macintosh Pascal 27

VARIABLES
AND LOOPS

Programs, after all, are concrete formulations
of abstract algorithms based on particular
representations and structures of data.

N. Wirth
Algorithms + Data Structures = Programs

(Prentice-Hall, 1976)

In this chapter we'll investigate more capabilities of the Pas
cal language. So far we have only seen how to write simple
programs that output whatever character strings we tack on
to write and writeln commands. This capability, while impor
tant, only plays a minor part in most programs. Your next
step in learning Pascal is to learn to store information in the
computer's memory using variahles and to tell the computer
to execute certain commands repetitively using loops.

UNDERSTANDING VARIABLES

Every significant program you write will require the com
puter to "remember" certain pieces of information that the
program will need to use while it is running. These pieces of
information are called variables in nearly all computer lan
guages, including Pascal. They are called variables because
they may vary during the time your program is running; the
information contained in a given variable may take on many

29

different values based on the actions specified in your
program.

It may be useful for you to think of a variable as a box
hidden away somewhere inside your computer. This image is
fairly accurate for describing the function of a variable; it is a
storage location, which should always be thought of as con
taining something. (If you know a little about computers, you
may recognize that this also describes the computer's
memory.)

If you want to use a variable in your program, Pascal
makes the following demands:

• You must specify a name by which your program can
ref er to the variable.

• You must tell Pascal what type of information you will
be storing in the variable.

Giving each variable a name distinguishes it from all the
other variables in your program; this means that if your pro
gram needs two different variables, you must give them two
different names. The names you give to your variables must
follow the rules for identifiers given in Chapter 1.

You must specify the type of variable so that Pascal can set
aside an appropriate amount of the computer's memory to
store the information contained in the variable. To use the
box analogy, Pascal has many different kinds of boxes avail
able, each of a different size, shape, and color. The type of
variable will determine which kind of box Pascal will use to
store the information represented by the variable.

Specifying a name and a type for a variable is called
defining or declaring the variable. Pascal sets aside a special
place for you to define your variables, called the variahle
definition part of your program. A variable definition part
must come after the program header line and before the
word begin that leads off the executable statements in your
program. (You'll be given more precise parameters later.)

A typical variable definition part might appear in a pro
gram as follows:

var
page_length: integer;
width: real;
done: Boolean;
digit : char;
1 ine : string ;
hue: color;

30 The First Book of Macintosh Pascal

Informally, this tells Pascal the following: This program
will use the variables page_length, width, done, digit, line,
and hue. The variable page_length will be of type integer,
the variable width will be of type real, the variable done will
be of type Boolean, the variable digit will be of type char, the
variable line will be of type string, and finally, the variable
hue will be of type color. Experienced programmers will
make this even less formal, saying, for example, "done is a Bool
ean." This is fine, as long as you remember that such a short
hand way of discussing a program often leaves out some
important words.

If you want to define more than one variable of the same
type, you may use a list of variable names separated by com
mas in each line of the variable definition part instead of just
a single variable name. For example, the following variable
definition part declares the real variables x, y, and z, and the
integer variables i, j, and k:

var
i, j, k: integer;
x, y, z: real;

Pascal doesn't care whether you define your variables in
list form or in the form of one variable per line; nor does it
care what order you define them in. The important thing is
that all the variables in your program get defined somehow.

Every variable definition part you write in your programs
will follow the general form shown in Figure 2-1. Pascal
requires that reserved word var lead off the part followed by
one or more variable lists, each with its own type. There must
be a colon between each variable list and the corresponding
type, and the type must be followed with a semicolon.

var

I vt!lri"ble list I : ltypej;
• • •

lv11rit!l/llelistl: ltypel;

Figure 2-1.

Variable definition part syntax

Variables and Loops 31

Figure 2-2.

program !progrBm 17Bme.I;

VBriB/118
de.filli t iDll
pBrt

begin

I stBte.me.nt sl

end.

Pascal program syntax (incomplete)

Figure 2-1 is an example of a syntax sketch, an informal
semipictorial description of the syntax rules of a particular
facet of Pascal. We will make use of such sketches as the need
arises. For example, Figure 2-2 is a syntax sketch showing
everything we have learned so far about the overall structure
of a Pascal program.

Let's now experiment with variable definitions. Turn on
your Macintosh and open Macintosh Pascal. As before, the
prototype Pascal program will be highlighted in the Pro
gram window; press the BACKSPACE key to erase it. Then
enter the following program:

program variable_lab;
(Experiments with variables}

var
page_length : integer;
width: real;
done: Boolean;
digit: char;
1 ine : string ;
hue: color;

begin (variable_lab)
end.

It may seem strange to enter begin and end with nothing
between them. In fact, it is entirely legal to do so in Pascal; it

32 The First Book of Macintosh Pascal

simply means the program won't do anything when it is
run-and that's fine for now.

Try to run this program; assuming you typed it in as
shown, you should get this bug box:

~ The neme "color" has not been defined yet.

This error message is especially revealing; it tells us a
number of important things about Pascal.

First, the error message is very specific. You tried to
define a variable of type color without first defining what you
meant by the word color. This implies a simple, elegant rule
you will always have to follow in writing Pascal programs:

'Ln Pa.seal.,
any i.dentifi.ef" mu.st be defined.

bef on it can be used ..

If you are a beginning Pascal programmer, you should
write this rule down (in large letters) and put it in a place
where you'll see it often.

Second, this error message tells you that you didn't define
the type color. It did not say you couldn't define the type color;
in fact, you can define your own types in any Pascal program
and give those types whatever names you want. The method
will be introduced in Chapter 10 where you will define the
type color, as well as other types.

Finally, notice where the error occurred in the program:
only after the declarations of the first five variables. This
means that as far as Pascal was concerned, those first five
variables were of types already defined. To verify this, simply
delete the offending line containing the undefined type.
(Remember, you must click the bug box before you can con
tinue working.) Then try to run the program. You should now
have no syntax errors; it is a valid Pascal program. It does
what you programmed it to do-nothing.

You have already seen the word string as one of the
reserved words of Macintosh Pascal. The remaining four
types, integer, real, Boolean, and char, are all predefined
types built into Pascal. The integer, real, and Boolean types

Variables and Loops 33

are discussed in this chapter, the char and string types in
Chapter 6.

Macintosh Pascal has a number of other built-in or prede
fined identifiers in addition to the ones just mentioned; they
will be discussed as they arise.

THE INTEGER TYPE

In mathematics, an integer is any number without a decimal
point. In Pascal, the integer type is used to represent these
"mathematical" integers. Let's investigate how the integer
type can be used in Macintosh Pascal. Use the deletion and
insertion techniques discussed in Chapter 1 to make the vari
able _lab program look like this:

program variable_lab;
(Experiments with variables}

var
i, j, k : integer;

begin (variable_lab}
i :" 324;
j := 23;
k := i + j;
writeln('The value of i is:', O;
writeln('The value of j ls:', j);
writeln('The value of k is:', k)
end.

As usual, try to type your program so that it is identical to
the one shown here. In particular, you'll want to be sure you
type the two-character := symbol as a colon followed by an
equal sign with no spaces between the two. Run the program;
this output should appear in the Text window:

The ualue of I is: 32i
The ualue of j is: 23
The ualue of k is: 3i7

Let's now consider the executable part of the program that
follows begin. The first two statements are examples of the
very important assignment statement. An assignment state-

34 The First Book of Macintosh Pascal

ment is used in Pascal for a single purpose: to give a variable
a value. The net effect of the two statements

i := 324;
j := 23

is to give the value 324 to the variable i and the value 23 to
the variable j. To use the box image once again, 324 is stored
in the box labeled i, and 23 is tucked away in the box that has
the label j.

(Remember that the function of semicolons in the execut
able part of the program is to separate one statement from
another. When you are shown program segments in this book,
the semicolon used to separate the program segment from
what follows will be omitted.)

The next statement is also an assignment statement, but it
differs slightly from the other two:

k := i + j

If we were to explain the action this statement performs, we
might say, "Variable k gets the value obtained by adding
together the contents of variable i and variable j." (The plus
sign indicates addition in Pascal.)

It is important that you understand exactly what happens
when an assignment statement is executed, since assignment
statements are extremely common in Pascal programs. The
statement specifies that an action is to occur: the variable
named on the left side of the:= symbol takes on a new value,
replacing whatever previous value it had. The new value is
specified on the right side of the := symbol; we've seen the
right side can either be a single value (324 or 23, for example)
or a mathematical operation between two variables (i + j, for
example).

Pascal calls the right side of an assignment statement an
expression. The syntax sketch of the assignment statement is
shown in Figure 2-3. The actual definition of an expression

I variable I .- le..11~resslon I

Figure 2-3.

Assignment statement syntax

Variables and Loops 35

comes later in this chapter; for now let's concentrate on some
more examples.

Many beginning programmers are confused by the equal
sign in the assignment statement. In algebra, the equal sign
represents not an action, but a fact. To the student of mathe
matics, the equation

x = x .. 1

is obvious nonsense: it can't be satisfied for any possible value
of x.

In Pascal, however, the assignment statement

x := x .. 1

makes perfect sense; in fact, you'll see similar statements all
the time. It means "take the value contained in the variable x,
add 1 to that value, and store the result back into the variable
x." The net effect of the statement, then, is to add 1 to the
value of x. This is called incrementing x.

It is also possible to write legal algebraic equations that
would make no sense in Pascal. For example, this might be a
sensible thing to see in a math class:

But the equivalent assignment statement,

(THIS IS ILLEGAL IN PASCAL }
x + y := 3

makes no sense whatsoever to Pascal; in all legal assignment
statements there must be a single variable on the left side of
the := symbol to receive the value from the right side.

For these reasons, you should pronounce the := symbol as
"gets" when reading programs aloud: "x gets x plus one," for
example. This emphasizes the non-mathematical nature of
the assignment statement.

Look again at the final three statements of our variable_
lab program:

writeln('The value of i is:·, i);
writeln('The value of j is:', j);
writeln('The value of k is:', k)

36 The First Book of Macintosh Pascal

These are writeln statements, slightly different from those
you've seen before. Here, each writeln displays two things: the
string "The value of i is:" and the value of a variable. Com
pare the output of the program shown in the Text window
with the value of the variables i, j, and k; you should verify
that writeln actually does write out the variable value in each
case.

In general, a writeln statement (and write as well) can be
used to output the value of any number of items in a single
statement. Simply put each one into a comma-separated list,
and put the list between parentheses following write or
writeln. (Write and writeln will be explored more thoroughly
later in this chapter.)

For now, let's carry out some experiments on the vari
able _lab program. Change the line

k := i + j

to the following:

k := i - j

by deleting the plus sign and inserting a minus sign in the
same spot. Then run the program. The value of k changes to
301, showing that the minus sign indicates subtraction, just
as the plus sign indicated addition.

Now try replacing the minus sign with an asterisk; the
statement should now read:

k := i * j

When you run the program, the value of k should be dis
played as 7452, or the result of multiplying 324(i) times 23(j).
The asterisk indicates a multiplication operation.

You can't put just any character between the i and j; for
example, try replacing the asterisk with a percent sign:

k := i % j

When you run the program you'll get a bug box:

~ This does not make sense as a statement.

Variables and Loops 37

This nonspecific error message means Pascal can't make any
sense out of what you have typed in as a program statement.
The percent sign doesn't mean anything to Pascal.

Now try replacing the percent sign with a slash:

k := i I j

When the new version of the program is run, the result is
a bug box you may not have expected:

m Rn incompatibility between types has been found.

The problem is not that Pascal can't make sense out of the
slash character. After all, it had to have made some sense out
of it, or it would have given the same message it gave for the
percent sign. The problem is that the slash causes i to be
divided by j. In general, dividing one integer by another will
not give another integer; instead, you will get a number with
a fractional part. Pascal is complaining that you are trying to
fit a number that might have a fractional part (the result of
i/j) into a variable whose assumed type does not allow frac
tional parts (the variable k). Trying to do this in Pascal makes
as much sense as storing sugar in a ketchup bottle.

Pascal provides an integer division operator called div. To
see how it works, replace the slash in the program with div:

k := i div j

When you run the program, it should display 14 for the value
of k. (Since div is a reserved word, Macintosh Pascal auto
matically boldfaces it in your listing.) The div operator car
ries out the division of two integers and discards any frac
tional part, representing the result as an integer.

Another operator associated with div is mod. Try the pro
gram once more, replacing div with mod:

k := i mod j

The result obtained for k should be 2. The mod operation
gives the integer remainder obtained when dividing i by j
(that is, 23 into 324 goes 14 times with 2 remaining).

Don't worry too much if you don't see any immediate prac-

38 The First Book of Macintosh Pascal

tical use for these last two operations; in fact, the addition,
subtraction, and multiplication operations on integers are
usually more common. But div and mod also have their uses,
as you'll see later.

In mathematics there are an infinite number of integers;
there is no "biggest" integer. Due to memory and speed con
siderations, however, Pascal puts limits on the possible range
of an integer variable. The largest integer value in Macintosh
Pascal is 32767.

There are also negative integers, both in mathematics and
Pascal. In Pascal, an integer value can go all the way down to
-32767; there are as many possible negative integer values as
positive. (Zero is considered to be neither positive nor
negative.)

To write integer values in Pascal, you must follow a few
simple rules:

• Don't put commas in the value (write 10234, not 10,234).

• Negative values are preceded by a minus sign (for
example, -345).

• For Macintosh Pascal only, you may write integer con
stants in hexadecimal (base 16) instead of decimal (base
10). To signal Macintosh Pascal that an integer constant
is being written in hexadecimal, precede the value with
a dollar sign. For example, the assignment

i :• Slfa

is equivalent to the assignment

i :• 506

You should become familiar with the basics of integer
arithmetic. Be sure you can predict the results of any simple
addition, subtraction, or multiplication operation. See if you
can change the values assigned to i and j in the variable-lab
program and predict the result for k before you run the
program.

In addition, you might want to try the following experi
ments:

• What happens if you try to div by O? How about mod
when the second integer specified is O?

• How do div and mod behave when one or both integers
operated on are negative?

Variables and Loops 39

THE for LOOP

• What happens if your program specifies an operation
that would give a result outside the legal integer range,
-32767 to 32767?

So far you have seen that the statements between begin and
end are all carried out in the order in which they appear.
Each statement is executed once. This is known as sequential
execution, and it is a fundamental concept in most program
ming languages.

Sequential execution is not flexible enough to write any
but the simplest programs, however. Most programs require
the ability to carry out conditional execution: to perform dif
ferent actions based on the current value of a variable or
some other condition. Also necessary is the ability of the pro
gram to do repetitive execution: to perform certain actions
over and over, either a fixed number of times or as long as a
certain condition holds true.

These three types of program execution (sequential, condi
tional, and repetitive) are known as control structures. Just
about any kind of program can be put together by specifying
the desired combinations of these three types of control struc
tures. Most of what is discussed about Pascal in the remainder
of this chapter and in Chapter 4 will be about how to put
these structures together.

The simplest repetitive control structure is one that per
forms an action (or group of actions) a specified number of
times. In Pascal, this is written using the for loop. To see how
it works, first clear the computer's memory of any previous
program, if there is one. (One easy way to erase an entire
program is to choose Close from the File menu, saving your
program if you want, and then choose New from the File
menu.) Once you have cleared away any previous program,
enter the following:

program for _lab;
{ Experiments with for loops]

var
i: integer;

40 The First Book of Macintosh Pascal

begin { for _Jab)
write In(' I hear you knocking.');
for i := 1 to 4 do
write('Knock ');

write In;
writeln('But you can"t come in.')

end.

When you run the program, you should get the following
output:

I hear you knocking.
Knock Knock Knock Knock
But you can't co•e In.

It should be clear that for specifies that the write state
ment is to be done four times. Change the 4 into a 10 and
rerun the program. (You'll have to expand the Text window to
see all the output in this case.) This should convince you that
you can stipulate just about any number of repeats of the loop,
at least within the limited range of the integer type.

The loop limits do not ha.ve to be constant numbers. Make
the following minor modifications to the program:

program for _Jab;
(Experiments with for loops }

var
i: integer;
initial, final : integer;

begin (for _Jab}
initial := I;
final := 4;
writeln('I hear you knocking.');
for i := initial to final do
write('Knock ');
write In;
writeln('But you can"t come in.')
end.

This will give the same output as before.
The variable used after the word for (which is i in this

case) is called the loop control variable. The loop control vari-

Variables and Loops 41

able takes on successive values each time through the loop. To
see this, change the program slightly:

program for _lab;
{ Experiments with for loops)

var
i: integer;
initial, final : integer;

begin {for _lab J
initial := 1;
final:= 4;
writeln('I hear you counting.');
for i := initial to final do
write(i);
writeln;
writeln('But you can"t count on me.')

end.

Your output now looks like this:

I hear you counting.
1 2 3

i
But you can't count on •e.

Thus two different but related things happen in the for
loop. First, the loop is executed a known number of times.
Second, the loop control variable takes successive values on
each repetition of the loop. When you write your own pro
grams, one or the other and often both of these features will
be important to you.

The initial value of the loop control variable doesn't have
to be 1. Try changing the lines

initial := 1;
final:= 4;

to these:

initial := 13;
final:= 25;

42 The First Book of Macintosh Pascal

The output from this version of the program is proof that you
can specify any integer values for the initial and final values
of the loop control variable. Go ahead and make a few
changes of your own to the numbers assigned to the initial
and final values; include negative values as well as positive
and zero values.

If you haven't done so already, try an initial value greater
than the final value; for example,

initial:= 13;
final:= 10;

In this case, the loop is executed zero times -in other words,
not at all. An initial value for the loop control variable that is
greater than the final value may not make a lot of sense to
you right now. However, you won't always know at the time
you write a for loop what the limits will be; you won't always
be sure the initial value is less than the final value. In such
cases, you'll want to know that the loop may not be executed
at all.

Pascal also provides a version of the for loop that counts
backward; just replace the word to with downto. Try modify
ing the program as follows:

program for _Jab;
(Experiments with for loops}

var
i: integer;
initial, final: integer;

begin (for _Jab }
initial := IO;
final:= I;
write Jn('Countdown:');
for i := initial downto final do
write(i);
write In;
write ln('Li f tof f !')

end.

To see the output this produces, you may have to enlarge or
scroll the Text window. (The actual form of the output

Variables and Loops 43

depends on the horizontal size of the window.) The result of
using downto should appear like this:

CountdHn:
10 9 8

7 6 5 i
3 2 1
Liftoff!

When you use write, Pascal will print as many numbers as
it can fit on a single line of the Text window and then skip
down to the next line and continue output. Why are the
numbers printed here so far apart? Unless you specify differ
ently, the write and writeln statements use afield width of 8
when printing integers. This means they will use at least
eight spaces to print an integer value; if the number itself
requires fewer than eight characters, it is right-justified
(padded with blanks on the left) so that there are eight char
acters printed in all.

If you don't like this default field width, it is easy to
change it. In a write or writeln statement, follow the expres
sion being printed with a colon and a number specifying
whatever field width you want. For example, in the for _Jab
program, try inserting a field width parameter in the write
statement as follows:

write(i : 2)

Now when you run the program, you'll get the following
result:

Countdown:
10 9 8 7 6 5 i 3 2 1
Liftoff!

Since you specified a field width of 2, all your numbers are
printed using at least two spaces. Try changing the field
width to 1. This should be the result:

CountdHn:
10987654~21

Liftoff!

If a number requires more room to be printed than the
field width specifies, it is printed out with no padding.

44 The First Book of Macintosh Pascal

Here are some questions for you to answer by experimen
tation:

• Does it make any sense to have a field width of 0 (or
less)? What happens when you try it?

• Does the field width you specify have to be a constant?
To find out, try replacing the write statement inside the
loop with

writeln(i : i)

Run the program. If you haven't already, expand the
Text window vertically to see all the output. Can you
explain what's going on? (Remember, you changed the
write to a writeln.) Once you have figured it out, try to
predict what would happen if the write statement
looked like this:

wr1teln(i : 11 - i)

After you predict the output, see if you were right by
changing and running the program. If you were wrong,
try to find out why.

The syntax sketch for a for statement is shown in Figure
2-4. Once more we are using the term expression as part of
the definition; remember, we haven't explicitly said what that
word means as yet, but we've given a number of examples.
Also note that the horizontal bar indicates that you may use
either the to or downto in a for statement, but not both.

Figure 2-4 also tells you that only a single statement can
be inside the loop. This may make you doubt the usefulness of
the for statement. What if we want to perform more than one
action inside the loop?

for Jaap c:antral ·= initit1/ _!_!___ fint1/ do
11t1n8ble · e,rpressian downto ex ressian

I stt1te.me.nt I

Figure 2-4.

for statement syntax

Variables and Loops 45

begin
,....I s_t_8_t-em_e_n_t s....,I

end

Figure 2-5.

Compound statement
syntax

Pascal has a simple construction that allows you to get
around the one-statement rule by grouping statements
together. This construction is called the compound statement,
and its syntax is shown in Figure 2-5. A general rule in Pas
cal is that you may write a compound statement anywhere
you can write a single statement. (As far as the language
rules of Pascal are concerned, a compound statement is just
another kind of statement.)

Let's see how a compound statement is used in a program.
Try modifying the for _Jab program to look like this:

program for _Jab;
{Experiments with for loops)

var
i : integer;
initial, final : integer;

begin {for _Jab)
initial :"' 1 O;
final := 1;
write ln('Countdown:');
for i := initial downto final do
begin
writeln(i: 11 - i);
sysbeep(45)
end;
writeln;
writeln('L iftoff!')

end.

Now there are two things inside the for loop: a writeln
statement as usual and also a command called sysbeep.
Rather than trying to guess what will happen, run the pro
gram to find out.

Two things happen with each execution of the loop. The
number in the countdown is printed as before, but now it's
followed by a beep. (If you don't hear any sound, the speaker
volume has probably been set to zero; for the purposes of test
ing this program, use the Control Panel desk accessory to
adjust the speaker volume to an audible level.) When the sys
beep statement is executed, it makes the Macintosh's speaker
ring for about a second; this also has the effect of slowing
down the loop so that it seems more like a real countdown.

46 The First Book of Macintosh Pascal

The Macintosh's sound capabilities are discussed in more
detail in Chapter 8, but for now you might want to try putting
different numbers in the parentheses following the word sys
beep. What does changing the number do to the sound? What
happens if you replace the number with the expression lO*i?

There are a few more facts about the for statement that
are easy to discover via experimentation. For example, what
happens if you try to change the final limit inside the loop?
Will this change the number of times the loop is executed?
Without altering the rest of the program, try changing the
for statement to look like this:

for i := initial down to final do
begin
writeln(i : 11 - O;
final:= 5;
sysbeep(45)

end

You might speculate that changing the value of final to 5
inside the loop would make the for loop only count down to 5.
But nothing of the sort occurs: the loop proceeds as before.
The rule is that both the initial and final values of the loop
control vari~ple ~re evaluated once, and once only, before the
loop starts. Thus, the loop will always be executed up or down
to that previou$1Y determined final value.

Ther~'s no way to alter the value of the loop control vari
able inside the loop. To prove it to yourself, you can try it by
adding this statement anywhere inside the loop:

i := I

Running the program gives you this precisely worded bug
box:

. ~ The ualue of the control uarlable hes been changed illegally while
'KU the FOR loop 11boue was eHecutlng.

The moral to be extracted from these last two tests is that the
for statement is only useful for performing actions a definite
number of times; attempts to force it into some other behavior
by altering tne loop limits or jiggling the loop control variable
are doomed to failure.

Variables and Loops 4 7

When discussing the for statement, most Pascal texts
solemnly intone something to the effect that "after comple
tion, the value of the loop control variable is undefined." This
means that Macintosh Pascal sets the loop control value to an
unpredictable value on exiting from a for statement. To illus
trate, first remove the bug we introduced into the for _lab
program and then add a line to our program after the loop
that prints out the value of i, the loop control variable:

writeln('Outside loop, i is', i : I)

Run the program two or three times to make sure of the
results. When we ran it three times, we obtained the values
6715, 8047, and 9576. Your own numbers will probably differ.
The lesson here is that your programs should not make any
assumptions concerning the loop control value.

One final note on syntax: a frequent source of confusion to
beginning Pascal programmers is the seeming ambiguity of
the term statement. Consider the for statement we have been
using:

for i := initial downto final do
begin
writeln(i: 11 - i);
final := 5;
sysbeep(45)

end;

We have been using the word statement to apply to (1) the
entire for statement extending from the word for to the word
end, (2) the compound statement that starts at begin and
ends at end, and (3) each of the three lines of the program
that lie betweenthe begin and the end. You might object to
calling all these things statements; surely, you think, we must
be getting sloppy with our terminology.

In fact, we aren't. Pascal simply allows statements to con
tain other statements, which may, in turn, contain statements
as well. In the for _lab program, for example, the for state
ment contains a compound statement, which itself contains
three single-line statements. In general, Pascal allows you to
"nest" statements to an arbitrary depth: there is no restric
tion in the language as to what depth statements may be
nested within each other. As your experience with Pascal
grows, you'll come to appreciate the elegance of this design.

48 The First Book of Macintosh Pascal

THE REAL TYPE

We said earlier in this chapter that integers were numbers
without decimal points. In mathematics, numbers with dec
imal points are called real numbers. Pascal provides the real
type to represent mathematical real numbers.

Clear any program you currently have in memory, saving
it first if you wish. Then enter the following program:

program reaLlab;
(Experiments on reals}

var
x, y: real;

begin (reaUab }
x := 1.2;
y := 3.4;
writeln('x is', x);
writeln('y is', y);
write In;
writeln('x + y is', x + y);
writeln('x - y is', x - y);
writeln('x * y is', x * y);
writeln('x I y is', x I y)

end.

The program, when run, should give the following output:

x is 1.2e+O
y is 3.1e+O

x + y is 1.6e+O
x - y is -2.2e+O
x * y i s 1. 1 e+O
x I y is 3.Se-1

Most of the arithmetic operations on real number vari
ables are performed with the same symbols that worked on
integer variables: a plus sign for addition, a minus for sub
traction, and an asterisk for multiplication. The slash, which
you may remember didn't work well for dividing integer vari
ables, is the symbol to use when you want to divide two real
values. However, the div and mod operations won't work on
real values.

Variables and Loops 49

The default formatting for printing real values is scientific
notation (also called floating-point notation or, most simply, e
notation.) The letter e in a number expressed in scientific
notation should be read "times ten to the power of." To figure
the value of a number expressed in floating-point notation,
multiply the number in front of the e (the mantissa) by the
power of 10 following the e (the exponent). Hence, in our out
put, 4.6e+O translates as 4.6 X 10°, or just 4.6. (In case you
have forgotten some of your math, 10° = 1.)

The default formatting for real values also specifies a
default field width of ten spaces. Pascal allows one space for a
possible sign on the front of the number and five spaces for
the exponent (including its sign). The e takes up a space too;
all this leaves three spaces for the mantissa. These three
spaces are taken up by the leading digit, a decimal point, and
one digit following the decimal.

Because the default field width only allows one digit to be
displayed past the decimal point, the multiplication and divi
sion results shown in our example were rounded to tenths.
What if we want more precise answers? The answer is to
modify the field width directly in the program, just as we did
with integer values. Try changing the writeln statements in
the program to the following:

writeln('x is·, x: 15);
writ~ln('y is·, y: 15);
write In;
writeln('x + y is·, x + y: 15);
writeln('x -y is·, x -y: 15);
writeln('x * y is ·• x * y : 15);
writeln('x I y is·, x I y: 15)

Expanding the field width to 15 allows six digits to be
printed after the decimal point. Now the output looks like
this:

x is 1.200000e+O
y is 3.iOOOOOe+O

x + y is i.600000e+O
x - y is -2.200000e+O
x * y is i.060000e+O
x I y is 3.529i12e-1

50 The First Book of Macintosh Pascal

Floating-point notation is ideal for printing values that are
very small or very large, but you'll often want to display real
values in their normal form. This is known as fixed-point
notation. To signal Pascal that it is to print out a real value in
fixed-point notation, you add a second colon after the field
width specification followed by a second number specifying
the number of digits you want printed following the decimal
point. To see how this works, try modifying the real_lab
program once more:

writeln('x is·, x: 6: 3);
writeln('y is·, y: 6: 3);
writeln;
writeln('x + y is·. x + y: 6 : 3);
writeln('x - y is·, x - y: 6: 3);
writeln('x * y is·, x * y: 6: 3);
writeln('x I y is·, x I y: 6: 3)

This time we've asked that the output be printed in fixed
point format allowing three digits past the decimal point:

xis 1.200
y is 3.iOO

x + y is i.600
x - y is -2.200
x * y is i.080
x I y is 0.353

You should feel free to experiment with different combi
nations of field width and specifications for the number of
digits after the decimal.

The rules for writing real numbers in Pascal are a little
more complex than those for writing integer values:

• Do not use commas in numbers; write 1024.137, not
1,024.137.

• You may write real numbers with no fractional part as
integer values. The general rule is that if Pascal sees an
integer where it expects a real number, the integer is
automatically converted into a real number.

• A number must have a digit on both sides of the decimal
point; write 2.0 and 0.314, not 2 or .314.

Variables and Loops 51

• A negative real value is written with a leading minus
sign: -2.43, for example.

• You may write real constants using scientific notation.
Write the mantissa as you would a fixed-point number.
Follow it with an e (or an E) and then an integer
representing the power of 10 by which you want to mul
tiply the mantissa (with an optional sign).

As usual, you might want to verify that these rules work and
see what happens when you break them.

As is true of integers, there are an infinite number of
mathematical real numbers, and a computer with a finite
amount of memory can only represent a finite number of dif
ferent values. As a result, the real type in Pascal is limited to
the range of the real numbers it can represent.

To discover these limits, enter the following program
either by modifying the real _lab program or by clearing it
and starting over:

program reaLlab;
{ Experiments on reals)

const
START• 1.0;
MULTIPLIER • 2.0;
MAXTIMES • 200;
WIDTH• 16;

var
x: real;
i: integer;

begin { reaLlab)
x :=START;
for i := 1 to MAXTIMES do
begin
writeln(x : WIDTH);
x :=MULTIPLIER* x

end
end.

You'll notice that this program uses something we haven't
seen before in our programs: between the program line and
the variable definition part there is a constant definition part.
The syntax sketch for a constant definition part is shown in

52 The First Book of Macintosh Pascal

Figure 2-6.

con st
const6nt const6nt

= ide.nt ifie.r V6/11e.

• • •
constont

identifier =
constont

V6/t1e

Constant definition part syntax

Figure 2-6. Figure 2-7 shows where the constant definition
part fits within a Pascal program.

In general, the constant values listed on the right side of
the equal signs in constant definitions may be

• Numeric constants of either real or integer types.

• A previously defined constant identifier (with an op
tional sign if the constant identifier represents a
number).

• A string.

Figure 2-7.

program jprogr6m n6mel;

const6nt
definition
p6rt

vori6ble
definition
port

begin

I st6tementsl

end.

Pascal program syntax
(still incomplete)

Variables and Loops 53

This is the legal syntax for a constant definition part; now,
what does it do? Simply speaking, Pascal "remembers" both
the identifier and the value in each definition. When it comes
across a constant identifier later in the program, it acts just
as if the corresponding constant value were in that spot in the
program instead.

Given our constant definitions, the program here will be
executed as if the following had been written for the execut
able part:

begin (reaLlab)
x := 1.0;
for i :"' I to 200 do
begin
writeln(x : 16);
x := 2.0 * x

end
end.

Why go to the bother of writing constant definitions? Why
not just use the actual numbers or strings in the program
itself? Often a constant identifier is more meaningful to
someone reading the program than a bare constant value
would be. The word MULTIPLIER, for example, suggests the
purpose of the constant, while the number 2.0 all by itself
might not.

Constant identifiers can make writing a large program
much easier. For example, if you always want to print
numeric values in a certain field width, it will be easier to
remember to write the constant identifier WIDTH in the
program instead of remembering the exact value of the field
width you decided on each time you need to specify it.

Finally, assume you later want to change the field width.
When you have defined the field width as a constant, all you
need to do is change the single constant definition, which is
much easier than going through the program and changing
every occurrence of the field width.

Although the same rules apply to naming constant identi
fiers as apply to variable identifiers, constants are not vari
ables. By definition they cannot change in value while the
program is being run. It is an error, for example, to put a
constant identifier on the left side of an assignment state
ment. We write all our constant identifiers in uppercase and
all our variables in lowercase to emphasize the distinction
between the two.

54 The First Book of Macintosh Pascal

Let's look at the program that sparked this digression.
The real variable x is initialized to the value START. Then
the following two things happen MAXTIMES times: the
value of x is printed, and then x is multiplied by MULTI
PLIER. Since the value of MULTIPLIER is 2.0, this means
that x will increase rather quickly; run the program to find
out just how quickly.

When more than one hundred lines are displayed, the
program crashes. The bug box displays the error message:

~ Flo11t1og point arithmetic eHceptlon: 011erflow occurred.

The term overflow means that a variable's value has
become too large to be held in the storage reserved for the
variable. (Exception is used here to describe an unusual situa
tion.) Examining the program's output will tell you that the
variable x last held the value 1. 7014118 X 1038(this was the
final value printed). However, multiplying this value by 2
caused overflow. This means that the biggest number a real
variable can represent is somewhere between 1. 7014118 X 1038

and twice that number.
If you want a better estimate on the largest real, try

changing the constants START and MULTIPLIER as follows:

ST ART = 1. 7e38;
MULTIPLIER .. 1.01;

Then rerun the program. Play with different values of
START and MULTIPLIER, if you wish, to come as close as
you can to the largest real value. The answer, in fact, is
approximately 3.4 X 1038• Of course, you may also have nega
tive numbers this large.

Limitations on memory also prevent Pascal from repre
senting real numbers very close to zero. To see how this
works, change the program slightly to make the numbers get
smaller im~tead of bigger:

START= 1.0;
MULTIPPER = 0.5;
MAXTIMES = 152;

Variables and Loops 55

This time, there is no fatal program error, but you'll note
the numbers printed out suddenly go from non-zero values to
zero values. This is known as underflow, which is another way
of saying that a variable's value came too close to zero to be
represented. You may want to play with the numbers again to
get a good estimate on the smallest possible positive real
value. You should obtain, roughly, 1.4 X 10-45•

You have learned that you cannot represent very big or
very tiny mathematical real numbers using Pascal's real
type. Pascal is also limited in the amount of precision with
which it can represent real values. In mathematics there are
not only an infinite number of real numbers in total, but
there are also an infinite number of real numbers between
any two real numbers. But Pascal can only represent a finite
number of different real values. In other words, there are
many real numbers that Pascal cannot represent exactly (an
infinite number of them, in fact).

To demonstrate this point, try the following program:

program reaLlab;
(Experiments on reals J

const
ADDITIONS = 1 O;
WIDTH= 16;

var
i: integer;
reciprocal, sum: real;

begin (reaLlab J
reciprocal := 1.0 I ADDITIONS;
sum:= 0.0;
for i :'" 1 to ADDITIONS do
sum := sum + reciprocal;
writeln('The value ·• reciprocal : WIDTH);
writeln('added together·, ADDITIONS: 1, ·times');
writeln('gives the sum ', sum : WIDTH);
writeln('which differs from the exact');
writeln('answer (1.0)by ·,sum - 1.0: WIDTH);

end.

The program gives instructions to add 1/10 + 1/10 + ... +
1/10, where there are ten 1/lO's in all. The answer, in theory,

56 The First Book of Macintosh Pascal

should be exactly 1. We initialize sum, a variable to hold the
result, to 0 and then perform the calculation in a for loop that
is executed 10 times. Each time through the loop, we add the
value of the reciprocal, which was initialized to 1/10, to sum.
On exit from the loop, we print out the result and also the
difference between the result and the mathematical result.
The printout should appear as follows:

The value 1.0000000e-1
added together 10 tiaes
gives the sua 1.000000le+O
•hich differs fro• the exact
ans•er (1.0) by 1.1920929e-7

Pascal's result differs by about one part in ten million
from the "exact" answer. This is a very good performance for
all practical purposes. The lesson you should extract from all
this is that you should never rely on the result of a real calcu
lation to give you an exact answer.

THE BOOLEAN TYPE

So far you have met two of Macintosh Pascal's numeric data
types, integer and real. Pascal also has non-numeric data
types, and one of the most important is the Boolean type,
which we'll explore in this section. The Boolean type is named
for George Boole (1815-1864), a mathematician who developed
the theory of binary logic used by nearly all computers.

There are only two possible Boolean values, TRUE and
FALSE. We have chosen to write them in uppercase to
emphasize the fact that they are constants of the Boolean
type, although you may use lowercase letters or capitalize
them, whatever you prefer. Since Booleans can have only two
possible values, they are useful in controlling how your pro
grams are executed, as we will see.

Let's begin with a simple program using Boolean variables.

program Boo_ Jab;
(Experiments with Booleans)

var
b I, b2: Boolean;

Variables and Loops 57

begin (Boo_Jab }
b 1 :"'TRUE;
b2 :"'FALSE;
writeln(b 1);
write ln(b2);

end.

Try typing in this program. It simply assigns values to the
two Boolean variables bl and b2 and then prints out those
values. The result is simply

True
False

This should show you that there is nothing especially mys
terious about Boolean variables. They can take on values (just
like any other variable) and their values can be displayed
using the writeln statement (just like any other variable). It is
generally a mistake, however, to mix different types of vari
ables. See what happens when you replace the line

bl :=TRUE

with the line

bl := 10.3

When you try to run this program, the result is the "An
incompatibility between types has been found" bug box you
have seen before. Pascal is relatively picky about not allowing
you to put a value of one type into a variable of another type.
This is to protect your variables from taking on unexpected
values; you may rely on real variables having only real values,
Boolean variables having only the values TRUE or FALSE,
and so on.

As with all the items written by the writeln command, you
may specify a field width for a Boolean. To see how it works,
try modifying the program as follows (remember to fix the
bug first):

program Boo_Jab;
(Experiments with Booleans}

var

58 The First Book of Macintosh Pascal

b: Boolean;
i: integer;

begin (Boo_Jab }
b :=TRUE;
for i :=I to !Odo
writeln(b: O;

end.

When you run the program, it looks like this:

T
Tr
Tru
True
True
True
True
True
True
True

Next try modifying the program to print "False" instead
of "True" and then run it to observe the results. It appears
that the rules for "formatted" Boolean output are as follows:
If the specified field width is less than that needed to print
the word "True" or "False," the word is truncated to the spec
ified length. If the field width is greater than the length of
"True" or "False," the word is padded with blanks on the left
to expand it the appropriate width.

It doesn't make any sense as far as Pascal is concerned to
perform any of the arithmetic operations we've already seen
on Boolean values. Try the following program, which attempts
to add two Booleans:

program Boo_lab;
(Experiments with Booleans}

var
b I, b2, b3: Boolean;

begin (Boo_lab }
bl :•FALSE;

Variables and Loops 59

b2 :=TRUE;
b3 :"'bl + b2;
writeln(b3);
end.

You'll get the same outcome no matter what arithmetic opera
tion you try: the "type incompatibility" bug box. Instead,
Pascal provides three operators especially for Boolean values.
The operators are represented by the reserved words and, or,
and not.

The simplest Boolean operator is not; enter the following
to see how it works.

program Boo_lab;
{ Experiments with Booleans J

var
bl : Boolean;

begin { Boo_lab)
writeln('bl': 7, ·not bl': 13);
writeln('--': 7, ·------·: 13);
for b 1 :=FALSE to TRUE do
writeln(bl: 7, not bl: 13)

end.

The result is

bl not bl

False True
True False

The not operator applies to a single Boolean value and
turns it around; TRUE is turned into FALSE, FALSE into
TRUE. In the jargon, not is called a unary operator because
it only acts on one value. On the other hand, the arithmetic
operators(+, - , *• /,div, and mod) are called binary opera
tors because they work on the two values found on either side
of the operator.

Note, by the way, that it is perfectly all right to have a for
loop with a Boolean loop control variable. As far as Pascal is
concerned, the value of FALSE is "less than" the value of
TRUE, so the loop is done twice: once with the loop control
variable set to FALSE, the second time to TRUE. (A quick

60 The First Book of Macintosh Pascal

review question: What would happen if you swapped the
initial and final values, TRUE and FALSE, in the for state
ment? Try it. Then change it back.)

The and operator is a binary Boolean operator that works
on two values. To see how it works, modify the program to
look like this:

program Boo_lab;
(Experiments with Booleans}

var
bl, b2: Boolean;

begin (Boo_lab }
writeln('bl': 7, 'b2': 7, 'bl and b2': 13);
writeln('--': 7, ·--· : 7, ·---------· : 13);
for b 1 := FALSE to TRUE do
for b2 := FALSE to TRUE do
writeln(bl: 7, b2: 7, bl and b2: 13)

end.

You may think it a little strange to see one for statement
immediately after another. But this is just another example of
nesting Pascal statements within one another. As far as the
first for statement is concerned, the "statement" that it is to
execute repetitively is the second for. The second for, in turn,
executes the writeln statement repetitively. When you run the
program, this should be the result:

bl b2 bl and b2

False False False
False True False
True Fafse False
True True True

Note that the values of the loop control variables take on all
four possible combinations of TRUE and FALSE. The output
shows that when two Boolean values are combined with the
and operator, the result is TRUE only if both values are
TRUE. All other combinations give the result FALSE. (If you
don't quite understand why this program prints four lines,
reread the comments on statement nesting and the for loop.)

Variables and Loops 61

The third Boolean operator, or, is also a binary operator.
Change the program, replacing and everywhere by or:

program Boo_lab;
(Experiments with Booleans}

var
b I, b2: Boolean;

begin (Boo_lab }
writelnCb r : 7, 'b2' : 7, 'b I or b2' : 13);
writelnr--·: 7, ·--·: 7, ·--------·: 13);
for b I := FALSE to TRUE do
for b2 := FALSE to TRUE do
writeln(bl : 7, b~: 7, bl or b2: 13)

end.

Running the program shows the difference or makes:

b1 b2 b1 or b2

False False False
False True True
True False True
True True True

Combining two Boolean values with the or operator gives the
result FALSE only if both Booleans are themselves FALSE;
otherwise it gives the value TRUE. Like the and operator, or
mirrors its usual dictionary meaning.

So far we have discussed arithmetic operators that work
on numeric values and give numeric results, and Boolean
operators that work on Boolean values and give Boolean
results. The final class of operators are called the relational
operators. Relational operators generally work on numeric
values and give Boolean results. The six relational operators
used in Pascal are shown in Table 2-1. They are all binary
operators, and it's easiest to think of them as comparing two
values and giving the result of the comparison.

To see how the relational operators work, it's best to try
them out in a program. Enter the following:

program Boo_ I ab;
(Experiments with Booleans}

62 The First Book of Macintosh Pascal

var
i, l : integer;

begin (Boo_Jab l
j :a 12;
j :• 13;
writeln('i is·, i : I);
write Jn(.' j is·, j : I);
wrtteln('i = j is·, t • j);
writeln('I <> j ts·. i <> j);
wrtteln('t < j is·, i < j);
writeln('I > j is·, I > j);
writeln('I <• j is·, I <• J);
wrlteln('I >• J is·, I >• j)

end.

This sets the values of two numeric variables and displays the
Boolean values obtained by comparing the numbers with
each of the six relational operators. For the values shown, you
should get these results:

I is 12
j is 13
I • j is False
i <> j Is True
I < j is True
I > j Is False
i <• j is True
I >• j Is False

Table 2-1.

Pascal Relational Operators

Operator

=
<>
<
>
<=
>=

Meaning

equal to
not equal to
less than
greater than
less than or equal to
greater than or equal to

Variables and Loops 63

For example, the expression "i <= j" has the value TRUE
because the value of i is less than or equal to the value of j;
otherwise it would take on the value FALSE.

You could experiment with the relational operators by
changing the constants assigned to i and j in the first two
assignment statements of the program. Up to now, whenever
we have wanted a variable set to a value in a program, we have
used the assignment statement. If we wanted to set a variable
to a different value in a subsequent run of the program, we
had to change the assignment statement so that the desired
value was on the right side of the assignment symbol (:=).

We can do all this in another way by using a slightly more
flexible method of assigning constant values to variables.
Change these lines:

i := 12;
j := 13

to the following:

writeln('Enter a value for i:');
readln(i);
writeln('Enter a value for j:');
readln(j)

This introduces a new Pascal command, readln. Like the
assignment statement, readln sets the value of a variable but
instead of plugging that value into the program itself, the
value is typed at the Macintosh keyboard when the program
is run.

Now run the program. The first thing you'll see is the
prompt generated by the first write statement:

Enter a value for i:

The program waits for you to type something in at the
keyboard. Type 12 and press the RETURN key. The second
prompt for a value for j is then displayed; type 13 and press
RETURN again. You should see the same results as you had
before.

Run the program again, entering different numbers for i
and j. If you make a typing mistake before you press RETURN,

use the BACKSPACE key to correct it. In addition to experi
menting with the relational operators, this is also a good way

64 The First Book of Macintosh Pascal

to gain experience with the way the readln command works.
Run the program a number of times and answer the follow
ing questions:

• What happens if, instead of a number, you try to type
"illegal" characters not allowed in an integer constant
(letters, for example)?

• Can you type blanks before you type the number? Can
you type blanks after you type the number? Can the
number contain embedded blanks? Can you type illegal
characters if they are separated from the number by
trailing blanks? What happens if they aren't separated
by blanks?

• What happens if you try to enter a number larger than
32767 or smaller than -32767?

Other experiments may occur to you as well. After you
have learned the rules for entering integer values, try the
same thing with real values. The simplest way to do this is to
change the variable declaration from integer to real. To avoid
confusion, also change the prompts to ask for reals instead of
integers. Make sure you can enter real values in both fixed
point and floating-point notation. What happens if you try to
break the rules for writing real constants discussed earlier?
We will continue our discussion of the readln statement in
Chapter 6.

A final note on the relational operators: we have shown
them working with numeric values, but you can also use them
to compare Boolean values as well. (Remember, FALSE is
considered "less than" TRUE.) As we go on to explore more
Pascal data types, we'll see that most of them can be com
pared with the relational operators as well.

THE while LOOP

Earlier in the chapter, we explored the for loop and saw how
useful it was for executing statements a specified number of
times. Often, however, you will not be able to specify exactly
how many times a loop should be executed at the time you
write the program. Instead, execution of the statements
inside the loop will depend on a condition that must be satis
fied first. If the condition is satisfied, the statements are exe
cuted and the condition is checked again. If the condition is
still satisfied, the statements are executed again; then the

Variables and Loops 65

condition is checked again, and so on. If it ever happens that
the condition is not satisfied, the loop exits; program execu
tion continues with the next statement following the loop.

For example, you might use the following method to find
something good to watch on television: turn on the set; if you
don't like what you see, change the channel. if you don't like
that, change the channel again. Keep going until you find
something you do like; then sit down and watch that. To
express this in a Pascal-like notation, you might write

tum on the TV

wht1e you don't like what ts on:
change the channel

relax and enjoy

Here the wo-p body (the action performed repetitively) is the
statement "change the channel." The loo-p condition is that
you dislike what's on; as long as the condition (that you don't
like what is on) is met, the loop body is executed. When the
condition is not satisfied-you finally find something interesting
you exit from the loop and proceed with the next statement:
relax and enjoy.

Assume the only interesting show is on channel 5, for
example. To simulate the channel-changing process in true
Pascal, one could write the following program:

program while_lab;
(Experiments with while loops}

const
INTERESTING = 5;

var
ch : integer;

begin [while_lab }
ch:= 2;
writeln('Turning on TV .. :);
while ch <> INTERESTING do
begin
write('Channel ',ch: I,· is boring . .');
writeln('Click!');
ch:= ch+ I

66 The First Book of Macintosh Pascal

end;
writeln('Ah, Channel ',ch: I,· has something interesting
writeln{'Please pass the popcorn.')

end.

Note that the loop condition is expressed with a relational
operator: "ch<> INTERESTING." As we discussed in the
previous section, comparing two numbers using a relational
operator gives a Boolean result, either TRUE or FALSE. If
the condition is satisfied (the channel is uninteresting), the
comparison will give the result TRUE, and the loop body is
executed. (Here, the loop body is the compound statement fol
lowing the word do.) Once the loop condition is not satisfied
(the channel is interesting), the comparison gives a FALSE,
and control is passed to the next statement following the
while statement.

Type in and run the previous program. The following
should be the output:

Turning on TU ...
Channel 2 is boring .. Click!
Channel 3 is boring .. Click!
Channel i i3 boring .. Click!
Ah, Channel 5 ha3 3o•ething interesting.
Please pa33 the popcorn.

The syntax of the while statement is shown in Figure 2-8.
Note that the loop body is always a single statement. (Of
course, the "single statement" can be a compound statement,
as it was in our program.) The loop condition is always a Bool
ean expression; it must evaluate to either TRUE or FALSE.
As long as it evaluates to TRUE, the loop body is executed.
Once it becomes FALSE, the program exits from the loop
and executes the first line following the loop.

Boo/11an
whiJe do P-~'Pr@ssion

I st6tement I

Figure 2-8.

while statement syntax

Variables and Loops 67

It is also worth emphasizing that the while statement is a
statement and it can go anywhere any other kind of state
ment we have discussed can go. And any kind of statement
can become the loop body of a while statement.

Like the for statement, it is possible for the loop body of
the while statement not to be executed at all. To see this,
change the initial value of the variable ch from 2 to 5. The
output this time will not show any channel-changing at all:

Turning on TU ...
Ah, Channel 5 has so•ething interesting.
Please pass the popcorn.

Unlike the for statement, it is possible for the while
statement to execute "forever." To see this behavior, try
changing the initial value of the variable ch from 5 to 7 and
then running the program. Note that the program shows no
signs of stopping, even after it exhausts all the channels in
both VHF and UHF bands.

If you waited long enough, of course, this program would
end with an execution error after it had checked Channel
32767 and found it dull. (Do you remember why?) If you don't
want to wait that long, use the mouse to move the pointer to
the word Pause in the menu bar. The Pause option is available
only while a program is running. Press the mouse button to
cause the program to stop temporarily; release it to resume
program execution. (Note that a pointing finger appears in
the Program window when you pause the program. This
shows what statement in the program will be executed next.
In Chapter 5 we'll discuss how to use the pointing finger.) To
stop your program, choose the Halt option from the Pause
menu.

As another example, let's write a program to calculate the
greatest common divisor of two integers. The greatest com
mon divisor (or GCD, for short) of two integers is defined as
the largest integer that divides the two integers evenly. For
example, the GCD of 51 and 34 is 17, and the GCD of 81 and
128 is 1.

One method used to calculate GCDs is called Euclid's
algorithm. To calculate the GCD of two positive integers, m
and n, the algorithm involves the following steps:

1. Let remain be the remainder when you divide m by n.

2. If remain is 0, the GCD is n; the algorithm is done.

68 The First Book of Macintosh Pascal

3. If remain is non-zero, set m to the value of n, set n to
the value of remain, and then return to step 1.

You should verify that you understand the steps of the algo
rithm. For example, to find the GCD of 100 and 80,

• After step l, m is 100, n is 80, and remain is 20.
• Skip step 2, since remain is not 0.

• After step 3, m is 80 and n is 20.
• After step 1 again, remain is 0.

• Thus, step 2 tells you that the GCD is 20.

If you remember that the mod operator gives the re
mainder when two integers are divided, Euclid's algorithm
translates easily into Pascal.

The difference between the algorithm and the program is
that the algorithm calculates the remainder both above the
loop and also inside the loop. This is important, since you need
to know the first value of remain before you start the loop.
Try typing in and running this program as follows, and
verify that it gives correct results no matter what two positive
integers you enter. (What happens if one or both numbers are
not positive?)

program Euc I id;
(Calculate the GCD of two positive integers)

var
m, n, remain : Integer;

begin (Euclid J
wrlte('Enter the first integer:');
readln(m);
write('Enter the second integer:');
readln(n);
write('The GCD of·, m: I,· and·, n: I,· Is');
remain :• m mod n;
while remain <> O do
begin
m :•n;
n :•remain;
remain :• m mod n

end;
wrlteln(n: I)

end.

Variables and Loops 69

THE repeat LOOP

The third and last loop structure in Pascal is the repeat loop.
The basic idea is the same as the while and for loops: one or
more statements (the loop body) are executed over and over;
the looping stops when a specified condition is met. The syn
tax of the repeat loop is shown in Figure 2-9. The statements
between the repeat and until are executed over and over
until the condition of the Boolean expression becomes TRUE.
Note that no compound statement is necessary if you want to
put more than one statement in the loop body; simply sepa
rate one statement from the next with semicolons as always.

The repeat loop is useful when the loop body is to be exe
cuted at least once. Suppose you wanted to write a simple
desk calculator program that would accept any number of
input numbers and print their sum. The main problem is let
ting the program know that the person running the program
has finished entering numbers; let's say this will be done by
entering a 0 value.

The strategy of this program might be expressed using an
informal notation halfway between Pascal and English:

initialize sum to zero
repeat

get a number
add number to sum

until number is zero
print sum

Such an informal program description is often called
pseudo-code. Because pseudo-code has no hard and fast rules,
it is often easier to design a program roughly in pseudo-code
before you actually write it in formal Pascal. We'll make
occasional use of pseudo-code in the remainder of the book.

Translating the pseudo-code into Pascal gives the follow
ing program:

program desk_calc;
(Add numbers unt i 1 a zero is entered }

var
sum, x: real;

begin (desk_calc}
sum:= 0.0;

70 The First Book of Macintosh Pascal

repeat
writeC'Enter a number (0 to end):');
readln(x);
sum:= sum+ x
until x = 0.0;
writeln('The sum is: ·, sum : 16)

end.

Type in and run the program; make sure you can add up
any sequence of numbers that occur to you. Note that this
program could also have been written using a while loop, as
shown here:

pro~ram desLcalc;
(Add numbers until a zero is entered J

var
sum, x: real;

begin (desLcalc l
sum:= 0.0;
write<"Enter a number (0 to end):');
readln(x);
while x <> 0.0 do
begin
sum := sum + x;
write('Enter a number (0 to end):');
readln(x)

end;
writeln('The sum is:·, sum: 16)

end.

Figure 2-9.

repaet
I st6t6mtmt I;

I stt!l.t6m611t I

until Baa/6611
6-~'l'r6ssian

repeat statement syntax

Variables and Loops 71

Both programs do exactly the same thing; the only differ
ence is that, since the readln must be done at least once, the
version of the program using repeat is slightly shorter.

As another example of the use of repeat, let's design a
program that calculates the square root of an input real
number. Many programming languages provide a built-in
square root routine that can be easily used with any program.
Pascal provides a built-in square root as well, but for the
purposes of this program let's assume that it is unavailable.
(We'll see how it works in Chapter 7.)

A remarkably easy and quick way to calculate square
roots on the computer is to use Newton's method. Assume the
number we are trying to get the square root of is x. Also
assume we have made an estimate of the value of the square
root; call this guess g. According to Newton's method, a better
estimate for the square root is given by this formula:

1 x) betterg = - (g + -2 g

One strategy for calculating the square root would be to
repeat this calculation over and over, getting closer and closer
estimates of the square root. The only question is the loop
condition: when should the program exit from the loop? One
possibility, and probably the easiest one to write, is to exit
from the loop when two successive estimates of the square
root are equal.

In pseudo-code, the strategy for our program might be
written as follows:

get a value for x
initialize new_guess
repeat

set olcLguess to new_guess
get new_guess from formula

(using value of olcLguess)
until olcLguess and new_guess are equal
print new_guess as approximate square root

Here old_guess and new _guess are two successive approx
imations of the square root of x. The method must start with
an initial guess of the square root; the program should initial
ize the value of new _guess with this initial guess before the

72 The First Book of Macintosh Pascal

repeat loop is entered. (Why?) The first guess doesn't have to
be a very good guess; you can initialize new _guess to x/2 in
the Pascal program:

program Newton;
{Calculate square roots by Newton·s method)

var
x, olcLguess, new_guess: real;

begin { Newton)
write('Enter a number:');
readln(x);
new_guess := x I 2;
repeat
olcLguess := new_guess;
new_guess := (olcLguess + x I olcLguess) I 2

until new_guess = olcLguess;
writeln('The square root of·, x: 16, ·is', new_guess: 16)

end.

Type in and run this program; enter a value of 2 for x
when requested. The program should produce the answer
l.4142135e+O, which is a good estimate of the correct value.
Try a few other values and see if the results are equally as
good.

The key line in this program is the calculation of new_
guess based on the value of x and old_guess inside the repeat
loop. The expression that accomplishes the calculation is a
more complex one than we have discussed previously, involving
parentheses, addition, and two divisions. We will return to this
expression in the following section and explain it fully.

You may note that this program doesn't work well if you
enter a zero value or a negative value. A zero entry causes
division by 0, which is illegal. If a negative value is entered,
the program goes into a never-ending loop; successive esti
mates never converge into a single number. (If you enter a
negative number, you'll have to stop the program by choosing
Halt from the Pause menu.)

One solution to these problems is to have the program
check its input for these situations before it attempts to do its
calculations; we'll discuss the subject of input checking fur
ther in Chapter 4.

Variables and Loops 73

EXPRESSIONS: PRECEDENCE
AND PARENTHESES

All through this chapter, you have been using expressions in a
number of different places in your programs. You have seen
expressions used in the following ways:

• In an assignment statement, there must be an expres
sion on the right side of the := symbol.

• There must be Boolean expressions between the words
while and do in a while statement and after the word
until in a repeat statement.

• The initial and final values in a for statement are both
expressions.

• Finally, the values printed by write and writeln state
ments are, in general, specified by expressions as well.
The field width and "digits after the decimal" format
ting specifications used by write and writeln are also
expressions.

It's easy to see, therefore, that expressions pervade nearly
every Pascal program you write. Just as it was important that
you get a grasp on the concept of a Pascal statement, it is
important that you understand how Pascal expressions work.
That is our goal in this section.

There are two important facts to remember about expres
sions used in a Pascal program. First, when a statement con
taining an expression is executed in a program, the expres
sion is evaluated; that is, the computer goes through whatever
operations are necessary to figure out the value represented
by the expression. Second, any expression in a Pascal pro
gram can be considered to be of a definite type, just as vari
ables are of definite types. So when Pascal wizards talk about
Boolean expressions, they actually mean expressions that
evaluate to a Boolean value, TRUE or FALSE.

For the following discussion, assume you have defined
variables in a program as follows:

var
x, y, z: real;
i, j, k: integer;
b 1, b2, b3 : boo lean;

The simplest kind of expressions are the constant values. For

74 The First Book of Macintosh Pascal

example, consider these assignment statements:

x := 3.25;
i := 5280;
b3 :=TRUE

Since anything that appears on the right side of an assignment
is an expression by definition, the constants 3.25, 5280, and
TRUE are all full-fledged expressions, albeit simple ones. All
three also have definite types: real, integer, and Boolean.

You have also seen that variable names can be considered
expressions. For example,

z := x;
j := i;
bl:= b2

Here x, i, and b2 are all expressions of real, integer, and Bool
ean types, respectively.

Next, you have also seen that operators can be used in
expressions to get the computer to perform arithmetic, Bool
ean, and comparison operations. In these examples,

y := x * z;
k := i - j;
b3 :=bl or b2

once again the expressions are evaluated and the resulting
values are assigned to the variables.

With only one exception, Pascal does not allow types to be
mixed; it is against the rules of the language to use one type
where Pascal expects some other type. This is Pascal's rule
against type mixing. We have tried to break this rule a
number of times in our experiments, and the result was usu
ally the "incompatibility between types" bug box. For exam
ple, you know from experience that it is illegal to assign a
real expression to a Boolean variable, or vice versa.

The single exception to this rule is simple and reasonable:
you may use an integer expression where Pascal expects a
real expression. Thus, the following assignments are all legal
even though they involve type mixing:

x := 3;
y :c i;
z := j div k

Variables and Loops 75

In all these cases, the integer expressions are evaluated and
then converted to real values. Those real values are the ones
actually assigned to the real variables. This is just a special
case of a more general rule: whenever integer constants, vari
iables, or expressions are combined with real constants, vari
ables, or expressions, the integers are converted into reals
before the specified operations are performed. So in the fol
lowing assignments, the integer values act just as if they were
real values:

x := 3 + y;
y := z - i;
z := k * x

Remember that this integer-to-real conversion rule is an
exception to the general rule against type mixing in Pascal.
Pascal allows you a little leeway in distinguishing between
reals and integers, but you will almost certainly run into
problems if you try mixing any other types.

The final rule about type mixing is one you brushed up
against earlier in this chapter: the / real division operator
will always give a real result, even if it is used to divide two
integers. This is in contrast to the addition, subtraction, and
multiplication operators. When used on two integers, these
operators will always give an integer as a result.

With Pascal's rules on type mixing understood, it becomes
possible to tackle more complex expressions. Pascal allows
you to combine an arbitrary number of operations into a sin
gle expression; for example:

bl:= bl and b2 or b3;
x := 3.0 * x + z I y;
i := i - j - I< mod IO

All these expressions are still relatively simple, but it is easy
to write more complex combinations. A problem arises when
one tries to predict in what order the operations specified in a
complex expression will occur. The Macintosh can only do one
thing at a time, and if you stop and think a bit, you'll see that
the order in which operations are performed will affect the
final value of the expression. For example, consider the
assignment

x := 2.0 * 3.6 + 0.4

76 The First Book of Macintosh Pascal

If Pascal performs the multiplication first, x will take on the
value 7.6. If the addition is done first, x will have the value
8.0.

To clear up such ambiguities, Pascal provides precedence
rules (rankings) that govern the order in which operations are
performed in any expression. One way-and probably the
simplest way-to understand the precedence rules is to think
of the Pascal operators as having high or low precedence. In
an expression that contains a number of operations, the oper
ations of highest precedence are done first, the operations of
next highest precedence are done next, and so on. Operations
of lowest precedence are performed last.

Figure 2-10 shows the precedence of the Pascal operators
we have seen so far. The highest precedence operator is not;
the operators *• /, div, mod, and and are next highest, fol
lowed by the operators +, - , and or. The lowest precedence
operators are the six relational operators: =, <, >, <=, >=,
and <>. Looking at the previous example, since multiplica
tion has precedence over addition and is performed first, x
takes on the value 7.6.

If you find it necessary to alter the natural precedence of
operations in a Pascal expression (and you often will), you
may do so with parentheses. Operations specifed within pa
rentheses are always done first when the expression is evalu
ated, regardless of the precedence of the operators involved.

higher precedence
not

* I div mod and

+ - or

= < > <= >= <>
lower precedence

Figure 2-10.

Pascal operator precedence

Variables and Loops 77

In effect, you should think of parentheses in an expression as
containing subexpresswns whose values must be calculated
first; those values are then used to evaluate the entire expres
sion. The subexpressions may themselves contain paren
theses, and the same rule applies to these sub-subexpressions:
operations within parentheses are done first. Parentheses
may be "nested" to any depth within an expression.

Let's look again at the key line from the Newton program
in the previous section, which will demonstrate nearly every
thing discussed so far in this section:

new_guess := (ol<Lguess + x I ol<Lguess) I 2

Here the subexpression in parentheses is evaluated and the
value obtained is divided by 2. (Remember that it would be
equally correct to write "2.0" instead of "2"; the division is a
real division in either case.) In evaluating the subexpression
within parentheses, Pascal does the division x/old_guess first
because the / operator has higher precedence than the +
operator. The result of the division is then added to the value
of old-guess.

Understandably, you may not remember which operators
have precedence when writing a program, but you can always
use "insurance" parentheses to guarantee Pascal will do
things in the order you want. For example, the calculation
just discussed could have also been written as

new_guess : .. (ol<Lguess + (x I ol<Lguess)) I 2

Here the parentheses around the division "x/old_guess" are
absolutely useless as far as Pascal is concerned. They do per
form an important function, however; they may make the
order of operations clearer to the person writing or reading
the program. Until you are comfortable with the Pascal
precedence rules, use insurance parentheses to remove any
worries you have about precedence.

At times you may find yourself slightly confused about the
binary operators + and - (used for addition and subtraction)
and the + and - used to give an algebraic sign to a numeric
quantity. When used as signs, + and - are considered to be
unary operators; they operate on the single value following
them. Their precedence, however, remains the same whether
they are used as binary or unary operators.

In an expression involving operators of equal precedence,

78 The First Book of Macintosh Pascal

the operations are performed from left to right. For example,
the assignment statement

i :"' 9 - 6 - 1

assigns the value 2 to x (not 4) because 9-6 is performed
first.

Even though the rules Pascal uses in evaluating expres
sions are relativ~ly simple, it is very easy for both beginning
and advanced programmers to fail to think through all the
implications of the rules and, as a result, come up with syntax
errors or erroneous results in their programs.

Suppose you wanted to write a loop statement that would
be executed while the value of the real variable x was
between 0.0 and 10.0. You may know that, in mathematics,
this condition can ~e expressed as "0.0 :5 x :5 10.0". Translat
ing this into Pascal, one might write

while 0.0 <= x <= 10.0 do ... (i llega 1 in Pasca 1 J

As noted, this gives a syntax error. Why? The two <=
operators in this expression are of equal precedence, so they
are evaluated left to right. The result of the first comparison
(0.0 <= x) is a Boolean value, TRUE or FALSE. Thus, when
Pascal tries to carry out the second<= operation, the value
on the left side of the operator is a Boolean, and the value on
the right is a real (10.0). This, of course, is not the original
intent of the expression. Worse, as far as Pascal is concerned,
is that the expression winds up trying to compare a Boolean
with a real. Pascal will refuse to do it, displaying its usual
"type incompatibility" bug box.

You might try again, writing the comparison more or less
as you might say it: "while x is greater than or equal to 0.0
and less than or equal to 10.0 "This might translate into
Pascal as follows:

while x >= 0.0 and<= 10.0 do ... (also illegal in Pascal J

Unfortunately this is also wrong; all relational operators
are binary operators and they need values to compare on
both sides. The <= operator has 10.0 on its right side but
no value on its left. The same argument applies to the and
operator, which needs to work with two Boolean values on
either side.

Variables and Loops 79

Whenever you write two binary operators side by side, it is a
signal that you are doing something Pascal will not allow.

A reasonable next attempt at the solution might be the
following:

while x >= 0.0 and x <= 10.0 do... (also illegal in Pascal}

This avoids all the problems discussed before; it is still not
quite right, however. A quick glance at the precedence chart
in Figure 2-10 shows why. There are three operators in the
expression; of the three, the and has highest precedence. So
Pascal will try to carry out the and operation first. The prob
lem is that the values on either immediate side of the and are
reals, but and only operates on Boolean values. The result is,
once again, the "type incompatibility" bug box.

The correct way to express the condition, then, is to put
both comparisons in parentheses to ensure they are done
before the and operator tries to operate on the results:

while (x >= 0.0) and (x <= I 0.0) do ...

Here the comparisons are performed first, each giving a
Boolean result; these Boolean values are then combined with
the and operator to arrive at the correct Boolean result.

If you feel you need more experience with expression eval
uation, try typing in the following program, which simply
prints out the values of various expressions. Try to predict
what the output results will be before you run the program. If
any of your predictions were wrong, try to figure out where
you and Pascal disagreed in your evaluations.

program expressiorLlab;
(experiments with expressions }

var
x, y, z: real;
i, j, k : integer;

begin [expressiorLlab }
x := 3.6;
y := 2.4;
z := 0.6;
i := 32;

80 The First Book of Macintosh Pascal

j := 7;
k := 2;
writeln(x + y I z: 15);
writeln((x + y) I z: 15);
writeln(-x*y/z: 15);
writeln(x I y I z: 15);
writeln;
writeln(i - j - k: 1);
writeln(i - (j - k): 1);
writeln(i mod j div k: 1);
writeln(i - k mod j : 1);
writeln;
writeln((i >= j) and (j >= k));
writeln(not (i >= x) or not (j >= y));
writeln((i <> i) or (j = j));
writeln(not (not (not (not (not (k > i))))))

end.

As usual, you should feel free to compose your own complex
expressions and verify that they are evaluated under the
rules discussed here.

Variables and Loops 81

MACINTOSH
PASCAL: EDITING
AND DISK USE

SELECTION

Things that are done well tend to be
transparent and are not noticed, while things
that are done badly intrude and are noticed.

-Paul Heckel
The Elements of-Friendly Software Design

(Warner Books, 1984)

In Chapter l, we focused on how to use Macintosh Pascal,
discussing how to type in and modify simple programs. You
gained more practice using Macintosh Pascal in Chapter 2,
but the emphasis in that chapter was on the Pascal language
itself, rather than the nuts-and-bolts details of how Pascal
works on the Macintosh. In this chapter we will return to
Macintosh-only material; the main concern will be program
editing and how it can be made even easier and faster. We
will also discuss some housekeeping techniques for disks;
these will become useful once you start developing more and
larger programs.

A ubiquitous concept in all good software for the Mac is that
of selection. If you have used MacPaint, for example, you know
that you may select any area in your drawing with either the
selection rectangle or lasso. In Mac Write, you may select a
part of your document using the mouse. We discussed briefly

83

in Chapter 1 how to select icons on the Macintosh desktop by
clicking them. In general, the term "selection" refers to tell
ing the Macintosh what you want to work on. The information
selected may then be acted on as a unit.

Macintosh Pascal uses selection mainly to make program
editing easier. Until now, your editing has been restricted
to inserting or deleting one character at a time. You may
have wished that there were some special commands that
allowed you to delete a ten-character identifier, for example,
other than the method you now use (moving the insertion
point to the end of the identifier and pressing BACKSPACE

ten times). Once you learn the selection methods presented
here, you will have a number of such special commands to
choose from.

If you have some Mac Write experience, you'll be glad to
know that the selection methods used in Macintosh Pascal are
very similar. There are a few minor differences, though, so
even MacWrite experts should at least skim this section.

To see how selection works, type in the following program:

program quad;
{ Draw a quadr11atera1 J

begin { quad J
moveto(50, t 00);
11neto(t 00, t 00);
linetoCtOO, 50);
1tneto(50, 50);
1tnetoC50, t 00)

end.

This simple program uses two Macintosh Pascal commands
that we haven't discussed yet: rrwvet,o and lineto. As you might
suspect, these commands allow you to use the Macintosh's
graphics capabilities. The output from this program will
appear not in the Text window but in the Drawing window.
The Drawing window appears automatically when Macintosh
Pascal is started, but in the course of programming, it is easy
to move or change the size of the Program or Text window so
that the Drawing window is partially or entirely covered. If
this happens, resize the windows before you run the program
so that you can see the entire Drawing window. If you have
closed the Drawing window by clicking its close box, you may

84 The First Book of Macintosh Pascal

reopen it by choosing the Drawing option from the Windows
menu.

In any case, once you can see the Drawing window, run the
program you typed in. You should see a square on your
screen:

or1w1n_g_

D

The five commands in the program just entered draw the
four sides of a square. (Consider this to be a sneak preview of
the Macintosh Pascal QuickDraw routines, which will be
explained in Chapters 8 and 12.)

You might wonder about the meaning of the numbers
placed in parentheses after the command names. To try to
discover what they're for, let's modify the program. A typical
experiment might be to change the second number in the
first lineto command from 100 to 5. Instead of deleting or
inserting one character at a time, however, let's select the
number to be changed. To accomplish this, do the following:
(1) position the I-beam pointer in front of the second 100 in
the first lineto command, (2) press and hold the mouse button,
(3) drag the pointer across the number to highlight it, and
(4) release the mouse button. The line now looks like this:

······+
lineto(1 oo, I•I>;
Congratulations: you have successfully selected a piece of

program text. If you don't get this result the first time, click
the mouse button once, which will undo the selection you

Editing and Disk Use 85

made, and try again. Accurate selection may take a little
practice, but you'll find it a worthwhile skill to master.

We'll now assume you have successfully selected the
number 100. To change the number 100 to 5, just press the 5
key. The highlighted 100 vanishes and is replaced by a 5. Run
the program again to see how this changes the drawn figure.

You have just seen the first example of how selection can
make editing easier. In general, to replace something in your
program with something else, all you need do is select the
text you want to change and then type in the replacement
text. The first keystroke of the replacement text deletes the
original text you selected. If you must replace more than a
few characters of your program, this will be considerably fast
er than deleting the original text one character at a time
using the BACKSPACE key.

Some thought should tell you that selection is a potentially
risky technique. If you accidentally select a large amount of
text and then press a key, the entire selection can be erased
from the screen. Unless you have saved the program on disk,
this text is gone for good; the only way to get it back is to
retype it. Macintosh Pascal, unlike Mac Write and MacPaint,
has no undo command to allow recovery of accidentally
deleted material. This doesn't mean you shouldn't use selec
tion; it simply means you must be careful when using it.

You may select any part of your program using the same
technique: just move the pointer to the beginning of the text
you want to select, press and hold the mouse button, drag to
the end of the desired selection, and then release the button.
The selection isn't completed until you finally release the but
ton, and any selection you make can be immediately undone
by clicking once anywhere inside the Program window.

You might want to practice selecting any of your program
text using this method. In addition to selecting within a line,
you can select text starting in one line and ending in another.
Also attempt to select the entire program. (An easy way to
select multiple lines in a program is to drag down the left
margin of the window.) After you make each selection, undo
it by clicking with the pointer anywhere in the Program
window.

Macintosh Pascal provides two shortcuts for faster and
more accurate selection of words and lines. To select a single
word or number in your program, just double-click the word
or number. To select an entire program line, triple-click the
line.

86 The First Book of Macintosh Pascal

Another selection shortcut is commonly known as shift
click selection. To see how it works, first move the insertion
point to one end of a desired selection. Then move the pointer
to the other end. Hold down the SHIFT key and click the
mouse button; this will select all program text between the
insertion point and the pointer. Shift-click also works to
extend a previous selection. Select a small amount of the pro
gram, move the pointer to another point, and shift-click. The
selection will extend from the original selection to the loca
tion of the pointer.

An additional shortcut is available if you want to select
your entire program: choose Select All from the Edit menu.
You'll want to become accustomed to these shortcuts, so prac
tice them as well as the more general method of dragging the
pointer.

Instead of replacing text, you may want to simply delete
text from your program. You can use selection to do that as
well: just select the text you want to delete and then either
press the BACKSPACE key or select the Clear option from the
Edit menu. (Pressing the BACKSPACE key is probably faster.)
Once again, you should be careful not to accidentally delete a
large chunk of your program, especially if the program has
not been saved on disk; Macintosh Pascal provides you with
no recovery from a mistake like this.

For experience in selecting, make the following changes to
your program, running it after each change. Try to accom
plish each change with the minimum number of keystrokes:

• Undo the change you just made to the program: change
the line containing "lineto(lOO, 5)" back to "lineto(lOO,
100)".

• Change the line "lineto(50, 50)" to "lineto(75, 50)".

• Change the line "lineto(lOO, 50)" to "lineto(125, 50)".

• Change the line "lineto(50, 100)" to "lineto(25, 100)".

• Change the line "moveto(50, 100)" to "moveto(25, 100)".

CUTTING, PASTING, AND COPYING

Selection would be useful even if all we could do with it was
what we've discussed so far. But selection is also the basis for
additional powerful editing operations: cutting, copying, and

Editing and Disk Use 87

pasting. We'll explore these operations in this section. Cut
ting, copying, and pasting operations are, like selection,
common techniques used in nearly all Macintosh software.

Once you select a piece of your program, you may choose to
cut it out of your program. Like deletion, this removes the
text from your program. Unlike deletion, however, it saves the
text for possible reuse. The place where a cut is saved is
called the Clipboard. The Clipboard is used by most Macin
tosh software; it is used to hold just one piece of selected pro
gram (or drawing or document).

At this point in the discussion, your program should look
like this:

program quad;
{ Draw a quadr11atera1)

begin { quad)
moveto(25, 100);
ltneto(100, 100);
Hneto(125, 50);
1tneto(75, 50);
1tneto(25, 100)

end.

Select the line "lineto(125, 50);". (Remember, the easiest way
to do this is to triple-click the line.) Cut the line from the
program by choosing the Cut option from the Edit menu. The
line should vanish from your program. (Run the program to
verify if you like.)

To confirm that the line was not simply deleted, choose the
Clipboard option from the Windows menu. A new window
labeled Clipboard will appear on your screen and become the
active window; the window will show the line you cut:

lineto(125 50)·

We have cut a single line here, but as you work this exam
ple, remember that we could just as well have cut any contin-

88 The First Book of Macintosh Pascal

uous region from the program, ranging from a single charac
ter all the way to the entire program itself. The Clipboard
imposes no arbitrary limits on the size of the text you store
there. If the text is small enough, it will be saved in memory.
Otherwise, it will be stored in a Clipboard file on disk. Cut
ting only fails if there is no room for the selected text either
in memory or on your disk.

In general, you only need to look at the Clipboard if you
can't remember what it was you stored there. As with most
windows, you may move the Clipboard around the screen and
change its size (although it can't be scrolled). For now, close
the Clipboard window by clicking its close box.

One cautionary note about the Clipboard: it only stores
one thing at a time. If you perform two successive cut opera
tions, the information on the Clipboard from the first cut is
obliterated by the second. It is a good general rule to retrieve
from the Clipboard immediately after a cut to avoid acciden
tally losing important program text.

Retrieving text from the Clipboard is called pasting.
Whenever you paste, everything on the Clipboard is copied
into your program at the current insertion point. To see this
happen, move the insertion point to just before the line
"lineto(lOO, 100);", then choose the Paste option from the Edit
menu. Instantly, the line you previously cut appears in a new
place. (Again, if you wish, run the program to see how this
change affects the drawing.)

Pasting does not change the contents of the Clipboard. To
verify this, move the insertion point so that it precedes the
line "lineto(75, 50)" and choose the Paste option again. Once
more, the line on the Clipboard is copied into the program at
the insertion point, just as if you had typed it yourself.

When you edit larger programs, you will most often use
cutting and pasting for moving part of your program from
one place to another. As you have seen, this is a simple pro
cess: cut the text you want to move and paste it into the new
position.

Now you know about cutting and pasting; what about copy
ing? Essentially, copying works just like cutting, except that
the selected text is not removed from the program; only a
copy of the text is moved onto the Clipboard.

To see for yourself how copying works, select the line
"moveto(25, 100);" in your current program. To copy this line
onto the Clipboard, select the Copy option from the Edit

Editing and Disk Use 89

menu. This operation will not affect your program at all; the
only change will be to the Clipboard contents. If you want,
choose the Clipboard option from the Windows menu to verify
that the line has been copied there. After that, either close the
Clipboard window or activate the Program window by click
ing it.

Now move the insertion point to before the line "lineto(lOO,
100);" and choose the Paste option from the Edit menu. Once
again, the text on the Clipboard is pasted into the program at
the insertion point. Just as you can use a cut-and-paste opera
tion to move a part of your program from one place to
another, you can use a copy-and-paste operation to make a
copy of any program segment at another position.

Here are two practice exercises; as usual, run your pro
gram after each change you make:

• Make a copy of the line "lineto(lOO, 100);" just after the
line "lineto(75, 50);".

• Make a copy of the line "lineto(75, 50);" just before the
line "lineto(25, 100);".

In addition to copying text from one part of a program to
another, the copy-and-paste operation allows you to transfer
program text from one of your programs to another. The fol
lowing steps will do the job:

• Copy the text from the source program into the
Clipboard.

• Close the source program window by choosing Close
from the File menu.

• Open the destination program window by choosing Open
from the File window and choosing the destination pro
gram's name.

• Paste the Clipboard contents into the desired place in
the destination program text.

In addition to program-to-program transfers, you may
also copy and paste to and from documents used by other
applications. For example, you may occasionally find it useful
to prepare your programs using a word processing program
like Mac Write; to do this, simply select and copy the program
text to the Clipboard from the MacWrite document, quit

90 The First Book of Macintosh Pascal

MacWrite, run Macintosh Pascal, and paste the Clipboard
into the Program window. You can use the reverse process to
copy Pascal program segments into Mac Write documents.
(Be aware that some information contained in a document is
often lost in a copy-and-paste operation between applications.
For example, in a Pascal-to-Mac Write transfer, Pascal reserved
words lose their usual boldface.)

FINDING AND REPLACING

Two more editing operations that will enable you to modify
your programs easily and reliably are finding and replacing.
Finding refers to the action of searching the program for a
specific sequence of characters. Replacing refers to finding
text and then replacing that text with another sequence of
characters. In small programs it is easy to find and replace
text yourself using the techniques we've already discussed. In
larger programs, however, it is much easier to turn the task
over to the computer. The computer can also perform the task
without mistake, a feat that's not so easy for humans.

Our program should now look like this:

program quad;
(Draw a quadrilateral}

begin (quad }
moveto(25, I 00);
lineto(125, 50);
moveto(25, I 00);
ltneto(I 00, I 00);
ltneto(125, 50);
ltneto(75, 50);
ltneto(100, 100);
ltneto(75, 50);
llneto(25, I 00)

end.

When run, the program produces the following drawing.

Editing and Disk Use 91

Drawing

You might decide that "quad" is no longer an adequate name
for this program; the output looks more like a kite. To change
the name of the program you could use editing operations we
have already discussed, but this time let's use the find and
replace operations.

Finding and replacing are two-step operations; first, you
must tell the Macintosh what text to find and, optionally,
what to replace it with. Once you have done that, you can
actually perform the find or replace. To get started, choose
the What to find ... option from the Search menu. (Note the
What to find . . . option is the only undimmed option in the
menu.) This dialog box will appear after some disk whirring:

Search for I
r===================================:

Replace with
~~~~~~~~~~~~~~~~--' 

@Separate Words 

O Rll Occurrences 

@Case Is lrreleuant 

O Cases Must Match 

OK 
Cancel 

The blinking insertion point is in the box labeled "Search 
for"; as usual, any characters you type will appear at the 
insertion point. Type the word "quad", which is the string we 
want to search for, and then click the OK button, which will 
make the dialog box vanish. 

Next choose the now undimmed Find option from the 
Search menu. There are two occurrences of the word "quad" 
in the program, and it will find one of them; you will notice 

92 The First Book of Macintosh Pascal 



that it will be highlighted. Which one will be found? It 
depends; the search proceeds forward from the current posi
tion of the insertion point. The search will wrap around, if 
necessary, from the end of the program to the beginning. 

Choose the Find option two or three times in a row to 
verify that the next occurrence of "quad" is always found. 
Text that is found is always automatically selected. 

You may also notice that the occurrence of "quad" in the 
word "quadrilateral" is not found. This is because, unless you 
specify otherwise, Macintosh Pascal will only search for 
"words" in your program-that is, text set apart by spaces or 
punctuation of some kind. Choose the What to find ... option 
from the Search menu once more, and this time click the All 
Occurrences button and then the OK button. Finally, choose 
Find (more than once, if necessary) to verify that, this time, 
the partial word is also found. 

Normally the case of the text in your program will not 
matter to a search; if you search for the word "apple," for 
example, you will find ''Apple," "APPLE," and even "aPpLe." 
If you only want to find exact matches, including case, click 
the Cases Must Match button in the What to find ... dialog 
box before you click OK. 

A few minor points: you may search for text appearing on 
more than one line; simply type a space where the linebreak 
occurs. You are not limited to searching for text that will fit 
in the "Search for" box, although you will, unfortunately, only 
be able to see the text that fits. Finally, all the familiar inser
tion, deletion, selection, cutting, copying, and pasting opera
tions work when you type text into the dialog box. 

Let's now replace our found text: choose the What to 
Find ... option to display the dialog box once more. Click in 
the box labeled "Replace with" to move the insertion point 
down there; then type the word "kite." Click OK, as usual. 
(Clicking the Cancel button will ignore the changes you made 
to the information previously stored in the dialog box.) 

Now choose Find once more to highlight an occurrence of 
"quad"; then choose the Replace option from the Search 
menu. The selected occurrence of "quad" will be replaced by 
"kite," as requested. 

Finally, choose the remaining option in the Search menu: 
Everywhere. As you might guess, this performs the replace
ment specified in the dialog box everywhere in your pro
gram. Since this is a rather drastic operation, Macintosh Pas
cal will display a dialog box asking you to confirm whether 

Editing and Disk Use 93 



want to go ahead with it. (Click the Yes button in this case.) 
Your resulting program should appear as follows: 

program k1te; 
{ Draw a kiternateral J 

begin { kite J 
moveto(25, 100); 
ltneto(l 25, 50); 
moveto(25, 100); 
ltneto(lOO, 100); 
ltneto(l 25, 50); 
1ineto(75, 50); 
lineto(lOO, 100); 
1ineto(75, 50); 
1tneto(25, 100) 

end. 

Note that, in addition to "quad" being changed into "kite," the 
word "quadrilateral" has been transformed into "kiterilat
eral." This interesting behavior is a result of our clicking the 
All Occurrences button in the dialog box; if the Separate 
Words button had been clicked instead, Macintosh Pascal 
would have only replaced "quad" where it appeared as a 
whole word. 

In normal program editing, you will probably specify both 
the Search for and Replace with strings in a single visit to the 
dialog box; you will also want to make the appropriate button 
choices then as well. 

Like all operations that specify changes to your program, 
replacing can be risky, especially Everywhere replacements. 
The main danger is that you will change something you didn't 
intend to. To minimize accidents, always try to specify a 
Search for string that only matches the parts of the program 
you really want to change. If possible, use the Separate Words 
button to change only whole words. If you have doubts about 
whether you will accidentally change something, run through 
the program with the Find option and peruse each selection 
before you use Everywhere. 

Once again, here are some practice exercises: 

• Using the Separate Words button, change all occur
rences of "25" in the program to "50''. 

• Change all occurrences of "125" to "100". 
• Change all occurrences of "75" to "50". 

94 The First Book of Macintosh Pascal 



SHORTCUTS 

What happens when you run the program now? (You may 
want to change the name again.) 

So far we have discussed numerous techniques that make the 
job of typing in and modifying Macintosh Pascal programs 
easier. In this brief section, you'll see a number of other 
techniques-shortcuts-that make the editing tasks pre
viously discussed even easier and faster to carry out. 

In most Macintosh software there are often two ways to 
accomplish common operations: the first method will be easy 
to remember and the second will be easy to do (and perhaps 
not as easy to remember, at least at first). The second method 
is the shorteut: in general, a shortcut will be a slightly faster 
way to do something. Each shortcut you use will typically cut 
only a second or two from the time it takes to do the opera
tion. But since the shortcuts are common operations, you'll 
find that their frequent use makes your work go noticeably 
faster. 

We have already discussed a number of shortcuts in pass
ing: they include double-clicking and triple-clicking to select 
a word or a line. Shift-click selection might be considered a 
shortcut, and the cut, copy, paste, find, and replace operations 
can all be considered shortcuts since their results could be 
accomplished using more time-consuming methods. 

Shortcuts often involve pressing the COMMAND key at the 
same time you press one or two other keys. The COMMAND key 
is the one to the immediate left of the spacebar on your 
Macintosh keyboard, marked with a cloverleaf. When used in 
combination with other keys, the COMMAND key works like 
the SHIFT key: the rules are that you must press the COM
MAND key before you press the other keys and continue hold
ing it while you press the other keys. (Although this process 
may sound involved, it's one you always do whenever you use a 
SHIFT key for uppercase. A little practice will make the 
COMMAND key equally easy to use.) 

With the COMMAND key, you can activate many menu 
options directly from the keyboard instead of pulling down 
the menu with the mouse and dragging down to the desired 
option. You have probably noticed the cloverleaf and letter 
symbols following some menu options; these show what the 

Editing and Disk Use 95 



Table 3-1. 

Edit Menu Shortcuts 

Menu Option Shortcut 

Cut COMMAND-X 

Copy COMMAND-C 

Paste COMMAND-V 

Clear BACKSPACE 

Select All COMMAND-A 

Action 

Move selection to Clipboard 
Copy selection to Clipboard 

Copy text from Clipboard to pro
gram at insertion point 

Delete selection 
Select entire program 

equivalent keyboard commands are. For example, to run your 
program, instead of choosing the Go option from the Run 
menu, you may hold the COMMAND key and type the G key. 
(To use the shorthand way of referring to this key combina
tion, type a COMMAND-G.) Run your program now by pressing 
COMMAND-G. 

COMMAND key shortcuts used in Macintosh Pascal are 
shown in Tables 3-1, 3-2, and 3-3. Table 3-1 shows the short
cuts used to access Edit menu options and Table 3-2 shows 
the Search menu shortcuts. Table 3-3 lists the shortcuts for 
common Run menu options; these include two options we will 
discuss in Chapter 5. 

Here are two previously unmentioned shortcuts that apply 
generally to many Macintosh applications: 

Table 3-2. 

Search Menu Shortcuts 

Menu Option Shortcut Action 

Find COMMAND-F Find next occurrence of 
"Search for" text 

Replace COMMAND-R Replace next occurrence of 
"Search for" text with "Replace 
with" text 

Everywhere COMMAND-E Replace all occurrences of 
"Search for" text with "Replace 
with" text 

What to find. . . COMMAND-W Set "Search for" and "Replace 
with" texts 

96 The First Book of Macintosh Pascal 



Table 3-3. 

Run Menu Shortcuts 

Menu Option Shortcut Action 

Check COMMAND-K Check program for syntax errors 
Go COMMAND-G Run program 
Step COMMAND-S Execute one program line 

•Pressing the RETURN or ENTER keys in a dialog box is 
usually equivalent to clicking either the OK button or 
the outlined (default) button. 

•Pressing the TAB key in a dialog box will skip from the 
insertion point to the next text entry position. 

Don't force yourself to memorize these shortcuts. You will 
find yourself naturally using them more and more as you g~in 
experience with Macintosh Pascal. And that experience will 
come soon enough. 

MACINTOSH PASCAL 
HOUSEKEEPING HINTS 

The Macintosh Pascal software supplied by Apple Computer 
contains two disks, one a copy of the other. The disks contain 
a number of interesting demonstrations, some utility pro
grams, and (most importantly, perhaps) some documentation 
that didn't make it into the printed manuals provided with 
the system. If you haven't yet done so, run the demonstration 
programs, find out how the utility programs are used, and at 
least look through the documentation. A good place to start is 
the program called Open Me; its use is self-explanatory. 

You may, for archival purposes, easily make backup copies 
of every file on these disks except for the Macintosh Pascal 
application itself. The Macintosh Pascal file is copy-protected; 
it can't be successfully duplicated on another disk using nor
mal Macintosh copying operations. Some programs that help 
you make archives will copy the Macintosh Pascal file, even 
though it is copy-protected. For example, Copy II Mac from 
Central Point Software will copy the entire disk correctly. 

Frankly, this copy-protection makes Macintosh Pascal 

Editing and Disk Use 97 



harder to use than it would be otherwise. The primary pur
pose of this section is to offer suggestions on how to best deal 
with this situation. In general, the methods suggested here 
will allow you to use Macintosh Pascal with minimal access to 
the Macintosh Pascal disk itself, decreasing wear and tear on 
the valuable disk. We will also discuss different strategies for 
saving and retrieving your own programs to and from disk. 

If, despite your best efforts, either one of your Macintosh 
Pascal disks becomes unusable, follow the instructions 
included with the software to obtain another copy, or see your 
local Apple service center. 

Our first topic is the preparation of working disks from 
the supplied Macintosh Pascal disks. The following discussion 
assumes you have some familiarity with the Macintosh 
Finder. If you are a novice, perhaps you should review the 
Macintosh documentation or get an experienced friend to 
help you in this process. A little carelessness during the fol
lowing steps can, unfortunately, make your valuable disks 
worthless. (Don't be scared, just be careful.) 

The first thing you should do is put one of the copies in a 
safe place. It is not too extreme to put it in a different build
ing from the one you are working in, since disks are easy to 
lose to theft, smoke, or water. 

The next thing you should do is make at least two copies of 
the remaining Macintosh Pascal disk (which we will call the 
Master Disk). This win back up all files from the Master 
Disk except the Macintosh Pascal application itself. You can
not use the normal icon-dragging method to make the copies 
since the Macintosh Pascal file is protected. The Disk Copy 
application won't work either. To make the copies, which will 
be called the Auxiliary Files disks, follow these steps: 

• While in the Finder, close any open windows and eject 
any disks. Insert both the Master Disk and a blank disk. 
(On a single-drive system, insert one disk, eject it, and 
insert the other.) If the new disk has never been initial
ized, you'll be prompted to do so. 

• Open each disk's icon by double-clicking the icon. Select 
all of the files and folders in the Master Disk's window 
except the Macintosh Pascal application (the icon of 
hands on the keyboard) and the Empty Folder icon. 

• Drag the selected files and folders into the window of 
the Auxiliary Files disk. On a single-drive system, you 
will be prompted to swap the original and new disks a 

98 The First Book of Macintosh Pascal 



number of times. When the copying is finished, you have 
created an Auxiliary Files disk. 

• Repeat these steps for a second Auxiliary Files disk. 

Delete everything from your Master Disk except for 
Macintosh Pascal and the System Folder by dragging all 
other icons to the Trash. (This is safe since you have at least 
three other copies of the files you are deleting here if you per
formed the previous steps. If you haven't been following the 
discussion, don't start here. Go back to the beginning of this 
section.) If you accidentally drag either the System Folder or 
Macintosh Pascal to the Trash, open the Trash icon and drag 
the Folder or Pascal back to the disk window immediately. 

To repeat, your Master Disk will now contain only the Sys
tem Folder and Macintosh Pascal. This is all you require for 
normal use of Macintosh Pascal. To minimize reading from 
and writing to this valuable disk, these should be the only 
items stored there. (Unfortunately, you can't take the even 
safer course of write-protecting the disk, as Macintosh Pascal 
needs to be able to store data on the disk while printing and 
during some cut-and-copy operations.) 

This suggested organization poses no problems if you use a 
Macintosh with two disk drives. When you use Pascal, keep 
the Master Disk in the internal drive and a program-storage 
disk in the external drive. When you save a program you have 
written, be sure you save it to the program disk, not the Mas
ter Disk. All your programs may be loaded from the external 
drive as well. 

If you are a single-drive user, the process of saving a pro
gram will be slightly more complex. You will still need to 
keep the Master Disk in the drive while you are running Pas
cal. To store a program you have written on a single-drive 
system, follow these steps: 

. • Choose the Save as ... option from the File menu. 

• When the Save as ... dialog box appears, click the Eject 
button to temporarily eject the Pascal disk. 

• Insert the disk on which you want to save the program. 

• Type a name for the program in the dialog box and 
click the Save button. 

• Once the program has been safely saved, the disk will be 
automatically ejected and you'll be prompted to re
insert the Pascal disk. 

Editing and Disk Use 99 



Retrieving a program from another disk on a single-drive 
system follows a similar process: 

• Choose the Close option from the File menu to clear 
memory for the program. (Save the current program in 
memory first, if you want.) 

• Choose the Open. . . option from the File menu. 

• When the dialog box appears, click the Eject button to 
temporarily eject the Pascal disk. 

• Insert the disk containing the program you want to 
retrieve. 

• Open the desired program by either clicking its name 
and then the Open button or, as a shortcut, double
clicking its name. 

• Once the program has been read from the disk, you will 
be prompted to reinsert the Master Disk. 

As your collection of Pascal programs grows, the way in 
which you store the programs on your disks becomes more 
important. Unfortunately, the importance of good disk habits 
is often only realized when catastrophe strikes. 

Although the precise organization you use will depend on 
your own special situation, you will probably find it best to 
keep closely related programs grouped in folders and to keep 
related folders grouped (when possible) on the same disk. 

Every disk that contains even slightly important pro
grams or documents should be backed up on a regular basis; 
often you'll want to back up a disk whenever you add or 
change any information on it. You will also find it useful to 
label your disks clearly and store them in a logical manner so 
that you can rapidly find any program or document. Most 
importantly, your labels should clearly distinguish original 
disks and backups. (What happens if you copy a backup disk 
to an original disk?) 

100 The First Book of Macintosh Pascal 



DECISION 
MAKING 

The general rule is: after you make a decision, 
do something. 

Brian Kernighan and P.J. Plauger, 
The Elements of Programming Style 

(McGraw-Hill, 1978) 

In Chapter 2, we discussed the Pascal while, repeat, and for 
looping statements. In this chapter, we will cover the decision 
statements available to your Pascal programs. These state
ments don't involve repetition; instead, they allow your pro
gram to take action based on conditions that develop while 
the program executes. 

THE if . .. then STATEMENT 

The simplest decision your program can make is accom
plished with the if ... then statement. The syntax sketch for 
this statement is shown in Figure 4-1. When your program 
encounters an if ... then, the Boolean expression between the 
if and the then is evaluated; if the expression has the value 
TRUE, the statement following the then is executed. If, on 
the other hand, the expression evaluates to FALSE, the 
statement is skipped. 

101 



Booltt6n 
1f then 

tt,~'Pression 

lst6tement I 

Figure 4-1. 

if ... then statement syntax 

A simple example of the if ... then statement is the 
following: 

program iLlab; 
{ Experiments wtth tf statements ) 

var 
x, y : real; 

begin { iLlab ) 
x :• 1.2; 
y := 3.4; 
write('w'); 
tf x < y then 
wrtte('tnd'); 
wrtte('ow') 

end. 

Run Macintosh Pascal and type in this program. Before you 
run the program, though, make an educated guess at the 
output. 

The Boolean expression evaluated by the if ... then is: 

x<y 

If this expression evaluates to TRUE, the statement 

wrtte('ind') 

will be performed. If the expression evaluates to FALSE, the 
statement will not be performed. The statements preceding 
and following the if ... then are executed in any case, of 
course. 

102 The First Book of Macintosh Pascal 



In the example, the Boolean expression evaluates to 
TRUE because the value of the variable x, 1.2, is less than the 
value of the variable y, 3.4. So all three write commands are 
executed, and the output is the word "window." 

Now change the line 

x := 1.2 

to 

x:• 5.6 

Again try to figure the result before you run the program. 
Now the Boolean expression will evaluate to FALSE (because 
5.6 is not less than 3.4), so the statement bracketed by the 
if ... then will not be performed. Only the two write com
mands above and below the if ... then will be done, making 
the output this time simply "wow." 

Once more the general rule of Pascal statements applies: 
you may place any Pascal statement inside the if ... then, 
including compound statements, while statements, and so on. 
You may also legally place the if ... then itself anywhere any 
other statement could go. Save the if _lab program on disk; 
we'll return to it later. 

In another example, we'll modify the square root calcula
tor developed in Chapter 2: 

program Newton; 
( Calculate square roots by Newton's method ) 

var 
x, old....guess, new_guess: real; 

begin C Newton ) 
wrlte('Enter a number:'); 
readln(x); 
new_guess :• x I 2; 
repeat 
old....guess :• new_guess; 
new_guess :• (old....guess + x I old....guess) I 2 
until new_guess • ofLguess; 
wrtteln('The square root of·, x: 16, ·ts·, new_guess: 16) 
end. 

Decision Making 103 



Either retrieve the program Newton from disk (if you saved 
it) or type it in. 

You may remember that Newton was an unreliable pro
gram because it crashed when fed a zero value for the vari
able x and went into an infinite loop when given a negative 
number for x. To make the program more reliable, we can 
use the if ... then to protect the calculation from unexpected 
values. Modify the program as follows: 

program Newton; 
(Calculate square roots by Newton's method J 

var 
x, ol<Lguess, new_guess : real; 

begin ( Newton J 
wrlte('Enter a number:'); 
readln(x); 
If x > o.o then 
begin 
new_guess :• x I 2; 
repeat 
ol<Lguess :• new_guess; 
new_guess :• (ol<Lguess + x I ol<Lguess) I 2 
until new_guess • ol<Lguess; 
wrtteln('The square root of·, x: 16,' Is·, new_guess: 16) 

end 
end. 

Don't forget to insert the new end down near the bottom of 
the program; this matches the begin after the if. Now run 
the program again. You'll find it still works when you give it 
positive values and that it doesn't behave badly now when it 
reads zero or negative numbers (actually, it doesn't do any
thing at all). In this case, the statement controlled by the 
if ... then 

begin 
new_guess :• x I 2; 
repeat 
ol<Lguess :• new_guess; 
new_guess :• (ol<Lguess + x I ol<Lguess) I 2 
untn new_guess .. ol<Lguess; 
wrlteln('The square root of·, x: 16, ·ts·, new_guess: 16) 

end 

104 The First Book of Macintosh Pascal 



is a compound statement. This compound statement contains 
a repeat loop, which itself contains two assignment state
ments. This is just another example of how Pascal statements 
can be nested within each other, a concept you will see over 
and over in nearly all significant Pascal progr::i.ms. 

THE if ... then ... else STATEMENT 

In the previous section you saw it was possible to do some
thing based on the value of a Boolean expression. It is often 
more desirable that, in addition to doing something when the 
Boolean expression is TRUE, your program can do something 
else when the Boolean expression is FALSE. 

Assuming you have been following this discussion on your 
computer, save your new version of the Newton program on 
disk and retrieve the if _lab program you saved in the pre
vious section. Modify if _lab to look like this: 

program tLlab; 
( Experiments with If statements } 

var 
x, y: real; 

begin ( tLlab} 
x := 5.6; 
y :• 3.4; 
wrtte('w'); 
If x < y then 
write(' Ind') 

else 
wrtte('all'); 

wrtte("ow') 
end. 

Notice that the write statement after the if ... then is no 
longer followed by a semicolon; make sure your program 
looks the same. (We will discuss the missing semicolon 
shortly.) 

What will happen when you run the program? (As usual, 
try to guess first.) The Boolean expression will evaluate to 
FALSE, so the statement following the then won't be exe
cuted. Instead of doing nothing in this case (as happened with 

Decision Making 105 



the simple if ... then), the statement following else is per
formed. The result is the word "wallow." Now change the line 

x:•S.6 

back to 

x := 1.2 

What will happen now? 
To summarize, the if ... then ... else gives your program 

two possible actions to take based on the result of evaluating a 
Boolean expression; the syntax sketch is shown in Figure 4-2. 
If the expression gives a TRUE result, the statement follow
ing then is executed; if FALSE, the statement following the 
else is executed. (And although you may be tired of hearing 
this, the statements may be any Pascal statements, including 
compound statements.) 

Another important point to remember about the if ... then 
... else is that exactly one of the statements will always be 
performed, no matter what. Since the Boolean expression 
must be either TRUE or FALSE, there is no way that both 
statements (or neither statement) will be executed. 

Why was it so important that you remove the semicolon 
from the statement preceding else? To see why, try putting 
the semicolon back in, as follows: 

program ILlab; 
(Experiments with If statements J 

var 
x, y: real; 

begin ( ILlab) 
x :• 1.2; 
y := 3.4; 
wrlte('w'); 
If x < y then 
wrtte('tnd'); ( an error about to happen J .... 
wrlte('al I'); 
write(' ow') 

end. 

106 The First Book of Macintosh Pascal 



Figure 4-2. 

Boo/eon 
1f then 

e,~'Pression 

lstotement I 
else 

lstotement I 

if ... then ... else statement syntax 

You need not type in the comment, of course. Note that the 
word else turns into an outline font once you type the semi
colon, which is Pascal's way of warning you that syntax errors 
are imminent. When you try to run the program, the result is 
this bug box: 

~ Either 11 semicolon_(;) or 11n END is eHpected following the preuious 
KU st11tement, but neither h11s been found. 

You may note that the bug box isn't especially illuminat
ing as to the cause of the syntax error. (We inserted an extra 
semicolon, but the error message seems to think there are too 
few.) The problem lies in our carelessness with Pascal's sim
ple but absolute semicolon rule. Although we alluded to this 
rule in Chapter l, it is worth emphasizing here: 

Semicolons sepan:a.te 
'.Pa.scat statements 

Since semicolons are statement separators, Pascal always 
expects to see a complete statement both preceding and fol
lowing a semicolon. An else is not a legal way to begin a Pas
cal statement since it is not a statement itself, only a reserved 
word that is part of a possible statement. So Pascal gives up 
and reports a syntax error at this point in the program. 

It may seem to you that semicolons are more difficult to 
understand than any other part of the Pascal language. You 
have seen that semicolons are mandatory at certain points of 

Decision Making 107 



your program (between any two statements, for example) 
and, as in the last example, are prohibited at other places 
(before an else, for example). What can confuse things 
slightly is that at certain points of your program semicolons 
can be optional. 

To see an example, insert a semicolon in the if_lab pro
gram just before the final end. (Don't forget to remove the 
bad semicolon first.) 

program ILlab; 
( Experiments with If statements) 

var 
x, y: real; 

begin ( iLlab ) 
x := 1.2; 
y :• 3.4; 
wrlte('w'); 
tfx<ythen 
write(' ind') 
else 
write('all'); 
write('ow'); 

end. 

Run the program. As you can see, Pascal has no problem with 
this new semicolon at all. Everything works as before. 

But if you give this a little thought, you may object that 
the new semicolon cannot be a statement separator because 
the word end is not a Pascal statement, just as else was not a 
Pascal statement. Doesn't this behavior break the semicolon 
rule? 

The answer is no; the rule is still valid, but the reasoning 
is a little subtle. When you add the semicolon, Pascal consid
ers that there has to be an empty statement between the semi
colon and the word end. That way the semicolon really is 
separating two statements: the write statement and an empty 
statement. 

The syntax sketch for the empty statement is shown in 
Figure 4-3. It's drawn as an empty box. The box, of course, is 
not considered part of the statement; the empty statement is 
inside the box: it is nothing at all. 

Lest you think this discussion of empty statements is hope-

108 The First Book of Macintosh Pascal 



Figure 4-3. 

Empty statement syntax 

lessly pedantic, insert a semicolon after the else in the if_lab 
program: 

program iLlab; 
( Experiments with If statements ) 

var 
x, y: real; 

begin ( ILlab ) 
x :• 1.2; 
y :• 3.4; 
wrlte('w'); 
lfx<ythen 
write(' Ind') 

else 

' write('all'); 
write(' ow'); 

end. 

Do you think this semicolon is illegal? Well, it may look ille
gal, but it is perfectly fine with Pascal. In the modified pro
gram, the statement controlled by the else is the empty 
statement between the else and the new semicolon. Fortu
nately, Macintosh Pascal reformats the program automati
cally, showing that the statement 

write(' all') 

is no longer inside the if •.. then ... else statement and so will 
always be executed no matter what the value of the Boolean 
expression. Run the program to confirm that's what happens. 

Decision Making 109 



(What will happen if you modify the program to make the 
Boolean expression evaluate to FALSE?) 

So far, we haven't given you any good purpose for empty 
statements. Empty statements are occasionally useful when 
you want a statement to "do nothing." As an example, we will 
insert two empty for loops before and after the if ... then 
... else. (Note that the two for loops in this version of the pro
gram will be identical. Remember that you can use the copy
and-paste operation, so you only have to type one for loop.) 

program ILlab; 
(Experiments wtth If statements} 

var 
x, y: real; 
t: Integer; 

begin ( ILlab } 
x :• 5.6; 
y :• 3.4; 
wrlte('w'); 
for I :• I to 1000 do 

tfx<ythen 
write(' ind') 

e1se 
write('all'); 
for I:• I to 1000 do 

write(' ow'); 
end. 

Also note that the semicolon after the else has been removed. 
Finally, don't forget that the loop control variable i must be 
declared. Make sure these changes are in your program. 

In this program the statement controlled by the for loops 
is the empty statement. Since the empty statement does 
nothing, this doesn't affect what the program does. But the 
for statements do take time to execute; in this case, the com
puter must count from 1 to 1000. Such do-nothing loops are 
often called delay loops, since they only slow the program 
down. (Run the program to find out how much slower. What 
happens when you change the 1000 to 10,000?) 

110 The First Book of Macintosh Pascal 



In spite of its unobtrusive appearance, the empty state
ment is a normal Pascal statement, and it can be placed in 
your program anywhere you would place any other state
ment. In general, we would advise you to use empty state
ments only in those cases where they are specifically called 
for: those rare cases where nothing is exactly what you want 
your program to do, as in delay loops. Avoid extraneous semi
colons, even when they are technically legal. 

There is one final point you should be aware of. Modify the 
if _lab program once more: 

program ILlab; 
(Experiments with If statements J 

var 
x, y, z : real; 

begin ( ILlab J 
x :• 5.6; 
y :• 3.4; 
z :• 7.8; 
wrlte('w'); 
If x < y then 
If y < z then 
write(' Ind') 

else 
wrtte('al I'); 

write(' ow'); 
end. 

This is another example of statement nesting; this time, an if 
statement is nested within another if. With which if is the 
else associated? The simple rule is that an else always goes 
with the previous "un-elsed" if. Fortunately, Macintosh Pas
cal automatically indents your program in such a way to 
remind you of this rule. 

Run the program to confirm that neither part of the 
"inner" if ... then ... else is performed; the output should be 
"wow." This is because the first if ... then evaluates to 
FALSE. 

If you want the else associated with the first if instead of 
the second, you must nest the second if inside a begin ... end 
pair, as shown here. 

Decision Making 111 



program ILlab; 
(Experiments with if statements J 

var 
x, y, z : real; 

begin ( tLlab J 
x :• 5.6; 
y :• 3.4; 
z :• 7.8; 
wrtte('w'); 
If x < y then 
begin 
tfy<zthen 
write(' ind') 

end 
else 
wrtte('al I'); 
write(' ow'); 

end. 

Make this modification and predict the output before you run 
the program. (Examine Macintosh Pascal's indentation of 
this program for a hint as to what will happen.) Also try 
changing the initial values of the variables x, y, and z in this 
program to print either of the two other possible words. 

Once more let's return to the Newton program to improve 
it. (Again, save if _lab before you retrieve Newton.) You will 
remember that the previous version of Newton didn't do any
thing at all when it was handed a number it couldn't deal 
with; this can be disconcerting to someone who doesn't know 
what's happening. Add an else part to the if to print out an 
error message if the square root calculation can't be done: 

program Newton; 
( Calculate square roots by Newton's method J 

var 
x, ol<L.guess, new_guess : real; 

begin ( Newton ) 
wrtte('Enter a number:'); 

112 The First Book of Macintosh Pascal 



readln(x); 
If x > 0.0 then 
begin 
new_guess :• x I 2; 
repeat 
old...guess :• new_guess; 
new_guess :• (old...guess + x I old...guess) I 2 
until new_guess • old...guess; 
wrlteln('The square root of', x: 16. ·Is', new_guess: 16) 

end 
else 
wrlteln('Sorry. this program only works for positive numbers.') 

end. 

Make sure you can identify the two statements controlled by 
the if ... then ... else in this program; it's a little tricky 
because there are quite a few lines between the if and its 
matching else. 

Pascal purists will object to the distinction made here 
between the if ... then statement and the if ... then ... else 
statement. These are really not considered by Pascal to be 
two different kinds of statements. It is more accurate to refer 
to the if ... then ... else as a single statement type and to 
speak of the else part as optional. 

THE else if STRUCTURE 

To repeat a common theme, Pascal allows any statement to 
follow the else in an if ... then ... else statement -for exam-
ple, another if ... then ... else statement. This second if ... 
then ... else statement may have a third if ... then ... else fol
lowing its else, and so on. This process can be repeated as 
many times as desired, forming a series of else ifs. This 
structure is often called a nested if ... then ... else if structure 
or an if ... then ... else chain. We will call it an else if 
structure. 

The else if structure is extremely common in Pascal pro
grams, so common that the structure is worth considering in 
its own right. To see how it works, retrieve the if_lab pro
gram once more and modify as follows. 

Decision Making 113 



program ILlab; 
( Experiments with if statements } 

var 
x, y, z : real; 

begin C ILlab } 
X :a 7.8; 
y :• 3.4; 
z :• 1.2; 
wrlte('w'); 
If x < y then 
wrtte('all') 

else If x < z then 
write(' Ind') 

else if y > z then 
write(' Inn') 

else 
wrtte('i 11'); 

wrtte('ow') 
end. 

Note that the automatic formatting imposed by Macintosh 
Pascal on the if_lab program differs from what you might 
expect, based on your previous experience. Normally a state
ment following else starts on the line below else and is 
indented slightly. If the statement following the else is an 
if ... then, however, the if ... then follows the else on the same 
line. (As you see how the else if structure is used, you might 
want to speculate on Apple's reasons for this special 
treatment.) 

Make a guess at the output from this program and run it 
to see if you were right. The program works as follows: in the 
first if, the Boolean expression 

x<y 

is evaluated. The result is FALSE, which means the state
ment following the else is to be executed. This statement is 
the second if, which means the Boolean expression 

x<z 

is evaluated. This is also FALSE, so the statement following 

114 The First Book of Macintosh Pascal 



the second else, the third if, is executed. The Boolean expres
sion here is 

y>z 

This is TRUE, so the then statement is executed. The net 
result is that the word "winnow" is printed. 

The syntax sketch for the else if structure is shown in 
Figure 4-4. Note that the chain of if ... then ... else ifs can be 
of any length. Also the final else is optional (like all elses); 
this is indicated on the sketch with a dashed box. 

The most important thing to remember about the else if 
structure is that no more than one of the statements inside the 
structure will be performed each time the structure itself is 
executed. Whenever one of the Boolean expressions evaluates 
to TRUE, the corresponding then statement is executed and 
no more of the conditions in the chain are tested. 

If the final (optional) else is present in an else if structure, 
it acts as a catchall: the statement following this else is 

Figure 4-4. 

Boo/11t1n 
if then 11,rpr11ssion 

lst8tement I 
Baale6n else if then ex ressittn 

lst6tement I 
Baa/118n else if then 

e,~'fJressian 

• • • 

lst8tem11nt I 

r·e1se ........................................ i 
j lstBtement I j 
~-- ·-·-............................ -... -------··· .... ~ 

else if structure syntax 

Decision Making 115 



executed if none of the previous Boolean expressions is 
TRUE. If the trailing else is present, you can be assured that 
exactly one of the statements in the else if structure will 
always be performed each time the structure is executed. 

For practice in determining how the else if structure 
works, here are three sets of initial values for the variables x, 
y, and z. For each set, predict the output from the if_lab 
program; then plug the values into the program and see if 
you were correct. 

x := 1.2; 
y :• 3.4; 
z :• 1.2 

x := 1.2; 
y :• 0.9; 
z :• 3.4 

x :• 1.2; 
y :• 0.9; 
z :• 1.0; 

The else if structure allows your program to perform a 
number of different actions depending on different, mutually 
exclusive conditions in your program. For example, you 
might want your program to print out the largest of three 
numbers. In pseudo-code, you might devise a strategy as 
follows: 

get three nuabers 
If the flrat nuaber la largest 

print the f lrst nuaber 
If the second nuaber Is largest 

print the aecond nuaber 
If the third nuaber Is largest 

print the third nuaber 

You should find this easy to translate into Pascal: 

program max3; 
( f 1nd largest of three numbers ) 

var 
x, y, z: real; 

116 The First Book of Macintosh Pascal 



begin ( max3 ) 
write('Enter the first number:'); 
readJn(x); 
write('Enter the second number:'); 
readJn(y); 
write('Enter the th1rd number:'); 
readln(z); 
write('The largest Is'); 
If (x >• y) and (x >"' z) then 
wrtteJn(x : t 6); 
If Cy >• x) and Cy >• z) then 
wrlteln(y : 16); 
If (z >• x) and (z >• y) then 
writeJn(z: 16) 

end. 

Type in this program we've called max3 and run it. Verify 
that no matter what three numbers you type in, the largest 
one is always printed. (Why does this program use the">=" 
relational operator and not ">"? A related question: What 
happens if two or three of the numbers you enter have the 
same value?) 

This program is fine-it works, anyway-but it can be 
improved. Notice that if the first number, x, is the largest, 
you really don't have to check to see if either y or z is the 
largest. And, conversely, if you know that neither x nor y is 
the largest number, you don't have to do any further checking 
at all; by the inexorable rules of logic, z must be the largest 
number. 

So an else if structure is really more appropriate for this 
program. Based on this realization, the program then becomes 

program max3; 
( f Ind largest of three numbers) 

var 
x, y, z : real; 

begin ( max3 ) 
wrtte('Enter the first number:'); 
readln(x); 
wrlte('Enter the second number:'); 
readln(y); 
write('Enter the third number:'); 

Decision Making 117 



readln(z); 
wrlte('The largest Is '); 
If (x > .. y) and (x >• z) then 
wrlteln(x : 16) 

else if (y >• x> and Cy>• z) then 
wrlteln(y: 16) 

else 
writeln(z :. 16) 

end. 

From outside appearances, this program works much like the 
previous one. This version is cleaner, however; it makes fewer 
unnecessary tests and it is still clearly correct. 

A third version of this program might use a different 
strategy: 

program max3; 
( f Ind largest of three numbers J 

var 
x, y, z : real; 

begin ( maxJ } 
write('Enter the first number:'); 
readln(x); 
write('Enter the second number:'); 
readln(y); 
write('Enter the third number:'); 
readln(z); 
write('The largest is '); 
If x >• y then 
If x >• z then 
writeln(x: 16) 
else 
writeln(z: 16) 

else If y >• z then 
writeln()': 16) 

else 
writeln(z: 16) 

end. 

Try this version; does it work? Compare this version of the 
program with the previous version. Why might this be consid
ered a better solution? (How many comparisons of x, y, and z 

118 The First Book of Macintosh Pascal 



does each version make?) Why might this version be consid
ered inferior to the previous version? (If you weren't told the 
outcome of either version, how long would it take you to fig
ure it out by reading the programs?) 

We might also modify Newton once more to take advan
tage of the else if structure. Based on the value of x entered, 
we can split the program into three exclusive cases: (1) If the 
input number is positive, calculate the square root as always. 
(2) If the input number is 0, print the answer as 0. (3) If the 
input number is negative, print an error message as before. 

Retrieve Newton, saving the max3 program first if you 
want. Make the minor modification to make Newton work as 
just described: 

program Newton; 
( Calculate square roots by Newton's method ) 

var 
x, old....guess, new_guess: real; 

begin ( Newton } 
wrtte('Enter a number:'); 
readln(x); 
If x > 0.0 then 
begin 
new_guess :"' x I 2; 
repeat 
old....guess :• new_guess; 
new_guess :• (old....guess + x I old....guess) I 2 
until new_guess • old....guess; 
wrlteln('The square root of·, x: 16, ·Is·, new_guess: 16) 

end 
else If x • o.o then 
wrlteln('The square root of·, x: 16, ·Is·, x: 16) 

else 
wrlteln('Sorry, this program only works for non-negative numbers.') 

end. 

Verify that the program now has three different outcomes 
depending on whether you type in a number of positive, zero, 
or negative value. 

As a final example, let's design a simple number-guessing 
game. The computer will think of a target number, and the 
computer's user (you, in this case) will attempt to guess it. 

Decision Making 119 



This program needs a looping structure to perform the 
action of asking the user for a guess again and again. Of the 
looping structures available to us, we can discard the for loop 
right away, since we don't know how many times the program 
will need to ask for a guess. So our choice is between a repeat 
and a while. Remember that a repeat is most often useful 
when an action must be done at least once; a while is usually 
indicated when an action might not be done at all. In this 
case, the program will always ask for a number at least once, 
so a repeat is the control structure of choice. 

Start with a crude strategy expressed in pseudo-code: 

think of a nl.lllber 
repeat 

get gueaa f ro11 uaer 
unt 11 gueaa I a correct 

To be fair to the person playing this game, the program 
should say whether an incorrect guess is under or over the 
correct answer. So a refined algorithm might go like this: 

think of a target nu•ber 
repeat 

aak for gueaa fro• uaer 
I f gue11 < target number 

tel I uaer that guess •as too I• 
else If guees > target nu•ber 

tell ueer that guess .as too high 
eln 

ahal uaer gueaaed correctly 
unt 11 gueaa I 1 correct 

This algorithm is close enough to Pascal so we can translate it 
directly: 

program guesslng_game; 
( Guess a number thought of by Macintosh } 

const 
MAXGUESS • 100; 

var 
target, guess : Integer; 
success: Boolean; 

120 The First Book of Macintosh Pascal 



begin ( guesslng....game J 
target :• random mod MAXGUESS + I; 
writeln('I am thinking of a number between I and·, MAXGUESS: I); 
success :• FALSE; 
repeat 
write('Your guess?:'); 
readln(guess); 
If guess < target then 
wrtteln('Sorry: ·,guess: I,· Is too low') 
else If guess> target then 
wrlteln('Sorry: ·,guess: I,· is too high') 

else ( got It ! ) 
success :• TRUE 

unt 11 success; 
wrlteln(guess: I,· Is correctr> 

end. 

Here we have again used a feature of Pascal not yet discussed. 
The statement 

target:• random mod MAXGUESS + I 

contains the word "random," which looks like an undeclared 
variable. "Random" is discussed in Chapter 7; for now, con
sider it to be a predefined integer variable that takes on 
unpredictable values each time it is examined. Taking this 
unpredictable value of mod MAXGUESS will give us a (still 
unpredictable) value between 0 and MAXGUESS - 1; add
ing one to this gives a number between 1 and MAXGUESS. 

Play this simple game as long as you like. If you want, try 
other values of MAXGUESS; make this number smaller for 
a shorter game and larger for a longer one. 

THE case STATEMENT 

Suppose that you wanted to write a program that, when given 
the number for the month (4 for April, 9 for September, and 
so on), printed the number of days in that month. A good 
place to start in the design of such a program is to ask your
self: how would I do this in real life? Perhaps you have mem
orized the verse that follows. 

Decision Making 121 



Thirty days hath Septe•ber, 
Rpr i I , June, and Hovnber; 
Rll the rest have thirty-one, 
Excepting February alone 
Rnd that has t•enty-elght days clear 
Rnd t.enty-nlne In each leap year. 

If we were to describe this algorithm in pseudo-code, we 
might write: 

if month Is 9, 4, 6, or 11 (September, April, June, November) 
days:= 30 

else if month Is not 2 (not February) 
days:= 31 

else If It Is a leap year (month is February) 
days:= 29 

else 
days:'" 28 

You already know how to implement this pseudo-code in Pas
cal with an else if structure. Let us therefore write an entire 
program based around this design: 

program days_1n_monthi 
{calculate number of days 1n a month J 

var 
month, days, yr : integer; 

begin ( days_Jn_month ) 
wrlte('Enter the month number:'); 
readln(month); 
if (month= 9) or (month= 4) or (month= 6) or (month• 11) then 
days:= 30 
else if month<> 2 then 
days:= 31 
else ( it's February ) 
begin 
write('Enter the year:'); 
readln(yr); 
if Cyr mod 4 = 0) and (yr mod l 00 <> 0) or (yr mod 400 = 0) then 
days:= 29 
else 

122 The First Book of Macintosh Pascal 



days:= 28 
end; 
writeln('There are ·, days : I, · days in the month.') 
end. 

The test in this program for a leap year is complex, but 
correct. According to the Gregorian calendar, if the year is 
divisible by 4 (year mod 4 is O), the year is a leap year unless 
it is also divisible by 100 and not divisible by 400. (So 1900 
and 1800 were not leap years, but the year 2000 will be.) 
Evaluate the complex Boolean expression by hand using a 
few different values for the year. 

Another type of statement allows a slightly different way 
of doing the same thing: the case statement. The case state
ment lets you choose between many cases of the possible 
values of a variable. This program could be rewritten with a 
case as follows: 

program days.....irunonth; 
(calculate number of days in a month} 
var 
month, days, yr : integer; 

begin ( days.....irunonth } 
wrlte('Enter the month number:'); 
readln(month); 
case month of 
9, 4, 6, I I : 
days:= 30; 
I, 3, 5, 7, 8, 10, 12: 
days:• 31; 
2: 
begin 
wrlte('Enter the year:'); 
readln(yr); 
if Cyr mod 4 • 0) and Cyr mod I 00 <> 0) or Cyr mod 400 .. 0) 
then days:• 29 

else 
days:• 28 

end 
end; 
writeln('There are·, days: I, ·days in the month.') 

end. 

Decision Making 123 



cese le,~pressionl of 
r.onst6nt 

list 
lst6tem1rntl; 

r.onst6nt 
list 

• • • 

lst6tementl; 

const6n 
list 

r-1 lst6tementlH 
f"of tierwise············· 1 
i lst6tementl j 
L ........................................... u ........... ! 

end 

Figure 4-5. 

case statement syntax 

Essentially this case statement says, "Look at the value of the 
variable month; if it is 9, 4, 6, or 11, assign the value 30 to the 
variable days. If month has the value 1, 3, 5, 7, 8, 10, or 12 (the 
other months except February), assign the value 31 to days. 
Finally, if month has the value 2, ask for the year. If the year 
is a leap year, then days is 29; otherwise, it's 28." Type in this 
program and verify that it correctly calculates the number of 
days in any month. 

The general syntax of the case statement is shown in Fig
ure 4- 5. The expression used between the words case and of 
may be of any type we've discussed so far except real. (As we 
introduce other types, we will discuss whether they may be 
used in a case statement.) As shown in the example, a con
stant list is what you would expect: one or more constant 
values separated by commas. Each constant in the constant 
list must be of the same type as the case expression. Any 
given constant value may appear in all the constant lists a 
total of once. Although the syntax sketch doesn't show it, Pas
cal permits a semicolon preceding the case's final end. 

The otherwise clause shown at the end of the case syntax 
sketch is optional. If it is present, the semicolon preceding the 
word otherwise is also necessary. Like the final else in all 
else if structures, the otherwise clause is a catchall; if the 
value of the case expression doesn't match any of the con
stants in any of the lists, the statement following otherwise 
executed. 

To see why an otherwise escape clause is often useful, run 
the program and enter a value of 13 for the month. 

~ The ualue of t~e eHpression in a CRSE statement aboue does not 
fil match any of its use constants. 

The otherwise allows an easy alternative to this sort of impo
lite behavior. Modify the end of the program slightly: 

program days......lrunonth; 
{calculate number of days In a month) 
var 
month, days, yr : Integer; 

begin ( days_trunonth) 
wrtte('Enter the month number:'); 

124 The First Book of Macintosh Pascal 



readln(month); 
case month of 
9, 4, 6, 11 : 
days:= JO; 
l,J.s. 7,8. 10, 12: 
days:• JI; 
2: 
begin 
wr1te('Enter the year:'); 
readln(yr); 
If (yr mod 4 • 0) and (yr mod 100 <> 0) or (yr mod 400 • 0) 
then days :• 29 
else 
days:• 28 

end; 
otherwise 
days:• O; 

end; 
If days <> o then 
wrlteln('There are •• days : I, • days In the month.') 
else 
wrlteln('Sorry: Invalid month.') 

end. 

Rerun the program; this time the unexpected input is 
handled in a more civil manner. (Verify that normal input is 
handled as before.) 

Whether you use an else if structure or a case statement 
in a given program is sometimes a matter of taste. The else if 
is more general: it can handle many different kinds of alter
native decisions, as we have seen. The case statement, on the 
other hand, is restricted to performing different actions 
based on different values of a single expression. 

Anything that can be done with a case can also be accom
plished with an else if structure. However, a case statement 
will often run faster and take up less memory than the equiva
lent else if structure. A case statement can also be more 
clear and concise to someone reading your program. 

A final caveat: the otherwise clause is not present in 
Standard Pascal. If you mean to run the programs you write 
using versions of Pascal other than the Macintosh variety, 
avoid otherwise; it can make your programs more difficult 
than necessary to translate to another version of Pascal. (In 
the jargon, using otherwise makes your program less 

Decision Making 125 



portable since it can't easily be moved to a different system.) 
A portable way to avoid the problem of unexpected input 
values is to protect the case statement with an if test. In our 
program, this could be done as follows: 

• 
• 
• 

if (month >• I) and (month <• 12) then 
case month of 

• 
• 
• 

THE goto STATEMENT 

label 

ll"'be/ list I 

Figure 4-6. 

Label definition part 
syntax 

In this section we will discuss a part of the Pascal language 
you will seldom want to use: the goto statement. A goto 
statement in your program commands that the flow of control 
jump to another part of the program. 

To use a goto, you must specify the statement you want 
your program to go to. This is accomplished by prefixing this 
statement with a label. Any statement in your program may 
be labeled, including empty statements. A label is any 
number in the range 0-9999. 

All labels that exist in your program must be declared, 
just as variables and constant identifiers must be declared. 
Labels are declared in the label definition part of your pro
gram; the syntax of the label definition part is shown in Fig
ure 4-6. To declare labels, just use the reserved word label, 
followed by a label list: one or more labels separated by 
commas. 

The label definition part in a program goes before the 
constant definition part and after the program line. So we 
have an addition to the Pascal program syntax; the new part 
is shown in its proper place in Figure 4- 7. 

Once you define a label you can use it to label a statement; 
this syntax is shown in Figure 4-8. The label and a colon pre
cede the statement you want to label. A labeled statement 
may be the target of a goto statement; the goto statement's 
syntax is shown in Figure 4-9. 

Macintosh Pascal will consider it an error if you try to go 

126 The First Book of Macintosh Pascal 



''"'""'': lst8tementl 

Figure 4-8. 

Labeled statement 
syntax 

goto l18bell 

Figure 4-9. 

goto statement syntax 

program lpragr8m n8me.I; 

l18bel dPfinititlR p6rtl 

',Ct1nste1nt definitian p8rtl 

lv6ri8ble definil ian p6rt I 

Figure 4-7. 

begin 

lst8tementsl 

end. 

Pascal program syntax (still incomplete) 

to a nonexistent label, try to label a statement without declar
ing the label first, or try to have two or more statements in 
your program with the same label. 

For a specific example of how labels and gotos are used, 
type in the following goto-lab program, which admittedly 
doesn't do much. As always, try to guess the output before you 
run the program. 

program gotCLlab; 
( expertments with goto} 

label 
1.2.3,4,5,6; 

var 
I, j : Integer; 

begin ( goto._Jab } 
j :• O; 
1 : 
for i:= t to !Odo 
begin 

2: 
wrlte{'a'); 
If j • t then 
goto 4; 
If I> t then 
goto J; 

Decision Making 127 



wrtte('b'); 
goto 5; 

3: 
If j >• 2 then 
goto 6; 
wrtte('c'); 
j :• J + I; 
goto 2; 

4: 
wrtte('d'); 
j :• J + 1; 
goto I; 

5: 
wrtte('r') 
end; 

6: 
end. 

Note that it is possible to use a goto to jump from inside a 
statement to outside it. In this program, the "goto 6" and 
"goto 1" statements jump out of the for loop. It is also possible 
to jump to statements at the same nesting level-statements 
"goto 5" and "goto 2," for example. 

It is illegal, however, to use goto to try to go to the inside 
of a statement from the outside. For example, insert the 
statement 

goto2 

just after the initial begin of the program. Run the program 
and you'll get this amusing bug box: 

[I ~ You can't get there from here. 

II 

The goto-lab program is intentionally convoluted and hard 
to understand; it demonstrates most of the problems resulting 
from the unrestricted use of the goto statement. All of the 
other statements in Pascal are more or less self-explanatory; 
when you see a for statement, for example, it is easy to 
determine such details as what statements are executed 
within the loop and how often the loop is performed. 

128 The First Book of Macintosh Pascal 



A goto statement is almost never that clear. To determine 
the action of the goto, you must first figure out the conditions 
under which the goto statement will be executed. You must 
then search through the program for the specified label and 
unravel what the program does when control is tranferred 
there. In perusing someone else's program (or even one of 
your own) you will often find the reasons behind the use of a 
goto completely mysterious. 

Related problems also arise from the use of multiple labels 
in a program. When there is more than one way for control to 
pass to a statement, it is difficult to determine how many 
times and under what conditions that statement will be exe
cuted. This can be nightmarish when you are debugging a 
program and trying to work backward from that statement. 

So there are many reasons not to use the Pascal goto. A 
general guideline is to use it only as a last resort, when all the 
more restricted control structures we have discussed have 
been tried and found wanting. For example, you might justi
fiably use goto to escape from a deeply nested set of state
ments when your program detects some sort of serious error 
condition. All such exceptional situations should be clearly 
commented so that anyone reading the program will be able 
to follow the logic involved. 

Decision Making 129 



MACINTOSH 
PASCAL 
DEBUGGING AIDS 

Debugging is not an activity relished by the 
average programmer; in fact, it is usually 

considered the most frustrating and 
·nerve-wracking aspect of writing a program. 

- Edward Yaurdon 
Techniques of Program Structure and Design 

(Prentice-Hall, 1975) 

Until now, much of our discussion has dwelled on how your 
programs might not work. This may have seemed a strange 
emphasis to you, especially if you have not had a lot of prior 
experience writing programs. As you gain that experience, 
however, you will find that bugs are inevitable in your pro
grams. You will come to appreciate Murphy's Law ("If any
thing can go wrong, it will"). 

You have already experienced the species of bug known as 
the syntax error. Syntax errors occur when your program 
fails to conform to the rules of Pascal. Examples of common 
syntax errors include missing or extra semicolons, misspelled 
words ("intger" instead of "integer," for example), unbalanced 
parentheses, and undeclared variables. 

You have also encountered run-time errors, yet another 
type of bug. A program with a run-time error will begin 
running (hence the name), but some condition that develops 
when the program runs will cause the program to terminate 
prematu:t;"ely with an error message. Examples of run-time 

131 



errors include overflow and division by zero. Macintosh Pas
cal also considers many instances of illegal type mixing (dis
cussed in Chapter 2) to be run-time errors. 

A third type of bug-the most insidious-is the logic 
error. Such errors generate no error messages; in many cases, 
a program with a logic error may even appear to run prop
erly. Logic errors can be as simple as writing a plus sign 
where you should have written a minus sign. Since computers 
have no way of knowing what you really meant to do, a syn
tactically correct logic error that generates no run-time 
errors cannot be detected by the computer; you must roll up 
your sleeves and do it yourself. 

Program bugs aren't anything to be ashamed of, or 
frightened of either. As you become a better programmer, 
you will also get better at debugging. (Your bugs will also get 
harder to find and fix, but that's another story.) 

Another reason we have emphasized bugs and their elimi
nation is that Macintosh Pascal provides an exceptionally 
good debugging environment. When Macintosh Pascal detects 
a problem within your program, its error messages (with few 
exceptions) are accurate and in understandable language 
with minimal jargon. The magic hand, at the left side of the 
program window usually shows the approximate location of 
the error. And best of all, fixing a program error is usually 
accomplished using only a few mouse movements, clicks, and 
keystrokes. Other versions of Pascal and other languages 
aren't so kind, as you may know. 

In this chapter we will concentrate on additional features 
of Macintosh Pascal that make debugging your programs 
easier. For the purposes of this chapter, we will develop a 
program containing many types of bugs. Then we will show 
how to exterminate each one with the help of the debugging 
aids provided by Macintosh Pascal. 

CHECKING PROGRAM SYNTAX 

Let's start by creating a program that will find a solution to 
the equation "x2 + x - 1 = O". The positive solution to this 
equation is known as the golden ratio because geometric figures 
based on this ratio are considered to be pleasing to the eye. 

A note to readers who are not mathematically inclined: 
you should probably only skim the following explanation and 

132 The First Book of Macintosh Pascal 



0 x 

solution 

Figure 5-1. 

The method of bisection 

concentrate on the mechanics of the debugging method 
instead. 

The method our program will use to find the golden ratio 
is the method of bisection, illustrated in Figure 5-1. The 
curved line shows roughly how the equation x2 + x - 1 
changes as the value of x changes. The value of x for which 
the curved line crosses the x axis is the solution we are 
seeking. 

The method of bisection assumes you are given two values 
of x that straddle the actual solution; these values are denoted 
as xl and x2 in Figure 5-1. Then perform these steps: 

1. Compute x2 + x - 1 for each of these values of x; call 
the results yl and y2, respectively. Note that, by our 
assumptions, one of these values will be positive, the 
other negative. 

2. Now pick a value of x halfway between xl and x2 
(denoted as xmid in Figure 5-1) and calculate x2 + x -
1 for that value; call this result ymid. 

3. If the sign of ymid is different from the sign of y2, the 
solution lies between xmid and x2. (This is the case in 
Figure 5-1.) Set xl to the value of xmid, yl to the value 
of ymid, and return to Step 2. 

Debugging Aids 133 



4. If the sign of ymid is different from the sign of yl, the 
solution lies between xl and xmid. Set x2 to the value 
of xmid, y2 to the value of ymid, and return to Step 2. 

5. The only other possibility is that ymid is 0, in which 
case we've found the solution. 

Informally, we can see that each time Step 3 or Step 4 is 
done, the values of xl and x2 will get closer to one another. 
Eventually, we might suppose, the values will close in on the 
correct answer, and since the computer is doing all the work, 
we might also suppose we don't have to worry about the 
details of the process or how long it will take. (As we'll see, 
these suppositions are incorrect.) A pseudo-code for this algo
rithm might look as follows: 

get wluea for x1 and x2 
(lo11er and upper bounda for aolutlon) 

calculate y1 and y2 fro1 x1 and x2 
wh 11 e 10 I ut I on haan 't yet been found 

calculate x1ld halfway between xl and x2 
calculate Y1ld fro1 x1ld 
If Y1ld and y2 have oppoalte elgna 

aet x1 to x1ld 
nt y1 to pld 

elae If y1 and y1ld haue opposite slgna 
aet x2 to x1ld 
aet y2 to pld 

elae 
pld 1ust be zero and 10 x1ld la the solution 

end whl le 
output x1ld aa solution 

A rough translation of this pseudo-code into Pascal fol
lows. Type in this program exactly as shown. (Yes, it contains 
errors.) 

program golden 
( f1nd the golden ratio!) 

var 
xnld, x I, x2 : real; 
ymld, y I, y2: real; 

begin C golden} 
wrtte('Enter lower bound for solution:'); 

134 The First Book of Macintosh Pascal 



readln{x I ); 
wrtte{'Enter upper bound for solution:'); 
readln(x2); 
y I :• x I * x I + x I - 1.0; 
y2 :• x2 * X2 + x2 - 1.0; 
while ymld <> o.o dO 
begin 
xmld :• (XI + x2) dtv 2.0; 
ymtd :• xmtd * xmld + xmld - 1.0; 
tr y I * ymtd < o.o then 
begin 
xi :• xmld; 
yl :• ymld 

end 
else tr ymtd * y2 < 0.0 then 
x2 :• xmld; 

y2 :•ymld 
end 

end; 
wrtteln('Solutton Is', xmtd: 16) 
end. 

(Before we proceed, note that this program uses an easy 
method to determine whether two numbers differ in sign. 
Simply multiply the two numbers; if the product is less than 
0, their signs are different.) 

As you know, any syntax error will prevent your program 
from running at all; you must fix all program syntax errors 
before you can proceed. Macirttosh Pascal provides an easy 
way you can check your program for syntax errors without 
actually running it: choose the Check option from the Run 
menu. (As a shortcut, press the COMMAND-K combination on 
the keyboard.) 

Use the Check option to find the syntax errors in this pro
gram; as each one is detected, fix it. Here is a list of the 
causes of the errors, but try to find them on your own first: 

• The program line is missing a semicolon at its end. 

• The variable "xmid" is misspelled "xnid" in the var sec
tion. 

• The second if ... then is missing a begin after the then. 

Once you have fixed these three errors, use the Check 
option to verify that there are no more syntax errors in your 
program. (When a program is syntactically correct, the 

Debugging Aids 135 



Check option doesn't appear to do anything, which makes a 
certain amount of sense: no news is good news.) 

You can use the Check option periodically while you are 
entering a long program so you can detect syntax errors soon 
after they are made. If you do this, be sure you can distin
guish between real syntax errors and those arising because 
your program is incomplete. 

STEPPING THROUGH YOUR PROGRAM 

After you fix the syntax errors found by the Check option, 
your program should look as follows: 

program go Iden; 
( find the golden ratio! ) 

var 
xmid, x I, x2 : real; 
ymid, yl, y2: real; 

begin (golden) 
write('Enter lower bound for solution:'); 
readln(x I ); 
write('Enter upper bound for solution:'); 
readln(x2); 
yl :•xi *xi +xi -1.0; 
y2 :• x2 * x2 + x2 - 1.0; 
while ymld <> 0.0 do 
begin 
xmid :• Cx I + x2) div 2.0; 
ymld :• xmld * xmid + xmid - 1.0; 
If yl * ymld < o.o then 
begin 
xi :• xmld; 
yl :• ymld 
end 

else If ymld * y2 < 0.0 then 
begin 
x2 :• xmld; 
y2 :• ymld 

end 
end; 
writeln('Solution Is ·, xmid: 16) 

end. 

136 The First Book of Macintosh Pascal 



Run this program by choosing Go from the Run menu, as 
usual. Enter a value of 0.0 for the lower bound and 1.0 for the 
upper bound when requested. The program will appear to 
work, generating the solution: 

Solutlon la 0.0000000.+0 

Unfortunately, this answer is incorrect, as you can verify by 
plugging it into the original equation. You'll remember we 
called this species of bug a logic error. The program ran to 
completion but failed to give the right answer. 

To find out what happened, let's try out a couple of Macin
tosh Pascal's debugging tools: the Step and Step-Step options 
in the Run menu. First, choose the Step option. (Shortcut: 
press COMMAND-S.) The Program window should appear as 
follows: 

Untitred ~ -_::..::.:::-:_---:-- -::::-_ - ::-:. ---
- ---- - - --· -

pr-ogr-am golden; 
{find the golden ratio!} 

·~~:~: ~:: ~~ ~::: I 
beg1n {golden } mm 

write('Enter lower bound for solutior 111111 

readln(x 1 ); i!i!!! 
write('Enter upper bound for solution mm 
refldln(x2); 1m1; 
y 1 := x 1 * x 1 + x 1 - 1.o; mm 
Y2 := x2 * x2 + x2 - 1.0; mm 

:::1:: 
while ymid <> 0.0 do mm 

begin '' xmid := (x 1 + x2) div 2.0; !l!il. 
ymid := xmid * xmid + xmid - 1.0; iii''• 

The magic hand in the left side of the Program window is 
now a pointing finger; you saw this finger in Chapter 2 when 
you stopped a runaway program using the Halt option in the 
Pause menu. The pointing finger always indicates the line of 
the program Macintosh Pascal is about to execute. In this 
case, the program hasn't quite started up yet; the finger 
points to the initial begin. 

Debugging Aids 137 



Choose Step (or press COMMAND-S) once more. The finger 
moves down one line to the first write statement. Choose Step 
again, and the finger moves again, this time to the first 
readln statement. Notice that the write command was actu
ally executed; the prompt "Enter lower bound for solution:" 
should appear in the Text window. 

Don't type anything in response to the prompt because the 
readln statement hasn't begun to· execute yet. To execute the 
readln statement, choose Step again. You should see the 
blinking insertion point appear in the Text window, showing 
that the Macintosh now expects you to type something in 
response to the prompt. As before, enter a value of 0.0 as the 
lower bound. 

Continue stepping through the program, entering a value 
of 1.0 for the upper bound of the root when the second readln 
is executed. When the finger reaches the while statement, 
choose Step once more. Notice that the finger jumps all the 
way down to the writeln statement. This means the body of 
the while loop is never executed, which is the source of the 
current problem. Continue stepping until the program stops. 

There is an alternative to continually choosing the Step 
option (or continually pressing COMMAND-S). The Step-Step 
option in the Run menu is an automatically repeating Step; 
instead of stopping the program on each line, Step-Step 
merely pauses a moment and then continues. The net effect is 
that your program is run in very slow motion; you can easily 
observe the control flow by watching the magic hand. Try 
executing the program with Step-Step. 

We have found our logic error (the first one, anyway). The 
Boolean expression for the while loop is 

ymfd <> 0.0 

This compares the value of the variable ymid against 0. But 
the program hasn't explicitly set ymid to any value when this 
expression is first evaluated. To evaluate the Boolean expres
sion, therefore, Macintosh Pascal must assume some initial 
value for ymid; this assumed value is, unfortunately, 0. 

Our mistake was in trying to ignore the following rule: 

Never use the val.ue 
of a.n va.rt.a&le u.ntU. 

that vg.ria&[e has been 
qi-ven a. val.ue. 

138 The First Book of Macintosh Pascal 



In computer jargon, variables should be initialized before 
their values are used. Some versions of Pascal (including, 
apparently, Macintosh Pascal) set all variables to 0 (or equiv
alent null values) before a program is run. Assuming that a 
variable is automatically initialized to any particular value, 
however, is sloppy programming style. 

For this particular program, perhaps the best solution is 
to turn the while loop into a repeat loop, as follows: 

program golden; 
(find the golden ratio!) 

var 
xmld, x I, x2: real; 
ymld, y I, y2: real; 

begin ( golden) 
wrlte('Enter lower bound for solution:'); 
readln(x I ); 
wrlte('Enter upper bound for solution:'); 
readln(x2); 
y I :• x I * x I + x I - 1.0; 
y2 :• x2 * x2 + x2 - 1.0; 
repeat 
xmid :=(xi + x2) div 2.0; 
ymld :• xmld * xmld + xmld - 1.0; 
If y I * ymld < 0.0 then 
begin 
xi :• xmld; 
yl :• ymld 
end 
else If ymld * y2 < o.o then 
begin 
x2 :• xmld; 
y2 :• ymld 

end 
until ymld • 0.0; 
wrlteln('Solutlon Is·, xmld: 16) 

end. 

Note that the Boolean expression is also turned around: the 
loop is run until ymid becomes 0. Run this version of the pro
gram, once more entering 0.0 and 1.0 for the lower and upper 

Debugging Aids 139 



bounds for the solution. This time the result is a run-time 
error: 

~ Rn incompatibility between types hes been found. 

The magic hand shows thumbs-down on the statement 

xmtd :• <x I + x2) div 2.0 

A moment's thought should give you the solution to this 
error: the div operator is used for integer division, and we 
are using it for real division. Some versions of Pascal would 
treat this as a syntax error. Macintosh Pascal, however, 
delays its checking on type mixing until run-time. To exter
minate this bug, replace div. with a slash: 

xmtd :• (x I + x2) I 2.0 

THE OBSERVE WINDOW 

We have eliminated some bugs from our program, but some 
subtle ones remain. Run the program again with the usual 
inputs of 0.0 and 1.0 in response to the two prompts. 

This time you should observe that nothing happens after 
you type the numbers. The program is stuck in an infinite 
loop. (How can you tell the difference between a program 
with an infinite loop and a program that just takes a long 
time to get the answers? This is a very tricky question with 
no concrete answer. For now, simply wait for as long as you 
need to be convinced that the program will never do anything 
on its own.) To stop the program, choose the Halt option from 
the Pause menu. 

Let's use another debugging tool provided by Macintosh 
Pascal to try to discover the cause of this logic error. Choose 

140 The First Book of Macintosh Pascal 



the Observe option from the Windows menu to display the 
Observe window: 

Obserue 
0.000000 

Enter on expression 

To use the Observe window, one enters expressions into the 
boxes on the right side of the window. Note that there is a 
blinking insertion point across from the request to "Enter an 
expression." All the editing rules you learned for entering 
program text also apply in the Observe window; you may, if 
you want, even cut, copy, and paste. When the program is 
temporarily halted as it is now, these expressions are evalu
ated and their values are displayed in the corresponding 
boxes on the left. 

To see how it works, type "xl" and press the ENTER key 
(note that you use the ENTER key, not the RETURN key). After 
a bit of disk whirring the result should look like this: 

Obserue - -- _____ -_ - --

0.000000 xl 

0 .500000 x2 

0.250000 xmid 
- 1.000000 y 1 

-0.250000 y2 
-0.687500 ymid 

Enter on expression 

Remember that the name of a single variable is a perfectly 
good expression. This tells us the current value of x 1 is 0. (Is 
this enough of a clue to tell you what the problem is?) Let's 
display the values of our other variables; enter the identifiers 
"x2", "xmid", "yl", "y2", and "ymid", pressing the ENTER key 
after each one. Expand the Observe window so you can see all 
six values simultaneously. (Also move the Observe window so 
you can see the Text window.) Now can you figure out the 
bug? The Observe window should now look like this. 

Debugging Aids 141 



Obserue 
0.618034 xi 
0.618034 x2 

0.618034 xmid 
-0.000000 yl 
0.000000 y2 
0.000000 ym1c1 

Enter en expression 

Our program is stopped, but it can be started up again 
from where it left off. In general, whenever you halt a pro
gram, Macintosh Pascal remembers the values of all the 
variables and where the program stopped. When you choose 
the Go option, the program starts up from the point where it 
was halted. 

So start the program again by choosing Go from the Run 
menu (or pressing COMMAND-G). Once more the program is in 
an infinite loop; nothing is displayed in the Text window. 
Simply running the program will not change the Observe 
window either; the Observe window is only modified (or 
updated) when the program is halted. 

You may temporarily halt the program by pressing the 
Pause menu title; you need not select the Halt option. Try 
this. Once you release the Mouse button, the program con
tinues. (Notice that the Observe window is updated after you 
release Pause.) 

Pause the program a number of times, each time examin
ing the values displayed in the Observe window. They don't 
change, do they? The problem seems to be that the program 
isn't getting any closer to a solution. 

Why not? Remember that the assumptions behind the 
bisection method were that the values of yl and y2 were of 
opposite sign. The values for yl and y2 shown in the Observe 
window are both negative. Compare the program with the 
pseudo-code; where did we go wrong? 

The problem is that we muffed the translation from 
pseudo-code to Pascal. The pseudo-code says 

If y•ld and y2 have opposite algna 
Ht x1 to xmld 
aet y1 to y•ld 

else If y1 and y•ld have opposite signs 

142 The First Book of Macintosh Pascal 



aet x2 to nld 
aet y2 to yeld 

But the program says 

If yl * ymtd < 0.0 then 
begin 
xi:• xmtd; 
yl :• ymtd 
end 

else If ymtd * y2 < o.o then 
J>egtn 
x2 :• xmld; 
y2 :•ymld 
end 

The first time through the loop, the program sets x2 to 0.5 
instead of setting xl to 0.5. From that point on, all values of 
yl, y2, and ymid are negative, so no changes to xl or x2 are 
made again. (Work thrm.igh the program, if you want, to see 
this for yourself.) 

Halt the prograJl1 and change it to more accurately reflect 
the pseudo-code. (Remember you will have to click in the 
Program window first to make it active.) Your program now 
reads §!3 follows: 

If y I * ymld < 0.0 then 
begin 
x2 :• xmld; 
y2 :111ymld 

end 
else If ymtd * y2 < o.o then 
begin 
xi :• xmld; 
yl :• ymld 

end 

Note that changing the program removes the pointing fin
ger from the Program window. Macintosh Pascal resets your 
program when you make changes to it, so you may no longer 
start your program from where it stopped. You may also reset 
your program by choosing the Reset option from the Run 
menu. 

Try once more to run your program, again entering 0.0 
and 1.0 for the bounds. There is something else wrong. The 
program is still stuck in an infinite loop. 

Halt the program; you should still be able to see the values 

Debugging Aids 143 



STOPS 

in the Observe window, and they should look like this: 

io Obserue 
Enter an expression I ~ 

~ 
K;Jl 10 IQJ 

At least this is different from what we saw before. And we 
are clearly getting closer to the right answer: the x values are 
all the same, indicating that the process is convergi]lg on a 
solution. They values are all 0, indicating that the solution is 
correct. But why isn't the program giving us the right 
answer? 

Let's use yet another debugging tool to get a better idea of 
what's going on. Choose the Stops In option from the Run 
menu. You will then see a change in the Program window: 

Untitled -: :- ~--: -- -_- - :.. -= --

yl :=xl *xi +xi -1.0; 
y2 := x2 * x2 + x2 - 1.0; 
repeat 

xmid := (x 1 + x2) I 2.0; 

- -- - -

ymid := xmid * xmid + xmid - 1.0; 
1f y I * ymid < 0.0 then 

begin 
x2 := xmid; 
y2 := ymid 

end 
else 1f ymid * y2 < o.o then 

beg1n 
x I := xmid; 
y I := ymid 

end; 
until ymid = 0.0; 
writeln('Solution is·. xmid: 16) 

end. 

144 The First Book of Macintosh Pascal 



(The magic hand may well point to a different line from that 
shown here.) When you choose Stops In, the Program window 
develops a bar on its left side, similar in size to the scroll bar 
on the right side. We'll refer to this bar as the stop bar. A tiny 
stop sign appears in the lower-left corner of the window. 

Move the pointer over to the stop bar. You should notice 
that when the pointer is in the stop bar it appears as a stop 
sign. Move the stop-sign pointer across from the line: 

until ymld • 0.0 

(Scroll the Program window if necessary.) Click the Mouse 
button. Note. that this acts to set a stop sign at the desired 
line: 

Untitled 

y I := x I * x I + x I - 1.0; 
y2 := x2 * x2 + x2 - 1.0; 111111 

repent 
xmid := (x I + x2) I 2.0; 
ymid := xmid * xmid + xmid - 1.0; 
if yl * ymid < 0.0 then 

begtn 
x2 := xmid; 
y2 = ymid 

end 
else 1f ym1d • y2 < 0.0 then 

beg1n 
x I := xmid; 
yl:=ymid 

end; 
• until ymid = 0.0; 

writeln('Solution is ', xmid: 16) 
end. 

Appropriately enough, a stop sign acts to stop the program 
when the line across from the sign is about to be executed. 
You may set as many stop signs in your program as you want. 
(A stop must be in an executable part of your program, 
though, between begin and end.) If you want to remove a stop 
sign that you have put in the program, just click it. 

Remember that our problem is that our program is stuck 
in the repeat ... until loop. So we have chosen a critical point 
to insert the Stop: the place where the loop exit condition is 

Debugging Aids 145 



tested. To see how it works, first choose Reset from the Run 
menu and then choose Go. As always, enter 0.0 and 1.0 in 
response to the prompts. The next thing you should notice is that 
the program halts with the pointing finger at the stop sign you 
placed at the until. Also note that the values in the Observe 
window are updated when the program halts, as usual. 

You may restart the program by choo~ing Go again. When 
the program returns to the until line it will halt once more. 
Choose Go a few more times; each time you should note that 
the values in the Observe window are updated when the pro
gram hits the stop sign. (Since we are debugging the pro
gram you should also notice how the values in the Observe 
window change.) 

The only option in the Run menu we have not yet discussed 
is Go-Go. Go-Go works like Go, except that when the program 
encounters a stop sign, the program only pauses momentarily 
instead of stopping. Values in the Observe window are 
updated when the program pauses. (You can think of Go-Go 
as an automatically repeating Go, just as Step-Step was an 
automatically repeating Step.) 

Choose Go-Go from the Run menu and see how the values 
in the Observe window change. Note especially that the values 
of the variables xl and x2 get closer and closer to each other, 
and yl, y2, and ymid get closer and closer to 0, as expected. 
The problem is that, after a time, the variables don't change at 
all, but the program keeps running. Once again, choose Halt 
from the Pause menu to stop the infinite loop. 

THE INSTANT WINDOW. 

We can get a final clue to our program bug by using another 
debugging tool provided by Macintosh Pascal: the Instant 
window. Choose Instant from the Windows menu to display 
the Instant window: 

146 The First Book of Macintosh Pascal 



As the comment indicates, one uses the Instant window to 
perform "any statements, any time." Try it; enter the follow
ing statement in the Instant window. (Typing and editing in 
the Instant window works just as it does in the Program 
window.) 

wr1teln(ym1d: 16) 

After you have entered this line, click the Do It button. After 
some disk whirring, the program will display the value 
3.6705515e-8 in the Text window, just as if the line you typed 
were in your program. 

Try placing the following statements in the Instant win
dow and executing them: 

writeln('x2- xt is·, x2 - xi : 16); 
wr1teln('xm1d- xi Is', xmid - xi : 16); 
wr1teln('x2 - xmid 1s ', x2 - xmid: t 6) 

The results show what the problem is with our program: 

x2 - x1 la 5.960i6i5e-8 
x•ld - xt la 5.960i6i5e-8 
x2 - xmld Is O.OOOOOOOe+O 

The Pascal calculation that is supposed to give a value for 
xmid halfway between xl and x2 is failing us. In mathemat
ics, the value of xmid can never equal either xl or x2. And we 
assumed that Pascal would behave the same way. Unfortu
nately, the limited precision of the Pascal real data type 
makes this assumption false. Pascal has given us a value of 
xmid precisely equal to x2. The values of xl and x2 are so 
close together that, as far as Macintosh Pascal is concerned, 
there is no number halfway between them. 

The logic error we made in this program was in assuming 
that there was some value of x that would give a y value of 
precisely 0. Although this is mathematically true, it is false in 
Pascal, at least in this case. 

We need to modify te program slightly to make it work. 
Instead of looking for a value of x that will result in x2 + x -
1 being precisely 0, we should look for a value that gives us a 
result very close to 0. Try the following slight modification to 
the program. 

Debugging Aids 147 



program golden; 
{ f1nd the golden rat1ol} 

const 
EPSILON = 1.0e-6; 

var 
xmtd, xl, x2: real; 
ymid, yl, y2: real; 

begtn { golden } 
wr1te('Enter lower bound for solution:'); 
readln(x t ); 
wrtte('Enter upper bound for solution:'); 
readln(x2); 
y t := x t * x t + x 1 - 1.0; 
y2 := x2 * x2 + x2 - 1.0; 
repeat 
xmld :• (x 1 + x2) I 2.0; 
ymtd :• xmid * xmtd + xmid - 1.0; 
if y 1 * ymtd < 0.0 then 
begtn 
x2 := xm1d; 
y2 :"' ymid 
end 
else tf ymtd * y2 < 0.0 then 
begin 
xl :• xmld; 
yl :• ym1d 

end 
until (ymid <EPSILON) and (ymld > -EPSILON); 
writeln('Solutlon Is', xmld: 16) 

end. 

Before you run this version of the program, remove the stop 
sign from the left margin by choosing the Stops Out option from 
the Run menu and close the Observe window. Verify that this 
modification-at last-makes our program work. 

Questions for your further study: 

• There is another solution to the equation that lies between 
-2.0 and 0.0. Can you use this program to find that solu
tion as well? 

148 The First Book of Macintosh Pascal 



• What happens when the numbers you enter for lower 
and upper bounds for the solution do not "straddle" a 
solution to the equation? (Try entering 10 and 20, for 
example.) Can you modify the program to first check 
that the entered values actually do straddle a solution 
and then print a suitable error message if they don't? 
What if one of the bounds entered by the user of the 
program is actually a solution to the equation? Can you 
make your program handle this situation in a logical 
manner? 

• How would you modify this program to find square 
roots? (Hint: what is the solution to the equation x2 - 2 
= O?) How could you use it to find cube roots? 

In working through this example, you should have learned 
the mechanics of using the Macintosh Pascal debugging tools. 
In addition, you should also have obtained an inkling of how 
to debug your programs in an intelligent manner. 

Debugging programs and avoiding bugs in the first place 
is often a matter of carefully questioning your assumptions. 
When you write a loop, for example, you will find yourself 
asking, Under what conditions will this loop be entered? 
When, if ever, will the program exit from the loop? Is there 
any way the loop could execute forever? As you gain expe
rience, you will learn to ask yourself the right questions as 
you are designing and debugging. 

Debugging Aids 149 



MORE 
DATA TYPES 

God created the integers; all 
the rest is the work of man. 

Le<l[Jold Kr<mecker 

Computers were first used for numeric calculations of all 
sorts, so it is not too surprising that we have concentrated on 
that aspect of Pascal. But as you know, computers are used 
for much more than working with numbers. For example, 
word processing programs such as Mac Write deal with text 
material, while picture processing programs like MacPaint 
allow you to manipulate images on the screen. Deep inside the 
computer, however, all numbers, words, and pictures are 
simply different patterns of electrical voltages and currents 
in the computer's memory. 

Loosely speaking, a Pascal data type provides you with a 
way of looking at memory: this chunk of memory represents 
a real number, but that chunk is an integer, and that chunk 
over there is a Boolean. You don't need to know - unless you 
want to-how the underlying nuts and bolts electronics are 
translated into the more abstract data structures of Pascal. 

In this chapter, we will consider six more data types avail
able to your Pascal programs: the character data type, the 
string data type, the long integer data type, and three addi
tional types of real numbers; these are extended, double, and 
computational. (Of these new data types, only the character 
type is present in Standard Pascal.) Each of these new data 
types-new ways of looking at memory-will give you added 
flexibility in writing your programs. 

151 



CHARACTERS 

Character data is represented in Pascal by the char data type. 
To declare character variables, you simply use the word char 
just as you have already used the words real and integer, for 
example: 

var 
ch: char; 
delim: char; 

This says the two variables ch and delim are characters (or 
more precisely, ch and delim are variables of the type char). 

One writes a character constant by enclosing a single 
character between apostrophes. For example, to set the value 
of the character variable ch to the letter A, you would write: 

ch: .. 'A' 

Note that it would be illegal to have more than one charac
ter between the apostrophes in this case because the value 
represented cannot by definition be more than a single char
acter. You may remember from Chapter 1 that we needed to 
have a special rule for writing apostrophes within character 
strings: all apostrophes must be doubled. The same rule ap
plies to character constants; an apostrophe character is 
represented by writing two apostrophes between two apos
trophes. For example, you might write: 

deltm := .... 

This assignment statement sets the character variable delim 
to a single apostrophe. 

You should think of character assignment statements 
exactly the same way you think of an assignment like 

i := 137 

In both cases, a value is being stored in a variable. The rules 
you already know concerning assignment statements do not 
change when you are dealing with characters; you still need a 
single character variable name on the left side of the:= sym
bol and a character-valued expression on the right. 

152 The First Book of Macintosh Pascal 



You may also, of course, assign the value contained in one 
character variable to another. For example, 

de11m :=ch 

Pascal's general rules against type mixing apply to charac
ters. It is fruitless to attempt arithmetic operations on char
acter values. It is illegal to assign character values to vari
ables of other types or, conversely, to assign expressions of 
other types to character variables. (By now you know such 
attempts will result in the ''type incompatibility" bug box.) 

You may use the write and writeln commands to display 
the values of character expressions. As with string output, 
you may specify an optional parameter to right-justify the 
character in a specified field width. Try the following pro
gram. (Expand the Text window before you run the program.) 

program character _Jab; 
(experiments with characters) 

var 
top, Jeftside, rightside, bottom, stem : char; 
I: integer; 

begin ( character _Jab J 
top:•'*'; 
Jeftslde := '/'; 
rightside := '\'; 
bottom:•·_·; 
stem:• 'I'; 
write Jn( top: 11 ); 
for I := 1 to 1 o do 
wrtteJn(leftslde : 11 - I, rightslde : 2 * O; 
for l := 1 to 20 do 
wrlte(bottom : 1 ); -
write Jn; 
for i := 1 to 3 do 
wrlteJn(stem : 11 ); 

writeln('Merry Christmas!') 
end. 

After trying this program, and while you are still in the 
spirit, you might try your hand at a somewhat flashier dis
play. The following program is a fun diversion that continues 
the theme of the previous program: 

More Data Types 153 



program tree2; 
( draw a tree } 

var 
i, j : integer; 

begin ( tree2 } 
framerect( 180, 95, 195, 105); 
moveto( I 00, 30); 
lineto(50, 180); 
lineto( 150, 180); 
J ineto( 100, 30); 
Jineto( 100, 15); 
while TRUE do 
begin 
i :=random mod 7 + 1; 
j :"' random mod i + 1; 
invertcircle(I 00, 15, i); 

invertcircle( 100 - (i - 2 * j + 1) * 6, 30 + 20 * i, 2) 
end 

end. 

Descriptions of the commands used in this program will be 
given in Chapters 7 and 8. Alternatively, character values can 
be read from the keyboard using the readln command. Try 
this program: 

program character _Jab; 
(experiments with characters} 

var 
ch: char; 

begin ( character _Jab } 
write('Please enter a character:'); 
readln(ch); 
writeJn('You entered the character·, ch: I) 

end. 

This program prompts for and accepts a single character. As 
usual with readln, you signal when you are done typing by 
pressing the RETURN key. Do not enclose the input character 
in apostrophes, however. (If you do, the character read will be 
an apostrophe. Why?) 

You may also read single characters typed at the Macin-

154 The First Book of Macintosh Pascal 



tosh keyboard without waiting for the RETURN key to be 
typed. This involves using a new command called read. 
Change the program you just tried so that it uses read instead 
of readln, as follows: 

program character _Jab; 
{experiments with character?} · 

var 
ch: char; 

begin {character _Jab} 
write('Please type a character:'); 
read( ch); 
write In; 
writeln('You typed the character', ch: I) 

end. 

Run the program again to verify that it doesn't wait for you to 
press the RETURN key; the program continues after you type 
a single character. Why is there an extra writeln in the pro
gram? What happens if you leave it out? (Other versions of 
Pascal may wait for a RETURN before continuing even when 
you use read instead of readln.) 

You may also compare character values using relational 
operators. The simplest kind of comparison involves checking 
for equality. To see how it works, modify your program to ask 
for a specific input and respond accordingly: 

program character _Jab; 
{experiments with characters} 

var 
ch: char; 

begin { character _Jab} 
writeln('Oo you enjoy programming?'); 
write('Please type y for yes, n for no:'); 
read( ch); 
writeln; 
if ch • 'y' then 
writeln('Ah, l"m glad to hear It.') 

else 
wrlteln('You can"t be serious!') 

end. 

More Data Types 155 



Note that expressions such as 

ch= 'y' 

are perfectly legal Boolean expressions, and you can use them 
wherever any other Boolean expression would go. For exam
ple, to make sure the person using it actually types a "y" or an 
"n", you can add error checking to the program: 

program character _Jab; 
{experiments with characters} 

var 
ch: char; 

begin ( character _Jab ) 
repeat 
writeln('Do you enjoy programming?'); 
write('Please type y for yes, n for no:'); 
read( ch); 
write In; 
if (ch <> 'y') and (ch <> 'n') then 
writeln('I don"t understand .. .') 

else tr ch .. 'y' then 
wrlteln('Ah, l"m glad to hear it.') 

else (must be 'n' ) 
wrlteln('You can"t be serious!') 

until (ch= 'y') or (ch= 'n') 
end. 

The other four relational operators(<,>,<=,>=) can be 
applied to characters as well, but before we try it, some 
explanation of how they work is in order. 

The collection of all the different characters used by a 
given computer is called that computer's character set. It is 
helpful to think of characters as being really represented 
inside the computer's memory by small integer values. For 
example, on the Macintosh, the capital letter D is represented 
by the number 68. The character-as-number representation is 
often called a collating sequence, because it implies an order
ing for the set of characters the computer uses. Different 
computers use different character sets, but the most common 

156 The First Book of Macintosh Pascal 



is the one used on the Macintosh; it is known as the ASCII 
character set. 

The Pascal relational operators compare characters based 
on the underlying ordering of the character set. For example, 
you can change the number-guessing game of Chapter 4 into 
a letter-guessing game. The program would go like this: 

program guessln~game; 
( Guess a Jetter thought of by Macintosh J 

var 
target, guess : char; 
success: Boolean; 

begin ( guessin~game J 
target:• chr(random mod 26 + ord("a")); 
write In(' I am thinking of a Jetter between a and z'); 
success:= FALSE; 
repeat 
wrlte('Your guess?:'); 
read( guess); 
write In; 
if guess< target then 
writeln('Sorry: ', guess: I, · is too low') 
else if guess> target then 
writeln('Sorry: ·,guess: I,· Is too high') 
else (got it ! J 
success := TRUE 

unti I success; 
writeln(guess: I,· is correct!') 

end. 

(The calculation of the ''target" character in this program 
involves some features of Pascal we won't discuss until the 
next chapters.) All lowercase letters have a continuous 
sequence of values in the ASCII character set: the letter a 
comes before b, which comes before c, and so on. We will 
explore the ASCII set further in the next chapter. 

One common mistake with characters involves confusing a 
digit character (such as '3') with the corresponding integer 
value (3). Characters and numbers are totally different 
beasts, and Pascal will reward any attempt to confuse them 
with bug boxes. 

More Data Types 157 



It is also important to remember that upper- and lower
case letters have distinct values and that Pascal doesn't 
acknowledge any special connection between them. For 
example, to test whether a character is an upper- or lower
case A, you must spell out both comparisons explicitly: 

if (ch .. 'A') or (ch= 'a') then 

You may use a character as a loop control variable in a for 
loop. For example, this program will print out all the lower
case letters: 

program character _Jab; 
(experiments with characters} 

var 
ch: char; 

begin ( character _lab } 
for ch :• ·a· to 'z' do 
write( ch) 

end. 

How would you change this program to print the uppercase 
letters instead? Try it. Can you print the letters in reverse 
order? (Hint: remember downto?) On many computers, the 
"lowest" printable ASCII character is the space and the 
"highest" is the tilde (the - key in the upper-left corner of the 
Macintosh keyboard). Try replacing the lower and upper 
limits on the for loop with a space character and a tilde 
character, respectively. What happens? 

You may also use a character expression as the controlling 
expression of a case statement. For example, here is a pro
gram that classifies input characters using case: 

program classify; 
( classify an Input character} 

var 
ch: char; 

begin (classify) 
write('Please type a character:'); 

158 The First Book of Macintosh Pascal 



read( ch); 
write In; 
case ch of 
·a·, ·e·, '1', ·o·, ·u·: 
wrlteln('That"s a vowel.'); 

'b' ·c· 'd' ·r· ·g· 'h' 'j' 'k' ·r ·m· ·n· ·p· 'q' · • ·s· 't' · · · · I I I I I I I I I I I I lrl I ,v,w, 
·x·, 'z': 
writelnC'That"s a consonant'); 

'y': 
writeln('Sometlmes y Is a consonant, other times a vowel.'); 

·o·, · 1·, ·2·, ·3·, ·4·, ·s·, ·5·, ·1·, ·a·, ·9·: 
wrltelnC'That"s a digit.'); 
otherwise 
wrltelnC'I don"t know how to classify that.') 

end 
end. 

Try this program. Note that it recognizes consonants, vowels, 
and digits, but it considers everything else to be unclassifi
able. How would you teach it to recognize math symbols (+, 
-, *, /), punctuation, and so on? 

MACINTOSH PASCAL STRINGS 

The character data type is an important addition to Pascal, 
but you may have doubts about its usefulness. After all, single 
characters don't often appear by themselves. In most applica
tions, characters are grouped into words, words into lines, 
lines into paragraphs, and so on. Macintosh Pascal provides a 
data type that allows your program to treat a group of char
acters as a single variable: the string data type. 

To declare string variables, simply use the reserved word 
string as the type: 

var 
prompt, name : str1ng; 

You already know how to write string constants from our dis
cussion in Chapter 1. Simply enclose the string characters in 
apostrophes. (The usual double-apostrophe rule for putting 
single apostrophes in the string also applies.) For example: 

More Data Types 159 



prompt:"' 'What"s your name?:' 

String input and output really don't involve anything new. 
As you know, string constants may be displayed using write 
and writeln. (You have been doing this since our very first 
Pascal program.) You may also display string variables using 
write and writeln to specify field-width parameters, if you 
want. You may use readln to accept a string of characters 
from the keyboard and store those characters in a single 
string variable. This program demonstrates simple "echoing" 
of an input string: 

program string_lab; 
{ experiments with strings ) 

var 
prompt, name : str1ng; 

begin { string_lab J 
prompt := 'What"s your name?:'; 
write(prompt); 
readln(name); 
writeln('Hi ', name, ', how"s it going?') 

end. 

Run this program and type your name when asked. As 
with character input, do not enclose the name in apostrophes. 
(What happens if you do?) 

A string may contain from 0 to 255 characters. When 
you declare a string variable, enough space is allocated in 
memory to store 255 characters even though the number of 
characters actually stored in the string variable may be 
fewer than 255. The actual number of characters stored in 
the string is called the string's length, and the capacity of the 
string-the maximum number of characters it can hold-is 
the string's size. Don't confuse these two terms: a string's size 
is set when it is declared and remains constant throughout 
the program. A string variable's length, on the other hand, 
may vary while the program is executing, depending on the 
characters stored there. 

When you just use the word string to declare a string 
variable (as we have been doing so far), the string's size de
faults to 255. If you want to use a smaller size string, follow the 
word string with a size in square brackets, as shown here: 

160 The First Book of Macintosh Pascal 



var 
prompt : string [ t 8]; 
name : string (80); 

This says the string variable "prompt" has a size of 18, and 
the string "name" has a size of 80. Think of a string-size spec
ification as a promise to Pascal that your program will never 
attempt to store more characters than specified into the 
string. (If you break such a promise, Pascal will respond with 
a run-time bug box.) Strings of different lengths must be 
specified in separate variable definitions. 

You may also compare any two string values using the six 
Pascal relational operators. Like characters, the ordering is 
based on the underlying ASCII character set. Two strings 
are compared character-by-character starting at their first 
characters. If the first characters are the same, the second 
characters are compared, and so on. The comparison is based 
on the ASCII values of the first pair of unequal characters. If, 
the two strings are of different lengths and are the same up· 
to the end of the shorter string, the shorter string is consi
dered to be "less than" the longer. Two strings are only consi
dered to be equal if they are the same length and contain the 
same characters in the same order. 

It is perhaps easiest to see how strings are compared by 
writing a short program: 

program string_lab; 
{ experiments with strings ) 

var 
wt , w2 : string ; 

begin { string_lab ) 
write('Enter a word:'); 
readln(w t ); 
write('Enter another word:'); 
read1n(w2); 
if wt > w2 then 
writeln(w 1, · is greater than', w2) 

else if wt < w2 then 
writeln(w t, · is less than ·• w2) 

else { must be equal ) 
writeln(w t, · equals', w2) 

end. 

More Data Types 161 



Type in and run this program, entering your own test 
strings. Once you think you know how string comparison 
works, try to predict the results from entering these strings: 

apple & banana 
apple & Banana 
apple & apple 
apple & Apple 
apple & apple pie 
apple & ape 

1 & 5 
1 & 3 
1 & 3121 

Pascal's rules on type mixing are relaxed slightly to blur 
the distinction between the character and string types. You 
may compare a character value and a string value using the 
relational operators; the character is considered to be a 
"string of length 1" for purposes of comparison. A single
character constant ('g', for example) may be considered to be 
either a character constant or string constant, depending on 
the context. You may assign a character variable's value to a 
string variable; you may also assign a string variable's value 
to a character variable if the string variable contains exactly 
one character ("is of length 1"). 

You may not, however, use a string as a loop control vari
able in a for statement. Neither can you use a string expres
sion to control a case. 

It is possible to have a string variable that has zero length, 
that is, contains no characters. This special string value is 
called the null string. A null string is represented in a pro
gram by two consecutive apostrophes. For example, this 
assignment sets the string variable "name" to the null string: 

name:=" 

A common use for the null string is to signal the end of 
input from the keyboard. A null string is "typed" by just 
pressing the RETURN key without typing any other charac
ters first. When it isn't known in advance how many lines of 
input are going to be entered in a program, the program may 
test each input string against the null string and exit when 
the test is satisfied. For example, the following program "echoes" 

162 The First Book of Macintosh Pascal 



each input string until the null string is entered. 

program echo; 
{echo input until null string is typed J 

var 
s: string; 

begin ( echo J 
repeat 

wrfte('Enter a string (or return to stop):'); 
readln(s); 
If s <>·then 

writeln('You typed: · , s) 
until = s = • 

end. 

A final note on portability: Standard Pascal offers no 
built-in string data type. In fact, a number of things we have 
discussed in this section are strictly illegal in Standard Pas
cal. So there is no guarantee that the Macintosh Pascal pro
gram you write today using strings will run tomorrow under 
another version of Pascal. (There is hope, however. Many ver
sions of Pascal, including UCSD Pascal and Apple Pascal, 
provide a very similar string data type.) 

If portability is your goal, you will have to shun Macintosh 
Pascal strings. However, you will find it is much harder (but 
not impossible) to write many programs without using the 
Macintosh Pascal string data type. In writing your own pro
grams you will have to decide which is more important, pro
gram portability or programming convenience. 

In the next chapter we will discuss a number of string
manipulation commands provided by Macintosh Pascal. 

MACINTOSH PASCAL LONG INTEGERS 

Another non-portable feature provided by Macintosh Pascal 
is the long integer data type. You can think of variables of the 
long integer type as higher-capacity integers; they can hold 

More Data Types 163 



larger values than can variables of the normal integer type 
we have already discussed. How much larger? To find out, try 
the following program: 

program long_lab; 
{ experiments with long integers l 

begjn { long_lab ) 
wrtteln('MAXINT ls', MAXI NT: 1 ); 
wrtteln('MAXLONGINT is" MAXLONGINT : 1) 

end. 

MAXINT and MAXLONGINT are predefined constants 
available to any program you write; they give the maximum 
positive values of normal and long integer types: 

nAHIHT is 32767 
nAHLOHGIHT Is 2117183617 

Both types of integer allow an equally large range of nega
tive values. So, as we discussed in Chapter 2, normal integers 
are restricted to the range -32, 767 up to 32, 767. Long inte
gers allow much bigger values, from -2,147,483,647 to 
2, 14 7,483, 64 7. 

To declare long integer variables in a Macintosh Pascal 
program, use longint as the type name: 

var 
11, lj : longint; 

Long integer values may be used just like normal integers. 
That is, all arithmetic and comparison operations you have 
been using on integers also work on long integers, in pre
cisely the same way. Try the following program: 

program long_lab; 
( experiments with long integers ) 

var 
H, lJ : longint; 

begin ( long_lab ) 
Ii:• 47931; 

164 The First Book of Macintosh Pascal 



lj :• 35820; 
writeln('li is', Ii : I); 
wrtteln('lj is', lj : I); 
wrlteln('ll + lj Is·, It + lj : I); 
write In(' II - lj Is·, II - lj : I); 
write In(' II* lj is·, II* lj : I); 
wrlteln('ll div lj ts·, II div lj : I); 
wrlteln('lt mod lj Is·, If mod lj : I) 

end. 

You may also write long integer constants as hexadecimal 
numbers by preceding the constant with a dollar sign, for 
example: 

1i :• $ t Ofa23c 

Everything you have learned about reading and writing 
normal integer values also applies to long integers. Long in
teger variables may be used for loop control in a for and long 
integer expressions can be used as case controllers. 

When evaluating integer arithmetic expressions, Macin
tosh Pascal converts all normal integer values to long integer 
values before carrying out the arithmetic operations. This 
happens even when all variables involved are normal inte
gers. For example, consider the simple assignment: 

k := 1 + j 

When this statement is executed, the values of the normal inte
ger variables i and j are converted to long integers before they 
are added. The result is also a long integer; this is converted 
back into a normal integer and stored in the variable k. 

This automatic conversion means that Pascal's type-mixing 
rules are effectively repealed when it comes to distinguishing 
between normal and long integers. You may mix the di ff er
ent types of integer together in expressions and assignments 
pretty much in whatever combinations you find convenient. 
You will cause a run-time error, however, if you attempt to 
store long values bigger than MAXINT in a normal integer 
variable. 

One final caveat: long integers are non-portable. Standard 
Pascal only provides the normal integer data type. To mini
mize portability problems, it seems prudent to use long 
integers explicitly only when their greater capacity is needed. 

More Data Types 165 



MACINTOSH PASCAL REAL TYPES 

If you were able to handle the concept of two different vari
eties of integer, you will have no trouble with the four differ
ent kinds of real numbers offered to you by Macintosh Pascal. 
These are the real type (already discussed in Chapter 2), the 
double type, the extended type, and the com'JYUtational type. 
You will remember that values of the real data type discussed 
in Chapter 2 were limited both in their precision and range. 
The other three kinds of real numbers offer additional preci
sion or range. These properties are summarized in Table 6-1. 
(Figures in Table 6-1 for precision and range are approxi
mate only; for more precise numbers, use the methods devel
oped in Chapter 2.) 

As was the case for long and normal integers, the four 
real varieties are more alike than different. You declare 
variables of each type by using the appropriate type name in 
the variable declaration section: 

var 
x: real; 
y: double; 
z : extended; 
w: computational; 

All four real types participate in all the mathematical 
operations you have already used for the normal real data 
type. All real-type variables and constants used in expres
sions are converted to extended real values before the 
mathematical operations are performed, just as integer values 
are converted to long integer values. 

Table 6-1. 

Range and Precision of Real Types 

Real Type 
Name 

real 

double 

extended 

computational 

166 The First Book of Macintosh Pascal 

Smallest 
Positive 
Value 

1.5 x 10·15 

5.0 x 10-324 

1.9 x 10-4951 

1 

Largest 
Positive 
Value 

3.4 x 1038 

1.7 x 10308 

1.1 x 104932 

9.2 x 1018 

Precision 
(Decimal 
Digits) 

7-8 

15-16 

19-20 
(exact) 



As was the case for the two integer types, the four real 
types are essentially exempt from Pascal's usual type-mixing 
rules. You may legally assign a value of any real type to a 
variable of any real type. The only restriction is that you may 
not assign a value to a variable that doesn't fit into the range 
of that variable's type; a run-time error results if you try. 

The computational type differs slightly from the other 
real types in that it is defined to represent only integral 
values: numbers without a fractional part. It is particularly 
useful when large numbers must be represented precisely 
without the rounding errors inherent in normal real arith
metic. The typical use for such preciseness is in calculations 
involving monetary amounts; such amounts can be repre
sented as whole numbers by representing numbers of pen
nies. (For example, the amount $19,342,542.45 would become 
the computational value 1934254245.) When used this way, 
the computational type would allow monetary amounts up to 
approximately 92 quadrillion dollars ($9.2 X 1016) to be 
represented exactly (very useful if you are using the compu
tational type to keep track of your checking account). 

You may read and write real values of all types just as you 
have always done for normal real values. For example, the 
following program: 

program comp_demo; 
(show computational output l 

var 
price, tendered, change : computational; 

begin C comp_demo l 
price :• 1999; 
tendered := 2000; 
change:• tendered - price; 
wrlteln('Prlce:' : 12, price I I 00: IO : 2); 
wrlteJnC'Tendered:': 12, tendered I 100: 10: 2); 
wrlteln('Your change:' : 12, change I I 00 : IO : 2); 
wrlteln('Thank you for shopping Programs-R-Us.') 

end. 

would produce this output: 

Price: 19.99 
Tendered: 20. 00 

More Data Types 167 



Your Change: 0.01 
Thank You for shopping Progra1s-R-Us 

The Macintosh Pascal documentation describes a special 
feature used for output of a single computational variable: 
the digits-after-the-decimal parameter in the write or 
writeln statements may be used to insert a false decimal 
point into the output value. Despite the documentation, this 
feature is not available in Release 1.0 of Macintosh Pascal. If 
you have a later version than 1.0, it may be present. An easy 
way to find out is to omit the division by 100 in the writeln 
statements in the comp_demo program; if it works as 
before, the feature has been added. 

Programs can be easily modified to take advantage of the 
additional range and precision of the new real types. For 
example, let's modify the Newton program from Chapter 4 to 
use extended real values instead of normal reals. All that's 
needed is to substitute the word "extended" for "real" every
where and to modify the writeln statement to print out the 
result with its newly acquired precision. Retrieve Newton 
and alter it as follows: 

program Newton; 
( Calculate square roots by Newton's method } 

var 
x, old....guess, new_guess: extended; 

begin ( Newton } 
wrlte('Enter a number:'); 
readln(x); 
If x > 0.0 then 
begin 
new_guess :• x I 2; 
repeat 
old....guess := new_guess; 
new_guess : .. (old....guess + x I old....guess) I 2 
untn new_guess = old....guess; 
wrlteln('The square root of ·, x : 27, · is ·, new_guess : 27) 

end 
else If x = 0.0 then 
wrfteln('The square root of·, x: 27, · ts·, x: 27) 
else 

168 The First Book of Macintosh Pascal 



writeln('Sorry, this program only works for non-negative 
numbers.') 

end. 

Now use this program to calculate the square root of 2; 
the result should look like this: 

The square root of 
2.000000000000000000e+O 
Is 1.111213562313095019e+O 

This result is correct out to the final decimal place 
printed. Can this program calculate the square root of 104932 

(enter this as le4932)? Try it, but be patient. (Do you see why 
you will need to be patient? Use the Observe window to watch 
the "progress" toward a solution.) 

Standard Pascal only provides a single real type, the 
normal type we discussed in Chapter 2. Unless your program 
requires the extended precision or range of the other real 
types, it is a good idea to restrict yourself to using the normal 
real type for portability's sake. 

A DIGRESSION ON READ 
AND READLN 

In a number of our programs we have used the read and 
readln commands to get data typed at the keyboard. We've 
seen that read and readln can be used for input values of 
every type: integer, real, Boolean, character, string, and long 
integer. Read and readln have slightly more complex behav
ior than we have discussed so far, however; you deserve a 
more complete description. 

You may use a single read or readln statement to read in 
the values for a number of different variables, not just one. 
The rule is as follows: the read statement that specifies a list 
of variables to be read, 

read(v 1, v2, ... , vn) 

is equivalent to a series of read statements contained in a 
begin ... end compound statement: 

More Data Types 169 



beg1n 
read(vl ); 
read(v2); 

read(vn) 
end 

As far as Pascal is concerned, the input data typed at the 
keyboard is a sequence of characters arranged into one or 
more lines. Each individual read starts off where the pre
vious one stopped. 

A readln command may appear all by itself, 

read1n 

with no variable names (just as writeln can). When an "all
by-itself" readln is executed, Pascal skips to the next line of 
input. It will wait for you to type RETURN (if you haven't 
already done so). Any subsequent reading will be from the 
next line. 

Readln can also be provided with a list of variables to 
read; the evaluation rule is similar to that of read. The readln 
statement 

read1n(v 1, v2, ... , vn) 

is defined to be equivalent to the compound statement: 

beg1n 
read(v 1 ); 
read(v2); 

read(vn); 
read1n 
end 

So any single complex read or readln statement can be 
broken down into a series of individual reads. Each individ
ual read will behave differently, however, based on the type 
of variable involved. You'll find these variations in the rules 
of read operations: 

• Reading characters. This is the simplest case. When a 
character value is to be read, Pascal just accepts the 

170 The First Book of Macintosh Pascal 



next keypress as the value. This means, of course, that 
you can't use the BACKSPACE key to correct an erroneous 
character; Pascal reads the first character you type and 
goes with it. If you press the RETURN key, it is read as a 
space character. 

• Reading strings. Pascal will read all characters up to, 
but not including, the next RETURN into the string. 
BACKSPACE works to correct mistakes. A run-time error 
occurs if the number of characters typed exceeds the 
declared size of the string variable. 

• Reading numbers. Pascal expects numbers to begin 
either with a sign or a digit character, so it will 
patiently wait until you type one of those characters; 
any other characters you type will be ignored. (Spaces 
and RETURN characters will be shown in the Text win
dow; anything else will cause the speaker to beep.) 

Once Pascal recognizes a sign or digit character, it 
begins treating following digits as part of the number. 
BACKSPACE works to correct mistakes. It continues 
reading until it sees some character that can't possibly 
be part of the number, which ends the read operation. 

These same rules apply to reading both normal and 
long integers and all four varieties of real (although the 
allowable syntax for reals and integers differs). A run
time error will occur if the number read is outside the 
legal range for the variable type. 

• Reading Booleans. Pascal reads the next identifier, 
using the Pascal identifier syntax rules discussed in 
Chapter 1. Leading characters that can't legally begin 
an identifier (non-letters) are ignored. The read opera
tion starts when a letter is seen and terminates when a 
character is read that can't be part of a legal identifer 
(that is, a character that is neither a letter nor a digit). 
BACKSPACE may be used to correct typing errors. A run
time error occurs if the identifier read is not TRUE or 
FALSE. (Case is ignored; "True" and "False" are accept
able inputs.) Portability note: reading Boolean values is 
not possible in Standard Pascal. 

Editing your input using the BACKSPACE key, as noted, 
never works for character input. Neither can it be used after 
an individual value has been read, even if that value is on the 
same line as the cursor. 

More Data Types 171 



These input rules are not easy to remember, and they have 
subtle implications you might not appreciate. Test the rules, 
if you like, using the following program: 

program reacLlab; 
{ experiments with read} 

var 
s: string; 
c: char; 
i: integer; 
r: real; 
b: Boolean; 
1 : longlnt; 

begin { reacLlab} 
readln(l, b, i, c, s, r); 
wrlteln('I read:'); 
writeln('l = ', 1); 

writeln('b = ·, b); 
writelnC'i ... ·• O; 
writeln('c = .... c, ""); 
writelnC's = '", s, ""); 
writeln('r = ·, r); 

end. 

Enter this program and run it. Here are three possible sets of 
input you can use to try it out. In each case, try to predict the 
outcome before you see it: 

iiiiiif RLSE 23 
Apple Pie 23.62 
96.6 

96632 
TrUel610range 
96632 21.3i1 

23i,TRue,i32,ftpple,32 
i5e-12,5,Tho1as Jefferson 

172 The First Book of Macintosh Pascal 



For further experiments, you might try causing the run
time errors mentioned in the list of input rules. Also try to 
observe when BACKSPACE editing is legal and when it's not. 
Finally, you might try different orderings of the variables in 
the readln statement and see how the rules for input are 
affected. 

In writing programs of your own, two of the goals you 
should strive for are reliability and ease of use. Any program 
that crashes at the slightest provocation or has a myriad of 
complex rules that anyone using it must remember is unac
ceptable. Most of your battles for program reliability and 
ease of use will be fought in the part of your program that 
accepts input from the user. Here are a few suggestions you 
can use as guidelines: 

• All input should be requested by using a clear and con
cise prompt, explaining precisely what sort of informa
tion is needed. 

• Don't ask for more than one piece of input information 
at a time. 

• Check as completely as possible for mistaken input; if 
your program expects "a number between 1 and 10," for 
example, put in an if statement to ensure that the 
number typed in is actually in that range. T)lis also 
applies to input from yes-or-no questions.' 

More Data Types 173 



INTRODUCTION 
TO LIBRARY 
FUNCTIONS 

Library functions ... are one way to 
reduce the apparent complexity of a 

program; they help to keep program size 
manageable, and they let you build 

on the work of others, instead of 
starting from scratch each time. 

BRIAN KERNIGHAN and P.J. PLAUGER 
The Elements of Programming Style 

(McGraw-Hill, 1978) 

You may remember Newton, the square root calculator pro
gram we wrote in Chapter 2 and modifed in subsequent 
chapters. That program did a reasonably good job of calculat
ing square roots quickly, using about five lines of Pascal code, 
excluding input, output, and error-checking statements. But 
what if you were to write a program that required the calcu
lation of a square root at many different points? Based on our 
discussion so far, you would need to rewrite those same five 
lines over and over each time a square root calculation was 
needed, certainly a tedious and error-prone task. 

Fortunately, Pascal provides an easier way. Common, 
repetitive calculations (or other tasks) may be carried out in 
subprograms, instead of in the main program itself. A subpro
gram may be thought of as a little program used to perform 
some chore that helps achieve the overall goal of the program. 

Subprograms are vital to most Pascal programs; often, a 
large program will consist mainly of subprograms. Macin
tosh Pascal provides a number of subprograms you can use in 

175 



writing your own programs, which we'll call li brary subpro
grams. Library subprograms perform common, useful, and 
often complex tasks. 

Pascal offers two slightly different types of subprograms: 
procedures and functions. As we'll see, procedures and func
tions primarily differ in how they are used. Although there is 
no concrete rule, functions are often used to calculate values, 
while procedures are usually said to perform actions. In this 
chapter we will examine some of Macintosh Pascal's library 
functions; the next chapter introduces some of the library 
procedures. Both types of library subprograms make devel
opment of more sophisticated programs much easier. 

STANDARD FUNCTIONS 

The simplest type of Pascal subprograms are the so-called 
standard functions . Standard Pascal provides for 17 standard 
functions; we will show 15 of them in this section. The stan
dard functions are also known as required functions; they are 
required to be present in every version of Pascal. 

To start, let's concentrate on a single standard function: 
the absolute value function. You may remember from mathe
matics that the absolute value of a number is simply the 
number with its sign removed-the absolute value of -1.2 is 
1.2, for example. The absolute value of a positive number is 
the same as the number itself-the absolute value of 34 is 
just 34. 

Run Macintosh Pascal, then open the Observe window by 
choosing Observe from the Windows menu. Type the follow
ing line into the right side of the Observe window and press 
the ENTER key: 

abs(-1.2) 

You should see the following result after a bit of disk 
whirring: 

Obserue 
1.200000 

176 The First Book of Macintosh Pascal 



...--------.···································· 
t 11nction I( t1rg11ment l 

identifier ! /1st ) ! 
"------': .................................. : 

Figure 7-1. 

Function call syntax 

Can you see what's going on? Remember, the Observe window 
evaluates expressions; as far as Pascal is concerned, "abs(-1.2)" 
is an expression that can be evaluated to the specific result 
1.200000. To see that "abs" behaves like the mathematical 
absolute value, type 

abs( 1.2) 

into the next box of the Observe window. Then press ENTER 

as usual. Is the result as you expected? 
A small amount of terminology needs introduction here. 

The string "abs(-1.2)" is an example of a function call. A 
function call consists of two parts: a function identifier (abs, 
in this case) and an optional argument list (which consists of 
the single argument, -1.2, in this case). The argument list, if 
present, is enclosed in parentheses. Figure 7-1 shows the syn
tax of function calls. 

More formal texts on Pascal refer to arguments as actual 
parameters. You will also often see the value of a function call 
referred to as the function's result or return value. 

The important thing to remember about function calls is 
that they represent values. You already know that all values 
in Pascal have types (integer, real, character, and so forth); 
function call values are no exception. The abs function call, as 
you have seen, represents a real value when it is supplied 
with a real argument. If supplied an integer argument, it 
stands for an integer value. Try typing the following expres
sions into the Observe window to verify this: 

abs(-34) 
abs(34) 

The results should appear as follows. (Note we have expanded 
the window to allow viewing all values simultaneously.) 

Introduction to Library Functions 177 



Obserue 
1.200000 ebs(- 1 2) 

1.200000 ebs( 1 2) 

Enter en expression 

Since function calls represent values, they may legally 
appear anywhere in an expression where variable identifiers 
or constants of the same type could appear. So function calls 
may be combined with other operations to form arbitrarily 
complex expressions. For example, try out the following 
expressions in the Observe window. (As always, try to predict 
the results first.) 

9 * abs(-0.8) 
abs(-3) - abs(-2) 

Finally, you are not restricted to specifying single numbers 
as the arguments to a function. In general, whenever a func
tion call expects an argument value of a certain type, you 
may substitute an expression of the same type. The value of 
the expression is the actual argument used by the function. 
To see how this works, try the following expressions in the 
Observe window: 

abs(4.6 - 5.8) 
abs(2 + 16 d1v 5 - 3) 

As another example of a standard function, let's look at 
the square root function; its function identifier is the word 
"sqrt." Type the following expressions into the Observe 
window: 

sqrt(2) 
sqrt(2.0) 
sqrt(64) 

The results should appear as follows: 

178 The First Book of Macintosh Pascal 



1.414214 sqrt(2) 

1.414214 sqrt(2.0) 

0.000000 sqrt(64) 

Note that the square root function returns a real result 
even when its argument is an integer value (even a perfect 
square). As you might expect, it is illegal to take the square 
root of a negative number. (What happens if you try it?) 

To show that functions need not always have numeric 
results, try out the function identifier odd. Type the following 
expressions into the Observe window: 

odd(53) 
odd(96) 
odd(436210 div 2) 

The results are these: 

True odd(53) 

False odd(96) 

True odd(43621 O div 2) 

The odd function accepts an integer value (either normal 
or long) as its argument and returns a Boolean value: TRUE 
if the argument is odd, FALSE if even. 

Table 7-1 is a list of the standard functions most likely to 
be used in mathematical calculations. Note that nearly all of 
these functions accept either real- or integer-type arguments. 
Functions noted as accepting integer argument values will 
accept either normal or long values; functions marked as 
accepting real values will accept any of the four types of real 
values. (Actually, as noted in Chapter 6, all integer expressions, 
including arguments and function calls, are automatically 
converted to long integer values. All real arguments and 
function calls are likewise converted to extended real values.) 

It's easy to use these functions in actual programs. For 
example, let's write a program to solve quadratic equations of 
the form 

ax:! + ti:.: + c = 0 

Depending on the actual values of a, b, and c in the equation, 
there are two solutions given by the formula 

Introduction to Library Functions 179 



-b ± Jb2 - 48C 
x = 

28 

The squaring and square root operations in this formula 
can be performed using the library functions sqr and sqrt. A 

Table 7-1. 

Standard Arithmetic Functions 

abs(x) 
argument: 
result type: 
description: 

arctan(x) 
argument: 
result type: 
description: 

cos(x) 
argument: 
result type: 
description: 

exp(x) 
argument: 
result type: 
description: 

ln(x) 
argument: 
result type: 
description: 

odd(i) 
argument: 
result type: 
description: 

sin(x) 
argument: 
result type: 
description: 

sqr(x) 
argument: 
result type: 
description: 

sqrt(x) 
argument: 
result type: 
description: 

180 The First Book of Macintosh Pascal 

x-real or integer value 
same as argument 
absolute value, I xi 

x-real or integer value 
extended real 
trigonometric arctangent, tan -i (x) 

x-real or integer value 
extended real 
trigonometric cosine, cos(x) (x in radians) 

x-real or integer value 
extended real 
exponential, e• 

x-real or integer value 
extended real 
natural logarithm, log0(x) (x > O) 

i-integer value 
Boolean 
TRUE if argument is odd, FALSE if even 

x-real or integer value 
extended real 
trigonometric sine, sin(x) (x in radians) 

x-real or integer value 
same as argument 
square, x2 

x-real or integer value 
extended real 
square root, "0<x > O) 



simple program to accept input values for a, b, and c and 
then to calculate and print the solutions to the corresponding 
quadratic equation might go like this: 

program quadsolver; 
(solve quadratic equations J 

var 
a, b, c : real; 
dlscrlm : real; 
root 1, root2: real; 

begin ( quadso lver J 
writeln('Thls program solves quadratic equations.'); 
write('Enter value for a:'); 
readln(a); 
write('Enter b:'); 
readln(b); 
write('Enter c:'); 
readln(c); 
discrim := sqr(b) - 4.0 *a* c; 
root 1 :"' (-b + sqrt(discrim)) I 2.0 I a; 
root2 :• (-b - sqrt(discrim)) I 2.0 I a; 
writeln('The roots are:', root 1 : 16, ·and·. root2: 16) 

end. 

Type in and run this program. Use it to solve the following 
equation: 

x2-x-1=0 

For this equation, the values of a, b, and c are l, -1, and -1, 
respectively. Compare your results with those obtained by the 
program we wrote to solve this equation in Chapter 5. 

Notice that this program will crash if either the value of a 
is 0 or the argument to the square root function is less than 0. 
As an exercise, modify it to check for and avoid these 
situations. 

Standard Pascal also provides two functions whose pur
pose is to perform real-to-integer conversion; they are called 
round and trunc. Loosely speaking once more, the trunc func
tion "chops off" any fractional part of a real number, result
ing in an integer value. The round function, on the other 

Introduction to Library Functions 181 



Table 7-2. 

Standard Transfer Functions 

round(x) 
argument: 
result type: 
description: 

trunc(x) 
argument: 
result type: 
description: 

x-real value 
long integer 
nearest whole number 

x-real value 
long integer 
nearest whole number between 0 and x. 
(Removes fractional part) 

hand, "rounds off' the real value to the nearest integer value. 
Since they perform type conversion, these two functions are 
called transfer functions. Their definitions are found in Table 
7-2. 

Try out the following expressions in the Observe window 
to see how the two transfer functions compare in their 
workings: 

trunc(2.9) 
round(2.9) 
trunc(3. I 4) 
round(3. 14) 
trunc(-3.14) 
round(-3.14) 
trunc(-2.9) 
round(-2.9) 
round(sqrt(6.25)) 

(Note there is nothing wrong with using a function call in the 
argument to another function.) The results should appear as 
follows: 

2 trunc(2 9) 

3 round(2.9) 

3 trunc(3 14) 

3 round(3. 14) 

-3 trunc(-3.14) 

-3 round(-314) 

-2 trunc(-2.9) 

-3 round(-2 9) 

3 round(sQrt(6 25)) 

182 The First Book of Macintosh Pascal 



A third class of standard functions is known as the ordinal 
functions, so called because they apply only to ordinal types. 
We have seen four ordinal types so far: Booleans, integers, 
long integers, and characters. None of the four real types (not 
even computational) nor the string type is an ordinal type. 

Any value of an ordinal type is defined to have an ordinal
ity different from any other value of the type. The ordinality 
of an integer is just its value. The ordinality of a character is 
its representation in the computer's character set; on the 
Macintosh, the ordinality of a character is its ASCII value. 
Finally, Boolean ordinality is defined to be 0 for FALSE, 1 
for TRUE. 

Not surprisingly, Pascal provides a library function that 
calculates the ordinality of any value of an ordinal type; it is 
called ord. To see how it works, type the following expressions 
into the Observe window: 

ord('a') 
ord('A') 
ord('3') 
ord(3) 
ord(FALSE) 
ord(TRUE) 
ord(-345678) 

The results should appear as follows: 

97 ord('e') 

65 ord('A') 

51 ord('3') 

3 ord(3) 

0 ord(FALSE) 

1 ord(TRUE) 

-345678 ord(-345678) 

You have just seen how you can use ord to discover the 
ASCII value of any character. Pascal also provides the chr 
function that does just the opposite; it accepts an integer 
representing a character and returns that character as a 
result. The ASCII character set on the Macintosh runs from 0 
to 255, so it is an error to pass an argument outside this range 

Introduction to Library Functions 183 



to the chr function. Try the following expressions m the 
Observe window: 

chr(97) 
chr(65) 
chr( 192) 
chr( ord('*')) 
ord( chr( 45)) 

You should obtain the following results: 

o chr(97) 

A chr(65) 

l chr( 192) 

• chr(ord('*')) 

45 ord(chr(45)) 

The final two ordinal functions are called pred and succ. 
They accept any ordinal value as an argument and return the 
value before and after the value, respectively. To see how they 
work, try the following expressions in the Observe window: 

pred(22) 
succ(22) 
pred('j') 
succ('j') 
pred(TRUE) 
pred(succ('B')) 
pred(pred(pred(pred('z')))) 

You should observe the following results: 

21 pred(22) 

23 succ(22) 

pred(' j') 
k succ(' j') 

Folse pred(TRUE) 

B pred(succ('B')) 

v pred(pred(pred(pred('z')))) 

The pred and succ functions are also inverse functions. It 
is an error to try to find the predecessor of the first value of a 

184 The First Book of Macintosh Pascal 



given ordinal type (or the successor of the last value). For 
example, trying to evaluate "pred(FALSE)" will give you a 
bug box. 

The chr function can be used to produce characters that 
unfortunately can't be typed directly into a Macintosh Pascal 
program. Let's write a small program to write out all possi
ble characters provided in the Macintosh's character set. A 
first attempt might go as follows: 

program ASCII; 
{ output ASCII character set J 

var 
i : integer; 

begin { ASCII } 
for i :=Oto 255 do 
wr1te(chr(i)) 

end. 

Type in this program and run it. (The hollow boxes you 
see mixed in with the other characters are the Macintosh's 
way of signaling that those characters aren't available in the 
current font.) You'll notice the program isn't too satisfactory 
because the characters are printed out all jammed together. 
Let's make a couple of modifications to skip to a new line 
after a line of 16 characters has been printed and to print 
each character in a field width of 2 so that there will be at 
least one space between each character: 

program ASCII; 
(output ASCII character set J 

var 
i : integer; 

begin ( ASCII J 
for i := O to 255 do 
begin 
wrlte(chr(I): 2); 
If i mod 16 • 15 then 
write In 

end 
end. 

Introduction to Library Functions 185 



Try these modifications. (You may have to adjust the size 
of the Text window to see all the output.) Do you see why the 
mod calculation skips to a new line after each line of 16 char
acters? You'll also notice that the first two rows aren't nicely 
aligned as are the following rows; how can you identify the 
characters causing the problems? 

As a final exercise, try the following mysterious program: 

program mystery; 
{ what does this do? ) 

begtn { mystery l 
wr1teln('The Mac1ntosh', chr(170), ·ts tn use.'); 
wrtteln('lt"s about 3', chr( 161), • below zero!'); 
wr1te('Plus ·, chr( 141 >. ·a Change, c', chr(213)); 
wrtteln('est lam·, chr(144), 'me chose.'); 
wrtteln(chr( 185), • ·, chrC 197), 4.0 * arctan( 1.0) : 27) 

end. 

The ordinal functions are summarized in Table 7-3. 

Table 7-3. 

Standard Ordinal Functions 

chr(i) 
argument: 
result type: 
description: 

ord(c) 
argument: 
result type: 
description: 

pred(c) 
argument: 
result type: 
description: 

succ(c) 
argument: 
result type: 
description: 

186 The First Book of Macintosh Pascal 

i-integer value (0-255) 
character 
character whose ordinality is i 

c-value of any ordinal type 
long integer 
ordinality of c 

c-value of any ordinal type 
same as argument 
predecessor of c 

c-value of any ordinal type 
same as argument 
successor of c 



MACINTOSH PASCAL STRING 
MANIPULATION FUNCTIONS 

You now know how functions are used to represent values of 
different types in expressions. Just as Standard Pascal pro
vides a number of useful functions that operate on standard 
types, Macintosh Pascal provides its own functions that allow 
manipulation of its own data types. In this section we'll con
centrate on Macintosh Pascal's string manipulation functions. 

Macintosh Pascal offers functions to 

• Determine the length of a string 

• Concatenate strings together 

• Insert characters into strings 

• Delete characters from strings 

• Search a string for an occurrence of a smaller string 

• Extract substrings from strings 

• Convert values of all printable types into strings. 

The string manipulation functions are summarized m 
Table 7-4. 

Once more, it's easiest to try a few examples of the string 
manipulation functions in the Observe window if you are un
certain about their use. Try typing in the following examples: 

length('He I Jo!') 
concat('con·, 'cat', 'ena·, 'tlo', 'n') 
pos('e', 'applesauce') 
include('niver·, 'use·, 2) 
omit('usage·, 3, 2) 
copy('usage·, 2, 3) 

Your results should look something like this: 

6 length('Hellol') 

concntenntl on concat('can·. ·cat'. 'ena·. 'ti a·. 'n') 

5 pos('e', 'applesauce') 

universe include('niver·, ·use·. 2) 

use omit('usage·. 3, 2) 
sag copy('usage·, 2, 3) 

Introduction to Library Functions 187 



Table 7-4. 

Macintosh Pascal String Manipulation Functions 

concat(sl, s2, ... , sn) 
arguments: sl, s2, ... , sn-string values (one or more 

result type: 
description: 

copy(s, i, n) 
arguments: 

result type: 
description: 

include(sl, s2, i) 
arguments: 

result type: 
description: 

length(s) 
argument: 
result type: 
description: 

omit(s, i, n) 
arguments: 

result type: 
description: 

pos(sl, s2) 
arguments: 
result type: 
description: 

stringof(wl, w2, 
arguments: 

result type: 
description: 

arguments) 
string 
concatenation of the arguments 

s-string value 
i, n-integer values 
string 
substring of n characters starting at 
character #i of s (null string if n < O) 

sl, s2-string values 
i-integer value 
string 
s2 with the string sl inserted at character #i 

s-string value 
long integer 
length of s 

s-string value 
i, n-integer values 
string 
s with n characters deleted starting at 
character #i 

sl, s2-string values 
long integer 
position of substring within s2 matching sl 
(0 if no substring of s2 matches sl) 

.. ., wn) 
wl, w2, .. ., wn -any write arguments (one or 
more arguments; each may have formatting 
parameters 
string 
string containing written representation of 
arguments 

Examine these results carefully to make sure you know 
why each function behaves as it does; try more examples in 
the Observe window if you're doubtful. 

The stringof function described in Table 7-4 does not work 
in the Observe window because of a bug in Macintosh Pascal 
version 1.0. (If you have a later version, this bug may have 

188 The First Book of Macintosh Pascal 



been fixed.) The stringof function accepts one or more argu
ments; the form of each argument to stringof follows the 
same rules you already know for arguments to the write and 
writeln commands. (In other words, every argument list you 
have used for write or writeln could also be used as an argu
ment list for stringof.) 

As you know, write and writeln convert their arguments 
into printable form-into characters-and output this printed 
representation to the Text window. Alternatively, the stringof 
function converts its arguments into printable form and re
turns this representation as a string value corresponding to 
that printed form. Unlike write and writeln, no output is per
formed. The stringof function may be useful when you need to 
print a value in a format not available from write or writeln. 
It will do the hard task of converting the value to character 
form, and you can use the other string manipulation functions 
to twiddle the resulting string into the format you want. 

The string manipulation functions are, of course, useful 
for pulling apart strings and putting them back together in 
different ways. We will describe two simple programs here as 
examples and give you suggestions for programs to write on 
your own. 

First, let's write a program to perform a simple task: 
read in an input string and print it back out with all the low
ercase letters changed to the equivalent uppercase letters. As 
usual, a good place to begin is with a pseudo-code outline of 
the strategy. Especially in the early stages of program 
design, pseudo-code doesn't have to be particularly sophisti
cated; it can, and perhaps should, lean toward simplicity. For 
example, we could write the case-converter pseudo-code this 
way as a crude first step: 

get string 
covert all lo•ercase characters In string to uppercase 
print converted string 

Don't scoff at the simplicity of this strategy; the important 
thing is that the pseudo-code is obviously correct. We can be 
sure that any program we write that correctly implements 
this strategy will work. 

Also note that we have taken our single large problem and 
split it into three smaller problems; presumably, each prob
lem can then be solved more or less independently from the 
others. In this case, the first and third steps in the pseudo-

Introduction to Library Functions 189 



code are easy to implement in Macintosh Pascal: getting the 
string and printing the converted string can be done with the 
readln and writeln routines. So the second step, converting 
the string, is the main problem to solve. But it is at least a 
smaller, simpler problem to solve than the original. 

In trying to get a handle on the solution, you might note 
that the lower- to uppercase conversion must be done on a 
character-by-character basis: the program has to examine 
each character in the string, test it to see if it is a lowercase 
letter, and, if it is, convert it to uppercase. So a refined 
pseudo-code might appear as follows: 

get string 
look at each character In the string: 

If character Is a lowercase letter 
replace with the corresponding uppercase letter 

print converted string 

Now how will we look at each character in the string? 
Looking through Table 7-4 for ideas, we notice that the copy 
routine can be used to extract substrings from a string. Can 
copy be used to extract one character from the string? Of 
course. If the argument n has the value one, then the assign
ment statement 

ch :• copy(s, i, 1) 

extracts the single character at position i of the string s into 
the character ch. Looking at each character, then, involves 
letting the variable i assume values from 1 (to access the first 
character in the string) up to the number of characters in the 
string (to access the last character in the string). This can be 
done most easily with a for loop, remembering that the 
length function gives the number of characters in a string: 

for i :• 1 to length(s) do 

How about testing whether the character is a lowercase 
letter? Remember that the character values a through z are a 
contiguous sequence of values in the ASCII character set; 
that is, there are only lowercase letters between a and z. So 
the test for lowercase can be simply 

190 The First Book of Macintosh Pascal 



if (ch >= 'a') and (ch <= 'z') then 

The remaining problem in the pseudo-code is how to 
replace a lowercase letter with the equivalent uppercase let
ter. Looking to the string functions in Table 7-4, we fail to 
find a replace function, but there is an omit function that can 
be used to delete characters from a string and an include 
function to put characters into a string. Armed with these 
two operations you can perform a replacement. Let's rewrite 
the pseudo-code one more time: 

get string 
for each character in the string: 

extract character fro• string 
if character is a lo•ercase letter: 

delete character fro• string 
convert character to uppercase 
insert converted character Into string 

(at the sa•e place) 
end If 

end for 
print converted string 

The final problem is how to go about obtaining the upper
case letter corresponding to the lowercase letter extracted 
from the string. You may have noticed in the previous section 
that the ASCII value of the character A is 65 and the ASCII 
value of a is 97. Since a to z and A to Z are contiguous ASCII 
values, it's not hard to see that the ASCII value of a lowercase 
letter is always 32 less than the ASCII value of the corres
ponding uppercase letter. Let's work through the necessary 
calculation a step at a time. If the character variable ch holds 
a lowercase letter, then 

ord(ch) 

is the ASCII value of the letter and 

ord(ch) - 32 

is the ASCII value of the corresponding uppercase letter. Its 
value is represented by 

Introduction to Library Functions 191 



chr(ord(ch) - 32) 

Another way to accomplish the same thing is 

chr(ord(ch) - ord('a') + ord('A')) 

Can you see why this expression is equivalent to the previous 
expression? 

Putting all this together into a program is a straightfor
ward translation of the now quite detailed pseudo-code: 

program lower _to_upper; 
(convert lowercase letters in string to uppercase J 

var 
s: string; 
ch: char; 
I: Integer; 

begin ( lower _to_upper ) 
write('Enter a string:'); 
readln(s); 
for I :• I to length(s) do 
begin 
ch := copy(s, I, I); 
If (ch >• 'a') and (ch <• 'z') then 
begin 
s := omlt<s, i, I); 
ch:• chr(ord(ch) - ord('a') + ord('A')); 
s :'" lnclude(ch, s, i) 

end 
end; 
wrlteln(s) 

end. 

Compare this program with the last version of the pseudo
code. Can you see how each part of the program arose from 
the corresponding pseudo-code? Type in and test the pro
gram; does it work on all possible input strings? 

As our second example, let's write a program that accepts 
an arbitrary number of input lines and prints out the number 
of words in the input and the average word length. (As a 
practical application, this could become the core of a text
analysis program that measures the readability of a docu-

192 The First Book of Macintosh Pascal 



ment.) Once more, we start with pseudo-code that is nearly 
obvious: 

while there's another Input line 
read Input 11 ne 
process Input llne 

end •hi le 
print results 

How will we determine when there are no more input 
lines? One simple scheme, which we'll use, is to let an empty 
input line signal the end of the input. We can determine 
whether a line is empty or not by comparing the line with the 
null string, or, more simply, testing to see if its length is 0. 
The pseudo-code can then be rewritten slightly: 

read first Input line 
while Input line Is not e•pty 

process Input line 
read next Input llne 

end whl le 
print results 

Now the tough problem to solve is the line-processing strat
egy. Useful questions to ask yourself at this point in the 
design are: How would I do this problem in real life, without 
a computer? Could I describe my method in step-by-step 
fashion, simply enough so a computer could perform each -
step? Does the language I am using provide any help in the 
form of, say, library functions? Does my strategy account for 
all possible situations? Am I making any possibly incorrect 
assumptions about the form of the input? Try, on your own, to 
come up with a refined pseudo-code for the line-processing 
problem before you read on. 

There are actually a number of possible methods you 
might consider in solving this problem. Our strategy-not 
necessarily the best one-will be to repeatedly look for the 
first word in the input line. As we find each word, we can 
extract it from the input line, measure its length, then delete 
it from the input line. Eventually we will wind up with no 
words left in the input line; that will signal that we are done 
processing the line. 

Putting this refined description into pseudo-code might go 
as follows. 

Introduction to Library Functions 193 



read first input line 
•hile Input line ia not eapty 

repeat 
extract next 1ord fro• line 
aeasure its length 
delete •ord fro• line 

until no •orda left In line 
read next input line 

end•hi le 
print results 

So far, so good. A useful next step might be to get a little 
more specific on the actual arithmetic the program will have 
to do. In order to calculate an average, we will need to keep 
track of both the number of words and the sum of the word 
lengths seen. We'll need two variables to keep track of these 
two quantities. Each variable should be set to zero initially, 
and each time a word is found the values of each variable 
must be updated. The pseudo-code now looks like this: 

set word count to 0 
set sua of •ord lengths to 0 
read first input line 
•hlle Input line is not empty 

repeat 
extract next •ord fro• line 
delete •ord fro• line 
add length of •ord to sua of •ord lengths 
add one to •ord count 

until no •ords left in line 
read next input line 

end•hi le 
print •ord count 
print average 1ord length 

( • au• of •ord lengtha/1ord count) 

Let's now consider how to go about extracting the next 
word from the line. Before we start, however, we'll need to 
specify more precisely what we mean by a word. For now, 
let's adopt a somewhat simplistic, but workable, definition: a 
word is any sequence of characters excluding blanks. That is, 
blanks can be considered as word swarators. 

Now is also a good time to consider the possible "strange" 
input lines our program might have to deal with. It's easy to 

194 The First Book of Macintosh Pascal 



see the program will have to properly handle lines of differ
ent lengths, each possibly with different numbers of words. 
But might a line contain zero words? Yes, if it has only blanks 
in it. Should our program assume there will always be 
exactly one blank between words? Probably not; instead, it 
should assume words might be separated by any number of 
blanks. Might the input line be entered with leading or trail
ing blanks? It might happen, in which case our program 
should deal with them intelligently. 

All these considerations guide the next step in refining the 
pseudo-code: 

set •ord count to 0 
set su• of •ord lengths to 0 
read first input line 
•hi le Input I lne Is not e•pty 

repeat 
delete leading blanks fro• line (If any) 
If there are •ore characters In the line 

search for next blank (or end of line) 
extract •ord: all characters fro• line 

up to next blank (or end of line) 
delete •ord fro• line 
add •ord length to su• of •ord lengths 
add one to •ord count 

end if 
until no •ords left In line 
read next Input llne 

end•hl le 
print •ord count 
print average •ord length 

( • su• of •ord lengths/•ord count) 

At last we have reached the stage where the pseudo-code 
can be translated nearly line-by-line into Pascal. You may 
want to try to do this yourself before you examine the follow
ing program: 

program wordcount; 
( count words In input text } 

var 
line, word: string; 
nextblank, wordcount, sum length: Integer; 

Introduction to Library Functions 195 



begin ( wordcount} 
wrlte('This program counts the number of words in an '); 
wrlte('arbltrary number of Input lines and computes'); 
wrlteln('the average word length.'); 
write In; 
write('Please enter the input text. Press the Return '); 
write('key after each line. Enter an empty I ine when '); 
writeln('done.'); 
write In; 
sumlength := O; 
wordcount := O; 
readlnO ine ); 
while length(llne) >Odo 
begin 
repeat 
while pos(' ·, line)· I do (delete leading blanks} 
line := omit(J ine, I, I); 
if l ength(ll ne) > o then 
begin 
nextblank := pos(' ·, line); 
If nextblank = O then (no blanks left in the line} 
nextblank :'" length(llne) + I; 
word:= copyOine, l, nextblank - I); 
line:• omit(llne, I, nextblank - I); 
wordcount :'" wordcount + I ; 
sumlength := sumlength + length(word) 

end 
until length(line) <= O; 
readln(I ine) 
end; 

wrlteln('Number of words: ·, wordcount: I); 
write('Average word length: '); 
wrlteln(sumlength I wordcount: I : I) 

end. 

If you wrote your own version of this program, compare it 
with this one. If they differ, can you say which is better than 
the other? It may well be that your version is an improvement. 

Enter the program-either your own version or this one
into the Macintosh and test it using different sets of input. 
Make sure to enter some simple cases (only one or two words) 
so you can verify that the calculation is being done correctly. 
In addition, try all the strange input cases discussed above: 

196 The First Book of Macintosh Pascal 



leading and trailing blanks, lines containing only blanks, and 
lines with more than one blank between words. 

You may have already found the logic error in our version 
of the program; if not, try to find and correct it now. (Hint: 
can the program ever get a division-by-zero error?) 

You may also want to consider correcting a rather poor 
feature of the program resulting from our too simple defini
tion of what a word was: punctuation characters adjacent to a 
word are considered to be part of the word. Modify the pro
gram to delete punctuation before a word's length is mea
sured. (How will you define punctuation precisely? Is it 
enough to consider leading and trailing punctuation? What is 
the length of, say, the word "isn't"?) 

The purpose of going into such detail over the program 
design process was to emphasize two facts: first, writing pro
grams is not an automatic process; it demands near fanatic 
devotion to detail and an ability to break a seemingly difficult 
problem into smaller and smaller subproblems. Worse, things 
will seldom go as smoothly as shown here. More often than 
not, the programming process goes down blind alleys; the 
usual solution is to tear up the non-working parts of the 
design and start over. 

The second fact-the good news-is that there really isn't 
anything more than that involved. Acquiring programming 
skill is mostly a matter of practice: you don't need to be a 
genius; you just have to be willing to work a little. As you gain 
experience, you'll find yourself developing a sense of what will 
work and what won't; the blind alleys will become less 
common. 

Having said that, here are some suggestions for further 
practice: 

• One criticism of the word-counting program might be 
that it destroys the input line; what if the program 
needed to use the line for something else? Rewrite the 
program to count the words in the line without modify
ing the string. 

• Write a program that deletes all blanks from an input 
string. 

• Write a program that replaces all occurrences of the 
character e in an input string with the character f. 

• Write a program that will substitute any given charac
ter for any other given character in an input string. 

Introduction to Library Functions 197 



(Have your program accept the replaced and replace
ment characters as input.) 

• Write a program to replace string-1 with string-2 every
where it occurs in string-3. All three strings should be 
accepted as input by the program. (Do you have to 
assume string-1 and string-2 are different?) 

• Write a program to count the number of occurrences of 
a given character in a string. 

MORE MACINTOSH PASCAL 
FUNCTIONS 

There are a number of additional functions provided by 
Macintosh Pascal. The functions we will discuss are summar
ized in Table 7-5. 

A good place to start in our discussion is the random func
tion, which we have used without explaining in Chapters 4 
and 6. The random function has no argument list; when it is 
used in a program, it looks just like an undeclared variable. 
The random function call always represents an unpredictable 
integer value in the range -32768 to 32767. In theory, any 
value in this range is equally likely to occur. The following 
program demonstrates how random works by simply printing 
its value ten times; try it and verify that you obtain different 
values each time the program runs: 

program random_Jab; 
(experiments with random function) 

var 
i : Integer; 

begin ( random_lab ) 
for i := I to Io do 
writeln(random) 

end. 

The random function can be used in any program you 
want to behave differently each time it is run, typically 

198 The First Book of Macintosh Pascal 



Table 7-5. 

Additional Macintosh Pascal Functions 

button 
arguments: 
result type: 
description: 

random 
arguments: 
result type: 
description: 

tick count 
arguments: 
result type: 
description: 

none 
Boolean 
TRUE if Mouse button is currently down, else 
FALSE 

none 
long integer 
unpredictable value in the range -32768 to 
32767 

none 
long integer 
number of jiffies since Macintosh was started 

games or simulation programs. Usually, the mod operator 
can be used with the random function call to obtain random 
integers ih whatever range you want. For example, in a pro
gram involving dice throws, the statement 

die :• I + random mod 6 

will assign a random integer value in the range 1 to 6 to the 
variable die. In general, when you desire an unpredictable 
integer value in the range low_ val to high_ val, the ex
pression 

low_val + random mod (higtLval - low_val + I) 

will often do an adequate job. 
You may also use random to obtain unpredictable values of 

other types. We saw in Chapter 6 where the expression 

chr(random mod 26 + ord('a')) 

was used to obtain a random lowercase letter. Now that you 
know about the chr and ord functions, you should be able to 
see why it works. As another example, the following program 
prints out random four-letter words. 

Introduction to Library Functions 199 



program random_lab; 
(experiments with random function) 

var 
I: Integer; 

begin ( random_lab ) 
whlle TRUE do 
begin 
for I :• I to 4 do 
write(chr<random mod 26 + ord('a'))); 
write('') 

end 
end. 

Try to see how long it takes for this program to come up 
with a word that's recognizable. (It's surprising to see how 
few random words are even slightly pronounceable, let alone 
actual words.) An easy modification to this program will 
result in its printing random words of differing lengths. 
(Hint: choose a random number in, say, the range 1 to 10 for 
each word's length.) 

How would you obtain random characters in other ranges 
besides a to z? How would you go about calculating random 
real numbers between 0 and 1? Between any two real values? 
How would you obtain a random Boolean value? (The latter 
would be useful for simulating an unpredictable yes-or-no 
decision.) 

Another function you might find useful in your own pro
grams is the button function. This simple but powerful func
tion returns a Boolean value of TRUE if the Macintosh's 
Mouse button is currently being pressed or FALSE if the but
ton is not currently being pressed. The following program 
shows its use: 

program button_lab; 
(experiments with the button function) 

begin ( button_lab) 
whl le TRUE do 
begin 
writeln('The button ls up .. .'); 
whl le not button do 

200 The First Book of Macintosh Pascal 



wrlteln('The button ts down .. .'); 
wht le button do 

end 
end. 

Type in this program and run it. Press and release the 
Mouse button a few times. As you might have suspected, it 
displays the message 

The button Is do•n ... 

when the button is depressed and 

The button Is up ... 

when the button is released. You will have to stop the pro
gram by choosing the Halt option from the Pause menu. 

This program, while perhaps not very interesting in itself, 
contains two statements you will see over and over in Macin
tosh Pascal programs. The first, 

whi1e not button do 

causes the program to wait for the Mouse button to be 
pressed. The second, 

wh11e button do 

causes the program to wait for the button to be released. Note 
each while statement contains no statements inside the loop. 
(Or more precisely, each contains a Pascal empty statement 
inside the loop.) 

Another function that is easy to use to good effect in your 
own programs is the tickcount function. Tickcount simply 
returns the number of y"iffies since the Macintosh was started. 
(One jiffy is equal to 1/60 second). The value returned from a 
single call to tickcount is usually not interesting in itself; usu
ally it is combined with a value returned from a previous call 
to tickcount. For example, one might modify the button-lab 
program with calls to tickcount that allow the program to 
time how long the Mouse button was depressed. 

Introduction to Library Functions 201 



program button.Jab; 
{ expertments wtth the button functton ) 

var 
tc 1, tc2 : longtnt; 

beg1n {button.Jab J 
wrtteln('Press button to start ttmtng .. .'); 
wh11e not button do 

tc 1 :• tickcount; 
wht1e button do 

tc2 :• tickcount; 
wrtteln('Button held for', Ctc2 - tel) I 60.0: 1 : 2, ·seconds.') 
end. 

This turns the Macintosh into a relatively expensive stop
watch. (Modify the program, if you want, to continuously dis
play the elapsed time while the button is pressed.) 

The tickcount function can also be used to insert precisely 
timed delays into your program. For example, the following 
program prints out its initial message, pauses 10 seconds (600 
jiffies), and prints a final message: 

program ttcLlab; 
{ expertments wtth the t1ckcount functton ) 

const 
DELAY• 10; 

var 
tc 1, tc2 : longtnt; 

beg1n { ttcLlab ) • 
wr1te1n('l''11 be back in', DELAY: 1, ·seconds .. .'); 
tel := ttckcount; 
wh11e ttckcount - tel <DELAY* 60 do 

wrtteln(T'm back!') 
end. 

A simple reaction-time test can be programmed using the 
tools provided here. For example, an "unexpected" prompt 

202 The First Book of Macintosh Pascal 



could be programmed to be displayed after a random delay 
of, say, 3 to 8 seconds. The time it takes to press the button 
after the prompt is displayed could then be measured. Type 
in and run this program: 

program reaction; 
(test your reaction time} 

var 
tc I, tc2 : Jonglnt; 
delay : Jongint; 

begin (reaction ) 
wrlte('This program tests your reaction"); 
write('time. Wait for the word NOW to be "); 
wrlte('printed, then press the mouse '); 
wrlte('button as quickly as you can. Click '); 
writeln('the mouse button once to begin.'); 
wht le not button do 

wht le button do 

write In; 
wrlte('Press .. .'); 
delay:= 180 +random mod 300; 
tel := tickcount; 
while tlckcount - tel <delay do 

wrlteln('NOW'); 
tc I :• tick count; 
while not button do 

tc2 := tlckcount; 
wrlte('Reaction time:'); 
write((tc2 - tel)/ 60.0: I : 2); 
wrlteln(' seconds.') 
end. 

You may notice that it's easy to cheat on this program by 
simply holding the Mouse button down continuously. Can you 
modify the program to prevent such cheating? (Hint: test if 
the button is down just before the prompt NOW is printed. If 
it is, print an error message instead, and restart the delay.) 

Introduction to Library Functions 203 



MACINTOSH PASCAL MEMORY 
FUNCTIONS 

The remainder of the functions we will discuss in this chap
ter involve the methods Macintosh Pascal uses to store vari
ables in memory. Since this is a relatively advanced topic, you 
may skip over this discussion if you want. However, we won't 
assume any special knowledge about computers on your part, 
so don't be shy about sticking with us. The functions de
scribed in this section are summarized in Table 7 -6. 

We have mentioned that variables in your program are 
stored in the computer's memory. Have you wondered how 
much memory the variables actually occupy? Macintosh Pas
cal offers the sizeof function to answer this question. The 
sizeof function accepts a single variable name as its argu
ment. (Note that this requirement differs from the usual cus
tom that arguments of function calls be expressions.) Sizeof 
returns the amount of memory that variable takes up, mea
sured in units called bytes. 

Here is a simple program to find out how much space is 
consumed by variables of all the types we have considered so 
far: 

program sizes; 
(find memory requirements of various types} 

var 
b: Boolean; 
ch: char; 
I: integer; 
I: longlnt; 
r: real; 
d: double; 
e : extended; 
c : computational; 
s: string; 

begin ( sizes } 
wrfteln('Sfze of Boolean .. ·, sizeof(b): I,· bytes'); 
write In; 
wrlteln('Slze of char=·, sfzeof(ch): I,· bytes'); 
write In; 
writeln('Slze of fnt = ·, stzeof(I): I,· bytes'); 

204 The First Book of Macintosh Pascal 



Table 7-6. 

Macintosh Pascal Memory Functions 

bitand(il, i2) 
arguments: 
result type: 
description: 

bitnot(i) 
argument: 
result type: 
description: 

bitor(il, i2) 
arguments: 
result type: 
description: 

bitshift(i, n) 
arguments: 
result type: 
description: 

bitxor(il, i2) 
arguments: 
result type: 
description: 

hiword(i) 
argument: 
result type: 
description: 

loword(i) 
argument: 
result type: 
description: 

sizeof(v) 
arguments: 
result type: 
description: 

il, i2-integer values 
long integer 
bitwise logical AND of il and i2 

i-integer value 
long integer 
bitwise logical NOT of i 

il, i2-integer values 
long integer 
bitwise logical OR of i1 and i2 

i, n-integer values 
long integer 
value of i shifted (abs(n) mod 32) bits; 
left-shift if n > 0, right-shift if n < 0 

il, i2-integer values 
long integer 
bitwise logical XOR (exclusive-or) of il and i2 

i-integer value 
long integer 
upper 16 bits of i 

i-integer value 
long integer 
lower 16 bits of i 

any variable name (non-file variable) 
long integer 
amount of memory used by the named variable 

wrlteln('Size of longtnt = ·, sizeof(I): I, · bytes'); 
write In; 
wrlteln('Stze of real • ·, stzeof(r) : I, · bytes'); 
wrlteln('Slze of double = ·, slzeof(d): I, · bytes'); 
wrlteln('Stze of computational • ·, stzeof(c): I,· bytes'); 
wrtteln('Size of extended•·, stzeof(e): I,· bytes'); 
write In; 
writelnC'Size of string•·, slzeof(s): I,· bytes') 

end. 

Introduction to Library Functions 205 



The repetitive typing involved in entering this program can 
be decreased by using copy-and-paste functions. The output 
should appear as follows: 

Size of Boolean= I bytes 

Size of char • I bytes 

Size of int = 2 bytes 
Size of longlnt .. 4 bytes 

Size of real = 4 bytes 
Size of double= 8 bytes 
Size of computational = 8 bytes 
Size of extended • IO bytes 

Size of string .. 256 bytes 

You'll notice that the extended range and precision offered 
by the nonstandard varieties of real and integer types do not 
come for free. Variables of those types consume twice as 
much memory (or more) as those of the normal types. 

Another important point is that a variable of the normal 
string type occupies a whopping 256 bytes; it's not too hard to 
see that using more than a few string variables in your pro
gram can rapidly exhaust the available memory. There is one 
way to cut down on string-storage requirements by declaring 
a smaller string size in the variable declaration. 

var 

s : string [ 10]; 

Try this modification and see how it affects the output. 
Actually, the byte is just one way to measure memory 

storage requirements. Just as distances may be measured in 
miles, feet, inches, or centimeters, computer memory is mea
sured in different units depending mainly on which unit is. 
most convenient. We will use four different units for memory 
measurement: bits, bytes, words, and kilobytes. (The kilobyte 
unit is often abbreviated as the single ketter K.) There is 
nothing mysterious about converting from one unit to another; 

206 The First Book of Macintosh Pascal 



Table 7-7. 

Memory Measurement Conversion Factors 

1 Kilobyte = 512 words = 1024 bytes = 8192 bits 
1 word = 2 bytes = 16 bits 

1 byte = 8 bits 

it is as easy as converting feet to inches. All you need to know 
are the conversion factors: the numbers to multiply or divide 
by. The conversions between different memory-measurement 
units are shown in Table 7-7. 

Note that you don't have to know anything about what 
these units actually represent to perform a conversion. For 
example, if your Macintosh has 128 kilobytes, you can deter
mine that 128K is the same as 128 times 1024, or 131,072 
bytes. 

The actual amount of memory consumed by a string vari
able is one more byte than its assumed size. For example, the 
default string size of 255 characters is 256 bytes. The reason 
is that, in addition to the string characters themselves, string 
variables contain a byte that holds a number giving the cur
rent length of the string, whatever it is. Normally the only 
way to access this byte is through the length function, which 
simply returns its value. 

The smallest unit of the computer's memory is the bit. As 
shown in Table 7-7, all the larger units of the computer's 
memory are simply sequences of bits. By definition, a bit can 
store only two possible values; these values are usually 
thought of as 0 and 1. It's important to realize that all the 
different values of all the different types we've seen so far are 
simply differing bit sequences held in the computer's memory 
-that is, just various combinations of 0 and 1. 

Macintosh Pascal offers a number of library functions 
that allow operations on the underlying bit representation of 
the integer types (as opposed to the mathematical operations 
on the integer values themselves). 

First let's consider splitting a long integer into two pieces. 
If you examine the output from the sizes program, you'll note 
the long integer type can be considered to be made up of two 
normal integers. Integers use 2 bytes (one word) while long 
integers consume 4 bytes (two words). The hiword and laword 
library functions accept a two-word long integer value and 
split it into two integer-size parts. Hiword returns the higher 

Introduction to Library Functions 207 



(first) half of its long integer argument as a normal integer 
value, while loword returns the lower (second) half. 

Try out hiword and loword in the Observe window; give 
each one a number of different arguments. Note that, since 
integer-type expressions are always automatically converted 
to long integer values, it is acceptable to use normal integer 
values as arguments to hiword and loword. And since the 
function calls are themselves integer-type expressions, they 
should be considered to represent long integer results. 

Macintosh Pascal also offers library functions that allow 
operations on the individual bits contained in integer-type 
values. The simplest one is the bitnot function. It simply 
returns the result obtained by inverting all the bits in its 
argument; 1 bits become 0 and 0 bits are turned into l's. 
Again, try out bitnot in the Observe window with a few dif
ferent arguments. You will remember we discussed the idea 
of inverse functions with chr and ord previously; it turns out 
that bitnot is its own inverse. Can you see why? Try to verify 
this using the Observe window. 

Macintosh Pascal also provides the bitshijt function; it 
returns the result of moving the bits in its first argument left 
or .right by the number of positions specified by its second 
argument. If the second argument is positive, bits are shifted 
left; if negative, the shift is to the right. Empty bit positions 
are filled in with zeros. Once again, try using bitshift in the 
Observe window. (Restrict yourself to small shift arguments 
at first.) 

The final three bit functions we'll consider are bitand, 
bitor, and bitxor. Each operates on two integer-valued argu
ments. Each bit of the result value comes from an operation 
between the corresponding bits of the argument values: 

• For the bitand function, a bit in the result is set to 1 if 
both corresponding bits from each argument are also 1. 

• In the bitor function, a result bit is set to 1 if either or 
both corresponding argument bits are 1. 

• The bitxor operation sets a result bit to l, if either but 
not both corresponding argument bits are 1. 

These bit operations are known as AND, OR, and XOR, 
respectively. The rules for each operation (as well as the NOT 
operation used in the bitnot function) are summarized in tab
ular form in Figure 7 -2. 

So far, we have avoided discussing the precise way in 
which integer values are represented by bit sequences in 

208 The First Book of Macintosh Pascal 



AND 0 1 XOR 0 1 

0 0 0 0 0 1 

1 0 1 1 1 0 

OR 0 1 

0 0 1 
NOT l.___o_...___o____. 

1 1 1 

Figure 7-2. 

Bit operator tables 

memory, but the bit functions allow us to discover how it's 
done. It is customary to number each bit in a value, calling 
the rightmost bit bit number 0 and counting to the left. For a 
32-bit integer value, this would work as follows: 

jo]ol 1lololol1lol1lol1l1lolololololol1] 1l1lolol1]0lo]ol1lol1]0l1 l 

\ I 
Bit 31 Bit 0 

Let's make the reasonable and correct assumption that an 
integer value of 1 is simply a sequence of 31 zero bits and a 1 
in the rightmost position (bit 0): 

[ o [ o [ o [ o [o [ o [ o [ o [ ol o [ ol o [ o Io [ o Io [ o [ oiolol o lo I oiolololololo lolo I 1 I 

Notice that when this value is ANDed with another 
integer, the outcome will depend only on the rightmost bit of 
that integer. If the rightmost bit of the other integer is 1, the 

Introduction to Library Functions 209 



result of the AND will be 1. And if the rightmost bit is 0, the 
result of the AND will be 0. In short, the expression 

b1tand(x, 1 ) 

always gives the rightmost bit of x, no matter what x is. Pro
grammers call these kinds of bit patterns masks, because 
they "mask out" all but the desired bits from a value. 

Masks can easily be used to find the value of any bit in an 
integer. To determine bit number i in the integer x, for 
example, first shift that bit into the rightmost position using 
a right bitshift of i bits. 

bitshift(x, -i) 

Then AND the resulting value with 1 (our mask value): 

bitand(bltshift(x, -0, I) 

That's all there is to it. It's easy, of course, to repeat this 32 
times, once for each bit. Putting this strategy into a program 
might go like this: 

program biLlab; 
{print b1t representation of input integer J 

var 
x: Jongint; 
i: Integer; 

begtn ( blLlab } 
write('Enter an integer: '); 
readln(x); 
write('Blt representation of ', x : I, ':'); 
for I:= 31 downto Odo 
write(bitand(bitshift(x, -0, I) : I); 
write In 

end. 

Type in this program and test it on a number of different 
values. 

A simple test program to verify that the bit functions 
work as expected can be built on this foundation. The follow
ing program accepts two integers and calculates the result 
from XORing them together. The bit representations of all 
three values are then displayed. 

210 The First Book of Macintosh Pascal 



program biLlab; 
(examine bitxor function} 

var 
x, y, z : longint; 
i : integer; 

begin ( biLlab } 
write('Enter an integer: '); 
readln(x); 
write('Enter another integer:'); 
readln(y); 
z :"' bitxor(x, y); 
writeln(x: I,· XOR', y: I,· is', z: I); 
writeln('Bit representation:'); 
write('·: 4); 
for I:= 31 downto Odo 
wrlte(bitand(bitshift(x, -0, I) : I); 
write In; 
wrlte('XOR · : 4); 
for i := 31 downto Odo 
wrlte(bitand(bltshift(y, -i), 1): 1 ); 
write In; 
write('is · : 4); 
for i :• 31 downto O do 
write(bitand(bitshift(z, -i), 1) : 1 ); 
write In 

end. 

This demonstration program is useful for understanding 
what the bitxor function really does; seeing what happens to 
the bit representations is considerably easier than trying to 
follow the process by looking at the decimal values. A sug
gested exercise would be to make slight modifications to this 
program to allow you to view the results of the other bitwise 
operations, including hiword and loword. 

Introduction to Library Functions 211 



INTRODUCTION 
TO LIBRARY 
PROCEDURES 

Procedures help make entire 
programs transparent. 

DOUG COOPER AND MICHAEL CLANCY. 
Oh! Pascal! 

(W.W. Norton, 1982) 

In addition to the library functions we discussed in the pre
vious chapter, Macintosh Pascal offers a number of other 
library subprograms called library procedures. Like library 
functions, library procedures are built into Macintosh Pascal; 
you may use them in any program you write. Unlike the 
library functions, however, the library procedures are usually 
considered to perform actions rather than calculate results, as 
we'll see. 

STANDARD PROCEDURES 

Table 8-1 lists the five standard procedures offered by Macin
tosh Pascal for simple input and output. 

We have been using four of these five standard procedures 
all along: write, writeln, read, and readln. And, although you 
may not have realized it, since you know how to use these four, 
you already know how procedures are called. The syntax for a 
procedure call is shown in Figure 8-1. 

The syntax of a procedure call is the same as that of a 
function call. A procedure call and a function call differ con
siderably, however, in where they may legally appear in a 

213 



..-----~···································· 

prC1cedt1re !( t1rgt1ment ! 
. ~ t ·r . : I . t ) : lven 1 1er : is : 

,___ ___ _, l. ................................. : 

Figure 8-1. 

Procedure call syntax 

program. Pascal's unshakable rule governing placement of 
procedure and function calls is as follows: 

A f u.nction caU represents a ~; 
a. procedu.re caU is a. statement. 

A procedure call may legally appear anywhere in your 
program that a statement may be placed. A function call, on 
the other hand, must appear only as an expression or be con
tained within an expression. So the following examples are 
totally meaningless in Pascal: 

y := writeln(x, z); 
odd(j) 

In the first example a procedure call to writeln is being used 
as a function call; in the second, a call to the function odd is 
being used as a statement. Both usages are illegal. You must 
know whether a subprogram is called as a procedure or a 
function in order to use it in your own programs. 

In addition, you must also know what kind of arguments a 
subprogram expects. Since you are already somewhat famil
iar with the workings of read/readln and write/writeln, con
sider the following statement. Is it legal? 

writeln(2 * 3 + 6) 

The answer is yes. In general, the write and writeln proce
dures may be called using expressions as arguments. But 
does it make any sense to do the same thing with read or 
readln? 

readln(2 *3 + 6) 

214 The First Book of Macintosh Pascal 



A little thought should tell you that a statement like this is 
nonsensical. Each argument used in an argument list to read 
and readln must be a variable identifier. Why? Because read 
and readln argument lists return results-the values of what
ever was read. If you do not specify variable names in the 
argument list, there will be no place to store those returned 
results. So there are two different kinds of arguments used 
by procedures and functions: values and variables. 

Whenever you write a subprogram call (procedure call or 
function call) in your own program, you must know two sim
ple things about each argument involved: 

• You must know whether the subprogram expects a 
value or variable argument. 

• You must know what type of argument (integer, Boo
lean, and so on) is expected by the subprogram. 

Notice the entries for read and readln in Table 8-1 state 

Table 8-1. 

Standard Pascal Procedures for Simple Input and Output 

page 
arguments: none 
description: clears Text window 

read(rl, r2, ... , rn) 
arguments: rl, r2, ... , rn-variables of any readable type 

(one or more) 
description: reads values typed at keyboard into named 

variables 
readln(rl, r2, ... , rn) 

arguments: r l, r2, ... , rn -variables of any readable type 
(zero or more) 

description: reads values typed at keyboard into named 
variables and skips to next input line 

note: if zero arguments, parentheses are omitted 
write(wl, w2, 

arguments: 
... , wn) 

description: 
writeln(wl, w2, 

arguments: 

description: 

note: 

wl, w2, ... wn -any writable values (one or 
more); each may have formatting parameters 
prints values in Text window 

... , wn) 
wl, w2, ... wn-any writable values 
(zero or more); each may have formatting 
parameters 
prints values (if any) in Text window and 
skips to next output line 
if zero arguments, parentheses are omitted 

Introduction to Library Procedures 215 



the arguments must be variables; the entries for write and 
writeln indicate that the arguments are values. 

In addition to the four procedures already discussed, 
Table 8-1 mentions the page procedure. It may be used any
where in your program to erase the Text window. The simple 
example shown here 

program ASCII; 
( display ASCII character set ) 

var 
i: integer; 

begin ( ASCII ) 
for i :=·Oto 255 do 
begin 
write(i : 5, ':', chr(i) : 2); 
if i mod 8 = 7 then 
beg1.n 
writeln; 
if i mod 64 = 63 then 
begin 
writeln; 
wr1telnC'C11ck mouse to continue .. .'); 
while not button do 

wh11e button do 

page 
end 
end 

end 
end. 

is a modification of the ASCII program from Chapter 7 and 
prints both the characters and their numeric ASCII equiva
lents. After each line of 8 characters is printed, the program 
skips to a new line. After each set of 64 characters (eight 
lines) is printed, the program waits for the Mouse button to 
be pressed and released. Once that happens, the page proce
dure is called to clear the window and output continues. 
(You'll want to expand the Text window to fill the full screen 
before you run this program. You may also want to find out 
what happens when the call to page is omitted.) 

216 The First Book of Macintosh Pascal 



MACINTOSH PASCAL STRING
MANIPULATION PROCEDURES 

The remaining library procedures discussed in this chapter 
are nonstandard; they may not be present in other versions of 
Pascal. The first group of procedures we'll consider are two 
string-manipulation procedures summarized in Table 8-2. 

The insert procedure inserts one string into another at a 
specified position. It performs a similar task to the include 
function discussed in Chapter 7. In fact, any call to the 
include function that is simply used to insert a string value 
into a string variable, such as 

s := lnclude('arg', s, 3) 

can be replaced with a simpler call to the insert procedure 
that does exactly the same thing: 

insert('arg·, s, 3) 

Similarly, a call to the omit function used only to delete char
acters from a string variable, as in 

s := omit(s, 3, 2) 

may be replaced with a call to the delete procedure instead: 

delete(s, 3, 2) 

Table 8-2. 

Macintosh Pascal Procedures for String Manipulation 

insert(sl, s2, i) 
arguments: 

description: 

delete(s, i, n) 
arguments: 

description: 

sl-string value 
s2 -string variable 
i-integer value 
inserts sl into s2 at character #i 

s -string variable 
i, n-integer values 
deletes n characters from s starting at char
acter #i 

Introduction to Library Procedures 217 



The decision as to whether procedures or functions should 
be used is primarily guided by convenience. The insert and 
delete procedures are recommended when you want to change 
a string variable. (That's why they demand a string variable 
as an argument.) The analogous include and omit functions 
should be used when you merely want to use the result of the 
insertion or deletion and leave the string variables unaf
fected. As an exercise, return to the last chapter's programs 
and replace calls to include and omit with calls to insert and 
delete. 

As another example of string manipulation, let's build a 
palindrome detector. A palindrome is a string that reads the 
same backwards and forwards, neglecting capitalization and 
non-letters. Well-known examples are ''Able was I ere I saw 
Elba" and "Madam, I'm Adam." 

The strategy we'll try first is to build a "reversed" string 
from the original, then to compare the reversed string with 
the original. If they are the same, the original string was a 
palindrome. As we saw in Chapter 7, our program will accept 
and process an arbitrary number of lines, stopping when an 
empty line is entered. An initial pseudo-code might go as 
follows: 

get fl rat Input st r Ing 
•hlle input string is not e•pty 

build reversed string fro• Input string 
co•pare Input string •ith reversed string 
If equal 

input string is a pallndro•e 
else 

Input string isn't a pallndro•e 
get next Input string 

end •hi le 

Do you see what's wrong with this design? We have forgot
ten that we must ignore capitalization and non-letters when 
testing for palindromes. Instead of working with the original 
string, let's copy the original into a second string variable. 
We'll then delete all non-letters from this second string and 
convert all its letters to a single case. Finally, the converted 
string will be reversed into a third string. If the converted 
string and its reverse are the same, we have a palindrome. 
Summarizing this in pseudo-code: 

218 The First Book of Macintosh Pascal 



get first input string 
•hile Input string is not e•pty 

converted string :• Input string 
delete all but letters fro• converted string 

and convert all letters to uppercase 
build •reversed• string fro• converted string 
co•pare converted string •ith reversed string 
if equal 

input string Is a palindro•e 
else 

input string Isn't a palindro•e 
get next Input string 

end •hi le 

The string processing needed to remove non-letters and 
convert letters to a single case will be a little tricky. Can we 
use a normal for loop to scan all the characters in the string, 
as follows? 

for i := I to length(s) do 

The answer is no. If we delete characters from the string, 
the length of the string will change during the execution of 
the for loop. But remember that the upper limit of the for is 
calculated before the loop is entered, so the number of times 
the loop is executed depends only on the original length of the 
string. If any characters are deleted from the string, the for 
will attempt to access characters beyond the new length of 
the now shorter string, which will lead to undesired results. 
It's probably more correct to use a while loop and to test the 
string index variable against the current length of the string 
each time through the loop. Making this refinement to the 
pseudo-code gives the following: 

get f lrst input string 
•hlle input string Is not e•pty 

converted string :• Input string 
I :• 1 
•hlle I<• length(converted string) do 

extract character •1 fro• string 
If character Is a lo•ercase letter 

convert to uppercase 
Increment i 

Introduction to Library Procedures 219 



else If character Is an uppercase letter 
just lncre•ent I 

else (character is not a letter) 
delete character fro• converted string 

end if 
end •hi le 
build •reversed• string fro• converted string 
co•pare converted string •Ith reversed string 
if equal 

input string is a palindrome 
else 

Input string Isn't a palindro•e 
get next Input string 

end .hi le 

Note we have also explained the process of deleting non
letters and case conversion in a little more detail. Why is the 
string index variable i not incremented when a non-letter 
character is deleted from the string? (Hint: what happens to 
characters in the string that follow a deleted character?) 

Translating this into Pascal gives us the following code: 

program palindrome; 
(Test input strings ror palindromousness} 

var 
Instr, convert, reverse : string; 
ch: char; 
i: integer; 

begin ( palindrome } 
write('This program tests strings to see If they are '); 
wrlte('palindromes. Enter each string you want to '); 
write(' test on a separate I lne. Enter an empty '); 
wrlteln('string when done.'); 
write In; 
readln( Instr); 
while length(instr)> o do 
begin 
convert := instr; 
i :• I; 
while i <= length(convert) do 
begin 
ch :• copy(convert, i, I); 

220 The First Book of Macintosh Pascal 



if (ch >='a') and (ch <= 'z') then 
begin 
delete(convert, i, I); 
insert(chr(ord(ch) - ord('a') + ord('A')), convert, O; 
i :"' i + I 

end 
else If (ch>• 'A') and (ch<= 'Z') then 
i :•I+ I 

else (delete any non-letter J 
delete(convert, i, I) 

end; 
reverse:•"; 
for i :'" 1 to length(convert) do 
insert(copy(convert, i, I), reverse, I); 

write('··. instr,···>; 
if convert= reverse then 
write(' Is ') 

else 
write(' isn"t '); 

wrlteln('a palindrome.'); 
readln( instr) 

end 
end. 

Type in and test this program using the palindromes given 
previously; also make sure it reports non-palindromes cor
rectly. In typing in the program, remember that a null string 
is typed as two apostrophes, not as a double quote. 

SIMPLE QUICKDRAW PROCEDURES 

You may remember that we used the Drawing window briefly 
in Chapter 3 as part of our discussion of Macintosh Pascal 
cut-and-paste editing. Here is one version of the program 
from Chapter 3: 

program quad; 
{Draw a quadrilateral) 

begin { quad J 
moveto(50, 100); 
lineto( 100, 100); 

Introduction to Library Procedures 221 



lineto( 100, 50); 
1ineto(50, 50); 
1ineto(50, 100) 

end. 

Type in and run this program (or retrieve it from disk, if you 
saved it). In this program we used moveto and lineto to draw 
simple line figures in the Drawing window. You probably now 
recognize moveto and lineto as procedure calls. 

Moveto and lineto are only two of the many library sub
programs provided by Macintosh Pascal that allow your pro
grams to use the Macintosh graphics capabilities. Collec~ 
tively, these subprograms are known as the QuickDraw 
library, named after the fast, powerful graphics routines con
tained in the Macintosh's memory. Nearly everything you see 
on the Macintosh screen (windows, fonts, icons, and so on) is 
placed there by QuickDraw routines. Full use of QuickDraw 
involves slightly more knowledge of Pascal than we have 
covered as yet, but many simple QuickDraw routines can be 
used with only a little more background. We'll cover those in 
this chapter's remaining sections. 

Fundamental to QuickDraw is the concept of a coordinate 
system. Simply stated, a coordinate system is a method used 
to translate places or points into numbers, and vice versa. 
Because the computer only deals with numbers, when you tell 
the computer to draw a line from here to there, both "here" 
and "there" must be given as numbers in the coordinate 
system. 

You should be aware that QuickDraw actually uses many 
different coordinate systems to translate places on the Macin
tosh screen into numbers. Luckily, you only need to know one 
coordinate system right now in order to use the simple 
QuickDraw routines. 

The coordinate system you'll be using most often is the 
Drawing window's local coordinate· system. It is called the 
local coordinate system because it relates only to the Drawing 
window. That is, it allows positions to be specified within the 
Drawing window without having to know where the Drawing 
window actually is on the screen. 

To specify the location of a point within the Drawing win
dow, you need to provide two numbers: the point's horizontal 
position (how far over from the left it is) and its vertical posi
tion (how far down). By custom, the horizontal coordinate is 
called x and the vertical coordinate y. Positions are measured 

222 The First Book of Macintosh Pascal 



0 
L )( 

0 
Drawing 

I 
y 

200 ~1 

Figure 8-2. 

Drawing window local coordinate 
system 

200 
J 

from the upper-left corner of the visible region of the Draw
ing window. 

The units for measuring the horizontal and vertical dis
tances in the coordinate system are pixels (which is short for 
"picture elements"). On the Macintosh screen, the smallest 
possible black or white dot on the screen is defined to be one 
pixel wide by one pixel high. The Macintosh screen measures 
342 pixels in the vertical direction by 512 pixels in the hori
zontal direction. Everything you see on the screen is simply 
differing black and white arrangements of these 175,104 (342 
X 512) pixels. 

When Macintosh Pascal is started, it sets the interior of 
the Drawing wintow to a square of 200 by 200 pixels. The 
Drawing window's coordinate system is shown in Figure 8-2. 

To draw in the Drawing window, you specify points as 
pairs of numbers according to this coordinate system. Think 
of moving an imaginary pen around inside the Drawing win
dow from point to point; straight lines may be drawn by 
simply moving the pen from one position in the Drawing win
dow to another. 

Introduction to Library Procedures 223 



Table 8-3. 

Simple Line Drawing and Pen Movement Procedures 

drawline(xl, yl, x2, y2) 
arguments: xl, yl, x2, y2-integer values 
description: draws line from (xl, yl) to (x2, y2) 

line(dx, dy) 
arguments: 
description: 

lineto(x, y) 
arguments: 
description: 

move(dx, dy) 
arguments: 
description: 

moveto(x, y) 
arguments: 
description: 

dx, dy-integer values 
draws line from current pen position (x, y) to 
(x + dx, y + dy) 

x, y-integer values 
draws line from current pen position to (x, y) 

dx, dy-integer values 
moves pen from current pen position (x, y) to 
(x + dx, y + dy); no drawing is done 

x, y-integer values 
moves pen to (x, y); no drawing is done 

You may also move the pen without line-drawing. Macin
tosh Pascal provides five built-in procedures to accomplish 
simple line drawing and pen movement for you. These proce
dures are summarized in Table 8-3. 

We used the moveto and lineto procedures in the quadri
lateral-drawing program; you are now in a position to appre
ciate how they work. For example, the first statement, 

moveto(SO, 100); 

commands the drawing pen to move to x coordinate 50 and y 
coordinate 100 without drawing a line. The second statement, 

Hneto( 100, 100); 

tells the pen to move from its current position (x = 50, y = 
100) to a new position (x = 100, y = 100), drawing a line as it 
moves. Figure 8-3 shows the square drawn by the program; 
each corner is labeled with its coordinates. 

If there is the slightest doubt in your mind how the quad 
program draws a square, study it carefully until you under
stand it. (Try using the Step option or COMMAND-S to perform 
the program statements one at a time, observing what each 
one does.) 

224 The First Book of Macintosh Pascal 



Drawing 
(50,50) 
~ (100,50) 

D/V 
~ ~0,100) 

(50,100) 

Figure 8-3. 

Sample Drawing window 
coordinates 

Complementary to moveto and lineto are the procedures 
move and line. Moveto and lineto require actual Drawing 
window coordinates as their arguments. Move and line, how
ever, use two arguments specifying relative pen movements, 
such as "move this far over in the window and this far down." 
The end of the drawn line is relative to the original pen posi
tion. Loosely speaking, move and line are useful when it is 
more convenient to specify the movement of the pen than its 
actual position. For example, examine this program, which 
draws a simple arrow. 

program arrow; 
{ draw arrow J 

begin {arrow J 
moveto( 100, 100); 
line(20, -20); 
line(-3, O); 
move(3, 0); 
line(O, 3) 
end. 

Introduction to Library Procedures 225 



The result of running this program appears as follows: 

Drawing 

/ 

It's relatively easy to specify a chain of move and line 
procedure calls to draw simple figures. For example, adding 
a few lines to the arrow-drawing program, 

program squ1gg1y; 
{draw squiggly arrow) 

beg1n { squ1gg1y ) 
moveto( 1 oo, 100 ); 
11ne(20, -20); 
Jine(O, -3); 
move(-1, -1); 
11ne(-5, 0); 
move(-1, -1); 
1ine(O, -3); 
1ine(20, -20); 
Jine(-3, O); 
move(3, 0); 
1ine(O, 3) 

end. 

draws a squiggly arrow. 

226 The First Book of Macintosh Pascal 



Drawing 

/ 

Part of the convenience of using move and line is that the 
same statements can be used to draw in different positions. 
Note that the only statement in this program that specifies 
where the arrow is actually drawn is the first moveto com
mand. If you want to draw an arrow in another position, you 
need only to change one line, the moveto command. To dem
onstrate this, let's wrap two nested for loops around the pro
gram to get a series of squiggly arrows: 

program squiggly; 
( draw squiggly arrows J 

var 
i, j : Integer; 

begin ( squiggly J 
for i : .. I to 5 do 
for j :"' I to 5 do 
begin 
moveto(30 * i, 30 * j + 30); 
I ine(20, -20); 
line(O, -3); 
move(-1, -1); 
ltne(-5, O); 

Introduction to Library Procedures 227 



move(-1, -1); 
Jine(O, -3); 
1ine(20, -20); 
11ne(-3, 0); 
move(3, 0); 
11ne(O, 3) 

end 
end. 

Before you run this version of the program, guess how many 
arrows will be drawn and approximately where they will 
appear. 

The drawline routine shown in Table 8-3 is useful in 
drawing isolated lines. The single procedure call 

drawline(x I, y I, x2, y2) 

is equivalent to these two procedure calls: 

moveto(x 1, y 1 ); 
1ineto(x2, y2) 

As an example of the use of drawline, try the following 
program for drawing a chessboard: 

program chessboard; 
( draw a chessboard l 

var 
I: integer; 

begin (chessboard l 
for i := I to 9 do 
drawline(20, 20 * i, 180, 20 * i); 
for i :· I to 9 do 
drawline(20 * i, 20, 20 * i, 180) 

end. 

The first for loop draws nine equally spaced horizontal lines; 
the second draws nine equally spaced vertical lines. The net 
effect is this drawing: 

228 The First Book of Macintosh Pascal 



Drewing 

We will return to the subject of line drawing in Chapter 
12, where we'll discuss how to change the shape of the pen 
and the way it draws, among other things. 

QUICKDRAW TEXT-DISPLAY 
PROCEDURES 

One of the best features of the Macintosh is its ability to dis
play characters in different sizes and fonts. Characters may 
be italicized, boldfaced, underlined, outlined, shadowed, or 
any combination of these. You may have already seen this 
when using MacWrite or MacPaint. Macintosh Pascal pro
vides you with the power to take advantage of the Macintosh's 
advanced text-display skills in your own programs. The rou
tines we'll discuss in this section are summarized in Table 
8-4. 

Displaying text in the Drawing window is quite easy. Try 
this two-statement program as a first step: 

program hello; 
{ draw a greeting J 

beg1n { hello J 
moveto(S, I 00); 
drawstring('Hello there, world!') 
end. 

Introduction to Library Procedures 229 



Table 8-4. 

Simple Text-Drawing Procedures 

drawchar(ch) 
argument: 
description: 

drawstring(s) 
argument: 
description: 

textfont(i) 
argument: 
description: 

textsize(i) 

ch -character value 
draws character ch at current pen position 

s-string value 
draws string s at current pen position 

i - integer value 
selects font #i for text display 

argument: i - integer value 
description: sets font display size to i points 

writedraw(wl, w2, ... , wn) 
arguments: wl, w2, ... , wn-same as write-arguments, 

description: 
with optional formatting parameters 
writes formatted values into Drawing window 
at current pen location 

Text will start at the current pen position unless the program 
calls moveto before calling a text-drawing procedure. We 
have used drawstring here, which outputs a string to the 
Drawing window. For convenience, Macintosh Pascal also 
provides drawchar, which can be used to display single char
acters, and writedraw, which writes an arbitrary number of 
values to the Drawing window, just as write sends its output 
to the Text window. In our case, the program writes "Hello 
there, world!" starting at the point (5, 100): 

Drawing 

Hello there. world! 

230 The First Book of Macintosh Pascal 



Since we didn't specify which font or character size to use 
in displaying the text, Macintosh Pascal decided to use the 
12-point Geneva font. Changing the font and character size is 
accomplished by calling the textfont and textsize procedures. 
To display our greeting in the decorative 14-point Venice font, 
modify the program as follows: 

program hello; 
(draw a greeting J 

begtn (hello J 
moveto(S, 100); 
textf ont(S); 
textsize( 14); 
drawstr1ng('He11o there, world!') 

end. 

The result: 

Drawin_g_ 

Ke.ao thue, worCc:tl 

You must supply a font number, not a name, to the text
font procedure. The fonts supplied in the System file on the 
Macintosh Pascal disk are summarized along with their font 
numbers and available sizes in Table 8-5 (your list of fonts 
may differ). You may want to use the current program as a 
base for experimenting with the different fonts and sizes. 

If you specify a font number not available in the System 
file (such as 3), the Geneva font will be used instead. If you 
specify a font size not provided in the System file, an avail
able font size will be scaled up or down to the desired size. 

Introduction to Library Procedures 231 



Table 8-5. 

Fonts Provided on Macintosh Pascal Disk 

Font Font Available 
Name Number Sizes (points) 

Chicago 0 12 

Geneva 1 9, 12, 18,24 

New York 2 12 

Monaco 4 9, 12 

Veni.ce 5 14 

This works best when the specified size is a multiple of an 
available size. Otherwise, the results are often unattractive, to 
put it mildly. 

You may, if you want, install additional fonts (or remove 
unwanted ones) in the System file using the Font Mover pro
gram you received with your Macintosh or with other pro
grams. Only the Chicago, Geneva, and Monaco fonts must 
remain in the System file. The number of fonts you may move 
onto the Macintosh Pascal disk is only limited by the amount 
of free space on the disk. 

The fonts you should keep on the Macintosh Pascal disk 
will depend on the type of programs you write. Here, step by 
step, is how to install the 18-point Cairo font. (This process 
assumes you have backed up your original Macintosh Pascal 
disk using one of the commercially available disk-copying 
programs and have deleted the demonstration programs and 
documentation from your copy of the Macintosh Pascal disk, 
as described in Chapter 3. This provides adequate room on 
the disk for the Font Mover program and the Fonts file.) 

• Copy the Font Mover program and the Fonts data file 
from a backup copy of the Macintosh System Disk to 
your working Macintosh Pascal disk. 

• Eject any disk from your external disk drive (if you have 
one). Dispose of all disk icons except the Pascal disk by 
dragging them to the Trash icon. 

• Open the Pascal disk icon (if necessary) and run Font 
Mover by double-clicking its icon. You should see some
thing like the following dialog box: 

232 The First Book of Macintosh Pascal 



Font Mouer 

in system file 
*Chicago-12 ~ 
*Geneua- 9 

·~=~=~==H I r--,-1!~-,~,-':)1-~H-, -
Help 

~·~~:~~~=~~:_=1~~'------'o.Y.Jrn::: [~-o-u-it~-
Name: 
Point size: 
Disk Space: 

in Fonts file 

~:!:~n~~:l:s-12 g 
Los Rngeles-24 
New York-36 
San Francisco-I B :::Hi 
Toronto- 9 Q 

• required for system use 

• Select the Cairo-18 font by clicking its name in the 
right-hand box labeled "in Fonts file". 

• Click the Copy button to install the font. 

• If all went well, click the Quit button to exit from Font 
Mover. 

A similar process may be used to move any font onto the 
Macintosh Pascal disk. After you are done with Font Mover, 
you may delete both it and the Fonts data file from the disk. 

In the Macintosh scheme of things, the Cairo font is 
number 11. It is a hieroglyphic font; instead of letters and 
digits and punctuation, it contains a different picture for 
each character value. The following program can be used to 
display all the pictures in the Cairo font with their corres
ponding normal character values: 

program Cairo; 
( display Cairo font } 

const 
GENEVA= I; 
CAIRO• 11; 

var 
I, x, y : Integer; 

begin ( Cairo } 
for i:=33to 129do 
begin 
x := 5 + 52 * ((j - 33) div I I); 
y :a 24 + 26 * ((j - 33) mod I I); 
moveto(x, y); 

Introduction to Library Procedures 233 



textstzeC 12); 
textf ont(GENEVA); 
writedraw(chr(i), ':'); 
textstze( 18); 
textfont(CAIRO); 
draw char( chr( I)) 

end 
end. 

The tricky part of this program is adjusting the argu
ments in the moveto procedure call so that the characters are 
displayed far enough apart to be easily distinguishable, but 
close enough together so they will all fit on screen at once. 
(The complex calculations shown in the program are largely 
a result of trial and error.) You will need to move and expand 
the Drawing window so that it fills the entire screen before 
you run this program. The result should appear as follows: 

!:.9 JI 7:(i e:() M:e• X:" c:~ n:<J y:~ - -: .. B:tJ C:~ N:•• vl o:~ z:~ ":"' d:"* 

•:• ·- 9:>S! o:ell D:~ z~ e:~ p:~ {:Ll 

$:'5 /:¥ ··~ illlli P:~ 1• rf q:* l:f .. -· E: 

1:4 O:n ;[ F:11""'81' o:.111 \:.R g:CJ r:~~ }: ..... 
3.:~ t:f <:~ G:ft R: i I:~ h:O S:'l/l/lr ~,~ 

·:t© 2:a 

==· 
H:A 5:8 ·=T i:l t:.l. :() 

<=* 3~ >:~ ,.~ 
-~ T:.!illil _:[JJ j:~' u::g:: A~ 

):~ 4:& ?:9 J:ti.u~ ·:® k:r v:Q l:~ 

•:lt 5:~ •:''9'· K:'* v!f- el/ 1:0 w:+ 
+:f' 6:~ AJ L:. wlffil ... b:60 m0 x:+ 

As was the case with the line-drawing procedures in the 
previous section, we've given you merely an introduction to 
the powerful text-display procedures available to your Pascal 
programs. 

SIMPLE SHAPE-DRAWING 
PROCEDURES 

QuickDraw provides many routines other than line drawing 
and text display for drawing different shapes easily and 

234 The First Book of Macintosh Pascal 



Table 8-6. 

QuickDraw Shapes and Operations 

Shapes 
rectangle 
oval 
rounded-corner rectangle 
arc 
polygon* 
region* 

(*not discussed here) 

Operations 
frame 
paint 
erase 
invert 
fill* 

quickly. We will discuss the simple shape-drawing procedures 
here and leave the more complex ones for Chapter 12. 

QuickDraw's shape-drawing procedures are easy to clas
sify. There are six different kinds of shapes and five different 
drawing operations possible using each shape type. The 
names of the shapes and operations that apply to them are 
given in Table 8-6. 

There are 30 (6 X 5) possible combinations of shapes and 
operations, and QuickDraw has built-in procedures available 
for each combination. We will cover all but one operation here 
(filling will be discussed in Chapter 12). 

First, rectangles. Table 8- 7 describes the procedures used 

Table 8-7. 

QuickDraw Rectangle-Drawing Operations 

eraserect(top, left, bottom, right) 
arguments: top, left, bottom, right-integer values 
description: paints interior of specified rectangle using 

background pattern (normally white). 

framerect(top, left, bottom, right) 
arguments: top, left, bottom, right-integer values 
description: draws frame just inside specifed rectangle 

using current pen pattern and mode 

invertrect(top, left, bottom, right) 
arguments: top, left, bottom, right-integer values 
description: inverts the color of all pixels enclosed by 

specified rectangle 

paintrect(top, left, bottom, right) 
arguments: top, left, bottom, right-integer values 
description: paints interior of specified rectangle using 

current pen pattern and mode (normally 
black) 

Introduction to Library Procedures 235 



for the simple operations QuickDraw permits on rectangles. 
(Don't worry about new terms in Table 8-7 such as "pen pat
tern" and "mode." They're explained in Chapter 12.) 

To draw a rectangle requires that you specify the location 
of each of the four sides by using the Drawing window's local 
coordinate system. Try out the following one-statement pro
gram to get started: 

program recLlab; 
[experiments with rectangles) 

begin ( recLlab ) 
framerect{SS, 28, 144, 172} 

end. 

When this program runs you will be rewarded with a rectan
gle in the Drawing window: 

Drawing 

A call to framerect causes a rectangle to be drawn in the 
Drawing window by using the supplied values for the location 
of each side. The other three routines -eraserect, invertrect, 
and paintrect-are included in the following program to 
show you what they do. 

program recLlab; 
( experiments with rectangles ] 

var 
i: integer; 

236 The First Book of Macintosh Pascal 



beg1n ( recLlab J 
framerect(55, 28, 144, 172); 
framerect( 100, 50, 113, 68); 
pa1ntrect( 120, 60, 140, J 70); 
paintrect(60, 120, 170, 140); 
eraserect( 120, 120, 140, 140); 
eraserect(70, 125, 160, 135); 
invertrect( 125, 70, 135, 160); 
for i :• 1 to 1000 do 
invertrect(55, 28, 144, 172) 

end. 

Once more, it is a good idea to run this program in Step or 
Step-Step mode so you can observe the effect of each proce
dure call. 

We now need to get a little more rigorous in our definitions 
of some of the terminology we've been using. We have up to 
now blurred the distinction between points and pixels, but 
the terms really ref er to two different concepts. You may 
think of the QuickDraw coordinate plane as a grid of infi
nitely thin horizontal and vertical lines each 1/72 inch apart. 
QuickDraw points are at the intersection of each horizontal 
and vertical line. Pixels, on the other hand, are the squares 
lying between each adjacent pair of horizontal and vertical 
lines. The relationship between grid lines, points, and pixels 
is illustrated in Figure 8-4. In QuickDraw, points are consid
ered to be infinitely small. Pixels, on the other hand, are 
1/72-inch-square areas on the Macintosh screen. You never 
see points; you only see pixels. 

The QuickDraw coordinate system designates points, not 

".1_ 

l'.. 

Figure 8-4. 

QuickDraw's coordinate grid lines, 
points, and pixels 

grid lines 

points 

pixels 

Introduction to Library Procedures 237 



pixels. You may think of the horizontal and vertical grid lines 
as numbered consecutively; the vertical grid lines represent 
different x coordinates and the horizontal grid lines represent 
different y coordinates. A coordinate point (x, y) refers to the 
intersection of vertical grid line x and horizontal grid line y. 

A QuickDraw rectangle is specified by the y values of its 
top and bottom grid lines and the x values of its left and right 
grid lines. Nearly all procedures that accept four integer 
values for rectangle coordinates do so in the same order as for 
the rectangle-manipulation procedures we've just seen: top, 
left, bottom, right. Precisely speaking, a call to the framerect 
procedure doesn't exactly draw a rectangle; instead, it draws 
the pixels that lie just inside the boundaries of the rectangle. 
This is illustrated in Figure 8-5. 

All this discussion of points, grid lines, pixels, and rectan
gles may seem needlessly formal to you. But one of the secrets 
of creating high-quality graphics on the Macintosh is to have 
a good grasp on the precise effect of the QuickDraw routines. 
A little attention to detail at this point will allow your further 
explorations of QuickDraw to proceed more easily. You'll also 
find that it's easier to create sophisticated displays when you 
are comfortable with the exact way the QuickDraw routines 
work. (You may wish to review the language used in Table 
8-7 at this point.) 

x = 50 x = 68 

y = 100 

y = 113 

Figure 8-5. 

The effect of framerect 

238 The First Book of Macintosh Pascal 



A number of flashy effects are possible using our newly 
acquired routines. For example, the following small program 
draws another version of a chessboard, this time with alter
nating white and black squares: 

program chessboard; 
[ draw a chessboard ) 

var 
i: integer; 

beg t n [ chessboard J 
for I :'" 1 to 8 do 
invertrect(20 * i, 20 * i, 180, 180); 
for i := 2 to 8 do 
lnvertrect(20, 20, 20 * i, 20 * i); 

framerect(l 9, 19, 181, 181) 
end. 

You'll see how this program works if you try running it in 
slow motion (use Step or Step-Step). 

As another example, here is a program that draws a piano 
keyboard in the Drawing window. Move and stretch the 
Drawing window to its maximum width before you try run
ning it: 

program keyboard; 
[Draw a piano keyboard) 

const 
WHITLWID "' 9; 
BLACl<-WID = 4; 
WHITLLEN • 30; 
BLACl<-LEN .. 20; 
XORG = 10; 
YORG • 10; 

var 
i, x, yw, yb, bwld2: integer; 

begin [keyboard J 
x :• XORG; 

Introduction to Library Procedures 239 



yw := YORG + WHITLlEN; 
yb := YORG + BLACICLEN; 
bwid2 := BLACK....WID div 2; 
for i := I to 52 do 
begin 
framerect(YORG, x, yw, x + WHITLWID + I); 
x :'" x + WHITLWID; 
if (i mod 7 <> 2) and (I mod 7 <> 5) and (I <> 52) then 
palntrect(YORG, x - bwid2, yb, x + bwid2 + I) 

end 
end. 

In this program the for loop draws each white key; then the 
complex if test inside the loop decides whether to place a 
black key to the right of the white key just drawn. (The pat
tern of black keys repeats every seven white keys, which 
accounts for the i mode 7 calculation in the if-test.) For effi
ciency's sake, however, a number of calculations are done 
"outside the loop" before the for starts. 

Once you understand how QuickDraw rectangles work, 
the remainder of the simple shapes are easy. Let's consider 
ovals next. Table 8-8 shows the procedure calls for simple 
oval drawing. 

Ovals, like rectangles, are defined by the x and y coordi-

Table 8-8. 

QuickDraw Oval-Drawing Operations 
eraseoval(top, left, bottom, right) 

arguments: 
description: 

top, left, bottom, right-integer values 
paints interior of specified oval using 
background pattern (normally white) 

frameoval(top, left, bottom, right) 
arguments: top, left, bottom, right-integer values 
description: draws outline just inside specifed oval using 

current pen pattern and mode 
invertoval(top, left, bottom, right) 

arguments: top, left, bottom, right-integer values 
description: inverts all pixels enclosed by specified oval 

paintoval(top, left, bottom, right) 
arguments: top, left, bottom, right-integer values 
description: paints interior of specified oval using current 

pen pattern and mode (normally black) 

240 The First Book of Macintosh Pascal 



nates of their top, left, bottom, and right edges. You can dem
onstrate this quite easily to yourself with a simple two-line 
program: 

program ova Llab; 
(experiments with ovals ) 

begin ( ovaLJab ) 
framerect{SS, 28, 144, 172); 
frameoval(SS, 28, 144, 172) 

end. 

When you run this, the result is a rectangle with an inscribed 
oval: 

Drawin 

Like rectangles, QuickDraw ovals should be considered 
infinitely thin; the framing operation doesn't draw the oval 
itself, but rather the pixels inside the oval. 

Circles are special cases of ovals, just as squares are spe
cial cases of rectangles. In QuickDraw, a circle is an oval 
whose defining rectangle is a square. It is usually more con
venient, however, to specify a circle by the position of its cen
ter and its radius than the positions of its "sides." For this 
reason, Macintosh Pascal provides special painting and invert
ing routines useful for circle drawing, shown in Table 8-9. (If 
you want to frame, erase, or fill a circle, you'll have to resort 
to the oval routines.) 

Introduction to Library Procedures 241 



Table 8-9. 

QuickDraw Circle-Drawing Operations 

invertcircle(x, y, r) 
arguments: x, y, r: integer values 
description: inverts pixels inside circle centered at (x, y) 

with radius r 
paintcircle(x, y, r) 

arguments: x, y, r: integer values 
description: paints interior of circle centered at (x, y) with 

radius r 

A simple example shows how invertcircle can be used to 
draw a bull's-eye of alternate concentric bands of black and 
white: 

program bullseye; 
{draw a bullseye 1 

con st 
XCENTER = 100; 
YCENTER = 100; 
BANDWIDTH • 20; 

var 
r: integer; 

begin { bullseye 1 
r :• 90; 
while r > o do 
begin 
invertcircle(XCENTER, YCENTER, r), 
r :• r - BANDWIDTH 
end 

end. 

After you run this program, experiment with different values 
for the constant BANDWIDTH. (Values of 1 and 2 give spec
tacular results.) 

A third shape is the rounded-corner rectangle. Simple 
drawing routines for this shape are summarized in Table 8-
10. The first four arguments to the rounded-corner rectangle 
routines give the positions of the left, top, right, and bottom 
edges. The roundness of the corners-each one-quarter of an 

242 The First Book of Macintosh Pascal 



Table 8-10. 

QuickDraw Rounded-Corner Rectangle Operations 

eraseroundrect(top, left, bottom, right, oval_wid, oval_ht) 
arguments: top, left, bottom, right, oval_ wid, oval _ht

integer values 
description: paints interior of specified rounded-corner rectan

gle using background pattern (normally white) 

frameroundrect(top, left, bottom, right, oval_wid, oval_ht) 
arguments: top, left, bottom, right, oval_ wid, oval _ht

integer values 
description: draws frame just inside specified rounded-corner 

rectangle using current pen pattern and mode 
invertroundrect(top, left, bottom, right, oval_wid, oval_ht) 
arguments: top, left, bottom, right, oval_wid, oval_ht

integer values 
description: inverts all pixels enclosed by specified rounded

corner rectangle 

paintroundrect(top, left, bottom, right, oval_wid, oval_ht) 
arguments: top, left, bottom, right, oval_ wid, oval _ht

integer values 
description: paints interior of specified rounded-corner rectan

gle using current pen pattern and mode (normally 
black) 

oval-is defined by the final two arguments, which give the 
width and height of that oval. The meaning of each parame
ter is diagrammed in Figure 8-6. 

,,···· 
( __ oval....hl / 

'~.. ,•' .... ········· 

Figure 8-6. 

Rounded-corner rectangle geometry 

Introduction to Library Procedures 243 



The following program draws a rounded-corner rectangle 
together with the corner-rounding ovals; you can experiment 
with the constant declarations to discover the different effects 
possible. You may be especially interested in finding out what 
happens when the rounding oval and the rectangle have the 
same width or height. Try this program now: 

program rouncLrecLlab; 
(experiments with rounded-comer rectangles} 

const 
LEFT= 28; 
RIGHT= 172; 
TOP .. SS; 
BOT= 144; 
HEIGHT= 34; 
WIDTH •SS; 

begin ( rouncLrecLlab} 
frameroundrect(TOP, LEFT, BOT, RIGHT, WIDTH, HEIGHT); 
frameovaJ(TOP, LEFT, TOP+ HEIGHT, LEFT+ WIDTH); 
frameovaJ(TOP, RIGHT - WIDTH, TOP + HEIGHT, RIGHT); 
frameoval(BOT - HEIGHT, LEFT, BOT, LEFT+ WIDTH); 
frameoval(BOT - HEIGHT, RIGHT - WIDTH, BOT, RIGHT) 

end. 

The final shape we'll discuss in this chapter is the arc, 
whose drawing routines are summarized in Table 8-11. An 
arc is simply a part of the boundary of an oval. Often an arc
drawing operation will affect an entire wedge, that is a pie
shaped area that has its apex at the oval's center and expands 
out to an arc of the oval. When an arc is painted, for example, 
the entire wedge corresponding to the arc is painted as well. 

The arc-drawing routines accept six parameters: the first 
four define the oval to be used, and the final two specify how 
much of the oval to use. Positions on the oval-where the arc 
begins and ends-are measured in degrees. Think of the 
screen as a map; north (up) is 0°, east (right) is 90°, south is 
180°, and west is 270°. The angle-measurement scheme is not 
a true geometrical angle; intermediate angles depend on the 
rectangle that encloses the oval. A line from the center of the 
rectangle through the northeast corner is defined to be at 45°. 

244 The First Book of Macintosh Pascal 



Table 8-11. 

QuickDraw Arc-Drawing Operations 

erasearc(top, left, bottom, right, start_angle, arc_angle) 
arguments: top, left, bottom, right, start_angle, arc_angle

integer values 
description: paints interior of specified arc using background 

pattern (normally white) 

framearc(top, left, bottom, right, start_angle, arc_angle) 
arguments: top, left, bottom, right, start_angle, arc_angle

integer values 
description: draws frame just inside specified arc using current 

pen pattern and mode 

invertarc(top, left, bottom, right, start_angle, arc_angle) 
arguments: top, left, bottom, right, start_angle, arc_angle

integer values 
description: inverts all pixels enclosed by specified arc 

paintarc(top, left, bottom, right, start_angle, arc_angle) 
arguments: top, left, bottom, right, startangle, arcangle -

integer values 
description: paints interior of specified arc using current pen 

pattern and mode (normally black) 

Likewise, the southeast corner is 135°, the southwest corner is 
225°, and the northwest corner is 315°. (Note this is a true 
geometrical angle if and only if the defining oval is a circle.) 
This angle-measurement method is diagrammed in Figure 
8-7. 

225° 180° 

Figure 8-7. 

QuickDraw arc measurement 

Introduction to Library Procedures 245 



Table 8-12. 

Your Company 

Income Source 

Software 
Semiconductors 
Telecommunications 
Children's Toys 

Percentage of Income 

30% 
10% 
25% 
35% 

The first angular parameter (start-angle) to the arc
drawing routines specifies where on the oval the arc is to 
begin, following the scheme just described. The second angu
lar parameter (arc-angle) tells how long the arc is, mea
sured in degrees. The measurement is clockwise if the angle 
is positive, counterclockwise if negative. 

A natural application for arc and wedge drawing is con
struction of pie charts. Instead of spending a few hundred 
dollars for commercial software that produces pie charts, you 
now have the tools to produce your own. Suppose you want to 
produce a pie chart that reflects the importance of various 
sources of income enjoyed by your high-tech company shown 
in Table 8-12. 

The percentages shown may be converted into angles by 
multiplying by 360° (one full circle). The first percentage is 
then 35% X 360° = 126°. Let's use the paintarc procedure to 
draw the wedge corresponding to 126°. Enter and run this 
one-statement program: 

program piechart; 
{ draw a pie chart 1 

const 
TOP= 30; 
LEFT .. 30; 
BOT .. 170; 
RIGHT• 170; 

begin { piechart ) 
paintarc(TOP, LEFT, BOT, RIGHT, 0, 126) 

end. 

246 The First Book of Macintosh Pascal 



The result: 

Draw in 

The remaining segments can be drawn in alternate black 
and white by using the invertarc procedure call. Add the fol
lowing statements just before end and rerun the program 
(don't forget any required semicolons): 

invertarcCTOP, LEFT~ BOT, RIGHT, 0, 234); 
invertarc(TOP, LEFT, BOT, RIGHT, 0, 324); 
invertarc(TOP, LEFT, BOT, RIGHT, 0, 360) 

You may want to frame the entire pie with an enclosing cir
cle; to do this, add the following line: 

framearc(TOP, LEFT, BOT, RIGHT, 0, 360); 

Notice that the first piece's color has changed from black to 
white. Why? (Hint: what if there were five pieces?) 

You may have seen pie charts with one piece of pie offset 
from the others for emphasis. This is also rather easy to do, 
since the position of any wedge is governed by the position of 
the defining oval; moving the oval moves the wedge, but 
doesn't change its shape. Let's offset the 126° wedge by first 
erasing it with erasearc and then repainting it slightly north-

Introduction to Library Procedures 24 7 



east of its old position. Add the following statements just 
before end and rerun the program: 

erasearcCTOP, LEFT, BOT, RIGHT, 0, 126); 
paintarcCTOP - I 0, LEFT + 20, BOT - I 0, RIGHT + 20, 0, 126); 

For most purposes, you'll want to label the pie chart with 
the appropriate labels and amounts denoted by each slice. 
Locating the text in the appropriate places is usually done by 
trial and error. Here is a version of the program that labels 
one slice: 

program plechart; 
( draw a pie chart } 

const 
LEFT .. 30; 
TOP"' 30; 
BOT .. 170; 
RIGHT• 170; 

begin ( piechart } 
paintarc(TOP, LEFT, BOT, RIGHT, 0, 126); 
lnvertarc(TOP, LEFT, BOT, RIGHT, 0, 234); 
invertarc(TOP, LEFT, BOT, RIGHT, 0, 324); 
invertarc(TOP, LEFT, BOT, RIGHT, 0, 360); 
framearc(TOP, LEFT, BOT, RIGHT, 0, 360); 
erasearc(TOP, LEFT, BOT, RIGHT, 0, 126); 
paintarc(TOP - I 0, LEFT + 20, BOT - I 0, RIGHT + 20, 0, 126); 
textsize(9); 
moveto(S, IO); 
drawstring('Semiconductors'); 
moveto(25, 20); 
drawstring('( I 01')'); 
line( I 0, I 0) 

end. 

The chart produced by this version of the program is as 
follows: 

248 The First Book of Macintosh Pascal 



Drawing 
Semiconductors 

(10sti\ 

Labeling the other three slices is left as an exercise for 
you. Feel free to expand the Drawing window to get a little 
more room if needed. You may also want to experiment with 
using an oval pie instead of a circle for a three-dimensional 
effect. 

Even the relatively simple tools discussed in this section 
can be used to quickly create drawings of recognizable 
objects and animation effects. Even if you have limited artis
tic ability, you'll find it easy to put together bits and pieces of 
programs to create interesting pictures. Here's one simple 
example: 

program selL..portratt; 
. { a mystery program ) 

var 
i, j : integer; 

begin 
frameroundrect(40, SO, 190, ISO, 10, 10); 
frameroundrect(40, so, 170, ISO, 10, 10); 
frameroundrect(S4, 60, 120, 140, Io, I 0); 
framerectCl 40, 120, I so, 138); 
paintrect( 143, I 00, 147, I 3S); 
frameoval(S6, 69, 118, 131 ); 
while TRUE do 

Introduction to Library Procedures 249 



begin 
for i := I to 360 do 
paintarc(57, 70, 117, 130, 0, i); 
for i := 1 to 360 do 
erasearc{57, 70, 117, 130, O, i) 

end 
end. 

ADDITIONAL MACINTOSH PASCAL 
LIBRARY PROCEDURES 

Some very useful Macintosh Pascal procedures don't readily 
fit into one category. These procedures are listed in Table 
8-13. 

Table 8-13. 

Additional Macintosh Pascal Library Procedures 

getmouse(x, y) 
arguments: 
description: 

getsoundvol(v) 
argument: 
description: 

x, y-integer variables 
returns current position of mouse (Drawing 
window local coordinate system used) 

v- integer variable 
returns current sound volume level (0-silent, 
7-loudest) 

note(frequency, amplitude, duration) 
arguments: frequency- long integer value (12 Hz to 

783360 Hz) 

description: 
setsoundvol(v) 

argument: 
description: 

synch 
arguments: 
description: 

sysbeep(d) 
argument: 
description: 

250 The First Book of Macintosh Pascal 

amplitude-integer value (0 to 255) 
duration-integer value (Oto 255 jiffies) 
generates square-wave tone 

v- integer value 
sets sound volume level (0-silent, 7 - loudest) 

none 
synchronizes program action with 
screen-drawing cycle 

cl-integer value 
generates square-wave tone of approximate 
duration d * 0.022 seconds 



Probably the most useful of these procedures is getmouse, 
which tells the location of the pointer on the screen. The 
procedure call requires two variable arguments, which con
tain the x and y coordinates of the pointer when the proce
dure returns. The coordinate system is the Drawing window's 
local coordinate system, as usual. 

The getmouse procedure can be used to track movements 
of the Macintosh mouse. For example, the following program 
draws a line in the Drawing window following the pointer as 
long as the Mouse button is depressed: 

program scribble; 
(scribble in the Drawing window J 

var 
mousex, mousey : integer; 

begin (scribble 1 
while TRUE do 
begin 
while not button do 

getmouse(mousex, mousey); 
moveto(mousex, mousey); 
while button do 
begin 
getmouse(mousex, mousey); 
llneto(mousex, mousey) 

end 
end 

end. 

You have already used the sysbeep procedure in an earlier 
chapter; it simply generates a square-wave tone similar to the 
one the Macintosh makes when you turn it on. The integer 
argument passed to sysbeep controls the duration of the 
sound; to find the approximate duration in seconds, multiply 
by the factor 0.022. 

You have considerably more control over the Macintosh's 
sound generator when you use the note procedure. Note 
accepts three arguments; the first is a long integer in the 
range of 12 to 783360, which is the frequency of the desired 
note in Hertz. The second is an integer in the range of 0 to 
255 and is the desired volume of the note, and the third is an 

Introduction to Library Procedures 251 



integer in the range of 0 to 255, which is the duration of the 
note in jiffies (1 jiffy = 1/60 second). 

A little musical knowledge is helpful in putting note to 
work. On a piano, the lowest key has a frequency of 27.5 Hertz 
and each successive key's frequency is the twelfth root of two 
times the frequency of the previous key. The following pro
gram plays all 88 keys from the lowest to the highest; note 
each frequency is first calculated as a real value and then 
rounded to an integer when it is passed to the note procedure. 

program keysounds; 
(play piano keys} 

const 
LOWNOTE = 27.5; 

var 
i: integer; 
freq, ratio: extended; 

begin ( keysounds} 
ratio:= exp(ln(2.0) I 12.0); 
freq :"' LOWNOTE; 
for i := I to 88 do 
begin 
note(round(freq), 255, 5); 
freq :"' freq* ratio 

end 
end. 

Try this program and you'll discover that very low frequen
cies aren't handled too well. 

If you can plink out one-fingered tunes on a piano, you can 
do the same on your Macintosh. For example, try the follow
ing program: 

program dragnet; 
{ dum de dum dum l 

begin { dragnet 1 
note( 131 , 255, 30); 
note( 147, 255, 15); 
note( 156, 255, 30); 
note( 131, 255, 30); 

end. 

252 The First Book of Macintosh Pascal 



The getsoundvol and setsoundvol procedures are useful 
when you want your program to generate sound of a certain 
volume independent of the volume setting on the Macintosh 
Control Panel. It is usually a good idea to restore the volume 
to its previous value after you are done. The following exam
ple tests the volume at its loudest setting. 

program dragnet; 
( dum de dum dum } 

var 
volume : integer; 

begin (dragnet} 
getsoundvol(volume); 
setsoundvol(7); 
note( 131, 255, 30); 
note( 147, 255, 15); 
note( 156, 255, 30); 
note( 131, 255, 30); 
setsoundvol(volume) 
end. 

The final procedure we'll discuss here is synch. The 
images you see on the Macintosh screen are put there by an 
electron gun that "paints" each pixel, and the entire video 
image is redrawn once every 1/60 second, approximately. 
When objects on the screen are being changed rapidly, you 
will often get an interference effect between the rate at which 
objects are being drawn and the revision rate of the screen. 
The results are so-called "scanning bars" and excessive 
flicker. You can see an example by entering and running this 
program: 

program scanning....bar; 
[examine scanning bars J 

var 
i: integer; 

begin { scanning..J>ar } 
paintrect(50, 50, 150, 150); 
wht Je TRUE do 
begin 

Introduction to Library Procedures 253 



for i := I to 50 do 
begin 
eraserect(50, 49 + i, 150, 151 - i); 
paintrect(50, 50 + i, 150, 150 - i) 

end; 
for i := 50 downto 1 do 
begin 
eraserect(50, 49 + i, 150, 151 - i); 
paintrect(50, 50 + i, 150, 150 - i) 

end 
end 

end. 

After you have observed the behavior of this program, halt 
it and insert four calls to the synch procedure before each 
QuickDraw call inside the for statements: 

program scanning_bar; 
( examine scanning bars } 

var 
i: integer; 

begin [ scanning_bar } 
paintrect(50, 50, 150, 150); 
while TRUE do 
begin 
for i := 1 to 50 do 
begin 
synch; 
eraserect(50, 49 + I, 150, 151 - i); 
synch; 
paintrect(50, 50 + I, 150, 150 - i) 

end; 
for i := 50 downto I do 
begin 
synch; 
eraserect(50, 49 + I, 150, 151 - O; 
synch; 
palntrect(50, 50 + I, 150, 150 - i) 

end 
end 

end. 

254 The First Book of Macintosh Pascal 



When you run this version of the program the animation 
appears much smoother, as desired. 

The true test of your understanding of the procedures and 
functions that Macintosh Pascal gives you is to create some of 
your own. The next chapter will take you through the process 
of custom-building your own subprograms. 

Introduction to Library Procedures 255 



YOUR OWN 
PROCEDURES 
AND FUNCTIONS 

Man is a tool-making animal. 

BENJAMIN FRANKLIN 

The convenience of calling subprograms to accomplish com
plex tasks should be evident by now. In addition to using all 
the procedures and functions given to you by Macintosh Pas
cal, you have the option of writing subprograms of your own 
invention. 

WRITING PROCEDURES 

In this section we'll discuss how to write procedures that can 
be called the same way as any library procedures. As you 
work through the discussion in this section, please keep in 
mind that many of the points we make concerning procedures 
apply to functions as well. 

Assume, for the moment, that Macintosh Pascal provided 
a built-in library procedure called put-string that would 
place a specified string in the Drawing window at a certain 
position, using a given font and size. We might describe such 
a library procedure as shown in Figure 9-1. A simple pro
gram using this procedure might be written this way: 

257 



put_strings(s, x, y, f, p) 
arguments: s-string value 

x, y, f, p-integer values 

description: displays string s in font f, size p, at coordinates 
(x, y) in Drawing window 

Figure 9-1. 

Description of put_string 
procedure 

program hello; 
(say hello 1 

begin (hello} 
puLstringC'Hello there, world!', 5, I 00, 5, 14) 
end. 

This would place the string "Hello there, world!" at Draw
ing window coordinates (5, 100) using font 5 (Venice) in its 
14-point size: 

Drawing 

ff.eUo thern, wor[d ! 

If you type in and try to run this program, however, you 
get a bug box: 

The name "puLstring" hes not been defined yet. 

258 The First Book of Macintosh Pascal 



The problem is, of course, that there is no library proce
dure put-string; trying to call a non-existent procedure is 
illegal. (You have seen the same problem in trying to use 
undefined types and variables.) 

Even though Macintosh Pascal doesn't provide a put_ 
string library procedure, we already know how to perform 
the operations such a procedure would have to carry out. In 
the previous chapter we wrote the string "Hello there, world!" 
at (5, 100) in 14-point Venice font by using the following: 

textf ont(S); 
textsize( 14); 
movetoCS, 100); 
drawstring('Hello there, world!') 

You should have little trouble abstracting this slightly: to 
write a string variables at position (x,y) in the Drawing win
dow using font number f and a size of p points, you could use 
the following statements: 

textf ont(f); 
textsize(p); 
moveto(x, y); 
drawstring( s) 

A Macintosh Pascal procedure to perform these operations 
would be written this way: 

procedure puLstring (s : strf ng; 
x, y, f, p: integer); 

(display strings in font f, size p, at (x, y> J 

begin ( puLstring } 
textf ont(f); 
textsize(p); 
moveto(x, y); 
drawstring(s) 

end; 

First, and most important, you should notice that this proce
dure resembles a program: a sequence of statements appears 
between begin and end, and the procedure's name (put_ 
string) is placed after the word procedure, just as a pro
gram's name is placed after the word program. Procedures 
are, quite literally, "little programs" all to themselves. 

Your Own Procedures and Functions 259 



Second, you should see some differences between proce
dures and programs. Consider the procedure heading: 

procedure puLstring (s : string; 
x, y, f, p: integer); 

Informally, the procedure heading contains a list of the 
procedure's arguments in parentheses following the proce
dure name. The argument list has four functions: 

• It specifies the types of the arguments used in a call to 
the procedure. 

• It specifies the order of the arguments in a call to the 
procedure. 

• It specifies whether the arguments in a call are vari
ables or values. 

• It gives the names the procedure will use to refer to the 
arguments. 

Put-string's procedure header says that a legal call to 
put-String will have five arguments; the first one will be a 
string and the remaining four will be integers. Within the 
procedure, the string value will be called s; the integer values 
will be called x, y, f, and p. (All five arguments to put_ 
string are values; we'll discuss how variable arguments are 
specified later in the chapter.) 

Unlike programs, procedures are useless all by them
selves. If you tried to type the put-string procedure into 
Macintosh Pascal and run it, you would get a bug box, stating 
that the program keyword is missing. (There is no exception 
to the rule that Pascal programs must begin with the word 
program.) 

The put-string procedure is defined by nesting it within 
a program. Using our previous example, type in and run this 
program: 

program hello; 
{say hello J 

procedure puLstring Cs: string; 
x, y, f, p: integer); 

{display strings in font f. size p, at (x, y) l 

begin { puLstring l 
textf ont(f); 
textsize(p); 

260 The First Book of Macintosh Pascal 



moveto(x, y); 
drawstring( s) 

end; 

begin {hello] 
puLstring('Hello there, world!', 5, 100, 5, 14) 
end. 

Note that the arguments given in the procedure call match 
up with the argument list in the procedure heading. 

In Pascal, all subprograms are nested within programs. 
In this book, subprogram nesting will usually only be indi
cated, rather than shown explicitly. However, it is important 
for you to type the subprogram text in the order indicated. 
For example, the current program would be written as 

program hello; 
{say hello l 

{ Insert procedure put_string ] 

begin { hello ] 
puLstring('Hello there, world!', 5, 100, 5, 14) 
end. 

This indicates the text of the put_string procedure 
belongs at the position of the comment { Insert procedure 
put_string }. For the purposes of this text, a simple rule 
applies: whenever you see a comment { Insert procedure x } or 
{ Insert function y }, type in the procedure or function itself. 

A procedure may be called more than once within the 
same program. For example, a series of calls to put _string 
can be used to display all fonts normally available on the 
Macintosh Pascal disk: 

program system_fonts; 
(display system fonts) 

( Insert procedure put_strlng ) 

begin ( system_f on ts J 
puLstring('l2 point Chicago·, 2, 15, 0, 12); 
puLstring('9 point Geneva·, 2, 30, I, 9); 
puLstringC'l 2 point Geneva·, 2, 45, I, 12); 
puLstring('l8 point Geneva·, 2, 65, I, 18); 

Your Own Procedures and Functions 261 



puLstring('24 point Geneva·, 2, 90, I, 24); 
puLstring('12 point New York', 2, 105, 2, 12); 
puLstring('9 point Monaco·, 2, 120, 4, 9); 
puLstring(' 12 point Monaco·, 2, 135, 4, 12); 
puLstring(' 14 point Venice·, 2, 150, 5, 14) 

end. 

The result: 

Drawing 

12 point Chicago 
9 point G•n•v a 

12 point Genev8 

18 point Geneva 
24 point Geneva 
12 point New York 
9 point Monaco 
12 point Monaco 
14 poi.nt Venue 

Obviously, you could have written a program to do the 
same thing without using a procedure. But this would involve 
four procedure calls for each of the nine displayed strings, for 
a total of 36 lines in the program. This reveals one of the most 
important reasons for using subprograms: the code for a 
common operation involving more than a few statements may 
be written once as a subprogram. Whenever the operation 
needs to be carried out, a single procedure (or function) call 
can be used instead of the equivalent statements. This 
approach is much easier to program (and less prone to error) 
than writing out a series of statements. Depending on the 
situation, it can also save a considerable amount of memory. 

A second, equally important motive for using procedures 
is that they help keep the size and complexity of your pro
gram under control. It is difficult for most programmers to 
keep track of all the details involved in large program seg
ments: deep statement nesting and a multiplicity of variables 
can be extremely hard to figure out. Chopping out chunks of 
code for insertion into procedures can make the program eas
ier to understand by breaking it into several smaller, rela-

262 The First Book of Macintosh Pascal 



tively independent pieces. 
For example, let's return to the word-counting program of 

Chapter 7. (Review the program now if you wish.) You might 
decide to implement the following pieces of the program as 
separate procedures: 

• Display the instructions 

• Delete leading blanks from the string 
• Split off the first word from a string 

• Report the results. 

If we were to write a procedure for each of these tasks, the 
resulting main program might look like this: 

program wordcount; 
( count words in Input text J 

var 
line, word: string; 
wordcount, sum length : Integer; 

( Insert procedure Instruct } 
( Insert procedure delete_leadlng_blanks 
( Insert procedure chop_firsLword J 
( Insert procedure report } 

begin ( wordcount } 
Instruct; 
sum length := O; 
wordcount :• O; 
readlnOine ); 
while lengthOine) > Odo 
begin 
repeat 
de lete_leading_b lanks( I ine ); 
If lengthOine) > o then 
begin 
chop_flrsLwordOlne, word); 
wordcount :• wordcount + I; 
sum length:• sum length+ length(word) 

end 
until lengthCllne) <• O; 
readlnCllne) 
end; 

report(wordcount, sum length) 
end. 

Your Own Procedures and Functions 263 



Note that the four procedures (instruct, delete_ leading -
blanks, chop_first-word, and report) are inserted into the 
program just after the variable declarations. The main pro
gram is now much easier to take in at a glance and the mne
monic names for the procedures make it easier to follow what 
the program is doing. 

The instruct procedure for counting words is easy to write: 

procedure instruct; 
(display instructions for wordcount) 

begin ( instruct ) 
wrlte('Thls program counts the number of words'); 
write(' in an arbitrary number of input lines and"); 
writeln(' computes the average word length."); 
writeln; 
write('Please enter the input text."); 
write(' Press the Return key after each line."); 
writeln(' Enter an empty line when done."); 
writeln 

end; 

When a procedure has no arguments, the parentheses are 
omitted in the procedure header, just as they are in the 
procedure call. 

The report procedure is also rather easy to write: 

procedure report (wordcount, sum length: integer); 
(report word-counting results) 

var 
avelen: real; 

begin ( report ) 
writeln('Number of words:·, wordcount: I); 
if wordcount > O then 
begin 
avelen := sumlength I wordcount; 
writeln("Average word length: ', avelen: 1 : I) 

end 
end; 

Note there is nothing wrong with using the same variable 
names in the procedure header and the main program. 

264 The First Book of Macintosh Pascal 



A procedure may declare its own variables and named 
constants in declaration sections separate from the main pro
gram. Such identifiers are termed local identifiers; they are 
defined within a subprogram and can only be accessed while 
that subprogram is executing. Think of the variable avelen as 
coming into existence only when the report procedure is 
entered and winking out of existence once control is passed 
back to the main program. The variables declared in the 
main program, on the other hand, are termed global variables 
because they exist throughout the entire program's execution. 

The delete_leading_blanks procedure is slightly more 
complex. The procedure call 

delete_leading_blanks(line); 

must change the string variable line by deleting its leading 
blanks; the procedure then uses the variable to return the 
result of the procedure. You'll remember from our discussion 
in the previous chapter that this implies that the argument to 
delete_leading_blanks must be a variable rather than a 
value. This fact must be noted in the procedure heading when 
delete_leading_blanks is written; variable arguments to 
subprograms are noted in a subprogram heading by prefac
ing the arguments with the reserved word var: 

procedure delete_leading_blanks (var s: string); 
(delete leading blanks from s) 

con st 
BLANK=''; 

begin ( delete_leading...blanks J 
while pos(BLANK, s) = I do 
de Jete(s, I, I ) 

end; 

The procedure chop_first-word has two arguments, 
both variables: 

procedure chop_f irsLword (var line, word : string); 
(extract first word in line into word, delete from line) 

const 
BLANK=''; 

Your Own Procedures and Functions 265 



var 
nextblank : integer; 

begin ( chop_f lrsLword } 
nextblank :• pos(BLANK, line); 
tf nextblank • O then 
begin 
word :• I ine; 
line:=" 

end 
else 
begin 
word:= copy(line, 1, nextblank - I); 
de Jete(I ine, 1, nextb Jank) 
end 

end; 

We have now specified all the pieces of this version of the 
word-counting program. Type it in and verify that it works 
the same way as the previous version. (You may find it easier 
to cut and paste the previous version, if you saved it, than to 
type an entire new program.) 

program pragrt1m · 
nt1me ' 

l1t1/lel deffnft fan pt1rtl 

jcanstt1nt deffnitfan pt1rt I 
ll"t1rft1b/8 deffnft fan pt1rtj 

raced11re ,t f11ncttan dertntttan pt1rt 

beg1n 

jstt1temt?nts I 
end. 

Figure 9-2. 

Pascal program syntax (still incomplete) 

266 The First Book of Macintosh Pascal 



·--------.. -·--------------------· 
.---~~~---.: : 

I I 

procedure proced11re ! ( 8rg11ment ) ! 
nome ! list ! ; . . 

"-~~~--': : 
t .. ---- --- ---- .. - ........ -------------! 

j;o/lel definition portl 

jconstont definition port I 
I vorio/lle definition p8rt I 

roced11re ct: f11nction definition pBrt 

begtn 

lstotements I 
end; 

Figure 9-3. 

Procedure definition syntax 

Procedures (and functions) called from the main program 
must be defined between the variable-declaration section and 
the first begin of the main program. This adds a new detail 
to the sketch for Pascal program syntax, as shown in Figure 
9-2. 

Since procedures are "little programs" their syntax 
matches that of programs very closely. Figure 9-3 shows an 
incomplete sketch of procedure syntax. 

As mentioned previously, the variables declared within a 
procedure are local to that procedure. Similarly, any labels, 
constants, procedures, and functions are also local; they may 
be referenced only while the procedure is executing. Note 
especially that there is no arbitrary restriction on the amount 
of nesting of procedures and functions. You may declare 
procedures within procedures that are themselves defined 
within procedures, and so on. 

The procedure heading's argument list is used if and only 
if the procedure expects arguments. It is broken up into one 
or more argument sections separated by semicolons. Each 
argument section declares one or more arguments of a single 
type. J;>ascal is flexible as to how you write the argument list; 
if you wish, you may declare each argument in a separate 

Your Own Procedures and Functions 267 



argument 
list: 

t1rg11mBnl 
SBClian 

t1rg11mBnl 
SBClian 

argument 
section: 

............... ,, 
i var i 
! .............. J 

Figure 9-4. 

t1rgt1menl 
identifiBr 

Argument list syntax 

t1rg11menl 
identifier 

type 
identifier 

section, or you may group arguments of the same type into 
sections. However, all arguments in one section must be 
either variable or value parameters, not a mixture of both. 
Each argument section is automatically placed on a new line 
and contains the following: 

• The reserved word var if the arguments in the section 
are variable arguments. 

• A list of one or more argument identifiers separated by 
commas. 

• A colon followed by the type of arguments named in the 
section. 

All this syntax is summarized in Figure 9-4. 
It is important to appreciate the difference between vari

able and value arguments. For example, consider the follow
ing procedure called with two integer-value arguments: 

procedure swapvals (x, y: integer); 
(swap values of x and y} 

var 
t: integer; 

begin ( swapvals } 
t := x; 
x := y; 
y := t; 
writeln('x = ·, x: 2, · y = ·, y: 2) 

end; 

268 The First Book of Macintosh Pascal 



What would you guess the output would be if the swapvals 
procedure were called with this program? 

program vaLtest; 
{test value arguments) 

var 
x, y : integer; 

{ Insert procedure swapvals) 

beg1n { vaLtest J 
x := 31; 
y := 6; 
wr1teln('x • ', x: 2, · y • ·, y : 2); 
swapvals(x, y); 
wr1telnC'x = ·, x: 2, · y = ·, y: 2) 

end. 

Guess first, then try it. Were you surprised? The results you 
obtain should appear as follows: 

x • 31 y • 6 
x • 6 y • 31 
x • 31 y • 6 

The values of x and y switch places inside the procedure; this 
is shown by the second output line. But somehow the values 
get set back to their original values when control passes back 
to the main program. What happened? 

The problem lies more in our misleading variable naming 
than anything else. The arguments passed to the swapvals 
procedure are the values of x and y from the main program, 
not the variables themselves. The variables x and y in the 
procedure are temporary (local) values that exist only while 
the procedure is executing. The procedure call initializes the 
local variables x and y to the values of the global variables x 
and y, but the local variables occupy a different region of 
memory from that of global variables. Changing the values of 
the local variables does not change the values of the global 
variables. 

Now consider a procedure similar to swapvals, this time 
using variable arguments: 

Your Own Procedures and Functions 269 



procedure swapvars <var u, v : integer); 
( swap variables u and v } 

var 
t: Integer; 

begin ( swapvars } 
t := u; 
u := v; 
v := t; 
writelnC'u = ·, u: 2, · v = ', v: 2) 
end; 

You can test this procedure with a slight modification to the 
previous program: 

program var _test; 
( test variable arguments } 

var 
x, y : integer; 

[ Insert procedure swapvars } 

begin ( var _test } 
x :'"' 31; 
y := 6; 
writeln('x = ·, x: 2, · y = ·, y: 2); 
swapvars(x, y); 
writeln('x = ·, x: 2, · y = ', y: 2) 

end. 

Again, predict the output before you run the program. The 
results should look like this: 

x • 31 y • 6 
u • 6 u • 31 
x • 6 y • 31 

This time changing the values of the local arguments inside 
the procedure does change the values of the variables passed 
to the procedure, because these arguments were specified as 
variables. A variable argument used inside a procedure, then, 
refers to the same region of the computer's memory as the 
actual variable passed to the procedure. (This is true even 

270 The First Book of Macintosh Pascal 



........................................................ 
.--------. : t 
ft1nction functton 

nt1me 
: t : ! ( t1rgt1men ) ! . type 

identifier i list i · 
~----' 1 ...................................................... 1 ~----' 

Figure 9-5. 

Function header syntax 

when, as here, the arguments in the procedure and the vari
able have different names.) 

There is a simple rule to follow in deciding whether to 
declare arguments as values or variables. When you want 
subprogram arguments to return results, you must specify 
them as variable arguments. If you do rwt need the argu
ments to return results, you should specify value arguments 
instead. 

WRITING FUNCTIONS 

Nearly everything said in the previous section concerning 
procedures also applies to functions; there are only a few 
additional rules to follow when writing functions. 

First, the form of the function heading is slightly differ
ent. Remember that a function call represents· a value. In 
addition to specifying the name of the function and the 
arguments passed to the function, you must also specify the 
type of value represented by the function. Function heading 
syntax is shown in Figure 9- 5. 

As our first example, let's write a function called days_ 
in _month that returns the number of days in a given month 
in a given year. For example, the line: 

writeln(days_irunonth(2, 1985)) 

should produce the output 28, the number of days in Febru
ary, 1985. 

We produced the necessary code for this function in our 
discussion of the case statement in Chapter 4. Adapting the 
code to a function is straightforward: 

Your Own Procedures and Functions 271 



function days.._irunonth (mo, yr: integer) : integer; 
(return number of days in month of specified year J 

begin ( days_lrvnonth J 
case mo of 
9, 4, 6, 11 : 
days_lrvnonth := 30; 
I, 3, 5, 7, 8, 10, 12: 
days_irvnonth := 31; 
2: 
if ls_leap(yr) then 
days_irunonth := 29 

else 
days_irvnonth :"' 28; 

otherwise 
days_in....month := O 

end 
end; 

There are a couple of notable features here. First consider the 
lines assigning values to the variable days_in-month, for 
example: 

days_irvnonth :" 30; 

Assignment statements such as these give the function its 
value each time it is executed. There must be at least one 
assignment to the function's name in the function, and such 
an assignment must always be made at least once whenever a 
function is executed; otherwise, the value returned by the 
function will be undefined. 

You may have already noticed that days _in _month calls 
another function, is_leap, in the case where the month con
sidered is February. Although we haven't done so as yet, there 
is no reason why one of your own functions can't call another 
one of your functions. In general, any subprogram can call 
any other subprogram. (You need to be a little careful how 
the subprograms are ordered, though; we'll consider the rules 
in the next section.) 

The call to is-leap appears between an if and a then, 
which means it must represent a Boolean value; if it didn't, a 
type-mixing bug box would appear. Examining the code 
reveals is-leap must return TRUE if the year is a leap year 
and FALSE if it isn't. (This is also suggested by the function's 
name.) The function, then, might be written this way: 

272 The First Book of Macintosh Pascal 



function is_Jeap (yr: integer): Boolean; 
(return TRUE if year is a leap year, else FALSE} 

begin ( is_Jeap ) 
is_ leap := (yr mod 4 = 0) and (yr mod I 00 <> O) 

or (yr mod 400 = 0) 
end; 

You may wish to compare these two functions with the origi
nal program in Chapter 4. Here is a test main program to 
verify that the functions work as expected: 

program day_test; 
(tell number of days in month J 

var 
month, year : Integer; 

( Insert tvnction 15-leap J 
( Insert !vnction days_itLmonth } 

begin ( day_test J 
wrlte('Enter the month number:'); 
readln(month); 
write('Enter the year:'); 
readln(year); 
write('There are ', days_irunonth(month, year): I); 
write In(' days in month', month: I, ·of ·,year: I) 

end. 

Functions need not be complex, as we've seen. Often, you'll 
want to write functions of your own design to extend the 
library functions. For example, this function accepts two 
arguments, lo and hi, and returns a random integer value 
that's between lo and hi inclusive: 

function randint (lo, hi : integer): integer; 
(return random Integer between lo and hi, inclusive} 

begin ( randlnt J 
randint := lo + random mod (hi - lo + I) 
end; 

As another example, the following function accepts a 
character value as an argument; if the character is an upper-

Your Own Procedures and Functions 273 



case letter, the function returns the equivalent lowercase let
ter. (If the argument is not an uppercase letter, the argu
ment's value is returned unchanged.) 

function to_lower (ch : char) : char; 
( convert ch to lowercase ) 

begin ( to_lower ) 
If (ch>= 'A') and (ch <111 'Z') then 
to_Jower := chr(ord(ch) - ord('A') + ord('a')) 

else (don't change any but uppercase) 
to_lower : .. ch 

end; 

We will present a program that uses both the randint and 
to_lower functions in a while; for now, you might try to 
write simple programs that test them as we did for days_in_month. 

As a final example, let's return to the golden program we 
developed and debugged in Chapter 5; it used the method of 
bisection to find the root of the equation 

x2 + x - 1 = 0 

The golden program required calculating the value of the 
expression on the left side of this equation for different values 
of x. This time let's write a function to carry out the 
calculation: 

function f (x: real) : real; 

begin ( f) 
f := sqr(x) + x - 1.0 

end; 

Functions are commonly used to isolate such calculations, 
keeping them separate from the logical flow of the program 
itself. For example, we might write another function that 
determines whether two values have opposite signs: 

'function oppsign (u, v : real) : Boolean; 
(return TRUE if u & v are of opposite sign, else FALSE) 

begin ( oppslgn ) 
oppsign := ((u < 0.0) and (v > 0.0)) or ((u > 0.0) and <v < O.O)) 

end; 

274 The First Book of Macintosh Pascal 



A version of the golden program that uses these functions 
might look like this: 

program golden; 
\ 

(find the golden ratio!} 

con st 
EPSILON = I .Oe-6; 

var 
xmid, xi, x2: real; 

( Insert function f} 
( Insert function oppsign J 

begin ( golden } 
wrlte('Enter lower bound for solution: '); 
readln(x I); 
write('Enter upper bound for solution:'); 
readln(x2); 
repeat 
xmid := (x I + x2) I 2.0; 
if oppsign(f(x I), f(xmid)) then 
x2 := xmid 

else 
xi := xmid 

until abs(f(xmid)) <EPSILON; 
writeln('Solution is·, xmid: 16) 

end. 

This version of golden is considerably cleaner than the 
previous one, mainly because it relies on functions to do the 
nuts-and-bolts calculations and confines itself to the imple
mentation of the bisection algorithm. Note also that it is 
much easier to modify this version of the program to find the 
roots of different equations; all you need to do is to change the 
function f. 

SCOPE AND NESTING 

Pascal has a simple rule that governs placement of proce
dures and functions in your programs: 

Your Own Procedures and Functions 275 



'.PJ"ocec:lu.res a.nd. Ju.ncti.ons 
must be d.efi.ned. beforn 

they a.re usec:l 

In attempting to make sense out of your program, Macin
tosh Pascal scans through it from beginning to end. When it 
encounters a call to a procedure or function not yet defined in 
your program, it considers it to be an error, even if the proce
dure or function actually gets defined later in the program. 

As an example, re-examine the test-days program in the 
previous section that used the functions days_in-month 
and is-leap to calculate the number of days in a month. The 
function is_leap must precede days_in_month, because it 
is called in days_in_month. If, instead, is-leap appeared 
in the program someplace after days_in_month, a not-yet
defined bug box would appear, and a "thumbs-down" would 
appear on the line with the call to is_leap within days_in_ 
month. 

Things become complicated only slightly when your pro
gram contains procedures and functions nested within other 
procedures and functions. Remember that identifiers defined 
within a subprogram are local to that subprogram and can't 
be used outside the subprogram. This rule applies to all iden
tifiers: named constants, variables, as well as procedure and 
function names. So, in order for a subprogram call to be 
legal, the called subprogram's definition must not only pre
cede the call, but it must also be "visible" to the caller; it can't 
be buried within another subprogram. 

Pascal has a few rules, called scO'[Je rules, that govern 
when an identifier defined in one part of the program may be 
used in another part: 

• An identifier defined in a subprogram (or the program 
itself) may be used later within that same subprogram 
(or program). 

• An identifer defined in a subprogram (or the program 
itself) may be used in any later subprogram nested 
within that subprogram (or program). 

• If a subprogram can see two identifiers with the same 
name, the more local definition takes precedence. 

This final rule allows subprograms to be written inde
pendently of the programs that call them. You need not worry 
that your use of a name within a subprogram will conflict 
with the use of the same name in another part of your pro-

276 The First Book of Macintosh Pascal 



Figure 9-6. 

program o 

function b 

I procedure c 

I function d 

procedure e 

I function f 

Nested procedures and functions 

gram. An identifier defined within a subprogram will always 
retain that definition within the subprogram, no matter how 
the identifier is defined outside the subprogram. 

Pascal's scope rules may seem simple, even trivial; as 
usual, however, they can offer some surprises to the novice. 
To make sure you know the implications of the rules, consider 
the schematic outline of a program in Figure 9-6, which 
shows procedure c and function d nested within function b, 
and function f nested within procedure e. 

The scope rules imply, for example, that identifiers defined 
in the program itself are accessible to all later parts of the 
program, including all nested subprograms. Identifiers de
fined within procedure c, on the other hand, are only visible 
within procedure c. How the scope rules apply to the sche
matic program are summarized in Table 9-1. 

Which subprograms can call which? This question can be 
answered by observing that a subprogram is defined in the 
program or subprogram that encloses it. Example: proce
dure c is defined within function b, so procedure c is callable 
anywhere identifiers defined within function bare accessible: 
function b itself, procedure c, and function d. A similar 
argument can be carried through for all subprograms; a 
summary for our example program is shown in Table 9- 2. 

Your Own Procedures and Functions 277 



Table 9-1. 

Scope Rules for Figure 9-6 

Identifiers 
Defined In: Are Accessible In: 

program a a, b, c, d, e, f 
function b b, c, d 
procedure c c 
function d d 
procedure e e, f 
function f f 

Table 9-2. 

Allowable Subprograms for Figure 9-6 

Can Call 
Statements in Subprograms 

program a b, e 
function b b, c, d 
procedure c b, c 
function d b, c, d 
procedure e b, e, f 
function f b, e, f 

PROGRAMMING WITH PROCEDURES 
AND FUNCTIONS 

Aren't Accessible In: 

-none-
a, e, f 
a, b, d, e, f 
a, b, c, e, f 
a, b, C, d 
a, b, c, d, e 

Can't Call 
Subprograms 

c, d, f 
e, f 
d, e, f 
e, f 
c, d 
c, d 

There is nothing like experience in learning to program, and 
the proper use of procedures and functions is worth learning 
well. In this section we will develop our most ambitious pro
gram so far, a program to play the dice game known as 
craps. 

Craps involves an indefinite number of rounds. At the 
start of each round the player places a bet; a loss subtracts 
the amount of the bet from the player's funds and a win adds 
the amount of the bet to the player's funds. The game ends 
either when the player quits voluntarily or is no longer able to 
come up with the "house minimum" bet. 

This description is all we need to design the main pro
gram. A pseudo-code summary of the playing algorithm 
might go as follows: 

278 The First Book of Macintosh Pascal 



initialize funds 
repeat 

sho• player's current balance 
play a round 
if funds are lo. 

toaa player out 
else 

ask if player •ants to continue 
until player quits, voluntarily or other•lse 

This pseudo-code is detailed enough to translate directly into 
Pascal: 

program craps; 
( Plays simple craps game J 

const 
INITIALSTAKE = 1000.00; 
HOUSE....MI N D 1.00; 

var 
funds : real; 
done : Boolean; 

( Insert function geLyes...or_no J 
(Insert procedure playround J 

begin (craps J 
funds:• INITIALSTAKE; 
repeat 
page; 
writeln('Your current balance: $', funds: I : 2); 
p layround( funds); 
If funds<• HOUSE....MIN then 
begin 
wrlteln('You"re busted!'); 
done:'" TRUE 

end 
else 
done :· (geLyes....or Jlo('Play again?') • 'n') 

until done; 
write In; 
wrlteln('You are left with$', funds: I : 2) 

end. 

Your Own Procedures and Functions 279 



It is important to note that we have first concentrated on 
the "outer" level of the game; consideration of the detailed 
rules of the game is delayed until later. Many beginning pro
grammers make the mistake of worrying about too much, too 
soon in the program design process. All we are concerned 
about here is getting the simplest part of the logic nailed 
down: keeping track of the money and deciding whether to 
play another round. 

The main program calls one procedure and one function. 
The procedure playround will contain all the details on play
ing one round of the game. The get_yes-or _no function, 
on the other hand, does something much simpler. It gets the 
answer to a yes-or-no question from the player. Let's do that 
one first. 

On the Macintosh, there are two ways to get input from 
the user of a program: the keyboard or the mouse. Using the 
mouse to get a yes-or-no response would probably involve 
something like a dialog box, and that is slightly beyond our 
current capabilities. The keyboard is our choice for now. 

We want our get_yes_or _no function to be relatively 
forgiving of input errors on the part of the player. Although 
we can't do anything about the case where a player means to 
answer yes but types no instead, we can ignore anything but a 
yes or no response; this allows the most common typing mis
takes to be ignored. Let's consider a yes response to be a press 
of the Y key on the keyboard, and a no response to be a press 
of the N key. (This should work whether the SHIFT key is 
pressed at the same time or not; Y also means yes.) The fol
lowing code gives us the response we want: 

function geLyes_or _no (prompt : string) : char; 
( get 'y' or 'n' response } 

var 
ch: char; 

( Insert f(Jnction to_/ower} 

begin ( geLyes_or _no } 
wrlte(prompt, '(yin):'); 
repeat 
read( ch); 
ch := to_Jower<ch); 
if (ch <> 'y') and (ch <> 'n') then 
begin 

280 The First Book of Macintosh Pascal 



sysbeep( I); 
write(chr(8), ' ', chr(8)) 

end 
until (ch • 'y') or (ch • 'n'); 
get_yes_or_no:=ch 

end; 

Note the use of chr(S) in the part of the function that handles 
invalid input. chr(8) represents the backspace character. 
When the statement 

wrlte(chr(8), · ', chr(8)) 

is executed, the Text window cursor backs up one position, 
writes a space to erase whatever erroneous character was 
typed in, and backs up again to the same position. 

Testing what we've got so far is possible by using a tempo
rary "stub" version of the playround procedure: 

procedure playround(var funds: real); 
(stub procedure playround} 

begin ( playround} 
funds := funds I 2.0 

end; 

Try typing in the entire program with this stub procedure 
and run it; verify that you may exit from the program volun
tarily at any time or wait until your funds dwindle away and 
you are forced out. Also try typing erroneous characters in 
response to the "Play again?" prompt. 

Once you are convinced that the program works as it's 
supposed to, we can continue with the design. We now need to 
write the part of the program that plays a single round of 
craps. The rules we'll use are easy to state: 

• Each round consists of one or more throws of a pair of dice. 

• A throw of 2, 3, or 12 on the initial throw is an imme
diate loss. 

• A throw of 7 or 11 on the first throw wins. 

• Any other number rolled on the first throw becomes the 
player's point. Throws continue until either that point 
occurs again (in which case the player wins) or a 7 is 
rolled (in which case the player loses). 

Your Own Procedures and Functions 281 



You may wish to come up with your own playround proce
dure at this point. If so, try to start with a rough pseudo-code 
version at first, refining it later if necessary. Don't be reluc
tant to invoke calls to subprograms within your design if you 
feel that the procedure is getting too complex. (You can 
always worry about writing the new subprograms later.) 

Here is one possible pseudo-code for the playround procedure: 

get bet for this round 
repeat 

thro• dice 
if first thro• 

if player rolled a 2, 3, or 12 
player loses 

else if player rolled 7 or 11 
player •ins 

else 
point <- rol 1 

else {second or later roll } 
if player rolled point then 

player •ins 
else if player rolled a 7 

player loses 
until player •ins or loses 
if player •on 

add b~t to funds 
else 

subtract bet fro• funds 

This pseudo-code is a straightforward description of the rules 
described: play continues until the player wins or loses, and 
the first roll is handled differently from subsequent rolls. 
Translation into Pascal is helped by delegating to subpro
grams the responsibilities for rolling the dice and setting the 
amount of the bet: 

procedure playround (var funds: real); 
(play one round} 

var 
bet: real; 
thrownum, point, sum : integer; 
win, lose: Boolean; 

282 The First Book of Macintosh Pascal 



( Insert function get_bet) 
( Insert procedure waitclick ) 
( Insert function t/Jrowdice } 

begin ( playround} 
bet:= geLbet(HOUSEJ11N, funds); 
thrownum := O; 
win:= FALSE; 
lose : .. FALSE; 
repeat 
writeln('Click button to throw dice ... '); 
waitcllck; 
sum := throwdice; 
writeln('You rolled a', sum : I); 
thrownum := thrownum + I; 
If (thrownum .. I) then 
if (sum = 2) or (sum = 3) or (sum = 12) then 
lose:= TRUE 

else if (sum .. 7) or (sum= 11) then 
win:"' TRUE 
else 
begin 
point := sum; 
writeln('Your point is', point: 1) 

end 
else if sum .. point then 
win:= TRUE 

else if sum = 7 then 
lose:= TRUE 

until win or Jose; 

if win then 
begin 
writeln('You won!'); 
funds := funds + bet 

end 
else 
begin 
writeln('Sorry, you lose .. .'); 
funds := funds - bet 

end 
end; 

The get-bet function is mainly concerned with checking 
that the player enters a bet that is at least the house min-

Your Own Procedures and Functions 283 



imum, but not more than the amount of money the player 
currently has: 

function geLbet (min, max: real): real; 
(get bet between min and max J 

var 
x: real; 

begin ( geLbet) 
repeat 
write('Enter your bet:'); 
readln(x); 
x :=round( 100 * x) I 100; 
if (x < min) or (x > max) then 
writeln('Please enter an amount between$', 

min: 1 : 2, ·and$', max: 1 : 2) 
until (x >•min) and (x <=max); 
geLbet := x 

end; 

For authenticity, the player should be required to do 
something to make the dice roll. In this program, the player 
presses and releases the Mouse button to make each roll. This 
procedure waits until the Mouse button has been pressed and 
released: 

procedure waitclick; 
( Wait for mouse press and release) 

begin ( waitclick) 
whtle not button do 

while button do 
end; 

The only thing left to write is throwdice, the routine that 
"throws the dice" and returns their sum. A throw of a single 
die can be simulated by a random integer in the range 1 to 6, 
obtained from a call to the randint function written earlier. 
Two such calls to randint give the values for two dice. Adding 
these gives us the needed return value. 

In addition to simply returning the values of the dice 

284 The First Book of Macintosh Pascal 



rolled, let's also put into throwdice a provision to draw the 
dice in the Drawing window: 

function throwdice : integer; 
( throw dice, return sum } 

var 
die I, die2 : integer; 

( Insert f(Jnction randint } 
( Insert proced(Jre drawdice} 

begin ( throwdice } 
die I := randint( I, 6); 
die2 := randintC I, 6); 
drawdice(die I, die2); 
throwdice := die I + die2 

end; 

This is a natural point to test what we've written so far. 
Type in the new parts of the program, writing a stub proce
dure for drawdice. Run the program and verify that every
thing (except dice drawing) works as expected. This process 
of incremental design, testing, and (if necessary) debugging 
can be a real help in designing larger programs; it gets at 
least a part of the program working quickly, and can help 
reveal design flaws and dead ends while it's still relatively 
easy to recover from them. 

Although dice drawing isn't too difficult, we will do our 
best to make it as easy as possible. First, we'll write drawdice 
as simply as possible: we'll make two calls to a procedure 
that draws a single die at a specified position in the Drawing 
window: 

procedure drawdice (d I, d2: integer); 
(draw dice} 

con st 
DILLX = 20; 
DILLY .. 70; 
DIE_2_X = 120; 
DIE_2_Y = 70; 

Your Own Procedures and Functions 285 



[ Insert procedure drawdie) 

begin [ drawdice ) 
drawdie(dl, DIE_l_j(, DILLY); 
drawdie(d2, DIE_2_X, DIE_2-Y) 

end; 

All that's left, then, is the drawdie procedure. We'll be 
content to draw a simple two-dimensional picture of a die 
face. Most dice have slightly rounded corners, so the outline of 
the die face might best be drawn with calls to rounded
rectangle routines. The spots can be drawn using calls to 
paintcircle. What we need is a simple method to decide where 
on the face to draw the dots, given the die's value. We have six 
possibilities: 

c:JL]~ 
reel F.911::1 
~ L!:!J L!_!J 

It's often helpful to turn around a problem slightly to see 
if it has an easier solution. In this case, instead of asking "For 
a given die value, where are the spots painted?" let's ask 
instead "Consider a given spot; for what die values is that spot 
painted?" Examining the possible spot arrangements gives 
the following observations: 

• The center spot is needed only if the die is odd: 1, 3, or 5. 

• The spots in the northwest and southeast corners of the 
die face are displayed whenever the die value is greater 
than 1. 

• The spots in the northeast and southwest corners are 
displayed if the die value is greater than 3. 

• The east and west spots are displayed only if a 6 is rolled. 

Putting all this into the drawdie procedure is primarily a 
matter of adjusting the relative sizes and positions of the die 
face and spots to get a reasonably accurate picture. Here is 
one solution: 

286 The First Book of Macintosh Pascal 



procedure drawdie (d, x, y : integer); 
(draw die with valued at (x, y) J 

const 
DIESIZE = 60; 
DOTPOS I = 15; ( DIESIZE div 4} 
DOTPOS2 = 30; ( 2 * DOTPOS I } 
DOTPOS3 = 45; ( 3 * DOTPOS I } 
DOTSIZE = 5; 
FLOVALHT = 10; 
FLOVALWID = 10; 

begin ( drawdie J 
eraseroundrect(y, x, y + DIESIZE, x + DIESIZE, 

FLOVALHT, FLOVALWID); 
frameroundrect(y, x, y + DIESIZE, x + DIESIZE, 

FLOVALHT, FLOVALWID); 
if odd(d) then 
paintcircle(x + DOTPOS2, y + DOTPOS2, DOTSIZE); 
if d > I then 
begin 
paintcircle(x + DOTPOS I, y + DOTPOS I, DOTSIZE); 
paintcircle(x + DOTPOS3, y + DOTPOS3, DOTSIZE); 
if (d > 3) then 
begin 
paintcircle(x + DOTPOS3, y + DOTPOS I, DOTSIZE); 
paintcircle(x + DOTPOS I, y + DOTPOS3, DOTSIZE); 
if d .. 6 then 
begin 
paintcircle(x + DOTPOS I, y + DOTPOS2, DOTSIZE); 
paintcircle(x + DOTPOS3, y + OOTPOS2, DOTSIZE) 
end 

end 
end 

end; 

You may want to experiment with the numbers in this 
procedure to see how the die appearance is affected. 

This finishes our development of the game; try typing in 
the remainder of the program and try it out. 

In developing this program, we have demonstrated yet 
another benefit of procedures and functions: using them 
allows program design to proceed in a logical, stepwise 
manner. Although the final program is much larger than 
anything we've written previously, no single part of the pro-

Your Own Procedures and Functions 287 



gram was particularly difficult to write or hard to under
stand. Working mostly with subprograms allowed us to con
centrate on small pieces of the problem at any given time, 
rather than trying to tackle the entire program all at once. 
This is a lesson that will prove valuable in later chapters. 

288 The First Book of Macintosh Pascal 



YOUR OWN 
DATA TYPES 

Choosing a better data structure is an 
art, which we cannot teach. 

B. KERNIGHAN AND P.J. PLAUGER 
The Elements of Programming Style 

(McGraw-Hill, 1978) 

You can think of programs as consisting of two parts: an 
active part and a passive part. So far we have been concen
trating on the active part of programs: the statements, 
procedures, and functions that make the program do some
thing. In the background has been the passive, or acted-upon, 
part of programs: the information or data structures that the 
program manipulates to achieve the desired results. So far 
our data structures have been, simply, variables of the various 
types already built into Macintosh Pascal. 

Just as a large program can be constructed out of smaller 
parts, however, data structures used in a program may be 
built up out of the pieces we have already considered. In addi
tion, just as we can write procedures and functions to add to 
the subprograms available in the library, we can also create 
data types of our own to supplement the built-in data types. 

289 



program progrom . 
nome. ' 

l10/1e.I definition portj 

jconstont de.tin it/on port j 

I type. de.fini t ion port j 

I vorioble. de.Ifni t ion port j 

roced11re ,-i; f11nct fan def/nit ion part 

begin 

lstate.ments j 
end. 

Figure 10-1. 

Pascal program syntax (still 
incomplete) 

Figure 10- 2. 

type 

type 
ide.nt if fer 

type. 
ide.n tit ie.r 

Type definition part syntax 

290 The First Book of Macintosh Pascal 

type. 
= de.finit fan ' 

type. 
= detinit tan ' 



THE TYPE DEFINITION PART 
AND ENUMERATED TYPES 

New data types of your invention are defined in the type defi
nition part of programs and subprograms. The type defini
tion part appears after the constant definition section and 
before the variable definition section. The way this affects the 
program syntax structure is shown in Figure 10-1. The syn
tax of the type definition part is sketched in Figure 10-2. 

When you want to define your own data type, Pascal 
requires that you give it a name and follow that name with 
the actual definition. The name can be any legal identifier 
that isn't already being used in your program for some other 
purpose. The definition of the type can follow a number of 
different rules. Some of the simpler forms are discussed in 
this chapter. 

The easiest data type definition is simply to define a syn
onym for an existing type. For example, consider the follow
ing type definition part: 

type 
counter = integer; 
data_type .. real; 
name = string [25]; 

This defines the new type counter, data_type, and name. 
Note that you are defining new variable types, not new varia
bles. From this point on, the new type names can be used in 
the same way as the built-in types we've already discussed. 
You can now declare variables using these new types. 

var 
count : counter; 
x : data_type; 
first, last, middle : name; 

These variables can be used just as you would use variables of 
the existing synonymous type. You may use new type names 
in subprogram headings, for example: 

function counLcaps (n: name): counter; 
{ count uppercase letters in name n l 

Your Own Data Types 291 



What is the purpose of defining synonyms for existing types? 
Why not just use the original names instead? There are a 
couple of reasons, one based on design considerations, the 
other on syntax considerations. 

For reasons of design, defining synonyms for types 
increases the flexibility of the program and makes subse
quent modification easier. For example, suppose you made 
the following definition of the distance type: 

type 
distance = real; 

Such a definition might be used to emphasize that some of the 
data used by your program represents actual, real-world dis
tances. For example, the declaration 

var 
d : distance; 

is a convenient way to communicate to someone reading your 
program that the variable d will be storing a distance. And if 
you decide the distance values used in your program can 
accommodate more precision, most of the work involved is 
simply changing the type definition, for example: 

type 
distance • double; 

It is much easier to simply change a type definition at the 
beginning of your program than it is to search through the 
program and change only those occurrences of real variables 
representing distance to double variables. 

The second reason to define synonyms of existing types is 
based in syntax. Pascal requires the types used in argument 
lists to procedure and function headings to be single identifi
ers. For example, the following function heading is illegal: 

function counLcaps (n : string [25)) : counter; 
{ count uppercase letters in name n ) 

The correct way to define an argument of type string[25] is 
to use a synonymous type identifier instead, as we showed 
previously. 

292 The First Book of Macintosh Pascal 



Type names defined in a type definition section follow the 
same scope rules as those explored in the previous chapter for 
constants, variables, and subprogram names. Types defined 
in the outermost shell of the program are visible to all later 
parts of the program, unless the type name gets another defi
nition within a subprogram; in that case the new definition 
applies within that subprogram. 

In addition to defining new names for types we already 
know about, you may also define completely new data types 
within the program. There are a number of type-definition 
methods available in Pascal; here we'll explore enumerated 
types. 

An enumerated type is a collection of values to which you 
may assign names of your own choosing. As the name implies, 
an enumerated type is simply defined by listing all possible 
values that variables of the type may assume. Enumerated 
types are primarily useful when you want to represent a 
quantity that may take on a small number of possible values, 
such as the days of the week, the months of the year, and so 
on. (Other languages usually encode such values as small 
integers; this is considerably less reliable and readable than 
defining an enumerated type.) 

Each value in the definition list must be represented by a 
legal Pascal identifier and the list must be enclosed by paren
theses. Study these examples of enumerated type definitions: 

type 
month_type =(JANUARY, FEBRUARY, MARCH, APRIL, MAY, 

JUNE, JULY, AUGUST, SEPTEMBER, 
OCTOBER, NOVEMBER, DECEMBER); 

computer_type =(APPLE, IBM._PC, MACINTOSH, VAY., 
DEC I 0, C01'1'1000RL64); 

color _type = (RED, GREEN, BLUE, ORANGE, WHITE); 
day_type =(SUNDAY, MONDAY, TUESDAY, WEDNESDAY, 

THURSDAY, FRIDAY, SATURDAY); 

Note: Each enumerated type definition is automatically for
matted to take up a single line in a Macintosh Pascal pro
gram. Typographical limitations prevent us from showing 
some of these definitions as they would actually be formatted 
in your program. 

These are only examples; it should be clear that you may 
define an enumerated type as a list of whatever named values 

Your Own Data Types 293 



(I identifier I, ... , lidentifierl) 

Figure 10-3. 

Enumerated type definition syntax 

you want. Follow the simple syntax shown in Figure 10-3. 
The enumerated type values have been written in uppercase 
to emphasize that they represent constant values, not varia
bles. Since Macintosh Pascal ignores the case of identifiers 
(with one exception, noted later), you should feel free to adopt 
another style if you find it more attractive or useful. 

Once you have defined an enumerated type, you're ready to 
define variables of that type: 

var 
my_computer, your _computer : computer _type; 
chair _color, desLcolor: color _type; 
thls_month, lasLmonth : montlLtype; 
yesterday, today, tomorrow: day_type; 

Once defined, enumerated variables act much like other vari
ables. You can assign them any legal value of their types, for 
example: 

my_computer :=MACINTOSH; 
your _computer:= IBM....PC; 
desLcolor :=ORANGE; 
chair _color:= desLcolor; 
today:= SUNDAY; 
tomorrow := MONDAY 

Pascal's strictures on type mixing also apply to enumer
ated types. All the following statements are invalid because 
they assign a value of one type to a variable of another: 

lasL.month := APPLE; ( all Illegal assignments} 
yesterday := BLUE; 
my_computer :=today 

The major restriction on the names you use for enumer-

294 The First Book of Macintosh Pascal 



ated type values is that they not conflict with other uses for 
that same name. For example, given the previous definitions, 
it would be a mistake to define fruit_type as 

type 

fruiLtype = (ORANGE, APPLE, BANANA, KIWI, MANGO); 

because the identifier APPLE was previously defined as a 
value of computer _type and ORANGE was defined as a 
color _type value. 

Enumerated types can be used to make programs more 
clear. For example, the days_in-month function written in 
Chapter 9 can be made more transparent by using the 
month_type enumerated type instead of an integer month 
number: 

function days.Jn....month (mo: month....type; 
yr: Integer) : Integer; 

( return number of days In month of specif led year} 

begin ( days .. Jn....month} 
case moor 
SEPTEMBER,APRIL,JUNE,NOVEMBER: 
days...ln....month :'" JO; 

JANUAAY, MARCH, MAY, JULY, 
AUGUST, OCTOBER, DECEMBER: 
days...ln....month :• JI; 

FEBRUAAY: 
If ls...leap(yr) then 
days...ln....month :• 29 
else 
days...irunonth :• 28 

end 
end; 

A call to this function used to determine the number of days 
in February, 1986, might appear as follows: 

wrtteln(days...lrunonth(FEBRUARY, 1986) : I) 

In both cases, we have made it easier to see what the days_ 
in_month function does and how it works by substituting the 
month names for the less-meaningful month numbers. 

Your Own Data Types 295 



You might have noticed that it is acceptable to use a vari
able of an enumerated type as a case statement's controlling 
expression. In general, since any enumerated type you invent 
is considered to be an ordinal type, any of its variables can 
legally be used in a case's expression. 

Enumerated type variables can also be used as the loop 
control variable of a for statement. For example, the state
ments 

sum:= O; 
for mo:"' JANUARY to DECEMBER do 
sum := sum + days_irunonth(mo, yr) 

could be used to calculate the number of days in the year yr, 
assuming that the variable mo was declared as month_type. 
(Can you think of a more straightforward way to do the same 
thing using is_leap?) 

Pascal's ordinal functions can be used with enumerated 
types as well. The pred and succ functions give the previous 
and next values specified in the type definition. These exam
ples use the previous enumerated type functions: 

pred(FEBRUARY) is JANUARY 
pred(MACINTOSH) is IBtLPC 
pred(BLUE) is GREEN 
pred(SATURDAY) is FRIDAY 
succ(JUL Y) is AUGUST 
succ(DEC 10) is COM1000RE_64 
succ(RED) is GREEN 
succ(WEDNESDAY) ls THURSDAY 

It is a mistake to apply the pred function to the first value in 
an enumerated type, or the succ function to the last value. 
For example, assume the variables this-month and next_ 
month are declared as month_type. To set next_month to 
the month following this_month, if we write 

next_month:=succ(this__rnonth) 

it won't work if this-month is DECEMBER. Instead, we 
could write 

296 The First Book of Macintosh Pascal 



1f thls_month = DECEMBER then 
next...month := JANUARY 
else 
next...month :'" succ(this_month) 

Notice that the relational operator = works to compare 
two enumerated type values. The other five relational opera
tors can also be used since enumerated type values are 
ranked according to the order of their definition. An enumer
ated value is less than those following it in the defining list 
and greater than those that precede it. 

The ord function applies to enumerated type values as 
well. It responds with the position in the list of its argu
ment: the first value in the definition list has an ord value of 
0, the second has the ord value l, and so on. These examples 
are based on our previous definitions: 

ord(JANUARY) isO 
ord(JUNE) is 5 
ord(DECEMBER) Is II 
ord(MACINTOSH) ls2 
ord(MONDAY) is I 
ord(SATURDAY) is 6 

Macintosh Pascal provides for input and output of enu
merated type values. (This language feature is not present in 
Standard Pascal, so all our usual cautions about portability 
apply here.) For example, the day _test program from the 
previous chapter could be written as follows: 

program day_test; 
( te 11 number of days In month } 

type 
month_type =(JANUARY, FEBRUARY, MARCH, APRIL, MAY, 

JUNE,JULY,AUGUST,SEPTEMBER, 
OCTOBER, NOVEMBER, DECEMBER); 

var 
month : month_type; 
year : integer; 

Your Own Data Types 297 



{ Insert function is_/eap J 
{ Insert function days_ifLITlonth J 

begin { day_test ) 
wrtte('Enter the name of the month:'); 
readln(month); 
wrtte('Enter the year: '); 
readlnCyear); 
writeC'The number of days in ·, month, • ·, year : I, · is '); 
wrttelnCdays....irunonth(month, year) : I) 

end. 

The program now requests a month name instead of a 
number. The rule for entering enumerated values is that the 
entire name must be read in; no abbreviations or misspellings 
are allowed, but the case of the letters is ignored. Enter this 
program and try out different values for the month prompt. 

When the program displays its results, an enumerated 
type gets printed just as it appears in the definition, includ
ing case. For example, with appropriate input, the day _test 
program might display this: 

The nu•ber of days In FEBRUARY 1986 la 28 

SUBRANGE TYPES 

lm·1··er 11pper 
ba11nd • • ba11nd 

Figure 10-4. 

Subrange type 
definition syntax 

Another way you may define a type is as a subrange of an 
already-defined type. Let's start with some examples: 

type 
die_value • 1 .. 6; 
posint .. I .. MAXI NT; 
negtnt • -MAXINT .. -1; 
digit = '0' . .'9'; 
uppercase = • A' . .'Z'; 

Defining a subrange type involves specifying a lower and 
upper bound on the possible values of the type and separating 
them with two periods; the syntax is shown in Figure 10-4. 
You should think of a subrange definition as making a sort of 
promise to Pascal: variables of this type will never get out of 
this range. For example, using the above definitions, vari-

298 The First Book of Macintosh Pascal 



ables of the die-val type will only have six possible values: 1, 
2, 3, 4, 5, and 6; anything else is now considered to be a viola
tion of Pascal's rules. 

Subranges may be of nearly any ordinal type, including 
enumerated types; in any case, the lower and upper bound 
values you specify must be of the same type, and the lower 
bound must be less than or equal to the upper bound. Note 
that reals are not an ordinal type, and you cannot make a 
subrange of reals. Both upper and lower bounds must be con
stant values; variables are forbidden. It is not legal to define 
an integer subrange in which either bound is out of the range 
-32767 to 32767. 

Pascal behaves reasonably as long as your program doesn't 
break the promises it makes in subrange type definitions, but 
it extracts revenge if you slip up. For example, try the follow
ing program: 

program subrange_Jab; 
( test subrange type ) 

type 
legaLtype = I.. IO; 

var 
num: legaLtype; 

begin ( subrange_lab) 
wrlte('Please enter a number between I and IO:'); 
readln(num); 
wrlteln('You entered the number·, num: I) 

end. 

Run this program twice, typing a legal value the first time (6, 
for example), and an illegal value (20, for example) the 
second time. The first time, everything proceeds normally, 
but entering the second value gives this bug box: 

~ The uelue of e uerieble or sub eHpression is out of range for its 
W intended use. 

It is usually not a good idea to input a subrange value 
directly from the keyboard because it is too easy for the user 
of your program to type a value outside the subrange and 

Your Own Data Types 299 



crash your program. Instead, accept values of the most gen
eral possible type, check their values, and then assign them to 
the subrange value desired. Using this strategy, the program 
would look like this: 

program subrange_Jab; 
( test subrange types ) 

type 
JegaLtype = I.. IO; 

var 
any_num : longint; 
num : JegaLtype; 

begin { subrange_Jab) 
write('Please enter a number between I and IO:'); 
readln(any_num); 
if (any_num >= I) and (any_num <= I 0) then 
begin 
num := any_num; 
writeln('You entered the number·, num: I) 

end 
else 
writeln('Sorry -- you entered the number·, any_num: I) 

end. 

This version of the program is less easily crashed by accident. 
Subrange variables are appropriate in larger programs 

where they act as guarantees to you and to anyone reading 
your program that no variable will take on unexpected 
values. As such they are an easy way to maintain confidence 
in the internal consistency of a program. Since they cause a 
program to crash whenever they get out of range, the logic 
errors involved in setting them to illegal values can be easily 
and quickly traced. 

TYPE TAXONOMY 

Before we go on to more complex data structures, it's worth 
stepping back a bit and summarizing the types we know 

300 The First Book of Macintosh Pascal 



Table 10-1. 

Type Classifications 

Real 
Types 

real 
double 

Ordinal 
Types 

Boolean 
char 

Integer 
Types 

integer 
longint 

Simple 
Types 

any ordinal type 
any real type 

String 
Types 

string 
string[] 

extended any integer type integer subranges 
computational enumerated types 

subrange types 

about so far. These are classified for us in Table 10-1. 
The rules for handling different kinds of types are some

what formal, and we don't need to discuss every last detail 
and nuance here. We will, however, discuss a few restrictions 
you'll need to know in writing your own programs. 

First, let's reexamine the subrange-lab program from 
the previous section; note we assigned a value of a longint 
type (the variable any _num) to a variable of a legal_type 
(subrange-of-integer) type. Pascal allows this because the long
int type and the legal_type type are assignment-compatible. 
The rules that determine whether a value of one type may be 
assigned to a variable of another type are lengthy, but worth 
examining: 

• Any value of one type may be assigned to a variable of 
identical type. 

• A value of any real type can be assigned to a variable of 
any other real type if the value is within the range of 
the target variable's type. 

• An integer-type value may be assigned to any real-type 
variable. 

• Any ordinal value may be assigned to a variable of a 
compatible ordinal type if the value is a legal value of 
that variable. 

• A character value may be assigned to a string variable. 
• A string variable of length 1 may be assigned to a char

acter variable. 
• A string value may be assigned to a string variable if 

the string value's length is less than or equal to the 
declared size of the string variable. (Remember the dis
tinction between a string's length and its size.) 

Your Own Data Types 301 



These rules are not yet complete, but they're adequate for 
now. Note that the second rule mentions "compatible" ordinal 
types. Two ordinal types are compatible if 

• They are identical types. 

• Both types are some kind of integer. 

• One type is a subrange of another, or both are subranges 
of the same parent type. 

Finally, we need to define what we mean by identical 
types. Although you might think this is too obvious to men
tion, two types are identical if they have the same type identi
fier (such as char or integer) or if one type was defined as a 
synonym of the other. When a subprogram expects a variable 
argument of a certain type, the variable specified in the 
argument list must be of an identical type, not just a compat
ible type. 

Most of the rules we've just described we actually have 
been using informally all along. Generally, Pascal allows you 
to do the things that make sense (assigning a long integer 
value to an integer subrange variable, for example). On the 
other hand, Pascal frowns upon attempts to mix types beyond 
the rules here; assigning a character value directly to an in
teger variable will always be illegal in Pascal. 

There is a shortcut method often used to declare variables 
of new types that bypasses the type-definition section. In Pas
cal you may define the type of a variable directly, when the 
variable is declared. Examples: 

var 
finger : (THLNB, INDEX, MIDDLE, RING, LITTLE); 
card: 1 .. 52; 
hour: 0 .. 23; 

Although legal, such shortcut definitions are often less flexi
ble than the normal method of defining the new type in the 
type-definition section. Note that a type you define in the 
variable definition section has no name. And without a name, 
a variable with a shortcut type definition often can't be 
passed to a subprogram as an argument. 

This concludes our look at simple, single-value data types. 
In the next chapter we'll delve into more complex data type 
constructions. 

302 The First Book of Macintosh Pascal 



STRUCTURED DATA 
TYPES: ARRAYS, 
RECORDS, AND SE IS 

ARRAYS 

There hardly exist any programs of 
relevance outside the classroom which 

do not employ repetitions and arrays 
(or analogous data structures). 

N. WIRTH 
Programming in Modula-2 

(Springer-Verlag, 1983) 

So far we have limited our discussion to Pascal data types 
that store a single value at any given time. While useful, such 
simple data types are often too limited to accomplish more 
complex tasks. In this chapter we'll explore data types called 
structured types, which can be used to store many values at 
once. We will discuss three classes of structured types: 
arrays, records, and sets. 

The array is a data type common to many programming lan
guages, including Pascal. You may think of an array as 
simply a collection of variables of the same type. Each indi
vidual variable is called an element of the array. To define an 
array type, Pascal requires you to specify the following 
information. 

303 



• The type of the array elements. (This is called the base 
type of the array.) 

• The number of elements in the array. 

• The method used to access each element of the array. 

As usual, let's examine a concrete example first. Consider 
the type declaration 

type 
vector _type .. array [I.. I OJ of real; 

This type declaration tells Pascal that variables of type 
vector _type will contain real numbers (the base type). The 
subrange 1 .. 10 inside square brackets in the definition 
implies that each vector _type variable will contain ten dis
tinct real values. This also tells Pascal that vector _type 
array elements will be referenced using an integer between 1 
and 10. 

As you saw in the previous chapter, once a type has been 
defined you may declare variables of that type: 

var 
v 1, v2: vector _type; 

This declares two variables, vl and v2, both of type vector_ 
type. Again, each array variable really should be thought of 
as containing a number of sub-variables; in this case, vl and 
v2 each hold 10 real numbers as specified in the type declara
tion. We might picture this as follows: 

Arrey 
v 1: 

Arrey 
v2: 

Here each large, rectangular box, symbolizing an entire 
array, is subdivided into ten smaller boxes, each large enough 
to hold a real value. 

Programs access individual elements of an array by speci
fying the array name followed by a subscript in square 
brackets. The subscript follows the rules laid out in the type 

304 The First Book of Macintosh Pascal 



definition. In our example, the subscript must be an integer 
value in the range of 1 to 10. The array name and subscript 
combination acts precisely as if it were a variable of the base 
type (real, in this case). That means you may assign values to 
array elements in the usual way, either by assigning them 
directly or reading values from the keyboard. For example: 

v 1 [3] := 98.6; 
v2[9] := 37.3; 
v2[6] :"' v 1(3] 

The effect of these assignment statements is to place the 
value 98.6 into the third element of vl, the value 37.3 into the 
ninth element of v2, and then to copy the third element of vl 
into the sixth element of v2. This might be pictured as 
follows: 

198.61 I I Array I I v 1: 
f l f l f l f l l f 

v1[2) v1 (4) v1(6) v1(8) v1 [10) 

v111 I v1 (3] v1 (5) v1 (7] v1 (9] 

Array 
198.61 I 137.31 

1/2: 

l f l f l f l f l f 

v2[2) v2[4) v2[6) v2[8) v2[10) 

v211 I v2(3] v2[5) v2(7) v2[9) 

The array name without a subscript is understood to refer 
to the array as a whole; that means to all ten real values con
tained in the array in our example. In many ways, the array 
name may be used just as any other variable name; for 
example, the assignment statement 

v2 := vl 

acts just as you might suspect it would: all ten real values 
held in the array vl are copied into the corresponding ele
ments of v2. In other words, the assignment is a very compact 
shorthand for these ten individual assignments: 

v2[ 1] :"' v 1[ 1]; 
v2[2] := v 1 [2]; 
v2[3] := v 1 [3]; 

Arrays, Records, and Sets 305 



v2[9) := v I [9); 
v2[1Q]:=vl[IO] 

You are not restricted to using constants as subscripts. 
Pascal considers array subscripts to be expressions evaluated 
at the time the program is run. For example, this for loop 
initializes all elements of the array vl to consecutive square 
roots: 

for I:• I to !Odo 
v 1(1) := sqrt(i) 

After the for is executed, all elements of vl have defined 
values: 

Arrey 
vi: 

1.00 1.41 1.73 2.00 2.24 2.45 2.65 2.83 3.00 3.16 

v1(2] v1(4] v1(6] v1(8) vi (10) 

v1(1) v1(3) v1[5) v1171 v119) 

The only restrictions in constructing a subscript expres
sion are that the expression be of the correct type and that its 
value fall into the range specified by the definition of the 
array type. Accidental violation of this latter restriction is the 
most common pitfall in writing programs that use arrays. It 
is all too easy to attempt to access an array element using a 
subscript that is out of bounds according to the original type 
definition. You may have guessed that Pascal doesn't allow 
such mistakes to pass without comment; to see what happens, 
try the following program that incorporates the definitions 
we've been using: 

program array_lab; 
{ Experiments w1th arrays J 

type 
vector _type = array [I .. I OJ of real; 

var 
v I : vector _type; 
I, which : Integer; 

306 The First Book of Macintosh Pascal 



begin ( array_Jab } 
for i := 1 to lOdo 
v I[ i] := sqrt(i); 
whlJe TRUE do 
begin 
write('Enter array Index( 1-10):'); 
readln(whlch); 
writeln('vl[', which: I,'] is·, vl[which]: 16) 

end 
end. 

This program initializes the array to ten consecutive square 
roots and then asks for subscript values to display. Any 
entered number between 1 and 10 results in a different value 
displayed, which shows that there really are ten numbers in 
the array. If you type in a number not in the range of 1 to 10, 
however, this bug box appears: 

~ The ualue of a uarlable or subeHpresslon Is out of range for Its 
'kf.:l Intended use. 

When using arrays, it is always a good idea to build safe
guards into the program to protect against runtime errors 
like this. For example, the current version of the array _lab 
program could be made safer by checking the value of 
"which" before it is used as a subscript: 

If (which < I) or (which > IO) then 
wrlteln('Sorry -- that number is out of my league.') 

else 
writelnC'vl(', which: I,'] Is·, vl[which]: 16) 

Now that we have some practical experience under our 
belts, let's look at some more general rules for array defini
tion and use. Figure 11-1 shows the form used for defining 
the simple arrays we'll consider first. 

Note the subscript description-the part of the definition 
that goes inside the square brackets-is, syntactically, any 
ordinal type description. This subscript description may be
and often is-a subrange of the integer type, but Pascal 
doesn't restrict you to that form. Nor are there any special 
rules restricting the base type of the arrays you define. The 

Arrays, Records, and Sets 307 



Figure 11-1. 

[ (lrdinol 1 of I bm I or-ray type type 

Simple array type definition 

following type declaration section contains six legal array 
definitions: 

type 
month....type .. (JANUARY, FEBRUARY, MARCH, APRIL, 

MAY,JUNE,JULY,AUGUST,SEPTEMBER, 
OCTOBER, NOVEMBER, DECEMBER); 

computer_type .. (APPLE, IBtLPC, MACINTOSH, VAX, 
DEC I 0, Cot1'10DORE_64); 

chcounLarray = array [char] of Integer; 
saJes_array = array [month....type) of real; 
answer _array = array [Boolean) of string [30); 
tlle_array = array[l..7] of 'A'..'Z'; 
cosLarray =array [computer_type] of computational; 
summer _array • array [JUNE .. AUGUST) of longlnt; 

Here we have used the enumerated types month_ type and 
computer _type from the previous chapter. 

Pascal maintains a general policy of laissez faire toward 
your type definitions. If you can think up a use for, say, an 
array [Boolean] of real, Pascal will allow you to define and 
use it. This flexibility in the design of data structures is one 
of Pascal's most important features, one you will make use of 
again and again as you build more sophisticated programs. 

Of course, there are practical limitations on array use. 
Array variables, like any other variables, consume memory 
space. Since arrays, by definition, contain an arbitrary 
number of elements, it is very easy to define large arrays that 
consume impressive amounts of memory. For example, con
sider the following program. 

308 The First Book of Macintosh Pascal 



program array_lab; 
( Experiments on arrays l 

const 
ARRAy_SIZE = IO; 

type 
array_type .. array [I .. ARRAY--51ZE] of string; 

var 
a : array_type; 

begin ( array_lab l 
writeln('The array consumes·, slzeof(a): I,· bytes.') 

end. 

Type in and run this program; you should see the output: 

The array consuaes 2560 bytes. 

This makes sense: the array contains ten strings, and we 
showed in Chapter 7 that strings require 256 bytes of memory 
each. To find out how much memory is available for variables 
in Macintosh Pascal, simply increase the constant definition 
for ARRAY _SIZE until you get this bug box: 

~ The 11uoiloble memory for uoriobles definell 11t this leuel hos been 
'K[;{ eHh11ustel1. 

(You may see a slightly different bug box from the one pic
tured here.) 

By experimenting, you can find the largest number for 
ARRAY _SIZE that will avoid this bug box, which will give 
you a rough idea of the amount of memory available to Macin
tosh Pascal programs and variables. (If you have a 512K 
Macintosh you may notice that sizeof returns a negative "size" 
for values of ARRAY _SIZE over 127. This is a bug in the 
Macintosh Pascal version 1.0 that may be fixed in later 
versions.) 

We've just seen that arrays are restricted by the amount of 
memory available to your program. In some cases, the 
memory required for array variables may be reduced by 

Arrays, Records, and Sets 309 



designating the array types to be packed. This is done in the 
type definition simply by preceding the word array by the 
reserved word packed, for example: 

type 
chcounLarray • packed array [char] of Integer; 
answer _array = packed array [ 1 .. 30) of Boolean; 
tlJe_array =packed array[l..7] of 'A' . .'Z'; 
block = packed array (0 .. 511 J of 0 .. 255; 

You should think of the word packed as a request for the 
array to consume as little space as possible. Whether the 
array will actually take up less memory as compared to an 
unpacked array is up to the particular version of Pascal you 
use. For Macintosh Pascal version 1.0, the packed definition 
only saves space when the base type of the array is a charac
ter or a character subrange. The documentation for Macin
tosh Pascal claims byte-size integer subranges 0 .. 255 and 
-128 .. 127 are also packed, but this is not the case in version 
1.0. So in the four packed array declarations shown, only the 

pack(a, i, pa) 
arguments: a - array-type variable 

i - value of a type compatible with index 
type of a 
pa - packed array variable of same base 
type as a 

description: transfers values from array a starting at 
a[i] to array pa until pa is filled 

unpack(pa, a, i) 
arguments: pa - packed array-type variable 

i - value of a type compatible with the 
index type of a 

description: transfers values from array pa to array a 
starting at a[i] until entire array pa has 
been copied 

Figure 11-2. 

Pack and unpack procedure 
descriptions 

310 The First Book of Macintosh Pascal 



third actually results in any saving of memory. (You can 
verify this yourself by experimenting with the sizeof function.) 

Standard Pascal provides two procedures to transfer 
array element values from packed arrays to unpacked arrays 
of the same base type, and vice versa; they are called pack 
&pd unpack. Figure 11-2 describes these procedures. 

Let's briefly discuss the rules to follow in the use of 
arrays. In general, unlike the simple types, there is no way to 
write an array constant, that is, to set all elements of an array 
to a constant value with a single assignment statement. For 
example, if vl is an array of vector _type, as previously 
defined, the assignment 

vi:• 0.0 

is totally illegal; it does not set all elements of vl to 0. To do 
that a program must assign each element of the array to 0. 
One method is to use a for loop: 

for I := I to Io do 
v 1(1) := 0.0 

For similar reasons, it is generally not possible to input or 
output an entire array using a single read(ln) or write(ln) 
statement; you must read and write array elements one at a 
time (assuming, of course, that the array elements are of a 
type that may be directly read or written). 

A program may not compare two entire array variables, 
even if they are of identical type. Some versions of Pascal 
allow array comparison but usually only for equality ( =) or 
inequality (<>). For most types of arrays it makes no sense 
to refer to one array as being "less than" or "greater than" 
another. 

You may pass either entire arrays or individual array 
elements as arguments to procedures and functions. The 
normal rules apply concerning agreement of the types of 
arguments in subprogram calls and the corresponding sub
program definitions. Generally, if you pass a value argument 
of a certain type, the subprogram should be expecting a value 
or variable of that same type or a compatible type. If an 
argument is a variable argument, on the other hand, the 
types of the expected and actual argument must be identical. 
You may not pass an element of a packed array as a variable 
argument. 

Arrays, Records, and Sets 311 



Often Pascal programmers will choose to pass array 
arguments as variables rather than values, even when the 
array variable arguments do not return values from the sub
program (which is the normal reason for specifying variable 
arguments). The reasoning behind this practice is subtle, but 
worth knowing. Remember, a value argument is copied into a 
local variable when the subprogram executes. This copying 
process consumes extra memory; it also takes a small amount 
of time to make the copy. While these factors are negligible 
for small arguments (integers, characters, reals, and so 
forth), they become more noticeable when large arrays must 
be copied into temporary local variables every time a subpro
gram executes. For variable arguments, no such copying 
occurs. The same region of memory is referenced both in the 
subprogram and in the calling program. The result is a 
potentially large saving of memory and a relatively small sav
ing of time. 

Finally, there is a rule that Pascal functions may not 
return array-type values. In general, Pascal functions may 
only return simple types and (for Macintosh Pai:;cal only) 
string types as results. 

Some of Pascal's general rules concerning arrays are 
relaxed for a special kind of array called a packed string type. 
Packed strings are often used in the same fashion as Macin
tosh Pascal's string type. (Be careful. Packed strings are 
often simply called strings in texts dealing with Standard 
Pascal. We will refer to them as packed strings to distinguish 
them from Macintosh Pascal's nonstandard string type. This 
terminology is also followed in the Macintosh Pascal docu
mentation.) P;:i.cked strings are defined in the following way: 

packed array [ 1 .. n J of char 

Here n represents a positive integer constant giving the size 
of the packed string. Rules for packed strings, as opposed to 
normal arrays, are as follows: 

• You may set an entire packed string variable to a string
constant value. The only restriction is that the string 
constant must contain exactly as many characters as 
specified in the packed string's definition. 

• An entire packed string variable may be written using a 
single write or writeln statement. 

312 The First Book of Macintosh Pascal 



• Packed string variables or constants may be compared 
for equality ( =) and inequality(<>), and for ordering 
using the other four relational operators (<, >, <=, 
>=). Comparison gives the same results as string com
parison discussed earlier. The only restriction is that the 
packed string variables or constants being compared 
must contain the same number of characters. 

Some of these rules are illustrated by the following pro
gram. Note that the packed string constants are padded with 
space characters on the right to expand them to the declared 
length of the packed string: 

program paoc_lab; 
( Experiments on packed arrays of characters } 

const 
WORDSIZE • 10; 

type 
word • packed array [I .. WORDSIZEJ of char; 

var 
w I, w2: word; 

begin ( paoc_lab } 
w I :='apple · 
w2 :"' 'orange '; 
t f w I < w2 then 
wr1teln(w I, · Is less than ·, w2) 
else if w I > w2 then 
wrlteln(w I, · is greater than ', w2) 

else 
writeln(w I,· Is equal to·, w2) 

end. 

What we are calling packed strings are the only string
type variables available in Standard Pascal. They are useful 
primarily when you want to write or run a Pascal program 
that adheres strictly to Standard Pascal. Otherwise, Macin
tosh Pascal's built-in string type is considerably more flexible 
and easier to use. 

Packed strings and strings are roughly compatible types. 
You may assign values of a packed string type to string vari-

Arrays, Records, and Sets 313 



ables and vice versa, as long as you don't do something 
obviously wrong, such as trying to stuff a 20-character string 
into a 10-character array. 

For many purposes, you may treat the Macintosh Pascal 
string type as an array of characters. For example, if s is a 
string variable, then s[3] represents the third character in 
the string. It is an error, however, to use this technique to try 
to access a character past the current length of the string. 

The base type of an array type can be, generally, any 
other type including another array type; you may easily 
define an array of arrays or an array of arrays of arrays, and 
so on. Such arrays are known as multidimensional arrays; 
each level of array nesting is said to add another dimension to 
the array type. For example, we could define a new type 
called matrix_type that would hold ten elements of the 
vector _type we've already discussed: 

type 
vector_type .. array [I.. I OJ of real; 
matrix....type • array [I.. I OJ of vector_type; 

Alternatively, we could define the matrix type all at once: 

type 
matr1x_type = array [I .. I OJ of array [I .. I OJ of real; 

Although this bulky definition is legal, Pascal allows us to 
specify both subscripts within one set of square brackets: 

type 
matrlx....type .. array [I .. Io, I .. I OJ of real; 

All three methods are legal in Pascal and using one over 
another is usually a matter of personal taste or convenience. 
Once a multidimensional array type has been defined, you 
may define variables of that type, as in 

var 
matrix : matrix....type; 

Even though matrix is an array of arrays, references to it 
and its elements follow the same rules already presented. 
First of all, the single identifier 

314 The First Book of Macintosh Pascal 



matrix 

is a reference to the entire two-dimensional array containing 
100 (10 times 10) real numbers. Since matrix may be consid
ered an array of vector _type values (by the first definition), 
the array name and subscript combination 

matrix[1] 

refers to the ith element of matrix, which happens to be a 
variable of vector_ type. To access one of the elements of the 
vector _type variable, we play the same game of appending a 
subscript to the variable name: 

matrix[1][j J 

Now our identifier refers to a real variable, thejth component 
of the vector _type variable which itself was the ith compo
nent of the matrix_ type variable. Once more, Pascal allows 
a shortcut in referring to elements of multidimensional 
arrays so that this reference may be rewritten 

matrtx(j, j] 

Arrays allow easy manipulation of potentially large 
amounts of data. Consider the problem of counting the occur
rences of all different characters within an input text. With
out arrays, we would have to maintain an integer counter 
variable to keep track of how many A's were seen, another 
one for B's, and so on. With arrays now at our disposal, we 
can accomplish this task by declaring an array of nonnegative 
integers containing one element for each possible character: 

type 
charcount =array [char] of O .. MAXINT; 

var 
count : charcount; 

The subrange 0 .. MAXI NT limits us to using only inte
gers 0 and greater. This technique is often used to emphasize 
to someone reading the program that the variables involved 
are counters, and may not be negative. In addition, as de-

Arrays, Records, and Sets 315 



scribed in Chapter 10, subranges are promises to Pascal that 
values outside the subrange will not be assigned to the vari
ables in question. As such, they are a useful check on the 
internal consistency of your program. In pseudo-code a pro
gram to count the number of occurrences of characters would 
look like this: 

set all ele•ents in counter array to zero 
repeat 

get a line of input 
for each character in line 

incre•ent corresponding array ele•ent 
until an e•pty line la entered 
report results 

Note we are following our usual method of accepting input 
lines until the user enters an empty line by just pressing the 
RETURN key. This can be translated into a short and sweet 
program: 

program charfreq; 
(count frequencies of all characters in input text) 

type 
charcount = array [char] of O .. MAXINT; 

var 
line : string; 
count: charcount; 
ch: char; 
t: integer; 

beg In [ charf req ) 
write('This program counts the frequency of '); 
writeln('occurrence of all characters in an input text.'); 
wrlte('Enter text one line at a time; enter an empty'); 
wrlteJn('Jine when done.'); 
for ch := chr(O) to chr(255) do 
count[ch] := O; 

repeat 
readln(llne ); 
for i := I to lengthOine) do 
begin 
ch:= Jine[i]; 
count[ch] := count[ch] + I 

end 

316 The First Book of Macintosh Pascal 



unt i 1 length( I ine) <"' O; 
write ln('Results:'); 
for ch := chr(O) to chr(255) do 
if count[ch] > O then 
begin 
write("", ch, ... occurred·, count[ch]: I, · time'); 
if count[ch] > I then 
writeln('s') 

else 
write In 

end 
end. 

Type in and run this program, testing it on your own input 
text. (You will want to expand the Text window to see more of 
the output.) As an exercise, modify this program so that it 
counts occurrences of letters only, merging the counts for cor
responding upper- and lowercase letters together. (Try using 
the to_lower function from Chapter 9.) For a new program, 
you might count occurrences of letter pairs, reporting their 
frequency at the end of the input text. For this program you 
might use a two-dimensional array defined as follows: 

type 
pair _count = array ['a' . .'z', 'a' . .'z'] of integer; 

Arrays also make it easier to use more sophisticated 
graphics effects in your programs. As an example, let's 
design a program to simulate a large number of rolls of a 
pair of dice. The program will keep track of how many times 
each possible value is rolled. Instead of simply printing out a 
numeric table of the results at the end, however, let's display 
the results graphically, in histogram (bar graph) format. And 
better yet, let's display the histogram in real time, as the dice 
are being rolled, so we can get an idea of how the relative 
probabilities of each roll change over time. 

Possible values resulting from a roll of two dice are the 
whole numbers from 2 to 12. To keep track of how many 
times each value occurs, we'll need a counter array type: 

type 
roll= 2 .. 12; 
rolLarray =array [roll] of integer; 

Arrays, Records, and Sets 317 



var 

count: rolLarray; 

In order to display a proper histogram, we'll need to paint 
11 different rectangles in the Drawing window. A typical his
togram generated during program execution might look like 
this: 

Drawing 

I I 
To paint each rectangle bar in the histogram, we will need 

numbers giving the top, left, bottom, and right sides of the 
bar. Again, it will be most convenient to keep these numbers 
in arrays, as follows: 

var 
top, left, bottom, right: rolLarray; 

The element 

right[6] 

will store the coordinate giving the right edge of the bar 
representing the number of times the value 6 is thrown. For
tunately, the bottom, left, and right sides of each histogram 
bar will not change as the program progresses; all we will 
need to do is to change a bar's top value and repaint the rect-

318 The First Book of Macintosh Pascal 



angle to make it grow upward. As usual, we begin with 
pseudo-code to set up the overall strategy of the program: 

Initialize bar edges, roll-count array 
get total nu•ber of thro•s fro• user 
for each thro. 

deter•lrie thro• value 
incre•ent corresponding count 
update hlstogra• bar length 
if off-scale 

erase and rescale all bars 

Here we have admitted the possibility that the histogram 
bars may grow so tall that they will extend outside the Draw
ing window. We'll handle this problem by maintaining a 
"scale" variable; the actual pixel height of the bars will be the 
number of throws divided by the scale variable. Whenever a 
bar gets too big to be drawn in the window, we'll increase the 
scale and then erase and redraw the bars using the new scale. 

The main program can now be written, assuming we can 
call on subprograms to do much of the dirty work: 

program dlce_slmulatlon; 
( Simulate a number of throws of two dice } 

type 
roll= 2 .. 12; 
rolLarray = array(roll) of integer; 

var 
top, left, bottom, right: rolLarray; 
count: rolLarray; 
scale: integer; 
i, numthrows: Integer; 
throwval : roJJ; 

( Insert procedure ln!Ldlce_sfmulation 
( Insert function randlnt } 
( Insert procedure update} 
( Insert procedure rescale } 

begin ( dlce_slmulation } 
inlLdlce_slmutation; 

Arrays, Records, and Sets 319 



write('Enter number of throws for simulation:'); 
readln(numthrows); 
for i := I to numthrows do 
begin 
throwval := randint( I, 6) + randint( I, 6); 
count[throwval] := count[throwval] + I; 
update(throwval, count, top, scale); 
if top[throwval] <• o then 
rescale(count, top, scale) 

end 
end. 

We have already seen the randint function in Chapter 9, so 
we'll only consider the other subprograms here. The first, 
init_dice-simulation, performs a task common to many 
Pascal programs: initialization of global variables. With it we 
can set up the count array to contain zeros and assign the 
proper values to our histogram bar edges: 

procedure iniLdlce_stmulation; 
[ Initialize global variables } 

const 
BAR....OFFSET = 5; 
BAR....WIDTH = 10; 
BAR....SPACING .. 18; 
BAR....BOTTOM = 200; 

var 
I : roll; 

begin [ lnlLdlce_simulation } 
for i := 2 to 12 do 
begin 
count[i] :• O; 
bottom[i] := BAILBOTTOM; 
left[ I]:• BAR....OFFSET +(I - 2) * BAJLSPACING; 
rlght[IJ := left[i] + BAR....WIDTH 

end; 
scale:• I 

end; 

The bar positions in the Drawing window are defined using a 
few constants: BAR-WIDTH is the width of each bar in 

320 The First Book of Macintosh Pascal 



pixels, BAR-SPACING is the distance between adjacent 
bars, BAR-OFFSET is the position of the left edge of the 
leftmost bar, and BAR-BOTTOM is the coordinate of the 
bottom edge of the bars. Defining these quantities as con
stants makes them easy to change and also may aid someone 
reading the program in understanding how the bars are set 
up. 

The update procedure repaints the proper histogram bar 
based on the new value thrown. It recalculates a new value 
for the top of the bar based on the new count for that bar and 
the current scale, then calls paintrect to draw the new rec
tangle. The update procedure is written as follows: 

procedure update Ct : ro II; 
var count, top: rolLarray; 
scale: integer); 

( redraw bar for new throw ) 

begin ( update } 
top[t] := bottom[t] - count[t] div scale; 
paintrect(top[t], left[t], bottom[tJ, right[t]) 
end; 

Finally, the rescale procedure erases all the bars, doubles 
the scale, and calls update to redraw the bars at the new 
scale: 

procedure rescale (var count, top: rolLarray; 
var scale : Integer); 

(erase, rescale, and redraw histogram bars} 

var 
i : roll; 

begin ( rescale ) 
for I := 2 to 12 do 
eraserect(top[I], left[i], bottom[I], rlght(i]); 
scale : .. 2 * scale; 
fori:=2tol2do 
update(!, count, top, scale) 

end; 

Try this program using several different values for the 
total number of throws. If you have some background in 

Arrays, Records, and Sets 321 



RECORDS 

probability you might compare the results from this simula
tion with the theoretical results. As an exercise, see if you can 
modify the program to draw horizontal bars from left to 
right across the Drawing window. As a slightly more difficult 
problem, modify the program to label each bar with the value 
of the throw it represents. (Try setting the bottoms of the bars 
a little higher in the Drawing window.) 

Another structured type available in Pascal is the record. The 
rationale behind record types is very similar to that behind 
array types: the need to collect a number of variables under 
the same name and handle the variables as a unit. In the pre
vious section, we saw that array types accomplished this func
tion for variables of the same type. We use records for group
ing variables of different types. 

To define a record type, you must provide Pascal with the 
following information: 

• A name for each variable in the record 

• The type of each variable in the record. 

That's really all there is to it. A bit of nomenclature is also 
needed in dealing with records: each individual variable in a 
record is called a field (in contrast to arrays, where each 
variable was called an element). 

For example, ~upfit>se you wanted to group all the infor
mation pertaining to a checking account transaction in a sin
gle place. A sample record definition for such a type might 
look like this: 

type 

checkbooLrec = record 
checLnum: integer; 
trans_month : monttLtype; 
trans_day : 1 .. 31; 
trans_year : integer; 
payee : string [30); 
cleared : Boolean; 
amount : rea 1 
end; 

322 The First Book of Macintosh Pascal 



In words, this says variables of type checkbook_rec will con
tain seven fields: 

1. Check_num, an integer giving the number of the 
check used in the transaction. 

2. Trans-month, an enumerated type, representing the 
month of the transaction. (This assumes the definition 
of the enumerated type month_ type precedes the 
record definition.) 

3. Trans-day, an integer subrange 1. .31 representing 
the day of the transaction. 

4. Trans _year, an integer giving the year of the trans
action. 

5. Payee, a string of size 30, representing the person to 
whom the check is payable. 

6. Cleared, a Boolean quantity telling whether the trans
action has cleared at the bank or not. 

7. Amount, a real number giving the amount of the trans
action. 

We could probably come up with additional fields, but these 
will do for our example. 

Remember, defining a type does not actually create any 
variables of that type. Once the type has been defined, how
ever, variable definition works just as before: 

var 
trans I, trans2: checkbook-rec; 

This creates two record variables, transl and trans2, of the 
checkbook-rec type. You might picture record variables as 
oddly shaped collections of individual variables: 

Record 
trens 1: 

checl<-num 

trans_month 

trans_day 

tnms_year 

payee J 
cleared l 
amount J 

Arrays, Records, and Sets 323 



Programs access individual fields of a record variable by 
specifying the record's name followed by a period and the 
field's name. The combination of the record name and the 
field name can be used just as if it were a variable of the type 
named in the record's type definition. Using the variables just 
defined, we might record a check written to a Macintosh 
software supplier as follows: 

transl.checlLnum :"' 235; 
transl.trans._rnonth :=JANUARY; 
trans l.trans_day := IO; 
transl.trans_year := 1986; 
trans I .payee:= 'Intercontinental Mouse Food'; 
trans I .c I eared := FALSE; 
trans I.amount := 199.95 

The net effect of these assignments could be pictured as 
follows: 

Record 
tnmsl: 

235 

JANUARY 

10 

1966 

·intercontinental Mouse Food· 

FALSE I 
199.95 J 

J 

Just as we saw with arrays, using the name of the record 
variable all by itself refers to the entire record. The assign
ment statement 

trans2 := trans 1 

copies all the fields from the variable transl into the variable 
trans2. This is a shortcut to assigning each field separately as 
shown here, 

trans2.chec1Lnum := trans 1.checlLnum; 
trans2. trans.....month :• trans 1. trans.....month; 
trans2. trans_day :• trans 1. trans_day; 
trans2.trans_year := trans 1.trans_year; 

324 The First Book of Macintosh Pascal 



with record do 
identifier 

lstotement I 

Figure 11- 3. 

with statement syntax 

trans2.payee := trans 1.payee; 
trans2.cleared :"'trans 1.cleared; 
trans2.amount := trans 1.amount 

but the net effect is the same in both cases. 
You may have noticed that accessing fields in records can 

be rather long-winded and involves a fair amount of repeti
tious typing. Pascal provides a statement to help relieve this 
problem: the with statement. The syntax of the with state
ment is shown in Figure 11-3. Informally, the with statement 
is used to specify that all field names in the sub-statement 
nested within the with should be automatically prefixed with 
the named record identifier. 

The previous assignments, for example, could be more 
succinctly written using a with: 

with transl do 
begin 
checlLnum := 235; 
trans_month :=JANUARY; 
trans_day := 1 O; 
trans_year := 1986; 
payee:= 'Intercontinental Mouse Food'; 
cleared := FALSE; 
amount := 199. 95 

end 

Like other statements, with statements may be nested to 
an arbitrary depth. This can be useful when a record con
tains one or more fields which are themselves records; we 
will consider an example shortly. To decrease the nesting 
depth, Pascal allows nested with statements in the form 

with reel do 
with rec2 do 

statement 

to be rewritten in the form 

with reel, rec2 do 
statement 

Let's build some general rules based on the specific exam
ple just seen. The syntax sketch for a record type definition is 

Arrays, Records, and Sets 325 



Figure 11- 4. 

record 

fie/did ~ • type ; 
list 

f/f!ld id • I type I 
list 

end; 

Record type definition syntax 

shown in Figure 11-4. Standard Pascal allows the word 
packed to precede the word record in a record definition, 
indicating that variables of the type should consume as little 
memory as possible. Macintosh Pascal version 1.0 doesn't 
allow this request, however. (Future versions may.) 

Also, there are no particular restrictions on the number or 
the types of fields you may collect into records. It's a good 
idea to use record types whenever it makes the data struc
tures used by the program clearer and easier to use. We will 
discuss a number of examples here, but in general, recogniz
ing appropriate places for using records (or any particular 
data structure) takes a certain amount of creativity and 
experience. 

Just as we found that arrays of arrays were legal in Pas
cal, it is also possible to define a record field that is itself a 
record type: records may contain records. For example, in 
designing a check-transaction record, you might find it 
cleaner to group the three fields concerning the date into a 
single record field. This would require, first, defining a 
record to hold the three values: 

type 

date_rec = record 
month : monttL.type; 
day: 1..31; 
year : integer 
end; 

326 The First Book of Macintosh Pascal 



Then the simplified check-transaction record could be writ
ten as follows: 

type 

checkbooLrec = record 
checlLnum: integer; 
trans_date: date_rec; 
payee : string [30]; 
cleared: Boolean; 
amount : real 

end; 

Referencing fields of records-within-records is a simple 
extension of the rules we have already discussed. Assuming 
that transl is a variable of the checkbook-rec type as before, 
then the reference 

trans 1.trans_date 

describes a variable of the type date-rec. To access fields of 
this variable, we simply reapply the "append a period and the 
field name" rule. For example, 

trans 1.trans_date.month 

trans 1.trans_date.day 

trans 1. trans_date. year 

are the fields containing the month, day, and year of the trans
action transl refers to. Using these rules together with 
appropriate with statements, the assignments to the fields of 
the transl record could be rewritten as: 

with trans 1 do 
begin 
checlLnum := 235; 
with trans_date do 
begin 
month := JANUARY; 
day:= 10; 
year:= 1986 
end; 

payee:= 'Intercontinental Mouse Food'; 

Arrays, Records, and Sets 327 



cleared:" FALSE; 
amount:= 199.95 
end; 

or, equivalently 

with trans I, trans_date do 
begin 
checlulum := 235; 
month:= JANUARY; 
day:= 10; 
year := 1986; 
payee:= 'Intercontinental Mouse Food'; 
cleared:= FALSE; 
amount:= 199.95 

end 

Just as there is no special restriction on the types that may 
become the base type of an array variable, there is no restric
tion on the types that may be fields in a record. We can even 
define individual record fields as array types. We may also 
define an array to be an array of records. Both varieties of 
data structure are common in Pascal programs. 

As an example, let's write a program to simulate shuffling 
a deck of cards and dealing a bridge hand containing 13 
cards from the deck. Each card has two attributes: its rank 
(Ace; King, Queen, and so on) and its suit. We can group these 
two attributes into a record definition such as 

type 

card.....rec = record 
rank: ranlLtype; 
suit: suiLtype 
end; 

where the enumerated types suit_type and rank_ type have 
been previously defined as 

type 
ranlLtype = (Two, Three, Four, Five, Six, Seven, Eight, 

Nine, Ten, Jack, Queen, King, Ace); 
suiLtype = (Clubs, Diamonds, Hearts, Spades); 

328 The First Book of Macintosh Pascal 



It's natural to consider a deck of cards as an array, since 
the elements of the deck are all the same type, namely indi
vidual cards. The same argument applies to sub-units of the 
deck, such as bridge hands. In Pascal, we would write: 

type 

declLarray = array [ 1 .. DECl<-SIZE) of car<Lrec; 
hancLarray = array [ 1 .. HAND_SIZE) of car<Lrec; 

Here HAND-SIZE and DECK-SIZE are the previously 
defined constants 13 and 52. 

Given this data structure, the program must first initial
ize the deck, shuffle it, then deal 13 cards from the deck 
array into the hand array. This is simple enough to write 
immediately, assuming as always that the details of the pro
cess will be hidden away in subprograms: 

program bridge_deal; 
( Deal a bridge hand from a deck of cards } 

const 
DECl<-SIZE = 52; 
HAND_SIZE = 13; 

type 
ran!Ltype =(Two, Three, Four, Five, Six, Seven, Eight, 

Nine, Ten, Jack, Queen, King, Ace); 
suiLtype = (Clubs, Diamonds, Hearts, Spades); 
car<Lrec = record 
rank : ranlLtype; 
suit : suiLtype 

end; 
declLarray = array [I .. DECl<-SIZE) of car<Lrec; 
hancLarray =array [ 1 .. HAND_SIZE) of car<Lrec; 

var 
deck : declLarray; 
hand : hancLarray; 

( Insert procedure iniLdeck } 
( Insert procedure shuffle } 
( Insert procedure deal } 
( Insert procedure show_hand ) 

Arrays, Records, and Sets 329 



begin ( bridge_deal } 
iniLdeck{deck); 
shuffle(deck); 
deal(deck, hand); 
showJland{hand) 

end. 

The first procedure, init-deck, must set up an unshuffled 
deck. This is done using nested for loops and an independent 
index variable that steps through each card in the deck 
array: 

procedure 1n1Ldeck <var deck: declLarray); 
(initialize deck array} 

var 
i: integer; 
r: ranlLtype; 
s : suiLtype; 

begin ( iniLdeck } 
i :=I; 
for s := Clubs to Spades do 
for r :=Two to Ace do 
begin 

deck[i].rank := r; 
deck[i].suit := s; 
i := i .. I 

end 
end; 

Be assured that no matter how complex and convoluted 
your data structures, any particular element or field may be 
accessed by following the consistent and relatively simple 
rules Pascal provides. Note the method of referring to an 
individual field of a single record of an array of records. In 
this program, the variable 

deck 

refers to an entire array. To refer to a single element of the 
array, we must append a subscript within braces: 

deck[1] 

330 The First Book of Macintosh Pascal 



This is a reference to a single element of the array deck, 
which (by the array definition) is a record. To access a field of 
the record, remember the rule is to append a period and the 
field name: 

deck[ i].suit 

Hence the references in the init_deck procedure. (As an 
exercise, you might try rewriting init_deck using a with 
statement.) 

The next routine to consider is shuffle. Shuffling a deck of 
cards (or any array) is a common problem in game pro
gramming; it is also easy to do incorrectly or inefficiently. We 
need to come up with a random (unpredictable) arrangement 
or permutation of the deck. The algorithm we'll use to gener
ate a random permutation of the deck is simple and fast, 
although the proof of its correctness is beyond the scope of our 
discussion. In pseudo-code, the algorithm to shuffle an array 
containing n elements looks like this: 

for I :• 1 to n - 1: 
set j :• rando• integer bet•een I & n (I i j i n) 
a•ap ele•ent •1 and ele•ent •j (If I - j) 

The translation of this into the Pascal procedure shuffle is 
straightforward: 

procedure shuffle (var deck: decLarray); 
( shuffle deck of cards l 

var 
I, j : I .. DECl<-SIZE; 
c : card....rec; 

( Insert f(Jnction randint} 

begin [ shuffle l 
for I := I to DECl<-SIZE - I do 
begin 
j := randlntCI, DECl<-SIZE); 
if i <> j then 
begin 
c := deck[i]; 
deck[I] := deck[j]; 

Arrays, Records, and Sets 331 



deck[j] := c 
end 

end 
end; 

To deal the bridge hand from the shuffled cards, we'll just 
move the first 13 elements of the deck array to the hand 
array. (If we wanted to be slightly more realistic, we would 
deal every fourth card from the deck array into the hand 
array, but since the arrangement of the deck is random, this 
simpler process shouldn't make any difference.) 

procedure deal (var deck: decLarray; 
var hand : han<Larray); 

( deal cards from deck Into hand ) 

var 
I: 1..HANCLSIZE; 

begin ( deal ) 
for i := I to HAND-51ZE do 
hand[i] :• deck[i] 

end; 

The last procedure we need is one to display the hand after it 
has been dealt, show _hand. We'll designate the Drawing 
window for display: · 

procedure show-hand (var hand: han<Larray); 
(display cards In hand l 

con st 
SPACING = 15; 
OFFSET• 15; 

var 
i: l .. HAND-51ZE; 

begin ( show-hand ) 
for i :• I to HAND-51ZE do 
begin 
moveto(5, Ci - 1) *SPACING + OFFSET); 
with hand[i] do 
wrltedraw(rank, • of ', suit) 

end 
end; 

332 The First Book of Macintosh Pascal 



The following shows a typical result: 

Ora111ing 
Kini] of Clut1s 
EigM of Spades 
Four of Di arnon1js 
Six of Hearts 
._lack of Diamonds 
:=;even of Di arnond::: 
Seven of Clubs 
Three of Cl ut1s 
Ace of Spades 
Jack of Hearts 
niree of ::;pa1jes 
Queen of Cl ut1s 
T1No of Clubs 

Try out this program. As an exercise, modify it to display 
all four bridge hands generated from the shuffled deck. 

A few miscellaneous but important points about records, 
similar to the points made in the previous section about gen
eral arrays: 

• Entire record variables may not be compared with the 
relational operators, even for equality or inequality. 
Records must be compared field by field (assuming the 
fields are comparable). 

• Functions may not return record values as results. 

• There is no way to write a record constant. 

• Records cannot be written or read directly using 
write(ln) or read(ln) statements. 

• Since records often consume relatively large amounts of 
memory, they are often specified as variable arguments 
to subprograms even when the subprogram does not 
affect their values. 

VARIANT RECORDS 

In the previous section, we saw how records could be used to 
group together logically related values under a single vari
able name. While this is a powerful capability, it is sometimes 

Arrays, Records, and Sets 333 



convenient to be able to define a single record type that may 
contain different fields. The actual field names and types 
would vary depending on conditions arising when the pro
gram runs. Such records are called variant records, and they 
are special enough to be considered separately. 

Let's consider an example first. Suppose you were writing 
a scholarly paper and you wished to accumulate an impres
sive list of references. If you wanted to use your computer to 
help in this task, your first thought might be to design a data 
structure to hold a reference to a book, as follows: 

type 

booLref =record 
author : string (40]; 
title: string (30]; 
edition : integer; 
year _published: integer; 
publisher _name : string (40]; 
publisher _city: string (20] 

end; 

This is suitable for recording book references, but books 
are only one possible source of information. A reference to an 
article in a periodical would require some of the same fields, 
but others (edition, publisher's name and city) would be 
superfluous, while additional ones would be necessary for 
recording the name of the periodical, its publication date, and 
so on. We might write a record for storing periodical referen
ces this way: 

type 

periodicaL.ref =record 
author: string (40]; 
title: string (50]; 
year _published: integer; 
periodical_name: string (40]; 
month_published: monttLtype; 
first_page, last_page: integer 

end; 

Keeping two different record types for two different vari
eties of reference is not an ideal solution, however. One impor-

334 The First Book of Macintosh Pascal 



tant reason is that it would be difficult to write general
purpose, reference-handling subprograms. For example, 
instead of writing a single procedure to display the informa
tion contained in a reference entry, you would need one 
procedure to display a book-type reference, and another one 
to display a periodical-type reference. This could easily 
become intolerable if you needed to keep track of a large 
number of different reference varieties. 

One possible solution is to combine fields for both kinds of 
reference in a single record definition and to use an enumer
ated type value to signal which kind of reference is actually 
contained in the record: 

type 

ref erence_type = (BOOK, PERIODICAL); 

combine<Lref .. record 
author: string [40); 
title: string [50); 
ref type : ref erence_type; 
edition: Integer; 
year_published: integer; 
publisher _name: string [40); 
publisher _city: string [20); 
perlodlcaLname: string [40); 
month_published: montlLtype; 
f lrst_page, last_page: integer 

end; 

The problem here is, of course, that memory is used ineffi
ciently: records containing book references don't use the 
fields pertaining to periodicals, and periodical references 
don't use the book fields. Some of this inefficiency could be 
alleviated by combining fields together, specifying for .exam
ple "If this reference is a book, this field is used to hold the 
publisher's city, but if it is a periodical it holds the name of 
the periodical." Obviously, this course is fraught with peril 
and often can't be easily done when the types involved are 
different. 

Pascal's solution is simple, at least when compared to the 
alternatives. A variant record definition to hold both types of 
references might appear as follows. 

Arrays, Records, and Sets 335 



reference_rec =record 
author: string (40]; 
title: string (50]; 
year_published: integer; 
case ref type : ref erence_type of 
BOOK: ( 

); 

edition: integer; 
pub I isher _name : string [ 40]; 
publisher _city: string (20] 

PERIODICAL : ( 
periodicaLname: string [40]; 
month._published: month._type; 
firsLpage, lasLpage: integer 

) 

end; 

The beginning of the record definition follows the same 
format we discussed previously: a list of field names followed 
by types. Following this fixed part of the record definition 
comes the variant part: the part that differs depending on 
what we want to store in the record. Note the use of a case to 
distinguish between the two different types of reference. 
(Don't confuse this use of the word case with its use in a case 
statement.) The variants are distinguished by the value of the 
tag field (reftype, in this case). 

Informally, this definition says that both types of refer
ence will hold the author's name, a title of the work, and the 
year of publication. If the reference is a book, the record will 
also store the publisher's name and city, and the edition of the 
book. If, on the other hand, the reference is to a periodical, 
the record will contain the name of the periodical, the month 
it was published, and the first and last pages of the refer
enced article. The use of memory will be economized because 
the same region of memory will be used for storing the fields 
in the different variants. 

Let's assume ref has been declared to be a variable of the 
reference-rec type. A code segment used to enter informa
tion into the variant record might appear as follows: 

with ref do 
begin 
wrlte('Enter the author(s):'); 
readln(author); 

336 The First Book of Macintosh Pascal 



record 
r·;~~;~~-;;-;;-;;·;;·1 

! definitions! ________________________ J 

r-;~;~:-.;-;,1··;i;i-d1 
l def/nit ions ! . ' 
'------------------ - - -- .. J 

end; 

Figure 11- 5. 

Record type definition 
syntax (with variants) 

write('Enter the title:'); 
readln(title ); 
write('Enter the year of publication:'); 
readln(year _published); 
write('Enter the reference type (book or periodical):'); 
readln(ref type); 
if reftype = BOOK then 
begin 
write('Enter the edition:'); 
readln(edition); 
write('Enter the pubisher"s name:'); 
readln(publisher _name); 
write('Enter the publisher"s city:'); 
readln(publisher _city) 
end 

else 
begin 
wrlte('Enter the publication month (by name):'); 
readln(month_published); 
write('Enter the periodical"s name:'); 
readln(periodica !_name); 
wrlte('Enter the first page of the article:'); 
readln(f lrst_page ); 
write('Enter the last page of the article:'); 
read In( last_page) 
end 

end 

Note this program segment only accesses fields applying to 
periodical references if the ref _kind field has a value other 
than BOOK, and the book-type fields are only touched if ref_ 
kind is BOOK. It is illegal to refer to a variant field if its 
variant is not in use. 

The syntax previously discussed for record definitions is 
simply expanded to include variants. Figure 11- 5 shows the 
new syntax with the fixed part of the record the same simple 
list of names and types we've seen before. The syntax of the 
variant part is shown in Figure 11- 6. 

In general, the tag field controlling the variant part may 
be any ordinal type, and there is no arbitrary limit on the 
number of different variants you may define in a record. It is 
an error if the tag field takes on a value not listed as one of 
the tag constants. 

Arrays, Records, and Sets 337 



,. ................................... .. 
! t11g field "--, 

case 1 'A t .1 . : 1 ! luen 1 1er ,. .. J 
t11g field of 

type 
. ""·------··--·------"' ....._ ___ _. 

Figure 11-6. 

t11g field . ( 
const11nt · 

,. ....................................... ., 
! field list ! L_ ____ , ____________ J 

) ; 

t ll!J field : ( 
const11nt 

,.--------------. ---, 
! field list 1 . . 
'-------------------~ 

) ; 

Variant part syntax 

Now that we have admitted the possibility of record var
iants, the following rules should be mentioned: 

• Either the fixed part or variant part of a record defini
tion may be absent, but not both. 

• If a particular variant has no fields associated with it, 
an empty pair of parentheses is written after the tag 
constant. 

• Standard Pascal allows variants to be nested. This is not 
permitted, however, by Macintosh Pascal version 1.0. 
(Future versions may allow it.) 

You'll note in the syntax sketch for the variant part of the 
record definition that the tag field identifier is optional. 
When the tag field is omitted, the record has a special 
name: it is said to be a free-type un'ion. Access to any variant 
in a free-type union can be done without setting a tag field 
first (since there isn't one). Although such a use is technically 
illegal, free-type unions can be used as a dodge to subvert 
Pascal's usually rigorous type checking; the technique is 
occasionally used by advanced programmers as a last resort 

338 The First Book of Macintosh Pascal 



to get around Pascal's rules. As an example, consider the fol
lowing type definition: 

type 
fourbytes =record 
case Boolean of 
TRUE: { 
reaLval : real 

); 

FALSE: { 
array_val : packed array [ 1 .. 4] of char 

) 

end; 

This says variables of the type fourbytes will contain either a 
single real value or a packed array of four characters. 
Remember, however, these two different types will occupy 
exactly the same region of memory since they are both the 
same size. It is a simple task to write a program that will 
store a value of one type in the record and retrieve values of 
the other type: 

program free_unton__lab; 
( an experiment with a free type-union } 

type 
f ourbytes .. record 
case Boolean or 
TRUE: ( 
reaLval : real 

); 
FALSE: ( 
array_val : packed array [ 1 .. 4) of char 

) 

end; 

var 
x: f ourbytes; 
I: integer; 

begin ( free_unlon__lab } 
while TRUE do 
begin 
write('Enter a real value:'); 

Arrays, Records, and Sets 339 



SETS 

readln(x.reaLval); 
write('The equivalent byte array:'); 
for I := I to 4 do 
write(ord(x.array_val[i]): 4); 
write In 

end 
end. 

Try out this program for a number of different real 
values. (Among other possibilities, you might try consecutive 
whole-number values or positive and negative powers of 2.) 
Can you determine what this program is doing? Write a pro
gram to perform the inverse operation of accepting four byte 
values and translating them into the equivalent real numbers. 

Sets are another method of containing different values in a 
single variable. While arrays contain elements and records 
contain fields, sets are said to contain members. Like arrays, 
members contained in a set variable must be of the same type 
(called, once more, the base type of the set). Unlike arrays, 
however, sets are considered to be unordered with no fixed 
number of members, although they do have a maximum 
number of members. The syntax of the set type is shown in 
Figure 11- 7. 

The rules for constructing a set type are kept as simple as 
possible: you need only to specify what values are legal for 
members of the set. These values must be of an ordinal type, 
and they must be a contiguous range of values. 

Let's consider an example. To declare a set that may con
tain the positive integer members 1 through 10, one could 
write the type declaration 

type 
tenset = set of I .. IO; 

As with any type, you may declare variables of a declared set 
type: 

var 
s 1, s2 : tenset; 

340 The First Book of Macintosh Pascal 



set ofl base I 
type 

Figure 11- 7. 

Set type definition 
syntax 

Unlike records and arrays, it is possible to write set con
stants in Pascal. Simply list the elements in the set separated 
by commas and enclose the list in square brackets. Option
ally, the two-period subrange notation ( .. ) may be used as a 
shorthand to indicate all values from the lower bound of the 
subrange to the higher bound. For example, the following 
assignment statements could be used to give values to the 
declared set variables: 

s 1 := [ 1, 4, 6, 7 .. 10]; 
s2 := (2, 4, 6, 8, 10) 

The effect of these two assignments might be pictured this 
way: 

10 

6 

4 

9 

As already mentioned, the values contained in a set should 
not be considered to be in any particular order. A set may 
contain any number of values within the range of its type 
definition. For example, to place all values between 1 and 10 
into the set sl, one would simply write 

s 1 := [ 1.. 1 0 ]; 

It is also possible for a set to contain no elements at all. This is 
called, appropriately enough, the empty set. To assign s2 the 
empty set, one would use a pair of empty brackets, as shown: 

s2 := [] 

Individual elements in a set constant (including lower and 
upper bounds on subranges) are, syntactically, expressions 
evaluated when the program is run. So, for example, this set 
constant 

[i, j, t-j..i+ j] 

Arrays, Records, and Sets 341 



would be evaluated to contain the values of i, j, and all values 
between i - j and i + j. 

Pascal provides a new relational operator called in to test 
whether a specific value is contained in a set. The expression 

11n s 

evaluates to the Boolean value TRUE if the element i is con
tained in the set s, otherwise it evalutes to FALSE. The in 
operator has the same precedence as the other six relational 
operators; when evaluated, in expects to see a set value on its 
right and a value compatible with that set's base type on its 
left. 

Some of the operators we've already discussed also apply 
to set values, although the actual operations implied are dif
ferent. The operators that may be applied to sets are sum
marized in Table 11-1. The relative precedence and order of 
evaluation of these operators remain the same; the set union 
operator + has a lower precedence than the set intersection 
operator*. 

Table 11-1. 

Set Operators 

Operation Operator 

union + 

difference 

intersection * 

subset <= 

superset >= 

membership in 

342 The First Book of Macintosh Pascal 

Use 

sl + s2 

sl - s2 

sl * s2 

sl <= s2 

sl >= s2 

e in sl 

Description 

result is the set of all ele
ments present in either sl Qr 
s2 (or both) 
result is the set of all ele
ments in sl but not in s2 
result is the set of all ele
ments present in both sl and 
s2 
result is TRUE if all ele
ments in sl are present in s2, 
else FALSE 
result is TRUE if all ele
ments in s2 are present in sl, 
else FALSE 
result is TRUE if e is an 
element of sl, else FALSE 



To demonstrate operations on sets, let's write a simple 
program, set-lab, to initialize two variables of type tenset. It 
will show you how the various set operations work when app
lied to the two sets. 

program seLlab; 
{ Experiments on sets J 

type 
tenset = set of 1 .. 1 O; 

var 
s 1, s2 : tenset; 

{ Insert procedure writeset ) 

begin { seLlab l 
sl := [1, 4, 6, 7 .. 10]; 
s2 := [2, 4, 6, 8, 1 O]; 

writeset(s 1 ); 
write(' + '); 

writeset(s2); 
write(' is '); 
writeset(s 1 + s2); 
writeln; 

writeset(s 1 ); 
write(' - '); 
writeset(s2); 
write(' is '); 
writeset(s 1 - s2); 
writeln; 

writeset(s 1 ); 
write(' * '); 
writeset(s2); 
write(' is '); 
writeset(s 1 * s2); 
writeln; 

writeset(s 1 ); 
write(' = '); 
writeset(s2); 

Arrays, Records, and Sets 343 



write(' is '); 
writeln(sl = s2); 

writeset(s I); 
write(' <> '); 
writeset(s2); 
write(' is '); 
writeln(s I <> s2); 

writeset(s I); 
write(' <-• '); 
writeset(s2); 
write(' is'); 
writeln(s I <-= s2); 

wrlteset(sl ); 
write(' >= '); 
writeset<s2); 
write(' Is '); 
wrlteln(sl >= s2) 

end. 

(Use the Copy and Paste commands to cut down on the repeti
tive typing involved here.) 

The procedure writeset accepts a value (not a variable) of 
the type tenset and displays it using Pascal's own set notation: 

procedure wrlteset (s: tenset); 
(write values In sets J 

var 
i, count : Integer; 

begin ( wrlteset J 
write('['); 
count:"' O; 
tor i :'" I to IO do 
If i Ins then 
begin 
if count > O then 
write(','); 
write(I : I); 
count := count + I 

end; 
write(']') 

end; 

344 The First Book of Macintosh Pascal 



Note that there's no shortcut method for determining what 
elements are present in a set and which aren't; each possible 
element must be tested using the in operator. 

The results you get from running this program should 
appear as follows (expand the Text window if necessary): 

(1,1,6,7,6,9,10] + (2,1,6,6,10] is (1,2,1,6,7,6,9,10] 
(1,1,6,7,6,9,10) - (2,1,6,6,10) Is [1,7,9) 
(1,1,6,7,6,9,10] * [2,1,6,6,10] is [1,6,6,10] 
[1,1,6,7,6,9,10) • (2,1,6,6,10] I~ Falae 
[1,1,6,7,6,9,10] <> [2,1,6,6,10] is True 
[1,1,6,7,6,9,10] <• [2,1,6,6,10] is False 
[1,1,6,7,6,9,10] >• (2,1,6,6,10] is False 

Experiment with this program by specifying different ele
ments for sl and s2 until you get a feeling for how each of the 
set operations works. 

Sets make it possible to solve some problems easily that 
would be rather difficult without them. For example, given 
two input strings, consider the problem of determining what 
characters are present in both strings. Although solvable 
using other data structures, the solution is easily found with 
sets. We can define a set type 

set of char 

which simply defines a set that can contain all possible char
acter values. We can use two variables of this type to accumu
late all distinct characters in the two strings; then the answer 
to the problem is simply the intersection of the two sets. 

Once the data structures have been set up, the program is 
relatively easy to write: 

program texLanalysis; 
{ report characters present in both of two input 1 

type 
charset = set of char; 

var 
cs : array [ 1 .. 2] of charset; 
line: string; 
ch: char; 
i, j : integer; 

Arrays, Records, and Sets 345 



( Insert procedure write_charset 

begin ( texLanaysls } 
for i := 1 to 2 do 
begin 
write('Please enter line•·, i: 1, ': '); 
re~dlnCllne ); 
cs[i] := []; 

for j := I to lengthCllne) do 
cs[I] := cs[i] + [line[j]] 

end; 
wrtteln('Characters in both llnes:'); 
wrtte_charset(cs[ 1 J * cs[2]); 
writeln; 
end. 

The write-charset procedure is a simple modification of 
the writeset procedure we saw previously: 

procedure write_charset (cs: charset); 
( write values in character set cs } 

var 
ch: char; 

begin ( write_charset } 
for ch := chr(O) to chrC255) do 
if ch in cs then 
wrlte(ch : 2) 

end; 

Try ouJ; this program and verify that it works as it should. 
A simple modification to this program will cause it to print 
characters present in one string but not in the other, or char
acters present in both strings. Try writing it and then see if it 
works. 

As a final set example, we'll implement the Sieve of Era
tosthenes, a method for generating prime numbers. A prime 
number is an integer evenly divisible only by itself and 1. The 
Sieve method begins by considering all numbers between 2 
and some maximum value. Since 2 is prime, all multiples of 2 
are removed from further consideration (since they are, by 
definition, divisible by 2). After all multiples of 2 have been 
removed, the smallest number remaining is 3, which is also 

346 The First Book of Macintosh Pascal 



prime. All multiples of 3 are then removed, and then multi
ples of 5, and so on. At each step after removal of multiples, 
the smallest number remaining is the next prime. 

In psuedo-code, the Sieve algorithm might be written like 
this: 

fill 8ieve •ith all po88lble value8 (2 .. nAH) 
for k :• 2 to nAH: 

if k 18 in the 8ieve: 
k 18 prime 
reaove all aultiple8 of k fro• 81eve 

In Pascal, this becomes 

program Eratosthenes; 
( Implement Sieve of Eratosthenes algorithm } 

con st 
MAX= 500; 

type 
sieve_set = set of 2 .. MAX; 

var 
sieve : sleve_set; 
i, I< : integer; 

begin { Eratosthenes } 
sieve := [2 .. MAX]; ' 
for i := 2 to MAX do 
if i In sieve then 
begin 
wrlteln(i: I,· is prime.'); 
for I<:= I to MAX div i do 
sieve := sieve - [I< * i] 

end 
end. 

Since the value of MAX is 500, this program finds and 
prints all primes between 2 and 500. 

You may use set constants in your programs without 
declaring set types or variables. One common use of set con
stants is in compact Boolean expressions. For example, the 
expression 

ch in ['a' . .'z', 'A' . .'Z'J 

Arrays, Records, and Sets 34 7 



gives the value TRUE if the character ch is an uppercase or 
lowercase letter, otherwise FALSE. This is considerably more 
concise than writing the equivalent expression 

(ch >= 'a') and (ch <= 'z') or (ch >= 'A') and (ch <= 'Z') 

This approach is especially useful when the values to be 
tested are not contiguous values. For example, the following 
tests 

tf Ci • 3) or Ci .. 7) or (i • 99) then 

whi1e (ch='.') or (ch=';') or (ch= 'e') or (ch= 'E') do 

If (month =SEPTEMBER) or (month= APRIL) or 
(month =JUNE) or (month = NOVEMBER) then 

could all be rewritten as set-membership tests: 

if i in (3, 7, 99] then 

whtle ch In['.',·;·, ·e·, 'E'J do 

If month In [SEPTEMBER, APRIL, JUNE, NOVEMBER] then 

The definition of a set type tells Pascal the maximum 
number of elements the variables of the type can hold. The 
absolute maximum on the number of items in a set differs 
between different versions of Pascal. The Macintosh Pascal 
documentation states that sets whose base type is outside the 
range -8192 to 8191 "are not supported," which is a common 
euphemism for saying they probably won't work. 

Sets vary in the amount of memory they consume, depend
ing on their definition. Roughly, you can count on each possi
ble set member to consume one bit of memory, whether it is 
actually present in the set or not. That one bit value is used to 
indicate the presence of an element or its absence. For exam
ple, the tenset type (set of 1..10) used earlier in the chapter 
consumes 10 bits. As an experiment, use the variant record 
technique described in the previous section to discover the 
precise method of set representation in Macintosh Pascal. 

348 The First Book of Macintosh Pascal 



MACINTOSH PASCAL 
STRUCTURED TYPES 

The last thing one discovers in 
writing a book is what to put first. 

BLAISE PASCAL 

Macintosh Pascal provides a number of built-in or predefined 
structured types that allow your programs to accomplish even 
more advanced effects than we've seen so far. In this chapter, 
we'll discuss many of these types and the built-in procedures 
and functions provided to manipulate them. 

POINTS AND RECTANGLES 

Points and rectangles were introduced in Chapter 8. Macin
tosh Pascal provides predefined record definitions that allow 
direct examination and manipulation of points and rectan
gles. Both structures are defined as variant records; consider 
the definition for the type point: 

vhselect = (V. H); 
point - record 

case Integer of 
0: ( 
v: Integer; 

349 



h: Integer 
); 
I : ( 
vh: array[vhselect] of Integer 

) 

end; 

Note that you do not need to put these definitions into your 
own programs, any more than you need to put in type defini
tions for real or Boolean; you may consider it to be already 
typed in for you by Macintosh Pascal. Vhselect is an enumer
ated type (also predefined) that is used as a subscript type in 
the point definition. 

This point type definition really says nothing more than 
what you already know: to specify a point somewhere on the 
screen, you must specify two integers as a horizontal coordi
nate (h) and a vertical coordinate (v). The variant definition 
simply gives you a choice as to how to refer to these two 
numbers contained inside the record. Suppose we have 
defined a variable of type point: 

var 

pt: point; 

You may refer to the horizontal coordinate of the point pt as 
either 

pt.h 

or 

pt.vh[H] 

Similarly, the vertical coordinate of pt can be accessed 
either by 

pt.v 

or 

pt.vh[V] 

350 The First Book of Macintosh Pascal 



addpt(ptl, pt2) 
procedure arguments: 

description: 

equalpt(ptl, pt2) 
function type: 

function arguments: 

description: 

setpt(pt, h, v) 
procedure arguments: 

description: 

subpt(ptl, pt2) 
procedure arguments: 

description: 

Figure 12-1. 

ptl-point value 
pt2 - point variable 

adds coordinates in ptl to the 
corresponding coordinates in pt2; 
returns result in pt2. 

Boolean 

ptl, pt2-point values 

TRUE if ptl and pt2 contain the 
same coordinates, otherwise 
FALSE 

pt-point variable 
h, v-integer values 

sets horizontal coordinate of pt to 
h, vertical coordinate to v 

ptl-point value 
pt2 -point variable 
subtracts coordinates in ptl from 
the corresponding coordinates in 
pt2; returns result in pt2. 

Macintosh Pascal point-manipulation subprograms 

Remember the important distinction made in Chapter 8 
between points and pixels: points are infinitely small inter
sections of the grid lines that define QuickDraw's coordinate 
plane, while pixels lie between pairs of adjacent grid lines. 
Pixels are all you actually see on the screen. Importa.nt built
in procedures in Macintosh Pascal that work with points are 
shown in Figure 12-1. 

A similar variant record scheme is used to define the data 
type for rectangles called "rect'': 

rect = record 
case tnteger of 
0: ( 

top : 1nteger; 

Macintosh Pascal Structured Types 351 



left : integer; 
bottom : integer; 
right : integer 

); 

1 : ( 
topleft : potnt; 
botrtght : point 

) 

end; 

Like points, the variant record definition for rectangles 
allows use of two alternate methods of accessing the fields of 
a rectangle variable. You may either specify the four grid 
lines that define the top, left, bottom, and right sides of the 
rectangle, or you may specify the two points that are at the 
upper left and lower right of the rectangle. So, for example, 
the following variable references are all integers that refer to 
the left-hand grid line of the rectangle r: 

r.left 

r. top lef t.h 

r.topleft[H] 

All the procedures described in Chapter 8 that accepted 
rectangle boundaries in the form 

(top, left, bottom, right ... ) 

may be called with a single rectangle argument to replace 
the four integer arguments. For example, these four argu
ments in a call to frameoval, 

frameoval(top, left, bottom, right) 

might be replaced by a single rectangle variable: 

f rameova l(r) 

assuming the variable r contains the desired coordinates of 
the enclosing rectangle. 

Note: this substitution trick of one rectangle variable for 
four integers is not always permissible. Unless otherwise 

352 The First Book of Macintosh Pascal 



noted, when a procedure or function expects a rectangle 
argument, you must provide it with the rectangle variable's 
name, not four integers. When you have the choice, however, 
the method you choose in your own programs should be the 
one you find more convenient in a given situation. 

Additional built-in procedures and functions useful for 
manipulation of rectangles are shown in Figure 12-2. All the 
procedures in Figure 12-2 are useful, but you'll find that 
some are more useful than others. Probably the most useful is 
setrect. We can set the fields in a rect-type variable directly 
with four assignment statements, 

r. left :• 33; 
r.rtght := 46; 
r.top :• 137; 
r.bottom :11 159 

but it's considerably more concise to accomplish the same 
thing with a single call to setrect: 

setrect(r, 33, 137, 46, 159) 

In the same way, we can rewrite the chessboard-drawing 
program we wrote in Chapter 8 by using a rectangle variable, 
initialized with setrect, and moving one corner of the rect
angle with calls to addpt: 

program chessboard; 
( draw a chessboard J 

var 
r: rect; 
delta : point; 
I: Integer; 

begin C chessboard J 
setrect(r, 20, 20, 180, I 80); 
delta:• r.topleft; 
for I :• I to 8 do 
begin 
tnvertrect(r ); 
addpt(delta, r.topleft) 
end; 
setrect(r, 20, 20, 40, 40); 

Macintosh Pascal Structured Types 353 



equalrect(rl, r2) 
function result: 
function arguments: 
description: 

emptyrect(r) 
function result: 
function argument: 
description: 

insetrect(r, dx, dy) 
procedure arguments: 

description: 

offsetrect(r, dx, dy) 
procedure arguments: 

description: 

ptinrect(pt, r) 
function type: 
function arguments: 

description: 

Figure 12-2. 

Macintosh Pascal rectangle
manipulation subprograms 

354 The First Book of Macintosh Pascal 

Boolean 
rl, r2-rect values 
returns TRUE if rl and r2 con
tain the same coordinates, other
wise FALSE. 

Boolean 
r-rect value 
returns TRUE if the rectangle r 
is empty (encloses no pixels), oth
erwise FALSE 

r-rect variable 
dx, dy- integer values 
shrinks or expands rectangle r by 
moving horizontal coordinates 
inward by dx, vertical coordinates 
inward by dy. (Dx and dy may be 
positive or negative) 

r - rect variable 
x, y-integer values 
adds dx to rectangle's horizontal 
coordinates, dy to vertical coordi
nates. (Dx and dy may be positive 
or negative) 

Boolean 
pt-point value 
r - rect value 
returns TRUE if the pixel to the 
right and below the point pt is 
inside the rectangle r, otherwise 
FALSE. 



pttoangle(r, pt, theta) 
procedure arguments: 

description: 

pt2rect(ptl, pt2, r) 
procedure arguments: 

description: 

sectrect(rl, r2, r) 
function type: 
function arguments: 

description: 

setrect(r, left, top, right, 
bottom) 

procedure argument$: 

description: 

unionrect(rl, r2, r) 
procedure arguments: 

description: 

Figure 12-2. 

Macintosh Pascal rectangle
manipulation subprograms 
(continued) 

r-rect value 
pt-point value 
theta-integer variable 
returns theta as the angle in 
degrees of a line from the center 
of rectangle r to point pt, mea
sured clockwise from "straight 
up." 

ptl, pt2-point values 
r-rect variable 
sets r to the smallest rectangle 
that has the points ptl and pt2 at 
the corners. 

Boolean 
rl, r2-rect values 
r-rect variable 
sets r to the rectangle enclosing 
pixels enclosed by both rl and r2 
(if any). Returns TRUE if rect 
angles intersect, FALSE if they 
don't. 

r - rect variable 
left, top, right, bottom-integer 
values 
sets rectangle r to specified bound
ary coordinates 

rl, r2-rect values 
r-rect variable 
sets rectangle r to the smallest 
rectangle that encloses all pixels 
in both rl and r2. 

Macintosh Pascal Structured Types 355 



dy 
insetrect(r, cix, dy): r------·--- -·--------., 

f ! 
dx j I dx 

I ... _________ _ 
........................... .J 

dy 

offsetrect(r, dx, dy): 
dy 

...__ __ dx ___ ,.-_-·_-_-..... • --------------------1 

Figure 12-3. 

Insetrect and offsetrect 

tor I := 2 to 8 do 
begin 
lnvertrect(r); 
addpt(delta, r.botrlght) 

end; 
framerect(19, 19, 181, 181) 

end. 

: 
! 

I I 
... _________ .... ----- - - - - -- .. ----- -- .J 

The other routines in Figure 12-2 of above-average use
fulness are insetrect and offsetrect. Insetrect is used to shrink 
or expand rectangles, and offsetrect is used to move them; 
their actions are diagrammed in Figure 12-3. Note that inse
trect and offsetrect don't do any drawing; they only perform 
mathematical operations on the fields of their rectangle 
argument. To show their effect, your program must subse
quently execute some drawing procedure that uses the altered 
rectangle. For example, the following flashy program repeated
ly inverts a shrinking oval: 

356 The First Book of Macintosh Pascal 



program flashy_stuf f; 
( do some special effects J 

var 
r: rect; 

begin ( f lashy_stuff ) 
while TRUE do 
begin 
setrect(r, o, O, 200, 200); 
while not emptyrect(r) do 
begin 
lnvertoval(r); 
lnsetrect(r, I, I ) 

end 
end 

end. 

You may have noticed in some of our previous programs 
that you needed to adjust the output windows in order to see 
the entire output. It is poor program design to force the user 
of your programs to initialize window locations and sizes by 
hand before the program starts. (This is true even when you 
are the only user of your own programs.) Fortunately, Macin
tosh Pascal provides simple routines to let your program set 
up its own window sizes and locations, albeit in a limited way; 
it allows you to specify whatever arrangement of the Text and 
Drawing windows you find suitable. Window manipulation 
procedures available to your program are summarized in 
Figure 12-4. 

The coordinate system used in specifying window rect
angles is not the one we've used up until now, which, you'll 
remember, uses coordinates relative to the upper-left corner 
of the Drawing window. Instead, the window procedures use 
the so-called global coordinate system which gives positions 
relative to the upper-left corner of the screen. An easy way to 
see how this works is with a simple program that hides all 
windows (removes them from the screen), sets a new location 
for the Drawing window, then reveals the Drawing window in 
its new location: 

program wtndow_Jab; 
( experiment with windows ) 

var 
r: rect; 

Macintosh Pascal Structured Types 357 



hide all 
procedure arguments: 
OP.RP.rintinn • 

getdrawingrect(r) 
procedure arguments: 
description: 

gettextrect(r) 
procedure arguments: 
description: 

setdrawingrect(r) 
procedure arguments: 

description: 

settextrect(r) 
procedure arguments: 

description: 

showtext 
procedure arguments: 
description: 

show drawing 
procedure arguments: 
description: 

Figure 12-4. 

none 
closes (or hides) all windows 

r-rect variable 
returns rectangle r giving size 
and location of the Drawing 
window 

r - rect variable 
returns rectangle r giving size 
and location of the Text window 

r-rect value 
sets location and size of the Draw
ing window to the rectangle r 

r-rect value 
sets location and size of the Text 
window to the rectangle r 

none 
opens (or reveals) the Text win
dow, which becomes the active 
window. 

none 
opens (or reveals) the Drawing 
window, which becomes the active 
window. 

Macintosh Pascal window-manipulation procedures 

begtn ( wlndow_lab } 
hldeall; 
setrect(r, I 00, I 00, JOO, JOO); 
setdrawingrect(r); 
showdrawlng; 
end. 

358 The First Book of Macintosh Pascal 



Figure 12- 5. 

Window placement coordinate system 

The result of this program is shown in Figure 12- 5; note how 
the location of the window has been specified in terms of the 
distance of its edges from the top and left screen edges. 

Generally, whenever your program moves or changes the 
size of the Text or Drawing windows, it should set them back 
to their previous places afterward. The getdrawingrect and 
gettextrect procedures allow you to store in rectangle argu
ments the current locations and sizes of the Drawing and 
Text windows, respectively. Your program may then move the 
windows around to whatever positions you find useful; just 
before the program ends, you then restore the windows to 
their original position. We've included examples later in the 
chapter. 

THE PEN: PATTERNS, SIZES, 
AND MODES 

Remember from Chapter 8 that a line in QuickDraw is 
defined to have no thickness. So, like points, QuickDraw lines 
are invisible and are never actually displayed on the screen. 

Macintosh Pascal Structured Types 359 



When QuickDraw draws a line between two points, what is 
displayed are actually the pixels adjacent to the infinitely 
thin line, not the line itself. 

In line drawing, pixels are turned off and on by the 
QuickDraw pen. We have already seen that since the pen is 
defined to have a location at all times, to draw a line involves 
moving the pen from one location to another with the line, 
lineto, or drawline procedures. You'll also remember that the 
pen can be moved to a new location without drawing a line by 
using the move and moveto procedures. 

In addition to its location, the pen has other properties we 
have yet to explore: it has a size, a paitern, and a drawing 
mode associated with it as well. All these properties may be 
changed at will, allowing your programs to generate a 
number of interesting effects. 

Before we present the pen-manipulation procedures, let's 
experiment a bit first. Run the following program: 

program pen.Jab; 
( expertments wtth the pen) 

begin ( pen.Jab ) 
frameova1(5, 50, 195, 150) 

end. 

As we've seen before, this simply draws a thin oval in the 
Drawing window: 

360 The First Book of Macintosh Pascal 



To see the effect of changing the pen's size, add the follow
ing statement just before the call to frameoval: 

pens1ze( 1 O, 1 ); 

This time, the oval has a totally different character: 

This call to pensize sets the pen to be 10 pixels wide and 1 
pixel tall. The result, when framing the oval, is to draw a line 
10 pixels wide when the pen moves vertically (along the sides 
of the oval), a line 1 pixel wide when it moves horizontally (at 
the oval's top and bottom), and a relatively smooth transition 
between the two when the pen moves diagonally, similar to a 
calligraphy pen. The pen's default size - the one that applies 
if you don't set the size explicitly-is as fine as possible: 1 
pixel wide by 1 pixel high. 

Since the pen's point can get arbitrarily large, it's impor
tant to know where it draws compared to the mathematically 
thin "line" it traverses when moving from one location to 
another. The rules are simple: the pen's location is defined to 
be the point at its upper-left corner; the pen hangs below and 
to the right of this point, affecting only the pixels below and 
to the right of the mathematical line. 

Just as you may change the size and shape of the pen's 
"point," you may also, figuratively speaking, change the color 
of the ink it draws with. The ink color is the pen's pattern. To 
change it, one calls the built-in procedure penpat. To see 

Macintosh Pascal Structured Types 361 



how it works, add this line to our oval-drawing program just 
before the call to frameoval: 

penpat(gray); 

The result: 

The pen now draws in gray. The word "gray" used in the 
call to penpat is a predefined or built-in variable of the type 
pattern. There are four other predefined patterns available to 
your programs: ltgray (light gray), dkgrey (dark gray), 
white, and black. Try substituting these variables in the call 
to penpat and observe the results. 

You are not restricted to using the patterns provided to 
you by Macintosh Pascal; the pattern type has a perfectly 
normal (but predefined) type declaration as an array of eight 
unsigned bytes: 

pattern· array [0 .. 7) of 0 .. 255; 

As an example, add a declaration and initializations to 
pen _lab to use your own pattern variable pat in a line draw
ing, as follows: 

program pen_.Jab; 
( experiments with the pen J 

var 
pat : pattern; 

362 The First Book of Macintosh Pascal 



begin C pen.Jab ) 
pat[O] :• 199; 
pat[ I]:"' 163; 
pat[2] :• 17; 
pat[3] := 58; 
pat[4] :• 124; 
pat[5] :• 184; 
pat[6] :• 17; 
pat[7] :• 139; 
penpat(pat); 
penslze(IO, I); 
frameoval(5, 50, 195, 150) 

end. 

This results in the following display: 

Drawing 

Patterns are based on the underlying binary representa
tion of the eight bytes in the array; each byte represents one 
row of pixels. Each byte contains eight bits. If a bit's value is 
1, the corresponding pixel in the pattern is black; if the bit is 
0, the pixel is white. The eight bytes therefore define an 
eight-by-eight-pixel array. This small pixel group is repeated 
over and over to generate as large a patterned area as needed. 
Figure 12-6 shows how the eight bytes are translated into the 
pixel pattern. 

Patterns may also be used independently of the pen. In our 
previous discussion of QuickDraw, we explored four basic 
operations: framing, painting, inverting, and erasing. The 

Macintosh Pascal Structured Types 363 



Pet tern Pet tern 
Elytes Elytes 

Cclecimel) (binery) 

pet(O) 199 

pet! 1 I 163 

pet(2) 17 

pet(3J se 

P8tl4) 124 

pet(S] 164 

petl6J 17 

petl71 139 

Figure 12-6. 

Pattern-to-pixel translation 

11000111 

10100011 \Resulting Repeeting 
Pettern 

00010001 
Pet tern 

00111010 ~ ... 
01111100 

10111000 I 
00010001 

10001011 

fifth basic operation QuickDraw performs is filling: painting 
an area with a specified pattern. Calls to filling procedures 
work similarly to the other shape-drawing procedures; there 
is simply a trailing pattern argument to the fill procedure. 
The simple example fills our oval with a pattern: 

program patterrLlab; 
(experiments with patterns J 

var 
pat : pattern; 

begin ( pattern.Jab } 
pat[O] :• 199; 
pat[1] :• 163; 
pat[2] :• 17; 
pat(3] :• 58; 
pat[4] :• 124; 
pat(S] :• 184; 
pat[6] :• 17; 

364 The First Book of Macintosh Pascal 



pat[7] :• 139; 
f mova1(5, 50, 195, 150, pat) 

end. 

The result is the entire oval painted with the basket-weave 
pattern, which looks like this: 

Filling routines for the shapes discussed in Chapter 8 are 
summarized in Figure 12-7. Note that instead of using the 
rectangle arguments to these routines, you may replace them 
with four integer values. You should also recall that the paint
ing operation paints with the current pen pattern and mode, 
whatever they are; this means you often have a choice 
between filling and painting whenever you want to display 
patterned figures. As always, you should make whatever 
choice is more convenient, understandable, and easy to 
change. 

The final pen attribute we'll consider here in detail is the 
pen's mode. The mode specifies the way the pen turns screen 
pixels black or white, depending on the pen's pixel pattern 
and the previous state of the affected screen pixels. There are 
eight possible modes, numbered 8 through 15. For conven
ience, Macintosh Pascal (and QuickDraw) defines these 
numbers as predefined named constants: 

const 
PATCOPY • 8; 
PATOR = 9; 
PATXOR • 10; 

Macintosh Pascal Structured Types 365 



fillarc(r, startangle, 
arcangle, pat) 

procedure arguments: 

description: 

filloval(r, pat) 
procedure arguments: 

description: 

fillrect(r, pat) 
procedure arguments: 

description: 

fillroundrect(r, oval_ 
wid, oval_ht, pat) 

procedure arguments: 

description: 

Figure 12-7. 

r-rect value 
start_angle, arc_angle-integer 
values 
pat-pattern value 
paints specifed arc with pattern 
pat 

r-rect value 
pat-pattern value 

paints specified oval with pattern 
pat 

r - rect value 
pat-pattern value 
paints rectangle r with pattern 
pat 

r-rect value 
oval_wid, oval_ht-integer 
values 
pat-pattern value 

paints specified rounded rectangle 
with pattern pat 

Macintosh Pascal filling procedures 

PATBIC • 11; 
NOTPATCOPY = 12; 
NOTPATOR .. 13; 
NOTPATXOR • 14; 
NOTPATBIC = 15; 

Again, you do not need to make these definitions yourself; 
they are built in. The pen's drawing mode is changed by call
ing the procedure penmode and using a single argument to 
specify the desired mode. The following program shows how 
modes work with pen-drawing: 

366 The First Book of Macintosh Pascal 



program mode_leb; 
(experiments with transfer modes} 

var 
y, mode : lnt~ger; 
modename: array[PATCOPY .. NOTPATBIC] of strlng[IO]; 

( Insert procedure putstr } 

begtn C mode_lab } 
modename[PATCOPY] :- 'PATCOPY'; 
modename[PATOR] :• 'PATOR'; 
modename[PATXOR] :• 'PATXOR'; 
modename[PATBIC] :• 'PATBIC'; 
modename[NOTPATCOPY] :• 'NOTPATCOPY'; 
modename[NOTPATOR] :• 'NOTPATOR'; 
modename[NOTPATXORJ :• 'NOTPATXOR'; 
modename[NOTPATBIC] :• 'NOTPATBIC'; 
paintrect(O, I 00, 200, 200); 
penpat(dkgray); 
penslze( I, I 0); 
for mode:= PATCOPY to NOTPATBIC do 
begin 
penmode(mode ); 
y :'" IS+ 25 *(mode - PATCOPY); 
putstr<modename[model, 2, y - I); 
drawllne(SO, y, 150, y) 

end 
end. 

This program draws eight dark gray 10-pixel-thick lines; half 
of each line is drawn against a white background, the other 
half against a black background. Each line is labeled with 
the mode in which it was drawn and text output to the Draw
ing window is accomplished using the putstr routine: 

procedure putstr Cs : strt ng ; 
x, y: Integer); 

(display strings at Cx,y) In Drawing window} 

begtn ( putstr } 
moveto{x, y); 
drawstrlng(s) 
end; 

Macintosh Pascal Structured Types 367 



The result: 

PATCOPV -· PATOR --· 
PATXOR--

PATBIC 

NOT p A Ti~i~iliiliiiiiliiilii 
NOT PA Ti~i~~ii!i!HH:l:i 
NOTPATBIC 

This result gives an intuitive idea of how the various 
modes work. Of the eight modes, the most important are: 

• PATCOPY paints the screen with pixels in pattern. The 
pixels currently on the screen are ignored. The result is 
simply the black and white pixels in the pattern. (This 
is the pattern-transfer mode in which Macintosh Pascal 
programs start.) 

• PATOR overlays the screen with pixels in a pattern. 
Black pixels in the pattern cause black pixels to be 
drawn on the screen, but white pixels in the pattern 
cause the screen pixels to retain their state. 

• PATXOR inverts screen pixels corresponding to black 
pixels in the pattern. White pattern pixels cause no 
change in screen pixels. The important thing to 
remember about PATXOR mode is that two successive 
calls to the same pattern-drawing routine in this mode 
leaves the screen precisely as before the two calls. This 
mode is often used to erase a previously drawn pattern 
on the screen, leaving everything else undisturbed. 

The precise effect of all eight modes on different pixel com
binations is given in Figure 12-8. (You may want to follow 
through the tables to see if you can explain the output from 
the mode-lab program.) Although some of the modes are 
more useful than others, all have their place in special 
situations. 

368 The First Book of Macintosh Pascal 



COPIJ 

mode 

destination 

pixel 

xor 

mode 

B 

"' 

destination B 

pixel "ti 

not COPIJ 
mode 

dntination B 

pixel 'y( 

not xor 
mode 

source 

pixel 

B "ti 

B 'y/ 

B "' 
sour ct 

pixtl 

B "ti 

"ti 

B 

B 

'vi 

sour ct 

pixel 

B "ti 

'rl B 

'y( B 

source 

pixel 

B "ti 

destination B B "ti 

"ti 'vi B 

Figure 12-8. 

Transfer mode rules 

or 

mode 

destination B 

pixel ..,, 

bic 

mode 

destination B 

pixel 'vi 

not or 
mode 

destination B 

pixel 'y/ 

not bic 
mode 

source 

pixel 

B 'vi 

B B 

B 'vi 

source 

pixel 

B 'vi 

'y/ B 

"ti 'vi 

source 

pixel 

B "ti 

B B 

'y( B 

destination B B 'vi 

'vi ..,, ..,, 

The pen-manipulation routines used by Macintosh Pascal 
are shown in Figure 12-9. We have already demonstrated how 
the common operations of changing the pen's mode, size, and 
pattern are accomplished with calls to penmode, pensize, and 
penpat, respectively. 

Of the remaining routines, perhaps the getpenstate/set
penstate pair deserves some additional attention. These 
procedures are nearly always called in pairs: first, getpen
state saves the current pen's attributes before the program 
changes them; the pen's attributes can be changed back to 
their previous values with a balancing call to setpenstate. The 
pen's properties are stored in a variable of type penstate, 
defined this way: 

Macintosh Pascal Structured Types · 369 



getpen(pt) 
procedure arguments: 
descriotion: 

getpenstate(state) 
procedure arguments: 
description: 

penmode(m) 
procedure arguments: 
description: 

pennormal 
procedure arguments: 
description: 

penpat(pat) 
procedure arguments: 
descriotion: 

pensize(wid, ht) 
procedure arguments: 
description: 

setpenstate(state) 
procedure arguments: 
description: 

Figure 12-9. 

pt-point variable 
sets pt to current location of pen 

state-penstate variable 
saves pen's current location, size, 
mode, and pattern in variable 
state 

m-integer value 
sets pen's drawing mode to m; m 
should be in the range 8 to 15. 

none 
returns pen to initial state (1 by 1 
pixels in size, black pattern, PAT
COPY mode) 

pat-pattern value 
sets pen's drawing pattern to pat 

wid, ht-integer values 
sets pen's size to wid pixels wide 
and ht pixels high 

state-penstate value 
restores pen's size, mode, pattern 
and location to that stored in state 

Macintosh Pascal pen-manipulation 
subprograms 

penstate • record 
pnloc: point; 
pnslze: point; 
pnmode: Integer; 
pnpat:pattem 

end; 

370 The First Book of Macintosh Pascal 



Saving and restoring a pen state would therefore go some
thing like this: 

var 

save_state: penstate; 

getpenstate(save_state); 

( calls to penmode, penpat, etc., here } 

setpenstateCsave_state> 

TEXT: STYLES AND MODES 

We have already seen in Chapter 8 how to place text in the 
Drawing window, change to different fonts, and use different 
point sizes. Macintosh Pascal also allows your programs to 
display text in different styles: italic, boldface, outlined, and 
so on. You are probably already familiar with these from 
MacWrite and MacPaint. This wonderful flexibility in text 
display is one of the Macintosh's great strengths and fortu
nately is something which your programs can take advantage 
of with relative ease. 

At this point we need to become slightly more precise in 
the terminology we've been using and to introduce some new 
terms. Text drawing starts from the current pen position; the 
vertical position of the pen establishes a baseline for the out
put characters. Most characters "sit" on the baseline, although 
characters with descenders (p, g, y, and q, for example) 
extend below the baseline. Characters may have different 
widths, depending on the character itself; the letter I is 
thinner than the letter M, for example. After each character 
is drawn, the pen moves to the right by the width of the char
acter in preparation for the output of the next character. 

The key to displaying different text styles is the defini
tions of the styleitem and style data types: 

Macintosh Pascal Structured Types 3 71 



style Item = (BOLD, IT ALIC, UNDERLINE, OUTLINE, 
SHADOW, CONDENSE, EXTEND); 

style = set of styleitem; 

Most of these terms should be familiar to you from 
Mac Write and MacPaint: 

• BOLD-extra pixels are drawn to the right of the 
character. 

• ITALIC - pixels in the character above the baseline are 
shifted right, pixels below the baseline shifted left. 

• UNDERLINE-a line is drawn just underneath the 
baseline of the character skipping over any descenders. 

• OUTLINE-the character is drawn with a hollow 
interior. 

• SHADOW-the character is outlined; the outline is 
thickened to the right and below to give the appearance 
of a shadow. 

• CONDENSE-horizontal spacing between characters 
is decreased. 

• EXTEND-horizontal spacing between characters is 
increased. ' 

I 

Any or all of these properties may be specified in a call to 
the textface routine. Textface accepts a single argument of 
the style type, and since style is a set of style items, you may 
simply list the style items you want between square brackets, 
as a set constant. For example, to print "Hello there!" in shad
owed italic bold 18 point Geneva font, one could write 

program greeting; 
( greet the world l 

begin { greeting l 
textstze< 18); 
textface([IT ALIC, BOLD, SHADOW}); 
moveto(S, 100); 
drawstring('He11o there!') 

end. 

The output from this program is exactly what was requested: 

372 The First Book of Macintosh Pascal 



Orawin_g_ 

Changing the output style is simply a matter of changing the 
set of items specified in the call to textface; you may want to 
experiment with the different possible combinations. 

Text output also has its own set of modes. Like pen draw
ing, mode values are small integers predefined as named con
stants. Here are their names and values: 

const 
SRCCOPY = O; 
SRCOR = 1; 
SRCXOR = 2; 
SRCBIC = 3; 
NOTSRCCOPY .. 4; 
NOTSRCOR .. 5; 
NOTSRCXOR = 6; 
NOTSRCBIC = 7; 

You'll notice the similarity of these names to those of the pen
drawing modes discussed in the previous section. Actually, 
the same rules we discussed for pen modes apply to similarly 
named text modes. For example, when drawing text in 
SRCXOR mode, a black pixel in a character inverts the pixel 
"under" it on the screen. The most commonly used text
drawing modes are SRCOR, SRCXOR, and SRCBIC. Macin
tosh Pascal programs start out in SRCOR mode. 

The text output mode is set with a call to textmode, which 
works just like the penmode routine discussed in the previous 

Macintosh Pascal Structured Types 373 



sections. The following program is an example of how modes 
work: the name of each of the three important modes is 
drawn twice, once against a white background and again 
against a black background. 

program mode_lab; 
{experiments with text transfer modes) 

var 
y, mode : integer; 
modename : array [SRCOR..SRCBIC] of string [ 1 O]; 

{ Insert procedure putstr ) 

begin { mode_lab l 
modename[SRCOR] := 'SRCOR'; 
modename[SRCXOR] := 'SRCXOR'; 
modename[SRCBIC] := 'SRCBIC'; 
paintrect(O, 100, 200, 200); 
for mode:• SRCOR to SRCBIC do 
begin 
textmode(mode); 
y := 25 + 75 * (mode - SRCOR); 
putstr(modename[mode], 20, y); 
putstr(modename[mode], 120, y) 

end 
end. 

The output appears as follows: 

SRCOR 

SRCXOR 

37 4 The First Book of Macintosh Pascal 



Once more, try to determine how the transfer mode rules in 
Figure 12-6 explain the behavior of this program. 

Macintosh Pascal also provides routines that allow your 
program to determine the size of the output text. This is 
important when a program must place text within certain 
limits (inside a box, for example). The first of these routines 
is getfontinfo. A call to getfontinfo has a single argument: 

getf ontinf o(inf o) 

Here the variable info must be declared to be of the type font
info. The fontinfo type is predefined this way: 

fontinfo • record 
ascent : integer; 
descent : integer; 
widmax : integer; 
leading : integer 

end; 

The fields have the following meanings: 

• ASCENT-the maximum height (in pixels) that a 
character rises above the baseline. 

• DESCENT-the maximum depth (in pixels) that a 
character descends below the baseline. 

• WIDMAX-the width (in pixels) of the widest charac
ter in the current font. 

• LEADING-the distance (in pixels) between the top of 
the tallest character and the lowest descender in the line 
above. 

The information retrieved with a call to getfontinfo ap
plies only to the current font, size, and style, of course; when 
you change any of these, the information you retrieved from 
getfontinfo becomes obsolete. The information from getfont
info is useful in obtaining limits on the maximum possible 
horizontal and vertical extents of a character or a string. It is 
often useful to find out the actual width in pixels of a charac
ter or string. Since most Macintosh fonts contain characters 
of different widths, this is not as easy as pulling the widmax 
field of the fontinfo record and multiplying. Macintosh Pascal 
provides functions that determine the pixel width of a single 
character (charwidth) and a string of characters (string-

Macintosh Pascal Structured Types 375 



charwidth( ch) 
function result: 
function arguments: 
description: 

getfontinfo(info) 
procedure arguments: 

description: 

stringwidth(s) 
function result: 
function arguments: 

description: 

textface(st) 
procedure arguments: 
description: 

textmode(m) 
procedure arguments: 

description: 

Figure 12-10. 

Macintosh Pascal text-drawing 
subprograms 

integer 
ch-character value 

returns width of ch in pixels 
(assuming current font, size, and 
style) 

info - fontinfo variable 

returns current font ascent, des
cent, maximum character width, 
and spacing between adjacent 
lines 

integer 

s-string value 
returns width of s in pixels 
(assuming current font, size, and 
style) 

st-style value 

sets current style to the attributes 
found in the set st 

m-integer value 

sets text transfer mode to m 
(should be SRCOR, SRCXOR, or 
SRCBIC) 

width). These routines are shown in Figure 12-10 along with 
the other text-drawing procedures we've discussed here. We'll 
see how to use this font information in the next section. 

376 The First Book of Macintosh Pascal 



gettime(dt) 
procedure argument: 
description: 

settime(dt) 
procedure argument: 
description: 

Figure 12-11. 

Macintosh Pascal clock/calendar 
subprograms 

USING MACINTOSH PASCAL 
STRUCTURED TYPES 

dt-datetimerec variable 
fetches date and time in Macin
tosh's system clock into dt 

dt-datetimerec value 
sets Macintosh's system clock to 
the date and time specified in dt 

In this final section, you'll have a chance to apply the tools 
discussed so far. Our first program is a digital clock that dis
plays the current date and time continuously. 

Pascal provides two built-in routines to access the Macin
tosh's internal clock, which are described in Figure 12-11. Of 
these two routines, we'll only be using gettime; while settime 
might be useful to set the Macintosh's internal date and time 
from within a program, a more appropriate way is to use the 
Control Panel or Alarm Clock desk accessories. 

Both gettime and settime accept arguments of the type 
datetimerec. This record type is predefined this way: 

datetlmerec .. record 
year, month, day, hour, 
minute, second, dayofweek : integer 

end; 

Most fields are self-explanatory. The dayofweek field is an in
teger signifying what day it is: 1 is Sunday, 2 Monday, and so 
on. The hour field reports in 24-hour time; possible values are 
the range of 0 to 23. 

Macintosh Pascal Structured Types 377 



A very simple program might call gettime and output the 
values of the resulting fields: 

program telLttme; 
( display the current date and time } 

var 
dt: datetlmerec; 

begin ( te1Ltime} 
gettlme(dt); 
with dt do 
begin 
wrlteln('Today"s date: ·,month: 1, '/',day: I,'/', year: I); 
wrlteln('The time is:·, hour: I,':', minute: I,':', second: 1) 

end 
end. 

Type in and run this program to assure yourself that your 
Macintosh clock is set correctly. (If it isn't, set it using Con
trol Panel or Alarm Clock.) 

A slightly more complicated program is one to display the 
date and time continuously in the Drawing window. What we 
would like to see is something like this, 

Drewing 

Wednesday, Rprll 3, 1985 
2:43:02 PM 

where the display changes to reflect the passage of time. A 
good place to start in our design is in the pseudo-code for the 
main routine: 

display current date and ti•• 
•hlle •ouae button la up 

378 The First Book of Macintosh Pascal 



erase preulous date and ti•e 
display current date and ti•e 

end •hi le 

The problem with this design is that it results in a program 
that continuously erases and redraws, generating an unplea
sant flickering display. (You might want to try writing the 
program yourself to verify the flickering effect.) 

One solution is to update the display only when the time 
actually moves from one second to another. We will also put 
the date information on a separate line in the display; this 
will allow us to change the time display once per second, leav
ing the date display to be updated only when it actually 
changes. 

A revised pseudo-code might look like this: 

dlaplay current date and ti•e 
•hlle •ouae button Is up do 

get current date and tl•e 
If current tl•e <> last tl•e 

erase old time 
display ne• tl•e 
If current date<> last date 

erase old date 
display ne• date 

end If 
last date & tl•e :• current date & tl•e 

end If 
end mlle 

Erasing one string in the window can be accomplished rather 
easily using the SRCXOR mode discussed in the previous sec
tion: writing the same string a second time erases it. We now 
have enough information to write the main routine: 

program dlgltaLclock; 
( display date & time continuously J 

const 
DATLI = 20; 
DATE_Y = 90; 
TIMLl< = 60; 
TIMLY = 110; 

type 
month..name_array = array [I .. 12] of string [I OJ; 
day_name_array .. array [I .. 7] of string [9]; 

Macintosh Pascal Structured Types 379 



var 
dt, olcLdt: datetlmerec; 
monttLname: monttLname_array; 
day_name : day_name_array; 
ts, olcLts: string; 

{Insert procedure ln!Lnames) 
{ Insert function date_strlng ) 
{ Insert function tlme_strlng ) 
{ Insert procedure putstr ) 

begin C dlgltaLclock ) 
textmode(patxor ); 
textfont(O); 
textstze( 12); 
lnit.Jlames(monttLname, day_name); 
gettlme(olcLdt>; 
putstr(date_string(olcLdt), DATU, DATLY); 
olcLts :• time_strlng(olcLdt); 
putstr(olcLts, TIMLI, TIMLY); 
while not button do 
begin 
gettlme(dt); 
If dt.second <> olcLdt.second then 
begin 
ts:= time_string(dt); 
putstr(olcLts, TIMLI, TIMLY); 
putstr(ts, TIMU, TIMLY); 
old....ts :- ts; 
If dt.day <> old....dt.day then 
begin 
putstr(date_strlng(olcLdt), DATLI, DATLY); 
putstr(date_string(dt), DATU, DATLY) 

end; 
olcLdt := dt 
end 

end 
end. 

Note the use of the putstr procedure, which was presented 
earlier in this chapter. Putstr is a general-purpose tool rou
tine that performs the extremely common task of placing a 
string at a specified point in the Drawing window; we'll be 
using it in the remainder of our programs. 

The arrays month-name and day _name, as you might 

380 The First Book of Macintosh Pascal 



expect, are arrays of the names of months and days. The 
initialization of this array is isolated in a separate procedure: 

procedure iniLnames (var monttLname: 
month....name_array; 
var day_name : day_name_array); 

( initialize day and month names} 

begin (init_names} 
monttLname[ 1 J :='January'; 
monttLname[2] := 'February'; 
month-name[JJ :· 'March'; 
monttLname[4) :='April'; 
monttLname[SJ := 'May'; 
month....name[6) :"' 'June'; 
monttLname[7] :='July'; 
monttLname[BJ :•'August'; 
monttLname[9] :"''September'; 
monttLname[lO] :='October'; 
monttLname[ 11 J :·'November'; 
monttLname[ 12] :='December'; 
day_name[ I]:= 'Sunday'; 
day_name[2] :'"' 'Monday'; 
day_name(J] := 'Tuesday·; 
day_name[4] :='Wednesday'; 
day_name[SJ :='Thursday·; 
day_name[6] := 'Friday'; 
day_name[7J :='Saturday' 

end; 

The date-string and time_string functions return the 
strings corresponding to the date and time represented by 
their argument. We have isolated these duties into subpro
grams so things can be easily modified if we want a different 
formatting for either date or time, or both. Of the two, date_ 
string is the simpler: 

function date_string (var dt: datetlmerec): string; 
(convert date-time record date Info Into string} 

begin ( date_strlng } 
with dt do 
date_strlng := stringof(day_name[dayofweel<J, ·, ·, 

monttLname[monthJ, · ',day: 1, ·, ·,year: 1 ); 
end; 

Macintosh Pascal Structured Types 381 



To translate the numbers contained in the date and time 
record into a string, date-string uses the stringof function, 
which was mentioned in Chapter 7. As you may remember, it 
acts like writeln, except that the formatted output is not dis
played but returned as a string. 

The time-string function is not that much more difficult; 
the complications involve displaying either A.M. or P.M. in the 
string and making sure leading zeros in the minute and 
second values are displayed. (In other words, displaying 
"3:04:06" instead of "3: 4: 6".) Here is time-string: 

function tlme_strlng (var dt : datetlmerec) : string; 
(convert date and time record Into string J 

var 
s: string; 
a1TL.PrTLf1ag : string [2]; 

begin ( tlme_strlng J 
with dt do 
begin 
If hour >• 12 then 
begin 
hour :• hour - 12; 
a1TL.PrTLflag:='PM' 

end 
else 
a1TL.PrTLf1ag:='At1'; 
s := stringof(hour: 1, ':',minute: 2, ':',second: 2, · ·, 

81TL.PrTLf1ag ); 
whlle pos(': ·, s) <> O do 
s[pos(': ·, s) ... I] :• ·o· 

end; 
tlme_strlng :• s 

end; 

This completes the digital clock program. Try it out and 
verify that both date and time are updated correctly. 

A natural second choice after programming a digital 
clock is an analog clock (a clock with hands). Our clock will 
have three hands: one each for hour, minute, and second. The 
remainder of the information contained in the date and time 
record (month, day, and year; day of the week; and whether it 
is A.M. or P.M.) will be displayed in tiny windows on the clock 

382 The First Book of Macintosh Pascal 



Figure 12-12. 

The analog clock 

face. When we're done, the result will look something like 
Figure 12-12. Note this involves initializing the Drawing 
window to a larger size as discussed in the beginning of this 
chapter. 

The logic involved in keeping the clock up to date is sim
ilar to our digital clock program. Every second, the second 
hand should be erased from its current position and redrawn 
to point to the next second. When the second hand sweeps 
over 12, the minute and hour hands are updated to new posi
tions. Finally, twice a day, at noon and midnight, the A.M./P.M. 

window must be updated; at midnight the date windows must 
be updated. 

The main program, then, looks like this: 

program analog_clock; 
(display date & time continuously J 

const 
Pl= 3.14159265; 

type 
monttLname_array = array [ 1 .. 12) of string [3]; 
day_name_array = array [I .. 7) of string [3]; 

Macintosh Pascal Structured Types 383 



var 
old.-dt, dt: datetimerec; 
month....name : month....name_array; 
day_name : day_name_array; 
old-wind, mo...rect, da...rect, 
yr ...rect, name...rect, am_pm...rect : rect; 
clock....ctr : point; 

(Insert procedure draw_rad ) 
( Insert procedure putstr ) 
( Insert procedure center ) 
( Insert procedure inf Lclock ) 
(Insert procedure draw_mfnhr ) 
(Insert procedure draw_second ) 
(Insert procedure show_day ) 
( Insert procedure restore_w/ndows 

begin ( analog_clock } 
hideall; 
iniLclock(month....name, day_name, old-wind, mo...rect, 

da...rect, yr...rect, name...rect, am_pm...rect, clock....ctr); 
gettime(old.-dt>; 
draw_second(old.-dt, clock....ctr); 
draw_mlnhrtold.-dt, clock....ctr); 
show_day{old.-dt, mo...rect, da...rect, 

yr ...rect, name...rect, am_pm...rect); 
whlle not button do 
begin 
gettime{dt); 
if dt.second <> old.-dt.second then 
begin 
draw_second(old.-dt, clock....ctr); 
draw_second{dt, clock....ctr); 
If old.-dt.minute <> dt.mtnute then 
begin 
draw_minhr(old.-dt, clock....ctr); 
draw_minhr(dt, clock....ctr); 
If Cold.-dt.hour <> dt.hour) and 

(dt.hour mod 12 = 0) then 
begin 
show_day(old.-dt, mo...rect, da...rect, 

yr ...rect, name...rect, am_pm...rect); 
show_day{dt, mo...rect, da...rect, 

yr ...rect, name...rect, am_pm...rect) 

384 The First Book of Macintosh Pascal 



end 
end; 

old....dt := dt 
end 

end; 
restore_wlndows(old....wlnd) 

end. 

The rectangle variables mo-rect, da-rect, yr _rect, name_ 
rect, and am_pm_rect are simply the locations of the rect
angular windows showing the date information. 

After hiding all the windows, the analog clock program 
calls an initializing routine to set up name arrays, initialize 
the Drawing window, and draw the clock's face. This is a lot 
to do, and init-clock calls on further nested routines to do 
each subtask separately: 

procedure tniLclock ( 
var monttLname : monttLname_array; 
var day_name : day_name_array; 
var old....wlnd, mo__rect, da__rect, 

yr _rect, name__rect, am_pm_rect : rect; 
var clocLctr: point); 

( Initialize global variables } 

(Insert procedure ln!Lnames 
( Insert procedure seLwlndows 
( Insert procedure clock_face } 
(Insert procedure seLrects } 

begin ( iniLclock} 
textf ont(O); 
textslze( 12); 
lnlt.Jlames(monttLname, day_name); 
seLwlndows(old....wlnd); 
clocLfaceCclocLctr); 
seLrects(mo__rect, da__rect, yr __rect, 

name_rect, am_pm__rect); 
textmode(patxor); 
penmode(patxor) 

end; 

Note that both pen drawing and text drawing will be done in 
XOR mode in this program. 

Macintosh Pascal Structured Types 385 



Again, there is an init-names routine to set up the arrays 
of month and day names: 

procedure tnlL.names ( 
var monttLname : month....name_array; 
var day_name : day_name_array); 

( initialize names of months and days J 

begin ( init-'lames ) 
month....name[1] :='Jan'; 
month....name[2] := 'Feb'; 
month....name[J] :• 'Mar'; 
month....name[4] :•'Apr'; 
month....name[SJ :"''May'; 
month....namej6] :•'Jun'; 
month....name[7] :11 'Ju1'; 
month....name[BJ :•'Aug'; 
monttLname[9] :• 'Sep'; 
month....name[ 10) :• 'Oct'; 
month....name[ t 11 :• 'Nov'; 
month....name[ 12) :• 'Dec'; 
day_name[ 11 :• ·sun'; 
day_name[2) :•'Mon'; 
day_name[J) :•'Tue'; 
day_name[4] :•'Wed'; 
day_name[S] :• 'Thu'; 
day_name[6] :•'Fri'; 
day_name[7) := 'Sat' 

end; 

The set-windows procedure expands the Drawing win
dow to nearly the entire screen and hides all others; the old 
size and location will be saved in the variable old-wind. At 
the end of the main program, the program calls restore_ 
windows to return the Drawing window to its previous size: 

procedure seLwlndows <var old....wlnd: rect); 
( lnltlallze window display} 

const 
WTOP 111 40; 
WBOT = 339; 
wt.EFT= 2; 
WRIGHT = 509; 

386 The First Book of Macintosh Pascal 



var 
new_wind: rect; 

begin ( seLwindows } 
getdrawingrect(ol<Lwlnd); 
setrect(new_wlnd, WLEFT, WTOP, WRIGHT, WBOT); 
setdrawlngrect(new_wind); 
showdrawing 
end; 

procedure restore_wlndows (var ol<Lwlnd: rect); 
( restore original window sizes} 

begin ( restore_windows } 
hldeall; 
setdrawlngrect(ol<Lwlnd); 
showdraw ing; 
show text 

end; 

The set_rects procedure sets up and frames the five 
small windows in the clock face: 

procedure seLrects (var mo.-rect, da_rect, yr .-rect, 
name.-rect, am_pm.-rect : rect); 

( initialize display rectangles) 

con st 
RECT_WID = 40; 
RECL.HT = 20; 
MQ_)( = 185; 
M()_y = 195; 
DAJ< = 235; 
DA...Y • 195; 
YR-><• 285; 
YR....Y • 195; 
NAME->< .. 210; 
NAME_Y .. 95; 
AMPM....X = 260; 
AMPM_Y • 95; 

begin ( seLrects } 
setrect(mo_rect, MO-><, MO_V, MO-><+ RECT_WID, 

MO_V + RECT Jff); 

Macintosh Pascal Structured Types 387 



setrect(da...rect, DA.JC, DA...Y, DA.JC + RECT_WID, 
DA...Y + RECL.HT); 

setrect(yr...rect. YR....X, VR.._V, YR....X + RECT_WID, 
VR.._V + RECTJfT); 

setrect(name_rect. NAMLX. NAMLY. 
NAMLX + RECT_WID, 
NAMLY + RECTJiT); 

setrect(am....pm_rect. AMPl'1.J(, AMPf1....Y, 
AMPl'1.J( + RECT _WID, 
AMPM._Y + RECT_HT); 

framerect{mo_rect); 
framerect{da_rect); 
framerect{yr _rect); 
framerect{name_rect); 
framerect{am_pm_rect) 

end; 

The clock face is drawn by the clock-face routine. It 
works from the outside in: first, the large circle is drawn, 
then 60 small tick marks, followed by the larger 5-minute 
tick marks, then the numbers 1 to 12: 

procedure clocLf ace (var clocLctr: point); 
( draw clock face } 

const 
CLOCK...RADIUS = 140; 
CLOCK..CENTER....X .. 255; 
CLOCK..CENTER.._V • 145; 
DIGIL.RADIUS = 115; 
SMALLTICKS = 7; 
BIG_TICKS • 15; 

var 
I, x. y : integer; 
clocLrect, digiLrect: rect; 

begin ( clocLface} 
setrect(clocLrect, CLOCK..CENTER....X - CLOCK...RADIUS, 

CLOCK..CENTER.._V - CLOCK..RADIUS, 
CLOCK..CENTER....X + CLOCK...RADIUS, 
CLOCK..CENTER.._Y + CLOCK...RADIUS); 

setpt(clocLctr. CLOCK..CENTER....X, CLOCK..CENTER.._V); 
frameoval(clocLrect); 
for I :· I to 60 do 

388 The First Book of Macintosh Pascal 



draw_rad(clocLctr, CLOCl<-RADIUS, (i *Pl I 30)); 
lnsetrect(clocLrect, SMALLTICKS, SMALLTICKS); 
eraseoval(clocLrect); 
lnsetrect(clocLrect, -SMALL TICKS, -SMALL TICKS); 
for I:• I to 12do 
draw_rad(clocLctr, CLOCl<-RADIUS, (I* Pl I 6)); 
lnsetrect(clocLrect, BfG_TfCKS, BIG_TICKS); 
eraseova l(c locLrect>; 
lnsetrect(clocLrect, -BfG_TICKS, -BfG_TfCKS); 
for i : .. I to 12do 
begin 
x :• clocLctr.h 

+ round(DIGIL.RADIUS * cos((j - 3) *Pl I 6)); 
y :• clocLctr.v 

+ round(DIGIT__RADIUS * sin((i - 3) *Pl I 6)); 
setrect(digiLrect, x, y, x, y); 
centertstrlngof(i : I>. dlgiLrect) 
end 

end; 

Unfortunately, it takes a little trigonometry to understand 
everything that's going on here. Adjacent small tick marks 
are separated by an angle of 360° /60 = 6° = 1T /30 radians. 
Similarly, the large tick marks are 360° /12 = 30° = 1T /6 radi
ans apart. Each set of tick marks is constructed by drawing 
radial lines from the center of the clock to the edge, then 
erasing all but the outer parts of the radial lines using inse
trect and eraseoval. You may want to set some break points 
and watch this happen with the debugging aids. 

The process of putting numbers on the clock face is also 
slightly complex. First, the desired location of the number on 
the clock face is calculated from the distance of the numbers 
from the center (DIGIT -RADIUS) and the number itself. 
(Readers with some geometry background may recognize the 
conversion of polar to rectangular coordinates. In our coordi
nate system, 0 degrees corresponds to 3 o'clock and angles are 
measured clockwise.) This calculation gives the desired loca
tion of the center of the number. The center procedure trans
lates this location into coordinates for the beginning of the 
number and places the number in the desired spot. 

The center procedure actually centers a string within (or, 
in this case, around) a rectangle. Although the derivation of 
the correct formula requires a little algebra, the final result 
is easy to understand. 

Macintosh Pascal Structured Types 389 



procedure center (s : string ; 
var r : rect); 

[center strings in rectangle r) 

var 
info: fontinfo; 

begin [ center ) 
getf ont inf o(inf o ); 
with r, info do 
putstr<s, (left + right - stringwidth(s)) div 2, 

(bottom + top + ascent - descent) div 2) 
end; 

Radial lines are drawn with the draw _rad procedure: 

procedure draw...rad <var center : point; 
r: Integer; 
theta: real); 

( draw radial line from center at angle theta, length r ) 

begin ( draw...rad 1 
with center do 
drawllne(h, v, h + round(r * cos( theta)), 

v + round(r *sin( theta))) 
end; 

We're done with the initialization routines; the remainder 
is only a little more work. (If you are typing this in as we go, 
this is a good time to test what's been done so far. Write stub 
routines for the other procedures and verify that the clock 
face gets drawn in a recognizable manner.) 

The routine to draw the clock's second hand is a simple 
call to draw _rad: 

procedure tlraw_second (var dt: datetimerec; 
var clocLctr: point); 

(draw (or erase) second hand) 

const 
SELLEN = 130; 

begin [ draw_second ) 
draw...rad(clocLctr, SEC-1.EN, 

(dt.second - 15) * Pl I 30); 
end; 

390 The First Book of Macintosh Pascal 



This routine is used to draw a second hand, but since the pro
gram has been set to PATXOR mode, redrawing the second 
hand in the same position will erase the second hand. So this 
routine does double duty: we are using it for both erasure and 
drawing. The same comment applies to the draw _minhr 
routine that draws and erases the minute and hour hands: 

procedure draw_mlnhr (var dt: datetlmerec; 
var cloclLctr: point); 

(draw (Qr erase) minute and hour hands} 

const 
MIN_l.EN = 110; 
HR-1.EN .. 80; 

begin ( draw_minhr J 
penstze(2, 2); 
with dt do 
begin 
draw_rad(cloclLctr, MULLEN, 

(minute - 15) * Pl I 30); 
draw_rad(cloclLctr, HR-1.EN, 

end; 
pensize( 1, 1) 

end; 

(hour - 3 + minute I 60) * Pl I 6) 

Here we've increased the pen's size slightly to emphasize the 
hour and minute hands, just as on a real clock. 

The final routine, show _day, displays the date and 
A.M./P.M. information in the windows. Again, this routine does 
double duty: if called a second time with the same parame
ters, it erases its previous work. (The text transfer mode in 
effect is SRCXOR.) 

procedure show_day (var dt: datetimerec; 
mo_rect, da....rect, yr _rect, 
name_rect, am_pm_rect : rect); 

(display (or erase) am/pm and date info} 

begin ( show_day } 
with dt do 
begin 
If hour>= 12 then 
center('PM', am_pm_rect) 

Macintosh Pascal Structured Types 391 



else 
center('AM', am_pm_rect); 

center(montlLname[month], mo_rect); 
center(stringof(day : 1 ), da.sect); 
center(stringof(year : I), yr _rect); 
center(day_name[dayofweel<], name_rect); 

end 
end; 

The calls to the center procedure here are designed to write 
the indicated strings into the centers of the named rectangles. 

Once you get this program working, consider improve
ments in the appearance of the clock. Could you get it to look 
more like a real clock? You may want to add sound effects: a 
tick every second, and perhaps chimes at the hour. How 
would you make it an alarm clock or a stopwatch? 

Our last program may be our most useful. You may have 
noticed that in our discussion of patterns the numbers corre
sponding to the basket-weave pattern were, more or less, 
pulled out of a hat. Changing a pattern, or creating one in the 
first place, involves a lot of tedious and error-prone binary 
number manipulations. 

m Drawing 

yeouu 
199 J>q.ttern Edi.tor 

163 

17 
Pattern 

56 

• 124 

164 

17 
~ 

139 

Figure 12-13. 

The pattern editor 

392 The First Book of Macintosh Pascal 



Fortunately, the Macintosh itself can remove nearly all the 
drudgery and unreliability involved in creating and modify
ing patterns. The program we'll develop now is a pattern edi
tor: a program that allows you to turn pattern bits on or off 
and immediately see the effect of the change on the pattern 
itself. Of course, all binary arithmetic will be done by the 
Macintosh; we'll also take advantage of the mouse. 

Once more, we'll start with a picture of the finished prod
uct in operation. Figure 12-13 shows the interaction screen. 
Here the large 8 by 8 grid on the left is where all editing is 
done. Each square represents a bit in the pattern, an individ
ual pixel. To change the state of a square from black to white, 
or vice versa, you simply click in the square with the mouse. 
Immediately the pattern on the right changes, giving imme
diate feedback on your change. The numbers to the right of 
the grid change, too; these are the values of the byte repre
sentation of the pattern. The program stops when you click in 
the Quit rectangle underneath the pattern. 

The main routine of the pattern editor appears as follows: 

program patteNLeditor; 
( Allow editing of pattern} 

const 
PATROWS = 7; 
PATCOLS = 7; 
GRID_SIZE = 30; 
GRID_)(= 10; 
GRID_Y .. 20; 

type 
row_lndex • o .. PATROWS; 
coLindex .. o .. PATCOLS; 
bl Lrecord • record 
r: rect; 
on: Boolean 
end; 
blLgrlcLarray • array [row_lndex, coLlndex] of 

blLrecord; 
var 
grid : btLgrlcLarray; 
paLrect, gr1cLrect, qutLrect : rect; 
ol<Lwtnd: rect; 
pat : pattern; 

Macintosh Pascal Structured Types 393 



{ Insert procedure putstr ) 
{ Insert procedure show_gritLbit l 
{ Insert procedure show_pat_e/ement l 
( Insert procedure init_paLedit ) 
{ Insert function mouse_in ) 
{Insert function pressed l 
{ Insert procedure checLgrid ) 
{ Insert procedure restore_windows 

begin { pattern._editor ) 
hidea11; 
lnlLpaLedlt(grld, paLrect, grld....rect, 

qulLrect, o1d....wlnd, pat); 
while not pressed(qulLrect) do 
check.....grldCgrid, paLrect, grid....rect, pat); 
restore_wlndows(old....wind) 

end. 

Note that the procedures putstr and restore-windows 
have been explained in previous programs; we won't go into 
them again here. Pay special attention to the definition of the 
variable grid: it is an 8 by 8 array of records (but the sub
scripts run from 0 to 7, which you may find slightly confus
ing). Each element of the grid array contains a rectangle 
field telling the location of that grid element on the screen. 
The other field is a Boolean value named "on"; this field tells 
whether the pixel is black (in which case on is TRUE) or 
white (on is FALSE). 

Once again, much of the work of the program is carried 
out in the initialization routines. The init_pat-edit proce
dure mostly calls separate procedures to do the work of set
ting up windows, titles, the grid, the initial pattern, and the 
Quit rectangle: 

procedure lnlLpaLedit <var grid : blLgrld....array; 
var paLrect, grid....rect, quiLrect, old....wlnd: rect; 
var pat : pattern); 

C lnitla11ze global variables, set up initial display ) 

(Insert procedure seLwindows ) 
( Insert procedure draw_titles ) 
(Insert procedure iniLgrid } 
( Insert procedure iniLpat J 
( Insert procedure iniLquit } 

394 The First Book of Macintosh Pascal 



begin ( iniLpaLedit J 
textmode(patxor); 
seLwlndows(o l<Lw ind); 
draw_titles; 
iniLgrid(grid, gri<Lrect); 
iniLpat(pat, paLrect); 
iniLqult(qulLrect) 

end; 

The set_ windows routine here is identical to the one used 
for the analog clock program. Draw _titles simply sets up 
the labeling of various parts of the screen: 

procedure draw_tltles; 
(Draw titles and labels in window J 

const 
GENEVA= 1; 
VENICE• 5; 
TITLE L..X = 350; 
TITLE LY • 20; 
TITLE2....X • 330; 
TITLE2-Y .. 40; 
TITLE3.J< = 355; 
TITLE3_Y ... 110; 

begin ( draw_tltles J 
textf ont( VENICE); 
textsize( 14); 
putstr('Ye Olde', TITLE 1.J<, TITLE LY); 
putstr('Pattem Editor', TITLE2....X, TITLE2-Y); 
textfont(GENEVA); 
textslze( 12); 
putstr('Pattem', TITLE3.J<, TITLEJ_Y) 

end; 

The init_grid routine initializes the grid (to all white 
pixels) and draws its representation on the screen. It also 
initializes the variable grid_rect to the big rectangle enclos
ing the entire grid: 

procedure lniLgrid (var grid : biLgrid-array; 
var grl<Lrect : rect); 

( initialize and display bit grid } 

Macintosh Pascal Structured Types 395 



var 
row : row_lndex; 
col: coLlndex; 

begin ( iniLgrid ) 
setrect(gri<Lrect, GRID....X, GRID_Y, 

GRID....X + (PATCOLS + I)* GRID_SIZE, 
GRID_Y + (PATROWS + I)* GRIO_Sf ZE); 

for row:= Oto PATROWS do 
for col:"' 0 to PATCOLS do 
with grid[row, col] do 
begin 
setrect(r, col * GRID_Sf ZE + GRID....X, 

row * GRID_SIZE + GRID_Y, 
(col + I)* GRID-51ZE + GRID....X, 
(row + I)* GRID_Sf ZE + GRID_Y); 

on:= FALSE; 
show_gricLbit(grld, row, col) 
end 

end; 

The actual display of a single grid element is handled by 
the procedure show _grid_bit. Since the grid array con
tains a field telling the location of the grid element on the 
screen, this is simply a matter of painting the rectangle black 
if the corresponding pixel is black, or erasing and framing it 
if it's white: 

procedure show_gri<Lbit (var grid: biLgri<Larray; 
row : row_index; 
col : coUndex); 

(display single element in bit grid) 

begin ( show_gricLbit J 
with grld[row, col] do 
If on then 
paintrect(r) 

else 
begin 
eraserect(r); 
framerect(r) 

end 
end; 

396 The First Book of Macintosh Pascal 



The init_pat procedure initializes the pattern we are 
editing to all white, that is, to all 8 elements having a value of 
O; it also sets up the initial display of the actual-size pattern: 

procedure lnlLpat (var pat : pattern; 
var paLrect: rect); 

{ Initialize and display pattern} 

const 
PAL.X = 340; 
PAT_V = 120; 
PAT_SCLSIZ = 80; 

var 
row : row_lndex; 

begin { lnlLpat } 
for row:'"' Oto PATROWS do 
begin 
pat[row] :• O; 
show_paLelement(pat, row) 

end; 
setrect(paLrect, PAL..X, PAT_Y, 

PAT_)(+ PAT_SCLSIZ, 
PAT_Y + PAT_SQ_SIZ); 

framerect(paLrect); 
lnsetrect(paLrect, I, I ); 
f illrect(paLrect, pat) 

end; 

Init_pat calls show _pat_element to display the byte 
value of each row of the pattern. Since this is a simple numer
ical output, the procedure is just a single call to putstr: 

procedure show_paLelement (var pat: pattern; 
row : row_lndex); 

{ Display value of pattern byte } 

const 
BYTLl>ISP_)( • 280; 

begin 
putstr<strlngof(pat[row]: 3), BYTLIISP-X, 

row* GRID-SIZE + GRID_V + GRIO_SIZE div 2) 
end; 

Macintosh Pascal Structured Types 397 



Finally, the init_quit routine sets up and draws the Quit 
button rectangle and (just so there's no doubt) labels it with 
the word "Quit." Since we developed the center procedure in 
the previous program, we'll use it here to center the word 
inside the rectangle: 

procedure lniLquit (var qulLrect : rect); 
( initialize quit button } 

con st 
QUIT-X = 355; 
OUIT_Y • 210; 
OUIT_WID = 50; 
QUITJiT • 20; 

( Insert procedure center } 

begin ( inlLqult } 
setrect(qulLrect, QUIT-><, QUIT_Y, 

QUIT-><+ OUIT_WID, 
QUIT_Y + QUITJiT); 

rramerect(quiLrect); 
center('Qult', qulLrect) 

end; 

This completes the initialization; as before, this is a good 
place to get the program running to make sure things behave 
as they are supposed to. 

Returning to the main program, you'll notice that exit 
from the program is controlled by testing the Boolean func
tion pressed with an argument of quit-rect. In plain lan
guage, we are simply trying to say "Keep editing, as long as 
the Quit rectangle hasn't been clicked." The pressed function 
is a general-purpose routine, useful in any program where 
you want to detect pressing. 

Although the logic behind the routine is simple, it is also 
subtle. We consider the Quit rectangle to be pressed when the 
Mouse button has been both pressed and released while the 
mouse cursor is inside the button. If the Mouse button is 
released when the mouse cursor is outside the Quit rectangle, 
it is not considered to be a press. (However, the mouse can 
travel outside the Quit button and return any number of 
times; the only thing that counts is where the cursor is when 
the Mouse button is released.) This conforms to the Macintosh 
standard. 

398 The First Book of Macintosh Pascal 



Here is the pressed function: 

function pressed (var r: rect): Boolean; 
(was button pressed In rectange r?) 

var 
Inside : Boolean; 

begin ( pressed ) 
If not button then 
pressed :• FALSE 
else If not mouse_in(r) then 
pressed :• FALSE 
else 
begin 
Inside := TRUE; 
lnvertrect(r); 
while button do 
If mouse_ln(r) <> Inside then 
begin 
invertrect(r); 
Inside := not Inside 

end; 
If Inside then 
lnvertrect(r); 

pressed :• Inside 
end 

end; 

Pressed makes use of another Boolean function, mouse_ 
in. A call to mouse-in(r) returns TRUE if the mouse cursor 
is within the rectangle r, else it returns FALSE: 

function mouse_in (var r: rect): Boolean; 
( Is mouse Inside rectangle r ? ) 

var 
mp: point; 

begin ( mouse_tn ) 
getmouse(mp.h, mp.v); 
mouse_ln := pttnrect(mp, r) 
end; 

If the Quit rectangle is not being pressed, the program 

Macintosh Pascal Structured Types 399 



checks for mouse activity in the grid. If the Mouse button is 
being depressed within the grid, the grid square to which the 
mouse is pointing is changed to the opposite color (white goes 
to black, black goes to white). The program then considers 
that the user is drawing in the grid with that new value. As 
long as the Mouse button is depressed, the program will set 
the bits the mouse visits to the same value as the one that was 
first flipped. (You may recognize this as a rough description 
of the way Fatbits works in MacPaint.) 

The check _grid procedure follows this informal 
description: 

procedure checlLgrid (var grid: blLgri<Larray; 
var paL.rect, gri<Lrect : rect; 
var pat: pattern); 

(check for mouse-editing In bit grid} 

var 
drawval : Boolean; 
rowo, row : row_index; 
coJO, col : coLindex; 

( Insert procedure whic/Lbit 
( Insert procedure seLbit } 

begin ( checlLgrid} 
If button then 
If mouse_ln(gri<Lrect) then 
begin 
whlch....blt(rowo, coJO); 
drawval :=not grtd[rowo, coJO].on; 
seLblt(rowO, coJO, drawval); 
while button do 
If mouse_in(grl<Lrect) then 
begin 
which....bit(row, col); 
If (row <> rowO) or (col <> coJO) then 
begin 
rowo :•row; 
coJO :•col; 
seLblt(row, col, drawval) 

end 
end 

end 
end; 

400 The First Book of Macintosh Pascal 



Check_grid uses a procedure called which-bit to deter
mine to which grid square the mouse is currently pointing. 
This is a relatively simple calculation based on the constants 
that define the grid's left and top edges and the grid-square 
size: 

procedure whictLblt (var row : row_index; 
var col : coLindex); 

( in which grid square is the mouse? } 

var 
x, y : Integer; 

begin ( whlctLblt } 
getmouse(x, y); 
col:• (x - GRID-><) div GRIO_SIZE mod (PATCOLS + I); 
row:= (y - GRllLY) div GRID_SIZE mod (PATROWS + I) 

end; 

Note that there is a small but real chance that the mouse has 
scampered outside the grid since the last call to getmouse. We 
therefore protect the calculation with a mod operation to 
force the results back into the legal range 0 .. 7. 

Finally, a single bit in the pattern is set to its new value by 
the set_bit procedure. Set_bit sets the grid element to the 
desired value and displays it by calling show _grid-bit. It 
then erases the previous byte value for that row by calling 
show_ pat _element. 

procedure seLbit (row : row_index; 
col : coLlndex; 
val : Boolean); 

( set bit In pattern to val and display results } 

begin ( seLblt } 
grld[row, cot].on :•val; 
show_gri<Lbit(grld, row, col); 
show_paLe lement(pat, row); 
if val then 
pat[row] :'" bitor(pat[row], 

bltshift(I, PATCOLS- col)) 
else 
pat[row] := bitand(pat[row], 

bitnot(bitshift( 1, PATCOLS - col))); 

Macintosh Pascal Structured Types 401 



show_paLelement(pat, row); 
fillrect(paLrect, pat) 

end; 

Single bits in a byte (or, in general, a long integer value) 
may be set to 0 or 1 without affecting other bits by using the 
bit functions described in Chapter 7. To set a bit to 1, we can 
OR the byte with a mask value containing 0 bits everywhere 
except for a 1-bit at the desired bit position. To set a bit to 0, 
on the other hand, irtvolves ANDing the byte with a mask 
containing all l's and a 0 bit at the desired position. Once the 
byte has been adjusted, we can display its new value (using 
show _pat-element again) and display the altered pattern 
in the pattern box. 

That's all we need for the complete pattern editor. After 
you get it typed in, try to duplicate the basket-weave pattern 
shown previously. After that, a quick test: what pattern 
results from the byte sequence 199, 199, 187, 76, 124, 124, 187, 
196? 

402 The First Book of Macintosh Pascal 



INDEX 

A 

abs function, 176-78 
Active windows, 4 
addpt procedure, 351 
analog_clock program, 383-92 

clock_face procedure in, 388-89 
date_string function in, 388-89 
set_rects procedure in, 387-88 
set_ windows procedure in, 386-87 
show _day procedure in, 391-92 

and operator, 61 
Apostrophe ( ') 

and character constants, 152 
enclosing strings, 7-8 
in strings, 24 

Arguments 
function, 177 
passing arrays as, 311-12 
procedure, 260 
variable vs. value, 267-71 

Arithmetic functions, 176-81 
Arithmetic operators 

used with integer variables, 37-39 
used with real variables, 49 

Array structured type, 303-22 
multidimensional, 314-15 
packed, 309-11 
packed string type of, 312-14 
subscripts of, 304-07 
use in charfreq program, 315-17 
use in dice_simulation program, 

317-22 

Array type definition, 307-08 
arrow program, 225 
ASCII character set, 157 
ASCII program, 185-86 

after adding page procedure to, 216 
Assignment-compatible data types, 301-02 
Assignment sign (:=}, 34-35 
Asterisk ( *) multiplication operator, 37 

B 

BACKSPACE key, 7 
Base type, 304 
bitand function, 208-11 
bitnot function, 208 
bitor function, 208-11 
Bits, 206-07 
bitshift function, 208 
bitxor function, 208-11 
Boolean data type, 57-65 

Boolean operators and, 60-62 
relational operators and, 62-65 

Boolean operators, 60-62 
Braces ( {} }, 23 
bridge_deal program, 328-33 
Bug box, 11 
bullseye program, 242 
button function, 200-01 
Buttons, 14 
Bytes, 206-07 

c 
Cairo program, 233-34 

403 



case statement, 121-26 
using otherwise with, 124-26 
writing days_in_month program 

with, 123-24 
center procedure, 390 
char data type, 152-59 

operators used with variables of the, 
155-56 

type mixing and, 153 
upper- and lowercase variables of 

the, 158-59 
Character set, 156-57 

program to display the Macintosh's, 
185-86 

charfreq program, 315-17 
charwidth function, 375-76 
Check boxes, 18 
Check option, 135-36 
check_grid procedure, 400 
chessboard program, 228-29, 239 

adding rect variable to, 353, 356 
chop_first_word procedure, 265-66 
chr function, 183-84 

producing non-typing characters 
with, 185-86 

Clear option, 87 
Clicking and double-clicking, 2 
Clipboard, 88-91 
clock_face procedure, 388-89 
Close box, 3-4 
Close option, 16 
COMMAND key, 95-97 
Comments, 23 
Compound statements, 46 
Computational real data type, 166-69 
concat function, 187 -88 
Conditional execution, 40 
Constant definition part, 52-53 
Constants, 53-54 

in case statements, 124 
character, 152 
as expressions, 74-75 
set, 341-42 

Control structures, 40 
Coordinate system, 222-23, 237-38 
copy function, 187-88, 190 
craps program, 278-88 

404 The First Book of Macintosh Pascal 

craps program, (continued) 
get_yes_or _no function of, 280-81 
playround procedure of, 282-83 
procedures for drawing dice for, 

285-87 
Cut option 

moving text with, 88-89 

D 

Data types, built-in, 151-73 
Boolean, 57-65 
categories of, 300-02 
char, 152-59 
defining synonyms of, 291-92 
integer, 34-40 
long integer, 163-65 
mixing, 58 
real, 49-57, 166-69 
string, 159-63 

Data types, user-defined, 289-302 
categories of, 300-02 
defining, 290-93 
enumerated, 293-98 
subrange, 298-300 

date_string function, 381-82 
day _test program, 273, 276 

adding enumerated type to, 297-98 
days_in_month 

function, 272-73, 295 
program, 121-26 

deal procedure, 332 
Debugging programs, 131-49 

by checking syntax, 132-36 
with the Instant window, 146-49 
with the Observe window, 140-44 
by stepping, 136-40 
using stops, 144-46 

Delay loops, 110-11 
delete_leading_blanks procedure, 265 
delete procedure, 217 
desk_calc program, 70-72 
Dialog box, 13-14 
dice_simulation program, 317-22 
digital_clock program, 378-83 

date_string function in, 381-82 
init_names procedure in, 381 
time_string function in, 382 



Disks 
housekeeping hints for, 97-100 
retrieving programs from, 17 
saving programs on, 13-16 
saving programs to print on, 20 

div, 38-39 
Double real data type, 166-69 
Dragging, 2 
dragnet program, 252-53 
draw _minhr procedure, 391 
draw _second procedure, 390 
draw _titles procedure, 395 
drawchar procedure, 230 
drawdice procedure, 285-86 
drawdie procedure, 286-87 
Drawing option, 85 
Drawing window, 6 

local coordinate system of, 222-23 
moving, 357-59 
opening, 84-85 

drawline procedure, 228-29 
drawstring procedure, 230 

E 

echo program, 163 
Editing 

shortcuts, 95-97 
simple program, 8-10 
using selection techniques, 83-87 

Eject option, 16 
Elements, 303 
else if structure, 113-21 

examples of, 116-21 
syntax of, 115-16 
vs. the case statement, 125 

Empty set, 341 
Empty statements, 108-11 
emptyrect function, 354 
ENTER key, 141 
Enumerated data types, 293-98 
equalpt function, 351 
equalrect function, 354 
erasearc procedure, 245, 24 7 -48 
eraserect procedure, 235-37 
eraseroundrect procedure, 243 
Eratosthenes program, 346-47 
Errors, program, 131-32 

Euclid program, 69 
Executable part, 23-24 
Expressions, 35, 74-81 

functions and, 178 
precedence and, 77-81 
type mixing and, 75-76 

Extended real data type, 166-69 

F 

Field width 
of Boolean values, 58-59 
of integers, 44 
of real values, 50 

Fields, record, 322-23 
fillarc procedure, 366 
filloval procedure, 366 
fillrect procedure, 366 
fillroundrect procedure, 366 
Find option, 92-94 
Fixed-point notation, 51 
flashy _stuff program, 357 
Floating-point notation, 50-51 
fontinfo structured type, 375 
Fonts, 231-33 
for loops, 40-48 

compound statements in, 46-47 
loop control variables in, 41-43 
syntax of, 45 

framearc procedure, 245 
frameoval procedure, 240-41 
framerect procedure, 235-37 
frameroundrect procedure, 243-44 
Free-type unions, 338-40 
Function calls, 177-78 

vs. procedure calls, 213-16 
Function definition part, 267 
Function heading, 271 
Functions, library, 175-211 

arithmetic, 176-81 
memory, 204-11 
ordinal, 183-86 
other, 198-203 
string manipulation, 187-98 
transfer, 182 

Functions, user-defined, 271-75 
scope and nesting of, 275-78 
writing craps program using, 278-88 

Index 405 



G 

get_bet function, 284 
get_yes_or _no function, 280-81 
getdrawingrect procedure, 358 
getfontinfo procedure, 375-76 
getmouse procedure, 250-51 
getpen procedure, 370 
getpenstate procedure, 370 
getsoundvol procedure, 250, 253 
gettextrect procedure, 358 
gettime procedure, 377 
Global variables, 265 
Go option, 8 
Go-Go option, 146 
golden program, 134-37 

adding functions to, 274-75 
after fixing logic error in, 139 
after fixing precision error in, 148 

goto statement, 126-29 
Graphs, 318-21 
greeting program, 372-73 
guessing _game program 

H 

guessing characters with, 157 
guessing numbers with, 120-21 

Halt option, 73 
hello program, 6, 10, 231 

after adding put_string procedure, 
260-61 

Hexadecimal 
writing integer constants in, 39 
writing long integer constants in, 165 

hideall procedure, 358 
hiword function, 207-08 

Icons, 3 
Identifiers, 22 

defining, 33 
if ... then statement, 101-05 
if ... then ... else statements, 105-13. 

See also else if structure 
empty statements and, 108-11 
nesting, 111-12 
semicolons in, 106-08 

in set membership operator, 342 

406 The First Book of Macintosh Pascal 

include function, 187-88 
init_clock procedure, 385 
init_deck procedure, 330 
init_dice_simulation program, 320 
init_grid procedure, 395-96 
init_names procedure 

in analog _clock program, 386 
in digital_clock program, 381 

init_pat procedure, 397 
init_pat_edit procedure, 394-95 
init_quit procedure, 398 
insert procedure, 217 
Insertion point, 6 

moving, 9-10 
insetrect procedure, 354 
Instant option, 146 
Instant window, 146-49 
instruct procedure, 264 
Integer data type, 34-40, 301 

assigning variables of the, 34-37 
long, 162-65 
operators used with variables of the, 

37-39 
writing variables of the, 39-40 

invertarc procedure, 245, 247 
invertcircle procedure, 242 
invertoval procedure, 240-41 
invertrect procedure, 235-37 
invertroundrect procedure, 243 
is_leap function, 273 

J 

Jiffies, 201-02 

K 

Keyboard 
inputting characters from, 169-71 

keyboard program, 239-40 
keysounds program, 252 
Kilobytes, 206-07 

L 

Label definition part, 126 
Labels, 126-27 

multiple, 129 
length function, 187-88 
line procedure, 225-27 



lineto procedure, 84, 224-25 
Local variables, 265 
Logic errors, 132 
Long integer data type, 163-65 
Loop body, 66 
Loop condition, 66 
Loop control variables, 41-43 

after loop completion, 48 
Boolean, 60-61 
character, 158 

Loops 
delay, 110-11 
for, 40-48 
repeat, 70-73 
while, 65-69 

lower _to_upper program, 189-92 
loword function, 207-08 

M 

Macintosh 
fundamentals of using, 1-4 
program to display character set of, 

185-86 
Mac Write 

transferring text to and from, 90-91 
MAXINT constant, 164 
MAXLONGINT constant, 164 
max3 program, 116-18 
Members, set, 340 
Memory 

functions, 204-11 
limits on arrays due to, 308-09 
limits on real variables due to, 55-57 

Menu bar, 2 
Menus, 2-3 
Message box, 8 
Minus (-) subtraction operator, 36 
mod, 38-39 
Modes 

shape-drawing, 365-68 
text-drawing, 373-75 

Mouse 
moving, 2 

mouse_in function, 399 
move procedure, 225-27 
moveto procedure, 84, 224-25 

Multidimensional 
arrays, 314-15 
records, 326-28 

N 

Newton program, 73 
adding else if structure to, 119 
adding extended real variables to, 

168-69 
adding if ... then statement to, 

103-04 
adding if ... then ... else statement to, 

112-13 
not operator, 60 
note procedure, 250-52 
Null strings, 162-63 
Numbers 

0 

integer, 34 
real, 49 

Observe option, 141 
Observe window, 140-44 
odd function, 179 
offsetrect procedure, 354 
omit function, 187-88 
Open ... option 

opening icons with, 3 
opening program files with, 16-17 

Operators 
arithmetic, 37-39 
Boolean, 60-62 
precedence of, 77 
relational, 62-65 
set, 342 
unary vs. binary, 60 

oppsign function, 274 
or operator, 62 
ord function, 183 

use with enumerated type values, 297 
Ordinal data types, 301 
Ordinal functions, 183-86 

use with enumerated type values, 
296 

Outline font, 12 
Overflow, 55 

Index 407 



p 

pack procedure, 310-11 
Packed string type, 312-14 
page procedure, 215-16 
Page Setup option, 18-19 
paintarc procedure, 245-46 
paintcircle procedure, 242 
paintoval procedure, 240-41 
paintrect procedure, 235-37 
paintroundrect procedure, 243 
palindrome program, 218-21 
Paper, printing, 18 
Parentheses, 77-79 
Pascal disk, 14 

copying, 98-99 
Paste option 

copying text with, 89-90 
moving text with, 89 

PATCOPY drawing mode, 368 
PATOR drawing mode, 368 
pattern structured type, 362-63 
pattern _editor program, 392-402 

draw _titles procedure in, 395 
init_pat_edit procedure in, 394-95 
init_quit procedure, 398 
mouse_in function in, 399 
set_bit procedure in, 401-02 
show _grid_ bit procedure in, 396 

PATXOR drawing mode, 368 
Pause option, 68 
Pen, QuickDraw, 359-71 

mode of, 365-68 
patterns of, 361-63 
procedures to manipulate, 369-71 
size of, 361 

penmode procedure, 365-68, 370 
pennormal procedure, 370 
penpat procedure, 361-63, 370 
pensize procedure, 361, 370 
Period ( . ), 26 
piechart program, 246-48 
Pixels, 223 

and points, 237-38 
and the QuickDraw pen, 360 

playround procedure, 282-83 
Plus ( +) addition operator, 35 
point structured type, 349-51 

408 The First Book of Macintosh Pascal 

Pointer, 2 
crosshair, 8 
I-beam, 9 

Pointing finger sign, 68, 137-38 
Points, 237-38 

subprograms to manipulate, 351 
pos function, 187-88 
pred function, 184-85 
pressed function, 399 
Pressing, 2 

Print option, 19 
Printers, 20 
Procedure calls, 213-14 
Procedure definition part, 267 
Procedure heading, 260 
Procedures, library, 213-55 

other, 250-55 
QuickDraw, 221-29 
QuickDraw text-display, 229-34 
shape-drawing, 234-50 
standard, 213-16 
string-manipulation, 217-21 

Procedures, user-defined, 257-71 
adding to wordcount program, 263-66 
relationship to programs, 259-62 
scope and nesting of, 275-78 
using value vs. variable arguments 

in, 267-71 
writing craps program using, 278-88 

Program header, 21 
Program lines 

indenting, 7 
selecting, 86 

Program windows, 6 
naming, 15 

Programs 
components of simple, 21-26 
debugging, 131-49 
editing, 8-10 
entering, 6-8 
printing, 17-20 
retrieving, 16-17 
saving, 13-16, 99-100 
syntax errors in, 10-13 

Pseudo-code, 70 
ptinrect function, 354 
pttoangle procedure, 355 



ptzrect procedure, 355 
put_string procedure, 257-61 
putstr procedure, 367-68 

Q 

quad program, 84, 91, 221-22 
quadsolver program, 181 
QuickDraw procedures 

for drawing arcs, 244-50 
for drawing circles, 241-42 
for drawing ovals, 240-41 
for drawing rectangles, 235-40 
for drawing rounded-comer 

rectangles, 242-44 
for filling shapes, 366 
other, 250-55 
for pen manipulation, 370 
simple, 221-29 
for text display, 229-34 

Quit option, 16, 27 

R 

randint function, 273 
random function, 121, 198-200 
reaction program, 203 
read procedure, 155, 169-73, 214-16 
readln procedure, 64-65, 169-73, 214-16 
Real data type, 49-57, 301 

limits of the, 55-57 
operators used with variables of the, 

49 
other, 166-69 
writing variables of the, 51-52 

Record structured type, 322-40 
multidimensional, 326-28 
use in bridge_deal program, 328-33 
using with statement with, 325 
variant, 333-40 

Record type definition, 325-26 
rect structured type, 351-59 

manipulating rectangles with, 351-57 
manipulating windows with, 357-59 

Rectangles 
drawing, 235-40 
drawing rounded-corner, 242-44 
subprograms to manipulate, 354-55 

Relational operators, 62-65 

Relational operators, (continued) 
comparing enumerated type values 

with, 297 
comparing packed string variables 

with, 313 
repeat loop, 70-73 
Repetitive execution, 40 
report procedure, 264 
rescale procedure, 321 
Reserved words, 7 

list of, 21 
Reset option, 143 
RETURN key, 7 
round function, 181-82 
Run-time errors, 131-32 

s 
Save as ... option 

saving programs with, 13-16 
scanning_bar procedure, 253-55 
Scientific notation. See Floating-point 

notation 
Scope rules, 276-78, 293 
scribble program, 251 
Scroll box, 34 
Select All option, 87 
Selecting, 83-87 

options from menus, 2-3 
self-portrait program, 249-50 
Semicolon (; ), 25, 106-08 

in empty statements, 108-11 
Sequential execution, 40 
Set operators, 342 
Set structured type, 340-48 

constants, 341 
operators used with variables of the, 

342 
use in text_analysis program, 345-46 
use in writeset procedure, 344-45 

set_bit procedure, 401-02 
set_rects procedure, 387-88 
set_windows procedure, 386-87 
setdrawingrect procedure, 358 
setpenstate procedure, 370 
setpt procedure, 351 
setrect function, 355 
setrect procedure, 355 

Index 409 



setsoundvol procedure, 250, 253 
settextrect procedure, 358 
settime procedure, 377 
Shift-click selection, 87 
Shortcuts, editing, 95-97 
show _day procedure, 391-92 
show _grid_bit procedure, 396 
show _hand_ procedure, 332 
show _pat_element procedure, 397 
showdrawing procedure, 358 
showtext procedure, 358 
shuffle procedure, 331-32 
Simple data types, 301 
Size box, 3-4 
sizeof function, 204-06 
sizes program, 204-06 
Slash (/) division operator, 38 

type mixing and, 76 
sqr function, 181 
sqrt function, 178-79 
squiggly program, 226-28 
Starting Macintosh Pascal, 5 
Statements, 23 

assignment, 34-35 
compound, 46 
empty, 108-11 
nesting, 48, 61 
separating with semicolons, 106-08 

Step option, 137-38 
Step-Step option, 138 
Stop bar, 145 
Stop sign, 145 
Stops In option, 144-45 
Stops Out option, 148 
string data type, 159-63, 301 

and the packed string data type, 
313-14 

String-manipulation functions, 187-98 
list of, 188 
using in lower _to_upper program, 

198-92 
using in wordcount program, 192-98 

String-manipulation procedures, 217-21 
stringof function, 188-89 
Strings, 24 

comparing, 161 
length vs. size of, 160 
null, 162-63 

410 The First Book of Macintosh Pascal 

stringwidth function, 376 
Structured types, built-in 

fontinfo, 375 
pattern, 362-63 
point, 349-51 
rect, 351-59 
style, 372 
styleitem, 372 

Structured types, user-defined 
arrays, 303-22 
records, 322-33 
sets, 340-48 
variant records, 333-40 

style structured type, 372 
styleitem structured type, 372 
Subexpressions, 78 
Subprograms, 175-76 
subpt procedure, 351 
Subrange data types, 298-300 
Subscripts, array, 304-07 
succ function, 184-85 
swapvals procedure, 268 
swapvars program, 270 
synch procedure, 250, 253-55 
Syntax 

checking, 132-36 
errors, 10-13 

Syntax sketch, 31-32 
sysbeep procedure, 46-47, 250 
system_fonts program, 261-62 

T 

Tag fields, 336-37 
tell_time program, 378 
Text 

deleting and inserting, 10 
displaying, 229-34 
drawing, 371-77 
finding and replacing, 91-95 
moving and copying, 87-91 

Text window, 6 
moving, 359 

text_analysis program, 345-46 
textface procedure, 376 
textfont procedure, 231 
textmode procedure, 376 
textsize procedure, 231 
throwdice function, 285 



Thumbs down sign, 11 
tickcount function, 201-03 
time_string function, 382 
Title bar, 3-4 
to_lower function, 274 
Transfer functions, 182 
tree2 program, 154 
trunc function, 181-82 
Type definition part, 290-93 
Type mixing, 58 

u 

amoung four real types, 167 
character and string, 162 
and enumerated types, 294 
integer and real, 75-76 
long integer and integer, 165 

Underflow, 56 
unionrect procedure, 355 
unpack procedure, 310-11 
update procedure, 321 

v 
val_test program, 269 
var _test program, 270 
Variable definition part, 30-33 
Variables 

as array subscripts, 306 
as expressions, 75 

Variables, (continued) 
incrementing, 36 
initializing, 138-39 
loop control, 41-43 
in procedures, 264-65 

Variant record structured type, 333-40 
free-type union, 338-40 
using with reference list, 334-38 

vhselect enumerated type, 350 

w 
waitclick procedure, 284 
What to find ... option, 92-93 
which_bit procedure, 401 
while loop, 65-69 
Windows, 3-4 

subprograms to manipulate, 358 
with statement, 325 
wordcount program, 192-98 

adding procedures to, 263-66 
Words, 206-07 
write procedure, 25, 214-16 
writedraw procedure, 230 
writeln procedure, 24-25, 214-16 

displaying variable values with, 37 
field width of, 44 

writeset procedure, 344-45 
write_charset procedure, 346 

Index 411 



\ • I • ' \ I .! · ·- . I I I 
' • I 

'' 
', 
I • 

I ' 
I 

THE FIRST BOOK OF 

If you're a beginning Macintosh™ programmer, here is an in-depth introduction to this 
powerful and versatile language. 

With the lessons contained in this book, you'll learn how to write Pascal programs 
that utilize the special capabilities of the Macintosh. Through the use of hands-on 
exercises and numerous examples, you'll be able to write and edit your own useful 
programs in record time. You'll become an expert at understanding: 

•Variables and loops 
• Library functions and procedures 
•Data types 
•Arrays and record sets 
• Debugging techniques 

Plus more! 

For a solid foundation in the essentials of Macintosh Pascal, The First Book of 
Macintosh™ Pascal is the best book you'll ever own. 

•Macintosh is a trademark of Apple Computer, Inc. 

ISBN 0-07-881165-1 

.~ 


