

/ /

The MacPascal Book

/

Publishing Director: David Culverwell
Acquisitions Editor: Susan Love
Production Editor/Text Design: Roberta Glencer
Art Director/Cover Design: Don Sellers
Assistant Art Director: Bernard Vervin
Manufacturing Director: John Komsa

Typesetter: Shepard Poorman Communications, Indianapolis, IN
Printer: R. R. Donnelley & Sons, Harrisonburg, VA
Typefaces: Paladium (text), CG Frontiera (display), News Gothic (programs)

The MacPascal Book

Paul Goodman
Alan Zeldin

Brady Communications Company, Inc.
A Prentice-Hall Publishing Company
Bowie, Maryland 20715

The MacPascal Book

Copyright © 1985 by Brady Communications Company, Inc. All rights reserved.
No part of this publication may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying and recording, or by
any information storage and retrieval system, without permission in writing from
the publisher. For information, address Brady Communications Company, Inc.,
Bowie, Maryland 20715.

Library of Congress Cataloging In Publication Data
Goodman, Paul.

The MacPascal book.
Bibliography: p.
Includes index.
1. Macintosh (Computer)-Programming. 2. PASCAL (Computer program lan­

guage) I. Zeldin, Alan. II. Title.
QA76.8.M3G661985 001.64'2 85-431
ISBN 0-89303-644-7
Prentice-Hall of Australia, Pty., Ltd., Sydney
Prentice-Hall Canada, Inc., Scarborough, Ontario
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall International (UK) Limited, London
Prentice-Hall of Japan, Inc., Tokyo
Prentice-Hall of Southeast Asia Pte. Ltd., Singapore
Editora Prentice-Hall Do Brasil LTDA., Rio de Janeiro
Whitehall Books, Limited, Petone, New Zealand

Printed in the United States of America

85 86 87 88 89 90 91 92 93 94 95 12345678910

Contents

1 Computer Concepts I 1
Hardware I 1
Software I 4

Language Translators I 4
Interpreters and Compilers I 5
The Operating System I 5

The Macintosh I 5
Macintosh Software I 6

2 Using MacPascal I 7
Getting Up and Running I 7
Editing a Program I 13
Saving a Program I 14
Recalling a Program I 15
Printing a Program I 16

Printing the Active Window I 17

3 Pascal Fundamentals I 19
Syntax I 19
Documenting a Program I 22
Write and Writeln I 23
Data I 26

Data Types I 26
Variables I 29
Assignment Statements I 31
More on Write and Writeln I 33
Expressions I 35
Operator Precedence I 39
Constants I 40
Read and Readln I 42
Review of Program Structure and Some Examples I 44

The Perimeter and Area of a Rectangle I 44
Converting Temperatures I 45
Exercises I 46

4 Pascal Structures I 47
The Boolean Data Type I 47

Boolean Operators I 47
Boolean Expressions I 48

IF-THEN I 49
Compound Statements I 52
IF-THEN-ELSE I 53

v

Nested IF Statements I 55
FOR Loops I 56
DOWNT0/61

Calculating Interest Compounded Daily I 61
The Summation of an Infinite Series I 63

The WHILE Loop I 64
Sentinals I 67

The Break Even Point I 68
Controlling the Text Window I 68
The Macintosh Screen I 69
Introduction to Graphics I 71

Exercises I 7 4

5 Debugging a MacPascal Program I 77
The Nature of a MacPascal Program I 77
Execution Modes I 78
Syntax Errors I 79
Undeclared Identifiers I 81
Execution Errors I 81

Run Time Errors I 81
Logic Errors I 81

The Observe Window I 82
Setting Break Points I 83
The Instant Window I 84

6 More on Data Types I 85
The Char Types I 85
Ordinal Types I 86
The ORD and CHR Functions I 86
The SUCC and PRED Functions I 88
Other Built-In Functions I 88
The Conversion Functions-TRUNC and ROUND I 88
More on Reals and Integers I 89

The Longint Data Type I 89
The Extended Real Types I 90

The Arithmetic Functions I 91
The Trigonometric Functions I 92
The Logarithmic Functions I 93
Tool Box Functions I 93
User-Defined Data Types I 94
Subranges I 96
Drawing Ovals I 98

Exercises I 101

vi

7 Procedures I 103
Scope of Variables I 106
Parameter Passing I 109

Variable Parameters I 111
The Major Advantage I 113
Value Parameters I 113

Comparing Value and Variable Parameter Passing / 115
Mixing Variable and Value Parameters I 116

Mortgage Calculator I 117
Drawing Lines I 120

Exercises I 123

8 Arrays and Strings I 125
Sentinels I 128
Two-Dimensional Arrays I 130
Arrays of Characters I 142

The Code Breaker Program I 144
Strings / 145

Reading a String I 146
Comparing Strings I 147

The String Functions and Procedures I 147
The Length Function / 147
The Concat Function I 147
The Pos Function I 148
The Copy Function I 148
The Delete Procedure I 148
The Omit Function I 148
The Insert Procedure I 149
The Include Function I 149
Exercises I 149

9 More On Structures I 151
The Repeat Loop I 151
The Bubble Sort I 153
The Case Statement I 154
User-Defined Functions / 157
Recursion I 159
Records I 165
The With Statement I 168
Duplicate Field Names I 169
Arrays of Records / 170
Nested Records I 173
Time and Date Operations / 175
Sets / 176

vii

Set Operators I 177
Set Union I 177
Set Difference I 177
Set Intersection I 178
Exercises I 180

10 A Formal Look at Graphics I 185
Points I 185
Drawing Lines I 186
Rectangle I 187
Controlling the Drawing Window I 189
Drawing Rectangles I 190
Other Shapes I 191
The Pen I 192
The Mouse I 195
The Cursor I 197
Sketchpad I 197
A New Feature I 199
Displaying Text on the Drawing Window I 199
Calculations with Rectangles I 202
Implementing the New Feature I 203

Playtime with Quick Draw I 205
Exercises I 210

11 Files I 213
The File Buffer I 215
Using Files I 215
Opening Files I 216
Accessing Files I 217
Closing a File I 218
Mixing Get and Put I 219
Using Random Access Files I 219
Seek I 220
Finding the End of a File I 221
Text Files I 221

12 Variant Records and Pointers I 233
Variant Records I 233
Pointers I 236

13 A Look at an Application-The Checking and Savings Program / 243
Overview I 243
Data Structures I 244
Development I 245

viii

Appendices I 267
A Selected Exercise Answers I 268
B Menu Summary I 270
C Documenting a Program I 275
D Sound and Music I 284
E Differences Between MacPascal and UCSD Pascal I 289
F MacPascal Reserved Words I 292
G MacPascal Syntax Diagrams I 293
H List of QuickDraw Routines I 308
I List of Sane Functions and Procedures I 314
J MacPascal Error Messages I 317
K Bibliography I 323
L The Macintosh Character Set I 325

Index I 327

ix

Limits of Liability and Disclaimer of
Warranty

The author(s) and publisher of this book have used their best efforts in preparing
this book and the programs contained in it. These efforts include the development,
research, and testing of the theories and programs to determine their effectiveness.
The author(s) and publisher make no warranty of any kind, expressed or implied,
with regard to these programs or the documentation contained in this book. The
author(s) and publisher shall not be liable in any event for incidental or consequen­
tial damages in connection with, or arising out of, the furnishing, performance, or
use of these programs.

Note to Authors

Have you written a book related to personal computers? Do you have an idea for
developing such a project? If so, we would like to hear from you. Brady produces a
complete range of books for the personal computer market. We invite you to write
to David Culverwell, Publishing Director, Brady Communications Company, Inc.,
Bowie, MD 20715.

Registered Trademarks

Macintosh is a trademark licensed by Apple Computer, Inc.
MacWrite is a registered trademark of Apple Computer, Inc.

x

Pref ace
On a cold day in the winter of 1642, in the northwest comer of France,

a young man put the finishing touches on a strange device built from
gears, pegs, and dials.

On a snowy day in 1971, in Zurich, Switzerland, a university profes­
sor put the finishing touches on a paper ready for publication.

On a sunny day in 1976, in a garage in northern California, two
young men dressed in jeans put the finishing touches on a computer.
No one could have predicted the resulting revolution.

History sometimes has ways of connecting events that take place hun­
dreds of years and thousands of miles apart. None of these men could
have realized the importance of his work in the future or completely
understood his connection with the past.

On a hot day in 1984, in Lexington, Massachusetts, a team of com­
pu'ter scientists at Think Technologies, Inc., linked the works of Blaise
Pascal-the 17th-century mathematician, natural philosopher, and
inventor of the first adding machine-with Nikolas Wirth-designer of
the Pascal computer language-and with Steven Jobs and Steven
Wozniak-founders of Apple Computer. This team completed an
extraordinary new computer language, Macintosh Pascal.

This is the legacy of this book. The MacPascal Book is intended for
both the novice who wants to learn how to program and the experi­
enced Pascal programmer who wants to use Macintosh Pascal. Embed­
ded in this book is a full Pascal text that carefully teaches all the features
of Pascal along with teaching programming and how to use the
MacPascal system. A highlight of the book is its discussion of how to
use "QuickDraw" graphics to produce animation and interesting graph­
ics effects. Graphics are integrated into each chapter to demonstrate the
topic and to provide some entertainment. A separate graphics chapter
includes a video game program and ideas for others.

Macintosh Pascal is the easiest Pascal system to learn and use to date.
Being a full implementation of Pascal, it allows a programmer to express
problems in a natural form similar to how people think. Being Macin­
tosh software, MacPascal makes full use of the unique features of the
Macintosh, thus making MacPascal easy to learn, easy to use, and easy
to debug the occasional programming mistakes that inevitably occur.
This book contains all that you will need to become a proficient Pascal
programmer.

xi

Paul Goodman
Alan Zeldin

Introduction

This book teaches Pascal programming with the MacPascal system for
the Macintosh computer. It is intended as a text for an introductory
Computer Science course or as a self-study guide for Pascal.

In the past, Pascal books have been one of two types. There were
books that were implementation free that taught Pascal in a vacuum, as
if it never had to be run on a computer. These books were weak in deal­
ing with I/O and file usage, which vary greatly from computer to
computer.

The other books were primers on how to use Pascal on a specific sys­
tem and gave only a light treatment to the Pascal language itself.

This book suffers from neither of these two pitfalls. It is a full Pascal
text covering the entire breadth of the Pascal language in substantial
detail and gives full coverage to the use of MacPascal, with detailed

· descriptions of file usage and I/O. A good example is how the book
covers QuickDraw, the Macintosh's powerful graphics package. Most
of the book's chapters include graphics-oriented examples to provide
motivation to the reader; however, they are only used to support the
concepts introduced in the chapter, not in lieu of traditional Pascal
examples. In addition, this material is located in the back of a chapter,
rather than in the middle, to make it easier for an instructor to omit if
desired. For review and practice, each chapter includes sample problems
based on the material in the chapter.

Pedagogy and Organization

The authors of this book have taught over 3000 university students to
program. The pedagogy of this book reflects their experiences in teach­
ing Pascal. Chapters are not grouped by categories such as loops or con­
trol structures as found in many books, but rather Pascal structures are
grouped by function, thus, quickly giving the reader a sufficient Pascal
vocabulary to program with. This method avoids the frustration of hav­
ing to wait to get to the middle of the book before the reader can start
programming.

Chapter 1 of the book is a general introduction to computer hardware
and software concepts as they appear on the Macintosh.

Chapter 2 introduces the reader to the MacPascal language and envi­
ronment with step-by-step descriptions of how to enter, edit, and run a
simple program. This chapter quickly motivates and prepares the reader
for Chapter 3, where Pascal fundamentals are introduced. Covered are
data, data types, variables, assignment, expressions, program structure,
input/output, syntax diagrams, and documentation. Early exposure is

xiii

provided to structured design and programming concepts in several sim­
ple programming examples.

Chapter 4 covers the Pascal structures needed to start implementing
more substantial programs. Decision making with the IF statement and
the FOR and WHILE loops is discussed. Numerous examples with differ­
ent data types are used to illustrate these techniques. Chapter 4 also intro­
duces the Macintosh graphics coordinate system along with simple
graphics and animation programs.

Chapter 5 takes a full look at the MacPascal programming environ­
ment and discusses errors and debugging. The powerful MacPascal
debugging tools are demonstrated.

Chapter 6 takes an in-depth look at data types. The MacPascal
extended real and integer types are discussed as well as built-in func­
tions. Included with the built-in functions are several Macintosh Tool­
box functions used to manipulate the Macintosh's environment. This
chapter concludes with several new graphics commands and an anima­
tion program using built-in functions.

Traditionally, the hardest Pascal concept to grasp is parameter pass­
ing. Chapter 7 emphasizes this concept where procedures are covered.
Functions are covered in a later chapter because experience has taught
that introducing both procedures and functions at the same time tends
to lead to confusion. Simple to follow examples are used to drive home
the concepts involved.

Chapter 8 covers arrays and strings and Chapter 9 covers the remain­
ing structures: functions, records, the CASE statement, and sets. A
highlight of the book is its coverage of recursion. Several simple, yet
fascinating graphics programs physically demonstrate this powerful, yet
intimidating programming technique.

A more formal presentation of graphics is the goal of Chapter 10.
Two complete interactive graphics systems making full use of the graph­
ics capability and the mouse are developed. These programs serve as a
model for implementing interactive graphics programs.

Chapter 11 covers files and file processing in the MacPascal imple­
mentation. Both sequential and random file access are demonstrated.

The two remaining Pascal topics, variant records and pointers, are
covered in Chapter 12. The book's final chapter develops a program­
ming system with file processing. The same top-down design techniques
emphasized throughout the book are utilized.

The book contains appendices covering selected answers to problems,
creating sound, and associated music theory, the Standard Apple
Numeric Environment, syntax diagrams, and other reference tables.

MacPascal is the most effective language available for teaching pro­
gramming. Since it is interpreted rather than compiled, it provides
unique debugging facilities not found in any other Pascal implementa­
tion process. The illuminating Observe window allows the programmer

xiv

to see the value of variables while stepping through a program line by
line . This development tool turns program bugs into a learning opportu­
nity. Furthermore, since it is interpreted, the programmer avoids the
time-consuming compiling and linking process every time a slight pro­
gram change is made. This fosters experimentation by the programmer,
which leads to improved learning and understanding.

Special Features of the Book

Complete Pascal Coverage. The text includes the topics
neglected by similar books; sets, variant records, pointers, units, sound
and SANE (the Apple Standard Numeric Environment) are all covered.

Emphasis on Program Development. Starting in the first
chapter, program development is stressed by encouraging top-down
programming design and by including pseudocode of most programs.

Total Coverage of Files. The use of files occupies two complete
chapters rather than the five or six pages usually devoted to this impor­
tant topic . The reader is presented with the necessary information and
programming techniques to develop programming systems to solve sub­
stantial data storage applications.

In Depth look at Graphics. A majority of the Macintosh
QuickDraw routines is presented. A difficult subject to grasp,
QuickDraw concepts are first introduced in Chapter Four. The concepts
are built upon froII). chapter to chapter. A separate chapter is devoted to
a formal description of QuickDraw and includes two interactive graph­
ics programs, SketchPad, a free-hand drawing program, and Paddle­
Ball, a video game . The reader is also presented with the necessary
information to develop his own graphic interfaces.

The ToolBox. The text covers the MacPascal routines that access
the Macintosh User Interface ToolBox . Demonstrated are ways to utilize
the Mouse, the built-in clock, to generate sounds, and many other use­
ful routines.

Sound and Music. A concise Appendix covers music theory and
how to play songs with the Note procedure.

Complet~ Programming Systems Presented. The Book
progresses from simple programs to complete menu-driven program­
ming systems utilizing files. The book's final chapter develops from
scratch a multileveled, menu-driven bank account tracking program.
This program serves as a model for other complete systems.

xv

Appendices. The MacPascal book contains appendices that com­
plement the text with easy-to-reference information on menu com­
mands, documenting programs, sound, UCSD Pascal, reserved words,
syntax diagrams, QuickDraw procedures, SANE procedures, error mes­
sages, bibliography, and the Macintosh character set.

xvi

About the Authors

PAUL GooDMAN is an Instructor of Computer Science at Queens College
of the City University of New York. Goodman was one of the first in
the country to teach Pascal. He is also the author of The Commodore 64
Guide to Data Files and Advanced Basic (Brady Communications Com­
pany).

ALAN ZELDIN is a Software Engineer at Core Systems Solutions in New
York City and an Adjunct Instructor of Computer Science at Queens
College of the City University of New York . He is also developer of
SPY'S DEMISE, a popular arcade action game for the Apple II, and
other 6502 computer programs published by Penguin Software.

xvii

Acknowledgments

On a cool spring night in a hi-rise apartment in New York City, two
writers commenced work on a Pascal text book. Slowly but surely,
many late nights of work became a book . It was not without the help of
many people that this transformation took place.

No book is published without hard work and dedication by the people
who form a publishing company. We wish to thank the entire staff at Brady
Communications but especially David C. Culverwell, Sue Love, Christi
Mangold, Bobbie Glencer, John Yarley, and the Art department.

Nor is a book published without the contributions made by
prepublication reviewers . Susan Schmieman, Bill O'Brien, Peter Leeds,
Rico Vaccaro, Richard Phillips, and otir colleague Ken Lord, all pro­
vided insightful criticism and suggestions that were of great help to us.

'Special thanks go to Charles Weg of Apple Computer for the infor­
mation and encouragement he provided.

Finally, just as a book is shaped by many people, so are writers. Over
the years there have been friends and family, teachers and students, co­
workers and employers, who have helped form the way we think about
our work and about life itself. This book is dedicated to them.

xviii

1 Computer Concepts

During the last several years computers have become an impor­
tant force in our lives. With the advent of small, powerful, and
inexpensive computers such as the Macintosh, the realm of
knowledge and information processing, which was once available
exclusively to large corporations and government, is now avail­
able on our desk tops. In order to make the best use of these pow­
erful machines, it is necessary for us to have some understanding
of how computers work and how to make computers work for
us. In this chapter we will look at the major components that
make up a computer system.

Computer systems have two main components, Hardware and
Software. The hardware is the actual machine itself, the Macin­
tosh for example. The software is the instructions that direct the
hardware to do useful computations. A good analogy might be a
high fidelity music system. The receiver, speakers, and turntable
are hardware, and the music is the software.

Hardware
Hardware can be subdivided further into several components:

Input/Output Devices. These devices transfer information
from inside the computer to the outside world (output) or from
the outside world into the computer (input). Examples of output
devices on the Macintosh are the display screen, which "outputs"
text and pictures, and the speaker, which "outputs" beeps and
music. Examples of input devices on the Macintosh include the
keyboard, which is used for entering text and numeric informa­
tion, and the mouse, which is useful for making choices and
"inputting" spacial information.

1

Figure 1-1.

Central Processing Unit. The CPU is the part of the com­
puter that does the computation (for example, arithmetic) and
logical (for example, decision making) operations. The CPU is
sometimes called the ''brain" of the computer; it is the component
that interprets the programs and directs other parts of the com­
puter to take appropriate action. The CPU inside the Macintosh
is the Motorola 68000.

Primary Storage. Also referred to as Main Memory or just
memory. Primary Storage is the place where programs and data
are stored. Memory can store many different types of informa­
tion including instructions, numbers, pictures, and text charac­
ters.

A byte is the amount of memory required to store one charac­
ter. A "K" is equal to 210 or 1024 and is a standard computer
abbreviation . Since 1024 is close to a thousand, the term "K"
which stands for kilo (the Greek term for thousand) is used. The
standard Mac is said to have 128K bytes of memory. This means
that it can store just over 130,000 text characters. The 512K Mac-

-------------------- 1 Computer Concepts __ 3

1. Motorola 68000 Microprocessor 6. 8530 Serial Communications Con-
2. ROM troller
3. RAM 7. 6522 Versatile Interface Adapter
4. Business Management Unit 8. Real Time Clock
5. Incredible WOZ Machine 9. Audio Connector

Figure 1-2.

intosh (the Fat Mac) can store just over 534,000 text characters.
Memory is used to store information that needs to be accessed

quickly, such as the instructions in the program that are currently
running on the computer or data that the currently running pro­
gram needs to access often. The Macintosh also has an additional
64K of Read Only Memory (ROM) which permanently stores the
Toolbox. The Toolbox is what gives the computer its unique cap­
abilities.

4 __ 1 Computer Concepts-------------------

Secondary Storage. This type of storage is use to store data
and programs, but information that is stored in secondary stor­
age cannot be accessed as quickly as information that is in main
memory. An example of a secondary storage device on the Mac­
intosh is the micro-floppy disk drive. Programs that are not cur­
rently running on the machine can be stored on a floppy disk and
loaded into memory only when they are to be run.

Software

A program is a sequence of statements that instructs the com­
puter to perform a specific task. Computer programs are written
in languages that are designed to communicate very precisely and
accurately the intentions of the programmer to the machine. The
machine stores all information, programs, data, text and pictures
internally as numbers. These numbers that make up the instruc­
tions of a computer program are called machine language.
Because it is difficult for people to understand machine language,
computer scientists have developed programming languages
much closer to natural languages, such as English. These pro­
gramming languages are called high level languages, as opposed
to machine language, which is referred to as a low level language.
The ultimate high level language would be a language like Eng­
lish. There are no machines that can understand English, there­
fore programmers use high level languages, such as Pascal, to
program their computers.

Language Translators

Since the only programs that the computer can run directly are in
machine language, programs written in high level languages such
as Pascal must be translated into machine language. Programs
that do this translation are called language translators. A pro­
gram that is written in a high level language is called the source
code or source program. The machine language that is produced
by the translator is called the object code. There are two primary
kinds of language translators used in computers, interpreters and
compilers.

-------------------1 Computer Concepts __ 5

Interpreters and Compilers

The major difference between MacPascal and other Pascals is that
MacPascal . is interpreted, whereas most other Pascals are com­
piled. Interpreters are computer programs that translate each
statement of a source program into object code, one at a time.
After each statement is translated it is then executed. Compilers
are also computer programs that translate programs written in
high level languages into machine language. First the compiler
translates the entire source program into machine language, then
the program is executed. The advantage of a compiler over an
interpreter is that a program translated using a compiler will run
several times faster than a program translated using an inter­
preter. The advantage ·of an interpreter over a compiler is that an
interpreter provides more interaction with the user and makes it
easier to develop and correct programs.

The Operating System

The Macintosh has many resources such as memory, input/
output devices, disk, and so on. An operating system is ~ pro­
gram that manages these resources and provides access to them
for the user and programs. The operating system, for example,
contains the programs that allow the user to print a document on
the printer or store a document on a disk. The Macintosh has an
innovative and easy to use operating system.

The Macintosh

The Macintosh computer differs from other computers in sev­
eral respects.

The most obvious characteristic of the Macintosh is its small
size, high performance, and relatively low price. Only a genera­
tion ago a machine with this kind of performance would take up
a whole room and cost several hundred thousand dollars. ·

Another notable characteristic of the Macintosh is its high reso­
lution video display that is 512 dots wide by 342 dots high.
Unlike many other personal computers, the Macintosh uses a bit
mapped video display for everything it displays on the screen. A
bit is the smallest indivisible unit of memory in a computer. A bit

6 __ 1 Computer Concepts---·-----------------

can be thought of as a switch that can be in one of two discrete
states, either 0 (off) or 1 (on). In a bit mapped video display
every dot on the screen, called a pixel (picture element), is black
or white depending on whether the value of a specific bit in mem­
ory is 0 or 1. A bit mapped display allows a program to control
exactly what is displayed on the screen down. to a single dot. This
is a major factor in allowing the Macintosh to mix pictures and
text freely on the screen.

The Macintosh mouse is an input device that allows the user to
choose easily between options displayed on the screen, or to
input spacial information not easily entered using traditional
input devices such as the keyboard.

Macintosh Software

. The Macintosh provides a consistent and easy way to use the
computer. The computer user no longer must remember many
obscure commands in order to make the computer do its job. The
Macintosh provides an environment modeled after a desktop, an
environment that is familiar to even inexperienced computer
users. Like a desktop, documents on the display screen can be
moved around graphically by just a simple touch using the mouse
and its pointer. The Macintosh software presents computer ele­
ments with graphics symbols called icons that are familiar from
our everyday lives . The built-in familiarity makes learning how
to use Macintosh software a short and easy task. All software
written for the Macintosh that follows the Macintosh user inter­
face will be easy to use for people who have learned other Macin­
tosh applications. Macintosh's ease of use provides a major step
forward in making computerized problem-solving accessible to
the majority of people.

In the following chapters we will examine how the power,
speed and versatility of computers can be harnessed using the
Pascal programming language.

2 Using MacPascal

Before delving into the Pascal language itself let's examine the
programming environment by entering and running a MacPascal
program. The concepts involved are simple and you will quickly
learn how to handle MacPascal like an expert. This chapter will
serve as a handy reference later on.

Getting Up and Running

Turn on your computer, then insert your MacPascal disk into
the disk drive slot with the label facing up. After a few seconds
the Macintosh desktop will appear on the screen.

s File Edit Uiew Sp-:cial

Figure 2-1.

7

8 __ 2 Using MacPascal ----·----------------

There are several things on the screen to notice.

The MacPascal Disk Icon. The picture of a little disk in the
right hand corner of the screen. This represents the disk in the
disk drive. We will deal more with this in a minute.

The Pointer. The arrow you see on the screen is controlled by
the mouse. Move the mouse and notice how the pointer moves
too. Take a few minutes to get yourself accustomed with the rela­
tionship between moving the mouse and the movement of the
pointer.

The Menu Bar. The list of words across the top of the screen
is the names of menus containing commands.

The Trash Can. The little picture of a trash can is where
things are thrown away.

We are now ready to bring up MacPascal. Move the pointer on
top of the MacPascal disk icon and click the mouse button. This
is one of the basic operations on the Macintosh called selecting.
Notice that when ah icon is selected it turns black. Now move the
pointer on to the word]File in the menu bar and hold down the
mouse button. You will see a pull down menu appear on the
screen, listing several options you can perform on the selected
item (Figure 2-2).

The menu will stay on the screen until the mouse button is
released . The dark items in the menu are actions that can be per­
formed now. The dim items are actions that would be appropri­
ate under different circumstances. Still holding down the mouse
button, pull the pointer down through the menu by moving the
mouse. As you move the pointer over the dark items they become
inverted (white letters on a black background). Move the pointer
over Open and select it by releasing the mouse button. You can
tell that a menu item has been selected because it will briefly flash
before the menu disappears (Figure 2-3).

You have just opened the MacPascal disk. In a few seconds, a
window will appear showing icons for the documents ~nd pro­
grams contained on the MacPascal disk. To run MacPascal select
and open the MacPascal icon with the method described above or
use this short cut. After placing the pointer on the icon, click the
mouse button twice in very quick succession. Double clicking
selects and opens an icon automatically . In about 15 seconds

------------------2 Using MacPascal __ 9

t: lose
t: lose flH
Pr in~

[h)S(~

[h)SH flH
Print

Figure 2-2.

Figure 2-3.

three windows will appear on the screen labeled Untitled (the
Program window), Text and Drawing (Figure 2-4).

The Program window is where you will enter the MacPascal
program. It will be titled Untitled or titled with the name of a

10 __ 2 Using MacPascal --------------------

" 9 Fiie Edit Search Ru111 Windows
,

io Untitled W TeHt

I ~

H

Drewln_g_

IQ
K;Jl 1c;; 'i!l

Figure 2-4.

program stored on the disk, depending upon the circumstances.
The Text window is where text printed by the program is dis­
played. The Drawing window is where graphics such as lines,
shapes, graphs, charts, and diagrams can be displayed. These
windows can be closed or rearranged at your convenience.

For instance, you may wish to close the Drawing window if
your program doesn't display graphics and use the space to
expand the Text or Program window. A closed window can be
re-opened by selecting its name in the Windows menu. You will
also see a menu bar on the top of the screen with different titles
than those in the desktop. Even though the screen appears
slightly different, all the operations you learned are the same as in
the desktop.

Locate the pointer on the screen. When you move it into the
Program window it changes shape. Place the pointer in the upper
left hand comer of the Program window and click the mouse but­
ton. A blinking vertical line called the cursor will appear at that
spot. The cursor indicates the current insertion point for new text
being typed. Anything typed will be inserted starting at that spot
in the window. Any text to the right of that spot will be moved
over. Now that the cursor is waiting for text to be entered, let's
enter a program. Type the following exactly:

------·---------------- 2 Using MacPascal __ 11

program FirstTime;
var
I: Integer;
begin
for 1:=1to10 do
FrameOval(l0,10,5*1,5*1)
end.

If you make a mistake as you type, the backspace key will
erase one character to the left. As you enter the program,
MacPascal will automatically indent the program and make cer­
tain words boldface to conform to MacPascal conventions. Here
is how the Program window should appear.

Ttw Clost box.
Click hor. lo
hick ttw window.

Tht utlt b¥. High"91>tfll f.,.­
thf. ~tiv• ,,,,;ndow. Dr .ag thf.

bif" to mov• th• .ntin window.

N....,. th1t tht pr09r 1tn

is stOf'"•d with.

Tht insorllon point. J~~~~~ili:~~~~~~~~~ \/hit you typo go.s htr.. First Pro rem

Tht Scroll box. Drog it
to movo through lht
window quickloj.

Tht poinlor. Ch-.s
sllipo ind mo1t1incj
dopondin<j upon whtro
it is displi\lfll. Cliclc
in Uw window to stt
tht insortion point
or dr.aq to nt.et t•xt

I program FirstTime;
ver

I : Integer;
Jbegln

for I := 1 to 1 o do
FromeOvrsl(lO, 10, 5 *I, 5 *I)

end.

Scron .-rows. Click to mov•
ttxt ln th• dir"•ction of the> ~rrov.

Figure 2-5.

Scroll .-rows.
Click to movo lht
t•xt in Utt diritehon
of th• 1rrow.

TM sizt box. Or,tg it
to chMlqf' Ulf' window sin.

If you made a mistake while typing, turn to the section of this
chapter concerning editing a program.

Once you are satisfied that you typed the program correctly
run the program by selecting Go from the Run menu (Figure 2-6).

The program will display tangential circles in the Drawing win­
dow as is shown in Figure 2-7.

How this program works is not overly important at this point.
You will quickly learn how it is done. What is important is that

12 __ 2 Using MacPascal ------------------

• File Edit Search

Go-&o
Step XS
Step-Step

Figure 2-6.

Drawin_g_

Figure 2-7.

you entered the program correctly and that the program worked
as expected. If the program did not work as expected, check the
program carefully and make sure that it is exactly the same as the
example.

------------------- 2 Using MacPascal __ 13

Editing a Program
'

If a mistake is made while entering a program or a change in
the program needs to be made, the following editing techniques
are available.

To Insert Text

1. Move the pointer to the desired spot in the program and
click the mouse button to place the insertion point. ·

2. Enter the text.

To Delete Text
There are two different techniques for deleting text.
For a small amount of text.

· 1. Move the pointer to the right of the characters you want to
delete and click the mouse button to place the insertion
point.

2. Use the Backspace key to delete the characters.

For a large amount of text.

1. Select the text to be deleted by placing the pointer at the
start of the text to be deleted and hold down the mouse
button.

IITEXT BEING SELECTED

Figure 2-8.

2. Now drag the pointer across the text. Notice that, while
dragging, the area selected is displayed inverted (white
characters on a black background). At the end of the por­
tion to be deleted release the button. The text to be deleted
should now be all in reverse.

I
Figure 2-9.

3. Delete the selected area by pressing the Backspace key .

To Replace Text

1. Select the text to be replaced by using the dragging tech­
nique described above.

14 2 Using MacPascal -----------·---------

2. Start typing the new text. The old text is automatically
replaced.

To Move Text

1. Select the text to be replaced.
2. Choose Cut from the Edit menu.
3. Place the insertion point where you want the text to go.
4. Choose Paste from the Edit menu.

To Copy Text

1. Select the text to be replaced.
2. Choose Copy from the Edit menu.
3. Place the insertion point where you want the text to go.
4. Choose Paste from the Edit menu.

Shortcuts

1. Double clicking the mouse button on a word automatically
selects the. word.

2. Triple clicking the mouse button on a line automatically
selects the entire line.

These editing procedures are exactly the same as those used in
MacWrite and in many other places in the Macintosh such as the
Notepad.

Saving a Program

Once you are finished using a program you can save it on a
disk for future use. To save the program you are currently work­
ing on select Save As ... from the File menu. A dialog box will
appear on the screen (Figure 2-10).

You must give your program a name before you save it on the
disk. This will be the name used to store the program and to
retrieve it later on. This name is unrelated to the identifier in the
program statement in the program. Enter a name for the program
by typing it into the long box where the cursor is blinking. Give
the program a name that will represent what it does, but don't hit
the Return key yet.

Notice the three ovals in the dialog box containing Save,
Cancel, and Eject. These are known as buttons and they are
pressed by clicking the pointer inside the oval. Clicking on Save

-------------------- 2 Using MacPascal __ 15

Enter name to sa'!e
program 'ttith here.

Saue document as:

Programl

Saue

Click here to save
program.

Cancel

Click here if you
change your mind .

Figure 2-10.

N<sm~ of disk

MatP8St81

Eje_ct

Cttck here to
ch.an¥ disks .

or pressing the Return key will save the program on the disk in
the disk drive. Clicking on Eject will eject the disk currently in the
drive allowing you to insert a different disk to save your program
on. After the program is saved, MacPascal will prompt you to
re-insert the original disk. The Cancel button can be used if you
change your mind about saving the program.

If a program already has a name from being saved at an earlier
time it can be quickly sa~ed again by selecting Save from the File
menu rather than Save As If the program was originally
saved on a different disk MacPascal will eject the disk in the disk
drive and prompt you to enter the other disk .

Recalling a Program

You can recall a program that is saved on a disk in either. of
two ways.

If MacPascal is already running then select Open . . . from the
File menu. A dialog box will appear on the screen (Figure 2-11).

The names of the MacPascal programs that are stored on the
disk appear in a small window on the left side of the dialog box.
If more programs exist than can be listed in the space, the same
scrolling apparatus as in the Program window will also appear .

16 __ 2 Using MacPascal ---------------------

Names of pr09f" ams
on

Scroll Click hff'e ~o ~n
disk. Scroll box. a selected document. arrow.

~
~

border "' ~ FLOW CHRRTS
FLOW2
IBM
lnuitation
post19
Screen O

(OJ•en J

I (Cancel J

Scroll Click here if you
arrow. ohMl9E' your mind.

Figure 2-11.

(

Name of disk
in drive.

Pe int

Eject

Chck here to
change dis:k.

J

To recall a program, either select the program name by clicking
on it and then clicking on the Open button or just double click on
the program name. A program on a different disk can be opened
by ejecting the disk currently in the disk drive and inserting the
disk containing the program. The programs contained on the new
disk will then appear in the window. Alternatively, when you are
in the desktop you can recall a program by opening the icon for
that program. This will automatically bring up MacPascal and
then load the program.

Printing a Program

A copy of your MacPascal program (the text itself, not the out­
put) can be printed on the printer connected to your Macintosh.
Select Print from the File menu. A dialog box will then appear on
the screen (Figure 2-12).

Several buttons allow different printing options to be specified.
High quality printing is slow but produces a copy of !.'he program
in impressive print quality. Standard prints faster but the print
quality is lower. Draft is the fastest printing mode but the output
may not be an exact copy of the screen (the text is printed in a
different font) . The boxes for the number of copies and the range

-------------------2 Using MacPascal __ 17

Click for high Click for standard Click for fast, but Click to start
quality output. quality output. draft quality output. printi!19.

Quality:
Page Range:

. Copies:

Standard Draft

From:Oto:O

Se~t either oontinuous or Print either the whole
single sheet paper in printer program or speoif'10

Enter number of copies
to be printed.

Figure 2-12.

OK

Cancel

Click if you
change yotr
mind.

of pages to print can be filled in by placing the cursor in the box.
The Tab key will move the cursor from box to box without the
use of the mouse.

Printing the Active Window

The contents of the active window can be printed by simulta­
neously holding down the Shift, Command, and the number "4"
keys. You can make any window the active window by clicking
the pointer anywhere inside of it.

3 Pascal Fundamentals

The best way to go about learning Pascal is to dive right in, so
here is our first program.

Untitled

progrom Good_For _Nothlng;
{This is our first program}
begin
end.

Figure 3-1.

This is the simplest program possible in Pascal . It does abso­
lutely nothing . All programs must begin with the word program
to identify them as programs. Every program must also have a
name separated from the word program by a space. This pro­
gram's name is "Good_For_Nothing". A name in Pascal is
called an identifier. In MacPascal, identifiers can be made up of
letters, numbers, and underscores. An identifier can contain up to
255 characters. In practice, an identifier will contain from one to
about fifteen characters (who wants to type very long names?). It
is good practice to use identifiers that have a meaning that corres­
ponds to the functions they perform or the objects they represent.

Syntax
Syntax is the rules for constructing valid statements in a· lan­

guage. In natural languages such as English, we call these rules

19

20 __ 3 Pascal Fundamentals ·

grammar. Programming languages also have rules of syntax, but
they are much more restrictive and simpler than natural lan­
guages. Pascal's syntax is so simple and well defined lt can be
expressed in a series of diagrams. For instance, here is the syntax
diagram for a digit.
DIGIT

Figure 3-2. Syntax Diagram: Digit.

To construct a syntactically correct digit, follow the diagram
from the starting point on the left to fhe end point on the right.
Many paths are p0ssible. Any pafh that starts on the left and
ends at the right describes a digit that is syntactically correct.
Notice in this diagram any single digit from 0 to 9 is a valid digit.'
A slightly more complex syntax diagram is that of an unsigned
integer (a whole number).

UNSIGNED INTEGER

(~1 digit

J ...
Figure 3-3. Syntax Dia.gram : Unsigned Integer.

Once again any path that goes from the start to the end defines
a syntactically correct unsigned integer. To confirm that a num­
ber such as 327 is a valid unsigned integer, we would follow the
diagram traversing the middle section three times and then exit,

The syntax diagram for a signed integer is built with the rules
for an unsigned integer:

SIGNED INTEGER

unsigned
integer

Figure 3-4. Syntax Diagram : Signed Integer.

------------------- 3 Pascal Fundamentals __ 21

In a diagram, the elliptical symbols are atomic, they can't be
sub-divided into smaller diagrams. Rectangular symbols are those
that can be sub-divided. For example, in the signed integer dia­
gram, the unsigned integer symbol was defined previously. A
complete listing of the syntax diagrams for Pascal can be found in
Appendix D.

Not all words can be used as identifiers. A numeric digit or an
underscore cannot be the first character of an identifier. Spaces,
punctuation characters, and other special characters cannot be
used in identifiers either. The following are valid identifiers:

Big_ Bucks Total Rate3 One4all

The following are not valid Pascal identifiers:

22go Big: Bang Counter$

Lower case and upper case characters are equivalent in an iden­
tifier; therefore, the following two identifiers are treated as one
and the same by MacPascal.

Gross Pay gross pay

The underscore character is not in the identifier and is often
used as a separator between words to make identifiers easier to
read. The following identifiers are considered to be different by
MacPascal:

Gross_ Pay GrossPay

IDENTIFIER

letter

Figure 3-5. Syntax Diagram : Identifier

The word program cannot be used as an identifier because it
has a special meaning in the language. Words like program that

22 __ 3 Pascal Fundamentals

have special meanings are called "reserved words." or "word
symbols". There are 70 reserved words in the MacPascal lan­
guage which are listed in Appendix F. In MacPascal, and in this
book, reserved word are displayed in boldface type.

Following the reserved word program and the program name
identifier is a semicolon. Semicolons are used in Pascal to sepa­
rate statements. A statement is a complete Pascal instruction.

Comments

Information that is enclosed between curly braces { and } are
called comments. Comments are used to document the workings
of a program and are meant for people to read. The Pascal inter­
preter completely ignores all comments. It cannot be emphasized
too strongly that comments are required for writing clear main­
tainable programs that can be understood when examined later.
A parenthesis asterisk pair, '(*' and '*)' can be substituted for the
curly brace pair, '{'and'}' . The start and end of a comment must
use matching delimiters--a '{'and'}' or a'(*' and'*)' but not'{'
and'*)' or'(*' and'}'.

Documenting a Program

It is important that when you write a program, you include in
the program explanations of how the program works. This may
not seem important or necessary at the time, but you will be
grateful in the future when you look back at your work. The
eleventh commandment should read 'Thou shalt document thy
programs."

There are two aspects to properly documenting a program. The
first is to make your program self-explanatory by using a mean­
ingful identifier name. Below are two assignment statements that
perform the same task.

X:=Y+Z;
Sale Price : = Price + Tax;

The only thing that can be ascertained from the first statement
is that two variables are being added together and the result
assigned to a third. From the second, the reader can tell the rea­
son why the statement is being executed.

------------------ 3 Pascal Fundamenta ls __ 23

The second aspect of documentation is the use of comments.
These should be used when the identifier names alone can not
indicate the purpose of the statement or group of statements or to
describe what a group of statements is doing.

con st
ConversionRate = 21374; {#of Lire in a Dollar}

{Calculate import cost}
Dollars:= Lire* Conversion Rate;
Duty:= Dollars* TaxRate;
Cost:= Dollars+ Duty;

Appendix C contains an entire program meticulously docu­
mented to serve as a guide.

After the comments in Figure 3-1 are the reserved words begin
and end. All programs contain a begin and finish with an end.
The end is followed by a period indicating that it is the final state­
ment of the program.

Write and Writeln

Now let us look at a program that does something. For a
computer to be useful it must be able to output information for
people to see. The two most common statements in Pascal that
output information are the Write and Writeln (pronounced write
line) statements.

Untitled

progrBm MyNome;
begin

Wrlte('I om o Mocintosh computer')
end.

Figure 3-6.

24 __ 3 Pascal Fundamentals

Program MyName will display in the Text window the sen­
tence

Figl!lre 3-7.

D ~ Untitled

progrom MyName.Ageii n; fQ]
begin

'w'ritei'' I ') ·
'· >>

Vv'ri te('am ')_;
'w'rite('a ');
V·/ri te('r1aci ntosrr ')_;
'•111ri te('Cornputer')

end. [Q
f:rl m '2J

Figure 3-8.

Program MyNameAgain does the same exact thing. Successive
Write statements will place information on the same line in the
Text window.

--·- ·---·--·--- ---- -

I am a Macintosh computer

Figure 3-9.

The following program will yield slightly different results:

------------------ 3 Pascal Fundamentals __ 25

Untitled

program MyNameAThirdTime;
begin

Writeln('I ');
Writeln('am ');
Writeln('a ');
Writeln('Macintosh ');
Writeln('computer ')

end.

Figure 3-10.

Program MyNameAThirdTime displays

am
a
Macintosh
computer

Figure 3-11.

This program would display each word on a separate line. The
difference between Write and Writeln is that whatever is dis­
played after a Writeln statement is displayed on the line below.
Whereas, whatever is displayed after a Write statement is dis­
played on the same line. Program MoreThanOne produces the
output shown in Figure 3-13.

More than one item can be used in a Write or Writeln state­
ment as long as each item is separated by commas. Write and
Writeln can be mixed in the same program.

Now that we have a way to display information let us examine
the kinds of information Pascal can handle.

26 __ 3 Pascal Fundamentals-------------------

Data

Untitled

progrem MoreThenOne;
begin

-====-======-==-==-...:::...-- ·-·

Writeln('I ·, 'am ·, ·a ·, 'Macintosh ·,'computer');
Write('I ·,·am·, ·a·, 'Macintosh·, ·computer');

end.

Figure 3-12.

=- TeHt
am a Macintosh computer

I am a Macintosh computer

Figure 3-13.

In our everyday lives we deal with many types of information:
newspapers, books, music, paintings, etc. When information is
used in the computer it is called data. Computers process many
different kinds of information or data, including numbers, char­
acters, strings of characters, pictures, sounds, etc.

Data Types

There are several different types of data that can be represented
in Pascal: Integers, Char, String, Boolean, Real, and so forth.
Integers are positive and negative whole numbers (numbers that
don't have fractional parts). Examples of integers are:

1 23 -252 0 1398 -12

Notice that integers contain no decimal points. Commas are
not used or allowed in integers. The largest integer that can be

------------------3 Pascal Fundamentals __ 27

used by the Pascal language is call Maxint. This number is
dependent on the machine on which Pascal is being used. On the
Macintosh system Maxint is 32767. The smallest number that can
be represented is negative Maxint or .,.-32767. It is also desirable
to be able to represent numbers that have a whole part and a
fractional part. Pascal lets us represent these numbers with the
Real data type. Examples of real numbers are:

3.14 -87.0 242.34 l.324e+6 -7.43e-2

The first three numbers listed are in the notation with which
you are familiar, that is, numbers with digits to the right of the
decimal point. The last two numbers are in a notation called
floating point notation. The "e" stands for exponent. The number
is interpreted as the number on the left of the "e" multiplied by
ten raised to the number following the "e". The exponent always
has a sign. This is sometimes also called scientific notation. The
number 1.324e+6 is equivalent to 1.324 x 106 or 1324000.0. The
number -7.43e-2 is equivalent to -7.43 x 10-2 or -0.0743.
Other examples are:

-12.34e+2
34.567e+l

-932.13e-4

is equivalent to
is equivalent to
is equivalent to

-1234.0
345.67

-0.0932113

Real numbers can. be written in standard fashion or in floating
point notation. There must be at least one digit preceding the dec­
imal point in a real number. 0.5 is a valid representation of one­
half whereas .5 is not. Real numbers are useful for representing
very large or very small quantities since their range of possible
values is far greater than that of integers.

Computers need to process information other than numbers in
order to communicate effectively with people. Pascal has two
data types that allow us to use text information with our comput­
ers, the character and the string data types.

Characters are upper- and lowercase letters, numbers and
punctuation symbols. Character data is enclosed in single quotes.
Examples of characters are the following:

'a' 'D' '!' ''
I '3' '%' I I

Since quotes are used to delineate a character, we must use a
different method to represent the quote character itself. The
quote character is represented by two consecutive quotes between
quotes for a total of four separate quotes together:

28 __ 3 Pascal Fundamentals-----------------

1111

Strings are sequences of characters and are useful because they
let us combine individual characters into words or sentences. This
lets us manipulate more meaningful units, rather than treating
characters individually. As with characters, strings are written
between single quotation marks:

'This is a sample string'
'testing 123 testinglll'

Lets look at a simple Pascal program that uses the above data
types:

=o Untitled

program Displey_Some_Twos;
begin

Writeln(2); {integer}
Writeln('2'); { character}
Writeln('two'); {string}
Writeln(2.0); { reel }
Writeln(2.0EO) {real }

end.

Figure 3-14.

The output of Display_Some_Twos is

2
two
2.0e+O
2.0e+O

Te Ht

Figure 3-15.

The Writeln statement prints to the Text window whatever
data is between the parentheses. After a Writeln statement is exe-

------------------- 3 Pascal Fundamentals __ 29

cuted whatever is printed next will be printed on the following
line of the Text window. Each piece of data is printed on a sepa­
rate line. Line three of the program prints out the integer 2. Line
four of the program prints out the character 2. Notice that the
quotation marks around the character 2 are not printed out and
are used to indicate that this 2 is a character. Line 5 prints out the
string "two' . Line six and seven show that the two different float­
ing point representations of 2.0 are equivalent.

Variables

Each piece of data used is stored in the computer's memory.
The computer's memory can be thought of as being divided into
many different compartments, each holding a piece of informa­
tion. There is a unique numeric address corresponding to each
compartment. The address allows programs to identify and
access the data stored in the compartment. Fortunately, in Pascal
the numeric address of each compartment is transparent to us .
Instead of using numeric addresses, Pas.cal has words called iden­
tifiers that represent each compartment. Just as people have
names, each piece of information in a Pascal program can have a
name.

Variables can be thought of as these compartments in the com­
puter's memory where data is stored. One important feature of
variables is that the value of the data kept in the compartment
can change during the execution of a program. Pascal permits us
to have variables for all the data types defined above. In Pascal
programs we reference a variable and the data contained within it
by using an identifier that is associated with the variable (Figure

. 3-16).
In the above program two variables were declared: Number,

which contains an integer, and Ch, which contains a character.
Variables are declared after the program statement but before the
first begin of the program. The start of the variable declaration
section is indicated by the reserved word Var. A variable declara­
tion statement consists of the variable's identifier and the type of
the variable, separated by a colon(:). A semicolon separates each
of the variable declaration statements.

Program Test Two simply writes on the screen the integer value
contained in the variable 'Number' followed by a string of 3
spaces (as indica~ed by the three spaces in quotes) and then the

30 __ 3 Pascal Fundamentals-------------------

-D ! Untitled

progrom Te~;tTwo ; ~
Y8r

Number : Integer;
Ch : Char;

begin
v~·ri te(Numt11er, · '.. Ct"1)

end~

QJ_ 12
~
l2J

Figure 3-16.

characters contained in the character variable 'Ch' . The output of
this program is as follows:

-o - Text
::)

0 Q: i--

I--

Kt
72j

Figure 3-17.

Why did the computer display the integer zero followed by
nothing? The reason is that these are the values that MacPascal
places in variaples when a program is first run. An integer gets an
initial value of 0, while a character is initialized with a blank
(hence nothing was displayed for the variable Ch) .

In other implementations of Pascal the results may be less pre­
dictable. Other implementations would display whatever hap­
pened to be in memory from the last program that was run on the
machine. When writing programs it is good practice not to rely
on the computer to give values to variables . Initializing a variable
means giving it a value before it is used . The following program
initializes the variables then displays them.

------------------ 3 Pascal Fundamentals __ 31

D Untitled

progrom TestTwo; ~ I-=--

YOr
Nurntier : Integer_;
Ch : Char;

begin

'
Number:= 23_;
Cl1 :='A';
Y.lrite(Number .. · · .. Ch)

end.
tQ

~ 12 l2J

Figure 3-18.

After this program is run the following will be displayed in the
Text window:

D
n A

Figure 3-19.

Assignment Statements

A statement like "Number : = 23" is known as an assignment
statement. The syntax of an assignment statement is indicated in
Figure 3-20.

The value on the right hand side of the : = is assigned to the
variable on the left hand side. This is used to place a value into a
variable. The variable retains the assigned value until the variable
is altered by some other statement in the program. The":=" is
known as the assignment operator. Notice that there is no space
between the colon and the equal sign. Only one variable can be

32 __ 3 Pascal Fundamentals

ASSIGNMENT STATEMENT

variable

function
identifier

Figure 3-20.

on the left side. An assignment statement is not like an algebraic
equation and it is not solved as one. This is the reason the assign­
ment operator looks different from an equal sign. The assignment
operator can be interpreted to mean "gets the value of". Hence,
Number :=23 can be read as: the variable Number gets the value
23. It may be helpful to think of the integer value 23 being placed
into the memory compartment which is labeled Number.

23 A

Number Ch
Figure 3-21.

The value assigned to a variable must be of the same data type
as the variable. Given the following variable declarations:

var
I : Integer;
Rl, R2: Real;
Ch: Char;

The following assignment statements are all legal.

I:= 17;
Rl : = 2.03;
R2 := 15.0;
Ch:= 'B';

The following are illegal assignment statements.

I:= -17.17;
Ch:= 22;

-17.17 is not an integer
Ch is a character variable

-----------------3 Pascal Fundamentals __ 33

More on Write and Writeln

The Write and Writeln statements have an optional parameter
called the fieldwidth parameter to provide control over how data
is displayed in the Text window. The fieldwidth parameter is
specified by following any item in a Write or Writeln statement
with a colon (:) and a positive integer. The integer determines
how many spaces are allocated for display of the data item. The
easiest case to look at is the display of strings. The fieldwidth
parameter indicates how many spaces are used to display the
string. If the string does not take up all the spaces allocated, it is
right justified within the field as demonstrated in Figures 3-22 and
3-23.

Write('Cantaloupe' : 15)

15

Figure 3-22.

Write('Cantaloupe':20)

20

Figure 3-23.

If the number of characters in the string exceeds the fieldwidth
parameter the excess characters on the right side are truncated.
Figure 3-24 demonstrates this:

Write('Cantaloupe':5)

5
~

Figure 3-24.

34 __ 3 Pascal Fundamentals------------------

If a fieldwidth parameter is omitted the string parameter is
printed in precisely the number of characters required. When dis­
playing integers the fieldwidth parameter is used in a similar fash­
ion as with strings but with two differences. If the fieldwidth
parameter is omitted, the integer is displayed right justified in a
minimum of eight spaces. If the integer is too long to fit in eight
spaces, the exact space needed is allocated. An integer value will
never be truncated.

In order to display real numbers in standard notation two
fieldwidth parameters are used, the first for the total field width
not counting the decimal point and the second for the number of
digits after the decimal point. Consider the following assignment
statement:

R := 2.55;

the following Writeln statement

Writeln(R:4:2)

displays the following:

Figure 3-25.

If the total field width given is too small for a Real number or
an Integer the entire value will be printed anyway.

I:= 10;
R := 10.04;

The following Writeln statements:

Writeln(I :1);
Writeln(R : 3 : 2);

will display

------------------ 3 Pasca l Fundamentals __ 35

=o
100
10.01

Figure 3-26.

In writing a Real, the value will be rounded off to the number
of decimal places specified by the second field width parameter.

Consider the following assignment statement:

R := 9.046

the following Writeln statement

Writeln(R : 5 : 2);

will display

-o le Ht
9.05

Figure 3-27.

The value was rounded off to two decimal places.
When no fieldwidth parameter or one fieldwidth parameter is

used with real numbers they are displayed in floating point nota­
tion .

Consider the following assignment statement:

R := 12.03;

The following statement

Writeln(R);

will display Figure 3-28.

Expressions
Besides assigning constant values to variables we can also

assign the values of arithmetic expressions to variables (Figure
3-29) .

36 __ 3 Pascal Fundamentals-------------------

1 . 2e+ 1

Figure 3-28.

Untitled

progrom Express1 ons;
var

NewNumber: Integer;
begin

NewNumber := 5 + 3;
Wr1 te(NewNumber)

end.

Figure 3-29.

In this program the variable "NewNumber" is assigned the
value that is obtained by first evaluating the expression on the
right hand side of the assignment operator (: =). The assignment
statement can be read as: the variable NewNumber gets the value
obtained by adding 5 + 3. The value that is printed out, of
course, is 8.

:1
-TeHt

6

Figure 3-30.

An expression can contain variables as well as constants.

------------------- 3 Pascal Fundamentals __ 37

NewNumber := OldNumber + 17;

This statement adds 17 to the value of the variable OldNumber
and assigns that value to the variable NewNumber. There is no
change in the value of OldNumber since it appears on the right
side of the assignment operator. Only a variable on the left side
of the assignment operator is changed.

The value of one variable can be given to a second variable in
the same way.

NewNumber := OldNumber;

Here the value of OldNumber is assigned to NewNumber.
They will both now have the same value. An assignment state­
ment that might appear unclear at first sight is where the same
variable appears on both sides of the assignment operator.

Number : = Number + 3;

What is important to remember is that assignment is very dif­
ferent from an algebraic expression. This statement simply adds 3
to the value contained in the variable Number. This statement is
analyzed just like any assignment statement. The expression on
the right side is evaluated and assigned to the variable on the left
side. That is, add 3 to the value of Number and place that back
into Number. Another way of describing this statement is : the
"new" value of Number is the "old" value of Number plus 3.

Addition is not the only operator operation that can be used in
an expression. There are several other arithmetic operators avail­
able in Pascal:

+ real or integer addition
real or integer subtraction

* real or integer multiplication
I real division
div integer division
mod modulo division (remainder of integer division)

The *, +, and - operators work as expected on both integer
and real numbers but different divisions exist for real and integer
values. The div operator is used to divide one integer by another.
When we divide integers the remainder is discarded. Some
examples:

38 __ 3 Pascal Fundamentals

Expression Value

8 div 2 4
8 div 3 2
8 div 9 0

The mod operator is used to find the remainder of an integer
division . mod does not do the division, it just calculates what the
remainder would be. For instance, 10 mod 3 is 1, because 10
divided by 3 is 3 with a remainder of 1. Some more examples:

Expression Value

8 mod 8 0
8 mod 2 0
8 mod 9 8
8 mod 3 2

Both 8 div 0 and 8 mod 0 are both illegal since you can not
divide by zero.

Real division (the I operator) divides to real values. 5.0/ 2.0
yields 2.5 and 10.0/1.0 yields 10.0. With any of the operations
real values can be mixed with integer values in an expression.
When this is done the integer value is automatically converted to
a real prior to the operation. For instance, in the addition of 4 +
3.7 an integer and real are both used. The integer 4 will first be
converted to the real 4 .0 and then added to 3.7 The result is 7.7.

The result of an expression can only be assigned to variables of
the same data type . Breaking this rule will cause an error. Given
these variable declarations:

var
I, J : Integer;
X: Real ;

The following statements are all legal:

I:= J + 3;
X:=l+2.0;
X := 5 I 2;
x := J;

The following statements are all illegal:

------------------ 3 Pascal Fundamenta ls __ 39

J : = Y; Can't assign a real value to an integer variable
J : = 3.0 div 2; div needs two integer operands
J : = J I I; Real division produces a real result

The following chart summarizes the data type of the result of
different operators.

Type of Operand

Real Real Integer Integer
Operator Real Integer Real Integer

+ Real Real Real Integer
Real Real Real Integer

* Real Real Real Integer
I Real Real Real Real

div error error error Integer
mod error error error Integer

Operator Precedence
How is the value of an expression with more than one operator

calculated? What is the result of the following operation?

7 + 2 * 4

If the addition is done first the result is 36. If the multiplication
is done first the result is 15. To avoid this type of ambiguous situ­
ation, some operations in Pascal have a higher order of prece­
dence than others . Operators with high precedence get evaluated
before operators with low precedence. Multiplication, division,
div and mod have higher precedence than addition and subtrac­
tion; therefore 2 * 4 gets first evaluated to 8 and then 7 gets added
to yield 15.

High Precedence
Low Precedence

Operator Precedence Table

*, / ,mod, div
+,-

When operators of the same precedence are found in an expres­
sion, they are evaluated from left to right.

40 __ 3 Pascal Fundamentals

The natural precedence of the operators can be overcome by
the use of parentheses. If we wished to add the 7 and 2 together
and then multiply the result by 4 we could express it this way:

(7 + 2) * 4
Some more examples:

Expression Value

3+2*3 9
(3 + 2) * 5 25
14 mod 3 + 1 3
1+2*3+4 11
(1 + 2) * 3 + 4 13
l + 2 * (3 + 4) 15

Constants
So far we have assigned constant values to variables. Con­

stants, like the name implies, are values that remain constant.
Pascal can also have constants that are represented by identifiers.
The following program demonstrates constants:

progrem TestThree;
con st
TwentyThree = 23;
Ayy ='A';

Y8r
Number : Integer;
Ch : Char;

begin
Number := TwentyThree;
Ch:= Ayy;
WrHe(Number, · ', Ch)

end.

Figure 3-31.

------------------ 3 Pascal Fundamentals __ 41

Te Ht -------

23 A

Figure 3-32.

Constants are declared after the program declaration statement
but before the variable declaration section. The key word const is
used to indicate the start of the constant declaration section. A
constant declaration statement consists of the constant's identifier
and the value of the constant separated by an equal sign (=). A
semicolon separates each of the constant declaration statements.

Notice the difference between constants and variables. The
identifier associated with a variable is the name of a location in
the computer's memory which contains a value. The value con­
tained in that location can change by assigning that location a
new value with the : = operator. Once a constant is defined it
cannot be redefined later in the prograin. The identifier associ­
ated with a constant becomes another name for that constant. An
equal sign is used to show that the constant identifier and the
value itself are equal and have the same effect. The reason why
constant identifiers are used rather than the constant values them­
selves is that the constant's name can make the program more
understandable.

To demonstrate constants, let's write a program that calculates
the area of a circle. This requires the value of Pi (3.1415) which
will never change and is best represented by a constant (Figure
3-33).

This program is much easier to understand because of the use
of the constant Pi but is not very useful unless we want to know
the area of a circle whose radius is 5. A more general and useful
program would allow the calculation of the area of any circle.
Another reason for using constants is their ability to detect
errors. Since we know that a constant can never be changed, any
erroneous attempt to alter its value will result in a program error
indicated when you attempt to run the program. It is far better to
detect an error in this fashion than to hunt for the source of
improper calculation (Figure 3-34).

42 __ 3 Pascal Fundamentals-----------------

progrnm Ci re 1 e_Area;
const

Pi = 3.14159;
var

Area, Radius: Real;
begin

Radius := 5;

Untitled

Area:= Pi * Radius * Radius;
Write(The area of a circle with radius 5 is', Area: 6: 2)

end. E,t

~ 1i1111111111111111111m11111111111111111111111111111m1m1mm111111111111111111111111111111111mm111m111mi1111111m1m11m11111111111m1m111m1m1~ 121

Figure 3-33.

Figure 3-34.

Read and Readln

It would be nice if we could assign a value to Radius as the pro­
gram is running. There are two statements that allow us do this in
Pascal, Read and Readln.

The Readln statement stops and waits for information to be
entered from the keyboard. The information that is entered is dis­
played in the Text window and put into the variable that is in
between the parentheses. The variable must be declared in the var
section of the program. The user signals that he has finished the
entry of the value by pressing the return key. An example of the
program using Readln can be found in Figures 3-35 and 3-36 ..

The Read statement works in the same fashion as the Readln
except that the input does not have to be terminated by hitting
the return key. Entry of information is terminated when a space

------------------ 3 Pascal Fundamentals __ 43

~L

program Circle_Areo;
con st

Pi :3.14159;
YBr

Areo, Rodius : Reol;
begin

Untitled

Wr1te('What ls the areo of the circle?');
Readl n(Radi us);
Areo :=Pi * Rodius * Rodius;
Write('The orea of o circle with rodius ·,Radius: 4 : 2, 'is·, Areo : 4 : 2)

endj

Figure 3-35.

Te Ht
What is the area of the circle?10 ~
The area of a circle with radius 10 .00is 311. 16

Figure 3-36.

or comma is entered. All of the previously discussed data types
can be used with the Read and Readln statement. Read and
Readln can also be used with more than one variable. If more
than one variable is used, each variable is separated by commas.

~[

progrnm MoreThonOne;
vnr

Moe, Shep, Curly : Integer;
begin

Reodln(Moe, Shep, Curly);
Writeln(Moe, Shep, Curly)

end.

Untitled

~

I
10''2l

Figure 3-37.

The user must type some non-numeric character between the
three integers to let the computer know where one integer ends
and the next begins. Because we are using a Readln statement a

44 __ 3 Pascal Fundamentals------------------

return must follow the last value entered. This program could
have also been written using both Read and Readln.

~[

program MoreThonOne;
YOr

Moe, Shep, Curly : Integer;
begin

Read(Moe);
Read(Shep);
Readl n(Curl y);
Writeln(Moe, Shep, Curly)

end.

Untitled

Figure 3-38.

The required input sequence would be exactly the same.

Review Of Program Structure and Some
Examples

A program contains three parts:

1. The heading,
2. The variable declarations,
3. The statements.

Let's now look at the process of designing a program to solve a
specific problem.

The Perimeter and Area of a Rectangle

Before we can write a program we must explore what informa­
tion will be needed by the program and the algorithm that will be
used. An algorithm is a set of steps needed to solve a problem. In
this book we will express algorithms in a cross between Pascal
and English known as pseudocode.

The pseudocode:

Read the width and length of the rectangle.
Calculate the area

Area = Length * Width

------------------ 3 Pascal Fundamentals __ 45

Calculate the perimeter
Perimeter = 2 * (Length + Width)

Write the information

We are now ready to translate this directly into Pascal.

Untitled

progrnm Rectongle;
YOr

be:~:a, Perimeter, Length, Width: Real; !l1lli

~~m:~f i:::~; ::: ~~:;~:;; 111

~;;~~;~~:~~~:~~i~,,. width); . ~I
e:;.iteln('The area is·, Area: 5: 2, 'The perimeter is·, Perimeter : 5: 2) lj;··,

Figure 3-39.

Converting Temperatures

The next example is a program that converts Fahrenheit tem­
perature to Celsius. The algorithm for this program is :

Read the Fahrenheit value
Calculate Celsius

Celsius = (Fahrenheit - 32) *SI 9
Write result

Notice the programming style utilized in both of the programs
(Figure 3-40).

1. The program name reflected the purpose of the program.
2. The variable name conveyed to the reader what it con­

tained.
3. Before any input was required, the user was informed as to

what should be entered.

In this chapter, we have discussed the basic elements of a Pas­
cal program. In the next chapter, we will build upon these foun­
dations and begin to develop more sophisticated Pascal pro­
grams.

46 __ 3 Pascal Fundamentals

Exercises

Untltlt!!d

progrnm Temperat ure;
var

Fahrenr1eit .. Celsius : Real .:
begin
~vri tel n('Enter lhE.! Fahrenheit value to convert') ;
Readl n(F ahrenhei t);
Celsius := (Fahrent·1eit - 32) * 5 I 9;
Writeln(The Celsi us equivalent is ' .. Celsius: 5: 2)

end.

Figure 3-40.

1. Which of the following identifiers are illegal and which are
legal?
a. Bill d. NUMBS
b. 3CPO e. Program
c. R2D2 f. Star*s

2. What is the value of each of the following expressions?
a. 4 + 7 - 13 * 2 d. 4.0 * 3.1 + 18
b . 8 mod 3 + 1 e. (15 + 3) div 7
c. 4 * 8.2 I 4.1

3 . What are the data types of the expressions in Exercise 2?

4. Write a program that accepts two values and averages
them.

5. Write a program to find the square and cube of a value
entered.

4 P asca I Structure

We have already seen the basic elements of a Pascal program:
how a program is formed; how values are assigned to variables;
and how simple input and output is done. However more is
needed to write programs that are capable of doing more than
just trivial tasks. This chapter will introduce you to program
structures, the building blocks of programs. But first we need
another one of Pascal's data types.

The Boolean Data Type

Another of Pascal's data type is Boolean. A variable of type
Boolean can have one of only two possible values, TRUE or
FALSE. They are called Booleans in honor of George Boole, the
father of algebraic logic.

A variable is declared a Boolean with:

var
X, Y: Boolean;

Here the variables X and Y are both of type Boolean. A value is
assigned to a Boolean variable with an assignment statement.

X :=TRUE;
or

Y :=FALSE;

Boolean Operators

Since Boolean's are not numeric values, they need a special set
of operators to be used with them . The operators are the standard

47

48 __ 4 Pascal Structure---------------------

logical operators and, or and not. And and or are binary opera­
tors taking two Boolean values and giving a single value as a ·
result. Not is a unary operator which takes only a single value.

The operator and gives a result of TRUE only if both values are
TRUE. Or gives a result of TRUE if either value is TRUE. The
table of possible results of a Boolean operator is called a truth
table.

Valuel

TRUE
TRUE
FALSE
FALSE

Valuel

TRUE
TRUE
FALSE
FALSE

AND

Value2

TRUE
FALSE
TRUE
FALSE

OR

Value2

TRUE
FALSE
TRUE
FALSE

Result

TRUE
FALSE
FALSE
FALSE

Result

TRUE
TRUE
TRUE
FALSE

The third Boolean operator not simply reverses whatever value
it is given. Not TRUE is FALSE, not FALSE is TRUE.

Boolean Expressions

Just like numeric expressions where many values are reduced to a
single value, there are also Boolean expressions. A Boolean
expression can consist of:

1. A single Boolean value .
2. A single Boolean variable.
3. A combination of values and variables connected by oper­

ators.

When more than one operator is used in an expression the
order of precedence is:

-------------------4 Pascal Structure __ 49

not
and
or

This order can be altered with the use of parentheses. It is rec­
ommended you use parentheses in large Boolean expressions to
make it more readable and understandable. ·

Expression

TRUE
TRUE or FALSE
TRUE or FALSE and FALSE
(TRUE or FALSE) and FALSE
not TRUE or FALSE

Assuming

X :=TRUE;
Y :=FALSE;
TRUE or Y and not X

Result

TRUE
TRUE
TRUE
FALSE
FALSE

TRUE

Only a Boolean value can be assigned to a Boolean variable.
Pascal goes to quite a bit of trouble to check that all values
assigned are compatible to the type of variable used. Type check­
ing is done to prevent erroneous values from being assigned to
variables. Due to the large amount of type checking done, Pascal
is referred to as a strongly typed language.

IF-THEN

The if-then structure allows for execution of different state­
ments depending upon the result of a Boolean expression. The if
statement is a building block of all programming languages.

The form of the if statement is (see Figure 4-1):

if Boolean expression is true then
statement!;

statement2;

If the expression has a value of TRUE then Statement! is exe­
cuted, otherwise it will be skipped. Statement2 is executed no
matter what the value of the expression. The following program

50 __ 4 Pascal Structure-------------------

True

statement1

Statement 2

Figure 4-1.

segment uses an if-then statement to test the value of a number
that is entered.

Readln(Num);
Write('A ');
if Num > 100 then

Write(' BIG');
Write('NUMBER);

If the number entered is less than or equal to 100 then the out­
put is:

A NUMBER

If the number entered is greater than 100, the Write statement
after the THEN is executed and the output is:

ABIG NUMBER

The most common Boolean expression used in an if statement
is a conditional expression also known as a condition test. A con­
dition expression is a comparison of two values and results in a
Boolean value of TRUE or FALSE. In the if statement above the
expression Num > 100 is a conditional expression. The following
are the possible conditions that can be 'tested:

= Equal to
< > Not equal to
< Less than
> Greater than

-------------------4 Pascal Structure __ 51

> = Greater than or equal to
< = Less than or equal to

Here are some examples of conditional expressions and their
values. Assume I has a value of 3 and J has a value of 4.

Expression Value

3 > 2 TRUE
I* 2 = 4 FALSE
l<>J TRUE

1-J<=J TRUE

Here is the syntax of the if-then statement.

IF THEN STATEMENT

expression then statement

Figure 4.2. Syntax Diagram : IF-THEN Statement.

The following program reads three positive values from the
keyboard and finds the largest of the three.

program Iffy;
var

Numl, Num2, Num3, Biggest: Integer;
begin

Writeln('Enter 3 numbers');
Readln(Numl, Num2, Num3);
Biggest : = O;
if Numl > Biggestthen

Biggest:= Numl;
if Num2 > Biggest then

Biggest:= Num2;
if Num3 > Biggest then

Biggest : = Num3;
Write('The Largest Value was',Biggest)

end.

In this program each value is compared against the current.
largest value to see if it is larger . The variable representing the
largest value, Biggest, is initialized to zero which is smaller than

52 __ 4 Pascal Structure-------------------

any value that will be entered. This assures that the first meaning­
ful value of Biggest will be the value of Numl.

Compound Statements

If we were only allowed to use a single statement as part of an
if-then statement, its usefulness would be severely limited. If the
condition is TRUE there exists a way to execute many statements
rather than just one. This involves re-examining the definition of
a statement. So far, the term statement has been used to mean a
single statement followed by a semicolon. But wherever a single
statement can be used, it can be replaced by a compound state­
ment. A compound statement is a sequence of one or more state­
ments separated by semicolons and bracketed by a begin and
end. The statements contained in a compound statement are
always executed together.

COMPOUND STATEMENT

begin statement end

Figure 4-3. Syntax Diagram: Compound Statement.

This second use of begin and end to bracket compound state­
ments might seem a little confusing. However, begin and end are
not limited to just marking the start and finish of the statements
in a program. A closer examination of the definition of a program
shows that the begin and end are really used for the same pur­
pose; to bracket a group of statements always done together, that
is, the statements in a program. The following program uses com­
pound statements to execute more than one statement as part of
an if-then. Notice the syntax. A statement before an end never
gets a semicolon. An end which comes before another statement
gets a semicolon.

program CompoundExample;
var

Num : Integer;

-------------------4 Pascal Structure __ 53

begin {Program}
Writeln('Enter number');
Readln(Num);
if Num < 0 then
begin {Start of Compound statement}

Num := Num * -1;
Writeln(' The absolute value is', Num)

end; {End of Compound statement}
if Nu m > = 0 then

Writeln(' The absolute value is' ,Num)
end. {Program}

This program finds the absolute value of a number which is a
number without a sign. If the value that is entered is a negative
value we remove the sign by multiplying by -1 and then display­
ing the number. If the number is positive the number is just dis­
played as is. This example also demonstrates one of the rules of
good programming. Whenever a value is to be entered, the pro­
gram should prompt the user with a message telling them what is
expected.

IF-TH EN-ELSE
The if-then statement executes a statement (or compound state­
ment) if the condition evaluated is TRUE. A second clause called
ELSE allows a second statement (or compound statement) to be
exe~uted if the condition evaluated is FALSE. Thus, with if then
else we can have two mutually exclusive statements (or com­
pound statements), one executed if the condition is true, the other
executed if the condition is false.

The form of the IF THEN ELSE is :

if condition then
Statementl

else
Statement2;

Statement3;

It can be graphically represented with the flowchart in Figure
4-4.

The syntax of the if then else varies slightly from the if then .
Note that there is no semicolon after the then statement (Figure
4-5).

54 _4 Pascal Structure-------------------

True
ELSE THEN

Staternent 2 Statement 1

Stattment3

Figure4-4.

IF THEN ELSE STATEMENT

expression then statement

else statement

Figure 4-5. Syntax Diagram : if-then-else Statement.

For example:

if Hrs < = 40.0 then
Pay:= Hrs* Rate

else
Pay:= Hrs* Rate+ (Hrs - 40) * Rate* 1.5;

In this example from a hypothetical payroll program, the if
statement is used to determine the pay based on the number of
hours worked. If the value of Hrs is 40 or less the statement after
the then Pay : = Hrs * Rate; is executed. If the value of Hrs is
greater than 40 then the else clause Pay : = Hrs * Rate + (Hrs -
40) * Rate * 1.5; is executed.

The use of else can replace the need for multiple if then state­
ments. The "find the largest number" program can b~ rewritten to
reflect this.

-----------------4 Pascal Structure __ 55

program Iffy;
var

Numl, Num2, Num3, Biggest: Integer;
begin

Writeln('Enter 3 numbers');
Readln(Numl, Num2, Num3);

Biggest:= Num 1;
if Num2 > Biggest then

Biggest:= Num2
else
if Num3 > Biggest then

Biggest:=Num3;
Write('The Largest Value was',Biggest)

end.

Nested IF Statements
The statement that follows after a then or else can also be an if

statement. The nesting of if statements can be used to make mul­
tiple decisions based on the same data. The following program
makes use of nested if statements.

program Swimming;
var

Temp: Integer;
begin

Writeln('WHATS TODAYS TEMPERATURE?');
Readln(Temp);
if Temp > 70 then

if Temp > 80 then
Write('GO TO THE BEACH')

else
Write('GO TO THE POOL')

else
. Write('GO TO THE MOVIES');

end.

Here is a list of possible inputs and their associated output.

Input Output

75 GO TO THE POOL
60 GO TO THE MOVIES
89 GO TO THE BEACH

56 __ 4 Pascal Structure----·----------------

In the program two else statements are used. An else always
belongs to the if-then that is closest to it. In order to see what
belongs to what, it is important that a program be indented prop­
erly. The reader should immediately be able to tell which else
belongs to which if based upon the way it is indented. Fortu­
nately, MacPascal automatically indents a program for you as
you enter it. Here is a look at another way of structuring the if
statements.

if Temp > 80 then
Write('GO TO THE BEACH')

else
if Temp > 70 then

Write('GO TO THE POOL')
else

Write('GO TO THE MOVIES');

FOR Loops
Up to this point all the programs we have written have one

thing in common. They executed in a sequential order, starting
with the first statement and proceeding to the last statement
(although sometimes an if statement provided a fork in the road.)
There was no way to repeat the execution of some part of the
program. Loops are used for this purpose. Pascal has three differ­
ent loop structures, for, while, and repeat. Each of the three dif­
ferent loops have their own uses and attributes . The first loop to
be discussed is the for loop .

The for loop is used to repeat the same statement (or com­
pound statement) a specified number of times.

for variable : = expression to expression do
statement;

A for loop contains a variable known as the control variable.
The initial and final values for the control variable are given as
expressions. The control variable is assigned the initial value and
it is checked to see if it is less than or equal to the final value. If it
is, the statement is executed and the control variable is incre­
mented. The process is then done again.

Here is an example .

for K : = 1 to 5 do
Writeln('The value of K is ',K);

-------------------4 Pascal Structure __ 57

In the above FOR loop, the statement after the do is executed
once for every integer value control variable assigned. What is
printed is:

The value of K is 1
The value of K is 2
The value of K is 3
The value of K is 4
The value of K is 5

The value of the control variable K is changed after each execu­
tion of the Writeln statement contained in the loop. When the
final value of S was reached the Writeln was executed for the last
time.

In the next example, the values of the control variable in the
FOR loop are added together.

Sum:= O;
for I:= 1 to 3 do

Sum:=Sum+I;

In the above for loop, the statement after the do is executed
once for every integer value of the control variable (I) from one
to three.

Let's trace the execution of the loop presented in the example

I Sum

1
2
3

0 (before execution)
1
3
6

You can see that the loop was executed three times, once for
each value of I from 1 to 3. This loop does the same as the follow­
ing statements.

Sum:= Sum+ l;
Sum:= Sum+ 2;
Sum:= Sum+ 3;

The statement in the loop accomplished all three of these addi­
tions. The value added to Sum is the same as the control variable
which is changed in the loop.

58 __ 4 Pascal Structure--------------------

Here is the syntax diagram for the for loop.

FOR STATEMENT

for
variable
identifier

expression

expressio~

to

down to

statement

Figure 4-6. Syntax Diagram : FOR Statement.

The statement in a for loop is executed once for every integer
value from the first value given until the last value given. The
final value must be greater than the initial value. If it is not, the
statement in the loop will not be executed. The control variable
must be an integer or, as we will see later, any ordinal type. The
value of the control value can not be changed inside the loop. An
attempt to do so will produce an, error. Once the loop has termi­
nated, the value of the control variable is said to be undefined,
meaning its value is not predictable and should not be used.

The statement contained in a for loop can be a compound
statement as demonstrated in the next example.

Sum:= O;
for I : = 1 to 3 do

begin
Sum:= Sum+ I;
Writeln(Sum)

end;
Writeln(Sum);

The output from this program segment is:
1
3
6
6
Notice that the first Writeln statement was in the loop and thus

executed three times printing the 1, the 3, and the first 6. The sec­
ond Writeln statement which printed the second 6 was outside the
loop and thus executed only once after the loop terminated.

The for loop is used in situations where the number of itera­
tions is known or can be determined prior to executing the loop.

-------------------4 Pascal Structure __ 59

For example, the following program will read five integer values
and print their average.

program Average!;
var

Sum, Count, Num: Integer;
Avg: Real;

begin
Sum:= O;
for Count:= 1 to 5 do

begin
Writeln('Enter a number');
Readln(Num);
Sum:= Sum + Num

end;
Avg:= Sum I 5;
Writeln('The average is ', Avg : 6 : 2)

end.

The for loop was used to read the five values and add them to
the variable Sum. Sum was then divided by five to get the aver­
age. Notice that all the values were read into the same variable,
Num, erasing any previous value it contained. This was fine since
once the value was added to Sum, it was no longer needed. This
method would not be sufficient if we wanted to retain all five val­
ues entered for further use.

In this example, it was known beforehand that only five values
would be entered and the program was written accordingly.
However, we need not limit ourselves to deciding that when writ­
ing the program. We could easily adapt the program to allow us
to first enter how many numbers are to be averaged.

program Average2;
var

N, Sum, Count, Num : Integer;
Avg: Real;

begin
Sum:= O;
Writeln('Average how many numbers?');
Readln(N);
for Count:= 1 to N do

60 __ 4 Pascal Structure------------------

begin
Writeln('Enter next number to average');
Read(Num);
Sum:= Sum + Num

end;
Avg:= Sum IN;
Writeln('The average is', Avg: 6: 2)

end.

The number of values to be averaged is entered first and used
as the final value of the for loop. It is also used as the divisor in
the statement that calculates the average.

We can repeat the entire sequence of instructions in this pro­
gram by placing the for loop in a second for loop.

program Average3;
var

Times, N, Sum, Count, Num : Integer;
Avg: Real;

begin {Program}
for Times :=1to3 do

begin {FOR Times Loop}
Sum:= O;
Writeln('Average how many numbers?');
Readln(N);
for Count:= 1 to N do

begin
Writeln('Enter next number to average');
Readln(Num);
Sum:= Sum+ Num

end;
Avg:= Sum IN;
Writeln('The average is ', Avg : 6 : 2)

end {FOR Times Loop}
end. {Program}

In this new version of the average program, a second for loop
(for Times) has been added. For each value of Times (from 1to3)
the entire process is done. This is known as nested for loops. The
inside loop is done completely for each value of the outer loop.
Nested for loops will be discussed again when we talk about
arrays.

--------------------4 Pascal Structure __ 61

DOWNTO

There is a slight variation in the for loop that allows the loop
to count down rather than up .

for I:= 5 downto 1 do
Write(I);

This loop prints 5 4 3 2 1. The keyword downto has replaced to
indicating the direction of the counting. The initial value must
now be greater than the final value or the statement will not be
executed.

One limitation of the for loop is that ·the control variable can
only be increased or decreased by one. This can be overcome by
using a second variable that is independent of the control vari­
able. Lets write a loop to add the even numbers between 1 and
10.

EvenNumber := O;
EvenSum := O;
for Count:= 1to5 do

begin
EvenNumber := EvenNumber + 2;
EvenSum := EvenSum + EvenNumber

end;
Writeln(EvenSum);

Notice that Count goes from 1 to 5 but at the same time the
values of EvenNumber are from 2 to 10 by 2s.

Calculating Interest Compounded Daily

A for loop can be used in a program to calculate how an
amount of money will increase when interest compounded daily ·
is added to it for any period of time. In the following program the
user is asked to enter the principal amount and the number of
years for which to compute the interest. The interest is com­
pounded daily and added to the principal. The information is
printed every 30 days . The formula for one day's interest is :

Interest : = Principal * (Rate I 365)

Here is the pseudocode for the program.

62 __ 4 Pascal Structure-----------------

Get principal amount
Get number of year
Get interest rate
for each year do

for every day in the year do
calculate the daily interest
add it to the principal
if the day is divisible by 30 then Write (information)

Now here is the program.

program Interest;
const

DayslnYear = 365
var

Day, Years, Yr : Integer;
Rate, Interest, Principal : Real;

begin
· Writeln('Enter the principal');

Read I n(Pri ncipa I);
Writeln('Enter the number of years');
Readln(Years);
Writeln('Enter the interest rate as a percent');
Readln(Rate);
Rate:= Rate I 100; {Convert rate to a fraction}
for Yr:= 1 to Years do

for Day:= 1to365 do
begin

Interest := Principal * (Rate I 365); {Calculate
daily interest}

Principal := Principal + Interest; {Add interest
to principal}

if Day mod 30 = o then
Writeln('For day', Day, 'The New Principal is',

Principal)
end {FOR loop}

end. {Program}

For the values of Principal equal to 1000, number of years
equal to 1 and interest rate equal to 8% the output would be:

In year 1 day 30 The new principal is 1006.60
In year 1 day 60 The new principal is 1013.24
In year 1day90 The new principal is 1019.92

------------------4 Pascal Structure __ 63

In year 1day120 The new principal is 1026.65
In year 1day150 The new principal is 1033.42
In year 1day180 The new principal is 1040.24
In year 1day210 The new principal is 1047.10
In year 1 day 240 The new principal is 1054.01
In year 1day270 The new principal is 1060.96
In year 1day300 The new principal is 1067.96
In year 1day330 The new principal is 1075.00
In year 1day360 The new principal is 1082.09

The Summation of an Infinite Series

Mathematicians tell us the sum of the infinite series 1+112+
114+118+1116+1/32 ... is 2. This was proved before the
invention of computers through mathematical induction. We can
use MacPascal to prove this with the use of a for loop. The loop
will successively add together the terms of the series, and print
both the term and the current sum. This example is limited by the
accuracy of the real data type which is 7 or 8 decimal places.
Once that is exceeded values are rounded off.

Set first term to 1
for I : = 1 to 30 do

add the term to the sum
divide the term in half to get the next term
write the information

program Prove_An_Old_ Theory
var

I: Integer;
Sum, Term : Real

begin
Term:= 1;
Sum:= O;
for I : = 1 to 30 do

end.

begin
Sum := Sum +Term;
Term:= Term I 2;
Writeln (I, Sum : 9: 7, Term : 9: 7)

end

The output of the program looks like this in the Text window.

64 __ 4 Pascal Structure-------------------

~0 Te Ht
1 1 .0000000 0.5000000
2 1 .5000000 0.2500000
3 1 .75000000.1250000
1 ·1 .6750000 0.0625000
5 1.9375000 0.0312500
6 1 .9687500 0.0156250
7 1 .9613750 0.0078125
8 1 .9921 875 0.0039062
9 1 .9960936 0.0019531

10 1 .9980169 0.0009766

Figure 4-7.

Experiment by changing the number of iterations and the field
width parameters.

The WHILE Loop
The second of the Pascal loop structures is the while loop.

Unlike the for loop, where the number of iterations is determined
before the loop is executed, the while loop is a free loop where
the number of iterations is dependent on what happens inside the
loop body.

The structure of the while loop is:

while Boolean expression is true do
Statement!;

Statement2;

First, the value of the Boolean expression is evaluated (similar
to the if statement), if its value is true the statement (or com­
pound statement) which forms the loop body is executed. Then
the Boolean expression is once again checked. This process con­
tinues until the value of the Boolean expression becomes false.
The operation of the while loop is indicated in Figure 4-8.

The syntax of the while loop is described in Figure 4-9.

------------------4 Pascal Structure __ 65

FALSE

STATEMENT 1

STATEMENT 2

Figure 4-8.

WHILE STATEMENT

while r----11.i expression statement

Figure 4-9. Syntax Diagram : WHILE Statement.

The following program segment contains a while loop that
prints the integers from 1 to 5.

Int:= 1;
while Int < = 5 do

begin
Writeln(I nt);
Int:= Int+ 1

end;

The output from this loop is :

1
2
3
4
5

66 __ 4 Pascal Structure-------------------

Notice that this loop contains a compound statement. Since the
condition has to be changed in the loop body almost all while
loops will contain a compound statement. The body of the loop
was executed 5 times. Each execution of the body writes the value
of Int and then adds one to it. The last iteration writes the value 5
and then increments Int to 6. This causes the condition to become
False and the loop to terminate. A Writeln statement placed out­
side the loop will show the value of Int to be 6. When using while
loops it is imperative that the condition checked is eventually
changed inside the loop body. The following loop is an infinite
loop, one that will never terminate since the condition is never
changed.

Int:= 1;
while Int < = 10 do

Writeln(lnt);
Int:= Int+ 1;

This looks the same as the one shown before, but a closer look
unveils a difference. The statement contained in this loop is a sin­
gle statement (Writeln), not a compound statement. Therefore,
the variable Int will always contain a value of 1 and never change
since the statement which increments it is outside the loop. Since
Int is never incremented, the Writeln statement is executed over
and over again, infinitely.

In the next example, a while loop is used to simulate the div
and mod operators.

program Divide;
var

Top, SaveTop, Bottom, Answer, Remainder: Integer;
begin

Writeln('Enter the dividend and divisor');
Readln(Top, Bottom);
Answer:= O;
SaveTop :=Top;
while Top > = Bottom do

begin
Top:= Top- Bottom;
Answer : = Answer + 1

end; {while}

------------------4 Pascal Structure __ 67

Remainder:= Top;
Writeln(SaveTop: 1, '/',Bottom: 1, '=',Answer: 1, 'R',

Remainder: 1) ·
end. {Program}

Trace the program for the values Top = 18 and Bottom = 5.

Top Bottom Answer Remainder SaveTop
18 5 0 18
13 5 1 18
8 5 2 18
3 5 3 18

loop terminates
3 5 3 3 18

Notice that SaveTop was needed to hold the value of Top since
the original value is changed in the loop.

Sentinels
A sentinel is a technique used to signal the end of a stream of

input. To demonstrate let's rewrite the averaging program with a
while loop. The loop will keep reading data until the user enters a
-1. This is used to signal that there will be no more input and the
average should now be calculated.

program Average;
var

Sum, Num, Count: Integer;
Average : Real;

begin
Sum:= O;
Num := O;
Count:= O;
Writeln('Enter number to average');
Readln(Num);
while Num < > -1 do

begin
Sum:= Sum+ Num;
Count:= Count+ 1;
Writeln('Enter number to average');
Readln(Num)

end; {while}
Average : = Sum I Count;
Writeln('The average is ', Average : 6 : 2)

end.

68 __ 4 Pascal Structure------------------

The variable Count is used to keep track of the number of values
entered. It is then used to calculate the average.

The Break Even Point

The following program finds an individual's break even point.
Your break even point is that week of the year when you stop
earning money for the government, and start earning it for your­
self. The program prompts the user to enter his weekly salary and
the total of the weekly deduction from his paycheck. The yearly
taxes are then calculated and a while loop subtracts the weekly
salary from that amount until it is payed off.

program BreakEven;
var

WeeklyDeduct, YearlyDeduct, WeeklySalary: Real;
Week: Integer;

begin
Writeln('Enter your weekly salary');
Readln(WeeklySalary);
Writeln('Enter total of your weekly deductions');
Read I n(WeeklyDeduct);
YearlyDeduct := WeeklyDeduct * 52;
Week:= O;
while YearlyDeduct > Odo

begin
Week:= Week+!;
YearlyDeduct := YearlyDeduct - WeeklySalary

end; {While loop}
Writeln('Your break even point is in week number',

Week, 'of the year');
Writeln('Congratulations')

end.

For instance, if your salary is $250 a week and your weekly
deductions are $85, the program would display:

Your break even point is in week number 18 of the year
Congratulations

Controlling the Text Window
The size of the Text window can be controlled from inside a

MacPascal program. In a program you can enlarge the Text win-

--------------------4 Pascal Structure __ 69

dow to occupy the entire screen, hiding the other windows. You
may find this desirable in a program that is to be used by some­
one not familiar with the MacPascal environment. Controlling
the Text window is done with the help of the Macintosh's Tool­
box of commands which are to manipulate the various resources
of the computer. These commands are being presented for use in
your programs as is. They will be explained in detail in Chapter
10, which deals with graphics.

The Macintosh Screen

MacPascal is capable of displaying high quality graphics and
animation in the Drawing window. Before we can write graphics
programs we must first take a look at the Macintosh's graphics
coordinate system.

The Macintosh's screen can be thought of as a grid of 512 verti­
cal lines and 342 horizontal lines not much different from graph
paper. The vertical lines (X coordinates) are numbered from 0 to
511 and the horizontal lines (Y coordinates) are numbered from 0
to 341. The position where a horizontal line and a vertical line
intersect is called a point and noted as (X, Y). The upper left cor­
ner of the screen, the origin, is where vertical line 0 and horizon­
tal line 0 intersect, point (0,0). The lower right corner of the
screen is where vertical line 511 intersects horizontal line 341,
point (511,341). Below and to the right of each point on the
screen is a dot that can be displayed as either white or black.
These dots are called picture elements or pixels for short. For each
of the 175,104 (342 x 512) points OJ'.l the screen is a corresponding
pixel (Figure 4-10).

The coordinate system actually extends beyond what is visible
on the screen. For instance, the coordinate (-10, -10) is above and
to the right of the origin in the upper left hand corner of the
screen. These points exist to help in calculating complex geo­
graphic constructs which may extend beyond the visible por­
tion of the screen.

To enlarge the Text window to occupy the entire screen add the
following commands to your program.

70 __ 4 Pascal Structure-------------------

point (0,0)

Y Axis

var

x Axis
512

.___________
point (t 00, t 00)

point (511,341)

Figure 4-10.

T extRect : Rect;

begin
SetRect(TextRect, 0, 0, 511, 341);
SetT extRect(T extRect);
Show Text;

\

342

Three commands have to be included in the program as well as
the addition of a variable of type Rect (used in graphics opera­
tions, see Chapter 10). This will display the Text window over
the entire screen, even the Title Bar will be hidden from view. If
you want the Title Bar to show simply substitute this command
for the other SetRect:

SetRect(TextRect, 0, 35, 511, 341)

A hidden window can always be revealed by selecting it's name
from the Windows menu.

In subsequent chapters, you will be introduced to other Tool­
box commands that will enhance your programs by giving you
more control over the environment they are running in.

-------------------4 Pascal Structure __ 71

Introduction to Graphics

The Quickdraw library has many built-in commands to display
graphics in the Drawing window. The first set of commands we
will look at are the rectangle commands.

A rectangle is defined in terms of two points, the point in the
upper left hand corner and the point in the lower right hand
corner.

(Upper, Left)

(Lower, ~:i gt-it)

Figure 4-11.

To display a rectangle first you must declare a variable to be of
the special Quickdraw data type called Rect. This is not a stand­
ard Pascal data type and will only be used to display rectangles .

This variable declaration :

var
Square, Oblong : Rect;

declares the variables Square and Oblong to be of the special
Quick draw type of Rect.

A variable of type rectangle is used to hold the two points that
define a rectangle. This is accomplished with the use of the
SetRect command.

SetRect(Square, 10, 10, 40, 40);
SetRect(Oblong, 50, 50, 80, 90);

The first command defines Square as having an upper left hand
corner of 10,10 and the lower right hand corner of 40, 40. The
second command defines Oblong as having an upper left hand
corner of 50, 50 and the lower right hand corner of 80, 90 . We
can now display the two rectangles in the Drawing window with
the FrameRectangle command.

72 __ 4 Pascal Structure-------------------

program DrawRectangles;
var

Square, Oblong : Rect;
begin

SetRect(Square, 10, 10, 40, 40);
SetRect(Oblong, 50, 50, 80, 90);
FrameRect(Oblong);
FrameRect(Square)

end.

Displayed in the window is :

F:D - Drawing

D
D

Figure 4-12.

.'21

Now that we know how to draw a single rectangle we can cre­
ate interesting effects by using a for loop to display a series of
overlapping rectangles. We simply have to continually shift the
rectangle we define a slight bit and then display it.

program Overlapping l~ectangles;
var

Square : Rect;
Shift, I : Integer;

-------------------4 Pascal Structure __ 73

begin
Shift:= O;
for I := 1to20 do
begin

SetRect(Square, 10 + Shift, 10 + Shift, 40 + Shift,
40 +Shift);

FrameRect(Square); {Draw Rectangle}
Shift:= Shift + 5

end
end.

Each point used to define a rectangle in the SetRect command is
offset by the value of Shift which is increased in each iteration of
the loop. Displayed by the program is:

Drawing

Figure 4-13.

You can vary the number of rectangles and their position by
changing the final value of the for loop and the value of Shift.

An animation effect can be achieved by erasing a rectangle
after it has been drawn and then redisplaying it shifted slightly.
The EraseRectangle command is used to erase the rectangle
indicated.

74 __ 4 Pascal Structure-------------------

program MovingRectangles;
var

Square : Rect;
Shift, I : Integer;

begin
Shift:= O;
for I:= 1to20 do

begin

end.

Shift:= Shift+ 5;
SetRect(Square, 10 + Shift, 10 + Shift, 40 + Shift,

40 +Shift);
FrameRect(Square); {Draw rectangle}
EraseRect(Square) {Erase rectangle}

end

This program moves the rectangle across the window at a fast
speed. You can slow down the animation by wasting time
between the writing and erasing of the rectangle. This can be
done by inserting a FOR loop that does nothing such as:

for K : = 1 to 20 do;

Notice that no statement is actually executed by the for loop.
Experiment with these programs and try to create interesting

displays. You might want to use the PaintRect command instead
of FrameRect. PaintRect will display a rectangle that is filled in
with black.

It should be self-evident to you that the coordinate system in
the Drawing window has 0,0 as the upper left hand point. This
will not change even if you enlarge or move the window. The
ShowDrawing command placed as the first statement in your
program will automatically open the Drawing window from
inside your program.

Exercises

1. Given the following Boolean values for A, B, C, and D,
evaluate these Boolean expressions.

A : = True; B : = False; C : = True; D : = False

a. (A and B) or C
b. D and not(A or (Band C))

-----------------4 Pascal Structure __ 75

c. A and B or C and D
d. (A and B) or (C and D)
e. A and (B or C) and D

2. Determine if the following expressions are True or False.

x := 3; y :=5; z := 14;

a. (3 > X) and (Y < Z)
b. (X > Y) or (Y < X)
c. (X < Y) or (Y > X)
d. (X < Y)and(Y > X)
e. 3 > 2*X-15
f. not(TRUE) = (X > Y)

3. Simplify the following if statements with the use of else.

a. if A > B then A : = 4;
if A < B then B : = 4;

b. if A > B then A : = 4;
if A < B then B : = 4;
if A = B then A : = B;

4. How many times would the following for loop statements
execute a loop? X and Y are both Integers.

a . for X : = 3 to 17 do
b. for X := 10 to 733 do
c. Y:= 4;

for X : = Y to 18 do
d. for X : = 4 to 4 do
e. for X := 41downto3 do
f. for X : = 17 to 3 do

5. What is printed by the following loops.

a. for I : = 1 to 3 do
for J : = 1 -to 2 do

Writeln(I, J);

b . for I : = 1 to 3 do
for J : = I to 2 do

Writeln(I, J);

76 __ 4 Pascal Structure-------------------

6. What is printed by the following while loop.

a. I:= 4;
while I= 3 do

Writeln(I);

b. I:= 1;
while I < 10 do

begin
Writeln(I);
I:= I+ 1

end;

c. I:= 1;
while I < 10 do

begin
I:= I+ 1;
Writeln(I)

end;

7. Write a program that will read values from the keyboard
and square them. The program should stop when -99 is
entered. Display the number and its square in the Text
window.

8. Write a program that will display the following.

1=1
1*2 = 2
1*2*3=6

1 * 2 * 3 * 4 * 5 * 6 = 180

9. Write a program that will read from the keyboard an
hourly rate of pay and the numbers of hours work. Dis­
play this information and the gross pay in the Text
window.

10. Alter the program in exercise 9 by calculating time and a
half overtime for any hours worked over 40.

5 Debugging a
MacPascal Program

The cruelest fact of life for programmers is that at least 99 % of
all programs. will not work the first time they are run. Errors,
commonly called bugs, can be introduced into the programming
process in several places, in typing and in the logic of the actual
program. The process of removing errors is called debugging and
is a major part of developing a program. Unfortunately debug­
ging more often than not takes longer to do than actually writing
the program. Fortunately, MacPascal has several built-in tools to
aid in the debugging process. In order to understand more about
errors, it is important to first understand the nature of a
MacPascal program.

The Nature of a MacPascal Program
The Run menu (Figure 5-1) contains several options for running

a MacPascal program. The process is similar no matter which
option is picked. First, the interpreter parses the program for syn­
tax, each statement is examined to see if it conforms to proper
Pascal syntax. If a syntax error does exist a dialog box is dis­
played (see discussion below on syntax errors). At the same .time
that the syntax is checked, a table is created of all the declared
variables and their data types. This table is one of the tools used
by the MacPascal interpreter to run a program and keep track of
the value of variables. Another important interpreter tool is the
program pointer or Finger which points to the next statement in a
program to be executed. In some execution modes the Finger can
be seen on the screen as a hand with its index finger extended
(Figure 5-2).

77

78 __ 5 Debugging a MacPascal Program-------------

s File Edit Search Windows

5LJ

Check 88K
Reset

Go 886
(io···t;o
Step XS
Step-Step

Stops In

Figure 5-1.

---- Untitled ------

program FirstTime;
var

I : Integer;
begin

for I := 1 to 1 Odo
FrameovaHO, o, 10 *I, 10 *I)

end.

Figure 5-2. The Finger or Program Pointer.

Execution Modes

&o .:tt:.& You are already familiar with running a program
with Go. The complete program is executed start­
ing with the first statement. When the program is
completed the variable table is erased.

-------------- 5 Debugging a MacPascal Program __ 79

step :~: s

Step-Step

Check :#':K

RC'SC't

Syntax Errors

Step executes one statement at a time . When using
Step, MacPascal gives your program the Finger
which points to the next line to be executed. This
can be done continually to watch the sequence of
statements in a program as they execute. Go can
be selected at any point to start executing auto­
matically from that statement on.

Step-Step is somewhere between Step and Go. The
statements execute automatically but slow enough
that the Finger can be watched.

Check is used to parse the syntax of a program for
errors without executing it. You may want to do
this occasionally as you enter a large program to
expedite the debugging process.

When a program starts to run, Pause appears in
boldface in the menu bar. You can use the mouse
to select Halt from the Pause menu. This places
the running program into a suspended state with
the variables and the position of the Finger still
intact. Execution can be restarted from that point
by any of the Run options .

Whenever a program is halted or paused, the
value of the variables remain intact. Reset can be
used to reset a program to start again from the
beginning.

As a program is entered into MacPascal it is automatically
indented and the keywords highlighted . The lines entered are also
checked for proper syntax. If minor syntax errors occur during
typing, the error is indicated by outlining the guilty part of the
line . Examples of this type of minor error are:

1 . Forgetting to close a string with a quote:

Writeln('Good MorningD9

or

80 __ 5 Debugging a MacPascal Program---------------

2. Mistyping an expression or operator:

K = K c:iP ~9

Not all syntax errors will be picked up at this stage. Some of
them will not be detected until the program is run . Running a
program (either with Go, Step or Step-Step) is actually a two step
process. The first step is to check the overall syntax of the pro­
gram, the second step is the actual program execution. During
this first step the program is parsed. If a syntax error occurs, the
Macintosh beeps and an alert box appears on the top of the
screen with a picture of a bug (the type you step on) and descrip­
tion of the error. The box can be cleared by clicking the pointer
anywhere in it . The error messages provided are superior to most
Pascal systems but sometimes can be cryptic. Turn to Appendix J
for a complete listing of the possible syntax errors.

s File Edit search l ilii:r Windows

·~· The name "J" appears to be an undeclared identifier.

UntltlecJ

program SyntaxExarnple;
var

I, K : Integer;
begin

I := K + J;
Writeln(K)

end.

Figure 5-3.

The figure above shows a syntax error in progress. The
"Thumbs down" points to the line at which MacPascal realized
there was an error. Unfortunately, the line indicated does not
always contain the error but rather is the line that triggers the
error because of invalid syntax on a previous line. If you can not
find the error on the line pointed to, look at the line above it.
This will be especially true when the line above is missing a
semicolon.

--------------- 5 Debugging a MacPascal Program __ 81

Undeclared Identifiers

During the checking of a program a list is made of all the vari­
ables declared in the var section of a program. All variables used
in the program are compared against this list. If a variable is not
declared an undeclared identifier message is given.

Execution Errors

Once the syntax of a program is correct it is ready to execute.
There are two types of errors that are associated with program
execution. Run time errors are errors that will cause a program to
stop executing. Logic errors are errors which don't stop a pro­
gram from running but produce the wrong results. The cause of
run time errors are easier to locate than logic errors since
MacPascal alerts you to their existence.

Run Time Errors

A run time error will "bomb" a program that is running, that
is, it will stop the execution. An alert box will then appear
describing the error. Run time errors occur when an operation
that is illegal takes place. An example of a run time error is
attempting to divide by zero. Appendix J contains a list of possi­
ble run time errors.

Logic Errors

Once a program is running properly there is no guarantee that the
results will be correct. The unwritten law of the progr-amming
jungle states that no matter how skillful a programmer, the
chance of a logic error increases with the complexity and size of
the program. So does the difficulty of locating the source of the
trouble. The best way to locate a logic error is to trace through a
program making sure that variables have the values you expect
and statements are executed in the order anticipated. Fortunately,
MacPascal has available debugging tools found in no other Pas­
cal. These tools can greatly ease the debugging process.

82 __ 5 Debugging a MacPascal Program--------------

The Observe Window

The Observe window is used to view the value of variables or
expressions as a program executes. The Observe window is
opened by selecting Observe from the Windows menu.

s File Edit Search Run

Figure 5-4.

Windows II
Untitled
Instant

TeHt
Drawing

Clipboard

Type Size ...

The contents of the window looks like a chart. In the right col­
umn you can enter any variable or expression whose value you
want to watch by editing it just like you would a program. The
number of variables entered can be increased by expanding the
size of the window with the size box. This should be done prior
to executing the program or during a halt in execution of a
program.

Obserue

Figure 5-5. The Observe Window.

Variables (or expressions) are entered and edited on the right
side of the divider.

-------------- 5 Debugging a MacPascal Program __ 83

The number of variables that can be entered can be increased
by enlarging the window with the size box. Once the variables in
the window are set the values for the variables are updated every
time the program pauses or halts the values. The Observe win­
dow is especially useful when you Step through a program line by
line. This allows you to watch how each line in a program affects
the value of a variable. Step-Step, Go-Go or halting the program
can also be used.

Values Variables

4 ' J

12 J * K

Enter an express1 on

Figure 5-6.

Setting Break Points

Break points provide a convenient way to halt a running pro­
gram at a pre-determined line. You could do this using Step but
you might have to step through a large number of instructions
before you get to the spot you want. To set a break point first
select Stops In from the Run menu. The Program window will
then change in a subtle way. A tiny stop sign will appear in the
lower left hand corner of the window and a column will be drawn
on the left side of the Program window.

while J <> 10 do
J := J + 2

end.

Figure 5-7.

84 __ 5 Debugging a MacPascal Program--------------

A stop sign can be placed next to any line in the program
where you want the program to stop executing. To place a stop
sign, move the pointer into the column on the left and watch the
pointer change to a stop sign. Position the sign next to the state­
ment and then click the mouse button to set it as a break point.
As many break points as you wish may be set. Now every time
the program is executed with Go or Step-Step it will halt at a stop
sign. At this point the Observe window is updated. Execution can
be continued by selecting another Run option. The Go-Go option
from the Run menu can also be used. Go-Go works just like Go,
except execution halts only long enough for the Observe window
to be updated and then execution starts again automatically.

The Instant Window

One last debugging tool in MacPascal is the Instant window.
The Instant window can be used to immediately execute any Pas­
cal statement any time the program is not running. The Instant
window is opened by selecting Instant from the Windows menu.

Do It)

Writeln(K);

Instant ------------

{Any statements, any time.}

Figure 5-8.

You can then enter and edit any Pascal statement. Clicking the
Do It button will ·cause that statement to execute. The Instant
window is handy for changing the value of a program variable
and then re-starting execution and seeing what affect that change
had. When executing a statement in the Instant window the rules
of Pascal can not be violated. For instance, you can't change the
value of a control variable inside a for loop.

6 More On Data Types

In Chapter 3, the data types Integer, Char, and string were
introduced. These are not however the only data types available
in MacPascal. In this chapter we will take an indepth look at
these as well as several other data types in MacPascal and the
built-in functions that can be used with them.

The Char Types

We have seen that the data type string can be used to hold a
sequence of characters. The type Char also holds character data
but is limited to holding one single character. This may sound
strange that both String and the more limited type Char are avail­
able. However, historically, standard Pascal only included Char,
String is an extension added to the language by many versions of
Pascal.
The declaration:

var
Ch: Char;

declares a variable named Ch, capable of holding a single charac­
ter. The following statements:

Ch:= 'A';
Writeln(Ch);

assigns a character 'A' to Ch and then displays it.
Character data is stored in the Macintosh in a code known as

ASCII (which stands for American Standard Code for Informa­
tion Interchange). This code uses the numbers 0 through 255 to
represent different characters. If we could look into memory

85

86 __ 6 More On Data Types------------------

where a character is stored, we would see the ASCII code for that
character instead. When character data is stored Pascal remem­
bers to interpret the number as an ASCII code and not an Integer.

Ordinal Types

Char and most other data types are known as ordinal types.
Ordinals are those data types where each possible value (except
the last and the first) have a unique predecessor and successor.
The ordinal types include, Integer, Boolean, Char and the User­
defined types (which are discussed in this chapter). Reals are not
an ordinal type since a unique successor and predecessor of a real
can not be determined, another decimal place always exists. For
example, what real number comes after 5.04, it's not 5.041
because of 5.0401 and 5.04001, this could go on indefinitely.
Strings are also not an ordinal type.

A variable of any ordinal type can be used as the control vari­
able in a for loop. This loop:

for Ch:= 'A' to 'Z' do
Writeln(Ch);

will iterate 26 times and display all the uppercase letters from A
toZ. .

The ORD and CHR Functions

MacPascal has many built-in functions that can be used in pro­
grams. A built-in function is similar to an operator, except that it
is invoked differently. Like an operator, a function is given a
value to work with, called the argument, it can either be in the
form of a constant, a variable, or an expression. The function
then "returns" a value based on the argument. When used in an
expression, functions have the highest order of precedence. That
is, functions are evaluated before any other operations take
place.

The built-in function ORD takes a character as an argument
and returns the ASCII code for that character as an integer.

ORD('A')
ORD('a')
ORD('B')

returns 65
returns 97
returns 66

------------------ 6 More On Data Types __ 87

ORD('Z')
ORD('4')

returns 90
returns 52

The ASCII codes for the characters are in numeric order. This
allows for the comparing of two characters to find the alphabeti­
cally greater.

if 'A' > 'B' then
Writeln('A is greater')

else
Writeln('B is greater');

This program statemen~ will display : Bis greater since the ASCII
code for 'B' has a greater numeric value than the ASCII code for
'A'. Try this by typing the if statement into the Instant window.

Notice that the letters used in the above example are all upper­
case. The lowercase letters have different ASCII codes than the
uppercase letters. All the ASCII codes are listed in Appendix L.

A built-in function can be used in almost any instance that a
variable can, such as an expression or a Write statement.

Writeln(ORD('A'));
X := ORD('A'); { X must be an integer variable}

The opposite of the ORD function is the CHR function . CHR
takes an integer number, between 0 and 255, interprets it as an
ASCII code, and returns the corresponding character. For exam­
ple:

Write(CHR(65));

displays an A.
CHR and ORD are inverse functions, thus

Write(CHR(ORD('A')));

also prints an A. First, the ORD('A') is done returning 65, then
CHR(65) is done returning an A.

The ASCII code of the characters that represent digits are also
in numeric order.

'O' - 48
'1' - 49
'2' - 50
'9' - 57

The difference between a single digit integer and its ASCII code
may not seem clear to you at this point. The distinction is the set

88 __ 6 More On Data Types

of operations that can be done on either. You can perform all the
arithmetic operations on the integer and only the character opera­
tions on the character. We can convert the character representa­
tion of a number into t at number by subtracting the ORD('O')
from it.

I : = ORD('8') - ORD('O') assigns the integer 8 to I

We can use the ORD function to display the ASCII values of a
set of characters by using a for loop.

for Ch:= 'A' to 'Z' do
Writeln(Ch, ORD(Ch));

The SUCC and PRED Functions

The SUCC and PRED functions will return the successor and
predecessor respectively, of any ordinal value .

PRED('C')
SUCC(50)
SUCC(FALSE)
SUCC(PRED('B'))

returns 'B'
returns 51
returns TRUE
returns 'B'

The PRED of the first value and the SUCC of the last value of
an ordinal type is undefined and trying to find it will cause a run
time error. For example, SUCC(TRUE) doesn't exist and will halt
your program.

Other Built-In Functions

Besides ORD, CHR, PRED, AND SUCC, there are many other
built-in functions that can be used. These functions can be broken
up into several categories .

The Conversion Functions-TRUNC and
ROUND

The TRUNC and ROUND functions are used to convert a Real
value into an Integer.

The ROUND function rounds off a Real to the closest Integer.

------------------ 6 More On Data Types __ 89

I := ROUND(4.3)
ROU N 0(3.002)
ROUND(3.75)
ROUND(20.5)
ROUND(-20.4)
ROUND(-20.6)

assigns the value 4 to the Integer I
returns 3
.returns 4
returns 21
returns -20
returns -21

The TRUNC function, which stands for truncation, converts a
Real value to an Integer by cutting off the fractional part of the
number. The number is not rounded.

TRUNC(4.3)
TRUNC(20.7)
TRUNC(-20.7)

returns 4
returns 20
returns -20

More On Reals and Integers

Pascal is highly regarded as a programming language to express
ideas and to teach programming practices. The major complaint
has been that most versions of Pascal did not provide the great
accuracy needed in statistical or scientific work or the freedom
from rounding errors needed in banking and business work.
Thus, old fashioned languages such as FORTRAN and COBOL
are still in widespread use. MacPascal has solved these problems
by providing easy to use extensions to the Real and Integer data
types that provide precision unheard of before in any microcom­
puter or even minicomputers.

The Longint Data Type

The range of values for an Integer is from -Maxint to Maxint
or from -32767 to 32767 (-215-1 to 215-1). In circumstances where
an Integer is needed that will exceed this range, the type Longint
(for long Integer) is available. The range of values for Longint are
-2,147,482,647 to 2,146,482,647 (-231-1 to 231-1). A variable is
declared a Longint with:

var
L: Longlnt;

Longint and Integer are fully compatible as long as you don't
try to assign to an Integer a value out of the Integer range. Doing
so will cause a run time error. MacPascal converts all Integer val-

90 __ 6 More On Data Types------------------

ues to a Longint for all arithmetic operations. If the value is
assigned to an Integer it is then converted back. This need not
concern a programmer unless the result of an expression returns a
value too large or small to be assigned to an Integer variable.
Longint is an ordinal type and all functions that can be used with
an Integer can be used with a Longint also. If you are familiar
with UCSD Pascal then you know that this type has no relation
to that Long Integer type.

The Extended Real Types

· Just like Integers, the range of values that can be assigned to a
Real is limited. Reals are represented in a mantissa (fractional
part) and exponent format. The range of positive values that can
be stored in a Real variable is l.5*1045 to 3.4*1038• This is a wide
range but only provides accuracy to 7 or 8 decimal digits. For
greater accuracy, the Double and Extended types can be used.

The range of all Real types are:

Type Range

Real l.5*10-45 to 3.4*1038

Double 5.0*10-324 to 1.7*10308

Extended l.9*104951 to1.1*104932

Accuracy In Decimal Digits

7-8
15-16
19-20

Any negative number whose absolute value falls within these
ranges can also be represented.

The use of these real types is analogous to what happens with
Integer and Longint types. All of the three real types are fully
compatible, but you can't assign a value to a variable if that vari­
able falls outside the range of the variable's type. Before any real
operations are performed all values are converted to Extended.
The answer is then converted to whatever real type is needed.
The following example may clarify this situation.

var
R: Real;
D: Double;
E : Extended;

R := D + E + R;

------------------ 6 More On Data Types __ 91

In this example, the values of R and D will be converted to
Extended values before addition and an Extended result is pro­
duced. The result will then be converted to a Real to be assigned
to the Real variable R. This will cause no problem unless the
value of the result falls outside the range of values that can be
represented by a Real. In general, you should use the type Real
unless you need the super accuracy of the Double or Extended
types, since the storage and speed requirements of these types are
substantial. This system provides the best of both worlds. The
high accuracy needed for scientific and statistical work is avail­
able without imposing any burden on the programmer.

A fourth Real type, called Computational, is provided for
applications such as accounting, that require calculations to be
done without any rounding errors being introduced into the frac­
tional part of the number. With the Computational type, values
are stored and calculations are done as decimal numbers without
any decimal points. No rounding errors will occur as long as the
values are in the range of -263-1 to 263-1. The largest possible
value being 9,223,372,036,854,775,807. This number is larger
than the American National Debt multiplied by 1 million. Since
values are stored without a decimal point, dollars and cents can
be represented by assuming a decimal point between the second
and third digits. Computational values can be displayed with a
decimal point placed between any two digits. The second
fieldwidth parameter is used to specify what digit to place the
decimal point to the left of. For instance,

var
C: Computational;

C := 12345; {assumed to be123.45}
Writeln(C : 5 : 2);

will display

123.45

Note: In Release 1.0 of MacPascal this feature did not work
properly. In future releases it will work as described.

The Arithmetic Functions
The SQR function returns the square of a number. The value
used can either be a Real or an Integer. The result is either a

92 __ 6 More On Data Types-----------------

Longint or an Extended Real:

SQR(5)
SQR(l.3)

returns 25
returns 1.69

The SQRT function returns the square root of the value given.
The value (argument) can be either a Real or an Integer, the result
is always an Extended Real.

SQRT(9)
SQRT(30)

returns 3.0
returns 5 .Se+ 0

The ABS function returns the absolute value of the value
given. The absolute value of a number is that number regardless
of its sign. The argument may be either a Real or an Integer, the
result is always the same type as the argument.

ABS(5)
ABS(-5)
ABS(O)
ABS(-1.32)

returns 5
returns 5
returns 0
returns 1.32

The ODD function tests an Integer to see if it is odd or even. A
Boolean is returned. TRUE, if the Integer is odd, FALSE, if the
Integer is even.

000(1)
000(6)

returns TRUE
returns FALSE

The Trigonometric Functions

The SIN, COS and ARCTAN functions are used for trigono­
metric operations. They take either a Real or an Integer as an
argument and assume it to be an angle expressed in radians. The
result is always an Extended Real. .

COS(x)
SIN(x)
ARCTAN(x)

returns the Cosine of x.
returns the Sine of x.
returns the Arctangent of x.

Any of the other trigonometric functions can be synthesized by
using the existing ones.

To find the Tangent of x,
To find the Cosecant of x,

Sin(x)/Cos(x)
l/Sin(x)

------------------ 6 More On Data Types __ 93

The Logarithmic Functions

Pascal has the EXP and LN natural logarithmic functions. Both
take either an Integer or a Real as an argument and always return
an Extended Real.

LN(x)
EXP(x)

returns the natural logarithm of x.
returns the value of ex.

Tool Box Functions

The Macintosh Toolbox contains several functions that are not
part of standard Pascal. Three functions SysBeep, Page, and
TickCount are presented here. Other Toolbox features will be
introduced in other chapters of the book.

The SysBeep function causes a tone to be generated on the
Macintosh's speaker. The duration of the tone is determined by
the Integer argument used times .022 seconds.

SysBeep(lOO); creates a tone that will last 2.2 seconds.

The Page function causes the Text Window to be cleared.

Page; clears the Text Window.

The TickCount function returns a Long Integer representing the
elapsed time since the machine was turned on in 1160ths of a sec­
ond. This information is probably of little use by itself, but
Tickcount can be used to time the execution of MacPascal state­
ments. For instance, we could measure the execution time of a for
loop with:

Start : = TickCount;
for I : = 1 to 1 O do

Sum:= Sum + l;
Stop : = TickCount;
ElapsedTime : = Stop - Start;

The first call to TickCount marks the elapsed time before the
loop starts. The second call marks the elapsed time after the loop
terminates. The difference between the two represents the amount
of time needed to execute the loop. For the curious, the execution
time is 2/ 60ths of a second.

94 __ 6 More On Data Types------------------

User-Defined Data Types

When programming in Pascal, the programmer is not limited
to using the standard Pascal data types. The programmer is free
to declare his own ordinal data types with the type statement.
Any programmer declared data type of this kind is called a User­
defined or Enumerated type. The type statement appears between
the const and the var statements.

program Typexample;
const

C=l;
type

Days= (Sun, Mon, Tue, Wed, Thur, Fri, Sat);

This declares a new data type called Days. The set of possible
values of a variable of type Days are enumerated in the parenthe­
ses i'n the statement.
The syntax diagram of the type statement is:

TYPE DECLARATION

-~~~~,::-1-de-nt-if-ie-r~·~--~ty-pe~_:---~-.•.

Figure 6-1. Syntax Diagram: Type Declaration

Variables can now be created of type Days.

var
PayDay: Days;

The variable PayDay is of data type Days. The operations that
can be performed with a User-defined type are limited but several
are possible. An assignment statement looks like you might
expect it to.

PayDay :=Thur;

Notice that there are no quotation marks around Thur. This is
because it is not a string value and should not be confused with
one. It is one of the possible values that can be assigned to a vari­
able of the data type Days. This is not any different from using
an assignment statement with a Boolean variable.

Switch:= TRUE;

------------------ 6 More On Data Types __ 95

Here, one of the possible Boolean values is assigned to the
Boolean variable Switch. As a matter of fact, the type Boolean
can be thought of as a pre-declared user-defined type with the
declaration.

type
Boolean = (FALSE, TRUE);

The type Boolean is declared with its two possible values.
Since user-defined types are ordinal types, the SUCC and

PRED functions are available . Assuming the Pay Day : = Thur;

SUCC(PayDay)
PRED(PayDay)
PRED(Sun)
SUCC(Sun)

returns Fri
returns Wed
is undefined and causes a run time error
reh,J.rns Mon

When given a User-defined type the ORD function returns an
Integer representing the value's position in the declared list of val­
ues. The ORD of the first value declared is zero. Here is the dec­
laration of type Days and the ORD of the values.

Days = (Sun, Mon, Tue, Wed, Thur, Fri, Sat);
ORDs o 1 2 3 4 s 6

The following loop will print the ORDs.

for PayDay: = Sun to Sat do
Writeln(Payday, ORD(PayDay));

Displayed by the loop is :

Sun 0
Mon 1
Tue 2
Wed 3
Thur 4
Fri 5
Sat 6 .

The value of a variable with a user-defined type can also be
printed. This is a special feature of MacPascal and is not present
in most Pascal implementations. The following loop will display
the values of the Days data type.

for PayDay: = Sun to Sat do
Writeln(PayDay);

96 __ 6 More On Data Types------------------

Displayed is:

Sun
Mon
Tue
Wed
Thur
Fri
Sat

When two user-defined values are compared their Ords are
used to determine the greater. For instance, Tue is greater than
Sun because the ORD(Tue) is greater than ORD(Sun).

User-defined types are a feature not available in any other pop­
ular programming language. While they might appear trivial,
they are a powerful programming tool that will make a program
easier to write, read, and debug. They should be used where ever
possible in your programming.

A short cut exists to define a User-defined type. The possible
values are listed directly next to the variable eliminating the
type statement. This declaration:

program TypeExample;
type

Days= (Sun, Mon, Tue, Wed, Thur, Fri, Sat);
var

PayDay: Days;

can be replaced by:

program Typexample;
var
PayDay: (Sun, Mon, Tue, Wed, Thur, Fri, Sat);

This method should not normally be used because it affects the
program's readability.

Subranges
A subrange is a subset of a declared ordinal data type. Here are

some examples:

type
Letters= 'A' . .'Z';
Cards= 1..52

------------------ 6 More On Data Types __ 97

var
Deck : Cards;
Ch : Letters;

Two subranges, Letters and Cards, have been declared as sub­
sets of their types. Letters of type CHAR and Cards of type
INTEGER. The first and last values of the range is given with the
two periods(..) standing for all the values in between. The syntax
diagram for a subrange is:

SUBRANGE TYPE

-----· ... I """'"' l--0----i ""'""'
Figure 6-2. Syntax Diagram : Subrange Type.

Any attempt to assign a value other than one included in the
subrange to any of the variables would result in an error. The
philosophy behind this is that it is preferable to have an error
occur and stop a program than to let the program continue with
invalid data. This is an example of Pascal's strong typing, the
careful checking of value and data types for compatibility. It is a
good programming practice to use subranges where ever a set of
possible values will fall into a predictable range. Examples of this
might be exam grades, temperatures, ages, and countless others.

Subranges can also be declared for user-defined types.

type
Days= (Sun, Mon, Tue, Wed, Thu, Fri, Sat);
Weekdays= Mon .. Fri;

Here the type Weekdays is a subrange of the user-defined type
Days.

The type statement can also be used to redefine an existing data
type with a new name.

type
_Numbers= Integer;

var
I, J, K: Numbers;

In this example, the variables I, J, and K ·are all of the type
Numbers which are equivalent to the type Integer, they just have
a different name. Some programmers do this to improve the read­
ability of their programs, but this is not a common technique.

98 __ 6 More On Data Types-----------------

Drawing Ovals

Along with drawing rectangles MacPascal has two ways of cre­
ating ovals with Quickdraw. The first method utilizes the oval
commands, FrameOval, EraseOval and PaintOval. These are
analagous to the FrameRect, EraseRect and PaintRect commands.
An oval is defined as the largest ellipse that can be inscribed
inside a particular rectangle.

Figure 6-3.

Oval inscribed
in e rectangle

To draw a circle, define a rectangle that is a square (all sides
equal) and then use FrameOval.

SetRect(R, 10, 10,60,60);
FrameOval(R);

The display in the Drawing window is shown in Figure 6-4.
The radius of the circle is one half the length of a side of the

square.
To display an ellipse, define a non-square rectangle instead (see

Figure 6-5).

SetRect(R, 10, 10,60,80);
FrameOval(R);

The PaintOval and EraseOval commands operate the same
way.

A second method of drawing a circle is to use the PaintCircle
command which displays a circle of a given radius centered at a
given point, filled with black.

The command:

PaintCircle(l0,20,5);

displays a circle of radius S centered at point 10,20.

------------------ 6 More On Data Types __ 99

Drawing

0

Figure 6-4.

Drawing

Figure 6-5.

A demonstration that comes to mind when drawing ovals is
that of a moon rotating around a fixed planet. The moon will be

100 __ 6 More On Data Types-----------------

oriented in an orbit which is a fixed radius from the planet's cen­
ter. To do this, we must be able to calculate the coordinates for
any point along the orbit using the formula for a circle from ana-
lytic geometry. ·

R2 = (X - a)2 + (Y - b)2

R is the radius, X and Y are a point on the circle and the con­
stants a and b are the coordinates of the circle origin. We can cal­
culate the points on the orbit by using a for loop to iterate
through the X coordinates in the orbit and solving the equation
forY.

Y : = the square root of (R2 - (X - a)2) + b

The user-defined function will come in handy in calculating Y:

Y := Round(Sqrt(Sqr(Radius) - Sqr(X- a))+ b);

For every X point in the circle there are two Y points. One on
the bottom half of the circle and the other at the same position on
the top half. The equation above will calculate the Y coordinates
of the bottom half of the orbit, but to calculate the points in the
top half, we have to subtract from the bottom half point twice
the Y coordinate of the origin or 2 * b.

Y := 2 * b - Round(Sqrt(Sqr(Radius) - Sqr(X- a))+ b);

We can use a second for loop to calculate the points on the top
half of the orbit but we must remember to start calculating the
top points at the spot we finished with the bottom points. There­
fore, the second for loop will be a downto loop.

Here is the program utilizing both Oval and Circle commands.
A new command, InvertCircle is used to erase the moon right
after it is drawn, providing the animation effect. lnvertCircle sim­
ply changes the color of the black circle to white, which essen­
tially erases it.

program KeplersDelight;
const

A= 55;
B = 55;

var
R: Rect;
Radius, X, Y: Integer;

---------------- 6 More On Data Types __ 101

begin
Radius : = 45;
SetRect(R, 45, 45, 65, 65);
FrameOval(R); {Draw the planet}
{Calculate Y points in bottom half of orbit}
for X := 10 to 100 do

begin
Y := Round(Sqrt(Sqr(Radius) - Sqr(X - A))+ B);
PaintCircle(X, Y, 5);
lnvertCircle(X, Y, 5)

end;
{Calculate Y points in top half of orbit}

for X := 100 downto 10 do
begin

Y : = 2 * 8 - Round(Sqrt(Sqr(Radius) - Sqr(X - A)) + 8);
PaintCircle(X, Y, 5);
lnvertCircle(X, Y, 5)

end
end.

Run the program and watch the moon orbit the planet. It may
be helpful to set the Observe window with the variables X and Y
and watch their values as they are calculated. You might want to
try to adapt the program to use either all Oval or Circle com­
mands. A real challenge to those comfortable with analytic geom­
etry would be to have a smaller moon orbit the larger moon as
that moon orbits the planet.

Exercises

1. Determine whether each of these expressions produces a
Real or Integer value.
a. 10 I 3 + 5 * 2
b. Trunc(3.47) + 4.0
c. Round(lO div 3) + 4
d. ORD('A') + 4

2. Evaluate the following expressions to find the answer .
a. 15 + SQR(6)
b. Round(3.4) + 17
c. ABS(-13) + SQRT(16)
d. ORD(TRUE) + 2

102 __ 6 More On Data Types-----------------

3. Write the following expressions in Pascal.
a. X2 + y
b. AX+ B

02
c. LN(lS + ex)
d. TAN(37r)

4. Define an enumerated type for each of the following:
a. The positions on a baseball team
b. Your family members
c. Types of pizzas

7 Procedures

Pascal provides a way to break a large program into smaller
sections for easier design and programming. These sections are
called procedures. Procedures have a structure similar to pro­
grams and are therefore often referred to as subprograms.

Actually, procedures are one of the two types of subprograms
used in Pascal, the other being user-defined functions. Subpro­
grams are included inside a program, but their instructions re­
main separate from the instructions of the main program.

program example;
var

X, Y, Z: Real;
procedure Add;
begin {Procedure}

Z:=X+Y;
end; {Procedure}

begin {Main Program}
Writeln('Enter two numbers');
Readln(X, Y);
Add;
Writeln('The sum is', Z : 6 : 2)

end. {Main Program}

This program contains a procedure named Add. The name of a
procedure is far more important than the name of a program,
though the naming of both follows the same syntactical rule. The
program name is similar to a comment not serving any real pur­
pose in the program. The procedure name has a purpose, it is
used to identify and differentiate procedures in a program.

A procedure is declared by placing the procedure statement
right after the var section of a program. The structure of a proce-

103

104 __ 7 Procedures----------------------

<lure is analogous to that of a program except that it starts with
the word procedure rather than program and the final end in a
procedure is followed by a semicolon rather than a period.

A procedure can contain any statement that can be used in a
program. One exception is that the final end in a procedure is fol­
lowed by a semicolon rather than a period. As always, execution
of the program starts with the first statement in the main pro­
gram. While the main program executes, the procedure lies dor­
mant waiting to be called. In the example, the first statements
executed are the Writeln and the Readln. The third line in the
main program doesn't contain a statement but rather has the
name of the procedure, Add. This is how a procedure is called,
by using the procedure's name as a statement. A procedure must
be defined before it is called.

When a procedure is called the main program goes into a dor­
mant, waiting state and the procedure is awoken. The statements
in the procedure now start to execute beginning with the first
statement. This example has only one statement in the procedure
that adds together the two values that were read by the main pro­
gram. When the end of the procedure is reached (the last end
statement in the procedure), control is passed back to the main
program which resumes execution at the line after the one that
called the procedure.

This was a short and simple example of procedures, but yet it
illustrated how procedures are written and called. Programmers
use procedures to help clarify the design and writing of a pro­
gram. Usually the first step in programming is to describe the
steps needed to solve the problem in an English-like form known
as pseudocode. Here is the pseudocode for a program that calcu­
lates the area and perimeter of a rectangle.

Read the length and width
Find the perimeter
Find the area
Print the answer

Notice that the pseudocode doesn't include the actual Pascal
statements needed, but just the steps involved. Depending upon
the complexity of the program, the pseudocode may then be writ­
ten several times in increasing detail, but in this simple case we
can begin to build the Pascal program.

-------------------1 Procedures __ 105

program Rectangle;
var

Len, Width, A, P: Real;
{Procedures go here}
begin

Writeln('Enter the length and width');
Readln(Len, Width);
Perimeter;
Area;
Writeln('The area is', A : 6 : 2, 'The perrmeter is', P : 6 : 2)

end.

This second step in the design process results in a part of a Pascal
program that just shows the variables and the main section of the
program. Notice the calls to the two procedures named Area and
Perimeter, which have yet to be written. The next step is to write
the procedures and include them in the program.

program Rectangle;
var

Len, Width, A, P: Real;
procedure Area;
begin {Area}

A:= Len* Width;
end; {Area}
procedure Perimeter;
begin {Perimeter}

P := 2 *(Len+ Width)
end; {Perimeter}

begin
Writeln('Enter the length and width');
Readln(Len, Width);
Perimeter;
Area;
Writeln('The area is', A : 6 : 2, 'The perimeter is', P : 6 : 2) ,

end.

This method of programming, sometimes called structured pro­
gramming or top down programming, emphasizes planning a
program prior to writing it and creating a main program consist­
ing mostly of procedure calls. This style of program planning has
replaced the use of flowcharts when programming in structured
languages such as Pascal.

106 __ 7 Procedures--------------------

Scope of Variables

In the procedure demonstrated before, the variables used were
declared in the main program. However, as was mentioned
before, a procedure can have any statements that are allowed in a
main program. This means that a procedure can also have its
own variable declarations. This presents a puzzling question.
When a procedure has its own variable declaration where and
when can i~s variables be used and how about the variables
declared in the main program 1

It was obvious from the example programs that a procedure
may use the variables declared in the main program, but can the
main program use the variables declared in a procedure? The
answer to this is no. A procediire's variables are active (can be
used) if they are declared in that procedure or in any other vari­
able declaration in the part of the program containing the proce­
dure. Consider Figures 7-1 and 7-2 which describe the scope of
variables in two programs.

Program XX;
YAR

A,B,C : Integer;

Procedure VY;
D,E,F: Integer;

Figure 7-1.

A,B,C,D,E,F can all
be used here.

A,B,C can be
used here.

When a procedure that declares variables becomes active (is
called), the variables declared are created and given their initial
value (depending on the data type). While that procedure exe­
cutes, the variables are live, but once the procedure ends, the
variables are destroyed and can't be accessed. Even when a proce-

--------------------7 Proced ures · __ 107

Program XX;

VAR
A,B ,C : Integer;

Procedure YY;
D ,E ,F : Integer;

Figure 7-2.

A,B,C,D,E,F can all
be used here.

A,B,C,H,l,J can all
be used here.

A,B,C can be
used here.

dure is called multiple times, the variables are created and
destroyed each time it is called. This means that a value can't be
left in a procedure for subsequent calls to that procedure. Since
the main program is always active (until the final end is encoun­
tered) its variables are always available for use.

A variable that is declared in a procedure is known as a local
variable, since it is active only in that procedure. Variables
declared in the main program are known as global variables, des­
ignating that they are active throughout the entire program.

Let's examine the following program to understand the differ­
ence between local and global variables.

program Proceed;
var

X: Integer;
procedure Show;

var
A: Integer;

begin {Procedure}
A:=4;
Writeln('A in the procedure is ', A : 1);
x := x + 3;
Writeln('X in procedure is', X: 1)

end; {Procedure}

108 __ 7 Procedures--------------------

begin
X:= 2;
Writeln('X in the main is ', X : l);
Show;
Writeln('X in the main the second time is ', X : 1)

end.

The output from this program is:

X in the main is 2
A in the procedure is 4
X in the procedure is 5
X in the main the second time is 5

This program demonstrates that the main program's variable X
is active in the procedure and its value can be changed in the pro­
cedure. Note that an attempt to use the procedure's variable A in
the main program such as:

Writeln(A)

would produce an error since the procedure's variables are not
active in the main program. Let's change the program and call the
procedure more than once.

program Proceed;
var

X: Integer;
procedure Show;

var
A: Integer;

begin {Procedure}
A:= A+ 3;
Writeln('A in the procedure is ', A : 2)

end; {Procedure}
begin

Show;
Show

end.

The output is:

A in the procedure is 3
A in the procedure is 3

This program took advantage of the fact that MacPascal cre­
ates all local variables when a procedure is called. Note that even

---------------------? Procedures __ 109

though the procedure is called twice, the printed values of A are
the same. If this was not the case, the second value of A would be
6 not 3.

Local variables inside a procedure may even have the same
name as a global variable. For example:

program TwoNames;
var

X: Integer;
procedure TheSame;

var
X: Integer;

begin
x := 1;
Writeln(X)

end; {Procedure}
begin

X:= 4;
Write(X);
TheSame;
Writeln(X)

end.

The output is:

4
1
4

If a Local and Global variable have the same name, the local
variable is the one that is used. Hence, in the procedure the local
variable named X was used and the value of the Global variable
named X was not changed. This exercise was used only to empha­
size the point and constitutes a bad programming practice due to
the confusion created.

One last note about local variables. When using a for loop
inside a procedure the control variable of the for loop must be a
local variable.

Parameter Passing

In the programs we have seen, main programs have provided
procedures with information via Global variables and procedures

110 __ 7 Procedures--------------------

have sent information back to the main program the same way.
There are, however, limits to this system that can be demon­
strated with the following program.

program Demo;
var

A, B, C, D: Integer;
procedure Swap;

var
Temp: Integer;

begin
Temp:= A;
A:= B;
B :=Temp

end; {Procedure}
begin {Main}

A:=4;
B := 3;
C:= 5;
D := 1;
Swap;
Writeln(A : 2, B : 2)

end.

The output of this program is: 3 4

In this program, procedure Swap is used to exchange the values
of variables A and B. After Swap is called, A has a value of 3 and
B has a value of 4. Notice that the information was sent back and
forth between the main program and the procedure with the use
of Global variables (A and B). The problem this presents is that
this procedure can not now be used to exchange the values of C
and D or any other set of variables. We can say that the variables
A and Bare hard coded into the procedure. In order to swap any
two other variables a new procedure would need to be written
that had those variables hard coded in it. The inefficiency of this
situation can be solved with the use of parameters. Parameters
allow variables in the main program to be substituted for the
actual variables specified in the procedure. This allows the same
procedure to be used with different sets of variables. There are
two types of parameters in Pascal, variable and value. First let's
examine variable parameters.

---------------------7 Procedures __ 111

Variable Parameters

The parameters to be used in a procedure are listed as part of
the procedure statement.

procedure Swap(var E, F: Integer);

Here two parameters E and Fare designated . They are both of
the type Integer. Placing variable names in the parameter list is
similar to declaring them as local variables in that they are active
as long as the procedure is active and they have the same scope
(where they are active). The difference is that when a variable
parameter is created, it is given an initial value from the variables
listed in the statement that calls the procedure.

When using parameters, the way a procedure is called changes
slightly.

Swap(A, B);

This call to the procedure Swap now includes a list of variables
which is to be matched up with the list of parameters in the proce­
dure heading. Notice that the variables listed in the call to the pro­
cedure are not the same as the ones listed in the procedure state­
ment, but rather are variables in the main program whose values
we want to send to the procedure. A relationship exists between
these two lists of variables (Figure 7-3). The variables listed in the
procedure heading are called Formal parameters, the variables
listed in the call to the procedure are called Actual parameters. The
Actual and Formal parameters must agree in number and type and
their position in the list is important. When the procedure is called,
the Formal and Actual parameters are matched the first Formal
parameter with the first Actual parameter, the second Formal
parameter with the second Actual parameter, and so on. When
using variable parameters the variable declared as a Formal param­
eter is not created as a memory location but rather becomes a
pointer to its corresponding Actual parameter. This essentially cre­
ates two names for the same memory location.

We say that E and F point to the variables A and B. When in
the procedure a change is made to E, it is actually made to the
variable that E points to which is A. When a change is made to F
it is actually B that is affected. When a change in a Formal
parameter is reflected in an Actual parameter we call it a side
affect. Here is the entire program rewritten to include parameter
passing ., Several Writeln statements have been added to help clar­
ify the situation.

112 __ 7 Procedures ________________ _

Forma1
parameters

Actua1
parameters

E'------i

program Demo;
var

Figure 7-3.

A, 8, C, D: Integer;
procedure Swap(var E, F: Integer);

var
Temp: Integer;

begin
Writeln('E =', E: 1,' F=', F: l);
Temp:= E;
E := F;
F :=Temp;
Writeln(' E=', E: 1,' F=', F: 1)

end; {Procedure}
begin {Main}

A:= 4;
8 := 3;
C: = 5;
D := 1;
Writeln('A =',A: 1,' 8 =', 8: 1);
Swap(A, 8);
Writeln('A =',A: 1,' 8 =', 8: 1)

end.

The output is

A=4 8=3
E=4 F=3
E=3 F=4
A=3 8=4

A

8

--------------------7 Procedures __ 113

From the output you can see where the Formal parameters
were exchanged and how it affected the Actual parameters in the
main program.

The Major Advantage

The major advantage of passing information to a procedure
with parameters rather than with Global variables is that the
same procedure can be used with different sets of variables. Pro­
cedure Show can be used to exchange the values of C and D by
just changing the Actual parameters used in the procedure call.

Swap(C, D);

Value Parameters

A second mechanism for passing parameters is the use of value
parameters. When value parameters are used there are no side
effects in the main program. With value parameters, a copy of
the Actual parameters are created and assigned to the Formal
parameters. Hence any changes made to the copies of the original
memory locations do not affect the original locations themselves.
Value parameters are also declared in the procedure heading
except the word var is eliminated.

procedure Swap(E, F: Integer);

Now E and Fare value parameters rather than variable param­
eters. When the procedure is called:

Swap(A, B)

the corresponding Actual parameters are copied into the Formal
parameters (Figure 7-4).

Now, when the values of the Formal parameters are changed
inside the procedure, the changes are not reflected in the main
program's variables which are Actual parameters. Therefore,
value parameters can not be used to send information from a sub­
routine to a main program. Global variables and variable param­
eters must be used for this purpose.

Because only a value is sent to the procedure when using value
parameters, the value used need not be contained in a variable as
it must be in a variable parameter. A constant or expression can
be used in the Actual parameter list. Some examples of this are:

114 __ 7 Procedures

Formal Actual
parameters parameters

E I 3
I I

3 IA

Fl __ 4 _1 _I _4 _1 8

Figure 7-4.

Procl(A, 2, A * 3)

Let's now see some more examples of the use of value parameters.

program ValExamples;
var

K, L, M: Integer;
procedure Lines(N: Integer);

var
I: Integer;

begin
for I := 1 to N do

Writeln
end; {Lines}

procedure Spaces(N: Integer);
var

I: Integer;
begin

for I := 1 to N do
Write(' ' :1)

end; {Spaces}
begin {main}

K := 5;
Write(K : l);
Spaces(3);
Write(K + 1 : 1);
Lines(2);
Write(K: 1)

end.

------------------7Procedures __ 115

The output would look like:

5 4
4

The procedures Spaces and Lines do not send any values back to
the main program and as such make use of value rather than vari­
able parameters. These procedures are used to format output in
the Text window. Normally, anytime you know that the Actual
parameter should not be allowed to be changed by a procedure,
you should use value parameters.

Comparing Value and Variable Parameter
Passing

To emphasize the difference between the two ways of parame­
ter passing, here are two versions of the same program,· one using
variable parameters, the other value parameters.

program Vars;
var

X, Y : Integer;
procedure PT(var A, B: Integer);
begin

A:= A+ 1;
8: = B + 2;
Writeln(A : 2, B : 2);

end;
begin {main}

X:= 1;
Y:= 1;
Writeln(X : 2, Y : 2);
PT(X, Y);
Writeln(X : 2, Y : 2)

end.

The outputs are:

1 1

program Vais;
var

X, Y: Integer;
procedure PT(X, Y :Integer);
begin

A:= A+ 1;
B:= B + 2;
Writeln(A : 2, B : 2);

end;
begin {main}

X:= 1;
Y:= 1;
Writeln(X : 2, Y : 2);
PT(X, Y);
Writeln(X : 2, Y : 2)

end.

1 1
2 3 +- from procedure
2 3

2 3 +- from procedure
1 1 +- no side effect

As you can see in the program on the left, variable parameters
were used and the variables inthe main program were affected by

116 __ 7 Procedures--------------------

the operations in the procedure. In the program on the right,
value parameters were used and there was no effect on the vari­
ables in the main program.

Mixing Variable and Value Parameters

In many situations you will mix the use of variable and value
parameters. Both types can be included in the procedure's param­
eter list. Each separate declaration of variable parameters must
have its own var in front of it.

prncedure Mixed (var X: l::>teger;
V, Z: Reel Variable perameters

Velue Peremeter_____. var P : Booleen);

The following example raises a number to a power (a mathe­
matical operation left out of Pascal). It is a typical example of
mixing both value and a variable parameter in a procedure. The
information sent to the procedure, the number, and the power,
are both value parameters. The answer is sent back to the main
program in a variable parameter (Ans).

program PowerTest;
var

Num,Power: Integer;
Ans: Real;

procedure RaiseToPower(var Ans : Real; Base, Power :

var
I: Integer;

begin
Ans:= 1;

for I:= 1 to Power do
Ans:= Ans*Base

end;
begin

Integer);

Writeln('Enter the number and the power to raise it to');
Readln(Num, Power);
RaiseToPower(Ans, Num, Power);
Writeln(Ans)

end.

---------------------7 Procedures 117

This procedure worked by multiplying the Base by itself Power
number of times. Lets trace the procedure for 2 and 3 as the val­
ues of Base and Power.

I

1
2
3

Ans

1
2
4
8

Mortgage Calculator

Base

2
2
2
2

Power

3
3
3
3 +--Done

Let's now turn to a large, more complex application that
requires the use of procedures to help organize the program
development process . From time to time people find themselves
in a situation where they have to borrow a substantial sum of
money. Loans of this type, of which a mortgage is one (the Latin
translation of mortgage is death commitment, if you have a
house you know what this means), are known as amortized
loans. In an amortized loan the monthly payment is constant
throughout the life of the loan, but the part of the payment that
goes towards interest and the part that goes towards reducing the
amount borrowed (Principal) varies. In the early years of the
loan, the interest component of the payment is high meaning very
little Principal is paid off. Little by little the Principal is reduced
which decreases the interest component and increases the princi­
ple part of the payment. This turns out to be rather complicated
by analysis and so it would be helpful to have a program to cal­
culate the payments. The program can not only calculate the
monthly payment and the yeafly Principal and interest paid, but
can also report the true cost of the payments after considering the
income tax deduction on the interest paid and subtracting that
from the total yearly payment.

The formulas for the calculations are:

Interest rate* (Interest rate+ l)#years* Principal
Annual payment= ~-~~~~~~~~~~~~~~~~

(Interest rate+ l)#of years_ 1

Monthly Payment = Annual payment I 12

118 __ 7 Procedures-------------------

Yearly Interest paid= Interest rate* Principal remaining

Yearly Principal paid = Annual Payment - Yearly interest paid

Principal Remaining = Principal - Yearly Principal paid

Actual Cost = Interest paid * (1- Tax bracket/100 + Principal
paid)

The program will prompt the user to enter

The Principal amount
The Interest rate (as a fraction)
The Term of loan in years
The Tax Bracket (as a percentage)

First lets pseudocode the program.

Get input
Calculate annual and monthly payment
For I:= 1 to Years Do

begin
calculate yearly Principal and interest paid
calculate yearly cost
write information

end.

Now let's take a stab at writing the main program without the
procedures.

program Mortgage;
var

Years, I : Integer;
AnPay, MonthPay, Principal, AnPrinPay, AnCost,

AnlnterestPay, lntRate, TaxBrac: Real;
{Procedures here}

begin
Get Info;
CalculatePayment(AnPay, MonthPay, Years, lntRate);
Writeln('The monthly payment is ',MonthPay: 8: 2);
PrintTable

end.

Now let's put everything together.

------------------? Procedures __ 119

program Mortgage;
var

Years, I : Integer;
AnPay, MonthPay, Principal, AnPrinPay, AnCost,

AnlnterestPay, lntRate, TaxBrac: Real;
procedure Getlnfo;
begin

Writeln('Enter amount of loan');
Readln(Principal);
Writeln('Enter number of years');
Readln(Years);
Writeln('Enter interest rate as a fraction');
Readln(lntRate);
Writeln('Enter your tax bracket');
Readln(TaxBrac)

.end;
{ -- }
procedure CalculatePayment (var AnPay, Month Pay:

var
TempResult: Real;
I : Integer;

begin
TempResult := 1;
for I := 1 to Years do

Real;
Years : Integer;
lntRate : Real);

TempResult := TempResult * (lntRate + 1);
AnPay := (lntRate * TempResult * Principal) I

(TempResult - 1);
MonthPay := AnPay I 12

end;
{ --·-- }
procedure PrintTable;

var
Temp, I : Integer;

begin
Writeln('Year', ' ' : 1, 'Interest', ' ' : 3, 'Prine', ' ' : 5,

'Cost');
for I := 1 to Years do

begin
Write(I : 3);

120 7 Procedures------------------

AnlnterestPay := Principal * lntRate;
Write(AnlnterestPay: 10 : 2);
AnPrinPay := AnPay - AnlnterestPay;
Write(AnPrinPay : 10 : 2);
Principal := Principal - AnPrinPay;
AnCost := (TaxBrac I 100 * AnlnterestPay) +

AnPrinPay;
Writeln(AnCost: 10: 2)

end {For Loop}
end; {Procedure}
{ ------~--- }

begin
Get Info;
CalculatePayment(AnPay, MonthPay, Years, lntRate);
Writeln('The monthly payment is ', IVlonth Pay : 8 : 2);
PrintTable

end.
If the values entered were an $80,000 loan at 13 % for a period

of 10 years and the borrower's tax bracket was 40 % the program
would produce this table.

The monthly payment is
Year Interest

1 10400.00
2 9835.39
3 9197.38
4 8476.42
5 7661.75
6 6741.17
7 5700.90
8 4525.41
9 3197.10

10 1696.12

1228.60
Prine

4343.17
4907.78
5545.79
6266.74
7081.42
8002.00
9042.26

10217.75
11546.06
13047.05

Cost
8503.17
8841.93
9224.74
9657.31

10146.12
10698.47
11322.62
12027.92
12824.90
13725.50

This program could have been written without using proce­
dures but it would have been harder to organize and write . You
will soon find procedures a great aid to you in your future
programs.

Drawing Lines
In previous chapters we have seen how to draw and animate

rectangles and ovals in the Drawing window. In this section we

-------------------7 Procedures __ 121

will now look at drawing lines. Lines, like the other two graphics
structures we have seen are drawn in the Drawing window with a
QuickDraw tool called the pen. Obviously, there is physically no
pen drawing on your screen. The pen is a metaphor for describing
drawing operations as though they were done on a paper with an
ink pen.

To draw lines, we utilize that old saying about the straight path
between two points is a line. First, we position the pen with the
MoveTo command. ·

MoveTo(X, Y);

MoveTo picks up the pen and moves.it to the point X,Y with­
out drawing anything. Do this to position the pen to the starting
point of the line. The line is actually drawn with the LineTo
command.

LineTo(X, Y);

LineTo draws a line from the old pen position to the new point
given in the command.

For example, to draw a line across the window from 10,10 to
10,100 we would:

MoveTo(l0,10); {move to starting point}
LineTo(l0,100); {draw line}

Let's combine drawing lines with procedures to create a proce­
dure that draws an equilateral triangle. An equilateral triangle
has three equal sides all connected by 60 degree angles. The pro­
cedure will have three variable parameters, X and Y, the upper
left hand point in the triangle and Side, the length of the sides.
Geometry tells us the coordinates of the other points.

><, Y side 1 X, Y+Side
~-----------~

X+Side div 2, Y+Side/Sqrt(2)

Figure 7-5

122 __ 7 Procedures-----------------

In the procedure, we first position the pen at point X, Y. Then
draw sides 1, 2 and 3.

procedure Tri (X, Y, Side: Integer);
begin

MoveTo(X, Y);
LineTo(X + Side, Y);
LineTo(X + Side div 2, Round(Y + Side I Sqrt(2)));
LineTo(X, Y)

end;

Let's now call the procedure a couple of times to draw some
triangles.

program Triangles;
procedure Tri (X, Y, Side: Integer);

begin
MoveTo(X, Y);
LineTo(X +Side, Y);
LineTo(X + Side div 2, Round(Y + Side I Sqrt(2)));
LineTo(X, Y)

end;
begin

Tri(l0,10,10);
Tri(40, 40, 5);
Tri(80, 85, 18)

end.

~D

v
Drawing

1'

7
'2l

Figure 7-6.

-------------------7 Procedures __ 123

Exercises

1. Write a procedure that accepts an integer value and then
prints the many blank lines in the text window.

2. What is printed by this program?

program Example
var

A, B, X, Y: Integer;
procedure Pl(A, B: Integer);
begin

A:= 3;
B:= 3

end;
procedure P2(var A, B : Integer);
begin

A:= 3;
B:= 4

end;
begin

A:= 2;
B := 2;
Pl(X, Y);
Writeln(X, Y);
P2(X, Y);
Writeln(X, Y);
P2(Y, X);
Writeln(X, Y)

end.

3. Write a procedure that returns the square of three numbers
and a Boolean value of True if all three squares are even
and False if all three are odd.

8 Arrays and Strings

Up to this point in the book the data types we have seen, Inte­
ger, Real, Char, Boolean, and Enumerated, are all known as sca­
lar types. In a scalar type, each variable is a discrete entity. In
this chapter, we will look at the data type Array which is a struc­
tured type. A structured type variable is a variable which can
contain several distinct but related components. Also discussed in
this chapter is the data type string which is a MacPascal exten­
sion.

Arrays are a structured type. Let's look at an example which
will demonstrate the need for arrays . Let's write a program that
will read and average three integers.

program Average;
var

A, B, C: Integer;
Avg: Real;

begin
Writeln('Enter three numbers to average');
Readln(A, B, C);
Avg:= (A+ B + C) I 3.0;
Writeln(Avg: 6: 2)

end.

This is a straight forward problem and the solution is simple.
However, how would a program be written to average 100 num­
bers, 1000, or 10000? It is obvious that it would be extremely
impractical to use 100 separate variables to accomplish this.
What is needed is an array.

An array is a group of variables of the same data type, all with
a common name. Each individual variable (called an element) is
referred by using a subscript along with the array name.

125

126 __ 8 Arrays and Strings-----------------

The declaration of an array is as follows:

Num : array (1 .. 1 OJ of Integer;

Index",/ ~Element type

Figure 8-1.

Here we have declared an array called Num. Num is a list of 10
memory locations, numbered 1 through 10, each holding an Inte­
ger . The standard form for declaring an array is:

ArrayName: array [subrange] of Data Type;
ARRAY TYPE

array simple
type

Figure 8-2. Syntax Diagram : Array Type.

An array is usually pictured as a linear list.

type

Num[1)

Nurn[2)
Num[3]
Num[4]

Num[5]

Num[6]

Num[7]

Num[B]

Num[11 is the first element

I .

Num[9]
Num[1 O]

~---_,,,.

~---_,,,.
Num[2] is the second e I ement

•
•
•
•
•
•
•

Num[1 O] is the tenth element

Figure 8-3.

The number of elements in an array and the range of subscripts
is determined by the subrange used.

A: array [3 .. 7] of Integer;

Array A has five elements A[3], ... ,A[7] .

------------------ 8 Arrays and Strings __ 127

B: array [-1..10] of Boolean;

Array B has 12 Boolean elements, B[-1], B[O], B[l], . . . ,B[lO].
The subrange need not be Integer, it can be of any enumerated

types.

C: array [False,True] of Integer;

Array Chas two integer elements, C[False] and C[True].

D : array ['A' .. 'Z'] of Boolean;

Array D has 26 Boolean elements, D['A'], D['B'], ... ,D['Z'].
The type of array elements can be of any type, scalar or struc-

tured. We will limit the discussion here to scalar elements.
Each of the ten separate variables in an array are referred to by

the array name and the subscript in brackets.
The subscript can either be a constant, or an expression which

must evaluate to a legal subscript. The following examples all
show legal subscripts .

Num[l] := 7;
Num[8] : = Num[l] + 3;
K:=4;
Num[K] := 3;
Num[K + 2] := 4;

Arrays and for loops are a natural combination. The for loop
can be used to sequentially access all the elements of an array.
Let's use a for loop to initialize all the elements in array Num to
zero.

for 1:=1 to !Odo Num[I] := O;

As this for loop iterates, the assignment statement is executed
with all the different values of I. Thus, each of the ten elements in
Num is set to zero. Let's now write the code to place into Num
the following values (see Figure 8-4).

for I:= 1to10 do Num[I] := I;

In this example, the values assigned to each element are the
same as the subscript. Let's now, using an array, write the 100
number average program discussed in the beginning of the
chapter.

program Average;
var

128 __ 8 Arrays and Strings------------------

Sum, I : Integer;
Avg: Real;
Num : array [1..100] of Integer;

begin
Sum:= O;
for I : = 1 to 100 do

begin
Writeln('Enter number', I);
Readln(Num[I])

end; {For loop}
for I : = 1 to 100 do

Sum : = Sum + Num[I];
Avg:= Sum I 100;
Writeln('The average is', Avg :6: 2)

end.

The first for loop is used to read 100 values and place them into
the array. The second for loop is used to add together all the val­
ues in the array. Finally, the average is computed. The use of the
array has preserved the values entered for use in further calcula­
tions.

Sentinels

Num[1 l
Num[2]
Num[3]
Num[4]

Num[5]

Num[6]
Num[7]

Num[8]
Num[9]

Num[1 O]

1

2

3
4

5
6

7

8
9

10

Figure 8-4.

There is a limitation to the programming method used in the
averaging program. The user of that program is forced to have to

-----------------8 Arrays and Strings __ 129

enter 100 values in order for it to work. We can easily adapt the
program to allow entry of any number of values to be averaged.
The program can be redesigned to allow the user to enter any
number of values up to 100. To mark the end of the data the user
enters a negative number. The negative number is known as a
sentinel, a value to be watched for, to signify the end of the data.

program NewAverage;
var
Int, Sum, I, Ct : Integer;
Avg: Real;
Num: array [l .. 100] of Integer;

begin
Ct:= O;
Writeln('Enter number to average');
Readln(lnt);
while In > 0 do

begin
Ct:= Ct+ 1;
Num[Ct] := Int;
Writeln('Enter number to average');
Readln(lnt)

end;
{Calculate average}

Sum:= O;
for I : = 1 to Ct do

Sum : = Sum + Num[I];
Avg:= Sum I Ct;
Writeln('The average is ',Avg : 6 : 2)

end.

In this version of the program a while loop is used to read val­
ues and to place them into the array. When the sentinel (negative
number) is entered the condition in the while loop fails. The for
loop then adds the contents of Num[I] through Num[Ct] and cal­
culates the average. Once the average is calculated, we could eas­
ily find other statistical information since all the values entered
are held in the array.

130 __ 8 Arrays and Strings------------------

Two-Dimensional Arrays

The data type of the elements in an array can also be an array.

var
A: array [1..3] of array [1..2] of Integer;

This creates a structure called a two-dimensional array. A two­
dimensional array is pictured as a matrix. Here is the array
declared above.

Figure 8-5.

This two-dimensional array is said to have three rows and two
columns. Normally, we compact the declaration of a two dimen­
sional array to:

var
A: array [1..3,1..2] of Integer;

The number of rows is always specified first. Each element in
the array has two subscripts, one for the row and one for the col­
umn. Each element is referred to as: A[row,column]. The same
array with each element marked with its subscript is shown in
Figure 8-6.

Two-dimensional arrays are used to represent data that has a
row and column relationship. A good example of this is a tic-tac:..
toe board.

Let's look at some examples involving two dimensional arrays.

----------------8 ArraysandStrings __ 131

Co1umn1 Column 2

Row 1 A(1,, 1) A(1,,2)

Row 2 A(2,, 1) A(2,,2)

Row 3 A(3,, 1) A(3,,2)

Figure 8-6.

var
TwoD: array [1..3, 1..5] of Integer;

The above var section declares a two dimensional array of
three rows and five columns. Let's fill each element in this array·
with it's column number.

for Row : = 1 to 3 do
for Col : = 1 to 5 do

TwoD[Row, Col]:= Col;

The array would now appear as :

1 2 3

1 2 3

1 2 3

Figure 8-7.

4 5

4 5

4 5

Notice that the array is filled one row at a time. That is, the
value of the outer for control variable, Row, was 1 while the
values of the inner loops control variable, Col, varied from 1 to

132 __ 8 Arrays and Strings-----------------

5. The effect was the same as if the following statements had been
executed.

TwoD[l, 1] := 1;
TwoD[l, 2] := 2;
TwoD[l, 3] := 3;
TwoD[l, 4] := 4;
TwoD[l, 5] : = 5;

The same thing happens in the other rows.
Now let's write the code that will add together the value in a

column of the array. This is done by holding a column constant
as we vary the rows. Let's first add the first column.

Sum:= O;
for Row : = 1 to 3 do

Sum:= Sum+ TwoD[Row, 1];

This loop is equivalent to the following statement.

Sum:= TwoD[l, 1] + TwoD[2, 1] + TwoD[3, 1];

Notice that these are the three elements in the first column. All
the columns can be added together by placing this loop into
another for loop.

for Col : = 1 to 5 do
begin

Sum:= O;
for Row : = 1 to 3 do

Sum:= Sum+ TwoD[Row, Col];
Writeln('The sum of column', Col : 2, 'is', Sum : 2)

end;

The contents of a row can be added together by holding the
row constant while varying the columns.

Sum:= O;
for Col : = 1 to 5 do

Sum:= Sum+ TwoD[l, Col];

This is equivalent to the following statement.

Sum:= TwoD[l, 1] + TwoD[l, 2] + TwoD[l, 3] +
TwoD[l, 4] + TwoD[l, 5];

Now that we are familiar with using two dimensional arrays,
we can write a program that acts as a tic-tac-toe board for a game

-----------------8 ArraysandStrings __ 133

between two players. The program will keep track of the moves
and inform the players of a win or tie. The tic-tac-toe board
could be represented with a two-dimensional array with three
rows and three columns. Each element in the array will hold an
integer, 1 representing an X, and 0 representing an 0. Here is the
declaration of the array.

Board: array [l..3,1..3] of Integer;

Lets begin by writing the pseudocode for the program.

while no winner do
begin

Get player A's move
Mark it in the array
Print board
Is it a win?
Get player B's move
Print board
Is it a win?

end

A second level of refinement includes some of the variable dec­
larations, the procedure calls and the main program.

program TicTacToe;
type

Win = (Yes, No, Tie);
Player = (A, B);

var
Board : array [1..3,1..3] of Integer;
CurrentPlayer : Player;
Winner : Win;
Row, Column : 1..3;
Sum, Total : Integer;

begin
Winner:= No;
In itia I izeArray;
CurrentPlayer := B;

•

134 __ 8 Arrays and Strings----------------

while Winner = No do
begin

if CurrentPlayer = B then {Switch current player}
Current Player : = A

else
CurrentPlayer : = B;

Get Move;
if CurrentPlayer =A then {Place move into array}

Board[Row, Column]:= 1
else

Board[Row, Column]:= O;
PrintBoard;
WinOrTie;
if Winner = Yes then
begin

Sys Beep(1 O);
Writeln('Game won by ', CurrentPlayer)

end; {If}
if Winner= Tie then

begin
Sys Beep(1 O);
Writeln('Game ends in a Tie')

end {If}
end {While}

end. {Game}

Now all that is left is to write the procedures.
The procedure InitializeArray will assign a -9 to all the ele­

ments in the array. This is done to make it easier to tell if there is
a winner.

procedure lnitializeArray;
var

R, C: Integer;
begin

fore :=1 to3do
for R :=1to3 do

Board[R, C] := -9
end;

This procedure assigns a -9 to each element in the array. This is
done with the help of two nested for loops. The loops will pro­
duce every combination of the subscripts in the following order.

----------------- 8 Arrays and Strings __ 135

Board[!, 1]
Board[2, 1]
Board[3, 1]
Board[!, 2]
Board[2, 2]
Board[3, 2]
Board[!, 3]
Board[2, 3]
Board[3, 3]

Note that the variable R is changed by the inner for loop which
iterates three times for each value of C.

The procedure GetMove will prompt the current player for his
move.

procedure GetMove;
begin

Writeln('Player ', CLirrentPlayer, 'Your Move');
Writeln('Enter the row');
Readln(Row);
Writeln('Enter the column');
Readln(Column)

end;

The procedure PrintBoard writes the two-dimensional array to
the Text window. Two nested for loops are used for this.

procedure PrintBoard;
var

R, C: Integer;
begin

for R : = 1 to 3 do
begin

for C : = 1 to 3 do
Write(Board{R, C}, '');

Writeln
end; {For R loop}

Writeln
end;

The outer loop counts the rows, the inner loop the columns.
This means the array is printed row 1 column 1, row 1 column 2,
row 1 column 3, then row 2 column 1, etc. Note that after a com­
plete row is printed a Writeln is done to advance to the next line.

136 __ 8 Arrays and Strings-----------------

Note also that the Writeln statement is not contained in the inner­
most loop.

The procedure WinOrTie will analyze the board and report
back to the main program if there is a win or tie. To tell if there is
a win we must check if either player has ali three positions in a
row, column, and diagonal of the array. Since player A's moves
are marked by a one, if any row, column, or diagonal adds up to
three then A is the winner. If any row, column, or diagonal adds
up to zero then B is the winner. This is why the array elements
were initialized to -9 rather than 0-so that three empty positions
added together don't add up to zero.

procedure WinOrTie;
var

R, C: Integer;
begin

Winner= No;
if CurrentPlayer =A then

Total:= 3
else

Total:= O;
{Check columns}
for C : = 1 to 3 do

begin
Sum:= O;
for R : = 1 to 3 do
Sum : = Sum + Board[R, C];
if Sum =Total then
Winner:= Yes

end; {for C loop}
if Winner = No then

begin
for R : = 1 to 3 do
begin

Sum:= O;
{Check Rows}
for C : = 1 to 3 do

Sum : = Sum + Board[R, C];
if Sum =Total then

Winner:= Yes
end {For R loop}

end; {If}

-----------------8 Arrays and Strings __ 137

if Winner= No then
begin
{Check diagonals}

Sum:= O;
for C := 1to3 do

Sum:= Sum+ Board[C, C];
if Sum= Total then

Winner:= Yes
end; {If}

if Winner= No then
begin

Sum:= O;
Winner:= Tie;
{Look for any empty position}
for C : = 1 to 3 do

for R : = 1 to 3 do
if Board[R, C] = -9 then
Winner:= No

end {If}
end; {WinOrTie}

The output of the routine is in the global variable Winner.
Depending upon the move of the last player, Winner is set to
either Yes, No, or Tie, the three possible values of the data type
Win. This routine is divided into three parts. First all columns are
checked. We add together the contents of each of the columns.
This is done with two for loops. The column which is varied by
the outer loop is held constant as the inner loop controls the
rows. Once all three elements in a column are added the sum is
compared to the total which would indicate a winning move was
completed for that player. All three columns are checked regard­
less if a winner has been determined already. This is because the
rows are checked with for loops and there is no way to abort the
checking even after finding the condition we want (this could
have been done with a while loop). However this is no problem
since Winner is initially set to No and only set to Yes if a winning
row is found. A variable used in this way is called a toggle or
switch.

{Check columns}
for C := 1to3 do
begin

Sum:= O;

138 __ 8 Arrays and Strings-----------------

for R := 1to3 do
Sum:= Sum+ Board[R, CJ;

if Sum= Total then Winner:= Yes;
end; {For Loop}

If no winning column is found we now move on to check the
rows. The rows are checked in the same manner except that the
columns are kept constant as the loop adds together the contents
of each row.

{Check rows}
for R := 1to3 do

begin
Sum:= O;
fore:= 1 to3do

Sum:= Sum+ Board[R, C];
if Sum = Total then

Winner:= Yes;
end; {For}

The diagonals have to be checked in a different way. The
major diagonal, the one that goes from the upper left hand corner
to the lower right hand corner consists of the elements: Board[l,
l], Board[2, 2), and Board[3, 3). Note that in each of these ele­
ments the row and column subscripts are the same. The contents
of these elements can be added with one for loop using the loop
control variable as both subscripts.

for C := 1to3 do
Sum:= Sum+ Board[C, C];

if Sum = Total then
Winner:= Yes;

The minor diagonal, the one .that goes from the upper right
hand corner to the lower left hand corner, contains the elements:
Board[l, 3), Board[2, 2), and Board[3, 1). All these elements can
be added with one for loop if the relationship between the row
and column subscripts is noticed.

for C := 1to3 do
Sum : = Sum + Board[C, 4 - C];

if Sum = Total then
Winner:= Yes;

If no winning move. was made the array is now checked to see
if there is a tie. In tic-tac-toe there is a tie if there is no place for a

-----------------8 Arrays and Strings __ 139

player to move. This would be represented in the array by no ele­
ment equal to the initial value of -9. First, Winner is set to Tie
and then two nested for loops are used to examine the contents of
all the array elements. If any element is found to have the initial
value then there is a place to move and Winner is toggled to No.

if Winner = No then
begin

Sum:= O;
Winner : = Tie;
{Look for any empty position}
for C : = 1 to 3 do

for R : = 1 to 3 do
if Board[R, C] = -9 then

Winner:= No
end; {If}

Here is the TicTacToe program all together. This program has
more than just entertainment value. Running the program we
help acquaint you with the row and column positions in a two
dimensional array. Worth noting in this program listing is the
comment line of dashes used to separate procedures. This is done
to improve the readability of the program.

program TicTacToe;
type

Win =(Yes, No, Tie);
Player = (A, B);

var
Board : array[l..3, 1..3] of Integer;
CurrentPlayer : Player;
Winner: Win;
Row, Column : 1..3;
Sum, Total : Integer;

procedure In itia I izeArray;
var

R, C : Integer;
begin

for C : = 1 to 3 do
for R : = 1 to 3 do

Board[R, C] : = -9;
end; {Initialize Board}

{ --}

140 __ 8 Arrays and Strings ______________ _

procedure GetMove;
begin

Writeln('Player ', CurrentPlayer, 'Your Move');
Writeln('Enter the row');
Readln(Row);
Writeln('Enter the column');
Readln(Column)

end; {GetMove}
{ --}

procedure PrintBoard;
var

R, C: Integer;
begin

for R : = 1 to 3 do
begin

fore:= 1 to3do
Write(Board[R, C], ' ');

Writeln
end; {For R loop}
Writeln

end;
{--}

procedure WinOrTie;
var

R, C: Integer;
begin

Winner : = No;
if CurrentPlayer =A then {Switch current player}

Total:= 3
else

Total:= O;
{Check columns}

for C := 1to3 do
begin

Sum:= O;
for R : = 1 to 3 do

Sum:= Sum+ Board[R, C];
if Sum = Total then

Winner:= Yes
end; [For C loop]
{Check Rows}

if Winner= No then

----------------8 ArraysandStrings __ 141

begin
for R : = 1 to 3 do

begin

end;

Sum:= O;
for C : = 1 to 3 do

Sum : = Sum + Board[R, C];
if Sum =Total then

Winner:= Yes
end {For R loop}

if Winner = No then
begin

{Check diagonals}
Sum:= O;
for C : = 1 to 3 do

Sum : = Sum + Board[C, C];
if Sum =Total then

Winner:= Yes
end; [IF]

if Winner = No then

end;

begin
Sum:= O;
Winner:= Tie;
{Look for any empty position}
for C : = 1 to 3 do

for R : = 1 to 3 do
if Board[R', C] = -9 then

Winner:= No
end

{ -------------- --- ---}
begin {Main program}
Winner:= No;
lnitializeArray;
Current Player : = B;
while Winner= No do

begin
if CurrentPlayer = B then

Current Player : = A
else

Board[Row,Column]: = O;
CurrentPlayer := B;

142 __ 8 Arrays and Strings-----------------

Get Move; .
if CurrentPlayer = A then

Board[Row, Column]:= 1
else

Board[Row, Column]:= O;
PrintBoard;
WinOrTie;
if Winner= Yes then

begin
SysBeep(lO);
Writeln('Game won by ', CurrentPlayer)

end; {If}
if Winner= Tie then

begin
SysBeep(lO);
Writeln('Game ends in a Tie')

end {If}
end {While loop}

end. {TicTacToe}

An interesting way to adapt the TicTacToe program is to
replace the two dimensional array of Integer with a two dimen­
sional array of a user defined type with three values, a value of
each of the two player's moves and a third value for an unused
position (initial value). Think about the changes that would be
required in the WinOrTie procedure. ·

A second and more complex change in the program is to
replace one of the players with the computer itself. This requires
the program to identify which of the empty positions is the most
advantageous and requires analysis of the strategy of the
TicTacToe game. To proceed, play several games on paper and
try to identify why you made each move. Then try to quantify
your reasoning into an algorithym which can be programmed.

Arrays of Characters

A limitation of standard Pascal is that the type Char can only
hold a single character. An array whose elements are of type
Char can be used to handle a stream of character data. To read
from the keyboard and store up to 80 characters we can declare
an array as follows:

------------------8 Arrays and Strings __ 143

lnchar: array [l..80] of Char;

The array Inchar has 80 elements each one capable of holding
one character. We can read characters from the keyboard and
place them into Inchar with:

I :=O;
Writeln('Enter a message');
Read(Ch);
while not (EOLN) do

begin
I:= I+ 1;
lnchar[I] :=Ch;
Read(Ch);

end; {while}

We want this loop to keep on reading characters from the key­
board until a carriage return is entered. EOLN, which stands for
End Of Line is helpful in such situations. EOLN is a special Bool­
ean function given a value by MacPascal. There is no need to
declare it in your program. EOLN has a value of False if a car­
riage return has not been entered and True if a carriage return has
been entered. We want the loop to continue executing when
EOLN is False, but a While loop executes when the condition is
True. We therefore reverse the value of EOLN with the use of a
not. When EOLN is used, the Read statement must be used
instead of Readln . Using Readln will cause the program to work
improperly. Note that in this loop, the characters are first read
into the Char variable Ch and then placed into the array. This is
done to trap the carriage return character and not place it into the
array.

This loop could also be written a different way without using
EOLN. We could use the while loop to check the ASCII value of
the character entered.

I:= 1;
Writeln('Enter a message');
Read(Ch);
while ORD(Ch) < > 13 do

begin
lnchar[I] :=Ch;
I:= I+ 1;

144 __ 8 Arrays and Strings-------------------

Read(Ch)
end; {While}

Note that the ASCII code for a carriage return is 13.

The Code Breaker Program

Secret codes are often broken by examining the frequency that
· the characters appear in a message and comparing that to a list of
the frequency of characters in unscrambled English. We can
count the frequency of characters appearing in a message by
expanding on the routine just developed.

First, let's declare a second array.

Freq : array[' ' .. 'z'] of Integer;

The subrange contains all the characters whose ASCII codes
are from 32 to 122, or the 91 characters from a space to a lower
case 'z' . The array therefore contains 91 elements, each one con­
taining an integer. Don't confuse this array which uses a charac­
ter as a subscript but contains an integer with an array whose
elements are of type Char. We can now step through the Inchar
array and increment the element in Freq whose subscript is the
same as the character being examined.

program CodeBreaker;
var

lnchar: array [1..80] of char;
Freq: array[' ' .. 'z'] of Integer;
Ch: Char;
I, NumOfChar: Integer;

begin
for Ch : = ' ' to 'z' do

Freq[Ch] := O; {Initialize array}
{Read in message}
I:= O;
Writeln('Enter the message');
Read(Ch);
while not (eoln) do

begin
I:= I+ 1;
lnchar[I] :=Ch;
Read(Ch)

end; {while}

-----------------8 Arrays and Strings __ 145

NumOfChar :=I;
I:= 1;
{Count frequency of characters}
while I < = NumOfChar do

begin
Ch:= I nchar[I];
Freq[Ch] : = Freq[Ch] + 1;
I:= I+ 1

end.

end;
{Write frequencies}

for Ch:=' 'to'z'do
Writeln('The number of ', Ch, • are', Freq[Ch] : 2)

Note that when counting the frequencies the Char variable Ch
is used to hold a character from Inchar and then is used as. the
subscript of Freq.

Strings
Character data is often processed by a computer. However, han­
dling character data in an array whose elements are of type Char
is inefficient and awkward. Fortunately, MacPascal has available
an extended data type known as string. A variable of type string
can hold a sequence of characters. The sequence can be from 1 to
255 characters long. string has some of the attributes of a scalar
type and some of the attributes of a structured type and is there­
fore considered to be neither. A variable is declared to be a string
with:

S : string[80];

This declares S to be a string variable. MacPascal boldfaces the
word string just like it does array. The ma.ximum number of char­
acters the string can hold is called the size and is indicated in
brackets. The default size is 255 if no size is specified. The size of
Sis 80, but the length of the string may dynamically vary from 0
to 80 characters at any time. We could say that a string's size is its
maximum length. A value is pla,ced in a string variable with an
assignment statement.

S:= 'ABCD';

The string value 'ABCD' is enclosed in single quotes. The cur­
rent length of string S is 4. A string variable can be cleared by

146 __ 8 Arrays and Strings-----------------

assigning to it the null string. The null string is a string with no
contents indicated by two consecutive quotes. The length of the
null string is zero.

S := "; {assign null string to S}

An error will occur if an attempt is made to assign a string
value whose length is greater than the size of the string variable.
For example, the following program segment will produce a run­
time error.

var
Sl : string[4];

Sl := 'ABCDEF';

The individual characters in a string can be accessed as though
they were in an array. For instance,

S:= 'ABCD';
Write(S[lD;

would print an 'A'. The integer in the·brackets is an index to the
characters in the string. An attempt to reference S[O] or a position
greater than the current length of the string would result in an
run-time error. The contents of a string can also be changed in
this manner.

S:='HI';
S[l] := 'B';
Writeln(S);

The above program segment would print BI.

Reading a String

String values can be read from the keyboard using Readln.

Readln(Sl, S2);

This readln statement will read two strings, Sl and 52. A car­
riage return is used as a sentinel to signify the end of a string
when reading it from the keyboard. The carriage return is not
placed in the string.

----------------- 8 Arrays and Strings __ 147

Comparing Strings

The value of two strings can be compared in a Boolean expres­
sion. The comparison is based on the value of the ASCII codes of
the characters in the strings. When two strings of different lengths
are compared, each character in the longer string is considered to
be greater than the missing characters in the shorter strings. Two
strings have to be of equal length to be equal.

'AB' is greater than 'AA'
'AT' is less than 'ATTACH'
'BILL' equals 'BILL'
'BILL' is not equal to 'HILL'

Numerically, the ASCII codes for upper case letters is smaller
than lower case letters, so that

'a' is greater than 'A'

An array of strings can be alphabetized in this way.

The String Functions and Procedures
The arithmetic operators (+, - , I, div and mod) can not be used
with string values. Operations on strings are performed with the
help of a set of built-in functions and procedures.

The Length Function Length(string)

Length returns the current length of the string specified.

S:= 'GOOD';
Write(Length(S));

prints 4 .

The Concat Function Concat(S1, S2, ...)

The Concat function is used to combine any number of strings
into one .

S:=Concat('GOOD', '','MORNING');

The value of S is now 'GOOD MORNING' . The length of the
result can not exceed 255 or else a run-time error will occur.

148 __ 8 Arrays and Strings-----------------

The Pos Function Pos(Substring, String)

The Position function returns the position of the first occur­
rence of the substring in the string as an integer.

I:= Pos('CD', 'ABCD');

assigns 3 to I, since the substring 'CD' starts at the third position
in 'ABCD'. If the substring is not present a zero is returned.

The Copy Function Copy(String, Index, Count);

The Copy function returns a string of count characters starting
at String[Index].

StrgVar := Copy('ABCDE', 3, 2)

assigns to Strg Var

'CD'

The Delete Procedure Delete(String, Index, Count)

The Delete procedure removes from the specified string Count
number of characters starting at String[Index].

S := 'ABCDE';
Delete(S, 3, 2);

results in the value of S being 'ABC'. If characters outside the
length of the string are referenced it is not an error. Only the
characters that lie within the range are deleted. Note that Delete
is a procedure not a function and is used as a statement.

The Omit Function Omit(String, Index, Count)

The Omit function is similar to the Delete procedure except
that the value of the string is not changed. Instead the new string
is returned as the value of the function.

StrgVar := Omit('ABCDE', 2, 2);

assigns to StrgVar:

'ADE'

-----------------8 Arrays and Strings __ 149

The Insert Procedure lnsert(Source,Destination,lndex)

The Insert procedure places the destination string into the
source string at the index position.

S := 'ABCDE';
lnsert(S, 'FF', 3);

The value of S in now

ABFFCDE

The Include Function lnclude(Source, Destination,
Index)

The Include function is similar to the Insert procedure except
that the string is not affected. Instead the value of the new string
is returned as the value of the function.

StrgVar := lnclude('ABCDE', 'FF', 3);

assigns to StrgVar:

Exercises

'ABFFCDE'

1 . Declare an array for each of the following. How many ele-
ments are in each array?
a. An Integer array where the index goes from 2 to 20.
b. A Real array where the index goes from -4 to 50.
c. A Boolean array where the index goes from -100 to

201.

2. How many elements are in the following arrays?
a . array [-30 .. 30] of Char
b. array [1..10, 1..3] of Real
c. array [2 .. 12, 1..3] of Real
d. array['A' .. 'F']of Integer

3. Write a procedure that finds the largest value in an array
of integers.

150 __ 8 Arrays and Strings--------------------

4. Write a procedure that reverses the elements in the follow­
ing array . The last becomes the first, etc.

A: array [1..10] of Integer;

5. Set all the elements in the following array to -5.

B: array [1..5, 1..4] of Integer;

6. Suppose the following array

Board array (1 . . 8, 1. .8] of Boolean;

is used to represent a chessboard. An element (correspond­
ing to a position on the board) set to True represents a
queen in that position. Write a program that positions
eight queens on the chessboard such that no two queens
are in the same row, column, or diagonal. Try to produce
several solutions.

7. Write a procedure that accepts a string and then prints it
reversed.

8. Write a procedure that converts the contents of an array of
characters into a single string.

9. Write a procedure that continually accepts input of single
characters and places them into a string. The input stream
ends when a'+' or'-' is entered.

10. Adapt the procedure described in exercise 9 to make sure
that no more than 255 characters are placed into the string.

9 More On Structures

In Chapter 4, we were introduced to some of Pascal's struc­
tures. In this chapter we will expand our "Pascal vocabulary"
with a new loop and several new structures .

The Repeat Loop

The third of Pascal's loop structures is the repeat loop. repeat is
a free loop (like while, unlike for) and can be roughly described
as an upsidedown while loop.

The form of the repeat loop is:

repeat
statements

until expression is TRUE;

The execution of a repeat loop is as follows . First, the state­
ments included in the loop are performed. Then the condition is
checked, if it is FALSE the loop is repeated, otherwise, it is termi­
nated.

The differences between the repeat and the while loops are :

1. The repeat checks the condition at the bottom of the loop
rather than at the top as is done in the while loop, so in the
repeat loop, the body of the loop is always executed at
least once. In the While loop, if the condition is initially
false, the body of the loop will not be executed at all.

2. The repeat and Until automatically bracket a compound
statement. No begin and end are needed.

3. The repeat loop iterates if the condition is false, the while
loop iterates when the condition is true .

151

152 __ 9 More On Structures-------------------

This is the flowchart for the repeat loop .

STATEMENT 1

FALSE

TRUE

STATEMENT 2

Figure 9-1.

The syntax for the repeat loop is shown in the next diagram

REPEAT STATEMENT

repeat unt il expression

Figure 9-2. Syntax Diagram : repeat Statement.

Let's look at a repeat loop in detail side by side with a while
loop.

I:= 1;
repeat

Writeln(I);
I:= l+l

until I > 10;

I:= 1;
while I < = 10 do

begin
Writeln(l);
I:= l+l

end;

These loops both print the integers from 1 to 10. In examining
the differences notice where in the loop the condition is checked
and how the opposite conditions are used. The repeat loop uses
the condition I > 10 and the while loop uses the condition
I<= 10.

------------------9 MoreOnStructures __ 153

A useful application of the repeat loop is to check the validity
of input. For example, a program that analyzed exam grades
might use the following loop to make sure that the values entered
as exam grades were valid.

repeat
Writeln('Enter Grade');
Readln(Grade)

until (Grade > 0 and Grade < = 100);

Here the condition is a multiple test. Since we want the value
entered to fall inside a range, the logical operator and is used. If
the value entered does not fall within the range, the condition is
not met and the loop is done again. Think of the difference
between this and declaring the variable Grade as the· subrange
1 .. 100. In the case of using the subrange, if a value out of the
range is entered, an error would occur while the program was
executing stopping the program. This loop would not stop execu­
tion but rather would prompt the user to enter the value a second
time. This method is much preferable since a major goal in pro­
gramming is to prevent a program from crashing (stopping due to
an error) from run time errors.

The Bubble Sort

A sort is an algorithm used to place the values in an array in
numerical order. There are many different sorting methods, the
bubble sort being one of the easiest to follow and sufficiently effi­
cient to be used in many situations. A book on data structures
will explain in much more detail different sorts and the criteria
used to evaluate them.

The bubble sort operates by comparing each two adjacent ele­
ments in an array. If they are out of order they are exchanged.
The comparing runs through the entire array. After a pass is com­
plete, if any exchanges were made, the process is started again at
the top. When no exchanges take place in a pass through the
array, then the array is sorted.

Here is the bubble sort in a procedure. The array to be sorted is
passed to the procedure in a variable parameter and is of the
global type ArrayType. Its elements are ·of the global type
ElementType. The parameter NumElements is an integer contain­
ing the number of elements in the array.

154 __ g More On Structures---------------

procedure BubbleSort(var A : ArrayType; NumElements :
Integer);

type
Exch =(Yes, No);

var
Exchanged : Exch;
Temp: ElementType;
I: Integer;

begin
repeat
I:= 1:
Exchanged:= No;
for I := 1 to NumElements - 1 do

if A[I] < A[I + 1] then
begin

Exchanged:= Yes;
Temp:= A[l+l];
A[l+l] := A[I];
A[I] :=Temp

end
until Exchanged = No

end;{procedure}

4

1

3

2

5

1

3
2

4

5

BEFORE AFTER PASS 1
Figure 9-3.

The Case Statement

1

2

3

4

5

AFTER PASS 2

The case statement can be used to replace several if statements.
The following nested if statements:

if I= 1 then
Writeln('ONE')

------------------ 9 More On Structures __ 155

else if I = 2 then
Writeln('TWO')

else if I = 3 then
Writeln('THREE')

else
Writeln('NONE OF THESE');

can be replaced with:

case I of
1:

Write I n('ON E ');
2:

Writeln('TWO');
3:

Writeln('THREE');
otherwise
Writeln('NONE OF THESE')

end; {CASE}

In the case statement, the key word case is followed by an
expression whose value may be any ordinal type except Longlnt.
This is followed by the key word of. Between the of and the end
statements are a list of statements each labeled by a value of the
same type as the expression. When the case statement is executed
the expression is evaluated. The statement whose label matches
the value of the expression is then executed. Since an expression
can only have one value, only one of the statements in the case is
executed. This means all the statements are executed mutually
exclusively. If the value of the expression is not found the state­
ment following the key word otherwise is executed. If in this situ­
ation the otherwise clause is absent (it is not required) then an
error occurs. otherwise is an extension not found in standard
Pascal.

More than one value may be used as a label as shown in the
next example.

case I of
1, 2, 3:

Writeln('l to 3');
4, 5, 6:

Writeln('4 to 6')
end;

156 __ 9 More On Structures------------------

Here is the syntax diagram for the case statement:

CASE STATEMENT

case expression

constant statement end

Figure 9-4. Syntax Diagram : case Statement.

If the value of I is from 1 to 3 then the first statement is exe­
cuted. If it is from 4 to 6 then the second statement is executed.

Case statements are useful in menu applications. A menu is a
choice of possible program options for the program user to
choose from. These are menus your MacPascal program will dis­
play in the Text window, not the pull-down menus you are famil­
iar with from working with MacPascal. First, the menu choices
are displayed, the user enters a selection and a case statement is
used to branch to a procedure based upon the choice entered.
Here is a menu from a data management program.

Writeln('l for Add data');
Writeln('2 for List data');
Writeln('3 for Print data');
repeat

Readln(N)
until N >= 1 AND N <= 3;
case N of

1 :
begin

Writeln('Add selected');
Add {Add procedure}

end;
2:

begin
Writeln('List selected');

------------------ 9 More On Structures __ 157

List {List procedure}
end;

3:
begin

Writeln('Print selected');
Print {Print procedure}

end
end; {case statement}

Note that no otherwise clause is used . This is because there is
no danger of a program error due to invalid input, since the
repeat loop makes sure that the value entered falls within the
range examined by the case statement. Also. note that compound
statements are used as the case options.

User-Defined Functions

User-defined functions are the second type of subprograms in
Pascal. They are used when only a single value needs to be
returned from a subprogram. They differ from procedures only in
the way that they are called and how information is passed back
to the calling routine.

A procedure is called by using its name as a statement. Infor­
mation is sent to a procedure with the use of value and variable
parameters and global variables. Information is returned from a
procedure with either variable parameters or global variables. On
the other hand, a function is called by using its name like a vari­
able. Information is sent to a function using either value parame­
ters or global variables. Only a single value can be returned from
a function and this is done by assigning the value to the name of
the function .

The form of a function is very similar to a procedure except
that the function heading is slightly different.

function Power(Base, Exponent: 1..Maxlnt): Integer;

Here the function Power is declared with two value parame­
ters. Notice the key difference between this and a procedure
heading.

procedure Power(Ans, Power, Exponent: 1..Maxlnt);

In the function heading a type declaration is included to declare

158 __ 9 More On Structures------------------

the type of the value returned by the function. This is placed fol­
lowing a colon after the parameters.

var
I, Ans: Integer;

begin
Ans:= 1;
for I : = 1 to Exponent do Ans : = Ans * Base;
Power:= Ans

end;{function}

Here is the body of the function. It is analogous to the body of
a procedure. There is however one difference. The result of the
function (remember a function returns only one value) is assigned
to the function name (Power). The function name acts like a
bridge between the function and the statement that calls it hold­
ing the value to be returned. Other values can be returned via
global variables or variable parameters.

A function is called by using the function name as a variable.
The value of the function eventually replaces the function name
after the function has executed.

X := Power(3, 4)

This call to the function Power will assign a value of 81 (34
) to

the variable X. The value returned by Power is an integer because
of the type declaration we used in the function heading. All the
rules for assignment hold for the values returned by functions .
Notice how the use of a user-defined function is the same as the
use of a pre-defined function. This is because they are the same,
except that the pre-defined functions have already been written
and are held in the MacPascal interpreter ready for use . For
example, the pre-defined function ODD might be written like
this:

function Odd(N: Integer): Boolean
begin

if (N div 2) * 2 = N then
Odd:= FALSE

else
Odd:= TRUE;

erid; {Odd}

Remember that in integer division the fraction value is lost.
When N div 2 is done the remainder is lost if N is odd. For

------------------9 MoreOnStructures __ 159

instance, 5 div 2 equals 2. When the result is multiplied by 2 it no
longer equals the original odd value. This is not true for an even
number.

Here is a rundown on the differences between functions and
procedures.

Called by:
Value returned

Parameters
Used

Recursion

Functions

Use name like variable
One as function name,
others as variable
parameters and global
variables
Value

Procedures

Use name as statement
Many via variable
parameters and global
variables

Value and variable

An interesting question is what happens when a subprogram
calls itself. The result is not a loop but a very powerful and com­
plicated technique called recursion. Recursion occurs when a
function or procedure invokes itself. Recursion can be easily dem­
onstrated by writing a function that calculates the factorial of a
number. The factorial of a number, denoted with an exclamation
point such as N!, is that number multiplied by all its predecessors
down to one. For instance, 5! is 5*4*3*2*1 which equals 120. Fac­
torials are used extensively in statistical and probabilistic work.
We can also define the factorial of a number as that number itself
times the factorial of that number minus one or 5! = 5*4!. This is
a recursive definition . A recursive definition is not defined in
terms of itself as it might appear but rather is defined in a simpler
version of itself. Here is the function.

function Factorial(N : Integer): Integer;
begin

if N =O then
Factoria I : = 1

else
Factorial : = N * Factorial(N - 1)

end; {factorial}

160 __ 9 More On Structures----------·---------

This function has just one statement. If the value of N is zero,
then the function simply returns a one and ends. If N is greater
than one, say 5, then the else clause is done. This is where the
recursive definition takes place. N factorial is defined as N times
N-1 factorial. At this point what happens tends to be confusing
but need not be. The function now calls the function Factorial
which happens to be itself. The current state of the function (the
value of the variables and which statement is executed in the
function call) is saved and the function is started again with the
new parameter. When this second call is terminated, the original
call to the function is resumed with the value returned by the sec­
ond call. Where this starts to get confusing is when a second call
to the function calls the function again and so on. This is similar
to a busy executive on the phone. When a second call comes in,
the executive puts the first caller on hold and attends to the sec­
ond caller. When a third call comes the second caller also goes on
hold. Depending upon how busy she is this sequence of events
may take place several times. Of course, in order for this not to
go on forever there must be some mechanism to end a call. Even­
tually, a conversation ends and the next to the last call is resumed
(assuming, of course, that the person on the line was patient).
The process repeats until she is back to the original call.

This is also true of recursive functions, there must be some way
for each call to the function to terminate. We call this the stop
rule. In this procedure the stop rule is : after N calls to the func­
tion, the value of the parameter N will be 0. This will cause the
then part of the if statement to execute and that call to the func­
tion to finish returning a value. If there was no mechanism for the
recursive calls to end, the mechanism used to track the successive
calls to the procedure would overflow and cause a run time error.
When that call ends the function that called it is now provided
with a value and can also end. Recursive calls to a 'function are
often viewed as levels, not unlike several windows on the Macin­
tosh's screen sitting on top of each other. When the top window
closes the one under it becomes active. Figure 9-5 demonstrates
the recursion process.

Demonstrated in the diagram is the successive calls to the func­
tion Fact for the value of 5 and the value of the parameters for
each call. Notice that no value is returned until the fifth call to
the function. At that point each previous call is evaluated and
returns to the call under it.

Graphics are a further way to help demonstrate recursion. A

----------------9 More On Structures __ 161

Call 5 Fact:=t

1 ~
Call 4 Fact :=N*F act(1) Fact:=N*t

N is2 N is 2

J: _l

Call 3 Fact :=N*Fact(2) Fact:=N*2
N is3 N is 3

_I: T
Call 2 Fact :=N*F act(3) Fact:=N*6

N is4 N is 4

J: I
Fact :=N*F act(4) Fact:=N*24
Nis5 N is5 Call 1

i J.
Wr1te1 n(fact(5}}; 120

Figure 9-5.

simple program with rectangles can help show the levels of nest­
ing involved in recursive calls.

The following program calls a procedure that draws a rectan­
gle. That procedure draws a rectangle and then recursively calls
itself to draw a smaller rectangle inside of the one previously
drawn. The stop rule will check to see that the rectangle to be
drawn can't be drawn (the left and right side of the rectangle
overlap).

procedure Recurse;
var

R: Rect;
procedure Box (U, D : Integer);

begin
if (D - U) > O then

end;
begin

begin
SetRect(R, U, U, D, D);
FrameRect(R);
Box(U + 5, D - 5); {Recursive call}

end

Box(l, 150)
end.

162 _ 9 More On Structures----------------

When the program is run 16 recursive squares will appear in
the Drawing window.

~D~ Drawing~

•
£l

Figure 9-6.

One of the unique features of MacPascal, concurrently open
windows, can be used to help keep track of the procedure calls.
As we display the boxes in the Drawing window, we can also dis­
play a message in the Text window right before a recursive call to
the procedure. We can display a second message on returning
from a recursive call. A new variable can be added to keep track
of the number of recursive calls.

procedure Recurse;
var

I: Integer;
R: Rect;

procedure Box (U, D, It: Integer);
begin

if (D - U) > O then
begin

SetRect(R, U, U, D, D);
FrameRect(R);
Writeln('Call it', It);
Box(U + 5, D - 5, It + 1) ; {Recursive call}

end;
Writeln('Returning from', It)

------------------ 9 More On Structures __ 163

end;
begin

I :=O;
Box(!, 150, I)

end.

This procedure draws a rectangle prior to a recursive call to
itself and thus draws smaller rectangles inside of bigger. We can
reverse the drawing order (bigger outside of smaller) by moving
the FrameRect statement to after the recursive procedure call.
This way no rectangle is drawn to after the stop rule is reached
and therefore the smallest rectangle is drawn first. Another inter­
esting variation in the program is to keep the FrameRect in the
original position and then add an EraseRect statement after the
stop rule. This will display all the rectangles prior to reaching the
stop rule and erasing them after the stop rule is reached.

While the two recursion examples we have seen are interesting
and intellectually stimulating they none the less demonstrated
programs that could have been written easily without recursion.
The next two examples harness the power of recursion to simplify
more complex tasks.

Let's look at a program that displays a large square and then
recursively divides itself into four smaller squares. Each rectangle
will continue to divide itself until the stop rule is hit. In this case,
the stop rule tests to see if the width of a square is less than five
points .

program SubDivide;
procedure Box (Left, Top, Right, Bottom : Integer);

var
Hcenter, Vcenter: Integer;

begin
if (Right - Left) > = 5 then

end;

begin
FrameRect(Left, Top, Right, Bottom);
Hcenter : = (Left + Right) div 2;
Vcenter :=(Top+ Bottom) div 2;
Box(Left, Top, Hcenter, Vcenter);
Box(Hcenter, Top, Right, Vcenter);
Box(Left, Vcenter, Hcenter, Bottom);
Box(Hcenter, Vcenter, Right, Bottom)

end

164 __ 9 More On Structures----------------

begin
Box(O, 0, 256, 256)

end.
This program differs from the one before because there are four

recursive calls to the procedure rather than one. The original call
to the procedure from the main program draws the largest box
and then calls itself with the first recursive call. This new call to
the procedure draws a box in the upper left hand corner of the
largest box and then calls itself again. This new call draws a box
in the upper left hand corner and the recursive calls continue until
the stop rule is enacted. At this point all the upper left hand cor­
ner boxes have been drawn and the last recursive call returns to
the second recursive call, which starts drawing upper right hand
corner boxes.

The snapshot of the Drawing window (Figure 9-7) shows the
program in progress. Run the program and watch the order in
which the boxes are drawn. Also try running the program with
Step to observe the order of the recursive calls. Move the
FrameRect statement to after the procedure call and watch the
order in which the boxes will then be drawn.
· Our last recursion example utilizes the procedure written in
Chapter 7 to draw equilateral triangles.

program Recursive _Triangles;
procedure Tri (X, Y, Side: Real);

begin
if Side > = 5 then
begin

Tri(X, Y, Side/ 2);
Tri(X +Side/ 2, Y, Side/ 2);
(X +Side/ 4, Y +Side I Sqrt(2) / 2, Side/ 2);
Move To (Round(X), Round(Y));
LineTo(Round(X +Side), Round(Y));
LineTo(Round(X +Side/ 2), Round(Y +Side I Sqrt(2)));
LineTo(Round(X), Round(Y));

end
end;
begin

Tri(lO, 10, 300)
end.
This procedure differs slightly from the one written in Chapter

. 7. Real values are used instead of integers to increase the accu-

------------------- 9 More On Structures __ 165

D Draming

Figure 9-7.

racy. In a procedure such as LineTo that requires integer parame­
ters, the Round function is used to convert from real to integer.
Run this program and observe the order in which the triangles are
drawn, which is from smallest to largest (Figure 9-8). This is
because the triangles are drawn after the procedure calls rather
than before as in the preceding programs.

Records

In the previous chapter, we were introduced to the difference
between scalar types such as Real, Integer, and Boolean and
structured types such as Arrays. Structured types consist of more
than one scalar variable in an organized arrangement. Arrays
consist of variables of the same data type all referred to by one
array name but different subscripts. A record is a collection of
variables that can be of different data types and are logically

166 __ 9 More On Structures------------------

DttlWlng

Figure 9-8.

related to each other. For example, all the information about a
person-name, age, sex, etc.

A record declaration includes a name of the record and a name
and type of each record element.

type
PayRec= record

ID : Integer;
Hours : Real;
Rate: Real;
Pay: Real

end;{ PayRec}

Examining the declaration we see that PayRec is declared in the
Type section. The record type PayRec consists of 4 components,
ID of type Integer, and Hours, Rate, and Pay of type Real.

We can now declare a variable to be of type PayRec.

var
Payroll : PayRec;

------------------9 MoreOnStructures __ 167

Here is the syntax diagram for a record declaration.

RE CORD TYPE

----•~(reco rd) I fi e ld (
... ..__lis_i _ _:---11•..i end)1-----·

Figure 9-9. Syntax Diagram : record Type.

Payroll is now of type PayRec and has 4 components (also
called elements or fields) . They are referred to as :

Payroll.ID
Payroll.Hours
Payroll .Rate
Payroll.Pay

Each field (or element) is referred to by both its record name
and its field name, a point or period is used to separate them. A
record element can do anything that any other variable of that
type can do . The only difference between a record element and
any other variable of that type is that the record element is part
of a larger structure. Examples of assignment statements are:

Payroll.ID:= 99;
Payroll.Hours:= 40.0;
Payroll.Rate:= 12.5;
Payroll.Pay:= Payroll.Hours * Payroll.Rate;

If more than one record is declared of the same record type
such as:

var
DayPay,WeekPay: PayRec;

then an entire record can be assigned to another with a simple
assignment statement.

WeekPay : = DayPay;

Any operation other than simple assignment has to be per­
formed with each separate element. For instance, to multiply all
the elements of our record by 5.

WeekPay.ID := DayPay.ID * 5;
WeekPay.Hours := DayPay.Hours * 5;
WeekPay.Rate := DayPay.Rate * 5;
WeekPay.Pay := DayPay.Pay * 5;

168 __ 9 More On Structures---------·---------

Information is written from a record to the text window or
read from the keyboard into a record by using the complete field
name.

Writeln(PayRoll.ID);
Readln(WeekPay.Rate);

This is only a be_ginning to the use of records. When they are
used in conjunction with files they provide a powerful tool for
business applications and a way to save data for future use.
When used with pointers they can represent a myriad of situa­
tions. Both files and pointers will be presented in later chapters .

The With Statement

When using records it can become tedious to have to use the
complete name of a record element over and over. The with state­
ment is used to shorten the name of a record element when used
in a statement.

with Payroll do
Readln(ID);

This is the equivalent of:

Readln(Payroll.ID);

The with statement automatically prefixes the field name Id
with the record name Payroll to result in Payroll.Id.

Examine the syntax of the with statement:

WITH STATEMENT

With variable do statement

Figure 9-10. Syntax Diagram : with Statement

You can see from the diagram that only a single statement is
included in it. The power of the with statement can be expanded
by including in it a compound statement.

with Payroll do
begin

ID:= 10;

----------------9 More On Structures __ 169

Readln(Hours,Rate);
Pay:= Hours* Rate

end;

This with statement replaces :

Payroll.ID:= 10;
Readln(Payroll.Hours,Payroll.Rate);
Payroll.Pay:= Payroll.Hours* Payroll.Rate;

Duplicate Field Names

Because the name of an element of a record is composed of
both the record name and the field name, the following variable
declarations are possible.

var
Date: 1..31
Birthdays : record

Date: 1..31;
Month: 1..12;
Year: 1900 .. 1985;
Age: 1..85

end;
Anniversarys: record

Date: 1..31;
Month: 1..12;
Year: 1900 .. 1985;
Length : 1. .85

end;

There are now three variables named Date. One is the scalar
Date, one is in the record Birthdays and its complete name is
Birthdays.Date. The third is in the record Anniversarys and its
complete name is Anniversarys.Date. So actually all three have
different names. However, this type of situation could b_e ambig­
uous when using a with statement. For instance:

Date:= BirthDays.Date

is not the same as:

with Birthdays do
Date:= Date:

170 __ 9 More On Structures-----------------

This last example inside the with statement is equivalent to:

Birthdays.Date:= Birthdays.Date;

because the record name that is prefixed to this variable (Date)
that is a field in the record (Birthdays) is assumed for any vari­
able name that is inside the record specified in the with statement.

Note that when the records Birthdays and Anniversarys were
declared, they were declared in the var section rather than the
type section. This is permissible and is the same as in declaring
any type (see Chapter 6).

More than one record name can be included in the with
statement.

with Birthdays, Anniversarys do
Age : = Length;

is equivalent to:

Birthdays.Age:= Anniversarys.Length;

The proper record name is found and is added to the field
name. The position of the record name in the with statement is
insignificant. It follows then that the with statement might have

·read:

with Anniversarys, Birthdays do
Age:= Length;

Using either of the two with statements this assignment state­
ment would be illegal:

Date : = Date;

This is because the statement is ambiguous, and it is impossible to
tell which field is in which record.

Arrays Of Records

We can declare an array whose elements consist of records.
This is a powerful structure capable of holding a large amount of
information easily. Let's design a program that keeps track of the
weather over a period of a year.

type
SkyType = (Sun, Rain, Cloudy);
WeatherRec = record

-----------------9 MoreOnStructures __ 171

Temp: Integer;
Sky: SkyType

end;
var

Weather : array [1..365] of WeatherRec;

We have set up a type, WeatherRec, as a record with two
fields. An array was then declared, Weather, which has 365 ele­
ments (one for each day of the year) of type WeatherRec. Thus
there are 365 records in the array. When we have an array of
records we specify a particular field in a particular record as :

Weather[lndex].Temp;

The record name with its position in the array given as in a
subscript is followed by the field name. This array can be pic­
tured like this (Figure 9-11):

~ I.Temp
_/~. Sky

Weather[1 y--
[0 l~ -----1 I .T e rn p

vveather , r::-______ 1 I. Sky

· ['L------c===J .T ernp
Weather 365r----1 I. Sky

Figure 9-11.

Since each record is an element in the array we always use the
array name with a subscript, even when using the with statement.

Here the Temp field of the first record is read:

with Weather[!] do
Readln(Temp);

Here the Temp field of the J!h record is read

with Weather[!] do
Readln(Temp);

To continue our weather tracking program let's read the
weather for each day of last year.

172 __ 9 More On Structures----------------

for I:= 1 to.365 do
with Weather[!] do

begin
Writeln('Enter temperature for day', I);
Readln(Temp);
Writeln('Sun, Rain or Clouds');
Readln(Sky)

end; {With}

Because of the with statement, when Temp was used in the
Readln statement it referred to Weather[I].Temp. Note that we
can read information into a user-defined type by entering the
actual value. This is a MacPascal extension to standard Pascal. In
standard Pascal you would have to read the Ord of the User­
defined value.

We can now average the daily temperatures.

TempSum := O;
for I:= 1to365 do
with Weather[!] do

TempSum := TempSum +Temp;
AvgTemp := TempSum / 365;
Writeln('The average temperature was', AvgTemp: 6: 2);

Here is the whole weather program together.

program Weather;
type

SkyType = (Sun, Rain, Cloudy);
WeatherRec = record

Temp : Integer;
Sky : SkyType

end;
var

Weather : array [l..365] of WeatherRec;
I, TempSum: Integer;
AvgTemp: Real;

begin {program}
for I : = 1 to 365 do

with Weather[!] do
begin

Writeln('Enter temperature for day', I : 2);
Readln(Temp);
Writeln('Sun,Rain or Clouds');

-----------------9 MoreOnStructures __ 173

Readln(Sky)
end; {With}

TempSum := O;
for I:= 1to365 do

with Weather[I] do
TempSum := TempSum +Temp;

AvgTemp := TempSum I 365;
Writeln('The average temperature was', AvgTemp:

6: 2)
end.{program}

The obvious limitation of this program is that the data entered
into the array will be lost as soon as we stop using the program.
What is needed is a mechanism to save the data for further use on
an external device such as the built-in disk drive. This is the role
played by external files and will be covered in Chapter 11.

Nested Records
The data type of a record can also be a record. This nests one

record inside another. Let's examine the following type declara­
tions.

type
FileRec = record

Filel : string[20];
File2 : string[20];
File3: string[20]

end;
DiskRec = record

DiskName : string[20];
Contents : FileRec

end;
var

Diskl : DiskRec;

We now have a record (Diskl), which has as an element a sub­
record. Pictorially it looks like Figure 9-12.

The way we assign data to a field in this record will differ
depending upon which level of record the field is in. The field .
DiskName is in the first level and so we need to use the record
and the field name:

Diskl.DiskName := 'PaulStuff';

174 __ 9 More On Structures ______________ _

DiskName
~ I Fil el

Disk 1<~--) __ ___,
·-,._ / File2

"'-contents(I I

~
Level 1 Level 2

Figure 9-12.

The fields Filel, File2, and File3 are all in the second level of the
record and their names are composed of the record name, the
sub-record name, and the field name:

Diskl.Contents.Filel :='Resume';

A field in a record can also be an array. Let's change the declara­
tion of FileRec to:

FileRec =record;
Files: array[l..10] of string[20];

end;

The record Diskl can now be pictured as Figure 9-13.

DiskName
~ File[l]

Diskl/ - /.-1....._ _ __,
~ / File[2}

Contents----1

File[l OJ

Level 1 Level 2

Figure 9-13.

------------------9 More On Structures __ 175

The fields which are array elements are referred to as

Disk! .Contents. Files[I];

Notice that here the subscript is after the field name rather than
after the record name as it is when we have an array of records.

Time And Date Operations

The Macintosh Toolbox contains two procedures to fetch and
alter the real time clock built into the computer. To access the
clock, MacPascal has a built-in record type defined as :

DateTimeRec = record
Year,

, Month,
Qay,
Hour,
Minute,
Second,
DayOfWeek: Integer

end;

The meaning of most of the field is obvious. Hour is the num­
ber of hours since midnight, sometimes referred to as the 24 hour
clock. Month is the number of the month from 1 to 12. Day of
the week is 1 to 7, from Sunday to Saturday.

To fetch clock information first declare a record of type
DateTimeRec.

var
Clock: DateTimeRec;

Then read the clock with the Get Time procedure;

GetTime(Clock);

The fields of Clock now contain the current time and date
information. Since all the information is held as integers, we
could use User-defined types to display the name of the month
and Day.

type
Days= (Sun, Mon, Tue, Wed, Thur, Fri, Sat);

var
DayName : Days;

176 __ 9 More On Structures---------·---------

Sets

Clock: DateTimeRec;
I: Integer;

GetTime(Clock);
DayName :=Sun;

for I := 1 to Ord(Clock.DayOfWeek) - ldo
DayName : = Succ(DayName);

Writeln(DayName);

The variable DayName is of type Days which is defined as the
days of the week. DayName is initialized to Sun and then a for
loop takes the successor of DayName Ord(Clock.DayOfWeek)-1
time. If it is Sunday, then the statement in the for loop is never
executed and Day Name stays as Sunday.

Sets are a structured data type unique to Pascal among the
more popular programming languages. A set is an unordered col­
lection of items of the same data type, called members. Unlike
any other type in Pascal, the number of elements in a set may
change dynamically. A set is indicated by enumerating members
of the set inside of brackets.

[1,3,S,9]
['A' 'E' 'I' 'O' 'U'] I I I I

is the set of odd numbers from 1 to 10.
is the set of upper case vowels .

A subrange can also be used to enumerate the members of
a set.

[
/ f I '] a .. z is the set of all lower case letters.

The general form for the declaration of a set is:

var
SetName : set of data type;

The data type is an ordinal type other than Real. A User­
defined ordinal type can also be used.

This declaration creates a set whose members can be upper case
letters.

var
Vowels: set of 'A' . .'Z';

-----------------9 More On Structures __ 177

The declaration of a set does not place any members into it
anymore than declaring a variable to be an Integer gives it a
value. Members have to be assigned to the set. The members of a
set are represented as shown before.

Letters:= ['A', 'B', 'C'];

The set Letters now has three members. The order of the mem­
bers of a set has no significance. Nor can a set have more than
one of the same member. A set with no members is called the
empty set. The empty set is represented with two brackets next to
each other [].

Set Operators
To perform operations on sets of the same type there are sev­

eral set operators.

+ Set Union or addition
Set Difference

* Set Intersection

Set Union

Set union forms a third set made up of each of the elements in
two sets. Any member appearing in both sets is only included
once.

Expression

[l,2,3] + [3,4]
['A','C','E'] + ['B','D']

Set Difference

Result

[1,2,3,4]
['A' 'B' 'C' 'D' 'E'] f f f I

Set difference forms a third set with the members of the first set
that are not in the second set.

Expression

[1,2,3] - [3,4]
['A' .. 'Z'] - ['A','E','I','O','U']

Result

[1,2, l
the set of all upper case
consonants

178 __ 9 More On Structures----------------

Set Intersection

Set intersection forms a third set with all the members that the
first and second sets have in common.

Expression Result

[l,2,3] * [2,4,6] [2]
['A', 'b','c','D'] * ['a', 'b','c','d'] ['b','c']

Relational operators also can be used with sets, although their
meanings change slightly.

Expression

Setl = Set2
Setl < > Set2

Setl < = Set2

Setl < Set2

Setl >= Set2

Setl > Set2

member in Setl

Returns TRUE if

Setl and Set2 are identical.
The intersection of Setl and
Set2 would produce the empty
set.
Setl is a subset of Set2 (all the
members of Setl are in Set2).
All the members of Setl are in
Set2 and at least one member of
Set2 is not in Setl. Setl is a
strict subset of Set2.
Set2 is a subset of Setl (all the
members of Set2 are in Setl).
All the members of Set2 are in
Setl and at least one member of
Setl is not in Set2. Set2 is a
strict subset of Setl.
member is in Setl

All of these operators except in work with two sets.
Sets are useful for input verification. If we were writing a pro­

gram that accepted students' grades of A, B, C, D, and F. We
might use the following code.

var
GradeSet: set of 'A' .. 'Z';
Grade: 'A' .. 'Z';

----------------9 More On Structures __ 179

GradeSet := ['A','B','C','D','F'];
repeat

Writeln('Enter Grade');
Readln(Grade);
if Grade not in GradeSet then

Writeln('Re-enter grade');
until Grade in GradeSet;

Some programs such as the Code Breaker program in Chapter
8 would work more efficiently if it only has to work with upper
case characters. For instance, in the Code Breaker program, 26
array elements could be eliminated. To convert from upper to
lower case, note that the ASCII codes for the lower case letters
are 32 less than the upper case. For example:

'A' equals CHR(ORD('a')+32)

Sets can be used in a program that changes the case of a
character.

program Convert;
type

CharSet = set of char;
var

lnString: string[80];
Ct: Integer;
Lowercase : CharSet;
Ch: Char;

begin
Lowercase:= ['a' . .'z'];
Writeln('Enter a lower case string');
Readln(lnString);
for Ct:= 1 to Length(lnString) do
if lnString[Ct] in Lowercase then

lnString[Ct] := CHR(ORD(lnstring[Ct]) - 32);
{Converting cases}

Writeln(lnString)
end.

In program Convert, a set, LowerCase, contains all the lower­
case characters. A string is read and a for loop is used to see if
any of the characters in the string are a member of LowerCase. If

180 __ 9 More On Structures-----------------

they are, the character's case is converted and re-assigned to the
same position in the string.

A similar program can use sets to list all the characters that
appear in a string. The string is entered and stored in a string
variable. The individual characters in the string are examined and
added to the set. The characters which are members of the set are
then displayed. Note that both upper and lower case characters
can both be set members.

program ExamineCharacters;
type

CharSet = set of Char;
var

lnString: string[80];
LetterSet : CharSet;
Ct : Integer;
Ch: Char;

begin
Writeln('Enter a string');
Readln(lnstring);
for Ct:= 1 to Length(lnString) do

LetterSet := LetterSet + [lnString[Ct]]; {Add new
member to the set}

Writeln('These are the characters');
for Ch:= 'A' to 'z' do
if Ch in LetterSet then

Writeln(Ch);
end.

Sets are a powerful Pascal structure and can be used to replace
many if and case statements. Their use helps create elegant, well
written programs.

Exercises

1. What is printed by the following repeat loops?
a. M := 5;

repeat
Writeln(M);
M := M + 3;

until M > 7;

----------------9 MoreOnStructures __ 181

b. K := 7;
repeat

K:=K-1;
Writeln(K)

until K = 3;

2. Convert the following repeat loops into while loops.
a. Readln(K);

while K < > -99 do
begin

Writeln(K);
Readln(K)

end;
b. P:= 5;

while P< 10 do
begin

Writeln(P);
p := p + 2

end;
c. Ch:= 'A';

while Ch < > 'E' do
begin

Ch : = Succ(Ch);
Write(Ch)

end;

3. What is printed by the following program segment?

var
A: Integer;

function Funl(C, D: Real): Real;
begin

C := Sqr(C-D);
Fun!:= C-D

end;
begin {Main program}

A:= 12;
Writeln(Funl(A, 3));

4. What is printed by the following program?

program QuestionFour
var

A: Integer;

182 __ 9 More On Structures------------------

function Fun2(C : Integer) : Boolean;
begin

if Odd(C) then
Fun2 : = True;

else
Fun2 :=False;

end;
function Fun3(C: Integer, D : Boolean) : Integer;
begin

if D then
C := C+l

else
C:=C * 2;

Fun3 := C
end;

begin
A:= 17;
Writeln(Fun3(A,Fun2(A)));

end.

5. Write a function that returns the largest of the three
parameters it accepts.

6. Write a function that returns the hypotenuse of a right tri­
angle when provided with the other two sides.

7. Define a record that represents the information held in a
mailing list.

8. Write a program that uses the record declared in Exercise 7
to accept mailing list information and then prints it.

9 . Add a procedure to the weather tracking program devel­
oped in the chapter that finds the average daily tempera­
ture for the year.

10. Diagram the following record showing the levels of vari­
ables as in the style used in the chapter.

Amount = record
Total: Real;
Minimum : Real

end;
Bills = record

Payee : string[20];

----------------9 More On Structures __ 183

Due: Amount
end;

11. What are the results of the following set operations?
a. [1, 3, 5, 7] + [3, 6, 9]
b. [1, 3, 5, 7] * [2, 4, 6, 8]
c. [l, 3, 5, 7] - [2, 4, 6, 8]
d. [1, 2, 3, 4] - [3, 4]
e. ['A' .. 'Z'] * ['A', 'E', 'I', 'O', 'U']

12. What are the results of the following logical operations?
a. [27] > [26]
b. ['a', 'b'] = ['b', 'c']
c. 4 in ([l, 2] + [3, 4])
d. [1, 2, 3] > = [l, 2, 3]

13. Write a program that reads a string and then counts all the
vowels in the string.

10 A Formal Look at
Graphics

In the preceding chapters we have seen "commands" that
allowed us to display graphics in the Drawing window. We also
saw many interesting effects that can be created. These "com­
mands", which are not part of standard Pascal, are built into the
ROM inside the Macintosh. They are actually a library of pre­
defined procedures, functions, and data structures which can be
accessed as though they are declared in your program. This
library, also known as a Unit, is called QuickDraw. QuickDraw
is capable of displaying a variety of shapes and text characters in
the Drawing window. QuickDraw lives up to its name as you
have seen from the speed in the graphics program we have writ­
ten. Actually, QuickDraw is divided into 2 Units, QuickDrawl
and QuickDraw2. All the commands we have employed are con­
tained in QuickDrawl. Normally, you inform Pascal that you
want to use a Unit with the uses statement.

uses
QuickDrawl;

However, since the features of QuickDrawl are used quite
often, this statement is assumed by default. Let's now take a more
formal look at some of the components of QuickDraw that we
have already seen.

Points
The most basic QuickDraw data type is the Point. A point can

be thought of as the location where two lines on the coordinate

185

186 __ 10 A Formal Look at Graphics---------------

grid intersect. A point is specified by two integers representing
the X (vertical) and Y (horizontal) coordinates that intersect.
QuickDraw represents a Point in a record which is defined as
follows.

type
Point= record of

V: integer;
H: integer;

end;

A variable of the type Point can be used to reference a point on
the screen.

Drawing Lines

In Chapter 7 we saw how to draw lines in the Drawing win­
dow. Let's take a second look at the procedures used. Lines like
all the other objects are drawn with the pen. In order to draw a
line we must first position the pen. There are two procedures used
to do this, one which we have already seen.

procedure MoveTo(X, Y: Integer);

The MoveTo procedure positions the pen at the point specified
by the horizontal coordinate X and the vertical coordinate Y.
Notice how the procedure was specified. In this chapter, the
QuickDraw procedures will be shown as they are declared in
QuickDraw. This will give you an opportunity to examine the
data types of the parameters used and whether they are variable
or value parameters.

The second procedure which moves the pen relative to its old
position is Move.

procedure Move(X, Y: Integer);

X and Y are added to the current horizontal and vertical posi­
tions of the pen, respectively, to yield the new current position.
For example, let's examine the position of the pen after each of
the following two statements are executed.

Moveto(3, 2);
Move(4, 2);

After the Moveto statement, the pen is located at point (3, 2).

-------------- 10 A Formal Look at Graphics __ 187

After the Move statement the pen is moved to point (7, 4) (can be
thought of as point (3+4, 2+2).

There are two procedures that work in exactly the same man­
ner as Move and MoveTo except that they draw a line between
the old pen position and the new pen position.

procedure Line(X, Y: Integer);
procedure LineTo(X, Y: Integer);

The following program illustrates the use of the pen positioning
and line drawing procedures (Figure 10-1).

program test;
uses

QuickDrawl;
var
TempRect: Rect;
I, J: Integer;

begin
I :=20;
J := 491;
while I < = 491 do

end.

Rectangle

begin
MoveTo(I, Round(lOO * Sin(l / 120)) + 150);
LineTo(J, -Round(lOO * Sin(J / 120)) + 160);
I:= I+ 5;
J := J - 5

end

The first graphics data structure we saw in Chapter 4 was the
Rectangle. In that chapter, we saw variables declared of the data
type Rect. Rect is actually defined as a record type, let's look at
its declaration.

type
Rect =record of

Top : Integer;
Left : Integer;
Bottom : Integer;
Right: Integer

end;

188 __ 10 A Formal Look at Graphics---------------

Drawing

Figure 10-1.

The fields in Rect define lines in the coordinate grid which
enclose the rectangle.

(Upper, Left)

(Lower, Right)
Figure 10-2.

Top and Left are the Y and X coordinate of the upper left hand
point in the rectangle and Bottom and Right are the Y and X
coordinates of the lower right hand point.

Values can be assigned to a variable of type Rect as in any
record.

var
TempRect: Rect;

---------------10 A Formal Look at Graphics __ 189

TempRect.Top := 10;
TempRect.Left := 20;
TempRect.Bottom := 140;
TempRect.Right := 78;

In Chapter 4, we didn't do this . Instead we used the SetRect
procedure which does the assignments more conveniently.
Remember that defining a rectangle does not display it in the win­
dow, a routine must be called to do that.

The definition of SetRect is :

procedure SetRect(var R : Rect;
Left, Top, Right, Bottom : Integer);

Notice that in the procedure declaration of SetRect, the lines
are in the order Left, Top, Right, and Bottom, which is in the
same order as in the Rect type declaration.

The four assignment statements used before values to assign
values to the rectangle could be accomplished with the single
statement:

SetRect(TempRect,20,10,78,140);

Controlling the Drawing Window

The size of the Drawing window can be controlled by your
program. Two procedures are used to accomplish this.

procedure SetDrawingRect(R : Rect);
procedure ShowDrawing;

SetDrawingRect sets the size of the Drawing window to that
specified by the rectangle R. ·

ShowDrawing displays the Drawing window on the Macin­
tosh's screen. For example, to make the Drawing window as big
as the entire screen the following statements could be used:

SetRect(TempRect, 0, 0, 511, 341);
ShowDrawing(TempRect);

We have already seen the analogous procedures for setting the
size of the Text window on the screen. These procedures are:

SetTextRect(R : Rect);
Show Text;

190 __ 10 A Formal Look at Graphics---------------

Drawing Rectangles

We have already learned how to draw and erase rectangles
with the FrameRect and EraseRect procedures. There are a total
of five procedures for drawing rectangles.

procedure FrameRect(R : Rect);

Frame draws a box that is enclosed by the rectangle specified
by R.

procedure PaintRect(R : Rect);

PaintRec fills the rectangle specified by R with black.

procedure EraseRect(R : Rect);

EraseRect erases the rectangles indicated by R.

procedure lnvertRect(R : Rect)

lnvertRect inverts (if the pixel was white make it black, if the
pixel was black make it white) the area enclosed by the rectangle
specified by R.

procedure FillRect(R : Rect, Pat : Pattern);

FillRect draws a rectangle filled with the pattern indicated by
the second parameter. The valid patterns are :

White
Black
Gray
LtGray {light gray}
DkGray {dark gray}

The following program illustrates the use of FillRect.

program Fills;
var

Rectl, Rect2 : Rect;
begin

SetRect(Rectl, 10, 10, 30,40);
FillRect(Rectl, Gray);
SetRect(Rect2, 65,65,100,105);
Fi11Rect(Rect2, DkGray)

end.

---------------- 10 A Formal Look at Graphics __ 191

-,-, "··-···=- -:u ur ttwmy

I

I

~

Figure 10-3.

Other Shapes

Similar procedures exist for drawing ovals and round cornered
rectangles. The procedures for ovals work in exactly the same
manner as those for rectangles. The size and shape of the oval is
determined by inscribing an oval in a rectangle that is passed to
the oval drawing procedures. See Figure 10-4.

Figure 10-4.

The oval drawing procedures are :

Oval inscribed
in a rectangle

192 __ 10 A Formal Look at Graphics----------------

procedure FrameOval(R : Rect);
procedure PaintOval(R: Rect);
procedure EraseOval(R : Rect);
procedure lnvertOval(R: Rect);

There are analogous procedures for drawing round cornered
rectangles. These procedures work in the same fashion except
additional parameters are passed indicating the roundness of the
corners. The extra parameters are OvalWidth and OvalHeight
which specify the shape of an oval that is "fitted" into the corner
of the rectangle. This is illustrated by Figure 10-5.

Oval Width Oval Height

Figure 10-5.

The round corner rectangle procedures are:

procedure FrameRoundRect(R: Rect;OvalWidth,OvalHeight
: Integer);

procedure PaintRoundRect(R: Rect;OvalWidth, OvalHeight
: Integer);

procedure EraseRoundRect(R: Rect;OvalWidth, OvalHeight
: Integer);

procedure lnvertRoundRect(R: Rect;OvalWidth, OvalHeight
: Integer);

The Pen

The pen is used by all of QuickDraw's drawing procedures.
The pen's characteristics can be changed by calls to QuickDraw
routines. To change the size of the pen use the PenSize procedure.

procedure PenSize(Width, Height: Integer);

Width and Height specify the size of the pen. The default pen
size is one pixel high by one pixel wide .

The color or pattern contained in the pen can also be changed
using the PenPat procedure.

---------------10 A Formal Look at Graphics __ 193

procedure PenPat(Pat: Pattern);

The color of a pixel drawn on the screen is not necessarily the
color of the pixels contained in the pen. The color of a pixel dis­
played on the screen is determined by three things, the pattern in
the pen, the color of the pixel already on the screen, and the
mode of the pen. The mode of the pen determines how pixels on
the screen and the pattern in the pen interact. The mode of the
pen can be altered by using the PenMode procedure.

procedure PenMode(Mode: Integer);

Valid values for mode are the predeclared QuickDraw con­
stants: PatCopy, PatOr, PatXor, PatBic, NotPatCopy, NotPat­
Or, NotPatXor and NotPatBic. For example, let us look at the
default pen mode PatCopy. If the pen ·is black, then the pixel on
the screen will be black no matter if the pixel was black or white
before. If the color in the pen is white then the pixel on the screen
will end up white without regard to its previous color. This is
graphically represented in Figure 10-6.

PatCopy
SCREEN

B w

p B B B
E • w w w

Figure 10-6.

The purpose of the various pen modes is to make it possible to
draw on different color backgrounds. The PatCopy pen mode
corresponds to a real life pen drawing on paper. The actions of
each of the pen modes can be understood by examining the charts
in Figure 10-7.

The following program demonstrates several of the different
pen modes against different backgrounds.

194 __ 10 A Formal Look at Graphics

Pat Or PatXor PatBic
SCREEN SCREE I SCREEN

B w B w B w

' 8

8 8

' B

w 8 p 8 w w

' w 8 w w 8 w w B w

NotPatCopy Not Pat Or NotPatXor NotPatBic
SCREEN SCREEN SCREEN

B w B w 8 w

~ B
w w r B B w r 8 8 w r a ..

w B 8 w B

program ModeDemo;
var

•
B w w

Figure 10-7.

DrawingWindow : Rect;
begin

{ set up screen }
HideAll;

•
8

SetRect(DrawingWindow, 40, 40, 400, 320);
SetDrawingRect(DrawingWindow);
ShowDrawing;
{Draw Color bands}
FillRect(lO, 80, 240, 120, Black);
FillRect(lO, 120, 240, 160, Gray);
FillRect(lO, 160, 240, 200, LtGray);
FillRect(lO, 200, 240, 240, DkGray);
FillRect(lO, 240, 240, 280, White);
FrameRect(lO, 240, 240, 280);
PenSize(5, 5);
{Draw first line, default mode}
Pen Pat(Black);
Moveto(60, 20);
Lineto(300, 20);
{Draw second line}
PenMode(PatCopy);

w

SCREEN

8 w

B w

w w

-------------- 10 A Formal Look at Graphics __ 195

Moveto(60, 40);
Lineto(300, 40);
{Draw third line}
PenMode(PatOr);
Moveto(60, 60);
Lineto(300, 60);
{Draw fourth line}
PenMode(PatXor);
Moveto(60, 80);
Lineto(300, 80);
{Draw sixth line}
PenMode(PatBic);
Moveto(60, 100);
Lineto(300, 100);
{Draw seventh line}
PenMode(NotPatCopy);
Moveto(60, 120);
Lineto(300, 120);
{Draw eight line}
PenMode(NotPatOr);
Moveto(60, 140);
Lineto(300, 140);
{Draw ninth line}
PenMode(NotPatXor);
Moveto(60, 160);
Lineto(300, 160);
{Draw tenth line}
PenMode(NotPatBic);
Moveto(60, 180);
Lineto(300, 180);

end.

The· output of the program is shown in Figure 10-8.
To get a real feel for the purpose of each pen mode do some

experimentation with each by modifying the ShowMode pro­
gram.

The Mouse

Procedures that are not part of the QuickDraw unit, but that
are very useful in conjunction with graphics are the ToolBox's
mouse routines. When the mouse is moved, the position of the

196 __ 10 A Formal Look at Graphics----------------

§LJ

Figure 10-8.

cursor on the screen moves. MacPascal has a procedure that
returns the coordinates of the cursor on the screen.

procedure GetMouse(var X, Y : Integer);

X and Y are variables that contain the horizontal and vertical
coordinates, respectively, of the cursor on the screen. The
MouseDemo program demonstrates the use of GetMouse. Run
the program and move the cursor around the screen using the
mouse. The coordinates of the cursor will be displayed in the text
window. Notice that the coordinates are relative to the upper left
corner of the drawing window which has the coordinate (0,0). To
exit this program use the pause option on the menubar.

program MouseDemo;
var

Horizontal, Vertical : Integer;
begin

while true do

----------------10 A Formal Look at Graphics __ 197 ·

begin
GetMouse(Horizontal, Vertical);
Writeln('Horizontal = ' : 15, Horizontal : 3);
Writeln('Vertical = ' : 15, Vertical : 3)

end
end.

Other mouse routines are functions that return the status of the
mouse's button.

function Button : Boolean;
function StillDown: Boolean;
function WaitMouseUp: Boolean;

The function Button returns true if the button is being held
down and false if it is not. The function StillDown and Wait­
MouseUp are very similar functions. StillDown returns true if the
button is down and has not been released since the button was
originally tested. If the button is released and is pressed again
between calls to button then StillDown returns false. Wait­
MouseUp returns true if the buttom is down and has not been
released since the button was last tested by the Button function.
StillDown and WaitMouseUp both return false if the button is
not being pressed or was released since the last time the button
was tested.

The Cursor
There are two important QuickDraw routines that control

whether or not the cursor is displayed on the screen.

procedure ShowCursor;
procedure HideCursor;

These procedures act exactly as you think they would from
their names. HideCursor hides the cursor from the screen and
ShowCursor restores it. It is important to notice that when the
cursor is hidden it still exists and is at some location on the
screen. The cursor can be moved by the mouse even when it is
hidden from view. Verify this by running the MouseDemo pro­
gram again, but with a call to HideCursor before the while loop.

Sketch Pad
Now that we have some tools to work with, let us write a sim­

ple application program that allows us to draw on the Macin-

198 __ 10 A Formal Look at Graphics---------------

tosh's screen. Let us first look at a simple English-like pseudocode
for our program.

initialize drawing window
repeat

if button still down then
draw a line from last position to current position

otherwise if the button was pressed
make current position the last position
(starting position of new line)

until forever

This pseudocode is easily translated into the following pro­
gram: (See Figure 10-9)

program Sketch Pad;
{Make the screen a drawing pad and the mouse a pen}

uses
QuickDrawl;
const

Forever = False;
var

Pnt : Point; { holds the cursor's position on the screen }
TempRect: Rect;

begin
{ Make the entire screen a sketch pad }
SetRect(TempRect, 0, 0, 511, 341);
SetDrawingRect(T em pRect);
ShowDrawing;

repeat
{ using individual components of point data type}
GetMouse(Pnt.H, Pnt.V);
if WaitMouseUp then

LineTo(Pnt.H, Pnt.V)
else if Button then

MoveTo(Pnt.H, Pnt.V);
until Forever

end.

This program works fine for what it is, a simple sketch pro­
gram that duplicates the capabilities of a pencil and paper. We
could make this program more powerful if we could use all of the
features discussed above, interactively, to change the characteris­
tics of our pen and to draw different types of shapes. We would

---------------- 10 A Formal Look at Graphics __ 199

9 Fiie Edit Search Run Windows

Figure 10-9.

like to make these features easy to use and consistent with the
Macintosh user interface.

A New Feature

The new feature we will add is to change the size of the pen
used to draw on the screen. We will implement this by creating
two boxes on the screen. One box will have the word "Bigger" in
it and the other will have the words "Smaller" in it (Figure 10-10).
When the cursor is placed inside the "Bigger" box and the button
is clicked the size of the pen will increase. When the cursor is put
into the "Smaller" box the size of the pen will decrease . In order
to implement this design there are several more QuickDraw rou­
tines we must learn about.

Displaying Text on the Drawing Window

There are two important procedures for putting text in the
drawing window.

procedure DrawString(S : string);

The DrawString procedure displays the string constant or vari­
able specified by S onto the drawing window at the current pen
location. The upper left corner of the first character in the string

200 __ 10 A Formal Look at Graphics----------------

Bigger

Smeller

UJimltrn1s Pause

Figure 10-10. SketchPad with new feature.

is placed exactly on the current pen location and all subsequent
characters are placed to the right.

procedure DrawChar(Ch : Char);

The DrawChar procedure works exactly the same way except it
only writes a single character on the screen.

Several other QuickDraw routines allow you to change the
attributes of the c_haracters displayed on the screen.

procedure TextFont(Font : Integer);
procedure TextSize(Size : Integer);
procedure TextFace(Face: Style);

TextFont determines the shape of the letters that will be dis­
played. The default value for font is zero and will display the sys­
tem font (Chicago). If no font for a value of font is available the
default font will be displayed. Experiment with other values for
font to see what fonts are available on.your machine. Some of the
fonts that might be available are shown in Figure 10-11.

T extSize determines the size in points of the character being
displayed. The default for size is 0 which picks the system font
size of 12. Examples of different font sizes are shown in Figure
10-12.

-------------10 A Formal Look at Graphics __ 201

Esml Value

Cldc•• I (191tem font)

MewYort 2

Geneva 3
llonaco 1 .,_._ s

loUOI 8
Rthm1 7

Figure 10-11.

9potnts

10 potnts

12 po1nts

14 points

18 points
Figure 10-12.

TextFace selects the special characteristics of the characters dis­
played. The type Style is defined as a set of pre-defined constants.

type
Styleltem =(Bold, Italic, .Underline, Outline,

Shadow, Condense, Extend);
Style = set of Styleltem;

Example of some of the different characteristics available are:

202 __ 10 A Formal Look at Graphics--------------

Normal

Bold

Italics

underline

Figure 10-13.

For example, to set the text face to italic you could use the pro­
cedure call:

TextFace([ltalic]);

Notice that italic is in brackets because it is a member of a set
of type style. To set the text face to both italic and underlined
you would use:

TextFace([ltalic, Underline]);

To set the text face back to normal you would use the empty set:

TextFace([]);

Calculations with Rectangles
For our programs we need to know if a point falls inside a rec­

tangle or if two rectangles are touching each other.
PointlnRect returns true if the point Pt is inside the rectangle

specified by R.

function PointlnRect(Pt : Point; R : Rect) : Boolean;

SectRect returns true if FirstRect and SecondRect intersect (any
part of the two rectangles occupy the same location on the
screen). The rectangle variable ThirdRect becomes the rectangle
that encloses the intersected area.

function SectRect(FirstRect,SecondRect:Rec;
var ThirdRect:Rect) : Boolean;

-------------- 10 A Formal Look at Graphics __ 203

Implementing the New Feature

Now that we have the required tools we can implement the
new features into our SketchPad. To implement the new features
we will add several parts to our old SketchPad program.

1. We must initialize our "Bigger" and "Smaller" box, draw
them on the screen and label them. This will be done in the
new initialization procedure.

2. We must check each time through the loop if the user
moved the mouse into (selected) the "Bigger" or "Smaller"
boxes. This will be done with a call to the new function
Select, which returns true if the cursor was pl;iced in the
box and the button was pressed. To be consistent with the
rest of the Macintosh environment we will invert the box
when the cursor is in it and the button is pressed (the box is
selected) and un-invert it when the button is released.

3. If the box was selected we take the appropriate action. In
this case it means calling the procedure ChangePenSize to
increment or decrement the size of the pen.

program SketchPad;
uses

QuickDrawl;
const

Forever = false;
var

Pnt: Point;
· Xpen, Ypen: Integer;
BiggerBox, SmallerBox, TempRect: Rect;

procedure Initialize;
begin

{Prepare Screen for Drawing Graphics}
SetRect(TempRect, 0, 0, 511, 341);
SetDrawingRect(TempRect);
Show Drawing;
{ Draw Selection Boxes on Screen }
SetRect(BiggerBox, 20, 40, 80, 60);
SetRect(SmallerBox, 20, 60, 80, 80);
Fra meRect(BiggerBox);
FrameRect(SmallerBox);

204 __ 10 A Formal Look at Graphics------------

MoveTo(22, 54);
DrawStri ng(' Bigger');
MoveTo(22, 74);
DrawString('Sma Iler');
{ Initialize PenSize }
Xpen := 1;
Ypen := 1

end;
function Select (Box: Rect): Boolean;
{ Returns True if Box was specified }
begin

Select:= False;
if PtlnRect(Pnt, Box) then

if Button then

end;

begin
I nvertRect(Box);
repeat
until not Button;
I nvertRect(Box);
Select : = True

end

procedure ChangePenSize (I: integer);
begin

Xpen := Xpen +I;
Ypen := Ypen + I;
PenSize(Xpen, Ypen)

end;
begin

Initialize;
repeat
_ GetMouse(Pnt.H, Pnt.V);

if Select(BiggerBox) then
ChangePenSize(l)

else if Select(SmallerBox) then
ChangePenSize(-1);

if WaitMouseUp then
LineTo(Pnt.H, Pnt.V)

else if Button then
MoveTo(Pnt.H, Pnt.V);

until Forever
end.

---------------- 10 A Formal Look at Graphics __ 205

This same technique can be used to add many other easy-to-use
features to this and other programs.

Playtime with QuickDraw

It is about time we had a bit of fun, so let us make use of our
newly acquired skills in programming Pascal to design and write
a game. We will use a top down approach that will allow us to
develop the overall structure of the game first and develop the
details as we go along. ,

We will write a racket game where the player controls a racket
using the mouse and attempts to hit a ball against a wall . If the
ball goes by the racket, the ball goes out of play, and the game is
over.

!lh!Hfows Pause

D•

Figure 10-14.

Let us look at a very rough outline of the game.

program PaddleBall;
begin

initialize;
while not game over do

begin

206 __ 10 A Formal Look at Graphics---------------

movepaddle;
moveball

end
end;

The above program, even though it is in pseudocode can actu­
ally be used as our main program with a few additions such as
variable declarations. Let us continue to develop our program by
developing each of the procedures in the above program.

procedure initialize;
begin

initialize score to zero
initialize ball shape and position
initialize ball direction
initialize paddle shape and position
initialize boundary walls

end;

procedure moveball;
begin

erase ball from old location on screen
if the ball hits right wall then

set direction to reflect it backward
else if the ball hits the top or bottom walls then

set direction to reflect it vertically
else if the ball hits the left wall then

the game is over
else if the ball hits the paddle then

set direction to reflect it forward
move the ball in direction
draw ball in new location on screen

end;

procedure movepaddle;
begin

erase paddle from screen location
get location of mouse controlled cursor
draw paddle at new location

end ;

We can achieve animation effects on the screen by drawing
some object on the screen; leaving it there a short perio.d of time,

---------------- 10 A Formal Look at Graphics __ 207

and then erasing it and drawing it a short distance away. If this
process is done repeatedly at high speed, the drawn object
appears to move smoothly across the screen. In the pseudocode,
both the paddle and the ball are animated in this way.

Now that the rough design for our game is complete, we can
turn our attention to the details of how our graphics objects move
and how they can be represented using the Macintosh's Quick­
Draw routines.

Let us now examine in more detail the procedure that will
move the ball around the screen. There are several factors to con­
sider when moving the ball, the direction the ball is heading, the
position of the ball on the screen, and whether or not the ball hits
a wall or the paddle.

We will need a variable to keep track of which horizontal
direction the ball is traveling.

var
Forward : Boolean; { true means ball moves right }

{ false means ball moves left }

In order to keep track of how many pixels the ball should
travel in each direction on the screen, we will need two variables,
DispHoriz to track the number of pixels to move horizontally and
DispVert to track the number of dots to move vertically. Since
screen coordinates are integer values these variables can be inte­
gers.

We also want the ball to travel at angles so we will declare a
variable Slope that will hold the angle of the ball's travel. The
slope will tell how many pixels the ball travels up or down for
every pixel it travels sideways. For example to move due east, the
direction would be right and the slope would be 0. No up or
down movement just movement to the right .

..... :

Figure 10-15.

To move the ball north northwest, the direction would be left
and the slope would be -2, two pixels up for every one pixel to
the left.

208 __ 10 A Formal Look at Graphics---------------

~

'
Figure 10-16.

This representation of direction allows us to specify precisely
every direction except for straight up and straight down. The
slope for these directions would be infinity and negative infinity,
respectively. Since the computer cannot represent these numbers
the ball will not be able to travel in these directions. This is fine
because the ball would never reach the paddle on the left side of
the screen if it were to travel vertically. When the ball hits a wall
or paddle, it should reflect off the wall in a natural manner.

IHflJBI
Figure 10-17.

Before the ball hits the top wall it is traveling X pixels up for
every pixel it is traveling across. After bouncing off the top wall,
the ball is traveling X pixels down for every pixel across. The hor­
izontal direction of the ball does not change. Therefore only the
sign of the slope changes when the ball hits the top wall. The
same is true for the bottom wall. When the ball bounces off the
right wall or the left side of the paddle, the slope remains the
same but the direction changes.

program PaddleBall;
{ Play a game of hit the ball off the wall but don't let it get

by}
uses

QuickDrawl;
var

Ball, Paddle, Top, Bottom, Left, Right, TempRect: Rect;
Difficulty, XPaddle, YPaddle, I, J, DispHoriz, DispVert,

Slope: Integer;
Gameover, Forward: Boolean;
procedure lnit;

------------10 AFormallookatGraphics __ 209

begin
{Set the screen up}
SetRect(TempRect, 0, 0, 512, 342);
SetDrawi ngRect(T em pRect);
ShowDrawing;
HideCursor;
{Size of ball is 9 by 9}
SetRect(Ball, 0, 0, 9, 9);
{ Set the boundaries of the game }
SetRect(Left, 0, 11, 1, 332);
SetRect(Top, 0, 20, 502, 21);
SetRect(Bottom, 0, 325, 502, 326);
SetRect(Right, 498, 10, 511, 332);
{ Initial Position of Ball is 100,100}
DispHoriz := 100;
DispVert := 100;
{ Set initial direction of ball }
Slope:= 2;
Forward:= true;
{ Set initial position of paddle }
Difficulty:= O;
Gameover : = false

end;
procedure MovePaddle;
{Erase paddle and redraw at new location}
var

XMouse, YMouse : Integer;
begin

GetMouse(XMouse, YMouse);
EraseRect(Paddle);
SetRect(Paddle, Difficulty, YMouse, Difficulty+ 11,

YMouse + 25);
FrameRect(Paddle);

end;
procedure MoveBall;
{Display ball in appropriate location on screen taking}
{into account reflection of the ball off the borders}
begin

if SectRect(Right, Ball, TempRect) then
begin

SysBeep(l);
Forward : = False

210 __ 1 O A Formal Look at Graphics-------------

Exercises

end
else if SectRect(Left, Ball, TempRect) then

{ Hit left wall, game over }
Gameover : = true

else if SectRect(Top, Ball, TempRect)
or

SectRect(Bottom, Ball, TempRect) then
begin

SysBeep(l);
Slope : = -Slope

end
else if SectRect(Paddle, Ball, TempRect) and (not

Forward) then
begin

SysBeep(l);
Forward:= true;
Difficulty:= Difficulty+ 10;

end;
if Forward then

DispHoriz : = DispHoriz + 10
else

DispHoriz : = DispHoriz - 10;
DispVert := DispVert +Slope;
EraseOval(Ball);
SetRect(Ball, DispHoriz, DispVert, DispHoriz + 9,

DispVert + 9);
Pai ntOva l(Ba 11)

end;
begin {Main program}

I nit;
while not Gameover do
begin

MoveBall;
MovePaddle;

end
end

end. {Main program}

1. Add some of the following features to the SketchPad
program:

----------------10 A Formal Look at Graphics __ 211

a . Change color of pen. b . Change penmode.
c. Allow selection of different shapes, rectangles, ovals

and round cornered rectangles (Hint: use the anima­
tion technique of drawing then erasing the shapes while
the mouse's button is down. Draw a final version of
the shape when the button is released.

2. Add the following features to the paddleball program
a. Add scoring.
b. Change shape of boundaries. How would ball reflect

off a sloping wall?
c. Add obstacles on the playing field.
d . Add other animated objects such as another ball or

other moving objects.

3. Write a generalized menu procedure that can be used to
present a mouse driven menu to the user.

11 Files

Computers would not be very useful if they were limited only
to information that could fit in their memory. To overcome this
limitation computers can store information on secondary storage
devices such as disk drives and bring this information into mem­
ory only when needed.

Information is stored on a disk in a file. A file is a collection of
components all of the same data type. This is similar to an array
but there are significant differences between files and arrays. An
array is kept in memory and is limited to the number of elements
it was declared to have. A file is maintained on a secondary stor­
age device (usually a disk) and has no fixed size, components can
be added or deleted at any time. Because a file is kept on disk it is
in one sense independent of the program that created it. A file can
continue to exist after the program that built it has terminated. A
file created by a MacPascal program can be seen in the Finder's
Desktop with an icon and its own name.

MocPascol
14 items 366K in disk 33K available

' File on disk

Figure 11-1.

213

214 __ 11 Files----------------------

An example of a file that you are already familiar with is a text
file (a file whose components are of type char). All source codes
for MacPascal programs that are entered and saved are stored in
text files.

In this chapter, we will be looking at the two ways to store and
access data in a file, sequential and random access. In a sequential
file, all the components must be accessed in the order in which
they were placed into the file. This can be thought of as being
similar to a cassette tape, . to hear a song recorded at the end of
the tape all the songs before it most be passed over. In a random
file, any particular component can be accessed in any order. This
is sometimes called direct access. This is like moving the tone arm
of a phonograph to the particular song you want to hear without
playing all the songs before it. Random access is accomplished by
numbering each component of a file starting at zero. This is called
the record number because traditional data processing terminol­
ogy labels the components of a file a record. Don't confuse this
use of the term record with the record data type. The records in a
file may contain data whose data type is a record or any other
valid Pascal data type.

A file is created in the variable declaration section of a program
or procedure by declaring a file name and the type of the file's
components.

type
Person I rife = record

FirstName,
LastName : string[20]
Phone : string[lO]

end; { Personlnfo}
var

People: file of P~rsonlnfo;
Numbers : file of integer;

The above var section creates two files, People and Numbers.
The following syntax diagram describes the syntax of a file
declaration.

FILE TYPE

file of type

Figure 11-2. Syntax Diagram: File type

----------------------11 Files __ 215

The data type of the components of a file can be any standard
Pascql type or any type created in a type declaration. Very often
the components of a file are declared as a record. In People, the
components will be of the type Personlnfo. All the components
of Numbers wil~ be integers. A file variable such as People and
Numbers are different from other types of variables in that they
can be used only with the file procedures which we will soon see.
No other operations such as assignment can be performed with
them.

The File Buffer

A file is accessed through a special type of variable called a file
buffer~ A file buffer can be thought of as a window into the file
which points to a particular file component. Through the file
buffer, information can actually be placed in or retrieved from
the disk. When the window is pointing to a record in the file, that
reco:rd can be retrieved or altered. For every file that is declared,
a file buffer variable is automatically created. It is through this
variable that information will actually pass through. The file
buffer variable is accessed by using the file name followed by an
up arrow /\ (typed on the Mac as a Shift-6). If Numbers is
declared to be a file of integers, then the file buffer associated
with that file is Numbers/\. A file buffer can be used like any
other variable of the same data type. For example:

with People/\ do
Readln(FirstName, LastName, Phone);

Using Files

There are three major steps in using files: opening the file,
accessing the file, and closing the file. For each of these steps Pas­
cal provides built-in procedures for accomplishing each of these
tasks.

open
file

access
file

Figure 11-3.

closed
file

216 __ 11 Files---------------------

Opening Files

Associated with each file we use are two names. The first is the
file variable declared in a program which is used in the program
to refer to the file. This is sometimes referred to as the logical file
name. The other name is the name that the file will actually be
called on the disk. This is called the physical file name. It is the
one you can see next to the icon for the file in the Desktop. The
logical and physical file names are linked together when you open
the file in a program.

There are three procedures provided by MacPascal for opening
files: Rewrite, Reset, and as we shall see later, Open.

Rewrite(FileVar, FileTitle)

Rewrite creates a file on disk with the name specified by
FileTitle. This is the physical file name. FileTitle may be either a
string constant or a variable of type string. If a file with the name
specified by file title already exists it is destroyed and a new file
with that name is created. The file created by the Rewrite state­
ment is assoc~ated with file variable specified by FileVar, the logi­
cal file name. From this point on all references to the file will use
the logical file name. After the Rewrite is executed, the file buffer
is positioned to record number zero of the file. A file that is
opened with the Rewrite statement is write only, meaning infor­
mation can only be inserted into the file but not retrieved from it.
Files that are opened using the Rewrite statement can only be
accessed in. a sequential manner.

Record
0

File
Buffer

jRecord
1

Record
2

Record Record Record
3 4 5

Figure 11-4.

Reset(FileVar [, File Title])

Record Record J Record ~
6 7 8 I

•tt••••tt•••---'

Reset opens the disk file specified by the FileTitle, the brackets
mean that it is optional. The disk file is assumed to already exist,

----------------------11 Files __ 217

otherwise an error condition will exist and an error message will
be displayed in an alert box. Like Rewrite, the FileTitle can be
either a string constant or a string variable and the file variable
FileVar is associated with the open file. Files that are open with
Reset are only accessible for reading and can only be accessed
sequentially. After a reset, the file buffer for the file is positioned
to record number zero of the file and its contents are placed in the
file buffer. A Reset with the optional parameter FileTitle omitted
may also be used to get the zeroth record of a previously opened
file into the file buffer and place the file buffer over record num­
ber zero in the file.

Accessing Files

Data is written to and read to from a file with the Get and Put
procedures. Get takes information from the file on disk and
places it into the file buffer.

For files to be useful it is necessary to put values into files. To
do that Pascal provides the Put statement. Put has the following
syntax

Put(FileVar);

The Put statement puts the value contained in the file buffer
variable, FileVar, into the location in the file that the file buffer
points to. The file buffer is then advanced to the next location in
the file. The file buffer variable must contain some defined value
before it is placed into the file. The put statement cannot be used
with a file that has been opened with a Reset.

The following section of code uses the Put statement to create a
file containing the integers from ten down to one.

Rewrite(Numbers, 'Space Ship');
for Countdown:= 10 downto 1 do

begin
Numbers/\:= Countdown;
Put(Numbers)

end;

The logical file name is the file Numbers we declared before
with components of integers. The Rewrite procedure creates a file
on the disk called Space Ship and equates the logical and physical
names for the file. The for loop assigns the value of the control

. 218 __ 11 Files--------------------

variable Countdown to the file buffer and then places that value
into the file with the Put procedure.

After this loop executes the file will contain:

Record 0 contains 1
Record 1 contains 2
Record 2 contains 3

Record 9 contains 10

Once there is information in a file it can be accessed with a Get
statement.

Get(FileVar)
The Get statement places the file buffer associated with File Var

over the next record in the file. The Get statement then places the
contents of the record into the file buffer. The following program
segment and diagrams show how file access with Get works.

var
Numbers : file of integer;

Reset(Numbers, 'Space Ship');
Get(Numbers);
Writeln(NumbersA);
Get(Numbers);
Writeln(NumbersA);

Once a record has been read into the file buffer variable that
variable can be referenced just like any other variable. In the
above case the file buffer variable NumbersA is being used just
like an ordinary integer would be used in the Write statement.

The first Get statement advances the file buffer so that it is over
record 1 in the file. Get then places the record under the file
buffer (record 1) into the file buffer. The second Get statement
advances the file buffer over record two in the file and places the
contents of that record into the file buffer (Figure 11-5).

Closing a File
Close(FileVar);

-----------------------11 Files __ 219

file
Buffer
,,_

Record
0

'-------'

Record Record
1 2

Record Record Record R'i!cord Record Record)
3 4 5 6 7 8 !

............ --J

Figure 11-5.

The last part of using a file is closing it. Closing a file termi­
nates the association between the logical file and the physical file.
All subsequent access to the file buffer variable will produce an
error because the file no longer exists.

Mixing Get and Put

Most programs that do file l/O require both getting and put­
ting of data in the same program. In order to do this the file must
be opened with rewrite, accessed with put, closed, opened with
reset, accessed with get and then closed, and so on. This is a very
cumbersome process . In addition, since the files are sequential it
takes almost an entire pass over the file to look at a record near
the end of the file, and almost another entire pass to change the
contents of a record near the end of the file. This is the scourge of
using sequential files. It would be very convenient if it were possi­
ble to get or put any record we pleased without having to access
all others.

Using Random Access Files

Random access files provide a means of both using Get and Put
statements alternately without having to open and close the file .
The random access technique also allows a record anywhere in
the file to be accessed directly without accessing any other
records first. For this reason random access files are also some­
times known as direct access files.

To open a random access file the Open statement is used .

Open(FileVar, FileTitle)

220 __ 11 Files--------------------

Seek

Like Reset, Open opens an existing file specified by the string
FileTest and associates that file with the file variable File Var. Like
Rewrite, if no file already exists, Open creates an empty file. H
the file already exists, the file buffer will contain the contents of
the files zeroth record, after the Open is executed. In any case,
the file buffer will be placed over record zero of the file. Once a
file is opened by the Open statement, it can be used for both
reading and writing. Unlike Reset and Rewrite, the Open state­
ment allows files to be randomly accessed. One advantage of
Open is that Gets and Puts can be mixep.

Seek(FileVar,RecordNumber)

Another advantage of opening a file with Open is that the file
buffer can be pointed to any component in the file. The Seek
statement points the file buffer associated with the file specified
by File Var to the record indicated by the integer value or constant
specified by RecordNumber. The contents of that record are
placed into the file buffer variable. Seek is used to point the file
buffer to a specific record in a file before an access by a Put or
Get. In actuality, the use of Seek precludes the need to do a Get
afterwards because Seek will perform the role of the Get in plac­
ing the record into the file buffer variable.

As an example of a typical use of a Seek statement, let's go
back to our file of integers and change the value of all the records
we have placed in the disk file named Space Ship.

Open(Numbers, 'Space Ship');
for RecordOfNumber := 0 to 9 do

begin
Seek(Numbers, RecordOfNumber)
{file buffer now contains record to be changed}
{Change the value}
Numbers/\:= Number/\ + 1;
{ put the changed record in the file buffer back into the

file}
Put(Numbers);

end;

---------------------11 Files __ 221

Finding the End Of a File
The above program goes through a file whose size is assumed

to be known in advance (NumberOfRecords). It is not always the
case that the size of a file can be known in advance. A business is
not likely to know the number of customers or transactions that
are necessary to be stored in advance. Therefore, the size of a file
usually changes dynamically as needed. If a program that
changes all the records in a file is run on such a file, then it is nec­
essary to determine, while the program is running, when the end
of the file has been reached. The built-in function Eof(FileVar)
returns True if a Get or Seek has not attempted to access past the
end of a file and False otherwise. We can use this to determine if
the record we are attempting to read is contained in the file. The
above program could be written as follows for a file of unspeci­
fied size.

Open(Numbers, 'Space Ship');
while not Eof(Numbers) do

begin
Seek(Numbers, RecordOfNumber)
{file buffer now contains record to be changed }
{Change the value}
Numbers/\:= Number/\ + 1;
{ put the changed record in the file buffer back into

the file}
Put(Numbers);

end;

Since the Eof function returns FALSE if a record exists and a
while loop iterates while the condition is TRUE we must use a not
to reverse the Boolean value returned by the function. The EOF
function can also be used to read data from the keyboard. The
Enter key on the keyboard is used to signal the end of file
condition.

Text Files
In addition to using files to store information on secondary

storage devices, files are also useful for transferring information

222 __ 11 Files----------------------

to input/output devices. All along we have been using files for
this purpose without knowing it. Every time we have used a
Write statement, we have used a predeclared file called "Output"
that is automatically opened for writing to the display screen.
Each time we used a Read or Readln we read from a predeclared
file called "Input" that is automatically opened for reading from
the keyboard. A Write statement may have an additional param­
eter indicating what file the Write statement is writing to. The fol­
lowing two statements are equivalent.

Write(' ABC');
Write(Output, 'ABC');

The following two read statements, with and without a file
parameter, are equivalent.

Read(Ch);
Read(lnput, Ch);

The predeclared files Input and Output are files of a prede­
clared type Text. The type Text is essentially the same as a file of
characters with the exception that certain standard procedures
that cannot be used with other types of files can be used with
Text files. These standard procedures include Read, Readln,
Write, Writeln and EOLN.

In addition to reading or writing to the default file devices it is
also desirable to be able to Write to devices such as the printer.
To send information to the printer rather than to the screen, a
predeclared device file called 'Printer:' must be used. This file
must be opened for writing using a Rewrite statement. The file
variable associated with it must be declared to be of type Text.
Reads and gets should not be used with the printer as the printer
is an output only device.

var
Prnt: Text;

begin
Rewrite(Prnt, 'Printer:');
Writeln(Prnt, 'This will print on the printer');

In your programs you may find it convenient to be able to
direct the output from your program to either the Text window
or your printer. This can be done by using a procedure to direct
the output to the desired output device.

---------------------11 Files __ 223

var
Ch: Char;
Output: Text;

procedure SelectDevice;
begin

Writeln('Where should the output go');
Writeln('Enter P for the printer or T for the Text

window');
Read(Ch);
if Ch = 'P' then

Rewrite(Output, 'Printer:');
if Ch = 'T' then

{Do nothing}
end;

If the user selects output to the printer, the Text file is associ­
ated with the printer by use of the Writeln statement. If output to
the Text window is desired nothing need be done.

The Writeln statements in the program should all look like:

Writeln(Output, variable list);

There is another device file that can be associated with a file
variable of type text on the Macintosh. 'Modem:' works like
'Printer:' except it refers to the modem port on the back of the
Macintosh. 'Modem:' can be read from and written to and there­
fore should be opened using an Open. Naturally using the Seek
makes no sense when used with a device.

Textfiles can also be used with disk files. In fact all programs
written in Pascal are stored as textfiles on disk. The following
program prompts the user for the name of a text file, (perhaps a
MacPascal program file) and reads the file from the disk line by
line, displaying each line in the text window. ·

program DisplayText;
var

TextFile: Text;
Fileline : string[80];

begin
Reset(TextFile, OldFileName('Select a Textfile'));
while not Eof(TextFile) do
begin

224 __ 11 Files---------------------

Readln(TextFile, Fileline);
Writeln(Fileline)

end
end.

Select a TeHtfile

GAMEDIAGS ~
CANTALOUPE

I
(Op(m

chp6.1pic
FLOW CHARTS
FLOW2

' house (Cancel
notes ~

Figure11-6.

) MacPascal

(Eject)

)

In this program, instead of using a string for the file's name in
the reset statement, we used the toolbox function OldFileName.
This function displays a dialog box on the screen with all the
names of the files already on the disk. You can customize the dia­
log box by passing a string parameter with the desired prompt.
This is the same routine that MacPascal uses when you open a
MacPascal program to work on. MacPascal also provides a func­
tion NewFileName that works the same way except that it allows
for the entry of a new file name. This is the same procedure
MacPascal uses when you select Save As .. from the File menu.

To illustrate the use of files lets look at a program to retrieve
the phone. number of a person given the first and last name. The
program should have several functions:

1. Searching for a name and displaying information.
2. Adding a name.
3. Deleting a name.

One approach to writing this program might be to keep the
entire file of names and numbers in memory in an array and do
the searching, adding, and deleting of names to the a~ray already
in memory.

----------------------11 Files __ 225

Read all friends' names into array in computer's memory
repeat

show menu of choices
if choice is find then

find a friend's name and number in the array
else if choice is add then

add a friend's name and number in the array
else if choice is delete then

delete a friend's name and number in the array
else

it's time to quit
until it's time to quit
Write all friends' names from memory to disk

The above algorithm has an advantage over other possible
implementations in that all data is in memory and can be accessed
very rapidly. There is a major disadvantage to this method also.
When keeping all data in memory the amount of data that can be
handled is limited to the size of the computer's memory. Another
disadvantage is that since all the data ·is kept in the computer's
memory during the program's execution, if power to the com­
puter were lost all information in the computer's memory would
also be lost.

Another method of implementing this would be to add, delete,
and search directly to the data in the disk file. In this case the
English-like pseudocode would remain the same with the excep­
tion of eliminating the reading into' memory at the beginning and
the writing to disk at the end. Let's look at the pseudocode for
this version.

repeat
show menu of choices
if choice is find then

find a friend's name and number in the file
else if choice is add then

add a friend's name and number in the file
else if choice is delete then

delete a friend's name and number in the file
else

it's time to quit
until it's time to quit

The implementation of this algorithm is straight forward and

226 __ 11 Files---------------------

simple to follow. There are however several features worth
noting.

When the program is run for the first time, the file Friends does
not exist on disk and must be created and initialized. After the
program has been run once, the file already exists and only needs
to be opened. In this program we take advantage of the way the
Open procedure works. If the Open procedure is used and a file
already exists, then that file is all set for use and nothing more
need be done. If the Open procedure is used and no file already
exists, an empty file is created. Having an empty file (containing
no records) is not sufficient for this program. This program
requires the file to be initialized with records. We can tell if the
file is 1~mpty by using the eof function. If the file is empty eof
returns true and we can initialize the file. The following program
segment illustrates the creation of a file only when needed.

Open(Friend,' Friend');
if Eof(Friend) then

{ The file does not already exist. Initialize the file }
else

{ The file already exists and is open and ready for use }

All searches in this program are done sequentially from the begin­
ning of the file to the end of the file. A template for this kind of
search through a file is illustrated by the following program
segment.

Count : = O; { point to zero'th record of file }
Seek(Friend, Count);
while not Eof(Friend) do
begin ·

{Check here to see if current record is one you want}
{and perform appropriate action }
Count:= Count+ 1;
Seek(Friend, Count)

end

It is necessary to be able to tell if a record in the file is vacant
or in use. We will do this by assigning the value Empty to the last
name if the record is not being used. In this program the constant
Empty corresponds to the null string ("). We delete records by
marking them empty with the null string.

Here is the entire program. Type it in and try it out. The con-

-------------------11 Files __ 227

stant FileSize can be changed if you want to hold more than ten
names.

program PhoneBook;
{ Program to retrieve a phone number for any name}
{ contained in the data file }

con st
FileSize = 10;
Empty= ";

type
NameType = string[15];
PhoneType = string[lO];
FriendType = record

LastName: NameType;
FirstName: NameType;
PhoneNum : PhoneType

end;
var

Choice: Char;
Friend : file of FriendType;
First, Last: NameType;
Phone: PhoneType;
Location : Integer;
TextWindow: Rect; { Hold dimensions of text window}

procedure Menu;
begin

Page(Output);
Writeln('l. Search for Name');
Writeln('2. Add a Name');
Writeln('3. Delete a Name');
Writeln('O. Quit');
Writeln;
Write(' Please Choose > ');
Read(Choice);
Writeln;
while not (Choice in ['O' .. '3'])do

begin { Not a valid Choice}
SysBeep(5);
Read(Choice)

end
end;

procedure lnitFile;

228 __ 11 Files------------------

{ Create an empty file of Friends }
var

Count : Integer;
begin

for Count:= 0 to FileSize do
begin

Seek(Friend, Count);
with Friend/\ do

begin
FirstName :=Empty;
LastName : = Empty;
PhoneNum :=Empty

end;
Put(Friend)

end;
Close(Friend); { Making the file permanent on disk }
Open(Friend, 'Friends') { Open it again, for further use }

end;
procedure GetName;
begin

Write(' Enter Last Name > ');
Readln(Last);
Write('Enter First Name > ');
Readln(First)

end;
procedure GetPhone;
begin

Write(' Enter Phone Number > \);
Readln(Phone)

end;
function FindFriend (First, Last : NameType;

var Count: Integer): Boolean;
{ Returns true if the name in First, Last is found. }
{Returns false if the name is not found. If the}
{name was found, Count contains its file position}

var
Found : Boolean;

begin
Count:= O;
Found : = False;
Seek(Friend, Count);
while (not Eof(Friend)) and (not Found) do

------------------11 Files __ 229

begin
with Friend/\ do

if (FirstName = First) and (LastName = Last) then
begin { Found a match }

Writeln(FirstName, ' ', LastName, ' ',
PhoneNum);

Found:= True
end

else
begin { No match look at next record }

Count:= Count+ 1; ·
Seek(Friend, Count)

end
end;

FindFriend :=Found
end;
procedure AddFriend (First, Last : Name Type;

Phone : PhoneType);
{ Adds the Friend whose name is passed in to the file }

var
Added: Boolean;
Count: Integer;

begin
{ Look for a record with no last name}

Added:= False;
Count:= O;
Seek(Friend, Count);
while (not eof(Friend)) and (not Added) do
if FriendA.LastName = Empty then

begin { found an empty spot }
Seek(Friend, Count);
FriendA.LastName := Last;
FriendA.FirstName := First;
FriendA.PhoneNum := Phone;
Put(Friend);
Added : = true

end
else

begin { look at next spot }
Count:= Count+ 1;
Seek(Friend, Count)

end;

230 __ 11 Files------------------

if not Added then
Writeln('File is full, Press <Return> to continue')

end;
procedure Delete (Location: integer);
{ Deletes the record specified by Location by putting}
{an Empty string in that location }

var
Which : Char;

begin
Seek(Friend, Location);
Write(' Delete (Y/N) > ');
Read(Which);
if (Which = 'Y') or (Which = 'y')then

begin { Record is deleted by setting all fields to Empty }
Seek(Friend, Location);
Friend/\.LastName := Empty;
FriendA.FirstName := Empty;
Friend/\.PhoneNum := Empty;
Put(Friend);

end
end;
begin

{ Setup the Screen }
• HideAll;
SetRect(TextWindow, 40, 40, 300, 300);
SetT extRect(T extWindow);
Show Text;
Open(Friend, 'Friends');
if Eof(Friend) then
lnitFile; { file doesn't already exist, create it }

repeat
menu; { Show the choices }
case Choice of
'O':
; { Do Nothing }
·r: {Search for a Friend}

begin
Page(output);
GetName;
if not FindFriend(First, Last, Location) then

with Friend/\ do

------------------11 Files __ 231

Writeln(FirstName, ' ', LastName, ' was not
found.');

Writeln('Press <Return> to continue.');
Read In

end;
'2' : { Add a Friend }

begin
Page(output);
Get Name;
GetPhone;
AddFriend(First, Last, Phone)

end;
'3' : { Delete a Friend }

begin
Page(output);
GetName;
if FindFriend(First, Last, Location) then
Delete(Location)

end
end {case}

until Choice= 'O';
Close(Friend)

end.

12 Variant Records and
Pointers

In this chapter we will discuss two of the more sophisticated
and useful features in Pascal. Variant records are an extension of
~he concept of records seen in Chapter 10. Pointers are a data
type totally different than any other we have seen so far in
Pascal.

Variant Records

In some situations, several different records that only differ
slightly are needed. For example, suppose we want to represent
information about all the people who are on campus at a college.
For each we would want to keep a name, address, and identifica­
tion number. But depending upon whether an individual was a
student or a faculty member we would want to maintain different
information. For students, we want to include their class stand­
ing, but for members of the faculty, we want to include their job
title and what department they work for. With variant records
this different information can be represented in a single record
structure. Variant records allow the value of one field in the
record to determine the type of information that can be stored in
other fields.

type
Person =(Student, Faculty);
lnfoRec =record

Name : string[20];
IDNum : string[9];

233

234 __ 12 Variant Records and Pointers _____________ _

end; {lnfoRec}
case Occupation: Person of

Student:
(Standing : 1..4);

Faculty:
(Description : string[20];
Department: string[20])

end;

VARIANT RECORD

case identifier

constant

tag-field
type

Figure 12-1.

field
list

The declaration of a variant record differs from the standard
record declaration because a case statement is included. The case
statement must be the last statement in the declaration and the
fields listed above it are handled just like a standard record decla­
ration. The case statement is used to decide which fields are to be
included in the record depending upon the value of the tag field
(in this situation, Occupation is the tag field). The tag field is
included in all variations of the record but depending on the
value of that field, one of the groups of fields listed after the pos­
sible values are included. This determination is made during the
execution of the program and which of the variant fields included
will change if the value of the tag field changes. Notice that there
is no end used for the case statement. Let's declare two records to
be of type Info Rec and examine them more closely.

var
Person!, Person2: lnfoRec;

--------------- 12 Variant Records and Pointers __ 235

Personl.Name := 'Marian';
Personl.IDNum := '12355321';
Personl.Occupation :=Student;
Personl.Standing := 4;

In the record Personl the tag field Occupation is set to Student .
The variant field that is included after that is Standing.

Person2.Name := 'Alan';
Person2.IDNum := '12351234';
Person2.0ccupation : = Faculty;
Person2.Description := 'Assistant Professor';
Person2.Department :='Computer Science';

In the record Person2 the tag field is set to Faculty. The variant
fields that are included are Description and Department. Notice
that the number of fields in the variant part do not have to be the
same. Variant parts could also be declared containing no fields at
all. The fields selected by the Case statement are called the active
fields. For example suppose the value of Person2 .0ccupation (the
tag field) is changed to Student. It would then be illegal to refer­
ence the Person2.Description because it is not active.

It is not uncommon for a Pascal programmer to use a variant
record without a tag field. This is legal to do. Instead of the tag
field just a tag type is used in the Case statement.

TestRec = record
case Boolean of

True: (Int : Integer);
False : (Ch : Char)

end; {record}

When a variant record is declared in this fashion all the variant
fields are active at the same time. However, only one field is actu­
ally created. This technique can only be used when the program­
mer knows what will be stored in the field from the context that
the record is used in. An example of this would be when a pro­
grammer knows that all even records in a file will contain a num­
ber and all odd records will contain a character, or any other sim­
ilar scheme. The advantage is that a significant amount of space
is saved because both fields do not have to be included in each
record.

Variant records are a space saver because one file can be used
to hold several different types of records. The space taken up by

236 __ 12 Variant Records and Pointers---------------

a variant record is the space needed to hold the largest combina­
tions in the variant records. This is done because all records must
be the same size so that file operations can be done. In memory
the different variable parts occupy the same memory locations.
Therefore, if one variant field is active and contains a value and
then a different variant field becomes active, the original value is
still available to be used. This allows tricks to be done that cir­
cumvent Pascal's type checking. It is recommended that this tech­
nique not be used unless you are familiar with the way MacPascal
represents data internally.

Pointers

All the variables we have seen so far have been static variables.
This meant that the variables were declared in the Var section of
a program, and memory space was allocated when the program
started to execute. When we use static variables we must know in
advance how much data we will need to store. For example, if we
use an array to keep track of all the students in a university we
would have to know in advance the maximum number of stu­
dents that may register and then declare that many elements in
the array. If hu.lf the students decided to drop out after taking
Computer Science 101 last semester, then half the array would be
wasted. On the other hand, if more people enrolled than antici­
pated, the array would be smaller than required and the program
would not work.

ln Pascal, we have a way of creating new variables dynami­
cally as they are required during program execution. These
dynamic variables are not accessed the way static variables are,
but rather through other variables known as pointers. To show
how pointers work let's look at a simple example of a dynamic
Integer and a pointer to it.

var
P: /\Integer;

This declares P as a pointer to an integer variable. Notice that a
pointer is declared with an up arrow/\ (on top of the 6 key on the
Macintosh) preceding the data type of the variable it will point
to. This declaration declares only the pointer not the variable.
We create the variable that P will point to dynamically with the
New procedure.

--------------12 Variant Records and Pointers __ 237

New(P);

This procedure creates an Integer variable that is not named
but can be referenced though the pointer P. The variable P points
to can be accessed with PA.

p·

p ·D
Figure 12-2.

P The pointer
PA How we reference the variable P points to

When a dynamic variable is created its value is uninitialized. A
value can be placed in the newly created variable with :

. PA:= 26;
p·

p ·0
Figure 12-3.

PA refers to the variable and can be used like any other integer
variable.

The statement

P:= 26;

has no meaning and will cause an error since P only points to an
integer and can't contain a value itself. If a second pointer to an
Integer Q were declared we could make it point to the same vari­
able that P does with:

Q:= P;

Figure 12-4.

238 __ 12 Variant Records and Pointers---------------

Q now points to the same variable that P does.
An assignment statement with pointers takes on a slightly dif­

ferent meaning than with any other type of variable. The pointer
on the left side of the assignment operator is made to point to the
same variable as the one on the right side of the assignment oper­
ator. We can access the variable we created with either of the two
pointers that point to it, either Q or P.

Q/\ := 4;
Write(P /\);

This prints the value of P /\which is 4.
When a variable created dynamically is no longer needed we

can dispose of it and liberate the memory locations it occupied
with the Dispose procedure.

Dispose(P);

This destroys the variable that P pointed to. When a pointer
doesn't point to a variable it is said to point to NIL. NIL is a Pas­
cal reserved word and a predeclared constant. The link between a
pointer and its variable can be destroyed by assigning NIL to it.

P:= NIL;

So far, what we have seen as the use of pointers has no advan­
tage over the use of st::.tic variables since we must declare a
pointer for every dynamic variable used. Hence we are in the
same boat as before, having to know the number variables that
will be created prior to program execution. The advantage to
using pointers can be seen when a dynamic variable contains a
pointer to another dynamic variable. This can be done with
records.

type
Dynamic : record

Data : Integer;
Link : /\Dynamic

end;

The declared record type has two fields: Data which will con­
tain an Integer; and Link which is a pointer to the type Dynamic
(the record type itself). Now let's declare two records of type
Dynamic.

var
P, Q : /\Dynamic;

-------------- 12 Variant Records and Pointers __ 239

P and Q are both pointers to the record type dynamic. Notice
that no records actually exist at this time, only pointers to
records. We can create a record dynamically with:

New(P);

08l8 Unk

p I I I
Figure 12-5.

A record now exists and P points to it. A second record can be
created with:

New(Q);

08l8 Unk

Q ·I I I
Figure 12-6.

We now have two dynamic records pointed to by P and Q.
These two records can be linked together by connecting the
pointer field (PA.Link) of the first record to the second record.
This is done by making it point to the same thing that Q does.

PA.Link:= Q;

Data Unk Data link

p___.I II ··--
Figure 12-7.

A third record can be added to our chain of records by creating
a new record that Q points to and then linking it to the second
record.

New(Q);
PA.LinkA.Link := Q;

240 __ 12 Variant Records and Pointers--------------

Q

Data Link Data Link Data Link

P--.. I I I • -r1

Figure 12-8.

We were able to use Q to create a new record even though it
already pointed to something. The link to what it previously
pointed to is lost and Q will point to a newly created record. The
complicated P/\.Link/\.Link refers to the Link field of the second
record. This is like an expression evaluating to a field. It is evalu­
ated left to right.

PA.Link

PA.Link/\

P /\.Link/\ .Link

Refers to the Link field of the first record,
the one that P points to.
Refers to what the link field of the first
record points to, the second record.
Refers to the Link field of the second
record.

A chain of records linked together like this is called a linked
list. A linked list is a dynamic data structure which has similar
uses to the static data structure, arrays. The disadvantage of
using a link list is that records in the list can not be accessed with­
out tracing through the list. It is essentially a sequential access
structure. A quicker and more efficient way to create a linked list
uses a for loop and three pointers.

var
P, Q, R : /\Dynamic;

New(P);
R:= P;
for I:= 1 to3do

begin
New(Q);
RA.Link:= Q;
R:=Q

end

In the earlier example two pointers were used, one to point to
the first record in the list and the second to create new dynamic

-------------- 12 Variant Records and Pointers __ 241

records. When using the for loop we need three pointers, one to
point to the first record (P), one to create new dynamic
records(Q), a,nd a third to point to the last record in the list(R).
The use of the third pointer alleviates the need to spell out the
name of the Link field in the last record like we had to do in the
other example. Instead since R points to the last record, RA.Link
refers to the pointer we must link to the newest record.

Let us now look at a real application for pointers. Suppose we
wanted to create a program that is similar to the program
DisplayText in Chapter 11. Unlike DisplayText, which printed a
file from beginning to end, the new program ReverseText, will
display the file backwards from end to beginning. Since the file
we wish to print is a text file, it can only be accessed sequentially.
Therefore, it can only be read from beginning to end. We will
have to read the entire file into memory before we can start print­
ing it out in reverse order. We do not know the size of the file to
be reversed in advance, so we will use a dynamic variable to hold
each line of the file as it is read in.

The variable that holds each line of text to be read in will be
the record LineRec which contains two fields. The field, TextLine,
is a string that holds a line of text read in, and the other field,
Previous, is a pointer that points to another record of the same
type (the record it points to holds the previous line of text read
in).

type
LinePtr = ALineRec;
LineRec = record

Textline: str;ing[80]; { hold a line of text}
Previous: LinePtr { pointer to the previous line}

end;

Notice that the type LinePtr is declared to be a pointer to the
type LineRec which has not yet been declared. This is the only sit­
uation in Pascal that allows an identifier to be referenced before
it has been declared.

The program works by reading the first line in to a newly cre­
ated dynamic variable. Since there is no previously read in line
for the previous field to point to, we make it point to Nil. We
then continue to read lines from the file into a dynamically cre­
ated variable making each Previous pointer point to the previous
line read in. When there are no more lines to be read in, we can
trace through the linked list created in the reverse order, since

242 -. _ 12 Variant Records and Pointers-------------

each pointer points back to the previous line, and prints out each
line.

program ReverseText;
{ program to reverse a textfile of arbitrary size using

pointers}
type

LinePtr = ALineRec;
LineRec = record

Textline : string[SO]; { hold a line of text }
Previous: LinePtr { pointer to the previous line }

end;
var

TextFile : Text;
LineBefore, Newline : LinePtr;

begin
Reset(TextFile, OldFileName('Select a Textfile'));
LineBefore := NIL;
while not Eof(TextFile)do

begin
New(Newline);
Readln(TextFile, NewlineA.Textline);
NewlineA.Previous := LineBefore;
LineBefore := Newline

end;
{ Trace through linked list in reverse order printing

lines}
while LineBefore < > NIL do

end.

begin ,
Writeln(LineBeforeA.Textline);
LineBefore := LineBeforeA.Previous

end

13 A Look At An
Application-The
Checking and
Savings Program

This chapter has been placed at the end of the book for a rea­
son. After reading the entire book you should be familiar with all
the aspects of Pascal programming. However, after learning how
to program in Pascal there is still one more skill to be learned.
That is how to plan and program a significant project. In this
chapter, we will write a program that will prove useful in your
banking transactions.

Overview

The Checking and Savings program will track transactions for
both a checking account and a savings account. These were both
included because many banks now bundle a checking and savings
account together. Several types of transactions can be entered for
both accounts. For the checking account the transactions that can
be entered are:

1. deposits
2. checks written
3. interest payed by the bank (for interest paying checking

accounts)
4. fees charged by the bank

243

244 __ 13 A Look At An Application-The Checking and Savings Program ----

For the savings account the transactions accepted are:

1. deposits
2. withdrawals
3. interest payed by the bank

For either account a report of all the transactions can be
printed with the current balance.

Data Structures
One of the first things to consider when developing any appli­

cation is what data structure will be used~ That is, how will the
data be organized, handled and stored. In this program we essen­
tially have two types of information. The first is a transaction for
either checking or savings. Since the transactions for both types
of accounts are similar they can both be stored in the same record
structure with a field indicating which account the transaction is
for. The other fields in the record are needed to keep track of the
particulars of the transactions. The record structure is:

type
TransType = (Checking, Savings);
T ransRec = record

CheckOrSave: TransType;
Code: 1 .. 5;
Date : string[8];
Amount : Integer;
TaxDeduct : Char;
CheckNumber : Integer;
PayTo : string[80]

end;

The first four fields are needed for any type of transaction. The
last three are used only for a check. After a transaction is entered
it is written to an external data file named Trans.data. The field
Code is used to specify which type of transaction the record rep­
resents. The codes are:

Code Checking Savings

1 Deposit Deposit
2 Withdrawal Check
3 Interest Interest
4 Fee

---- 13 A Look At An Application-The Checking and Savings Program __ 245

The second Type of information to keep track of is the balance
.of both accounts. We could not include that as a field in the
transaction records since the balance changes after each transac- ·
tion. A separate record structure is used to hold the balances.

BalanceRec = record
SavBal: Integer;
CheckBal: Integer
end;

A different field in the record is used for the balance in each
account. This record is updated after every transaction. At the
end of the program this record is written to an external disk file
named Balance.data. When the program is run subsequent times,
the record is read &om this file. In this way up-to-date balance
information is maintained.

Development

This program differs from all others we have seen in the book
because several program options are available to the user and all
the options are not done in any specific order. The options are
selected by the user from a series of menus. The selection entered
to these menus controls the execution. The main menu provides
the choices of a savings or checking transaction to be entered,
balances to be displayed or exiting from the program. The check­
ing or savings choices lead to sub-menus which provide the
choice transactions. The balance·options display the balances and
the exit option does the file housekeeping before returning control
of MacPascal to the user. A first level of development for the pro­
gram would produce pseudocode indicating what action will take
place for each of the possible program options.

repeat
Display Main Menu
Get option
Case option of

1 : Savings transaction
2 : Checking transaction
3 : Display balances
4 : Exit program

until Exit option is picked

246 __ 13 A Look At An Application-The Checking and Savings Program ----

A second level of development will show detailed pseudocode
for how each of the main menu options will be processed.

SAVINGS TRANSACTIONS
Deposit

Get information
Add amount to savings balance
Place transaction in file

Withdrawal
Get information
Subtract amount from savings balance
Place transaction in file

Interest credited
Get information
Add amount to savings balance
Place transaction in file

Report
while not (eof(Trans.data))

begin
Read a transaction
If savings transaction then Print transaction

information
end {while}

Print balance
CHECKING TRANSACTIONS

Deposit
Get information
Add amount to checking balance
Place transaction in file

Check
Get information
Subtract amount from checking balance
Place transaction in file

Interest credited
Get information
Add amount to checking balance
Place transaction in file

Checking Fee
Get information
Subtract amount from checking balance
Place transaction in file

Report

---- 13 A Look At An Application-The Checking and Savings Program __ 247

while not (eof(Trans.data))
Read a transaction

If checking transaction then Print transaction
information

Print balance
DISPLAY BALANCES

Clear screen
Display balances

EXIT
Replace balance record in Balance.data
Close all files

A third level of refinement wil~ include writing the main pro­
gram with the variable declarations and the procedures that
implement the menu structure.

program CheckingAndSavings;
type

TransType = (Checking, Savings);
TransRec = record

CheckOrSave : TransType;
Code: 1 .. 5;
CheckNumber : Integer;
PayTo : string[60];
Date : string[B];
Amount : Real;
TaxDeduct: Char;

end;
BalanceRec =record

SavBal : Real;
CheckBal : Real

end;
var

Out: Text;
Transaction: TransRec;
Balance: BalanceRec;
FourSet, FiveSet: set of 1 .. 10;
Option : Integer;
TransFile: file of TransRec;
BalanceFile: file of BalanceRec;
Stop : Boolean;
I: Integer;

begin {Main program}

248 __ 13 A Look At An Application-The Checking and Savings Program ---

Stop : = False;
FourSet := [l,2,3,4]; {The sets are used for input

verification}
FiveSet : =[l ,2,3,4,5];
Open(BalanceFile, 'Balance.Data');
Rewrite(Out, 'Printer:');
if eof(BalanceFile) = True then

begin
Balance.SavBal : = O;
Balance.CheckBal : = 0

end {Read Balance File}
else

Balance:= BalanceFileA;
{OpenTransaction File}

Open(TransFile, 'Trans.data');
Seek(TransFile, Maxlnt); {move to last position in file}
repeat {main driver}

DisplayMainMenu;
lnitRec;
case option of
1:

2:

3:

begin
Transaction.CheckOrSave :=Checking;
CheckingMenu;
CheckingOptions

end;

begin
SavingsMenu;
Transaction.CheckOrSave :=Savings;

end;

ShowBalances;
4:

Stop:= True;
end;{case}

until Stop = True;
Close(TransFile);
Seek(BalanceFile,O);
Balancefile/\ : = Balance;
Put(BalanceFile); {Replace Balance record in

file}

---- 13 A Look At An Application-The Checking and Savings Program __ 249

Close(BalanceFile);
end.{program}

The main program first initializes the variables used in the pro­
gram and opens the files needed. If the balance file does not exist
then the fields in its record are set to zero. The other function of
the main program is to drive the program by calling a procedure
to display the main menu and then calling the procedures neces­
sary to handle the transaction to be entered. The procedures
called from the main program are:

DisplayMainMenu

lnitRec

CheckingMenu
CheckingOptions
SavingsMenu
SavingsOptions
Sh ow Balances

Displays the main menu in the text
window.
Initializes the transaction record so that
no information is in it from the previous
transaction.
Displays the menu of checking options.
Processes the checking transactions.
Displays the menu of savings option.
Processes the savings transactions.
Displays the current account balances.

The next step of the development is to write the procedures
called in the main program. This set of procedures will handle all
the various account transactions.

procedure DisplayMainMenu;
begin

Page;
Writeln('Checking and Savings System');
Writeln;
Writeln(' 1. Checking Transaction');
Writeln(' 2. Savings Transaction');
Writeln(' 3. Show Balances');
Writeln(' 4. Exit');
Writeln;
repeat

Write('Selection ');
Readln(Option);

until Option in FourSet;
end; {DisplayMainMenu}

This procedure displays the main menu. The user's selection is
returned to the main program in the global variable Option.

250 __ 13 A Look At An Application-The Checking and Savings Program ----

Notice the input verification done in the Repeat loop which uti­
lizes sets.

procedure CheckingMenu;
begin

Page;
Writeln('Checking System');
Writeln;
Writeln('l. Enter a Deposit');
Writeln('2. Enter a Check');
Writeln('3. Enter Interest');
Writeln('4. Checking Fees');
Writeln('5. Checking Report');
repeat

Writeln;
Write('Selection ');
Read(Option)

until Option in FiveSet;
end; {CheckingMenu}
procedure SavingsMenu;
begin

Page;
Writeln('Savings System');

. Writeln;
Writeln('l. Enter a Deposit');
Writeln('2. Enter a withdrawal');
Writeln('3. Enter Interest');
Writeln('4. Savings Report');
repeat

Write('Selection ');
Read(Option)

until Option in FourSet;
end; {SavingsMenu}

The procedures CheckingMenu and SavingsMenu are very sim­
ilar. They both display the possible account transaction and send
the selected option back to the main program in the global vari­
able Option.

procedure SavingsOptions;
begin

case Option of
1 :

---- 13 A Look At An Application-The Checking and Savings Program __ 251

begin
EnterDeposit;

2:

Balance.SavBal := Balance.SavBal +
Transaction .Arnau nt;

Write Transaction
end;

begin
Enterwithd rawa I;
Balance.SavBal : = Balance.SavBal­

Transaction.Amount;
Write Transaction

end;
3:

begin
Enter Interest;
Balance.SavBal : = Balance.SavBal +

Transaction .Amount;
Write Transaction

end;
4:

Pri ntSavi ngReport;
end {case}

end; {SavingsOptions}
procedure CheckingOptions;
begin

case Option of
1:

begin
EnterDeposit;
Balance.CheckBal := Balance.CheckBal +

Transaction.Amount;
Write Transaction

end;
2:

begin
EnterCheck;
Balance.CheckBal := Balance.CheckBal­

Transaction.Amount;
Write Transaction

end;
3:

252 __ 13 A Look At An Application-The Checking and Savings Program ----

begin
Enterlnterest;
Balance.CheckBal := Balance.CheckBal +

Transaction.Amount;
Write Transaction

end;
4:

begin
EnterFee;
Balance.CheckBal := Balance.CheckBal­

Transaction.Amount;
Write Transaction

end;
5:

PrintCheckingReport;
end {case}

end; { CheckingOptions}

The procedures SavingsOptions and CheckingOptions handle
the account transactions. The selection entered to CheckingMenu
or SavingsMenu is used as the selector in a Case statement. Sev­
eral more procedures are called which accept the transaction
data. The balance is then calculated and the transaction written
to the file.

Enter Deposit

Enterwithdrawal

Enterlnterest

Enter Fee
EnterCheck

Write Transaction
PrintCheckingReport

PrintSavingsAccount

Prompts the user for deposit
information.
Prompts the user for withdrawal
information.
Prompts the user for interest
information.
Prompts the user for fee information.
Prompts the user for check
information.
Write the transaction record to the file.
Prints the report for the checking
account.
Prints the report for the savings
account.

The next step in the development is to write this set of
procedures.

procedure EnterCheck;

---13 A Look At An Application-The Checking and Savings Program __ 253

begin
with Transaction do

begin
Page;
Writeln('Enter a Check');
Writeln;
Write('Check Number:');
Readln(CheckNumber);
Write('Payed to:');
Readln(PayTo);
GetAmount;
Write('Tax Deductible(Y/N):');
Read(TaxDeduct);
Writeln;
Code:= 2;
Write('Enter Date MM/DD/VY: ');
Readln(Date);

end
end; {EnterCheck}
procedure EnterDeposit;
begin

with Transaction do
begin

Page;
Writeln('Enter a Deposit to', Transaction.

CheckOrSave);
Writeln;
GetAmount;
Write('_Enter Date MM/DD/VY:');
Readln(Date);
Code:= 1;

end {with}
end; {EnterDeposit}
procedure Enterlnterest;
begin

Page;
Writeln(' Enter Interest to', Transaction.CheckOrSave);
Writeln;
with Transaction do

begin
GetAmount;
Code:= 3;

254 __ 13 A Look At An Application-The Checking and Savings Program ----

Write('Enter Date MM/DDNY: ');
Readln(Date);

end {with}
end; {Ehterlnterest}

procedure EnterFee;
begin

with Transaction do
begin

Page;
Writeln('Enter a Fee');
Writeln;
GetAmount;
Write('Enter Date MM/DD/YY: ');
Readln(Date);
Code:= 4;

end
end; {EnterFee}

procedure Enterlnterest;
begin

Page;
Writeln(' Enter Interest to', Transaction.CheckOrSave);
Writeln;
with Transaction do

begin
GetAmount;
Code:= 3;
Write('Enter Date MM/DDNY: ');
Readln(Date);

end {with}
end; {Enterlnterest}
procedure EnterFee;
begin

with Transaction do
begin

Page;
Writeln('Enter a Fee');
Writeln;
GetAmount;
Write('Enter Date MM/DD/YY: ');
Readln(Date);
Code:= 4;

end

___ .. ,_ 13 A Look At An Application-The Checking and Savings Program __ 255

end; {EnterFee}
procedure EnterWithdrawal;

. begin ·
with Transaction do

begin
Page;
Writeln('Enter a Withdrawal to ', CheckOrSave);
Writeln;
GetAmount;
Code:= 2;
Write('Enter Date MM/DDNY: ');
Readln(Date)

end {With}
end; {EnterWithd~a.wal}

All of these procedures are very similar prompting the user for
the transaction information and assigning it into the Transaction
record. Because of the similarity between the two accounts the
procedures EnterDeposit and Enterlnterest are used for both
checking and savings.

procedure PrintCheckingReport;
begin

PrinterMessage;
Writeln(Out, 'Checking Report');
Seek(TransFile, O);
while not (eof(TransFile)) do

begin
if TransFileA.CheckorSave = Checking then
with TransFile/\ do

begin
Write(Out, Date);
case code of

1:
Write(Out, 'Deposit');

2:
begin

Writeln(Out, 'Check number ',
CheckNumber,' ': 10,
'Deductible', TaxDeduct);

Write(Out, 'Payed to:', Pay TO)
end;

3:

256 __ 13 A Look At An Application-The Checking and Savings Program ----

Write(Out, 'Interest');
4:

Write(Out, 'Fee');
end; {case}
Writeln(Out, Amount : 7 : 2);

end; {with}
Get(TransFile)

end; {While}
Writeln(Out);
Writeln(Out, 'Balance ', Balance.CheckBal : 7 : 2)

end; {PrintCheckingReport}
procedure PrintSavingReport;
begin

PrinterMessage;
Writeln(Out, 'Savings Report');
Seek(TransFile, O);
while not (eof(transfile)) do

begin
if TransFileA.CheckorSave = Savings then

with TransFile/\ do
begin
Write(Out, Date);

case Code of
1:

Write(Out, 'Deposit');
2:

Write(Out, 'Withdrawal');
3:

Write(Out, 'Interest')
end; {case}
Writeln(Out, Amount: 7: 2);

end; {with}
Get(TransFile)
end; {While}

Writeln(Out);
Writeln(Out, 'Balance ', Balance.SavBal : 7 : 2)
end; {PrintSavingsReport}

Both of the report procedures read the transaction file starting
at the first record. A Seek is used to position the file pointer to
the zeroth record. Since the Seek reads the contents of the record
it points to, no Get is necessary. Subsequent records are read

---- 13 A look At An Application-The Checking and Savings Program __ 257

with a Get until the end of the file is reached. The CheckOrSave
field in the record is examined, if the record is the proper type of
transaction then the information is sent to the printer. A last set
of procedures are called by this set.
GetAmount Simply prompts the user for the amount of the

transaction. This is needed in enough places to
justify making it a procedure all its own.

PrinterMessage Tells the user to turn on the printer.

procedure GetAmount;
begin

Write('Amount: $');
Readln(Transaction.Amount)

end; {GetAmount}
procedure PrinterMessage;
begin

Page;
Writeln('Set up printer');
Writeln('Then press the mouse button');
repeat

{Do nothing loop}
until button

end; { PrinterMessage}

The only line of interest in these two procedures is the Repeat
loop in PrinterMessage. This loop is used to freeze the menu on
the screen until the user presses the mouse button. This causes the
built-in Boolean function Button to return True and the loop to
end.

Here is the entire program together.

program CheckingAndSavings;
type

TransType = (Checking, Savings);
TransRec = record

end;

CheckOrSave : TransType;
Code: 1..5;
CheckNumber : Integer;
PayTo: string[60];
Date : string[8];
Amount : Real;
TaxDeduct: Char;

258 __ 13 A Look At An Application-The Checking and Savings Program ----

var

BalanceRec = record
SavBal : Real;
CheckBal : Real

end;

Out: Text;
Transaction : TransRec;
Balance: BalanceRec;
FourSet, FiveSet: set of 1..10;
Option: Integer;
TransFile: file of TransRec;
BalanceFile : file of BalanceRec;
Stop: Boolean;
I: Integer;

procedure DisplayMainMenu;
begin.

Page;
Writeln('Checking and Savings System');
Writeln;
Writeln(' 1. Checking Transaction');
Writeln(' 2. Savings Transaction');
Writeln(' 3. Show Balances');
Writeln(' 4. Exit');
Writeln;
repeat

Write('Selection ');
Readln(Option);

until Option in FourSet;
end; {DisplayMainMenu}
procedure CheckingMenu;
begin

Page;
Writeln('Checking System'); '
Writeln;
Writeln('l. Enter a Deposit');
Writeln('2. Enter a Check');
Writeln('3. Enter Interest');
Writeln('4. Checking Fees');
Writeln('5. Checking Report');
repeat

Writeln;
Write('Selection ');

---13 A Look At An Application-The Checking and Savings Program __ 259

Read(Option)
until Option in FiveSet;

end; {CheckingMenu}
procedure SavingsMenu;
begin

Page;
Write I n('Savi ngs System');
Writeln;
Writeln('l. Enter a Deposit');
Writeln('2. Enter a Withdrawal');
Writeln('3. Enter Interest');
Writeln('4. Savings Report');
repeat

Write('Selection ');
Read(Option)

until Option in FourSet;
· end; {SavingsMenu}

procedure lnitRec;
begin

with Transaction do
begin

CheckNumber : = O;
PayTo := ";
Amount:= O;
TaxDeduct := ";
Date:=";

end
end;{lnitRec}
procedure Write Transaction;
begin

TransFile/\ : = Transaction;
Put(TransFile)

end; {WriteTransaction}
procedure GetAmount;
begin

Write('Amount: $');
Read I n(Tra nsaction .Amount)

end; {GetAmount}
procedure PrinterMessage;
begin

Page;
Writeln('Set up printer');

260 __ 13 A Look At An Application-The Checking and Savings Program ----

Writeln('Then press the mouse button');
repeat

{Do nothing loop}
until button

end; { PrinterMessage}
procedure ShowBalances;
begin

Page;
with Balance do

begin

end;

Writeln('Checking: ', CheckBal: 7: 2);
Writeln('Savings: ', SavBal: 7: 2);
Writeln;

Writeln('Hit the mouse button to continue');
repeat
until button

end;
procedure EnterCheck;
begin

with Transaction do
begin

Page;
Writeln('Enter a Check');
Writeln;
Write('Check Number:');
Read I n(CheckN umber);
Write('Payed to:');
Readln(PayTo);
GetAmount;
Write('Tax Deductible(Y/N):');
Read(TaxDeduct);
Writeln;
Code:= 2;
Write('Enter Date MM/DD/VY: ');
Readln(Date);

end
end; {EnterCheck}
procedure EnterDeposit;
begin .

with Transaction do
begin

---13 A Look At An Application-The Checking and Savings Program __ 261

Page;
Writeln('Enter a Deposit to ', Transaction.

CheckOrSave);
Writeln;
GetAmount;
Write('Enter Date MM/DDNY: ');
Readln(Date);
Code:= 1;

end {with}
end; {EnterDeposit}
procedure Enterlnterest;
begin

Page;
Writeln(' Enter Interest to', Transaction.CheckOrSave);
Writeln;
with Transaction do

begin
GetAmount;
Code:= 3;
Write('Enter Date MM/DDNY: ');
Readln(Date);

end {with}
end; {Enterlnterest}
procedure EnterFee;
begin

with Transaction do
begin

Page;
Writeln('Enter a Fee');
Writeln;
GetAmount;
Write('Enter Date MM/DDNY: ');
Readln(Date);
Code:= 4;

end
end; {EnterFee}
procedure EnterWithdrawal;
begin

with Transaction do
begin

Page;
Writeln('Enter a Withdrawal to ', CheckOrSave);

262 __ 13 A Look At An Application-The Checking and Savings Program ---

Writeln;
GetAmount;
Code:= 2;
Write('Enter Date M!IJl/DDNY: ');
Readln(Date)

end {With} ·
end; {EnterWithdrawal}
procedure PrintCheckingReport;
begin

PrinterMessage;
Writeln(Out, 'Checking Report');
Seek(TransFile, O);
while not (eof(TransFile)) do

begin
if TransFileA.CheckorSave = Checking then

with TransFile/\ do
begin

Write(Out, Date);
case code of

1 :
Write(Out, 'Deposit');
2:

begin
Writeln(Out, 'Check number', CheckNumber, '':

10, 'Deductible', TaxDeduct
Write(Out, 'Payed to:', PayTO)

end;
3:

Write(Out, 'lntE~rest ');
4:

Write(Out, 'Fee');.
end; {case}

Writeln(Out, Amount : 7 : 2);
end; {with}

Get{transFile)
end; {While}
Writeln(Out);
Writeln(Out, 'Balance ', Balance.CheckBal : 7 : 2)

end; {PrintCheckingReport}
procedure PrintSavingReport;
begin

PrinterMessage;

---- 13 A Look At An Application-The Checking and Savings Program __ 263

Writeln(Out, 'Savings Report');
Seek(TransFile, O);
while not (eof(transfile)) do

begin
if TransFile/\.CheckorSave = Savings then
with TransFile/\ do

begin
Write(Out, Date);
case Code of

1 :
Write(Out, 'Deposit');

2:
Write(Out, 'Withdrawal');

3:
Write(Out, 'Interest ')

end; {case}
Writeln(Out, Amount: 7: 2);

end; {with}
Get(TransFile)
end; {While}

Write I n(Out);
Writeln(Out, 'Balance ', Balance.SavBal : 7 : 2)

end; {PrintSavingsReport}
procedure SavingsOptions;
begin

case Option of
1:

2:

begin
EnterDeposit;
Balance.SavBal := Balance.SavBal +Transaction.

Amount;
Write Transaction

end;

begin
EnterWithdrawal;
Balance.SavBal := Balance.SavBal-Transaction.

Amount;
Write Transaction

end;
3:

begin

264 __ 13 A Look At An Application-The Checking and Savings Program ----

Enterlnterest;
Balance.SavBal := Balance.SavBal +Transaction.

Amount;
Write Transaction

end;
4:

Pri ntSavingReport;
end {case}

end; {SavingsOptions}
procedure CheckingOptions;
begin

case Option of
1:

begin
Enter Deposit;
Balance.CheckBal := Balance.CheckBal +

Transaction.Amount;
Write Transaction

·end;
2:

begin
EnterCheck;
Balance.CheckBal := Balance.CheckBal­

Transaction.Amount;
Write Transaction

end;
3:

begin
Enterlnterest;
Balance.CheckBal := Balance.CheckBal +

/Transaction.Amount;
Write Transaction

end;
4:

begin
EnterFee;
Balance.CheckBal := Balance.CheckBal­

T ra nsaction .Arnau nt;
Write Transaction

end;
5:

PrintCheckingReport;

---- 13 A Look At An Application-The Checking and Savings Program __ 265

end {case}
end;{CheckingOptions}
begin

Stop:= False;
FourSet := [l, 2, 3, 4];
FiveSet := [1, 2, 3, 4, 5];
Open(BalanceFile, 'Balance.Data');
Rewrite(out, 'Printer:');
if eof(BalanceFile) = True then

begin
Balance.SavBal := O;
Balance.CheckBal := O

end {Read Balance File}
else

Balance:= BalanceFile/\;
{OpenTransaction File}
Open(TransFile, 'Trans.data');
Seek(TransFile, Maxlnt); {move to last position in file}
repeat {main driver}

DisplayMainMenu;
lnitRec;
case option of

1:
begin

Transaction.CheckOrSave :=Checking;
CheckingMenu;
CheckingOptions

end;
2:

begin
SavingsMenu;
Transaction.CheckOrSave :=Savings;
SavingsOptions

end;
3:

ShowBalances;
4:

Stop : = True;
end;{case}

until Stop =True;
Close(TransFile);
Seek(BalanceFile, O);

266 __ 13 A Look At An Application-The Checking and Savings Program ----

BalanceFileA :=Balance;
Put(BalanceFile); {Replace Balance record in file}
Close(BalanceFile);

. end. {program}

The CheckingAndSavings program provides a strong frame­
work from which many features can be added by writing new
procedures. Some of the additions that you might consider are:

1. Adapt the report procedures to print only transactions
after a given date.

2. Add a field to the transaction record to note if a check has
cleared and then add a procedure to reconcile the checking
account.

3. Adapt the checking report to print out out tax deductible
expenses.

Appendices

A Selected Exercise Answers I 268
B Menu Summary I 270
C Documenting a Program I 275
D Sound and Music I 284
E Differences Between MacPascal and UCSD Pascal I 289
F MacPascal Reserved Words I 292
G MacPascal Syntax Diagrams I 293
H List of QuickDraw Routines I 308
I List of Sane Functions and Procedures I 314
J MacPascal Error Messages I 317
K Bibliography I 323
L The Macintosh Character Set I 325

267

A Selected Exercise
Answers

Chapter 4 (page 7 4)

1. a. True b. False c. False d. False e. False

2. a. False b. False c. True d. False e. True

4. a. 15 b. 724 c. 15 d. 1 e. 39

5. a. 1 1 b. 1
1 2 2
2 1 3
2 2 4
3 1 5
3 2 6

7
8
9

Chapter 6 (page 1 01)

f. True

f. 0

1. a. real b. real c. integer d. integer
3. a. (X * X) + Y b. (A * X) + B
4. a. type

BasketballPosition = (Guard,Forward,Center)

268

-------------A Selected Exercise Answers __ 269

Chapter 8 (page 149)

1. a. var lnts = array[2 .. 20] of integer;
b. var Float = array[-4 .. 50] of real;
c. var Boals = array[-100 .. 201] of boolean;

2. a. 61 b. 30 c. 33 d. 6

5. for i : = 1 to 5 do
for j : = 1 to 4 do

B[i,j] := -5;

Chapter 9 (page 180)

1. a. 5
b. 6

5
4
3

3. 78

4. 18

7. type MailingRec = record
Name= string[40];
Address = string[30];
City = string[lO];
State = string[2];
Zip = string[5]

end; { MailingRec }

11. a. [l,3,5,6,7,9) b. [] c. [l,3,5,7) d. [1,2)
e. ['A','E','I','O', 'U')

B Menu Summary

File Menu

The File menu contains options to save programs to the disk,
restore programs from the disk, and print programs.

New
Opens the Program window to allow you to start entering a

new program.

Open
Displays a dialog box that allows you to recall a program that

is already stored on the disk. A program residing on a different
disk can be recalled by ejecting the current disk and inserting the
new disk into the drive. A program is opened by double clicking
on its name or by selecting the mime and then clicking on the
Open button.

Close
Closes the Program window and erases its contents. If you

haven't saved the program you will be given a chance to do so.

Save

Saves your program on the disk under the name that it has
been previously given (the name that appears on the top of the
program window). If a program is new (named Untitled), a dia­
log box first asks for a name.

Save As . .•

Saves a new program with a name or saves an already named
program with a new name. It also allows you to eject the disk in

270

-------------------B Menu Summary __ 271

the disk drive so that you can save the program on a different
disk.

Revert
After making changes to a program, Revert allows you to

return to the unchanged version. A dialog box double checks that
you really want to Revert.

Page Setup
Let's you select the siZe paper you are going to use in the

printer.

Print . .
Displays a dialog box that allows you to print the text of your

program.

Quit
Returns you to the Macintosh desktop. If you have not saved

your program you will be given an opportunity to do so.

Edit Menu

The Edit menu contains ·options that allow you to make
changes to the text of your program. Selections in this menu are
only available if the program, Observe or Instant windows are
active.

Cut
Cuts any selected text out of your program and places it into

the Clipboard. The Clipboard is a temporary storage area that
allows you to pass information between programs.

Copy
Does the same thing as Cut, except it does not remove the

selected text from the current program.

Paste
Inserts a copy of the Clipboard at the insertion point in your

program or replaces the selected text with it.

Clear
Erases any selected text.

Select All
Automatically selects all text in the program window.

272 __ B Menu Summary-------------------

Search Menu

The Search menu contains options to easily locate and change
text in the program window.

Find
Looks for the text indicated with the What to Find command.

The search starts at the current insertion point or at the end of the
currently selected text. If the target text is found it is selected.

Replace
Replaces the currently selected text with the text indicated in

the What to Find command.

Everywhere
Performs a Find followed . by a Replace throughout the pro­

gram, changing all occurrences of the indicated text.

What to Find
Displays a dialog box that lets you indicate what text will be

looked for by the Find and Everywhere commands. It also lets
you indicate what the replacement text will be for a Replace or
Everywhere command.

Run Menu

The Run menu allows you to select different options for execut­
ing your program.

Check
Checks the program in the program window for proper Pascal

syntax, but doesn't execute the program. You may want to do
this occasionally as you enter a large program to expedite the
debugging process. Check is automatically performed by any
command that executes your program.

Reset
Causes a halted program to return to the pre-execution state.

The Finger and the value of all variables are destroyed. The Text
and Drawing windows are cleared.

Go
Executes your program from the start or resumes execution of

your program from where it was halted. A program executed

------------------- B Menu Summary __ 273

with Go will continue to run until either a break point set with
Stops-In is hit or the end of the program is reached.

Go-Go
Similar to Go except that when a break point is reached the

program only is halted briefly to update the Observe window and
then continues executing.

Step
Causes execution of your program to start or executes the next

line of your halted program. The Finger is displayed next to the
next line to be executed. Repeated use of Step can be used to
watch the sequence in which program statements execute.

Step-Step
A cross between Step and Go. The program steps through the

program automatically but does it slow enough to watch the Fin­
ger move. After each instruction the Observe window (if it is
present) is updated.

Stops-In/Stops-Out
Allows you to set break points (little Stop signs) in your pro­

gram or displays Stops previously set. When Stops-In is selected
the menu choice changes to Stops-Out. Selecting it will cause the
Stops to disappear from your program.

Windows Menu

Choosing any menu option except Type Size causes the win­
dow of the same name to be opened (if it is closed) and become
the active window.

Untitled
Opens the Program window. This menu choice will actually

contain the name of the program window. It is called Untitled if
the program window has not been saved with a name.

Instant
Causes the Instant window to become active. The Instant win­

dow can be used to enter and immediately execute any Pascal
statement on an ad hoc basis. This is useful while debugging since
it gives you an opportunity to change the value of a variable
while the program is halted.

274 __ B Menu Summary-------------------

Observe
Causes the Observe window to become active. The Observe

window can be used to watch the values of a variable or expres­
s!on as a program executes.

Text
Causes the Text window to become the active window. The

Text window is where output to the standard text file is
displayed.

Drawing
Causes the Drawing window to become the active window.

The Drawing window is where graphics drawn by the Quickdraw
routines appear.

Clipboard
Causes the Clipboard to become the active window giving you

a chance to view what it contains.

Type Size
Displays a dialog box that allows you to select the size of the

characters displayed on the screen.

Pause
This menu only appears while a program is executing. Holding

down the mouse button on Pause stops execution until the button
is released. If you choose Halt from the menu, your program will
halt until you start it again with one of the choices from the Run
menu.

C Documenting a
Program

The following program is presented for the purpose of provid­
ing a model for documenting a program. This particular program
is only an example and should not be taken as the only way to
document a program. The amount and detail of documentation
that you should use in your program will depend on your appli­
cation, it's length, and complexity.

program GradeBook;
{**}
{ * Created 117 /84 Programmer: Alan Zeldin *}
{* *}
{* *}
{ * Functional Description: *}
{ * GradeBook maintains a file containing student *}
{ * names and grades. Weighted averages are computed *}
{ * when student information is displayed. Students *}
{ * can be added or deleted from the file and student *}
{ * grade information can be modified. *}
{* *}
{ * Implementation Description: *}
{ * Information is maintained in a file of records *}
{ * that contain data about each student. To find any *}
{ * specific record, a sequential search of the file *}
{ * is performed. *}
{* *}

275

276 __ C Documenting a Program--------------

{ * Implementation Restrictions: (Bugs) *}
{ * Only the first student in the file with a given *}
{ * name is accessible to the user. *}
{* . *}
{**}

const
FileName ='STUDENTS'; {Name of file students are

stored in}
FileSize = 50;
NumberExams = 6;
Empty = "; { Null string in LastName marks free

record}
type

Grades = array(l..NumberExams] of integer;
NameType = string[15];
StudentType = record

var

LastName: NameType;
FirstName : NameType;
Exam : Grades;

end;

Choice : Char;
{ Weight of each exam in average }

Weight : array(l..NumberExams] of Real;
Student : file of StudentType;
First, Last : Name Type; { Name of current Student }
Location: Integer; {Current location in Student file}
TextWindow: Rect; { Hold dimensions of text

window}

procedure lnitScreen;
{**}
{ * . Set up the text window for program output. *}
{**}

begin
HideAll;
SetRect(TextWindow, 40, 40, 400, 300);
SetT extRect(TextWindow);
Show Text

end;

---------------C Documenting a Program __ 277

procedure Menu;
{**}
{ * Display all the program's functions and prompts the •}
{ * user to choose the desired function. If an invalid *}
{ * choice is made the computer beeps and waits for a *}
{ • a valid choice *}
{**}

begin { Menu }
Page(output);
Writeln('l. Modify a Student');
Writeln('2. Add a Student');
Writeln('3. Delete a Student');
Writeln('O. Quit');
Writeln;
Write(' Please Choose > ');
Read(Choice);
while not (Choice in ['O' .. '4']) do

begin { Not a valid Choice }
SysBeep(5);
Read(Choice)

end
end; {Menu}

procedure lnitFile;
{**}
{ • Open Student file if it exists else create the file *}
{**}

var
Count, Index: integer;

begin { lnitFile}
Open(Student, FileName);
if EOF(Student) then {file doesn't exist}

begin
{ Write FileSize empty records into the file }

for Count:= 0 to FileSize do
begin

Seek(Student, count);
{ Initialize all records in file to be empty }

with Student/\ do

278 __ C Documenting a Program--------------

begin
FirstName : = Empty;
LastName : = Empty;
for Index:= 1 to NumberExams do

Exam[lndex] := 0
end;

Put(Student)
end;

Close(Student);
Open(Student, FileName)

end
end; { lnitFile }

procedure SetWeights;
begin

Weight[!]:= 0.15;
Weight[2] := 0.15;
Weight[3] : = 0.20;
Weight[4] := 0.15;
Weight[5] := 0.15;
Weight[6] : = 0.20

end; { SetWeights }

procedure GetName;

{ 153 of Grade }
{ 153 of Grade }
{ 203 of Grade }
{ 153 of Grade}
{ 153 of Grade }
{ 203 of Grade }

{**}
{ * Prompt user to enter name of a Student *}
{**}

begin { GetName }
Write(' Enter Last Name > ');
Readln(Last);
Write(' Enter First Name > ');
Readln(First)

end; { GetName }

function FindStudent (First, Last : NameType;
var Count: Integer): boolean;

{**}
{ * Returns true if the name is found in the file. *}
{ * Returns false if the name is not found. If the name *} ·
{ * was found , Count contains its position in the file *}
{**}

--------------C Documenting a Program __ 279

var
Found: Boolean;

begin { FindStudent }
Count:= O;
Found:= False;
Seek(Student, Count);

{Sequential Search of file for matching name}
while (not eof(Student)) and (not Found) do

begin
with Student/\ do

end;

if (FirstName = First) and (LastName ;,,,. Last) then
Found:= True

else
begin

Count:= Count+ 1;
Seek(Student, Count)

end

if not found then
begin

Writeln(First, ' ', Last, ' was not found. ');
Writeln('Press <Return> to continue.');
Read In

end;
FindStudent := Found

end; { FindStudent }

procedure DisplayStudentl nfo;
{**}
{ * Display the contents of the current student record *}
{ * which is contained in Student/\. Calculate the average *}
{**}

var
Index : Integer;
Average: Real;

begin { DisplayStudentlnfo}
with Student/\ do

begin
Page(output);
Writeln(' Last Name : ', LastName);
Writeln(' First Name:', FirstName);

280 __ C Documenting a Program--------------

Writeln;
Writeln('l. Examl : ', Exam[l]);
Writeln('2. Exam2 : ', Exam[2]);
Writeln('3. Final : ', Exam[3]);
Writeln('4. Project!:', Exam[4]);
Writeln('5. Project2: ', Exam[5]);
Writeln('6. Project3: ', Exam[6]);
Average:= O;
for Index:= 1 to NumberExams do

Average:= Average+ (Weight[lndex] *
Exam[Index]);

Writeln(' Average : ', Round(Average))
end

end; { DisplayStudentlnfo}

procedure Modify (Location: Integer);
{**}
{ * Allows user to modify exam grades of the current *}
{ * student. *}
{**}

var
Choice: Char;
Value : Integer;

begin { Modify }
Seek(Student, Location);
repeat

DisplayStudentl nfo;
Writeln;
Write('Enter Line to Change or Oto Quit > ');
Read(Choice);
while not (Choice in ['O' .. '6']) do

begin {Not a valid Choice}
Sys8eep(5);
Read(Choice)

end;
Writeln;
if Choice < > 'O' then

begin
Write('Enter value > ');
Readln(Value);

{ Convert choice into equiv integer for use as index }
StudentA.Exam[Ord(Choice)- Ord('O')] :=Value;

--------------C Documenting a Program __ 281

end;
until Choice = 'O';
Put(Student)

end; { Modify }

procedure AddStudent (First, Last: NameType);
{**}
{ * Adds the Student whose name is passed in to the file *}
{**}

var
Added: Boolean;
Count : Integer;

begin { AddStudent }
{ Look for a record with no last name}

Added:= False;
Count:= O;
Seek(Student, Count);

{ Sequential Search of file for free record }
while (not EOF(Student)) and (not Added) do

if StudentA.LastName = Empty then
begin {found an empty spot}

Seek(Student, Count); .
StudentA.LastName := Last;
StudentA.FirstName := First;
Put(Student);
Added:= True

end
else

begin { look at next spot }
Count:= Count+ 1;
Seek(Student, Count)

end;
if not Added then

Writeln('File is full, Press <Return> to continue')
end; { AddStudent }

procedure Delete (Location : integer);
{**}
{ * Deletes the student at the place in the file specified *}
{ * by Location by putting.an empty string into that *}
{ * record. The user is asked to verify the deletion. *}
{**}

282 __ C Documenting a Program-------------

var
Which : Char;

begin { Delete }
Seek(Student, Location);
with StudentA do

Writeln(FirstName,' ', LastName);
Write(' Delete (Y/N) > ');
Read(Which);
if (Which = 'Y') or (Which = 'y') then

begin
Seek(Student, Location);
StudentA.LastName := Empty;
StudentA.FirstName : = Empty;
Put(Student);

end
end; { Delete}

begin { GradeBook }
lnitScreen;
lnitFile; { file doesnt already exits, create it }
SetWeights;
repeat .

Menu; {Show the choices}
case Choice of

'O':
; { Do Nothing }

'l': {Modify a Student}
begin

Page(output);
GetName;
if FindStudent(First, Last, Location) then

Modify(Location)
end;

'2' : { Add a Student }
begin

Page(output);
Get Name;
AddStudent(First, Last)

end;

-------------C Documenting a Program __ 283

'3': {Delete a Student}
begin

Page{ output);
GetName;
if FindStudent{First, Last, Location) then

Delete{Location)
end

end {case}
until Choice= 'O';
Close{Student)

end. { GradeBook }

D Sound and Music

MacPascal provides the ability to exploit the Macintosh's built
in music synthesizer. The MacPascal's Note procedure is used to
produce tones through the Macintosh's built-in speaker. The pro­
cedure can be used for producing a simple beep to alert the user
of a program, or for producing complex musical passages. The
form for the Note procedure is:

Note(Frequency, Amplitude, Duration);

Frequency is the frequency or pitch of the tone to be produced
in Hertz (Cycles per second). Frequency is a longint type. Ampli­
tude is an integer type that determines how loud the sound to be
produced is. The value for Amplitude can range from 0, which is
silent, to 255, the loudest volume the Macintosh can produce.
Duration is an integer that. specifies the length of time a Note
should sound in 60ths of a second. The following.statement will
sound the Note middle C for 1 second.

Note(256,200,60)

Middle Chas the frequency 256Hz and the Note sounds for 60 *
1/60or1 second.

The rest of this appendix on sound goes into some technical
aspects of music and may be omitted by those not interested in
producing music.

Musicians usually don't think of a tone's pitch in terms of its
frequency. Instead they think of a tone's pitch in terms of notes
on a scale. Most music works with a system that divides each
octave into twelve equal parts (equal temperament). Two tones
that are an octave apart have the same fundamental quality but
at a different pitch. If Note X is exactly one octave higher than

284

------------------D Sound and Music __ 285

Note Y, then the frequency of Note X will be exactly double that
of Note Y. Let's look at a simple program that will play the Note
C in three octaves.

program OctaveDemo;
var
I: Integer;
Pitch : Integer;

begin
Pitch:= 256 {Middle C}
for I : = 1 to 3 do

begin
Note(Pitch,200,60);
Pitch : = Pitch * 2

end
end.

Let us denote middle C as C, the Note one octave above middle
C as Cl, the Note two octaves above middle C as C2, and so
forth. Notice that the distance in terms of frequency from middle
C to Cl is (512 - 256) or 256Hz. The distance in hertz from the Cl
to C2 is (1024 - 512) or 512Hz. The distance between different
octaves in hertz changes as the frequency gets higher. Therefore
we can not break up an octave into equal pieces by simply divid­
ing the octave by the number of pieces. If we break an octave up
into one equally spaced tone, we simply multiply by 2 to get to
the next octave. If we break an octave into 2 equally spaced
tones, we would multiply by sqrt(2) or 2112 to get halfway to the
next octave and by sqrt(2) or 2112 again to get all the way to the
next octave. If we break up an octave into 3 equally spaced tones
we would multiply by the cubed root of 2 or 2113 to get one third
of the way to the next octave and multiply again by 2113 for each
additional third of an octave. In a similar fashion, we could break
an octave into twelve equally spaced tones by multiplying by
21112 to get from each tone to the next.

To multiply by 21112 we need to use the XpwrY function. This
function has the form

XpwrY(X,Y)

This function returns the value XY where X, Y and the value
returned are all of type Extended (a high precision version of the
real data type). In order to use this function and other special
arithmetic functions you will need to use the SANE unit. For

286 __ D Sound and Music------------------

more information on the SANE (Standard Apple Numeric Envi­
ronment) unit refer to Appendix D of the Macintosh Pascal Tech­
nical Appendix manual). To use the SANE unit use the following
statement after the program statement:

uses
SANE;

The program T ones12 will produce all twelve tones for the
octave starting at middle C. Notice that the frequency of the tone
is stored in a real variable and rounded only when it is. used to
minimize rounding errors.

program Tones12;
uses

SANE;
var

Tone: Real;
Counter: Integer;

begin
Tone:= 256; {pitch of middle C}
for counter:= 1to13 do

begin
Note(Round(Tone),200,30);
Tone:= Round(Rone * XpwrY(2,l/12)) {calculate

next tone}
end

end.

The following program illustrates how you can use the Note
procedure to produce actual music. In this program we use a two
dimensional array to store the pitch for each tone in the scale.
The pitch values for every tone are calculated and stored in an
array before the music begins playing in order to avoid the delay
of calculating each new Note as the music is playing. This pro­
gram uses constants and the user defined type NoteType to make
entering the pitch and durations easy and meanjngful.

program SoundDemo;
uses·

SANE;
const

EN= 6;
QN = 12;

{Eighth Note}
{ Quarter Note }

--------------D Sound and Music __ 287

HN = 24;
WN = 48;
DEN= 9;
DQN = 18;
DHN = 36; ·
OWN= 72;

type

{Half Note}
{ Whole Note }
{ Dotted Eighth Note }
{Dotted Quarter Note}
{Dotted Half Note}
{ Dotted Whole Note }

NoteType = (A, Bb, B, C, Cx, D, Eb, E, F, Fx, G, Ab);
OctaveType = 1..5;
Frequency= Longlnt;

var
Notes: array[0 .. 11, OctaveType] of Longint;
NoteCounter: Integer;{ NoteType}
OctaveCounter: OctaveType;
SeedTone, Next : Real;

begin
Next : = XpwrY(2, 1 / 12); { twelv'th root of 2 }
SeedTone := 110.0; {3rd A below middle C}

{ Set up an array containing all the tones frequency }
for OctaveCounter : = 1 to 5 do
for NoteCounter := Ord(A) to Ord(Ab) do

begin
Notes[NoteCou nter][OctaveCou nter] : = Round(SeedT one);
SeedTone := SeedTone *Next {calculate next frequency}

end;
{ play the tune Beethoven's Ninth }

Note(Notes[Ord(A), 3], 150, QN);
Note(Notes[Ord(A), 3], 150, QN);
Note(Notes[Ord(Bb), 3], 150, QN);
Note(Notes[Ord(C), 3], 150, QN);
Note(Notes[Ord(C), 3], 150, QN);
Note(Notes[Ord(Bb), 3], 150, QN);
Note(Notes[Ord(A), 3], 150, QN);
Note(Notes[Ord(G), 2], 150, QN);
Note(Notes[Ord(F), 2], 150, QN);
Note(Notes[Ord(F), 2], 150, QN);
Note(Notes[Ord(G), 2], 150, QN);
Note(Notes[Ord(A), 3], 150, QN);
Note(Notes[Ord(A), 3], 150, DQN);
Note(Notes[Ord(G), 2], 150, DEN);
Note(Notes[Ord(G), 2], 150, HN);

288 __ D Sound and Music _______________ _

Note(Notes[Ord(A), 3], 150, QN);
Note(Notes[Ord(A), 3], 150, QN);
Note(Notes[Ord(Bb), 3], 150, QN);
Note(Notes[Ord(C), 3], 150, QN);
Note(Notes[Ord(C), 3], 150, QN);
Note(Notes[Ord(Bb), 3], 150, QN);
Note(Notes[Ord(A), 3], 150, QN);
Note(Notes[Ord(G), 2], 150, QN);
Note(Notes[Ord(F), 2], 150, QN);
Note(Notes[Ord(F), 2], 150, QN);
Note(Notes[Ord(G), 2], 150, QN);
Note(Notes[Ord(A), 3], 150, QN);
Note(Notes[Ord(G), 2], 150, DQN);
Note(Notes[Ord(F), 2], 150, DEN);
Note(Notes[Ord(F), 2], 150, HN);

end.

Enter and run the SoundDemo program to hear Beethoven's
Ninth Symphony. To play other melodies, simply replace the
parameters to the Note procedure with those for your melody.

There are many possibilities for the enhancement of the
SoundDemo program. You could read in a tune into an array
from a file containing pitch, amplitude, and duration informa­
tion. You could create a program to edit such a file using
QuickDraw graphics to represent standard musical notation on
the musical staff. MacPascal provides the capabilities, you must
supply the imagination.

E Differences Between
MacPascal and UCSD
Pascal

A programmer experienced in using UCSD Pascal will find lit­
tle difficulty in programming with MacPascal. MacPascal has
many similarities with UCSD Pascal and only a few minor differ­
ences. This Appendix will summarize them.

Data Types

Strings

The UCSD and MacPascal type LONGINT are not the same.
The UCSD LONGINT is a BCD representation of an integer for
decimal arithmetic and is similar to the MacPascal real type
COMPUTATIONAL. UCSD has no equivalent to the MacPascal
real types DOUBLE and EXTENDED.

String handling is virtually the same in both systems. The
MacPascal default string size is 255 rather than 80. All the stand­
ard functions and procedures are the same. MacPascal has added
two procedures, Include and Omit. MacPascal does not support
turning off range checking nor any other UCSD compiler switch.

Case Statement

MacPascal has an Otherwise clause in the Case statement.
UCSD Pascal does not.

289

290 __ E Differences Between MacPascal and UCSD Pascal ---------

User-Defined Types

Files

MacPascal allows the reading and writing of the values of a
user-defined type. UCSD Pascal permits only the Ords of user­
defined values to be read or written.

There are significant differences in file handling between the
two systems. MacPascal tries to implement file handling more
consistent with the original Pascal definition. In MacPascal there
is a sharp distinction between sequential and random files, in
UCSD Pascal there is not. A MacPascal sequential file can be
open only to read or write. No mixed operations are allowed. To
read then write to a sequential file the file has to be opened for
reading, closed, and then reopened for writing. Here is a run­
down on the differences in the file handling procedures.

Reset Used in MacPascal to open a sequential file for read only

Rewrite Used in MacPascal to open a sequential file for write
only.

Open Used in MacPascal to open a random file.

Close Same as in UCSD Pascal

Seek Seek, in MacPascal, can only be used with a file opened
for random access. Seek always performs a Get.

Get Same in both systems.

Put Same in both systems.

Miscellaneous

In UCSD Pascal a carriage return sets EOLN to be true but
returns the same ASCII code as a space (32). In MacPascal the
ASCII code returned is 13. MacPascal automatically formats a
program as it is entered, UCSD doesn't.

---------E Differences Between MacPascal and UCSD Pascal __ 291

Implementation

UCSD Pascal utilizes an editor, compiler, linker, and inter­
preter. A program is first edited, it is then compiled, and· linked
into an intermediate form known as P-code. The P-code is run
with the use of a P-code interpreter. MacPascal is a totally inter­
active system reminiscent of interpreted BASIC. All program
editing and execution is performed by the MacPascal interpreter.

F MacPascal Reserved
Words

Reserved Words

and
array
begin
case
const
div
do
down to
else
end
file
for
function

goto
if
in
label
mod
nil
not
of
or
otherwise
packed
procedure
program

Single Character Special Symbols

$()*+,-./:; < = >@[]/\{}

Character Pair Special Symbols

< > < = > = := .. (* *) (..)

292

record
repeat
set
string
then
to
type
until
uses
var
while
with

G M acP asca I· Syntax
Diagrams
ARGUMENT LIST

........
/" ' I""

I\. .. --
~ •
\.. ..,

\..

ARRAY TYPE

array

expression

variable

function
identifier

procedure
identifier

.

simple
type

293

...

'
'
~

~

'
...I

type

294 __ G MacPascal Syntax Diagrams-----------------

ASSIGNMENT STATEMENT

variable

function
identifier

CASE STATEMENT

case

constant

COMPOUND STATEMENT

begin

expression

expression

statement end

statement end

----------------G MacPascal Syntax Diagrams __ 295

CONSTANT

NIL

CONSTANT DECLARATION

constant
identifier

unsigned
number

---llJi..il ;ooom;,. ~ """'"'

296 __ G MacPascal Syntax Diagrams----------------

DECLARATIONS

label
statement

label*

con st
constant

1--.,...--11~ declaration

type

var

function
declaration

procedure
declaration

type
declarations

variable
declarations

*statement label is one-to-four-digit unsigned integer

DIGIT

----------------G MacPascal Syntax Diagrams __ 297

EXPRESSION

simple
expression

FACTOR

function
identifier

unsigned
constant*

variable

factor

set
expression

argument
list

simple
expression

*An unsigned constant is a constant without a leading sign.

298 __ G MacPascal Syntax Diagrams-----------------

FIELD LIST

FILE TYPE

FOR STATEMENT

for

file of

identifier
list

variable
1dent1f1er

identifier

type
identifier

type

expression

expression

type

variant
list

to

down to

statement

----------------- G MacPascal Syntax Diagrams __ 299

FUNCTION DECLARATION

function

parameter
list

GOTO STATEMENT

identifier

declarations

type
identifier

forward

compound
statement

~(, ___ go_t_o __ ~)r---11~~1~-s-t-~-~-bm_e~_n_t__.1---~~·

IDENTIFIER

letter

IDENTIFIER LIST

(~1...___;doot_____,ifi,__er ~J
o~- .

300 __ G MacPascal Syntax Diagrams----------------

IF STATEMENT

expression then statement

else statement

IF THEN STATEMENT

expression then statement

IF THEN ELSE STATEMENT

expression then statement

else statement

----------------G MacPascal Syntax Diagrams __ 301

POINTER TYPE

PROCEDURE DECLARATION

procedure

PROCEDURE STATEMENT

PROGRAM

procedure
identifier

RECORD TYPE

identifier
parameter

list

declarations compound
statement

forward

argument
list

identifier
list

compound
statement

----1i(record)1---• ... ~\ .. __ 1_:~_~_: _ __.---•-(end)1-----...

302 __ G MacPascal Syntax Diagrams-----------------

REPEAT STATEMENT

repeat statement until expression

SCALAR TYPE

-----~~(I)r--..... ~~1~-id_e_~s_t~-ie_r__,i----~~~r----1~•

SET EXPRESSION

expression

SET TYPE

~(___ s_e_1_o_t ___)r-~~~1~_s_~_;P_~_1e _ _:----~~

SIGNED INTEGER

unsigned
integer

----------------~ G MacPascal Syntax Diagrams __ 303

SIMPLE EXPRESSION

term

term

SIMPLE TYPE

..... type

"
.... identifier "I

" subrange
.... type

"
" .. scalar ... type "I

' ... pointer ' type ...

304 _ G MacPascal Syntax Diagrams----------------

STATEMENT

compound
statement

statement
label assignment

statement

while
statement

for
statement

if
statement

procedure
statement

repeat
statement

goto
statement

case
statement

with
statement

STATEMENT LABEL one-to-four-digit unsigned integer

SUBRANGE TYPE

-----1•~1 ro""'"' ~ """'"'

----------------- G MacPascal Syntax Diagrams __ 305

TERM

factor

TYPE

packed

TYPE DECLARATION

factor

simple
type

array
type

record
type

set
type

file
type

~---~ ... ~1 -id_e_n-ti-fie_r__,~---t-y-pe-~1--~~~-111J1ii.~

UNSIGNED INTEGER

.... I digit ...
(J ~

306 __ G MacPascal Syntax Diagrams----------------

UNSIGNED NUMBER

VARIABLE

unsigned
integer

variable
identifier

field
identifier

VARIABLE DECLARATION

unsigned
integer

expression

field
identifier

unsigned
integer

----------------G MacPascal Syntax Diagrams __ 307

VARIANT LIST

constant

WHILE STATEMENT

while

WITH STATEMENT

with

expression

variable do

field
list

statement

statement

H List of QuickDraw
Routines

This appendix lists the routines contained in the QuickDrawl
and QuickDraw2 units. The numbers that appear in brackets
indicate which QuickDraw unit the routine is part of.

Graf Port Routines

{2} procedure lnitGraf (GlobalPtr : QDPtr);
{2} procedure OpenPort (Port: GrafPtr);
{2} procedure lnitPort (Port : GrafPtr);
{2} procedure ClosePort (Port: GrafPtr);
{2} procedure SetPort (Port : GrafPtr);
{2} procedure GetPort (var Port: GrafPtr);
{2} procedure GrafDevice (Device: Integer);
{2} procedure SetPortbits (Bm : BitMap);
{2} procedure PortSize (Width, Height: Integer);
{2} procedure MovePortTo (LeftGlobal, TopGlobal :

Integer);
{l} procedure SetOrigin (H, V: Integer);
{2} procedure SetClip (Rgn : RgnHandle);
{2} procedure GetClip (Rgn : RgnHandle);
{l} procedure ClipRect (R: Rect);
{ 1} procedure BackPat (Pat : Pattern);

Cursor Routines

{1} procedure lnitCursor;
{ 1} procedure SetCursor (Crsr: Cursor);

308

-------------H List of QuickDraw Routines __ 309

{ 1} procedure HideCursor;
{1} procedure ShowCursor;
{ 1} procedure ObscureCursor;

Line Routines

{ 1} procedure Hide Pen;
{1} procedure ShowPen;
{ 1} procedure Get Pen (var Pt : Point);
{ 1} procedure GetPenState (var PnState : PenState);
{ 1} procedure SetPenState (PnState : PenState);
{1} procedure PenSize (Width, Height: Integer);
{1} procedure PenMode (Mode: Integer);
{ 1} procedure Pen Pat (Pat : Pattern);
{l} procedure PenNormal;
{l} procedure MoveTo (H, Vv: Integer);
{1} procedure Move (Dh, Dv: Integer);
{1} procedure LineTo (H, V: Integer);
{1} procedure Line (Dh, Dv: Integer);

Text Routines

{ 1} procedure Text Font (Font : Integer);
{ 1} procedure TextFace (Face : Style);
{l} procedure TextMode (Mode: Integer);
{ 1} procedure TextSize (Size : Integer);
{ 1} procedure SpaceExtra (Extra : Long Int);
{ 1} procedure DrawChaw (Ch : Char);
{ 1} procedure Drawstring (S : Str255);
{1} procedure DrawText (TextBuf: QDPtr; FirstByte,

ByteCount : Integer);
{ 1} function CharWidth (Ch : Char) : Integer;
{ 1} function StringWidth (S : Str255) : Integer;
{1} function TextWidth (TextBuf: QDptr; FirstByte,

ByteCount: Integer);
{ 1} procedure GetFontlnfo (var Info : Fontinfo);

Point Calculations

{ 1} procedure Addpt (sSrc : Point; var Ost : Point);
{1} procedure SubPt (Src: Point; var Ost: Point);

310 __ H List of QuickDraw Routines-------------

{1} procedure SetPt (var Pt: Point; H, V: Integer);
{1} function EqualPt (PU, Pt2: Point): Boolean;
{l} procedure ScalePt (var Pt: Point; FromRect, ToRect:

Rect);
{1} procedure MapPt (var Pt: Point; FromRect, ToRect:

Rect);
{1} procedure LocalToGlobal (var Pt: Point);
{1} procedure GlobalTolocal (var Pt: Point);

Rectangle Routines

{ 1} procedure FrameRect (R : Rect);
{1} procedure PaintRect (R: Rect);
{ 1} procedure EraseRect (R : Rect);
{ 1} procedure lnvertRect (R : Rect);
{ 1} procedure FillRect (R : Rect; Pat : Pattern);

RoundRect Routines

{l} procedure FrameRoundRect (R: Rect; OvWd, OvHt:
Integer);

{1} procedure PaintRoundRect (R: Rect; OvWd, OvHt:
Integer);

{1} procedure EraseRoundRect (R: Rect; OvWd, OvHt:
Integer);

{1} procedure lnvertRoundRect (R: Rect; OvWd, OvHt:
Integer);

{1} procedure FillRoundRect (R: Rect; OvWd, OvHt:
Integer; Pat : Pattern);

Oval Routines

{ 1} procedure FrameOval (R : Rect);
{l} procedure PaintOval (R: Rect);
{1} procedure EraseOval (R: Rect);
{1} procedure lnvertOval (R: Rect);
{ 1} procedure FillOval (R : Rect; Pat : Pattern);

Arc Routines

{ 1} procedure FrameArc (R : Rect; StartAngle, ArcAngle :
Integer);

-------------H List of QuickDraw Routines __ 311

{ 1} procedure PaintArc (R : Rect; StartAngle, ArcAngle :
Integer);

{ 1} procedure EraseArc (R : Rect; StartAngle, ArcAngle :
Integer);

{l} procedure lnvertArc (R: Rect; StartAngle, ArcAngle:
Integer);

{ 1} procedure FillArc (R : Rect; StartAngle, ArcAngle :
Integer; Pat : Pattern);

{l} procedure PtToAngle (R: Rect; Pt: Point; var Angle:
Integer);

Polygon Routines

{2} function OpenPoly: PolyHandle;
{2} procedure ClosePoly;
{2} procedure Kill Poly (Poly: PolyHandle);
{2} procedure OffsetPoly (Poly: PolyHandle; Dh, Dv:

Integer);
{2} procedure MapPoly (Poly: PolyHandle;

FromRect,TtoRect : Rect);
{2} procedure FramePoly (Poly : PolyHandle);
{2} procedure PaintPoly (Poly : PolyHandle);
{2} procedure ErasePoly (Poly : PolyHandle);
{2} procedure lnvertPoly (Poly: PolyHandle);
{2} procedure Fill Poly (Poly: PolyHandle; Pat: Pattern);

Region Calculations

{2} function NewRgn : RgnHandle;
{2} procedure DisposeRgn (Rgn : RgnHandle);
{2} procedure CopyRgn (SrcRgn, dstRgn : RgnHandle);
{2} procedure SetEmptyRgn (Rgn : RgnHandle);
{2} procedure SetRectRgn (Rgn : RgnHandle; Left, Top,

Right, Bottom : Integer);
{2} procedure RectRgn (Rgn : RgnHandle; R : Rect);
{2} procedure OpenRgn;
{2} procedure CloseRgn (DstRgn : RgnHandle);
{2} procedure OffsetRgn (Rgn : RgnHandle; Dh, Dv:

Integer);
{2} procedure MapRgn (Rgn : RgnHandle; FromRect,

T oRect : Rect);

312 __ H List of QuickDraw Routines-------------

{2} procedure lnsetRgn (Rgn : RgnHandle; Dh, Dv:
Integer);

{2} procedure SectRgn (SrcRgnA, SrcRgnB, DstRgn :
RgnHandle);

{2} procedure UnionRgn (SrcRgnA, SrcRgnB, DstRgn :
RgnHandle);

{2} procedure DiffRgn (SrcRgnA, SrcRgnB, DstRgn :
RgnHandle);

{2} procedure XorRgn (SrcRgnA, SrcRgnB, DstRgn :
RgnHandle);

{2} function EqualRgn (RgnA, RgnB: RgnHandle): Boolean;
{2} function EmptyRgn (Rgn : RgnHandle) : Boolean;
{2} function PtlnRgn (Pt: Point; Rgn : RgnHandle):

Boolean;
{2} function RectlnRgn (R: Rect; Rgn : RgnHandle):

Boolean;

Graphical Operations on Regions

{2} procedure FrameRgn (Rgn : RgnHandle);
{2} procedure PaintRgn (Rgn : RgnHandle);
{2} procedure EraseRgn (Rgn : RgnHandle);
{2} procedure lnvertRgn (Rgn : RgnHandle);
{2} procedure FillRgn (Rgn : RgnHandle; Pat : Pattern);

Graphical Operations on Bitmaps

{2} procedure ScrollRect(DstRect: Rect; Dh, Dv: Integer;
UpdateRgn : RgnHandle);

{2} procedure CopyBits (SrcBits, DstBits: BitMap;
SrcRect, DstRect : Rect;
Mode : Integer;
MaskRgn : RgnHandle);

Picture Routines

{2} function OpenPicture (PicFrame : Rect) : PicHandle;
{2} procedure ClosePicture;
{2} procedure DrawPicture (MyPicture : PicHandle;

DstRect : Rect);

-------------H List of QuickDraw Routines __ 313

{2} procedure PicComment (Kind, dataSize: Integer;
DataHandle: QDHandle);

{2} procedure KillPicture (MyPicture : PicHandle);

The Bottleneck Interface

{2} procedure SetStdProcs (var procs : QDProcs);
{2} procedure StdText(count : Integer;

TextAddr : QdPtr;
Numer, Denom : Point);

{2} procedure Stdline(NewPt : Point);
{2} procedure StdRect(Verb : GrafVerb; R : Rect);
{2} procedure StdRRect(Verb: GrafVerb; R: Rect; OvWd,

OvHt : Integer);
{2} procedure StdOval(Verb : GrafVerb; R : Rect);
{2} procedure StdArc(Verb : GrafVerb; R : Rect;

StartAngle, ArcAngle: Integer);
{2} procedure StdPoly(Verb: GrafVerb; Poly: PolyHandle);
{2} procedure StdRgn(Verb : GrafVerb; Rgn : RgnHandle);
{2} procedure StdBits(var SrcBits : BitMap; var SrcRect,

DstRect: Rect; Mode: Integer; MaskRgn : RgnHandle);
{2} procedure StdComment(Kind, DataSize: Integer;

DataHandle QDHandle);
{2} function StdTxMeas (Count: Integer; TextAddr: QDPtr;

var Number, Denom : Point;
var Info : Fontinfo) : Integer;

{2} procedure StdGetPic (DataPtr :QDPtr; ByteCount:
Integer);

{2} procedure StdGetPic (DataPtr :QDPtr; ByteCount:
Integer);

Miscellaneous Utility Routine

{1} functi<m GetPixel (H, V: Integer): Boolean;
{1} function Random: Integer;
{ 1} procedure Stuff Hex (Th ingPrt : QDPtr; S : Str255);
{2} procedure ForeColor (Color : Longlnt);
{2} procedure BackColor (Color: Longlnt);
{2} procedure ColorBit (WhichBit: Integer);

I List of Sane Functions
and Procedures

This Appendix provides a reference to the Sane unit. This unit
implements the Institute of Electrical and Electronics Engineers
(IEEE) Standard 754 for Binary Floating-Point Arithmetic. To use
any of the following procedures or functions in your program,

· simply include the following statement immediately following the
program declaration statement:

uses
Sane;

For more detailed information on the Sane library consult
Appendix D of the Macintosh Pascal Technical Appendix.

Transfer Routines

function Num21nteger(X: Extended): Integer;

function Num2Longint(X: Extended): longlnt;

procedure Num2Dec(F : DecForm; X : Extended; var D :
Decimal);

function Dec2Num(D: Decimal): Extended;

procedure Num2Str(F : DecForm; X : Extended; var S :
string);

function Str2Num(S : string) : Extended;

314

----------1 List of Sane Functions and Procedures __ 315

Comparison Routine

function Relation(X, Y : Extended) : RelOp;

Arithmetic, Auxiliary, and Elementary Function
Routines

function Remainder(X, Y : Extended; var I Integer) :
Extended;

function Rint(X: Extended): Extended;

function Scalb(N: Integer; X: Extended): Extended;

function Logb(X: Extended): Extended;

function CopySign (X, Y: Extended): Extended;

function NextReal(X, Y: Real): Real;

function NextDouble(X, Y: Double): Double;

function NextExtended(X, Y: Extended): Extended;

function Log2(X: Extended): Extended;

function Lnl(X: Extended): Extended;

function Exp2(X : Extended) : Extended;

function Expl(X: Extended): Extended;

function Xpwrl(X: Extended; I : Integer): Extended;

function XpwrY(X, Y: Extended): Extended;

function Compound (R, N: Extended): Extended;

function Annuity(R, N: Extended): Extended;

function Tan(X: Extended): Extended;

function Random(var X: Extended) :Extended;

316 __ I List of Sane Functions and Procedures-----------

Inquiry Routines

function ClassReal(X: Real): Numclass;

function ClassDouble(X : Double) : Numclass;

function ClassComp(X : Comp) : Numclass;

function ClassExtended(X: Extended): Numclass;

function SignNum(X: Extended): Integer;

Environment Access Routines

procedure SetException(E: Exception; B: Boolean);

function TestException(E: Exception): Boolean;

procedure SetHalt(E: Exception; B: Boolean);

function TestHalt(E : Exception) : Boolean;

procedure SetRound(R : Round Dir);

function GetRound : RoundDir;

procedure SetPrecision(P: RoundPre);

procedure GetPrecision: RoundPre;

procedure SetEnvironment(E: Environment);

procedure GetEnvironment(var E : Environment);

procedure SetEnvironRec(E : Environ Rec);

procedure GetEnvironRec(var E: EnvironRec);

procedure ProcEntry(var E: Environment);

procedure ProcExit(E: Environment);

J MacPascal Error
Messages

This Appendix contains a listing of the possible syntax and Run
Time Errors that might appear while running a MacPascal
program.

Syntax Errors

1. This doesn't make sense as a statement.
2. The name <name> has already been defined at this level.
3. An invalid variable, field or formal parameter list defini­

tion has been found. A colon might be missing.
4. The name <name> has not yet been defined.
5. A type or procedure name has been found where a vari­

able, field name, or value is required.
6. A type is expected. <name> is defined but not as a type.
7. A constant is expected. <name> is defined but not as a

constant.
8 . A subrange boundary has been found whose type is not

integer, char or enumerated.
9. A subrange has been found whose boundaries are not of

the same type.
10. A subrange has been found whose lower boundary is

greater than its upper boundary.
11. An array index has been found whose type is not integer,

char, enumerated, or subrange .
12 . An invalid enumerator list had been found.
13. A semicolon is required on this line or above but one has

not been found.

317

318 __ J MacPascal Error Messages-----------------

14. Did not find a valid result type in the heading of the func­
tion's definition.

15. A colon is required on this line or above but. one has not
been found.

16. Either a semicolon or an until is expected following the
previous statement, but neither has been found.

17. Either a semicolon or an end is expected following the pre­
vious statement, but neither has been found.

18. An invalid program parameter has been found.
19. uses can only appear immediately following the program

heading .
20. A variable of function name is expected. <name> is

defined, but not as a variable or a function.
21. A period is required following the last end of the program

but one has not been found.
22. A type is required to complete a definition on this line or

above but one has not been found.
23. An invalid formal parameter list has been found.
24. An end is required to complete the record definition above

but one has not been found.
25. A field name is expected. <name> is defined, but not as a

field name of this record.
26. A record name is expected. name> is defined, but not as a

record.
27. A case constant is required here but one has not been

found.
28. An invalid variant definition has been found.
29. The size of this string should be a number between 1 and

255, but is not.
30. A set should have elements whose type is integer, char, or

enumerated but this set does not.
31. The name <name> doesn't make sense here.
32. This label has not been defined.
33. A program key word was not found at the beginning of

this program.
34. This statement or key word doesn't belong here.
35. This kind of declaration doesn't belong here .
36. At least one constant declaration is required after the key

word const, but none has been found.
37. At least one variable declaration is required after the key

word var, but none has been found .

----------------J MacPascal Error Messages __ 319

38. At least one type declaration is required after the key word
type, but none has been found.

39. end. is required at the end of a program, but was not
found.

40. At least one library name is required after the key word
uses, but none has been found.

41. An invalid library name has been found.
42 . This is not allowed in the Instant window.
43. The value of this constant is not numeric and may not

have a sign.
44. This does not make sense as a statement.
45. The available memory for variables defined at this level

has been exhausted.
46. This declaration or statement does not belong here .
47. A variable of this type would be too large.
48. Too many up-arrows are being applied to <name>.
49. Too many indicies are being applied to <name> .
50. This attempt to assign a result to the function name

<name> outside of its definition is invalid.
51. This formal parameter type should be a named type or

string, but is not.
52. This is an invalid variant selector.
53. This case selector is not a valid expression.
54. An invalid list of variable names has been found.
55. An invalid label was found on this line. A label must be a

number between 0 and 9999.
56. A statement has already been labeled with this label.
57. The control variable in this for statement is invalid because

it is defined outside of this procedure or function.

Run Time Errors

1. Excessive nesting or recursion of functions or procedures
has occurred.

2. An incompatibility between types has been found.
3. Too many parameters have been used in a call to a proce­

dure or function.
4. A constant or expression has been used as a parameter

where a reference to a variable is required.
5. Too few parameters have been used in a call to a procedure

or function.

320 __ J MacPascal Error Messages-----------------

6. The value of a variable or sub-expression is out of range
for its intended use .

7. An attempt to perform an integer division by zero has
occurred.

8. There is not enough memory to continue running.
9. if, while, and until require an expression that evaluates to

TRUE or FALSE. This expression does not.
10. The value of an expression in a case statement above does

not match its case constants.
11. An invalid string or array index has been found.
12. An attempt has been made to access a field in an invalid

variant.
13. An attempt has been made to dereference a pointer whose

value is nil.
14. A string value is too long for its intended use.
15. A value or expression in a set constructor in not char, inte­

ger, or enumerated.
16. There is a type mismatch between the lower and upper

boundaries of a set operator.
17. You can't get there from here.
18. The packed array parameter for Pack or UnPack is not a

packed array.
19. The non-packed array parameter for Pack or UnPack is

not a non-packed array.
20. The index for Pack or UnPack is not a valid index for the

non-packed array.
21. An attempt has been made to goto out of this level in

which Instant or Observe is running.
22. The index for Pack or UnPack would cause too many ele­

ments to be transferred.
23. An attempt has been made to access data beyond the end

of file or string.
24. An attempt has been made to access a file that has not been

opened with Rewrite, Reset, or Open.
25 . An attempt has been made to read from a file opened with

Reset.
26. An attempt has been made to use a file of other files .
27. An attempt has been made to open a file already opened

with Rewrite, Reset, or Open.
28. An attempt has been made to Seek with a file not opened

with Open.
29. An invalid attempt to Close a file occurred.

________________ J MacPascal Error Messages __ 321

30. An attempt has been made to use EOLN with a file that is
not a TEXT file.

31. An attempt has been made to write to a file opened with
Reset.

32. An attempt has been made to use a file buffer whose value
is undefined.

33. An attempt has been made to use Readln or Writeln on a
file that is not a TEXT file.

34. An attempt has been made to Dispose a pointer whose
value was not created with New.

35. An invalid name was found while attempting to read an
enumerated value.

36. Did not find TRUE or FALSE while attempting to read a
Boolean value.

37. A colon modifier is invalid for the parameter of this proce­
dure or function.

38. An attempt has been made to use a colon modifier whose
value is less than one.

39. Floating point arithmetic exception: Invalid operation
attempted.

40. Floating point arithmetic exception: Underflow occurred .
41. Floating point arithmetic exception: Overflow occurred.
42. Floating point arithmetic exception: Division by zero

attempted.
43. An attempt has been made to use Page on a file that is not

a TEXT file.
44. An attempt has been made to open a non-TEXT file to

'Printer:' or 'Modem:'.
45 . An attempt has been made to Reset a file that does not

exist.
46. An attempt has been made to use a modulus less than one

with the mod operator.
47. The value of the control variable has been changed ille­

gally while the for loop above was executed.
48. An attempt has been made to use the operator /1 <" or /1 >"

on set values.
49. There is not enough memory to perform this NEW and

more cannot be allocated while using Instant.
50. An attempt has been made to pass a file variable as a

parameter that has not been declared var.
51. An error has occurred in a procedure or function in the

program while using Instant.

322 __ J MacPascal Error Messages----------------

52. An attempt has been made to read non-numeric data into a
numeric variable.

53. An attempt has been made to use a parameter list with a
name that is not a procedure or function.

54. An attempt has been made to access a file on disk which is
not known.

55. An attempt has been made to access a file on a disk or vol­
ume which is not known to the system.

56. An attempt has been made to open a file that cannot be
found.

57. An attempt has been made to write to a volume locked by
a hardware setting.

58. An attempt has been made to write to a locked file.
59. An attempt has been made to write to a locked volume.
60. An attempt has been made to open a file which is already

in use.
61. An attempt has been made to create a file with the same

name as a file that already exists.

K Bibliography

Aho, A., and Hopcroft, J., and Ullman, J., Data Structures and
Algorithms, Addison Wesley, 1983. ·

American National Standard Pascal Computer Programming
Language, ANSI/IEEE770X3. 97-1983 ,IEEE/Wiley-lnterscience,
1983.

Inside Macintosh, Apple Computer Inc., 1984.

Koffman, B., Pascal a Problem Solving Approach, Addison Wes-
ley, 1982. ·

Macintosh Pascal User's Guide, Apple Computer Inc., THINK
Technologies Inc., 1984.

Macintosh Pascal Reference Manual, Apple Computer Inc.,
THINK Technologies Inc., 1984.

Macintosh Pascal Technical Appendix, Apple Computer Inc.,
THINK Technologies Inc., 1984.

Cooper, D., Standard Pascal User Reference Manual, W. W.
Norton & Co., 1983.

Gear, C., Programming in Pascal, Science Research Associates.
Inc., 1983.

Hamacher, C. and Zvonko, V. and Safwat, Z., Computer
Organization, McGraw Hill, 1978.

Horowitz, E. and Sahni, S., Fundamentals of Data Structures,
Computer Science Press Inc., 1976.

Jensen, K. and Wirth, N., Pascal User Manual and Report,
Springer-Verlag, 1975.

323

324 __ K Bibliography __________________ _

Kane, G. and Hawkins, D. and Leventhal, L., 68000 Assembly
Language Programming, Osborne/ McGraw Hill, Berkley,
Cal., 1981.

Kernighan, B., and Plauger, P., Software Tools in Pascal,
Addison-Wesley, 1981.

Newman, W. and Sproull, R., Principles of Interactive Computer
Graphics, McGraw Hill, 1979 (Second Edition).

Tiberghien, J., The Pascal Handbook, Sybex Inc. , 1981.

Wirth, N., Algorithms + Data Structures = Programs, Prentice­
Hall, 1976.

L The Macintosh
Character Set

325

326 __ L The Macintosh Character Set--------------

0 2 3 4 5 6 7 8 9 A B C D E F

0 NUL DLE SP 0 @ p p A e t 00 l

1 q A SOH DCl A Q a ..
e 0 +

R b r 2 STX DC2 " 2 B < .,
ETX DC3

3
Enter # 3 c s c s f > J

4 EDT DC4 $ 4 D T d t N § y f

5 END NAK % 5 E LJ e U Q .j e µ = ' ~:::r(;; :\::r:::
6 ACK SYN & 6 F V f V LJ rl ~ a fi rr::~:~ :::t:r::
7

BEL ETB

a BS CAN

g HT EM

A LF

B VT

SUB

ESC

Clear

FS

*

+
C FF

~·
D CR GS

~
E SO RS

~
F SI us

5J I

9 y y a o © 7T

J z z a 0 TM f
K k { a

< L \ I a

M] m }

> N n e

? 0 0 DEL e
..
u

Row and column headings are hexadecimal digits.
(Row1 6) +Column gives you the numeric code for the character.
The first 32 characters (DO-IF) and DEL (7F) are nonprinting control codes.
The shaded area is reserved for future use.

Index

327

A~~~~~~~~~~~

ABS, 92
active window, 17
actual parameter, 111, 113
addition, 37
address, 29
algorithm, 44
and, 48
animation, 206
area, 44, 4S
argument, 86
array, 12S-14S
ARCTAN, 92
ASCII, 8S, 87, 143, 144, 179
assignment operator, 31, 32, 37
assignment statement, 22, 31, 32, 36
atomic, 21

backspace, 11, 13
begin, 23, 29, S2
binary operators, 48
bit, s
bit mapped, S, 6
bomb, 81
boolean, 26, 47, SO
boolean expressions, 48-SO
boolean operators, 47, 48
Boole, George, 47
break point, 83
bubble sort, 1S3
bug, 80
button, 8, 197
byte, 2

case, 1S4-1S7, 234, 23S, 289
central processing unit (CPU), 2
char, 26, 8S
character, 2, 27, 28
Check, 79, 272
CHR, 86, 87
circle, 98, 100
Clear, 271
Clipboard, 274
Close, 218, 290
COBOL, 89
colon, 29
column, 130
comment, 22, 23
compiler, 4, S

compound interest, 61-63
compound statement, S2
Computational, 91
computer language, 4
Concat, 147
conditional expressions, Sl
conditional test, SO
const, 41
constants, 40, 41
control variable, S6-S8, 84
coordinate system, 69
Copy, (string function) , 148
copy, 14, 271
COS, 92
Cosecant, 92
crash, 1S4
cursor, 10, 197
cut, 14, 271

data, 26
data types, 26, 29, 289
debugging, 77
decimal point, 27
Delete, (string function), 148
delete, 13
desktop, 6, 7, 10, 213
dialog box, 14, lS
difference, 177
disk drive, 4
display screen, 1
dispose, 238
div, 37, 38, 66, 67
division, 37
documentation, 22, 23, 27S
do it, 84
Double, 90, 91
double click, 8, 14
downto, 61
draft quality print, 16
drag, 13
drawing window, 9-11, 69, 71, 18S,

189, 274
DrawChar, 200
DrawString, 199
dynamic variable, 236-242

editing, 11, 13
ellipse, 98
else, S3-S6
end, 23, S2

'

enumerated types, 94
EOF (End of line), 221
EOLN (End of line), 143, 222
eject, 14, 15
EraseOval, 98, 192
EraseRect, 73, 74, 190
EraseRoundRect, 192
error messages, 317
Everywhere, 272
execution error, 81
EXP, 93
exponent, 27
expression, 35-40
Extended, 90, 91
extended real, 90

· factorial, 159
FALSE, 47
field, 167-169
fieldwidth, 33-35
file, 213-231, 290
file buffer, 215-219
file menu, 8, 14, 16
FillRect, 190
Find, 272
Finder, 213
finger, 77
floating point notation, 27, 35
floppy disk, 4
formal parameter, 111, 113
for loop, 56-61, 63
FORTRAN, 89
FrameOval, 98, 192
FrameRect, 74
FramRoundRect, 192
function, 86, 157-159, 160, 190

Get, 217-220, 290
GetMouse, 196
GetTime, 175, 176
global variable, 107-110, 113
Go, 11, 78-80, 84, 272
Go-Go, 83, 84
graphics, 10, 185-210

H _________ _

Halt, 79
hardware, 1
HideCursor, 197

high level language, 4, 5
high quality print, 16

icon, 6, 8, 213
if-then, 49-56
if-then-else, 53-56
identifier, 14, 19, 21, 22 29
include, 149
indent, 11

· infinite series, 63
initialize, 30
input, 1, .222
input validation, 153, 250
Insert, (string procedure), 149
insert, 13
insertion point, 10
instant, 273
instant window, 84
integer, 26, 34, 89
interest, 61-63
interpreter, 4, 5, 77
intersection, 178
invert, 8, 13
InvertCircle, 100
lhvertOval, 192
InvertRect, 190
InvertRoundRect, 192

justify, 33

K _________ _

K,2
. keyboard, 1

language translator, 4
Length, 147
line, 120-122, 186, 187
LineTo, 121, 122, 165, 187
LN,93
local variable, 107-109
logarithmic functions, 93
logical operators, 48
logic error, 81
Longlnt, 89, 90
low-level language, 4

M -----------
machine language, 4, 5
MacWrite, 14
Maxint, 27
main memory, 2
memory, 3, 29
menu, 156
menu bar, 8
micro floppy, 4
mod, 37, 38, 66, 67
modem, 223
mortgage, 117-120
Motorola 68000, 2, 3
mouse, 1, 6, 195-197
Move, 186
MoveTo, 121, 122, 186
multiplication, 37
music, 284

N -----------~
nested for loop, 132
nested if statements, 55, 56
nested records, 173-175
New, 236, 237, 239
NewFileName, 224
Nil, 238
not, 48
Note, 284, 286
Notepad, 14

o __________ _
object code, 4, 5
observe window, 82-84
ODD, 92, 158
OldFileName, 223, 224
Omit, 148
Open,216,219,220, 226, 290
operand, 39
operator, 37, 39
operating system, 5
or, 48
ORD, 86-88, 95, 96
ordinal type, 86
otherwise, 155, 157
output, 1, 23, 222
oval commands, 98-101, 191, 192

p ____________ _

Page, 93
Page Setup, 271

PaintCircle, 98
PaintOval, 98, 192
PaintRect, 74, 190
PaintRoundRect, 192
parameters, 109-117
parentheses, 40, 49
paste, 14, 271
Pause, 79, 274
pen, 121, 192
PenMode, 193-195
PenPat, 192, 193
PenSize, 192
period, 23
perimeter, 44, 45
picture element, 69
pixel, 69
point, 69, 185, 186
pointer, 8, 10
pointer (/\), 236-242
PointlnRect, 202
Pos, 148
precedence, 39, 40, 48, 49
PRED, 88, 95
primary storage, 2
Print, 271
printer, 16, 222
printing a program, 16
procedure, 103-122, 159
program, 4, 19, 21, 22
programming language, 4
program pointer, 77
program window, 9
pseudocode, 44
Put, 217-220, 290

Q ______ _

QuickDraw, 71 , 121, 185, 186, 308
Quit, 271
quotes, 27, 28

R ------------
RAM,3
random access, 214, 219, 220
read, 42-44, 143
readln, 42-44, 143, 146
read only memory, 3
real, 26, 27, 34, 89, 90, 91
recalling a program, 15, 16
record, 165-175
record, array of, 170-173
record, variant, 233-236
Rect, 70-72, 187-189

rectangle, 44, 45, 187-189
rectangle commands, 71-74, 190
recursion, 159-165
repeat, 151-153
Replace, 272
reserved word, 22, 292
Reset, 79, 216, 220, 272, 290
Revert, 271
Rewrite, 216, 217, 220, 290
ROM, 3, 185
ROUND, 88, 89
round cornered rectangle commands,

191, 192
row, 130
Run, 11, 79
run menu, 77
run time error, 81

s _ _________ _
Sane, 285, 286,314
Save, 270
Save As, 270
save a program, 14
scalar type, 125
scientific notation, 27
scope of variables, 106, 111
scroll, 15
secondary storage, 4
SectRect, 202
Seek, 220, 290
select, 8, 13, 14
Select All, 271
semicolon, 22, 29
sentinal, 67, 128, 129
sequential access, 214, 216, 218
set, 176-180
set operators, 177
SetRect, 70, 73, 189
SetDrawingRect, 189
SetTextRect, 189
shortcut, 14
ShowText, 70, 189
ShowCursor, 197
ShowDrawing, 74, 189
signed integer, 20
SIN, 92
software, 1, 4
sorting, 153, 154
sound, 284
source code, 4
source program, 4
SQR, 91, 92
SQRT, 92

standard quality print, 16
statement, 22, 52
Step, 79, 80, 83, 273
Step-Step, 70, 80, 83, 84, 273
StillDown, 197
Stops-In/Stops-Out, 273
stop rule, 160-163
string, 26, 27, 28, 85, 125, 145-149,

289
string comparison, 147
string functions and procedures, 147-

149
strong typing, 97
structured programming, 105
structured type, 125, 165
subprogram, 103
subranges, 96, 97, 126, 153
subscript, 127, 130
subtraction, 37
succ, 88, 95
syntax, 19
syntax diagram, 20
syntax error, 77, 79, 80
SysBeep, 93

T _ __________ _
tab key, 17
tag field, 234, 235
tangent, 92
TextFace, 200-202
text file, 214, 221-224
TextFont, 200
TextSize, 200
text window, 9, 10, 24, 68-70, 222,

274
TickCount, 93
TicTacToe, 132-142
toolbox, 3, 69, 70, 93, 195
top down programming, 105
trash can, 8
trigonometric functions, 92
triple clicking, 14
TRUE, 47
TRUNC, 88, 89
two dimensional array, 130-142
type, 94
type checking, 236
Type Size, 274

UCSD Pascal, 90, 289
unary operators, 48

undeclared identifier, 81
underscore, 21
union, 177
unit, 185
unsigned integer, 20
user-defined data types, 94-97

v ~~~~~~~~~~~~-

value parameter, 113-117
var, 29, 111
variables, 29, 31, 41
variable parameter, 111, 112, 115-117
variant record, 233-236
video display, 5, 6

w -----------
WaitMouseUp, 197
while loop, 64-67
window, 9, 10
with, 168-170
world symbol, 22
write, 23-25, 33-35
writeln, 23, 25, 28, 29, 33-35

XpwrY, 285

Related Resources Shelf
MacPaint: Drawing Drafting Design
Susan Schmieman

Create your own masterpieces with MacPaint, Apple Com­
puter's graphics program. Both novices and experienced Mac
users can discover the magic of drawing with the help of this
easy-to-read, well-organized guide fully packed with clear, im­
aginative illustrations.
O 1985/197pp/paper/D648X-5/$16.95

Macintosh: The Definitive User's Guide
John M. Allswang

With this easy-to-follow handbook, you'll learn all there is to
know about your machine and what you can do with it. Discover
the Macintosh's best-kept secrets by finding out how to tap all
its capabilities and characteristics.
D 1985/244pp/paper/D6498-2/$16.95

Microsoft BASIC for the Macintosh
Larry Joel Goldstein, David I Schneider

A two-books-in-one approach to learning on the Macintosh!
The first part serves as a tutorial, introducing beginners to the
fundamentals of Microsoft BASIC for the Macintosh. The se­
cond part offers a detailed reference manual that describes all
the commands of Microsoft BASIC.
D 1985/561 pp/paper/06625-0/$19.95

Business and Home Applications for the Macintosh Using
Microsoft BASIC
Stan Schatt

This book for beginning Macintosh users offers business,
education, and home use programs, using Microsoft BASIC. It's
a practical guide that offers fast, easy, and useful home and
business applications.
D 1985/201 pp/paper/D4037-0/$14.95

To order, simply clip or photo copy this entire page, check off your
selection, and complete the coupon below. Enclose a check or money
order for the stated amount. (Please add $2.00 postage/handling per
book plus local sales tax.) Or call toll-free 800-638-0220; in Maryland,
301 262-6300.
Mail to: .
Brady Communications Co., Inc.• Dept. TS• Bowie, MD 20715

Name --------------------~
Address ____________________ _
City/State/Zip ___________________ _

Charge my credit card instead: D MasterCard D VISA
Account# __________ Expiration Date ___ _

Signature
Dept. y

Prices subject to change without notice.
Y0510-BB(5)

