

THE
MACINTOSH

BASIC
HANDBOOK

THE
MACINTOSH™

BASIC
HANDBOOK

THOMASBLACKADAR
JONATHAN KAMIN

D

~EX ® e
BERKELEY • PARIS • DUSSELDORF • LONDON

Cover design by Peter Bartczak
Book design by Lisa Amon

Apple, Apple II, Applesoft BASIC, Lisa, MacPaint, MacWrite, and ProDOS are trademarks of Apple
Computer, Inc.
Macintosh is a trademark licensed to Apple Computer, Inc.

Asteroids is a trademark of Atari, Inc.
IBM is a trademark of International Business Machines, Inc.
Microsoft and Multiplan are trademarks of Microsoft Corp.

The toolbox interface is not an official feature of Macintosh BASIC. The inclusion of this information does
not imply an endorsement of this feature by Apple Computer, Inc. Misuse of toolbox calls can lead to
serious system errors.

SYBEX is not affiliated with any manufacturer.

Every effort has been made to supply complete and accurate information. However, SYBEX assumes no
responsibility for its use, nor for any infringements of patents or other rights of third parties which would
result.

Copyright©1984 SYBEX Inc., 2344 Sixth Street, Berkel~ CA 94710. World rights reserved. No part of this
publication may be stored in a retrieval system, transmitted, or reproduced in any wa)I including but not
limited to photocoP)I photograph, magnetic or other record, without the prior agreement and written
permission of the publisher.

Library of Congress Card Number: 84-72624
ISBN 0-89588-257-4
Printed by Haddon Craftsmen
Manufactured in the United States of America
10 9 8 7 6 5 4 3 2 1

'·

To our friends in the editorial and production depart
ments, who have given so much ·of themselves for such
little books as these.

T.A.B. and J .K.

Acknowledgments

This book has been a group effort from start to finish, and it would be
hard to thank all those who deserve thanks.

The "Macintosh BASIC Tham" at SYBEX deserves more credit than they
will ever possibly get. Rudolph Langer was there at the beginning to direct the
initial ideas, and he stayed with it until the very end. David Kolodney gave his
time and care to make this a good book, in spite of the pressures. Barbara
Gordon and Karl Ray lent their considerable managerial talents. Bonnie
Gruen and Jeremy Elliott kept track of the myriad technical and logistical
details. Valerie Robbins and Sarah Seaver took care of the entire word
processing operation. Bret Rohmer and his production staff deser\re special
thanks for their quality work and attention to detail: Donna Scanlon and
Janis Lund, typesetting; Lisa Amon and Nina Hoecker, graphics and design;
Dawn Amsberry and Brenda Walker, proofreading; and Elimbeth Thomas,
coordination. We appreciate all of you.

Outside of SYBEX, a number of other people made important contribu
tions. Doug Hergert graciously allowed us to use programs and text from his
Apple II BASIC Handbook (SYBEX). Herbert Diamant and Joan Philips
contributed programs and technical insights.

And of course, this book would have gotten nowhere without the assistance
of Apple Computer, Inc. We would like particularly to thank Kevin Jones and
Ed Spiegel for their cooperation in helping us spread the word about their
wonderful BASIC language.

Also, special thanks to Nancy Kamin, for keeping a significant portion of
the universe running while this book was being written.

q .___I _T:_ab_l_e _o_f _C_on_t_en_t_s ___.Ip
D Acknowledgments

D The Entries at a Glance

D Reference Guide to Major Programming Concepts

D How to Use the Macintosh BASIC Handbook

D Introduction: An Overview of Macintosh BASIC

D The Macintosh BASIC Commands-

Including the Macintosh Toolbox

Alphabetical entries, containing:

• Syntax

• Description

• Sample Programs

• Applications

• Notes

0 Appendix A: ASCII Codes

D Appendix B: Error Codes

D Appendix C: System Constants

D Appendix D: Summary of Toolbox Commands

D Appendix E: Index to Application Programs

The Entries at a Glance

ABS DEVSTATUS ErasePoly GOTO
AND DiffRgn EraseRgn GPRINT
ANNUITY DIM ERR GTEXTFACE
APPEND DisposeRgn EXCEPTION GTEXTMODE
ASC DIV EXIT GTEXTNORMAL
ASK DO EXP HALT
ATEOF DOCUMENT EXP2 HidePen
ATN DOWNSHIFT$ (See EXP) HPOS
BEGIN EJECT EXPMl HPOS#
BINY ELSE (See EXP) IF
BTNWAIT EmptyRect FillArc IGNORE WHEN
CALL EmptyRgn (See Fill) INFINITY
CASE (See EmptyRect) Fill Oval INKEY$
CHR$ END (See Fill) INPUT
CLASSCOMP END FUNCTION Fill Poly INPUT#
CLASSDOUBLE (See END) (See Fill) lnsetRect
(See CLASSCOMP) END IF FillRect lnsetRgn
CLASSEXTENDED (See END) (See Fill) (See lnsetRect)
(See CLASSCOMP) END MAIN FillRgn INT
CLASSSINGLE (See END) (See Fill) INVERT
(See CLASSCOMP) END PROGRAM FillRoundRect lnvertArc
CLEARWINDOW (See END) (See Fill) lnvertPoly
CLOSE# END SELECT FONT lnvertRgn
ClosePoly (See END) FONTSIZE KBD
CloseRgn END SUB FOR Kill Poly
(See ClosePoly) (See END) FORMAT$ LEFT$
COLLATE END WHEN FRAME LEN
COMPOUND (See END) FrameArc LET(=)
COPYSIGN ENVIRONMENT FramePoly LINE INPUT
cos EOF# FrameRgn Line
CREATE# EOF- FREE (See LineTo)
CURPOS# EOR- FUNCTION line To
DATA EqualRect GETFILEINFO LOCATION
DATE$ EqualRgn GETFILENAME$ LOCK
DEF (See EqualRect) GElVOLINFO LOG
DELETE ERASE GE1VOLNAME$ LOG2
DEVCONTROL EraseArc GOSUB (See LOG)

LOGB OPEN# RANDOMX ShowPen
(See LOG) Open Poly READ SIGNNUM
LOG Pl OpenRgn READ# SIN
(See LOG) OPTION RECORD SOUND
LOOP OR RECSIZE SOUNDOVER-
Map Poly OUTIN RECT SQR
(See MapPt) OUTPUT RectlnRgn STANDARD
Map Pt OVAL RectRgn STOP
MapRect PAINT RELATION STOPSOUND
(See MapPt) PaintArc REM (I) STR$
MapRgn PaintPoly REMAINDER STREAM
(See MapPt) PaintRgn RENAME StuffHex
MID$ PAmRN RESTORE SUB
MISSING- PEN RETURN TAB
MOD (See PENPOS) REWRITE# TABWIDTH
MOUSEB- PEN MODE RIGHT$ TAN
MOUSEH PEN NORMAL RINT TEXT
MOUSEV Pen Pat RND THERE-
(See MOUSEH) PENPOS ROUND TICKCOUNT
Move PEN SIZE ROUNDRECT TIME$
(See MoveTo) PERFORM SAME TONES
Move To Pl SCALB TOOL
NAN PICSIZE SCALE (See TOOLBOX)
NATIVE PLOT SectRect TOOLBOX
NewRgn POP SectRgn TRUNC
NEXT PRECISION (See SectRect) lYP
NEXTDOUBLE PRINT SELECT UNDIM
NEXTEXTENDED PRINT# SEQUENTIAL UnionRect
(See NEXTOOUBLE) PROCENTRY SET UnionRgn
NEXTSINGLE PROCEXIT SETFILEINFO (See UnionRect)
(See NEXTOOUBLE) (See PROCENTRY) SetPt UNLOCK
NOT PROGRAM SetRect UPSHIFT$
Offsetpoly PROMPT SetRectRgn VAL
OffsetRect PtlnRect (See SetRect) VPOS
(See OffsetPoly) PtlnRgn SETVOL WHEN
OffsetRgn (See PtlnRect) SGN WRITE#
(See OffsetPoly) RANDOMIZE SHO.VDIGITS XOrRgn

Reference Guide to Major Programming Concepts

Programming Concept

Arc shapes (toolbox)
Decision blocks and logical expressions
File 1/0 commands
Line graphics
Mouse button and programming techniques
Pattern graphics operator (toolbox)
Polygon shapes (toolbox)
Rectangle array structures (toolbox)
Region shapes (toolbox)
SELECT/CASE block structures
Set-options
Subroutines and parameter-passing
Toolbox interface, general discussion
User-defined functions

Entry

PaintArc
IF
OPEN#
PLOT
MOUSEB
Fill
Open Poly
SetRect
PaintArc
SELECT
SET
CALL
TOOLBOX
FUNCTION

\

How To Use the Macintosh
BASIC Handbook

This book is structured as an A-to-Z encyclopedia, so that you can use it
both for quick reference and for browsing among the commands available in
Macintosh BASIC. Along the way, you will also find numerous tips on pro
gramming techniques, more than 150 sample programs, more than 40 practi
cal application programs, and more than 200 screens of output.

Every Macintosh BASIC command, function, and operator is described in
an entry in this book-in all 189 BASIC keywords in 164 separate entries. In
addition, the 54 most useful toolbox words are described in 39 full-scale
entries of their own. The toolbox is a group of special routines in the Macin
tosh operating system. Some of these routines can be called from a BASIC
program, including many important graphics routines. In addition to these
full descriptions, Appendix D: Summary of Tuolbox Commands contains the
complete syntax of the more than 300 toolbox words that can be used from
Macintosh BASIC.

Each entry is organized into the following sections:

• Syntax-a summary of the essential structure of the command. All of
the important syntax forms of the command are shown here, with a cap
sule description for each one. In stating the syntax for ms, this book
strives for clarity and readability, rather than strict conformity with the
formal syntax diagrams given in other manuals-diagrams that are so
formal and unapproachable that almost no one ever reads them. The
only special symbols employed in these syntax forms are vertical ellipses
(:), which mark omitted statements, regular ellipses (...), which mark
the optional continuation of a series, and square brackets [] , which sur
round optional parts of the syntax. All syntax forms are stated in exactly
the form in which they will be typed into programs. Words printed in
italics are conceptual words that should be replaced inside the actual
statement by a keyword or a series of expressions.

• Description-a detailed discussion of the syntax forms of the command.
In commands with multiple syntax forms, each numbered syntax sum
mary from the Syntax section is described under its own numbered head
ing within the Description. In that way, you can go directly to the
explanation of the syntax form you want.

o How to Use the Macintosh Basic Handbook o

• Sample Programs-one or more short sample programs, with output.
These programs illustrate specific features of each command, in a succint
form that you can easily type in and try out for yourself.

• Applications-a discussion of the practical applications of the command
and, in many cases, a long program that illustrates the command in
actual use. These programs include:

A line graph (PLOT)

A bar graph (PAINT)

A pie chart

An analog clock

A musical keyboard

-among many others.

(PaintArc)

(TIME$), and

(TONES)

• Notes-a series of short notes on special features and advanced program
ming techniques. This fmal section often includes a cross-reference to the
other keywords that are used in connection with the command. Where
appropriate, a translation key shows how the command duplicates the
features of keywords in two other popular forms of BASIC: Microsoft
BASIC (for the Macintosh and IBM PC) and Applesoft BASIC (for the
Apple II).

The shorter entries may not have all five of these sections, but they all have at
least the frrst two, Syntax and Description.

Since commands often work together as a unit, this book has been orga
nized into main and secondary entries. The file I/O system, for example, uses
a large number of minor keywords implementing a few central commands.
Each minor word is included as a separate one- or two-page entry, but the
comprehensive overview is contained under the central command, for
example, OPEN#. You can fmd the information you are looking for either
under the comprehensive entry or under the individual keyword-usually
both. The following is a list of the major entries and the concepts they
describe:

CALL Subroutines and parameter-passing

Fill Fill graphics operator (toolbox)

FUNCTION User-defined functions

IF Decision blocks and logical expressions

o How to Use the Macintosh Basic Handbook o

MOUSEB

OPEN #
OpenPoly

OpenRgn

PaintArc

PLOT

SELECT

SET
SetRect

TOOLBOX

Mouse button and programming techniques

File I/0 commands

Polygon shapes (toolbox)

Region shapes (toolbox)

Arc shapes (toolbox)

Line graphics

SELECT /CASE block structures

Set-options
Rectangle array structures (toolbox)

General discussion of the toolbox command

This book uses a number of typographical conventions for clarity in pro
gram listings. All BASIC keywords are boldfaced and capitalized. Toolbox
words are boldfaced with initial capitals, and variables are printed with initial
capitals, but no boldfacing. You are not required to follow these capitalizing
conventions. Macintosh BASIC will recognize all keywords, toolbox names,
and variable names, regardless of whether you type them as capitals or not. If
you prefer, you can type everything as lowercase or everything as capitals-it
will make no difference to the program's operation.

Indentation is included in programs to highlight each level of nested control
structures. You are not required to follow these indentation conventions, but
you will make your programs more readable if you do. Macintosh BASIC will
line up the left margin of every command according to the level of indentation
that you set with the TAB key or space bar at the beginning of a line.

Introduction: Oveniew of
Macintosh BASIC

• Line Numbers

• Control Structures

• The Ten Data Types
The Five Numeric Types
String Type
Character (Byte) Type
Boolean Type
Pointer Type
Handles Type

• Data files

• QuickDraw Graphics

• The Tuolbox

Macintosh BASIC is a radically new approach to a programming language
for a personal computer. Instead of merely adapting a version of BASIC that
already existed, Apple decided to design a new language from scratch. The
Macintosh is so different from the average computer that a Macintosh pro
gramming language must really be designed to fit the machine, not the tradi
tion. Only an exceptionally rich language designed specifically for the machine
can tap the Macintosh's (ull speed and graphics power.

The result was Macintosh BASIC, a very different language from the stan
dard BASIC used on other machines. In many ways, Macintosh BASIC ended
up looking more like such powerful languages as Pascal and C, than the tradi
tional BASIC used on other machines.

Macintosh BASIC, howevet; has enough of standard BASIC to allow an
easy translation of programs from other forms of the language. An IBM PC
or Apple Il BASIC program will usually run with only minor changes in Mac
intosh BASIC. Of course, a word-for-word translation of this kind will not
take advantage of the many advanced features in the Macintosh BASIC lan
guage, but it can be very important if you're copying programs from maga
zines or from other computers. If you're translating programs, you will merely
want to refer to the appropriate entries in this book, to check the differences
in the commands' syntax.

o INTRcbOUCTION o

In time, however, you will learn to take Macintosh BASIC on its own level.
Once you learn to use the powerful additions to the language, you will write
Macintosh BASIC programs that are far more sophisticated than anything
you can do with standard BASIC. Of course, the advanced commands of
Macintosh BASIC cannot be easily translated into commands for the IBM PC
or Apple II, but they will let your Macintosh do things you haven't seen on
any other computer.

This Introduction will give you an overview of the additions in the Macin
tosh BASIC language, so that you can orient yourself as you read the entries
in this book. You can also find how Macintosh BASIC differs from other dia
lects (versions) of standard BASIC, so that you can know how to translate
programs written on other computers.

Line Numbers

The most obvious difference between Macintosh BASIC and other forms of
BASIC is the absence of line numbers. In most dialects of BASIC, every state
ment must have a line number, whether or not there is a GOTO or GOSUB
statement that refers to it. These line numbers must be ordered consecutively,
because the lines are sorted in numeric order. Typing and keeping track of line
numbers can be one of the most frustrating parts of standard BASIC
programming.

Macintosh BASIC does away with all that. Line numbers are not required,
because Macintosh BASIC uses a word-processor-like program editor. Instead,
when a particular line will have to be referred to, Macintosh BASIC allows
you to label it, either with a number or a word followed by a colon.

You can still use statement numbers if you wish. When the line label is a
number, the colon following the number is optional, so the standard BASIC
statement numbers will be recognized as labels. The numbers, however, are
not automatically sorted in ascending order, because in Macintosh BASIC the
statements follow the order in which you place them on the screen.

Control Structures

You will rarely need to use either statement numbers or labels in Macintosh
BASIC, because the language has a variety of control structures that let you
write fully structured programs. A control structure is a block of statements
that is treated differently from the standard top-to-bottom flow of the pro
gram. In Macintosh BASIC, these block structures include loops, decisions,

o INTRODUCTION o

subroutines, and asynchronous interrupt blocks:

• FOR/NEXT loops. The customary FOR loop block is included in Mac
intosh BASIC as the standard counting loop. An EXIT FOR statement
allows for premature branching out of a loop.

• DO loops with EXIT. An infinitely repeating loop block avoids the con
fusing, unstructured "GOTO loop" of standard BASIC. With the EXIT
statement, a DO loop can be used to simulate both· the While-Do and
Repeat-Until loops of structured languages like Pascal.

• IF/THEN/ELSE blocks. In addition to the one-line IF statement of
standard BASIC, Macintosh BASIC allows a block IF statement, which
conditionally executes an entire block of statements. In addition, an
optional ELSE block allows for a two-branch decision.

• SELECT/CASE structures. For decisions involving more than two
branch blocks, Macintosh BASIC allows a SELECT/CASE structure,
which chooses one block out of a series of alternatives for a decision.

• OOSUB subroutines. For compatibility with standard BASIC, Macin
tosh BASIC retains the OOSUB subroutine call. A OOSUB routine is
introduced by a label, and shares all of its variables with the calling
program.

• CALL/SUB subroutines. Macintosh BASIC has added a true subroutine
call, which passes values to the called routine through an argument list.
CALL subroutines share the variables not in their argument list with the
calling program.

• PERFORM/PROGRAM calls. A Macintosh BASIC program can call
up an external program from disk, execute it, and then continue with its
own work. These external programs share no variables with the calling
program.

• Single- and multiple-line functions. Like standard BASIC, Macintosh
BASIC has a DEF statement for user-dermed functions. It also has a
multi-line FUNCTION definition block, which lends added flexibility to
functions. Functions accept values through an argument list, and share
all other variables with the calling program. A function returns a single
value as a result.

• Asynchronous WHEN blocks, for detecting error conditions and key
board input. A WHEN block may be def'med anywhere in the program

o INTRODUCTION o

to provide for a special error-trapping action to be taken whenever a cer
tain error condition or keystroke occurs. These WHEN blocks are "asyn
chronous," because they are put in force at all times, not just at the point
where the statements occur.

With all of these control tools at your disposal, you can write structured
programs that are logically organiz.ed into coherent blocks, each of which has
a single entry point and a single exit. Such programs are much easier to plan,
write, and debug, and are easier for other readers to understand. While Mac
intosh BASIC does still have a 0010 statement that lets you jump around
inside a program, you would do much better to take advantage of these orga
nizing block structures.

The Ten Data Types

Most versions of BASIC have only two data types: numeric (for number
values) and string (for letters and other text characters). Macintosh BASIC has
ten specialized data types, as shown in Figure 1.

The Five Numeric Types. (Identifiers: none, \, :, OJo, and#.) Macintosh
BASIC has five numeric data types. Three of these are for floating-point or
real numbers, which are stored in scientific notation with a decimal fraction
and an exponent. The other two numeric types are for integers-whole num
bers with no decimal part. The normal integer type has only 16 bits of storage,

Type of Type Bytes Significant Range of
Variable Identifier Used Digits Values

Double-precision real (none) 8 15.S E±308
Extended-precision real \ 10 19.S E±4932
Single-precision real

I
4 7 E±38 I

Integer Ofo 2 s (- 32768 to + 32767)
Comp (64-bit integer) # 8 18 (- 1E18 to + 1B18)
String $ 1 +length (2SS characters)
Character of Byte © 1 2 (0 to 2SS)
Boolean or Logical 1/8 (FALSE and TRUE)
Pointer 1 4 indirect reference

Handle } 4 +structure indirect reference

Figure 1: The ten Macintosh BASIC data types, with their identifying symbols.

o INTRODUCTION o

giving it a range from - 32768 to + 32767. The longer integer is a 64-bit comp
(standing for "two's complement," the method of data storage used for both
types of integers). It has a range from approximately - 9.22 x 1018 to
+ 9.22 x 101s. Macintosh BASIC has no equivalent to Macintosh Pascal's
intermediate 32-bit long integer.

By default, all calculations in Macintosh BASIC are done in its full
extended precision mode, then rounded to the accuracy of the variable type
you are using. The default variable type (bearing no type identifier) is the
double-precision real number-see the entry under PREQSION for details.

The Macintosh floating-point arithmetic system does not normally stop a
program when an invalid arithmetic operation occurs. Instead, it may store
the value 0 or INFINITY as the result, or it may store a NAN code, meaning
"Not A Number." At the same time, it sets one of its exception fla&S, to show
that an invalid operation has taken place. See the entries for INFINITY,
NAN, EXCEPTION, and HALT for details on these numeric error-handling
techniques.

Macintosh BASIC has all of the standard BASIC operators' (+, - , x, I,
and "), plus two special operators: DIV for integer division and MOD for
modulo remainder. All of the numeric variable types can be assigned to one
another, using the LET statement. If the value assigned has more digits of pre
cision than the variable receiving it, the value will be rounded (not truncated,
as in most other forms of BASIC.)

String Type. (Identifier: $.) A string is a sequence of text characters stored
under a single variable name. Strings may contain any characters, including
letters, numerals, and special symbols. Numbers in string form cannot be used
in numeric calculations. Up to 255 characters can be assigned to a single
string, or as few as 0 (the null string contains no characters). Each character in
a string is stored as its ASCII code; the codes are listed in Appendix A.

A string constant may be any series of letters enclosed in double quotes ("),
single quotes ('), or the Macintosh's special curved quotes (typed with Option-[
and Option-]). A double quote mark can be included inside a string; just type
two quotes without leaving a space in between for every quotation mark you
want to appear in the string. Alternatively, you can use single or curved quotes
to enclose a string containing double quotation marks.

Strings can be concatenated (joined) with the & operator. A plus sign (+)
cannot be used to concatenate strings in Macintosh BASIC. String compari
sons are made with the standard relational operators (= , #: , >, ~' <, and
<). You can choose the option of either ASCII ordering (the default) or ordi
nary alphabetical ordering-see the entry under OPTION for details.

o INTRODUCTION o

Character (Byte) Type. (Identifier: c, typed as Option-0.) A special character
data type is defined in Macintosh BASIC to hold a single ASCII code. This
type can be assigned an integer number value from 0 to 255; however, it can
not be assigned a string value. It might therefore be more correct to call this
type a byte variable, since it acts more like a short integer than as a character.

Boolean Type. (Identifier: - , called a "tilde.") Unlike other types of BASIC,
Macintosh BASIC has a full Boolean variable type, which can take on only
two values: TRUE and FALSE. A Boolean variable can be assigned the logical
result of a relational comparison of two numeric or string variables. Macin
tosh BASIC also has a number of important built-in Boolean functions
(including MOUSEB- and SOUNDOVER -), which can be manipulated as
logical expressions.

Logical expressions can be evaluated and assigned to Boolean variables with
standard assignment statements. The logical operators AND, OR, and NOT
combine two Boolean values to yield a single result. See the entry under LET
for details on logical assignment statements.

Pointer Type. (Identifier:].) A pointer contains the address of a location in
the computer's memory. In advanced programming, a pointer is often used to
refer indirectly to another structure within the computer's memory. Rather
than holding the structure itself within a variable or array, a pointer is defmed
that contains the address where the other structure is stored. In Macintosh
BASIC, pointers are used only in connection with the TOOLBOX statement,·
described below.

Related to pointers is the indirect addressing symbol, @, which is used in
certain types of subroutine calls and other structures. The indirect addressing
symbol tells a command to treat a variable or array merely as a reference to a
memory location, rather than as an actual value. This symbol should be used
only where it is a required part of the syntax. It cannot be used to create a
pointer variable.

Handles Type. (Identifier: } .) The handle variable type is peculiar to the
Macintosh system. Like pointers, handle variables are used only with the
TOOLBOX command.

Technically, a handle is a pointer to a pointer-a variable that contains the
address of an intermediate pointer, that, in turn, contains the address of a struc
ture in memory. This double indirection is required on the Macintosh system
because all blocks of memory are dynac, that is, free to be moved by the operat
ing system. When the system moves a structure stored under handle variable, it

o INTRODUCTION o

automatically adjusts the intermediate pointer so that it holds the new memory
address of the moved structure. The intermediate pointer itself is not moved, so
that the handle variable still points to it-and, through it, to the desired structure.
The handle variable therefore can retain the address of a fixed memory location,
yet point indirectly to a dynamic structure in the memory.

In Macintosh BASIC, a handle variable is treated as if it contained the
entire structure it points to. If a handle is assigned to another handle variable,
the entire structure will be copied and stored with the new handle pointing to
it. The entire structure can be stored in a data file merely by writing the name
of its handle.

For all ten data types, variable names may consist of any number of charac
ters, ending with the variable's type identifier symbol, shown in F1gure 1. Names
must begin with a letter; numbers and certain special symbols are permitted for
all characters after the first. Upper- and lowercase letters are treated as equivalent
in variable names. This book uses initial capitals for all variable names.

Arrays (subscripted variables) and functions may be defmed in all Macin
tosh BASIC data types. An array may have the same name as an unsub
scripted variable, but not the same name as a function.

Data Files

Macintosh BASIC has a sophisticated data file system, which lets you
manipulate both sequential and random-access files easily. Each data file is

. defmed by a set of three attributes, which specify the type of access permitted
(input only, or input/ output), the storage format (text, data, or binary), and
the file's organization (sequential, record-size, or stream).

Within file commands, Macintosh BASIC allows two special types of oper
ators, which are executed as preliminaries to the file commands. The first type
are the file pointer operators, which move a file pointer to a new record within
the file, before executing the file command. The other type of internal opera
tor is the file contingency, a special kind of IF statement that is executed prior
to the file command only if certain exceptional conditions occur (end-of-file,
missing record, etc.). These special commands add a great deal of flexibility to
the file 1/0 commands.

The entry for OPEN # contains a general description of the Macintosh
BASIC data file system.

QuickDr Graphics

Macintosh BASIC has one of the most sophisticated graphics systems of
any language for any personal computer. Based on the Macintosh's internal

o INTRODUCTION o

QuickDraw graphics system, Macintosh BASIC has simple commands for
drawing all kinds of complex shapes. These shape graphics commands treat
the shape as a unit and are all extremely fast-must faster than plotting the
objects yourself.

The Macintosh BASIC graphics system is based on a two-keyword syntax.
All of the shape graphics commands take the form "Verb-Noun." The verbs
can be chosen from the four shape graphics manipulators: ERASE (clear
away an area), FRAME (draw the border), INVERT (reverse the color of all
pixels) and PAINT (fill in with a pattern). For the nouns, you can choose any
of the three RECT (for rectangles) OVAL (for circles or ellipses), and
ROUNDRECT (for rectangles with round corners). Any of the twelve combi
nations of these four verbs and three shapes is a valid BASIC command.

In addition, Macintosh BASIC has a PLOT statement for drawing points
and lines. This command similar to the point- and line-drawing commands in
other forms of BASIC.

As in other forms of BASIC, graphics are described in terms of
coordinates-a pair of numbers that names a horizontal and a vertical posi
tion for the point. In Macintosh BASIC, coordinates are normally measured
in pixels from the point (0,0) at the upper-left corner of the output window.
That default, however, can be changed by using the SCALE set-option. This
book follows the Macintosh BASIC convention of naming coordinates {H, V),
for "Horimntal/Vertical," rather than (X, Y), as in traditional mathematics.
See PLOT for more details on coordinates.

Most graphics operations are controlled by the graphics pen., which can be
set to draw lines and shapes in various ways. With a series of graphics set
options, you can change the graphics pen so that graphics are drawn with a
pattern of your choice, a wider or taller pensize, or a selection of transfer
modes that determine how new graphics will overlay what is already on the
screen. See the entries for PATTERN, PENSIZE, and PENMODE for details.

For text output, Macintosh BASIC has a flexible GPRINT (Graphics
GIPRINT) statement that allows you to draw text in different fonts, sizes, and
type styles. A traditional PRINT statement is also provided, for compatibility
with other languages.

The Toolbox

Finally, there is the toolbox, a set of graphics and system routines inside the
Macintosh operating system. These machine-language routines are stored on a
pair of ROM chips inside the Macintosh, and are available to all Macintosh
applications and programming languages. In assembly language, for example,

o INTRODUCTION o

all of the toolbox routines can be called as if they were library subroutines and
functions.

Macintosh BASIC gives you access to a wide variety of toolbox commands,
through a special TOOLBOX statement. This statement is essentially a
machine-language subroutine call, allowing you to use the toolbox routines as
extensions of the BASIC language. In effect, the toolbox routines become
additional commands for the Macintosh BASIC language.

Macintosh BASIC does not give access to all of the 500 or so toolbox com
mands built into the Macintosh ROM. Some of the commands are of no use
in a high-level language such as BASIC, and others are duplicated exactly by
BASIC commands. Macintosh BASIC therefore limits its toolbox interface to
a group of about 300 functions and procedures that might be of general inter
est as supplements to the language. These routines include most of the graph
ics system (including three additional shapes-arcs, polygons, and
regions-that are not available in BASIC), the window manager (which
arranges the windows on the screen), the menu manager (which keeps track of
the pull-down menus), and the control manager (which creates scroll bars and
"push buttons" for interactive programs). Some other portions of the toolbox
can also be used through BASIC.

If you have version 1.0 of Macintosh BASIC and are wondering why you
haven't heard of the TOOLBOX statement, it's because the statement isn't
mentioned in Apple's documentation. Because the toolbox interface is so com
plex, Apple decided it could not make the TOOLBOX statement work per
fectly for the initial release of Macintosh BASIC, so the company decided to
omit all mention of the statement, rather than be responsible for making it
bug-free. Yet, the statement is in the language and does work in the most
important cases-a fertile ground for experimentation.

You will find the keys to the TOOLBOX statement in this book. The most
important toolbox graphics commands are discussed under their own names in
the text, including all of the QuickDraw shape commands for drawing arcs,
polygons, and regions. The other sections of the toolbox (windows, menus,
and controls) are not given separate entries, but they are treated as a group
under the TOOLBOX/TOOL entry. Finally, Appendix Dis a general refer
ence to all of the toolbox commands that are available in Macintosh BASIC
including complete syntax summaries. See the TOOLBOX/TOOL entry for a
complete introduction to the toolbox.

Numeric function-absolute value.

Syntax
Result = ABS(X)

Computes the absolute value of the number X.

Description
The ABS function computes the absolute value of a number. The absolute

value is the numeric magnitude of the number after it has been stripped of its
positive or negative sign.

Figure 1 shows a graph of the absolute value function. It is calculated as
follows:

• If the number is positive, the absolute value is the number itself.

• If the number is negative, the absolute value is the negative of the num
ber, or the number with its negative sign changed to positive.

The argument of the ABS function may be a constant, a variable, or an
arithmetic expression.

Sample Program
ABS is useful whenever you want to compare numbers without regard to

sign. The following program chooses pairs of random numbers and displays
the difference between them:

! ABS-Sample Program
RANDOMIZE
FOR I= 1TO3

Rl = RND(lO)
R2 = RND(lO)

oABS o

PRINT "First number = ";Rl
PRINT "Second number = ";R2
PRINT
PRINT "= = > The difference of the"
PRINT TAB(S); "numbers is"; ABS(Rl-R2)
PRINT

NEXT I

Since the two numbers are chosen randomly, there is no way of knowing
which will be larger. Therefore, the expression

Rl - R2

may result in either a negative or a positive number. But in describing the dif
ference between Rl and R2, the sign is irrelevant, so we use the ABS function
to eliminate the sign. Figure 2 shows a sample output from this program.

RBS-Function 6raph
ABS(X)

~-1-~~~-+-~~~-1-~~~-311!:...-~~--l>--~~~~~~~~- x
-15 -10 -5 5 10 15

-5

Figure 1: ABS-Graph of the absolute value function.

•

mm

oABS o

~O RBS-Sample Prngram
First number = 5.6 761620 15 •
Second number= 9.255025741

==>The difference between the i~~
numbers is 3.578863726

First number = 9.21769659
Second number = 1.826666137

==>The difference between the
numbers is 7 .391 030453

Figure 2: ABS-Output of sample program.

---i I AND It:::
~-------------· F

Syntax

Logical operator-TRUE only if two logical
expressions are both TRUE.

[I] ResulC = A- AND B-

Combines two logical variables or expressions and yields the Bool
ean result TRUE if both A- and B - are TRUE.

rn IF A- AND B- THEN ...

The AND operator is frequently used in an IF condition to combine
two logical expressions or relations.

Description
Often you may want a program to take a certain action only when both of

two conditions are true. The AND logical operator lets you combine two logi
cal expressions into one, which is TRUE only if both conditions are TRUE. If
either statement is FALSE, or if both are FALSE, the compound expression is
also FALSE.

The AND operator is frequently used to create compound conditions for IF
statements.

[I] ResulC = A- AND B-

Unlike most other dialects of BASIC, Macintosh BASIC has ull Boolean
variable type, identified by the tilde symbol c-). A Bool ·able can there
fore be set equal to a logical expression which cont · s the value TRUE
or FALSE.

oANDo

In its simplest form, AND is a logical operator in a logical assignment state
ment, in much the same way the plus sign is an arithmetic operator in the
statement

C=A+B

The AND operator simply combines two logical expressions into a new logical
value, which can then be assigned to a Boolean variable:

ResulC . = A- AND B-

in this statement, the Boolean variables A- and B - can be replaced by any
logical expression, including the following:

• A relational expression such as

Number>S

which evaluates to a Boolean value TRUE or FALSE.

• A Boolean constant or system function:

MOUSER-

or,

• A complex logical expression combining other Boolean values with
another logical operator such as AND, OR, or NOT:

(Number>S) OR (MOUSER- AND NOT (B < 5))

Figure 1 is a "truth table" for the AND condition, showing the resulting
value of the compound statement for all possible combinations of values for
A- and B-. Notice that the compound statement is TRUE in only one case-
when both of the smaller statements are TRUE.

~ IF A- AND B- THEN •••

The AND operator, of course, is not limited to logical assignment state
ments. It can be used in any place where a logical expression is required.

The most common place for the AND operator is in the condition of an IF
statement. In that place, the AND operator creates a compound condition out
of two logical expressions, A- and B - . The THEN block of an IF statement
with a compound condition will be executed only if both of the simple expres
sions are fulfilled.

oANDo

AND

A- a- A- AND a-

TRUE TRUE TRUE

TRUE FALSE FALSE

FALSE TRUE FALSE

FALSE FALSE FALSE

Figure 1: AND-Truth table for the AND operator.

As before, A- and B - can stand for any logical expression. In most IF
statements, these expressions will be formed by relational operators comparing
numbers or strings:

IF Avg ;;i: 75 AND Final ;;i: 70 THEN •••

This IF statement will execute the THEN block only if both of the following
relations are true:

Avg ;;i: 75
Final ;;i: 70

The AND operator is frequently used to test whether a number is in a cer
tain range. The THEN block of the following IF statement, for example, will
be executed only if N falls between 10 and 20:

IF N>lO AND N<20 THEN PRINT "Between 10 and 20."

In Macintosh BASIC, this range test can also be accomplished with the
SELECT /CASE structure.

Applications
The program in Figure 2 is designed for the following situation: A class

room teacher is looking at a semester's test scores to see which students have

oANDo

passed and which have failed. The teacher has given three quizzes and one
final exam during the semester, and has decided that a student must have an
average score of 75 or better for the quizzes, and a rmal exam score of 70 or
better to pass the course. Using this program, then, the teacher can type each
student's name and test scores, and let the computer make the appropriate cal
culations to determine whether the stu~ent has passed or failed.

The IF/THEN/ELSE block near the end of the program uses the AND
operator to test both conditions at the same time. The THEN block prints that
the student has passed only if the average quiz score (Avg) is greater than or
equal to 75, and the rmal exam score (Final) is greater than or equal to 70. If

! AND-Application Program
DO

INPUT "Student's Name:"; N$
PRINT
PRINT "Type the test scores for"; N$; ":"
Total= o
FOR I= 1 TO 3

PRINT "Quiz "'"; I;
INPUT ":";Quiz
Total =Total + Quiz

NEXT I
Avg = Total/3
INPUT "Final Exam:"; Final
PRINT
PRINT "Quiz Average = "; RINT(Avg)
PRINT "Final Exam = "; Final
PRINT
PRINT "** "; N$;. has";
IF Avgas AND Flnali70 THEN

PRINT "Passed";
ELSE

PRINT "Failed";
END IF
PRINT" **"
PRINT
DO

INPUT "Press Return to cont1nue.";A$
IF A$="" THEN EXIT

LOOP
CLEARWINDOW

LOOP

F'igure 2: AND-Application Program.

oANDo

either one or both of these conditions is not met, the ELSE block is executed
and the student fails.

Figures 3 and 4 show the scores for two different students. The first student
passed the course by satisfying both conditions. The second student had a satis
factory quiz average, but received a score below 70 on the final exam; the com
pound statement in line 130 is thus evaluated to FALSE, and the student fails.

Notes
-Compound expressions may consist of more than two logical expressions,

with parentheses to specify the order in which the expressions are to be evalu
ated. For example, the statement

IF Final >= 70 AND (Avg >= 75 OR Project>= 80) THEN •••

would be evaluated as TRUE only if both of the following conditions were met:

1. The variable Final contains a value that is greater than or equal to 70,
and

2. At least one of the following statements is true: Avg is greater than or
equal to 75, and/or Project is greater than or equal to 80.

~0§ AND-Application program ~
Student's Name: Elizabeth ?

Type the test scores for Elizabeth:
Quiz• 1: 89
Quiz •2: 96
Quiz •3: 97
Final Exam: 94

Quiz Average = 94
Final Exam = 94

** Elizabeth has Passed. **

Press Return to continue.

Figure 3: AND-Output of application program, for a
student who has satisfied both conditions.

oANDo

~O~ AND-Application program ~
Student's Nf:lme: George 111 ?

Type the test scores for George 111:
Quiz• 1: 79
Quiz •2: 84
Quiz •3: 92
Final Exam: 65

Quiz Average = 85
Flnal Exam = 65

** George 111 has Failed. **

Press Return to continue.

Figure 4: AND-Output of the application program,
for a student who was not so fortunate.

In the hierarchy of operations, the AND operator takes precedence over
OR, but not over the NOT operator. If you can keep track of which expres
sion is being evaluated first, you can leave out the parentheses in some com
plex logical expressions. However, it is usually a good idea to use the
parentheses, even if redundant, because it is easy to forget which logical oper
ators are evaluated first in such an expression.

Be careful about writing complex logical expressions beyond the point of
readability. Many people fmd the logical operators confusing at best, and
some may not be able to follow the logic at all when it becomes complex.
Intermediate assignment statements can sometimes be used to simplify com
plex conditions:

Pass Term- = (Avg > = 75) OR (Project > = 80)
PassFinat' = Final > = 70
IF PassTerm- AND PassFinat' THEN •••

This sequence of statements would have the same effect as the single IF state
ment above.

-For more information on compound logical statements and IF decisions,
see the entries under IF, NOT, and OR.

:=-l 1 ANNUITY It:-: ==i___ -----------'· F

Numeric function-returns payment required
for a given future value of an annuity.

Syntax
Investment = ANNUITY(Rate,Periods)*FutureValue

Calculates the present value of a single unit of an annuity at a speci
fied interest rate for a specified number of periods.

Description
ANNUITY is a numeric function that calculates the investment required for

a given unit of an annuity, given the interest rate for a single period and the
number of interest periods.

The interest rate must be expressed as a decimal fraction. If the rate is 11.5
percent for a year, the value of Rate must be .115. so, for example,

OneUnit = ANNUITY(.115,20)

will yield the investment required to produce one unit of ending value on
an investment held for 20 years with interest accumulating at 11.5 percent
annually.

To get the actual amount required, you must multiply the value returned by
the future value desired. For example,

FutureValue = 10000
Investment= Annuity(.115,20)*FutureValue
PRINT Investment

will yield the amount of investment required to produce a payoff of $10,000,
if the investment is held for 20 years at 11.5 percent annual interest.

If there is more than one interest period per year, you must divide Rate by the
number of periods and and multiply the Period by the number of periods per

oANNUITYo

year to yield the true present value. You could define a function similar to the one
presented in the COMPOUND entry to make the adjustments for you:

FUNCTION lnvestment(FutureValue,Periods,Rate,Years)
Periods = Years*Periods
Rate - Rate/Periods*.01 I Converts percent to decimal fraction
Investment = ANNUITY(Rate,Periods)*FutureValue
END FUNCTION

Application
The annuity function can also be used to determine the monthly payment

on a loan. The program presented in Figure 1 uses the ANNUITY function to
calculate monthly payments on a mortgage and print a mortgage table for any
given year in the life of the mortgage.

SET OUTPUT ToScreen
INPUT "What ls the total amount of your loan? $";Loan
INPUT "What is the annual Interest rate (In percent)? ";Rate
INPUT "What Is the term of your mortgage in years? ";Term
INPUT "For what year do you want to calculate payments? ·;Vear
lntRate = (Rate*.O 1)/ 12
Payment = Loan/ ANNUITY(lntRate, Term* 12)

CLEARWINDOW
001s=·s••,•••.••·
Une$ = • ,,.,, $••,•••.•• $""1t,•••.•• $ •••••••• , .
SET FONT 0
SET 6TEXTFACE 1
&PRINT AT 150, 12; ·Mortgage Schedule for Veer·; Vear
SET 6TEXTFACE 0
&PRINT AT 11, 24 ;·Loan Amount: ·; FORHAT$(Do1$;Loan)
&PRINT ·Annual Interest:·; Rate; ·:g·
&PRINT ·Loan Term:·; Term; • years·
&PRINT "Monthly Payment:"; FORHAT$(Do1$;Payment)

&PRINT AT 77,90; "Month Principal Interest
SET FONT 1
IF Veer;e 1 THEN 60SUB BeginningBal:

Figure 1: ANNUITY-Mortgage Table Program.

Balance·

o ANNUITY o

FOR Month= 1 TO 12
Molnt = lntRate*Loan
Princ1pal = Payment-Molnt
Loan = Loan-Princ1pal
SPRINT FORHAT$(Line$;MonthNum+ 1,Princ1pal,Molnt,Loan)
MonthNum = MonthNum+ 1

NEXT Month
END HAIN

Beginn1ngBal:
MonthNum = 12*Year-12

FOR Month = 1 TO MonthNum
Loan= Loan-Payment+lntRate*Loan

NEXT Month
RETURN

! Find first month to display
! Compute beginning balance

Figure 1: ANNUITY-Mortgage Table Program (continued).

The formula that calculates the payment is

Payment= Loan/ANNUITY(lntRate,Term*12)

where Loan is the total amount of the loan, Term is the number of years, and
IntRate is the interest rate converted to the monthly interest rate as a decimal
fraction. The interest rate conversion is performed by the statement

lntRate = (Rate*.01)/12

If the schedule is requested for a year other than the first, the amount of the
loan that has already been paid off must be calculated. This is taken care of
by the subroutine BeginningBal:. If the year is, say, year 6, the value of the
loan at the end of year 5 must be calculated. The year is first multiplied by
12 to get the number of months, and the months of the requested year are
subtracted:

MonthNum = 12*Year-12

If the requested year is 6, MonthNum = 12•6- 12, or 60, the number of
months in 5 years.

The FOR loop in the subroutine then calculates the remaining balance of
the loan for each month through month 60. Control then returns to the main
program, where a table is printed showing the month, amount of the payment
applied to principal and interest, and remaining balance, for each month from
61 to 72. The table includes a header showing the loan parameters. A sample
output appears in Figure 2.

o ANNUITY o

=o RNNUITY Mortgage Table
Mor-tgoge Schedule for- Year- 14

Lonn Rmount: $85,000.00
Rnnunl Interest: 10.63
Loan Term: 30 years
Monthly Payment:

Month
157
156
159
160
161
162
163
164
165
166
167

$783.89
Principal

$130.34
$131.50
$132.66
$133.63
$135.01
$136.20
$137.41
$136.62
$139.65
$141.05
$142.33

Interest
$653.55
$652.39
$651 .23
$650.06
$646.66
$647.69
$646.46
$645.27
$644.04
$642.B 1
$641 .56

Figure 2: ANNUITY- Output of Mortgage Table Program.

Balance
$73,655.96
$73,724.47
$73,591 .51
$73,457.96
$73,322.97
$73, 166.77
$73,049.36
$72,910.74
$72,770.59
$72,629.51
$72,467.49

=11 APPEND It-===i----------..---... F

Syntax

File access attribute-sets file pointer to the
last record of a file.

OPEN #Channel: "FileName", APPEND, Format, Structure

Opens a disk file to be read from or written to, starting with the last
record in the file.

Description
The APPEND file access attribute is used as part of the OPEN # statement

that opens a channel from a file to a program. APPEND opens a two-way
channel, so that the file can either send information to the program or receive
information from it.

APPEND also presets the file pointer to the end of the file, so that access
begins at the end of the last record. Whether the file will be read or written to
depends on the ensuing program statements.

If you do not specify an access attribute, it will automatically default to
INPUT. With the INPUT attribute, the channel is a one-way, the file can be
read, but not written to. Also with INPUT, the pointer starts at the beginning
of the file, not the end.

When you do specify an access attribute, it should appear as the first attri
bute in the OPEN # statement.

Application Program
The program in Figure 1 appends new records to the sequential file called

"Employee File 1," written by the program in the SEQUENTIAL entry.

oAPPEND o

! APPEND-Application Program
! Adds records to the me created by the SEQUENTIAL WRITE program
I Cells the SEQUENTIAL READ Program to reed the emended file

SET OUTPUT ToScreen
OPEN "'3: ·Employee File 1·, APPEND,DATA,SEQUENTIAL
INPUT ·Number of new records? ·;Num
FOR Rec = 1 TO Num

INPUT ·Enter lest name:·; Lest$
INPUT ·Enter first name: ·;First$
DO

INPUT 'Enter ·w· for HOURLY WAGE, ·s· for SALARIED: ';Stet$
Stet$ = UPSHIFTS(Stet$)
SELECT Stet$

CASE ·w·
INPUT ·Enter hourly wage: s·; Rete
EXIT DO

CASE ·s·
INPUT ·Enter biweekly salary: s·;Rete
EXIT DO

CASE ELSE
PRINT ·ERROR-please re-enter status:

END SELECT
LOOP
WRITE "'3: Stet$, Lest$, First$, Rate

NEXT Rec
READ •3, BEGIN: NRecs
NewNum = NRecs+Num
WRITE "'3, SAHE: NewNum
CLOSE "'3
CLEARWINDOW
PERFORM SEQUENTIAL-Reed

Figure 1: APPEND-Application Program.

! Find old file length
I Set to new length
I Write to file es first record

First you are asked for the number of new entries. The answer to this is
used as the finish value in a FOR loop that controls the input. After the name
is entered, the salary is entered within a DO loop. This allows for two differ
ent salary prompts, one for employees on an hourly wage, and the other for
those on a biweekly salary. An error trap is included, in case a wrong key is
pressed. A sample input screen appears in Figure 2.

The new entries are written to the file one at a time, within the FOR loop.
After they have all been written, the file pointer command BEGIN is used to
move the file pointer to the beginning of the file. This way, the program can

o APPEND o

APPEND-Application Program
Number of new records? 3
Enter last name: Jenkins
Enter first name: Marla
Enter "W" for HOURLY WAGE, "S" for SALARIED: s
Enter biweekly salary: $646.15
Enter last name: Osawa
Enter first name: Sari
Enter "W" for HOURLY WAGE, "S" for SALARIED: d
ERROR-p 1 ease re-enter status.
Enter "It./" for HOURLY WAGE, "S" for SALARIED: w
Enter hourly wage: $12.66
Enter last name: "lamamoto
Enter first name: George
Enter"¥/" for HOURLI/ \.YAGE, "S" for SALARIED: s
Enter biweekly salary: $2019.23

Figure 2: APPEND-Sample input.

read the number of records and update the number of entries. The number of
records that were previously in the file is now added to the number of new
records. Since this new information should replace the old number in the same
record, the file pointer command SAME is used to write to the same record.
The new number is then written to the file.

After the writing is finished and the file has been closed, the program uses a
PERFORM statement to call the program that reads the file, so you can see
the results. The final output appears in Figure 3.

Notes
-For further information see the OPEN# entry. Other file access attrib

utes are OUTIN and INPUT.

-Macintosh BASIC's APPEND access attribute differs from Microsoft
BASIC's APPEND mode in that Microsoft's APPEND mode may be used

APPEND-Application Program

Salaried Employees
Name Biweekly Wage

Richman, Bernard
Perez, Federico
Lathom. Sue
Frankl in. Howard
Denton. Arthur
Jenkins. Marla
Yamamoto, George

$4.000 00
$1.4B6 22
$1.846 15
$1,269 23
$2,019 23

$846.15
$2,019 23

Hourly Employees
Name Hourly Wage

Lee, Julio $9.55
Brown. Ruth $7.32
McClosl<ey. Dennis $9.55
Osowo, Sari $12 66

.· .. =:·: ·•

Figure 3: APPEND-Output of Application Program.

only with sequential files, and opens the file only for writing. It does set the
file pointer to the end of the file. In Microsoft BASIC, APPEND will create a
new file if a file of the specified name does not exist.

-Applesoft BASIC's APPEND command also sets a pointer to the end of
a file, but it takes the place of the OPEN command, may be used only with
sequential files, and may only be used for writing.

•

----jl ASC It--___,__ ----------'· F

Syntax

String conversion function-returns the
ASCII value of a character.

Result = ASC(String$)

Returns the ASCII code, from 0 to 255, of the first character of the
string that is its argument.

Description
The ASC function examines the first character of the string that is its argu

ment and returns the decimal number from 0 to 255 that represents that char
acter's ASCII code. It may take as its argument a single character in quotes, a
string literal of any length enclosed in quotes, or a string variable.

Sample$ = "Is this a string?"
Resultl = ASC(Sample$)
Result2 = ASC("l")
Result3 = ASC("ls this a string?")
Result4 = ASC("ls")

In this example, Result!, Result2, Result3, and Result4 will all be equal to 73,
the ASCII value of the character I.

The CHR$ function is the inverse of the ASC function. It returns the char
acter whose ASCII code is its argument.

The statement PRINT ASC(" ") returns a value of - 1. This can be used to
test for input of the null string.

Complete ASCII code tables for the Macintosh fonts available in BASIC
appear in Appendix A. For a sample program demonstrating the use of the
CHR$ function to produce an ASOI table, see the entry under CHR$.

=-11 ASK If-= ==l-----------· F

Syntax

BASIC command word-retrieves the value
stored as a set-option.

[]] ASK set-option Variab/e(s)

Retrieves the current value of the set-option, and stores it in the
given variable or variables.

Description
In Macintosh BASIC, set-options are an important extension of the stan

dard BASIC language. A set-option is a special variable that controls how
other BASIC statements do their work. In graphics, set-options are frequently
used to store settings for the graphics pen's pattern, position, size, and transfer
mode. Set-options are also used to set fonts, numeric calculation modes, and
file I/0 pointers.

The ASK statement lets you fmd out the value currently in effect for a given
set-option. Most often, this value will simply be the last value stored by a SET
statement for that set-option, or the default value if there has been no
SET statement.

The syntax of the ASK statement is the same as SET: it must always consist
of the keyword ASK, the name of the set-option, and one or more variable
names. For each specific set-option, the number of variables is fixed. Most
set-options require exactly one numeric variable; a few use two or even four.
1\vo special set-options, EXCEPTION and HALT, require one numeric con
stant and one Boolean variable. In the entry for SET, you will fmd a table of
all the set-options and their number of required parameters.

Unlike the SET command, ASK requires that the parameters be variables,
not constants or expressions. The ASK statement needs to be able to assign a

oASKo

value to the variable you name. It cannot do that if you give it a constant or
an expression. (A constant mistakenly passed to an ASK statement may even
be assigned a new value, leading to bizarre results such as 2 + 2 = 6. Watch out
for this!) In the special numeric set-options EXCEPTION and HALT, how
ever, the first parameter should be a constant, because it specifies an option
rather than a value to be returned. See those entries for details.

Because of the requirement that the ASK statement return values into vari
ables, ASK does not allow some of the alternate forms available in the SET
statement. You cannot omit the parameter list for set-options that have a stan
dard default. You cannot use the name of a system constant in the parameter
list of an ASK statement, without running the risk of changing its value for
future statements in the program.

The ASK statement is used less frequently than SET, because it is rare that
you need to recover the value of an option that you have set yourself. There
are, however, times when ASK is very useful.

For example, some BASIC statements may change the value of a set
option, so it is useful to retrieve the current setting after an operation.
GPRINT, for example, changes the setting of PENPOS (the pen position), so
you can use ASK PENPOS to determine the position of the end of a line of
GPRINT text:

GPRINT AT 50,50; "A line of text";
ASK PENPOS H,V
PRINT H,V

yields the values 50,66 for H and V. See PENPOS and GPRINT for further
details.

Another common use of ASK is to store a setting that you later want to
restore. Suppose, for example, that you wanted to change the pen's pattern to
Black for one statement only, then return to the previous pattern. You could
use ASK to store the previous setting in a holding variable, then restore it with
SET after the command, as in the following program segment:

•
•
•

ASK PATTERN Pat
SET PATTERN Black
PAINT OVAL 100, 100; 140, 140
SET PATTERN Pat

•
•
•

This "save and restore" technique can be used for most set-options.

---j I ATEOF- I I-= ==i---_______ ___,, F

File function-returns TRUE if the file
pointer is at end of the file.

Syntax
IF ATEOF' (#Channel) THEN statement(s)

Directs the computer to perform a specified operation if the file
pointer in the file open on the given channel is at the end of the file.

Description
The ATEOF function is used in an IF statement or block to direct the

computer to perform specified operations when the file pointer is at the end of
a file. It takes as its argument the channel number of an open channel. Note
that you must include the number symbol (#) before the channel number in
this function.

The ATEOF function can be used to avoid error conditions associated
with reading past the end of a file. For example:

DO
INPUT #54: Employee$, EmpNum$, SSNo$, PayRate
IF ATEOr (#54) THEN

CLOSE #54
GOSUB PrintHeadings:
EXIT DO

END IF
LOOP

When the end of the file is reached, this set of program statements will close
the file, execute a subroutine, and exit the input loop.

---11 ATN It-=i___ ---------'· F

Numeric function-finds the arc tangent of a
number.

Syntax
ResultAngle = ATN(X)

Returns the angle, in radians, whose tangent is X.

Description
The ATN function supplies the arc tangent of any negative or positive argu

ment. The arc tangent of a number x is the angle whose tangent is x.
The result of the ATN function is expressed in radians, a unit of angular

measurement that goes from 0 to 2n in one full turn around a 360-degree cir
cle. One radian is equal to 360°12n, or approximately 57 .3 degrees. The entry
for PI has a pair of functions that convert radians to degrees and back.

Figure 1 shows a graph of the ATN function. As its argument rises from - oo
to + oo, the ATN function returns values in the range - n/2 to + n/2. Because
the ATN function is bounded above and below, it will return a finite value even
if its argument is infinite: ATN(oo) = n/2 and ATN(-oo) = -n/2.

Theoretically, the arc tangent could have values in a range other than this
one, since there are many angles for which the tangent is the same. For
example, 10°, 370°, and 730° all have the same tangent; so any of those num
bers could be the arc tangent of the same number. A function, however, must
have a specific value to return to its calling program, so ATN is defined so as
to restrict its values to this single range. This branch of the graph is called the
principal branch of the function.

oATNo

ATN-Functlon Graph
ATN(X)

2

~-+-~~4-~~-4-~~-+-~~~'--~--1~~~1--~~-1---~~-+-- x
-4 -3 3 4

-2

Figure 1: ATN-Graph of the arc tangent function.

Sample Program
The following program uses the arc tangent to calculate the angle a line

makes to the horizontal:

ATN-Sample Program
DO

GPRINT AT 7,12; "Press the mouse inside the window."
BTNWAIT
CLEARWINDOW
PLOT 120, 120; 240, 120
H = MOUSEH
V =MOUSEY
DH= H - 120
DV = 120 - V ! Negative because . ..
GPRINT AT 7,28; ATN(DV/DH)*180/PI; "Degrees"
PLOT 120,120; H,V

LOOP

Each time the mouse is pressed, the program draws a line to the center of the
output window and calculates the angle. The output is shown in Figure 2.

•

Notes

oATNo

-™ RTN-Sample Program
Press the mouse inside the window ?
54.27260 178 Degrees

Figure 2: ATN-output of sample program.

-The arc tangent is the only inverse trigonometric function implemented in
BASIC. There are, however, formulas you can use to create arc sine and arc
cosine functions out of the arc tangent:

DEF ArcSin(X) = ATN(X/SQR(1 - X "'2))

and

DEF ArcCos(X) = Pl/2 - ATN(X/SQR(l - X "'2))

-See the entries under SIN, COS, and TAN for more information about
the trigonometric functions.

AYN-Translation Key

Microsoft BASIC ATN

Applesoft BASIC ATN

:::=1 I BEGIN It-==i ~-~~~~~~~--J·F

File pointer command-moves the file pointer
to beginning of file.

Syntax
filecommand #Channel, BEGIN: //0 List

Moves the file pointer to the beginning of the file prior to executing
the specified file command.

Description
BEGIN is a position of a record in a file. It may be used in the commands

READ #, INPUT #, WRI1E #, REWRITE #, and PRINT #, to move the
. pointer. When one of these commands includes the BEGIN statement, it tells
the program to perform the operation on the record at the beginning of the
file, and moves the file pointer to that point. The BEGIN command has the
same effect on an INPUT # or READ # statement that RESTORE has on a
READ statement.

File pointers cannot be used with STREAM files. For further details on the
use of record pointers, see the READ #, INPUT #, WRI1E #, REWRI1E #,
and PRINT # entries. See the APPEND entry for a sample program using
BEGIN.

=:I I BINY 11--:==i ..__ -----------· F

Syntax

File format attribute-designates a file as
composed entirely of binary-coded data.

OPEN #Channel:"FileName" ,Access, BINY,Organization

Opens the specified all-binary flle on the specified channel.

Description
BINY files are composed entirely of binary-coded data. You can send dif

ferent data types to a BINY flle with the WRITE # command; however, the
only distinction between types in the file will be the number of bytes used to
store each type of data. See the TYP entry for a table showing the number of
bytes used by each data type.

There are no delimiters between fields in a BINY file. Therefore, you must
be especially careful in reading such a file. The only way to get an accurate
reading of the contents is to be sure that the data are read back using READ #
statements that list the same data types, in the same order, as those that cre
ated the file. Otherwise, some of the bytes from a given variable may spill
over and be read into an incorrect receiving variable. The result will be gibber
ish at best.

BINY files are often used as STREAM files to send continuous data directly
to another device such as a modem, a printer, or another computer. Since the
entire file will be sent as a unit, there is no need to access specific fields or
records in the course of the transmission.

BINY files are processed faster than any other flle format, because no time
is taken in reading type tags or translating ASCII codes.

o BINYo

-Constants and the results of expressions are always sent to a BINY file as
binary-coded extended-precision real numbers, regardless of the data types
involved in the equations, or the degree of precision of the constants them
selves. For example:

WRITE #22: 345

would send the number 345 to the file as an extended-precision real number,
even though 345 is an integer quantity.

-For more information about data types see the LET and TYP entries.

-In general, DATA formatted files offer most of the advantages of BINY
files, but are considerably easier to process.

q1_ __ B_T_N_W_~_T ______ I p

Syntax
BTNWAIT

BASIC command-halts the program until
the mouse button is pressed.

Causes a break in the program's execution, then resumes execution
when the mouse button is clicked inside the output window.

Description
BTNWAIT is one of the simplest ways to place a pause in your program.

When this statement is encountered in execution, the program stops and a
question-mark prompt appears in the status box at the upper-right corner of
the screen. When you click the mouse button inside the output window, the
program resumes its execution.

BTNWAIT detects the transition of the mouse button from up to down. If
the mouse button is already down when the BTNWAIT is encountered, the
program will keep waiting until the button has been released and pressed
again. This is important in program segments such as the following:

DO
BTNWAIT
PRINT "Mouse"
LOOP

This program will print the word "Mouse" only once each time the mouse is
pressed down. The BTNWAIT acts as a gate in this program, allowing only
one pass through the loop for each click of the mouse.

BTNWAIT will only register a press of the mouse if it occurs inside the out
put window. If you click the mouse anywhere outside the window, BTNWAIT

o BTNWAITo

will ignore it. (This is a difference between BTNWAIT and the mouse-button
function MOUSEB- , which detects the mouse button wherever it is pressed on
the screen.)

You can use a BlNWAIT right at the beginning of a program as a pause to let
yourself get ready for the program's output. You might, for example, want to
rescale the output window or move it completely onto the screen before you let
the program run. BTNWAIT statements are occasionally placed at the beginning
of programs in this book to allow for rescaling of the output window. Of course,
you can also use SET OUTPUT to resiz.e the window automatically.

Good programming practice dictates that you print a message on the screen
when you stop the program with a BTNWAIT. Without a message such as
"Press mouse button to continue," a person running the program may not
realize why the program stopped and what action is required before it will
procede.

See the entry under MOUSEB- for information on mouse programming
techniques.

~I CALL It---=1 "-· _______ __, F

BASIC command-calls a subroutine.

Syntax
CALL Subroutine(A 1,A2, ...)

•
•
•

END MAIN

SUB Subroutine(Arg1 ,Arg2, ...)

•
•
•

END SUB

Calls a subroutine. The statements within the subroutine are then
executed, and program flow resumes at the line following the
CALL statement.

Description
CALL transfers control to a subroutine that is named with a SUB state

ment. A subroutine is a block of statements that, while part of a program, are
set off as a separate structure after the main body of the program. Generally,
the statements in a subroutine work together to perform a specific task.

CALL/SUB/END SUB is Macintosh BASIC's structured alternative to the
standard BASIC GOSUB and RETURN. While Macintosh BASIC includes
GOSUB for compatibility with other dialects of BASIC, the CALL statement

D CALL D

allows you to set up a true call that passes parameters to your subroutine, sim
ilar to the call in structured languages like Pascal and C. CALL allows you to
use Macintosh BASIC as a true structured language.

Subroutines are a valuable programming tool. By using them, you can set
up a single block of code for any group of statements that must be executed
more than once at different points in your program. This makes it easier to
code and to follow your programs, and uses less computer memory than
repeated coding of the same statements.

Subroutines also allow you to write fully structured programs. Your main
program can easily consist of nothing but a series of CALL statements, leav
ing the actual work to be done by subroutines. There are many advantages to
this approach:

• You can read the main program and get an overview of everything the
program is supposed to do, without becoming overwhelmed by details.

• Structuring your program simplifies debugging. You can work on one
subroutine at a time, inserting dummy subroutines in the remainder of
the program that do nothing more than print a statement on the screen
such as "Subroutine #1 executed." Then, as you get one subroutine
working, you can move on to the next.

• You can get a much clearer picture of the way your program works if it is
broken down into separate units whose actions are obvious.

What differentiates CALL subroutines from functions and GOSUB subrou
tines is the fact that you can pass parameters to them. Parameters are a series
of constants, expressions, or variables which are passed to the subroutine
through the CALL statement. Each time you call the subroutine, you may
pass a different series of parameters, so that the routine performs the same
series of operations on a different series of values.

In choosing the type of subprogram you want, you can base your decision
on the way you want to pass the values to and from the routine:

• GOSUB subroutines receive no parameters from the calling statement.
The subroutine shares all of its variables with the main program, and
must always operate on the same set of variables. To return its results,
the subroutine must store new values into variables that are shared with
the main program.

• In a function, you can pass parameters, but only in one direction. The
parameter list contains the values that the function needs to work with.

o CALL o

After the function has performed its operation, however, the only value
that you send back to the calling program is the single value stored as the
function's result.

• In a CALL subroutine, you pass as parameters both the values the sub
routine will work on, and the variables to which you want it to return the
results. The parameter list is therefore a two-way structure that lets you
pass values both to and from the subroutine. CALL subroutines are the
only subprogram block in Macintosh BASIC that allows true two-way
parameter passing.

The subroutine is called by a statement consisting of the keyword CALL,
the name of the subroutine to be called, and a parameter list containing all the
items to be passed to the subroutine.

The subroutine itself is defined by a SUB statement, which consists of the
keyword SUB, the subroutine name, and a list of dummy arguments enclosed
in parentheses. These dummy arguments will receive the parameters passed to
the subroutine, in exactly the same order as they are listed in the CALL state
ment's parameter list. The subroutine's dummy arguments must match in
number and type the arguments in the CALL statement, but need not have
the same names.

The subroutine ends with an END SUB statement on a line by itself. This
statement marks the end of the subroutine block and instructs the computer to
return to the statement after the CALL in the calling program.

Variables in the subroutine block are not isolated from the variables in the
main program. Unlike subroutines in many other languages, Macintosh
BASIC's subroutines share all of their variables (except for their dummy argu
ments) with the calling program. This means that if you change a variable
within the subroutine that has the same name as a variable in the main pro
gram, the value in the main program will also be changed. You must therefore
be careful to use variables that have different names within your subroutines.
If you want to isolate your program blocks completely, you can use the PER
FORM statement to call an external program.

The dummy arguments explicitly named in the SUB statement are the
exception to this rule. Dummy arguments are isolated from the variable in the
main program, even if they have exactly the same names. You can change the
value of a dummy argument without necessarily changing the value of a vari
able with that name back in the main program. If you do want the dummy
argument to pass its value back to the variable of the same name in the main
program, you should give the same name to the CALL statement's corres
ponding argument.

o CALL o

Because subroutines share their variables in common with the calling ,pro
gram, you can pass values back through variables that are not in the parame
ter list. This practice, however, is discouraged, because programmers
traditionally expect to see all relevant variables passed through the parameter
list. If you intend to change variables not in the parameter list, it is best to use
the GOSUB form.

There are two ways of passing parameters between programs and subrou
tines: by value and by reference. Although the two types of parameters are
written in the same way, internally they are treated quite differently.

The following types of parameters can be passed only by value:

• Constants (5, "Word" - 2.54)

• Expressions (X + 5, SQR(l 7), LEFT$(N$,3))

When a parameter is passed by value, a specific value is given to the dummy
argument in the subroutine's argument list. Nothing can be passed back to the
calling program when the parameter is passed by value-to do so would mean
changing the value of a constant.

These types of parameters can be passed only by reference:

• Variables (Name$, X%, Scorel)

• Array elements (A(12), Item$(3,6), X%(1,2))

• Entire arrays (Array(), 1\voDimArray(,))

When a parameter is passed by reference, the memory address of the argu
ment is passed, rather than its value. In the subroutine, the original argument
is temporarily made equivalent to the dummy argument, so that it shares the
same memory location. Within the subroutine, the dummy argument will
therefore hold the same value as the original argument-just as if it had been
passed by value. But an argument passed by reference can also be changed in
the subroutine and passed back, because any operation performed on the
dummy argument will also change the contents of the memory location where
the original argument is stored. In this way, you can pass a new value back
from a subroutine.

From the programming standpoint, you usually don't need to worry
whether the arguments are being passed by value or by reference because they
are both written in the same way. In the CALL statement's argument list, you
place the variable or expression that you want the subroutine to use. In the
SUB statement, you create a dummy argument that receives the value and
gives it a name within the routine. If the original argument was a variable or

o CALL o

an array, either of which can legally be changed, BASIC will recognize the fact
and pass the argument by reference, so that you can not only use the argu
ment's current value but also change it.

The following are the five types of parameters that can be passed to a
subroutine:

Constants When a constant is passed to a subroutine, its value is passed
directly to the dummy argument. Its value cannot be changed, so a new value
cannot be passed back from the subroutine.

Expressions When an expression is passed to a subroutine, the computer
evaluates the expression, and passes its value to the dummy argument. Since
at any given point an expression evaluates to a constant value, the value of the
expression cannot be changed by the subroutine and cannot be passed back to
the program.

Variables Variables are passed by reference. This means that the name of the
variable is passed to the subroutine. Since a variable name actually defines a
storage location in the computer's memory, what is passed to the subroutine is
actually the address where the variable's value is stored. The computer looks at
that address, operates on the value found there, and places the result in the
same storage location. In this way, the new value is passed back to the program.

You may pass previously-undefined variables to the subroutine if you want
to receive values back through them. Undefined variables are automatically
initialized by BASIC (to 0 for numerics, to the null string for strings, and to
FALSE for Booleans). Usually, however, the reason for passing undefined
variables is to have the subroutine assign them new values and return them as
a result. Passing the empty variables to the subroutine gives the computer a
place to put the result when the subroutine has finished executing.

Although variables are usually passed by reference, you can force the
CALL statement to pass them by value. To do this, enclose the variable in
parentheses, so that the variable will be evaluated as an expression before it is
passed. This is generally unnecessary, since you can always use a variable
passed by reference as if it were passed by value. It may, however, be useful
for special tricks, such as the recursive subroutine calls in the application pro
gram for this entry.

Array Elements An array element is a single value in an array. To pass one to
a subroutine you must pass the name of the array and the subscript that
defines the element's position in it. For multi-dimensional array elements, you
must specify all of the subscripts.

o CALL o

An array element is treated in essentially the same way as a variable. It must
be passed to a non-array dummy argument of the same data type. The result
of the subroutine's operations on that variable will be stored in the location of
the array element that was passed.

Entire Arrays To pass an entire array to a subroutine, you pass the name of
the array followed by a set of empty parentheses, then you place a similarly
structured dummy argument in the SUB statement. For example:

CALL SubName(ArrayName())

•
•
•

SUB SubName(Array())

If the array has more than one subscript, insert a comma in the parentheses
for each dimension beyond the first. For example:

CALL SubName(TwoDArray(,))

•
•
•

SUB SubName(DoubleDArray(,))

would pass a two-dimensional array to the subroutine SubName. For a three
dimensional array, use two commas; for a four-dimensional array, three com
mas, and so on.

In passing arrays, you must be sure that both the array in the program and
the array in the subroutine have been dimensioned at the start of the program.
In general, BASIC requires that the dimensions of both arrays be the same,
though the program may still work if the receiving array is larger than the
array being passed.

When control is tranferred to a subroutine, the statements following the
SUB statement are executed as a block. Any number and type of BASIC
statements may appear in a subroutine, including transfers of control to other
control structures. Transfers of control within a subroutine work in exactly the
same way as they do at any other point in a program. As in all control struc
tures, statements in a subroutine are customarily indented.

In the body of the subroutine, values should be assigned to the variables in
the argument list that are to be passed back to the program. When the END
SUB statement is reached, the values that have been assigned to dummy argu
ments in the subroutine are passed back to the calling arguments in the CALL
statement, and execution resumes at the line following the CALL statement.

D CALL D

The following program segment illustrates the relationship between the call
ing parameters and the dummy arguments.

CALL SubName(First,Second$,Third ,Array1 ())

•
•
•

SUB SubName(A,8$,C ,Array2())

•
•
•
A = expression
8$ = StringValue
C- =TRUE

END SUB

When control returns to the main program,

• First has the value of the expression assigned to A;

• Second$ has the value of the string assigned to B$;

• Third- has the value TRUE, receiving its value from C 7

• The elements in Arrayl have the same values as those in the same posi
tions in Array2. If any new values were assigned to the elements of
Array2, the will become new values of Arrayl in the calling program.

Sample Programs
The first sample program demonstrates a string subroutine with two param

eters. The program simply sends input to and receives output from a subrou
tine to rearrange a name so that the last name appears first, followed by a
comma.

! CALL-Sample Program #1
INPUT "Name: "; Name$
CALL ReverseName$(Name$,NewName$)
PRINT NewName$
END MAIN

SUB ReverseName$(N$,New$)
FOR Place= 1 TO LEN(N$)

IF MID$(N$,Place, 1) = " " THEN
First$ = LEFT$(N$,Place-1)

o CALL o

Last$ = RIGHT$(N$,LEN(N$)-Place)
EXIT FOR

END IF
NEXT Place
New$ = Last$ & "," & First$

END SUB

Note that the call to the subroutine ReverseName$ includes two
parameters-the variable Name$, which contains the input value, and the
variable NewName$, which will receive the output value. These parameters
are passed to the dummy arguments N$ and New$, respectively.

Within the subroutine, a FOR/NEXT loop searches for a space in the
string initially stored in Name$ (which is now also the value of N$). The
MID$ function steps through the string one character at a time, until it
reaches the place where the space is located. When it finds the space, the
LEFT$ function assigns the characters before the space to First$, and assigns
those after the space to Last$. Finally, these values are concatenated into a
new string (called New$), which is passed back to the calling program as
New Name$.

You will notice that although Name$ was passed to the subroutine, its value
was used, but not altered in the subroutine. If you want to check this, you
might add the statements

PRINT Name$
PRINT N$

just prior to the END MAIN statement. You should also observe that, because
NewName$ was passed as a parameter to New$, it is not necessary to include
a statement of the form

NewName$ = New$

because that is, in effect, what is done by passing it as a parameter. Output
from the program appears in Figure 1.

In the entry under MID$ is a program that makes use of a similar subrou
tine to rearrange names that include a middle name, checking to see whether
the input name includes two or three names.

The second sample program demonstrates passing an array. Array A, a two
dimensional array, is passed to array B in the subroutine Doubleit, which dou
bles the value of each array element.

! CALL-Sample Program #2
DIM A(l0,5), B(l0,5)
X=O
SET TABWIDTH 50
SET OUTPUT ToScreen
FOR Row = 1 TO 5

FOR Col = 1 TO 10
x = x + 1
A(Col, Row) = X
PRINT A(Col,Row),

NEXT Col
PRINT

NEXT Row
CALL Doublelt(A(,))
PRINT "Second time through"
FOR Row = 1 TO 5

FOR Col = 1 TO 10
PRINT A(Col,Row),

NEXT Col
PRINT

NEXT Row
END MAIN

SUB Doublelt(B(,))
PRINT "Output from Doublelt"

FORRow-1T05

D CALL D

FOR Col - 1TO10
B(Col,Row) = B(Col,Row)*2
PRINT B(Col,Row)

NEXT Col
PRINT
NEXT Row

END SUB

In the main program, both arrays are given the same dimensions in a single
DIM statement. Next, a FOR/NEXT loop assigns consecutive values to every
element in array A. As each row is assigned, the values are displayed, so you
can compare the ending values with the original values.

The CALL statement then passes array A to the dummy array B in the sub
routine, where another FOR/NEXT loop doubles the value of each array ele
ment and prints each row. When control returns to the main program, a third
FOR/NEXT loop again prints out the values of array A. As you can see from
Figure 2, the subroutine has in fact changed all the values so that they are the
same as those in array B. This demonstrates that the values of array B have in
fact been passed back to array A, even though they have not been explicitly
assigned to the original array.

o CALL o

::o CALL-Sample Program # 1
Name: Basil Macintosh
Macintosh, Basi 1

•

Figure 1: CALL-Output of Sample Program #1.

11
21
31
41

2
12
22
32
42

3
13
23
33
43

Output from Double It
2 4 6
22
42
62
82

24
44
64
84

26
46
66
86

Second tirne t~1rough
2 4 6
22
42
62

24
44
64

26
46
66

CALL
4
14
24
34
44

8
28
48
68
88

8
28
48
68

Sample Program #2
5 6 7
15 16 17
25 26 27
35
45

10
30
50
70
90

10
30
50
70

36
46

12
32
52
72
92

12
32
52
72

37
47

14
34
54
74
94

14
34
54
74

Figure 2: Output of CALL-Sample Program #2.

8
18
28
36
48

16
36
56
76
96

16
36
56
76

9
19
29
39
49

18
38
58
78
98

18
38
58
78

10
20
30
40
50

20
40
60
80
100

20
40
60
BO

o CALL D

Applications
Subroutines are frequently used in BASIC programs. Many of the application

programs in this book rely on subroutines to modularize repeated operations. See
the clock program under TIME$ for a typical use of subroutine calls.

Recursion is one of the favorite techniques of many programmers, because
it can produce spectacular results in very few statements. Recursion means
calling a subroutine from within itself, so that a statement within the routine
causes the entire routine to be executed once again.

If poorly planned, recursion will lead to an infinite regress of calls within
calls within calls. If carefully planned, however, the recursion can be pro
grammed to stop after a certain depth of nesting, so that the program remains
finite.

In Macintosh BASIC, recursion can be used provided you do not define any
new variables except for the dummy arguments within the subroutine. The
idea of recursion is that the variables on each level's call should be insulated
from the variables with the same names on all other levels. In Macintosh
BASIC, however, a subroutine's variables affect the variables of the same
names in the calling program, unless they are explicitly contained in the SUB
statement's dummy argument list. If you assign a new value to a variable that
is not a dummy argument, it will be changed when the routine returns to the
previous level's call. This means that any variables that you create with an
assignment statement will be written over by the recursive call.

Variables created as dummy arguments, however, are insulated from the
previous level's call, because a new storage cell is defined for them on each
call. The dummy arguments of each level are treated as separate variables,
even though they have the same names as the dummy arguments of the pre
vious level. That is what you want in a recursive subroutine.

The snowflake curve program in Figure 3 is a classic example of recursion.
At the first level of recursion, the program simply draws an equilateral trian
gle, as shown in Figure 4. To get the second level snowflake, shown in Figure
5, each line segment of the first level is replaced by a tooth facing outwards,
drawn as a series of four lines. For the third level, shown in Fig\ire 6, each of
the line segments of the second level is replaced by a similarly-shaped tooth.
The process continues in the same way for each additional level. Figure 7
shows the snowflake curve for Level 5.

The snowflake curve program uses recursion to carry out this algorithm. At
each point where a line of the equilateral triangle of level 1 is to be drawn, the
main program calls the subroutine LineSeg. The subroutine then replaces the
straight line with a four-line tooth and calls itself recursively. At each level,

D CALL o

! CALL-Application Program

1 Recursive subroutine to draw snowflake curve

SET OUTPUT ToScreen ! Full-screen output window

INPUT "How many levels?"; MaxLevel ! Max1mum depth of recursion
Level = O ! Current depth of recurs1on

! The next three statements call the recursive subroutine LtneSeg,
! which draws a snowflake segment to the maximum depth of

recursion.
! Arguments are in the order of PLOT statement: HI ,V 1,H2,V2
CALL LineSeg (140, 75, 380, 75) ! Draw top of triangle.
CALL LineSeg (380, 75, 260, 282) ! Draw right side of triangle
CALL Lineseg (260, 282, 140, 75) ! Draw left side, back to start
END MAIN

! Functions define Intermediate partitions of ltne segment
H4,V4

I \
! HI.VI --- H3,V3
DEF H3 = (2*H 1 +H2)/3
DEF V3 = (2*V 1 +V2)/3
DEF H5 = (H 1 +2*H2)/3
DEF V5 = (V 1 +2*V2)/3
DEF H4 = (H 1+H2)*05 + (V2-V 1)*0.866/3
DEF V4 = (H 1-H2)*0.866/3 + (V2+V 1)*0.5

SUB LineSeg (H1,V1,H2,V2)
Level = Level+ 1
IF Level<MaxLevel THEN

CALL LineSeg ((H 1),(V1).(H3),(V3))
CALL LineSeg ((H3),(V3),(H4),(V4))
CALL Lineseg ((H4),(V4),(H5),(V5))
CALL Li neSeg ((H5) ,(V5) ,(H2) ,(V2))

ELSE
PLOT H1,Vl;H2,V2

Level = Level·· 1
END SUD

Figure 3: CALL-Snowflake curve application program.

H5,V5 --- H2,V2

! 0.5 = COS(60°)
! 0.866 = SIN(60°)

! Arguments are never changed
! Holds depth of recursion
! Partition and call recursively
! Double parentheses force

passing by value

! we·re at maximum level,
so draw the line

o CALL o

;;O CRLL -Snowflake curue
How many levels? •

Figure 4: CALL-The snowflake curve, level 1.

CRLL -Snowflake curue
How many levels? 2

Figure 5: Call-The snowflake curve, level 2.

o CALL o

CRLL -Snowflake curue
How many levels? 3 •

ill
Figure 6: CALL-The snowfiake curve, level 3.

CRLL -snowflake curue
How many levels? 5

II
Figure 7: CALL-The snowfiake curve, at level 5.

o CALL o

then, the subroutine changes each straight line from the previous level into a
tooth and passes it on to the next level.

When the program reaches the maximum level number, the subroutine stops
calling itself recursively and draws a line. It then returns to the calling pro
gram of the previous level, which calls the subroutine again, until all the lines
have been drawn. When the recursive procedure finally gets back to the main
program, the curve is finished.

Note how functions are used in this program to avoid having to create vari
ables within the subroutine. Also, the variables and function names are enclosed
in an extra set of parentheses in the argument list of the recursive CALL state
ments, so that they will be passed by value, rather than by reference.

Any recursive program can always be rewritten in a non-recursive form, but
it may be much more complicated. The Quicksort program in the entry for
DO is an example of how a recursive procedure can be written in a non
recursive form.

Notes
-Although there are many who will urge you to aim for total modularity

in your programs, there are times when this advice leads to a decided disad
vantage. "The original reason for structured programming was to make pro
grams more understandable. However, a program in which the main routine
does nothing but call subroutines, which in turn call other subroutines, may in
practice be harder to follow than a program structured as a single monolithic
block. Your aim should be clarity of program code. When modularity defeats
this aim, it is not desirable.

Speed is another reason to avoid extreme modularity. Each subroutine call
takes up a certain amount of execution time, so you may want to avoid sub
routines when speed· is important. In a loop, for example, a single CALL
statement may be executed many times. If you can conveniently replace it with
the block of statements it is calling, you can save a lot of execution time.
Speed is especially important in search and sort routines, and in animation, so
it is best to write such programs without excessive subroutine calls.

-It is possible to exit from a subroutine before all its statements have been
executed by means of an EXIT statement. An exit statement inside a loop,
however, will exit only from the loop. In Sample Program #1, above, for

o CALL o

example, there is an EXIT statement within a FOR loop inside the subroutine.
This statement has been coded with the optional EXIT FOR for clarity. If you
want to leave the subroutine entirely, you can use an EXIT SUB statement
anywhere in the subroutine. See the EXIT entry for further details.

-Subroutines should appear after the main body of a program, and should
be separated from the main body by an END MAIN statement.

- The parameters in a CALL statement must match exactly in number and
type the parameters in the SUB statement. If they do not, you will get a "type
mismatch" error message.

-If you pass an array to a subroutine and fail to dimension it prior to the
subroutine, the computer will give you an "undimensioned array reference"
message when it encounters the SUB statement. If one of the dimensions is
smaller than the corresponding dimension of the calling array, you will get a
"subscript out of bounds" error message.

-If you mistype the name of the subroutine in the CALL statement, or if
the name in a CALL statement otherwise does not match that of any subrou
tine in your program, you will get an "undefined label" error message.

-For material of related interest, see the entries under SUB, GOSUB,
RETURN, FUNCTION, END, and EXIT.

Syntax

BASIC command word-part of the
SELECT /CASE control structure.

[I] CASE Value

Defines a CASE to be selected when the controlling expression is
equal to Value.

Ill CASE Valuel, Value2, •••

Defines a CASE to be selected when the controlling expression is
equal to any of the named values.

[J] CASE Relational Value3

Dermes a CASE to be selected when the controlling expression is
equal to any of a range of values indicated by a relational operator.

lil CASE RangeStart TO RangeFinish

Defmes a CASE to be selected when the controlling expression is
equal to any of a range of values.

Description
The CASE statement always appears as part of a SELECT /CASE control

structure. When the expression named in the SELECT statement (which is
called the controlling expression or variable) takes on the value indicated in
one of its nested CASE statements, the statements following that CASE state
ment will be performed and execution will then continue at the line following
the end of the SELECT /CASE structure.

D CASED

The syntax forms of the CASE statement permit great flexibility in defining
various alternatives that will select a particular CASE.

ITJ CASE Value

This form of the CASE statement indicates that the operations in this
CASE block-the set of statements nested under the CASE statement-will be
performed when the controlling variable in the SELECT statement takes on
the value Value. The value indicated in this CASE syntax must be a constant
of the same data type as the controlling variable.

l2:l CASE Value1, Value2, •••

If you want the same CASE block to be selected whenever the controlling
expression takes on any of several specified values, you can list the values in
the statement, instead of giving only one. These values must be constants of
the same data type as the controlling variable and must be separated by com
mas. They need not be consecutive.

IJJ CASE Relational Value3

Instead of giving a list of constants, you can specify a range of values by the
use of a relational operator. For example:

CASE >13

will be selected when the controlling variable is equal to any value greater
than 13.

CASE< >13

will be selected for any value other than 13.

0J CASE RangeStart TO RangeFinish

You can also specify a range of values by using the keyword word TO:

CASE 99 TO 200

This CASE block will be activated when the controlling expression takes on
any value from 99 to 200, inclusive.

The different syntax forms may be combined in a single CASE statement.
All of the following are acceptable:

CASE 3, 7 TO 12

CASE 5, 17, 20 TO 29, 35 TO 40

CASE 99 TO 104, 6, <O

See SELECT for further details.

-=-l 1 CHR$ 1 t--____,__ --------=---------J. F

Syntax

String conversion function-returns a
character when given its ASCII code

Result$ = CHR$(ASCllCode)

Returns as a value the character whose ASCII code in decimal nota
tion is its argument.

Description
The CHR$ function accepts as its argument either a literal ASCII value

from 0 to 255 (in ordinary decimal notation) or a variable or expression whose
value is between 0 and 255. The function returns the character that the ASCII
value represents.

ASCII (which stands for American Standard Code for Information Inter
change) is a more-or-less standardized system of code numbers for the various
characters used in microcomputers. Usually, the first 32 characters (numbered
from 0 to 31) and character number 127 are non-printable control characters,
such as the characters for carriage returns, tabs, backspaces, and line feeds.
The characters numbered 32 to 126 are a relatively standard set of typewriter
characters consisting of a series of upper- and lowercase letters, numerals, and
keyboard symbols.

The remaining values from 128 to 255 are arbitrarily assigned to other sym
bols, or, sometimes, to non-printing functions. The actual assignment of these
characters varies greatly from one computer to another. On the Macintosh,
these codes are used primarily for the extended international character set.

The Macintosh also assigns certain printable special characters to the code
numbers below 32 in some fonts. For example,

SET FONT 0 ! System font
PRINT CHR$(17), CHR$(20)

o CHA$ o

will print the symbol on the control key and the bitten-apple trademark in the
output window. Some characters that do not appear on any key caps can be
printed only through a PRINT CHR$ statement.

CHRS codes are also used to send control characters to peripheral devices
and to disk files.

Sample Program
The following program illustrates the effects of including CHRS codes in

PRINT or GPRINT statements. It uses CHR$(13), the carriage return,
CHR$(9), the TAB character (equivalent to inserting a comma between strings
to be printed), CHR$(253), which puts the text that follows it in boldface
type, and CHR$(254), which turns the boldfacing off. A CHRS code is also
used to print a character not found on a key cap in Geneva (Application) font.

I CHR$-Sample Program
SET PENPOS 7, 12
GPRINT ''This sentence"; CHR$(13); "will be on two lines."
GPRINT ''This will include a ";
GPRINT CHR$(253) "boldfaced"; CHR$(254); "word."
GPRINT ''There will be"; CHR$(9); "space here."
GPRINT ''There will be", "space here, too:'
GPRINT ''There's a rabbit"; CHR$(217); "in here:'

Output appears in Figure 1.
Note that you could as easily create the effect of CHR$(13) by entering a

separate PRINT or GPRINT statement with the string you want to appear on
the second line, and that CHR$(9) and the comma have identical effects.

The boldfacing as a result of CHR$(253) is unique to Macintosh BASIC. A
line printed with boldfacing in this manner may be sent to the clipboard by cut
ting or copying, and will retain its appearance. However, if such a line is sent to
the scrapbook or transferred to another application like MacWrite, it will appear
entirely in normal text, with the CHR$ codes replaced by empty squares, which
mark characters missing from the character set. For more information on use of
CHRS codes in PRINT statements see the PRINT entry.

Application Program
The program shown in Figure 2 prints a complete ASCII table on the screen

for the Chicago (System) font. You can design a similar program to print out
the ASCII table for any font you choose.

oCHR$ o

§0 CHR$-Sample Program
This sentence •
wm be on two lines.
This will include a boldfaced word.
There will be space here.
There will be space here,too.
There's a rabbit .._ in here.

Figure 1: CHR$-Output of Sample Program.

! CHR$-Application Program.
! Prints ASCII Table for the System font
SET OUTPUT ToScreen
GOSUB Newscreen:
FOR Ascii=O TO 255

GPRINT FORl1ATS(·••• •";Ascii, CHRS(Ascii))
Row= Row+1
IF Ascii= 127 THEN I Screen is full

ASK PENPOS H, \I
SET FONT 1 I Application font
&PRINT AT 160,\/-4; "Press mouse button for more."
BTNWAIT
CLEARWINDOW
60SUB NewScreen:

END IF
IF Row=16THEN 60SUB NextColumn:

NEXT Ascii
END HAIN

F"igure 2: CHR$-ASCll Table Program.

§D

Ne:-:tColumn:
ASK PENPOS H, V
PLOT H+55,20; H+55,V-16
SET PENPOS H+60,30
Row= O

RETURN
Newscreen:
SET FONT 0

o CHR$ o

! Set pen for next column of values

! Clear screen and print heading

GPRINT AT 160, 12; .. ASCII Table for Chicago Font"
SET PENPOS 7 ,30
Row= O

RETURN

Figure 2: CHR$-ASCll Table Program (continued).

The program simply steps through the ASCII code and prints each ASCII
number and the character it represents. When a column of 16 characters has
been printed, a subroutine is called to reset the graphics pen for the next
column. Since only half the code can fit on the screen at one time, an IF block
is used to test for a full screen, and call a subroutine to set up the second
screen. Output from the program appears in Figures 3 and 4.

CHR$-ASCI I Table
RSCll Table for Chicago Font

0 16 D 32 48 0 64 @ 80 p 96 ' 112 p
D 17 3€ 33 49 1 65 R 81 Q 97 8 113 q

2 D 18 ./ 34 50 2 66 B 82 R 98 b 114 r
3 D 19 • 35 # 51 3 67 c 83 s 99 c 1 15 s
4 D 20 • 36 $ 52 4 68 0 84 T 100 d 1 16 t
5 D 21 D 37 3 53 5 69 E 85 u 101 e 117 u
6 D 22 D 38 & 54 6 70 F 86 u 102 f 1 18 LI

7 D 23 D 39 55 7 71 G 87 w 103 g 119
8 D 24 D 40 (56 8 72 H 88 H 104 h 120
9 25 D 41) 57 9 73 89 y 105 121 y

10 D 26 D 42 * 58 74 J 90 2 106 j 122 z
1 1 D 27 D 43 + 59 75 K 91 [107 k 123 {

12 D 28 D 44 60 < 76 L 92 \ 108 I 124 I
13 29 D 45 61 = 77 M 93 109 m 125 }
14 D 30 D 46 62 > 78 N 94 ,. 110 n 126
15 D 31 D 47 I 63 ? 79 0 95 1 11 0 127

Press mouse button for more.

~~mmmmm~mmm~mmm~mmmmmmmmm~mmmmmmm~mmmmmm~~mm~~mmmmmimm~~m!i~~~~~~~i~~~~i~~im~i~i~f~iii~~i~~~~~~~~~~~~i!i~!ii~iii~~~i~!~i~~~f~i~imm
Figure 3: CHR$-First output screen from ASCII Table Program.

?

o CHR$ o

D CHR$ HSCll Table
RSCI I Table for Chicago font

1 29 n 1 44 e 1 60 1 76 DO 1 92 l 209 - 224 0 240 0
1 29 ft 1 45 e 1 61 0 1 77 ± 1 93 209 225 0 241 0
1 30 ~ 1 46 1 62 ¢ 1 78 1 94 ~ 21 0 " 226 0 242 0
1 31 E 1 47 163 f. 1 79 i 1 95 v 21 1 " 227 0 243 0
1 32 N 1 48 i 1 64 § 1 80 ¥ 1 96 f 21 2 228 0 244 0
1 33 0 1 49 ... 1 65 • 1 81 .ll 1 97 ~: 21 3 229 0 245 0
1 34 jj 1 50 n 1 66 qi 1 82 l; 1 98 f:. 21 4 230 0 246 0
1 35 a 1 51 6 1 67 8 1 83 I 1 99 « 21 5 0 231 0 247 0
1 36 a 1 52 0 1 68 ® 1 84 n 200 » 21 6 y 232 0 248 0
1 31 8 1 53 6 1 69 @ 1 85 TI" 201 21 1 0 233 D 249 D
1 38 a 1 54 jj 1 70 ... 1 86 202 21 8 D 234 0 250 0
1 39 a 1 55 0 1 71 1 87 ' 203 fl 21 9 0 235 0 251 0
1 40 0 1 56 u 1 72 1 88 ! 204 i'i 220 0 236 0 252 0 a
1 41 c; 1 57 u 1 13 ~ 1 89 fl 205 jj 221 0 237 0 253
1 42 e 1 58 (i 1 74 f[1 90 IE 206 CE 222 0 238 0 254
1 43 e 1 59 u 1 75 .6 1 91 (J 207 ce 223 D 239 D 255 0

f2[l HH!HH!!!Hi!UHrn:w' ::::i:j:j:::;::: :;:·:··
~;; ~ ;(~~WH!~H :::::urn::m:u::::mrnrn::::rnrnJ:rn:::HHH:m::mm::H::::rn:::rn::HWHH:Ht::\i:HiHHH:WmHK :::::::·:::::::: :;:;::: ··:

Figure 4: CHR$-Second output screen from ASCII Table Program.

Notes
-The opposite of the CHR$ function is the ASC function, which returns

the ASCII value of a character when given the character.

-Complete ASCII tables can be found in Appendix A.

-In a PRINT CHR$ statement, if you use an argument that has no charac
ter associated with it in the present font, the output will show a small, empty
rectangle the size of a character.

-Giving CHR$ an argument less than 0 or greater than 255 will result in an
"illegal quantity error" message.

~
~

mrn

mlli
~
l2J

q l.____C_L_A_S_S_C_OMP __ ___.I µ

Syntax

Numeric function-returns a code to tell
what class of number is stored in a comp

variable.

This entry also includes the functions
CLASSSINGLE, CLASSDOUBLE, and

CLASSEXTENDED.

[!] Result = CLASSCOMP(N#)

111 Result = CLASSSINGLE(N D
lJJ Result = CLASSDOUBLE(N)

~ Result = CLASSEXTENDED(N\)

Finds the number of comp, single-precision, double-precision, or
extended-precision variables, and returns a value associated with the
following system constants:

SNAN 0

QNAN
Infinite 2

ZeroNum 3
NormalNum 4
DenormalNum 5

o CLASSCOMP o

Description
Floating-point and comp (64-bit integer) variables can store codes that rep

resent the results of calculations, but are not actual numbers. For example, the
calculation

y = 1/0

will store the value INFINITY in the variable Y.
The CLASSCOMP and related functions let you determine which of the

following number classes a given variable's value belongs to:

• Normal numbers: All positive and negative integers and those real num
bers that are far enough from zero to be represented to the full precision
of the variable type.

• Denormalized numbers: Any number too close to zero to be represented
with the smallest allowable exponent (- 308 in double precision) are
stored in a denormalized form, which has reduced accuracy. The number
1.0E-315 is a denormalized number in double precision.

• Zero: Beyond a certain point, a small number cannot even be repre
sented as a denormalized number, so it becomes simply zero.

• Infinite: Numbers that are so large as to be beyond the maximum expo
nent are converted to the value INFINITY.

• Quiet NANs: An invalid operation such as the square root of a negative
number results in a NAN ("not a number") code. Values with this code
are called "Quiet NANs" because they do not immediately trigger an
error message.

• Signaling NANs: Not possible in BASIC, which automatically intercepts
all error signals and stops the program before you have a chance to test
the value. May be possible with data that is read from other sources.

You can determine the class of a number by invoking the CLASS function
that applies to the number's variable type. Each function returns one of the six
values from 0 to 5, which are associated with six system constants: SNAN,
QNAN, Infinite, ZeroNum, NormalNum, and DenormalNum. The number
can then be tested in an IF statement or SELECT /CASE block against these

o CLASSCOMP o

system constants-for example:

X = SQR(-1)
SELECT ClASSDOUBLE(X)

CASE SNAN: PRINT "Signaling NAN"
CASE QNAN: PRINT "Quiet NAN"
CASE Infinite: PRINT "Infinity"
CASE ZeroNum: PRINT "Zero"
CASE NonnalNum: PRINT "Normal number"
CASE DenonnalNum: PRINT "Denormalized number"

END SELECT

will result in the message:

Quiet NAN

Note that the system constant Infinite is a classification, and is different from
INFINITY, which is the value oo.

If you try to use a classification function of one type on a variable of
another type, you will get unpredictable results. There is no classification
function for normal integers.

See NAN and INFINITY for further discussion of NAN codes and infinite
numbers.

=1--1 _C_L_E_A_R_W_I_N_D_O_W __ I~
BASIC command-clears the current output

window

Syntax
CLEARWINDOW

Clears the current output window.

Description
CLEARWINDOW clears the output window of a program that is running.

When the window is cleared, everything in the window is erased, including
any parts that may have been scrolled out of sight. The position of the graph
ics pen, reflected by the PENPOS statement, is reset to the upper left-hand
corner (0,0). The insertion point for PRINT and INPUT statements is also
returned to the upper-left corner, with VPOS and HPOS thus reset to their
default values, 1 and - 1. (The default of HPOS is - l, so that the first char
acter of the first line is placed at position 0, which is the left margin.)

A CLEARWINDOW statement by itself unconditionally clears the window.
You may use this statement at the beginning or the end of a program. Also,
when you want to produce output in the window after accepting a number of
values in input statements, a CLEARWINDOW statement at the beginning of
the output routine will allow you to start with a fresh display.

A CLEARWINDOW statement is often used as part of an IF statement or
block, which detects when it is time to start a new window. The mouse button
is often used as a trigger for a new window.

IF MOUSEB" THEN CLEARWINDOW

or

IF NumberOflines>Max THEN
PRINT "Press mouse button for more."

BTNWAIT
CLEARWINDOW
ENDIF

o CLEARWINDOW o

The first statement will clear the window any time the mouse button is
pressed. The IF block will be executed any time the value assigned to Num
berOfLine exceeds the number assigned to Max. When that condition occurs,
the message appears in the window, and the program waits for the mouse but
ton to be pressed before clearing the window and continuing.

See also the entry for ERASE, which is used to clear parts of the output
window rather than the entire window. For many applications, ERASE is
faster and more efficient.

File 1/0 command-closes a file.

Syntax
[I] CLOSE #Channel

Closes the file open on channel Channel.

~CLOSE
Closes all currently open files.

Description
The CLOSE command can be used to close any files that have been

opened, whether for reading or writing. If you include a channel number in
the CLOSE command, only the open file on the specified channel will be
closed. If you do not include a channel number, all files currently open on any
channel will be closed.

Any program that opens a file should include a command to close the file.
Without it, the file will remain open, and you will get an error message any
time you try to open the file again, until you reset the computer. It is generally
a good idea to avoid this possibility by including a WHEN ERR trap in pro
grams that use files, designed to close the file if something goes wrong. See
OPEN # for details.

-If you try to read from or write to a file that has been closed, you will get
an error message.

CLOSE #-Translation Key

Microsoft BASIC

Applesoft BASIC

CLOSE, CLOSE#

CLOSE

~...._I __ C_RE_~_T_E_# _ __.__JJ P
File command-creates a new file.

Syntax
CREATE #Channel:" FileName" ,Access, Format, Organization

Creates a new file on the specified channel with the specified file
name and the specified access, format, and organization attributes.

Description
The CREATE # command creates a new file. It must include the keyword

CREATE #, followed by a channel number and file name. You may specify
the access attribute, format attribute, and organization attribute. If you do
not specify the attributes, they will default to INPUT, TEXT, and SEQUEN
TIAL, respectively.

The CREATE # command is like OPEN # except that it creates a new file,
rather than giving you access to existing files. If you are opening a file for out
put, the CREATE #command is virtually identical to the OPEN # command.
The one difference is that the CREATE # command will generate the error
message "Filename already exists" if a file of the given name is already on the
disk. This can be useful if you want to make sure you won't overwrite an
existing file.

-For a full discussion of opening files, see the OPEN # entry. Examples of
programs that use the CREATE # command can be found in the PRINT #
and SEQUENTIAL entries.

~I ClosePoly I /OoseRgn If:-:-=--,__ _ _____ ______._ F

Syntax

Graphics toolbox commands-close the
definition block of a polygon or region.

[] TOOLBOX ClosePoly

Marks the end of a polygon definition block.

~TOOLBOX CloseRgn (RgnName})

Marks the end of a region definition block.

Description
When you define a polygon or region, you start a definition block by call

ing the OpenPoly or OpenRgn toolbox routine. The Open command hides the
graphics pen so that it does not draw on the screen. Instead, the drawing com
mands are stored into the polygon's or region's definition structure and
become part of the shape's border.

To end the definition block, you call the ClosePoly or CloseRgn command
to complete the shape's definition. The Close command returns the graphics
pen to its normal action of drawing on the screen. Each call to OpenPoly or
OpenRgn must be balanced by a call to ClosePoly or CloseRgn, respectively.
Only one definition block can be open at a time: you must close the block
before you can open another.

After the ClosePoly or CloseRgn command, the polygon or region cannot
be reopened to add more points. The defined shape can be changed by one of
the transformation routines such as OffsetPoly or UnionRgn, but new points
cannot be added to the border. Reopening a polygon or region will clear its
structure and start a new shape.

o ClosePoly/ /CloseAgn o

The syntax of the two commands is slightly different. With a polygon defi
nition, OpenPoly is a function, which is introduced by the keyword TOOL,
rather than TOOLBOX. The polygon's name is set by a handle variable in the
OpenPoly function, so there is no need to restate it in the ClosePoly call. A
polygon definition block therefore takes the following form:

PolyName} = TOOL OpenPoly

•
•
•

TOOLBOX ClosePoly

With a region definition, OpenRgn is a TOOLBOX command that does not
contain the region's name. Instead, you must pass the region's handle to the
ClosePoly routine at the end of the definition block:

TOOLBOX OpenRgn

•
•
•

TOOLBOX CloseRgn (RgnName})

The region handle RgnName} must have been created in a previous call to the
NewRgn toolbox routine.

For more information on polygons and regions, see the entries for Open
Poly and OpenRgn, respectively.

q _I __ C_O_L_L_A:_TE __ --JI µ
Option name-sets the order in which strings

are ranked by relational expressions.

Syntax
ITJ OPTION COLLATE STANDARD

[l] OPTION COLLATE NATIVE

Chooses ASCII or dictionary ordering for string comparison
operations.

Description
Macintosh BASIC allows two different systems for comparing string expres

sions. STANDARD ordering, the default, compares strings based on their
ASCII sequence, which places all the capital letters before all the lowercase let
ters. The other, NATIVE language ordering, is a special addition to Macintosh
BASIC that allows it to compare strings in a more natural way, based on the
alphabetical order of the dictionary.

The keyword COLLATE is always used in the fixed expression OPTION
COLLATE. It must always be followed by the name of the option that you
want to set:

OPTION COLLATE STANDARD

or

OPTION COLLATE NATIVE

For more information on the two ordering schemes, see the entries for
STANDARD and NATIVE.

~ l __ C_O_M_P_O_U_N_D _____ I ~

Numeric function-returns compound interest
on a specified amount over a specified

period.

Syntax

Balance= COMPOUND(Rate, Periods)*Amount

Calculates Balance, the compound interest on the Amount at the
given Rate per period and over the given number of Periods.

Description

COMPOUND is a numeric function that calculates compound interest,
given the interest rate for a single period and the number of periods.

The interest rate must be expressed as a decimal fraction. If, for instance,
the rate is 8 percent per year, the value of Rate must be .08. For example:

Deposit = 500
Balance = COMPOUND(.08, 5) *Deposit
PRINT Balance

will yield $734.66, the balance on a deposit of $500, with interest at 8 percent
for 5 years, compounded yearly.

If there is more than one compounding period in a year, you must make
some adjustments. First, you must divide the simple annual rate by the num
ber of periods per year, to get the interest rate per period. The number of peri
ods you enter must then be the actual number of periods between deposit and
withdrawal. If the same $500 deposit were held again for five years, but this

oCOMPOUNDo

time with the interest compounded quarterly, the value for Period would be 20
(5 x 4), and the Rate becomes .08/ 4:

Deposit = 500
Balance= COMPOUND((.08/4), 20)*Deposit
PRINT Balance

In this case the deposit earns $742.97, an extra $8.31 due to the more frequent
compounding.

Sample Program
The following program calculates the future value of a deposit by incorporat

ing the COMPOUND function into a user-defmed function that automatically
makes all the adjustments necessary for handling multiple periods per year.

! COMPOUND-Sample Program
! Uses a multi-line user-defined function to
! Calculate the future value of a deposit.

SET OUTPUT 0.01, 4.5; 6.86, 0.51 !Full-screen output window

INPUT 'What is the initial value of your deposit?$"; lnitValue
INPUT "How many periods per year?"; Periods%
INPUT 'What is the annual interest rate (in percent)?"; lntRate
INPUT "For how many years will your deposit be held?"; Years
Amount= FutureValue(lnitValue,Periods%,lntRate,Years)
SET VPOS 8
PRINT "After"; Years; "years, your deposit will be worth";
PRINT FORMAT$($###,###.##"; Amount)
END MAIN

FUNCTION FutureValue(D,P%,R,N)
P = P%*N
Rate = RIP%* .01
FutureValue = COMPOUND(Rate, Pl*D
END FUNCTION

The function FutureValue multiplies the number of periods per year by the
number of years, to get the total number of periods during the time the
deposit is held, and assigns the result to P. Next, the annual interest rate is
divided by the number of periods per year and converted to a decimal frac
tion, with the result assigned to Rate. Finally, The COMPOUND function is
invoked with the adjusted values, and multiplied by the deposit to yield the
ending balance. The output of a sample run appears in Figure 1.

o COMPOUND o

-O COMPOUND Sample Program
What is the initial Yalue of your deposit? $5000
How many periods per year? 360
What is the annual interest rate (in percent)? 9.85
For how many years will your de~·osit be held? 5

After 5 years, your deposit will be worth $8,181.46

Figure 1: COMPOUND: Output of Sample Program.

q .__I __ C_O_P_Y_SI_G_N ___ I µ
Syntax

Numeric function-transfers the sign of one
number onto another number.

Result= COPYSIGN(X,Y)

Returns a number with the same absolute magnitude as Y, and the
same sign (positive or negative) as X.

Description
There are times in mathematical computations when the sign of a number

becomes lost. When you square a number, for example, the result will be posi
tive whether the original was positive or negative. If the original number was
negative, when you then take the square root, the result will no longer match
the sign of the original number. Some combinations of trigonometric and
inverse trigonometric functions also lose sign information along the way.

To restore the lost information, a numeric calculation will ensure that the
result has its proper sign by sometimes transferring the sign of the original
number or of some other number onto the result. Macintosh BASIC provides
a special function, COPYSIGN, which does this operation:

SignedResult = COPYSIGN(X,Y)

COPYSIGN returns the value of Y, but with its sign replaced by the sign of X.
The result has the same sign as X and the same absolute value a8 Y.

COPYSIGN is not a standard BASIC function. To translate a COPYSIGN
reference into standard BASIC, you can replace it with the following equiva
lent expression:

SignedResult = SGN(X) * ABS(Y)

See SON and SIGNNUM for other functions involving signs of numbers.

Syntax

Numeric function-finds the cosine of an
angle measured in radians.

Result = COS(Angle)

Returns the cosine of a given angle expressed in radians.

Description
The cosine function COS works together with the SIN function. They are

often used together, and have similar effects.
COS, like SIN, requires a single argument, which specifies an angle.- The

angle must be passed in radians, a unit of measurement for angles in which 2n
radians measures the entire 360 degrees of a full circle. COS always returns a
value between - 1 and 1.

The graph of the cosine function is shown in Figure 1. Its graph has exactly
the same shape as that of the sine function, shown in the entry for SIN. The
only difference is that the cosine starts at one for a angle of zero and decreases
as the angle goes up, whereas the sine function starts at zero and increases.
You can think of the cosine as being the same function as the sine, shifted n/2
radians to the left on the graph.

Geometrically, the cosine gives the horizontal coordinate of a point on the
circumference of a circle. As shown in Figure 2, the circumference of a circle
with radius R consists of the set of points that have the following coordinates,
measured relative to the center of the circle:

(R*COS(Angle), R*SIN(Angle))

Angle is the number of radians from 0 to 2n, measured counterclockwise from
the line going rightward from the center. You can also think of the cosine as

oCOSo

COS-Function Graph
CDS(X)

1

~--~~--~~--~~...-~~-t--~~--~~-t--~~...-~~-t--- x

Figure 1: COS-Graph of the cosine function .

being the ratio of the side of the triangle adjacent to the angle, over the length
of the hypotenuse.

See the entry under SIN for a complete description of sines and cosines.

Sample Program
The following program is an adaptation of the third sample program for

SIN:

I SIN-Sample Program #3
SET OUTPUT ToScreen
FOR X= 20 TO 600 STEP 2

Y = 45 + 110*(1-COS((X-20)*Pl/110))
PAINT RECT X-19,Y-19; X,Y
ERASE RECTX-19,Y-19; X-2,Y-2
FRAME RECT X-20,Y-20; X-1 ,Y-1
Y - 45 + 110*(1-SIN((X-20l*Pl/110))
PAINT RECT X-19,Y-19; X,Y

•

l!I

oCOSo

(R*COS(Angle),R*SIN(Angle))

Angle

R*COS(Angle)

Figure 2: COS-The geometrical meaning of the cosine.

ERASE RECT X-19,Y-19; X-2,Y-2
FRAME RECTX-20,Y-20; X-1,Y-1

NEXT X

cos=
Adjacent/
Hypotenuse

Four lines have been added to this program so that it paints a box for each
value of X at the height of both the sine and the cosine functions. The result is
an interlocking curve, as shown in Figure 3.

Notes
-The inverse function arc cosine is not directly available in Macintosh

BASIC. The arc cosine does the opposite operation from the cosine: it takes
a number between - 1 and 1 and returns the angle that has that number as
its cosine.

You can define your own arc cosine function, using the arc tangent function
ATN, which is available in BASIC:

DEF ArcCosine(X) = Pl/2 - ATN(X/SQR(1 - X "2))

-See the entry under SIN, TAN, and ATN for further details on the trigo
nometric functions.

oCOSo

COS-Somple Progrom

Figure 3: COS-Output of sample program.

COS-Translation Key

Microsoft BASIC COS

Applesoft BASIC COS

Syntax

File pointer set-option-sets the position of
the file pointer.

[]SET CURPOS #Channel, Position

llJ ASK CURPOS #Channel, Position

Changes or checks the position of the file pointer according to its
position number, counting from the beginning of the file.

Description
CURPOS #(current position number) determines the location of the file

pointer, counting from the start of the file. In a SEQUENTIAL file, the posi
tion number is the number of bytes in from the start; in a relative (RECSIZE)
file, it is the number of records. In either type of file, the starting position is
numbered 0.

-Since the file pointer cannot be controlled from BASIC in STREAM
files, CURPOS # will not work with stream files.

-A related command, HPOS #,returns the current position of the pointer
relative to the start of a record, rather than the start of the whole file.

o CURPOS#o

CU RPOS #-Translation Key

Microsoft BASIC
Applesoft BASIC

LOC(channel)

Syntax

BASIC command-sets up a data list to be
read.

File format attribute-sets up a DATA file.

[]] DATA Value1 ,Value2, •••

Sets up a list of values to be read into the variables of a READ
statement.

111 OPEN #2: "FileName", Access, DATA, Organization

Opens a file in which data is stored in compact binary form, with a
data type identifier for each item separating fields.

Description
[]] DATA Value1,Value2, •••

A DATA statement sets up a list of values to be read by a READ statement
elsewhere in the program. A READ statement contains a list of variables.
When it is executed, the program looks for the first DATA statement that has
not yet been completely read, finds the first values from that statement that
have not yet been read, and assigns them sequentially to the variables in the
READ statement's variable list.

DATA statements are a convenient way of getting large numbers of vari
ables into a program. Any number of values may be included in a DATA
statement, and any number of DATA statements may appear anywhere in
a program.

o DATAo

The values in a DATA statement are separated by commas. They may be of
any data type, but they must match in type the variables to which they will be
assigned in the READ statements.

DATA statements are read sequentially starting from the beginning of the
program. After a value has been read, the data pointer is set to the next value
that appears in the program. The next time a READ statement is executed, the
value to which the pointer is set will be the first value read. If you try to exe
cute a READ statement after all the DATA statement values have been
exhausted, you will get an "Out of data to read" message.

You can cause your program to reuse the values in DATA statements by
issuing the RESTORE command. For further information, see the RESTORE
entry.

llJ OPEN #2: "FileName", Access, DATA, Organization
DATA is a file format attribute of disk files. When you specify this type of file,

data will be stored on the disk in compact binary form, but each field will include
a type tag, which specifies the data type of the item. DATA files are more com
pact and faster to read and write than TEXT files, and less compact and slower
to read and write than BINY files, the other two types of ftle format.

If you use DATA files in place of TEXT files you have the advantage of
speed and compactness. However, DATA files require extra care in reading.
Although BASIC automatically assigns the correct type tag to each item as it
is written to disk, the various data items must be read into variables of the
correct type, or the receiving variable will get no value. Each type tag takes
one byte of file storage space.

If you use DATA files in place of TEXT files you have the advantage of
speed and compactness. However, DATA files require extra care in reading.
Although BASIC automatically assigns the correct type tag to each item as it
is written to disk, the various data items must be read into variables of the
correct type, or the receiving variable will get no value. Each type tag takes
one byte of file storage space. For more information on type tags, see the
TYP entry.

In practice, SEQUENTIAL DATA files are the Macintosh files most similar
to standard BASIC sequential files. When you write to such a file, you send
the data to the file as a series of values for variables of specific types. When
you read the file, you read the data into variables of the same types into which
they were written. You need not use the same variable names, as long as the
number and types of variables in each record match the number and types of
variables in the statement that reads them.

o DATAo

You can also read the data in a DO loop, using the EOF function to deter
mine the end of the file:

DO
READ #FileNum, IF EOf"' THEN EXIT: Variable(s)
PRINT Variable(s)

LOOP

Notes
-For additional information on the use of DATA statements, see the

READ entry.

-For programs that use DATA statements, see the READ, DATE$,
SEQUENTIAL, RECSIZE, and FONTSIZE entries.

-For examples of programs that read and write DATA format files, see the
RECSIZE, SEQUENTIAL, REWRITE#, and APPEND entries.

DATA (BASIC Command)-Translation Key

Microsoft BASIC

Applesoft BASIC

DATA

DATA

q ...__I __ D_~_T_E ___ $ __ ___,I P
String function-returns the current date

Syntax
D$ = DATE$

Returns the current date on the system clock as a string of the form
Month/Day /Year.

Description
The DATE$ function reads the system clock, and returns the current date as

a value. The returned string contains numerals for the month, day, and last
two digits of the year, separated by slash marks. If the month or the day is less
than 10, it is represented by a I-digit number; otherwise it is represented as a
2-digit number. The DATE$ function takes no argument.

The DATE$ function is most commonly used in a simple PRINT statement:

PRINT DATE$

It can be used in a program to show the current date on any output docu
ment, or written to a file to indicate the last time the file was updated.

Accuracy of the DATE$ depends on the setting of the system clock, which
is set through the Alarm Clock or through the Control Panel on the desktop.
Since the system clock is battery-operated, it keeps time even when the com
puter's power is turned off.

The international version of the Macintosh returns the date as a string for
matted according to the customs of the country where it was sold. On Christ
mas 1985 in England, for example, the DATE$ function would return
25/12/1985; in France it would by 25.12.85. The specific country's format is
stored as a resource file on the system disk. BASIC does not provide access to
the expanded form of the date,

Wednesday, December 25, 1985

even though this form is available within the operating system.

o DATE$ o

Sample Program
Even though you cannot retrieve the expanded form of the date, you can

still expand it yourself. The following program converts the date to an
expanded form, without the day of the week:

I DATE$-Sample Program
DIM MoWord$(12)
FOR Month = 1TO12

READ MoName$(Month)
NEXT Month
Year$ = RIGHT$(DATE$,2))
Month = VAL(LEFT$(DATE$,2))
IF Month >9 THEN

Day = VAL(MID$(DATE$,4,2))
ELSE

Day = VAL(MID$(DATE$,3,2))
END IF
NewDate$ = MoName$(Month) & 11 11 & STR$(Day) & ", 19" & Year$
SET FONT 9 I Toronto font
SET FONTSIZE 18 I Make it large
SET GTEXTFACE 11 I Outlined bold italic
GPRINT AT 7,40; NewDate$
DATA January, February,March,April
DATA May,June,July,August,September
DATA October,November,December

First an array is defmed for the names of the months, and the names are
read into the array from DATA statements. Next the DATE$ is picked apart.

This program makes use of virtually every one of·BASIC's string functions
to reformat the date. The RIGHT$ function picks out the last two characters
for the year. Next the LEFT$ function picks out the first two characters for
the month. The resulting string is converted to a numeric value by VAL for
two reasons. First, it will be used to determine which element in the array of
month names to use. Second, the VAL function has a special property that
will be useful. It converts to numbers only those characters that appear before
the first new numeric character. Thus, if the month is a I-digit number, the
expression

VAL (LEFT$(DATE$,2))

will return a single digit, whereas the expression

LEFT$(DATE$,2)

would return a digit plus a slash mark.

o DATE$ o

To extract the day from the middle of the DATE$ string, however, you must
start after the first slash mark. If you do not, the slash mark will appear as the
first character of the resulting string.

The Day variable is therefore treated in the same manner as Month. Since
Day can also be either one or two digits, you can use the VAL function to
eliminate the trailing slash mark, but you must start after the first slash mark,
or VAL will return a value of 0. Therefore, two expressions to determine Day
are set up in an IF /THEN/ELSE block, based on the number of digits
in Month.

Finally, a new date string, NewDate$, is concatenated, and printed out in a
display format. Output appears in Figure 1. You could convert this program
to a subroutine, a function, or a program performed from disk, and add it to
the check-writing program in the SELECT entry.

Notes
-The form of the string returned by the DATE$ function in Macintosh

BASIC differs from that in Microsoft BASIC. Microsoft BASIC's DATE$
separates the month, day, and year by hyphens rather than slash marks. A

§_~ DATE$ Sample Program

0 Jmmmmmrmmmm:mmmmmmmm:mmmmmmmm:mmmm11o121
Figure 1: DATE$-Output of Sample Program.

o DATE$·o

program to separate the parts of the date returned by DAIB$ that is trans
lated from Microsoft BASIC should take account of this fact.

-Unlike the DATE$ function in Microsoft BASIC, you cannot assign a
value to DAIB$. Macintosh BASIC's DAIB$ function will accept a value
only from the system clock.

DATE$-Translation Key

Microsoft BASIC

Applesoft BASIC

DATE$

---41 DEF ll:::: --=l .__· ---------F

BASIC command-defines a function that
can be expressed in a single line.

Syntax
DEF FunctionName(Arg1, Arg2, ...) = expression

•

•

•
X = FunctionName(A 1,A2, ...)

•

•
•

Defines a function with arguments Argl, Arg2, etc. The expression
specifies operations on the arguments that produce the function's
values. In the course of the program the function is called by
assigning it to a variable.

Description
A function is a special kind of procedure that returns a single value, a

result. A function will generally be called from the middle of a calculation, so
that it can perform a standard series of operations. When the function has
completed its work, it returns the answer to the calculation from which it was
called. The predefined BASIC keywords INT, RND, and MID$ are examples
of functions.

The DEF command allows you to define your own functions. User-defined
functions can simplify program coding because they allow the function name

o DEFo

to stand for the entire expression computed by the function, so the expression
does not need to be repeated throughout the program, but can be replaced
with the function name.

The DEF statement can be used to define any function that can be stated in
a one-line expression. For more complex functions that require more than one
line, you can use the multiple-line FUNCTION block. See the entry under
FUNCTION for a full discussion of user-defined functions.

The DEF statement defines a function in terms of an argument list which is
passed from the calling statement. A function is called from inside a numeric
expression, such as the following assignment statement:

Y = 3*FunctionName(X1,X2, ...) + 1

When it is referred to, the function performs its operation on the parameters
inside the parentheses (Xl, X2, ...). When it finishes its calculation, it plugs
the result back into its place in the calling statement, so the rest of the numeric
expression can be evaluated.

Once you have defined a numeric function, you can use it in any numeric
expression as if it were a regular Macintosh BASIC function. The numeric
expression does not have to be part of an assignment statement: it can just as
easily be within the condition of an IF statement, or even within another func
tion definition.

You can pass any number of parameters to the function. These parameters
are equated to the corresponding arguments in the DEF statement, and then
used to calculate the result. The values to be acted upon must therefore appear
in the calling statement in the same order as they appear in the DEF state
ment, and must be of corresponding data types.

A user-defined function may have any number of arguments, including
none. However, the arguments in the calling statement must always match the
arguments in the definition, both in number and in type. A function itself may
also be of any data type.

A numeric function returns a value that is the result of the numeric opera
tions defined in the DEF statement:

DEF Circumference(R) = 2*Pl*R
INPUT "Radius = "; Radius
PRINT "Circumference = "; Circumference(Radius)

Unless the function returns a constant, the numeric expression defining a
numeric function must always include the argument of the function as one of
its values. This short program accepts an input value and assigns it to the vari
able Radius, which is then passed as a value to the argument R in the function

oDEFo

Circumference(R). Circumference(Radius) will then have the value of a cir
cumference of the circle whose radius is Radius. If you need to perform addi
tional calculations on the value of Circumference(Radius), you can preserve its
value by assigning it to a variable.

INPUT "Radius = " ; Radius
C = Circumference(Radius)
PRINT "Circumference= "; C
C = C*3

The following function has two arguments, and uses the Pythagorean Theo
rem to calculate the length of the hypotenuse of a right triangle:

DEF Hypotenuse(A,B) = SQR(A "'2+ B "'2)

As this example also shows, a user-defined function may call a built-in BASIC
function as part of its operation. A user-defined function may also call other
user-defmed functions that have been defined in the same program.

The variables in the argument list are said to be local to the function defini
tion, because they are defined only within the DEF statement. Any arguments
you include in the name of your function will be local to the function, and will
not affect values elsewhere in the program, even if the same variable name
occurs in another line.

You can also use variables from the program that are not in the argument
list. Any variable used in the program that is not explicitly named in the DEF
statement's argument list is considered to be global to the entire program. You
can therefore use variable names directly out of the main program.

For example, if you define a function to calculate the circumference of a
circle as

DEF Circumference(R) = 2*Pl*R

then the expression

X = Circumference(Q)

will give you the circumference of a circle whose radius is Q. The value Q is
said to be passed to the function as a parameter, and is used as the value for R
in the function.

On the other hand, if you defme the function with no argument

DEF Circt1mference = 2*Pl*R

the function will act on whatever value the variable R holds at that point in
the program. If there is no value for R in your program, the function will

o DEFo

return a value of 0 (2*PI*O). In order to have this function calculate the cir
cumference of a circle whose radius is Q, you must make the following
statements:

R=Q
X = Circumference

As a general rule, you should include in your DEF statement's argument list
a dummy argument for any variable whose value may change during the pro
gram, leaving out only those whose values you expect to remain constant. For
example,

DEF Func(X) = M*X+ B

will yield the value of the equation M*X + B when given the value of X. In a
program such as:

DEF Func(X) = M*X+ B
M = 1.5
B = 6
INPUT X
Y = Func(X)
PRINTY

you will encounter no problems. If all three values may change during the pro
gram, however, it is safer to define the function in the following form:

DEF Func(M,X,B) = M*X+ B

With the latter form, you gain an additional advantage. You can use the func
tion in any program you write, without worrying about whether you have
used the same variable names in the program, because the values of M, X,
and B, are local to the function.

DEF Func(M,X,B) = M*X+ B
Y = Func(P,Q,R)

will assign to Y the value of P*Q + R.

A function may be of Boolean type, in which case its name should include
the tilde symbol. Boolean functions test for the truth or falsity of a condition,
and return a value of TRUE or FALSE. Boolean functions do not require an
argument. For example, both of the following are acceptable and will work:

DEF Greater = First > Second
DEF Larger (First,Second) = First > Second

o OEFo

Both Greater'" and Larger - will return a value of TRUE if the value of First is
greater than that of Second, and a value of FALSE if it is not. However, the
variables First and Second must be global to the program before Greater'"
will work. On the other hand any variable names can be passed to Larger'"
(First,Second), provided they are of the same types as First and Second. Inclu
sion of arguments thus makes your functions more flexible.
The test for a condition may be quite complex, and may include an equal sign:

DEF Odcf- (X%) = (X% MOD 2 = 1)

The function Odd- (XOJo) will return a value of TRUE if XOJo is an odd integer,
that is, if XOJo divided by 2 leaves a remainder of 1.

Macintosh BASIC allows you to create functions that perform operations on
strings of text. Most string functions involve the use of BASIC's built-in string
functions. A string function need not have an argument, or may have more
than one argument, including arguments of other data types. The function:

DEF Year$= "19" & RIGHT$(DATE$,2)

will return the year as determined by the system clock in the form of a four
digit string.

The function:

DEF Name$(F$,M$,L$) = L$ & "," & F$ & LEFT$(M$,1) & "."

will take strings for the first, middle, and last name, and return a single string
with last name first followed by a comma, first name, and middle initial fol
lowed by a period.

Sample Programs
The following program uses a user-defined function to compute the sales

tax on a group of purchases, and prints the total price:

! DEF-Sample Program #1
! Defines a function to compute 6.5% sales tax

DEF Tax(Price) = Price*.065

Output$ = "$###.##"
Total= 0
INPUT How many items? "; Number

o DEFo

FOR Item = 1 TO Number
PRINT " Price of Item " ; Item;
INPUT " : $" ; Price
Total = Total + Price

NEXT Item
ERASE RECT 7, 145; 150,240
GPRINT AT 11 , 170; "Subtotal = " , FORMAT$(0utput$; Total)
GPRINT "Tax = ", FORMAT$(0utput$; Tax(Total))
PLOT 110,194; 156,194
GP RI NT
GPRINT "Grand Total = ", FORMAT$(0utput$; Tax(Total) +Total)

The output from a sample run of this program is shown in Figure 1.
In the second sample program, a Boolean function is defined that takes the

modulus of 10 and uses it to control the number of lines printed on the screen.

! DEF-Sample Program #2
! Defines a Boolean function to control the display

DEF TenTimes- (X%) = (X% MOD 10 = 1)
FOR 1% = 1 TO 100

PRINT 1%
IF Ten Times- (1 %) THEN

PRINT

§~ DEF-Sample Program # 1 ~
How many i terns? 4 •
Price of Item 1: $12.55
Price of Item 2: $11.01
Price of Item 3: $3.99
Price of Item 4: $.32

Subtotal = $27.67
Tax= $1 .61

Grand Total = $29.66

Figure 1: DEF-Output from Sample Program #1 .

o DEFo

PRINT "Press the mouse button."
BTNWAIT
CLEARWINOOW

END IF
NEXT 1%

The program will print the value of IOJo on the screen repeatedly until the Ten
Times(IOJo) is TRUE, i.e., until the remainder of IOJo divided by 10 is 1. Then
it will print the message, and wait for the button to be pressed before continu
ing. Output from this program is shown in Figure 2.

Note that the problem could have been handled several other ways. For
example, TenTimes could have been a numeric function of the form:

DEF TenTimes%(X%) = X% MOD 10

in which case the test would have been:

IF TenTimes%(1%) = 1 THEN •••

The third sample program defines a string function, and uses it to convert a
decimal number into its hexadecimal equivalent.

! DEF-Sample Program #3
! Converts a decimal number less than 32768 into its
! hexadecimal equivalent.

~O~ DEF-Sample Program #2 ~
11 ?
12
13
14
15
16
17
18
19
20

Press the mouse but ton.

Figure 2: DEF-Output of Sample Program #2.

o OEFo

DEF HexDigit$(X%) = MID$("0123456789ABCDEF",(X% MOD 16)+ 1,1)

DO
INPUT "Decimal number to convert: "; Decima1Num%
IF Decima1Num% = 0 THEN EXIT DO
DO

Hex$ = HexDigit$(DecimalNum%) & Hex$
Decima1Num% = Decima1Num% DIV 16
If DecimalNum = 0 THEN EXIT DO

LOOP
PRINT "Hexadecimal equivalent is: "; Hex$
LOOP

The HexDigit$ function,

HexDigit$(X%) = MID$("0123456789ABCDEF" ,(X% MOD 16) + 1, 1)

uses the MOD operator to find the lowest-order hexadecimal digit in X%. It
then uses that digit as an argument to the built-in MID$ function to select the
correct hexadecimal digit from the string "0123456789ABCDEF". It then
returns the digit to the calling statement.

The core of the main program is the inner DO loop. A string of hexadeci
mal digits is concatenated in the variable Hex$, starting with the rightmost
digit. The decimal number is then divided by 16, to yield the next value to be
converted. The outer loop simply provides for repeated inputs, so you don't
have to run the program again for each number you want to convert if you
want to convert more than one. Entering a 0 ends the program. The output is
shown in Figure 3.

Applications
The application program below uses a user-defined function to calculate

depreciation for an item based on the sum-of-the-years' -digits, and prints a
depreciation table. This is a common method of calculating accelerated depre
ciation, to gain a greater tax advantage in the years immediately after purchas
ing the item. "Present book value" is the value of the item as presently
recorded on the account books. "Salvage value" is the price one can presume
to get for the item after its useful life is over. The depreciation is calculated
from the difference between the two, so that the ending value is the same as
the salvage value.

This method multiplies the remaining value for each year by the ratio of the
number of remaining years to the sum of the digits representing the years of

o DEF o

§0 DEF-Sample Program #3
Decimal number to convert: 256 •
Hexedecimel equivelent is: 100
Decimel number to convert : 400
Hexedecimel equivelent is: 190
Deci me 1 number to convert: 3276 7
Hexedecimel equivelent is: 7FFF
Decimel number to convert: 16
Hexedecimel equivelent is: I 0
Decimel number to convert: 4096
Hexedecimal equivelent is: I 000
Decimel number to convert: O

Figure 3: DEF-Output of Sample Program #3.

the item's useful life. For an item expected to give five years of service, this
sum is

5 + 4 + 3 + 2 + 1 = 15

The ratio of the number of remaining years to this sum is expressed in the
function by:

(L+ 1 - Y)/(L*(L+ 1)/2)

where L is the life of the item and Y is the year for which depreciation is being
calculated.

The program illustrates a number of important principles. First, the func
tion itself is fairly complex, making use of four different arguments. Second,
it shows how the names of the arguments and those of the variables passed to
them are related. PV represents present value, SV represents salvage value, L
represents estimated life of the item and Y the year for which depreciation is
actually being calculated. The longer names are used in the program.
Although the arguments for the function could have been named A, B, C,
and D, these names indicate the nature of the values expected. The actual
year-by-year calculation is performed within a FOR/NEXT loop, with one
pass for each year. Figure 5 shows a sample run of this program over six
years.

oOEFo

! This program uses a user-defined single-line function to calculate
! sum-of-years'-digits depreciation and prints 8 table.

DEF DecliningBel(PV,SV,L,V) = (PV-SV)*(L-t 1-V)/(L*(L-t 1)/2)
Output$ = ·•• $••,•••.•• $•••,•••.••·!Format for output
INPUT "Present Book Value:$"; Present ! Get input values
INPUT "Selvage Value: $"; Selvage
INPUT "Life in years: "; Life

SET &TEXTFACE 1
SET FONT 2
&PRINT AT 45,80; ·sum-of-Vears'-Digits·
&PRINT AT 49,95;" Depreciation Table"
ASK PENPOS H1,YI
PLOT 7, 102; 235, 102
SET FONT 1
SET &TEXTFACE 0
&PRINT AT 11,115; ·veer Depreciation
SET PENSIZE 2.2
PLOT 8, 120; 235, 120
&PRINT
RemainingBal =Present

! Calculate and print depreciation for each year
FOR Year= 1 TO Life

! Boldface for title
! New York font

I Ber below title
I System font (Geneva)
! Tum off boldface

Value·

I Rule below column heads

I Preserve input value

Depree= DecliningBel(Present,Salvage,Life,Year)
RemainingBal = RemeiningBel-Deprec
&PRINT FORHATS(Output$; Year,Deprec,RemeiningBal)

NEXT Veer

! Plot vertical rules end frame
ASK PENPOS H2, Y2
SET PENSIZE 1, 1
PLOT 45,Vl-B; 45,V2-12
PLOT 150,Yl-B; 150,V2-12
SET PENSIZE 2,2
FRAME RECT 3.60: 240,V2-7

F'igure 4: DEF-Sum-of-Years'-Digits Depreciation.

Notes
-If you need to create longer, more complex functions, which involve

operations that cannot be contained in a single expression, Macintosh BASIC

o DEFo

Sum-of-Years"-Digits
Depreciation Table

Vear Depreciation
1 $9,265.71
2 $7,736.10
3 $6, 190.46
4 $4,642.66
5 $3,095.24
6 $1,547.62

Value

$35,714.29
$27,976.19
$21,765.71
$17, 142.66
$14,047.62
$12,500.00

Figure S: DEF-Output of Application Program

also has the keyword FUNCTION, which provides for multi-line functions.
Multi-line functions can use any statements that are acceptable in Macintosh
BASIC, while single-line functions use only variables, operators, and othe.:
functions.

-A user-defined function may appear at any point in a program listing.
The definition need not be placed before the first use of the function.

-Be careful when naming functions. You cannot use the same name for a
function and a variable in the same program, nor for a single-line function
and a multi-line function. Other dialects of BASIC protect you from this dan
ger by requiring that you preface a user-defined function with FN every time
you refer to it in a program. Macintosh BASIC gives you the freedom not to
use FN, but you may do so if you find it helpful. You can, however, legally
use the same name for a function and a subroutine.

-You cannot redefine a function once you have defined it in a program.

o DEFo

-If you key in a function incorrectly after it has been defined by misspell
ing its name, or using a different data type symbol, you will get an "undimen
sioned array reference" error message. A defined function Odd-(XOfo), for
example, may coexist in the same program as an array Odd(X), or another
function Odd(X). The data type symbol is a part of the name of the function.

DEF-Translation Key

Microsoft BASIC

Applesoft BASIC

DEF FN

DEF FN

Disk command-deletes a file on a disk.

Syntax
DELETE Filename$

Deletes the file named Filename$.

Description
The DELETE command erases a specified file from the disk directory. You

supply a string containing the name of the file to be deleted:

DELETE "DeadFile"

The string can be anything, including a string variable or string expression.
Capital and lowercase letters are treated as identical in file names.

By default, the DELETE command looks for the file on the disk in the
internal drive. You can change this to the external disk drive with the
command

SETVOL(2)

Or, you can precede the filename with the name of the disk volume and
a colon:

DELETE "Diskname:DeadFile"

The DELETE command must always be used in a program. Unlike other
dialects of BASIC, Macintosh BASIC does not have an immediate-command
mode that lets you type a single command without running a program. You
must therefore type the DELETE command into a text window and run it as a
program, even if it is the program's only line.

Make sure you know what you're doing before you use DELETE. This
command completely erases the name of the file from the disk directory, in a

o DELETE o

way that cannot be undone. The file will not even appear in the Finder's trash
can. It is gone for good.

Note that the keyword DELETE is used differently in other dialects of
BASIC. Microsoft BASIC uses DELETE to remove unwanted lines from a
program; it uses the keyword KILL for file deletions. While Applesoft BASIC
uses the keyword DELETE to delete files, it does not expect the file name as a
string: you type the name without quotation marks.

You can use the LOCK command to guard files against accidental erasure.

DELETE-Translation Key

Microsoft BASIC

Applesoft BASIC

KILL

DELETE

q l..____D_E_V_C_O_N_TR_O_L _ __,J P=

Syntax

II 0 command-sets communications
protocols for output to peripheral devices.

DEVCONTROL #Channel: @Device%(0)

Sets an array of protocol settings for output from a given commun
ications port.

Description
DEVCONTROL transmits new output protocols to the communications

port device drivers .AOUT and .BOUT. To complete this operation, you need
a program or program segment of the following form:

DIM Device%(1)
Device%(0) = 8
Device%(1) = ProtocolValue
OPEN #Channel: PortName$

DEVCONTROL #Channel: @Device%(0)
CLOSE #Channel

You can use such a segment at any point in a program where you need to reset
communications protocols.

Every one of these statements is necessary. Protocol information is sent to
the driver as a two-element integer array Device%. Element 0 must be set to 8,
which tells the driver to receive and accept communications protocol settings.
The settings themselves are established by an integer determined by adding the
relevant codes from the following table and assigning the sum to Element 1 of
the array Device%.

Once the program segment has assigned the protocol value, it opens the
channel. The PortName$ variable should be replaced by the constant

o DEVCONTAOL o

".AOUT" or ".BOUT", depending on whether you are communicating with
the modem port or the printer port. The array name in the DEVCONTROL
statement must always be prefixed by the indirect-addressing symbol, @, in
exactly the form shown above. At the end of the program, you should close
the channel.

Although the numbers assigned to element 1 are determined somewhat eso
terically by turning various bits in a 16-bit pattern, you can use DEVCON
TROL effectively knowing only the decimal value represented by all the bit
patterns added together. To establish a setting, add the values representing the
desired settings for baud rate, parity, stop bits, and number of data bits, using
the values from the Figure 1.

The default settings are:

Setting

Value

Parity

None

0

Stop Bits

2

-16384

Data Bits

8
3072

Baud Rate

9600
10

Communications Protocol Settings

Protocol Protocol Pattern Protocol Pattern
Value Value Protocol Value Value

57600 0 5 0
BAUD 19200 4

DATA 6 2048

9600 10 BITS 7 1024
RATE

7200 14 8 3072
4800 22 0 0
3600 30 STOP 1 16384
2400 46 BITS 1.5 -32767
1800 62 2 -16384
1200 94 Even 12288

600 189
PARITY Odd 4096

300 380 None 0 or 8192

Figure 1: Decimal Values for DEVCONTROL Settings.

o DEVCONTROL o

So, to set the default rate, you would assign to DeviceOJo(l) the sum of these
values:

0 - 16384 + 3072 + 10 = -13302

If you wanted to change the settings to even parity, no stop bits, eight data
bits, and 1200 baud, the new values would be

Setting

Value

Parity

Even

12288

Stop Bits

0

0

The sum assigned to DeviceOJo(l) would be:

12288 + 0 + 3072 + 94 = 15454

Data Bits

8
3072

Baud Rate

1200

94

q .__I __ D_E_VS_T_:A:_TU_S ____ I~

Syntax

I/ 0 command-returns the number of
occupied bytes in the serial input

communications buff er.

DEVSTATUS #Channel: @0evice%(0)

Returns the number of unavailable bytes in the serial input buffer
open on the specified channel.

Description
DEVSTATUS can be used to determine how many bytes in a serial input

buff er are filled with data. This can be useful for a number of purposes: set
ting a minimal number of bytes received before which the buff er contents are
sent to disk, finding out when the buff er is full so you can halt communica
tions while you empty it, etc.

This is accomplished through a three-element integer array, whose elements
are assigned as follows:

DIM Device%(2)
Device%(0) = 2
Device%(1) = 0
BytesUsed% = Device%(2)

That is, 2 is the value sent to the device to tell it to return the number of
bytes in use. By sending this value as the first element of a three-element array,

DEVSTATUS #Channel: Device%(0)

you will receive the result in the third element. The resulting value can then be
assigned to another variable.

o DEVSTATUS o

A program that will need to determine the status of an input buffer (.AIN
or .BIN) must at some point include the following statements in the following
order:

DIM Device%(2)
Device%(0) = 2
OPEN #Channel: PortName$ I Either .AIN or .BIN

DEVSTATUS #Channel: @Device%(0)
CLOSE #Channel
BytesUsed% = Device%(2)

==JI DiffRgn It-:: __,...___ ----------F

Syntax

Graphics toolbox command-subtracts one
region from another.

TOOLBOX DiffRgn (RgnA}, RgnB}, ResultRgn})

Subtracts RgnB} from RgnA}, yielding the set of all points in
RgnA} but not in RgnB}.

Description
DiffRgn performs a special form of subtraction on two region shapes. This

difference operation is not an arithmetic subtraction, but a set-theory opera
tion that resembles the union and intersection commands. DiffRgn is available
only for regions. There is no equivalent command for rectangles, polygons, or
other shapes.

As shown in Figure 1, the difference of two regions is the set of all points
that are in the first region, but not in the second. You may think of it as a
subtraction in the following way: Take the first region, RgnA}, and subtract
from it the part of RgnB} that intersects with it. Of course, the rest of RgnB}
is also missing from the result even without being subtracted, because it was
never in RgnA} to begin with.

In the mathematics of set theory, this difference operation is sometimes
written with a subtraction sign. In Macintosh BASIC, however, it must always
be given as the toolbox command DiffRgn. You cannot simply subtract the
names of the two region handles in an assignment statement.

The syntax of DiffRgn resembles the other region operations such as
UnionRgn. You must supply three region handles-the two on which the sub
traction is being performed, and a third to receive the result:

TOOLBOX DiffRgn (RgnA}, RgnB}, ResultRgn})

D OiffRgn o

DiffRgn
(RgnA} - RgnB})

Figure 1: DiffRgn subtracts RgnB} from RgnA}.

All three regions must have been previously created with calls to the NewRgn
tool function. See OpenRgn for more information on defining regions.

Note that you get a different result if you transpose RgnA} and RgnB}:

TOOLBOX DiffRgn (RgnB}, RgnA}, ResultRgn})

This toolbox call will return the set of all points that are in RgnB} but not in
RgnA}-a different region from the one shown in Figure 1. DiffRgn is the
only set-theory operator in Macintosh BASIC that does not treat the source
regions commutatively.

Sample Program
The following program defines two rectangular regions, then takes their dif-

ference in two ways:

! DiffRgn-Sample Program
RectA} = TOOL NewRgn
TOOLBOX SetRectRgn (RectA}, 50,50, 150, 150)
RectB} =TOOL NewRgn
TOOLBOX SetRectRgn (RectB}, 100, 100,200,200)
Difference} = TOOL NewRgn

D OiffRgn D

TOOLBOX DiffRgn (RectA}, RectB}, Difference})
SET PENSIZE 4,4
TOOLBOX FrameRgn (Difference})
GPRINT AT 20,20; "DiffRgn: RectA} - RectB}"
BTNWAIT
CLEARWINDOW
TOOLBOX DiffRgn (RectB}, RectA}, Difference})
TOOLBOX FrameRgn (Difference})
GPRINT AT 20,20; "DiffRgn: RectB} - RectA}"

Figures 2 and 3 show the results of this program, before and after the pro
gram stops at the BTNWAIT. In each case, the result region has the shape of
the first rectangle in the DiffRgn statement, with a corner taken out where the
subtracted rectangle was overlapping.

Applications
The application program in Figure 4 is an adaptation of the line graph pro

gram for PLOT. Instead of simply drawing the lines of the graph, however,
the graphics routine uses LineTo commands to make each line part of the out
line of a region. The three regions are considered to be the areas under each
line, bounded by the line, the two axes, and the right edge of the graph. Each
of the three regions is stored as an element of a handle array: Line}.

~D~ DiffRgn-Semple Program~
?

DiffRgn: RectA} - RectB} '

Figure 2: DiffRgn-The difference of two rectangular
regions.

D OiffRgn o

~ DiffRgn-Sample Program ~

DiffRgn: RectB} - RectA} •

Figure 3: DiffRgn-The difference of the same two
regions, arranged in the opposite order.

Di ffRgn-App 1 i cation Program

--Line Graph--
Plots the change of three variables over twelve months of a year.

This version of the program defines the three lines as the boundaries of
regions, then takes the difference to show surplus and deficit of

line 3 over line 2.

SET OUTPUT ToScreen

! Set up titles for axes.
SET STEXTFACE 1
SET FONT 2
SET FONTSIZE 12

! Print t1tle for vertical axis
SET PENPOS 10, 103
SPRINT " Region"
SPRINT .. Sales"

! Adjust output window for full screen

! Boldface
! New vork font
! 12 point

Figure 4: DiffRgn-Application Program.

o OiffRgn o

GPRINT "(Millions)"

! Pr1nt title for horizontal axis
GPRINT AT 253,260; "Months";

! Plot vertical and horizontal axes. Or1g1n 1s at 110,215.
SET PENSIZE 2,2
PLOT 110,215; 460,215
PLOT 110,215; 110, 10

! Set text s1ze for labels on t1cl< marks
SET GTEXTFACE 0 ! Plain text, no boldface
SET FONT 2 ! New Yori< font
SET FONTSIZE 9 ! 9-point
SET PENSIZE 1, 1

! Plot tick marks and labels for vertical axis
FOR N = 0 TO 100 STEP 10

V = 215-N*2
GPRINT AT 64, V+4; FORMATS("•••";N);
PLOT 107,V; 113,V

NEXT N

! Plot t1cl< marks and labels for horizontal axis
FOR N = 1TO12

H = 11 O+(N-1)*30
READ Month$
GPRINT AT H-7,235; Month$
PLOT H,212; H,218

NEXT N
DAT A Jan,Feb,Mar,Apr,May,Jun,Jul ,Aug,Sept,Oct,Nov ,Dec

! Set up pen for plotting Jines.
SET PENMODE 9 ! "OR" Penmode, so thflt lines don't cover other lines
SET PENSIZE 3,3 ! Draw 11nes 3 pixels w1de
NumberDfL1nes =·3 ! Number of 11nes to be drawn on graph
DIM Li ne}(NumberOfL i nes)

! Read the data and create the regions
FOR N = 1 TO NumberOflines

Line}(N) =TOOL NewRgn
TOOLBOX OpenRgn
TOOLBOX MoveTo (110,215)
FOR Month= 1 TO 12

Figure 4: DiffRgn-Application Program (continued).

! Start from origin

o DiffRgn o

READ Sales
H ::: 110 + (Month- 1)*30
V::: 215 - 2*Sales
! Draw line to the next point

TOOLBOX LineTo (H,V)
NEXT Month
TOOLBOX Li neTo (H,215)
TOOLBOX LineTo (110,215)
TOOLBOX CloseRgn (Line}(N))

NEXT N

Line3minus2}::: TOOL NewRgn
Line2minus3} =TOOL NewRgn
Both} ::: TOOL NewRgn

! Coordinates of point

! Complete region by returning
! to x-axis.

TOOLBOX DiffRgn(Line}(3), Line}(2), Line3minus2})
TOOLBOX DiffRgn(Line}(2), Line}(3), Line2minus3})
TOOLBOX UnionRgn(Line3minus2}, Line2minus3}, Both})

SET PATTERN Gray
TOOLBOX PaintRgn(Line3minus2})
SET PATTERN 15
TOOLBOX PaintRgn(Line2minus3})

SET PATTERN Black:
SET PENSIZE 1, 1
TOOLBOX FrnmeRgn(Both})

END PROGRAM

! Gray shows surplus
! of line 3 over line 2

! Cross-hatched pattern shows
! deficit of line 3.

! Frame around both patterns

! --------------------------------DATA-------------------------------!

! Data for line number 1 (twelve months)
DATA 50, 55.9, 66, 73.9, 77, 88
DATA 72, 23, 12, 5, 7, 20

! Data for line number 2
DATA 72, 23, 12, 5, 7, 39
DATA 50, 62, 66, 73.9, 77, 88

! Data for line number 3
DAT A 25, 50, 80, 40, 30, 5
DATA 10, 33, 30, 40, 30, 14

Figure 4: DiffRgn-Application Program (continued).

o DiffRgn D

Painting one of these regions might in itself be useful: it would yield a solid
region under one of the lines. Since we are using DiffRgn, however, we will
take the difference of two of the three regions to show the surplus and deficit
of one line over another.

The resulting graph, shown in Figure 5, might be what the company's
national sales manager would use when he calls in his Region 3 sales manager.
The gray pattern in the months February through May show that Region 3
was far ahead of Region 2 during the first part of the year. Then, however, the
cross-hatched pattern shows that Region 3 has fallen sharply behind Region 2
in the second half of the year.

Notes
-For related set-theory operations that can be performed on toolbox rec

tangles and region shapes, see the entries for UnionRect/UnionRgn,
SectRect/SectRgn, and XorRgn.

-See the entry under OpenRgn for full details on defining and manipulat
ing regions.

OiffRgn-Line Groph

100 •
90

80

70

Region 60

Sales 50

(Millions) 40

30

20

10

0

Jan Feb Har Apr Hay Jun Jul Aug Sept Oct Nov Dec

Months

Figure 5: DiffRgn-Output of Application Program.

BASIC command word-dimensions an array.

Syntax
DIM Single(Max), Double(Sub1 ,Sub2), •••

Sets aside storage spaces for one-dimensional array Single, and for
a two-dimensional array Double.

Description
The DIM statement (for "dimension") allows you to create an array and

specify its size. An array is a collection of variables that are indexed by size
with a subscript for convenient access. Arrays in Macintosh BASIC can have
many dimensions, and can be of any variable type, including all of the
numeric types, strings, Booleans, and even handles (see the asteroids program
under OpenPoly for an example of a handle array).

You dimension an array by naming it in a DIM statement, with a subscript
that determines the maximum number of values the array will be able to take:

DIM 5(10)

will defme a single-dimensional array S with a subscript of 10. The maximum
length of Sis actually 11 elements, because BASIC automatically defmes an
element number 0.

If you think of S as a list of eleven numeric variables, the names of the vari-
ables would be:

5(0)
5(1)

5(2)

5(3)

5(4)

5(5)

5(6)
5(7)

5(8)

5(9)
5(10)

oDIMo

Like any other numeric variable, each of these can store one numeric value at
a time.

Once the array S has been defmed in a DIM statement, you can use these
eleven variables in the same ways that you would use a simple numeric vari
able: you can assign values to them with LET or INPUT statements, display
their values using PRINT and GPRINT statements, or include them in
arithmetic expressions that perform calculations on their values.

The number between parentheses in the name of an array element is called
the subscript or index of the array. This number does not have to be a literal
numeric value; it can also be represented by a variable, for example:

5(1)

As long as the variable I contains a value from 0 to 10 (the range of the array
S), S(I) refers to one of the eleven values of the array.

With a variable as the array index, you can use a FOR loop to perform
lengthy data-processing tasks in very few program statements. For example,
the following three lines could print all eleven of the values stored in the array
S on the screen:

FOR I= OTO 10
PRINT 5(1)
NEXT I

In this sequence, the FOR loop's index variable, I, doubles as the subscript of
the array S. As the FOR loop increments the value of I from 0 to 10, the val
ues in the array are accessed and printed on the screen, one by one. If any
array elements have not been given values, this statement will print out the
automatically assigned initial values: 0 for numerics, the null string for string
arrays, and FALSE for Booleans.

The DIM statement itself may also have a variable name as the index of
the array:

DIM5(N)

In this case, the variable N must be assigned a value before the computer
encounters the DIM statement during the program run. The value of N at that
time will then defme the length of the array S.

oDIMo

In Macintosh BASIC, arrays may be defmed with more than one dimen
sion. The following is an example of a two-dimensional array defmition:

DIM T(3,4)

The table of variables represented by the array T is:

T(0,0) T(l,0) T(2,0) T(3,0)
T(0,1) T(l,1) T(2,1) T(3,1)
T(0,2) T(l,2) T(2,2) T(3,2)
T(0,3) T(l ,3) T(2,3) T(3,3)
T(0,4) T(l,4) T(2,4) T(3,4)

Note that the index of both dimensions starts at 0. Often you will fmd that
you have no particular use in your programs for this first element of the
arrays you defme. This presents no problem; there is no rule that says you
have to make use of every element available in an array. All the same, it is
good to keep in mind that an element zero is there in case you need it.

You can defme as many arrays as you like in any given program. (The prac
tical limitation is, of course, the amount of memory you have free.) The syn
tax of the DIM statement is flexible; you may defme several arrays in a single
DIM statement,

DIM A(20), 8$(10, 10), C%(15)

or you may include several DIM statements in the same program,

DIMA(20)
DIM 8$(10, 10)
DIMC%(15)

DIM statements can appear in the program anywhere before the first com
mand that uses the array; however, it is customary to dimension all arrays at
the start of a program.

Notes
-Arrays may have the same names as simple variables, but not the same

names as functions. Arrays and functions are referred to with the same
syntax:

Array(N) = Functn(Q)

oDIMo

sets Array's N-th element equal to the value Functn returns when evaluated at
Q. Because of the ambiguity in the syntax, a missing function reference may
sometimes be flagged as an "Undimensioned array reference."

-Macintosh BASIC has a special UNDIM statement that lets you dispose
of a previously dimensioned array. You can use this UNDIM statement any
time you have finished with an array and want to free up the space that it is
occupying. After an array name has been undimensioned, it can be dimen
sioned again, even with a different number of subscripts. See UNDIM
for details.

-Macintosh BASIC has a special syntax for referring to an array structure
as a whole. You type the array name with its parentheses, but don't put any
subscript inside: Array(). With multidimensional arrays, put one comma
inside the parentheses for each subscript after the first: TripleArray(,,).

-Arrays are frequently used in calls to toolbox routines. In such a call, you
must always precede the array name with the indirect addressing symbol @,
and refer to the array's zero element: @Pat%(0), for example. See the entries
for 100LBOX and SetRect for more information on using arrays with tool
box routines.

DIM-Translation Key

Microsoft BASIC DIM

Applesoft BASIC DIM

:::J I DisposeRgn I f---=-1...._· ______ ____,_F

Syntax

Graphics toolbox command-deletes the
reference to a region and releases its storage

space in the memory.

TOOLBOX DisposeRgn (RgnName})

Call this routine after you have finished using a region, to erase its
reference and make room in the memory for other storage.

Description
When you create a region with the NewRgn toolbox function, you are set

ting aside memory space to store its definition. Although you refer to the
region with a single handle variable, its actual structure is stored as a large
block in the computer's memory. Depending on the complexity of the region's
outline, the structure might occupy a significant amount of memory space.

When you've finished using the region, you can free up this space by calling
DisposeRgn. This toolbox routine erases the region's structure and returns its
allocated memory to the system for other uses.

After the DisposeRgn call, the region handle that you used becomes invalid.
Do not try to use this handle without calling NewRgn to create another
region. The old handle will probably be left pointing to an address in the com
puter's memory that is now being used for other purposes. Using a defunct
region handle is a sure way to cause a fatal system error.

Good programming practice would normally dictate that you call Dis
poseRgn at the end of each region program to deallocate the storage used by
each defined region. However, this is usually unnecessary, since BASIC clears
the region anyway when you close the output window. In some cases, in fact,

o DisposeRgn o

DisposeRgn can even create a system crash by deallocating memory in a way
that is not expected by the BASIC interpreter. The best solution, therefore, is
to use DisposeRgn only where it appears that leftover regions are eating up
huge amounts of memory space.

For more information on regions, see the entry for OpenRgn.

Numeric operator-performs an integer
division.

Syntax
Result = A DIV B

Calculates the integer quotient of A/B.

Description
In addition to the five standard numeric operators (+ - * I and "), Macin

tosh BASIC has two others, DIV and MOD, which are written as keywords
rather than as special symbols.

These two operators are both related to integer division. The DIV operator
calculates the integer quotient. It is just like the normal division operator (/),
but with the result truncated to an integer. MOD, on the other hand, gives the
remainder of an integer division operation; that is, the number left over after
the divisor has been divided into the dividend. (Macintosh BASIC also has a
REMAINDER function that does roughly the same thing as the MOD opera
tor, but with more flexibility.)

DIV and MOD are both written as keywords, coming between the two
numbers they act on:

Result = A DIV B

and

Remains = A MOD B

This syntax is exactly the same as the normal arithmetic symbols, such as the
standard division:

Result = A/B

oDIVo

You must, however, precede and follow the keywords DIV and MOD with a
space, so that the keywords will be separated from the characters around them.

The DIV operator is equivalent to normal division followed by a truncation:

Result - TRUNC(AfB)

This special truncation function is unique to Macintosh BASIC. For positive
values of A and B, this statement can be written with the standard BASIC
function INT:

Result - INT(B/A)

For negative values of A/B, TRUNC rounds toward zero (-3.S becomes
- 3), while INT rounds to the greatest integer less than the number (-3.S
becomes - 4). So the result of the TRUNC function is one greater than that
of the INT function. See INT and TRUNC for information on these two
functions.

Note that unlike MOD, the DIV function does not convert its operands to
integers before the operation. Instead, it carries out a standard floating-point
division and merely truncates the result.

See MOD and REMAINDER for information on remainders of division.

BASIC control structure-initiates an infinite
loop.

Syntax
[!] DO

•
•
•

LOOP

Sets up an infinitely repeating loop.

[1] DO

•
•
•
IF Condition- THEN EXIT [LOOP]

•
•
•

LOOP

Sets up an infinitely repeating loop with an exit condition.

~DO
IF NOT Condition- THEN EXIT

•
•
•

LOOP

Simulates a structured WHILE-DO block.

oDOo

Description

The DO statement marks the beginning of a DO loop. A DO loop is an
infinite loop structure, in which the statements in the loop are executed repeat
edly. The end of the loop is marked by the keyword LOOP.

The DO loop is one of the most fundamental control structures in Macin
tosh BASIC. It can be used any time you want operations to repeat. Any
number and type of BASIC statement may be included in a DO loop, includ
ing transfers of control. Statements within a DO loop are customarily
indented.

Conventional BASIC ends a loop with a GOTO statement that redirects the
program flow to an earlier line in the program. This earlier line then becomes
the start of a loop, with the GOTO statement as its end. The DO loop replaces
this construction, allowing you to structure your loops as blocks.

ITJ DO

•
•
•

LOOP

The simplest form of the DO loop sets up a structure in which all state
ments will be repeated infinitely. Barring transfers of control, statements
within a loop are executed sequentially, beginning over again at the top each
time the LOOP statement is reached.

Unless an exit condition is specified, the only ways to stop a program when
it is in a DO loop are to:

• close the window where the program is running;

• click Halt from the Program Menu; or

• press Control-H.

Macintosh BASIC also has a standard FOR/NEXT loop structure. The
FOR/NEXT structure is generally more useful when you want a loop to
repeat a specific number of times, or when you want to keep a count of the

oOOo

number of times the loop has repeated so far. However, you can insert a
counter in a DO loop if you wish:

Counter= 0
DO

Counter = Counter+ 1
PRINT Counter

LOOP

This program will increment the counter and keep printing its current value
indefinitely. Without a specified exit condition, it will continue until the vari
able overflows and changes to the system constant INFINITY.

DO loops can be nested to any depth. You can use them in any type of con
trol structure, and virtually any type of control structure can be placed within
one. You can call a subroutine from within a loop, although doing so may
increase execution time considerably. It may be better to insert the block from
the subroutine within the loop itself.

~DO

•
•
•
IF Condition- THEN EXIT [LOOP]

•
•
•

LOOP

You will usually want to include an exit condition in your loop structure.
An exit condition is generally set up as part of an IF statement or block. The
EXIT command, or its optional form, EXIT LOOP, causes the program to
exit from a DO loop. When you exit from a DO loop, execution picks up at
the line following the LOOP statement.

If you have several nested control structures, a simple EXIT statement will
cause the program to exit only from the innermost structure in which it
appears. Therefore, if your DO loop has a FOR loop nested within it, and the
EXIT statement appears within the FOR loop, the EXIT will leave only the
inner FOR loop, rather than the DO. However, the alternate form, EXIT
LOOP, will always exit from the DO loop, even if it contains a nested FOR

oDOo

I

loop. The following program segment illustrates both conditions:

DO
•
•
FOR I = 1 TO 100

•
•
IF Conditionr THEN EXIT

•
•
IF ConditionT THEN EXIT LOOP

NEXT I

•
•
•

LOOP

•
•
•

! Goes here on Conditionl-

! Goes here on ConditionT

If you want to simulate a FOR loop with a DO loop, you can set up a
counter as described above, and then use the number of times you want the
loop to execute as the exit condition for the loop:

IF Counter = 100 THEN EXIT LOOP

[J] DO

IF NOT Condition- THEN EXIT

•
•
•

LOOP

The WHILE-DO block is one of the most useful control structures in Pas
cal and other structured languages. A WHILE-DO tells the computer to
repeat a block of statements as long as a logical condition remains true. When
the condition becomes false, the loop is exited and the program continues
from the statement following the LOOP statement.

Macintosh BASIC does not have a WHILE-DO, but you can simulate one
with a DO loop and an EXIT. Use a DO loop to create the block. Then, at the
beginning of the block, put an IF statement with the condition under which
you want the repetition to stop.

oOOo

The condition in this IF statement should be the negative of the condition in
Pascal's WHILE-DO. The WHILE-DO construction repeats only as long as
the logical condition is true. Here, the loop repeats only until the expression in
the IF statement becomes true. For this reason, the condition in this IF state
ment is often preceded by the negation operator NOT.

Merely by moving the IF statement down to the bottom of the loop, you
can make this structure simulate the Pascal REPEAT-UNTIL block:

DO
•
•
•
IF ExitCondition- THEN EXIT

LOOP

The WHILE-DO construction is generally preferable, however, because the
exit condition is stated right at the beginning of the loop (where one would
expect to find the full structure definition), so that the loop is never executed
if the condition is false from the outset. On the other hand, a REPEAT
UNTIL is always executed at least once, even if its exit condition is already
satisfied, because the test for the exit condition does not occur until the first
execution of the loop has been carried out. This logical confusion inherent in
the REPEAT-UNTIL construction can lead to bewildering program bugs.

Sample Programs
The first sample program is an infinite loop that calculates and prints

Fibonacci numbers. Fibonacci numbers are a series of numbers in which each
number in the series is the sum of the previous two numbers. The first two
numbers are 1 and 1.

! DO-Sample Program #1
N1 = 0
N2 = 1
PRINT N2
DO

Fibonacci = N1 + N2
PRINT Fibonacci
BTNWAIT
N1 = N2
N2 = Fibonacci

LOOP

oDOo

The basic action of the program is to add two numbers, stored in the vari
ables NI and N2, and print the result. Before the loop begins, the variables NI
and N2 are initialized to 0 and I.

On each pass through the loop, the numbers are added and printed, and the
sum is stored in N2, while the previous sum is transferred to NI. The
BTNWAIT command is included so that the loop repeats only when the
mouse button is pressed. Without the BTNWAIT command, the loop would
repeat until the system constant INFINITY was printed repeatedly in the out
put window representing a floating-point overflow. A sample run, showing
the first IS Fibonacci numbers, appears in Figure I.

The second sample program is structured as a simulated WHILE-DO block.
The loop keeps repeating as long as a specified condition-a press of the
mouse button-does not occur. When the button is pressed, execution resumes
at the statement following the LOOP statement. Output appears in Figure 2.

! DO-Sample Program #2
DO

IF NOT MOUSEB" THEN
PRINT "Press the mouse button to stop!"

ELSE
EXIT LOOP

END IF
LOOP
PRINT
PRINT "WHEW!! Thank goodness!"
PRINT "I was getting tired."

Many Macintosh programs use the mouse to create interactive graphics. A
mouse program must repeatedly check the mpuse's button and position, and
must respond immediately to any change. This is usually accomplished with a
small DO loop, as in the following program:

! DO-Sample Program #3
DO

IF MOUSEB" THEN
H = MOUSEH
V = MOUSEV
FRAME OVAL H-10,V-10; H+ 10,V+ 10

END IF
LOOP

The loop simply repeats indefinitely. If the mouse button is down, the pro
gram draws an oval of radius I 0 centered at the mouse position. If the button
is up, the loop runs idle. Figure 3 shows a drawing created with this mouse
program.

oDO o

~~ DO-Sample Program # 1
1 ?
1
2
3
5
8
13
21
34
55
89
144
233
377
610

Figure 1: DO-Output of Sample Program #1.

§0 DO-Sample Program #2
Press the mouse button to stop!
Press the mouse button to stop!
Press the mouse button to stop1
Press the mouse button to stop!
Press the mouse tiutton to stop!
Press the mo1Jse button to stopi
Press the mo1.1se but ton to stop!
Press the mouse tiutton to stopi

WHEW!! Thenk goodness!
I wes getting tired .

Figure 2: DO-Output of Sample Program #2.

•

I Iii
111111

ii[~!

oDOo

~O DO-Sample Program #3

Figure 3: DO-Output of Sample Program #3, using
the mouse.

Applications
A DO loop is one of the most useful structures Macintosh BASIC has to

offer. It is the easiest way to make a program repeat. Many of the programs in
this book include DO loops.

A common application of the DO loop is in sorting routines. The problem
of putting a list of numbers in order is so important and so complicated that
many different routines have been developed by computer science profession
als. These routines have very different organizations, but they all require some
kind of looping structure for scanning through the list.

In designing a sort routine, speed is usually a priqie consideration. Sorting a
large table requires a huge number of operations, even with the most efficient
routine. As the number of elements increases, the execution time will increase
by an even larger factor, since there are more items to be compared in more
ways.

The simplest and slowest method is the traditional bubblesort, which might
be written as a set of nested FOR/NEXT loops:

! Bubblesort Program
FOR I = 1 TO N-1

FORJ=l+1TON

IF Array(I) > ArrayO) THEN
Temp = Array(I)
Array(I) = ArrayO)
ArrayO) = Temp

END IF
NEXT J

NEXT I

oOOo

! Exchange values

This program works well enough for a small array, but as the size increases,
the algorithm quickly becomes very inefficient. For more than a few hundred
elements, the routine can take minutes to execute. At 2000 elements, this rou
tine takes roughly an hour on the Macintosh.

For large sorting problems, it is therefore advantageous to use a more com
plex algorithm that reduces the number of operations to be performed. The
program in Figure 4 presents a quicksort routine, one of the most popular of
the "good" algorithms.

! DO-Application program

! Non-recursive Quicksort

MaxLevels = 20
DIM StackHead(MaxLevels)
DIM StackTail(MaxLevels)
INPUT "How many numbers? ";N
DIM Array(N)
RANDOMIZE
FOR I= 1 TON

Array(I) = RND(100)
NEXT I
TickStart = TICKCOUNT
Level = o
Head= 1
Tail = N
DO

DO

! Maximum number of stack 1 eve ls
! Stack for heads (left ends of partitions)

! Stack for tails (right ends of partitions)

! Normally, the input routine would go here
but for demo, just stuff random numbers
! from O to 100 into the array.

! Time counter
! Level is the stack pointer
! First interval is from 1 to N

! Do Until Level gets back to O
! Do li'/hlle Head <Tail

IF Head 1 Tail THEN EXIT
GOSUB Partition
! Partition subroutine sorts interval (Head_.Tail) of Array

into two halves: (LowHead,LowTail) and (HighHead,Higtffail)
All the elements of the first half are less than

all the elements of the second half.

Figure 4: 00-QuickSort Program.

oDOo

! Increase number of levels
IF Level ~ MaxLevels THEN CALL Overflow
Level = Level + 1
! Choose larger half for next partit1on,

and put the other half on the stack.
IF LowTail-LowHead < HighTail-HighHead THEN

StackHead(Level) = HighHead
StackTail(Level) = HighTail
Head = LowHead
Tail = LowTail

ELSE
StackHead(Level) = LowHead
StackTail(Level) = LowTall
Head = HighHead
Tail = HighTail

ENDIF
LOOP
IF Level > 0 THEN

Head = StackHead(Level)
Tail= StackTail(Level)
Level = Level - 1

ELSE
EXIT DO

ENDIF
LOOP

Pop the stack and return
to the beginning of the loop

Level = o means that the sort
is complete.

TimeElapsed = (TICKCOUNT-TickStart)/60.15
PRINT
PRINT TimeElapsed; .. seconds"
PRINT" to sort "; N;" numbers."
PRINT
PRINT "Press the mouse button"
PRINT" to display the results."
BTNWAIT
CLEARWINDOW

! Output loop
FOR Item= 1 TON

IF (Item ;e 1) AND ((Item MOD 12) = 1) THEN
PRINT " Press the mouse button"
PRINT " to continue."
BTNWAIT
CLEARWINDOW

Figure 4: DO-QuickSort Program (continued).

oOOo

END IF
PRINT "Item '"; Item; .. is "; Array(ltem)

NEXT Item
PRINT
PRINT "End of list:
ENO PROGRAM

!--------------------Overflow subroutine-------------------!
Overflow:

PRINT .. Vou·re sorting too many numbers for this program."
STOP

!--------------------Partition subroutine-------------------!
Partition:

I =Head
J =Tail + 1
Direction= -1
DO

DO

! Search starts from high end
! Outer loop swaps one pair each time

IF Direction = -1 THEN
J:J-1

! Inner loop searches unt111t finds a swap
! -1 Indicates search from high end
! So, move high pointer to the left

ELSE
I= I+ 1

ENDIF

! + 1 Indicates search from low end
So, move low pointer to the right

IF (Array(I) > Array(J)) OR (l=J) THEN EXIT DO
LOOP
IF I< J THEN

Temp = Array(I)
Array(I) = Array(J)
Array(J) = Temp
Direction = -Direction

ELSE
EXIT DO

END IF
LOOP
LowHead = Head
HighTail =Tail
IF I= ,_I THEN

LowTail = J-1
HighHead = I+ 1

ELSE
LowTail = J
HighHead = I

END IF
RETURN

Figure 4: 00-QuickSort Program (continued).

! Go ahead and swap
elements I and J

! Change direction

! Partition is complete

oDOo

The basis of the technique is to partition the list of items into two parts, in
such a way that every item in the "low" part is less than every item in the
"high" part. The parts are then divided again and again, until there are no
more divisions to be reorganized.

The partitioning is handled in a subroutine that includes a pair of nested
DO loops. The swapping is done by the outer loop, while the inner loop
searches the arrays for items that need to be swapped.

The swapping process works from both ends, switching the first element
back and forth with any number that is out of order. The routine first searches
from the end (or Tail} of the list until it finds a number that is less than the
first. The two numbers are then swapped so that they are in the correct order.
The routine then searches in from the beginning (or head) of the list until it
finds a number that is greater than the original number, which is now near the
end of the list. The two are then swapped once again. The process continues
from both ends of the list until the first number ends up in the middle of the
list, with all the smaller numbers to its left and all the larger numbers to
the right.

The list is now partitioned into two parts, which can in turn be divided by
the same method. The program continues to divide the list into smaller and
smaller parts until there is nothing left to sort.

When it goes back to divide the list again and again, the program must keep
track of the previous divisions, so that it can go on and sort the other unex
amined parts once it has finished with the subdivision it is working on. The
starting and ending elements of the unexamined parts are held in a pair of
stack arrays. Each time the program finishes sorting a subdivision, it returns
to the stack to find another subdivision to be sorted. When the stack is
exhausted, the sort is complete.

(Some quicksort algorithms use recursive subroutine calls to avoid the com
plexity of the stack. Recursive subroutines are difficult to program in Macin
tosh BASIC. Also, since subroutine calls take time, a recursive procedure will
necessarily be slower than this program.) Figure 5 shows the message printed
by the program when the sorting is completed.

At the end of the program, a FOR/NEXT loop is used to print the output.
A MOD function controls the number of items displayed at one time.

A comparison of the quicksort with the bubblesort shows that the quicksort
is considerably slower for small arrays. However, its execution speed does not
increase as quickly as that of the bubblesort as the arrays become larger, so it
becomes much more efficient for large sorts-when speed is most important.

Notes

D DOD

-D DO QuickSort
How many numbers? 200

28.69492934 seconds
to sort 200 numbers.

Press the mouse but ton
to display the results.

l2I IHrnm:m::::rnm:mrnmrnm:mmm:mm:rn:rn:mmrn:rnmmmm:m~
Figure 5: DO-First output of QuickSort Program.

-One of the most common errors in BASIC programming is failure to
close a loop. If you fail to place a LOOP statement at the end of a DO loop,
the statements in the loop will execute only once. On the other hand, a LOOP
statement that is not preceded by a DO statement will result in a "LOOP with
out DO" error message.

-For related information, see the entry under FOR.

DO-Translation key

Microsoft BASIC

Applesoft BASIC

WHILE/WEND

Syntax

Graphics set-option-determines the size of
the output document.

!IJ SET DOCUMENT Left,Bottom; Right,Top

(£!ASK DOCUMENT Left,Bottom; Right,Top

Sets or checks the dimensions of the output document.

Description
What you see in the output window of a program is generally just part of

the actual output document. By enlarging or scrolling the window, you can see
parts of the output that are currently hidden.

The full capacity of the document is set by the DOCUMENT set-option.
Like OUTPUT and the other related set-options, DOCUMENT expects four
numbers, which are measurements in inches. The default settings are
0,11;8.5,0-a standard letter-size page. With DOCUMENT, the first and last
numbers must always be 0, since the document must always start from {0,0 in
the upper left.

The size of the document controls how much of the output can be retained.
When text output exceeds the document's capacity, an initial segment of the
output is pushed out of the document to make room for the late arrivals.

There is usually no need to set the dimensions of the output document,
since you usually care only that it is large enough. The only time DOCU
MENT is really useful is when cutting images to the Clipboard with Copy Pic
ture (on the Edit menu). If you're transferring images to MacPaint, for
example, you might want to set the document size as follows:

SET DOCUMENT 0,3.5; 5,0

This statement will limit the size of a copied document to the size of the a pic
ture that can be pasted into MacPaint.

q_I _D_O_W_N_S_H_IF_T_$,______,I µ;

Syntax

String function-converts alphabetic
characters to lowercase

DOWNSHIFT$(5tringVa/ue$)

Converts all alphabetic characters in its argument to lowercase
characters.

Description
The DOWNSHIFr$ function converts all alphabetic characters in the string

value that is its argument to lowercase letters. It has no effect on non
alphabetic characters. It may take as its argument either a string literal or a
string variable.

Since the ASCII code differentiates between lowercase and uppercase let
ters, the DOWNSHIFT$ function can be used to be sure that all input values,
whether uppercase or lowercase, are treated the same, by converting all input
values to lowercase. The following statement after an INPUT statemtent will
interpret uppercase and lowercase responses as the same:

Choice$ = OOWNSHIFT$(Choice$)

The DOWNSHIFT$ function can be used in a PRINT statement without
permanently altering the argument:

Test$ = ''This IS ONLY A TEST"
PRINT Test$
PRINT OOWNSHIFT$(fest$)

will result in the output:

This IS ONLY A TEST
this is only a test

To convert lowercase characters to uppercase, use the UPSHIFr$ function.

---ii EJECT 1t::: ___, ___ ---------· F

Disk command-ejects a disk from a disk
drive.

Syntax
DJ EJECT N

Ejects the disk in drive number N.

~ EJECT DiskName$

Ejects the disk with the name given.

Description
The Macintosh has no mechanical button for ejecting a disk from a disk

drive. Instead, it requires that you give a system command that electronically
tells the drive to eject the disk.

In BASIC, the EJECT command lets you give this system command within
your own programs. You can name the disk you want to eject either by giving
its drive number (1 = internal drive, 2 = external drive), or by passing a
string containing the disk,s name, also known as the volume name.

Generally, the EJECT command is used in the middle of a program, at a
point where you want to ask the user to insert another disk. You might, for
example, have a file I/O program with an INPUT statement that asks which
disk to use. If the user types a volume name that does not match any of the
disks currently in the system, you might eject a disk and print a message ask
ing for the disk that the user named.

EJECT cannot be used to eject the BASIC system disk. The EJECT com
mand requires a resource file that is stored on the BASIC disk, so as soon as
the disk is ejected you are asked to reinsert it. EJECT is therefore useful pri
marily for two-drive systems.

D E..JECT D

EJECT can also be used in a one-line program that simply ejects an
unwanted disk; however, there is an easier way to get the disk out. Simply
press the command-key(38)combination Shift-Command-I. The disk in the
internal drive will immediately be ejected. Shift-Command-2 ejects the disk in
the external drive.

Conventional wisdom among Macintosh users is that you should never turn
your system off without inserting the startup disk and choosing Quit, which
returns you to the Finder (Desktop), and then ejecting the disk. The advantage
is that when the Finder ejects a disk, it updates information about the disk
directory and its Desktop structure. If you do not return to the Finder to eject
your startup disk, there is a chance the directory structure may be left cor
rupted or incomplete.

If your system freezes up and refuses to obey an EJECT command, you
can eject the disk mechanically by pushing the end of a paper clip into the
small "emergency eject" hole just to the right of the slot where the disk goes
into the drive.

~ I EmptyRect/ /EmptyRgn I t-
=-1....._· ----------F

Syntax

Graphics toolbox functions-test whether a
rectangle or region is empty.

DJ ResulC = TOOL EmptyRect (@Rect%(0))

~ ResulC = TOOL EmptyRgn (Rgn})

Returns the Boolean value TRUE if the given rectangle or region
contains no valid points.

Description
A rectangle or region is empty if it contains no valid points inside its border.

Empty rectangles and regions are quite common, since they include shapes
that are not correctly defined, such as a rectangle defined by two points that
are not in the upper-left and lower-right corners. Many transformation opera
tions also yield empty shapes.

These are some of the most common commands that can lead to empty rec
tangles or regions:

• SetRect or SetRectRgn called with arguments that define a rectangle that
has its second point above or to the left of the first.

• RectRgn called with an empty rectangle.

• InsetRect or InsetRgn called with an inset dimension larger than half the
maximum width of the original shape.

• An intersection operation SectRect or SectRgn acting on two shapes that
have no points in common.

• A set-difference operation DiffRgn that subtracts a second region from a
first region that is completely contained within the second.

• An exclusive-or operation XorRgn on two identical regions.

o EmptyRect/ /EmptyRgn o

The EmptyRect and EmptyRgn toolbox functions let you test whether a
rectangle is empty. These Boolean functions return the value TRUE if the rect
angle or region is empty or invalid. They return FALSE if the shape contains
at least one valid point.

These functions take a single rectangle or region and return a Boolean
value. For EmptyRect, the rectangle must be passed as a four-element integer
array, with elements numbered 0 to 3. The array name must be preceded by
the indirect-referencing symbol@, and must be named as its 0 array element:

ResulC = TOOL EmptyRect (@Rect%(0))

For EmptyRgn, you must pass the handle variable that points to the region's
defined structure:

ResulC = TOOL EmptyRgn (Rgn})

The function's result is of Boolean type (type identifier: -)
EmptyRgn is often used in combination with a call to the intersection routine

SectRect, which finds the points that two regions have in common. The result
of the following operation will be TRUE if RgnA} and RgnB} do not touch:

TOOLBOX SectRgn (RgnA}, RgnB}, ResultRgn})
ResulC = TOOL EmptyRgn (ResultRgn})

This construction is commonly used in games and other programs that must
take an appropriate action whenever two regions touch. An example of this
can be found in the asteroids program under SectRect.

(In the initial release of Macintosh BASIC, the EmptyRgn command did
not work properly. It is, however, possible to accomplish the same task by
using EmptyRgn to compare ResultRgn} to the empty region. See SectRect
for details.)

The TOOL function need not be placed in a logical assignment statement. It
can be used in any place where a logical expression is required. If you're
immediately going to test the result of the EmptyRect or EmptyRgn function,
you may want to place it directly in an IF statement:

If NOT (TOOL EmptyRgn (ShipHit})) THEN GOSUB Explosion:

This statement might be used in a game program to test a region created by
the intersection of a missile and a ship. If the two objects have a point in com
mon, the ship can be made to explode.

See SetRect and OpenRgn for more information on toolbox rectangles and
regions.

BASIC command word-marks the end of a
control structure.

Syntax
DJ END

File pointer command-skips to end of file.

111 END MAIN

l1J END PROGRAM

Marks the end of a program.

~ END FUNCTION

[fil END IF

rfil END SELECT

[Z] END SUB

[ID END WHEN

Marks the end of a control structure.

[2J filecommand #Channel, END: //0 List

Instructs program to move the file pointer to the end of the file
before executing the file command.

Description
An END statement is required to end every control structure other than DO

and FOR loops, which have their own markers, LOOP and NEXT. When

o END o

execution is transferred to a control structure, all the statements within the
control structure up to the END statement will be executed in sequence. (The
only exception occurs when an exit condition is specified within the control
structure by an EXIT statement.) Program flow then returns to the statement
following the control structure.

ITJ END

~END MAIN

rn END PROGRAM
You may use the END, END MAIN, or END PROGRAM statement to

mark the end of a complete program, but this is not required. It is necessary
only when you need to set off a main program from a group of subroutines.
If used, the statement must be on a line by itself at the end of a program. The
three forms of the command are equivalent. The form END MAIN is often
used when a program contains subroutines or multiple-line functions. This
statement separates the main body of the program from the subroutines and
functions, which customarily follow the main body. The following program
gives an example of this statement.

PRINT "Program starts here."
X$ = PrintThis$
PRINT X$
PRINT "Program ends here."
END MAIN

FUNCTION PrintThis$
PrintThis$ = "This is printed by the function PrintThis$."

END FUNCTION

Output from this program would read:

Program starts here.
This is printed by the function PrintThis$.
Program ends here.

If the END MAIN statement were omitted, the subroutine would be executed
a second time, printing a spurious message after the line "Program ends here."

A program that will be called from a disk by a PERFORM statement must
contain an END PROGRAM statement on its own line at the very end. The
beginning of such a program must be marked by the word PROGRAM, also
on a line by itself. For further information, see the entries under PERFORM
and PROGRAM.

l1J END FUNCTION
[[I END IF

[21 END SELECT

lZJ END SUB
mJ END WHEN

oENDo

Every control structure, except FOR/NEXT and DO loops and subroutines
called by OOSUB (which have their own end markers), must finish with an
END statement. The END statement contains the word END and the name of
the control structure it terminates. It is customary to place the statement on a
separate line at the end of the structure, at the same level of indentation as the
structure's starting line.

When the control structure is encountered, the statements in it up to the
END statement are performed. Then execution picks up again with the state
ment following the control structure.

For further information, see the entries under FUNCTION, IF, SELECT,
CASE, SUB, CALL, and WHEN.

!ID filecommand #Channel, END: //0 List

END is also a file pointer operator within file 1/0 commands such as
READ #, INPUT #, LINE INPUT #, PRINT #, WRITE #, and REWRI1E #.
As part of one of these commands, END moves the flle pointer to the end of
the flle. It is most commonly used in the commands WRITE # and PRINT #
to avoid overwriting existing records. When the END command is used, the
WRITE or PRINT operation will append any new record to the end of the
file. END cannot be used with STREAM files.

For further details on the use of file pointer set-options, see the READ #,
INPUT #, WRITE #, REWRITE #, and PRINT #entries.

END (BASIC Command)-Translation Key

Microsoft BASIC END
Applesoft BASIC END

q .__I _E_N_VI_R_O_N_ME_N_T_____JI ~
Numeric set-option-determines the numeric

environment for calculations.

Syntax
ITJ SET ENVIRONMENT X

IZ] ASK ENVIRONMENT X

Stores or returns the value of the numeric environment, which defines
the options chosen for floating-point arithmetic calculations.

Description
The numeric environment is a set of flags and options that define the way

the Macintosh performs floating-point computations. It is a two-byte status
word that controls and reflects all the settings of the numeric set-options
ROUND, EXCEPTION, PRECISION, and HALT.

The value that you pass to or receive from the ENVIRONMENT set-option
is a positive integer between 0 and 32767. To interpret the value within this
number, you must decompose it into its 16 binary bits, as shown in Figure 1.
Each of these groups of bits is set and checked independently of the others.

Most of the bits in the environment word correspond to the BASIC set
options ROUND, EXCEPTION, PRECISION, and HALT. It is therefore
unnecessary to worry about the environment word unless you want to check
the entire status of the floating-point system. If you do want to interpret the
environment word, you can refer to the translation codes in Figure 2.

Since other set-options are available to set and test the bits of the environ
ment word more conveniently, the ENVIRONMENT set-option is used mostly
for saving and restoring the environment as a whole. The statement

ASK ENVIRONMENT N

o ENVIRONMENT o

Multiply by 128 = Result of last rounding (1 bit)

0 Rounded down in magnitude
1 Rounded up in magnitude

Multiply by 32 = SET PRECISION (2 bits)

0 PRECISION ExtPrecision
1 PRECISION DblPrecision
2 PRECISION SglPrecision

Multiply by 1 = SET HALT (5 bits)

16 HALT Inexact
8 HALT DivByZero
4 HALT Overflow
2 HALT Underflow
1 HALT Invalid

Figure 2: ENVIRONMENT-Translation codes for the bits of the environment word (continued).

o ENVIRONMENT o

lnvironment Word

I i i 1 1 i i i I 1 1 1 1 1 1 1 I
_J~\ I~\,. I

(stgn=unused) J~ I"
6092:SET ROUND _j

256 =ASK EXCEPT I ON

126=Result of 1Bst round1ng

32:SET PRECISION -------

1 :SET HALT-------------

Figure 1: ENVIRONMENT-You must set and check the bits of the environment word indepen
dently.

stores all of the relevant settings into the one numeric variable. Then, later in
the program, you may conveniently restore this complete environment:

SET ENVIRONMENT N

See ROUND, EXCEPTION, PRECISION, and HALT for information
about the numeric set-options. See also PROCENTRY /PROCEXIT for
another way to save and restore the environment word.

Multiply by 8092 = SET ROUND (2 bits)

0 To Nearest
1 Upward
2 Downward
3 TowardZero

Multiply by 256 = ASK EXCEPTION (5 bits)

16 EXEPTION Inexact
8 EXEPTION DivByZero
4 EXEPTION Overflow
2 EXEPTION Underflow
1 EXEPTION Invalid

Figure 2: ENVIRONMENT-Translation codes for the bits of the environment word.

Syntax

File pointer set-option-determines position
of the end of file.

ITI ASK EOF #Channel, Position

SEQUENTIAL files: Determines the number of bytes in the file.
RECSIZE files: Determines the number of records.

~SET EOF #Channel, NewEnd

Move the end-of-file marker to the position NewEnd and moves the
file pointer to that point.

Description
The file I/O set-option EOF #refers to the position of the end of the file. A

SEQUENTIAL file is measured in bytes, and a relative (RECSIZE) file
in records.

[]] ASK EOF #Channel, Position

When you ASK for the end of the file open on the specified channel, the
position of the end of the file will be returned as the total number of bytes for
SEQUENTIAL files, and as the total number of records for RECSIZE files.
The value returned is one greater than the last byte or record in the file. In
RECSIZE files this can be especially helpful, since you can use one less than
the number returned as the finish value in a FOR loop to read the file. This
technique is demonstrated in sample programs under MISSING- and
RECSIZE.

o EOF#o

[l] SET EOF #Channel, NewEnd

You can use EOF # to reset the end of a file. For a SEQUENTIAL file,
NewEnd should contain the number of the byte one past the last one you want
allocated to the file. For a RECSIZE file, it should contain the record past the
last one you want created. If NewEnd is less than the end of the file as deter
mined by ASK EOF #,resetting the end of the file by this means will shorten
space allocated to the me, removing all records or bytes past the specified point,
whether they are empty or not. If the new value is greater than the old EOF
value, the me will be lengthened to the new setting, the added space filled with
ASCII zeros for sequential mes and with empty records for relative mes.

File contingency function-determines
whether the file pointer is at the end of file.

Syntax
filecommand #Channel, IF EOF" THEN Statement: 1/0 List

Directs the computer to execute the given statement if the file
pointer is at the end of the file.

Description
EOF is a function that tells whether the file pointer is at the end of a file.

It is used in file contingency statements that follow the channel number in the
following file commands: READ#, INPUT#, LINE INPUT#, PRINT#,
WRITE #, and REWRITE #. The contingency statement is a simple IF I
THEN statement directing the program to perform a specific action if the
condition is true. The I/0 list consists of one or more values (constants, vari
ables, or expressions) to be entered into the file, or one or more variables into
which file data will be read. The values or variables in the list are separated
by commas.

The EOF contingency is especially useful for avoiding the error condition
that occurs when you try to read past the end of a file:

DO
READ #12, IF EOF" THEN EXIT: Name$, Number
PRINT Name$, FORMAT$("###.#'';Number)

LOOP
CLOSE #12

This loop simply reads two variables from each record and prints them on the
screen. If the end of the file is reached, the loop is exited and the file is closed.

Syntax

File contingency function-determines
whether file pointer is at end of a record.

filecommand #Channel, IF EOR- THEN Statement: 110 List

Directs the computer to execute the given statement if the file com
mand encounters the end of a record while reading the I/O list.

Description
EOR- is a Boolean function that returns TRUE if the file pointer is at the

end of a record. It is used in a.file contingency statement as a part of the file
I/O commands READ#, INPUT#, WRITE#, and REWRITE#. The contin
gency statement follows immediately after the channel number in the file I/O
command. It is a simple IF /TIIEN statement directing the program to per
form a specific action if the condition is true.

The EOR- contingency may be most useful when reading a file field by
field, with unknown material in the file:

READ #12, IF EOR" THEN GOSUB Printlt: OutString$,

The comma after the variable OutString$ tells the pointer not to move to the
next record automatically, but only to the next field.

-EOR- cannot be used with LINE INPUT #, because LINE INPUT #
reads complete records, and does not recognize separate fields.

---j--E-q-u-al-P-t/_/_E-qu_a_IR_e_ct---.. [-

~ EqualRgn ~

Graphics toolbox functions-test whether two
points, two rect-

angles, or two regions are identical.

Syntax
III Resulf = TOOL Equal Pt (@PtA %(0), @PtB%(0))

llJ Resulf = TOOL EqualRect (@RectA%(0), @RectB%(0))

[1] Resulf = TOOL EqualRgn (RgnA}, RgnB})

Returns a Boolean value that indicates whether two points, rec
tangles, or regions have the same defining coordinates.

Description
It is sometimes useful to compare two graphics structures and test whether

they are identical. You might, for example, want to see if the region resulting
from a transformation is the same as one of the regions that was passed to the
transformation. Or, since the toolbox routines always work with integer coor
dinates, you may sometimes want to test whether the results of two coordinate
calculations have been rounded to produce the same set of points.

The toolbox functions EqualPt, EqualRect, and EqualRgn let you compare
two points, rectangles, or regions. You must always compare like to like: a
point cannot be equal to a region. There is no Equal function for polygons or
the other graphics shapes.

(In the initial release of Macintosh BASIC, EqualPt was not recognized as a
toolbox name, even though it is a standard toolbox name in assembly lan
guage and Pascal. Since this omission will probably be corrected in a later
release of the language, the command is included here for completeness.
EqualRect and EqualRgn are both valid in the initial release.)

o EqualPt/ /EqualRect/ /EqualRgn o

These are Boolean functions, which return the value TRUE if and only if
the two structures passed to them have the same coordinates. The two struc
tures must match in all respects: size, shape and position. If both structures
are empty, the functions return the value TRUE.

In this toolbox command, a point is specified by an integer array with two
elements (numbered 0 and 1). A rectangle is stored as a four-element array,
with elements numbered 0 through 3. A region is denoted by a handle vari
able, which contains an indirect pointer to an address in the computer's mem
ory where the region's actual structure is stored. See the entries SetPt, SetRect,
and OpenRgn for details on these three graphics structures.

For each of the three Equal functions, you must pass two arguments: two
point arrays for EqualPt, two rectangle arrays for EqualRect, and two region
handles for EqualRgn. For the point and rectangle arrays, the array names
must be preceded by an @ sign, to show that they are to be passed as an
address to the toolbox routine, rather than as a specific value.

The TOOL function always returns a Boolean value to the logical expression
that called it. In these cases, the expression is a part of a logical assignment
statement, which assigns the function's value to a Boolean variable (type identi
fier: -). The TOOL function need not be placed in a logical assignment state
ment, however. It is also commonly used as the condition for an IF statement:

IF TOOL EqualRgn (RgnA}, RgnB}) THEN PRINT "Same region, dummy!"

This statement will print the message only if the two regions are identical.
For more information on points, rectangles, and regions, see the entries for

SetPt, SetRect, and OpenRgn. See the TOOLBOX entry for information
about the TOOL function.

Graphics command-blanks out an area of
the screen.

Syntax
DJ ERASE RECT H1 ,V1; H2,V2

Ill ERASE OVAL H1,V1; H2,V2
l1J ERASE ROUNDRECT H1,V1; H2,V2 WITH H3,V3

Erases all points within a rectangular, oval, or round-rectangular
area.

[!] Toolbox Commands

EraseArc

EraseRgn

ErasePoly

Toolbox commands are available for erasing areas of three complex
shapes that are not directly available in BASIC.

Description
ERASE is the primary command for clearing portions of the graphics

screen. Its effect is obvious: it blanks out all of the pixels in an area of a given
shape, so that the pixels match the white background.

ERASE has two primary uses. First, it is one of the four QuickDraw graph
ics commands-essential for any drawing that involves large areas of the
screen. In addition, ERASE is commonly used to clear text from the output
window, even when no graphics are displayed. These two uses are discussed in
the Applications section below.

o ERASE o

[TI ERASE RECT Hl ,Vl; H2,V2

[11 ERASE OVAL Hl,Vl; H2,V2

rn ERASE ROUNDRECT Hl,Vl; H2,V2 WITH H3,V3

The ERASE command works by specifying areas rather than individual
points and lines. In a single command, you can erase all of the points in a rect
angular or circular area.

Shape operations are performed with two-part commands in Macintosh
BASIC. The first word of the command is a verb such as ERASE, which tells
what action will be performed. The second word then names the shape that
will be acted upon.

The ERASE keyword is therefore never used by itself, but is always com
bined with one of the three graphics shapes: RECT, OVAL, and ROUND
RECT. The RECT shape stands for "rectangle," which also includes squares.
OVAL indicates any kind of circle or ellipse. ROUNDRECT is a cross between
the two: it specifies a rectangle with rounded corners. These shape keywords
are described under their own names in this book.

No matter which shape you choose, you must supply two sets of coordi
nates, separated by a semicolon. The first pair names the point at the upper
left corner of the shape, and the second pair names the lower-right. With these
two points, you can fix the dimensions of each of these three shapes. All
points are given in the local coordinate system of the output window.

Figure 1 shows the three shapes and the corner points that define them.
With the RECT shape, the two points are on the exact corners of the drawn
rectangle. With OVAL and ROUNDRECT, the points are not actually on the
shape, but are at the corners of the rectangle bounding the shape. There is no
need to choose the upper-left corner as the first point: the coordinates can
have any two corners, as long as they are opposite corners on the rectangle.

With ERASE ROUNDRECT, you must include a third set of parameters,
H3,V3, which define the curvature of the corners. Small numbers give very
angular corners, while large numbers yield more rounding. See the ROUND
RECT entry for further details.

ERASE is the simplest of the graphics manipulators, because it merely
clears away anything drawn within the shape. All pixels in that area of the
screen are erased and changed back to the white background. (See the note on
background patterns at the end of this entry.)

The ERASE command does not trace a line around the border of the erased
region-follow it with a FRAME command if you want to see the border.

ERASE has no effect on the graphics pen. The pen remains in the position
set by the last PLOT or SET PENPOS command.

o ERASE o

H 1,Vl H 1,V 1 H 1,V 1

H2,V2 H2,V2 H2,V2

RECT OVAL RO UN DRE CT

Figure 1: ERASE-The three shapes that can be erased in BASIC.

[4] Toolbox Commands
EraseArc
ErasePoly
EraseRgn

The ERASE command lets you manipulate three of the six graphics shapes
in the Macintosh's QuickDraw graphics system. In each of the three forms of
the command, the BASIC interpreter calls the corresponding internal toolbox
routine to erase the specified shape-rectangle, oval, or round rectangle. You
cannot use the toolbox commands directly for these three shapes, nor would
you want to, the BASIC commands are much simpler.

The QuickDraw graphics system, however, offers three other shapes: arcs,
polygons, and regions. Because these shapes are more complex and less fre
quently used, they have not been included as actual commands in Macintosh
BASIC. However, if you're willing to go to a little extra trouble, you can still
manipulate these other shapes by using the toolbox directly.

Instead of using a two-word combination, these toolbox names ·are com
bined into single words: EraseArc, ErasePoly, and EraseRgn. You must type
these as a single word, with no space. (In BASIC, on the contrary, you must
have a space separating ERASE RECT, ERASE OVAL, and ERASE ROUND
RECT into two words.)

o ERASE o

EraseArc, ErasePoly, and EraseRgn are toolbox calls, and thus must be
introduced by the keyword TOOLBOX. Also, since these are more complex
shapes, you must define them with special parameters, such as bounding rec
tangles, starting and ending angles, and region definition handles. The com
mands will therefore look like this:

TOOLBOX EraseArc (@BoundRect%(0), StartAngle%, lncAngle%)
TOOLBOX ErasePoly (Poly})
TOOLBOX EraseRgn (Rgn})

where the parameters have been defmed in previous statements.
This is not the place to describe these commands in full, since they are cov

ered elsewhere in this book. In the pages following this entry, you will fmd
brief syntax descriptions of these three commands. For detailed information,
read the descriptions of these shapes under their major entries. Arcs are
described in the entry for PaintArc, while polygons and regions are covered
under OpenPoly and OpenRgn.

Sample Programs
When creating a complex picture, it is often easiest to paint a larger figure

on the screen, then ERASE the portions that should be left out. The following
program creates the picture shown in Figure 2:

! Erase-Sample Program #1
PAINT RECT 20,20; 100, 100
PAINT RECT 120,20; 200, 100
PAINT RECT 20,120; 100,200
PAINT RECT 120,20; 200,200
ERASE OVAL 70,70; 150, 150

You can link the position of the erased shape to the mouse. The following
program first paints the entire output window black, then goes into a loop
that erases a small circle centered on the position of the mouse, whenever the
mouse button is down.

I ERASE-Sample Program #2

INVERT RECT 0,0; 24,24

[)()

IF MOUSES -THEN
H = MOUSEH
V = MOUSEV
ERASE OVAL H-2,V-2; H+2,V+2

ENDIF
LOOP

! Change window to black

o ERASE o

.------·-------·------·----.
=~ ERASE-Sample Program # 1 ~

•

Figure 2: ERASE-Output of Sample Program #1.

The effect is much like painting with MacPaint's paintbrush, except that you
draw with white lines on a black background. The brush paints whenever the
mouse button is depressed, and moves without painting when the button is up.
Figure 3 shows a drawing made with this program.

~~ERASE-Sample Program #2 =

Figure 3: ERASE-A drawing made using Sample Pro
gram #2.

o ERASE o

Applications

Graphics are the primary application of the ERASE command. Any pro
gram that draws using shapes will probably use several ERASE commands.

ERASE is often used in the creation of a picture, as in Sample Program #1,
above. Rather than draw only the pixels that will appear in the final picture, it
is often easier to draw rough shapes, then erase the sections that don't belong.
Another example of this can be seen in the application program under
FRAME, which creates a box with a shadow.

The ERASE command is often used even in non-graphics prpgrams, since it
allows you to clear away portions of the output window. The following pro
gram, for example, shows how the ERASE command can affect text displayed
with the non-graphic PRINT statement:

PRINT ''This line will be erased"
PRINT ''When you press the mouse button."
BTNWAIT
ERASE RECT 0,0; 24, 15

Note that you must use graphics coordinates that will cover the text lines you
want to erase. See the entry under PRINT for details on combining text lines
with graphics coordinates.

In this application, the ERASE command becomes a selective form of
CLEARWINDOW. Instead of clearing everything inside the output window,
ERASE affects only the part of the display that you want to change. That
way, you can erase a part of the picture without having to redraw the parts
that are to remain the same.

Another reason to use ERASE for clearing text is that it is much faster than
CLEARWINDOW. In programs that must constantly update figures on the
screen, CLEARWINDOW gives a noticeable blink. By erasing only a portion
of the screen, you can eliminate this flicker and make your display change
smoothly.

The application program in Figure 4 shows an example of this. Modeled
after the Alarm Clock desk accessory, this program prints the time continually
inside a small box. The first three lines create an attractive box with a shadow.
The loop that follows then prints the time once every second. By erasing only
the portion of the box where the letters appear, the time can be made to
change almost without flicker. Figure 5 shows the output of the program.

o ERASE o

ERASE -- Applicetion progrem

Macintosh BASIC Alarm clock

HI= 73
Vl =BO
H2 = H1+97
V2 = V1+20
PAINT RECT H1+2,\11+2; H2+2,\12+2
ERASE RECT Hl+l,\11+1 ; H2,V2
FRAME RECT Hl,Vl; H2,V2
DO

TS= Tlt1E$
IF T$;eOLDT$ THEN

SET FONT 0
ERASE RECT H1+9,V1+5; H2-9,\/2-5
GPRINT AT H1+9,V1+15;T$
OLDT$ =TS

ENDIF

LOOP

Figure 4: ERASE-Application Program

! Upper-left corner of box

I Lower-right corner

! Paint black shadow

I Draw freme for time

! Redraw only when time changes
! System font (Chicego)
! Erese old time
! Print new time

~o= ERASE -Alarm clock

[4:48:43 PM

Figure 5: ERASE-Output of Application Program

o ERASE o

Notes
-In Macintosh BASIC, the borders of a shape are infinitely thin, and run

between the pixels. If you are used to thinking of coordinates as centered on
points, you may be slightly confused when you try to erase points drawn by
the PLOT command.

The point drawn by a PLOT statement is actually below and to the right of
the coordinates defining the border of an erased shape. It will only be erased if
it falls within the imaginary borders of the erased shape. As an example of
this, try the following program:

PLOT 20,20
PLOT60,60
ERASE RECT 20,20; 60,60

The last command here will erase the first point plotted (20,20), but will leave
the second (60,60). Even though both points would seem to have coordinates
on the boundary, only the first of the two is actually inside the rectangle. The
second point is outside, because it falls below and to the right of the mathe
matical boundary. For further details on the relation between the PLOT pen
and the imaginary coordinates used by the shape commands, see the Notes
sections of PLOT and RECT.

-By using the SET SCALE command, you can change the scale of the
coordinate axes, so that the coordinates no longer correspond exactly to the
pixels on the screen. You might stretch the axes so that they run from 0 to 1,
rather than from 0 to 240, or even invert one of the axes so that the origin is
in the lower-left corner of the screen.

If you rescale the axes, the ERASE command continues to work. You still
select the rectangle that bounds the shape you want to draw, naming the coor
dinates of two opposite corners. The coordinates will no longer match the
exact pixels on the screen, but will describe a purely mathematical space on the
screen. Every pixel inside these mathematical boundaries will then be erased.

See the entry for SCALE for more information on rescaling the coordi
nate axes.

-In general, ERASE always changes the pixels back to a plain white, as if
you had gone over them with MacPaint's eraser. Technically, however, the
erased region is painted with the background pattern and color, whatever that

o ERASE o

may be. If you have changed the background pattern or color with calls to the
toolbox routines BackPat or BackColor, the erased shape will be painted with
the background you have set. For example, try the following program:

DIM Pat%(3)
RANDOMIZE
FOR 1=0 TO 3

Pat%(1) = RND(32767)
NEXT I
TOOLBOX BackPat (@Pat%(0))
PAINT RECT 0,0; 100, 100
ERASE RECT 20,20; 80,80

The first six lines store a random pattern as the background. The PAINT
command then draws a black square, and the ERASE command erases the
interior. Instead of restoring it to white, however, the ERASE command paints
with the random background pattern.

-For additional information on the ERASE command, read the entries for
the other QuickDraw graphics operators and shapes:· FRAME, INVERT,
PAINT, OVAL, RECT, and ROUNDRECT. See also the Introduction and the
entry under TOOLBOX for a unified description of the Macintosh's Quick
Draw graphics system.

----j I EraseArc I t:--: ___, __________ __,, F

Syntax

Graphics toolbox command-blanks out a
wedge-shaped area of the screen.

TOOLBOX EraseArc (@BoundRect%(0), StartAngle%, lncAngle%)

Toolbox equivalent of ERASE for a wedge-shaped area.

Description
The ERASE command in Macintosh BASIC is used with the most common

graphics shapes-rectangle, oval and round rectangle. Since arcs are not rec
ognized as shapes in BASIC, you must use the more complex toolbox form of
the command.

An arc is a wedge-shaped portion of an oval. You define it by giving the
bounding rectangle of an imaginary oval, and then specifying a wedge-shaped
segment of the oval to blank out on the screen. In this toolbox call, the coordi
nates of the rectangle are passed indirectly as elements of an array: @Bound
RectOJo(O). The array must be of type integer and have a dimension of at least 3.

The other two parameters in the toolbox statement specify the angles defin
ing the wedge. All angles are measured clockwise in degrees, starting from the
vertical as zero. StartAngleOJo gives the angle at which the wedge begins, and
IncAngleOJo gives the size of the wedge itself. The ending angle is therefore
StartAngleOJo + IncAngleOJo.

Apart from the more complex syntax, EraseArc works exactly the same as
the standard ERASE command. All points within the wedge are returned to
white, and no border is drawn.

See the entry under PaintArc for a fuller description of arcs.

o EraseArc o

Sample Program
The following program paints a rectangle, then erases two 30-degree

wedges:

! EraseArc-Sample Program
PAINT RECT 20,20; 180, 180
DIM Bounds%(3)
Bounds%(0) = 20
Bounds%(1) = 20
Bounds%(2) = 180
Bounds%(3) = 180
TOOLBOX EraseArc (@Bounds%(0), 0, 30)
TOOLBOX EraseArc (@Bounds%(0), 120,30)

The bounding rectangle Bounds% is defined with the same coordinates as the
painted rectangle. The output is shown in Figure 1.

::o~ EraseRrc-Sample Program ~

•

figure 1: EraseArc-Sample Program

---JI ErasePoly I f-=
~-------------F

Syntax

Graphics toolbox command-blanks out a
polygon-shaped area of the screen.

TOOLBOX ErasePoly (Poly})

Toolbox equivalent of ERASE for polygons.

Description
A polygon is a closed area of the screen defmed by a series of connected

lines. Once it has been defined with the toolbox commands OpenPoly and
ClosePoly, a polygon can be ref erred to and manipulated like any other
QuickDraw shape.

The toolbox command ErasePoly clears all of the pixels within a polygon
shaped area that you specify. The effect is exactly the same as with the BASIC
ERASE command: the erased area returns to its original white.

The only parameter you must supply in the toolbox call is the name of a
previously-defmed polygon. The name must be a handle variable type, previ
ously created by calls to OpenPoly and ClosePoly.

You will fmd a full discussion of polygons in the entry under OpenPoly.

~I EraseRgn If= ____, ___ --------F

Syntax

Graphics toolbox command-blanks out a
specified region of the screen.

TOOLBOX EraseRgn (Rgn})

Tuolbox equivalent of ERASE for regions.

Description
A region is like a polygon, except that it is bounded by a set of pixels rather

than imaginary straight lines. You must define it initially, using the toolbox
commands OpenRgn and OoseRgn, then you can refer to it as a unit.

EraseRgn is the toolbox command that lets you clear the points within a
region you have defmed. You supply a handle variable such as Rgn}, which is
the name you gave to the region when you defmed it.

Regions are discussed fully in the entry under OpenRgn.

System function-returns the code number of
the most recent error.

Syntax
WHEN ERR

•
•
•

END WHEN

Sets up an asynchronous interrupt block to be executed when a sys
tem or program error occurs.

Description
The ERR function is used as part of an asynchronous interrupt, or WHEN,

block. This block will be executed whenever any error with an ID number
occurs, at any point in the program.

There are may common errors that normally interrupt the execution of a
Macintosh BASIC program. Many of them are caused by misusing the BASIC
language. Usually, when such an error occurs while a program is running, exe
cution is interrupted, an error message appears on the screen, and you are
asked to click OK or Debug. This gives you a chance to correct the error and
try again.

However, you can build error-handling routines right into your program
with the WHEN ERR block. When an error occurs, the instructions in the
WHEN ERR block are carried out and execution resumes.

Ordinarily the WHEN ERR block will include IF statements or a SELECT I
CASE block to anticipate particular kinds of errors. The errors are indicated
by their error number codes:

or

IF ERR-112 THEN .•.

SELECT ERR
CASE 182 I Number entered for string variable

Statement(s)

CASE 166
Statement(s)

•
•
•

END SELECT

o ERR o

! Integer overflow

Such error-trapping routines in your program can prevent programs from
crashing abnormally, and give you a chance to set up rescue operations so that
the user does not lose a great deal of data.

Sample Program
The following program uses an WHEN ERR block to trap a single type of

error-too few input values. The main program does nothing more than call a
subroutine to ask the user to enter a name, address, and phone number. When
there is a list of variables in an INPUT statement, Macintosh BASIC expects
values to be separated by commas, and assigns one value to each variable. So
either deficient input data or missing commas may trigger this error message.
The WHEN ERR block is executed if there are not enough entries to assign to
the three variables.

! ERR-Sample Program
WHEN ERR

IF ERR= 181 THEN
PRINT
PRINT "You left something out."
PRINT "Enter name, address, and phone number;"
PRINT "separated by commas."

END WHEN
SET OUTPUT ToScreen
GOSUB GetData:
END MAIN

Get Data:
PRINT "Enter name, address, and phone number."
INPUT Name$,Add$,Phone$

RETURN

Normally, when this error condition occurs, a window opens on the screen
with the message, "not enough values for input list," the statement being exe
cuted, and a request to click OK or Debug. Whichever button is clicked, the
program will then simply display the question mark prompt in the output win
dow. Figure 1 shows what happens when the WHEN ERR block in this pro
gram is executed.

o ERR o

ED ERR Sample Prngram
Enter Name, address, and phone number:
? Joe Doakes
Vou left something out .
Enter name, address, and phone number.
? William Shakespeare, 23 Avon Way
Vou left something out.
Enter name, address, and phone number.
? William Shakespeare, 23 Avon Way, 555-5555

Figure 1: WHEN-Output of Sample Program.

Notes
-For a complete list of error codes, see Appendix B. For more information

on the use of asynchronous interrupt blocks, see the WHEN entry.

- You can have more than one WHEN ERR block in a program. When the
program encounters a new WHEN ERR block, the new one supersedes the
old one.

ERR-Translation Key

Microsoft BASIC

Applesoft BASIC

ON ERROR

ON ERR

q1__ __ EX_C_E_P_T_IO_N _____ I ~

Syntax

Numeric set-option-sets or tests a
floating-point arithmetic error flag.

[] SET EXCEPTION constant B

[l] ASK EXCEPTION constant B-

Sets or retrieves the Boolean error flag for the floating-point excep
tion associated with the following system constants:

Invalid 0
Underflow 1

Overflow 2
DivByZero 3
Inexact 4

Description
The Macintosh floating-point arithmetic system generally does not stop a

program when it performs an invalid calculation. Instead, it stores an appro
priate value (such as INFINITY) as the result of the calculation, and sets one
of five exception flags to indicate the error. By testing these flags, you can find
out when an invalid operation has occurred.

These EXCEPTION flags range from indicators of a true invalid operation
to an insignificant rounding error:

• Invalid: Indicates an impossible calculation such as the square root of a
negative number. The result of the calculation is a NAN ("not a num
ber") code.

o EXCEPTION o

• Underflow: A floating~point calculation resulted in a number so close to
zero that it could not be represented without losing accuracy in the
floating-point mantissa. The result of the calculation may be 0 or a
denormalized number very close to 0.

• Overflow: A calculation exceeded the range of the floating-point calcula
tion mode in effect. The result of the calculation is INFINITY.

• DivByZero: A division by zero has occurred. The calculation results in
INFINITY.

• Inexact: This exception happens quite frequently, indicating merely that
the last decimal place of an number is not reliable.

The EXCEPTION set-option has a rather unorthodox syntax, taldng both
a numeric and a Boolean argument:

SET EXCEPTION N rALSE

The two arguments are not separated by commas. In the ASK form of the
command the Boolean is the only value that is changed.

The numeric argument is normally a system constant that specifies which of
the five exception flags you want to set or query. Although it has a numeric
value, the system constant effectively becomes part of the set-option's name:

ASK EXCEPTION DivByZero Flag-

ASK EXCEPTION does not try to change the value of the first number, the
system constant Div By Zero. See Appendix C for more information on sys
tem constants.

ASK EXCEPTION is the more common of the two commands, since it is
the one that actually retrieves the exception flag. Once a flag has been set,
however, it remains set, so you must use

SET EXCEPTION ••• rALSE

to reset it for another test.

See HALT for a related set-option that causes the program to stop for these
invalid floating-point operations.

---j I EXP I /EXPMl/ /EXP2 It--___, .__ _______ ____._ F

Numeric function-exponential.

Syntax
ITJ Result = EXP{X)

Exponential function, base e (=2.71828182845904524)

lIJ Result = EXPM1{X)

Exponential minus 1.

[2] Result = EXP2{X)

Exponential function, base 2.

Description
The exponential function is used in many scientific and business applica

tions to calculate everything from population growth to compound interest. A
calculation that computes growth as a proportion of the quantity already
present will generally involve an exponential function.

ITJ Resu It = EXP{X)

The EXP function supplies the natural exponent of a number. This expo
nential function is a power of e, where e = 2.718281828 (to 10 decimal
places). You could, of course write this in terms of the arithmetic exponent
operator:

Result = 2.718281828 "'X

The EXP function, however, is much faster and more accurate.

o EXP//EXPM1//EXP2 o

The number e used as a base of the exponential may seem strange to the
non-mathematical. The value of e comes from the computation of a limit in
calculus-a fundamental limit that occurs throughout mathematics. The num
ber e is not arbitrary; it is a constant that is as fundamental as n.

Figure 1 shows a graph of the exponential function. For X = 0, the expo
nential is always 1. For negative X, the exponential slowly approaches 0. For
positive numbers, however, the exponential grows quickly, until it runs off the
top of the graph.

Floating point numbers (type identifier: \) can be normally stored as
extended precision numbers on the Macintosh. Extended precision numbers
are calculated with 18-digit accuracy, and may have an exponent as large as
10 "4932. When used with extended-precision variables, the Macintosh EXP
function therefore has a much wider range than the exponential functions on
other computers, which reach a floating-point overflow at a relatively low
value of X. With extended precision, 11356 is the highest whole number that
can be the argument of the EXP function.

-3 -1

ERP-Function Graph
EXP()()

10

9

8

7

6

5

Figure 1: EXP-Graph of the exponential function .

2 3

•

o EXP//EXPM1//EXP:2 o

~ Result= EXPM1(X)

Macintosh BASIC allows a variation on the standard EXP function:
EXPMl, which stands for "exponential minus l ." The reason for this is that
when X is close to 0, the expression

EXP()()

is close to 1. Some formulas that use the exponential function rely· on the min
ute differences between EXP(X) and 1 for small values of X; if they used the
standard exponential, as shown above, most of the significant figures would
be lost in the subtraction. For cases like these, it is better to use the EXPMl
function, which returns the exponential in its full, 18-digit accuracy.

l2J Result = EXP2(X)

Macintosh BASIC has one other variation on the exponential function
EXP2, a binary exponential, which merely raises 2 to the power X. This func
tion is handy for computing powers of 2:

Largest% = EXP2(15) - 1

will produce 32767, the largest positive integer that can be stored in the 15
data bits of an integer variable. The second sample program below shows an
application of EXP2.

Sample Programs
Macintosh BASIC has a compound-interest function COMPOUND, which

calculates the interest on a loan over a number of discrete periods. Many
compound-interest calculations, however, are based on continuous compound
ing of interest, where the compounding periods are made so small that they
are spread out continuously over the entire period of the loan.

The formula for continuously-compounded interest is an exponential:

FinalBalance = Deposit* EXP(Rate*Time)

Since the interest rate is spread out evenly, there is no need to calculate the num
ber of compounding periods. You just multiply the rate by the number of years.

The following sample program calculates compound interest in two ways:

I EXP-Sample Program #1
INPUT "Initial deposit?$"; Deposit
INPUT "Number of years?"; Years

o EXP//EXPM1//EXPE o

INPUT "Annual percentage rate?"; Rate
Rate = Rate/100
PRINT
PRINT "Compounded annuall~ it will yield"
Balance= Deposit*COMPOUND(Rate,Years)
Output$ = "$#,###,###.##"
PRINT TAB(S); FORMAT$(0utput$, Balance)
PRINT
Balance = Deposit* EXP(Rate *Years)
PRINT "Compounded continuous!~"
PRINT TAB(S); FORMAT$(0utput$, Balance)

First, the program uses the COMPOUND function to calculate the balance if the
interest is compounded once a year. Then, it uses the exponential function to
determine the balance for continuous compounding over the same period. Figure
2 shows that the continuous compounding results in a slightly higher yield.

Many physical properties increase or decrease exponentially. Radioactive
half-lives, for example, are calculated as decreasing exponential functions, so
that after a given time half of the element is left; after twice that time, one
fourth is left, and so forth.

To a first approximation, the pressure in the atmosphere drops by a factor
of one-half for each 5 kilometers of altitude. At 10 kilometers, the pressure is

= D EHP-Sample Pro ram # 1
Initial deposit? $10000 •
Number of years? 5
Annual percentage rate? 12

Compounded annually, it will yield
$17,623.42

Compounded continuously,
$18,221.19

F'igure 2: EXP-Output of Sample Program #1, show
ing continuously compounded interest.

o EXP//EXPM1//EXP2 o

one-fourth the pressure at sea level; at 15 kilometers altitude, the pressure is
one-eighth. The following program uses an EXP2 function to calculate the
pressure as a percentage of the pressure at sea level:

! EXP-Sample Program #2
SET SHOWDIGITS 4
DO

INPUT "Altitude in km?"; Alt
Pressure = EXP2(-Alt/5)
PRINT "The pressure is"; Pressure*lOO; "% of"
PRINT "the pressure at sea level."
PRINT

LOOP

Figure 3 shows the results for three different altitudes. The second (8.848 kilo
meters) is the altitude of Mt. Everest.

Notes
-The inverse of the exponential is the logarithm function, LOG. Many cal

culations that involve the exponential can be run "backwards" as logarithms.
See the LOG entry for details.

::::o EHP-Rir Pressure
Altitude in km? 5 ?
The pressure is SO:t>; of
the pressure at sea 1eve1

Altitude in km? 8.848
The pressure is 29.33ig of
the pressure at sea level

Altitude in km? 25
The pressure is 3.125:.: of
the pressure at sea level

A 1t itude in km?

Figure 3: EXP-Output of Sample Program #2.

---j I Fill I f:=
=-1...__· -------~. F

Syntax

Graphics toolbox command prefix-draws a
filled-in shape in a specifed pattern.

OJ TOOLBOX FillRect (@Rect%(0), @Pat%(0))

[I] TOOLBOX FillOval (@Rect%(0), @Pat%(0))

[J] TOOLBOX FillRoundRect (@Rect%(0), H3%, V3%, @Pat%(0))

@J TOOLBOX FillArc (@Rect%(0), StartAngle%, lncAngle%, @Pat%(0))

[2] TOOLBOX FillPoly (Poly}, @Pat%(0))

ffil TOOLBOX FillRgn (Rgn}, @Pat%(0))

Draws a filled-in area bounded by any of the six QuickDraw shapes
with the pattern stored in the array Pat%.

Description
There are four shape graphics commands that are defined directly as

BASIC commands: ERASE, FRAME, INVERT, and PAINT. Each of these
four commands can act on the three BASIC shapes, RECT, OVAL, and
ROUNDRECT. Through calls to the toolbox, you can also apply these com
mands to the three other "toolbox shapes" -arcs, polygons and regions.

"Fill" is an additional graphics verb that is available only from the toolbox.
Its action is much like PAINT, covering an area with a given pattern. It is
more general, however, since it allows you to use any pattern, not just the one
established by the SET PATTERN statement. Unfortunately, it is also harder
to use, since it must be approached through the TOOLBOX command.

The operation of the Fill command is essentially the same as for PAINT.
The only difference is that Fill is not affected by the graphics pen's pattern or

o FILL o

penmode. Instead, you must define a pattern of your own and supply it in the
toolbox call. The fill pattern covers the area completely, even if you have cho
sen a penmode other than 8 (COVER). Be sure you understand the PAINT
command before you read this description.

There are two situations where you might find it worthwhile to use Fill
instead of PAINT:

1. You have a pattern set up for the graphics pen and you don't want to
change it just for a single PAINT command.

2. You want to paint with a pattern other than one of the 38 standard pat
terns.

Even in these cases, you can still use PAINT, and it's often simpler than going
to the trouble of setting up the toolbox command. Judge for yourself.

Fill is not a keyword in itself. It is a prefix that starts six different toolbox
keywords: FillRect, FillOval, FillRoundRect, FillArc, FillPoly, and FillRgn.
The six compound words are the actual toolbox commands that you will type.
Note that all these six names must all be typed as single words, unlike the
BASIC shape commands, which are split into two words.

The six Fill commands are shown in Figure 1, along with the shapes on
which they operate. FillRect, FillOval, and FillRoundRect operate on the three
shapes that are available directly in BASIC. FillArc, FillPoly, and FillRgn
operate on the three other QuickDraw shapes.

F111Rect

(,
...

... , ___ ,

F111Arc

Figure 1: The six Fill commands.

F1110Y8l Ft 11 RoundRect

F111Poly F111Rgn

o FILL o

!IJ TOOLBOX FillRect (@Rect%(0), @Pat%(0))

FillRect is the simplest of the six commands, because it uses the basic rec
tangle shape. Most of the other Fill commands follow the same structure.

When drawing in BASIC, you need only four numbers to define a rectangle
shape: Hl, Vl, H2, and V2. Hl and Vl are the coordinates of the upper-left
corner, and H2 and V2 are the coordinates of the lower-right.

With a toolbox command such as FillRect, the procedure is more compli
cated. The coordinates of the rectangle must be passed as elements of a rec
tangle array. a four-element integer array in which the coordinates have been
previously stored. In addition, you must also pass a pattern array. which con
tains a bit image of the 8 x 8-dot pattern that you want to fill with.

The first step is to dimension the arrays. The rectangle must be an integer
array (type identifier: %) dimensioned with four elements numbered 0 to 3.
The pattern can be either a 4-element integer array or a 64-element Boolean.
With the Boolean form, it is customary to use a two-dimensional array with
both subscripts dimensioned from 0 to 7. The two possible forms of the
dimension statement are therefore

DIM Rect"lo(3), Pat"lo(3)

for an integer pattern array and

DIM Rect"lo(3), Par(7,7)

for a Boolean. The 8 x 8-element Boolean array is usually the more convenient
form for storing patterns.

These complex array definitions are required so that you can pass the rec
tangle and pattern in a way that the toolbox routines can understand them. In
other languages, such as Macintosh Pascal, there are predefined data types for
both rectangles and patterns, which can be passed as units to the toolbox.
Since BASIC does not have these data types, they must be simulated by arrays
such as these. Both rectangles and patterns are defmed by structures of 64
bits, or four 16-bit integers. If you dimension the arrays in any other way, you
risk confusing the toolbox routine and causing a System Error. See the TOOL
BOX entry for more information on toolbox data structures.

When you pass the rectangle or pattern array in a toolbox routine, you
must pass it indirectly as a memory address, rather than as a set of values. To
do this, add an @ sign to the beginning of the name, and refer to the starting
element of the array:

@Rect"lo(O)
@Pat"lo(O)
@Par(O,O)

o FILL o

If you use exactly these forms, the toolbox routine will recognize the rectangle
and pattern arrays as the correct data structures.

The rectangle array must contain four integers that represent the corners of
the rectangle. These are the same four numbers that are used with the RECT
shape, but unfortunately they are stored in a different order. To avoid confu
sion, it is therefore best to use another routine, SetRect, which will store the
values into the array in their proper order:

TOOLBOX SetRect (@Rect%(0), H1,V1,H2,V2)

If you use this statement to create your rectangle arrays, you can keep the
coordinates in the same order as in your BASIC statements: Hl, Vl, H2, V2.
Do not use a semicolon to separate the coordinates in the list.

Unlike the QuickDraw commands available in BASIC, Fill will not adjust
the coordinates if the second point is above or to the left of the first. In setting
up the bounding rectangle, you must be careful to choose Hl,Vl as the upper
left corner of the rectangle, and H2, V2 as the lower-right. If you def me a rec
tangle with H2 or V2 smaller than Hl and Vl, the Fill command will be
ignored.

To create the pattern array, you must store a bit image of the 8 x 8-dot pat
tern into the 64 bits of the array. With a Boolean array, each logical bit repre
sents one dot in the pattern: Pat'"(H, V) is TRUE if the dot in column H and
row V of the pattern is black, FALSE if it is white. For example, the following
program segment will store a pattern of vertical bars in columns 2, 3, 6, and 7
of the pattern array Bars-:

DIM Bars- (7,7)
FORV= OT07

FOR H =OTO 7
Bars- (H,V) = (H MOD 4 > 1)
! (TRUE if H is 2, 3, 6, or 7)

NEXTH
NEXTV

This pattern is similar to the preset pattern number 5, but with bars two pixels
thick.

With an integer array, each element contains 16 bits of information, or the
definition of two full horizontal lines. For a full description of pattern arrays,
see the entry for PenPat, the toolbox routine that sets a pattern other than the
standard 38.

o FILL o

Once you have the rectangle and pattern arrays defined, you simply call the
FillRect toolbox routine:

TOOLBOX FillRect (@Rect%(0), @Pat%(0))

or, if you are using a Boolean pattern array:

TOOLBOX FillRect (@Rect%(0), @Par (0,0))

The toolbox routine will then fill the area of the bounding rectangle with the
specified pattern, in the same way as the other QuickDraw commands. The
Fill commands ignore the graphics pen's pattern and penmode, but simply
cover the area of the shape with the pattern you specify.

~ TOOLBOX FillOval (@Rect%(0), @Pat%(0))

[J] TOOLBOX FillRoundRect (@Rect%(0), H3%, V3%, @Pat%(0))

!±J TOOLBOX FillArc (@Rect%(0), StartAngle%, lncAngle%, @Pat%(0))

FillRect is very similar to three other Fill commands, which operate on
ovals, round rectangles, and arcs. Ovals and round rectangles are the same as
the standard BASIC shapes OVAL and ROUNDRECT. Arcs are wedge
shaped slices out of an oval, available through toolbox commands that supple
ment the BASIC shape commands.

All three of these shapes are defined with a bounding rectangle and a pat
tern array. The procedure is exactly the same as with FillRect:

1. Dimension the rectangle and pattern arrays.

2. Store values in them, using the SetRect routine and the pattern assign
ment statements.

3. Call the appropriate toolbox routine, with the rectangle and pattern
arrays as arguments.

The bounding rectangle is defined by two coordinate pairs delineating the
upper-left and lower-right corners of the rectangle. It is always the smallest
rectangle that can fully enclose the particular shape. With arcs, the rectangle
bounds the oval from which the arc is sliced, not the arc itself.

The FillRoundRect and FillArc commands each require two additional
parameters in the TOOLBOX statement. For FillRoundRect, the parameters
are H30Jo and V30Jo, the width and height of the rounded corners. With Fill
Arc, the parameters are StartAngleOJo and IncAngleOJo, the starting angle and
the angular width of the arc in degrees, measured clockwise from the up direc
tion. IncAngleOJo, the width of the arc, is measured from the starting angle.

o FILL o

These parameters are all marked with the integer variable type (%), to show
that a whole number is expected by the toolbox command. If you use a
floating-point variable instead, the toolbox call will work, but will round the
numbers to the nearest whole number.

For more information on ovals, round rectangles, and arcs, read the entries
where they are discussed in detail. OVAL and ROUNDRECT are BASIC key
words, so they have entries of their own. "Arc" is not a keyword in itself, so
that shape is discussed under PaintArc.

[5] TOOLBOX FillPoly (Poly}, @Pat%(0))

[ID TOOLBOX FillRgn (Rgn}, @Pat%(0))

The last two QuickDraw shapes are polygons and regions, special structures
which always require the toolbox. Both shapes are defined by a series of draw
ing operations that describes a closed area of the screen. A polygon is
bounded by a series of straight lines, while a region can be defined by any
closed set of pixels.

Before you can draw either a polygon or a rectangle, you must create their
structures. To do this, you use the OpenPoly or OpenRgn toolbox routines to
open a shape-definition structure in the computer's memory. You then draw
the shape's border and call ClosePoly or CloseRgn when you're done.

At the time when you define the structure, the toolbox commands return a
handle variable (suffix: }). This handle is defined by the toolbox routine to
point to the shape's definition data, which is stored as a complex structure
elsewhere in the computer's memory. You will then use the handle variable
every time you need to ref er to the shape in a drawing command. You can
define as many polygons and regions as you want, each identified by its own
handle variable.

The FillPoly and FillRgn commands let you fill in the area of a polygon or
region with the pattern you choose. Unlike the other Fill commands, you do
not need to define a bounding rectangle for the shape-you just pass the name
of the handle variable that points to the shape's definition structure. You do,
however, still need to dimension and define a pattern array and pass it as a
parameter to the toolbox routine.

For more information on polygons and regions, see the entries for the com
mands that define those structures: OpenPoly for polygons and OpenRgn for
regions.

o FILL o

Sample Program

The following program fills a rectangle with the Bars- pattern defined
above:

! Fill-Sample Program #1
DIM Bars- (7,7), Rect%(3)
FORV = 0 TO 7

FOR H = 0 TO 7
Bars- (H,V) = (H MOD 4 > 1)
! (TRUE if H is 2, 3, 6, or 7)

NEXT H
NEXTV
TOOLBOX SetRect (@Rect%(0), 20,20,220,220)
TOOLBOX FillRect (@Rect%(0), @Pat\0,0))

Try changing the FillRect toolbox command to one of these others:

TOOLBOX FillOval (@Rect%(0), @Pat\0,0))

TOOLBOX FillRoundRect (@Rect%(0), 80, 80, @Pat\0,0))

The output of the FillRect version is shown in Figure 2.

=~ Fill-Sample Program # 1

Figure 2: Fill-Output of Sample Pro
gram #1.

•

o FILL o

The second sample program uses the random number generator to define a
random pattern:

! Fill-Sample Program #2
DIM Pat%(3), Rect%(3)
DO

FOR 1=0 TO 3
Pat%(1) = (RND(2)-1)*32768

NEXT I
FOR Delay= 1 TO 500: NEXT Delay
TOOLBOX SetRect (@Rect%(0), 20,20,220,220)
TOOLBOX FillRoundRect (@Rect%(0), 50, 50, @Pat%(0))

LOOP

The random-number line assigns a random value ranging from - 32768 to
+ 32767 to each of the four elements of the pattern array. Since this is the
entire range of the 16-bit integer variable type, this line chooses· a random
value for every bit in the pattern array. Figure 3 shows one of these random
patterns.

Applications
Because the Fill commands are so much harder to use than their BASIC

counterparts, they are the least used. Most of the time, you can accomplish the

Fill-Random Pattern

Figure 3: Fill-Output of Sample Pro
gram #2.

o FILL o

same tasks with the BASIC PAINT command, and avoid the extra trouble.
There are times, however, when you may nevertheless want to use the Fill

commands. They can, for one thing, avoid much of the pattern-changing that
is necessary when you use the PAINT command. One Fill command could
replace this whole series of pattern changes:

ASK PATTERN OldPat
SET PATTERN NewPat
PAINT RECT 20,30,70,80
SET PATTERN OldPat

Of course, you still need to prepare arrays for the bounding rectangle and the
pattern arrays with the Fill command, but these can often be set up once at
the start of the program and reused many times.

Also, if you want to use a pattern other than the 38 that are available
through SET PATTERN, you will need to define a pattern array and use the
toolbox. In some cases, it is easier to use the PenPat toolbox routine to store
your pattern array as the graphics pen's pattern, and then to use PAINT.
However, it is often just as easy to use the Fill commands, once you've gone
to the trouble of defining a pattern array.

Notes
-Any call to the toolbox is dangerous. The TOOLBOX command calls a

routine deep in the Macintosh operating system, and it deals directly with the
guts of the machine. When you call a toolbox routine, you leave behind the
relative friendliness and safety of the BASIC interpreter. You therefore have to
be prepared for some bugs and system crashes. (Of course, nothing you can
do will permanently damage the system-you can just reboot and start over.)

The most common error with Fill is to misdimension the rectangle or pat
tern array. If you give either array a dimension that is too small, the toolbox
commands may write over vital parts of the system's memory. The result is
usually an unexplainable system error. A dimension that is too large will gen
erally not be fatal, but may lead to odd results.

It is also easy to forget one part or another of the indirect reference to the
array name in the toolbox statement:

@Rect%(0)

If you forget the @ sign, the % type identifier, or the array element number
(0), you will get an error on the TOOLBOX command.

Graphics text set-option-sets the typef ont
for use in graphics text.

Syntax
[]SET FONT N

[1] ASK FONT N

Sets or checks code number for the font that will be displayed by
future GPRINT statements.

Description
Using the graphics text set-options and the GPRINT statement, you can

exercise great control over the way the Macintosh displays text on the screen.
The set-options FONT and FONTSIZE let you choose any typeface and size
that are available on your disk. The set-option GTEXTFACE lets you specify
a type style such as boldface or italics, and GTEXTMODE sets a transfer
mode that describes how the text writes over graphics or text already present
on the screen.

Each font is a complete set of images of the letters of the alphabet and the
special symbols. These images are used to paint each character on the screen,
and to arrange the patterns of dots formed by the printer.

Most computers are equipped with only one type font; the Macintosh
comes with eleven. These multiple fonts, stored as resource files on the system
disk, are among the features that give the machine its versatility and appeal.

In Macintosh BASIC, fonts are chosen with the FONT set-option. The
eleven fonts, shown in Figure 1, are chosen by their identification numbers:

SET FONT Number

The names of the fonts are just for reference; they are never used in BASIC
commands.

o FONT o

Number Name Available type sizes

0 Chicago (system font) 12
1 or3 Geneva (default) 9, 10, 12, 14, 18,20,24

2 New York 9, 10, 12, 14, 18,20,24,36
4 Monaco [fixed TYid!h) 9,12

5 Veni.ce 14

G JAtt~Ott is
7 Athens 18
8 San 11ranoiSoo 18
9 Toronto 9, 12, 14, 18,24

11 ti1 t' l ~~ !f) (Cairo) rn
12 los Angeles 12,24

Figure 1: FONT-The eleven typefonts on the BASIC system disk.

A few of these fonts have special importance. Font 0, Chicago, is the sys
tem font. used for the menu bar, window titles, and system messages. Font 1
is the number for the application font, which is used as the default for both
the text window and for the program output. In Macintosh BASIC, the appli
cations font is 12-point Geneva. Geneva font can therefore be ref erred to as
either font 1 or font 3.

Other fonts are notable for their artistic effects. New York, an adaptation
of the standard Times Roman typesetting font, is very attractive for text mes
sages, especially in the larger font sizes. Venice and London are ornamental
fonts, and San Francisco is ••. well •.. different. And of course, don't forget
Cairo, a treasure chest of graphics characters ranging from musical notes to
railroad cars.

All but one of the fonts is proportionally spaced. In a proportionally spaced
font, each letter occupies only as much space as it needs for its own width.
The letter i. for example, is much thinner than the rest of the alphabet, while
the letter m is much wider. Rather than stretch and squeeze the letters so that
they all fit in the same size space, proportional spacing tailors the spacing so
the letters and words look natural. The typeset words in this book are propor
tionally spaced.

There is one time, however, when you don't want proportional spacing:
when you're trying to line up columns in a table. If the letters have a variable
width, columns after the first may not start on exactly the same vertical line.

o FONTo

For that reason, you may occasionally want to use the fixed-width font,
Monaco. Because Monaco is designed with the same width for each character,
you can be sure that all vertical columns will be properly aligned.

In addition to the font number, you can specify three other set-options for
the text: FONTSIZE, GTEXTFACE, and GTEXTMODE. These set-options
determine the size, style, and transfer mode for the text to be printed. These
three set-options are summarized in Figure 2.

FONTSIZE is the most important of the other set-options. Every font on
the disk has at least one complete set of characters; some, however, come in
different sizes. By choosing the fontsize, you can decide which size will be
used by GPRINT statements. You can also choose sizes for fonts that do not
have that size image stored on disk-the Macintosh simply rescales the closest
match in that font to the size you specify. In general, a rescaled font will not
look as good as a real font from the disk, especially if the specified size is not
an even multiple of one of the sizes available.

With the GTEXTFACE set-option, you can choose any of the following
type styles for your text: boldface, italic, underline, outline, shadow, con
densed, and extended. To choose more than one at a time, combine the code

FONTSIZE GTEXTFACE GTEXTMODE

9-Pt
10-Pt
12-Pt 0 Plain

1 Boldface
2 .lt .. fllit':' 14-Pt

18-Pt 4 Underline
8 CMIMl!o 10 16 20-Pt

32 Condensed 1 1
64 Extended

24-Pt

36-Pt
Figure 2: FONT-The other set-options that control the appearance of GPRINT text.

D FONT D

numbers by adding them up. With the code number 0, SET GTEXTFACE
will produce plain text (the default).

GTEXTMODE sets the transfer mode that determines how the letters of
the text are laid down over text of graphics already on the screen. Generally,
GTEXTMODE works just like PENMODE, except that it affects the transfer
of text instead of drawing operations. The default for GTEXTMODE is 9,
rather than 8, the default for PENMODE.

For more information on the three additional set-options, please refer to the
entries under their respective names.

Sample Program
You can find examples of different type fonts in programs throughout this

book. Here, however, we'll stick with a simple program that uses the Cairo
font to create easy graphics:

1 FONT-Sample Program (Cairo Express)
SET OUTPUT ToScreen
SET FONT 11
SET FONTSIZE 18
Caboose$ = "H"
Flatcar$ = "F"
Boxcar$ = "G"
Locomotive$ = "J"
GPRINT
RANDOMIZE
FOR Line= 1 TO 11

Train$ = Caboose$
FOR Cars=O RND(12)

IF RND(3) > 1 THEN
Train$ = Train$ & Boxcar$

ELSE
Train$ = Train$ & Flatcar$

END IF
NEXT Cars
Train$ = Train$ & Locomotive
GPRINT Train$

NEXT Line

! Full-screen output
1 Cairo font
118-Point

! 1 to 12 cars in train
! Choose randomly:
! Two boxcars
! For each flatcar

The picture shown in Figure 3 is simple text output composed of the capital
letters F, G, H, and J. Because it is printed in the Cairo font, however, the let- -
ters come out as pictures.

o FONT o

FONT-Coiro EHpress

~~~ 
~111111111ti 

Figure 3: FONT-Output of sample program. 

Notes 
-The FONT set-option works only with GPRINT, not with PRINT. Text 

displayed by the PRINT statement is always typed in 12-point Geneva, unless 
you choose a different font for the output window by pulling down the Fonts 
menu. After a program is over, a choice of a font on the Fonts menu will ret
roactively change all PRINT text currently displayed in the output window. 

The Fonts menu, on the other hand, does not affect GPRINT, except to 
alter some of its default settings. If you are using GPRINT statements for 
your output, you should never have to touch the Fonts menu. The Fonts 
menu will not change GPRINT text after the program is done. 

-PRINT and INPUT statements reset the font and the other graphics text 
set-options to their default values (12-point Geneva). So, if you combine 
PRINT with GPRINT, you should remember to set all of the graphics font 
information over again after every PRINT or INPUT statement. 

The graphics font is also reset by the GTEXTNORMAL statement. 

• 

Ill 



~ J._____F_O_N_T_S_IZ_E _ ____,JI Z= 

Syntax 

Graphics text set-option-establishes the 
point size for GPRINT text output. 

[I] SET FONTSIZE N 

~ ASK FONTSIZE N 

Sets or checks the point size of the font that will be used in 
GPRINT statements. 

Description 
FONTSIZE is the set-option that lets you choose the size of the text that 

will be printed by GPRINT statements. It is often used with the other text set
options FONT, GTEXTFACE, and GTEXTMODE. 

You specify the size of text in points, a unit of measurement borrowed from 
the field of typesetting. Each point corresponds to a height of approximately 
1 /72 of an inch. Point size is measured from the top of a capital letter to the 
bottom of the letters that go beneath the base line, such as g and y. The larger 
the point size, the larger the letters on the screen will be. 

To set the point size, give the command 

SET FONTSIZE Points 

The number of points can be any integer greater than 1; practically, ·however, 
any size under 6 points is unreadable. Passing a point size of 0 resets the 
default size, 12. 

Each type font on the Macintosh BASIC disk is represented by an image of 
all the letters and symbols in at least one point size; the image consists of data 



o FONTSIZE o 

defining all the font's characters in that particular size. Ideally, the font should 
have an image available for every size you plan to use. However, since the 
images for each point size take up a lot of space on the disk, only the most 
important sizes are provided. 1\vo fonts, Geneva (1) and New York (2), come 
in a large variety of sizes; others come with only one. For a list of all the type 
size images available for each font, see the preceding entry for FONT. 

You are free to choose any fontsize you wish; not just the ones that have an 
actual image on the disk. If the fontsize is not available for the font you are 
using, the computer will follow a series of steps to improvise a reasonable font 
by adjusting the image of a size that is available. The computer tries the fol
lowing approaches in sequence, until it reaches one that works: 

1. If there is a larger point size that is an even multiple of the point size 
called for, the larger size is scaled down. 

2. If there is a smaller point size that is an even divisor of the size called for, 
it is scaled up. 

3. If there is a larger size that is not an even multiple, it is scaled down to 
fit. 

4. If there is a smaller size that is not an even divisor, it is scaled up. 

5. If there is no size available at all, the font doesn't exist on the disk, and 
BASIC uses the Geneva font. 

Either of the first two of these steps produces fairly good results, since the 
computer can simply reduce or enlarge each dot of the font if the size is an · 
even multiple of an existing size. However, as the improvisation process is 
forced to use the techniques further down the list, the results become increas
ingly poor. When the fontsize cannot be rescaled by an even multiple or divi
sor, a complex algorithm must be used, which leads to characters that are 
uneven and unattractive. It is therefore. best to choose sizes that are even mul
tiples or divisors of available font images. 

Sample Programs 
The following program uses a large point size of the New York font: 

I FONT-Sample Program #1 
SET FONT 2 I New York 



o FONTSIZE o 

SET FONTSIZE 72 
GPRINT AT 7,100; "Hello" 
GPRINT ''There" 

! 72 = 2*36 

The fontsize 72 is chosen so that it is an even multiple of 36, the largest size 
available for the New York font. The output is shown in Figure 1. Figure 2 is 
the same, with FONTSIZE set to 144. 

The second sample program is a more elaborate test of all the point sizes 
available for every font: 

! FONTSIZE-Sample Program #2 
FOR F=O TO 12 

GPRINT AT 7,16; "Font Number: ";F; 
SET PENPOS 7,23 
SET FONT F 
RESTORE 

§0§ FONTSl2E-Sample Program #1 === 
• 

Hello 
There 

Figure 1: FONTSIZE-Output of sample program #1, in 72-point New 
York font. 



[)() 

READS 
IF S=O THEN EXIT 
SET FONTSIZE S 
GPRINT 
GPRINT S;" - Point''; 

LOOP 
GTEXTNORMAL 

o FONTSIZE o 

GPRINT AT 7,237;"Press mouse button to continue." 
BTNWAIT 
CLEARWINDOW 

NEXT F 
DATA 9, 10, 12, 14, 18,20,24,36,0 

Each time through the loop, the program will print a message in each of the 
eight possible fontsizes. Some fonts have images available for most of these 

Figure 2: FONTSIZE-Output of sample program #1, modified to 
print in 144-point New York font. 



o FONTSIZE o 

[]§ FONTS I ZE-Semple Progrem #2 i§ 

Font Number: 2 ? 
9-Poi:tl.'t 
10-Poin1 
12-Point 
14-Point 
18-Point 
20-Point 
24-Point 

36-Point 
Press mouse button to contl nue. 

Figure 3: FONTSIZE-New York font looks good in all these point 
sizes, because there are images for all of them on the disk. 

sizes; New York, shown in Figure 3, has them all. Other fonts, however, look 
fairly bad in some of these fontsizes, because they are rescalings of one small 
fontsize. Figure 4 shows Chicago (the system font), which has an image only 
for 12-point. The rescaling looks respectable for even multiples, such as 24, 
but quite bad for uneven ratios, such as 10- and 14-point. Geneva, the appli
cation font, has the full set of fontsize images, except for 36-point, which is an 
even multiple of 18-point. 

Notes 
-FONTSIZE affects only text printed with GPRINT. The fontsize of 

PRINT output is controlled by the selections on the Fonts menu at the top of 
the screen. However, every PRINT or INPUT statement resets the fontsize to 



o FONTSIZE o 

~0~ FONTS I 2E -Sample Program #2 ~ 

Font Number: o ? 

0-Puini 
10-Point 
12-Point 
14-Point 

18-Point 
20-Point 
24-Point 

36-Point 
Press mouse but ton to cont 1 nue. 

Figure 4: FONTSIZE-Chicago font has only a 12-point image, so the 
other sizes are not very attractive. 

12 (or to whatever size has been chosen from the Fonts menu). So, following a 
PRINT or INPUT statement, you should always restore the fontsize you want 
for GPRINT. 

-Fonts are kept on the disk as special resources inside the System file. 
These resources, while they cannot be seen, are files that can be used by any 
application. To make space on the disk, you can remove unneeded fonts and 
fontsizes, using the Font Mover application program, which is provided on 
the Macintosh system disk that came with the machine. 

For more information on fonts, see the entries for FONT and GPRINT. 



-=-JI FOR ll----__,....._ ________ __,c F 

Standard BASIC command-repeats a 
sequence of commands a specified number of 

times. 

Syntax 
[] FOR Index = Start TO Finish 

• 
• 
• 

NEXT Index 

Repeats the indented command block, keeping count by ones begin
ning with the value Start and continuing until it exceeds value Fin
ish. The variable Index increases by one each time through the 
loop. 

[ll FOR Index = Start TO Finish STEP Interval 

• 

• 
• 

NEXT Index 

Loops as above, except instead of counting by ones, it counts in 
steps specified by the value of Interval. 

CTJ FOR Index = Start TO Finish [STEP Interval] 

• 
• 



D FORD 

IF Condition THEN EXIT FOR 

• 
NEXT Index 

Loops as above, but breaks off before reaching Finish whenever the 
IF condition is found to be TRUE. 

Description 
The FOR statement creates a repeating sequence of commands called a 

FOR loop or a FOR/NEXT loop. The computer executes the statements in 
the loop the number of times you specify and then continues with the rest of 
the program. (The other type of loop in Macintosh BASIC is the DO loop, 
which keeps repeating infinitely.) 

In a FOR loop, the computer sets up a counter variable, called the index 
variable, which keeps count of how many times the loop has been repeated. 
The FOR loop is useful both for controlling the number of times a loop will 
execute, and also for passing a series of changing values to a variable within 
the loop. 

[] FOR Index = Start TO Finlsh 

• 

• 

• 
NEXT Index 

Even the simplest form of the FOR loop always includes two other BASIC 
keywords besides FOR: TO and NEXT. In the form given above, Index is the 
index variable. The starting and ending values for the index variable are sepa
rated by the word TO. 

The first time the FOR loop is executed, the index variable is automatically 
set equal to Start. When execution reaches the word NEXT, the value of the 
index variable is automatically increased by one. Each time around, then, the 
computer compares the value of the index variable to the value of Finish. If 
the index variable has still not passed the value of Finish, the loop is executed 
again. When Index exceeds the value of Finish, the loop ends and the program 



oFORo 

continues with the statement following the loop. When Index exactly equals 
Finish, the last pass is made. 

A FOR loop always ends with a NEXT statement, which contains the word 
NEXT and the name of the index variable. This statement marks the end of 
the loop, and tells the computer to increase the index variable by 1. Any 
sequence of BASIC instructions may appear between the FOR and the NEXT. 
(NEXT thus takes the place of the END statement found in other control 
structures in Macintosh BASIC.) It is best to indent the contents of a FOR 
loop, so that the commands within the loop are set off visually from the rest 
of the program. 

Index is always a variable. Start and Finish may be constants, variables, or 
expressions. Thus, all of the following statements are legal: 

FOR I= 1TO12 

FOR Counter% = X TO Y 

FOR Index = X+ 3 TO X*Y 

The index variable may be of any numeric type. In large programs, integer 
variables are sometimes used for the index variable to conserve memory and 
speed up execution. 

Often, the lines inside the loop make use of the changing values of the index 
variable. In the following example, the value of X is calculated from the suc
cessive values of the index variable and the results are displayed on the screen: 

FORI= 1T010 
x = 1*3 
PRINT X 

NEXT I 

This yields a column of 10 figures starting with 3 and ending with 30. 
Macintosh BASIC allows you to nest FOR loops, one inside another, 

provided: 

• Each loop has its own index variable; and 

• the inner loop is contained entirely within the outer. 

Figure 1 shows examples of legal and illegal nested loops. 
The initial value of a FOR loop index is automatically set to the starting 

value when the loop begins. When FOR loops are nested, the inner loop will 
go through its full number of repetitions each time the program goes through 
the outer loop. So if the outer loop runs three times and the inner loop runs 



o FOR o 

Legll 
FOR I= 1 TO 5 

[
for J = 3 TO -3 STEP-2 

NEXT J 

[
FOrK = 5 T07 

NEXT K 
NEXT I 

FOR First'% = 0 TO 4 
FORSecond'% == flrst'%TO 10 

[
For Third%= 2 TO 5 

NEXT Third% 
NEXT Second% 

NEXT first% 

Figure 1: Legal and illegal FOR loops. 

Illegal 

FOR A= 1TO3 
fORB = 2 TO 4 

..--1>---+--fORC = 3 TO 5 
• • • 

---NEXT A 
NEXT B 

NEXTC 

five times per pass, the inner loop will run 15 times altogether. Each time the 
outer loop triggers a new cycle for the inner one, the inner index starts fresh at 
its beginning value. 

[£] FOR Index = Start TO Finish STEP Interval 

• 

• 

• 
NEXT Index 

The FOR loop index may be increased by an interval other than one. The 
optional keyword STEP allows you to specify the interval between values for 
the index variable. In the program line 

FOR lndex=S TO 17 STEP 3 

the index variable will take on the values of 5, 8, 11, 14, and 17 as the loop is 
executed. The loop runs just 5 times instead of 13 as it would with an interval 



o FOR o 

of one. If the finishing value were 16 instead of 17, the loop would execute 
when the values of Index were 5, 8, 11, and 14. Then the index variable would 
be increased to 17. Since 17 is greater than the Finish value of 16, the program 
would stop going through the loop and execution would pick up again at the 
line after the NEXT statement. In this case, the loop is never executed with 
Index equal to the Finish value. 

STEP may also be used to make the index of a FOR loop decrease on suc
cessive passes. The statement 

FOR X = 100 TO 1 STEP -1 

will lower the value of X by one on each pass through the loop until X 
declines from 100 to 1, at which point the last pass is made. 

The values of the index variable need not be positive and need not be inte
gers. The following statements are also legal: 

FOR Counter = 10 TO - 12 STEP - 3 

FORJ = 7.5 TO 15STEP1.5 

l1J FOR Index = Start TO Finish 

• 

• 
IF Condition THEN EXIT FOR 

• 
NEXT Index 

It is possible to exit a FOR loop before the index variable reaches the ending 
value. An EXIT FOR in an IF statement may be used for this purpose. The 
loop will run normally until the IF condition is found to be TRUE. At that 
point, the EXIT FOR will end the loop and continue with the statement fol
lowing the NEXT, even though Index has not exceeded the value of Finish. 
This EXIT FOR statement is unique to Macintosh BASIC. 

Sample Programs 
The following program illustrates the simplest action of the FOR loop: 

! FOR-Sample Program #1 
! A simple FOR loop. 



FOR Counter= 1 TO 10 
IF Counter= 1 THEN 

o FORD 

PRINT "First time through the loop." 
ELSE 

PRINT Counter; " times through the loop." 
END IF 

NEXT Counter 
PRINT "The loop is finished." 

A print statement is executed with each pass through the loop. The result is 
shown in Figure 2. 

The next sample program illustrates how nested loops work: 

! FOR-Sample Program #2. 
! Demonstration of Nested Loops. 
SET FONTSIZE 9 
SET PENPOS 7,14 
GPRINT " Here we go loop de loop!" 
FOR Outer%= 1 TO 3 

GPRINT "Outer loop: "; Outer% 
FOR lnner%= 1 TO 3 

GPRINT " Inner loop: "; Inner% 
NEXT Inner% 
GPRINT " Inner loop is finished ." 

NEXT Outer% 
GPRINT "Outer loop is finished ." 
GPRINT "Are you dizzy yet?" 

~~ FOR-Sample Pro ram # 1 
First time through the loop. 
2 times through the loop. 
3 times through the loop. 
4 times through the loop. 
5 times through the loop. 
6 times through the loop. 
7 times through the loop. 
El times through the loop. 
9 times through the loop. 
10 times through the loop. 
The loop is finished. 

Figure 2: FOR-Output of Sample Program #1 

• 

111 

II 



D FORD 

The inner loop will be executed three times for each pass through the outer 
loop. Spaces have been added in front of the messages in the PRINT statements 
in the inner loop, so that the output matches the indentations in the program. 
This makes output easier to follow. The output is shown in Figure 3. 

The third sample program paints a series of rings to form a bullseye, start
ing with the innermost ring. It uses a step value of 10, and a starting value 
of 20: 

! FOR-Sample Program #3 
! Paints a bullseye 
FOR Point1 = 20 TO 120 STEP 10 

Point2 = 240- Point1 
INVERT OVAL Point1 ,Point1; Point2,Point2 

NEXT Point1 

This program also illustrates how the value of the index can be used within a 
loop. In the example, the upper-left coordinates of the circles are always equal 
to the index values, and the values of the lower-right coordinates are calcu
lated from the index values. 

With a slight modification of this program, we can use a negative step value 
to count from 120 to 20, instead of the reverse. 

~O~ FOR-Semple Pro rem #2 ~ 

Here we go loop de loop! 
Outer loop : 1 

Inner loop : I 
lr.n.e-r loop : 2 
Inner loo~· : 3 
Inner loop is fir1ished. 

Outer loop : 2 
lnMr loop: 1 
Inner loop : 2 
lnMrloop:3 
Inner loop is finished. 

Mer loop: 3 
Inner loop : 1 
Inner loop: 2 
Inner loop : 3 
lnnff loop is fintm.cl. 

Outer loop is finished. 
Are you dizzy ye-t? 

Figure 3: FOR-Output of Sample Program #2. 

• 



oFORo 

! FOR-Sample Program #3 (Modified) 
! Paints a bullseye from the outside in, 
! using a negative step value. 
FOR Point1 = 120 TO 20 STEP -10 

Point2 = 240- Point1 
INVERT OVAL Point1,Point1; Point2,Point2 

NEXT Point1 

The final picture is identical, but the outermost ring is painted first and the 
innermost last. Figure 4 shows the output that results from either version of 
this program. 

Finally, the fourth sample program demonstrates early exit from a FOR 
loop: 

! FOR-Sample Program #4 
! Demonstration of early exit from a FOR loop. 
FOR Index = 10 TO + 1 STEP - 1 

PRINT "Current index value is" ; Index 
FOR Delay = 1 TO 1000 
NEXT Delay 
IF MOUSER - THEN EXIT FOR 

NEXT Index 
PRINT "Exit from FOR loop." 

D FOR-Sample Program #3 

Figure 4: FOR-Output of Sample Program #3. 

• 



D FORD 

This example has a FOR loop nested inside another FOR loop. The inner 
FOR loop is a "do-nothing" loop; it merely creates a time delay so you have 
enough time to press the mouse button between executions of the outer FOR 
loop. This type of delay loop is so common that it is frequently written on one 
line, with a colon(:) separating the statements: 

FOR Delay= TO lOOO:NEXT Delay 

Figures 5 and 6 show the output from two different runs of the above pro
gram. In Figure 5, the mouse button was not pressed, and the loop was com
pleted. In Figure 6, the button was pressed. 

Applications 
The FOR loop is perhaps the most common structure used to control the 

flow of a BASIC program. It can be used to fill arrays, and can include nested 
loops for multidimensional arrays. It is also an excellent control structure for 
many searching and sorting routines. You will find FOR loops in many graph
ics applications as well. 

-~ FOR-Sample Program #4 
Current 1ndex value 1s 10 • 
Current 1ndex value 1s 9 
Current index value is 8 
Current 1ndex value is 7 
Current index value is 6 
Current 1ndex value is 5 
Current 1ndex value is 4 
Current 1ndex value ts 3 
Current index value is 2 
Current 1ndex value is 1 
Exit from FOR loop. 

Figure 5: FOR-Output of Sample Program #4, with 
the loop ending normally. 



o FORo 

FOR-Sample Program #4 
Current 1ndex Yelue 1s 1 O • 
Current 1ndex Yelue is 9 
Current 1ndex Yelue is 8 
Current index Yelue is 7 
Exit from FOR loop. 

Figure 6: FOR-Output of Sample Program #4, with 
the mouse pressed to exit the loop. 

The program in Figure 7 uses a pair of nested FOR/NEXT loops to create 
the multiplication table displayed in Figure 8. The inner loop calculates and 
prints a single row of values. The values are placed in their proper positions in 
the row by TABWIDTH, which controls the amount of space that will be gen
erated by a comma, and by FORMAT$, which right-justifies each number 
within its column. The GPRINT statement inside the inner loop is performed 
144 times. 

Notes 
-One of the most common errors in BASIC programming is neglecting to 

close a FOR loop with a NEXT statement. Without the NEXT statement, the 
FOR loop will execute just once, rather than repeating. If, on the other hand, 
you use a NEXT statement that is not preceded by a FOR statement, you will 
get a "NEXT without FOR error" message. 

-If you make use of the index variable within a FOR loop, be careful to 
do so in a manner that does not alter its value. In other words, don't use the 



o FOR o 

! Multiplication Table 

! Uses two FOR loops to calculate and locate numbers 

SET OUTPUT ToScreen 
SET GTEXTFACE 1 
GPRINT AT 170, 16; "MULTIPLICATION TABLE" 
SET GTEXTF ACE 0 
SET TADWIDTH 39 
SET PENSIZE 2,2 
PLOT 45,35; 45,236 
PLOT 20,55; 460,55 
SET PENPOS 11,44 
FOR Row = 1 TO 12 

FOR Column = 1 TO 12 
SPRINT FORMAT$("###"; Row*Column), 

NEXT Column 
SPRINT 
IF Row= 1 THEN SPRINT 

NEXT Row 

Figure 7: FOR-Multiplication Table Program. 

! Full-screen output 
! Boldface for title 

! Turn off boldface 
! Size of comma space 

! Horizontal rule 
! Vertical rule 

! Set up horizontal rows 
! Set up vertical columns 
! Calculate & print numbers 

! Skip a line between rows 
! Skip a line for rule 

FOR-Multiplication Table 

HULTIPLICATION TABLE 

2 3 4 5 6 7 8 9 10 11 12 

2 4 6 8 10 12 14 16 18 20 22 24 
3 6 9 12 15 18 21 24 27 30 33 36 
4 8 12 16 20 24 26 32 36 40 44 48 
5 10 15 20 25 30 35 40 45 50 55 60 
6 12 18 24 30 36 42 48 54 60 66 72 
7 14 21 28 35 42 49 56 63 70 77 84 
8 16 24 32 40 48 56 64 72 80 86 96 
9 18 27 36 45 54 63 72 81 90 99 108 

10 20 30 40 50 60 70 80 90 100 110 120 
11 22 33 44 55 66 77 88 99 110 121 132 
12 24 36 48 60 72 84 96 108 120 132 144 

Figure 8: FOR-Output from Multiplication Table Program. 

• 



oFORo 

index variable on the left side of an assignment statement within the loop. 
Doing so may result in an otherwise inexplicable "NEXT without FOR" error 
message. 

-There is a slight increase in speed when you use an integer variable rather 
than a floating-point variable as the index to a FOR loop. The following pro
gram sets up a FOR loop controlled by a floating-point index variable. 

Tkc= TICKCOUNT 
FOR I= 1 TO 5000 
NEXT I 
Tkc= TICKCOUNT - Tkc 
PRINT 
PRINT Tkc; " tickcounts to complete loop." 

! Set starting time value 
! Floating-point loop 

! Calculate ending time value 

To determine how long it takes to execute the loop, the program uses TICK
COUNT, the Macintosh's internal timer, which, every 1/60 of a second, is 
incremented by one. To test the speed of an integer loop, change the value of I 
to 1% in both the FOR and NEXT statements. 

On the other hand, if you will be printing the value of the index variable 
within the loop, or performing calculations on it, a floating-point index may 
actually be faster. It depends on the nature of the statements to be performed. 
If small increases in speed would make a vital improvement to your program, 
you can test the timing with a program of the form illustrated above, inserting 
between the FOR and NEXT whatever statements you wish to have executed 
in each loop. 

The computer continues the loop until the index value is past the finishing 
value, so the index value ends up greater than the finishing value (or, with a 
negative step, less). It is therefore tricky to use the value of the index variable 
for anything after the end of the loop. 

FOR-Translation key 

Microsoft BASIC FOR 

Applesoft BASIC FOR 



q _I __ F_O_RMA: __ r ____ S _ ____.I µ 

Syntax 

String function-sets the format for 
displaying specified items of PRINT and 

GPRINT output. 

III PRINT FORMAT$(1mage$;va/ue(sJ) 

l1J GPRINT FORMAT$(1mage$;va/ue(s)) 

Prints the value(s) in the format specified by Image$. 

Description 
By default, the PRINT and GPRINT statements print out numbers and 

strings in left-justified columns of variable width. Numbers are not held to 
any specific number of decimal places; they are merely printed with as many 
significant figures as their precision allows. 

FORMAT$ is a string function that arranges numbers and strings for out
put in PRINT and GPRINT statements. By using this function, you can dis
play numbers in columns aligned by the decimal points, and display strings as 
left-, right-, or center-justified. FORMATS takes the place of the PRINT 
USING statement in other dialects of BASIC. 

The function takes two arguments, which are separated by a semicolon (;), 
rather than a comma. The first argument is an image string, a code that 
defmes the arrangement of the field that will be printed. The second is the 
value or expression to be formatted in accordance with the image string. 
Optionally, this second argument may be followed by a list of other values 
separated by commas. The successive values will correspond to successive 
groups of codes prepared for them within the image string. 



oFORMAT$o 

The image string defines the arrangement of characters for each field. The 
image string may be a literal string enclosed in quotes, or a string variable 
whose value is defmed elsewhere in the program. 

The following characters have special functions within the image string: 

# Place holder for a digit or character. 

" 

$ 

+ 

Inserts comma in a quantity more than three digits long. 

Determines placement of decimal point in a numeric value. 

Place holder for an exponent in scientific notation (mcludes 
the E). 

Prints a dollar sign before a number. 

Prints a sign before a number, whether positive or negative. 

Prints a minus sign after a number if the number is negative. 

Centers a string or value in the defined field. 

> Prints a string right-justified in its defmed field. 

Other character Marks the end of a field. 
The basic symbol of the image string is the number symbol (#). Each # sign 

represents a space reserved in the format for one character in the value to be 
printed-either one digit in a number or one character in a string. If there are 
more characters in the image string than in the value to be printed, the 
remainder is filled out with blanks. 

Numbers and strings are handled quite differently by the FORMATS func
tion. We'll look at them separately. 

Formatting Numbers. FORMATS is often used with numbers to produce 
neatly-arranged columns. When a number is printed by an ordinary PRINT 
or GPRINT statement, it is left-justified, with no regard to the position of the 
decimal point. In a columnar table, however, you will usually want to have the 
decimal points line up, you will want a standard number of digits to the right 
of the decimal point. For dollar values, you will want two digits to the right, 
to represent the cents portion of the dollar amount. 

FORMATS justifies the numbers so that their decimal points line up. The 
number of # symbols to the right of the decimal point in the image string indi
cates the number of decimal places; any fractional quantities beyond that 
point are rounded. For example: 

PRINT "Amount due: "; FORMA1$("#####.##'';12345.6789) 



o FORMAT$ o 

will print 
Amount due: 12345.68 

If the literal value were 123, the result would be: 
Amount due: 123.00 

If these two statements were printed consecutively on the screen, the decimal 
points would line up vertically, so this format can be quite useful for printing 
neat columns of numbers. 

If there is no decimal point indicated in the image string, FORMAT$ 
rounds to the nearest integer and right-justifies the numbers so that their one's 
places line up. If the integer portion of a number is too long for its image 
string, a series of question marks will be printed in place of the value. 

A comma anywhere to the left of a decimal point will insert commas 
between every group of three digits, separating millions from thousands and 
thousands from hundreds. Each comma takes up one of the spaces set aside 
by # signs inside the image string, so you should count the commas in the 
number of digits. (Also note that in proportionally-spaced fonts such as 
Geneva, the commas will throw off the alignment of the output columns, 
because they are thinner than the digits: see the sample programs below.) 

If you wish to use exponential notation, you should include in your image 
string at least two carets (A), and probably three or more. Each caret repre
sents a character that goes into the exponent, including the letter E (which 
begins the exponent), the negative sign if present, and each of the digits of the 
exponent to be displayed. So, even a one-digit negative exponent requires 
three carets in the image: for E, the sign, and the numeral. 

There are further numeric formatting features provided by the FORMAT$ 
function. Preceding the series of # signs with a dollar sign will print the num
ber with a dollar sign immediately preceding its leftmost digit. A plus sign will 
assure that positive numbers, as well as negative, are printed with the appro
priate sign. And ending the image string with a minus sign will print negative 
quantities followed by a minus sign, a traditional way of distinguishing 
between debits and credits in accounting. You could, therefore, have an image 
string such as: 

"$#####,##.##-II 

The following list shows three numbers as they would print, first without any 
image string, and then with the image string above: 

-23.176 
1234567 .9876 
14 

$23.18-
$1,234,567.99 

$14.00 



oFOAMAT$o 

Formatting Strings. Strings are also represented by an image string of # signs. 
By default, strings are left-justified, but you can add the special symbols > 
and : to the image string for right-justification and centering. These special 
symbols may be placed anywhere after the first character in the image string. 
They are counted in like # signs, and hold a place for a character in the 
printed string. 

The Macintosh centers and right-justifies strings only approximately, because of 
its proportional spacing. When a string is printed, it is as though the computer 
first printed the string as left-justified, then added enough spaces at the left of the 
string to push it acr~ to its proper position for center- or right-justification. 
Since different letters in a font can occupy different widths, the added spaces will 
only be cmrect for strings of perfectly average character widths. So, the columns 
may not line up correctly. See the sample program below. 

If the string you want to print is longer than the image provided for it, the 
string will be truncated at the right. If you print a string value using an image 
string for numbers that include a formatting symbol such as a decimal point 
or comma, the decimal point or comma will be replaced by a character in the 
string, as if it were a #. 

You may have any number of fields in the image string, with each field sep
arated by a space or any character other than the special formatting symbols. 
If your image string includes fewer fields than values to print, the fields will be 
repeated in order until all the values are printed. 

You can also include literal symbols at the end of a format field: the first 
non-formatting character in the image field marks the end of that field; it and 
any further non-formatting characters immediately following will be repro
duced as part of the printed output. For example, suppose you had a table of 
customer names and balances due. You could use the following to print them: 

PRINT FORMAT$("/1'//J////t:fJ1'//JfJ1'////: $#,###.##'';Name$, Bal) 

You could then print out a table that looked like this: 

Peterson $23. 72 
Jones $365.67 
Pennyworth $1,000.00 

If you expect to use the same image string repeatedly in a program, you can 
assign it to a variable. The above program statement could be replaced by 
the following: 

F$ = "t:C:•'tJ:cs::sscsJr': $#,###.##" 
PRINT FORMAT$(F$; Name$, Bal) 



o FORMAT$ o 

Sample Programs 
The following programs demonstrate the effects of using various image 

strings. In each program, the same series of values is repeated, to show how 
the same values are formatted by different image strings. 

In the first sample program, a series of ten numeric values is read from 
DATA statements and printed with four different image strings. At the top of 
each column is the image string used to format the values. 

I FORMAT$-Sample Program #1 
SET OUTPUT ToScreen 
N$ = "$######,###.##-" 
SET PENPOS 7, 12 
GOSUB ReadPrint: 
RESTORE 
SET PENPOS 180,12 
N$ = "####" "####" 
GOSUB ReadPrint: 
RESTORE 
SET PENPOS 300,12 
N$ = "##" " "#'' 
GOSUB ReadPrint: 
RESTORE 
SET PENPOS 380,12 
N$ = "+###,###'' 
GOSUB ReadPrint: 
DATA 3.14159, 432.876543, 12, -65001.3 
DATA 1234567.89876, 20002, 2, - .2, - .222 
END MAIN 

Read Print: 
GPRINT N$ 
FOR I= 1TO10 

READ A 
GPRINT FORMA1$(N$;A) 

NEXT I 
RETURN 

The output appears in Figure 1. As you can see, including a single comma 
in the first image string inserts two commas in those numbers long enough to 
require two. The negative numbers are printed with minus signs to their right, 
and the dollar signs are flush with the first digit. However, the numbers con
taining a comma are printed with their right margins slightly to the left of the 
rest, and the one with two commas is still further to the left, due to the Mac
intosh's proportional spacing. 



o FORMAT$ o 

The second and third column prints out the numbers in scientific notation. 
Notice how, in the second column, which has only two caret marks, the num
bers with negative exponents cannot be printed, even though there are more 
than enough # symbols for them. Also, the sign following the E is not printed. 
In the third column, on the other hand, all the numbers are printable, as there 
is a place for the minus sign after the E in the fractional numbers, even 
though there are only three # symbols in the image. 

The fourth column prints the numbers as integers. Notice that the one num
ber too long for the field is replaced by question marks, the negative fractions 
become - 0, all the numbers have a leading sign, and numbers with fractions 
are rounded to the nearest integer. 

The second program prints a series of strings using two different image 
strings. The first includes the centering symbol and the second includes the 
right-justification symbol. After the output of the FORMAT$ function is 
printed, an exclamation point is printed, to show the theoretical right-hand 
limit of the field. Here again, you can see the effects of the Macintosh's pro
portional spacing. The program follows, and output appears in Figure 2. 

FORMAT$ Sample Program # 1 
$ ................... , ................. -

$3. 14 
$432.BB 

$12.00 
$65,001.30-

$1,234,567.90 
$20,002.00 

$2.00 
$20.00-

$0.20-
$0.22-

3EO 
4E2 
1E1 

-7E4 
1E6 
2E4 
2EO 

-2El 
?????? 
?????? 

Figure 1: FORMAT$-Output of Sample Program # ·1. 

............ 
3E+O 
4E+2 
1E+1 

-7E+4 
1E+6 
2E+4 
2E+O 

-2E+1 
-2E-1 
-2E-1 

+"'"'"',"'"'"' 
+3 

+433 
+12 

-65,001 
???????? 

+20,002 
+2 

-20 
-0 
-0 



o FORMAT$ o 

! FORMAT$-Sample Program #2. 
SET OUTPUT ToScreen 
GPRINT "The following lines are centered." 
F$ - "#: llllllf!ifllfiiUlfillfflll//11!/lllfl" 
GOSUB PrintStatements: 
PRINT 
PRINT "The following lines are right-justified ." 
F$ - "#>llllllllllllf//111/!llllfill/lllfi/I#" 
GOSUB PrintStatements: 
END MAIN 

PrintStatements: 
PRINT FORMAT$("This is a string);"!" 
PRINT FORMAT$("THIS IS ALSO A STRING");"!" 
PRINT FORMAT$("too short'');"!" 
PRINT FORMAT$("111101110101");"!" 
PRINT FORMAT$("maximum mammoth");"!" 
PRINT FORMAT$("1illiputian");"!" 
PRINT FORMAT$(''The statement herein is much too long");"!" 

RETURN 

~0 FORMRT$ Sample Program #2 
The following demonstrate centering. 

This is a string ! 
THIS IS ALSO A STRING! 

too short 
111101110101 

maximum mammoth 
lilliputian ! 

The statement herein ! 

The following demonstrate right-justification. 
This is a string! 

THIS IS ALSO A STRING! 
too short! 

111101110101! 
maximum mammoth! 

lilliputian! 
Tt1e statement herein! 

Figure 2: FORMAT$-Output of Sample Program #2. 



o FORMAT$ o 

Note in particular the difference between the string in which the letter m, an 
especially wide character appears six times, and the string which is, by con
trast, composed mostly of the thin letters I, t, and i. You can see that, in the 
centered output, each string is centered roughly between the left margin and 
the exclamation point, but they are not centered on exactly the same point. 

You can overcome this defect in the proportionally spaced fonts by using 
Monaco font, which is a.fixed-width font. Simply by choosing Monaco from 
the Fonts menu, you can change the printed output to that shown in Figure 3. 
The result here is true centering and right-justification. (With GPRINT, you 
can use SET FONT 4 to call for Monaco font). 

Notes 
-The only characters that can start a format field are #, +, and $. If you 

want to have both a plus sign and a dollar sign before a number, the dollar 

1§0 FORMRT$ Sample Program #2 
The fol lowing demonstrate centering. 

This is a string 
THIS IS ALSO A STRING 

too short 
111101110101 

maximum mammoth 
I i I I i put i an 

The statement herein 

The fol lowing demonstrate right-justification. 
This is a string 

THIS IS ALSO A STRING 
too short 

111101110101 
111aximum mammoth 

I i I I i put i an 
The statement herein 

Figure 3: FORMAT$-Output of Sample Program #2, in Monaco font. 



oFOAMAT$o 

sign must precede the plus sign, or you will get an error message. Any charac
ters other than those that have formatting functions may be used to end an 
image string field, and will be printed as part of the output. 

FORMAT$-Translation Key 

Microsoft BASIC 
Applesoft BASIC 

PRINT USING 



Graphics command-Draws the border of a 
shape. 

Syntax 
ITJ FRAME RECT H 1, Vl; H2, V2 

[l] FRAME OVAL Hl ,Vl; H2,V2 

[J] FRAME ROUNDRECT Hl,Vl; H2,V2 WITH H3,V3 

Draws the outline of a rectangle, oval, or round rectangle. 

~ Toolbox Commands 

I FramePoly FrameRgn 

Toolbox commands are available that perform the same operations 
on polygons and regions. 

Description 
FRAME is one of the most useful shape graphics commands in Macintosh 

BASIC. As its name suggests, FRAME draws the outline of the shape you 
specify, without filling in the interior. 

The FRAME command is often used in combination with other shape oper
ators such as PAINT and ERASE. 

ITJ FRAME RECT H 1, Vl; H2, V2 

[l] FRAME OVAL Hl,Vl; H2,V2 

[J] FRAME ROUNDRECT Hl,Vl; H2,V2 WITH H3,V3 

The Macintosh's QuickDraw graphics system lets you perform a variety of 
operations on complex graphic objects called shapes. In Macintosh BASIC, 



o FRAME o 

you can manipulate shapes with two-word commands such as FRAME RECT, 
FRAME OVAL, and FRAME ROUNDRECT. 

The keyword FRAME is a verb that tells which operation to perform. It 
must always be followed by another word that specifies which shape to work 
with: RECT for rectangles, OVAL for circles and ellipses, and ROUNDRECT 
for rounded-corner rectangles. These shape keywords are described under 
their own names in this book. 

To define these shapes, you must supply at least two sets of coordinates. 
The first gives the point at the upper-left corner of the shape, and the second 
gives the point at the lower-right. With rectangles, these points are on the 
actual corners. With ovals and rounded rectangles, the points define the rec
tangle within which the shape would fit. Figure 1 shows the three shapes and 
the points that define them. 

In the case of ROUNDRECI; you must supply a third set of points: H3, V3. 
These define how rounded the corners of the rectangle will be. If the numbers 
are small, the corners will be quite sharp, almost like a regular rectangle. If 
the numbers are large, the corners will be more rounded and the figure will 
look more like an oval. See the ROUNDRECT entry for more detail. 

Strictly speaking, the line traced by the FRAME command is drawn on the 
pixels immediately inside the imaginary border specified by your coordinates. 
In most cases, this results in a solid line one pixel wide, running all the way 

H1Y1 H1~1 

DO 
H2,V2 H2,V2 

RECT OVAL 

H 1 ,V1 

·o~.V3 
• 

H2,V2 

ROUNORECT 

Figure 1: FRAME-The points that define the three shapes in BASIC. 



o FRAME o 

around the shape's border. However, FRAME is affected by the size and pat
tern of the graphics pen-the same pen that draws lines in the PLOT state
ment. The pen is originally set to draw a solid black line one pixel wide, which 
completely covers all the points it passes over. You can change the pen, how
ever, with any of three set-options described elsewhere in this book. SET PEN
SIZE changes the shape of the pen, so that the edges of the shape can be 
drawn wider. SET PENMODE changes the transfer mode, which defines how 
the frame covers up the points already on the screen. And fmally, SET PAT
TERN defmes the 8 x 8-point pattern that the pen draws. These set-options 
can be combined to draw a variety of frames for a given shape, as illustrated 
in the sample program below. 

SET PATTERN can be confusing if used with a line only one pixel wide. 
Macintosh patterns are built on a fundamental unit of 8 pixels by 8 pixels. If 
the PENSIZE is set to one pixel, only a narrow strip out of the pattern will 
show up. With the default black pattern, that is no problem, since all of the 
pixels are black, even in the thinnest cross-section. With other patterns, how
ever, the pen may frame the shape with an oddly broken line, taken from 
whichever part of the pattern the line is drawing across. This is rarely what 
you want, though you can use this technique with a gray pattern to draw a 
dotted line. See the entry under PATTERN for more details. 

Don't forget that FRAME is controlled by the pen's last setting. If you have 
widened the pen or changed its pattern for an earlier PAINT or PLOT com
mand, you may be surprised when your FRAME command draws with a wide 
or broken line. If an old pattern or pensize is still in effect and you want just a 
one-pixel line for your border, use a PENNORMAL command to reset the 
pen before you give the FRAME command. 

[!] Toolbox Commands 
Frame Poly 
FrameRgn 

In addition to BASIC's FRAME statement, there are two other frame com
mands in the Macintosh toolbox. These are used to draw complex shapes that 
are not accessible with the standard BASIC commands: polygons and regions. 

To use these commands, you must already have defined the polygon or 
region, with the OpenPoly or OpenRgn comman4. Once you have defmed the 
shape, it will be stored with a handle variable pointing to it. To frame the 
shape, you merely have the handle variable to the TOOLBOX command: 

TOOLBOX FramePoly (Poly}) 
TOOLBOX FrameRgn (Rgn}) 



o FRAME o 

where Poly and Rgn are the handle variables. Note that these two commands 
must be used as TOOLBOX calls, not as BASIC statements. FramePoly and 
FrameRgn must be written as one word, not two, or the 100LBOX com
mand will not recognize them. (The BASIC commands FRAME RECT, 
FRAME OVAL, and FRAME ROUNDRECT, by contrast, must be written as 
two words.) For full details on polygons and regions, read the entries for 
OpenPoly and OpenRgn. 

There are actually six frame commands in the Macintosh toolbox, but these 
are the only two that can be used as BASIC toolbox calls. Three of the other 
four are exactly duplicated by the simpler BASIC commands FRAME RECT, 
FRAME OVAL, and FRAME ROUNDRECT, so there is no need for them. 
The sixth command is FrameArc, which draws the border of a wedge-shaped 
arc. For some reason, BASIC does not recognize FrameArc as a valid 100L
BOX word, even though similar commands can be used to erase, fill, invert, 
and paint that shape. The FrameArc command will probably be implemented 
in a later release of Macintosh BASIC, at which point it will work in the same 
way as EraseArc, FillArc, InvertArc, and PaintArc. See the entry under Paint
Arc for details on the arc shape. 

Sample Programs 
The following program frames each of the three shapes that can be drawn 

directly in BASIC: 

I FRAME-Sample program #1 
FRAME RECT 20,20; 180,180 
FRAME ROUNDRECT 40,40; 160,160WITH 40,40 
FRAME OVAL 60,60; 140, 140 

this program contans no commands that change the graphics pen, all three 
shapes are drawn with a solid black line one pixel wide. The output is shown 
in Figure 2. 

By changing the pen, you can easily achieve some interesting effects. The 
following program, for example, frames an oval using a pen 16 pixels high by 
32 pixels wide, set to the pattern DkGray: 

I FRAME-Sample Program #2 
SET PATTERN DkGray 
SET PENSIZE 32, 16 
FRAME OVAL 10,10; 170,210 
PLOT 170,210 



o FRAME o 

=~FRAME-Semple Pro rem #1 ~ 

• 

Figure 2: FRAME-Output of Sample Program #1. 

On the more vertical parts of the oval, the pen draws a wider line with the 
wide side of its brush. On the horizontal lines, the stroke is thinner because 
the pen is drawing with its narrower vertical dimension. The result, shown in 
Figure 3, is a gently contoured oval, shaped like a large capital 0. The PLOT 
statement at the end of the program draws the rectangle at the lower right, to 
show the shape of the pen used in drawing the figure. 

Applications 
One attractive way to present information on the screen is to frame it with a 

rectangle. The picture looks even more attractive if you place a small shadow 
behind the box. The Macintosh's own windows and pull-down menus are set 
off in this way. 

To draw a box with a shadow, you must follow a three-step process: 

1. PAINT a black rectangle one or two pixels below and to the right of the box 
you want to display. The further you move down and to the right, the thicker 
the shadow will be. 

2. ERME a rectangle where you will want to display the new box. The erased 
rectangle should be one pixel smaller on all sides than the final box. 



o FRAME o 

=~ FRAME-Samplu Program #2 ~ 

• 

.. 
Figure 3: FRAME- Output of Sample Program #2. 

3. FRAME the rectangle that foons the outline of the box. After that, you can 
place whatever text or graphics you want inside the rectangle. 

Figure 4 illustrates these three steps. 

Step 1: PAINT RECT H1+2,\/1+2; H2+1,V2+1 

Step 2: ERASE RECT H 1+1,V 1+1; H2-1,V2-1 

Step 3: FRAME RECT H 1 .. v 1; H2,V2 

[ 
Figure 4: FRAME-Three steps to creating a box with a shadow. 



o FRAME o 

The program in Figure 5 shows an example of how this three-step procedure 
can be used. This program constantly monitors the mouse button. Whenever 
the button is down, it reads the mouse's horizontal and vertical coordinates and 
displays them in a box that "follows" the cursor around the screen. The box 
appears to be drawn with a dark shadow below and to its right. 

1 Application program for FRAME 

! Di~;plays the current coordinates of the mouse inside a framing rectangle. 

DO 
IF MOUSEB- THEN 

MH = MOUSEH 
MV =MOUSEY 
! Calculate boundaries of box. 

IF MH<56 THEN 
HI = MH+ I 
H2 = MH+56 

ELSE 
HI= MH-56 
H2 = MH-1 

ENDIF 
IF MV<30 THEN 

Vt = MV+ 1 
V2 = MV+30 

ELSE 
Vl = MV-30 
V2 = MV-1 

ENDIF 
! Draw box wHh shadow 

! Draw only while mouse is down 
! Get mouse coordinates 

! H coordinate too small 
! Put box to right of cursor 

! H coordinate large enough 
! Put box to left of cursor 

! V coordinate too small 
! Put box beneath cursor 

! V coordinate large enough 
! Put box above cursor 

PAINT RECT HI +2,V 1 +2; H2+ 1,V2+ I 
ERASE RECT H 1 + 1, V 1 + I ; H2-1, V2- 1 
FRAME RECT Hl,Vt; H2,V2 

! Print coordinates 
SET PENPOS H1+4,V1+12 I Base line for first GPRINT 
GPRINT "H = ";MH 
SET PENPOS H1+4,V1+26 I Base line for second GPRINT 
GPRINT "V = ";MV 

ENDIF 
LOOP 

Figure 5: FRAME-An application program to display mouse coordinates. 



o FRAME o 

This program uses two pairs of intermediate coordinates for the corners of 
the rectangle that will enclose the messages. As is the custom in this book, Hl 
and Vl name the upper-left corner, and H2 and V2 name the lower-right cor
ner. The coordinates are calculated from the mouse position so that the box is 
always above and to the left of the cursor arrow. The IF blocks shift the box 
down or to the right when either coordinate becomes so small that the box 
would be drawn outside the window. 

Whenever you press the mouse in the output window of this program, the 
computer will draw a box containing its coordinates. If you drag the mouse 
inside the window while keeping its button down, you will get a string of over
lapping boxes, as in Figure 6. By moving this box around the screen, you can 
see how the coordinates change. 

Notes 
-Technically, the borders of a shape run through the mathematical space 

between the pixels on the screen, rather than through the pixels themselves. 
The FRAME command draws its line on the pixels just inside its border, 
rather than on the border itself. 

:rn FRAME -Application Program 

Figure 6: FRAME-Output of the Application 
Program. 



o FRAME o 

The dark box in Figure 7 is the mathematical border of a rectangle. It runs 
in the spaces between the pixels, which are represented by large circles. If the 
pensize is set to its initial 1 x 1 dimensions, the FRAME RECT command will 
blacken the circles shaded in the figure. If the pensize were wider, more rows 
and columns of pixels would be blackened further toward the center. No mat
ter how large the pen, though, the entire frame is always drawn inwards from 
the border. 

This effect is barely noticeable if the pen is only one pixel wide. It becomes 
important only when you are trying to PLOT points or other shapes directly 
adjoining the shape you are framing. In the following program, for example, 
the point plotted at the coordinates {20,20) is covered by the boundary of the 
rectangle, while the point at (180,180) is not: 

PLOT 20,20 
PLOT 180,180 
BTNWAIT 
FRAME RECT 20,20; 180, 180 

This happens because the PLOT statement draws its point below and to the 
right of the mathematical coordinate between points. 

The difference becomes more obvious if the size of the pen is changed. In 
the following program, the brush has been enlarged to draw points 20 pixels 

H1 H2 
..IVVVVVVVVVVV\.. 

VI )00000000000( 
)OO•••••••ooc )Ooeoooooeooc 
)Ooeoooooeooc 
)Ooeoooooeooc 

v2 )OO•••••••ooc 
)00000000000( 
°""""""""""""r 

Figure 7: The FRAME command darkens pixels inwards from the mathematical border. 



on each side: 

SET PENSIZE 20,20 
PLOT 20,20 
PLOT 180, 180 
BTNWAIT 
SET PATTERN 36 

o FRAME o 

FRAME RECT 20,20; 180,180 

The PLOT commands draw points that are centered around the original coor
dinates. The FRAME command, however, continues to draw with the entire 
width of the pen inside the borders of the rectangle, as shown in Figure 8. 
Because of this, it does not completely cover the points centered around its 
comers. See the Notes section of PLOT and RECT for further information 
on this discrepancy. 

-The SET SCALE statement allows you to change the scale of the coordi
nate system. The units of the numerical coordinates will no longer be in a one
to-one correspondence with the pixels on the screen, but might be larger or 
smaller. 

FRAME-Note on coordinates 

Figure 8: FRAME always draws inside the mathemati
cal border of the shape, even when that 
does not match plotted points. 



o FRAME o 

If you choose to change the coordinate system, the FRAME statement will 
draw its shapes according to the new scale you have set. Although it calculates 
the corners differently, FRAME still works the same way: it calculates the math
ematical boundary of the shape, then draws inward by the width of the pen. 

For more information on how to change the coordinate axes, see the entry 
for SCALE. 

-Although it uses the graphics pen for drawing, FRAME does not change 
the pen's position. If you use a FRAME command between two PLOT state
ments, the pen will draw from its previous position, just as if it had never been 
used by the FRAME command. In the following program, for instance, the sec
ond PLOT command will draw a line from the position where the pen was left 
after the first command, in spite of the intervening FRAME command: 

PLOT 70,20 
FRAME RECT 50, 10; 150,90 
PLOT 130,80 

-For more information about the FRAME command, see the entries 
under the other shape-graphics words: ERASE, Fill, INVERT, PAINT, RECT, 
OVAL, and ROUNDRECT. For a full description of the QuickDraw shape
graphics system, read the Introduction and the entry under 100LBOX. 

FRAME-Translation Key 

Microsoft BASIC 

Applesoft BASIC 

PSET, LINE 

HPLOT 



==l I FrameArc I l---==i ...__ ________ ___,, F 

Syntax 

Graphics toolbox command-draws the rim 
of a wedge-shaped area. 

TOOLBOX FrameArc (@BoundRect%(0) ,StartAngle% ,lncAngle%) 

TOOLBOX equivalent of FRAME for a wedge-shaped area. 

Description 
Frame.Arc is one of the commands from the toolbox that can be used to 

supplement the Macintosh BASIC language. It works in exactly the same way 
as the BASIC FRAME command, but it acts on an arc shape that is not avail
able in BASIC. 

The syntax of Frame.Arc is the same as that of all the other arc commands; 
it is described fully under PaintArc. You must supply three parameters: a 
bounding rectangle array to defme the oval from which the arc is sliced, a 
starting angle, measured in degrees clockwise from the vertical, and the angu
lar width of the arc itself. 

There is only one difference between FrameArc and the rest of the FRAME 
commands: it does not generally draw a line around an enclosed area. It only 
draws the curved outer portion of the arc that was part of the oval's 
circumference-not the two radii that form the edges of the wedge. 

See PaintArc for a full description of the syntax and operation of the arc 
commands. See TOOLBOX for general notes on the toolbox interface. 



=-I I FramePoly It--=--1....._· ______ ____._ F 

Syntax 

Graphics toolbox command-draws the 
border of a polygon. 

TOOLBOX FramePoly (Poly}) 

Draws the border of the polygon Poly}. 

Description 
A polygon is a closed area bordered by a series of connected straight edges. 

Before a polygon can be used, it must be defmed using the OpenPoly and 
ClosePoly toolbox commands. Once you have defined a polygon, you can 
refer to it and display it using any of the standard drawing operations. 

FramePoly, like the BASIC FRAME command, traces a line around the 
border of the shape. As with FRAME, the line is drawn with the graphics 
pen's current pattern, size, and transfer mode. If you use SET PENSIZE to 
widen the pen, the extra thickness of the edge will be drawn inwards from the 
mathematical border of the figure. 

You must call FramePoly using the TOOLBOX command, as shown above. 
The only parameter you pass is the handle that names the polygon. This han
dle must have been defined by previous calls to the OpenPoly and ClosePoly 
toolbox routines. 

Read the entry under OpenPoly for further details. 



---j I FrameRgn I I--= 
~ ....____ -----=------'-F 

Syntax 

Graphics toolbox command-draws the 
border of a region. 

TOOLBOX FrameRgn (Rgn}) 

Draws a line around the edge of the region Rgn}. 

Description 
A region is a shape defmed by the points around its border. Tu create a 

region, you must first call the TOOLBOX routines OpenRgn and CloseRgn. 
These let you store a series of pen movements under the name of a handle 
variable. 

Once you have defined a region, you can draw its entire border using Frame
Rgn. Like the BASIC FRAME command, FrameRgn draws each .of the pixels 
on the border of the region. You must supply only one parameter, the handle 
variable pointing to the region. 

As with the FRAME command, you can control the width, pattern, and 
transfer mode by changing the graphics pen. SET PENSIZE can be used to 
widen the lines on the border. SET PATTERN changes the pattern of the line, 
and SET PENMODE determines the transfer mode. See those entries for 
more details. 

If you have enlarged the pen using SET PENSIZE, the border will be traced 
using a thicker line, but the line will always be thickened inside the border. 

FrameRgn is particularly useful with regions, since many regions are 
defmed for the sake of their boundaries. Unlike a polygon, which is a mathe
matically "perfect" shape, a region is defined as the pixels on its boundary. 
FrameRgn, called with a pen one pixel wide, therefore draws the exact outline 
of the pixels that defme a region. 

See the entry under OpenRgn for more information on regions. 



---j I FUNCTION It-===i ....___ -----------· F 

BASIC command-defines a function. 

Syntax 
X = FunctionName(A 1,A2, ... ) 

• 
• 

• 
FUNCTION FunctionName(Arg1 ,Arg2, ... ) 

• 
• 

• 
FunctionName = expression 

END FUNCTION 

Defines a function of any data type, with an optional list of 
arguments. 

Description 
A function is a special kind of procedure that accepts any number of values 

from a program and returns a single value as a result. A function is called 
from within a program by using its name (together with a list of values called 
an argument list), in an expression. When the function is called from a pro
gram, the flow of control passes to the function, and all statements within the 
function are executed and the result assigned to FunctionName. The result is 
then passed back to replace the function name in the expression that called 
the function. 



o FUNCTION o 

Macintosh BASIC has two different types of user-defined functions: the 
DEF statement of standard BASIC, which defines a function by a single 
expre8sion, and the FUNCTION statement, a powerful statement that lets you 
define a function block including any number of executable statements. 

Since a multiple-line function looks a great deal like a subroutine, you 
might wonder why you would want to use a function in place of a subroutine. 
In order to see why, lets look at how BASIC operates when it encounters some 
of its built-in functions. The following line of code contains two built-in 
BASIC functions: 

X = INT(RND(10)) + 1 

When the computer encounters this statement, which generates a random 
number from 1 to 10, it performs the following procedures: 

1. Since it evaluates the expressions in the innermost parentheses first, it 
evaluates the 10, and remembers this value. 

2. Then it evaluates the next expression in parentheses, RND(lO). This tells 
it to call the function RND to generate a random number from 0 to 
9 .99999999999. 

3. Third, it calls the INT function, which turns the number generated by 
RND into an integer. 

4. Finally, it adds 1 to the result, so instead of a number in the range 0 to 9, 
X will be a random integer from 1 to 10. 

Without functions, the same procedures would have to be accomplished 
using subroutines. In each subroutine call, you would have to include an addi-
tional value to hold the result: · 

CALL Rnd(1 O,Result1) 
CALL lnt(Result1 ,Result2) 
X = Result2+ 1 

The FUNCTION command allows you to establish a function with as many 
lines as you like. Its syntax has three parts. The first line always begins with 
the keyword FUNCTION, followed by the name of the function, and its list 
of dummy arguments (variables which receive the values passed as arguments 
in the function call). Statements within the function are executed one after the 
other in the usual manner. Functions may contain any valid BASIC state
ments, including loops, SELECT /CASE structures, calls to other functions, 
and transfers of control to subroutines. Somewhere inside the function
usually on the next-to-last line the resulting value must be assigned to the 



o FUNCTION o 

function name, which at that point appears without arguments. Either an 
expression resulting in a single value, or a variable holding a single value may 
be assigned to the function name. The end of the function is marked by the 
words END FUNCTION. As with all control structures, it is customary to 
indent the statements between the FUNCTION and END FUNCTION state
ments are indented. 

The FUNCTION statement's argument list determines how many values 
should be passed to it by the calling statement. Functions can have any num
ber of arguments, including none at all. 

A function is generally called from an assignment statement: 

Value = FunctionName(A 1,A2,A3, ... ) 

The call to the function includes the list of the actual arguments to be passed 
which may be constants, variables, or expressions. When the program encoun
ters the function call, it transfers control to the function and passes the values 
in the argument list to the dummy arguments in the FUNCTION statement. 
The function then performs its operation on these actual values. When its cal
culations are complete, the result is assigned to the function name, and passed 
back to the expression from which it was called. 

Once you have defined a numeric function, you can use it in any numeric 
expression as if it were a function supplied with Macintosh BASIC. The 
numeric expression does not have to appear as part of an assignment state
ment: it could just as easily occur within the condition of an IF, or even within 
another function definition. Figure 1 illustrates the way a function works in 
relation to a program. 

>< = Ma;•; Va Jue( A .B .C ,(>) 

Ma ~:v a 11;e(N 1 ,N2 ,N3 ,N4) ll FUNCTION 8 
Figure 1: The operation of a function. 



o FUNCTION o 

This diagram illustrates the operation of a hypothetical function called 
Max:Value, which finds the maximum of four numeric values. The function is 
invoked by the program statement 

X = MaxValue(A,B,C,D) 

This statement passes the four values in its argument list (A, B, C, and D) to 
the function, which has been defined by the statement 

FUNCTION MaxValue(N1,N2,N3,N4) 

The four values passed to the function are assigned to the function's four 
dummy arguments (Nl, N2, N3, and N4) in the exact order in which they 
appeared in the calling statement. The hypothetical function then performs its 
operations on those values and assigns the result to the function name, Max
Value. This value is then passed back to the program and assigned to X. 

As the diagram shows, the variable names in the argument list of the calling 
statement need not be the same as the dummy arguments in the FUNCTION 
statement. Indeed, they will usually be different, because the variables within 
the function represent general relationships rather than specific values. The 
argument lists must, however, match in their data types: numbers must be 
passed to numeric variables, strings to strings, and Booleans to Booleans. 

Any variable name in the FUNCTION statement's dummy argument list is 
considered to be local to the function, meaning that it will not affect variables 
of the same name used elsewhere in the program. However, any other vari
ables that you define in the function are global and are shared with the rest of 
the program. This means that if you define a variable other than an argument 
to store an intermediate calculation within the function, its value will change 
any variable of the same name in the calling program. It is important, there
fore, to choose variable names within the function that are not duplicated in 
the main program. 

Your function can use variables from the program that are not in the argu
ment list. Any variable not explicitly named in the DEF statement's argument 
list is considered to be global to the entire program. You can therefore use 
variable names directly out of the main program that are not explicitly passed . 
as arguments. If you do use these global variables, however, you must make 
sure that the additional variables on which you want your function to operate 
actually appear in the program. Otherwise, they will default to 0 in the func
tion, and may give you unexpected results. 

This use of global variables is generally frowned upon in standard program
ming practice, because it can create a great deal of confusion. While it may 
sometimes be acceptable to use a global constant or unchanging value out of 



o FUNCTION o 

the calling program, it is best to pass all relevant information within the 
parameter list. That way, it is perfectly clear from the calling statement which 
variables the function will be using in its calculation. 

A function may be of any data type, and its type should be indicated by the 
appropriate symbol. The data type of the function should be the same as that 
of the value it is expected to return. Regardless of the function's data type, the 
arguments may be of any type that is needed to pass the information that the 
function needs to do its work. 

Numeric functions may be of any numeric type provided you include the 
appropriate type symbol. In most cases, numeric functions are given the 
default type, real, by omitting the type identification symbol. 

String functions have a $ symbol at the end of their names. Macintosh 
BASIC includes a number of predefined string functions. Most user-defined 
string functions involve the use of BASIC's built-in string functions. 

Boolean functions, indicated by a tilde at the end of the function name, test 
for the truth or falsity of a condition, and return a value of TRUE or FALSE. 

Sample Programs 
The first sample program is a function and a small driver program that con

verts a numeral into the word that represents it. You will find an application 
for this function in the check-writing program under the entry SELECT. It 
makes use of a SELECT I CASE structure to choose the correct string repre
sentation of each number. 

! Function-Sample Program #1 
DO 

INPUT "Enter a number from 0 to 9: "; Number 
PRINT ''The number is;" Ones$(Number) 
PRINT 

LOOP 
END MAIN 

FUNCTION Ones$(N) 
SELECT N 

CASE 1 : Digit$ = "one" 
CASE 2: Digit$ = "two" 
CASE 3: Digit$ = "three" 
CASE 4: Digit$ = "four" 
CASE 5: Digit$ = "five" 
CASE 6: Digit$ = "six" 



o FUNCTION o 

CASE 7: Digit$ = "seven" 
CASE 8: Digit$ = "eight" 
CASE 9: Digit$ = "nine" 
CASE 0: Digit$ = "zero" 
CASE ELSE: Digit$ = "out of range" 

END SELECT 
Ones$ = Digit$ 

END FUNCTION 

When you run this program, it simply asks you for the number you want to 
convert. The SELECT/CASE structure in the function matches your entry 
with the appropriate string and returns the string to the main program for out
put. A CASE ELSE is included to deal with incorrect entries. Output from the 
program appears in Figure 2. 

Many extended forms of BASIC include a function HEX$ that will return 
the hexadecimal form of a decimal number. The core of the next program is a 
function that accomplishes this. It makes use of the single-line HexDigit$ 
function that is demonstrated in the DEF entry and is actually the same pro
gram converted into a function. However, while the program using the single
line function converts numbers only up to 32767, this function converts 
numbers up to 65535. You can use it any time you need to convert decimal 
numbers to hexadecimal in a program. 

- : FUNCTION-Sample Program #1 ~ 

Enter a number from 0 to 9: 3 
The number is three 

Enter a number from o to 9: o 
The number is zero 

Enter e number from O to 9: 1 O 
The number is out of range 

Enter a number from O to 9: -2 
The number is out of range 

Enter a number from 0 to 9: I 

Figure 2: Output of FUNCTION-Sample Program #1. 



o FUNCTION o 

! FUNCTION-Sample Program #2 
00 

INPUT "Decimal number: "; D 
PRINT Hexadecimal equivalent: "; Hex$(0) 

LOOP 
END MAIN 

FUNCTION Hex$(Decima1Num) 
DEF HexDigit$(X%) = MID$("0123456789ABCDEF" ,(X% MOD 16+ 1),1) 
Convert$ = '"' 
IF DecimalNum < 0 OR Decima1Num>65535 THEN DecimalNum=O 
FOR 1=1TO4 

IF DecimalNum > 32767 THEN 
NextDigit$ = HexDigit$(DecimalNum-32768) 

ELSE 
NextDigit$ = HexDigit$(DecimalNum) 

END IF 
Convert$ = NextDigit$ & Convert$ 
DecimalNum = INT(DecimalNum/16) 

NEXT I 
Hex$ = Convert$ 

END FUNCTION 

The single-line HexDigit$ function is included as the first line of this multi
line function. Convert$, which will hold the hexadecimal version of the num
ber, is initially set to null. The function will convert beginning with the 
rightmost hexadecimal digit. Since an integer greater than 32767 produces an 
overflow error, an IF /THEN /ELSE block tests for such values prior to con
verting. If the decimal number is greater than 32767, the number sent to the 
HexDigit$ function is reduced by 32768, which results in a legal number. Since 
the leftmost places of the decimal number will be converted later, this avoids 
an error. 

If the number is within the legal range for integers, the function simply 
converts the rightmost digit and then proceeds. The new digit is stored in Con
vert$, and the decimal number is divided by 16, to yield the next digit to con
vert. A sample run of this program is shown in Figure 3. 

Note that, to avoid an error message, numbers greater than 65535 are sim
ply converted to 0. Also the program will not convert negative numbers. 

Applications 
You can use functions to handle many repetitive and complex tasks, and 

they will simplify your program coding at the same time. You will find 



o FUNCTION o 

::: FUNCTION-Sample Program #2 ~ 
Decimal number: 1024 ? 
Hexadecimal equivalent: 0400 
Decimal number: -16 
Hexadecimal equivalent: 0000 
Decimal number: 65535 
Hexadecimal equivalent: FFFF 
Decimal number: 32768 
Hexadeci ma 1 equi va 1 ent: 8000 
Decimal number: 16 
Hexadecimal equivalent: 001 O 
Decimal number: 1 O 
Hexadecimal equivalent: OOOA 
Decimal number: I 

Figure 3: FUNCTION-Output of Sample Program #2. 

examples of functions in many programs in this book. The IF entry includes a 
sample program defining a version of the RELATION function for strings. 
The check-writing program in the SELECT/CASE entry uses several func
tions to convert numbers to their string equivalents. The COMPOUND entry 
includes a function to calculate the future value of a deposit. 

The following program includes a function Instr, which is found in many 
extended implementations of BASIC. The Instr function compares two 
strings, in order to find out whether the first string appears as part of the sec
ond, and at what point in the second string it appears. It has three parameters: 
the starting point for the search, the string to be searched, and the string to be 
found. It returns a numerical value-the position in the first string of the first 
letter of the second string. Therefore Instr is not defined as a string function 
ending in $. If the second string is not found, or if the starting point for the 
search is a number greater than the length of the string to be searched, the 
function returns a 0. 

The starting point for the search is included because the function returns 
only a single value: the first point in the first string at which the second string 
is found. If you want to find additional instances of the second string, you 
can then repeat the search starting just past the number returned by the 
function-(Position) + 1. The program appears in Figure 4. 



o FUNCTION o 

! FUNCTION-App11cat1on Program 

FUNCTION lnstr(StartPt,6$,A$) 
! Searches 6$ for starting posit1on of A$ 
EndPt = LEN(6$)-LEN(A$)+ 1 
Posit1on = O 
IF LEN(A$)1LEN(6$) AND StartPt1EndPt THEN I Check for legal parameters 

FOR Poslt1on = StartPt TO EndPt ! Pointer to pos1t1on 1n 6$ 
FOR SearchPtr = 1 TO LEN(A$) ! Pointer to pos1tlon 1n A$ 

Temp$= MID$(A$,SearchPtr, 1) ! If char In 6$ =char In A$ then 
IF Temp$ ~ MID$(6$,Posltlon+SearchPtr-1, 1) THEN EXIT 

NEXT SearchPtr ! Increment pointer In A$ 
IF SearchPtr = LEN(A$)+ 1 THEN EXIT I If all of A$ compares then exit 

NEXT Pos1t1on ! Otherw1se Inc pointer 1n 6$, try again 
IF Poslt1on = EndPt+1 THEN Poslt1on = o I If A$ not found In 6$. return O 

END IF ! If 111egal values, Pos1tlon Is preset to O 
Instr= Poslt1on I If found return poslt1on 
END FUNCTION 

Pen\/= 30 
PRINT "String to look in : • 
LINE INPUT Search$ 
LINE INPUT "String to find : ";Find$ 
DO 

INPUT "Starting pos1tion for search: ";StartPlace 
Result = lnstr(StartPlace,Search$,Flnd$) 
SET FONT 0 
SPRINT AT 245,Pen\I; "RESULT:" 
IF Result= 0 THEN 

SPRINT """;Find$; ... was not found after· 
SPRINT "pos1tlon "; StartPlace;. In. 
SPRINT """;Search$; ..... 

ELSE 
IF Result> 1 THEN SPRINT LEFT$(Search$,Result-1); 
SET STEXTFACE a 
GPRINT Find$; !do something to h1gh11ght It 
SET STEXTF ACE 0 
SPRINT M ID$(Search$,Resu1 t +LEN(FI nd$) ,LEN(Search$)) 

END IF 
ASK PENPOS H,V 
PLOT 242,PenV-30; 242,\1+16 
Pen\/= V+ 16 
PRINT 
PRINT "To continue search, press· 
PRINT "mouse button" 
BTNWAIT 

LOOP 

Figure 4: FUNCTION-Instr application program. 



o FUNCTION o 

The program makes use of a number of interesting features. The strings are 
entered in a pair of LINE INPUT statements. Using this form instead of the 
more common INPUT statement allows you to search for commas or spaces. 
In a normal INPUT statement, entering a comma signifies the end of an entry, 
and entering only a space is interpreted as entering nothing. 

The screen is divided into two areas. INPUT (which cannot make use of the 
GPRINT mode) appears at the left edge of the window. The results are then 
printed on the right side of the screen using GPRINT. Normally, it is danger
ous to mix PRINT (or INPUT) statements and GPRINT statements, because 
the PRINT statement will erase the entire line of graphics on which it appears. 
But since the PRINT and LINE INPUT statements appear on the left before 
the output is printed at the right with GPRINT, they do not interfere with 
each other. 

Once input is accepted, the remainder of the program is contained in a DO 
loop, so you can continue searching through the same string. The program 
will search a string of any length up to 255 characters, the maximum legal 
length of a string. Output of a sample run appears in Figure 5. 

FUNCTION Instr 
String to look in: 
? apes & grapes have similar shapes 
String to find: ape 
Starting position for search : 

To continue search, press 
mouse but ton 
Starting position for search : 2 

To continue search, press 
mouse but ton 
Starting position for search : 11 

To continue search, press 
mouse but ton 
Starting position for search : 3 1 

RESULT: 
fil[j)@s & grapes haue similar shapes 
"ape" was at position 1 

RESULT: 
apes & grfil[j)@s haue similar shapes 
"ape" was at position 1 O 

RESULT: 
apes & grapes haue similar shfilU)©s 
"ape" was at position 30 

RESULT: 
"ape" was not found after 
position 31 in mm 
"apes & grapes haue similar shapes" ~ 

To continue search, press 19 

Figure 5: FUNCTION- Output of Instr application program. 



o FUNCTION o 

There are many uses for the Instr function. You can use it to check for valid 
input, by specifying a string to be searched containing all the valid characters 
and searching for your input string among them. You can use it to check for 
commas in numeric input, to see that they appear between groups of three dig
its. You can also use it to search for the space in a name, if you want to rear
range a series of names last name first. 

Notes 
-It is customary to place functions, along with subroutines, after the main 

body of a program. However, as the application program above shows, it is 
not necessary to do so. When functions or subroutines follow a main pro
gram, the end of the main program should be marked by the END MAIN 
statement. 

-Since function names are identical in form to array names, you cannot 
have a function with the same name as an array in the same program. A mis
spelled function name in the body of a program will result in an "undimen
sioned array reference" error message, because the missing function was 
assumed to be an array. 

-The arguments in a calling statement must match exactly in number and 
type the arguments in the function definition. Otherwise you will get an 
"incorrect number of parameters" or "type mismatch" error message. 

-Although you can pass an element of an array to a function as an argu
ment, you cannot pass an entire array. 



Syntax 

Disk command-retrieves the Finder's 
information block about a file. 

GETFILEINFO Filename$ @Filelnfo%(0) 

Loads 48 bytes of information about the named flle into the integer 
array Filelnfo. The array must have at least 24 integer elements. 

Description 
The Macintosh's Finder, or desktop-like operating system, maintains a 

detailed block of information on every file stored. With BASIC, you can 
decode the information stored in this block and fmd out some things about 
certain files. 

To load the information block, use the command GETFILEINFO. The syn
tax requires one string, representing a file name, and an indirect reference to 
an array with at least 48 bytes, usually an integer array with 24 elements num
bered from 0 to 23: 

DIM Filelnfo%(23) 
GETFILEINFO "Macintosh BASIC" @Filelnfo%(0) 

would load the 48 bytes of information about the Macintosh BASIC language 
me into the array FilelnfoOJo. Note the@ sign preceding the array name: as in 
a toolbox call, you must specify this array as an indirect reference. 



o GETFILEINFO o 

The Filelnfo array will contain its information distributed among its ele
ments, as follows: 

0-1 File type, stored as four 1-byte characters (two characters for each 
integer array element): 

APPL-Application such as Macintosh BASIC or MacPaint 

BCOD-Program saved with "Save Binary" 

BINY-Binary file 

BTXT-Program saved normally 

DATA-Data file 

FNDR-Finder file 

PNTG-MacPaint picture file 

TEXT-Text file 

ZSYS-System file 

2-3 File's creator (the application that originally saved the program): 

DONN-Macintosh BASIC 

ERIK-The Finder 

MACS-Macintosh System 

MPNT-MacPaint 

4 Horizoiital coordinate of the file's icon on the desktop. 

S Vertical coordinate of the file's icon on the desktop. 

6 Folder number (arbitrary, but all files in the same folder have the 
same number). 

7 A code showing how the Finder will display the file: 

0 Inside a disk window 
- 2 Outside a disk window, on the desktop 
- 3 ln$ide trash 
64 File is invisible 

8-9 File identification number (used with GETFILENAMES). 

10 Starting block for the data fork (the part of the file used for actual 
data storage). 

11-12 Logical end-of-file (number of bytes used). 



o GETFILEINFO o 

13-14 Physical end-of-file (number of bytes allocated on disk). 

15-19 Same as elements 10-14 for the resource fork (normally used only 
by the system for purposes such as icon and font storage). 

20-21 Creation date (in seconds since January 1, 1904). 

22-23 Modification date (m seconds since January 1, 1904). 

All items listed as two array elements (the creation date and modification date, 
for example) should be treated as high and low words of a long integer. The fol
lowing function will let you convert two integers into this kind of long integer: 

FUNCTION lntTolong (HighWord%,LowWord%) 
lntTolong - HighWord%*65536 + LowWord% 
IF LowWord%<0 THEN lntTolong = lntTolong+65536 

END FUNCTION 

The IF statement is necessary because the 2-byte integer LowWordO/o will be 
treated as a 16-bit two's complement number. This function is designed to 
return a real value, because BASIC does not have 32-bit long integers (you 
could conceivably use the "comp" variable type, a 64-bit integer). 

For the first two items, you will need to convert the integer array elements 
into string variables. Because of Macintosh BASIC's strict data types, you 
must do a little calculation to convert the number. You can use the following 
function: 

FUNCTION lntToString$ (HighWord%, LowWord%) 
Byte1 = HighWord% DIV 256 
Byte2 = HighWord% MOD 256 
Byte3"" LowWord% DIV 256 
Byte4 = LowWord% MOD 256 
lntToString$ - CHR$(Byte1)&CHR$(8yte2)&CHR$(Byte3)&CHR$(Byte4) 

END FUNCTION 

You can then use this function to convert the first two items: 

File Type$ = lntToString$(Filelnfo%(0),Filelnfo%(1 )) 
Creator$ = lntToString$(Filelnfo%(2),Filelnfo%(3)) 

See also SETFILEINFO for the command that stores new information in 
the file's header. For a similar block of information about the disk volume, see 
GETVOLINFO. 



q .___I _G_E_TF_IL_E_N_AME ___ S __ I p 

Syntax 

Disk function-gives the name of a file on a 
disk. 

DiskName$ = GETFILENAME$(N) 

Returns a string containing the name of the file with index number 
N on the current disk volume. 

Description 
The Macintosh disk directory is organized by a series of integers, called 

index numbers. These index numbers start at 1 and run up to the last file on 
the list. There are no gaps in the numbering; if a file is deleted, other files are 
moved into its place and the list is shortened by one. There is no real order to 
the directory, either, except that system files usually come at the beginning. 
The maximum number of files in a Macintosh disk directory is approximately 
85, including system files. 

The GETFILENAME$ function returns a string containing the name of the 
file that has a given index number. The index number specified must be an 
integer greater than 0. If the number is greater than the highest index number 
in the directory, GETFILENAME$ returns the null string. 

Remember that the index numbers on the disk are not fixed. Any change in 
the disk directory can cause the index numbers to be rearranged. Don't rely 
on their ordering in your programs. 

GETFILENAME$ can only be used on the disk in the current drive, which 
is the internal drive by default. To have another drive be the current drive, use 
the SETVOL command. 



o GETFILENAME$ o 

Sample Program 
GETFILENAME$ works in the opposite direction from what you would 

normally need. It gives you the name of a file for which you know the index 
number. Usually, however, you know the name of the file that you want to 
use; it is the index number that you want to find out. 

Macintosh BASIC does not have an inverse GetFileNumber function, but it 
is easy to write one: 

FUNCTION GetFileNumber(Name$) 
FOR 1=1TO90 
IF GETFILENAME$(1) = Name$ THEN 
GetFileNumber = I 
EXIT FUNCTION 
END IF 
NEXT I 
GetFileNumber = 0 
END FUNCTION 

I File found, 
I so early exit. 

! File not found 

This function merely searches the file directory and exits when it reaches the 
index of the named file. If the file is not found, the function returns the value 
0. You can test this function with a line such as 

PRINT GetFileNumber("Macintosh BASIC") 

This will return the index number of the file on your disk containing the 
BASIC language. 

Applications 
The primary application of GETFILENAME$ is for viewing or printing the 

disk directory. The program in Figure 1 prints the directory of the current disk 
volume, in the order of index numbers. The output is organized in groups of 
ten files each, so that it will fit on the output window. Figure 2 shows the first 
screen ·of output for one disk. 

This BASIC directory is the raw form of the disk directory that the Finder 
(desktop operating system) presents in pictorial form when you Quit from 
BASIC. Files in the raw directory are not organized in any special way. Using 
the Finder, you can place files inside folders, but that only affects the organi
zation of the Finder's desktop. The raw directory remains a single numbered 
list that ignores all folder information. 



o GETFILENAME$ o 

DlskName$ = SETVOLNAMES(O) 
SET TA8WIDTH 40 
Exltf1ag- = FALSE 
FOR J: 1 TO 90 STEP 10 

SET FONT 2 
SET GTEXTFACE 4 
SPRINT AT 7, 16;" DIRECTORY OF DISK " 
SET STEXTFACE 0 
SPRINT DlskName$ 
SPRINT 
FOR l:J TO J+9 

F11eName$ = SETFILENAMES(I) 
IF F11eName$ = .. THEN 

Exltf1ag-:TRUE 
EXIT FOR 

ENDIF 
SPRINT l,F11eName$ 

NEXT I 
IF Exltf1ag- THEN EXIT 
SPRINT 
SPRINT "Press the mouse button to continue· 
8TNWAIT 
CLEARWINDOW 

NEXTJ 

Figure 1: GITTILENAME$-Disk Directory application program. 

Note that this BASIC disk directory program has access to files that are 
invisible from the Finder. The first file on this list, for example, is "DeskTup," 
a hidden file that contains all the information used by the Finder in organizing 
the disk. Don't delete this file, or you may fmd yourself with a dead disk! 

Note 
OETFILENAME$ is often used in combination with the OETFILEINFO 

command to obtain specific information about files. See OETFILEINFO for 
det~. 



o GETFILENAME$ o 

= : 6ETFILENRME$-Oisk Directory == 
DIRECTORY OF DISK ? 

Work Disk: 

System 
2 Finder 
3 Note Pad File 
4 Scrapbook File 
5 Clipboard File 
6 Desk Top 
7 rotate 
8 test 
9 maximum 
10 GETFI LENAME-Sample Progra 

Figure 2: GETFILENAME$-Output of Disk Directory 
program. 

GETFILENAME$-Translation Key 

Microsoft BASIC 

Applesoft BASIC 

FILES 

CATALOG 



~.___I _G_E_JV_O_L_INF_O _ ___.lp 

Syntax 

Disk command-retrieves the Finder's 
information block about a disk or hard-disk 

volume. 

GETVOLINFO Diskname$ @Disklnfo%(0) 

Loads 36 bytes of information about the named disk or hard-disk 
volume into the integer array Disklnfo. The array must have at 
least 18 integer elements. 

Description 
Every Macintosh disk has a volume name and is marked with a block of 

information describing the contents and organization of the disk volume. (A 
hard disk, but not a diskette, may contain multiple volumes, with different 
volume names.) While this volume information is not terribly useful, you are 
free to look at it if you want. You cannot, however, change this information 
as you can a file's indentification block. 

The GETVOLINFO command works exactly like GETFILEINFO. As a 
first parameter, you give a string or string variable, representing the name of 
the disk. As a second parameter, you give an indirect reference (prefix: @) to 
the array into which you want to load the information. The array must be at 
least 36 bytes long, even if you don't intend to use them all. If the array is of 
type integer, it must have at least 18 elements (dimensioned with the number 
17, because the 0 element is also used). A reference to GETVOLINFO will 
therefore look something like this: 

DIM Disklnfo%(17) 
GETVOLINFO DiskName$ @Disklnfo%(0) 



o GETVOLINFO o 

The information is stored into the 18 elements of the DisklnfoO/o array as 
follows: 

An arbitrary number assigned to the volume. 

1-2 Date when the disk was initialized (in seconds since January 1, 
1904). 

3-4 Date when the disk was last modified (in seconds since January 1, 
1904). 

S Volume locking bits: 
128 = Write-protect lock 

32768 = Software lock 

6 Number of files in the directory. 

7 Block number of the beginning of the file directory. 

8 Number of blocks in the file directory. 

9 Number of allocation blocks in the volume. 

10-11 Size in bytes of the allocation blocks on the disk. 

12-13 Minimum number of bytes allocated as a group (system use). 

14 Block number of first data file. 

15-16 Next free file identification number in the disk directory. 

17 Number of blocks free on the disk. 

All blocks listed as two array elements should be treated as high and low 
words of a 32-bit integer. The entry for OETFILEINFO contains a conversion 
function that will convert two short integer words into a single real number. 



q .___I _G_E_T_V_O_L_N_AME __ S_I µ 

Syntax 

Disk function-gives the name of a disk 
volume. 

DiskName$ = GETVOLNAME$(N) 

Returns a string containing the name of disk volume N. 

Description 
Every Macintosh disk has its own volume name, established at the time the 

disk is initialized. In Macintosh BASIC, the GETVOLNAME$ function 
returns the name of the disk in a given drive. It takes a single numeric argu
ment, which represents the drive number as follows: 

0 The current drive set by SETVOL (the default current drive 
is the internal floppy disk). 

1 Internal floppy disk drive. 
2 External floppy disk drive. 
3 or more Volume(s) of a hard disk drive connected to the serial port. 

The function returns a string containing the volume name. 
GETVOLNAME$ is often used in combination with other file commands 

that use the name of the disk volume. Many file commands let you specify a 
file on a disk other than the current one by prefixing the file name with the 
disk name and a colon. For example, you can use the following command to 
rename a file on a disk named OtherDisk: 

RENAME "OtherDisk:Old Name", "OtherDisk:New Name" 

The name returned by GETVOLNAME$ can be concatenated with a file 
name in a similar way-for example: 

ExtDisk$ = GETVOLNAME$(2) 
RENAME ExtDisk$&"01d Name", ExtDisk$&"New Name" 



o GETVOLNAME$ o 

The string returned by GETVOLNAMES ends with a colon, so that it can be 
concatenated with a file name without an additional separator character. 

The disk name can be changed by returning to the Finder and typing a new 
name under the disk icon. 

GETVOLNAME$-Translation Key 

Microsoft BASIC -
Applesoft BASIC PREFIX 

(under ProDOS) 



---j I GOSUB I~ ~......_. _______ ___,F 

BASIC command-transfers program flow to 
a subroutine. 

Syntax 
GOSUB Label: 

• 
• 
• 

END MAIN 
Label: 

• 
• 
• 

RETURN 

GOSUB transfers program flow to a labeled line. Statements 
between Label: and RETURN are then executed sequentially, after 
which execution resumes at the line following GOSUB. 

Description 
GOSUB is the standard BASIC command for calling a subroutine. A sub

routine is a group of statements that are part of a program, but are placed in 
a separate section and can be executed out of sequence one or more times. 
Ordinarily, the subroutine is designed to perform a particular task. A GOSUB 
statement alters the normal top-to-bottom flow of a program. The program 
jumps to the subroutine named in the GOSUB statement, executes the subrou
tine statements as a block until it reaches the RETURN statement, and then 
returns to the line following the calling statement. 



o GOSUB o 

There are great advantages to using subroutines in all but the shortest and 
simplest programs. First, they simplify coding and save memory. Any group 
of statements that must be executed at more than one point in a program can 
be placed in a subroutine and called when needed. This practice may also 
make your program easier to follow. 

Second, subroutines allow you to make your programs modular, so that a 
main program does little more than call subroutines. As advocates of struc
tured programming like to point out, setting up your programs with modules 
has a number of advantages: 

• You can plan the overall structure of your program first, and work out 
the details later. 

• If your program consists of nothing but subroutines you can often work 
on each subroutine separately until it is bug-free, while setting up the 
remainder as dummy routines with no statements except RETURN. 

• If you modularize your program, you can keep your subroutines short 
enough so that none takes up more than a single screen. This makes it a 
lot easier to see what you are doing. 

Indeed, in a fully modularized program, not only does the main program con
sist of little more than GOSUB statements, but most of the subroutines are sim
ilarly designed, so that program operations are only performed at the lowest 
level of organization, where each subroutine performs a single simple operation. 

The GO SUB command transfers control to the subroutine whose label 
appears in the GOSUB statement. In standard BASIC, the destination of the 
GOSUB statement is indicated by a line number. In Macintosh BASIC, line 
numbers are a special case of the more general idea of a label, which can be 
either a word or a number. If you choose to use a word, you must follow the 
label with a colon(:). If you use a number, you can omit the semicolon so that 
the label looks just like a standard BASIC line number. The label appears 
both in the GOSUB statement and at the beginning of the subroutine. 

Any number and type of BASIC statement may appear within a subroutine, 
including IF /THEN blocks SELECT /CASE structures, and control transfer 
statements. A subroutine can call other subroutines and functions in the pro
gram. Transfers of control within a subroutine behave exactly as they do at 
any other point in a program. 

The subroutine ends with a RETURN statement, which redirects the flow of 
the program back to the line following the GOSUB statement. As with all con
trol structures, it is customary to indent the statements within a subroutine. 



o GOSUB o 

Macintosh BASIC includes two types of subroutines: those called with 
GOSUB and those called with CALL. GOSUB is the statement used by stan
dard BASIC, while CALL is a structured alternative that allows parameter 
passing. CALL is unique to Macintosh BASIC. 

Subroutines called with GOSUB are an integral part of the program in 
which they appear. They share all variables globally with the main program, 
and any values they alter will be altered in the main program as well. 

Say, for example, in the course of a program you want to calculate succes
sive values for the coordinates H,V, and then call a subroutine to plot some
thing relative to those values: 

• 
• 
• 

H = OldH+20 
V = V*l.5 
GOSUB PlotShape: 

• 
• 
• 

END MAIN 

PlotShape: 
IF Flag- THEN 

INVERT RECT 0,0; H,V 
ELSE 

PAINT RECT 0,0; H,V 
END If 

RETURN 

The H and V values are the same values they hold in the main body of the 
program. CALL, however, provides a more structured and elegant means of 
accomplishing the same things. Instead of first assigning the values to vari
ables you want to pass to the subroutine, you can pass them directly as param
eters. The above example using the CALL statement would read: 

CALL PlotShape(OldH+20, V*l.5) 

The name of the subroutine would be altered to include dummy arguments to 
receive these values: 

SUB PlotShape(H,V) 
• 
• 
• 

END SUB 

The CALL form of subroutine has other advantages as well. 



o GOSUB o 

The main reason for using GOSUB instead of CALL is to maintain com
patibility with standard BASIC programs. Most dialects of BASIC have no 
equivalent of the CALL statement, so a program that depends on its features 
will require significant restructuring to run on another machine. If you are 
concerned about writing programs that can be modified easily to run on other 
machines, you should use GOSUB even though it is more limited. For a full 
discussion, see the entry under CALL. 

Sample Programs 
As Sample Program #1 illustrates, it is possible to write a main program con

sisting of little more than GOSUB statements. This program is an example of a 
totally modular program. The main program consists of nothing but subroutine 
calls. What the program actually does would depend on the contents of the sub
routines. Until the subroutines are included, the program will not work. 

! GOSUB-Sample Program #1 
GOSUB lnitializeVariables: 
GOSUB Getlnput: 
GOSUB ProcessData: 
GOSUB PrintResults: 
GOSUB TerminationRoutine: 
END MAIN 

This program could be used without alteration as the skeleton for virtually 
any file-processing program. It shows clearly the structure of the procedures 
the program should perform, and can be adapted to any set of specifications 
by adding the appropriate subroutines. 

The second sample program illustrates how a subroutine can be used to 
avoid repetitive coding. It contains a single subroutine, called Pause:, which is 
called three times within its main loop. 

! GOSUB-Sample Program #2 
Hl = 70: Vl = 60: H2 = 170: V2 = 160 
SET PENSIZE 4,4 
DO 

FRAME RECT Hl,Vl; H2,V2 
GOSUB Pause: 
FRAME OVAL Hl,Vl; H2,V2 
GOSUB Pause: 
FRAME ROUNDRECT Hl,Vl; H2,V2 
GOSUB Pause: 

LOOP 
END MAIN 



o GOSUB o 

Pause: 
GPRINT AT 20,V2+20; "Press mouse button to continue." 
BTNWAIT 
CLEARWINDOW 

RETURN 

The program repeatedly draws three shapes. After each one, the subroutine 
is called to print a message, wait for a press of the mouse button, and then 
clear the window. Without the subroutine, these steps would have to be coded 
three times in three separate places. Figure 1 shows output from one pass of 
the program. 

Applications 
Subroutines can be used whenever a procedure has to be executed more 

than once at different points in the program. You will find subroutines in the 
programs under the entries DO and TIME$, among others. 

One common way of structuring programs is to have the main program dis
play a menu of choices, and call a different subroutine for each choice. The 
program shown in Figure 2 shows how such a program may be set up. 

~~ GOSUB-Sample Program #2 ~ 
? 

Press mouse but ton to continue. 

Figure 1: GOSUB-Output of Sample Program #2. 



o GOSUB o 

! GOSUB-Application program 
! Demonstrates a menu. 
H 1 = 40 : V 1 = 30 
H2 = 170 : V2 = 1 60 
SET PATTERN 0 
SET PENSIZE 2,2 
DO 

PRINT "Choose by number:" 
PRINT 
PRINT TAB(5); "1 - Rectangle" 
PRINT T AB(5); "2 - Oval" 
PRINT T AB(5); "3 - Round Rectangle" 
PRINT T AB(S); "4 - End Program" 
PRINT 
INPUT "Your choice? ";Choice$ 
CLEARW I NDOW 
SELECT CASE Choice$ 

CASE "1" 
60SUB DrawRectangle: 

CASE "2" 
GOSUB DrawOval: 

CASE "3" 
GOSUB DrawRoundRect: 

CASE "4" 
CLEARWINDOW 
PRINT "That's all, folks!" 
EXIT DO 

CASE ELSE 
PRINT "Illegal choice, choose again" 

END SELECT 
GO SUB ChoosePet tern: 

LOOP 
END MAIN 

DrewRectengle: 
PAINT RECT H 1,'v' 1; H2,V2 
SET PATTERN Black 
FRAME RECT H1,'v'1; H2,'v'2 
GOSUB Pause: 

RETURN 

Drawoval: 
PAINT OVAL Hl,Vl; H2,V2 

f"igure 2: GOSUB-Menu Program. 



o GOSUB o 

SET PATTERN Black 
FRAME OVAL H1,\11; H2,\12 
60SUB Pause: 

RETURN 

DrawRoundRect: 
PAINT ROUNDRECT H1,\ll; H2,\12 WITH 45,45 
SET PATTERN Black 
FRAME ROUNDRECT H1,\ll; H2,\12 WITH 45,45 
60SUB Pause: 

RETURN 

Pause: 
SPRINT AT 20, \12+20; "Press mouse button for more: 
BTNWAIT 
CLEARWINDOW 

RETURN 

ChoosePat tern: 
X = X+I 
IF X=White THEN X:20 
IF X:38 THEN X=O 
SET PATTERN X 

RETURN 

! Skip White 
! 38 is highest pattern number. 

Figure 2: GOSUB-Menu Program (continued). 

This program paints a different shape for each option on the menu. The 
subroutines are chosen in a SELECT/CASE structure, which also includes an 
error trap and a provision for ending the program. There are two additional 
subroutines: one allows you to change the painting pattern when the menu is 
displayed; the second is a variation of the Pause subroutine from Sample Pro
gram lf2. Figure 3 shows the display of the menu after an illegal choice has 
been made. Figures 4 and 5 show two of the resulting patterns. 

Notes 
-Good programming practice dictates that a subroutine have only one 

entrance and one exit. If some of the statements in a subroutine are to be exe
cuted only under certain circumstances, it is much better to include an IF I 
THEN /ELSE block within the subroutine than to introduce a second label 



o GOSUB o 

~O GOSUB-Menu Program = 
Illegal choice, choose again ? 
Choose by number: 

1 - Rectangle 
2 - OVE1l 
3 - Round Rectangle 
4 - End Program 

Vour choice? 3 

Figure 3: GOSUB-Display of menu from Menu Program. 

~O GOSUB-Menu Program 
? 

Press mouse button for more. 

Figure 4: Sample output of GOSUB-Menu Program. 



o GOSUB o 

part of the way down. Alternatively, you could divide the block into two sub
routines, and call the second only when you need it. 

It is possible to exit a subroutine before all steps are completed. To do so, 
you need to use the POP statement. This is considered bad form, and-like 
the second label-can ususally be avoided through careful planning. For fur
ther information, see the entry under POP. 

-While a totally modular program organization will certainly make the 
structure of your program clear, it often seems more sensible in practice to 
include some of the operational statements in your main program and to 
make subroutines into coherent blocks that complete an operation. This can 
give a better picture of what the program does and how it does it, leaving the 
subroutines to take care of the repetitive chores. 

-GOSUB subroutines should be placed after the main body of a program. 
Otherwise the subroutines will be executed sequentially whenever they appear, 
until the computer encounters the RETURN statement. At that point, you will 
get a "RETURN without GOSUB" error message. 

For the same reason, it is necessary to separate the main body of the pro
gram from the first subroutine with an END MAIN statement. Otherwise, 
execution will continue from the end of the main program through the first 
subroutine, until the computer encouters the first RETURN statement and 
displays the "RETURN without GOSUB" message. 

If you use GOSUB and neglect to include a RETURN statement at the end 
of the subroutine, execution will continue until the first RETURN statement is 
encountered, or until the end of the program, whichever comes first. You will 
not get an error message. 

GOSUB-Translation key 

Microsoft BASIC 

Applesoft BASIC 

GOSUB 

GOSUB 



=:JI GOTO I~ ==i ......__ ________ ___, F 
BASIC command-transfers program flow to 

a specified point. 

Syntax 
DJ GOTO Label: 

Redirects program flow to the specified label. 

rn IF Condition- THEN GOTO Label: 

Redirects program flow to the specified label if a given condition 
is met. 

Description 
The GOTO statement redirects the flow of a program. When a GOTO 

statement is encountered, instead of executing the next statement, the com
puter searches for the label specified in the GOTO statement and resumes exe
cution at that point. 

Unlike other transfers of control, such as functions and subroutines, GOTO 
has no provision for returning execution to the point where the transfer was 
called for. 

DJ GOTO Label: 

The siffiple GOTO statement redirects program flow unconditionally. When 
the GOTO statement is encountered the program continues at the statement 
following the specified label. If the label precedes the GOTO, a repeating loop 
results, much like the DO/LOOP structure. If the label is further down, any 
intervening statements are skipped permanently, unless the flow is returned to 
them by another command. 

Unlike standard BASIC, Macintosh BASIC allows GOTO with verbal 
labels, as well as line numbers. A label can be any word or number followed 
by a colon(:). The colon is optional for numbers, so that a standard BASIC 



D GOTO D 

line number will automatically be treated as a label. You may use either form 
in your GOTO statements. For more about labels see GOSUB. 

~ IF Condition- THEN GOTO Label: 

The GOTO statement is commonly used in an IF statement or block. In this 
syntax form, when the IF statement is encountered, the computer tests for the 
specified condition, and branches to the specified label only if the condition is 
TRUE. 

Note that you cannot omit the keyword GOTO in this form of the com
mand, as you can in other dialects of BASIC. 

Professional programmers frown on excessive use of the GOTO statement, 
because it creates an abrupt break in the top-to-bottom flow of the program. 
The unexpected jump in program logic is inherently difficult to understand. 

The GOTO statement has been included in Macintosh BASIC primarily to 
maintain compatibility with other dialects of BASIC. In most forms of 
BASIC-where control structures such as DO/LOOP, CALL/SUB, and 
SELECT /CASE are lacking-virtually the only way to redirect a program is 
with a GOTO or GOSUB statement. In Macintosh BASIC, however, there are 
enough structured alternatives that you can avoid most uses of GOTO. 

Doctrinaire structured programmers, in fact, would insist that you avoid 
GOTO altogether. There are, however, a few occasions where a well-placed 
GOTO can simplify a difficult logic problem, for which the structured alter
native is so unwieldy as to be confusing in itself. In these cases, sane pro
grammers usually allow themselves an occasional GOTO, as long as it is well
documented and clear. 

In keeping with the philosophy of structured programming, the programs in 
this book use virtually no GOTO statements. However, in cases where the 
structured alternative is so clumsy as to be incomprehensible, an occasional 
GOTO has been used. The sample program in the SELECT /CASE entry, for 
example, uses a GOTO statement because the alternative would have been 
needlessly complex. 

GOTO-Translation key 

Microsoft BASIC 

Applesoft BASIC 

GOTO 

GOTO 



Graphics text command-prints a line of text 
in graphics mode. 

Syntax 
CO GPRINT outputlist 

Prints the values in the output list as graphics, using the current 
graphics-text font, fontsize, style, and transfer mode. 

[l] GPRINT AT H,V; outputlist 

Same, but sets the pen position to the coordinates (H, V) before 
printing. 

Description 
Macintosh BASIC has two different text output commands: PRINT and 

GPRINT. The two commands produce very similar results, except that 
PRINT displays the output in text mode, and GPRINT displays the line 
as graphics. 

Of the two commands, GPRINT is far more powerful. It can start its line 
at any point on the screen, not just at a character position along the fixed text 
lines. It can draw text in any font or fontsize, with style options such as bold
facing, and with a transfer mode that lets it write on top of other graphics 
without completely clearing them away. And it works extremely fast, painting 
a screenful of information almost instantly, while PRINT can take about 
a second. 

If you're used to the standard PRINT statement of other forms of BASIC, 
it may take you a little while to become used to GPRINT; however, you will 
soon see that you can use it in exactly the same way as the PRINT statement. 



oGPRINTo 

Macintosh BASIC has included the text PRINT statement mostly to retain 
compatibility with standard BASIC. 

Like the PRINT statement, GPRINT operates on an output list of constants, 
variables, and expressions, which may be of any valid data type. Everything con
cerning the output list works just as it does with PRINT: numbers are displayed 
using the most reasonable general format, strings are left-justified from the 
graphics pen's position, and Boolean expressions are printed as 'true' or 'false'. 
Between each item in the list, there must be a separator character: using a comma 
moves the next field over to the next tab stop, while a semicolon simply continues 
printing the next field at the end of the one before. 

TABWIDTH works with GPRINT just as it does with PRINT, establishing 
the screen position of the tab stops to which the commas move successive 
fields. For more precise formatting, you can use the FORMATS output func
tion. TAB, HPOS, and VPOS, however, do not work with GPRINT. 

Before the first GPRINT, you must position the graphics pen. You can do 
this with the SET PENPOS command, or by using the GPRINT AT form of 
the GPRINT command: 

GPRINT AT H,V; outputlist 

This command is equivalent to the following two statements: 

SET PENPOS H,V 
GPRINT outputlist 

The coordinates H, V specify the starting point for the base line of the first 
character of the line. The base line is the line that runs along the bottom of 
the capital letters and most of the lowercase letters. A letter such as g or~ 
with a descender, will dip below the base line, but most other letters will be 
written only upward from the base line. 

(If you do not set the pen position before the first GPRINT statement, it will 
draw upward from the default pen position, 0,0. Except for any descenders that 
dip below the base line, you will not be able to see anything of the line printed by 
this first GPRINT. You must always therefore move the pen to some positive 
value of V either before or as a part of the first GPRINT statement.) 

There is no insertion point associated with the GPRINT statement; instead, 
GPRINT moves the graphics pen after each operation in such a way that it is sit
uated where it ought to be for starting the next line. The pen is left in a position 
that is consistent with the action of the PRINT statement in standard BASIC: 

• If the output list in the GPRINT statement ends with a semicolon, the pen 
is left on the same base line, immediately to the right of the Jast character. 



oGPRINTo 

• If the output list ends with a comma, the pen is moved to the right along 
the base line, to the next tab stop in the fixed grid determined by the cur
rent TABWIDTH. 

• If the output list ends with no punctuation mark, the line is ended and 
the GPRINT statement moves the pen to the left margin of the next line 
down. The new position is flush left with the beginning of the previous 
line, and the pen moves down the proper distance for the current font 
and fontsize. For the default font (12-point Geneva}, the next base line is 
16 pixels down from the line before. 

This may seem complicated, but when you understand it, you can simply give 
a series of GPRINT statements and have them act as if they were PRINT 
statements drawing discrete lines of text. 

A standard technique, therefore, is to use SET PENPOS or the GPRINT 
AT form of the command to position the left margin and base line of the first 
GPRINT line, and then to leave the graphics pen to itself. Each successive 
GPRINT will act like a standard BASIC PRINT statement, leaving the graph
ics pen just where it should be for the next GPRINT command, without any 
further guidance. 

Sample Program 
The following program demonstrates the three ways that GPRINT can 

leave the graphics pen on a line: 

! GPRINT-Sample Program 
SET PENPOS 7, 12 
FOR 1=1TO15 

GPRINT "Line Number"; 
GPRINT I, 
ASK PENPOS H,V 
GPRINT "H=";H;", V=";V 

NEXTI 

The first two GPRINT statements create the column of numbers at the left in 
Figure 1, and the last GPRINT writes the column at the right. This right-hand 
column shows the horizontal and vertical position of the pen before the final 
GPRINT statement on each line, showing that GPRINT does change the 
graphics pen after each command. 



oGPRINTo 

~o=== GPRINT-Sample Program 
Line Number 1 H= 137, V= 12 • 
Line Number 2 H= 137, V=28 
Line Number 3 H= 137, V=44 
Line Number 4 H= 137, V=60 
Line Number 5 H= 137, V= 76 
Line Number 6 H=l37, V=92 
line Number 7 H= 137, V= 108 
Line Numbers H=l37, V=124 
L rne Number 9 H= 137, V= 140 
Line Number 10 H=137, V=156 
Line Number 11 H=137, V=172 
Line Number 12 H= 137, V= 188 
Line Number 13 H=l37, V=204 
Line Number 14 H= 137, V=220 
Line Number 15 H= 137, V=236 

Figure 1: GPRINT-Output of Sample Program. 

Applications 
The check-writing application program for the SELECT entry uses a variety of 

GPRINT statements and other graphics commands to draw the outline of a bank 
check. By adjusting the text into a variety of different type fonts and font si7.es, 
the program can tit characters into the exact spaces where they belong. The out
put of this program is shown as Figure S in the entry under SELECT 

In that program, all of the coordinates are calculated relative to H, V, the 
point in the upper-left comer of the check. Along the way, several other points 
such as Hl,Vl are dermed, which serve as reference points for parts of 
the picture. 

The reason for doing this is to simplify debugging and modification. If con
stants are used for the coordinates of every point, it is very difficult to change 
the program so that the entire check is moved slightly or altered slightly in 
proportions. As this program is written, you can move the entire check as a 
unit merely by changing one variable at the beginning of the program. 

Notes 
-GPRINT is affected only by the graphics text set-options: FONT, FONT

SIZE, GTEXTFACE, GTEXTMODE, PENPOS, and TABWIDTH (which 



o GPRINT o 

affects both PRINT and GPRINT). GPRINT is not affected by the set
options HPOS and VPOS, which move the insertion point for the PRINT 
command. The TAB function, used with PRINT, may sometimes work for 
GPRINT, but not consistently. 

-It is generally not a good idea to mix PRINT and GPRINT in the same 
program. For one thing, they are measured in two different numbering sys
tems: character positions for PRINT, and graphics coordinates for GPRINT. 
To switch back and forth is confusing. 

For another thing, the GPRINT font, fontsize, text style, transfer mode, 
and pen position are all affected by the PRINT and INPUT statements. If you 
are mixing graphics text with PRINT and INPUT text, you must be prepared 
to set up these options over again before every new block of GPRINT state
ments, whenever a PRINT or INPUT has intervened since the last setting. 



~I.___ __ G_TE_X_TE_~_C_E __ I µ 

Syntax 

Graphics text set-option-sets the type style 
for use in graphics text. 

ITJ SET GTEXTFACE N 

lIJ ASK GTEXTFACE N 

Sets or checks the code number for the type style that will be dis
played by future GPRINT statements. 

Description 
The graphics text system on the Macintosh provides a variety of different 

type style options: boldface, italics, underlining, shadow, outline, condensed, 
and extended. These style options can be used either separately or in combina
tion to change the way that text is printed. 

The GTEXTFACE set-option lets you choose the style of text that will be 
printed by GPRINT. You can select any of the options shown in Figure 1, sim
ply by giving the appropriate code number: 

SET GTEXTrACE 4 

sets the underlining style. 
You can set any combination of the style options. The code numbers are 

powers of two, which allows them to be set independently as individual bits in 
a style byte. If you want to choose boldface combined with underline and 
shadow, you simply add their values 1, 4, and 16: 

SET GTEXTrACE 1 + 4+ 16 

or, if you prefer: 

SET GTEXTrACE 21 



o GTEXTFACE o 

Style byte 

(0) Plain (default) 
1 Boldface 
2 Italic 
4 
8 

----16 
-----32 

-----64 

Underline 
@man Hme& 
mBlmlrWJ 
Condensed 
Extended 

Figure 1: GTEXTFACE-The eight type styles and their code numbers. 

Because the Condensed and Extended styles are produced by inverse opera
tions, they cancel each other out when both are set. 

If you want to change the style in the middle of a line, you must break 
the GPRINT statement into two parts, with a semicolon at the end of the 
first line: 

GPRINT AT 7,16; "The next word will be"; 
SET GTEXTFACE 2 
GPRINT "underlined." 

With boldface, however, you can avoid this clumsy break in the GPRINT 
statement. Macintosh BASIC uses the ASCII codes 253 and 254 to mark the 
beginning and end of boldface text. So this GPRINT statement 

GPRINT "The next word will be ";CHR$(253);"boldfaced";CHR$(254) 

will result in the following output: 

The next word will be boldfaced 

This technique also works with the PRINT statement; in fact, it is the only 
way you can change the style of text displayed by the PRINT statement. 



o GTEXTFACE o 

Notes 
-PRINT statements are not affected by GTEXTFACE, but they have an 

effect on GTEXTFACE. Every PRINT statement resets the font, fontsize, 
and style to their default values. If you are using PRINT and GPRINT in the 
same program, you should make sure that GTEXTFACE is called before each 
GPRINT statement that requires it. 

-Every GTEXTFACE statement deserves a remark, because it's very hard 
to remember what the code numbers correspond to. The statement 

SET GTEXTrACE 4 

says a lot more than 

SET GTEXTrACE 4 

! Underline 

-See FONT and GPRINT for more information about graphics printing 
commands. 



~l __ G_TE_X_TM_O_D_E_-..JIP 

Syntax 

Graphics text set-option-sets the transfer 
mode for GPRINT text. 

ITJ SET GTEXTMODE N 

[11 ASK GTEXTMODE N 

Sets or checks the code number of the transfer mode to be used for 
graphics text. 

Description 
GPRINT text drawing, like ordinary plotted graphics, is controlled by a 

transfer mode that determines how pixels already on the screen will be 
affected by GPRINT text that is drawn on top of them. Depending on the 
setting, the dots that fall beneath the text may be either retained, inverted, 
or erased. 

GPRINT accepts four transfer modes, with the code numbers 8, 9, 10, and 11: 

8. (Copy) A white space around the text is cleared away, wiping out what
ever was underneath. Then the line of text is drawn in solid black, com
pletely unaffected by previous screen contents. 

9. (OR-default) Adds black text on top of the current display, without 
turning any dots white. In addition to the new black dots that form the 
text, all the previously black dots are kept black as well. 

10. (XOR) The new text has no fixed color of its own; it simply reverses the 
colors of the pixels on which it falls. All dots beneath the text that were 
previously white are changed to black, and dots that were previously 
black are changed to white. If the same line is printed again in the same 



o GTEXTMOOE o 

place with this transfer mode, all the pixels are inverted again, back to 
their original state. This mode can therefore be used for animation, as in 
the sample program below. 

11. (Clear) All dots under the letters are erased to white; other dots are left 
as they were. 

These four transfer modes are illustrated in Figure 1. 
The graphics transfer modes are the same as the first four of the graphics 

penmodes, described in the entry for PENMODE. The only significant differ
ence is that for GTEXTMODE the default is 9, whereas with PENMODE the 
default is 8. Also, GTEXTMODE does not work with the minor penmodes 12 
through 15. 

Sample Program 
The following program prints the word "HELLO" in each of the four cor

ners of the screen, then has the four greetings converge at the center: 

! GTEXTMODE-Sample Program 
PAINT RECT 70,100; 172,140 

~0 GTEHTMODE 

8 Copy 

9 OR 

10 XOR 

11 Clear 

Figure 1: GTEXTMODE-The graphics text transfer 
modes. 



o GTEXTMOOE o 

SET FONT 6 
SET FONTSIZE 18 
SET GTEXTMODE 10 
FOR Xhalf= 0 TO 25 STEP 0.5 

X = INT(Xhalf)*4 
GPRINT AT X-15,X+ 27; "HELLO" 
GPRINT AT X-15,227-X; "HELLO" 
GPRINT AT 185-X,X+27; "HELLO" 
GPRINT AT 185-X,227-X; "HELLO" 

NEXT Xhalf 
GPRINT AT 85, 127; "HELLO" 

! London (Old English) 
! 18-point 
!XOR 

! Final copy 

Each of the four copies of the word is drawn twice in the same place-once 
when Xhalf is an even integer, and once when it has a decimal fraction of .5. 
When a word is drawn a second time in GTEXTMODE 10, all of its pixels are 
restored to the state they had before the initial drawing. In that way, the words 
can move across the screen leaving the pixels in their wake unscathed. Figure 2 
shows the four words about halfway along in their journey toward the center. 

Figure 2: GTEXTMODE-Output of Sample Program, 
in which the four words are converging on 
the fixed black rectangle. 



q l.....__G_TE_X_T_N_O_RMAL __ __,I ~ 

Graphics text command-restores the font 
settings for GPRINT text to their defaults. 

Syntax 
GTEXTNORMAL 

Restores to their default settings the font, fontsize, type style, and 
transfer mode for text printed with GPRINT. 

Description 
GTEXTNORMAL returns GPRINT to its default font, 12-point Geneva. 

The command is usually used at the end of a block in which you have changed 
the type font and other text set-options. 

GTEXTNORMAL is a command, not a set-option. This is important to 
remember because the associated keywords GTEXTFACE and GTEXT
MODE are set-options. GTEXTNORMAL takes no arguments: 

GTEXTNORMAL 

Since GTEXTNORMAL restores the default settings of the set-options 
FONT, FONTSIZE, GTEXTFACE, and GTEXTMODE, it is equivalent to: 

SET FONT 1 
SET FONTSIZE 12 
SET GTEXTFACE 0 
SET GTEXTMODE 8 

! Geneva font 
! 12-point 
! Plain text 
! Transfer mode "Copy'' 

See these set-option names for further information on the graphics text 
settings. 



~, HALT I~ --=1----------· F 

Numeric set-option-sets or checks a flag that 
causes an invalid floating-point operation to 

stop the program. 

Syntax 
DJ SET HALT constant B

[1] ASK HALT constant B-

Sets or retrieves the Boolean error flag that causes the program 
to stop on an error associated with one of the following system 
constants: 

Invalid 0 
Underflow 

Overflow 2 

DivByZero 3 
Inexact 4 

Description 
By default, Macintosh BASIC does not stop a program or give an error 

message when a floating-point arithmetic error occurs. Instead, it sets an 
exception flag and gives either a special value such as INFINITY or a NAN 
("not a number") code as the result of the calculation. 

With the HALT set-option, however, you can ask the program to stop and 
give an error message when it encounters any of the following exceptions: 

• Invalid: An impossible calculation such as the square root of a negative 
number was attempted, resulting in a NAN code. 



o HALT o 

• Underflow: The result of a floating-point calculation was so small that it 
resulted in 0 or a denormalized number very close to 0. 

• Overflow: The result of a calculation had an exponent so large that it 
exceeded the range of the calculation precision mode in effect, resulting 
in INFINITY. 

• DivByZero: A finite number was divided by 0, resulting in INFINITY. 

• Inexact: A round-off error in the calculation gives a result that differs 
from the correct value in the last decimal place. 

Like its companion set-option, EXCEPTION, HALT takes both a numeric 
and a Boolean argument. The numeric argument is usually chosen from 
among the mnemonic system constants Invalid, Underflow, Overflow, DivBy
Zero, and Inexact. The command to turn on the division-by-zero HALT flag, 
for example, is 

SET HALT DivByZero TRUE 

The two arguments are not separated by commas. 

See EXCEPTION for a more complete description of exception and halt 
flags. The halt flags are also stored as a part of the numeric environment 
word, which can be obtained in its entirety through the ENVIRONMENT 
set-option. 



=-11 HidePen ll--__,...___ --------· F 

Graphics toolbox command-makes the 
graphics pen invisible. 

Syntax 
TOOLBOX HidePen 

Hides the graphics pen, so that it does not draw points on 
the screen. 

Description 
HidePen is a simple toolbox command that can be used to "turn off'' the 

graphics pen. It is the exact opposite of ShowPen, and the two should always 
be paired together. When the pen is hidden, it does not draw points on 
the screen. 

The toolbox keeps a count of the number of times the pen has been hidden, 
decrementing by one for each call to the HidePen routine and incrementing by 
one for each call to ShowPen. Any time the number of HidePen calls exceeds 
the number of ShowPen calls, the pen will be invisible. If you have a routine 
that calls HidePen without a balancing call to ShowPen, the pen may not 
return to the screen when you want it to. 

The OpenRgn or OpenPoly command automatically calls HidePen at the 
start of a region or polygon definition block, and they call ShowPen when the 
block is done. Within the block the graphics pen is lifted so that it can be used 
to create the region's or polygon's structure without drawing unwanted lines 
on the screen. If you do want to see the lines you are drawing, you can give a 
ShowPen command at the start of the definition block. In that case, however, 
you should give a matching HidePen command at the end of the block so that 
the calls are balanced. 

There is also a toolbox command HideCursor, which makes the mouse 
pointer invisible. Its syntax is given in Appendix D. 

See also the entry for ShowPen. 



Syntax 

Text set-option-moves the insertion point 
horizontally for PRINT and INPUT 

statements. 

[I] SET HPOS Column 

~ ASK HPOS Column 

Sets or checks the text column number where the insertion point 
is located. 

Description 
The PRINT and INPUT statements display their output in a special text 

mode that occupies the same window as graphics output, but numbers its rows 
and columns differently. The location of the output text depends on the posi
tion of the insertion point, a flashing vertical line that takes the place of a cur
sor on the Macintosh. 

The HPOS set-option lets you move the insertion point horizontally within 
a line. It sets or checks a character position, which is different from the hori
zontal graphics coordinate. The character position determines how many char
acters in from the left side of the output window the insertion point is to 
be placed. 

HPOS is a set-option, which takes a single integer expression: 

SET HPOS Horiz 

If you want to find out the horizontal position of the cursor, you can use the 
ASK form of the command: 

ASK HPOS Column 



D HPOS D 

This command might be useful for finding the length of a string followed by a 
semicolon (;) in a PRINT statement since the insertion point will have come to 
rest one space past the end of the string. 

The HPOS command is not as important as the equivalent commands on 
other computers, because the Macintosh uses proportional spacing for its text. 
In most Macintosh fonts, wide letters such as M are given wide spaces; narrow 
letters such as I get narrow spaces. If you use HPOS to move the insertion 
point to a place following a series of thin characters, it will be placed to the 
left of where thick letters would have left it. You should therefore think of 
HPOS as only an approximate measure of text length, unless you are using 
the fixed-width Monaco font. HPOS is exact if you are printing nothing but 
numbers, because numbers always have the same width within any given font. 

HPOS works in exactly the same way as the TAB function, except that 
HPOS is placed outside the PRINT command in a separate statement. The 
command sequence 

PRINT "Column 1" 
SET HPOS 20 
PRINT "Column 20" 

would produce the same results as the following statement: 

PRINT "Column 1"; TAB(20); "Column 20" 

See TAB for further details on these two commands. 
To move the insertion point vertically, use the VPOS set-option. HPOS and 

VPOS are based on the HTAB and VTAB commands in Applesoft BASIC. 
However, they have a different syntax because they are defined as set-options. 

HPOS affects only text displayed by the PRINT statement-not GPRINT. 
To position graphics text, use either the PENPOS set-option or the optional 
AT keyword in a GPRINT statement. See PRINT and GPRINT for more 
information. 

There is also an HPOS #set-option for moving a record pointer within a 
RECSIZE or SEQUENTIAL TEXT file. 

H POS-Translation Key 

Microsoft BASIC 

Applesoft BASIC 

LOCATION 

HTAB 



--j I llPOS # I t-___, .____ ------------'· F 

Syntax 

File pointer set-option-determines position 
of the file pointer relative to beginning of a 

record. 

DJ SET HPOS #Channel, ByteNum 

(11 ASK HPOS #Channel, ByteNum 

Sets or checks the position of the file pointer, in bytes from the start 
of the current record. 

Description 
HPOS # determines the file pointer position by counting a number of bytes 

in from the start of the record in which the pointer is currently located. The 
first byte of a record is counted as byte 0. HPOS # can be used only with 
SEQUENTIAL TEXT files and RECSIZE files. 

SET HPOS # is often used to move to a field in the middle of a relative file. 
If you know that a ·given field starts in character position 7, you can read it 
with the statement: 

SET HPOS #11, 7 
READ #11: Field 

The HPOS moves the file pointer to the appropriate position within the 
record. (In a DATA file, you must remember that each field is one byte longer 
than its storage length, to account for the type tag.) 

A related set-option, CURPOS #, returns the position of the pointer relative 
to the beginning of the file, rather than the beginning of the record. 



BASIC command word-tests for the truth or 
falsity of a stated condition. 

Syntax 
[] IF Condition-THEN Statement 

If the condition is true, executes the specified statement; if false, 
does nothing. 

111 IF Condition-THEN 

Statement(s) 

• 

• 

• 
END IF 

Block form of []. If the condition is true, executes the block of 
statements up to the END IF statement; if false, does nothing. 

[J] IF Condition-THEN Statement7 ELSE Statement2 

If the condition is true, executes statement!; if false, executes 
statement2. 

liJ IF Condition- THEN 

Statement(s) 1 

• 

• 
• 

ELSE 



o IF o 

Statment(s)2 

• 

• 

• 
END IF 

Block form of rn. 

Description 
IF is the principal tool for choosing between two alternatives within a pro

gram. The IF statement lets your program decide whether to perform a group 
of statements or not, depending on the values of certain variables. 

The IF statement in Macintosh BASIC has some important advantages over 
simpler forms of BASIC. First, it can be used in a block form, so that the 
program can execute a long list of statements if the condition is true. Also, 
Macintosh BASIC allows an optional ELSE block, which is executed when the 
condition is false-instead of simply doing nothing. These useful syntax forms 
are described below. 

DJ IF Condition- THEN Statement 

The computer first evaluates the IF condition, which is a logical or Boolean 
expression. If the condition is true, the computer performs the action specified 
by the statement following the word THEN. If the condition is false, the com
puter skips over these commands, and execution resumes at the line following 
the IF statement. The logic of this form of the IF statement is illustrated in 
Figure 1. An IF statement always includes the word THEN. 

The condition part of the IF statement is technically a logical expression. 
Logical expressions are statements of relationships that may be either true or 
false. The expression can be any of the following: 

1. A Boolean constant or variable (for example, MOUSEB- ). 

2. A relational comparison of two numbers or strings (A>4). 

3. A Boolean operation combining two of the above (Flag- AND A· >4) 

All of these expressions have one thing in common-they evaluate to a Bool
ean value of either TRUE or FALSE. 



D IF D 

If /THEN (Single-line) 

(True) 

(false) 
Statement 1 

Continue Program 

Figure 1: Flowchart of IF/THEN statement. 

A Boolean constant or variable. The simplest form of a logical condition is 
a Boolean variable, denoted with a tilde C-) in Macintosh BASIC. A Boolean 
is a type of variable that holds only the values TRUE or FALSE. Several 
important Macintosh system functions are of Boolean type-including 
MOUSEB- and SOUNDOVER 7 

You can use a Boolean variable by itself: 

IF MOUSER-THEN .•• 

IF Flag- THEN ••• 

The statement following the THEN will be executed only when the variable 
holds the value TRUE. 

The Boolean constants are the keywords TRUE and FALSE. You could 
legally use the constants themselves as the condition of an IF statement, but 
this makes little sense, since they would cause the THEN block to be executed 
either every time or not at all. 

A relational comparison of two numbers or strings. The most common type 
of Boolean expression is formed by BASIC's relational operators: 

= 
<>or =F 
> 

"is equal to" 
"is not equal to" 
"is greater than" 



< 
>=or ;;:ii 

<=or~ 

o IF D 

"is less than" 
"is greater than or equal to" 
"is less than or equal to" 

Technically, these operators compare two numeric or string values and return a 
logical value, which can then be used in an IF statement: 

IF 1>5 THEN ••• 

This is the standard form of the IF command in most other dialects of 
BASIC. 

The optional forms+, ;;:ii, and~ are unique to Macintosh BASIC. The+ 
sign is printed by holding the Option key down while pressing the = key. The 
others are typed by pressing Option and the > and the < keys, respectively. 

The optional forms present an advantage and a disadvantage. Using them 
may make your programs easier to follow. On the other hand, since most 
computers do not have these forms, they make it harder to transfer your pro
grams to other machines. 

The relational operators can be used with either numbers or strings. The 
relation is fairly obvious with numbers. Strings are compared according to the 
ASCII values of the stored characters. By default, Macintosh BASIC uses the 
standard ASCII text ordering, listed in Appendix A. In ASCII ordering, all 
the capital letters come before the lowercase letters. You can, however, ask it 
to use the order of a dictionary, by giving the command 

OPTION COLLATE NATIVE 

See NATIVE for more information on string comparisons. 

A Boolean operation combining two of the above. The Boolean operators 
AND, OR, and NOT can be used to combine several logical expressions into a 
single Boolean value. This compound expression can then be used as a com
plex condition for an IE 

The AND and OR operators combine two logical expressions: 

IF MOUSES- AND Flag- THEN ••• 

IF A=B OR C= 10 THEN ••• 

An AND operation has the value TRUE only when both expressions are 
TRUE; OR is TRUE when either or both are TRUE. 

The NOT operator negates the value of a single logical expression-FALSE 
becomes TRUE, TRUE becomes FALSE. NOT is a unary operator, which 



D IF D 

directly precedes the expression it negates: 

IF NOT MOUSEB"' THEN ••• 

IF NOT (A>B) THEN ••• 

You can combine as many different logical expressions as you want, up to 
the length of a line and the limits of human comprehension: 

IF (MOUSEB"' AND X$="End") OR TIME$="5:00:00 PM" THEN ••• 

IF MOUSEB"' AND NOT (KBD= 13) THEN ••• 

Be especially careful when using AND, OR, and NOT in the same condition. 
Use parentheses-even if redundant-to group complex logical operations, as 
in the first example above. 

Think through the logic of complex IF conditions and test the conse
quences, because such statements are inherently confusing. In all probability, 
an alternative coding that is easier to understand can be found to express the 
condition that you want to test. 

You can place any BASIC statement after the keyword THEN. This state
ment will be executed when the specified condition is TRUE. Simple IF state
ments are commonly used to transfer control, print messages, or assign a new 
value to a variable: 

IF X= 1 THEN GOSUB EqualToOne 

IF Measure~ 10 THEN NoMoreRoom-=TRUE 

IF Query$= "Y" OR Sum 4i; 0 THEN PRINT "OK" 

IF Counter>lO THEN Counter= 10 

You will also need IF statements to transfer control by testing for an exit 
condition-that is, a condition under which the program should stop perform
ing a repeated operation. 

~ IF Condition- THEN 

Statement(s) 

• 
• 
• 

END IF 



D IF D 

If you want the computer to perform more than one statement as the conse
quence of an IF statement, you must construct an IF block. An IF block 
begins with the IF /THEN statement and ends with the END IF statement. If 
the condition specified in the IF /THEN statement is true, the computer will 
perform all the statements up to the END IF before continuing. If the condi
tion is not true, execution will immediately proceed to the statement following 
the END IR 

IF Textlines O!:: Maxlines THEN 
PRINT "Press the mouse button for more." 
BTNWAIT 
CLEARWINDOW 

END IF 

The basic logic of the IF block is illustrated in Figure 2. 
Since an IF block is a control structure, it is generally indented so you can 

see where it begins and ends. Any number of statements may be included in 
an IF block, including other IF statements and IF blocks. IF statements can be 
nested to any depth you desire: 

IF Condition1- THEN 

• 
• 
• 
IF Condition.2"" THEN 

• 
• 
• 
IF Condition3- THEN 

• 
• 
• 

END IF 

• 
• 
• 

END IF 
• 
• 
• 

END IF 

Each IF block must have its own END IF statement, which should be 
indented to the same depth as its corresponding IF statement. 

However, when you get something that looks this complicated, there may be 
a flaw in your logic, and you might be able to find a simpler way of setting up 
the conditions. 



D IF D 

IF/THiN/iND IF (Block Form) 

THEN (True) 

(False) 
Statement 1 

Statement2 

END IF 

Cont 1 nue Program 

Figure 2: Flowchart of IF/THEN/END IF block. 

rn IF Condition- THEN Statement1 ELSE Statement2 

@J IF Condition- THEN 

Statement(s) 1 

• 

• 

• 
ELSE 

Statement(s) 2 

• 

• 

• 

END IF 

• • • 

Sometimes you want to specify a course of action for when the IF condition 
is FALSE, in addition to the one you specify for the condition being TRUE. 
For this purpose you need an IF statement or IF block that includes the word 
ELSE. With an IF /THEN/ELSE, one of the two alternatives will be executed 
before the program proceeds to the statement after the END IE The single
line IF /THEN/ELSE statement is identical to the block form, except that the 



D IF D 

single-line form can have only one statement after the THEN and one state
ment after the ELSE. The logical structure of the IF /THEN /ELSE block is 
shown in Figure 3. 

IF /THEN/ELSE statements may also be nested, following the principles 
outlined above for nested IF/THEN/END IF blocks. Sample Program lf2, 
below, includes an IF/THEN/ELSE block. 

Sample Programs 
Macintosh's RELATION function compares numeric quantities for relative 

size, returning a 0 if the first is greater than the second, a 1 if the first is less 
than the second, a 2 if they are equal, and a 3 if one of them is not a valid 
number. RELATION does not work on strings, however. The following pro
gram defines a string version of the RELATION function using three simple 
IF statements. 

! IF-Sample Program #1 
FUNCTION StringRelation%(A$,B$) 

IF A$>B$ THEN X%=0 
IF A$<B$ THEN X%=1 
IF A$=C$ THEN X%=2 
StringRelation% = X% 

END FUNCTION 

IF/THEN/ELSE 

THEN (True) (False) ELSE 

Statement1 Statement2 

(END If) 

Continue Program 

Figure 3: Flowchart of IF/THEN/ELSE block. 



D IF o 

This function will compare strings for their position in the ASCII order; 
however, if you add the statement: 

OPTION COLLATE NATIVE 

before you call the function, you can use the same function to compare strings 
for dictionary order. This function can thus be quite useful as part of a pro
gram to sort entries into alphabetical order. For further details, see the entry 
under NATIVE. 

You could create a similar function to compare strings for length, by malc
ing the comparisons between LEN(A$) and LEN(B$) instead of A$ and B$. 

Note that the three simple IFs could have been made into an IF block: 

IF A$>B$ THEN 
X%=0 

ELSE 
IF A$<B$ THEN 

X%=1 
ELSE 

X%=2 
ENDIF 

END IF 

The resulting code, however, is much harder to follow. 
The next sample program processes a single payroll record, calculating dif

ferent pay rates for regular time and overtime. It uses an IF /THEN/ELSE 
block to test for the overtime hours. 

! IF-Sample Program #2 
INPUT ''Total hours worked: "; HoursWorked 
INPUT "Hourly pay rate: $"; PayRate 
SET TABWIDTH 50 
Pay$ = "$###.##" 
IF HoursWorked ~ 40 THEN 

RegPay = PayRate*HoursWorked 
Overtime= 0 
OTPay = 0 

ELSE 
RegPay = PayRate*40 
Overtime = HoursWorked - 40 
OTPay = PayRate*Overtime*l .5 

ENDIF 
GrossPay = RegPay+OTPay 

GPRINT AT 12,100; "Normal time pay:", FORMAT$(Pay$;RegPay) 
GPRINT Overtime; " hours overtime pay:", FORMAT$(Pay$;0TPay) 
PLOT 150,120; 210,120 
GPRINT AT 12,135; ''TOTAL GROSS PAY:", FORMAT$(Pay$;GrossPay) 



o IF o 

The IF/THEN/ELSE block tests to see whether any of the hours worked 
were overtime, and based on what it finds chooses between two different 
methods of calculating pay. At the end, the block is exited, the gross pay is 
calculated, and the report is -printed. Output appears in Figure 4. 

Applications 
The IF statement is one of the most common control structures in BASIC. 

Most programs require one or more decisions to accomplish their task. 
The application program in Figure 5 is an expansion of the checkerboard 

program in the entry for RECT, adapted so that the two players can use the 
mouse to pick up the checkers and move them. To pick up a piece, you point 
to it with the mouse and press the mouse button. You then hold the button 
down while you move the checker, and release it once you have the piece over 
the square you want to move to. If the move is legal, the program will update 
the board and signal that it is now your opponent's move. If the move is not 
legal, your piece will not be moved, and you can go back and try again. 

IF-Semple Pro rem #2 
Totol hours worked: 100 
Hourly poy rote: $1.50 

Normol time poy: $60.00 
60 hours overtime poy: $135.00 

TOTAL GROSS PAV: $195.00 

Figure 4: Output of IF-Sample Program #2. 

• 



o IF o 

IF-Applfcat1on program 

--Working checkerboard--

(Doesn't perm1t double jumps or kings) 

DIM Board:g(B,B) 
WhoseMove = -1 

! Integer array, represents sQuares of checkerboard 
! Color of piece to take the next move (black= -1) 

! Set up Initial position in Board:g 
FOR V1:1 TO B 

FOR Hl:l TO B 
IF (H 1 +V l)MOD 2 = 1 THEN 

! Place black counters In rows 1-3, wh1te In 6-B 
SELECT CASE V 1 

I Black pieces CASE 1TO3 
Board:C(H 1,V 1) = -1 

CASE 6TO B 
Board:g(H 1, V 1) = + 1 

CASE ELSE 

! have the value -1 
! Wh1te pieces 
! have the value + 1 
! Empty sQuares 

Board:C(H 1, V 1) = o 
END SELECT 

! have the value O 

ENDIF 
NEXT Hl 

NEXT Vl 
Redraw- = TRUE ! Flag to force drawing of board. 

I Main loop begins by drawing checkerboard 
DO 

IF Redraw-THEN 
SET PENMODE B 
FOR Vl=l TO B 

FOR Hl:l TO B 
H = H1*24 
V = V1*24 
I Draw outlines for sQuares 

SET PATTERN 6111Ck 
FRAME RECT H,V; H+25,V+25 

IF (Hl+Vl)MOD 2 = 1 THEN 
SET PATTERN Lt6f"llU 
PAINT RECT H+l,V+l; H+24,V+24 
SELECT CASE Board:g(H 1, v 1) 

CASE -1 
SET PATTERN 6r11y 

Figure 5: IF-Working Checkerboard Program. 

! Black piece 
! 



D IF D 

PAINT OVAL H+6,V+6; H+22,V+22 
SET PATTERN Black 
FRAME OVAL H+5,V+5; H+23,V+23 
PAINT OVAL H+3,V+3; H+21,V+21 

CASE +1 
SEl PATTERN BLACK 
FRAME OVAL H+5,V+5; H+23,V+23 
ERASE OVAL H+4,V+4; H+20,V+20 
FRAME OVAL H+3,V+3; H+21,V+21 

CASE ELSE 
END SELECT 

ENDIF 
NEXT HI 

! Pr1nt message telling whose move 1t is. 

-Bottom 

-Top or p1ece 
Wh1te piece 

-Bottom 

-Top of p1ece 
No p1ece 

SET GTEXTFACE I ! Boldface, 12-point Geneva font 
ERASE RECT 0,0; 240,23 ! Erase old message. 
IF WhoseMove: I THEN 

GPRINT AT 7, 14; "White's move· 
ELSE 

GPRINT AT 140, 14; "Black's move" 
ENDIF 

Redraw- = FALSE 
Redraw- flag stays false untll the next legal move 

END IF ! End or redraw block 

! Walt until mouse 1s pressed, then verify select1on to make sure 
! that the piece belongs to the player who is moving. 
DO 

HTNWAIT 
HI = MOUSEH DIV 24 
IF H 1>0 AND H 1 <9ANDV1>0ANDV1 <9 THEN 

IF BoardJg(Hl,Vl) = WhoseMove THEN EXIT 
ENDIF 

LOOP 

! If piece is legal, pick it up and drag an animated image 
! while mouse is held down. 
DO 

SET PENMODE I 0 ! Penmode XOR for an1mation 
MH = MOUSEH 
MV =MOUSEY 
FRAME OVAL MH-9,MV-9; MH+9,MV+9 

Figure 5: IF-Working Checkerboard Program (continued). 



D IF D 

FRAME OVAL MH-9,MV-9; MH+9,MV+9 
IF NOT MOUSEB-THEN EXIT 

LOOP 

! Mouse has just been released, so verify the move: 
! If move ts legal, update Boardlr: and go back and redraw. 
! If move is 1llegal, go back to beginning of loop with Redraw- FALSE 
I Make sure new position is on board 
H2 = MH DIV 24 
\12 = MV DIV 24 
IF H2>0 AND H2<9 AND \12>0 AND \12<9 THEN 

I 
I Is this a legal move? 
! Must be to a legal square ( 1 cell diagonally toward opponent) 
I ANO to an unoccupied square (Board!: cell = 0) 
Sqlega1- = (H2:H 1-1 OR H2:H 1+1) AND (\/2 = \11-WhoseMove) 
SqFree- = (Boardlr:(H2, \/2):0) 
IF Sqlegal- AND SqFree- THEN 

Boardlr:(H2,V2) = WhoseMove 
BoardS(H 1, \11 ) = 0 
WhoseMove = -WhoseMove 
Redraw- = TRUE 

ENDIF 

! OR: Is this a legal jump? 

I Add counter In new position 
I Erase counter from old position 
! Change to opponent's move 
I Go back and redraw board 

! Must be to a legal square (2 cells diagonally toward opponent) 
ANO to an unoccupied square (Boardlr: cell = 0) 

! ANO must have an opponent's piece on the square between. 
Sqlegal- = (H2:H 1 +2 OR H2=H 1-2) AND (V2=V 1-2*WhoseMove) 
SqFree- = (Board:t:(H2,V2)=0) 
HBetween = (H1+H2) DIV 2 ! Coordinates of square between 
VBetween = (Vt+V2) DIV 2 ! old and new positions 
Jumplega1- = (Boardlr:(HBetween,VBetween) = -WhoseMove) 
IF Sqlega1- AND Sqfree- AND Jumplega1- THEN 

Board%(H2,V2) = WhoseMove ! Add counter in new position 
Boardlt:(Ht,Vt) = 0 ! Erase counter in old position 
BoardS(HBetween,VBetween) = O ! Erase opponent in between 
WhoseMove = -WhoseMove ! Change to opponent's move 
Redraw- = TRUE ! Go back and redraw board 

ENDIF 
ENDIF 

LOOP 

Figure 5: IF-Working Checkerboard Program (continued). 



o IF D 

The program is a large loop, which runs once for each time a player moves 
a piece. The board is represented internally as a two-dimensional integer array, 
with both subscripts running from 1 to 8. Each cell holds a number that tells 
whether it contains a black piece ( -1), a white piece ( + 1), or no piece (0). 
Since the checkers can move only on the shaded squares, every other square 
will always be 0. 

By using + 1 and - 1 as the values of the pieces, the logic can be simplified 
considerably. A single variable is defined, called WhichColor, that tells which 
piece is moving. To check to see if the mouse is picking up a piece of the 
proper color, we can just test whether the square's array element is equal to 
WhichColor. An opponent's piece can always be referred to as - WhichColor 
(white's opponent = - 1, black's opponent = - ( - 1) = + 1 ). 

IF statements are used in two important ways in this program. First, they are 
used to test the mouse button, so that an operation can be done only while the 
button is held down. The "Press and Drag" procedure in this program is one of 
the most important techniques for programming the mouse. Most mouse pro
grams require IF statements to test the button. The techniques for programming 
the mouse are described more fully in the entry for MOUSEB: 

The other way the IF statement is used is for verifying the selections made 
with the mouse. At every stage in the process, the squares must be tested to 
see if the mouse is pointing at a valid square. When a player picks up a piece, 
for example, an IF statement must test to make sure the player is pointing at a 
square with a piece of his own color, and not at an empty square or an oppo
nent's piece. 

An even more complex test must come when the piece is released. First, the 
program must allow for the two legal ways of moving the pieces: "moving" by 
one square diagonally toward the opponent, and "jumping" by two squares 
diagonally over an opponent's piece. The tests for these two methods are sepa
rated into two IF/THEN/ENDIF blocks near the bottom of the program. 
Within each block, an IF statement tests the different relations that must hold 
for each method, and rejects the move if it is not legal. 

Note that logical assignment statements are used to simplify the IF condi
tions. Instead of having three or four relations strung together with AND 
operators, the relations are each calculated as separate Boolean variables, 
which are then combined in the IF statement. This results in more readable 
code than a single long line. 

This program needs to be improved upon before it can play a real checkers 
game. It has no provision for kings, which can move both towards and away 
from an opponent. It does not allow multiple jumps, in which a player takes 



o IF o 

~D I F-Checkerboord 

Bloclc"s move ? 

lil!I 

11111' 

~II 
Figure 6: IF-Output of Checkerboard Program. 

more than one of the opponent's pieces in a series of jumps (though that could 
be allowed simply by relaxing the requirement that alternate players move after 
each jump). And of course, the program has no strategy routines that would let 
it decide on moves by itself-that is yet another task for IF statements! 

Notes 
-You should be careful in your use of IF statements. In the course of a 

program, one frequently needs to see if a given condition exists. It is tempting 
to plunge right in and create the IF statements for each condition that you 
want to test for. But giving a few moments of thought to your program before 
you begin to code can often allow you to see the logical relationship between 
your various IF statements, and to find a clearer way to express them. For 
example, if you need to test for three conditions, and the conditions are that a 
given value is greater than, equal to, or less than, another value, you can use 
Macintosh BASIC's RELATION function (see the entry under RELATION). 

Keep in mind that an IF statement always represents a choice or decision. If 
your IF statement does not contain an ELSE, you are asking the computer to 
choose whether to perform a given action or do nothing. If your IF statement 



o IF o 

does include an ELSE, it tells the computer to choose between two positive 
actions that the program should perform. If you want the computer to choose 
one of several courses of action, the SELECT /CASE structure may be a 
clearer way of expressing the choice to be made. You cannot, however, use the 
SELECT /CASE structure if the condition to be tested for involves more than 
one variable. 

-In standard BASIC, two of the most common uses of the IF statement 
are the abbreviated GOTO forms: 

IF Condition- GOTO Line Number 

or 

IF Condition- THEN Line Number 

These two forms are not legal in Macintosh BASIC, which insists on a more 
structured IF /THEN syntax. You can duplicate these forms in Macintosh 
BASIC using: 

IF Condition- THEN GOTO Label: 

However, the variety of control structures in Macintosh BASIC should make 
it unecessary for you to use GOTO statements. 

IF/THEN-Translation Key 

Microsoft BASIC 

Applesoft BASIC 

IF/THEN/ELSE 

IF/THEN 



~l_I_G_N_O_RE_W_HE_. N __ lp 

BASIC command-turns off an asynchronous 
interrupt blocks. 

Syntax 
IGNORE WHEN 

Turns off all aysnchronous interrupt blocks up to that point. 

Description 
The IGNORE WHEN statement turns off all WHEN KBD and WHEN 

ERR blocks that are currently active in the program. New WHEN blocks can 
occur at later points in the program, and will become active when execution 
reaches them. 

If you wish to turn off interrupt blocks of only a specific type, use the 
form: 

IGNORE WHEN KBD 

or 

IGNORE WHEN ERR 

For clarity, you may also use the form 

IGNORE WHEN ERR, KBD 

to turn off all interrupt blocks. 
For more information on asynchronous interrupt blocks, see the WHEN, 

KBD, and ERR entries. 



q IL----_I_NF_IN_I_T_Y _ ___,I p 

Syntax 

Numeric constant-represents the value of 
infinity ( oo ). 

CiJ Result = INFINITY 

Sets Result equal to the value of infinity. 

~Result= oo 

Infinity can also be typed using the special symbol oo (Option-5). 

Description 
On the Macintosh, the floating-point arithmetic system includes a value for 

infinity. You can use this value either by typing the keyword INFINITY or the 
special character oo, which is typed with the Option-5 key combination. There 
is also a value for - oo. 

INFINITY is the result of any floating-point overflow. In Macintosh 
BASIC, a floating-point operation that exceeds the exponent range allowable 
for the variable's precision does not result in an error (unless you have used 
the relevant HALT set-option). Instead, it sets an EXCEPTION flag and 
stores the value INFINITY into the number. This is also true for an operation 
such as: 

Mistake = 110 

See HALT and EXCEPTION for more information on overflow conditions. 
INFINITY and - INFINITY can be even be used in calculations. The rules of 

arithmetic have been extended so that oo and - oo act like very large positive or 



o INFINITY o 

negative numbers. The following rules hold for computations involving oo: 

• oo plus or minus any finite number is oo. 

• oo plus oo and oo times oo are oo. 

• oo multiplied or divided by any positive number is oo. 

• oo multiplied or divided by any negative number is - oo. 

• Any number divided by oo is 0. 

The following operations, however, are not legal, and result in a NAN (Not a 
number) code: 

• oo minus - oo 

• oo multiplied by 0. 

• oo divided by oo or - oo 

If you print a number that has the value of oo, the output will show the 
result 

INFINITY 

instead of a number. You can type oo (but not INFINITY) as the response to a 
numeric INPUT statement. 



---j I INKEY$ I~ =-4 .......__ -------------F 

BASIC function-gets the first character in 
the keyboard buff er 

Syntax 
A$= INKEY$ 

Gets the first character in the keyboard buffer and assigns it to A$. 
If buff er is empty, assigns null string. 

Description 
The INKEY$ function reads a single character from the keyboard buffer. 

Unless used in a PRINT statement, it does not print the character on the 
screen. If the keyboard buff er is empty, the value returned by INKEY$ is 
the null string. INKEY$ does not take an argument. 

The INKEY$ function reads the buffer only at the time it is executed. If 
you want INKEY$ to read the buff er continuously, you must place it in a 
loop. If you want to save the value returned by INKEY$, you must assign 
INKEY$ to a string variable. 

Sample Programs 
One of the most common uses for the INKEY$ function is to halt the pro

gram and wait for a keypress by the user. It is handier than INPUT, because it 
. requires only a single keystroke. You may also prefer it because it does not 
place a flashing cursor on the screen or display the result. The program below 
demonstrates the technique. 



o INKEY$ o 

I INKEY$-Sample Program 
DO 

PRINT "Press any key to continue." 
DO 

A$= INKEY$ 
IF A$:1: ""THEN EXIT 

LOOP 
PRINT "Continued." 

LOOP 

The INKEY$ function is trapped inside a loop, so it scans the keyboard 
buffer continuously. If no key is pressed, INKEY$ returns the null string, and 
the loop repeats. Only when a key is pressed will INKEY$ return something 
other than the null string. At that point, the IF statement causes the program 
to exit the loop. Sample output appears in Figure 1. 

If you want to wait for a particular key to be pressed, you can modify the 
program accordingly: 

DO 
PRINT "Press Return to continue." 
DO 

A$= INKEY$ 
IF A$= CHR$(13) THEN EXIT 

LOOP 
PRINT "continued." 

LOOP 

Press any key to continue. 
Continued. 
Press any key to continue. 
Continued. 
Press any key to continue. 
Continued. 
Press any key to continue. 
Continued. 
Press any key to continue. 
Continued. 
Press any key to continue. 

Figure 1: INKEY$-Output of Sample Program. 



o INKEY$o 

Note that INKEY$ removes the first character from the keyboard buffer each 
time it is executed. Therefore, if the buffer is full, this loop will execute repeat
edly until it is empty. You can try this by pressing several keys just after you 
click Run. 

Applications 
Another use for INKEY$ is to allow a user to input a password without 

having it appear on the screen. The program in Figure 2 demonstrates this 
technique. 

At the beginning of the program, a password of six characters is estab
lished. The user is prompted to enter a password. A FOR loop allows for 
three attempts at a correct entry. Within the FOR loop, a second FOR loop 

! INKEY$-Applicetion Program 
I Gives e user three tries et entering password. 
Password$ = "SAMPLE" 
B$ = •• 
PRINT "Please enter your password." 
FOR Try = 1 TO 3 

FOR Letter = 1 TO 6 
DO 

A$= UPSHIFTSCINKEYS) ! Allow for lowercase entries 
IF A$;11"" THEN EXIT DO 

LOOP 
B$:B$&A$ I Concatenate password string 

NEXT Letter 
IF B$=Pessword$ THEN I Password accepted 

PRINT "Welcome to my program· 
EXIT 

ELSE 
IF Try<3 THEN I First two invalid entries 

PRINT "Sorry, no good." 
PRINT "Try again." 
B$ = •• 

ELSE ! Third invalid entry 
PRINT "Sorry! Password is invalid." 

END IF 
NEXT Try 

Figure 2: INKEY$-Password Program. 



o INKEY$ o 

accepts six keystrokes and concatenates them into a single string, which is 
compared with the password. The entries are accepted through the INKEY$ 
function, which is trapped in a loop as before. If a correct password is entered 
by the third try, a welcoming message is printed. Otherwise, the program 
prints a message of rejection. A sample run appears in Figure 3. 

A third common use of INKEY$ is to allow for selections from a menu by 
a single keystroke. The program shown in Figure 4 illustrates this technique. 

This program prints a menu of choices on the screen. As before, the 
INKEY$ function is trapped in a DO loop, so it will continue to scan the key
board until a key is pressed. Also in the DO loop is a SELECT /CASE struc
ture, with cases defined for all valid keys. If any of the valid keys are pressed, 
the appropriate routine will be executed. Otherwise, CASE ELSE applies. 

CASE ELSE is a null case. It simply allows the loop to repeat. Note that all 
invalid strings including the null string, are covered by this CASE, so that the 
loop will repeat when no keys are pressed or when invalid keys are pressed. 
Sampie output appear is Figure 5. 

-rn INKEYS-Password Program~ 
Please enter your password. • 
Sorry, no good. 
Try again. 
Sorry, no good. 
Try again. 
We 1 come to my program 

Figure 3: INKEY$-Output of Password Program. 



o INKEY$ o 

! INKEV$-Application Program 
! Sets up a menu with choices selected by B single keypress. 

SET 6TEXTFACE 1 ! Boldface instructions&. capitals 
6PRINT AT 7,14; "Choose by first letter." 
6PRINT AT 23,34;"A" 
6PRINT "C" 
6PRINT "D" 
6PRINT "Q" 

SET 6TEXTFACE O ! Regular text for rest of choices 
6PRINT AT 32,34; "lphabetize· 
6PRINT "ompute" 
6PRINT "elete· 
6PRINT "uil" 
SET PENPOS 7, 120 
DO 

Choice$= INKEYS 
SELECT UPSHIFTS(Choice$) 

CASE "A": 60SUB Alpha: 
CASE "C": 60SUB Compute: 
CASE "D": 60SUB Deletion: 

I UPSHIFT$ allows for lowercase 

CASE "Q": EXIT DO 
CASE ELSE ! Null case for all other keys&. no key 

END SELECT 
LOOP 
6PR I NT "Program ended" 
END MAIN 

Alpha: 
6PRINT "Alphabetizing routine chosen· 

RETURN 
Compute: 

6PRINT "Computing routine chosen· 
RETURN 
Deletion: 

6PRINT "Deletion routine chosen" 
RETURN 

Figure 4: INKEY$-Menu Program. 

Notes 
-The equivalent function in Applesoft BASIC is GET. However, in Apple

soft BASIC, the GET function halts program execution until a key is pressed, 



o INKEY$ o 

~~ INKEY$-Menu Program 

Choose by first letter. 
Alphabetize 
Compute 
Delete 
Quit 

Alph6bet1z1ng routine chosen 
Alpftabetizing routine chosen 
Delet1on routine chosen 
Program ended 

Figure 5: INKEY$-Output of Menu Program. 

• 

unlike the Macintosh BASIC INKEY$ function. Thus, GET does not have to 
be trapped in a loop. 

-When you start a program running, the keyboard buff er is automatically 
emptied. 

-The Macintosh BASIC function KBD is the inverse of INKEY$. It scans 
the keyboard and returns the ASCII value of the key pressed. See the CHR$, 
ASC, WHEN, and KBD entries for further information on the ASCII code 
and the KBD function. 

INKEY$-Translation Key 

Microsoft BASIC 

Applesoft BASIC 

INKEY$ 

GET 



---j I INPUT I t-===i .....___ -------------'· F 
BASIC command-accepts information 

entered from the keyboard. 

File attribute-sends information from file to 
program. 

Syntax 
ITJ INPUT Variablelist 

BASIC command: Accepts input from the keyboard and assigns it 
to one or more specific variables. 

~ INPUT "Prompt message"; VariableList 

BASIC command: Same as above, except displays a message 
prompting the user to enter the information. 

rn OPEN 1: "FileName" I INPUT, Format, Structure 

File attribute: Opens a disk file to be read by the program. 

Description 
The standard BASIC INPUT command instructs the computer to wait for 

data to be typed in at the keyboard. When data are entered and the carriage 
return is pressed, the computer assigns the data to the variable or variables 
specified by name in the input statement. 

ITJ INPUT Variablelist 

~ INPUT "Prompt message"; Variablelist 

The simplest form of the INPUT statement is: 

INPUT Variab/eName 



o INPUT o 

When a line of code such as this is executed, the screen displays the question
mark prompt: 

followed by a flashing insertion point. You are expected to enter data at the 
place marked by the insertion point. The data can be edited with the Back
space key until the Return key is pressed. When the Return key is pressed, the 
information entered from the keyboard is assigned to VariableName. 

If you include a prompt message in your input statement the user will have 
a much clearer understanding of what you expect. The prompt message can be 
any set of characters enclosed in quotes, followed by a comma or a semicolon: 

INPUT "Enter your last name:"; LName$ 

When this line is executed, the screen will display: 
I 

Enter your last name: 1 

Note that, when a prompt message is used, the question mark is suppressed. If 
you use a semicolon to separate the prompt from the variable name the flash
ing insertion point will appear immediately following the end of the prompt. 
If you use a comma, the insertion point will appear at the next tab stop fol
lowing the prompt. 

In principle, the variable name can be any variable name, of any data type. 
Also you are allowed to have any number of variables in a variable list, sepa
rated by commas, following the INPUT command: 

INPUT "Enter your name and employee number: ";Name$,EN 

However, practical considerations limit the number and type of variables that 
you actually use. First, it is confusing to ask for several different items of data 
in the same INPUT statement. Macintosh BASIC expects separate data items to 
be separated either by commas or by presses of the Tab key. You will therefore 
probably have to tell the user how to enter the information correctly. Moreover, 
if the user enters a comma intended as part of a data item, BASIC will interpret 
the comma as a separator between items, and you will end up with the wrong 
number of values. If the number of items entered does not match the number 
of variables in the variable list, you will get a message saying either "Too many 
values for Input list" or "Not enough values for Input list." 

When this message occurs, and you have clicked the OK or Debug button, 
the question mark prompt will be displayed, and all the items will have to be 
reentered. Therefore as a rule, it is best to ask for items one at a time: 

INPUT "Enter your last name:"; LName$ 
INPUT "Enter your employee number:"; EN 



o INPUT o 

You should also be careful with the type of variable used. Any type of data 
can be entered safely into a string variable. If you use a numeric variable, 
however, the input must be numeric, and of the same numeric type as the vari
able. If a user enters a non-integer into an integer variable, the computer will 
display an "Expected an integer" message. Boolean variables can be used for 
input, but any input other than the literal strings "true" and "false" (in any 
combination of upper- and lowercase letters) will yield an "Expected a Bool
ean" error message. 

Therefore, as a general practice, unless circumstances are such that there is 
no chance of anything but a number, it is best to use string variables as input 
variables, and to use only one per INPUT statement. With a string variable, 
you can perform tests on the input data to assure its validity, and convert the 
result to a numeric quantity with the VAL function if necessary. 

Quotation marks can present a problem in input data. While Macintosh 
BASIC will accept quotation marks embedded in the data item as part of a 
string input, it will strip off quotation marks at the beginning and end of an 
input string. If you want to allow for the use of quotation marks and commas 
in input, use the LINE INPUT statement, which accepts everything entered in 
response to the input prompt, up to the press of the Return key, as part of a 
single string variable. 

Graphically, all input statements are in the PRINT mode, rather than the 
GPRINT mode. This means that when an input statement is executed, the 
entire line on which the response is to be entered in the output window is 
cleared. This will erase any graphics that happen to be on that line. 

[J] OPEN 1: "FileName", INPUT, Format, Structure 

The INPUT file access attribute is used as part of the OPEN # statement 
that opens a channel from a program to a file. It tells BASIC that the file will 
send information to the program, and presets the file pointer to the start of 
the file, so that information will come in beginning with the first record. If 
you do not specify an access attribute, the file will automatically be an input 
file. If you do specify an access attribute, it should appear as the first attribute 
in the OPEN # statement. 

For further information, see the OPEN # entry. For a sample program with 
an INPUT file see the SEQUENTIAL entry. The two other file access attrib
utes are OUTIN and APPEND. 



Syntax 

File input command-retrieves information 
from a TEXT file. 

[j] INPUT #Channel: //0 List 

Reads the open text file on the given channel and assigns consecu
tive records to the listed variables. 

[1J LINE INPUT #Channel: Variable$ 

Description 
INPUT # is the command used to read data from TEXT files. It consists of 

the keyword INPUT #, followed optionally by a file pointer set-option (which 
tells where in the file the data reading should start), and an optional contin
gency (which specifies an action to take under certain circumstances), and one 
or more variables to which the values read from the file will be assigned in 
sequence. The variables can be of any data type, but the values will be written 
to the file as ASCII characters, regardless of type. Therefore, to avoid type 
mismatch errors, it is always safest to use string variables in the INPUT # 
statement's variable list. If you wish, you can later convert numeric values to 
their correct type by using the VAL function and assigning the result to the 
type of numeric variable you want to use. 

Fields in a text file are separated by tab stops, which are represented by 
commas in the INPUT #statement's variable list. If the INPUT statement's 
list ends in a comma, the next INPUT # statement will look for another field 
in the same record. Otherwise, it will skip to the beginning of the next record, 
which is separated from the current record by a carriage return in the file. You 



o INPUT#o 

can force your program to go on to the next record by the absence of a punc
tuation mark at the end of the last variable in an INPUT # statement. 

There is a way to read all the fields in a record into a single variable. The 
LINE INPUT # statement assigns a whole record at a time to each string vari
able, as the LINE INPUT statement does with keyboard input. If the record 
assigned to a variable does contain more than one field, printing the string value 
on the screen will show the fields separated by tab stops. For a comparison of 
INPUT # and LINE INPUT # see the sample program in the TEXT entry. 

Sample Program 
The following program will read any TEXT file, if you give it the name. 

I INPUT #-Sample Program 
SET OUTPUT ToScreen 
INPUT "Name of file to read?"; File$ 
OPEN #12: File$, INPUT, TEXT, SEQUENTIAL 
DO 

LINE INPUT #12, IF EOF" THEN EXIT: Line$ 
PRINT Line$ 

LOOP 
CLOSE #12 

The program begins by asking for a file name, which it inserts in the OPEN 
statement. Next, in the DO loop, it reads the file one record at a time, assigns 
that record to Line$, and then prints the contents of Line$ on the screen. The 
contingency condition 

IF EOF" THEN EXIT 

tells the program to stop reading if the end of the file has been reached. Figure 
1 shows a run of the program, used to read the file created by the program in 
the PRINT # entry. 

For further information, see the entries TEXT and PRINT #. Samples of 
different types of input from a TEXT file can be found in the sample program 
in the TEXT entry. 



~.._I _In_s_et_R_e_ct_/_/I_n_se_tR_gn___.I ~ 

Syntax 

Graphics toolbox commands-shrink a 
rectangle or region towards its center. 

[] TOOLBOX lnsetRect (@RectArray%(0), DH, DV) 

r2J TOOLBOX lnsetRgn (Rgn}, DH, DV) 

Shrinks a rectangle or region shape DH pixels horizontally and DV 
pixels vertically towards its center. 

Description 
InsetRect and InsetRgn are transformation operations in the Macintosh 

toolbox that let you shrink or expand a rectangle or region by a specified 
number of pixels. 

"Inset" and "offset" are sister commands. The offset commands move all 
of the edges of the shape in the same direction, so that the shape retains its 
original boundary, but at a new position. Inset, on the other hand, defines a 
new boundary, which is smaller or larger than the original shape. With the 
inset commands, the shape retains the same center as before. 

The inset commands operate only on the shapes that are defined through 
the toolbox. The rectangle command InsetRect requires a four-element rectan
gle array as an argument, a construction that must be created by the SetRect 
toolbox command. InsetRgn accepts a region handle, which is defined in an 
OpenRgn definition block. 

(Unlike the offset commands, there is no inset command for polygons. The 
reason for this omission· is rather technical, having to do with the way poly
gons are stored. The inset operations require a more complex computation 
than the offsets, which simply add a displacement to every point on the edge. 
Polygons are not stored in a way that is easily adapted to the complex inset 
calculation, so they are omitted.) 



o lnsetRect/ /lnsetRgn o 

As shown in Figures 1 and 2, the inset commands move every edge of the 
figure inward. Two integer parameters in the toolbox argument list specify the 
amount of shrinkage: DH sets the number of pixels the edges are moved left 
or right and DV sets the number of pixels up or down. If either number is 
negative, the corresponding dimension is expanded, rather than shrunk. 

InsetRect-

L~~~~~~~~~~~~ 
Figure 1: lnsetRect-Each edge of the resulting rectangle is moved toward the center. 

InsetRgn-

Figure 2: lnsetRgn-Regions are shrunk by moving each pixel individually toward the center. 



o lnsetRect/ /lnsetRgn o 

With a rectangle, the inset operation is very simple. Each edge is moved in 
one direction only and a new rectangle is defined with corners closer to the 
center. The result is the dark rectangle shown in Figure 1. 

With regions, the inset operation is more complicated, since it works from 
each pixel defining the edge. Pixels along a vertical edge are moved DH units 
horizontally inward. Pixels on a horizontal edge are moved DV units vertically 
inward. Along a diagonal edge, however, both DH and DV are used, so that 
the pixels move diagonally. 

The resulting region, shaded in Figure 2, does not have exactly the same 
shape as the original region. Both wide places and narrow places are moved 
the same distance inward. The narrow places appear to come towards the cen
ter much more quickly, because they were closer to the center to begin with. If 
the InsetRgn operation of Figure 2 were done with a slightly larger value of 
DV, the thin place in the middle of the resulting region would disappear alto
gether and the region would be split into two separate pieces. For negative val
ues of DH and DV, the region is expanded pixel by pixel in a similar way. 

If you want to shrink or expand a region without changing its shape, you 
should use the MapRgn command. MapRgn performs a mathematical trans
formation, rather than a pixel-by-pixel shrinkage, so it maintains the exact 
proportions of the region. 

If you have MacPaint, you can see the effects of an InsetRgn transforma
tion by drawing a region, marking the area around it with the dotted-line rect
angle, then choosing "Trace Edges" from the File menu. When this option is 
chosen, MacPaint automatically does a pair of InsetRgn operations-one 
inwards (with DH and DV equal to 1), and one outwards (DH and DV equal 
to -1). By repeating the "Trace Edges" command, you can get a whole series 
of InsetRgn commands toward and away from the center. Figure 3 is an 
example of a MacPaint drawing made in this way. 

Sample Programs 
The InsetRect and InsetRgn transformation operations are normally placed 

between the commands that define the shape's structure and the commands 
that paint it on the screen. Frequently, however, you may want to draw the 
rectangle or region, transform it, then draw it again. In that way, you can pro
duce two different shapes with a single shape definition-drawn first without, 
then with the transformation. 



o lnsetRect/ /lnsetRgn o 

Figure 3: lnsetRect-The Trace Edges option of MacPaint uses the inset commands to produce 
pictures such as this. 

The following sample program illustrates this use of the InsetRgn 
command: 

! lnsetRect/lnsetRgn-Sample Program 
Original} = TOOL NewRgn 
Transformed} = TOOL NewRgn 
TOOLBOX OpenRgn 

TOOLBOX MoveTo (100, 100) 
TOOLBOX LineTo (130,70) 
TOOLBOX LineTo (140,140) 
TOOLBOX LineTo (60, 140) 
TOOLBOX LineTo (70,70) 
TOOLBOX LineTo (100, 100) 

TOOLBOX CloseRgn (Original}) 
TOOLBOX FrameRgn (Original}) ! Original frame in middle 
Transformed} = Original} 
TOOLBOX lnsetRgn (Transformed}, 10, 10) 
TOOLBOX PaintRgn (Transformed}) ! Inner black region 
Transformed} = Original} 
TOOLBOX lnsetRgn (Transformed}, - 40, - 50) 
SET PENSIZE 4,4 ! 4 pixels wide 
TOOLBOX FrameRgn (Transformed}) ! Outer frame 

The program starts by creating two regions, Original} and Transformed}. The 
Original} region is then defined by the MoveTo and LineTo statements in the 



o lnsetRect/ /lnsetRgn o 

OpenRgn block, and is framed with the default pen, one pixel wide. Its struc
ture is then transferred into the other region and transformed twice-once 
inward and once outwards. After each transformation, the shape is drawn 
again-solid black for the interior region, and with a thick frame for the out
ward region. The result is a total of three regions, as shown in Figure 4. 

InsetRect and InsetRgn are used for a variety of applications. With the tool
box arc commands, for example, InsetRect is frequently used to change the 
size of the bounding rectangle. This use is illustrated in the pie-chart applica
tion program for PaintArc. 

For more information on toolbox rectangles and regions, see the entries for 
SetRect and OpenRgn. For general information on the toolbox, see the Intro
duction and the entry for TOOLBOX. 

;;;; lnsetRect-Sample Program~ 

• 
r , 

Figure 4: lnsetRect/lnsetRgn-Output of Sample 
Program. 



=-11 INT 11=-----=i ......._· _______ _,, F 

Numeric function-reduces a floating-point 
number to the next lower integer. 

Syntax 
Result = INT(X) 

Returns the greatest integer less than or equal to X. 

Description 
The INT function supplies the next lower integer that is less than or equal to 

a given real number. In the case of positive numbers, INT simply eliminates 
the fractional portion of the number. For example, the expression: 

INT(2.7) 

would result in the value 2. If the argument is itself an integer, the function 
returns that same value. 

In the case of negative numbers, the next lower integer number is further 
from zero than the argument. For example: 

INT(-2.7) 

would return the value - 3. 
Figure 1 shows a graph of the INT function. The graph consists of a series 

of discontinuous steps, because the function's result jumps from one integral 
value to the next: INT(l .99999) is 1, while INT(2.0) is 2. 

Sample Program 
Macintosh BASIC has two functions that are not found in many other dia

lects of BASIC. One, RINT, rounds the number to the nearest integer, in the 
way currently defined by the ROUND set-option. The other, TRUNC, cuts off 
the fractional part of any number, whether positive or negative. It is the same 



o INTo 

INT-Function Graph 

-7 -6 -5 -4 -3 -2 -1 

INT(X) 

5 

3 

2 

--2 

- -3 

- -4 

-5 

Figure 1: INT-Graph of the greatest integer function. 

--
-

2 3 4 5 6 7 

as INT for positive numbers, but for negative numbers, it rounds the number 
toward zero, rather than away: 

TRUNC(- 2.7) 

would return the value - 2, rather than - 3. 
The following program prints three numbers for each value of N from - 2 

to 2: 

SET TABWIDTH 60 
SET SHOWDIGITS 2 
PRINT "N","INT","RINT","TRUNC" 
FOR N=2 TO -2 STEP -0.4 

PRINT N, INT(N), RINT(N),TRUNC(N) 
NEXT N 

In the output shown in Figure 2, the zero value of N is printed as 1.3E-16, 
because of round-off errors. 

See RINT and TRUNC for descriptions of the rounding and truncation 
functions. 

• 



o INTo 

INT-Sample Program 
N INT RINT TRUNC • 
2 2 2 2 
1.6 1 2 
1.2 1 1 
.a 0 1 0 
.4 0 0 0 
1.3E-16 0 0 0 
- .4 -1 0 0 
-.a -1 -1 0 
-1.2 -2 -1 -1 
- 1.6 -2 -2 -1 
,...2 -2 -2 -1 

Figure 2: INT-The INT function compared to the 
rounding and truncation functions. 

INT-Translation Key 

Microsoft BASIC I NT 

Applesoft BASIC I NT 



Syntax 

Graphics command-changes every black 
pixel to white and every white pixel to black 

within an area. 

[] INVERT RECT H1,V1; H2,V2 

[I] INVERT OVAL H1,V1; H2,V2 
[JJ INVERT ROUNDRECT H1,V1; H2,V2 WITH H3,V3 

Inverts every pixel within a rectangle, oval, or round rectangle to its 
opposite color. 

@] Toolbox Commands 

lnvertArc 

lnvertPoly 

lnvertRgn 

These related toolbox commands perform the same operation on 
arcs, polygons, and regions. 

Description 
INVERT is one of the four graphics operators in Macintosh BASIC that 

affect the entire area of a shape (along with PAINT, ERASE, and FRAME). 
The INVERT command simply takes every pixel inside the shape and changes 
it to the opposite color: white pixels become black, and black pixels become 
white. 

INVERT is frequently used in places where large areas of the output win
dow must be changed to black. The command produces a kind of photo
graphic negative of the area it affects: the normal black lines against a white 



o INVERT o 

background are reversed into white lines on a black background. This is useful 
for many kinds of "inverse video" effects. 

ITJ INVERT RECT H1 ,V1; H2,V2 

lIJ INVERT OVAL H1,V1; H2,V2 

[J] INVERT ROUNDRECT H1 ,V1; H2,V2 WITH H3,V3 

Like the other QuickDraw shape commands, the INVERT command must 
always be given a shape to operate on. INVERT is like the verb of a sentence, 
which must always be followed by a noun that specifies which shape to invert. 

The three shapes that can be used in BASIC commands are RECT, OVAL, 
and ROUNDRECT. RECT names a rectangle (or a square when the sides are 
of equal length). OVAL represents a circle or an ellipse, and ROUNDRECT is 
a rectangle with oval corners. Figure 1 shows examples of the three shapes. 

All three shapes are defined by the points in two opposite corners of the fig
ure. With a rectangle, the defining points are on the exact corners of the rec
tangle. With ovals and round rectangles, the two points set the comers of the 
rectangle that bounds the shape. The edges of the oval or round rectangle 
would fit snugly inside this bounding rectangle. The defining points are shown 
with each of the three shapes in Figure 1. 

H 1,V 1 H 1,V 1 
• 

H2,V2 H2,V2 

RECT OVAL 

Figure 1: INVERT can be used with these three shapes. 

H 1,Vl 

H2,V2 

ROUNDRECT 



o INVERT o 

Most people follow the Macintosh convention of drawing shapes from the 
upper-left corner to the lower-right. If you want, however, you can choose any 
two opposite corners of the bounding rectangle. BASIC will adjust the coordi
nates so that the rectangle is drawn properly. 

With round rectangles, you must add a third pair of numbers, preceded by 
the keyword WITH. These two numbers determine how rounded the corners 
will be, so that you can make the rounding either sharp or gradual. If the 
numbers are small, the corners will be relatively sharp. If the numbers are 
large, the corners will be more rounded. See ROUNDRECT for further 
details. 

INVERT is the only QuickDraw graphics command that is not affected by 
the graphics pen. No matter what the settings of the graphics pen may be, 
INVERT still just takes each pixel and changes it to the opposite of what it 
was before. So the pen's set-options PATI'ERN, PENMODE, and PENSIZE 
do not play any role in this command. 

INVERT also does not move the graphics pen as it works. A PLOT or 
GPRINT command after an INVERT statement will still draw from the place 
where the pen was left by the last previous PLOT or GPRINT. 

~ Toolbox Commands 
lnvertArc 
lnvertPoly 
lnvertRgn 

Besides rectangles, ovals, and round rectangles, three other shapes-arcs, poly
gons, and regions-can also be inverted with single commands on the Macintosh. 
Arcs are wedg~like slices taken out of a circle or ellipse. Polygons and regions are 
complex figures bounded by lines that you can define in any way you wish. 
Unfortunately, however, these advanced shapes are not defined as actual BASIC 
keywords, but must be accessed through calls to toolbox routines. 

The toolbox syntax is more complicated than that of the BASIC graphics 
statements. To invert one of these advanced shapes, you must use the TOOL
BOX command to call the appropriate routine, then pass the shape's defini
tion in a series of parameters. These parameters must be set up carefully in 
previous statements of the program. 

The parameters for the InvertArc routine are the most complicated: 

TOOLBOX lnvertArc (@BoundRect%(0), StartAngle%, lncAngle%) 

The three parameters are: a four-element array containing the coordinates of 
the bounding rectangle, an integer giving the starting angle in degrees (mea
sured from the vertical}, and an integer for the angular width of the wedge. 
Arc commands are described more fully in the entry for PaintArc. 



o INVERTo 

For polygons and regions, the shapes must have been previously defmed, 
using the OpenPoly and OpenRgn toolbox routines. When you defme the pol
ygon or region, you create a handle variable that points to the defming struc
ture in the computer's memory. To invert the shape, you merely pass the 
handle as a parameter to the appropriate toolbox routine: 

TOOLBOX lnvertPoly (Poly}) 

and 

TOOLBOX lnvertRgn (Rgn}) 

Because of their complexity, these toolbox routines cannot be covered fully 
here. You will fmd short syntax summaries in the entries following this one, 
and full descriptions in other entries in this book. Arcs are described under 
PaintArc, while polygons and regions are covered under OpenPoly and 
OpenRgn-the commands used to defme those structures. 

Sample Programs 
INVERT is frequently used to change all or part of the output window to 

black. At the beginning of a program, the statement 

INVERT RECT 0,0; 241,241 

will change the entire output window to black. You can then draw white 
points against the black either by using ERASE commands or by setting the 
pattern to White. 

Another way to draw white objects on black is to invert areas of the black 
screen a second time. The following program uses the mouse to cut white cir
cles out of the blackened output window: 

I INVERT-Sample Program #1 
I Create Swiss cheese by clicking mouse. 
INVERT RECT 0,0; 241,241 
DO 

BTNWAIT 
H = MOUSEH 
V- MOUSEV 
INVERT OVAL H-10,V-10; H+lO,V+ 10 

LOOP 

! Wait for mouse click 
! Define center of white circle 



o INVERTo 

Each time through the loop, the program waits for a click of the mouse, then 
uses the position of the mouse as the center of a circle with a ra,dius of 10. 
After a number of clicks of the mouse button, the output will look like Figure 
2. Note that when two inverted circles overlap, the area in common is inverted 
a third time back to black. 

INVERT can be used for special effects. The following program inverts 
concentric round rectangles from the middle of the output window: 

I INVERl-Sample Program #2. 
FOR H = 120 TO 10 STEP -2 

INVERT ROUNDRECT H,H; 241-H,241-H WITH 50,50 
NEXTH 

Both the coordinates of the first corner are taken from the index variable of the 
loop. The same number is subtracted from 241 to give the coordinates of 
the opposite corner, so that each rectangle will be centered in the middle 
of the screen. Of course, FRAME could have been used for the same effect, but 
it would have required some extra steps. Figure 3 shows the output of this pro
gram. 

Figure 2: INVERT-Output of Sample Program #1, 
after many clicks of the mouse. 



o INVERTo 

~rn INUERT-Snmple Program #2 ~ 

• 

Figure 3: INVERT-Output of Sample Program #2 

The following sample program works in a similar way, but it calculates the 
corners of the shape from the mouse's position: 

! INVERT-Sample Program #3. 
DO 

H = MOUSEH 
V = MOUSEV 
IF MOUSES-THEN ! Invert only when mouse is down 

INVERT ROUNDRECT H,V; 241-H,241-V WITH 30,30 
ENDIF 

LOOP 

The IF block inverts the round rectangle repeatedly as long as the mouse is 
held down. By dragging the mouse around, you can create a symmetrical pic
ture like the one shown in Figure 4. This same technique is used in the Appli
cation program for MOUSEH. 

Finally, the INVERT command can be combined with PAINT to produce 
additional patterns. If you follow a PAINT command with an INVERT at the 
same coordinates, you will get the negative of the graphics pen's pattern. The 
following program for PATTERN shows how these negatives can add almost 



o INVERT o 

Figure 4: INVERT-A picture created using Sample 
Program #3. 

38 new patterns to the 38 available in BASIC: 

! INVERT-Sample Program #4. 
SET OUTPUT ToScreen 
FOR Col = 0 TO 30 STEP 10 

H = Col*12+32 
SET FONTSIZE 9 
GPRINT AT H, 12; "Pattern/Inverse" 
SET FONTSIZE 12 
FOR Row = 0 TO 9 

V = Row*24+ 16 
SET PENPOS H,V 
Pat= Row+Col 
IF Pat>37 THEN EXIT FOR 
GPRINT AT H-20,V+ 14; Pat 
SET PATTERN Pat 
PAINT RECT H,V; H+ 72,V+ 16 
INVERT RECT H+36,V; H+72,V+16 
SET PATTERN Black 
FRAME RECT H-1,V-1; H+73,V+17 

NEXT Row 
NEXT Col 

The output is shown in Figure 5. 

! Full-screen output 



PaHt?no/lro'rerse 

0 -=:=J 
~ 
2~ 3-
4~ 
s 11moom11oom1mm11 

6~ 
7 11111111110111111 
a tmi~maa 
9~ 

o INVERT o 

--------
1Nll£RT-The 38 patterns ancl their inuers;es 

PaHern / lroverse Patterro/ IroversE-

20~ 
21~ 
22~ 
23~ 24-
25~ 
26~ 
27~ 
28 ElIIITllm 
291111111111 

37~ 

• 

Figure 5: INVERT-Output of Sample Program #4, showing how the INVERT command adds additional 
patterns. 

Applications 
Like the other QuickDraw graphics commands, INVERT has a wide variety 

of applications. Some of them have been noted in the sample programs above, 
and others can be found elsewhere in this book. 

Inverse video is a useful application of the INVERT command. You may, 
for example, want to highlight a message with white letters against a black 
background. To do this, you simply print the message in normal black letters, 
then INVERT a rectangle surrounding it, turning the letters white and their 
background black. 

The program in Figure 6 creates both inverse-video and flashing text. An 
ASK PENPOS statement is used to determine the length of the lines to be 
inverted. The semicolons at the end of the GPRINT statements are important, 
because they leave the pen at the end of the line, rather than moving it down 
to the start of the next. The DO loop at the end of this program simulates the 
FLASH command of Applesoft BASIC, by inverting a rectangle every time 
the internal clock changes (once a second). In the output shown in Figure 7, 
this flashing strip is shaded gray. 



o INVERT o 

! INVERT-Application Program 

! Norrn6l, Inverse, and Flashing Text 

SET GTEXTFACE I ! Boldface 
GPRINT AT 50,50: "Normal Text"; ! Print a line of standard text 
GPRtNT AT 50,80; "Inverse-video Text"; ! A line of inverse-video 
ASK PENPOS EndH,EndV ! Get. coordinates of end of line 
INVERT RECT 47,68, EndH+3,EndV+3 
GPRINT AT 50, 11 O; "Flashing Text"; ! A line of flashing text 
ASK PENPOS EndH,EndV 
DO ! Flash once a second 

IF TIME$ ~ T$ THEN ! Do when clock seconds change 
INVERT RECT 47,98; EndH+3,EndV+3 
T$ = Tlt1E$ 

END IF 
LOOP 

Figure 6: INVERT-Application Program. 

;;ra INUERT-Rpplication Program~ 

Normal Text 

Inverse-video Text 

Figure 7: INVERT-Output of Application Program. 



o INVERT o 

Notes 
-INVERT is closely related to PAINT, one of the other shape graphics 

command verbs. Both commands act on the entire interior of the graphics 
shape, affecting every pixel inside the boundary. At the beginning of a pro
gram, both commands can be used for changing parts of the initial output 
window to black. INVERT does this by changing each pixel of the initial 
white background to the opposite color, while PAINT simply fills the shape 
with its default pattern, Black. 

You can, in fact, think of INVERT as a special form of the PAINT com
mand. If you set the pen's pattern to Black and the penmode to 10 (XOR or 
Invert), the PAINT command will act just like an INVERT. The XOR setting 
for the penmode makes the PAINT command change the black pixels under 
the shape back to white, instead of covering them with the full pattern. 
INVERT, of course, is a simpler and clearer way to express the command. 

-INVERT is not affected by PENMODE, but it can still be used in anima
tion. If you INVERT the same shape twice with exactly the same coordinates, 
the shape will disappear and the dots beneath it will return to their previous 
state. By repeatedly inverting a shape twice as you move it across the screen, 
you can display a shape that moves without permanently changing the pixels it 
passes over. Try the following program as an example: 

SET PATTERN 14 
PAINT RECT 0,0; 241,241 
FOR H = 0 TO 200 STEP 2 

INVERT OVAL H,H; H+30,H+30 
FOR Delay= 1 TO 200: NEXT Delay 
INVERT OVAL H,H; H+30,H+30 

NEXT H 

The delay loop between the two INVERT statements is necessary so that the 
shape won't disappear too fast to be seen. 

The standard technique for animation is to set the PENMODE to 10 and 
use PAINT, FRAME, and PLOT. If you want, you can combine INVERT 
commands with the other animation commands, but it is usually clearer to 
work only with PENMODE. See the entry under PENMODE for details on 
animation. 



o INVERTo 

-The coordinates that define the borders of the QuickDraw shapes are 
mathematically pure. Technically, the edges of the shapes' bounding rectangles 
are infinitely thin and run between the pixels on the screen. The inverted shape 
is therefore the set of all pixels inside this imaginary boundary. 

This mathematical nature of the coordinates becomes even more important 
if you change the scale of the coordinate axes, using the SET SCALE com
mand. Then, the integer coordinates no longer correspond exactly to particu
lar pixels, but to abstract, mathematical points. Even so, you can still use the 
INVERT command if you remember that it affects only those pixels that fall 
within the mathematical boundary of the shape. 

It would be too complicated here to discuss fully the exact relation between 
the abstract coordinates and the points on the screen. For more information, 
read the detailed notes under PLOT and RECT. For more on rescaling the 
coordinate axes, see the entry for SCALE. 

-If you are just learning about the QuickDraw shape graphics, you should 
refer to the entries for these other related commands: ERASE, Fill, FRAME, 
PAINT, RECT, OVAL, and ROUNDRECT. Read also the general discussion 
of the graphics system in the Introduction. 



Syntax 

Graphics toolbox command-changes every 
pixel within a wedge-shaped area to the 

opposite color. 

TOOLBOX lnvertArc (@BoundRect%(0), StartAngle%, lncAngle%) 

Toolbox equivalent of INVERT for arc shapes. 

Description 
Only three of the Macintosh's six shapes are defined directly in BASIC. To 

draw the other three you must call the toolbox directly. 
The arc, a wedge-shaped slice taken out of a circle or ellipse, is one of these 

toolbox shapes. It is a segment of the OVAL shape in BASIC, limited to the 
area between two angles radiating from the oval's center. 

An arc is defined by three parameters in the toolbox call. The first is a four
element integer array in which you store the coordinates of the bounding rec
tangle. The other two numbers are integers that represent the starting angle 
and the angular width, respectively. Angles are measured in degrees clockwise 
from the vertical. 

The rectangle array is the most complex part of the InvertArc call. Its four 
array elements (numbered 0 to 3) must contain the coordinates of the upper-left 
and lower-right corners of the bounding rectangle-the rectangle that would 
enclose the oval from which the arc is sliced. Before you call InvertArc, you 
must store the coordinates in the rectangle array, using the SetRect toolbox rou
tine. Then, in the toolbox call, you must pass the array as an indirect reference 
to its first element by adding an @ sign to the beginning of the name. 

Once you have defined the arc shape, however, InvertArc works just like 
the INVERT command. Every pixel inside the area of the wedge changes to 
the opposite color. InvertArc is not affected by the graphics pen's pattern, 
penmode, or pensize. 

This is only a summary of the InvertArc command. See the entry under 
PaintArc for a complete description of the arc shape. 



-----JI InvertPoly It:= 
~-------------'-F 

Syntax 

Graphics toolbox command-changes every 
pixel within a polygon-shaped area to the 

opposite color. 

TOOLBOX lnvertPoly (Poly}) 

Toolbox equivalent of INVERT for polygons. 

Description 
A polygon is an area of the screen surrounded by a series of edges. You 

must defme the edges yourself, using the toolbox routines OpenPoly and Close
Poly, before you can work with a polygon shape. 

Polygons can be inverted, but not with the BASIC INVERT command. 
Instead, you must call InvertPoly, a Macintosh toolbox routine. 

You must supply only one argument to the toolbox routine. That argument 
must be a handle variable that points to the polygon's defmition. The handle 
variable must be created in a call to the toolbox function OpenPoly, at the 
time you defme the polygon. 

Although InvertPoly is a toolbox routine, it works in the same way as 
BASIC's standard INVERT operator. All the points inside the boundary of 
the polygon are reversed to their opposite colors-black pixels become white 
and white pixels become black. InvertPoly is not affected by PATTERN, 
PENMODE, or PENSIZE. 

For complete information on defming and drawing polygons, see the entry 
for OpenPoly. 



=:::J I lnvertRgn 1 l::= 
=-1....__· -----------· F 

Syntax 

Graphics toolbox command-changes every 
pixel within a defined region to the opposite 

color. 

TOOLBOX lnvertRgn (Rgn}) 

Toolbox equivalent of INVERT for regions. 

Description 
Regions are the last and most complex of the six QuickDraw graphics 

shapes. Like a polygon, a region is an area of the screen enclosed by a closed 
boundary. Regions, however, need not be bounded by straight lines, but can 
be delimited by any closed curve. 

Regions must always be manipulated with toolbox calls. You first define the 
region that you want to work with, using the toolbox routines OpenRgn and 
CloseRgn. Then, instead of using BASIC commands such as INVERT to 
draw the shape, you call a toolbox routine such as InvertRgn, PaintRgn, 
FrameRgn, and EraseRgn. 

When you define a region, you create a handle variable, which points to the 
address where the structure is stored in the computer's memory. Then, when 
you draw the shape, you merely pass the handle as the sole argument to the 
toolbox routine: 

TOOLBOX lnvertRgn (Rgn}) 

The toolbox routine then inverts the pixels bounded by the shape, just as the 
INVERT command in BASIC does. 

See the entry under OpenRgn for a complete description of region shapes. 



==-jl KBD I~ 
==i....._· ----------F 

System function-returns the ASCII value of 
the key pressed. 

Syntax 
DJ A= KBD 

Assigns to A the ASCII value of the key most recently pressed. 

l1J WHEN KBD 

• 
• 
• 

END WHEN 

Sets up an asynchronous interrupt block executed any time a key is 
pressed. 

Description 
The KBD function returns the ASCII value of the key most recently 

pressed, expressed as a decimal number. It has no effect when the key that is 
pressed has no assigned ASCII value. It will return no value, for example, 
when the Option, Control, Shift, or Caps lock keys are pressed, unless they 
are pressed in conjunction with another key. 

For example, when the A key is pressed, KBD will return the value of 97, 
the ASCII code for lowercase A. When the Shift key is held down or the Caps 
lock toggle is on while the A key is pressed, KBD will return 65, the code for 
uppercase A. 



o KBD o 

DJ A= KBD 

The value returned by the KBD function can be assigned to a variable. If 
the A key is pressed, the variable A will hold the value 97. 

If you want the variable to hold the actual character of the key pressed, 
instead of the ASCII value, use the form: 

A$= CHR$(KBD) 

[l] WHEN KBD 

• 
• 
• 

END WHEN 

The KBD function can be used in an asynchronous interrup block set up by 
WHEN/END WHEN. Such a block will be executed only when a key is 
pressed, and every time a key is pressed-unless an IGNORE WHEN state
ment is encountered. 

The WHEN KBD block often contains a SELECT /CASE structure to 
allow for different actions to be taken when different keys are pressed. In such 
blocks, the values for each CASE must be expressed in terms of the ASCII 
values of the keys. For example: 

WHEN KBD 
SELECT KBD 

CASE 8 
CALL Help 

CASE 17 
CALL Quit 

• 
• 
• 
CASE ELSE 

END SELECT 
END WHEN 

! Control-H 

! Control-Q 

! Null case 

This block will call a help routine whenever Control-His pressed during pro
gram execution, and it will end the program if Control-Q is pressed. Any 
number of other cases could be included in the block. 



o KBD o 

Sample Program 
This sample program demonstrates an asynchronous keyboard interrupt. 

The program plots random points in the output window. The block at the 
beginning of the program simply detects whether the space bar is pressed. If it 
is pressed, the window is cleared and new points are plotted. 

! KBD-Sample Program 
WHEN KBD 

IF KBD= 32 THEN CLEARWINDOW 
END WHEN 
SET PENSIZE 2,2 
DO 

PLOT RND(240),RND(240) 
LOOP 

Sample output appears in Figure 1. 

a;O=- KBD Sample Program 
. ~ : ~ ~ - -.-. .:. .·: . . .. 

. :· ·:· .. -.·· ... · ·::=:. :. : : .... : . ~ 
·.;,·.(· :.,,·~··:=:·.=~ ~=· .:: .. : . :· ·. ~ .. ·: 

. . . ,·· . . . . . . . . 
. ··: : . : .. ~, ... ·:. ~- ~ :· : .... ·: ·: . : . . . 

~ . . . . ,. . . ... 
.. . . .. · . .: .··.- .· ·.· .· ·. 

• ,.-• • ~ • • • • • • : ~ • :. : '• ,\. "':. ' : : • • I • • •',' 

I I •1 I I : I'•':, I : ·.:. :·:' .: ·. . . . .. 
. . . . : .·• · .. ··,· .. . ·: ·.,, : ..... 

... = •• • ':" .... . 

· .. : : ... · ·.~::: ..... .-· :.;.:·. : .. 
. . . . ·. . .· · .. _.;,. 

11 I I : ':.: ::: II I I 

. · .. · .... 
· . . : .. ·.··· ..... · . . . . . . .. . . . . : 0: 

K;:i r Jlimmimm:mm:mmm:mmmmmmmrnmmmrnmrnmmmmmmma Q 121 
Figure 1: KBD-Output of Sample Program. 



o KBD o 

Notes 
-For further information on ASCII codes see the ASC and CHR$ entries. 

Full tables of ASCII codes appear in Appendix A. 

-The KBD function is the inverse of the INKEY$ function. The INKEY$ 
function returns the actual character represented by the key pressed, as a 
string value, rather than its ASCII code. 



J 
=11 Kil1Po1y I t--
===i -----------'·F 

\ 
Graphics toolbox command-deletes the 

reference to a polygon and releases its storage 
space in the memory. 

Syntax 
TOOLBOX Kill Poly (PolyName}) 

Call this routine after you're finished using a polygon, to erase its 
reference and make room in the memory for other storage. 

Description 
A polygon is stored as a dynamic structure in the computer's memory. 

Every time you add a point to the polygon's border in an OpenPoly definition 
block, you add four bytes to the length of the polygon's structure in the mem
ory. Although you use a single handle variable to ref er to this variable-length 
structure, the actual structure may be using up a significant amount of storage 
in the computer's memory. 

After you're done working with a polygon, you can recover this memory 
space by using the KillPoly toolbox routine. KillPoly erases the defined struc
ture of ~he polygon and frees up the space the definition used. 

Do not use a polygon's handle after you have called KillPoly! The handle 
will be left pointing to an address that is now being used for other purposes. If 
you try to refer to that address, you are likely to receive garbage or a system 
error. Of course, you can always create a new polygon with the same name by 
calling OpenPoly again. 

In most programs, KillPoly is unnecessary. When you close the output win
!low after you've finished running the program, BASIC removes the reference 
to the polygon handle. In some cases, the polygon itself may remain allocated, 

For more information on polygons, see the entry for OpenPoly. 



4 1 LEFf$ 1t-=1'--· --------=--------' F 

String function-returns the leftmost part of 
a string. 

Syntax 
Result$ = LEFT$(String$, Length) 

Returns the leftmost part of String$ as a string of the length speci
fied by Length. 

Description 
The LEFT$ function returns a portion of a string, when given a string 

expression and the length of the string to be returned. The string on which the 
LEFT$ function operates may be a literal string enclosed in quotes, the value 
held by a string variable, or the value of a string expression. 

For a meaningful result, the value of Length must be a number from 0 to 
32767. Length may be a constant, a variable, or an expression. 

For example: 

String$ = "Macintosh BASIC" 
PRINT LEFT$(String$,9) 

will result in 

Macintosh 

appearing in the output window. 
LEFT$ may be used in expressions with other string functions. For 

example: 

New$= LEFT$(0ld$,LEN(Old$-4)) 

will assign to New$ all but the last four characters of Old$. See also MID$ 
and RIGIIT$, which also return portions of strings. 



----11 LEN lt---===i .....__ ________ ___,, F 

Syntax 

String conversion function-returns the 
length of a string 

Result = LEN (String$) 

Returns as a value the length of the string that is its argument. 

Description 
The LEN function scans a string and determines how many characters are 

in it, returning the number of characters as a value. It counts all the charac
ters, including blank spaces. LEN may take either a literal string, enclosed in 
quotes, or a string variable, as its argument. However, it is more commonly 
used with variables, as you can determine the length of a literal string by 
counting. 

There are two principal uses for the LEN function. First, it is often used in 
conjunction with a FOR loop to step through a string one character at a time, 
to search for a given character: 

FOR I = 1 TO LEN(A$) 
IF MID$(A$,I, 1) = SearchCharacter$ THEN 

Found" =TRUE 
EXIT FOR 

END IF 
NEXT I 

You will find examples of stepping through a string in the entries FUNC
TION, MID$, DEF, and CALL, among others. 

The second common use for LEN is in formatting. If you want to format 
output so that some items appear flush right, and others are centered, you can 



o LEN o 

define an output field length, and use the LEN function to place the charac
ters accordingly. 

Outputline = 60 
PRINT TA8((60- LEN(lnput$))/2); Input$ 

This will approximately center the string stored in Input$ when it is printed. 
Because of the Macintosh's proportional spacing, however, you will not be 
able to center the strings exactly. 

LEN-Translation Key 

Microsoft BASIC LEN 

Applesoft BASIC LEN 

I 



---ii LET It-__, .___ ----------J, F 

Syntax 

BASIC command-assigns a value to a 
variable. 

[LET] VariableName = Value 

Assigns the value of the expression on the right side of the equal 
sign to the variable name on the left side. 

Description 
The LET statement assigns a value to a variable. If the variable already has 

a value, LET gives it a new value. 
The LET statement takes the form: 

LET VariableName = value 

where VariableName is a variable of any Macintosh BASIC data type. The 
value on the right side of the equal sign may be a constant, another variable, a 
function, or an expression composed of literals, variables, and/ or functions. 
The LET statement instructs the computer to evaluate whatever is on the right 
side of the equal sign, and then store the resulting value in the memory loca
tion represented by the variable name on the left side. 

An assignment statement can only be used to assign an expression of given 
type to a variable of the same type. The types in Macintosh BASIC include 
the following: 

• Numeric-integer and real (type identifiers: O/o, #, I,\, and none) 

• String (type identifier: $) 

• Boolean or logical (type identifier: - ) 



o LETo 

• Character or byte (type identifier: ©) 

• Pointers and handles (type identifiers: ] and } ) 

Each of these types has its own operators for assignment statements: see the 
Introduction for details. 

The keyword LET is optional, and in fact it is rarely used. The more com
mon form of the statement assigning a value to a variable is therefore: 

VariableName = Value 

This book follows the convention of omitting the keyword LET and using just 
the equal sign to assign values. The LET statement is often referred to as the 
assignment statement, and the equal sign in this context is the assignment 
operator. 

Here are some examples of the assignment statement 

Age= 21 

meaning, "Store the value 21 in the variable Age." 

I = J 

meaning, "Store the value of the variable J in the variable I." (The variable J 
should itself be assigned as a value before this statement is executed. This 
assignment does not affect the value of J.) 

Result = SQR(S)+Score/2 

meaning, "Evaluate the expression on the right side of the equal sign, and 
store the resulting value in the variable Result."(Score should have a value 
before this statement is executed. Execution will not affect the value of Score.) 

Except for the maximum length of a line, there is no limit to the complexity 
of the expression on the right side of the equal sign; however, there is never 
more than a single variable name on the left side. 

Notes 
-If you refer to a numeric variable that has not yet been explicitly assigned 

a value, it will automatically be given the value of 0. If you refer to a string 
variable that has not yet been assigned, it will automatically be assigned an 
empty string. If you refer to a Boolean variable that has not yet been assigned, 
it will default to FALSE. However, it is always safer to assign even these 



o LETo 

default values explicitly, just to make sure that your variables hold the proper 
values at the points in the program where you need them. 

-Numeric values of any type may be assigned to other types of numeric 
variables. They will be adjusted to a value consistent with the type of the vari
able to which they are assigned. If you assign a floating-point number to an 
integer variable, its value will be rounded to the nearest integer. For example, 
the program: 

P"lo = n 
PRINT "P"lo = "; P"lo 

will result in the output: 

P"lo = 3 

However, if you replace the first of these two statements with the statement 

P"lo = n+0.5 

the value will be rounded up to 4. 

Logical assignment statements are unfamiliar to many BASIC program
mers. The statement 

K = Ir AND (A>5) 

is perfectly valid syntax in Macintosh BASIC. Note also that the equal sign 
can act as a relational operator in a logical expression, as well as being the 
assignment operator: 

Resulr = (A = 5) 

The Boolean variable ResulC will be assigned the value TRUE if and only if 
the numeric variable A equals S. See the Introduction for details on logical 
expressions. 

- You can use the same variable names with different type identifiers with
out disrupting the execution of your program. For example, the names P, POJo, 
P\, p- , and P$, which are, respectively, real, integer, extended-precision, 
Boolean, and string variables, could all be used in the same program. None 
will be affected by the values assigned to the others. 

When found in an IF statement, the equal sign is not an assignment oper
ator, but a relational operator that tests for an identity that already exists. 



q __ I __ LI_NE_I_N_P_UT ____ ip 

Syntax 

BASIC command-accepts an entire input 
line into a single variable. 

[]LINE INPUT Variable$ 

Accepts a line of input from the keyboard and assigns it to a single 
string variable. 

(11 LINE INPUT "Prompt message"; Variable$ 

Prompts the user to enter something from the keyboard, and 
assigns the result to a single string variable. 

Description 
The LINE INPUT command is a variation on the standard INPUT com

mand. It may be used with or without a prompt. LINE INPUT does not 
include a variable list. When a LINE INPUT statement is executed, the entire 
line entered from the keyboard is assigned to a single variable as soon as the 
user presses the Return key. It is generally good practice to make the variable a 
string variable to avoid an "expected a number" error message. 

LINE INPUT should be used in place of INPUT when there is a reason to 
expect commas or quotation marks as part of the material entered, because 
the standard INPUT statement will regard commas as separators between 
input items and quotation marks as the delimiters of strings. The standard 
INPUT statement may misinterpret items containing these characters, but 
LINE INPUT will treat them correctly. 

For additional information, see the INPUT entry. 



----1 I LineTo I /Line I t--==i -------~ F 

Toolbox graphics commands-draw a line to 
a given point. 

Syntax 
DJ TOOLBOX LineTo (H,V) 

Draw a line from the current pen position to the point at the coor
dinates (H, V). 

~ TOOLBOX Line (DH,DV) 

Same, but specifies the end point by its displacement from the last 
point plotted. 

Description 
Line and LineTo are minor toolbox commands that perform the same func

tion as the PLOT command. In most cases, you will want to use the simple 
BASIC command, but there may be times when you'll want the special form 
of these toolbox calls. 

Unlike the line form of the PLOT command, these toolbox commands 
involve only one pair of coordinates. With PLOT, you need to use two pairs 
to define most lines: one for the starting point and one for the end point. 
With LineTo and Line, you name only the ending point-the line will start 
from the place where the pen was left by the last graphics command. 

LineTo is the more important of these two commands. Like PLOT, LineTo 
calculates the coordinates from the upper-left corner of the output window, or 
from the origin of the modified coordinate system you have defined with 
SET SCALE. 



o LineTo/ /Line o 

The Line command is somewhat different, because it involves a relative 
movement. With Line, you supply the coordinates in the form (DH,DV), 
which represent horizontal and vertical displacements from the last point plot
ted. To obtain the endpoint, the computer adds the relative coordinates to the 
coordinates of the starting point. If DH and DV are both positive, the line will 
move DH pixels to the right and DV pixels downward. If one of the coordi
nates is negative, it will move the pen in the opposite direction. 

The LineTo and Line commands leave the pen down when they are done, 
like PLOT statements that end with a semicolon. If you follow a LineTo with 
a PLOT statement, a line will be drawn from the end point of the LineTo line. 
Use a PLOT statement without coordinates to lift the graphics pen. 

LineTo and Line are affected somewhat differently than PLOT by the PEN
SIZE set-option. With the PLOT statement, SET PENSIZE results in an 
enlarged pen that is centered around the given coordinate. With LineTo, how
ever, an enlarged pen hangs down and to the right of the actual graphics coor
dinate. The following program segment therefore gives two distinct points: 

SET PENSIZE 40,40 
PLOT 60,60 
TOOLBOX UneTo (60,60) 

A thick line will be drawn from the PLOT coordinate diagonally downward to 
a second position that represents the LineTo coordinate, even though the two 
coordinates have the same numbers. See the entry under PENSIZE for further 
details on this discrepancy. 

All of the other graphics set-options work in the same way with LineTo and 
Line as with PLOT. LineTo draws its line in the graphics pen's current pattern, 
and in the current penmode. See PATTERN and PENMODE for details. 

One important place where you need to use LineTo instead of PLOT is in 
the block of toolbox statements used to define a region-the statements 
between an OpenRgn and a CloseRgn statement. In such a region definition 
block, PLOT commands will not work, at least not in the initial release of 
Macintosh BASIC. However, you can use the LineTo or Line commands per
fectly well in a region definition. See OpenRgn for details. 

LineTo and Line have a parallel set of commands, MoveTo and Move, 
which change the position of the pen without drawing a line. Read the entries 
under PLOT and PENPOS for a full discussion of all these commands. 



~....__I __ L_O_C_A:_T_IO_N_---JI ~ 

Syntax 

Graphics set-option-sets the screen area 
available for graphics. 

lIJ SET LOCATION Left,Bottom; Right,Top 

[11 ASK LOCATION Left,Bottom; Right,Top 

Sets or checks the area where graphics can appear on the screen. 

[JJ SET LOCATION ToWindow 

Sets the graphics clipping region equal to the size of the output 
window. 

Description 
Using the LOCATION set-option you can limit the area where graphics can 

be drawn on the screen. This clipping region, as it is called, might be a part of 
a graph, for example, that you want to limit so that it will not overrun other 
parts of the screen. 

The main purpose of LOCATION, however, is to define the box on which 
the SET SCALE set-option will work. As a rule, the LOCATION and SCALE 
set-options should be changed together, because they affect each other's set
tings. If you reduce the size of the location box, the old scale will be reduced 
to fit the dimensions of the smaller box. See SCALE for further details. 

Like SET OUTPUT, the LOCATION set-option takes four parameters, 
measured in inches: 

SET LOCATION Left, Bottom; Right, Top 



o LOCATION o 

If you merely want to set LOCATION to the current size and shape of the 
output window, give the command 

SET LOCATION ToWindow 

By default, LOCATION is set to the size of the output document, an imagi
nary 8112x11-inch paper. You can reset this default with the command 

SET LOCATION 

without any parameters. 

LOCATION-Translation Key 

Microsoft BASIC 
Applesoft BASIC 

VIEW 



4 1 LOCK I~ ___, ....___ ----------J. F 

Syntax 

Disk command-locks a file to prevent 
accidental erasure. 

LOCK FileName$ 

Sets the lock flag on the file named FileName$. 

Description 
The Macintosh, like the Apple II, maintains a lock flag on every file on the 

disk. When this flag is set, the file cannot be deleted or written over. 
This lock flag is slightly different from the lock flag available on the Finder 

(the "desktop" operating system). When BASIC locks a file, it sets a locking 
bit that cannot be unlocked by any other application or even by the Finder. 
The BASIC lock bit will not show up as a "Locked" box in the Finder's 
Getinfo box, but it will prevent the Finder from throwing the file away in the 
trash can. Use SETFILEINFO to set the Finder's own locking flag. 

In BASIC, the lock flag can be set by the LOCK command. Like the other 
disk file commands, LOCK takes a string that contains the name of the file: 

LOCK FileName$ 

If you want to specify the file with a literal name, rather than a string vari
able, enclose the file's name inside quotation marks. 

LOCK "Actual Name" 

Since Macintosh BASIC has no immediate command mode, the LOCK 
command must always be run as a program, even if it is the program's only 
statement. 

The opposite of LOCK is UNLOCK. 



=ii LoG11LoG2 
1
r 

LOGB/ /LOGPl _I ----1.____ ____ __, I 
Numeric functions-logarithm. 

Syntax 
DJ Result = LOG(X) 

Natural logarithm function, base e ( =2.71828182845904524). 

~ Result= LOGP1(X) 

Natural logarithm of X + 1. 

[II Result = LOG2(X) 

Logarithm to the base 2. 

@J Result = LOGB(X) 

Greatest integer less than or equal to the absolute value of the loga
rithm to the base 2. 

Description 
The logarithm is one of the standard functions used in mathematics and 

practical applications. Macintosh BASIC has four versions of this function, 
which evaluate logarithms to different bases and with different techniques. 

The logarithm is the inverse of the exponential function. The logarithm to 
the base A of X is defined as the number which gives back X when A is raised 
to that number as an exponent. The mathematical expression 

/ogA(X) = 8 



= 

o LOG/ /LOG2/ /LOGS/ /LOGP1 o 

is true if and only if the following relation is also true: 

X = A8 

[] Result = LOG(X) 

The most important logarithm function is LOG, which finds the natural 
logarithm of the number X. The natural logarithm is taken to the base e, an 
irrational number that has a value of 2.71828182845904524, rounded to 18 
decimal places. It is the exact inverse of the exponential function EXP, and it 
is the only logarithm function available in most other dialects of BASIC. 

As you can see from the graph shown in Figure 1, the logarithm is defined 
only for values of X greater than zero. This is because there are no real num
bers which yield 0 or a negative number when raised to an exponent. On the 
Macintosh, the logarithm of 0 yields the result - co, and the logarithm of a 
negative number yields a NAN ("not a number") code of 36. These invalid 
operations do not stop the program with an error. See INFINITY and NAN 
for details. 

-1 

LOG(X) 

3 

2 

-1 

-2 

-3 

LOG-Function Graph 

)( 
5 6 7 

Figure 1: LOG-Graph of the natural logarithm function. 

• 



o LOG/ /LOGE/ /LOGS/ /LOGP1 o 

The logarithm is negative for values of X between 0 and 1. As X 
approaches 0 from above, the logarithm becomes a very large negative num
ber; this is why it is considered to be - oo when X = 0. For values of X greater 
than 1, the logarithm is positive, but it grows slowly. Its value, however, is 
unbounded: it keeps increasing toward + oo as X becomes very large. For X 
equal to 1, the logarithm is exactly equal to 0. 

The number e may seem a strange choice for the base of the "natural" loga
rithm. In mathematics, however, the natural logarithm comes out of certain 
calculations that are so fundamental that e is considered the natural base of a 
logarithm. The value of e is not arbitrary; it is a fIXed mathematical constant, 
just liken. 

lIJ Resu It = LOG Pl (X) 

Macintosh BASIC has an alternate version of the logarithm function that 
returns the logarithm of the number (X + 1). For this version of the function, 
X can take on any value greater than -1. LOGPl(O) returns 0. 

The reason for having a LOGPl function is that the normal LOG function 
loses precision for arguments very close to 1, since even in extended precision 
the argument may be passed as a number such as 1.000000000000001. One less 
than that number is 0.000000000000001, or 1.0E-15, which can be repre
sented with a full 19 digits of accuracy following the first significant digit, 1. 
LOGPl could be applied to this number with full accuracy. 

[1] Result = LOG2(X) 

Macintosh BASIC also has a binary logarithm function, which computes 
the logarithm to the base 2. The graph of the LOG2 function looks the same 
as the graph for LOG, except that its returned values are slightly larger in 
absolute value. LOG2(1) is 0, just like the natural logarithm, and the answer 
goes to - oo for values of X close to 0. 

0J Result = LOGB(X) 

The final form of the logarithm function is LOGB, which resembles LOG2 
but returns an integer result. LOGB simply examines the binary representation 
of the floating-point number you pass and returns the absolute value of its 
binary exponent. The result is a positive integer equal to 

INT(LOG2(X)) 



o LOG/ /LOG2/ /LOGB/ /LOGP1 o 

To find the approximate decimal exponent of a floating-point number, divide 
LOGB by LOG2(10)=3.3219. 

The LOGB function is related to SCALB. 

Sample Programs 
The following program shows that the logarithm is the inverse of the 

exponential: 

! LOG-Sample Program 
SET TABWIDTH 150 
PRINT TAB(6);"X" I "LOG(X)" 
PRINT 
FOR Y°lo= -5 TO 5 

X = EXP(Y) 
Ynew = LOG(X) 
PRINT FORMAT$("###.#:fl:####";X), Ynew 

NEXTY"lo 

This program first calculates the exponential of the integer loop index-this is 
the number that appears in the first column of Figure 2. Then, it defines a 
new variable Ynew, which is given the logarithm of the exponential. The 
result, shown in the right column of Figure 2, is the same series of integers as 
the YOJo that the process started with. 

)( LOG(X) • 

.006738 

.018316 

.049787 

.135335 

.367879 
1.000000 
2.718282 
7.389056 

20.085537 
54.598150 

148.413159 

-5 
-4 
-3 
-2 
-1 
0 
1 
2 
3 
4 
5 

Figure 2: LOG-Output of sample program. 



o LOG/ /LOG2/ /LOGB/ /LOGP1 o 

Notes 
-For logarithms to a base other than e or 2, you will need to convert the 

base yourself, using the formula 

Result = LOG(X) I LOG(Base) 

You could therefore define your own function to create common logarithms 
(base 10): 

DEF Log10(X) = LOG(X)/LOG(10) 

-See EXP for information about the exponential functions. 

LOG-Translation Key 

Microsoft BASIC LOG 

Applesoft BASIC LOG 



---J I LOOP I t--==i '--· -------~ F 

Syntax 
DO 

• 

• 

• 

LOOP 

BASIC command word-marks the end of a 
DO loop. 

Description 
A LOOP statement always marks the end of a DO loop. It must always be 

used in conjunction with a matching DO statement, which executes a· sequence 
of commands repeatedly. The statements repeated are those that fall between 
the initial DO statement and the ending LOOP statement. The LOOP state
ment resembles the END statements that close other control structures in Mac
intosh BASIC. 

Omitting the LOOP statement at the end of a DO loop is a common pro
gramming error. If there is a DO statement in your program, and there is no 
corresponding LOOP statement, the DO loop will be executed once, and will 
not repeat. A LOOP statement that is not preceded by a DO statement, how
ever, will produce a "LOOP without DO" error message. 

LOOP-Translation Key 

Microsoft BASIC 

Applesoft BASIC 

WEND 



--J--M-a_l!_1Pt_/_/M-~a-pR_e_ct _ __, [--
~ MapPoly I /MapRgn F= 

Syntax 

Graphics toolbox commands-perform a 
mapping transformation on a point, 
rectangle, polygon, or region shape. 

DJ TOOLBOX MapPt (@Pt%(0), @5ourceRect%(0), @DestRect%(0)) 

Ill TOOLBOX MapRed (@Rect%(0), @SourceRect%(0),@DestRect%(0)) 

[J] TOOLBOX MapPoly (Poly}, @SourceRect%(0), @DestRect%(0)) 

0:1 TOOLBOX MapRgn (Rgn}, @SourceRect%(0), @DestRect%(0)) 

Maps a point, rectangle, polygon, or region from the coordinate 
system specified by SourceRectOJo to the new system specified by 
DestRect OJo. 

Description 
A mapping operation is a transformation of a point or object from one 

coordinate system to another. The transformation may move the object lin
early, change its proportions, or both. 

In the the Macintosh toolbox, there are mapping operations for four differ
ent types of graphics structures: points, rectangles, polgons, and regions. For 
mapping points and rectangles must be defmed as arrays, using the toolbox 
routines SetPt and SetRect. Polygons and regions are represented by handles 
pointing to a data structure in memory; these shapes are defmed by the tool
box routines OpenPoly and OpenRgn. 

All the mapping routines are defmed in terms of the relation between two 
rectangle arrays, SourceRectOJo and DestRectOJo, which also must have been 



o MapPt/ /MapRect/ /MapPoly/ /MapRgn o 

previously defined with SetRect. The computer finds what changes in propor
tions and location would be required to transform the first rectangle into the 
second one. Then it applies the same changes to the shape you give it, and 
transforms the shape into the mapped result. The rectangles are only for refer
ence: they are not themselves transformed. 

Whether the object is a point, rectangle, polygon, or region, the transfor
mation always works the same way. Every point in the boundary of the object 
is mapped onto another point in such a way that the old point bears the same 
relation to the transformed point as the source rectangle bears to the destina
tion rectangle. A group of figures mapped according to the same transf orma
tion will all have the same relative proportions, as shown in Figure 1. 

For full details on the various mapping operations, see the entries for 
SetRect, OpenPoly, and OpenRgn. The asteroids program under OpenPoly 
contains an example of a mapping transformation. 

SourceRect% 

• 

~ 
~ 

-
~ 

DestRect% 

• II 
. 
. 
. . . 
. 

Figure 1: Mapping operations are available in the toolbox for points, rectangles, polygons, and 
regions. 



==11 MIDS I~ ==i .....___ ------------F 

Syntax 

String function-extracts a portion of a 
string. 

Result$ = MID$(String$,StartPoint,Length) 

Extracts from the specified string a portion that starts at StartPoint 
andisofthespecifiedlength. 

Description 
The MIDS function returns a portion of a string, when given a string 

expression, an expression of the character at which the extracted portion 
should start, and an expression of the length of the string to be returned. The 
string on which the MIDSfunction operates may be a literal string enclosed in 
quotes, the value held by a string variable, or the value of a string expression. 

For a meaningful result, the values of StartPoint and Length should must 
be numbers in the range 0 to 32767. These arguments too may be constants, 
variables, or expressions. 

When given a string value to operate on, the MIDS function steps through 
until it reaches the character positioned at StartPoint, then the function 
extracts characters until the number of characters is equal to Length. Note 
that this process does not affect the original string unless the same variable 
name is used both for the result and for the string argument. The diagram in 
Figure 1 illustrates the operation of the MIDS function. 

In the example shown, the string stored in the variable 'ThstS is examined by 
the MIDS function, which steps through the string until it reaches the 30th 
position, and then selects 14 characters starting with the 30th. Note that the 
quotation marks are not counted as part of the string; they simply denote the 



o MID$ o 

The Action of the MIDS Function 

Test$= ··why don·t you do r1ght, 11ke some other men do?" 
- /L y J 

A----" 
Result$ = MIDS(Test$,30, 14) 

I I L 14 characters 
~ 3oth position in string 

String to be tested 

Result$ = "'some other men" 

Figure 1: The Action of the MID$ Function. 

beginning and ending points. A string can have leading or trailing spaces 
included within its quotation marks, and they will be counted as part of the 
string by all of the string functions. 

You can use the MID$ function in place of the LEFT$ function by giving it 
1 as the second argument. Similarly, you can use it in place of the RIGHT$ 
function if you substitute as the second argument LEN(Test$)- Length. The 
following statements would have the same result: 

Test$ = ''This is the string to be tested" 
Result1 $ = RIGHT$(Test$,6) 
Result2$ = MID$(Test$,LEN(Test$)- 6,6) 

After the operations, both Result!$ and Result2$ would hold the value 
"tested". This can be useful when· you have a subroutine or a user-defined 
function that involves breaking strings apart. You can then define a single sub
routine or function using MID$, and include the LEN function as part of the 
second argument in the calling statement. 

Applications 
The MID$ function is especially useful when you want to search for a char

acter in a string. The program illustrated in Figure 2 uses the MID$ function 



oMID$o 

! MID$-Application Program 
! Places last name first and replaces middle names by a single initial 

DO 
Middle-= FALSE 
INPUT "Name:"; Name$ 
GO SUD Fl ndSpace$: 
Last$ = RIGHT$(Name$,L) 
First$ = LEFT$(Name$,F-1) 
IF Middle- THEN 

NewName$ = Last$ & ", • & First$ & • • & MID$(Name$,F+ 1.1) & "." 
ELSE ! No middle names 

NewName$ = Last$ & ", " & First$ 
END IF 
PR I NT NewName$ 
PRINT 

LOOP 
END MAIN 

FindSpace$: 
N = LEN(Name$) 
FOR Place= 1 TON ! Find first space 

IF MID$(Name$,Place, 1) = .... THEN 
F =Place ! Location of first spac8 
EXIT FOR 

ENDIF 
NEXT Place 

FOR Place:N TO I STEP -1 ! Find last space 
IF MID$(Name$, Place. I) = .... THEN 
L = N-Place ! Location of last space 

EXIT FOR 
END IF 

NEXT Place 
IF F+L.eN THEN Middle- =TRUE 
RETU~N 

Figure 2: MID$-Last Name First Program. 

! If location of first and Jest 
! is not the same there is a 
! middle name. 

within a FOR loop to step through a string one character at a time, searching 
for a given character. 

This program accepts as input a name with first name first, as many middle 
names as desired, and last name last. It converts this input to a string with the 
last name first, followed by a comma, followed by the first name and a single 
middle initial. 



D MIO$ D 

The bulk of the work is accomplished by the subroutine FindSpace$:, which 
searches the name for spaces. The first FOR loop searches for the first space, 
exiting when it is found, and the second loop searches for the last space from 
the right-hand end, exiting when it is found. 

Since the value of F is the number of characters before the first space and 
the value of L is the number of characters after the last space, if the two 
added together are equal to the length of the string, they are the same space. 
In that case, there is no middle name, so the flag Middle- remains set to 
FALSE. Otherwise, it is set to TRUE. This information is used in the main 
program in an IF/THEN/ELSE block to determine which of two forms the 
final name should take. A sample run of the program appears in Figure 3. 

Notes 
See also LEFI'$ and RIGHT$, which return portions of strings. You will 

find programs under TIME$, SELECT DATE$, DEF, FUNCTION, and 
CALL that illustrate applications of MID$. 

-If the value of Length or StartPoint is a real number, it will be rounded 
to the closest integer. If the value of StartPoint is greater than the length of 
the string, the null string will be returned. If the value of Length is greater 
than the length of the string, all the characters from StartPoint to the end of 
the string will be returned, with no additional trailing spaces. 

- __ MID$-Last Name First 
Name: Bernard Marshell Richman ? 
Richman, Bernard M. 

Name: Susan Lethom 
Lethom, Susan 

Name: Howard K. FrenkHn 
Franklin, Howard K. 

Name: Federico Luis Manuel Perez 
Perez, Federico L. 

Name: Arthur J. Denton 
Denton, Arthur J. 

Figure 3: MID$-Output of Last Name First Program. 



q .___I __ MI_S_S_IN_Ci ___ I p 

Syntax 

File contingency function-determines 
whether the file pointer is pointing to an 

empty record. 

READ #Channel, IF MISSING- THEN Statement: 110 List 

Executes the given statement if the file pointer in the specified 
DATA RECSIZE tile is pointing to an empty or nonexistent record. 

Description 
MISSING- is a file contingency function used for reading random access 

DATA tiles. It returns TRUE if the tile pointer is pointing to a nonexistent or 
empty record. 

MISSING" is used in .file contingency statements as part of the tile com
mand READ#. The contingency statement follows immediately after the chan
nel number in the READ# command, separated from it by a comma. It is a 
simple IF /THEN statement directing the program to perform a specific action 
if the condition is true. The 1/0 list is one or more values (constants, vari
ables, or expressions) to be entered into the file, or one or more variables into 
which tile data will be read. The values or variables are separated by commas. 

Random access files are tiles of fixed-length, numbered records. The length 
of a record is indicated in the RECSIZE command in the OPEN # statement. 
Since the tile is set up as a series of storage segments of equal length, each 
with its own number, deleting a record simply leaves a gap in the file. Also, 
you can write a record whose record number leaves a gap between itself and 
the last record number currently in the file. Doing so creates empty records 



o MISSING-o 

between the old last record and the new record. You use the MISSING- func
tion to avoid reading these empty records: 

00 
READ #33, IF MISSING" THEN GOSUB Trap:AcctNum$, Balance 
IF ATEOr (#33) THEN EXIT 
PRINT AcctNum$, Balance 

LOOP 
CLOSE #33 

This loop sends the program to a subroutine in the event of a missing or 
empty record, and has a provision to close the file if the end is reached, to 
avoid an error condition. 

Sample Program 
The following program writes a short RECSIZE file, containing records 0 

through 4 and 10. Then it reads the records back and prints their contents on the 
screen. Each record contains two fields, an integer field that holds the account 
number, and a single-precision real field that holds the account balance. 

OPEN #1, "Extra",OUTIN, DATA, RECSIZE 12 
FORI = OT04 

I 
READ Acct%, Bah 
WRITE #1: Acct%, Ball 

NEXTI 
I 

READ Acct%, Bah 
WRITE #1, RECORD 10: Acct%, Ball 
DATA 12, 123.22, 10, 11.75, 43, 11.07 
DATA 55, 845.23, 19, 12.12, 86, 86.86 
ASK EOF #1, Last 
FOR X = 0 TO Last- 1 

READ #1, RECORD X,IF MISSING" THEN GOTO End0floop:A%,Bi 
PRINT FORMAT$("##### &###.##";X,A%,Bb 

EndOfloop: 
NEXTX 
CLOSE #1 

In a RECSIZE file, the ASK EOF statement fmds out how many records are 
in the file. It retwns a number one greater than the number of the last record. 
Therefore, 1 is subtracted from the number Last so it can be used as the fmish 
value of the FOR loop that executes the READ # and PRINT statements. 



o MISSING-o 

The MISSING- statement instructs the program what to do when an empty 
record is encountered. It will skip to the bottom of the loop without ever read
ing the missing record. The next time through the loop, X will have another 
value, so that the next record will be read. The output, shown in Figure 1, 
shows which records have been read, followed by the values found in them. 

Notes 
-MISSING- is the inverse of THERE - , which is used in WRITE # opera

tions to avoid writing over an existing record. 

-See the REWRITE # entry for a program that uses MISSING- . 

§0§ MISSING-·-sample Program ~ 
0 I 2 $123.22 • 

I 0 $11.75 
2 43 $11.07 
3 55 $845.23 
4 19 $12.12 

10 86 $66.86 

Figure 1: MISSING - -Output of Sample Program. 



Syntax 

Numeric operator-gives the integer 
remainder of an integer division. 

Result= A MOD B 

Gives the integer remainder of A divided by B, where A and B are 
rounded to the nearest integers. 

Description 
MOD represents the modulus operation, which supplies the remainder from 

the division of one integer by another. A modulo division, as it is called, sub
tracts just enough multiples of the second number (B) from the first number 
(A) so that the result is between 0 and B - 1. 

MOD is an arithmetic operator, just like the standard operators ( + - * I 
" , and DIV). It may appear as a part of any arithmetic expression. 

AMODB 

supplies the remainder of the division of A by B. For positive values of A and 
B, the result of this expression will always be an integer from 0 to (B-1). For 
negative values of A, the result is given a negative sign. For negative B, the 
result remains positive unless A is also negative. 

The seconds on a digital clock are a good analogy for the MOD operator. 
At the beginning of every minute, the seconds are reset to 0. They then count 
upward until the second numbered 59. At that point, the numbers reset to 0 
rather than counting on past 60. 

If N were a counter variable that was changed once every second, you could 
write the seconds as follows: 

Seconds = N MOD 60 



oMODo 

When N passes 59, the MOD operation will simply reduce it to its remainder 
in the range between 0 and 59, inclusive. The Seconds variable will thereafter 
be on a continuous cycle from 0 to 59, and will never pass 60. (In Macintosh 
BASIC, of course, you can get the time simply by using the system function 
TIME$, or by opening the Alarm Clock desk accessory.) 

MOD is an integer operation, which rounds its operands into whole ntim
bers before it performs its operation. This means that the following MOD 
operations will all give the integer result 3, even though their actual remainders 
vary considerably: 

23MOD10 
23.39 MOD 9.51 
22.51 MOD 10.39 

The MOD operator can only work on numbers within the allowable range for 
integers: 

-32768 ~ N ~ + 32767 

Any MOD operand outside of this range will give the error message, "Integer 
overflow." A program that needs a remainder of values beyond these limits 
should use the REMAINDER function. 

Sample Program 
The following sample program prints the results of the MOD operation for 

A from 0 to 12, and B from 2 to 5: 

I MOD-Sample Program 
SET TABWIDTH 50 
PRINT "N MOD 2 MOD 3 MOD 4 MOD 5" 
FOR N=O TO 12 

PRINT N, N MOD 2, N MOD 3, N MOD 4, N MOD 5 
NEXT N 
PLOT 0, 15; 241, 15 I Horizontal line 
PLOT 30,0; 30,241 ! Vertical line 

The results are shown in Figure 1. 

Applications 
The MOD operator is used in many arithmetic operations, especially opera

tions that are intended to repeat after a certain number of times. You could, 



oMODo 

~~ MOD Sample Program 
N MOD 2 MOD 3 MOD 4 MOD 5 • 
0 0 0 0 0 ~ 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

0 

0 
1 
0 

0 
1 
0 
1 
0 

2 
0 
1 
2 
0 

2 
0 

2 
0 

1 
2 
3 
0 

2 
3 
0 

2 
3 
0 

2 
3 
4 
0 
1 
2 
3 
4 
0 
1 
2 

!2t mmm:mmmmmmmmmm~mm:m:mm:mmmmmmmm:mmm:~12J121 
Figure 1: MOD-Output of sample program. 

for example, execute a subroutine after every tenth time through a loop: 

IF Counter MOD 10 = 0 THEN GOSUB DoSomething: 

By testing a number modulo 2, you can see whether it is even or odd: 

IF N MOD 2 = 0 THEN PRINT "Even" ELSE PRINT "Odd" 

This technique is used in the checkerboard program found in the entries for 
RECT and IF; it determines which squares should be shaded and which 
should be left white. 

Notes 
-The MOD operation is not available in other dialects of BASIC. It can 

often be replaced by the following expression: 

Result = A - B * INT(A/B) 

For positive integers, this expression is equivalent to A MOD B. 

-MOD is closely related to the REMAINDER library function in Macin
tosh BASIC. REMAINDER also computes the remainder of A/B, but it uses 



oMODo 

real numbers and returns a floating-point result. REMAINDER can therefore 
be used for large numbers and non-integer values that cannot be handled with 
MOD. Unlike MOD, REMAINDER has the syntax of a function: 

Result= REMAINDER(A,B) 

See REMAINDER for more information on these two operations. 

MOD-Translation Key 

Microsoft BASIC 
Applesoft BASIC 

MOD 

MOD 



Syntax 

Boolean system function-indicates to the 
program when the mouse button is being 

pressed. 

ITJ s- = MOUSER'" 

Function returns TRUE when the mouse button is down, FALSE 
when the button is up. 

[l] IF MOUSER-THEN ... 

The most common form of the function-checks the mouse button 
and executes a block of statements only when the button is down. 

aJ B =MOUSER 

Same as rn I but returns a numeric value: 1 when the button is 
down, 0 when it is up. 

@J BTNWAIT 

A related command: instructs the program to wait at this statement 
until the mouse button is pressed inside the output window, then to 
proceed with the remaining commands. 

Description 
The mouse is one of the most important parts of the Macintosh system. It 

is a pointing device that can be used as an alternative to the keyboard com
mands to move a cursor quickly and accurately across the screen. 



o MOUSEB-o 

The mouse also has a single I?utton, which in most application programs is 
used to trigger an appropriate action. Macintosh BASIC itself uses the mouse 
to open and close windows, pull down menus, and edit the programs in the 
text window. 

The MOUSES- function lets you read the pressing of the mouse button 
into your own programs. By making commands conditional on the logical 
value returned by this function, you make your programs respond to presses 
of the mouse. 

The programming techniques described in this entry allow you to use the 
mouse in three different ways. You can click it down and up to trigger a single 
action. You can hold it down and keep an action running until you let it up. 
You can drag an object by pressing the mouse down on it and holding the but
ton while you move the object. And fmally, you can double-click-two clicks 
of the mouse within a short time interval. 

ITJ s- = MOUSEB'" 
MOUSES- is Macintosh BASIC's primary tool for using the mouse button. 

It is a system function that always returns the current state of the button. Like 
most system functions, MOUSES- takes no arguments but merely returns a 
value. 

You can think of MOUSES- as a logical indicator light tied directly to the 
mechanical button on the mouse. Whenever the mechanical button is pressed 
down, MOUSES- holds the value TRUE. When the button is up, MOUSE
S- is FALSE. The link between the mechanical switch and the function's value 
is instantaneous. 

As indicated by the tilde at the end of its name, MOUSES- is a logical or 
Boolean function. A logical function can have only two values: TRUE and 
FALSE. It can be used either in logical assignment statements or as the condi
tion of an IF statement. 

The syntax form above is a logical assignment statement that gives whatever 
value MOUSES- has to the Boolean variable B- . This is only the simplest 
example of how the function's logical value can be used in an assignment 
statement. The following statements would also be legal: . 

ButtonAndFlagr = MOUSEB- AND Flagr 

Flags- = MOUSER- OR (A>S) 

Up- = NOT MOUSElr 



o MOUSEB-o 

The last of these examples gives the logical variable Up- the value opposite to 
that being returned by MOUSEB- : when the button is up, Up- will hold the 
value TRUE; when the button is down, Up- will be FALSE. The new variable 
can then be used in later logical assignment or IF statements. 

Logical assignment statements are confusing to many people, so it's best to 
keep them simple. The form 

s- = MOUSEB-

is all that will be needed in most programs. See the Introduction and the entry 
under LET for more information on Boolean variables and logical assignment 
statements. 

[l] IF MOUSER-THEN ... 

Usually when you press the mouse button, it is for the purpose of triggering 
some action. In your programs, then, you will want to write a test that detects 
when the mouse button is down, and executes a block of statements when it is. 

To create such a detector, you simply use the MOUSE~ function in an IF 
statement. Usually, you will simply want to perform a statement or a block of 
statements only if the button is down. To do this, introduce the block with the 
IF statement 

IF MOUSER- THEN ••. 

You can use either the single-line or the multiple-line form of the IF statement, 
depending on how complex the action is that you are ordering. 

If you want an action performed only when the mouse button is up, you 
will have to test the inverse of the MOUSE~ function: 

IF NOT MOUSER- THEN •.• 

The THEN block of this statement will be executed only if the button is not 
down. 

If you are accustomed to the IF statements of other dialects of BASIC, you 
may be confused by this logical test. In traditional forms of BASIC, the IF 
statement is used only to compare numeric values, in a form such as this: 

IF A> B THEN ••• 

In Macintosh BASIC, the IF statement is considered to be reacting directly to 
a logical value of TRUE or FALSE. Numeric comparisons such as A>B are 
treated as special cases of the more general concept of the logical expression: 
if the relation is true, A> B evaluates to the logical value TRUE, and the 
THEN block is executed. The Boolean function MOUSEB- is just another 



o MOUSEB-o 

type of logical expression accepted by the IF statement-one that tests whether 
a button is down rather than whether one number is greater than another. See 
the entry under IF for a complete discussion of logical expressions. 

[J] B =MOUSED 

For those who really want to avoid logical variables, BASIC also recognizes 
a numeric form of the MOUSEB- function. Written without a tilde, 
MOUSEB becomes a numeric function that returns a value 1 or 0. 

The numeric form of the function works the same way as the logical form. 
The value 1 is like the logical function's TRUE, indicates that the mouse but
ton is being pressed down. The value 0 is equivalent to FALSE, and shows 
that the mouse button is up. 

The numeric value can be used just like any number. You can assign it to a 
numeric variable: 

B =MOUSER 

You can also use it in the condition of an IF statement, like this: 

IF MOUSER = 1 THEN ••• 

The THEN block of this statement will be executed only if the mouse button 
is down. This statement is functionally identical to the logical form described 
above: 

IF MOUSER- THEN ••• 

The Boolean form of the MOUSEB"" function is generally simpler, but you 
may use either according to your preference. 

0J BTNWAIT 

Macintosh BASIC has another command that involves the mouse button: 
BTNWAIT. While at first glance the two might seem to have the same pur
pose, they actually complement each other. Since the two commands are often 
used together, this entry will treat them both. 

BTNWAIT tells the program to stop and not go on until you press the 
mouse button. When the program comes to this statement, it halts and dis
plays a question-mark icon in the upper-right corner of the output window. 
Then, when you click the mouse inside the output window, the program con
tinues with the statements that follow. 

Although they both deal with the mouse button, MOUSEB- and 
BTNWAIT are very different. For one thing, BTNWAIT is a command, not a 



o MOUSEB-o 

function, so it does not return a value. Also, BTNWAIT reacts to the mouse 
button only if it is pressed inside the program's output window, whereas 
MOUSEB- registers a mouse press anywhere on the screen. 

Most importantly, the two commands actually react to different things. 
MOUSE~ continuously monitors the ongoing up-or-down state of the mouse 
button, and reports it down· for as long as it is down, up for as long as it is 
up. It is the function you will need if you want to trigger an activity that con
tinues for as long as the mouse is being held down and stops when it is let up. 
BTNWAIT, on the other hand, responds to the action of pressing the button 
down. BTNWAIT detects only the switch from up to down, not the state of 
being down. If the mouse is already down when the program encounters a 
BTNWAIT, the program will wait until the button is released and then pressed 
again. And BTNWAIT affords no way of checking when the button is let up. 

Mouse Programming Techniques 
The mouse is one of the most important features of many Macintosh pro

grams, and also one of the least familiar. One of the most complex parts of 
any interactive graphics program is making the mouse button act cleanly and 
naturally. This description will therefore end with a summary of the most 
important techniques for programming the mouse. 

You might think that the mouse button is simple: it's either up or down, 
right? In fact, there are many different ways you may want to detect the mouse 
button. Two of these have been mentioned above: a simple MOUSE~ 
tests whether the mouse is down, and a BTNWAIT responds to the act of press
ing the mouse down. 

There are many other ways you might want to detect the mouse in your pro
grams. These are just a few: 

• Wait until the mouse is pressed, then run continually until the button is 
released. 

• Perform some action each time the mouse is clicked, without holding 
up the program with a BTNWAIT. 

• Wait for the mouse to be pressed, then pick up an object and drag it 
around the screen until the mouse is released. 

• Detect a double-click (two clicks within a short time interval). 

While these differences may seem subtle, they are the keys to making a mouse 
program smooth and natural. 



o MOUSEB-o 

Most mouse programs are structured as an endless loop, with a DO state
ment near the beginning of the program and a LOOP statement at the end. 
Each time through the loop, the program tests the mouse button and takes 
some appropriate action. If the loop is short enough, it will be able to test the 
mouse many times a second and respond instantly to any change in state. This 
polling loop is the basis of all interactive programming. 

There are many different programming techniques you can use for testing 
the mouse button inside the polling loop. Each will produce a slightly different 
result and be best adapted for a certain type of program. 

What follows is a summary of six basic types of mouse program logic. Each 
of the six contains a general template, which you can use in structuring your 
programs. After the end of these summaries, the Sample Programs section 
gives examples of the four simplest types. 

Type 1: Do something once each time the mouse is pressed. You want a pro
gram that will repeat a single action over and over, but you want it to act only 
once each time the mouse is pressed. 

This one is simple. You just insert a BTNWAIT at the beginning of the 
loop, so that the program stops and waits for you to click the mouse: 

DO 
BTNWAIT 

• 
• 
• 

LOOP 

The BTNWAIT acts as a barrier that lets the program go through only one 
pass for each time the mouse is clicked. 

Type 2: Wait until the mouse is pressed, then run continually until the button 
is released. Sometimes you want a program that will loop repeatedly when
ever the mouse is down, and pause when the mouse is up. A simple 
BTNWAIT will not do, because that stops the program to wait for a click 
each time through the loop even if the button is still held down. 

There is an easy way to solve this problem. Add an IF statement so that the 
BTNWAIT is encountered only when the mouse is up: 

DO 
IF NOT MOUSED- THEN BTNWAIT 

• 
• 
• 

LOOP 



o MOUSEB-o 

When the mouse button is up, MOUSEB- is FALSE and the program 
encounters the BTNWAIT. Then, when the mouse is pressed, the BTNWAIT 
releases the program and the block of the loop is executed. Then, each time 
through the loop for as long as the button is held down, the IF statement will 
evaluate NOT MOUSE:S- as FALSE, ignore the BTNWAIT, and go straight 
on through the loop. Finally, when the mouse is released, the loop will stop 
and the program will wait again. 

Type 3: Do one thing while the mouse is down, another while the mouse is 
up. Another common type of program logic is the "down-or-up" decision. 
Often, you may want your programs to choose between two sets of com
mands, depending on whether the mouse is currently down or up. 

For this, you merely test the MOUSEB-function, using an IF/THEN/ 
ELSE block: 

00 
IF MOUSER- THEN 

! Do this block when mouse is down 

• 
• 
• 

ELSE 
! Do this when mouse is up 

• 
• 
• 

END IF 
LOOP 

Each time through this loop, the program will execute one or the other of the 
blocks, depending on the state of the mouse button. 

This third form is so general that it encompasses many of the other forms. 
If, for example, you use a BTNWAIT command as the ELSE block, the struc
ture becomes equivalent to Type 2. Dogmatic structured programmers might, 
in fact, pref er it, though it usually looks more cluttered. 

Type 4: Perform an action each time the mouse is clicked. In many pro
grams, you may need to detect a mouse-down event-the act of pressing the 
mouse down. The simple BTNWAIT of Type 1 works well as long as you can 
stop the rest of the program to wait for the mouse press. Often, though, you 
can not stop the whole program to wait while the mouse is up. (Think of the 
fire button in an ongoing video game, for example.) You need a way to detect 
the press of the mouse button on each pass through the polling loop. This can 



o MOUSEB-o 

be done by detecting the transition of MOUSEB- from FALSE to TRUE, 
meaning that the button has shifted from up to down. 

The following structure uses two logical variables, a- and OldB-, to hold 
the current and previous values of MOUSEB- , so that the IF statement can 
detect any change of the mouse button's state: 

Olds- = MOUSER"" 
DO 

S- =MOUSER"" 
IF S- AND NOT Olds- THEN 

! Do this whenever there is a mouse-down event. 
• 
• 
• 

END IF 
Olds- = S-

I Main block of loop-done in every case . 

• 
• 
• 

LOOP 

Type 5: Pick up an object when the mouse is pressed, drag it while the button 
is held down, then do something else when the button is released. The "press 
and drag" is one of the standard tricks of Macintosh graphics. In MacPaint, 
for example, you draw a rectangle by pressing the mouse where you want the 
object to begin, then holding the button down while you drag the other corner 
to where you want it to be. When you have the shape positioned where you 
want it, you release the button and it becomes part of the picture. 

This is the structure needed for the working checkerboard program, shown 
as the application program for IE To move a piece on the checkerboard, you 
must first press the mouse down to pick up the piece you want to move. Then, 
while you hold the mouse button, you drag the piece to the new square. 
Finally, when you release the button, the move is verified and the piece is 
dropped on the square. 

To write a program of this sort, you need to separate the procedure into 
three parts. First, you need a BTNWAIT at the beginning of the polling loop 
to detect the initial press of the mouse. Then, in the second part, you must 
have a DO/LOOP which will do the work of dragging the object. Finally, an 
EXIT condition lets the program continue with the third part of the procedure 



o MOUSEB-o 

when the mouse is released. The following structure will work for most pro
grams of this sort: 

DO 
BTNWAIT 

! Part 1-Pick up piece 

• 
• 
• 

DO 
IF NOT MOUSER- THEN EXIT 
! Part 2-Drag while mouse is down 

• 
• 
• 

LOOP 
! Part 3-Drop piece when mouse is released 

• 
• 
• 

LOOP 

The three parts of this loop will be executed each time the button is pressed. 

Part 6: Detect a double-click. The double-click is one of the most useful 
tricks for programming the Macintosh. Many commercial application pro
grams let you give a special meaning to two fast clicks of the mouse. For 
example, if you double-click a word in MacWrite or in the BASIC text win
dow, the whole word will be highlighted immediately, so that you can delete, 
cut, or change it. By writing double-click detectors into your programs, you 
can have the mouse-click trigger two different sets of commands, depending 
on whether it was a single- or double-click. 

To detect a double-click, you must use the TICKCOUNT function to obtain 
values from the system clock. The TICKCOUNT is an integer that is incre
mented every sixtieth of a second. A simple way to define a double-click is to 
say that it occurs whenever the mouse is clicked twice within 20 tickcounts, or 
about a third of a second. (Most commercial Macintosh software uses a more 
complex double-click that is determined by the setting of the control panel 
desk accessory. BASIC does not have access to the control panel.) 



o MOUSEB-o 

The program structure for a double-click detector is an adaptation of the 
single-click structure of Type 4: 

OldTick = 0 
OldB- = MOUSEB-
00 

s- = MOUSEB-
IF B- AND NOT OldB- THEN 

Tick= TICKCOUNT 
IF Tick-OldTick < 20 THEN 

! Double-click detected . 
• 
• 
• 

ELSE 
! Only a single click . 

• 
• 
• 

OldTick = Tick 
END IF 

END IF 
Olds- = B"' 

LOOP 

Sample Programs 
The six programming structures described above are used in mouse pro

grams throughout this book. In some complex cases, you may need to com
bine several of these forms in a single program. For example, the application 
program for this entry uses elements of types 2, 4, and 6 to detect holding, 
clicking, and double-clicking. 

The sample programs below illustrate the concepts of the three simpler tech
niques. The others are used in the application program of this entry and in 
many other programs in this book. For an example of technique number 5 
("press and drag"), see the working checkerboard program under IF and the 
"rubber-band lines" application program for MOUSEH. 



o MOUSEB-o 

The first technique, a simple BTNWAIT at the start of a loop, is used to do 
something after every click of the mouse. The following program draws a 
series of lines: 

! MOUSES--Sample Program #1 
DO 

BTNWAIT 
PLOT MOUSEH,MOUSEV; 

LOOP 

The first time you press the button, the PLOT statement will produce an iso
lated point at the position of the mouse. Then, each time you click the mouse, 
a line will be drawn from the mouse's old position to its new one. By clicking 
the mouse around the screen, you can draw a series of connected lines, as in 
Figure 2. 

It is usually more natural to draw the actual curving trail of the mouse, 
rather than clicking for straight lines. The following program uses the second 

~O~ Mousrn~-somple Program #1 § 
? 

Figure 2: MOUSES-- The simplest mouse button 
technique involves the BTNWAIT com
mand. 



o MOUSEB-o 

mouse programming technique to have the PLOT statement draw continu
ously while the mouse is down, then wait while the mouse is up: 

! Mousrn--Sample Program #2 
DO 

IF NOT MOUSER- THEN BTNWAIT 
PLOT MOUSEH,MOUSEV; 

LOOP 

The pen then draws a continuous trail as long as the mouse is down. When 
the mouse is released, the pen does not draw, but waits for the mouse to be 
pressed again. As soon as that happens, the pen draws a straight line to the 
mouse's new position and continues its drawing. Figure 3 shows a drawing 
made with this program. 

In this case, it would be simpler to use the third mouse technique: 

! MOUSEB--Sample Program #2 (Modified) 
DO 

IF MOUSER- THEN PLOT MOUSEH,MOUSEV; 
LOOP 

This loop draws whenever the mouse is down, and runs idle when the mouse 
is up. In more complex structures, however, the BTNWAIT produces cleaner 
code. 

D MOUSEB--Sample Program #2 ~ 
? 

Figure 3: MOUSEB--Output of Sample Program #2. 



o MOUSEB-o 

The following program illustrates the third type of mouse program, which 
uses an IF/THEN/ELSE to do one thing while the button is down and 
another while the button is up: 

! MOUSEB--Sample Program #3 
00 

IF MOUSER- THEN 
INVERT RECT 0,0; MOUSEH,MOUSEV 

ELSE 
ERASE RECT 0,0; MOUSEH,MOUSEV 

END IF 
LOOP 

In this case, the program constantly inverts a rectangle from the upper-left 
corner of the output window to the mouse coordinates, as long as you hold 
the button down. Then, when you release the button, the program runs the 
ERASE command in the ELSE block. The picture in Figure 4 was produced 
by drawing and erasing through progressively smaller regions toward the 
upper-left corner of the window. 

The tradition in Macintosh programming is to draw with the mouse when
ever the button is down, and to do nothing while the mouse is up. Programs 
like MacPaint generally don't do any drawing while the mouse is up, since 

Figure 4: MOUSEB--A drawing made with Sample 
Program #3. 



o MOUSEB-o 

people are used to pressing a pen down to draw and lifting it to move. Mouse
up drawing commands such as the ERASE in the above program are generally 
frowned upon, since they are slightly confusing to use. They can help, though, 
when you want to write a simple two-purpose programs such as this one. 

Applications 
The mouse is one of the most useful parts of the Macintosh. It is an ideal 

tool for any type of interactive graphics or drawing. Many of the graphics 
programs in this book use the mouse. 

The application program in Figure 5 is an elaboration of the third sample 
program above, using ovals instead of rectangles. Instead of being limited to a 
choice of two commands, this program lets you draw ovals with any of five 
different shape command verbs: ERASE, FRAME, INVERT, PAINT, and 
PAINT with a black line around the edge. Whatever the verb, the shape is 
drawn only when the button is down. 

! MOUSEB--Application Program 

! Icon-driven ovals program. 

! Set output window to full screen size 
SET OUTPUT 0.01, 4.5; 6.86, 0.51 

! Draw icons along left side of window. 
FOR WhichBox = 1 TO 5 

V = (WhichBo>i-1 )*24 
SET PATTERN Black 
FRAME RECT O,V; 25,V+25 
SELECT WhichBox 

CASE 1 
FRAME RECT 5,V+5; 20,V+20 

CASE 2 
FRAME OVAL 4,V+6; 21,V+19 

CASE 3 
PAINT DYAL 4,V+6; 21,V+19 
INVERT RECT 11,V+6; 14,V+19 

Figure 5: MOUSEB--Application Program. 

Draw edges of box 
Draw icon 
1 =ERASE 

Square box (MacPaint eraser) 
2 =FRAME 

Round frame 
3 =INVERT 

Black circle, 
with stripe 



o MOUSEB-o 

CASE 4 
SET PATTERN Gray 
PAINT OVAL 4,V+6; 21,V+19 

CASE 5 
FRAME OVAL 4,V+6; 21,V+19 
SET PATTERN Gray 
PAINT OVAL 5,V+7; 20,V+ 18 

END SELECT 

! 4 = PAINT elone 
I Grey-f11led circle 

with no freme 
! 5 = PAINT with FRAME 
I Bleck circuler freme 
I eround e 

grey-filled circle 

NEXT Whi chBox 

Verb= 3 ! Stert with INVERT commend 
! Highlight icon INVERT RECT 1,49; 24,72 

SET PATTERN Black 
FRAME RECT 0, 168; 25, 193 
Pet= Gray 

! Drew freme for pettern bo>e 
! et WhichBox position 6 

SET PATTERN Pet 
! lnitiel pettern, chenge with double-click 
! Fill pattern box with current pattern 

PAINT RECT 1,169; 24,192 

OldTick = O 
OldB- = MOUSEB-
00 ! Beginning of mouse polling loop. 

a-= MOUSEB
H = MOUSEH 
V =MOUSEY 
IF H>26 THEN 

IF a-THEN 
! Drew in picture or select new icon? 

SELECT CASE Verb 
CASE 1 

I Mouse is down in the drawing area. 
! Execute the appropriate commend 

ERASE OVAL 27,0; MOUSEH,MOUSEV 
CASE 2 

SET PATTERN 81aclc 
FRAME OVAL 27,0; MOUSEH,MOUSEV 

CASE 3 
INVERT OVAL 27,0; MOUSEH,MOUSEY 

CASE 4 
SET PATTERN Pat 
PAINT DYAL 27,0; MOUSEH,MOUSEV 

CASE 5 
SET PATTERN 81aclc 
FRAME OVAL 27,0; MOUSEH,MOUSEV 
SET PATTERN Pet 

! 1 =ERASE 

12 =FRAME 

13 =INVERT 

! 4 = PAINT alone 

! 5 = PAINT + FRAME 

PAINT OVAL 27, 1; MOUSEH-1,MOUSEV-1 

Figure 5: MOUSEB--Application Program (continued). 



o MOUSEB-o 

CASE ELSE ! Error 
END SELECT 

ENDIF 
ELSE ! Mouse is in icon-selection eree 

IF s- AND NOT OldB- THEN ! Click of some kind detected 
WhichBox = INT(V/24) + 1 
Tick= TICKCOUNT 
IF Tick-OldTick < 30 THEN I Double-click detected 

SELECT CASE WhichBox 
CASE 1 ! On ERASE= clear window. 

ERASE RECT 25,0; 500,320 ! (but don't erase icons) 
CASE 4, 5, B ! On PAINT or pattern box 

Pet = Pet+ 1 ! = change pet tern. 
IF Pet>37 THEN P8t=0 
SET PATTERN Pet (F111 pattern box w1th 
PAINT RECT 1, 169; 24, 192 ! new pettern) 

CASE ELSE ! All other cases, do nothing. 
END SELECT 

ELSE ! Single click= new verb 
IF WhichBoxiO AND WttichBoxs:S THEN ! Chenge 

INVERT RECT 1,24*(Verb-1)+1; 24,24*Verb ! old icon, 
Verb= WhichBox ! verb, 
INVERT RECT 1,24*(Verb-1)+1; 24,24*Verb ! new icon 

ENDIF 
OldTick =Tick 

ENDIF 
ENDIF 
OldB- = B'·· 

! Reset tick counter 

END IF 
LOOP 

Figure 5: MOUSEB--Application Program (continued). 

Along the left edge of the output window is a series of icons, modeled after 
those in MacPaint. To select one of the five verbs, you click the mouse on the 
box that corresponds to it. The program then detects this selection, changes the 
icons, and uses the new command verb in its future commands. By drawing 
with different commands, you can produce a picture like the one in Figure 6. 

A double-click detector allows you to give some special commands. By 
double-clicking the ERASE icon (a square box, like the eraser in MacPaint), 
you can clear the entire screen. Also, you can change the pattern by double
clicking either in one of the PAINT boxes or in one of the pattern templates 
below the icons. 



o MOUSEB-o 

Figure 6: MOUSES--A drawing made with the icon-driven Application Program. 

Mouse programs such as this one do require some work: much of the pro
gram is devoted to the task of detecting the mouse clicks and readjusting the 
icons. But the benefits of using the mouse are substantial. This program is 
extremely easy to use, and requires almost no instructions. MacPaint it ain't, 
but it's a start along the way. 

Notes 
-Don't assume that MOUSEB-will always have the same value from one 

statement to the next in a program. It is quite possible for the button to be 
pressed or released in the instant between an earlier command and a later one. 
In the following program, for instance, one might think that one and only one 
of the two IF statements could be executed: 

IF MOUSER- THEN PRINT "Mouse is down" 
IF NOT MOUSED- THEN PRINT "Mouse is up" 

It could happen, however, that both statements or neither might be executed 
on some occasions. 



o MOUSEB-o 

In this short program, the chances of such a change of state are small. In 
longer loops, however, a change can be quite likely, leading to a number of 
odd bugs. A better way to design the program is to set a logical variable equal 
to MOUSEB - at the beginning, then use that fixed value as the state of the 
button for the rest of the loop: 

s- = MOUSEB-
IF s- THEN PRINT "Mouse is down" 
IF NOT B"" THEN PRINT "Mouse is up" 

That way, you can be sure that the value remains unchanged. 

-In any mouse program with a polling loop, it is essential that you keep 
the loop short. If you put so much inside the loop that it takes more than a 
quarter of a second to execute, the mouse response will become jerky and 
inaccurate. For example, you might double-click the mouse so quickly that 
both clicks occur during the same pass through the loop. If that happens, the 
mouse won't have a chance to register twice. So, keep the loops short-you 
can do a lot of high-powered graphics in a short time, if you think it through 
carefully. 

If you must have a long polling loop, the best solution is to put the mouse 
detection block into a subroutine, then call it from several points in the loop. 
That way, you can test the mouse frequently enough to detect all the clicks and 
double-clicks, even if the loop itself can't run fast enough. 



q I MOUSER/ /MOUSEV I Z= 

Syntax 

System functions-return the current 
horizontal and vertical coordinates of the 

mouse. 

ITJ H = MOUSEH 

Returns the current horizontal position of the mouse. 

~ V = MOUSEV 

Returns the current vertical position of the mouse. 

Description 
The mouse is one of the primary input devices on the Macintosh. As you 

roll the mouse across a surface, a small ball inside keeps track of the distance 
and direction. Internal detectors in the Macintosh operating system contin
ually monitor the movements of the mouse and adjust the position of a point
ing arrow or cursor. This cursor can then be used to select from menus, and to 
close windows. Even more importantly, the mouse can be used as a graphics 
input device for sketching pictures, as in MacPaint. 

With MOUSEH and MOUSEV, you can utilize the position of the mouse 
within your own programs. These two keywords are system functions that 
take no arguments. Each function returns one of the mouse's coordinates
MOUSEH yields the horizontal component and MOUSEY the vertical. 

MOUSEH and MOUSEY contain the coordinates of the mouse at the exact 
moment when they are used. You can think of these functions as being linked 
instantaneously to any movement of the mouse; any delay between the move
ment and the function's value is negligible. 



o MOUSEH/ /MOUSEV o 

In fact, MOUSEH and MOUSEY react so quickly to changes in the 
mouse's position that you must often take care that they don't change between 
one statement and another. In the following program segment, the mouse 
might possibly be moved in the time between the PRINT and the PLOT state
ments, in which case the PLOT will produce a point at a different pair of 
coordinates than is displayed by PRINT: 

PRINT MOUSEH, MOUSEV 
PLOT MOUSEH, MOUSEV 

The standard technique is therefore first to assign the values of MOUSEH and 
MOUSEY to a pair of holding variables, then to use the holding variables in 
all the other statements that are required: 

H = MOUSEH 
V = MOUSEV 
PRINT H,V 
PLOT H,V 

Since the variables H and Y are fixed once they are assigned, you can be cer
tain that they will not change between the two statements, even if the mouse is 
moved. This technique is used in many of the programs in this book. 

MOUSEH and MOUSEY are often used in connection with the mouse but
ton, the state of which is detected by the MOUSEB- function and the 
BTNWAIT command. Often you will want to read the state of the mouse but
ton, then do an operation involving the mouse's position only when the button 
is down. The following constructions are very common: 

and 

00 
BTNWAIT 
H = MOUSEH 
V = MOUSEV 

• 
• 
• 

LOOP 

00 
IF MOUSER"" THEN 

H = MOUSEH 
V = MOUSEV 

• 
• 
• 

END IF 
LOOP 



o MOUSEH/ /MOUSEV o 

Strangely enough, the complex part of programming for the mouse is the 
mouse button, not the mouse coordinates. There are a variety of subtly differ
ent ways in which the mouse button may be read, and each technique results 
in a distinct type of interactive program. You will find a complete discussion 
of mouse programming techniques in the entry under MOUSEB- . 

Applications 
MOUSEH and MOUSEV are used by many of the application and sample 

programs in this book. AJmost any interactive graphics program on the Macin
tosh will use the mouse, since it is by far the easiest way to get responsive action. 

The program shown in Figure 1 simulates the "rubber-band lines" of Mac
Paint. With this program, you press the mouse button down to start a line, 
then drag an animated image of it around the screen, as if it were a rubber 
band. Then, when you have the other end where you want it, you release the 
mouse button and the end is fixed in place. Figure 2 shows a picture created 
with this program. 

DO 
BTNWAIT 
SET PENMODE I 0 
01 dH = t10USEH 
OldV =MOUSEY 

DO 
IF NOT t10USEB-THEN EXIT 
H:t10USEH 
V=t10USEV 
PLOT OldH,OldV; H,V 
FOR Delay= 1 TO 50: NEXT Deley 
PLOT OldH,OldV; H,V 

LOOP 

SET PENMODE B 
PLOT OldH,OldV; H,V 

LOOP 

! WaH until button goes down 
! Penmode 101s XOR for animation 
! Startlng po1nt for line is the 
! mouse position nght after click 

! Do while button is down. 
! Button down, so drag 
! to new mouse coordinates 

! Delay keeps animation from 
! running too fast 

! Button just came up, 
! so, plot the line permanently 
! at lts last position. 
! Go back and wait for another line. 

Figure 1: MOUSEH/MOUSEV-Rubber-band lines application program. 



Notes 

o MOUSEH/ /MOUSEV o 

iiD§ MOUSEH/U-Rubber band lines = 
? 

Figure 2: MOUSEH/MOUSEV-Output of application 
program. 

-In large graphics programs, you may occasionally run into delays when 
you try to use the mouse. When the memory is relatively full, some parts of 
the BASIC language are not always kept in the computer's memory. Instead, 
they are left as resources on the disk and loaded in whenever they are needed. 
Since it takes several seconds to read from the disk this way, resource
swapping can lead to annoying delays in execution. (This is usually not a 
problem on a 512K Macintosh, since the larger model usually has enough 
memory to hold all of the relevant resource files.) 

The routines that interpret MOUSEH and MOUSEY are among the 
resources that are sometimes purged from the memory and read back in when 
needed. This means that the program may stop to read the disk for a second 
or two the first time the mouse is moved. When that happens, the mouse posi
tion will not be read instantly, and the action of the program will be suspended 
for a moment. The resulting delay can be disturbing in game programs. 

In many cases, it is possible to avoid these delays by reading the mouse 
position so frequently that its resource file is never purged from the memory. 



o MOUSEH/ /MOUSEV o 

One trick is to read the mouse position on every time through the loop, 
whether you need to use it or not. As it stands, the following program struc
ture may well have a delay each time the mouse is pressed, because the mouse 
position has not been read since the last time MOUSED"" was TRUE: 

DO 
IF MOUSEB"' THEN 

H .. MOUSEH 
V = MOUSEV 

• 
• 
• 

END IF 
I Other statements that may purge the mouse resource if run often. 

LOOP 

The same program structure may work better with the MOUSEH and 
MOUSEV moved outside the IF MOUSED"" block: 

DO 
H - MOUSEH 
V = MOUSEV 
IF MOUSEB"' THEN 

• 
• 
• 

END IF 
LOOP 

Because MOUSEH and MOUSEV are now being read whether they are 
needed or not, the mouse resource is never dropped from the computer's 
memory, so the program never has to stop to read it in from the disk. 

-See the entry under MOUSED"" for a complete description of the mouse 
system and programming techniques. 



=-11 MoveTo I /Move 11-= ___, .___ -----------'· F 

Syntax 

Toolbox graphics commands-move the 
graphics pen, without drawing a line. 

[] TOOLBOX MoveTo (H,V) 

Moves the graphics pen to the point at the coordinates (H, V), with
out drawing a line. 

~ TOOLBOX Move (DH,DV) 

Same, but measures the coordinates as a displacement from the 
pen's current location. 

Description 
Although the BASIC command SET PENPOS is the primary tool for repo

sitioning the graphics pen, you may occasionally want to use the MoveTo and 
Move toolbox routines instead. 

These routines are exactly parallel to the LineTo and Line toolbox com
mands that draw a line to a given point except that the Move routines do not 
draw with the pen as they move it. 

MoveTo lifts the pen if it was down, then moves it to the graphics coordi
nate (H, V), measured from the upper-left corner of the screen. The Move 
command does the same operation, but uses a displacement of (DH,DV) rela
tive to its last position. You can think of Move as a relative form of the SET 
PENPOS command. 

The only reason to use MoveTo and Move rather than SET PENPOS is to 
clarify your program when you want to move the pen in the middle of a long 
series of LineTo calls. It is generally clearer to use the toolbox command in 
conjunction with other toolbox statements, and the BASIC command with 
other BASIC statements rather than to mix them up together. 

See the entry under LineTo for a full description of the toolbox forms of 
the graphics plotting commands. See also the entries for PLOT and PENPOS. 



::::::l I NAN 11:::: ==i .....__ ________ __,, F 

Numeric constant-represents the result of an 
invalid operation. 

Syntax 
NonNumber = NAN 

NAN ("not a number") represents the result of an invalid opera
tion. It can be a system constant, or a printed message with a num
ber code indicating the type of invalidity. 

Description 
In the Macintosh floating-point arithmetic system, most invalid operations 

do not stop the program with an error message. Instead, they result in a NAN 
code (meaning "not a number"), which indicates what type of invalid compu
tation has taken place. 

You usually find out about the invalid operation only when you try to print 
the results. Instead of a numeric result, the value will be displayed as a mes
sage such as this: 

NAN(l) 

The number in parentheses is a code, which indicates the nature of the invalid 
operation that produces this result. Figure 1 shows the NAN codes and their 
meanings in BASIC. 

There are several invalid arithmetic operations that do not result in a NAN 
code. For example, INFINITY is returned as the result of any invalid opera
tion that could reasonably be interpreted as a limit of numbers becoming very 



oNANo 

NAN Code Reason Example 

1 Square root of a negative SQR(-1) 
number 

2 Illegal addition or subtraction -co+co Or CO-CO 

4 Illegal division by zero 0/0 

8 Illegal multiplication O•co 

9 Zero divisor for a MOD or lOMODO 
REMAINDER 

20 Conversion of comp type NAN Comp#= OJo: C =Comp# 
into a real number 

21 Code given by the constant NANNAN 

33 SIN, COS, or TAN of infinity SIN( co) 

36 Logarithm of a negative LOG(-1) 
number 

37 Non-integer exponent of (-1) "(0.5) 
negative no. 

38 Invalid COMPOUND or COMPOUND(- 10, 10) 
INTEREST call 

Figure 1: NAN-The NAN codes and their meanings. 

large. INFINITY is returned as the result of the following: 

• Floating-point overflow: EXP(50000), TAN(PI/2). 

• Division of a nonzero number by zero: 1/0 (but not 0/0, which is a 
NAN because it could be considered to be either 0 or co). 

• Sum of INFINITY and a real number: co+ 5 (but not co+ ( - co), which 
is a NAN). 

• Logarithm of zero: LOG(O) = - co (but, LOG( -1) is a NAN). 

NAN codes are reserved for cases where INFINITY would be incorrect. 
Once a NAN code has been stored in a variable, all future operations 

involving that variable will result in the same code, except that if an operation 



oNANo 

involves two NAN codes, only the larger one will be printed as the result: 

PRINT SQR(-l)+SIN(oo) 

yields 

NAN(33) 

A NAN code can be stored in a variable using the system constant NAN: 

NonNumber = NAN 

This is the only case where you can type the keyword NAN into a program; in 
this form, it does not take a code number in parentheses. A NAN stored in 
this way is given the code 21. 

You can test whether a number is a NAN either by using the RELATION 
function, or by testing one of the functions CLASSCOMP, CLASSOOUBLE, 
CLASSEXTENDED, and CLASSSINGLE. The RELATION function 
returns the value Unordered when one of its arguments is a NAN; the classifi
cation functions return the value of the system constant QNAN, which is dif
ferent from NAN. See the entries under RELATION and CLASSCOMP for 
more details. 

See INFINITY for information on inf'mite numbers. 



---j I NATIVE I t:::: ==i ......._ ________ __,, F 

String comparison option-selects the 
native-language dictionary ordering for string 

relations. 

Syntax 
OPTION COLLATE NATIVE 

Sets dictionary ordering for use in all subsequent string comparison 
operations. 

Description 
In Macintosh BASIC, like other dialects of the language, strings can be 

compared using the standard relational operators: 

= Equal to 
+, <>,or >< Not equal to 
> Greater than 
;ii:, > = , or = > Greater than or equal to 
< Less than 
~. < = , or = < Less than or equal to 

(The forms +, ;ii:, and~ are not standard BASIC; they can be typed on the 
Macintosh keyboard with the special option-key sequences Option-= , Option
>, and Option-<.) 

One string is considered to be less than another if it comes first in alphabeti
cal order. The strings are compared starting from their leftmost character. If 
the first character is the same, the subsequent characters are compared until a 
pair does not match. If the end of one string is reached before there has been 
a difference, the shorter string is considered to be smaller. 1\vo strings are 
equal only if they have exactly the same ASCII codes in all positions, and 
have exactly the same length. 



o NATIVE o 

In most dialects of BASIC, strings can be compared only using the standard 
ASCII codes. Since the ASCII codes, listed in Appendix A, are arranged in 
alphabetical order, most string comparisons will yield the correct results. Prob
lems arise, however, when you try to compare strings containing lowercase let
ters. In the ASCII code, all the lowercase letters are placed after all the 
uppercase letters, so that a string beginning with the lowercase letter a will be 
listed after all strings beginning with capital letters. ASCII ordering therefore 
does not render perfect dictionary order. 

However, Macintosh BASIC has a special option that lets you compare 
strings in their true dictionary order. This option is set by the special 
command: 

OPTION COLIATE NATIVE 

The keyword NATIVE was chosen to stand for "native-language ordering." 
The NATIVE ordering is designed to ignore the difference between lower

case and capital letters, unless the strings are otherwise equal. The following 
strings are therefore considered to be in ascending order, even though their 
ASCII values would be sorted quite differently: 

A 
Albert 
algebra 
Allan 
ALLEN 
aLogB 
ALPHA 
beta 
Zeta 

If all the characters in two strings are the same, a capital letter is taken to be 
less than the corresponding lowercase letter. The three strings 

ALLAN 
Allan 
allan 

are in ascending order, but all are still less than the string 'ALLEN'. 
The NATIVE ordering is also designed to treat diacritical marks and liga

tures correctly, in alphabetizing names and words from languages other than 
English. Diacritical marks are accents (' ... " ), umlauts ('"), and tildes C-), which 
can modify vowels and certain consonants in other languages. Ligatures are 



o NATIVE o 

symbols such as A E and 0 E, which combine two letters into one. Many of 
these special characters can be typed with option key combinations on the 
Macintosh keyboard. The modified characters are then given their own ASCII 
values, and are stored separately from their unaccented equivalents. See 
Appendix A for information on typing these characters. 

The NATIVE ordering alphabetizes letters with diacritical marks as if they 
were normal letters: a, a, and a should all be sorted among the J;(s. This is the 
standard convention for dictionaries printed in the English language, since you 
would expect to find Abelard between Abel and Abilene. The ligatures lE and 
OE, are split in NATIVE ordering, and sorted as if they were written as two 
characters. 

Figure 1 shows the special characters and their secondary orderings. All 
accented letters are sorted initially as if they were unaccented. Then, if the two 
strings are still identical, the accents are considered in ascending order from 
left to right as shown in this table. (The letter-accent combinations missing 
from this table, like E and 0 cannot be typed on the Macintosh. The omitted 
characters generally are not used in French, German, Italian, or Spanish 
typography.) 

This discussion applies only to versions of the Macintosh sold in the United 
States. The Macintosh sold outside of the United States is an international 
version, which is set to compare strings according to the local conventions of 

Character Secondary Order -----

Quotes .. « » It ,, 

A AAA.A.!.aaaaaaa 
C C~ct; 

E E E:eeeee 
I I 1 1 1 

N NNnf'i 
0 000006606.0 
u uOuuuuu 
v y y y 

figure 1: NATIVE-The secondary ordering of special characters and ligatures in the English
language Macintosh. 



o NATIVE o 

the country in which it is sold. German versions, for example, treat the sym
bols IE and CE as alternate forms of the umlaut characters A and 6, and 
arrange them accordingly. 

Except for the difference in comparing capitals and lowercase letters, and 
accented and unaccented letters, the NATIVE ordering works in the same way 
as the STANDARD. To be equal, two strings must have exactly the same 
ASCII values in every position. Even if the only difference between the strings 
is an accent or a lowercase letter, the secondary test will show the strings to be 
different. 

As in the standard string ordering, numeric strings are compared according 
to their ASCII values, not their numeric values. In a string comparison, the 
numbers .1, 0, 324, and 4.2 are sorted in order as written here, because their 
initial characters have increasing ASCII values the period comes before the 0 
in ASCII. If you want to order numbers by their numeric values, use the VAL 
function to convert the string into a number. 

To change back to ASCII ordering, use the statement 

OPTION COLLATE STANDARD 

Standard ordering is the default, so you only need this statement if you have 
changed to NATIVE ordering and want to change back. 

Sample Programs 
For most purposes, the NATIVE ordering is far superior, since it produces 

results exactly like those you would expect from an English-language dictio
nary. Often, however, NATIVE is unnecessary, since you can just as easily use 
the STANDARD ordering if you merely need to see if two strings are equal. 
Also, since the NATIVE ordering is unique to the Macintosh, you should use 
the standard ASCII ordering in any program that you want to transport to 
another machine. 

The program in Figure 2 will let you experiment with the NATIVE dictio
nary ordering. It accepts up to 100 words in an INPUT statement loop, and 
sorts them into an array. 

The sorting is accomplished at the time the values are accepted, so that no 
complex sorting procedure is required. At any point, the array Alpha$ will be 
arranged in alphabetical order; the new string A$ is simply inserted each time 
at the appropriate place in the list. 



o NATIVE o 

OPTION COLLATE NATIVE 
DIM Alpha$( 100) 
N = 1 
DO 

INPUT "Type the next name:"; A$ 
FOR 1=1 TON 

IF A$<Alpha$(1) THEN EXIT FOR 
NEXT I 
IF liN THEN 

Alpha$(N) = A$ 
I= N 

ELSE 
FOR J:N TO I+ 1 STEP -1 

Alpha$(J) = Alpha$(J-1) 
NEXT J 
Alpha$(1) = A$ 

ENDIF 
SET VPOS I 
FOR J:I TON 

PRINT FORMAT$("..,..,.., .. ;J);")",Alpha$(J) 
NEXT J 
N = N+ 1 
IF N> 100 THEN STOP 

LOOP 

Figure 2: NATIVE-Application program. 

The initial FOR/NEXT loop after the INPUT statement searches for the 
first element of the array that comes after A$ in the alphabet. It then exits the 
loop so that I retains the lat value of the FOR loop's index variable. This value 
then becomes a pointer to the place in the list where the new string is to be 
inserted. If the loop gets all the way through the array without finding an ele
ment that comes after A$, it will exit normally, leaving I equal to N + 1. In this 
special case, I is set equal to N, showing that A$ should be inserted after the 
last element. 

A loop at the end of the program simply prints out the array, starting from 
the line on the screen where the new word is to be inserted. Figure 3 shows a 
sample output. 

Notes 
See the entry under STANDARD for details on the default ASCII ordering 

system. 



o NATIVE o 

::O OPTION COLLATE NRTIUE 
1) ABBOT ? 
2) abbreviation 
3) Abel 
4) Abelard 
5) Abilene 
6) aesthetic 
7) resthetic 
8) reternarn 
9) .8.ngstrorn 

10) antediluvian 
1 1) Apple 

Type the next name: 

Figure 3: NATIVE-Output of application program, 
which alphabetizes words in an array. 



----i I NewRgn It-:-
~ .___ _______ ____._ F 

Syntax 

Graphics toolbox function-creates a new 
region shape. 

RgnName} = TOOL NewRgn 

Sets aside space for a new region and returns a handle variable. 

Description 
The region shape in the graphics toolbox is a variable-length structure, 

which is defined by drawing commands in an OpenRgn/ CloseRgn block. The 
region's definition is stored as a dynamic structure in the computer's 
memory-a structure that can grow with the complexity of the definition. 

Before you can use a region shape, you must call the NewRgn toolbox func
tion to set aside storage space for the region's structure. This function creates 
the initial structure for an empty region, then returns a handle that you can 
use in ref erring to it. The handle (type identifier: } ) is a special memory 
pointer that you use as a single name for the region. 

The NewRgn function is the only procedure for creating a new region han
dle. You must call NewRgn before you give any other region command in the 
program, including OpenRgn, which stores the defining points into the struc
ture. If you omit the NewRgn call, you are likely to get a system error. 

See OpenRgn for a full description of regions. 



---j I NEXT It--
__, ...__ _ ___ ..;..__ ___ -----J, F 

BASIC command word-marks the end of a 
FOR loop. 

File pointer command-skips to beginning of 
next record. 

Syntax 
lIJ FOR Index= Start TO Finish 

• 
• 
• 

NEXT Index 

Marks the end of a FOR loop and sends execution back to the FOR 
statement until Index is greater than Finish. 

l1l filecommand #Channel, NEXT: //0 List 

Instructs program to go to the next record in a file before executing 
a file command. 

Description 
lIJ FOR Index= Start TO Finish 

• 
• 
• 

NEXT Index 



o NEXT o 

A FOR statement must always be paired with a NEXT statement that marks 
the end of the repeating loop. The statements between the FOR and NEXT ~ 
ments are the ones that are repeated. The NEXT statement thus resembles the 
END statement that closes other control structures in Macintosh BASIC. 

The NEXT statement must always include the name of the Index variable. 
Unlike some other dialects of BASIC, Macintosh BASIC does not allow you 
to omit the name of the index variable in the NEXT statement, or to chain 
several index variables together. The following forms are not legal, and will 
result in error messages: 

FOR 1=1TO5 
• 
• 
• 

NEXT 

FOR 1=1TO3 
FORJ=I TO 6 

• 
• 
• 

NEXT J, I 

Probably the most common error in BASIC programming is omitting the 
NEXT statement at the end of a FOR loop. If there is only one FOR loop in 
your program, and no corresponding NEXT statement, the FOR loop will be 
executed once, and will not repeat. As far as the computer is concerned, it just 
never reached the end of its first pass through the loop; it ran out of program 
first. However, if a second FOR statement is encountered before the end of 
the program, you will get a "FOR without NEXT error" message. A NEXT 
statement that is not preceded by a matching FOR statement, will produce a 
"NEXT without FOR error" message. 

~ filecommand #Channel, NEXT: //0 List 

NEXT may also be used as a part of the commands READ #, INPUT #, 
LINE INPUT#, WRITE#, REWRITE#, and PRINT#, to move the file 
pointer to the beginning of the next record before executing the named file 
command. If the pointer is already at the beginning of a record, the pointer is 
not moved and the file command is executed on that record. 

The NEXT file pointer operator can be used with relative (RECSIZE) files 
of any format, and with SEQUENTIAL TEXT files. It cannot be used with 
STREAM files. 



o NEXT D 

For further details on the use of file commands, see the READ #, INPUT #, 
LINE INPUT #, WRITE #, REWRITE #, and PRINT # entries. See OPEN # 
for a general description of file commands. 

NEXT (BASIC Command)-Translation Key 

Microsoft BASIC NEXT 
Applesoft BASIC NEXT 



-j ...-NE-X_TD_O_UB_L_E_/ /-NE-X-TS-1-NG_L_E___, [---

~ NEXTEXTENDED F 

Syntax 

Numeric function-returns the next distinct 
number in a given floating-point variable 

type. 

[j] Result = NEXTOOUBLE(X,Y) 
[1] Result = NEXTSINGLE(X, Y) 

[J] Result = NEXTEXTENDED(X, Y) 

Returns the next representable number in a given real variable type. 
The .result lies next to X on the number line, in the direction of Y. 

Description 
Rounding errors in a calculation sometimes result in a number that is 

slightly different from the correct result in the last decimal place. For this and 
other reasons, it can be useful to find the next possible value that can be repre
sented above or below a number. 

The NEXTDOUBLE, NEXTSINGLE, and NEXTEXTENDED functions 
return a number that differs from the original number by 1 in the last decimal 
place of the selected precision. The three floating-point variable types have the 
following accuracy: 

• Double precision: 151h significant digits of accuracy. 

• Single precision: 7 significant digits. 

• Extended precision: 19 significant digits. 



D NEXTDOUBLE/ /NEXTSINGLE/ /NEXTEXTENDED o 

There are no equivalent functions for integer or comp (64-bit integer) variable 
types. 

All three of these functions take two arguments. The first argument is the 
number that you want to have the functional result be placed next to. The sec
ond argument is a number that gives the direction in which the function's 
result should be sought. 

Sample Program 
The following program continually prints double-precision numbers, at the 

closest representable intervals: 

! NEXTOOUBLE-Sample Program 
B=l 
SET SHOWDIGITS 19 
DO 

PRINT B 
B = NEXTDOUBLE(B,INFINITY) 

LOOP 

The first screen of output is shown in Figure 1. 

- : NEHTDOUBLE-Sample Program~ 
1 • 
1.000000000000000222 
1.000000000000000444 
1.000000000000000666 
1.000000000000000688 
1 .00000000000000 1 1 1 
1.00000000000000 1332 
1 .00000000000000 1554 
1.000000000000001776 
1.00000000000000 1 998 
1 .00000000000000222 
1.000000000000002442 
1 .000000000000002665 

Figure 1: NEXTDOUBLE-Output of sample program. 



--ii NOT It-:: ==i ....___ -----------F 

Syntax 

Logical operator-negates a logical 
expression. 

11J ResulC = NOT s-
Results in the negation of the Boolean value of B- , so that TRUE 
becomes FALSE, and FALSE becomes TRUE. 

l1J IF NOT s- THEN ... 

Negates a logical condition in an IF statement. 

Description 
The logical operator NOT negates the Boolean value of the expression it 

precedes: 

• If the logical expression is TRUE, NOT results in the Boolean value 
FALSE. 

• If the logical expression is FALSE, NOT results in the value TRUE. 

NOT is a unary operator, which operates only on one value, instead of two. A 
truth table for NOT is shown in Figure 1. Because NOT involves only one 
value, all of the possible cases can be covered in a two-line truth table. 

NOT must-always appear immediately before the expression it modifies; 

Ir =NOT A-

is the correct form for NOT in an assignment statement. 



oNOTo 

NOT 

A- NOTA-

TRUE FALSE 

FALSE TRUE 

Figure 1: NOT-A truth table for the unary operator NOT. 

In an IF statement, the NOT operator is often used to negate the entire con
dition being evaluated: 

IF NOT (F$ = "Y" OR F$ = "N") THEN PRINT "Type Y or N, please." 

This command prints the message if neither of the following relations is true: 

F$ = "Y" 
F$ = "N" 

Thus, if a string starting with something other than "Y" or "N" is read from 
the keyboard, the extra message will be printed. 

NOT is often used when testing the value of a Boolean variable or system 
function. The keyword MOUSEB-, for example, holds the value TRUE when 
the mouse button is down and FALSE when the button is up. To test whether 
the button is up, you would give the command: 

IF NOT MOUSER- THEN ••• 

Note, however, that you can get the same result by comparing MOUSES- to 
the Boolean constant FALSE: 

IF MOUSER- = ri\LSE THEN ••• 



oNOTo 

Notes 
-The use of NOT is largely a matter of programming clarity and style. An 

IF statement that contains NOT can always be rewritten to eliminate NOT. 
For example, the compound IF statement shown above could have been writ
ten as: 

IF F$ #:- "Y" AND F$ #:- "N" THEN PRINT "Type Y or N, please." 

In many cases, however, the logic is clearer when the NOT is used, resulting in 
code that is easier to understand. 

The IF-NOT construction does essentially the same thing as an ELSE block. 
A NOT operator modifying the entire condition of an IF /THEN statement 
can be eliminated merely by exchanging the THEN and ELSE blocks. Con
versely, an IF /THEN/ELSE statement with no THEN block can be simplified 
by negating the condition and changing the ELSE block into a THEN. See the 
entry under IF for more information on the IF /THEN/ELSE statement. 

-There are two useful transformations available when NOT occurs outside 
parentheses containing AND or OR. 

NOT (K AND Ir ) 

is always equivalent to 

NOT KOR NOT B

Similarly, 

NOT(K ORS-) 

is always equivalent to 

NOT KAND NOT B-

in accordance with this second equivalence, the condition discussed in the 
description above 

IF NOT (F$ = ''Y" OR F$ = "N") THEN ... 

could also be written 

IF NOT F$ = ''Y" AND NOT F$ = "N" THEN ... 



--j .---0-ff_s_e-tR_e_ct_/_/ O_ff_s_e_tP_o-ly- [---

~ OffsetRgn f"= 

Syntax 

Graphics toolbox commands-move 
rectangles, polygons, or regions to new 

positions on the screen. 

[j] TOOLBOX OffsetRect (@RectArray%(0), DH, DV) 

l1J TOOLBOX OffsetPoly (Poly}, DH, DV) 

[11 TOOLBOX OffsetRgn (Rgn}, DH, DV) 

Moves a rectangle, polygon, or region shape DH pixels to the right 
and DV pixels downward. 

Description 
Offset is a transformation operation in the Macintosh toolbox that moves a 

graphics structure to a new position on the screen, without affecting its size or 
shape. The offset operation can be applied to rectangles, polygons, and 
regions. 

The offset commands can only be used with shapes defined by the toolbox. 
This makes no difference with polygons and regions, since they are always 
defined as handle variables through the toolbox. For rectangles, however, the 
restriction means that you cannot use OffsetRect on the standard BASIC 
shape, which is defined by four integer coordinates. Instead, you must use it 
on the more complex rectangle array defined by the toolbox command 
SetRect. A rectangle array must have four integer elements (with indices 0 to 
3), and must always be prefixed with the indirect addressing symbol @. See 
the entries for SetRect, OpenPoly, and OpenRgn for information on these 
three toolbox shapes. 



o OffsetRect/ /OffsetPoly I /OffsetRgn o 

Figure 1 shows the operation of Off setRect and the other off set commands. 
All the offset commands take the same sequence of arguments: the shape's 
name, the horizontal displacement (DH), and the vertical displacement (DV). 
DH and DV are the integer numbers of pixels by which the shape will be 
moved in the transformation. 

If DH and DV are both positive, the shape is moved down and to the right, 
as shown in Figure 1. If either number is negative, the shape is moved in the 
opposite direction-to the left if DH is negative, upward if DV is negative. 

The two rectangles in Figure 1 show the same rectangle array, before and 
after the transformation. Following the transformation operation the new 
shape is stored under the old name. If you want to preserve the old rectangle, 
polygon, or region, copy its contents under another name before you call the 
offset transformation. 

Sample Programs 
Like all transformations, the off set commands are given between the state

ments that create the shape and the statements that draw them. If you draw 

onset.Keet-

Figure 1: OffsetRect-The offset commands displace a rectangle, polygon, or region by DH pix
els horizontally and DV pixels vertically. 



o OffsetRect/ /OffsetPoly I /OffsetRgn o 

the shape, off set it, and draw it again, the second drawing command will cre
ate a second rectangle, polygon, or region on the screen. For example, the fol
lowing sample program will produce the two shaded rectangles shown in 
Figure 2: 

! OffsetRect/OffsetRgn-Sample Program 
Rectangle} = TOOL NewRgn 
TOOLBOX SetRectRgn (Rectangle}, 50, 10,200, 110) 
SET PATTERN LtGray 
TOOLBOX PaintRgn (Rectangle}) 
TOOLBOX OffsetRgn (Rectangle}, -40,25) 
SET PATTERN 15 
TOOLBOX PaintRgn (Rectangle}) 

A rectangular region is used instead of a rectangle array, so that PaintRgn 
may be applied to it. Macintosh BASIC does not allow access to the more nat
ural PaintRect toolbox command, except through the PAINT RECT com
mand in BASIC, and that command does not allow rectangle arrays. 

See SetRect, OpenPoly, and OpenRgn for a more complete description of 
the rectangle, polygon, and region commands. 

§D§ OffsetRect-Sample Program ~ 

• 

Figure 2: OffsetRect-Output of Sample Program. 



Syntax 

File command-creates a file or makes one 
available for reading and writing. 

OPEN #Channel:"FileName" ,Access, Format, Organization 

Opens a file with the specified file name, and the specified access, 
format, and organization attributes. 

Description 
The OPEN # command opens a file for reading and writing. It must include 

the keyword OPEN#, followed by a channel number and a string containing 
a file name. The file name may include any sequence of characters except 
colons. Upper and lower case characters are treated as equivalent. The channel 
number can be any number from 1 to 32767. You can have up to seven chan
nels open at one time. 

A file must be opened whenever you want either to read what is in it, or to 
write something to it. If you open a file that does not yet exist, it will be created. 

When you open a file, you specify three attributes which tell what kind of 
file you want to work with. The three attributes, described below, are the 
access attribute, format attribute, and organization attribute. If you do not 
specify the attributes, they will default to INPUT, TEXT, and SEQUENTIAL, 
respectively. 

The file's access attribute determines whether the file is for reading only, or 
for both reading and writing: 

• INPUT specifies that the file may be read from, but not written to. If 
you try to write to an INPUT file, you will get an error message. INPUT 
also positions the file pointer at the beginning of the file. INPUT is set as 



oOPEN#o 

the default, so that you won't write over a file without specifically open
ing it for output. 

• OUTIN specifies that the file is both an input and an output file; it may 
be either read from, written to, or both. Using the OUTIN attribute 
positions the file pointer at the beginning of the file. Thus, the first 
record to be either read or written will be the first record in the file. 

• APPEND, like OUTIN, opens a file for either reading or writing. How
ever, it positions the file pointer at the end of the last record, so new 
information can be added to the file. 

The second attribute specifies the form in which the data will be stored on 
disk. There are three of these format attributes: 

• TEXT files are files of ASCII characters. TEXT file operations are rela
tively slow; however, they are easier to use in a number of respects, as 
noted below. 

• DATA files store their data in binary form, but each field is preceded by 
a type tag that identifies the data type of the data in the field. Each data 
type, except for string, has a specified length in bytes. Care must be 
taken to read the data back into appropriate variable types, but the TYP 
function, which returns the type tag of a field in a file, can be used to 
simplify the process. For more on type tags, see the TYP entry. 

• BINY files store their data simply as binary codes. Such files are quite com
pact, so access is especially fast. However, because there are no type tags for 
the TYP function to check, it is essential to know the data types of the 
fields in order to choose the right variable type to access them with. 

Figure 1 illustrates the different storage forms used in the three types 
of files. 
Let's look at them a little further. 

TEXT Files TEXT files are especially easy to read. Since all the data are 
stored as ASCII characters, you can safely read everything in a TEXT file into 
string variables. TEXT files are also compatible with other Macintosh 
applications-output from a TEXT file can be cut and pasted into any appli
cation that uses data in ASCII form. 

Data fields in a TEXT file are separated by tab stops. You place them in the 
file by placing commas between the data items in the PRINT # statement's 



oOPEN#o 

File Data Storage 

PRINT • 3: String$, Integer%, Numbert 

DATA 

WRITE • 7: String$, lnteoer%,Number1 

h i s w o r d 0 

Binary 
values 

Binar\I 
Man~fasa + Exp_ 

Sf.I 
0 
f' 

Null 

e;nary 

WRITE • 9: String$, lnteger%,Number1Manti:s:sa +Exp_ 

h i s 

Length 

Figure 1: File Data Storage. 

w o r d 

Binary 
values 

variable list that you want in separate fields. Data is sent to the ftle through 
PRINT # statments: 

PRINT #6: String$, Integer%, Number: 

will write a string value, an integer value, and a single-precision numeric value 
to a TEXT file, all in the form of ASCII characters. The end of a complete 
record is marked by a carriage return. You would read the record back 
through a INPUT # statement: 

INPUT #8: String$, Integer%, Number: 

However, because the characters are all in ASCII form, you have two other 
options for reading the data back: 

INPUT #8: String$, Integer$, Number$ 



oOPEN#o 

will read the same data into a series of string variables. Alternatively, you can 
read the entire record into a single string variable with the LINE INPUT # 
statement: 

LINE INPUT #14: String$ 

If you were to print out String$ on the screen, you would see the values for 
the three input variables in their string form, separated by tab stops, just as if 
you had printed them out as three separate variables, with the variable names 
separated by commas. See the INPUT # entry for an example. 

You can add additional information to the end of a given field in a TEXT 
file by placing a semicolon, rather than a comma, at the end of the literal or 
variable name. This tells the program to keep the file pointer in the same field. 
See the PRINT # entry for an example. 

DATA Files Each data field in a DATA file has its own type tag, which signi
fies both the type of variable it represents and the number of bytes it takes. 
Strings are stored as the ASCII values of their characters, and numeric values 
are stored in compact binary form. Fields are separated by type tags, repre
sented by a one-byte code number. Each type of variable takes only the pre.;. 
specified number of bytes allowed for the type, except string variables, which 
take two bytes to store the length of the string (as a binary number), plus one 
byte for each character in the string, up to 255 maximum. You can use the 
BASIC function TYP to decode the type tags, if necessary. See the TYP entry 
for a complete list of type codes and storage lengths. 

BINY Files BINY files are stored entirely in binary form. They are identical 
to DATA files except. for the absence of type tags. There are no delimiters 
between fields. When you read the file BASIC simply reads the number of 
bytes appropriate for the data type of the variables in the READ #command's 
variable list. 

Writing to BINY and DATA Files To write to either BINY or DATA files, use 
the WRITE # statement: 

WRITE #322: String$, Integer%, Number: 

This statement will send a string variable, an integer variable, and a single
precision numeric variable to either a BINY or a DATA file. Unlike TEXT 
files, however, with these files the variables must be read back into the same 
variable types. 



oOPEN#o 

The boldface characters in Figure 1 indicate characters stored as their equiv
alent ASCII values. Note that strings are stored in their ASCII form regard
less of the file format. The type tags in the DATA file are represented 
numerically (in binary form). The two characters that indicate the string 
length are also stored in binary form (strings can be up to 255 characters in 
length). As you can see, there is relatively little advantage (other than speed) to 
storing string data in any form other than TEXT. However, the more numeric 
values you need to store and the greater their size, the greater becomes the 
advantage of the other two formats. 

Reading BINY and DATA Files Use the READ # statement to read back the 
data from either of these types of files. You need not use the same variable 
names that you used to write the file, but they must be of the same data types: 

READ #19: Letter$, Nondecimal%, Numerid 

If you use the wrong data type to read a DATA file, you will get an error 
message, and no value will be assigned to the variable. If you use the wrong 
data type with a BINY file, the program will read the number of bytes appro
priate to the data type you specify, and interpret the contents of those bytes as 
if they represented the type of variable that now holds them. This may result 
in reading garbage. 

The third optional attribute in an OPEN # statement is the organization 
attribute. Files may be organized as either SEQUENTIAL, relative 
(RECSIZE), OR STREAM: 

• SEQUENTIAL files are made up of a series of records, each of which 
may contain a number of fields. The records need not be identical in 
structure. In fact, it is not uncommon for the first record to indicate how 
many other records are in the file. You could structure a SEQUENTIAL 
file to have two types of records, for example, master records each with 
a series of subsidiary records, and you could differentiate between them 
with a series of IF statements, or with a field in each master record that 
holds the number of subsidiary records that follow it. 

• RECSIZE files, more commonly called relative, or random access files, 
are files containing only records of a fixed length, each of which is iden
tified by a record number, starting with 0. Records in relative TEXT files 
are terminated by a carriage return. Those in relative DATA files end 
with an ASCII zero (Null). 



oOPEN#o 

• STREAM files are generally not "files" in the ususal sense. Rather, they 
are simply streams of data sent to devices such as printers and modems. 

Using File Commands 

To read and write to a file you have opened, you use the following state
ments: READ#, INPUT#, LINE INPUT#, PRINT#, WRITE#, and 
REWRITE#. Within their syntax, these commands may include two special 
kinds of internal commands: record pointer commands and file contingency 
commands. These special commands can be given only as a part of the six 
major file commands. 

File Pointer Comm.ands When a file is open, a pointer always points to the 
location in the file at which an operation is taking place. You can, however, 
reposition this pointer to get at specific parts of the file by using file pointer 
commands. 

In SEQUENTIAL and RECSIZE files, you can move a file pointer from 
one record to another, to read data from a specific record in a file, or to write 
to a specific record. BEGIN moves the pointer to the beginning of the first 
record. END moves it to the end of the file, allowing you to append new 
records. NEXT moves it to the beginning of the next record. SAME moves it 
back to the beginning of the record it is already in. For RECSIZE files there is 
an additional command: RECORD. The RECORD command is followed by 
the identifying number of the record to which you want the pointer to move. 
(You can gain further control within records through the SET CURPOS # and 
SET HPOS #set-options.) 

Having moved the pointer to the appropriate position, you can rewrite a 
record or a field in a TEXT file with the PRINT # command, which will auto
matically overwrite the current contents of the field. In a SEQUENTIAL 
DATA or BINY file, the WRITE # command functions the same way. To 
modify a record in a RECSIZE DATA file, use the REWRITE # command. 

File Contingencies There are some conditions that will generate errors when 
reading and writing files. Macintosh BASIC lets you anticipate some of these 
conditions with file contingencies-IF statments within file commands that 
provide an alternative escape if the condition would otherwise generate an 
error. These contigencies use the Boolean functions THERE" , MISSING- , 
EOR-, and EOF. They can be used with any file access command except 
PRINT #. For example: 

READ #4, IF MISSING" THEN GOSUB MovePtr: Quantity%,String$ 



oOPEN#o 

This would be used in a relative file, in which some records can be empty. It 
tells the computer to read the record to which the file pointer currently points, 
unless that record is empty, in which case it should execute a subroutine to 
move the pointer instead. Otherwise, the computer would read two empty 
fields into the variables QuantityOJo and String$. Similarly: 

DO 
READ #63, IF EOF THEN EXIT: Quantity%,String$ 
PRINT Quantity%, String$ 

LOOP 
CLOSE #63 

This is a typical file-reading loop. It tells the computer first to keep reading 
successive records in the file until the end of the file is reached, and then to 
print the values read into the two variables. The file contingency EOF (end 
of file) prevents the error that arises when the computer tries to read past the 
end of a file. 

File programs are notoriously tricky, and may require a great deal of debug
ging. If a program that writes a file crashes before the end, your file will 
remain open. The next time you try to read the file you will get the error mes
sage "file already open." The only way to close the file at that point is to save 
your work, reset the computer, and start over. 

In order to avoid this trap, it is good practice to include a WHEN ERR 
block immediately following the OPEN # statement: 

WHEN ERR 
CLOSE #2 
PRINT "ERROR#"; ERR 
PRINT "Program terminated." 
END 

END WHEN 

This will assure that your file will be closed if the program crashes, and will 
print the number of the error condition on the screen, so you can simply make 
the necessary changes to your program and run it again. 

Any program that opens a file must also close it. To close a file, simply use 
the CLOSE # command, followed by the number of the channel on which the 
file is open. If several are open, they can be listed, separated by commas: 

CLOSE #2, 17, 8 

Using the command CLOSE with no channel number will close all open files. 
You will then get an error message if you try to access the closed file. 



oOPEN#o 

Notes 
-Sample programs that work with ftles can be found in the TEXT, PRINT 

#, INPUT#, RECSIZE, BINY, SEQUENTIAL, and APPEND entries, 
among others. 

-A READ statement without a channel number will be interpreted as a 
command to read data from DATA statements within the program itself, and 
will generate an error message if there are no DATA statements there. 

-For more information on the ASCII code, see the ASC and CHR$ 
entries. For complete tables of ASCII values, see Appendix A. 

-Both ftle names and channel numbers can be expressed in the OPEN# 
statement as variables. It is possible, for example, to have the following state
ments in a program: 

File$ = "Master File" 
ChNum = 12 
OPEN #ChNum: File$ 

OPEN #-Translation Key 

Microsoft BASIC 

Applesoft BASIC 

OPEN 

OPEN 



----j I OpenPoly It--___, .___ -------F 
Graphics toolbox function-defines a polygon 

shape. 

Syntax 
[] PolyName} = TOOL Open Poly 

• 
• ! Definition block 
• 

TOOLBOX ClosePoly 

• 
• ! Drawing commands 
• 

[TOOLBOX KillPoly] 

Defines a new polygon shape identified by the handle variable 
PolyName}. 

~ Related Toolbox Commands 

I Offsetl'oly MapPoly 

These related toolbox commands are available for drawing and 
manipulating polygons. 

Description 
In the Macintosh's QuickDraw graphics system, a polygon is any area 

bounded by a closed series of straight edges. The exact shape can be anything 



D OpenPoly D 

. 
you want-you defme the polygon's border yourself. Once you have defined 
it, you can draw and move the polygon as a single unit. 

Figure 1 shows some examples of polygons. A polygon may have as many 
edges as you want: one of these examples has so many edges that it is almost a 
smooth curve. The border can even cross over itself, in which case the shape 
will be split into two distinct parts, but will remain a single polygon. The bor
der, however, must begin and end at the same point, and must be a continuous 
series of connected lines. 

You can think of a polygon as a user-defined shape. You create the polygon 
by opening a definition block. You use PLOT or LineTo commands to draw 
the lines that will form the edges of the polygon, then close the block to end 
the defmition. 

Once the outline of the polygon is defmed, you can call one of the drawing 
routines to display the shape. Polygons can be drawn with any of the standard 
toolbox command verbs: Erase, Frame, Invert; Paint, and Fill. You must, 
however, use toolbox commands to draw polygons, rather than simple BASIC 
statements. The toolbox drawing commands are ErasePoly, FramePoly, 
InvertPoly, PaintPoly, and FillPoly. 

The polygon is very similar to another Macintosh shape-the region
which is an area bounded by a border of pixels. While regions and polygons 
are technically very different, they are used in essentially the same way. 

'~ 
" G . . 

Figure 1: OpenPoly-Examples of polygons. 

0 



D OpenPoly D 

Regions are considerably more common, however, since they are faster and 
more flexible. Polygons are best suited for shapes bounded by a limited num
ber of edges, whereas regions can be used even for rounded curves. For a 
comparison of regions and polygons, see the Notes section of this entry and 
the entry for OpenRgn. 

CO PolyName} = TOOL OpenPoly 

• 
• ! Definition block 

• 
TOOLBOX ClosePoly 

• 

• ! Drawing commands 

• 
[TOOLBOX KillPoly] 

The OpenPoly function is used to open the definition block of a polygon. It 
must always be balanced with a call to ClosePoly, the toolbox routine that 
ends the definition. The call at the end to KillPoly is optional-it simply frees 
the memory space used by the polygon's structure. 

You create the polygon by giving drawing commands in the definition block 
between the OpenPoly and ClosePoly statements. Within the definition block, 
graphics commands such as PLOT and LineTo do not draw on the screen. 
Instead, they store points in the polygon's definition structure in the com
puter's memory. 

The definition block is a series of PLOT statements or their toolbox equiva
lents, Line and LineTo. If you want the border to begin at a point other than 
the current pen position, start with a SET PENPOS or a MoveTo statement. 
After the first operation, however, all points are added as if the pen were 
down even if PLOT is called without a semicolon. The current pensize 
is ignored, since the commands are merely storing mathematical points in 
the definition. 

Polygons must be defined as a series of points, using only PLOT statements 
and their toolbox equivalents. This is different from regions, which can be 
defined by shape commands such as FRAME OVAL. Shape graphics com
mands are ignored inside a polygon's definition block. 



D OpenPoly D 

Note that OpenPoly is a toolbox function, not a procedure, so it must be 
called with the TOOL statement, rather than the TOOLBOX call. This is an 
important difference between polygons and regions, for which the OpenRgn 
routine is a standard TOOLBOX call. Another difference is ClosePoly, which 
does not include the polygon's name as an argument. Compare the syntaxes of 
OpenRgn and OpenPoly carefully if you plan_ to use both shapes. 

The OpenPoly function returns a handle value (type identifier: } ), which 
serves as the name of the polygon. A handle is a special type of variable that 
points indirectly to the address of a variable-length structure stored in the 
computer's memory. It contains the starting memory address of the polygon's 
structure, so that you can refer to the entire structure with a single memory 
address. It is, in effect, just a name you use every time you need to refer to the 
polygon's structure. See the Introduction and the TOOLBOX entry for more 
information on handles. 

When you have finished defining the polygon, you must call ClosePoly, 
which stores the structure. After the ClosePoly statement, the graphics pen 
returns to drawing on the screen. You cannot reopen the polygon to add more 
points. 

You may, however, define other polygons in the same program by opening 
other definition blocks with different handle variables. You can define as 
many polygons as you want, but you can open only one definition block at a 
time. Opening more than one block will lead to a fatal system error. 

After defining the polygon, you can draw it with any of the five QuickDraw 
command verbs: Erase, Frame, Invert, Paint, and Fill. Call the appropriate 
toolbox routine and pass the handle that identifies the polygon: 

TOOLBOX ErasePoly (PolyName}) 

TOOLBOX FramePoly (PolyName}) 

TOOLBOX lnvertPoly (PolyName}) 

TOOLBOX PaintPoly (PolyName}) 

TOOLBOX FillPoly (PolyName}, @Pat%(0)) 

The five commands all have the same syntax, except for FillPoly, which has an 
additional pattern parameter that specifies the pattern that will be used to fill 
the polygon's shape. It must have been previously dimensioned as a 4-element 
integer or 64-element Boolean array, and must hold a bit image of the filling 
pattern. 

The five command verbs have the same meanings as they have for standard 
QuickDraw shapes. ErasePoly clears away all of the pixels inside the bound
ary of the polygon, resetting them to the white background. FramePoly draws 



o OpenPoly o 

a line around the edge of the polygon, playing back the PLOT and LineTo 
commands that were recorded to define the shape. InvertPoly reverses the 
color of every pixel inside the shape, so that white pixels become black and 
black pixels become white. PaintPoly and FillPoly both fill the entire area of 
the polygon with a pattern. PaintPoly uses the pattern set for the graphics pen 
in a previous SET PATTERN or PenPat statement. FillPoly, on the other 
hand, ignores the pen's pattern and draws with the pattern that you specify. 

The polygon commands are affected by the graphics pen in the same way as 
their BASIC counterparts. FramePoly and PaintPoly are both controlled by 
the graphics pen's pattern and penmode, and FramePoly also uses the pen's 
size to determine the width of the border. ErasePoly covers the region with the 
background pattern, which is white unless you've changed it with a BackPat 
toolbox command. InvertPoly and FillPoly are not affected by any settings of 
the graphics pen. 

l:Il Related Toolbox Commands 

The great advantage of polygons is that they can be moved and resized as a 
unit. Between the time you define a polygon and the time you call the drawing 
routine, you can call one of two trans/ ormation routines, which adjust the 
defining points of the polygon. After the transformation, the polygon has the 
same shape, but it may have a different size or position. This means that you 
can draw the same complex shape many times in a program, using different 
sizes and positions. Transformations only affect future drawing operations. If 
you have already drawn the polygon at its former position, the shape will still 
remain where it was on the screen. If you then draw it again after the transfor
mation, a second polygon shape will appear at the new position. 

The polygon transformations are limited compared to the variety available 
with regions. You can perform only the two simplest operations on a polygon 
shape, whereas you have about ten operations available for a region. If you 
plan to do more than a simple movement or rescaling, you should use a region 
instead of a polygon. 

Offset Poly 

The simpler of the two transformations is OffsetPoly, which moves the poly
gon without changing its size. You simply name the polygon you want to 
move along with its horizontal and vertical displacements: 

TOOLBOX OffsetPoly (PolyName}, DH, DV) 

All of the points on the polygon's border will be shifted DH pixels to the right 



D OpenPoly D 

and DV pixels downward. If either displacement is negative, the polygon will 
be moved in the opposite direction: left for negative DH, up for negative DV. 

The new structure is stored back into the same handle variable that it was 
passed in. The previous structure is discarded so that the polygon will now be 
drawn at its new position. If you perform another Off setPoly command on 
this polygon, the displacement will be measured from the new position. 

If you want to preserve the original polygon, you should transfer its struc
ture to another polygon with a new name, and then transform the new poly
gon. You can transfer a polygon's structure by assigning its handle to another 
handle variable: 

MovingPoly} = TemplatePoly} 

Now you can perform a transformation on this new polygon and leave the 
template fixed where it is, for use in future transformations. This technique is 
used in the second sample program and in the application program below. 

Map Poly 

A more complex transformation is MapPoly, which shrinks or expands the 
polygon in the process of moving it. MapPoly is a mapping operation, which 
creates a new polygon with the same basic structure, but with a different size 
and position. 

A mapping operation is defined by a source rectangle and a destination rec
tangle, as shown in Figure 2. In the mapping operation, the original polygon 
has the same relation to the source rectangle as the result polygon has to the 
destination rectangle. If the destination rectangle is larger than the source rec
tangle in one dimension, the resulting polygon will be enlarged by the same 
proportion. If the destination rectangle is offset from the source, the polygon 
will also be similarly offset. 

Note that the polygon in Figure 2 is not completely contained within the 
source rectangle. The rectangles merely define the relationship between the 
source and destination coordinates. Points outside the source rectangle's 
boundary are mapped to points in the same position outside the destina
tion rectangle. It is possible even for all of the polygon to lie outside the 
source rectangle. 

The source and destination rectangles must be previously defined as rectan
gle arrays. The rectangles must be dimensioned as integer arrays (type identi
fier: OJo), with four elements numbered 0 to 3. Their coordinates are set using 



D OpenPoly D 

MapPoly 

DestRect% 
SourceRect% 

Figure 2: OpenPoly-The mapping operation transforms the source polygon into the destina
tion polygon. 

the SetRect toolbox routine, and their names are passed as indirect references, 
using an @ sign prefix: 

DIM SourceRect%(3), DestRect%(3) 
TOOLBOX SetRect (@SourceRect%(0), ••• ) 
TOOLBOX SetRect (@DestRect%(0), ••• ) 

See the SetRect entry for more information on defining rectangle arrays. 
Once you have the source and destination rectangles defined, you can call 

Map Poly: 

TOOLBOX MapPoly (Poly}, @SourceRect%(0), @DestRect%(0)) 

As with OffsetRect, the transformed polygon's structure is stored back into 
Poly}, the handle that contained its original structure. If you want to preserve 
the original structure, set another handle variable equal to it and transform 
the polygon with the new handle. 

Sample Programs 
The first sample program defines a polygon in the shape of a rough figure

eight, then paints and frames a series of copies: 

! OpenPoly-Sample Program #1 
Figure8} = TOOL OpenPoly 



D OpenPoly D 

PLOT 30,30; 40,35; 3S,45; 22,45; 20,35; 
PLOT 40,25; 3S, 15; 22, 15; 20,25; 30,30 

TOOLBOX ClosePoly 
TOOLBOX PaintPoly (Figures}) 
FOR H = 30 TO 210 STEP 4 

TOOLBOX OffsetPoly (Figure8}, 4, 4) 
TOOLBOX FramePoly (Figures}) 

NEXTH 

The PaintPoly command draws the polygon at its original position. Then, on 
each pass through the FOR loop, the OffsetPoly operation moves the polygon 
four pixels down and to the right. The FramePoly command then draws an 
outline of the object at its new position, resulting in a diagonal series of over
lapping frames, as shown in Figure 3. 

The second sample program uses the same polygon shape, but draws it in 
five rows of five columns: 

! OpenPoly-Sample Program #2 
Figures} = TOOL OpenPoly 

PLOT 30,30; 40,35; 3S,45; 22,45; 20,35; 
PLOT 40,25; 3S, 15; 22, 15; 20,25; 30,30 

TOOLBOX ClosePoly 
FOR DV = 0 TO 180 STEP 45 

Figure 3: OpenPoly-Output of Sample Program #1. 



D OpenPoly D 

FOR DH = 0 TO 180 STEP 45 
MovedPoly} = Figure8} 
TOOLBOX OffsetPoly (MovedPoly}, DH, DVl 
TOOLBOX FramePoly (MovedPoly}) 

NEXT DH 
NEXT DV 

Because of the nested loop structure in this program, the off sets have to be 
measured relative to the original position, rather than to the last shape drawn. 
The polygon Figure8} is therefore used as a non-moving template, which is 
transferred each time into another handle, MovedPoly}. This new handle is 
the polygon that is actually shifted and drawn. Figure 4 shows the output of 
this program. 

Applications 
Polygons are a very useful feature of the graphics toolbox. Any figure 

bounded by a closed series of straight lines can be defined as a polygon-even 
a complex figure like a five-pointed star, which intersects itself. If you need to 
reproduce the same figure several times on the screen, you can define a poly
gon and transform it repeatedly with the OffsetPoly and MapPoly commands. 

8 8 8 8 8 
8 8 8 8 8 
8 8 8 8 8 
8 8 8 8 8 
8 8 8 8 8 

Figure 4: OpenPoly-Output of Sample Program #2. 



o OpenPoly o 

The stored polygon shape will be drawn much more quickly and more easily 
than if you went through the entire sequence of drawing operations. 

The polygon program shown in Figure 5 is based on the concept of the clas
sic video game Asteroids. The program begins by defining a single polygon 
shape, an irregular object that is supposed to look like a large rock in space. 
This Asteroid} polygon is then mapped into an array of polygons, NewAst}, 
centered around the point (120,120). For each array element, a READ state
ment loads in the offset steps DH and DV, as well as S, the size of each 
mapped asteroid. 

! OpenPoly-Application Program 

! Asteroids---Creates an irregular polygon and moves 
! animated images of it continually across the screen. 

SET OUTPUT ToScreen 

Asteroid}= TOOL OpenPoly 
FirstTlme- =TRUE 
DO 

READ H,V 
IF H:O AND V:O THEN EXIT 
IF F1rstT1me- THEN 

TOOLBOX MoveTo (H,V) 
FirstT1me- =FALSE 

ELSE 
TOOLBOX LineTo (H,V) 

END IF 
LOOP 

! Full-screen output 

! Create Asteroid. 
! Flag to force move to first point 

! Read in boundary coord1 antes 
! (O,O) indicates last point. 

! Move to first point 

! Draw to other points 

DATA -100,20,-120,-100,0,-120,20, -30,0,0 
TOOL60X ClosePoly 

READ NumberOf Ast ! Number of Asteroids ( 1 o here) 
DIM NewAst}(NumberOfAst) ! Define handle array for moving shapes. 
DIM DH(NumberOf Ast), DV{NumberOf Ast) ! Displacement per step. 
DIM HH(NumberDf Ast), VV(NumberOf Ast) ! Absolute position of shape. 
DIM OldRect~(3). NewRect~{3) ! Mapping rectangles. 
TOOLBOX SetRect (@OldRect~{O), -100.-100, 100. 100) 
FOR N= 1 TO NumberOf Ast ! Define moving polygons. 

READ DH(N). DV(N). s ! s is size in pixels. 
HH(N) = 120 ! Starting position= 

Figure 5: OpenPoly-Asteroids Application Program. 



o OpenPoly o 

VV(N)= 120 (120,120) 
NewAst}(N) = Asteroid} ! Create new handles 
TOOLBOX SetRect (@INewRect:C(O), 120-5, 120-5, 120+5, 120+5) 
TOOLBOX MapPoly (NewAst}(N), @OldRect:C(O), @NewRect:C(O)) 
TOOLBOX lnvertPoly (NewAst}(N)) ! Draw first copy. 

NEXT N 
DATA 10 
DATA 2,-4, 15 
DATA 2,5,25 
DATA -5,1,6 
DATA -4,-5,5 
DATA -1, -6,8 
DATA -8,6, 8 
DATA 10,-1,8 
DATA 6,7,8 
DATA 2,3,20 

DO 
FOR N: 1 TO NumberOf Ast 

HH(N) = HH(N)+DH(N) 
SELECT HH(N) 

! Loop repeatedly for continuous motion. 
! Move each asteroid separately. 
! Increment horizontal position 
! Wrap horizontally if too fer off screen. 

CASE< -40 
TOOLBOX OffsetPoly(NewAst}(N), +580, 0) 
HH(N) = HH(N)+580 

CASE> 540 
TOOLBOX OffsetPoly(NewAst}(N), -580, 0) 

CASE ELSE 
END SELECT 
VV(N) = VV(N)+DV(N) 
SELECT VV(N) 

! Increment vertical position 
! Wrap vertically if too far off screen. 

CASE< -40 
TOOLBOX OffsetPoly(NewAst}(N), 0, +380) 
VV(N) = VV(N)+ 380 

CASE> 340 
TOOLBOX OffsetPoly(NewAst}(N), 0, -380) 
VV(N) = VV(N)-360 

CASE ELSE 
END SELECT 
TOOLBOX In• -t.Poly (NewAst}(N)) 
TOOLBOX OffsetPoly (NewAst}(N), DH(N), DV(N)) 
TOOLBOX lnvertPoly (NewAst}(N)) 

NEXT N 
LOOP 

Figure 5: OpenPoly-Asteroids Application Program (continued). 

! Undraw old 
! Move 
! Draw new 



50 

D OpenPoly D 

In the final DO loop, each of the asteroids is repeatedly inverted, moved, 
and inverted again. The sequence of two InvertPoly commands assures that 
each polygon will be completely erased as it moves, giving the impression of 
animated motion. With ten complex objects on the screen, as shown in Figure 
6, the motion is a little jerky-about one step every half a second. The speed 
can be improved by converting the polygons to regions, as shown in the appli
cation program for the entry SectRect/SectRgn. That version of the program 
also has a ship that explodes when it collides with an asteroid. 

The SELECT /CASE blocks test HH and VV, the absolute positions of each 
polygon, to see if the asteroid has moved off the screen. If it has, an Offset
Poly command is used to wrap its position, so that it reappears on the other 
side of the screen. 

This program illustrates several important features of polygons: 

• A loop and a READ/DATA statement can be used in the definition 
block. 

• A single template can be used to define different polygons with the same 
outline. 

OpenPoly-Asteroids 

Figure 6: OpenPoly-Output of Asteroids application program. Each asteroid is moving in a different 
direction. 



D OpenPoly D 

• Polygons can be stored in a handle array, which contains pointers to a 
whole series of different polygons. 

• Polygons can be drawn and moved repeatedly to give the illusion of 
motion. 

• Polygons can be mapped to produce different sizes of the same figure. 

The only reason that polygons are not used more often is that they can usu
ally be replaced with regions, which are even faster and more flexible. Read 
the Notes section below for a comparison of polygons and regions, and the 
OpenRgn entry for a detailed description of regions. 

Notes 
-Regions and polygons are very similar. Both shapes are initially defined in 

the same way, and both can be drawn quickly with any of the five graphics 
command verbs-Erase, Fill, Frame, Invert, and Paint. Polygons and regions 
are both identified by a single handle variable, which points to the address of 
the shape's definition structure in the computer's memory. The shapes are so 
similar from a programming standpoint that a polygon program can be 
changed into a region program with a simple search-and-replace and a few 
minor alterations in the syntax. 

Technically, however, polygons and regions are quite different. A polygon is 
defined by a set of lines, drawn through actual endpoints that were stored in 
the definition block. Its corners are stored as precise, mathematical points, 
which are always redrawn in exactly the same order as they were stored. A 
region, on the other hand, is bounded by the pixels that form its edge. The 
original points drawn in the definition block are not stored at all in a region's 
structure. They merely become points along the pixels of the edge. Figure 7 
shows these two ways of defining the shapes. 

This difference affects the way the two shapes are drawn. Regions are 
drawn as a unit, like all the other QuickDraw graphics shapes. The shape 
graphics commands always operate on a shpae as a unit, painting their graph
ics patterns inward from the pixels of the border. Even Frame draws inward, 
by the width of the graphics pen. 

With polygons, the boundary is drawn first. Then, if the shape is to be 
filled in, the border is completed (if it wasn't already) and the pattern is 
painted inward. If the command is FramePoly, however, the edge may not 
even be completed if the last PLOT command in the definition block did not 



o OpenPoly o 

Polygons 
(defined by endpoints) 

Regions 
(defined by pixels) 

• •• • • • •• • • • • • • • • • • • • • • • • • • • • • •••••••••• 

Figure 7: OpenPoly-Polygons are stored as a series of mathematical points, while regions are 
stored as a set of pixels. 

bring the pen back to the starting point. Also, the frame's edge will be drawn 
down and to the right of the mathematical edges of the shape-a departure 
from the other five QuickDraw shapes, whose frames are always drawn 
inward from the edges. 

This complex drawing procedure accounts for the relative slowness of poly
gon operations. Since the polygon's drawing command must go back through 
the entire list of lines that created the shape, it takes somewhat longer to exe
cute than the equivalent region command. It could take a lot longer, if the poly
gon has many lines in its definition. In many applications the difference in 
speed is unnoticeable, but for animation programs such as the fast-moving 
asteroids program above, a region shape would significantly improve the exe
cution speed and the simulation of motion. 

Polygons have one important advantage over regions, however: they can be 
enlarged without losing detail. Since polygons are defined by the mathematical 
coordinates of just a few points, they will be painted with straight edges no 
matter what their size. Regions, on the other hand, are limited by the resolu
tion of the pixels defining their original outlines. If a region is expanded by a 
mapping command, its edges will be only as smooth as the original pixels that 
defined it. The result may end up with a blocky outline with irregular steps on 
the edges. 



o OpenPoly o 

Polygons are therefore used mostly with shapes that are enclosed by only a 
few distinct points. With such a simple shape, polygons can be drawn almost 
as quickly as regions, and they occupy less memory space. For areas bounded 
by smooth curves, the region shape is faster and more efficient. 

(You can transfer a polygon into a region by calling FramePoly inside an 
OpenRgn block-see OpenRgn for details.) 

-The OpenPoly I ClosePoly definition is not a program block in the same 
sense as a FOR/NEXT loop or IF/THEN/ELSE structure. You can legally 
branch into the block, and you can have overlapping structures. OpenPoly has 
no effect on the flow of the program: it simply begins the definition and sets 
the pen so that it won't draw on the screen. ClosePoly then reverses these 
actions and returns the pen to the graphics screen. 

You would be wise, however, to think of OpenPoly and ClosePoly as delim
iting a structured block. If you indent the definition block, as was done here, 
you can emphasize the block structure visually. 

-Normally, the pen is turned off automatically when you enter the defini
tion block. If you want to see the lines of the polygon while it is being 
defined, you can call the toolbox routine ShowPen. You must, however, bal
ance ShowPen by a call to HidePen at the end of the block. 

-For a full discussion of handles and the QuickDraw graphics system, read 
the Introduction and the entry for TOOLBOX. For more information on the 
shape graphics commands, see the entries for the BASIC commands ERASE, 
FRAME, INVERT, and PAINT, and for the toolbox Fill commands. For 
information on regions and polygons, see the entry for OpenRgn: the two 
structures are so similar that what is said about the one is often valid for the 
other as well. 



---i I OpenRgn I~ 
~--______ _____._F 

Graphics toolbox command-opens a region 
definition block. 

Syntax 
[j] RgnName} = TOOL NewRgn 

TOOLBOX OpenRgn 

• 
• I Region definition block . 
• 

TOOLBOX CloseRgn (RgnName}) 

• 
• ! Drawing and transformation commands . 
• 

[TOOLBOX DisposeRgn (RgnName})] 

Dermes a region shape RgnName}, which can then be referred to in 
other commands. 

111 Related Tuolbox Commands 

RectRgn 
SetRectRgn 
OffsetRgn 
lnsetRgn 
MapRgn 

UnionRgn 
SectRgn 
DiffRgn 
XorRgn 

EqualRgn 
EmptyRgn 
PtlnRgn 
RectlnRgn 

A wide variety of transformations, operators, and tests are avail
able that operate directly on regions. These related toolbox com
mands are also described in this entry. 



D OpenRgn D 

Description 
][n the Macintosh's QuickDraw graphics system, a region is a set of points 

bounded by a closed curve. A region can be any shape you desire, as long as 
its boundary meets up with itself. The shape can even have holes inside or dis
connected sections. Figure 1 shows some examples of valid regions. 

You define the region yourself, by giving a series of drawing commands to 
the computer. Once you have defined the region, you can draw it with any of 
the five toolbox graphics commands: EraseRgn, FrameRgn, InvertRgn, Paint
Rgn, and FillRgn. These commands draw a region shape any number of times 
very quickly-much faster than you could draw the separate lines that defined 
it. 

Regions closely resemble the Macintosh's polygon shape, which defmes an 
area of the screen bounded by a closed series of straight lines. As with regions, 
you can defme your own polygon shapes and then draw them with any of the 
five QuickDraw commands. 

Regions have many advantages over polygons, however. First, they are 
drawn more quickly, because they are stored in a very efficient structure 
designed for rapid drawing. Second, they can be defmed with any outline, not 
just a series of straight lines. And fmally, regions allow for a large variety of 

a 
•• 41t 

Figure 1: OpenRgn-Examples of valid regions. 

·~ 



D OpenRgn D 

transformation operations, which let you move the shape or combine it with 
other shapes in a single operation. 

ITJ RgnName} = TOOL NewRgn 

TOOLBOX OpenRgn 

• 
• ! Region definition block . 
• 

TOOLBOX CloseRgn (RgnName}) 

• 
• ! Drawing and transformation commands . 
• 

[TOOLBOX DisposeRgn (RgnName} )] 

As with polygons, you define a region by opening a definition block and 
drawing the shape's border. The definition block is opened by a call to the 
OpenRgn toolbox routine. Between the OpenRgn statement and the CloseRgn 
command that ends the block, the normal graphics pen does not draw on the 
screen; all drawing commands are stored as parts of the region's border. (If 
you do want the pen to draw on the screen while it is also defining the region, 
call the toolbox routines ShowPen and HidePen at the beginning and end of 
the definition block. See the application program for an example of this.) 

The region's actual structure can be quite complicated, depending on its 
boundary. The defining structure is stored in the computer's memory as a 
variable-length block of data that can expand with the complexity of the 
region's definition. 

Rather than making you deal directly with this complex data structure, the 
Macintosh toolbox lets you refer to a region with a handle variable, denoted 
by the type identifier } . The handle contains an indirect pointer to the starting 
memory address of the actual definition's structure (technically, it is a pointer 
to a pointer-see the Introduction for information on BASIC data types). You 
can refer to the entire definition structure as a unit simply by naming the han
dle variable. 

To create a region and get a handle for it, you must call the NewRgn tool 
function. NewRgn creates the structure of an empty region in the memory and 
returns a handle: 

RgnName} = TOOL NewRgn 



o OpenRgn D 

This toolbox name is introduced by the keyword TOOL, rather than TOOL
BOX, to show that it is syntactically a function, not a procedure. You must 
call NewRgn before you call OpenRgn or any other region routine. Until you 
give a definition for this new region, it is treated as the empty region. 

Once you have created the empty region, you can call OpenRgn to define it. 
OpenRgn, unlike the related OpenPoly function for polygons, is a standard 
TOOLBOX call that takes no arguments-not even the region's handle: 

TOOLBOX OpenRgn 

This sets aside a temporary block of storage for the region's definition, and 
lets you draw the shape's border. When you're finished, you call the CloseRgn 
routine, which does require the region's handle: 

TOOLBOX CloseRgn (RgnName}) 

The region handle is not named until the CloseRgn command, because the 
definition block uses temporary storage while defining the region, and stores 
its structure under the region's name only when the definition block is closed. 

You may notice some important differences between this syntax and the 
OpenPoly definition block for polygon shapes: 

• Before you even open the region definition block, you must call NewRgn 
to create the region and obtain a region handle. 

• OpenRgn is a toolbox procedure, called through the TOOLBOX com
mand, rather than a TOOL function like OpenPoly. OpenRgn does not 
refer to the handle of the region it is defining. 

• CloseRgn and ClosePoly are both toolbox calls, but CloseRgn requires 
the region's defining handle as an argument. OosePoly does not take an 
argument. 

You can remember the difference if you recall that polygons, the simpler 
shape, use the two-purpose OpenPoly function both to create and to open the 
structure, whereas the more complex region definition splits the creation and 
definition into two separate commands. CloseRgn requires the region's handle 
because it is not given in the OpenRgn statement. 

Inside the region definition block, you give drawing commands that define 
the boundary of the shape. The drawing must consist of one or more closed 
loops drawn by line or frame commands. In general, each loop should end at 
the point where it began. If the loops are not closed, you may get strange 
results. 



D OpenAgn D 

If the definition consists of more than one closed loop, it produces either a 
region with two disconnected parts or a region with a bole inside, depending 
on whether the second curve is inside or outside the original boundary. The 
three regions along the bottom line of Figure 1 show the shapes that will be 
defmed by a square and a triangle which-in order from left to right-overlap 
completely, overlap partially, and do not overlap. The white holes inside the 
first two are considered to be outside the boundary of the shape. 

In principle, the Macintosh toolbox allows you to defme a shape using 
either line or frame commands-the PLOT and FRAME commands in Mac
intosh BASIC. Unfortunately, the BASIC statements PLOT and FRAME do 
not work in defining regions (at least, not in the initial release of the lan
guage), so you can use only the related toolbox commands, such as Line1b 
and FramePoly. This limitation is particularly unfortunate since BASIC does 
not allow direct access to the toolbox routines FrameRect, FrameOval, and 
FrameRoundRect, which might otherwise be used to duplicate the BASIC 
FRAME command. It is therefore difficult to create a region with an oval or 
round-rectangle border (rectangles can be drawn easily in other ways). Let ~ 
hope that in a later release, Apple will make the PLOT and FRAME com
mands work in a region defmition, or else provide access to the associated 
toolbox routines. 

In the initial release, we are limited to the toolbox routines that do work: 
Line1b, Line, Move1b, Move, FramePoly and FrameRgn. Line1b and Move
To are the toolbox equivalents of the PLOT command-LineTo draws a line 
from the last point plotted, while MoveTo moves the pen without plotting. 
The alternate forms, Line and Move, measure the distances relative to the last 
point plotted, rather than as absolute distances from the point (0,0). Usually a 
region defmition begins with a call to Move1b, which moves the pen to the 
starting position for a point on the boundary. The other points on the bound
ary are then drawn with a series of LineTo calls. Th start another loop in the 
figure, move the pen with another MoveTo. 

Another shape command that you can use to defme a region is the Frame
Poly toolbox command. This command inside a defmition block essentially 
converts a polygon into a region by drawing the polygon's outline as part of 
the region's boundary. (If you want to avoid the hassle of the Move1b and 
Line1b commands, in fact, you can create your regions by first def'ming them 
as polygons, for which the BASIC PLOT command does work. You can then 
transfer the structure by framing the polygon.) 

When you have finished defining the boundary of the shape, you call 
CloseRgn to end the defmition block. The temporary storage of the region is 
transferred into the permanent data structure in the computer's memory that 



o OpenRgn o 

you created with NewRgn, so you can now refer to the region by the handle 
variable. After the CloseRgn statement, the graphics pen returns to its normal 
mode of drawing points and lines on the screen. 

After you have closed a region and received a handle with its permanent 
definition, you cannot reopen the structure to add more points to its bound
ary. You can, however, perform transformations on the region's shape and 
combine it with other regions. 

You can define as many region handles as memory will permit, but you can 
only have one definition block open at a time. If you open more than one 
block at a time, the toolbox routines do not know which region you want to 
store the various drawing commands in. 

After the region is defined, you can draw it with any of the five toolbox 
drawing commands: EraseRgn, FrameRgn, InvertRgn, PaintRgn, and 
FillRgn. The first four have the same meanings as the commands with the 
same names in BASIC. The fifth, FillRgn, is a special toolbox command that 
lets you fill a region with a pattern other than the one set for the graphics pen. 

The five commands share the same syntax, except for FillRgn, which 
requires an additional pattern parameter: 

TOOLBOX EraseRgn (RgnName}) 

TOOLBOX FrameRgn (RgnName}) 

TOOLBOX lnvertRgn (RgnName}) 

TOOLBOX PaintRgn (RgnName}) 

TOOLBOX FillRgn (RgnName}, @Pat%(0)) 

The pattern parameter for FillRgn must be previously dimensioned as a four
element integer array or a 64-element Boolean array. Pattern arrays are 
described fully in the entry for PenPat. 

After you're finished using the region you have defined, you can free the 
memory space occupied by its definition by calling DisposeRgn: 

TOOLBOX DisposeRgn (RgnName}) 

This command is optional, and it is generally unnecessary except in programs 
that require a large number of complex region definitions. Note that after call
ing DisposeRgn, the region handle will be left pointing to an invalid location 
in the computer's memory. You will get unpredictable results or a system error 
if you try to use the handle again without creating a new reference for it with 
NewRgn. 

You can replace a region's definition without calling DisposeRgn. You can 
change the definition with a transformation command, or simply call 



D OpenRgn D 

OpenRgn and CloseRgn to make a new definition block for the region's han
dle. The new definition will replace the old, and the handle will remain valid. 
The old structure is erased by any new call to OpenRgn and CloseRgn for that 
region handle. 

One other simple operation you can perform is the assignment statement: 

NewRegion} = OldRegion} 

This command transfers the structure of OldRegion} into a region structure 
defmed by the NewRegion} handle. If NewRegion} already exists, this assign
ment statement will replace its structure. This becomes extremely important 
once you begin using transformation operators that change a region's struc
ture. If you want to preserve the old structure along with the new, you should 
make a copy of it with a handle assignment statement of this type before you 
transform the original. 

lZ1 Related Toolbox Commands 

The great advantage of regions is the flexibility with which you can manipu
late the structures once you have defmed them. There are over a dozen tool
box commands that allow you to combine and examine the regions in a 
variety of ways. In terms of the ways in which they can be transformed, 
regions are the most flexible of the QuickDraw shapes. Although many of 
these operations are also available for rectangles and a few for polygons, they 
are most commonly used with regions for any complex transformations. 

RectRgn 
SetRectRgn 

1\vo simple toolbox commands let you create a region out of a rectangle 
array or out of a set of four integers that define a rectangle. These two com
mands are very useful, since one of the most common regions is the simple 
rectangular region. 

Why would you use a region when you can make do with a rectangle? 
There are a variety of reasons: 

• You might want to use one of the region transformations that is not 
available for rectangles. This is particularly useful with UnionRgn, 
described below, because the related UnionRect routine does not give the 
true union of two rectangles. 

• You might want to create a region that combines the rectangle with other 
shapes that are not rectangles. 



o OpenRgn o 

• You might, for some reason, want to use one of the toolbox drawing 
commands such as EraseRgn, FrameRgn, InvertRgn, and PaintRgn, 
rather than their BASIC equivalents. Macintosh BASIC does not allow 
access to the standard toolbox routines EraseRect, FrameRect, 
InvertRect, and PaintRect, forcing you to use the BASIC commands 
instead. If you are using toolbox rectangles for other purposes and want 
to draw them, you may find it easier to convert them to regions and 
draw them with the region commands, than to translate the rectangle 
array into a form the BASIC statements can recognize. 

• You may simply find it easier to refer to a rectangle as a region, which is 
represented by a single handle variable, rather than define a complex 
rectangle array to simulate a rectangle variable for the toolbox. 

Whatever your reason, you can use either of these two routines without 
opening a definition block. RectRgn converts a rectangle array into a region: 

TOOLBOX RectRgn (Rgn}, @Rect%(0)) 

As with all toolbox calls that refer to a rectangle as a whole, the rectangle 
must be stored as a four-element integer array (type identifier: OJo ), and it must 
be prefixed by the symbol @ to show that it should be passed as an indirect 
reference to the array's first element. See SetRect for more information on rect
angle arrays. 

SetRectRgn is a simpler command, because it takes four integer arguments 
instead of the rectangle array: 

TOOLBOX SetRectRgn (Rgn}, H1,V1,H2,V2) 

As in the SetRect command that defines a rectangle array, the four integers 
define the upper-left and lower-right corners of the rectangular region. The 
four coordinates are arranged in the same order as the coordinates that defme 
a RECT shape inside BASIC. 

Neither of these commands creates the region handle. For that, you must 
have previously called NewRgn. These two commands simply replace the 
OpenRgn defmition block with a single statement that defmes the boundary of 
a rectangular region. 

OffsetRgn 
lnsetRgn 
MapRgn 

There are three transformations that can be applied to regions: OffsetRgn, 
InsetRgn, and MapRgn. A transformation is an operation that is applied to a 



o OpenRgn o 

shape as a whole, which moves or resizes an object without changing its basic 
structure. 

The three operations are shown in Figure 2. OffsetRgn moves a region to a 
new position on the screen, without changing its size or shape. InsetRgn 
shrinks the entire boundary inward, without moving the center. MapRgn, 
finally, can both move the region and change its proportions. 

Off setRgn and InsetRgn have the same syntax, which requires three 
arguments: 

TOOLBOX OffsetRgn (RgnName}, DH, DV) 

TOOLBOX lnsetRgn (RgnName}, DH, DV) 

The first argument is the handle of the region to be transformed. The other 
two arguments are the number of pixels that the region should be moved (Off
set) or shrunk (Inset) horizontally and vertically. 

With OffsetRgn, DH and DV give the number of pixels the shape is moved 
to the right and downward. Every pixel on the border is simply moved DH pix
els horizontally and DV pixels vertically, so the region maintains its shape at the 
new position. For negative values of DH and DV, the shape is moved in the 
opposite direction: to the left for negative DH and upward for negative DV. 

OffsetRgn InsetRgn 

-
. . 

. 
. 

MapRgn 

Figure 2: OpenRgn-The three transformations that can be applied to regions. 



o OpenRgn o 

With lnsetRgn, DH and DV set the number of pixels of shrinkage toward the 
center. The shrinkage is carried out pixel by pixel, so that each point on the edge 
is moved the appropriate distance inward. Along diagonal lines, both DH and 
DV are applied, so that the points will move inward diagonally. If DH or DV is 
negative, the pixels are moved outward in that dimension, rather than inward. 
Note that InsetRgn does not preserve the proportions of the original rectangle, 
because the movement by DH and DV will make a larger difference proportion
ally in the narrow parts of the region than in the wider parts. 

The transformation that does preserve the proportions is the more complex 
MapRgn operation. MapRgn performs a mathematical mapping operation on 
the outline, so that all points on the border are transformed according to the 
same mathematical formula. The formula is defined by a pair of rectangle 
arrays, which you must supply in the calling statement: 

TOOLBOX MapRgn (RgnName}, @SourceRect%(0), @DestRect%(0)) 

The source and destination rectangles are not themselves transformed. They 
act as the frame of reference for the mapping operation: the region is trans
formed in such a way that it bears the same relation to the destination rectan
gle afterwards as it did to the source rectangle before. The transformed region 
does not have to be enclosed inside the source rectangle. It will still be trans
formed even if it lies partially or completely outside. 

By a judicious choice of the source and destination rectangles, you can have 
a mapping transformation move the region, resize it, or both. If the source 
and destination rectangles have the same size, but different positions, the map
ping operation becomes essentially an offset. If they have different propor
tions, the appropriate axes will be expanded or contracted. 

Regions are stored as an outline of pixels, so if you expand a region with a 
mapping operation, you will lose graphic resolution: in an expanded region, 
the outline points are mapped as blocks, so that diagonal lines in the new 
region will have a blocky, step-like outline. This is an important difference 
between regions and polygons, which are always mapped and plotted as 
"pure" mathematical shapes, no matter what size they may be. 

The three transformations simply replace the old structure of the trans
formed region with its new structure. The old structure of the region is 
destroyed in the process, so if you want to preserve it, you should make a 
copy of the region in another handle variable before you call the transforma
tion routine. 



UnionRgn 
SectRgn 
DiffRgn 
XorRgn 

D OpenRgn D 

The set-theory operators UnionRgn, SectRgn, DiffRgn, and XorRgn are 
another important group of region routines. These four routines combine two 
regions into a third region, in such as way that the third region contains cer
tain groups of points from the first two regions. These four operators are 
derived from the mathematics of set theory. 

The four operations are shown in Figure 3, acting on two intersecting 
regions, RgnA} and RgnB}. The result regions, shaded in gray, are the result 
of the operations as follows: 

• UnionRgn yields the region that contains all of the points that were in 
either or both of the source regions. 

• SectRgn's result contains only those points that were in both source 
regions. The command prefix "Sect" is an abbreviation of the word 
"intersection." 

UnionRgn SectRgn 

DiffRgn XorRgn 

Figure 3: OpenRgn-The four set-theory operators for regions are the union, intersection, 
difference, and exclusive-or. 



o OpenRgn o 

• DiffRgn gives the region that contains all the points from the first region 
that were not in the second region. You can think of it as a region
subtraction operation, which yields RgnA} minus the intersection of 
RgnA} and RgnB}. 

• XorRgn performs an exclusive-or operation, yielding the region that con
tains all points that were in one of the two regions, but not in both. 

The syntax of the four operations is exactly the same, with each command· 
requiring three region handles in the parameter list: 

TOOLBOX UnionRgn (RgnA}, RgnB}, ResultRgn}) 

TOOLBOX SectRgn (RgnA}, RgnB}, ResultRgn}) 

TOOLBOX DiffRgn (RgnA}, RgnB}, ResultRgn}) 

TOOLBOX XorRgn (RgnA}, RgnB}, ResultRgn}) 

The first two arguments, RgnA} and RgnB}, name the source regions. The 
third is the handle of the region that receives the result. All three region han
dles, including the result's, must have been previously created in calls to 
NewRgn. The result region may be the same as one of the source regions, in 
which case it will replace the source region's old definition. 

Note that the syntax of SectRgn is different from that of SectRect, the 
related routine for rectangles. SectRect, while it has the same three-argument 
structure as these region routines, is a TOOL function, which returns a Bool
ean result. SectRgn is a TOOLBOX procedure like the other three. It does not 
return a Boolean result. 

These four set-theory operations are among the most useful toolbox rou
tines for manipulating regions. They are the primary tools for combining 
simple regions into more complex shapes, and for expanding the definitions of 
regions that have been previously defmed. You can fmd further details and 
applications of these commands in the entries under their respective names in 
this book. 

EqualRgn 
EmptyRgn 

The Macintosh toolbox also has two tests for checking the contents of a 
region: EqualRgn, which checks to see if two regions are the same; and Emp
tyRgn, which tells whether a region contains any points. 

These tests are Boolean functions, which must be introduced by the key
word TOOL, rather than TOOLBOX. Although a Boolean TOOL function 



D OpenRgn D 

can be used anywhere you can use a logical expression, it is customary to 
assign the values to Boolean variables in logical assignment statements such as 
the following: 

Result'" = TOOL EqualRgn (RgnA}, RgnB}) 

ResultEmpty'" = TOOL EmptyRgn (Rgn}) 

The result of EqualRgn is TRUE if the two regions have exactly the same 
structure, FALSE if not. EmptyRgn returns TRUE if and only if the named 
region contains no points. 

To be equal, the two regions do not need to have been defined by the same 
sequence of drawing operations. Once a region's definition block is closed, the 
computer keeps no record of the drawing operations that went into the 
region's definition. If, in subsequent operations, you create a pixel outline 
identical to that of a region that was already stored in memory through a 
completely different series of operations, the regions will be considered equal. 
All empty regions are considered to be equal. 

In the initial release of Macintosh BASIC, EmptyRgn was not working cor
rectly. That is unfortunate, since EmptyRgn is often used in combination with 
SectRgn to test whether two regions intersect. In a game program, for 
example, you might want to use SectRgn to take the intersection of two 
regions defining a ship and a missile. If the intersection is not empty, the mis
sile has hit the ship and the ship can be made to explode. 

Until this bug in EmptyRgn is corrected in a later release of the language, 
there is another way you can achieve the same result. Use NewRgn to define 
an empty region, then use EqualRgn to compare the intersection to it, as in 
this program segment: 

Empty} =TOOL NewRgn 
TOOLBOX SectRgn (Ship}, Missile}, Intersection}) 
NotHir = TOOL EqualRgn (Intersection}, Empty}) 

NotHiC will be true if and only if the ship and the missile have no points in 
common. An example of this technique can be seen in the "asteroids" applica
tion program in the entry for SectRect/SectRgn. 

PllnRgn 
RectlnRgn 

There are two other Boolean tests, PtlnRgn and RectlnRgn, that let you see 
whether a region contains a given point (PtlnRgn) or any part of a given rect
angle (RectinRgn). Like EqualRgn and EmptyRgn, these are TOOL functions 
that return a Boolean value-TRUE if the region contains the point or any 



D OpenRgn D 

point from inside the given rectangle, FALSE if the point or the rectangle is 
wholly outside the region. 

The syntax of the two functions is essentially the same: 

Result- = TOOL PtlnRgn (@Pt%(0), Rgn}) 

and 

ResulC = TOOL RectlnRgn (@Rect%(0), Rgn}) 

For PtlnRgn, the point must be specified as a two-element point array, 
defined using the SetPt toolbox command. For RectinRgn, the rectangle is a 
four-element rectangle array, defined by the SetRect command. The second 
argument of both routines is the region's handle. 

PtlnRgn is often used in combination with the mouse to determine whether 
the mouse is clicked inside a certain region. If the point defined by 
(MOUSEH,MOUSEV) is inside the region, you might want to take a specific 
action. The Macintosh Finder (the desktop-like operating system) uses 
PtlnRgn to determine when you click the mouse on a specific icon. That is 
how it can detect precisely when the mouse is selecting an icon even when the 
icon has a very complex shape. 

RectinRgn returns TRUE if the rectangle has any point in common with 
the region. The rectangle does not have to be completely contained within the 
boundary of the region, but only needs to touch the region at one or more 
points. 

In the initial release of Macintosh BASIC, PtinRgn was not working cor
rectly. That problem will presumably be corrected in a later release. RectinRgn 
should work properly in all releases of the language. 

Sample Programs 
The first sample program shows what happens when you define a region 

bounded by more than one closed curve: 

! OpenRgn-Sample Program #1 
MultipleCurves} = TOOL NewRgn 
TOOLBOX OpenRgn 

DO ! Do until end-of-data flag (0, -1) 
READ StartH, StartV 
IF (StartH=O AND StartV= -1) THEN EXIT 
TOOLBOX MoveTo (StartH, StartV) 
DO ! Do until end-of-curve flag (0,0) 



D OpenRgn D 

READ H,V 
IF (H=O AND V=O) THEN EXIT 
TOOLBOX LineTo (H,V) 

LOOP 
TOOLBOX LineTo (StartH, StartV) 

LOOP 
TOOLBOX CloseRgn (MultipleCurves}) 
TOOLBOX PaintRgn (MultipleCurves}) 

! Data for region definition 
DATA 30,30, 130,30, 130, 130,30, 130,30,30,0,0 
DATA 50,50, 110,50,80, 110,50,50,0,0 
DATA 150,50,210,50, 180, 110, 150,50,0,0 
DATA0,-1 

The inner DO loop in the definition block reads data for one closed curve of 
points. The first point has already been used in the outer loop for an initial 
MoveTo. After that, the other points are used with LineTo commands, until 
the end-of-curve flag (0,0) is encountered in the data. The IF statement then 
exits to the outer loop, which finishes the closed curve, then goes back and 
reads another line of data. Each pass through the outer loop therefore results 
in a different closed curve in the region's boundary. When it reaches the final 
end-of-data flag (0, -1), the program exits from the outer loop and paints 
the region. 

Figure 4 shows the output of this program. The coordinates in the first 
DATA statement define the square at the left. The second DATA statement 
produces a triangle inside the square, which is treated as a hole in the region 
because it is inside the shape. The third DATA statement draws a triangle to 
the right of the original square. This last triangle is treated as a separate closed 
loop in the region's definition. All three loops are part of the same region, 
which is drawn by the PaintRgn statement at the end of the program. 

This use of READ and DATA statements is very common in region defini
tion blocks, since it eliminates the need to write long strings of LineTo and 
MoveTo statements. Note that a final LineTo is used at the end of the outer 
DO loop to bring the pen back to its starting point-a good safety measure to 
make sure each loop is complete. 

Another common way to define a region is with the mouse, as in this sec-
ond sample program: 

I OpenRgn-Sample Program #2 
Rgn} = TOOL NewRgn 
TOOLBOX OpenRgn 

BTNWAIT 



D OpenRgn D 

~0§ OpenRgn-Sample Program #1 = 

• 

Figure 4: OpenRgn-Output of Sample Program #1, 
showing that a region can consist of several 
independent areas. 

StartH = MOUSEH 
StartV = MOUSEY 
TOOLBOX MoveTo (StartH, StartV) 
DO 

IF NOT MOUSER-THEN EXIT 
TOOLBOX LineTo (MOUSEH, MOUSEY) 

LOOP 
TOOLBOX LineTo (StartH, StartV) 

TOOLBOX CloseRgn (Rgn}) 
TOOLBOX FrameRgn (Rgn}) 
SET PENMODE 10 
DO 

IF NOT MOUSER- THEN BTNWAIT 
H = MOUSEH 
V =MOUSEY 
TOOLBOX FrameRgn (Rgn}) 
TOOLBOX OffsetRgn (Rgn }, H - StartH, 
TOOLBOX FrameRgn (Rgn}) 
StartH = H 
StartV ":' V 

LOOP 

! Draw initial frame. 
! Penmode XOR for animation 
! Animation loop 

V-StartV) 

When you run this program, wait until the question-mark icon appears in the 
status box at the upper-right corner of the output window. At that point, the 



o OpenRgn o 

program has paused at the BTNWAIT statement. Then press the mouse and 
move the cursor in a closed loop with the mouse button down. The outline 
will not be drawn initially, because the pen is creating the region,s definition 
rather than drawing on the screen. 

When you release the mouse button, however, the region,s structure is com
pleted and the curve is drawn as a unit on the screen, as shown in Figure 5. 
Then, if you press the mouse again, the animation loop will let you move the 
region as a unit. 1\vo FrameRgn commands are used with penmode 10 to keep 
erasing the old version and drawing the new one. Note that the OffsetRgn 
command does not move the region by the mouse,s absolute position, but 
rather by the difference between its current position and the previous position 
of the starting point. The starting point is then updated so that the region will 
always move relative to its previous position. 

Applications 
The applications of regions are so varied that they cannot all be covered 

here. Virtually any graphics program can be rewritten to take advantage of the 
special features of the region shape. 

OpenRgn-Snmple Pro 

Figure 5: OpenRgn-Output of Sample Program #2, 
which defines the outline of a region using 
the mouse. 



o OpenRgn o 

The program in Figure 6 is an adaptation of the second sample program, 
shown above. Like that sample program, this program lets you use the mouse 
to draw the outline of the figure. However, instead of animating the region 
after creating it this program draws a shadow for the region, frames it, and 
then fills it in with one of the 38 preset graphics patterns. The program then 
changes to a different pattern and lets you draw another shape. By tracing out 
several regions, you can produce a picture like the one in Figure 7. 

! OpenRgn-Appl1cat1on program 

! Draws regions with the mouse, using patterns In order starting from 20. 

SET OUTPUT ToScreen 

Rgn} = TOOL NewRgn 
Pat= 20 

DO 
ERASE RECT 0,0; EndOfMessage, 20 
&PRINT AT 7,16; "Drawing with Pattern•"; Pat; 
ASK PENPOS EndOfMessage, v 

SET PATTERN Black 
TOOLBOX OpenRgn 

TOOLBOX ShowPen 
BTNWAIT 
StartH = MOUSEH 
Start V = MOUSEY 
TOOLBOX noveTo (StartH,StartV) 

! Draw on screen as well 
! Walt for mouse 
! Starting point= where first pressed 

DO ! Draw boundary of region 
IF NOT MOUSED-THEN EXIT 
TOOLBOX uneTo (MOUSEH,MOUSEY) 

LOOP 
TOOLBOX UneTo (StartH,StartV) 
TOOLBOX HldePen ! Hide pen at end of def1nlt1on block. 

TOOLBOX CloseRgn (Rgn}) 

Shadow} = Rgn} ! Shadow region, wm be offset 
TOOLBOX onsetRgn (Shadow}, 1, 1) 
SET PATTERN Black ! Draw black shadow 
TOOLBOX PatntRgn (Shadow}) 

Figure 6: OpenRgn-Application Program. 



o OpenRgn o 

TOOLBOX Fr8meRgn (Rgn}) 
TOOLBOX lnsetRgn (Rgn}, 1, 1) 
SET PATTERN Pet 
TOOLBOX P8intRgn (Rgn}) 

Pet= Pet+ 1 
IF Pel>37 THEN Pet= 0 

LOOP 

! Draw border of region 
! Inset to evoi d pei nt i ng over border 
! Drew region with pattern. 

! Increment pattern . 

Figure 6: OpenRgn-Application Program (continued). 

Note how the ShowPen and HidePen routines are used to let you see the 
outline of the region while you are drawing it. If you call ShowPen just after 
the OpenRgn command, the graphics pen is un-hidden, so that it both draws 
on the screen and defines the border of the region. ShowPen must always be 
balanced by a call to HidePen, usually at the end of the definition block. 

;;O OpenRgn-Mouse Rpplicntion Progrnm 

Drawing with Pattern -"37 

th ' . 

' 
Figure 7: OpenRgn-A picture created with the mouse application program. 

? 



D OpenRgn D 

In other entries in this book, you will find other sample and application 
programs that use regions. Here are just a few of them: 

• SectRgn: A region version of the OpenPoly asteroids game, which has a 
ship that explodes on contact with a moving asteroid. 

• DiffR.gn: A version of the line graph program, originally developed in 
the ~try for PLOT. Instead of drawing the lines of the graphs directly, 
they are made into parts of a region's boundary. It then becomes possible 
to shade the areas between two lines, to show the surplus or deficit 
between two quantities plotted. 

• XorRgn: A simplification of the checkerboard program described in the 
entries for RECT and IF. This program defines a region that contains the 
areas of the 32 black squares on the checkerboard, then draws the region 
all at once. 

Notes 
-Polygons and regions are so similar that they are often used inter

changably. Regions have the advantage of speed and flexibility, but polygons 
often use less memory. They are also treated as "pure" mathematical objects 
by the mapping operation, resulting in a smoother boundary when they are 
enlarged. 

As a general rule, any polygon program can be rewritten as a region pro
gram, and some region programs can be rewritten as polygon programs. You 
can, as mentioned above, even define a polygon and then transfer the shape 
into a region by giving a FramePoly command inside the region's definition 
block. You cannot, however, change a region into a polygon without rewriting 
the definition block. 

For a full description of polygons and a comparison between that shape and 
regions, see the entry for OpenPoly. 

-Other examples and descriptions of regions occur throughout this book. 
For general information on handle variables and QuickDraw shape graphics, 
see the Introduction and the entry for 100LBOX. For information on the 
five graphics drawing commands, see the BASIC commands ERASE, 
FRAME, INVERT, and PAINT, and the entry for the toolbox Fill commands. 



q _I __ O_P_T_IO_N __ ___.I µ 

Syntax 

BASIC command word-sets the order in 
which strings are ranked by relational 

expressions. 

[]] OPTION COLLATE STANDARD 

[l] OPTION COLLATE NATIVE 

Chooses ASCII or dictionary ordering for string comparison 
operations. 

Description 
Strings can be compared in IF statements and other expressions using the 

standard relational operators ( =, '¢, >, ~. <, and Et). Applied to words, 
these relational operators provide a method for alphabetization. 

In standard BASIC, strings are normally compared using the order of the 
standard ASCII code. Since the letters in this code are placed in the alphabeti
cal order of the English language, the ASCII ordering is often used to alpha
betize strings. The ASCII codes are listed in Appendix A. 

ASCII ordering can be used only for limited types of dictionary ordering, 
however. The most serious problem with ASCII ordering is that all the lower
case letters come after all the capital letters, so that any string containing low
ercase letters will be placed behind all the strings containing only capitals. 

For this reason, Macintosh BASIC gives you a choice. You can use the 
STANDARD ordering, which is consistent with the dialects of BASIC on 
other computers, or you can use the special NATIVE language ordering, 
which provides true dictionary ordering. For any application that sorts or 
alphabetizes words, the NATIVE option is a godsend. 



o OPTION o 

To choose between standard (ASCII) ordering and dictionary ordering, you 
must give one of the following commands: 

OPTION COLLATE STANDARD 

or 

OPTION COLLATE NATIVE 

STANDARD ordering is the default, used until you select the NATIVE 
option. 

At present, the OPTION command is used only in combination with the 
keywords COLLATE, STANDARD, and NATIVE. These string comparison 
options are discussed individually in the entries for STANDARD and 
NATIVE. 



Logical operator-TRUE if either or both of 
two logical expressions are TRUE. 

Syntax 
CiJ ResulC = A- OR s-

Combines two logical variables or expressions and yields the Bool
ean result TRUE if either A- or B - is TRUE, or if both are TRUE. 

~ IF A- OR s- THEN ... 

The OR operator is frequently used in an IF statement to combine 
two logical expressions or relations. 

Description 
The logical operator OR lets you create a compound logical expression, 

which is TRUE if either of two simpler expressions is TRUE, or if both are. 
The result is FALSE only if both expressions are FALSE. 

The OR operator is commonly used in the condition of an IF statement, 
when you want to take a certain action if either of two conditions is met. 

DJ ResulC = A- OR s-
Macintosh BASIC has a Boolean variable type, which is identified by the 

tilde symbol C- ). A Boolean variable can hold the values TRUE or FALSE, 
and may be assigned the result of any logical expression. 

The keyword OR is one of the three operators that can combine logical 
expressions. A logical operator resembles the arithmetic operators ( + - * I " 



oORo 

DIV and MOD), except that it combines two Boolean values into a Boolean 
result. In the logical assignment statement 

ResulC = K ORB-

the expression 

A- ORB-

is evaluated according to the logical OR operation. The Boolean result is then 
assigned to the Boolean variable on the left side of the equal sign, ResulC . 

The logic of the OR operation is shown in the truth table in Figure 1. The 
resulting expression, A- OR B - , evaluates to TRUE in three of the four possi
ble combinations of TRUE and FALSE for A- and B - . The result is FALSE 
only in the fourth case, where both A - and B - are FALSE. 

The OR operator can combine any two logical expressions-not just vari
ables, as shown here. OR is, in fact, most commonly used to combine rela
tional expressions that compare numbers or strings: 

ResulC = (A>5) OR (B$= ''Yes") 

Each of these relational expressions evaluates to a Boolean value, TRUE or 
FALSE. The OR operation then determines a Boolean result based on those 
two values. 

A- B- A- ORB-

TRUE TRUE TRUE 

TRUE FALSE TRUE 

FALSE TRUE TRUE 

FALSE FALSE FALSE 

Figure 1: OR-Truth table for the OR operation. 



oORo 

The two expressions can, in fact, be any two logical expressions, including 
other operations involving AND, OR, and NOT. The following expression is 
therefore perfectly legal: 

ResulC = (A>S AND A < 10) OR (NOT MOUSEB-) 

The two expressions inside the parentheses are evaluated first, before the OR 
operation, just as in an arithmetic expression. 

As you can see from the truth table, the OR operation gives the result 
TRUE if both operands are TRUE. There are, however, times when you may 
want the result to be TRUE only in the case where one of the expressions is 
TRUE, but not when both are TRUE. 

For that case, you want the exclusive-or operation, which is shown in the 
truth table in Figure 2. The exclusive-or is exactly the same as an OR opera
tion, except that it is FALSE in the case where both A- and B - are TRUE. 

The exclusive-or is not a predefined operation in Macintosh BASIC, as it is 
in Microsoft BASIC. However, it can be simulated by the following Boolean 
function: 

DEF XOR" (A - ,B- ) = (K OR S- ) AND NOT (K AND s- ) 
The exclusive-or can also be simulated with the standard not-equals relational 
operators(#:, < >,and > < ): 

DEF XOR" (A - ,B- ) = (K #- S- ) 

XOR- (not a keyword) 

A- a- XOR~(A- B-) 
II 

TRUE TRUE FALSE 

TRUE FALSE TRUE 

FALSE TRUE TRUE 

FALSE FALSE FALSE 

Figure 2: OR-Truth table of the exclusive-or function. 



oORo 

You can use this function in your own programs, but remember that it will 
have the syntax of a user-defined function call: 

Resulr = XOR"' (ExpressionA-, Expressionlr) 

This function is illustrated in the sample program below. 

[l] IF A- OR B- THEN ... 

The most common place to find the OR operator is in the condition of an IF 
statement. Used in that way, OR creates a compound condition that is TRUE if 
either or both of two simple conditions are TRUE. Therefore, the THEN block 
of such an IF statement is executed if either condition is fulfilled. 

Sample Programs 
The following sample program prints a truth table for the XOR function, 

like the one shown in Figure 2: 

I OR-Sample Program 
DEF XOR"' (A - ,Ir ) = (A- OR Ir ) AND NOT (K AND s- ) 

SET GTEXTMCE 1 
SET TABWIDTH 83 
SET FONTSIZE 14 
GPRINT AT 15,30; "K ", "s-" 
GPRINT AT 170,30; "Resulr " 
SET PENPOS 15,65 
FORA=OTO 1 

K = (A=O) 
FOR B=O TO 1 

Ir = (B=O) 
GPRINT K , s- , XOR"' (K ,B- ) 

NEXT B 
NEXT A 

! Boldface 

I TRUE if A is 0 (first case) 

The nested loops at the end of this program use the integer values 0 and 1 to 
step through the four lines of the truth table. (Boolean variables cannot be 
used as the index of a FOR loop.) The logical assignment statements before 
the GPRINT are used to convert these integer values into Boolean. 

The output, shown in Figure 3, resembles the truth table in Figure 2, except 
that this figure is less elaborate in its formatting. Note that Boolean values, 
when printed, are always displayed as lowercase (contrary to the typographical 
conventions used in this book.) 



o ORD 

You can adapt this program into a program to evaluate a truth table for any 
logical operator, including AND, OR, and more complex relations. Just 
replace the XOR- function with the expression you want to evaluate. 

Applications 
The quiz-and-final-grade application program in the AND entry could be 

easily modified to use OR instead of AND. The teacher might, for example, 
want to forgive poor quiz grades or a poor final exam if the student did well 
on the other part of the course. The teacher might, therefore, choose to pass 
any student that has either an average of better than 75 or a final of better 
than 70. The IF statement at the end of that program might then be rewritten 
to read 

IF Avg ;;i:: 75 OR Final ;;i:: 70 THEN ••• 

No other modifications are necessary in the program. 

~0§§ OR-EHclusiue-or function ~ 

• 
A- B- Result- ~ 

true 
true 
false· 
false 

true 
false 
true 
false 

false 
true 
true 
true 

l2l J1im11i111i1m1i1i1llllllll!Hlm1i1mmmmmim1i1l111m:m:lmi1!11mm:iii1i[Q QJ 
Figure 3: OR-Output of sample program. 



oORo 

Notes 
-In a compound logical expression with more than one AND, OR, or 

NOT operator, there is a hierarchy that tells which operation is performed 
first. Unless overridden by parentheses, the order is: NOT and relational oper
ations first, then AND, finally OR. In the expression 

ResulC = A>B OR C= 5 AND MOUSEB-

the relational operators are evaluated first to get logical values. The logical 
values are then combined, first in the AND operation, then in the OR. 

Since few people reading your programs will be able to remember this hier
archy, it is best to use parentheses to group all logical operations, even when 
the grouping is redundant. Also, if you fmd your logical expressions becoming 
large and unwieldy, it may be a sign that you need to rethink your logic. 

Compound logical expressions within IF statements can sometimes be 
rewritten into a range case in a SELECT/CASE block. See SELECT for 
information on this structured decision block. 

See the entries under AND, IF, and NOT for related information. 

OR-Translation Key 

Microsoft BASIC OR 

Applesoft BASIC OR 



File access attribute-selects a two-way 
channel and sets file pointer to beginning 

of file. 

OPEN #Channel: "FileName", OUTIN, Format, Structure 

Opens a ftle for both reading and writing, starting at the beginning 
of the ftle. 

Description 
The OUTIN file access attribute is used as part of the OPEN # statement, 

which opens a channel from a file to a program. OUTIN determines a two
way channel, so that the file can both send information to and receive inf or
mation from the program. 

OUTIN also presets the file pointer to the start of the file, so that access 
will begin at the first record. Whether the first record will be rewritten or 
merely read depends on ensuing program statements. 

If you do not specify an access attribute, the access attribute will automati
cally default to INPUT, which means that the file can be read, but not written 
to. When you do specify an access attribute, it should always appear as the 
first attribute in the OPEN # statement. 

For further information, see the OPEN # entry. For a sample OUTIN pro
gram, see the SEQUENTIAL entry. Other possible file access attributes are 
APPEND and INPUT. 

OUTIN-Translation Key 

Microsoft BASIC R 

Applesoft BASIC -



ql....__ __ O_U_T_PU_T ____ lp 

Syntax 

Graphics set-option-changes the output 
window size. 

III SET OUTPUT Left,Bottom; Right,Top 

l1J ASK OUTPUT Left,Bottom; Right,Top 

Sets or checks the dimensions (in inches) of the output window. 

[JJ SET OUTPUT ToScreen 

There is a special system constant ToScreen, which gives the largest 
output window that will fit on the screen. 

Description 
Macintosh BASIC, by default, provides a square output window with coordi

nates running from 0 to 240 in each dimension. This output window is placed 
near the right side of the screen, and measures 3 1/3 inches on each side. 

With the OUTPUT set-option, you can move the output window to another 
place on the screen and you can change its size. This lets you arrange your 
output screen in any way you wish. 

III SET OUTPUT Left,Bottom; Right,Top 

l1J ASK OUTPUT Left,Bottom; Right,Top 

The OUTPUT set-option takes four numeric values, which set the four 
edges of the output window. The first two numbers must be separated from 
the other two by a semicolon. 



oOUTPUTo 

These four values in the SET OUTPUT statement are arranged in a differ
ent order from the "Left, Top; Right,Bottom" that is used in the shape graph
ics commands: 

SET OUTPUT Left,Bottom; Right, Top 

You can remember this irregular syntax by noticing that each edge of the out
put rectangle is named in a counterclockwise order starting from the left side. 
The same unorthodox order is also used for these other set-options: LOCA
TION, SCALE, and DOCUMENT. 

The numbers in the SET OUTPUT statement denote inches, rather than pixels. 
SET OUTPUT assumes the ideal case in which the pixels are at exact intervals of 
1172 inch (roughly 0.014 in decimals). On your screen, the actual pixels might be 
slightly larger or smaller, depending on the adjustment of the video circuitry. If 
the screen is in perfect adjustment, the image will be 7.11 inches wide and 4.75 
inches high. 

The numbers in the SET OUTPUT statement measure the dimensions of the 
display part of the output window, excluding the scroll bars and title bar that sur
round the window on three sides. If you are calculating the placement of the win
dow, you will need to allow room for these dead spaces. The 1bp dimension, for 
example, must provide for both the menu bar and the title bar of the window. 
The top of the window must be at least 0.26 inches from the top of the screen, 
because of the menu bar; the value 1bp = 0 is illegal. Th get the full title bar of the 
output window, you must have at least 0.5 inches at the top. 

rn SET OUTPUT ToScreen 

Fortunately, you don't need to worry about all these complexities if you 
simply want your output window to fill the whole screen. For that, you can 
use the system constant ToScreen, which represents the dimensions of the 
entire usable portion of the output window (the menu bar is locked and can
not be covered up). The statement 

SET OUTPUT ToScreen 

is identical to the command given with the values 

SET OUTPUT 0, 4.528; 6.889, 0.528 

which represent the full screen dimensions. Note that the ToScreen system 
constant replaces four different values. 

If you dump a screen such as this to the lmagewriter printer, using Shift
Command-4, it will be missing the lines around the left and right edges of the 
window, because those lines are on pixels that are outside the transmitted 



o OUTPUT o 

screen display. If you want to be able to make printer dumps that will include 
all the lines around the edges, you can use the following dimensions: 

SET OUTPUT O.Dl I 4.5; 6.86, 0.51 

This will produce a window that is a few pixels smaller than the ToScreen 
setting-just enough for the border lines to be printed. 

SET OUTPUT without parameters resets the output window to its default 
size. 



Graphics shape-names a circle or ellipse. 

Syntax 
ITJ ERASE OVAL Hl,Vl; H2,V2 

~ FRAME OVAL H 1, Vl; H2, V2 

CTJ INVERT OVAL Hl,Vl; H2,V2 

~ PAINT OVAL H1,V1; H2,V2 

Performs a graphics operation on an oval shape. 

Description 
Ovals are one of the three shapes that can be drawn directly in Macintosh 

BASIC. Depending on its proportions, an oval can be either a circle or an 
ellipse. 

The BASIC graphics system can perform four different operations on 
ovals: ERASE, FRAME, INVERT, and PAINT. The keyword OVAL must 
always be paired with one of these operations as the second part of a two
word command-for example, PAINT OVAL or FRAME OVAL. The name 
OVAL has no meaning by itself. 

An oval is defined by the coordinates of its bounding rectangle, as shown in 
Figure 1. The bounding rectangle is the rectangle that will fit precisely around 
the ellipse in both the vertical and horizontal dimensions. As such, it defines 
the widest part of the oval in each dimension. 

The bounding rectangle is defined in exactly the same way as a standard rec
tangle shape. You name two pairs of coordinates to fix the points at two oppo
site corners of the bounding rectangle-usually the upper-left and lower-right: 

operation OVAL H1,V1; H2,V2 



o OVAL o 

H 1 (Left) H2 (RigM) 

H2 .. V2 

-··--·-·-· •···---------·--------·----·-----------
figure 1: The OVAL shape is defined by the coordinates of its bounding rectangle. 

The other two corners of the rectangle are determined by the first two. Since 
these points are at the corners of the imaginary bounding rectangle, they lie 
outside the boundary of the oval itself. 

If you prefei; you can also use the other coordinate names shown in Figure 1: 

operation OVAL Left,Top; Right,Bottom 

In this scheme, the horizontal coordinate of the upper-left corner is expressed 
as the horizontal coordinate of the left edge of the bounding rectangle. It is 
also the horizontal coordinate of the leftmost point on the curve of the oval. 

As in defining rectangles, it doesn't matter whether Hl,Vl is above and to 
the left of H2, V2. You can choose any two opposite corners. If H2 or V2 is 
less than Hl or Vl, BASIC will interchange the coordinates and draw the oval 
correctly. 

It may seem confusing to have to define an oval with a bounding rectangle, 
but it has the advantage of consistency with the other QuickDraw shapes. If 
you want to draw a circle directly inside a square, you simply give two com
mands with identical coordinates: 

FRAME OVAL Hl,Vl; H2,V2 
FRAME RECT Hl,Vl; H2,V2 

If you've ever worked with MacPaint, you will be familiar with ovals defmed 
by corners of an imaginary bounding rectangle. 



o OVAL D 

Circles are made by defining an oval with its two dimensions equal. The 
height and width of an oval are V2- Vl and H2- Hl, respectively, so you will 
get a circle if the two are equal. 

Macintosh BASIC has no command for drawing a circle with a specified 
center and radius. This may prove inconvenient for people accustomed to 
Microsoft BASIC, which has such a CIRCLE command. However, it is easy 
to adapt the OVAL commands to this purpose. If you want to frame a circle 
with center (H, V) and radius R, you merely add and subtract R from the cen
ter's coordinates: 

FRAME OVAL H-R,V-R; H+R,V+R 

This way of naming a circle is shown in Figure 2. 

Sample Programs 
The following program frames a series of circles of different sizes: 

! OVAL-Sample Program #1 
FOR H2 = 10 TO 230 STEP 10 

FRAME OVAL 10, 10; H2,H2 
NEXT H2 

R 
(Radius) 

H,V 
(Center) 

R 

- ~ - - - - - - - • H+R,V+R 

Figure 2: The OVAL shape can be used for drawing circles around a specified center. 



o OVAL o 

Because the circles all have the same upper-left corner (10, 10), the larger cir
cles seem to grow down and to the right, as shown in Figure 3. 

To get circles to grow out from a common center, the OVAL must be 
defined in terms of a center and a radius. The following program draws a 
series of concentric circles around the center (120,120): 

l OVAL-Sample Program #2 
FOR R = 5 TO 110 STEP 5 

FRAME OVAL 120-R,120-R; 120+R,120+R 
NEXT R 

Figure 4 shows the output of this program. 
The third sample program is fancier, using animation techniques to create 

the illusion of a spinning disk: 

! OVAL-Sample Program #3 
Period = 200 ! 200 tick counts = 3.3 seconds 
Radius= 30 
SET PENMODE 10 ! XOR mode: FRAME twice for animation 
SET PENSIZE 2,2 
00 

Angle = TICKCOUNT*2*n/Period 
H = Radius*SIN(Angle) 
FRAME OVAL 120-H,120-Radius; 120+H,120+Radius 
FOR Delay= 1 TO 200: NEXT Delay 
FRAME OVAL 120-H,120-Radius; 120+H,120+Radius 

LOOP 

The special symbol n is the value for pi, which is predefined by Macintosh 
BASIC (press Option-P to type it.) Angles are measured in radians (0 to 2n) 
for the SIN and all trigonometric functions. 

When you run this program, the height of the oval always stays the same. 
The width, however, varies as a sine function of the time, giving the impres
sion that the ring is spinning smoothly about the vertical axis. The calculation 
of the Angle variable is arranged so that for every 200 ticks of the system 
clock the value ranges evenly from 0 to 2n radians-the whole range of the 
sine function. Figure 5 shows the disk stopped at one point in its rotation. 

The FOR/NEXT delay loop between the two FRAME statements reduces 
the flicker of the moving image. It does not change the timing of the rotation, 
which is controlled by the TICKCOUNT function. See PENMODE and SIN 
for more information on animation. 



o OVAL o 

Figure 3: OVAL-Output of Sample Program #1. 

=~ OURL -Sample Program #2 ~ 

Figure 4: OVAL-Output of Sample Program #2. 



o OVAL o 

~ DUHL -Spinning Disk 

0 

Figure 5: OVAL-The output of Sample program #3, 
stopped at one point in the revolution of the 
circle. 

Applications 
Ovals are frequently used in graphics programs. You will probably need to 

use ovals for any picture that requires curved lines and surfaces. In other 
entries in this book, ovals are used to paint checker pieces (see IF and RECT) 
and points on a line graph (see PLOT). 

The application program shown in Figure 6 draws a picture of a target and 
uses the mouse to aim shots at it. The oval shape is used first to draw the con
centric circles of the target. Then, at the end of the program, a repeating loop 
paints small ovals in the target to look like bullet holes. The random number 
function is used to scatter the shots in the area around the mouse's position, so 
that the aim of the mouse will not be perfect. Figure 7 shows the target after a 
few pot-shots. 

Notes 
-Circles are closely related to the SIN and COS trigonometric functions, 

and the points on the circumference of a circle can actually be determined by 



o OVAL o 

OVAL-Application program 

Draw a target and fire random bullets at it. 

SET FONTS I ZE 9 I 9-point Geneva font for numbers on target 

FOR Ring:20 TO I 00 STEP 20 
! Draw circles for target 
FRAt1E OVAL Ring,Ring; 220-Ring,220-Ring 

! Draw numbers 
IF Ring<IOO THEN 

HI= .7*Ring+31 
VI= Hl+l2 
H2 = 209-HI 
V2 = 228-VI 
GPRINT AT Hl,Vl; Ring 
GPRINT AT H2,V1; Ring 
GPRINT AT Hl,V2; Ring 
GPRINT AT H2,V2; Ring 

ELSE 

! Print numbers in ell four quadrants 
I Starting point for GPRINT messages 
! Coordinates were determined by trial 
! end error, so that all the numbers 

would fit inside their rings. 

I Treat bullseye as a special case 
GPRINT AT 101,114; Ring 

ENDIF 
NEXT Ring 

I Drew vertical and horizontal lines in target, but not through bullseye. 
PLOT 110,20; 110, 100 
PLOT 110, 120; 110, 199 
PLOT20,110; 100,110 
PLOT 120,110; 199,110 

I Print message at top of screen 
SET FONTSIZE 12 ! 12-point Geneva font for message 
SET GTEXTF ACE I ! Boldface 
GPRINT AT 5, 12; "Press Mouse Button to Shoot" 

! Fire random shots scattered around mouse button. 
DO 

DTNWAIT 
H : MOUSEH + RND(40) - 20 
V =MOUSEY+ RND(40) - 20 
PAINT OVAL H-2,V-2; H+3,V+3 

LOOP 

Figure 6: OVAL-Shooting Gallery application program. 



o OVALo 

~0 OURL-Shooting Gallery 
Press Mouse Button to Shoot ? . -·--........ _ 
• 

Figure 7: OVAL-Output of Shooting Gallery program. 

sine and cosine functions: 

FOR Angle= 0 TO 2*n STEP n/180 
PLOT 120+ 90*COS(Angle), 120-90*SIN(Angle); 

NEXT Angle 

This program draws the full circle shown in Figure 8. The PLOT statement 
draws lines to points at each angle from 0 to 360, at intervals of 1 degree ( = 
n/180 radians). The radius of the circle is 90 units and the center is at 
(120,120). 

This program is much slower than FRAME OVAL, because it requires 360 
drawing operations instead of one. You can get an idea of the speed of the 
QuickDraw OVAL function by comparing the above program to the following 
program line, which draws the same circle (radius = 90, center 120, 120): 

FRAME OVAL 30,30; 210,210 

This oval is drawn almost instantaneously. 
Although slow, the sine function can be useful for drawing parts of circles. 

By adjusting the limits on the FOR statement in the above program, you can 
draw just the arc lying between two angles on the circle. 

-The Macintosh toolbox also has an arc shape that is closely related to the 
OVAL shape. An arc is a wedge-shaped sector cut out of a circle, bounded by 



D OVAL D 

~O OURL -Note on Sines 

• 
--~ 

I 

"------_,/ ~II 
Figure 8: OVAL-You can also use the SIN function to 

draw circles. 

two angles. Like ovals, arcs are defined in terms of a bounding rectangle. 
However, they add another two parameters to specify the starting angle and 
angular width of the sector. 

Arcs are useful for any application where you want to draw only one part 
of a circle (pie charts are the most common of these applications-see the pro
gram under PaintArc). Arc commands allow Macintosh BASIC to simulate all 
the features of the CIRCLE command in Microsoft BASIC. 

To use arcs, unfortunately, you must call toolbox routines, which have more 
complex syntax than the simple BASIC shape commands. For the complete 
syntax and a detailed description of the arc commands, see the entry for 
PaintArc. 

OVAL-Translation Key 

Microsoft BASIC 

Applesoft BASIC 

CIRCLE 



--J I PAINT I f--:= 
~------------F 

Graphics command-draws a filled-in shape. 

Syntax 
[jJ PAINT RECT Hl,Vl; H2,V2 

[f] PAINT OVAL Hl,Vl; H2,V2 

[] PAINT ROUNDRECT Hl,Vl; H2,V2 WITH H3,V3 

Draws a filled-in rectangle, oval, or rounded rectangle in the current 
pattern. 

~ Toolbox Commands 

PaintArc 
PaintPoly 

Fill 
PaintRgn 

These toolbox commands are available to paint arcs, polygons, and 
regions. 

Description 
PAINT is one of the most important graphics commands in Macintosh 

BASIC. The PAINT command draws the entire area of a shape in a pattern 
you have chosen with a previous SET PATTERN command. If you do not set 
a pattern, PAINT uses the default of solid black. This is a common technique 
for blackening large areas of the screen. 

DJ PAINT RECT Hl,Vl; H2,V2 

[f] PAINT OVAL Hl ,Vl; H2,V2 

[] PAINT ROUNDRECT Hl,Vl; H2,V2 WITH H3,V3 

The PAINT command always operates on a shape. Macintosh BASIC has 
three preset shapes that you can use with the PAINT command: RECT for 



o PAINTo 

rectangles, OVAL for circles and ellipses, and ROUNDRECT for rectangles 
with rounded corners. The command word PAINT must always be followed 
with one of these shape keywords, which complete the meaning of the com
mand. The three shapes are described under their own names in this book. 

The three shapes are all defmed in the same way: by naming points at two 
corners of the bounding rectangle. For the RECT shape, the bounding rectan
gle is the edge of the rectangle itself. For ovals and rounded rectangles, the 
points are at the corners of the rectangle that would contain the shape. 

The three shapes and their corner points are shown in Figure 1. It is cus
tomary to choose the points at the upper-left and lower-right corners of the 
shape, but this is not required. If the second point falls above or to the left of 
the first point, BASIC will adjust the coordinates so that the shape is still 
drawn between the two corners you have named. However, you must always 
choose points at opposite comers of the bounding rectangle. 

With the ROUNDRECT shape, you must add a third pair of numbers to 
set the curvature of the corners. If this third pair of numbers is small, the cor
ners will be fairly sharp. With larger numbers, the corners will be more 
rounded. See ROUNDRECT for further details. 

PAINT affects all the pixels within the shape. With the default setting, the 
command turns all of the pixels black. However, by changing the pattern or 
penmode, you can draw the shape in any pattern you want. 

H1 ,V1 

H2,V2 

RECT 

H1 ,V1 

• H2,V2 

OVAL 

H1 ,V1 

H2,V2 

ROUNDRECT 

Figure 1: PAINT-The points that define the three shapes in BASIC. 



D 

o PAINT o 

A pattern is an 8 x 8 array of black and white dots. When you paint an area 
on the screen, the pattern is drawn repeatedly, at eight-pixel intervals. The 
result looks like the tiles on a kitchen floor: a fundamental pattern that 
repeats across the entire area. 

You choose the pattern before you give the PAINT command. Using tool
box commands, you can set up any pattern, but most people stick to the 38 
preset patterns that can be used directly in BASIC. These preset patterns, 
shown in Figure 2, are chosen by number in the SET PATTERN command, 
for example: 

SET PATTERN 16 

A few of the more common patterns have also been given names: 0- Black, 
2- DkGray, 3 - Gray, 22- LtGray, and 19- White. These special patterns 
have regular dot arrangements that result in uniform, untextured gray tones 
for the painted region. With these five patterns, you can use the name in place 
of the number in the SET PATTERN command: 

SET PATTERN Gray 

PAINT The 38 Patterns 0- 10111111111111111111 30~ 

- 11 :;:;:::::;:;:;:;:; 21 }}}{}})) 31 ~~ rn 

·~) - 1 r_, ·. . . . . . . . - ') :::::::::: : : : :: :: ::::::::: :: :::::~:: 32 ·. ·. ·.·. ·.·.·. ·. ·.·. ·. ·.: ~ "'· ·.:·. ~.l·····'j; ... ····':_1_ ... -··'J __ ... ··':. 1 ... ····'J_ ... ···;~. - L LL mrn~um~mrnmmmmnn -_ - u: 

3 - 13 : ::::~::::::~::::~::~::~::~ 23 ~rnmmmm~m~mmmmm 33 ~~~~~ 

4 - 14~~ 24~~~ 
s 1 11111111111~1111111m11111111 1 s ~ 2s t~tfl%WJ.t% 

-

t: "Ct:':t'. ' :t'. ':t'."f."t: " t: " ~~~~ 
6 16 f~l'~1~l~i~'t'~v.~'t'.!Y.! 26 = 
7 111111111111111111 17 ~:~j:;~~ft~~\{\: 27 )///));;;: 

s ~~~~~~~~m~~~m~~ 1a ~~~~ 2s ::::::r:::H+:-:::: 

34~ 

35 ~~~~:;~:;~~ 
36~ 
<7 ••.••••••• ..,, , ........ . 

9 \:\??::/:/:{\:\/ 19 -?9 ITTITHTT ,,,,,, l _ . I 
:~ l i:H::::m:::::: :: ::::::mmnt: ::H ::::?:H::::::m:m:::::m:m:m:m:m:mm:m:::m:mmmmm:::::::::mm::m::::m::m::::::::rnm:m:mrnmrnmm::::Hmmm:mm:rn~~ 
Figure 2: PAINT-The 38 predefined patterns that can be used in painting shapes. 



o PAINTo 

The way the shapes are painted also depends on the transfer mode, which is 
chosen by SET PENMODE. In its default setting, the transfer mode covers 
everything in the painted area; all of the pixels inside the shape are turned to 
the chosen pattern, whether they were previously black or white. By changing 
the penmode, however, you can allow any previously blackened pixels to show 
through the·pattern, or to affect the new pattern in other ways. The command 

SET PENMODE 9 

sets the pen so that it merely adds the black pixels of the pattern to whatever 
dots are already on the screen. Any point previously blackened will remain 
black, even if the pattern would call for a white dot there. 

Patterns and penmodes are treated more fully in other parts of this book. 
For additional information and precise command syntax, read the entries for 
PATTERN and PENMODE. 

!!I Toolbox Commands 
PaintArc 
PaintPoly 
PaintRgn 

RECT, OVAL, and ROUNDRECT have been implemented in Macintosh 
BASIC because they are the simplest and most useful of the six QuickDraw 
graphics shapes. By using the toolbox interface, you can also paint the areas 
described by the three more complex QuickDraw shapes: arcs, polygons, and 
regions. These shapes are described in separate entries in this book, so this will 
be just a summary. 

PaintArc, PaintPoly, and PaintRgn are all used through the TOOLBOX 
command. Because of this, their syntax is a little complicated. PaintArc, in 
particular, requires you to pass a rectangle a"ay containing the corner points 
of the rectangle that would contain the oval from which the arc is sliced. 
These points are stored as integer array elements. You must also name the 
starting angle and the angular width of the wedge itself: 

TOOLBOX PaintArc (@BoundRect°lo(O), StartAngle°lo, lncAngle°lo) 

PaintPoly and PaintRgn are also complicated, because they require you to 
have defined the shape beforehand, using the toolbox routines OpenPoly and 
OpenRgn. The shape will be stored as a data structure in memory, with a han
dle variable pointing to it. You then pass the handle in the call to the paint 
routine: 

TOOLBOX PaintPoly (Poly}) 



o PAINT o 

and 

TOOLBOX PaintRgn (Rgn}) 

Like the standard PAINT command, these toolbox commands "tile" a pat
tern repeatedly throughout the area of the shape. The pattern and penmode 
are chosen with SET PATTERN, PenPat, and SET PENMODE, in the same 
way as they are with the BASIC command. 

The full discussions of arcs, polygons, and regions are grouped under other 
entries in this book. Arcs are described under PaintArc, which immediately 
follows this entry. Polygons and regions are explained in the entries for Open
Poly and OpenRgn-the commands that set up those shapes. Please refer to 
these other entries for complete discussions. 

Fill 

Besides PAINT, ERASE, FRAME, and INVERT, the QuickDraw graphics 
system also has a fifth graphics verb-Fill-which unlike the others is avail
able only through the toolbox. Fill is not a command in itself, but is the prefix 
in the one-word names of six toolbox commands: FillArc, FillOval, FillPoly, 
FillRect, FillRgn, and FillRoundRect. 

The Fill commands were omitted from BASIC because they perform essen
tially the same operation as PAINT: both lay down a pattern throughout the 
interior of the shape. Since PAINT is simpler, it was chosen for BASIC. 

The only difference between PAINT and Fill is the place where the filling 
pattern comes from. With PAINT, the shape is filled with the pattern currently 
set for the graphics pen. No choice is possible, except through an additional 
SET PATTERN statement. Fill, on the other hand, contans an additional pat
tern parameter that lets you fill the shape with any pattern you choose, 
regardless of the graphics pen's current pattern, and without changing the cur
rent pattern. 

The difficulty is that you must specify the bounding rectangles and the pat
terns with complicated integer arrays. The rectangle array has four elements 
(numbered 0 to 3), which contain the coordinates of the two corners that 
define the bounding rectangle. The pattern array is even more complicated. It 
can be either a 4-element integer array or a 64-element Boolean array-either 
way making a total of 64 bits. The 8 x 8-square pattern must be stored as a bit 
image in these 64 bits. The BASIC statement SET PATTERN cannot be used 
to define the pattern for the Fill commands. Because of this technical com
plexity, the Fill commands are much harder to use than PAINT. 

The Fill commands still have some uses, though. Their primary advantage is 
that they do not affect the pattern stored by SET PATTERN: since they use 



oPAINTo 

their own pattern, they have no need to change the pen's. In many PAINT 
programs, you need to store a new pattern, draw a shape, then restore the pat
tern that was set before, like this: 

ASK PATTERN OldPat 
SET PATTERN NewPat 
PAINT ••• 
SET PATTERN OldPat 

A single Fill command can take the place of all four of these commands. Also, 
if you want to use a pattern other than the predefined 38, you will have to 
defme a bit-image pattern anyway before you can use the PenPat toolbox com
mand. At that point, you may find it just as easy to use the Fill commands. 

The six Fill commands are described in the entry titled "Fill". For your ref-
erence, this is the general syntax of the six commands: 

TOOLBOX FillArc (@Bounds%(0), StartAngle%, lncAngle%, @Pat%(0)) 
TOOLBOX FillOval (@Bounds%(0), @Pat%(0)) 
TOOLBOX FillPoly (Poly}, @Pat%(0)) 
TOOLBOX FillRed (@Bounds%(0), @Pat%(0)) 
TOOLBOX FillRgn (Rgn}, @Pat%(0)) 
TOOLBOX FillRoundRed (@Bounds%(0), @Corner%(0), @Pat%(0)) 

In all of these forms, the integer array PatOJo can be replaced with a 64-
element Boolean array. Please read the Fill entry for a full description of these 
commands. 

Sample Programs 
The simplest use of the PAINT command is for painting areas black. To do 

this, just give the command all by itself, without changing the pattern from 
the default Black. The following program, for example, paints 25 black circles 
on the screen: 

I PAINT-Sample Program #1 
FOR H = 30 TO 190 mp 40 

FOR V = 30 TO 190 STEP 40 
PAINT OVAL H,V; H+20,V+20 

NEXTV 
NEXTH 

The coordinates of the lower-right corner of the oval are chosen to make cir
cles with a diameter 20, centered at 40-pixel intervals. The results are shown in 
Figure 3. 



o PAINT o 

~o:::; PRINT-Sample Program# I 

• -------------------------
Figure 3: PAINT-Output of Sample Program #1. 

Usually, however, you will be painting with other patterns. The following 
adaptation of sample program #1 adds a SET PAITERN command with a 
changing parameter inside the loops, to vary the patterns of the circles: 

I PAINT-Sample Program #2 
Pat= 0 
FOR H = 30 TO 190 STEP 40 

FOR V = 30 TO 190 STEP 40 
SET MTTERN Pat 
MINT OVAL H,V; H+20,V+20 
Pat= Pat+ 1 

NEXTV 
NEXT H 

Each circle will be painted with a different pattern, starting from the default 
of 0 (black). Figure 4 shows the output. 

The PAINT command draws a filled-in shape without drawing a line 
around the border. In many cases, you will want to have a border, so you will 
want to combine PAINT with FRAME. Since FRAME also draws with the 
pen,s pattern, however, you must change the pattern back to black before 
drawing the frame. 



o PAINTo 

e - e ~ 
e e %i ,r.':!i .-::::: .. 

3'.~ ..... ·.·.·.·.·. ··:::::::· 

e 11111 
AA 
f'i/).' ·~11i 

e i-SS~ ' ' 81 :iiillli. , , 
~ ' '' '})~ '•' 

e .:~~~;$ .. ~ • 
Figure 4: PAINT-Output of Sample Program #2, 

which uses 16 different patterns 

The following program draws the same 25 circles as the previous one, but 
adds a FRAME command to draw the black outlines, as shown in Figure 5: 

I PAINT-Sample Program #3 
Pat= 0 
FOR H = 30 TO 190 STEP 40 

FOR V = 30 TO 190 STEP 40 
SET PATTERN Pat 
PAINT OVAL H,V; H+20,V+20 
SET PATTERN Black 
FRAME OVAL H,V; H+20,V+20 
Pat= Pat+ 1 

NEXTV 
NEXTH 

Many programs in this book use this standard sequence of SET PATTERN, 
PAINT, SET PATTERN, and FRAME. 

Applications 
PAINT is one of the most commonly used graphics commands. Practical 

examples can be found in many of the application programs in this book. One 



D PAINT D 

-~PRINT-Sample Program #3 ~ 

• 
999@0 
e e ® @ ® 
• (@ 0 @ • 

e@@G9 
e s m o 11 

Figure 5: PAINT-Output of Sample Program #3, 
which uses a FRAME command to add a 
border to the circles. 

of these is the checkerboard in the entries for RECT and IF, which uses the 
PAINT command to draw the light-gray squares and the black checker pieces. 
Many other programs use similar techniques. 

The bar graph program in Figure 6 is an important application of the 
PAINT command. It follows the same basic structure as the line graph appli
cation program listed under PLOT. 

The program first draws the labels and axes for the graph. Then it reads in 
the values for each month from a DATA statement, so that it can draw a bar 
of the corresponding height. The bars for the three regions are stacked next to 
each other, using shadows to create a three-dimensional effect. Figure 7 shows 
the graph created by this program. 

You can easily modify this bar graph program in various ways. You can 
change the width of the bars so that they overlap one another, or you can 
stack the bars on top of one another to make a single bar with three segments. 
The shadows behind the bars can be changed to fit your aesthetic tastes. 

Notes 
-The_ coordinate units do not have to correspond exactly to the pixels on 

the screen. By using the SET SCALE option, you can change to any coordi
nate system you want. You can make each unit on either axis represent any 



o PAINT o 

PAINT-Application Program 

--Elar chert--
Displays the change of three variables over four quarters of a year. 

! Adjust output window for full screen size (numbers ere in inches) 
SET OUTPUT 0.014. 4.5; 6.86, 0.514 

! Set up titles for exes. 
SET GTEXTFACE 1 
SET FONT 2 
SET FONTSIZE 12 

! Print title for vertical axis 
SET PENPOS 10, 103 
&PRINT " Region" 
&PRINT • Sales· 
SPRINT "(Millions)" 

! Boldface 
! New Vork font 
! 12 point 

! Print title for horizontal axis 
&PRINT AT 265,260; "Quarters"; 

! Plot vertical and horizontal a>ees. Origin is et 110,215. 
SET PENSIZE 2,2 
PLOT 110,215; 475,215 
PLOT 110,215; 110,10 

! Set text size for labels on tick marks 
SET GTEXTFACE 0 ! Plain te>et, no boldface 
SET FONT 2 ! New Vork font 
SET FONTSIZE 9 ! 9-point 
SET PENSIZE 1,1 

! Plot tick marks and labels for vertical a>eis 
FOR N = 0 TD 100 STEP 10 

V = 215-N*2 
GPRINT AT 84, V+4; FORMAT$(""''"'";N); 
PLOT 107,V; 113,V 

NEXT N 

! Print labels for horizontal axis 
SET FONTSIZE 10 ! New Vork 10-point 
FOR N = 1TD4 

H = 148 + (N- 1 )*88 

Figure 6: PAINT-Application Program. 



o PAINT o 

READ Quarter$ 
SPRINT AT H,235; Quarter$ 

NEXT N 
DAT A Fir·st,Sec:ond,Third,Fourth 

! Prepare to paint the bars 
NumberOfBars= 3 
BarWidth = INT(66/NumberOfBars) 
SET PENSIZE 1, 1 

! Beginning of loop to paint bars 
FOR N = 1 TO NurnberOfBars 

SELECT N 
CASE 1 

BarPat = 15 
CASE 2 

BarPat = 27 
CASE 3 

BarPat = LtGny 
CASE ELSE 

BarPat = Black 
END SELECT 

! Read data and paint the bars 
FOR Q = 1 TO 4 

READ Sales 

! Number of bars for each Quarter 
! 66 Pixels for all bars in each Quarter 
! Width of ~·en for bar's frame 

! Set up patterns for shading each bar 

1 Cross-hatched pattern for first bar 

! Diagonal-line pattern for second tiar 

! Light gray pattern for third bar 

! Any other bars solid blBck 

H 1 = 130 + 88*(Q-1) + BarWidth*(N-1) 
H2 = H 1 + BarWidth 
V 1 = 215-2*Sales 
V2 = 215 
SET PATTERN Black 
PAINT RECT H 1+2,V1-1; H2+2,V2-1 
FRAME RECT Hl,V1; H2+1,V2+1 
SET PATTERN BarPat 
PAINT RECT HI+ 1,V I+ I; H2,V2-1 

NEXT Q 
NEXT N 
END PROGRAM 

! Shadow of box 
! Border of box 

! Shaded interior of box 

!--------------------------------DATA-------------------------------! 

Figure 6: PAINT-Application Program (continued). 



§0 

o PAINT o 

! Date for Ber Number 1 (Four Quarters) 
DATA 32,35,43,51 

! Data for Bar Number 2 
DATA 60, 71.9, 76, 83.9 

! Date for Ber Number 3 
DATA 72, 66, 81, 90 

Figure 6: PAINT-Application Program (continued). 

number of pixels, or even invert the axes so that the origin is at the bottom
left corner of the screen. The PAINT command will still work even if you 
have changed the axes. 

Regardless of how the coordinates translate into pixels, the boundaries of 
the shapes run exactly on their mathematical coordinates. The boundary is 
considered to be infinitely thin-an imaginary dividing line between the area 

PRINT-Bar Chart 

100 

90 

so 

?O 

Region 60 

Sales 50 
(Millions) 40 

30 

20 

10 

0 

First Second Third Fourth 

Quarters 

Figure 7: PAINT- Output of bar graph application program. 



o PAINT o 

that is inside the figure and the area outside. Whatever the coordinate units, 
the PAINT command simply chooses the set of all pixels inside the mathemati
cal boundary. 

The technical details of coordinates can become quite complicated. If you 
intend to adjust the scale of the coordinate axes, you should read the entry for 
SCALE. 

-Even if you stay with the preset scale of one pixel for each coordinate 
unit, you may run into occasional confusions. The PLOT command, for 
example, centers the pen on the mathematical coordinates, while PAINT 
draws inwards from them. Because of this, you may sometimes find yourself 
with a discrepancy of one or more pixels between the edge of a shape and the 
points where you expected the edge to appear. The Notes sections of the 
entries for PLOT and RECT contain detailed descriptions of the relation 
between the mathematical coordinates and the actual pixels where the shapes 
are drawn. However, all the shape graphics commands PAINT, ERASE, 
INVERT, FRAME, and Fill operate consistently with one another. 

-The first sample program above showed how PAINT can be used to 
change areas to black. Occasionally, you may want to blacken the entire out
put window. At the beginning of a program, you can do this simply by giving 
the following command: 

PAINT RECT 0,0; 241,241 

Later in the program, you may need to change the pattern to black before you 
use this "blacken-window" command. This technique is used to create the 
black screen in the second sample program for ERASE. 

-PAINT is closely related to INVERT. Both work on the entire area 
enclosed by the shape, and both can change parts of a white screen to black. 
You can, in fact, think of INVERT as a special form of the PAINT com
mand, with the pattern set to 0 (Black) and the penmode to 10 (XOR or 
Invert). 

On a blank screen, you can choose either INVERT or PAINT for drawing 
solid-black shapes. INVERT is often simpler, since it does not require you to 
change the pattern back to black before painting the shape. 



--i I PaintArc I l:=: ----, ...__ ________ ____,, F 

Graphics toolbox command-draws a filled-in 
wedge-shaped area in the pen's current 

patt~rn. 

Syntax 
DJ TOOLBOX PaintArc (@BoundRect%(0), StartAngle%, lncAngle%) 

Toolbox equivalent of PAINT for arc shapes. 

l1l Related Toolbox Commands 

EraseArc 
Fill Arc 
lnvertArc 

OffsetRect 
lnsetRect 

This entry also includes information on other arc commands in the 
toolbox, and on the rectangle commands needed to define arcs for 
toolbox purposes. 

Description 
An arc is a wedge-like shape cut out of a circle like a slice of a pie. Arcs are 

bordered by two equal straight lines radiating from a common center and 
joined at the ends by a curved outer edge. An arc need not be a slice out of a 
perfect circle: it can be a section of any oval shape. 

The most common use for arcs is a pie chart, in which the relative size of 
numbers is represented by different-sized wedges dividing up a circle. On the 
Macintosh, you can paint each slice of the pie with a different pattern, pro
ducing a very professional-looking graph. A pie chart program is included in 
the Applications section of this entry. 



o PaintArc o 

There are also other uses for the arc shape. You can use arcs to draw curved 
lines that do not form a complete circle. And, in translating Microsoft BASIC 
programs, you need the arc shape to simulate the more complex forms of the 
Microsoft CIRCLE command, which is not itself available in Macintosh 
BASIC. 

lI1 TOOLBOX PaintArc (@BoundRect%(0), StartAngle%, lncAngle%) 

Arcs, like the other QuickDraw graphics shapes, are drawn by a group of 
graphics routines built into the Macintosh ROM, or toolbox. These toolbox 
routines are a permanent part of the Macintosh-whether or not you have 
BASIC loaded. When you use any BASIC graphics command such as PAINT 
OVAL, you are actually calling on one of these toolbox routines. 

Arcs, unfortunately, are not defined as standard Macintosh BASIC shapes. 
You cannot use BASIC's simple, two-word graphics commands, the way you 
would if you were drawing circles or rectangles. 

Even so, you can gain access to arcs through the TOOLBOX command-a 
direct call to the internal routine that does the graphics operation. Currently, 
the TOOLBOX command provides access to the routines PaintArc, EraseArc, 
FillArc, and InvertArc; FrameArc will presumably be added in a later release 
of the language. Although these toolbox commands are somewhat more com
plex than their BASIC counterparts, they work in essentially the same way. 

PaintArc, then, is an extension of the BASIC PAINT command. You can 
use it to draw filled-in wedge-shaped areas in the pattern that you have set for 
the graphics pen. The pattern is painted all at once, using the transfer mode 
set for the pen. 

As shown in Figure 1, the size of an arc is defined just like that of the oval 
from which it is sliced-by the coordinates of the oval's bounding rectangle. 
The arc itself is the piece of the oval contained between two radius lines. As 
with the other QuickDraw graphics shapes, an arc is the set of all pixels inside 
its boundary; the boundary itself is an imaginary line that runs between pixels. 

Like the QuickDraw shapes that are available in BASIC, you define the 
bounding rectangle by the coordinates of the points in its upper-left and lower
right corners. These points fix the top, left, bottom, and right of the bounding 
rectangle, and determine the proportions of the oval that includes the arc. 

Note that the bounding rectangle fits around the entire oval from which the 
arc is sliced, and does not necessarily touch all sides of the arc. The advantage 
of this is that you can use a single bounding rectangle to draw a series of arcs 
with a common center, since they are all part of the same oval. 



Bounding 
Rectangle 

. 
' I 

I 

• 
\ 

o PaintArc o 

' " 
,. 

4 .. - - .... ,,. 

,·''\Full 

\ 

' \ 

' 

Oval 

" 
.... - - ..... 

Figure 1: PaintArc-The arc shape is a slice out of an oval. 

" 
, 

( 

I 

I 

I , 

Here is where the toolbox call begins to get complicated. Instead of passing 
the rectangle's coordinates directly as four integer variables, you must pass 
them as elements of a rectangle a"ay. The Macintosh's toolbox routines are 
designed to be called from a language such as Macintosh Pascal, which has a 
predefined data type for rectangles. Pascal's rectangles are a single, 8-byte 
structure that can contain four integer values. In BASIC, there is no rectangle 
data type, so you must simulate one with a four-element integer array. 

To create a rectangle array, dimension an integer array with elements 0 to 3: 

DIM BoundRect%(3) 

Then, when you call the toolbox routine, pass the array with an @ sign to the 
beginning of the name and refer to the zero element: 

TOOLBOX PaintArc (@BoundRect%(0), ••• ) 

The @ sign tells the toolbox statement to pass not the array's values, but the 
memory address where the array is located. The toolbox routine then uses this 
address as the start of an 8-byte structure, just as if it were dealing with a Pas
cal rectangle. 

It is important that you stick to this precise formula. If you use a floating
point array, for example, the array will no longer match the exact 8-byte for
mat expected by the toolbox command. If you omit the @ sign or the array 



o PaintArc o 

element (0) in the toolbox call, the toolbox routine may do something unex
pected and give you a System Error. Remember that in this and all other tool
box calls, you are dealing directly with the operating system and do not have 
the protection of a forgiving BASIC interpreter. The TOOLBOX entry in this 
book gives some general information on using the toolbox. 

The four elements of the integer array must contain the coordinates of the 
rectangle's two defining corners. The four values are the same as the ones that 
define a rectangle in BASIC: the coordinates Hl,Vl and H2,V2, shown in 
Figure 2. 

Although you could store the four numbers in the array yourself, you 
would fmd it confusing, because the numbers in the array are not arranged in 
the same order as the coordinates in the BASIC commands. Instead, you 
should use another toolbox routine to stuff the values into the arrav: 

TOOLBOX SetRect (@RectArray%(0), H1,V1,H2,V2) 

In this toolbox call, the coordinates Hl,Vl and H2,V2 are arranged in exactly 
the same order as they are in BASIC shape commands. 

The numbers themselves are the same as in BASIC: Hl,Vl is the point in 
the upper-left corner, and H2,V2 is the point in the lower-right. (Unlike the 
BASIC shape commands, however, the toolbox routines require that Hl,Vl 
be in the upper-left and not one of the other corners. If H2 is less than Hl or 

$ . 
I 
I 

\ , 
' 

' 

,,. 
~ 

/ 

" 

' ' •. 

~"' -,,. 

Center 

~~ -~· 

, , , 

RectArray%( 2:3) 
------..,__~~---- = (H2,V2) 

Figure 2: PaintArc-The numbers that define an arc shape. 



o PaintArc o 

V2 less than Vl, the command will have no effect.) If you need more informa
tion on defining rectangles, see the entries for RECT and SetRect. 

Now that you have defined the bounding rectangle, the rest is easy. All you 
need are the two integer angles shown in Figure 2, which name the starting 
angle and the angular width of the wedge. 

In toolbox calls such as PaintArc, all angles are measured in degrees 
(not radians). The angle 0 is upward, and all other angles are measured clock
wise from that direction. Angles of more than 360 degrees are treated by 
measuring more than once around the circle. Negative angles are measured 
counterclockwise. 

The arc commands work in integer degrees. The angle arguments need not 
be integer variables, but the toolbox will round any non-integer to the nearest 
whole number. (Remember, however, that the trigonometric functions such as 
SIN and COS are measured in radians-from 0 to 2n.) 

To draw the arc, you pass the bounding rectangle array and the two angles 
to the PaintArc toolbox routine: 

TOOLBOX PaintArc (@BoundRect%(0), StartAngle%, lncAngle%) 

This routine will act just like the BASIC PAINT command: it will draw the 
filled-in arc shape with the pen's current pattern. 

The procedure for using the arc commands may sound complicated, but 
you can reduce it to three steps: 

1. Dimension an integer array for the bounding rectangle, with four elements 
numbered 0 to 3. 

2. Call the SetRect toolbox routine to store the four corner coordinates into the 
rectangle array. 

3. Call PaintArc with the rectangle array and the two angles that define the arc. 

~ Related Toolbox Commands 
EraseArc 
FillArc 
lnvertArc 

PaintArc is one out of the four arc commands that can be called from Mac
intosh BASIC. Three others-EraseArc, FillArc, and InvertArc-can be used 
to duplicate the functions of the other BASIC shape graphics commands. Era
seArc changes all of the pixels under the arc to the pattern of the background 
(usually white). FillArc changes all of the pixels under the arc to a pattern that 



o PaintArc o 

you specify-essentially the same as PaintArc, except that it uses a pattern 
that you name, rather than the one currently set for the graphics pen. Invert
Arc, finally, changes every black pixel to white and every white pixel to black 
within the area of the arc. 

The syntax of these three commands is essentially the same as for PaintArc: 

TOOLBOX EraseArc (@BoundRect%(0), StartAngle%, lncAngle%) 
TOOLBOX FillArc (@BoundRect%(0), StartAngle%, lncAngle%, @Pat%(0)) 
TOOLBOX lnvertArc (@BoundRect%(0), StartAngle%, lncAngle%) 

The only significant difference is in FillArc, which adds an additional pattern 
parameter, a 4-element integer array or ~lement Boolean array that holds a 
bit image of the pattern you want to use. All of the other parameters are 
defined the same way that PaintArc's are. 

Missing from this list is FrameArc, a toolbox command which draws a line 
around the border of an arc, like the BASIC FRAME command. The initial 
release of Macintosh BASIC did not recognize FrameArc as a valid toolbox 
name, even though it is available in assembly language. By the time you are 
reading this, Apple may have corrected the omission and included the Fra
meArc command. If that happens, FrameArc will work just like the other arc 
commands. 

Offset Reel 
lnsetRect 

There are two other toolbox commands that are often used in conjunction 
with the arc commands. These are OffsetRect and InsetRect, which allow you 
to move, shrink, or enlarge a rectangle without redefining it from scratch. 

Figure 3 shows the function of these two commands. OffsetRect performs a 
translation on the coordinates of the rectangle array, moving it as a unit with
out changing its dimensions. InsetRect leaves the rectangle centered where it 
was, but shrinks or enlarges its dimensions. 

In calling either of these routines, you must specify the name of the rectan
gle array, and the distances by which you want to move the rectangle: 

TOOLBOX OffsetRect (@RectArray%(0), DH, DV) 

and 

TOOLBOX lnsetRect (@RectArray%(0), DH, DV) 

In the case of OffsetRect, DH is the distance to the right that you want to 
move the rectangle, and DV is the distance downward. For InsetRect, DH is 
the horizontal distance you want to shrink the left and right edges toward the 
center, and DV is the vertical distance you want to shrink the top and bottom. 



o PaintArc o 

OffsetRect 
(moves center) 

InsetRect 
(shrinks around <:enter) 

, 
,. " ....---:--""-'ii':-'--, 

I 

\ 
\ 

I 

' ... \ 

J 

\ 

, 
I' 

' ... .~/ 

I 
I 

J 

I 

.. ~ 
I 

\ ' \ , 
"'~ 

Figure 3: PaintArc-You can shift or shrink an arc by changing the dimensions of the bounding 
rectangle. 

The total shrinkage in either dimension will be twice the number you specify. 
Negative values for either coordinate have the opposite effect: with Offset
Rect, they move the rectangle up or to the left; with InsetRect, they expand 
the rectangle instead of shrinking it. Figure 3 shows how the rectangle changes 
with positive values for DH and DV. 

By changing the dimensions of the bounding rectangle, you can change the 
location or size of the resulting arc. Off setRect leaves the size and shape of the 
arc unchanged, but moves it intact to a new location. InsetRect will produce 
an arc with the same center, but with a different radius. These two commands 
are used to simplify the second sample program and the pie chart application 
program, below. 

Sample Programs 
The following program shows the relation between a series of arcs and the 

bounding rectangle that defines them: 

! PaintArc-Sample Program #1 
DIM Bounds%(3) 
FRAME RECT 20,20; 220,220 
TOOLBOX SetRect (@Bounds%(0), 20,20,220,220) 
Inc= 5 
FOR Angle = 0 TO 359 STEP lnc*2 

TOOLBOX PaintArc (@Bounds%(0),Angle,lnc) 
NEXT Angle 



o PaintArc o 

The program first frames a rectangle. Then, the PaintArc statement in the 
FOR/NEXT loop draws a series of arcs five degrees wide, as shown in Figure 
4. Note that the starting Angle is always measured from the vertical, but that 
the increment is then measured from the starting angle. The starting angle is 
changed each time through the FOR loop, but the increment remains the same. 

Try changing the increment. The smaller the value of Inc, the thinner each 
wedge will be. At the minimum value, Inc= 1, the program will produce a 
moire pattern, as shown in Figure 5. The moire effect is caused by the uneven 
painting of diagonal lines across the screen's raster lines. (You cannot use an 
increment smaller than 1, because PaintArc rounds angles to the nearest whole 
degree.) 

Occasionally you want to draw only part of an oval's curve. You might, for 
example, want to draw a semicircle, or part of a planet's orbit. 

One way to do this is with arcs. First paint a filled in-arc, then erase an arc 
with the same center and angles but a slightly smaller radius. What remains 
will be a thin curve that is part of the circumference of an oval. (If you don't 
want to erase over part of a previous picture, you can use two paint com
mands instead, with the penmode set to 10-XOR.) 

PaintRrc-Sample Program # 1 

Figure 4: PaintArc-Output of Sample Program #1. 



o PsintArc o 

=rn PaintRrc-Sample Program #1 

Figure 5: PaintArc-With an increment of 1, Sample 
Program #1 creates a moire pattern against 
the screen's raster lines. 

The following program uses this paint-and-erase technique to produce a 
series of arcs: 

! PaintArc-Sample Program #2 
DIM Rect%(3) 
FOR N = 15 TO 4 STEP - 1 

H1 = 120- 7*N 
V1 = 170-8*N 
H2 = 120+7*N 
V2 = 170-S*N 
TOOLBOX SetRect (@Rect%(0),H1 ,V1 ,H2,V2) 
TOOLBOX PaintArc (@Rect%(0),-100,200) 
TOOLBOX lnsetRect (@Rect%(0),2,2) 
TOOLBOX EraseArc (@Rect%(0), -110,220) 

NEXT N 
FRAME OVAL 120-28,170-32; 120+28,170-20 
SET PATTERN UGray 
PAINT OVAL 120-27,170-31; 120+27,170-21 

The InsetRect command shrinks the bounding rectangle by 2 pixels in each 
direction, so that the erased arc is slightly smaller than the painted arc. It 
therefore leaves a thin curve 2 pixels wide, covering the angles from - 110 to 
+ 110 degrees. The coordinates for the bounding rectangle have been chosen 



o PaintArc o 

=~ PaintRrc-Rmphitheatre 

• 

Figure 6: PaintArc-Output of Sample Program #2. 

to give the illusion of a Greek amphitheatre, as shown in Figure 6. The 
FRAME and PAINT commands at the end of the program add a light gray 
area that looks like a circular stage. 

Applications 
The classic application of the arc commands is the pie chart, a kind of 

graph that represents the relative sizes of numbers as proportional slices of a 
pie. Because of its arc commands and simple pen patterns, the Macintosh is 
ideally suited to this sort of business graph. 

The long application program in Figure 7 produces a typical pie chart. It 
first reads in the different values and calculates angular widths for their 
respective slices. The sum of the slices must add up to a full pie of 360 
degrees, so the program converts the numerical values into degrees (rounded 
to the nearest integer as the toolbox expects). 

The main part of the program is devoted to painting the slices in the appro
priate patterns. This would be easy, except for the custom of highlighting one 
of the pie slices by displacing it slightly out of the circle. In this program, the 
arc is displaced by 20 pixels along a line that bisects it. The displacement is 
applied by a call to the Off setRect routine. 



o PaintArc o 

P8intArc--Applic8tion Progr8m 

--Pie Chort--

SET OUTPUT ToScreen I Resize for full-screen output window 

! Read data into arrays, keeping track of the total 
! ond lorgest value for lciter use. 
READ Entries:g 
Dlt1 Volue(EntriesJg) 
DIM L8bel$(Entries:g) 
Dlt1 DegreesJg(Entries:g) 
Total= o 
Largest= O 
FOR N = 1 TO Entries:g 

READ V8lue(N),Label$(N) 
Tot8l =Total + Value(N) 
IF Volue(N) >Largest THEN 

L8rgest = Value(N) 
Max:g = N 

ENDIF 
NEXT N 

! Crunch the data: Convert to degrees and maintain an integer sum. 
sum:g = o 
FOR N = 1 TO Entr1es:¥; 

DegreesJg(N) = RINT( 360 * Value(N)/Total) 
Sum:¥; = Sum:¥; + DegreesJg(N) 

NEXT N 

! Adjust for rounding error by adding the difference between 
! Sum:¥; and 360 to the l8st slice. 
Degrees:¥;(Entr1es:¥;) = Degrees:¥;(Entries:¥;) + (360 - Sum:¥;) 

! The followlng constants can be changed to suit your needs 
CenterH:¥; = 247 ! Center of pie 
Centerv:g = 1 20 
R = 100 
outArc = 2 
Disp = 20 
W =I 
L=5 
StartAng1e:g = -1 o 
CurAngle:g = StartAnglelf; 

! Rad1us of pie 
! Which item should be displaced? 
! How m8ny pixels should it be displaced? 

Line width for edges of arc 
Distance or labels from edge or arc 
Starting 8ngle ror first s11ce. 

Figure 7: PaintArc-Pie chart application program. 



o PaintArc o 

Rad= Pl/160 ! Multiply by th1s to convert degrees to radians. 

! Set up floundRectl and D1spRectl arrays 
DIMfloundRectl(3) 
DIM DlspRectl(3) 

! Define BoundRectl In terms of pie's radius and center 
HI 1 :g = CenterH:C-R ! Upper-left corner of floundRect:C 
v 1 :g = centerv:c-R 
H2:C = CenterH:C+R I Lower-right corner of floundRect:C 
v2:c = centerv:C+R 
TOOLBOX SetRect( @lfloundRect:C(O), Hl:C,Vl:C, H2:C,V2:C) 

I Set-up for label printing. 
SET FONT 2 ! New York 
SET FONTSIZE 12 ! 12-polnt 
SET 6TEXTFACE 1 ! Boldface 
SET &TEXTMODE 10 ! Penmode XOR, visible even against black patterns 

! Frame the ent1re c1rc1e 
SET PENMODE 9 ! Penmode OR-New points are added to points on screen 
SET PENSIZE W,W 
FRAME OVAL Hl:C,Vl:C; H2:C,V2:C 

Paint the arcs. 
IFOR N = 1 TO Entrles:C 

SELECT N ! This CASE block selects each arc·s pattern. 
CASE I 

Pat:C = 9 
CASE 2 

Pat:C =Gray 
CASE 3 

Pat:C = 15 
CASE 4 

Pat:C = White 
CASE 5 

Pat:c = L t&rou 
CASE ELSE 

Pat:C = 33 
ENDSELECT 

NextAngle:C = CurAngle:C+Degrees:C(N) 
MldAngle:C = CCurAngle:C+NextAngle:C)/2 

Figure 7: PaintArc-Pie chart application program (continued). 



o PaintArc o 

IF N = OutArc THEN 
! THEN block paints the displaced arc. 

! Erase border of pie under displaced arc. 
TOOLBOX EraseArc( •BoundRectl(O), CurAnglel, Degreesl(N)) 

! Then undo the damage done to the dlY1d1ng 11ne(s). 
EdgeH:r> = CenterH:r> + RINT( (R-W)*SIN( Rad* curAngle:r>)) 
EdgeVI = Centervl - RINT( (R-W)*COS( Rad* CurAnglel)) 
PLOT CenterHl,Centervl; EdgeHl,EdgeVI 
IF N = Entriesl THEN 

EdgeHI = CenterHI + RINT( (R-W)*SIN( Rad* StartAngle:r>)) 
Edge\11 = Centervl - RINT( CR-W)*COS( Rad* StartAnglel)) 
PLOT CenterHl,Centervl; EdgeHl,EdgeVI 

ENDIF 

I Displace bounding rectangle in direction of midpoint angle. 
OHi = RINT( Disp* SIN( Rad * MidAnglel )) 
DVI = -1 * RINT( Disp*COS( Rad* MldAnglel)) 
DlspRectlO = BoundRectlO 
TOOLBOX Off setRect(@IOi spRectl(O),DHl,DVI) 

! Paint large black arc for frame. 
SET PATTERN Black 
TOOLBOX PaintArcC @D1spRectl(O), CurAnglel, Degreesl(N)) 

! Shade pattern 1n an arc w pixels smaller. 
SET PATTERN Patz 
TOOLBOX lnsetRect( @10ispRect!f:(O), W,W) 
SET PENMODE B I Penmode COVER - paints over the black. 
TOOLBOX PaintArc( ODispRect!f:(O), CurAngle!f:, Degrees!f:(N)) 

! Plot both pie-slice borders of displaced arc. 
SET PATTERN Olack 
SET PENMODE 9 I Back to Penmode OR. 
EdgeHZ = CenterH:C + RINT((R-W)*SIN( Rad* CurAngle!f:)) + DHZ 
EdgeVZ = CenterVZ - RINT((R-W)*COS( Rad* CurAngle!f:)) + DVZ 
PLOT CenterHZ + DHZ,Centervz + DVZ; EdgeHZ,EdgeVI 

NextAngle:C = CurAngle!f: + Degrees!f:(N) 
EdgeH:C = CenterHI + RINT((R-W)*SIN( Rad* NextAnglel)) + OHi 
EdgeVI = CenterVI - RINT((R-W)*COS( Rad* NextAngle!f:)) + DVI 
PLOT CenterHZ + DHZ,CenterVI + DVI; EdgeHl,EdgeVI 

Figure 7: PaintArc-Pie chart application program (continued). 



o PaintArc o 

I Find point for label placement 
LebelHll = CenterHll + RINT((R+L)*SIN( Red* MidAnglell)) + DHll 
LebelV:C = Center\l:C - RINT((R+L)*COS( Red * MidAngle:C)) + DVI 

ELSE 
I ELSE block paints ell the arcs th8t ere not displaced. 

I Paint the ere. 
SET PATTERN Pell 
TOOLBOX PainlArc( oBoundRect:C(O), CurAngle:C, Degreesl(N)) 
SET PATTERN Bleck 

! Plot the border. 
EdgeHI = CenterH:C + RINT( (R-W)*SIN( Red * CurAngle:C)) 
EdgeV:C = Centerv:c - RINT( (R-W)*COS( Red* CurAngle:C)) 
PLOT CenterHl,CenterV:C; EdgeH:C,EdgeVll 

! Find point for label placement 
LebelH:C = CenterH:C + RINT((R+L)*SIN( Red * MidAnglell)) 
LebelVll = CenterVll - RINT((R+L)*COS( Red * MidAnglell)) 

ENDIF 

! Plot label outside pie slice. 

LebelHl,LebelVI ls the location of the base line of the first letter 
of the label. It may first need to be adjusted so that the label 
doesn't write over the pie. 

I If label ls below center of pie, move base line down. 
IF LebelVl>Center\111 THEN Lebel VII= LabelVll+B 

! Print labels in the direction away from the pie. 
IF LebelHll>CenterH:I THEN 

I Right half of pie, print left-justified text from label position. 
&PRINT AT LebelH:l,LebelV:I; Lebe1$(N) 

ELSE 
I Left half of pie, print right-justified text ending et label position. 
Image$ = ·•>""""'•••••••••· I Format for r1ght-just1fication 
&PRINT AT LebelH:l-127,LebelV:I; FOR'1ATS(lmege$;Lebe1$(N)) 

ENDIF 

CurAnglel = NextAngle:I 
NEXT N 

Figure 7: PaintArc-Pie chart application program (continued). 



I Print Title for entire p1e. 
READ T1tle$ 
SET FONTSIZE 14 

o PaintArc o 

SET 6TEXTFACE 5 I Boldface end underline 
lmegeS = ·•1•••••••••••••••••••••••••· I Centering formet 
SPRINT AT CenterH:g-107,CenterV:g+R+45; FORl'IATS(lmege$;Titte$) 

END PROGRAl'I 

!-------------------------DATA------------------------1 

! Number of entries 
DATAS 

I Value and lebel for eech pie slice 
DATA 10,Northeast 
DATA 13,South 
DATA 21,Midwest 
DATA 9,Southwest 
DATA 12,Pecific 

! Title for greph 
DATA Apple Pies - Regional Sales 

Figure 7: PaintArc-Pie chart application program (continued). 

At the end of the loop, a labeling routine prints the text string that identifies 
each slice. The position of the label is calculated so that either its right or left 
end is adjacent to the slice it identifies. 

Figure 8 shows the results: a pie chart that is ready for any corporate board
room. 

Notes 
-PaintArc is just one of the important graphics commands that is accessi

ble through the toolbox. For information on other QuickDraw commands, 
read the Introduction and the entry for 100LBOX. 



o PaintArc o 

~o Paintflrc-Pie Chart 

Pacific 

Southwest 

Midwest 

A1u~1e Pies - Regional Sates 

Figure 8: PaintArc-Output of pie chart application program. 

PaintArc-Translation Key 

Microsoft BASIC 

Applesoft BASIC 

CIRCLE 

• 

South 



--::11 PaintPoly I l::::: =--1......__-______ ____._ F 

Toolbox graphics command-draws a filled-in 
polygon. 

Syntax 
TOOLBOX PaintPoly (Poly}) 

Toolbox equivalent of the PAINT command. 

Description 
The Macintosh toolbox allows you to create your own polygon shapes, 

using the routines OpenPoly and OosePoly. A polygon is any area bounded 
by a closed series of straight lines. 

Once you have defined a polygon, you can paint it like any other shape, 
using the PaintPoly toolbox routine. The only parameter you must pass is the 
name of the polygon, a handle variable that was returned by the OpenPoly 
statements that defined the polygon. 

The area is painted in the same way as a shape drawn with the PAINT com
mand in BASIC. The entire area bounded by the polygon is filled with the 
pattern currently set for the graphics pen (the default is the solid-black pat
tern). No border is drawn: use FramePoly with a black pattern if you want a 
line around the edge. 

Changing the graphics pen's pattern and penmode will affect the shapes 
drawn by PaintPoly. To set the fill-in pattern, you can use either the BASIC 
statement SET PATTERN or the PenPat toolbox routine. The penmode is 
selected by SET PENMODE. 

If you are using the toolbox, you should also investigate the toolbox routine 
FillPoly, which can fill a polygon with a pattern other tha the 38 that are pre
defmed. FillPoly is described in the entry titled "Fill". 

See the entry for OpenPoly for full details on defming and using polygons. 



----J I PaintRgn 11::= =-1.___· ______ _____.._ F 

Toolbox graphics command-draws a filled-in 
region. 

Syntax 
TOOLBOX PaintRgn (Rgn}) 

Toolbox equivalent of the PAINT command. 

Description 
A region is an advanced shape that you define using the toolbox routines 

OpenRgn and CloseRgn. A region is the set of points on the screen bounded 
by a closed set of pixels . 

. When you define a region, you create a handle variable that points to the 
structure. You can then refer to the structure by passing the handle variable as 
a parameter to a toolbox routine such as PaintRgn. 

Although the toolbox routine has a different syntax, it has the same effect 
as BASIC's PAINT statement. The entire area within the boundaries of the 
defined region are filled with whatever pattern has been set for the graphics 
pen using a SET PATTERN statement or a PenPat toolbox command. Only 
the interior of the region is affected. No line is drawn around the border. The 
painting is also controlled by the penmode currently in effect: with the default 
penmode (8 - Cover), the fill-in pattern completely covers any points under
neath, regardless of their previous color. 

See the entry for OpenRgn for full details on defining and using polygons. 
For more information on painting areas of the screen, please read the entries 
for PAINT and for Fill. 



=11 PATTERN It--==i .....__ ----------'F 
Graphics set-option-sets the drawing pattern 
for PAINT, FRAME, and PLOT commands. 

Syntax 
IJJ SET PATTERN N 

[l] ASK PATTERN N 

Sets or checks the graphics pen's current pattern, selected from 38 
preset options. Five of the option codes are associated with prede
fined system constants: 

Black 0 
DkGray 2 

Gray 3 
LtGray 22 

White 19 

GJ Toolbox Commands 

Pen Pat BackPat 
GetPenState SetPenState 

Toolbox commands are available to create and store patterns other 
than the predefined 38. 

Description 
Patterns are one of the fundamental building blocks of the Macintosh 

graphics system. A pattern is an 8 x 8-square array of dots, which can be 



o PATTERN o 

repeated over and over to fill an entire area. By choosing differently arranged 
arrays of dots, you can paint areas with different textures. 

Figure 1 shows how a pattern works. The large box at the left is a blown-up 
view of the indiviual pixels that make up the 8 x 8-square pattern. At the right, 
the pattern is shown as it actually appears on the screen. 

Figure 2 shows how the basic 8 x 8-square pattern is duplicated over and 
over in both the horizontal and vertical directions. The pattern squares are 
joined edge-to-edge like floor tiles to cover the area. The left edge of one 
square joins up with the right edge of the next one over; the bottom edge sits 
on the top edge of the square below. In this way, a finite pattern can create a 
uniform tiling of indefinite extent. 

ITJ SET PATTERN N 

[l] ASK PATTERN N 

Macintosh BASIC offers 38 preset patterns. You select one with the 
statement 

SET PATTERN N 

where N must be an integer from 0 to 37. 
The bit array of pattern number 9 is shown in Figures 1 and 2, and the 

chart in Figure 3 shows all 38 patterns. These are the same 38 patterns that are 
available on the palette in MacPaint. 

PATTERN 9 

Figure 1: PAlTERN-A blown-up view of Macintosh pattern number 9. 



o PATTERN o 

Figure 2: PATTERN-In tiling an area, the basic pattern square joins to multiple cop
ies of itself. 

PRTTERN-The 38 Patterns 

101111111111111111111 
111:::::::::::::::::1 
12f · ···· ·· ·I 

14™ 
15~ 

17~ 
1 s l88RR888R8 
191 I 

20L<<<<I 
21 h<<<<<<<J 
22 u:m:rn:m:rnmm:mm:m:I 

25§~~ 
21V'~Z7d 
2Ei l·++++++++·I 
291111111111 

Figure 3: PATIERN-The 38 predefined patterns in Macintosh BASIC. 

3orn 
31~ 
,.- · ....... . F . .. ... . .. I 
._, L_ ••••••••••••• '·. •• 

33rn~~ 

34™ 
35 t;~~;~~~~~I 
36~ 
31 l:;;;;;;;:J 

• 

II 



o PATTERN o 

Five of the patterns also have special names, which are defined as special 
system constants: 

Black O 
DkGray 2 
Gray 3 
LtGray 22 
White 19 

These system constants are recognized as special values by the BASIC lan
guage; they are treated as alternate expressions of the code numbers, provided 
simply because it is much easier to remember a command like 

SET PATTERN LtGray 

than the numeric equivalent 

SET PATTERN 22 

Note that the words Black, Gray, and White refer to patterns, not to colors. 
The pattern Gray appears gray on the screen because its regular dot pattern 
has a uniform texture, like a half-tone photograph in a newspaper. 

The PATTERN set-option affects three specific graphics commands: 
PAINT, FRAME, and PLOT. The PAINT command is obvious, because its 
primary function is to fill an area with the graphics pen's pattern. Many peo
ple forget, however, that PATTERN also affects FRAME and PLOT, which 
are used predominantly to draw lines, rather than filled-in areas. If you have 
set a pattern and want to draw a solid-black frame or line, you must change 
the pattern to Black before you give the FRAME or PLOT command. If, 
afterwards, you will need to go back to the pattern you were using previously, 
you should first use the ASK form of the command to store the number of 
the fill-in pattern, so you can restore it after you have drawn your black lines. 
For example: 

ASK PATTERN Pat 
SET PATTERN Black 
FRAME RECT 20,20; 220,220 
SET PATTERN Pat 

[]Toolbox commands 
Pen Pat 

The main limitation of the BASIC PATTERN command is that it allows 
you to choose only from the 38 preset patterns. In many cases, it would be 
nice to define patterns of your own. 



o PATTERN o 

With the PenPat toolbox routine, you can create your own patterns, pass
ing them as a 64-bit array that represents the precise set of pixels you want to 
darken. The actual procedure takes a little time to understand, but once you 
have mastered it, you can define patterns without much difficulty. If you are 
interested, please read the detailed description in the entry for PenPat. 

BackPat 

In addition to the graphics pen's pattern, it is possible set the pattern for the 
background. Since the default background is pure white, we tend to forget 
that it, itself, is a pattern; nevertheless it is, and it can be changed indepen
dently of the pattern set for the graphics pen. 

To change the background pattern, use the BackPat toolbox routine, which 
is identical in syntax to the PenPat routine. The new background pattern will 
affect subsequent ERASE and CLEARWINDOW commands. See Appendix 
D for complete syntax. 

GetPenState 
SetPenState 

'I\vo final commands let you set and retrieve the entire block of penstate 
information that defines the graphics pen. This penstate block includes the set
tings for the pen position, penmode, and pensize, and the entire bit image of 
the current pattern. Using these commands, you can therefore retrieve the 
actual bit image of a BASIC pattern. Appendix D contains the syntax for 
these commands. 

Sample Program 
The following program illustrates a way to create dotted lines: 

! PATTERN-Sample Program #1 
SET PATTERN Gray 
FOR X=40 TO 100 STEP 10 

FRAME RECT X,X; 240- X,240- X 
NEXTX 

In the image of the gray pattern, every other pixel is painted black. A horizon
tal or vertical line you draw with this pattern will paint every other pixel 
black, resulting in a finely dotted line as a frame, shown in Figure 4. This is 
the only easy way to draw dotted lines on the Macintosh, and it will work only 
for vertical and horizontal lines. 



o PATTERN o 

~er: PRTTERN-Sample Program # 1 = • 

:j:i~-~~~~l--_!'. 
1 i :_ ... = •••• 1·.::::l:·::::_.··::_ .. ·:::::--·.: . .-~··.-~·:_·::::J:._:_! ____ ~_ ... =! ! 

I _ ... -·='·······················--······-----~···-···--······'11 l... ......................... ==········~-=--·····:: .. ...I 

Figure 4: PAlTERN-Output of Sample Program #1, 
showing dotted lines created with the gray 
pattern. 

The second sample program is the one that produced the table of the 38 
patterns in Figure 3: 

SET OUTPUT ToScreen 
FOR Col=O TO 30 STEP 10 

FOR Row=O TO 9 
H = Col*l2+32 
V = Row*24+24 
Pat = Row+Col 
IF Pat>37 THEN EXIT 
GPRINT AT H - 20, V + 14; Pat 
SET PATTERN Pat 
PAINT RECT H,V; H+ 72,V+ 16 
SET PATTERN Black 
FRAME RECT H-1,V-1; H+73,V+17 

NEXT Row 
NEXT Col 

Note how the pattern was changed back to Black before the frame of each 
box was drawn. If it had not been changed back, the frame would have been 
drawn with the same pattern as the interior, and would have been indistin
guishable from it. 



o PATTERN o 

A version of this program is shown in the entry for INVERT, which also 
shows another set of 38 patterns that can be obtained simply by inverting the 
preset 38. 

See the entries for PAINT, FRAME, and PLOT for information about the 
graphics commands affected by the PATIERN set-option. See also Appendix 
D and the entry for the toolbox PenPat command for information about how 
to create patterns other than those preset. 



q_I __ P_E_NM __ O_D_E ____ I~ 

Syntax 

Numeric set-option-sets the transfer mode 
for the graphics pen. 

[I] SET PENMODE X 

111 ASK PENMODE X 

Sets or checks the graphics pen's current transfer mode. 

Description 
Penmodes, or transfer modes, are one of the most important features of the 

Macintosh graphics system. A transfer mode tells the graphics system how to 
treat points that are already darkened on the screen as the system plots new 
patterns of points on top of them. 

Using the PENMODE set-option, you can set any of the eight Macintosh 
transfer modes (code numbers 8-15): 

8. Copy (or Cover). Simply clears away and replaces any previous 
contents. All the black dots in the pattern become black on the 
screen, and all the white dots in the pattern become white on the 
screen-regardless of what was there before. 

9. OR. Superimposes the new pattern, but leaves all the previously 
black dots black. This mode merely adds black dots to those 
already darkened, so a shape painted with the pattern White will 
have no effect whatsoever on the screen. 

10. XOR (or Invert). Beneath the black parts of the pattern, all the 
dots are inverted: the old black dots turn white, and the white ones 
black. Beneath the white parts of the pattern, the dots are not 
inverted, but look the same as before. 



o PENMODE o 

11. Clear. Beneath the black parts of the pattern, everything is erased to 
white. Beneath the white parts of the pattern, nothing is changed. 

12-15. Inverse of 8 through 11. The new pattern itself is first inverted, then 
this inverted pattern is laid over the existing dots according to one 
of the four rules above. 

Figure 1 shows the action of these eight penmodes, including a small picture 
to show for each penmode how a series of horizontal bars will be painted over 
an existing series of vertical bars. 

Sample Program 
Of all the penmodes that you can change to, PENMODE 10 (XOR) is the 

most useful. The reason is that in this penmode, any shape you paint will dis
appear without a trace if you simply paint it a second time, leaving the screen 
exactly as it was before the first operation. To move an object across another 
object, all you need to do is paint it once at its old position, paint it there a 
second time to erase, then repeat the procedure at a slightly different place. 
Many different animation effects can be based on this principle. 

==on 'w'hiie on 'w'hi1e on Black on Black on 
Mode 'li'hitt' Bhck WhHe Black 

Number 11 hields yields yields yields yields 

8 
~ - White White Black Black -••• 

9 - Wtlite Black Black Black 

10 - White Black Black Whit.€-
••• 

1 1 --- White Black White White ••• ... 
12 - Black Black White White ::;::;::;: 

13 - Black Black White Black 

14 - Black White White Black 

15 ••• --- Black White White White ••• 
Figure 1: PENMODE-The operation of the eight transfer modes showing the result of each 

combination of white and black dots. 



o PENMODE o 

The following program is an adaptation of the second sample program 
under FRAME, which paints a large oval and a rectangular dot, with a very 
large PENSIZE: 

! PENMODE-Sample Program 
SET PATTERN DkGray 
SET PE NSIZE 32, 16 
FRAME OVAL 10,10;170,210 
H - 170 
v - 210 
SET PENMODE 10 
DO 

IF MOUSE Ir AND ABS(MOUSEH - H) < 16 AND ABS(MOUSEV-V) <8 THEN 
PLOT H,V 
H - MOUSEH 
V - MOUSEH 
PLOT H,V 

END IF 
LOOP 

In this version of the program, the DO loop after the PENMODE statement 
allows you to pick up the rectangle and move it around the screen, using the 
mouse. As you move the object across parts of the oval, it crosses the object 
without erasing it permanently. Figure 2 shows the output with the rectangle 

~0~ PENMODE-Sample Program ~ 
~ 

Figure 2: PENMODE-Output of Sample Program, an 
example of an animation program using 
PENMODE 10. 



o PENMODE o 

moved part of the way across the oval. Other programs using this technique 
are scattered around this book; see the entries for MOUSEH, OVAL, and 
RECT, among others. 

Notes 
-PENMODE affects the following graphics commands: PLOT, FRAME, 

and PAINT, as well as the related toolbox routines LineTo, Line, FrameArc, 
FramePoly, FrameRgn, PaintArc, PaintPoly, and PaintRgn. 

It does not affect the ERASE or INVERT commands, nor does it affect the 
Fill toolbox commands, which always uses penmode 8 (cover). This omission 
of Fill is important to note, because the Fill commands are otherwise similar 
to PAINT. 



q _I _P_E_N_N_O_RMAL __ ___,,I ~ 

Graphics command-restores the graphics 
pen to its default state. 

Syntax 
PEN NORMAL 

Resets the pattern, penmode, and pensize to their default values. 

Description 
The PENNORMAL graphics command restores the default values of the 

graphics set-options PAITERN, PENMODE, and PENSIZE. The command 
can be used anywhere in a program to cancel all readjustments of the graphics 
pen at once. 

The PENNORMAL command essentially combines the following three 
SET commands: 

SET PATTERN Black 
SET PENMODE 8 
SET PENSIZE 1, 1 

Note that PENNORMAL does not affect the settings of PENPOS. 
PENNORMAL is a command, not a set-option. It is written on its own line 

in the program: 

PEN NORMAL 

This command syntax of PENNORMAL is unusual, because it is the only 
keyword beginning with "PEN-" that is not a set-option. 

See the entries under PAITERN, PENMODE, and PENSIZE for informa
tion about setting the graphics pen. 



Graphics toolbox command-defines an array 
of dots to create a new pattern for the 

graphics pen. 

Syntax 
DJ TOOLBOX PenPat(@Paf (0,0)) 

Stores an 8 x 8 Boolean array as the graphics pen's pattern. 

~TOOLBOX PenPat(@Pat%(0)) 

Same, but uses a 4-element integer array. 

Description 
The PATI'ERN set-option in Macintosh BASIC is limited to the 38 standard 

patterns that come stored on the BASIC disk. There are many occasions, how
ever, when you might want to use a pattern different from those standard 38. 

With the PenPat toolbox routine, you can create your own patterns. Like 
most things in the toolbox, this process takes a little work, but it will let you 
create patterns that you could not otherwise use. 

DJ TOOLBOX PenPat(@Paf (0,0)) 

As described in the entry under PATI'ERN, the Macintosh graphics system 
is built around units of 8 x 8-square patterns, laid out on the screen more or 
less like tiles on a floor. These tile-like templates are stored as 64-bit images in 
eight consecutive bytes in the computer's memory. 

Other Macintosh languages such as Pascal have a preset data type for pat
terns, and it is for these languages that the toolbox was designed. Macintosh 
BASIC does not have this special data type for patterns, but the TOOLBOX 



o PenPat o 

command allows you to simulate one with 8-byte arrays of certain types. 
These simulated pattern structures could be termed pattern a"ays. 

The simplest way to arrange a 64-bit data structure is with a Boolean array. 
In Macintosh BASIC, a Boolean array is stored as a contiguous series of bits 
(unlike many other computers, where Boolean values are stored one to a 
byte). Because every bit inside its structure is individually addressable, a Bool
ean array is the ideal data structure for a pattern array. 

A Boolean pattern array is usually set up as an 8 x 8 array, so that its two 
subscripts match the rows and columns of the pattern template. Since sub
scripts start from 0 in Macintosh BASIC, the array should be dimensioned 
as follows: 

DIM Pat- (7,7) 

The two subscripts will represent Column - 1 and Row - 1, respectively. 
You can use a nested FOR loop to define the array: 

FOR H=OTO 7 
FOR V=O TO 7 

Par (H,V) = Logica/Expression 
NEXTV 

NEXTH 

where Logica/Expression is an expression that yields a Boolean value. For reg
ular patterns, the expression might be a function of H and V, like 

Par (H,V) = ((H+V) MOD 2) = 1 

This particular expression will define the same pattern as the preset gray 
pattern. 

You must use a very specific format to pass the pattern array to the toolbox 
routine. Instead of just passing the name of the array as you would to a sub
routine, you must use the indirect addressing symbol@ and refer to the start
ing element of the array, PaC (0,0). The TOOLBOX command should 
therefore look like this: 

TOOLBOX PenPat(@Pat- (0,0)) 

Technically, you are passing the starting memory address of the data structure, 
not the structure itself. The toolbox command requires this, because that is the 
way a pattern data structure is passed in Pascal, the language the toolbox is 
designed to match. 

Make sure you follow this format exactly. If you forget the @ sign or the 
zero subscripts, or if you dimension the array incorrectly, the toolbox routine 
might merrily try to use an improper argument as a memory address and 



D PenPat D 

crash the system. If that happens, you will need to reboot and start your pro
gram over again. 

~TOOLBOX PenPat(@Pat%(0)) 

The toolbox command does not care what form the pattern array is stored 
in, as long as it gets an uncorrupted 64 bits. Boolean arrays are the most 
transparent data type to use, because each of the bits can be set individually. 
There may be times, however, when you will want to pass the pattern as an 
integer array. If you're reading the pattern data in from a DATA statement, 
for example, it is much easier to encode the data as a few numbers, rather 
than trying to read in 64 Boolean values. 

Integers are stored as 16 bits, so it takes a 4-element array to make up 64 
bits. The integer array should therefore be dimensioned with elements 0 
through 3: 

DIM Pat%(3) 

Each of these four array elements corresponds to two rows of the pattern, as 
shown in Figure 1. To store a pattern, you store the integer whose binary 
expression has ones in the places where the black dots should go, and zeros in 
the places for the white dots. 

This would be a good place to use a hexadecimal number, and the toolbox 
has a routine that can help: StuffHex, which stores a string of hexadecimal 

.Bit imag~ 

i .t 
High byte I Low byte 

Pat%(0) 1100000:00!00:01 oo:o:OI 

Pat%(1) loooooo1ojoo100000j { 

Pat%(2) §:o:o:o:o:oo 1100:001 o:o:ol _ { 

Pat%(3) lo\o:o:oo:oolooooo 1001 { 

Actual Rattern 

Figure 1: Pen Pat-The storage format of a pattern array. 



D PenPat D 

digits into an array. You pass a string value containing hexadecimal numerals 
from 0 to F, and StuffHex places them as number values inside the array. 

TOOLBOX StuffHex (@Pat%(0), "55M55M55M55M") 

stores 64 bits of hexadecimal data within the pattern array, all in a single step. 
Unfortunately, StuffHex does not work in some of the earlier releases of the 
language, so for a while you may need to store the structure in another way. 

To create the integer array without StuffHex, you have to calculate the 
actual value that corresponds to the bit sequence you want. Integers are stored 
in a 16-bit two~ complement form, in which negative numbers are represented 
as the exact bit inverse of the positive numbers, with a 1 added on in the 
rightmost place. To put the bit pattern in the proper form, use the following 
algorithm: 

• If the leftmost bit is to be a 0, simply add up the values of the other 15 
bits and store the sum as the integer. 

• If the leftmost bit is to be a 1, add up the values of all 16 bits, so that 
you get a number between 32768 and 65535 (the leftmost bit alone has a 
value of 32768, so you can be sure the binary sum will be in this range). 
Then subtract the sum from 65536, so that you get a negative number 
between - 32768 and - 1. That is the two's complement value that 
you store. 

If all you want is a random pattern, you don't need to worry about all this. 
All you need to do is place a random value between - 32768 and + 32767 in 
each of the four elements of PatOJo-covering the entire range of each integer 
array element: 

DIM Pat%(3) 
FOR l=OTO 3 

Pat%(0) = RN0(65535) - 32768 
NEXT I 

In the entry for the Fill commands, a similar technique is used to fill an area 
with a random pattern. 

Applications 
The program in Figure 2 provides an easy way to become familiar with the 

PenPat command. This program is a pattern editor, which lets you use the 



D PenPat D 

mouse to define your patterns. As in Figure 3, this program gives you a "fat 
bits" editing region, in which you can define your pattern by clicking the 
mouse on the cells you want blackened in the grid. The initial pattern is equiv
alent to the Gray pattern in BASIC. 

DIM Pat"(7,7) 
1 Dr,3w outlines of editing grid, initialize Pat" to gra1d pattern 
FOR V% = 0 TO 7 

FOR H% = 0 TO 7 
FRAME RECT H%* 16+ 16,V%* 16+ 16; H%* 16+33,\/%* 16+33 
IF (H%+V%) MOD 2 = 1 THEN 

Pat'"(H)IJ;,\/%) =TRUE 
PAINT RECT H%* 16+ 17,\/%* 16+ 17; H%* 16+32,V%* 16+32 

END IF 
NEXT H% 

NEXT V% 
FRAME RECT 15, 15; 146, 146 ! Frame for editing grid 
FRAME RECT 159, 15; 237, 146 ! Frame for box that shows 
TOOLBOX PenPat(@Pat"(O,O)) the actual pattern 
PAINT RECT 160, 16; 236, 145 

DO 
IF NOT MOUSED- THEN 

DTNWAIT 
! Wait while mouse is up 

FirstTirne"::: TRUE 1 Flag to indicate first pass through loop 
ENDIF 
H = MOUSEH 
V = MOUSEV 
H% = INT(H/ 16)-1 
V% = INT<V/ 16)-1 
IF H%10 ANO H%'7 AND V%10 AND V%'7 THEN 

! Mouse c 1 i c ked in editing regi or.. 
! Change to opposite color from bit clicked 
IF FirstTirne" THEN 

NewBit··· =NOT Pet"(H%.V%) 
FirstTirne' =FALSE 

END IF 
Pet "(H%.V%) = New Bit" 
IF NewB1r·· THEN 

SET PATTERN Black 

1 NevvBit." is Hie color that all 
! squares will be changed to 

! as long as the mouse is 
he 1 d down (dragged) 

PAINT RECT H%*16+17,V%*16+17; H%*16+32 .. V%*16+32 

Figure 2: PenPat-Application Program. 



D PenPat D 

ELSE 
ERASE RECT H%* 16+ 17,V%* 16+ 17; H%* 16+32,'/:;g* 16+32 

END IF 
TOOLBOX PenPoH·~Pat-(O,o:n 
PAINT RECT 160, 16.: 236, 145 

END IF 
LOOP 

Figure 2: PenPat-Application Program (continued). 

::o Gray Pattern editor 
? 

Figure 3: PenPat-A pattern created using the pattern 
editor. 

Like MacPaint, this program is designed so that you can change one square 
to a new color, then spread that new color to other squares by dragging the 
mouse with the button held down. The first time through the loop following a 
mouse click, the program reverses the color of the indicated square. From 
then on until the mouse button is let up, the mouse will change other squares 
it touches to this new color. As the squares change, the filled rectangle on the 
right side is continually updated to show the texture that corresponds to the 
given bit pattern. When the mouse button is released, the program goes back 
to the beginning of the loop to wait for another square to be chosen. 



D PenPat D 

This program could be adapted in a variety of ways. It could be made into 
a subroutine as part of a larger program that would use the patterns in some 
way. Or, it could be converted into a file 1/0 program, which would create a 
disk file with a variety of stored patterns. You could then read a pattern from 
this file into another program. 

Note 
-There are several other entries in this book that involve pattern arrays 

and the toolbox. You can find further examples and information under Back
Pat, Fill, and GetPenState. 

For general information on patterns, see the entries under PATIERN and 
PAINT. 



q __ I _P_EN_P_O_S_/_/_PE_N ___ I ~ 

Syntax 

Graphics set-option-positions the graphics 
pen. 

!TI SET PENPOS H,V 

~ ASK PENPOS H,V 

Sets or checks the current position of the graphics pen, for use in 
future GPRINT or PLOT statements. 

SET PEN is an alternate form. 

[II Toolbox commands 

I l'loveTo l'1ove 

These two toolbox routines duplicate the function of SET PENPOS. 

Description 
The PENPOS set-option affects-and is affected by-the position of the 

graphics pen in GPRINT and PLOT statements. By setting the pen position 
with PENPOS, you can determine the point from which the next GPRINT or 
PLOT statement will begin to draw on the screen. Or, you can use ASK PEN
POS to find out where the last GPRINT or PLOT statement left the pen. 
PENPOS does not affect the Quickdraw shape-graphics commands or the 
non-graphic PRINT statement. 

With PLOT, the PENPOS set-option is not terribly useful, because PLOT 
statements normally move the pen to a new place before they start to draw, 



o PENPOS/ /PEN o 

and don't draw a line from the pen's previous position: 

PLOT 10, 10; 20, 10 
PLOT 50,50; 50,60 

will lift the pen between the two statements. 
With GPRINT, however, PENPOS is quite useful. The current pen position 

is the place where the base of the next line of GPRINT text will begin: 

SET PENPOS 100,125 
GPRINT "Hi Lisa" 

will place the message roughly in the middle of the output window. 
In most cases, however, it is more convenient to use the GPRINT AT form 

of the GPRINT command: 

GPRINT AT 100,125; "Hi Lisa" 

This command incorporates a PENPOS into the syntax of the GPRINT state
ment itself. 

With or without the AT option, the GPRINT statement will leave the pen 
positioned at the beginning of the next text line on the screen unless there is a 
semicolon or a comma at the end of the GPRINT output list. If there is a 
semicolon or a comma after the last item, GPRINT leaves the pen at the end 
of the line it just printed. By using the ASK form of the PENPOS command, 
you can fmd out the length of that line: 

GPRINT AT 100,120; "Hi Lisa"; 
ASK PENPOS H,V 
GPRINT AT 40,200; "The line was ";H-100;" pixels long." 

will print the result 

The line was 43 pixels long. 

The check-writing program under GPRINT and SELECT uses this technique 
to determine the starting point for lines that are to begin immediately after an 
existing line of text. 

l11 Toolbox Commands 

Move To 
Move 

PENPOS is related to two routines in the Macintosh toolbox, which also 
move the pen to a new position on the screen, without drawing anything. 



o PENPOS/ /PEN o 

These routines, MoveTo and Move, take this syntax: 

TOOLBOX MoveTo (H,V) 

and 

TOOLBOX Move (DH,DV) 

MoveTo has exactly the same effect as SET PENPOS: it moves the lifted 
graphics pen to the coordinates (H, V). 

The difference with the Move command is that it calculates the next coordi
nate as a horizontal and vertical displacement from the pen's previous posi
tion. After a Move command, the pen will be located DH pixels to the right 
and DV pixels below wherever it was before. If DH is negative, the pen moves 
to the left; if DV is negative, the pen moves upward. Move's relative displace
ment can be a useful supplement to the PENPOS set-option. 

Notes 
-PENPOS affects the following commands: GPRINT, PLOT, and the 

toolbox commands LineTo, Line, Moveto, and Move. It does not affect the 
shape graphics commands such as ERASE, FRAME, INVERT, and PAINT, 
and it is not affected by them. 

The graphics pen position does not affect the non-graphic PRINT 
statement-use HPOS and VPOS to reposition the insertion point for PRINT 
or INPUT text. However, the non-graphic PRINT statement does affect the 
values for PENPOS, so you should set the pen position again if you are 
depending on its stored value in a later GPRINT statement. In general, it is 
not a good idea to mix output from PRINT and GPRINT. 

-See GPRINT and PLOT for more information on the commands that 
are affected by PENPOS. 



---j I PENSIZE I~ ==i ....._ ________ ____,c F 

Syntax 

Numeric set-option-sets the size of the 
graphics pen. 

[jJ SET PENSIZE H,V 
[11 ASK PENSIZE H, V 

Sets or checks the horizontal and vertical dimensions of the graph
ics pen. 

Description 
In the Macintosh BASIC graphics system, all line-drawing operations use 

the graphics pen to produce their lines. By default, the graphics pen produces 
lines that are only one pixel wide, but you can use the PENSIZE set-option to 
change that width. 

The graphics pen is always rectangular, but it does not need to be square. 
You therefore name two different numbers in the SET PENSIZE statement
one for the horizontal width of the pen, and the other for the vertical height: 

SET PENSIZE H,V 

The pen dimensions are set by default to 1, 1. 
Figure 1 shows how the rectangu]ar pen is used to draw diagonal lines. When 

the pen is moved to the new point, it paints every pixel that is covered by any 
part of the pen along the way. In Figure 1, therefore, the diagonal line will pro
duce a wide line with the outside corners of the rectangular pen showing at each 
end. If you set the pen to be wider than it is tall, the vertical parts of a curved line 
would appear thicker than the horizontal parts, because the vertical parts are 
being drawn with a wider cross-section of the pen, like letters drawn with a flat
point calligraphy pen. See the entries under FRAME and PENMODE for an 
example of how an enlarged pen works on an OVAL shape. 



o PENSIZE o 

H2,V2 

Figure 1: An enlarged graphics pen draws a line that includes all of the pixels it passes over. 

The size of the graphics pen affects all point and line drawing commands, 
including PLOT, FRAME, and certain toolbox commands such as LineTo, 
Line, FramePoly, and FrameRgn. 

The exact positioning of an enlarged pen is slightly different for each of 
these commands, as shown in Figure 2. The reason for this is that Macintosh 
graphics coordinates are always calculated as abstract, mathematical entities, 
which are converted to pixels at the time the points are plotted. Each type of 
command does this conversion in a different way: 

• The PLOT statement centers the pen around the mathematical coordi
nates of the plotted point. 

• The FRAME commands draw inward from the mathematical border of 
a shape; the entire width of the pen draws inside the boundary. 

• Toolbox commands draw with the entire size of the pen hanging down 
and to the right of the mathematical coordinate position, as if there were 
a tack in the pen's upper-left corner, and the tack were pressed into the 
coordinate point. This is, in fact, the Macintosh's normal way of draw
ing points; the PLOT command is adjusted to the more natural centering 
system. 

For a default size, one-pixel-square point, the discrepancy in the positions is at 
most one pixel. 



PLOT 

FRAME 

TOOLDOX 

o PENSIZE o 

Centered 

Inward 

Down and 
to the right 

Figure 2: PENSIZE-An enlarged pen shows how various commands calculate the position of 
the pen in slightly different ways. 

Sample Program 
The following program simply plots a point in the center of the screen, 

using graduated pensizes from 10,10 to 220,220: 

l PENSIZE-Sample Program 
SET PENMODE 10 
FOR I= 10 TO 220 STEP 10 

SET PENSIZE 1,1 
PLOT 120,120 

NEXTI 

Figure 3 shows the output of this program. Penmode 10 is chosen so that the 
smaller boxes are inverted by the larger boxes and remain visible. The boxes 
are centered on the specific coordinates, because they are drawn with the 
PLOT statement. Note that with points drawn by an enlarged pen, PLOT has 
essentially the same effect as PAINT RECT with the same dimensions. 



o PENSIZE o 

PENSIZE-Semple Pro rem = 

• 

~ 

Figure 3: PENSIZE-Output of sample program. 



---11 PERFORM If:= ____, .....___ ----------F 

BASIC command-calls a program from disk 
and runs it. 

Syntax 
PERFORM ProgramName(Arg1 ,@Arg2, ... ) 

PROGRAM ProgramName(DummyArg1, DummyArg2, ... ) 

• 
• 
• 

END PROGRAM 

Calls the program ProgramName from disk, passes parameters to 
it, runs the program, and passes a value for Arg2 back to the call
ing program. 

Description 
The PERFORM command calls an external program stored as a file on the 

disk. The called program is opened in a new text window and it is executed as 
a block. When it is completed, the calling program resumes at the line follow
ing the PERFORM statement. 

The program is called by a statement consisting of the keyword PER
FORM, the name of the program to be called, and a parameter list containing 
any values to be passed to the called program. 

The called program is identified by a PROGRAM statement, which must be 
the first line of the called program. It consists of the keyword PROGRAM, 
followed by the program name and a list of dummy arguments enclosed in 
parentheses. (The name in the PROGRAM statement must be the same as the 



o PERFORM o 

program's file name on the disk.) Any program that begins with a PRO
GRAM statement must end with an END PROGRAM statement, on a line 
by itself. 

Variables in the called program are completely local to that program. Even 
if variables in both programs have the same names, operations performed by 
the called program will have no effect on variable of the same name in the 
calling program, unless the PERFORM call specifies that the values should be 
passed back through the argument list. 

The parameter list for the PERFORM command follows the same rules as 
that for the CALL subroutine statement, except that you must specifically 
mark all variables and arrays that are to receive values back from the per
formed program. To mark a variable for two-way passing, place an @ sign in 
front of its name. If you do not do this, the variable in the main program will 
simply retain the value it had before the PERFORM statement. 

You can pass variables of any type to a called program. To pass an array, 
follow its name by a pair of empty parentheses. If the array has more than 
one dimension, place one comma within the parentheses for each dimension 
other than the first. When you pass an array to a disk program, it should be 
dimensioned only in the calling program. If the dimensions of the array are 
needed as values in the disk program, they should be passed separately 
as parameters. 

When the PERFORM statement is reached, the computer loads the called 
program into the memory from the disk and opens a text window for it. The 
called program's text window will be the active window until its execution is 
complete. At that point, the window is closed up and the output window 
becomes the active window again. 

Except for the strict isolation of variables between the calling program and 
the disk program, programs called by the PERFORM statement are quite sim
ilar to subroutines called by the CALL statement. However, CALL subrou
tines are not read from disk; the are part of the program in memory. For 
further information on such subroutines, and on parameter passing, see the 
CALL entry. 

Sample Program 
The following sample program emulates the SUBSTR command available 

in certain other programming languages such as PL/ 1. The Substr program 
resembles the BASIC MID$ function, except that instead of taking part of a 



o PERFORM o 

string out of another string, it stuffs a smaller string into a part of a larger 
string, replacing whatever characters were in those positions. The rest of the 
larger string is left unchanged. 

To use this program, you must pass the two strings and the starting point 
and length of the portion to be replaced. 

The main program simply establishes the values, calls the disk program, and 
prints the result. 

! PERFORM-Sample Program 
A$ = "Dick and Jane" 
8$ = "or" 
PERFORM Substr(@A$,B$,6,3) 
PRINT A$ 

The disk program does the rest of the work. This is the text of the called pro
gram, which must appear as the file Substr on the disk: 

PROGRAM Substr(C$,D$,Start,Length) 
C$ = LEFT$(C$,Start-1) & 0$ & RIGHT$(C$,LEN(C$)-Start-Length+ 1) 

END PROGRAM 

Note that in the calling program, only A$, which is preceded by the indirect 
reference operator, will be changed by the called program. The new string, C$, 
created by the Substr program is passed from C$ to A$ in the calling pro
gram, where it is printed in the output window shown in Figure 1. 

- = PERFORM- -Sample Program ~ 
Dick or Jene • 

Figure 1: PERFORM-Output of Sample Program. 



o PERFORM o 

Notes 
-The arguments that the PERFORM statement passes to a program on 

disk must match in number and type the dummy arguments in the called pro
gram's PROGRAM statement. If they do not agree you will receive a "type 
mismatch" or "wrong number of arguments" error message. 

' -A main program can call any number of other programs. Called pro-
grams can in turn call other programs, with the limit of nesting determined 
only by available memory. 

PERFORM-Translation Key 

Microsoft BASIC 
Applesoft BASIC 

CHAIN 
RUN 



Syntax 

Numeric function-returns the value of 
pi (n). 

DJ Resu It = Pl 

Returns pi, rounded to 19 decimal places: 3.141592654589793239. 

(1) Result = n 

Pi can also be written symbolically as n and TT (typed as Option-P 
and Shift-Option-P). 

Description 
You can use the value of pi (n) in your programs without having to type it 

in. Macintosh BASIC has a keyword Pl, which contains the value of pi accu
rate to the full 19 digits of extended-precision. PI is actually a numeric func
tion, which takes no arguments and does nothing but return a constant value. 

Pi can also be written as the special character n, which is typed on the Mac
intosh keyboard by pressing Option with the letter P. The capital TT, produced 
by Shift-Option-P, is also allowed. These special symbols are not boldfaced as 
command words. 

Sample Program 
In BASIC, the trigonometric functions SIN, COS, and TAN require argu

ments expressed in radians, rather than degrees. Radians are an alternative 



D Pl D 

unit of measurement for angles, scaled so that a full circle is expressed as 2n 
radians, instead of 360 degrees. 

The following sample program converts degrees to radians and radians to 
degrees: 

I Pl-Sample Program 
DEF DegToRad(Deg) = Deg*Pl/180 
SET SHOWDIGITS 6 
PRINT "Degrees","Radians" 
FOR D=O TO 360 STEP 90 

PRINT D,DegToRad(D) 
NEXT D 
DEF RadToDeg(Rad) = Rad*180/PI 
PRINT 
PRINT "Radians","Degrees" 
FOR R=O TO 2 STEP 0.5 

PRINT FORMAT$("#.#'';R);"*tr",RadToDeg(R*PI) 
NEXT R 

The output is shown in Figure 1. 

~~ Pl-Degree/Radian conuersions ~ 
Degrees Radians • 
0 0 
90 1.5708 
180 3.14159 
270 471239 
360 6.28319 

Radians 
0.0*11 

.5*11 
1.0*11 
1.5*11 
2.0*11 

Degrees 
0 
90 
180 
270 
360 

Figure 1: Pl-Output of sample program. 



Graphics command-draws points and 
straight lines with the graphics pen. 

Syntax 
DJ PLOT H,V 

Draws a point. 

l1J PLOT H, V; 

Same, but the added semicolon (;) leaves the pen down after draw
ing. 

rn PLOT H1 ,V1; H2,V2 

Draws a line between two points. 

~ PLOT H1,V1; H2,V2; ... 

Draws a series of lines. 

[2] PLOT 

Lifts the graphics pen. 

ffil Toolbox Commands 

Line Move 
line To Move To 

A number of minor toolbox commands are also described here, 
because of their close relation to PLOT. 



o PLOT o 

Description 
PLOT is the primary graphics command for drawing points and straight 

lines. In all cases, the command paints at least one point black. In certain 
forms, the PLOT statement also draws a lin~ or a series of lines. 

Think of the way you draw points and lines with a pen on paper. You start 
by picking up your pen, then touch it against the paper. If you want only that 
single point, you just stop there and pick your pen up again. If you want to 
draw a line, you keep the pen down while you move it on to the place where 
you want the line to end. 

The PLOT statement works the same way. You always start by plotting a 
single point. Then, if you want to continue and draw a line, you keep the pen 
down and move it to another point. The various forms of the command sim
ply tell the computer to move the pen in different ways. 

DJ PLOT H,V 

The simplest form of the PLOT statement is used for drawing single points. 
You just name the horizontal and vertical coordinates, and the PLOT com
mand blackens the appropriate point on the screen. Figure 1 shows how coor
dinates are normally measured on the Macintosh output screen-for more 
information, read the Introduction. 

~D PLOT-Coordinates 

• 
v 

H ...._ _____ ,.. 
H,V 

Figure 1: Each point is defined by a horizontal and a 
vertical coordinate. 



o PLOT o 

You can change the graphics pen with any of the graphics set-options. With 
SET PENSIZE, you can enlarge the tip of the pen so that each point is plotted 
as a small rectangle several pixels wide. With SET PATIERN, you can make 
the pen plot points that are not uniformly black, but are part of one of the 
Macintosh's 38 standard patterns. And with SET PENMODE, you can change 
the way the pen draws pixels on top of other pixels. By careful control of the 
graphics pen, you can make even the simplest PLOT command draw complex 
patterns. You will find more details on this in the Notes section below. 

In this simplest form, the PLOT command lifts the pen after each point. If 
you PLOT two points in a row, the pen will paint each one separately, without 
tracing a line between them. The following program, for example, will draw 
two isolated points: 

PLOT 10,10 
PLOT 30,30 

You can plot as many isolated points as you want, using separate PLOT 
statements. 

The points are plotted with the standard graphics pen. Unless you have 
changed the pen from its default settings, each point will appear as a single 
black pixel. If the pixel was already black, it will remain black. 

III PLOT H, V; 

The simplest form of the PLOT statement, described above, merely draws 
an isolated point, then lifts the pen off the paper, so that it can move to the 
next point without drawing a connecting line. 

By ending the same command with a semicolon, you can have the computer 
leave the graphics pen down after it plots the point. Then, when you plot the 
next point, the pen will draw a line to the new point as it moves. For example, 
try the following program: 

PLOT 10,10; 
BTNWAIT 
PLOT 30,30 

The program will begin by plotting a point near the upper-left corner of the out
put window, then wait with the pen down until you press the mouse button. 
After you do, the pen moves on to the second point. Since the pen was left 
down after the first PLOT statement, a line will be traced as the pen moves. 

Note that the second PLOT statement in this example does not end with a 
semicolon. Since the pen was not left down, the computer would simply plot 
an isolated point if you added another PLOT statement after this. 



D PLOT D 

rn PLOT Hl,Vl; H2,V2 

When drawing a series of connected lines, it is common to give a long series 
of separate PLOT statements each ending in a semicolon. By leaving the pen 
down, you simply draw each new line from the endpoint of the last. 

Often, however, you will want only a single line, drawn from one point to 
another. The best way to draw an isolated line is to name two pairs of coordi
nates in the same PWT statement. The first pair gives the starting point for 
the line, and the second gives the endpoint. You must place a semicolon 
between the two coordinate pairs to show that a line is to be drawn between 
the points. 

As an example, we could plot the same line as above, in a single step: 

PLOT 10, 10; 30,30 

This program will draw a line from the first point to the second. 
Each time you use this third form of the PLOT statement, you will produce 

one disconnected line. You could, for example, draw a series of vertical lines: 

PLOT 10, 10; 10,50 
PLOT 20, 10; 20,50 
PLOT 30, 10; 30,50 

Each line starts at the vertical coordinate 10 and draws down to SO. The next 
PLOT statement moves over to a new horizontal coordinate and starts a fresh 
line, without tracing in between. 

Note that you cannot plot two isolated points in the same PLOT statement. 
This two-point form always results in a connected line. Use separate PLOT 
statements for isolated points. 

[!] PLOT H1,V1; H2,V2; ... 

You can add as many coordinates as you wish to the PLOT command. 
Each additional coordinate pair represents the endpoint of another line, and 
must be separated by a semicolon from the point before. The result is a single 
unbroken line drawn from the first point to the second, then from the second 
to the third, and so on. 

This extended PLOT command is often used when drawing a figure. To 
draw a triangle, for example, you could give this command: 

PLOT 20,20; f?0,20; 40,40; 20,20 



D PLOT D 

This one command is equivalent to the series: 

PLOT 20,20; 
PLOT 60,20; 
PLOT 40,40; 
PLOT 20,20 

Note that the last point plotted is the same as the first in this example: the pen 
goes back to the starting point to complete the triangle. 

In the extended form of the PLOT command, the pen always stays down as 
it draws between the points. There is no way to lift the pen without starting 
another PLOT statement. 

ffil PLOT 

Any PLOT statement that ends with a semicolon leaves the graphics pen 
down for the next drawing operation. That is often useful, since it lets you 
draw a series of lines just by plotting the connecting points. 

At times, however, you may attempt to plot a disconnected point or line, 
only to find you have produced a line drawn from a previous point where the 
graphics pen was left down. The pen may have been left down by a semicolon 
at the end of a PLOT statement 50 lines above in the program. 

If you're not sure whether the pen is up or down, use a PLOT statement 
without any coordinates: 

PLOT 

This will lift the pen so that it moves to the next plotted point without drawing 
a line in between. 

[fil Toolbox Commands 

The BASIC PLOT statement is a special form of several general graphics 
commands in the Macintosh toolbox. If you're just writing simple programs, 
you won't need to use these advanced commands, but if you're doing a lot of 
line graphics, these toolbox commands may simplify your task. They can also 
run almost twice as fast, which can be important inside a loop. 

Line To 

The most useful of these toolbox commands is 

TOOLBOX UneTo (H,V) 

This draws a line from the current pen position to the coordinates (H, V). 



o PLOT o 

Using LineTo may seem identical to using the second form of the PLOT 
statement, which ends in a semicolon and therefore leaves the pen down so 
that it will draw a line to the next plotted point. The difference is that LineTo 
draws a line even if there was no semicolon in the previous PLOT statement. 
LineTo, in effect, acts as if it had gone back and added a semicolon to the pre
vious statement. 

In many ways, LineTo is a more natural operation than PLOT. You do not 
have to worry about whether the pen was left up or down: you just draw a 
line from the previous pen position to the point you are choosing. In practice, 
the PLOT statement is more useful, since it allows you to draw both points 
and lines. Advanced programmers, however, will occasionally use LineTo as a 
substitute for the second form of the PLOT command. 

Line 

A useful variation on the LineTo command is 

TOOLBOX Line (DH,DV) 

Like LineTo, this command draws a line from the last point plotted. However, 
instead of moving to the absolute coordinates (H, V), the Line command 
moves a specified distance relative to the last point-DH being the horizontal 
distance and DV the vertical distance. This is useful in cases where you are 
drawing short lines from one point to another and don't want to calculate 
everything from the upper-left corner of the screen. 

Move To 
Move 

To move the pen to a new point without drawing a line or a point, you will 
usually use the BASIC command SET PENPOS. If you want, however, you 
can also use another pair of commands: MoveTo and Move. These have 
exactly the same form as the LineTo and Line commands: 

TOOLBOX MoveTo (H,V) 
TOOLBOX Move (DH,DV) 

See the entry under PENPOS for details on moving the pen without drawing. 

Sample Programs 
The coordinates of the points in the standard output window range from 0 

to 240 on both axes. The following program is an infinite loop that simply 



o PLOTo 

plots random points in the output window: 

I PLOT-Sample Program #1 
DO 

H - RND(240) 
V = RND(240) 
PLOT H,V 

LOOP 

Since a random value is chosen for each of the two coordinates, the points 
may appear anywhere in the output window. 

When you run this program, the computer will create an output window. 
As you watch, the window will begin to fill up with small dots. After a few 
minutes, the window will look like Figure 2. The program will continue to run 
until you close the output window or choose Halt from the Program menu. 

You can try a few easy variations on this sample program. You can change 
the random points to random lines merely by adding a semicolon to the end of 
the PLOT statement: 

I PLOT-Sample Program #1 (Modified) 
DO 

H = RND(240) 
V = RND(240) 
PLOTH,V; 

LOOP 

Figure 2: PLOT-Output of Sample Program #1. 



o PLOT D 

With the added semicolon, the pen will stay down and draw a line to each new 
point. The result, as shown in Figure 3, will be a series of random lines, each 
one starting from the endpoint of the line before. 

In either version of the program, you can also change the pen's size, pat
tern, or transfer mode. Try adding the following statements to the beginning 
of the program: 

SET PENSIZE 4,4 
SET PATTERN 15 

Each point or line will be drawn with a pen 4 pixels square, and with a woven
thread pattern. 

The longer forms of the PLOT command are frequently used in line draw
ings. For example, the following program draws the outline of a checker
board, as shown in Figure 4: 

! PLOT-Sample Program #2 
FOR H = 20 TO 180 STEP 20 

PLOT H,20; H, 180 
NEXT H 
FOR V = 20 TO 180 STEP 20 

PLOT 20,\1; 180,V 
NEXTV 

Figure 3: PLOT-Output of the Sample Program #1, 
modified by adding a semicolon. 



o PLOT o 

=o====== PLOT C:heckerboard 

or J11n!l!IID1111mm11mimm1111111m111i1m111111m111i1iii1i1iiiiiiiiiiiii111i11Q IQ! 
Figure 4: PLOT-Output of Sample Program #2. 

A more realistic checkerboard can be drawn using the application program 
for RECT. 

Applications 
Points and lines are used everywhere in graphics programs. Any figure that 

can be drawn with a pen will probably involve several PLOT statements. 
One common application of the PLOT statement is the iine graph, fre

quently used in business and science. The program in Figure 5 draws a graph 
of three different functions, showing how each value changes over a period of 
12 months. 

The program begins by drawing the horizontal and vertical axes of the 
graph. It then begins a loop that reads in the values for each month of the 
year and plots them as a line across the screen. Figure 6 shows the results of 
this program, using the values stored in the DATA statements. 

Many variations of this program are possible. Often, for example, you will 
want to save your data as a file on disk rather than as DATA statements, so 
that you can use a general program with many sets of data. You will find a 
disk-file version of this application program in the entry under INPUT#. 



o PLOT o 

PLOT-Application Program 

--Line Graph--
Plots the change of three variables over twelve months of a year. 

! Adjust output window for full screen size (numbers are in inches) 
SET OUTPUT 0.014, 4.5; 6.86, 0.514 

! Set up titles for axes. 
SET STEXTF ACE 1 
SET FONT 2 
SET FONTSIZE 12 

! Print title for vertical axis 
SET PENPOS 1 0, 103 
SPRINT" Region" 
SPRINT " Sales" 
SPRINT "(Millions)" 

! Boldface 
! New York font 
! 12 point 

! F'ri nt tit I e for hori zonta I axis 
GPRINT AT 253,260; '"Months"; 

! Plot vertical and horizontal axes. Origin 1s at 110,215. 
SET PENSIZE 2,2 
PLOT 110,215; 460,215 
PLOT 110,215; 110 .. 10 

! Set text size for labels on tick marks 
SET GTEXTFACE 0 ! Plain text, no boldface 
SET FONT 2 ! New York font 
SET FONTSIZE 9 ! 9-point 
SET PENSIZE 1, 1 

! Plot tick marks and labels for vertical axis 
FOR N = 0 TO 100 STEP 1 0 

V = 215-N*2 
SPRINT AT 84, V+4; FORMATS("•••";N); 
PLOT 107,V; 113,V 

NEXT N 

! Plot tick marks and labels for horizontal axis 
FORN= 1TO12 

H = 1 lO+(N-1)*30 
READ Month$ 

Figure 5: PLOT-Application Program to draw a line graph. 



o PLOT o 

GPRINT AT H-7,235; Month$ 
PLOT H,212; H,218 

NEXT N 
OAT A Jan,F eb,Mar,Apr,May,Jun,Jul,Aug,Sept,Oct,Nov ,Dec 

! Set up pen for plotting lines. 
SET PENMODE 9 ! "OR" Penmode, so that lines don't cover other lines 
SET PENSIZE 3,3 ! Draw lines 3 pixels wide 
NumberOfLines = 3 ! Number of lines to be drawn on graph 

! Beginning of loop to draw lines 
FOR N = 1 TO NumberOfLines 

SELECT N ! Set up patterns for drawing each line 
CASE 1 

LinePat = 2 
CASE 2 

LinePat = 8 
CASE 3 

! Gray pattern for first line 

! Spotted pattern for second line 

LinePat = 15 
CASE ELSE 

LinePat = Blnck 
END SfLECT 

1 Cross-hatched pattern for third line 

! Any other lines solid black 

! Read the data and plot the lines 
FOR Month= 1 TO 12 

READ Sales 
H = 110 + (1"1onth-1 )*30 
V :: 215 - 2*Sales 
1 Draw line to the next point 

SET PATTERN LinePat 
PLOT H_.V, , 

1 Draw black c:irc:le to rnar.k' point 
! Draw black circle to mark point 

SET PATTERN Oleck 
PAINT OVAL H-2,V-2; H+4,V+4 

NEXT Month 

! Coordinates of point 

I Draw with line's pattern 
! Semicolon leaves pen down 

! Paint point black 
! Doesn't chenge pen position 

PLOT 
NEXT N 

! Blank PLOT picks up the pen flfter last line drawn 

ENO PROGRAM 

!--------------------------------DATA-------------------------------! 

Figure 5: PLOT-Application Program to draw a line graph (continued). 



o PLOT o 

! Dete for line number 1 (twelYe months) 
DATA 50, 55.9, 66, 73.9, 77, BB 
DATA 72, 23, 12, 5, 7, 20 

! Deta for line nurnber 2 
DAT A 72, 23, 12, 5, 7, 39 
DATA 50, 62, 66, 73.9, 77, BB 

! Dete for line number 3 
DATA 25, 50, 80, 40, 30, 5 
DATA 10, 33, 30, 40, 30, 14 

Figure 5: PLOT-Application Program to draw a line graph (continued). 

Notes 
-It is often useful to change the pensize or pattern with the PLOT state

ment. The enlarged pen can often be used to draw rectangles that would oth
erwise require a more complex PAINT RECT statement. 

Region 
Sales 

(Millions) 

10 

6 

5 

3 

2 

PLOT-Line Graph 

.;-· 
;.' 

·" 
~-~ ······· 

............ .. ,,.. 

.. • -a<· ,,. . 

0 ~~+-~+-~+----1----1~~~--+~-+~-+-~--~ ....... ~ 

Jen Feb Mer Apr Mey Jun Jul Aug Sept Oct Nov Dec 

Months 

Figure 6: PLOT-Output of line-graph application program. 

• 



o PLOT o 

Don't change the pattern, though, unless you also enlarge the pen. If you 
try to draw a line one pixel wide with a pattern other than black, you will get 
an odd, broken line. For example, try the following program: 

SET PATTERN 8 
PLOT 20,20; 180,30 

This broken line appears because the pen paints only a one-pixel-wide strip out 
of the 8 x 8 pattern. Sinee the line is so much thinner than the pattern, only 
isolated dots appear. 

This is a frequent error in programs that combine PAINT statements with 
PLOT. You might start your picture by painting in some pattern other than 
black. Then, you might try to draw in some narrow lines with PLOT state
ments, only to find that the lines come out broken. To avoid this error, give a 
PENNORMAL command to reset the graphics pen to its default values before 
using your PLOT statements. 

-It is useful to think of SET PENPOS as the opposite of PLOT. The 
command 

SET PENPOS 10, 10 

does exactly the same thing as 

PLOT 10,10 

except that it merely moves the pen without displaying a point or line. 

-On the Macintosh, coordinates are considered to be mathematical entities 
that fall between the pixels on the screen, rather than right on them. This is 
done so that shapes such as rectangles, ovals, and rounded rectangles can be 
given precise mathematical borders, without having to worry about whether 
their bounding pixels are in or out. 

With the PLOT statement, however, the pen must draw on physical pixels, 
rather than on the mathematically-precise coordinates between pixels. PLOT 
actually draws on the point below and to the right of the mathematical coordi
nate, as shown in Figure 7. 

For the most part, you can ignore this difference between the mathematical 
coordinates and the actual pixels. If, however, you are combining PLOT com
mands with shape graphics, you may be surprised at the discrepancy between 
the coordinates used by the PLOT and the boundaries of the shape. Some
times, the PLOT coordinate will appear to match the edge of the shape, and 



o PLOT o 

_JLJLJLJLJLJL 
JOO 

Figure 7: PLOT-The pen draws below and to the right of the actual coordinate. 

sometimes it will appear to be below and to the right. Try the following pro
gram, for example: 

PLOT 20,20 
PLOT 20,180 
PLOT 180, 180 
PLOT 180,20 
BTNWAIT 
FRAME RECT 20,20; 180, 180 

At first glance, the PLOT statement would appear to draw points exactly on 
the corners of the rectangle that will appear when the FRAME RECT state
ment is executed. When you run this program, however, only the top-left cor
ner is actually covered by the frame. The difference is that the FRAME 
statement draws these lines inward from the boundary of the shape, while the 
PLOT command draws the lines below and to the right. 

This discrepancy becomes much more important when you enlarge the pen 
with SET PENSIZE. The enlarged pen with the PLOT command is always 
centered on the mathematical coordinate, whereas the pen with the FRAME 
command always draws inwards from the border. If you add the command 

SET PENSIZE 20,20 

to the beginning of the program above, the points drawn by the PLOT com
mand will extend 10 pixels to each side of the mathematical coordinate. The 



o PLOT o 

FRAME RECT, however, will continue to draw with its pen 20 pixels inward 
from the border. The result will look like Figure 8. 

Note, incidentally, that the enlarged pen is centered only for the PLOT com
mand, and not for the LineTo or Line toolbox commands. The toolbox com
mands always think of the pen as being below and to the right of the 
mathematical pen position, even when the pen has been enlarged. The following 
program, therefore, will result in two different points, which halfway overlap: 

SET PENSIZE 20,20 
PLOT 20,20 
TOOLBOX LineTo 20,20 

If you mix PLOT statements with toolbox commands, you will occa8ionally 
need some experimentation to make your points line up. 

-Throughout this entry, we have been using the default coordinate system, 
which numbers both axes starting from the upper-left corner of the output 
window. Both axes run from 0 to 240, with one unit exactly equal to a pixel 
on the screen. 

-~ PLOT-Note on coordinates ~ 

• 

Figure 8: PLOT coordinates are centered on the pen 
position, and do not exactly match the cor
ners of framed shapes. 



o PLOT o 

You are not limited to this default coordinate system. By using the SET 
SCALE statement, you can rearrange the axes so that they run in different 
directions, or so that the units have a different size from the physical pixels on 
the screen. You could, for example, set the axes so that they each run from -50 
to + 50, with the point (0,0) in the center of the output window. 

This technique is frequently used in programs such as the line graph 
described above. Unlike the computer screen, business graphs are usually 
numbered upwards from (0,0) at the lower-left corner. By setting the origin to 
the place where the axes cross and scaling the axes to match the tick marks, we 
could have plotted the line graph using this traditional coordinate system, 
avoiding a few of the complex calculations needed to place the points on the 
graph. See SCALE for more information. 

-For more information on coordinates and the QuickDraw graphics sys
tem, read the Introduction. See also the entries for PATTERN, PENSIZE, 
and PENMODE for details on the graphics pen. Toolbox commands are 
described in the entry for TOOLBOX. 

PLOT-Translation Key 

Microsoft BASIC 

Applesoft BASIC 

PSET, LINE 

HPLOT 



~ l.____ __ P_IC_S_IZ_E __ ~I p 

Syntax 

Graphics set-option-sets the size of the 
picture buff er. 

ITJ SET PICSIZE X 

[I] ASK PICSIZE X 

Sets or checks the size in bytes of the graphics output buff er. 

Description 
Macintosh BASIC keeps a record of the drawing operations that go into the 

program output, so that it can reproduce the picture correctly when the window 
is scrolled, moved, or copied to the clipboard. Without this kind of journal, 
BASIC would be unable to show those parts of the graphic output that did not 
originally appear on the screen. This journal is called the picture buffer. 

The picture buffer is initially set to 2048 bytes for each output window. You 
can change this value with the PICSIZE set-option-either enlarging the buffer to 
allow more complex copy commands, or shrinking it to conserve memory. 

The size of the picture buffer does not affect the complexity of the pictures 
that you can display within the output window, because drawing operations 
continue to be painted on the screen even after the buffer is full. PICSIZE 
only affects the complexity of the pictures that BASIC can reproduce when it 
becomes necessary to update the window's contents. 



=-11 POP It= 
==i'---· -------~F 

BASIC command-permits early exit from a 
GOSUB subroutine. 

Syntax 
POP 

Pops the last address off the stack of return pointers so that you 
can leave a subroutine without a RETURN. 

Description 
The POP statement is used to permit some of the most heinous sins of 

unstructured programming: an early branch out of a GOSUB subroutine or a 
multiple-level return from a nested subroutine. These are two of the most noto
riously confusing constructions in programming, and should be avoided at all 
costs. The POP statement is therefore unnecessary for most programmmers. 

The point of POP is as follows: If you use a GOTO to leave a subroutine 
without using a RETURN, the subroutine's return address will remain on the 
stack of pointers that tell the computer which statement to return to at the end 
of each subroutine. If you then RETURN normally from another subroutine, 
the program may use the wrong return address and return to the statement 
following the first GOSUB statement, rather than the second. 

POP is therefore used to eliminate the last return address from the stack. 
You can then use a GOTO to return to the calling program, and know that the 
next GOSUB and RETURN will be executed normally. POP does not itself 
transfer control back to the calling routine. 

POP makes the following construction possible, though not advisable: 

GOSUB Label: 

• 
• 
• 

Other Exit: 
• 
• 
• 



END MAIN 

Label: 
• 
• 
• 
IF Condition- THEN 

POP 
GOTO OtherExit: 

END IF 
• 
• 
• 

RETURN 

oPOP o 

If the condition specified in the IF statement is encountered, the program flow 
will leave the subroutine, and will continue execution at the label OtherExit, 
rather than resuming at the line following the subroutine call. The same effect 
could be produced much more readably by a CALL subroutine with an early 
exit condition. 

A slightly more legitimate use of the POP statement would be to force a 
double return from a nested subroutine. If you call a subroutine from within a 
subroutine, you must normally return from the inner routine to the outer, 
before you return to the main program. If you use POP to eliminate the inner 
routine's return address from the stack, you can have the inner routine return 
directly to the statement following the GOSUB in the main program. 

If you find this description confusing, there is good reason. The POP state
ment is one of the most obscure commands that you can ever write into a pro
gram, so it is best to avoid it altogether. There are times when you find 
yourself compelled to use POP to get out of a sticky situation, but it is a bet
ter idea to rewrite the program than to risk confusing yourself and anyone else 
who reads the program. 

For related information, see the entries under GOSUB, CALL, EXIT, and 
RETURN. 

POP-Translation Key 

Microsoft BASIC POP 

Applesoft BASIC POP 



----11 PRECISION It= 
--,~. ~~~~~~~~F 

Syntax 

Numeric set-option-sets the precision level 
of floating-point calculations. 

DJ SET PRECISION N 

~ ASK PRECISION N 

Sets one of the following degrees of precision for floating-point 
calculations: 

ExtPrecision 0 

Dbl Precision 1 
SglPrecision 2 

Description 
In floating-point arithmetic, quantities are represented internally as a frac

tional part (or mantissa), and a signed exponent. The Macintosh has three 
modes for representing floating-point values: 

• Extended precision. 80 bits total, with a 64-bit mantissa (including the 
overall sign of the number), a 15-bit exponent, and a sign bit foi: the 
exponent. This gives a maximum of 19 significant digits decimal, and a 
maximum decimal exponent of ± 4932. 

• Double precision. 64 bits total, with a 53-bit mantissa, a 10-bit exponent, 
plus a sign bit. That gives 15112 significant digits and a maximum expo
nent of ± 308. 



o PRECISION o 

• Single precision. 32 bits total, with a 24-bit mantissa, a 7-bit exponent, 
plus a sign bit. That converts to 7 significant digits and a maximum 
exponent of ± 38. 

Normally, all calculations in Macintosh BASIC are performed in the 
extended-precision model, and variables are stored as double precision (no 
type identifier). You can choose instead a single-precision variable (type identi
fier: I> or an extended-precision variable (type identifier: \). The type only 
affects the precision mode in which the number is stored; calculations are still 
performed in extended precision regardless of variable type. 

Using SET PRECISION, it is possible to restrict the precision of the calcu
lation itself. However, there is no real advantage to doing so, since computa
tions take as long or longer with the restricted precision, besides giving less 
accurate values. The only possible reason would be for simulating the per
formance of floating-point calculations on the IBM PC and other machines, 
which normally do computations in single or double precision. 

Like the other numeric set-options, this command is associated with three 
system constants that provide mnemonic names for the set-options: 

0 ExtPrecision 
1 DblPrecision 
2 SglPrecision 

So, instead of saying 

SET PRECISION 2 

you can say 

SET PRECISION SglPrecision 

Appendix C contains a complete list and description of these system constants. 
No matter what precision level you set, you can still assign the result to any 

type of floating-point variable. Of course, if you assign the result of a single 
precision operation to an extended-precision variable, the extended-precision 
variable will be accurate only in its first seven digits. 



---j I PRINT I t= 
~...___ -----------· F 

BASIC command word-prints a line of text 
in text mode. 

Syntax 
PRINT outputlist 

Displays in sequence the values of all of the variables, literals, and 
expressions in the output list. 

Description 
In Macintosh BASIC, there are two modes of text output: PRINT and 

GPRINT. The PRINT statement of standard BASIC gives pure text output, in 
a single font and fontsize. The GPRINT statement is a Graphics PRINX 
which can be formatted in a variety of fonts and fontsizes. The two state
ments work independently, even though they have essentially the same format. 

The PRINT statement is controlled by the insertion point, a flashing verti
cal bar that marks the place where the next letter of text output will appear on 
the screen. You can specify the insertion point in terms of a line and character 
position, but not in terms of a specific pixel coordinate. The default font for 
PRINT is 12-point Geneva. If you change the font using the Fonts menu, the 
text output already on the screen will be reformatted into lines in the new font 
and fontsize. By contrast, GPRINT, which plots text as graphics points on the 
screen, allows overlapping lines of text and fonts other than the ones chosen 
on the fonts menu. GPRINT does not reformat retroactively when its settings 
change. 

In general, you will use PRINT only in programs that have no graphics and no 
need for such special formatting features as fonts, fontsizes, or styles. Even in 
those cases, it is often just as easy to use GPRINT, so you will find yourself using 
fewer and fewer PRINT statements as you become more familiar with GPRINT. 



o PRINT o 

The PRINT statement works just as it does in standard BASIC. You supply 
an output list of constants, variables, or expressions that you want the state
ment to print. These items can be of any data type, but are usually numeric, 
string, or Boolean. Numeric expressions are left-justified and printed without 
any special formatting: decimal places are displayed only if they are not zero, 
and only up to the precision set by the SHOWDIGITS set-option. Strings are 
displayed as a series of characters, left-justified from the current position of 
the insertion point. Booleans are displayed as the words 'true' or 'false.' The 
length of each field can vary from one value to the next; each value takes up 
only as many character positions as are in the number, string, or Boolean 
expression to be printed. 

When there is more than one value in the output list, the fields are scanned 
from left to right. Fields can be separated by semicolons or commas. If they 
are separated by semicolons, they are simply run together with no space added 
in between. If the fields are separated by commas, BASIC issues a tab charac
ter, to move the new field over to the next tab stop. By default tab stops are 
set at even intervals of 100 pixels each. The tab stops retain their positions for 
all text, unless the interval is changed by the TABWIDTH set-option; so, any 
fields tabbed to the same tab stop in different PRINT statements will be verti
cally aligned on the output. 

Each PRINT statement begins a new line of output, unless the last PRINT 
statement ended with a comma or a semicolon. If the preceding PRINT state
ment ended in a semicolon, the insertion point was left one space past the end 
of the last item printed; if it ended with a comma, it left the insertion point at 
the next tab stop. The next PRINT or INPUT statement will then begin print
ing from that point instead of beginning a new line. 

If you want to arrange numbers or strings with more precision than the default 
display mode allows, you can use FORMAT$, an output function that converts a 
number or string into a formatted result. The FORMAT$ function serves the 
same purpose as the PRINT USING command in other versions of BASIC. 

There are a number of other functions and set-options that control the position 
of the insertion point for PRINT and INPUT statements. The TAB function, 
which is placed as an item in the actual output list, moves the insertion point a 
given number of characters in from the left edge of the window. The set-options 
HPOS and VPOS move the insertion point horizontally and vertically to a given 
character position in a given text line. These set-options are placed outside the 
PRINT statement. All three of these position operators can move the insertion 
point backwards as well as ahead. See the specific entries for details. 



o PRINT o 

The Macintosh's type fonts place some practical limits on lining up output 
in columns. Letters in Macintosh fonts are proportionally spaced, which 
means that each character occupies only as much space as it requires to fit its 
individual width. The narrow letter i takes up less space in most fonts than the 
wide letter m. 

With proportional spacing, you generally cannot depend on columns to line 
up straight on the output. A field following 20 narrow characters will appear 
closer to the left margin than a field following 20 wide ones. There are a few 
cases, however, where you can rely on columns to line up: 

• A field immediately following a comma in the output list will always be 
lined up at the next tab stop. 

• Text preceded only by numbers and spaces will be aligned correctly, 
because all spaces and numeric digits have the same width within any 
given font. 

• If you use the Fonts menu to select Monaco font, you can be certain that 
columns will line up, because Monaco is a.fixed-width font. 

The other solution is to convert the statement into a GPRINT, so you can posi
tion the columns by fixed pixel coordinates, instead of variable character spaces. 

Notes 
-It is generally a bad idea to mix PRINT with GPRINT, or with any 

graphics commands, for that matter. PRINT wipes out all graphics appearing 
anywhere on the line where it prints, and may give strange results when the 
window is scrolled or when the Fonts menu is selected. 

-The PRINT statement is affected only by the set-options that deal with 
the insertion point: HPOS, VPOS, and TABWIDTH. It is not affected by any 
of the set-options that control graphics text output: FONT, FONTSIZE, 
GTEXTFACE, GTEXTMODE, or PENPOS. 

Although PRINT is not affected by these graphics text set-options, it does 
affect them. Every PRINT statement restores the default values of the set
options FONT, FONTSIZE, GTEXTFACE, and GTEXTMODE. It also 
moves the graphics pen (PENPOS) to the point where it leaves the insertion 



o PRINT o 

point. This is yet another reason to avoid using PRINT and GPRINT in the 
same program: you will have to redefine all of the graphics set-options after 
every PRINT statement. 

-As in other dialects of BASIC, the keyword PRINT may be abbreviated 
as a question mark. 

- You can do one piece of text formatting with the PRINT statement. Mac
intosh BASIC uses the ASCII codes CHR$(253) and CHR$(254) to mark the 
beginning and end of boldfaced text. In the output from the statement 

PRINT ''That's a ";CHR$(253);"bold";CHR$(254);" word." 

the word "bold" will be boldfaced. 

-A PRINT statement with no output list will merely issue a carriage return 
and begin a new line. This will result in a blank line on output. 

-See GPRINT for a full discussion of the graphics output statement. Since 
GPRINT is the more flexible output command in Macintosh BASIC, the sam
ple and application programs are in that entry. 

PRINT-Translation Key 

Microsoft BASIC 

Applesoft BASIC 

PRINT 

PRINT 



----j I PRINT # I t---=-1....__-_______ ___, F 

File output command-sends information to 
a TEXT file. 

Syntax 
PRINT #Channel: //0 List ... 

Sends the contents of the specified variable(s) to the TEXT file 
open on the given channel. 

Description 
PRINT # is the command used to send data to TEXT files. It consists of 

the the keyword PRINT # and the channel number, followed optionally by a 
file pointer command (which tells where in the file the data is to go), and one 
or more values to be sent to the file. The values can be of any data type, and 
can be variables, expressions, or constants enclosed in quotes, but the values 
will be written to the file as ASCII characters, regardless. Fields in a text file 
are separated by tab stops, which are represented by commas in the PRINT # 
statement's variable list. If you separate items in the variable list by semico
lons, the values will form part of the same field. Each record must end with a 
carriage return, represented by the absence of a punctuation mark at the end 
of an PRINT# statement. For example: 

PRINT# 6: "This is";" one field, but'',"this is the next" 

will create two fields in the file. The first will contain: 

This is one field, but 

and the second will contain: 

this is the next 



o PRINT#o 

The absence of a punctuation mark at the end of the statement means that the 
next PRINT # statement will begin a new record. 

Sample Program 
The following program creates a sample file that can be read by the sample 

program in the INPUT # entry. 

I PRINT #-Sample Program 
SET OUTPUT ToScreen 
OPEN #5: "Sample Text File", OUTIN, TEXT, SEQUENTIAL 
DELETE "Sample Text File" 
CREATE #5: "Sample Text File", OUTIN, TEXT, SEQUENTIAL 
PRINT ''Type lines of text, ending in carriage returns." 
PRINT ''Type -1 when you are finished." 
DO 

LINE INPUT Line$ 
IF Line$=" -1" THEN EXIT 
PRINT #5: Line$ 

LOOP 
CLOSE #5 

The program begins by opening the file "Sample Text File" and automatically 
creates such a file if there is none. This assures that the DELETE statement on 
the next line has something to delete, avoiding an error message. The 
DELETE statement deletes any old version of "Sample Text File", so that 
your new entries do not write over old ones and become garbled. 

The LINE INPUT statement assures that any type of character may be 
safely typed in. When the carriage return is pressed, the line of text is assigned 
to Line$, which is then written to the file as a record with a single field. A 
sample input screen appears in Figure 1. To read the file, use the program in 
the INPUT # entry. 

Notes 
If you use WRITE # in place of PRINT # with a TEXT file, you will get an 

error message. 

For further information see the entries OPEN#, TEXT, and INPUT#. 



o PRINT#o 

Type lines of text, ending i n carriage returns. 
Type -1 when you are finished . 
? "This is just one of those days," I said. " I don't know how we'll get through ." 

~ :~~n~a;:~~~~~ .. she replied. We'll manage. We always do. After all, we ,,,l,! 

Figure 1: PRINT #-Sample input screen. 

PRINT #-Translation Key 

Microsoft BASIC 
Applesoft BASIC 

PRINT# 

PRINT 

II 



---4 I PROCENTRY I /PROCEXIT I f-:= 
---1-~~~~~~~__.F 

Syntax 

BASIC commands-save and restore the 
current numeric environment word. 

[I] PROCENTRY X 

Saves the current numeric environment in the variable X and resets 
the environment to its start-up state of 0. 

[l] PROCEXIT X 

Restores the numeric environment stored in X by a previous PRO
CENTRY command, while retaining the current state of the 
EXCEPTION flags. 

Description 
If you have used EXEPTION and HALT to set up the numeric environ

ment with floating-point status flags you may want to insulate a procedure 
call from this environment. For example, a library routine or system function 
might not work correctly if you have set a strange rounding direction with 
SET ROUND. 

With PROCENTRY, you can temporarily reset the default numeric environ
ment, so that the called procedure does calculations with the floating-point 
options it was designed for. Then, after the procedure, you can use PROC
EXIT to restore the original environment. PROCEXIT restores the environ
ment word in such a way that it signals any EXCEPTION that was set by an 
invalid operation inside the "insulated" procedure. 

Sample Program 
PROCENTRY and PROCEXIT are normally used just before and just 

after a subroutine or function call. The following program does nothing but 



o PROCENTRY I /PROCEXIT o 

create a floating point exception with the invalid division 1/0, then call a 
subroutine: 

SET ROUND Upward 
B = 1/0 
ASK ENVIRONMENT N 
PRINT "Environment= "; N 
PROCENTRY X 

CALL Procedure 
PROCEXIT X 
ASK ENVIRONMENT N 
PRINT "Environment = "; N 
END MAIN 

SUB Procedure 
PRINT" Now in procedure." 
ASK ENVIRONMENT N 
PRINT "Environment = "; N 

PRINT" Now exiting procedure." 
END SUB 

The output in Figure 1 shows that the numeric environment inside the subrou
tine is reset to the default value of 0. 

[I§ PROCENTRY-Snmple Program ~ 
Environment = 10240 • 

Now in procedure 
Environment = o 

Now exiting procedure 
Environment= 10240 

Figure 1: PROCENTRY/PROCEXIT: Output of sample 
program. 



---11 PROGRAM It-==i .....___ -------------F 

BASIC command-denotes a program to be 
called from disk by another program. 

Syntax 
PROGRAM ProgramName(DummyArg1, DummyArg2, ... ) 

• 
• 
• 

END PROGRAM 

Defines a program designed to be called from disk by a PERFORM 
statement in another program. 

Description 
The PROGRAM statement sets up a program so that it can be called from 

disk by a running program, through a PERFORM statement. When the PER
FORM statement is executed, the called program appears in a text window 
and remains active until it has executed all the executable statements or it 
reaches an END PROGRAM statement. Execution of the calling program 
then resumes at the line after the PERFORM statement. 

The program to be called is defined by a PROGRAM statement, which 
must be the first line of the called program. It consists of the keyword PRO
GRAM, followed by the program name (which must be the same as its name 
on the Finder), and an optional list of dummy arguments enclosed in paren
theses. Any program beginning with a PROGRAM statement must end with 
an END PROGRAM statement, on a line by itself. 

The dummy arguments receive values from the calling program. They are 
sent to the called program by a PERFORM statement, consisting of the key
word PERFORM, the name of the program to be called, and a parameter list 



o PROGRAM o 

containing any values to be passed to the program. The parameters in the 
PERFORM statement must match those in the PROGRAM statement in 
number and type. Any variable whose value is to be passed back to the calling 
program must have its name preceded by an @ symbol in the PERFORM 
statement to indicate that its value will be passed in both directions. 

Variables in the called program are completely local to it. Operations per
formed by the called program will have no effect on variables of the same 
name in the calling program, unless they are specifically passed back to the 
same variable in the calling program. 

Notes 
-For a full discussion of calling a program from disk, see the PERFORM 

entry, which includes a sample program. For a full discussion of paramater 
passing, see the CALL entry. 

-You cannot use constants as dummy arguments, because you cannot 
legally pass a variable to a constant. You may, however, pass constants from 
the calling program. 



:::::J I PtlnRect/ /PtlnRgn I f--= -----, ....___ _ _____ ___,_ F 

Syntax 

Graphics toolbox functions-test whether a 
point is contained in a rectangle or a region. 

ITJ ResulC = TOOL PtlnRect (@Pt%(0), @Rect%(0)) 

~ ResulC = TOOL PtlnRgn (@Pt%(0), Rgn}) 

Returns the value TRUE if the point is contained within the speci
fied rectangle or region. 

Description 
Often you may want to test whether a point is inside the border of a rectan

gle or region. With a rectangle, that isn't difficult: the point is inside if its H 
coordinate is between the left and right edges and its V coordinate is between 
the top and bottom. With regions, however, it is much harder to test whether 
a point lies inside the complex boundary of the shape. 

The QuickDraw toolbox has two special functions that test whether a point 
is contained inside a rectangle or a region. These functions return a Boolean 
result (type identifier: -), which is TRUE if the point is inside the shape, and 
FALSE if not. 

PtlnRect compares one point and one rectangle. The two shapes must be 
passed to the toolbox routine as indirect references (prefix: @) to a point 
array and a rectangle array. These structures must be previously dimensioned 
and stuffed with values. The point must be specified as an integer array with 
two elements with indices 0 and 1. The rectangle is stored as a four-element 
integer array, with elements 0 through 3. See SetPt and SetRect for informa
tion on point and integer arrays. 

The other function, PtlnRgn, compares a point and a region. The first 
argument is an indirect reference (prefix: @)to the point array. The second is 



o PtlnRect/ /PtlnRgn o 

a handle variable (type identifier: } ) that points to the region's stored struc
ture. This handle must have been previously created by a call to NewRgn, and 
its structure must be stored by an OpenRgn definition block. See OpenRgn for 
more information on regions. 

PtlnRect and PtlnRgn are often used for testing the mouse position. If you 
have defined a region, you might want to check the mouse coordinates against 
it to see if the mouse is being pressed within the region. This is useful in an 
animation program, in which you use the mouse to pick up a shape and drag 
it around the screen. 

Unfortunately, if you are using the first release of Macintosh BASIC, these 
point tests might now work. Apple is not officially supporting these (or any 
other) toolbox routines, and has not yet made them bug-free. In the initial release 
of the language, both PtlnRect and PtlnRgn gave meaningless responses. You 
may have to wait for an update before you can make them work. 



----1 I Pt2Rect I f-= 
~....._. ----------J, F 

Toolbox graphics command-uses two points 
to define a rectangle. 

Syntax 
TOOLBOX Pt2Rect (@PtA%(0), @PtB%(0), @ResultRect%(0)) 

Defines a rectangle array with PtA OJo as the point in the upper-left 
corner and PtBOJo as the point in the lower-right. 

Description 
In the Macintosh toolbox, a rectangle is normally stored as an array of four 

integers, which give the coordinates of the point in the upper-left corner and 
the point in the lower-right. Usually, the SetRect toolbox command is used to 
store these four integers into the rectangle array. 

If, for some reason, you have been working with point arrays, you may 
want to create a rectangle directly from two points. To do this, you use the 
Pt2Rect toolbox command: 

TOOLBOX Pt2Rect (@PtA%(0), @PtB%(0), @ResultRect%(0)) 

The parameters in this list are the two point arrays and the rectangle array 
where you want the result to be stored. (Note that the number 2 in the com
mand name stands for "two points," rather than the preposition "to.") 

Both the rectangle and the two points must have been previously dimen
sioned as integer arrays. The point arrays must have two elements (numbered 
0 and 1), and the rectangle four (numbered 0 to 3). Point arrays and rectangle 
arrays are described in the entries for SetPt and SetRect, respectively. 

The rectangle array created by Pt2Rect is subject to the same restrictions as 
any other toolbox rectangle. The first point in the toolbox parameter list 
(PtAOJo) is taken to be the upper-left corner of the resulting rectangle, and the 



o PtERect o 

second point (PtB%) is taken to be the lower-right. If PtB% is either above or 
to the left of PtA % , the resulting rectangle will be considered empty and not 
drawable. 

In the initial release of Macintosh BASIC, the Pt2Rect command was not 
working properly. This problem will probably be corrected in a later release; 
until then, simply use the four integer coordinates to create your rectangle 
arrays. 

See SetPt and SetRect for more information on using points and rectangles 
with the toolbox. 



BASIC command-reshuffles the 
random-number generator. 

Syntax 
RANDOMIZE 

Places a new seed in the RND function's random-number generator. 

Description 
The Macintosh random number generator does not produce true random 

numbers, because the numbers follow a regular series. Each new number in 
the series is calculated from its predecessor, or seed. 

Ordinarily, the RND function will start at the same point in the series every 
time you use it. By giving the RANDOMIZE command before using RND, 
however, you can have the series start from a different seed. The seed itself is 
chosen in a way that is truly random, so that the RND function will have a 
different series of values every time you run your program. 

Note that RANDOMIZE is a command, not a function. It occupies its own 
line in your program: 

RANOOMIZE 

See the entry under RND for further details on random numbers. 

RANDOMIZE-Translation Key 

Microsoft BASIC 

Applesoft BASIC 

RANDOMIZE 



:::::ll RANDOMX It---~.__ ________ ___,, F 

Numeric function-returns a random number 
based on a seed you supply. 

Syntax 
Result= RANDOMX(Seed) 

Returns the number from the random number series that follows 
after Seed, the number you supply. Also changes the value of Seed 
for future outputs. 

Description 
RANDOMX is a specialized variation on the RND random-number function. 

Most people will simply want to use RND, along with the RANDOMIZE reseed
ing command. For most purposes, RND returns a more useful result. 

The point of RANDOMX is that it lets you choose a seed for the random
number generator. The seed is the number that the random-number generator 
uses to generate the next number in the random series. While the next number 
bears no mathematical relation to the seed, it follows reproducibly as part of 
the random series. If you simply repeated the series starting with the same 
seed each time, the random-number function will produce the same sequence 
of values. 

RANDOMX lets you specify the seed, rather than letting the RANDOM
IZE command choose it randomly. You pass the seed as a variable to the 
RANDOMX function: 

Result= RANDOMX(Seed) 

The RANDOMX function calculates a new random number and returns it as 
a result. It also changes Seed to the new value, which can then become the 



oRANDOMXo 

seed for the next call to RANDOMX. You can therefore call RANDOMX 
repeatedly without having to store new values in Seed. 

Because the RANDOMX function changes the value of its argument, you 
must pass the seed as a variable, not as a constant or expression. If you pass a 
constant, you will get an error or unpredictable results. 

The RANDOMX function returns an extended-precision value, in the range 
0 to 2147483646. Because it is extended precision, the value also has ten signif
icant digits to the right of the decimal point. Unlike RND, there is no way to 
rescale RANDOMX to another range of values: the argument of the function 
gives the seed, not the maximum range as in RND. To rescale the result of 
RANDOMX, multiply or divide by a scaling factor. 

Because of the nature of the random-number function, you cannot use cer
tain special values for the seed. A seed of 0, for example, will always remain 
0, no matter how many times you run the RANDOMX function. For truly 
random numbers, it is best to choose a seed with at least nine digits and nine 
decimal places. 

The seed of RANDOMX does not affect the values returned by RND. The 
two functions use different seeds. 

The only real reason to use RANDOMX is if you want a pseudorandom 
series and don,t want to use the seed of RND. You might have an INPUT 
statement that would let you specify your own seed at the time you run your 
program. If you give the same initial seed on two different runs, you will get 
the same result. If you were to use RND without RANDOMIZE, you would 
not be able to change the seed; with RANDOMIZE, you would get a different 
seed every time. 

See RND for full details on random numbers. 



---j I READ I l= 
=-1----------F 

BASIC command-reads values from DATA 
statements. 

Syntax 
DJ READ Variable1 ,Variable2, ... 

DATA Value1, Value2, ... 

Reads successive values listed in a DATA statement into the corres
ponding variables listed in a READ statement. 

~RESTORE Label: 

READ Variable 1, Variable2, ... 

Label: 

DATA Value1,Value2, ... 

Reads successive values from the DATA statement(s) immediately 
following Label: into successive variables listed in the READ 
statement. 

Description 
The READ command reads the data items that are stored in a program's 

DATA statements. READ reads these items sequentially, and assigns each 
value to a variable. 

A single READ statement may read one or more data values. The READ 
statement consists of the keyword READ followed by one or more variable 
names of any type, separated by commas. The statement reads one value into 
each variable in the list. The values it reads must be of the same type as the 
variable names into which it reads them. 



o READ o 

IT1 READ Variable 1, Variable2,. . . 

DATA Valuel, Value2, ... 

The READ statement will read values successively from DATA statements 
anywhere in the program, starting with the first DATA statement. As it reads 
each value it assigns it to the corresponding variable in the list. If a READ 
statement is executed more than once, each time it is executed it will read data 
values starting with the first value that has not yet been read. READ then 
assigns the new values to the variables in its list, replacing the values stored 
there by the previous execution. 

DATA statements, like READ statements, may contain multiple items, sep
arated by commas. Not all the values from a single DATA statement have to 
be used up in the same read operation. A DATA statement may contain any 
number of values as long as there are enough values for the READ statements 
to read each time they are executed. Otherwise, you will get an "out of data to 
read" error message. 

Reading values from DATA statements is often the simplest way to make 
large numbers of values available to variables within a program. It is generally 
much simpler to use DATA statements than to create a sequential file of data 
values along with the file-handling routines needed to create the file and read it. 

~RESTORE Label: 

READ Variable 1, Variable2, ... 

Label: 

DATA Valuel ,Value2, ... 

Every time a READ statement is executed there must be a DATA value 
available for each READ variable. Consider the following possibility: 

READ H,V 
PLOTH,V 
DATA 5, 15,22 

The first time this READ statement is executed, 5 is assigned to H and 15 to 
V. Suppose the READ statement is executed a second time. H will take on the 
value 22, but then you will see an error message, because there are no values 
left to read into V. BASIC provides a solution-the RESTORE statement. 

Each time a data value is read, a pointer is set to the next data value in the 
program. The RESTORE statement resets this pointer to the first DATA value 
in the program so that all the values can be read over again. Any number of 
RESTORE statements can appear in a program. 



o READ D 

Macintosh BASIC lets you reset the pointer to any DATA statement you 
choose, not just to the first one in the program. If you place a label ahead of 
the next DATA statement you wish to read from, you can refer to the label in 
your RESTORE statement, like this: 

RESTORE SecondBlock: 

When a RESTORE statement of this form is executed, it tells the computer to 
set the DATA pointer to the first DATA statement following the label given. 
With a label, RESTORE can be used to skip data values, as well as to repeat 
them; simply refer to a label that comes after DATA values that have not yet 
been read. You can also set up several labels for different blocks of data, and 
set the pointer to each one as needed. 

Sample Programs 
The first sample program has a READ statement inside a FOR loop that is 

executed 11 times. There are two variables, a string variable and a numeric 
variable. Inside the loop, a value is read into each variable and then the two 
values are printed on the screen to set up a table. 

! READ-Sample Program #1 
SET GTEXTfACE 1 
SET TABWIDTH 120 
GPRINT AT 7, 14; "Denomination","Value" 
PLOT 7,20; 170,20 
SET GTEXTfACE 0 
SET PENPOS 7,38 
FOR Currency = 1 TO 11 

READ Denomination$, Value 

I Bold for heading 
I Wide spacing 

I Underline head 
I Normal type 

GPRINT Denomination$, FORMAT$("$##.##'' ;Value) 
NEXT Currency 
DATA Penn~.01,Nickel,.05,Dime,.1,Quarter,.25 
DATA Half-Dollar,.5,Silver Dollar, 1,Dollar Bill, 1 
DATA $5 Bill,5,$10 Bill, 10,$20 Bill,20,$50 Bill,50 

Output from this program appears in Figure 1. Notice that in the DATA 
statements, string and numeric values alternate, so that the string and numeric 
variables in the READ statement can read the two values as a pair. In this pro
gram, each successive execution of the FOR loop places a new value in each of 
the variables, once the old values have been printed. 



o READ D 

ii~ REHO-Sample Pm gram # 1 -
Denomination Vnlue • 
Penny $0.01 
Nickel $0.05 
Dime $0.10 
Quarter $0.25 
Half-Dollar $0.50 
Silver Dollar $1.00 
Dollar Bill $1.00 
$5 6111 $5.00 
$10 Bill $10.00 
$20 Bill $20.00 
$50 Bill $50.00 

Figure 1: READ-Output of Sample Program #1. 

READ and DATA statements are quite useful for filling arrays, eliminating 
the need for numerous assignment statments. The second sample program 
uses a FOR loop to read data items into an array. 

I READ-Sample Program #2 
DIM Month$(12) 
FOR Month = 1 TO 12 

READ Month$(Month) 
NEXT Month 
INPUT "Number of Month?"; Number 
PRINT Month$(Number) 
DATA January,February,March,April 
DATA May,June,July,August,September 
DATA October,November,December 

To show that the array has been filled successfully, the program asks the 
user to select a month to print, the user gives a number, and the computer 
prints the name of the appropriate month. A sample run appears in Figure 2. 

Notice that the number of items in the different DATA statements varies in 
both these programs. You can place any number of data items in a DATA 
statement, but it is best to use some arrangement that makes it easy to under
stand why the data values are grouped together and what they are supposed to 
do. Your program will gain in clarity if items to be read together all appear in 
the same DATA statement. 



DREAD D 

-c:= HERO-Sample Pl'"O l'"Dm #2 ~ 
Number of month? 2 • 
February 

Figure 2: READ-Output of Sample Program #2. 

Notes 
-A READ statement, as noted, can be executed repeatedly. In a graphics 

program, for example, you might want to place a READ statement in a loop, 
such as the following: 

DO 
READ H,V 
PLOT H,V 

LOOP 

One way of allowing the program to run continuously is to set up an asyn
chronous interrupt, of the following form at some point prior to the loop: 

WHEN ERR 
IF ERR~ 184 THEN RESTORE [Label:] 

END WHEN 

Error 184 means "out of data to read." If the computer generates this error 
code, the block will be executed, and the data pointer will be reset to the pro
gram's first DATA statement. 



o READ D 

-String values in DATA statements do not have to be enclosed in quota
tion marks, unless you want them to contain commas or colons. 

-For a full discussion of the use of labels, see the GOSUB entry. 

-See the FONTSIZE entry for a sample program that makes use of the 
RESTORE command. Additional programs using READ and DATA can be 
found in the SEQUENTIAL and DATE$ entries. 

READ-Translation Key 

Microsoft BASIC 
Applesoft BASIC 

READ 

READ 



Syntax 

File input command-retrieves information 
from a DATA or BINY file. 

READ #Channel : //0 List 

Reads the DATA or BINY file open on the given channel and 
assigns consecutive fields to the specified variables. 

Description 
READ # is the command used to read data from DATA or BINY files. It 

consists of the keyword READ # and a channel number, followed optionally 
by a file pointer command (which tells at which record in the file the data 
should start reading, then an optional contingency (which specifies actions to 
be taken under certain circumstances), and finally a list of one or more vari
ables to which the values read from the file will be assigned. The variables can 
be of any data type, but they must match in exact sequence the types of data 
being read, or no value will be assigned to them. 

All variables in the 1/0 list should be separated by commas, which tell the 
computer to skip to the next field in the record. If the 1/0 list ends in a 
comma, the next READ# statement will read the next field on the record. If 
the comma is omitted, the next READ statement will start at the beginning of 
the next record. 

In DATA files, records are separated from each other by data type tags. In 
BINY files, however, there are no separators between records. You must cor
rectly match the sequence of types in your variable list with the sequence of 
types of the data fields in the file: for each data type, the field and the variable 
are allotted the same number of bytes. For further details see the TYP entry. 



o REAO#o 

Notes 
-If you use INPUT # in place of READ #with a DATA or BINY file, you 

will get an error message. INPUT # can be used only with TEXT files. 

-For further information see the entries DATA, BINY TYP, WRITE #, 
and OPEN #. Programs using READ # can be found in the SEQUENTIAL, 
RECSIZE, MISSING- , and REWRITE # entries. 

READ #-Translation Key 

Microsoft BASIC 
Applesoft BASIC 

GET# 

INPUT 



---jl RECORD It= 
~....___ ---------J, F 

File pointer command-moves the file pointer 
to the beginning of a specified record in a 

relative file. 

Syntax 
filecommand #Channel, RECORD Number: //0 List 

Moves the file pointer to a specified record number before execut
ing the file command. 

Description 
The RECORD command, consisting of the word RECORD followed by a 

record number, is used in file access commands to move the record pointer to 
the start of a specific record in a relative (RECSIZE) file. The record is identi
fied by a number. If the number you specify is greater than the number of the 
last record currently in a file opened with the APPEND or OUTIN access 
attribute, the program will create empty records to fill the gap between the last 
existing record in the file and the new record of the number specified. 

For further details see the READ #, INPUT #, WRITE #, REWRITE #, 
PRINT #, and RECSIZE entries. For sample programs using RECORD, see 
the MISSING- , TYP, and RECSIZE entries. 

RECORD-Translation key 

Microsoft BASIC 
Applesoft BASIC R RecordNumber 



---j I RECSIZE It--==i ~-_______ ___,F 

File organization attribute-marks a file as a 
relative or random access file. 

Syntax 
OPEN #Channel: "FileName" ,Access, Format, RECSIZE Length 

Opens or creates the named ftle on the specified channel as a ran
dom access file with records of a specified length. 

Description 
A RECSIZE file, more commonly referred to as a relative or random access 

file, is a ftle of records of equal length, identified by consecutive numbers 
starting at 0. The length of the records in the file is established by a numeric 
constant or expression in the RECSIZE statement at the end of the OPEN 
command. 

RECSIZE files can be of any format-TEXT, DATA, or BINY. TEXT and 
DATA files can have multiple fields per record. Fields in a TEXT file are sepa
rated by tab characters, and those in DATA files by type tags denoting the 
data type of the variable in each field. 

The advantage of relative files is that you can access any record at will 
through its identifying record number. There are several ways to do this: 

• The RECORD file pointer command; 

• The SET CURPOS # set-option; 

• Other file pointer commands. 

The RECORD Command This command, used as part of a file command 
that accesses the file, specifies the desired record by number. For example: 

PRINT #3, RECORD 4: Text$, 



o RECSIZE o 

This command writes the contents of the variable Text$ into the first field of 
record number 4 of the RECSIZE TEXT file that is open on channel 3. The 
comma after Text$ leaves the file pointer within the same record. 

READ #62, RECORD 19: Acct$,Balance,Total 

This command accesses record number 19 of the RECSIZE DATA file open 
on channel 62, and reads three fields from the file. The absence of a comma 
at the end leaves the file pointer at the beginning of record 20, whether record 
19 has been completely read or not. 

'fhe SET CURPOS # You can move the file pointer to the beginning (byte 0) 
of a specified record with the SET CURPOS # statement: 

SET CURPOS #14, 53 

This statement moves the file pointer to the beginning of record number 53 in 
the RECSIZE file on channel 14. 

Other File Pointer Commands The file pointer commands BEGIN, NEXT, 
SAME, and END can be used to move the pointer to the beginning of the file, 
to the beginning of the next record, to the beginning of the current record, 
and to the end of the file, respectively. You do not need to know the record 
number of the current record to use these commands. 

A RECSIZE file can have empty records. Deleting a record (which can be 
done by sending ASCII zeros or a string of blank spaces to it) simply leaves a 
numbered gap in the file. Also, if you leave a gap by adding records beyond 
the end of the file, empty records are created to fill in the intervening record 
numbers. If your last record, for example, is number 30, you can write a 
record numbered 40 with the RECORD command: 

WRITE #2, RECORD 40: New$,lntValue% 

Doing so will automatically create records 31 to 39, which will all be filled 
with ASCII zeros (nulls). 

To deal with this special circumstance, Macintosh BASIC provides two file 
contingency functions: 

• MISSING- , which returns TRUE if the record is empty or if no record 
of that number has been created at all; 

and 

• THERE- , which returns TRUE if the record is not empty. 



o RECSIZE o 

MISSING- The MISSING- function is used to avoid trying to read from a 
record that is empty or nonexistent: 

DO 
INPUT #5, IF MISSING"' THEN GOSUB Increment: Name$ 

LOOP 

• 
• 
• 

Increment: 
ASK CURPOS #5, RecNum 
SET CURPOS #5, RecNum+ 1 

RETURN 

This program fragment reads a record from a RECSIZE TEXT file, first 
checking to see whether the record exists and contains data. If not, a subrou
tine is executed to move the file pointer to the next record, and the operation 
is repeated. For a DATA file, substitute READ# for INPUT#. 

THERE- The THERF function fulfills the same purpose when writing files 
that the MISSING- function fulfills when reading. It keeps you from writing 
over an existing record. In a program structured as the above fragment, the 
syntax would be: 

PRINT #5, IF THERc THEN GOSUB Increment: Name$ 

For a DATA file, substitute WRITE# for PRINT#. Indeed, trying to over
write a record in a RECSIZE DATA file with WRITE # will generate an error 
message. To overwrite, you must use the REWRITE # command in this case. 

Sample Program 
Although all records in a RECSIZE file must be of the same length, they 

need not be identically structured. They do not have to have the same set of 
fields, nor indeed fields of the same data types. The following program has 
two types of records. The first and last records contain a single string variable 
in each, while the intervening records each contain two numeric variables, one 
an integer and the other a double precision real. 

I RECSIZE-Sample Program 
OPEN #20: "Account",OUTIN, DATA, RECSIZE 12 
WRITE #20, RECORD 0: "ACCOUNTS" 
WRITE #20, RECORD 6: "Last one." 



FOR I= 1TO5 
READ Acct%, Bal 

o RECSIZE o 

WRITE #20, RECORD I: Acct%, Bal 
NEXT I 
DATA 12, 123.22, 10, 11.75, 43, 11.07 
DATA 123, 673.33, 86, 86.86 
READ #20, RECORD O; Title$ 
PRINT Title$ 
FOR X = 1TO5 

READ #20, RECORD X: Acct%, Bal 
PRINT FORMAT$("### $###.##"; Acct%, Bal) 

NEXTX 
READ #20, RECORD 6: End$ 
PRINT End$ 
CLOSE #20 

The program makes use of the RECORD file pointer command to access 
the various records. First, records 0 and 6 are written with string variables, 
entered as literals. Next a FOR/NEXT loop reads the data from DATA state
ments into variables, and writes these variables into the intervening records. 

The first record is read back through the RECORD file pointer command, 
which is again set to access record 0. (The BEGIN pointer command would 
have worked just as well.) Another FOR loop reads the five numeric records 
and prints their contents on the screen, while a final READ # statement reads 
the last record. The RECORD command has been used for each record, 
although when reading or writing a RECSIZE file the pointer will automati
cally advance to the beginning of the next once all values are read from or 
written to a given record. Figure 1 shows the output. 

Notes 
-For more information on the structure of TEXT and DATA format files, 

see those entries. A diagram comparing the storage structure of the three dif
ferent file formats can be found in the OPEN # entry. For details on data type 
tags, see the TYP entry. 

-Anywhere in a program you can determine the position of the file pointer 
with ASK CURPOS # and ASK HPOS #. A statement of the form: 

ASK CURPOS #3, RecNum 



o RECSIZE o 

;;~ RECS I ZE-Sample Program ~ 
ACCOUNTS • 

12 $123.22 
10 $11.75 
43 $11.07 

123 $673.33 
86 $86.86 

Last one. 

Figure 1: RECSIZE-Output of sample program. 

will assign to the variable RecNum the number of the record in which the file 
pointer is currently located. Similarly, 

ASK HPOS #3, ByteNum 

will assign to ByteNum the number of the byte in the current record at which 
the pointer is located. The value is counted from the first byte of the record, 
the first byte being 0. If you know the structure of the fields in your records, 
this can give you accurate and useful information as to the exact field at which 
the pointer is located. 

-Writing more information to a relative file record than can fit within its 
specified record length will result in an error message. 

-For additional programs using RECSIZE files, see the MISSING- and 
REWRITE # entries. 

-Unlike Microsoft BASIC, Macintosh BASIC has no equivalent to the 
FIELD# statement, which allocates a specific number of bytes to each field in 
a record of a random access file. In a DATA or BINY RECSIZE file you can 



o RECSIZE o 

determine the number of bytes for all data types except string by looking up 
the storage allocation for the data type in the TYP entry. The closest equiva
lent to this for strings is to set the beginning entry point for each string vari
able within a record using SET HPOS #. 



==11 RECT 11-:= ==i ---_______ ___,c F 

Graphics shape-Names a square or rectangle 
in a QuickDraw shape graphics command. 

Syntax 
ITJ ERASE RECT H1,V1; H2,V2 

lIJ FRAME RECT H1 ,V1; H2,V2 

lJJ INVERT RECT H1,V1; H2,V2 

[!] PAINT RECT H1 ,V1; H2,V2 

Erases, frames, inverts, or paints a rectangle with opposite corners 
at H1,V1 and H2,v2• 

Description 
RECT is the BASIC keyword that names a rectangle, one of the principal 

graphics shapes. RECT is used with one of the QuickDraw graphics operators, 
in the four shape graphics commands. RECT is therefore always the second 
word of a two-word command with a syntax roughly like a verb and its 
object. Macintosh shape graphics commands always contain two keywords: 
one names the action performed, the other names the object the action is per
formed on. For the shape, or object, you select RECT, OVAL, or ROUND
RECT; for the action, or verb, you must choose among the operators 
ERASE, FRAME, INVERT, and PAINT. ERASE simply clears away all the 
pixels under the shape and resets them to the white background. FRAME 
draws an outline around the shape, using whichever graphics pen you have set 
up. INVERT flips each point under the shape to the opposite color: from 
black to white or from white to black. And fmally, PAINT draws a filled-in 
shape with the pen's current pattern. These shape graphics operators are all 
described under their own names in this book. 



o RECT o 

Whichever operation is being performed, RECT defines a rectangle by the 
points in the upper-left and the lower-right corners: 

operation RECT Hl,Vl; H2,V2 

A semicolon is used to separate the two coordinate pairs. There is no need to 
name the other two corners, since they are automatically determined by the 
first two. 

You can also think of the four coordinates independently as representing the 
edges of the rectangle. The horizontal coordinate of the first pair tells at what 
horizontal position the left edge will fall. The first vertical coordinate, simi
larly, gives the vertical position of the top of the rectangle. The second coordi
nate pair then positions the right side and the bottom. You can, therefore, also 
express the coordinates as follows: 

operation RECT Left,Top; Right,Bottom 

Figure 1 illustrates these two ways of naming coordinates. 
As in MacPaint, you can draw rectangles in any direction, without having 

to worry whether the second point falls below and to the right of the first. 
Normally, H2 and V2 will be greater than Hl and Vl, so that the rectangle is 
drawn from the upper-left to the lower-right. If, however, H2 or V2 becomes 
less than the corresponding coordinate of the first point, BASIC will adjust 

H 1 (Left) H2 (R1gM) 

Vl (Top)~-H_1,~v_1.........,...,...,,.._,,...,,......,........,......,,.._,,...,,......,........,,..,,..,,..,,., •••••••••••••••••••••• •••••••••••••••••••••• •••••••••••••••••••••• •••••••••••••••••••••• •••••••••••••••••••••• •••••••••••••••••••••• •••••••••••••••••••••• •••••••••••••••••••••• ••••••••••••••••••••• •••••••••••••••••••••• ••••••••••••••••••••• •••••••••••••••••••••• •••••••••••••••••••••• 

Figure 1: RECT-The coordinates that define a rectangle. 



o RECT o 

the order and draw a rectangle based on the two points you have given it. This 
means that you can go from any corner to any opposite corner: from the 
lower-right to the upper-left, or from the lower-left to the upper-right, for 
example. The only requirement is that the points be chosen at opposite corners 
of the rectangle, so that all four corners are fixed. 

Sample Programs 
This program is an infinite loop that paints random rectangles in random 

patterns: 

! RECT-Sample Program #1 
DO 

SET PATTERN INT(RND(38)) 
PAINT RECT RND(241),RND(241); RND(241),RND(241) 

LOOP 

The patterns are chosen randomly from among the 38 preset patterns. The 
four coordinates that define the rectangle are each chosen randomly from the 
range 0 to 241. When you run this program, the screen quickly fills up with 
overlapping rectangles, as shown in Figure 2. 

Figure 2: RECT-Output of Sample Program #1. 



o RECT o 

Another way to choose the coordinates would be to read the mouse's 
position: 

! RECT-Sample Program #2 
00 

BTNWAIT 
Hl = MOUSEH 
Vl = MOUSEV 
00 

H2 = MOUSEH 
V2 = MOUSEV 
SET PENMODE 10 
FRAME RECT Hl,Vl; H2,V2 
FRAME RECT Hl,Vl; H2,V2 
IF NOT MOUSER- THEN 

SET PENMODE 8 
FRAME RECT Hl,Vl; H2,V2 
EXIT 

ENDIF 
LOOP 

LOOP 

! Wait until mouse-down 
! First corner 

! Loop until mouse-up 
! Second corner 

! XOR for animation 
! Draw rectangle 
! Redraw to erase 
! Mouse-up 
! COVER for good 
! Draw final rect 
! EXIT animation loop 

! Start over 

This program lets you draw "rubber-band rectangles," as in MacPaint. For 
each rectangle, you press the mouse button at one corner, then hold the button 
while you drag to the other corner. As you drag, the program frames a rectan
gle twice with transfer mode 10-the standard technique for moving a flashing 
shape across dots without changing them. Then, when you fmally release the 
mouse button, the program draws a fmal version of the rectangle frame, using 
PENMODE 8 for permanent dots. Figure 3 shows a picture created using this 
program. 

In these programs, it is fortunate that BASIC allows the second point to be 
above or to the left of the first. With both random numbers and the mouse, 
there is no way to assure that the second point chosen will have coordinates 
larger than the first. With the mouse program, you frequently may want to 
drag a rectangle up from or to the left of the starting point. If BASIC did not 
allow you to use any two opposite corners in defming a rectangle, you would 
have to add a complex test to make certain the statement would work. 

Applications 
The rectangle is the most common graphics shape, and you will fmd it used 

in many of the programs in this book. In the application program for PAINT, 



o RECT o 

~~ RECT-Somple Program #2 ~ 
? 

~ 

u 

Figure 3: RECT-A picture drawn with the mouse on 
Sample Program #2. 

for example, the rectangle is used to draw shaded columns in a bar graph. The 
programs for FRAME and ERASE show how to use rectangles to highlight 
text in various ways. 

The program in Figure 4 shows another way of using rectangles. This pro
gram draws a standard checkerboard with 64 squares, each one with 24 pixels 
on a side. To make each square, the program first frames a rectangle (one 
pixel larger than the desired square so that the borders will overlap). Then, the 
program paints all the odd squares with a light-gray pattern and draws three
dimensional checkers, built up with oval shape commands, in the rows where 
the pieces are placed. The result is shown in Figure 5. 

This program, of course, draws only the initial set-up of the checkers game. 
For a true checkers program, you would need a way to move the pieces and 
calculate strategy. See the application program in the entry for IF, which 
expands this graphics routine so that the pieces can be moved with the mouse. 

Notes 
-On the Macintosh, the rectangle shape is considered to be "mathemati

cally perfect," in that its borders run along infinitely-thin lines between the 
pixels on the screen. In that way, the rectangle shape can be defined as the set 



o RECT o 

I RECT -Application progrflm 

! Drew the opening pos1tton of e checkerboerd 

FOR V1=1 TO 8 
FOR H1=1TO8 

I Ce1cu1ate coordinates of upper-left corner 
H = H1*24 
V = V1*24 

I Draw ournnes for squeres 
SET PATTERN Bleck 
FRAME RECT H,V; H+25,V+25 

I Paint only odd squares 
IF (Hl+Vl)MOD 2 = 1 THEN 

SET PATTERN us.-ey 
PAINT RECT H+1,V+1; H+24,\1+24 
I Place black counters tn rows 1-3, whtte tn 6-6 
SELECT CASE \I I 

CASE I TO 3 
SET PATTERN Grey 
PAINT OVAL H+6,\1+6; H+22,V+22 
SET PATTERN Bleck 
FRAME OVAL H+S,\1+5; H+23,V+23 
PAINT OVAL H+3,V+3; H+21,V+21 

CASE 6TO 8 
SET PATTERN Bleck 

I Black piece 
I Bottom of piece 

I Top of Piece 

I While piece 

ERASE OVAL H+6,V+6; H+22,\1+22 I Bottom of piece 
FRAME OVAL H+S,V+S; H+23,V+23 
ERASE OVAL H+4,V+4; H+20,\1+20 I Top of piece 
FRAME OVAL H+3,V+3; H+21,\1+21 

CASE ELSE 
! No counter 

END SELECT 
ENDIF 

NEXT HI 
NEXT \/1 

Figure 4: RECT-Application program. 

of all pixels inside the border, without having to worry about whether the pix
els on the border itself are inside or out. 

All the shape commands draw inwards from the figure's boundary, so that 
the operations affect only those pixels within. Three of the four commands
ERASE, INVERT, and PAINT-affect every interior pixel-all the dots 
shaded gray in Figure 6. FRAME also draws inwards from the border, but 



o RECT o 

_[) RECT-Checkerboord 

• 

Figure 5: RECT-Output of application program. 

only by the width of the graphics pen. In all cases, however, the shape is liin
ited to the pixels inside the mathematical border, shown by a solid line in 
Figure 6. 

Hl H2 
,.I \._j \, __ , ...._, \._j \,_J ...._, \,_J \,_l \,_J ..... _./ \,_/ \. 

) () 0 () () 0 () () () () () () ( 
Vl ) 0 O@@@@@@@() () ( 

) () () €]) ® ~@ @@@() 0 ( 
--.) r~-) () ® ® CR[tT1TI) ® ® () () ( 
- \,_ ~~- - -~~ ~ 
) () n ® ®@®@® ® () () c 

V2 ) () () 4ill1J 4ill1J@4ill1J 4ill1J 4ill1J 4ill1J () () ( 
) () () () () () () () () () () () ·~ 

---------· _________ _, 

Figure 6: RECT refers only to the pixels within the shape's border. 



o RECT o 

Confusion can arise when you combine shape command rectangles with 
PLOT drawings. You might think that the comers of a rectangle drawn by a 
rectangle command would exactly match four points drawn by a PLOT with 
the same coordinates, but they will often differ slightly. Try the following pro
gram, for instance: 

FRAME RECT 20,20; 180, 180 
BTNWAIT 
PLOT 20,20 
PLOT 20,180 
PLOT 180, 180 
PLOT 180,20 

This program begins by drawing the frame of a rectangle. Then, after you 
press the mouse button, the four PLOT commands draw a point at the coor
dinates of each of the four comers. The first of the points does coincide with 
the upper-left comer of the rectangle, but the other three are one pixel off. 
The added dots are so small that they are almost unnoticeable, but the dis
crepancy can become important when lines are being drawn. 

Figure 7 shows the reason for this difference. The PLOT command, when 
set to a pensize of 1 x 1, always draws below and to the right of the mathemat
ical coordinate you specify. If you try to plot a point at each of the corners of 
the rectangle, the points will appear on the pixels shaded black. The point at 
the upper-left comer happens to fall inside the boundaries of the rectangle, 
but the other three do not. 

Ht H2 
-1\JVVVVVVVVVV\.. 

)00000000000( 
vt )OO••••••••oc 

)Ooeeeeeeeooc 
) 0 0. 9 @R~T- 9 9 0 0 ( 
)00888888900( 

v2 )Ooeeeeeeeooc 
) 0 0. 0 0 0 0 0 0 •ftci[ 
"" " " " " " " r-.... " " r-.... , , 1' 

Figure 7: RECT corners do not always correspond to the pixels darkened by the PLOT 
command. 



o RECT o 

When the pen is enlarged, the discrepancy between RECT and PLOT 
becomes more important. If you add the statement 

SET PENSIZE 30,30 

to the beginning of this program, both the FRAME and PWT commands 
will draw with a pen 30 pixels on each side. FRAME, however, continues to 
draw with the entire width of the pen inside the border of the rectangle, while 
PLOT draws points centered on the mathematical coordinates. This results in 
a major discrepancy between the rectangle's frame and its corner points. 

Trial and error is often the best way to resolve these discrepancies. In the 
application program above, for example, the FRAME RECT commands work 
on boxes 25 pixels on each side, even though the boxes are only 24 pixels 
square. The added pixel makes the edges of each square overlap, so that the 
twice-painted edge is only one pixel wide. 

-All this talk of pixels is irrelevant if you decide to change the scale of the 
axes. By using the SET SCALE statement, you can make a unit on each axis 
represent any number of pixels you want. If you choose to do this, the coordi
nates become purely mathematical. 

Rectangles are still defmed in the same way. You name the two comer points 
in whichever coordinate system you have set. These coordinates will defme an 
imaginary, mathematical boundary for the shape. The graphics command will 
then take its effect on every point within that mathematical boundary. 

See SCALE for further details on changing the coordinate system. 

-Users of MacPaint may be surprised that BASIC shapes do not come out 
with lines around their borders. MacPaint automatically adds a line around 
the edge of the shapes it draws, but BASIC does not. The ERASE, INVERT, 
and PAINT commands operate only on the points inside the rectangle: no line 
is added to the edge. To add a line around the border, use a FRAME RECT 
statement with the same coordinates. 

-The rectangle is one of the fundamental shapes of the graphics toolbox. 
Many toolbox commands depend on rectangles for defming the boundaries of 
shapes. Arcs, regions, and windows all use rectangles in one way or another. 
Toolbox rectangles also let you use a fifth graphics verb-Fill-to put patterns 
inside rectangles and other shapes. 



o RECT o 

To use a rectangle in a toolbox command, you must do a few contortions. 
The toolbox routines were designed for languages like Macintosh Pascal, 
which has a special rectangle variable type. Pascal's rectangle types contain all 
four coordinates under a single name, and can be passed as a single argument 
to the toolbox. 

Macintosh BASIC has no rectangle type, so you must simulate the structure 
in another way. You must define the rectangle as a four-element integer array, 
dimensioned with elements 0 through 3, as follows: 

DIM Rect%(3) 

Since it substitutes for a rectangle variable type, this can be called a rectangle 
a"ay. 

The four elements of the array must contain the coordinates of the corners 
of the rectangle. To store the coordinates, you should use the SetRect toolbox 
routine: 

TOOLBOX SetRect(@Rect%(0),Hl ,Vl ,H2,V2) 

This routine automatically stores the coordinates into the rectangle array in 
the proper form for the toolbox commands. You can, if you want, also store 
the values for the four coordinates directly into the array, but you have to be 
careful, because the coordinates need to be arranged in a different order than 
what you're used to. See the entry under SetRect for more details. 

The coordinates Hl,Vl and H2,V2 are the same for the toolbox rectangle 
as they are in BASIC. In a toolbox rectangle, however, H2 and V2 must be 
greater than Hl and Vl; therefore, the rectangle must be drawn from the 
upper-left corner to the lower-right. Unlike BASIC, the toolbox commands 
will not adjust the second coordinate if it is above or to the left of the first. 

When you use a rectangle array in a toolbox statement, you must pass it 
indirectly. using the indirect addressing symbol @: 

@Rect%(0) 

The @ sign tells the TOOLBOX command to pass the array by its starting 
adldress in the computer's memory, rather than as the value of a single array 
element. In this way, the toolbox routine will be able to use all four elements 
of the rectangle array as if it were a Pascal rectangle variable. 

If all this sounds like a lot of extra trouble, it is. Most of the time, you are 
better off sticking with the BASIC rectangle commands described above. At 
times, though, the toolbox is worth exploring-especially if you want to use 
the arc or fill commands, which require rectangle variables as arguments. In 
those cases, rectangle arrays are well worth the trouble. 



D RECT D 

Rectangle arrays are described at various places in this book, including the 
entries for Fill and PaintArc. The most complete description of toolbox rec
tangles, however, is under SetRect, the routine commonly used to create them. 
Please refer to that entry for more information. 

- You can find other examples of rectangles in the entries for the other 
QuickDraw graphics commands: ERASE, FRAME, INVERT, OVAL, PAINT, 
PLOT, and ROUNDRECT. 



=:J I RectlnRgn I t-
~ .__--------F 

Syntax 

Toolbox graphics function-tests whether a 
rectangle intersects a region. 

ResulC = TOOL RectlnRgn (@Rect%(0), Rgn}) 

Returns the Boolean value TRUE if the rectangle and region have 
at least one point in common. 

Description 
Rectangles and regions are so frequently used together in toolbox programs 

that there is a special function that can test whether they have points in com
mon. This function, RectlnRgn, is like testing the result of the intersection 
operations SectRect or SectRgn, except that it compares shapes of different 
types. 

Like PtlnRect, EqualPt, and the other toolbox comparison tests, this func
tion returns a Boolean value. The result is TRUE if the two shapes have at 
least one point in common, FALSE if they do not intersect at all. Note that 
the rectangle need not be contained completely within the region for the func
tion to be TRUE. The shapes must merely touch. 

The two arguments are a rectangle array and a region handle. The rectangle 
must be stored as a four-element integer array, dimensioned with elements 0 
through 3. Its array name must be prefixed in the toolbox call by the indirect
addressing symbol, @. The region, on the other hand, is specified by a single 
handle variable, which is created in a call to NewRgn. 

RectlnRgn is frequently used in loops to test for when a region is on the 
screen. If you compare the region to a rectangle with the coordinates of the 



o RectlnRgn o 

entire output window, RectlnRgn will return TRUE if and only if some part 
of the region is visible on the screen. The standard output window is defmed 
by the rectangle (0,0,241,241). The full-screen output window is (0,0,498,290), 
after the resizing statement 

SET OUTPUT ToScreen 

See SetRect and OpenRgn for details on rectangles and regions. 



--ii RectRgn It---
~ ,____ _______ _____. F 

Graphics toolbox command-defines a region 
with the same boundary as a 
previously-defined rectangle. 

Syntax 
TOOLBOX RectRgn (Rgn}, @Rect%(0)) 

Creates the region Rgn} with a rectangular border defined by the 
rectangle array Rect%. 

Description 
The simplest possible boundary for a QuickDraw region shape is a rectan

gle. While regions are usually reserved for more complex shapes, there are 
times when you may want to use a region with a rectangular border. You 
might, for example, want to use a rectangle as a building block for a more 
complex shape. Or, you might want to combine a pair of rectangles in a spe
cial transformation operation, such as UnionRgn, which is not available for 
the rectangle shape itself. 

The Macintosh toolbox has a special RectRgn command for creating a 
region from a rectangle: 

TOOLBOX RectRgn (Rgn}, @Rect%(0)) 

To use this command, you must already have defined the rectangle as a rectan
gle array Rect%, using the SetRect toolbox routine. The rectangle array must 
be of integer type (type indicator: OJo) and must be dimensioned with elements 
0 to 3. See SetRect for more information on rectangle arrays. 

With RectRgn, you do not have to use OpenRgn and CloseRgn to define 
the region. This single routine creates the entire structure of the rectangular 
region and eliminates the need to plot the boundary. Note, however, that you 



D RectRgn D 

must still call NewRgn to create the region before you use RectRgn to store 
the rectangular structure. The rectangular border replaces any structure that 
was previously stored as the region's boundary. 

If the rectangle is empty, RectRgn will result in an empty region. A rectan
gle is considered empty if it contains no points or if its second pair of coordi
nates names a point that is above or to the left of the first. 

RectRgn is best suited for a rectangle that you have already created for 
other purposes. You might, for example, want to create a region out of a rec
tangle that you used in a Fill or Arc command. Or, you might be transforming 
a rectangle array and want to convert it into a region in order to perform a 
special region transformation. 

If you have not already created the rectangle array, you can often avoid that 
complex step by using another toolbox command, SetRectRgn. This com
mand defines the rectangle using four integer coordinates instead of a rect
angle array: 

TOOLBOX SetRectRgn (Rgn}, H1,V1,H2,V2) 

You can remember the difference between these two commands because 
RectRgn directly converts an existing rectangle array into a region, while 
SetRectRgn first sets up the four coordinates as a rectangle before creating the 
rectangular region. Apart from the difference in their parameters, the two 
commands are identical. 

See SetRect and OpenRgn for more details on using rectangles and regions 
with the toolbox. 



q __ I __ R_E_L_X_T_I_O_N _ __...I ~ 
Numeric function-compares two numbers 
and returns a value reflecting their relative 

size. 

Syntax 
ITJ Rel = RELATION(A,B) 

Returns the value 0, 1, or 2, depending on whether A is greater 
than, less than, or equal to B. Returns 3 if either A or B is not a 
valid number. 

[I] SELECT RELATION(A,B) 

CASE GreaterThan 

command(s) 

CASE LessThan 
command(s) 

CASE EqualTo 

command(s) 

CASE Unordered 

command(s) 

END SELECT 

! Does this if A > B 

! Does this if A < B 

! Does this if A = B 

! Either A or B is not a valid 
number 

Executes one of the specified command blocks according to the 
value returned by RELATION for (A,B). 



o RELATION o 

Description 
The RELATION function compares two numbers and returns a value that 

shows which (if either) is larger. It is frequently used as part of a SELECT I 
CASE structure to make a decision based on the relation determined. 

[I] Rel = RELATION(A,B) 

RELATION is a numeric function, which returns a value from 0 to 3. You 
must always pass it two numeric arguments-the two numbers you want it to 
compare. The arguments can be of any numeric variable type (integer or real), 
but they cannot be Booleans or strings. (See the sample programs under IF for 
a similar function that applies to string relations.) 

The value returned by the function depends on the relative size of the two 
arguments. If the first argument is greater than the second, the function 
returns the value 0. If the first is less than the second, the value returned is 1. 
If the two numbers are equal, the function returns 2. 

The function will return the value 3 in the case where one of the arguments 
is not a valid number. In the Macintosh floating-point arithmetic system, an 
illegal operation such as 0/0 or SQR(-1) does not give an error. Instead, it 
stores a NAN code, which means "Not a Number." The variable retains this 
NAN code instead of a value, to show that it is the result of an invalid opera
tion. If you try to compare this illegal number to any other, the RELATION 
function has no way to determine which argument is larger, so it returns the 3 
to indicate an invalid number. See the entry for NAN for more information 
on how the Macintosh treats invalid numbers. 

You can display the result of a RELATION function in an IF statement 
such as this: 

IF RELATION(A,B) = 3 THEN PRINT "Invalid number" 

However, the arbitrary symbols 0, 1, 2, and 3 are rarely used when testing the 
RELATION function. Instead, the returned value is usually compared to one 
of the following system constants, predefined by BASIC just for this purpose: 

GreaterThan 

Less Than 
Equal To 

Unordered 

0 
1 

2 
3 



o RELATION o 

These constants are really just alternative names for the numbers 0 to 3, but 
they are recognized by BASIC as having the values shown. You can therefore 
write the above IF statement in the more understandable form 

IF RELATION(A,B) = Unordered THEN PRINT "Invalid number" 

BASIC simply substitutes the value 3 for the keyword Unordered, then evalu
ates the expression. 

[1] SELECT RELATION(A,B) 

CASE GreaterThan 

command(s) 

CASE LessThan 

command(s) 

CASE EqualTo 

command(s) 

CASE Unordered 

command(s) 

END SELECT 

! Does this if A > B 

! Does this if A < B 

! Does this if A = B 

! Either A or B is not a valid 
number 

Although RELATION is a standard numeric function, its use is almost 
always within a SELECT /CASE block like the one shown above. 

At first glance, this might look like a special form of the SELECT /CASE 
block. In fact, however, it is a standard numeric comparison. The RELA
TION function inside the SELECT statement returns a value 0, 1, 2, or 3. It is 
this simple value that is then used to choose among the four CASE blocks, 
which are numbered 0 (GreaterThan), 1 (LessThan), 2 (EqualTu), and 3 
(Unordered). 

The structure looks more familiar if you replace the system constants with 
their numeric equivalents: 

Rel = RELATION(A,8) 
SELECT Rel 

CASED 
command(s) I Does this if A > B 

CASE 1 
command(s) I Does this if A < B 



o RELATION o 

CASE 2 
command(s) 

CASE 3 
command(s) 

END SELECT 

! Does this if A = B 

! Either A or B is not a valid number 

However, once you have become accustomed to using the system constants for 
naming the CASE blocks, you will find it makes your programs much clearer. 
You can forget entirely about the numeric values returned by the RELATION 
function, and think of SELECT RELATION as a block structure of its own. 

This SELECT RELATION structure is often used as an extension of the IF 
statement. Even with an ELSE block, an IF statement can take account of the 
kinds of outcome from a relational test: 

If A> B THEN 
! Does this if A > B 

ELSE 
! Does this if A " B 

END IF 

Often, however, you may want to distinguish separately between all three rela
tions: greater than, less than, or equal. There is no way to separate all three 
cases in a single IF statement. The SELECT RELATION structure is a clear 
way to accomplish this, without resorting to the nested IFs common in other 
dialects of BASIC. 

See IF and SELECT for more information on relational decisions. See 
Appendix C for a list of system constants. 

Sample Program 
The following program uses a SELECT RELATION block to play a 

number-guessing game: 

! RELATION-Sample Program 
RANOOMIZE 
DO 

Answer"lo = 1 + RND(100) 
INPUT "Guess a number from 1 to 100: "; N 
DO 

SELECT RELATION(N,Answer"lo) 
CASE GreaterThan 

PRINT "Too Big, "; 



o RELATION o 

CASE LessThan 
PRINT ''Too Small, "; 

CASE EqualTo 
PRINT "You Got It! " 
EXIT 

CASE Unordered 
PRINT "Something's Wrong." 

END SELECT 
INPUT "Guess again: "; N 

LOOP 
INPUT "Play again (Yes or No)?"; A$ 
IF UPSHIFT$(LEFT$(A$, 1)) 'I= "Y" THEN EXIT 
CLEARWINOOW 

LOOP 
PRINT ''Thanks for playing." 

I To outer loop 

At the beginning of the outer loop, the computer chooses a random number. 
Then, in each pass through the inner loop, it lets you guess what the number 
is. It then compares your number to the correct answer and gives the appro
priate response. If you guess the answer correctly, the EqualTo block will con
gratulate you and EXIT to the outer loop, so that you can play again. Figure 
1 shows a sample game. 

::0~ RELATION-Sample Program~ 
Guess e number from 1 to 100: 50 • 
Too Small, Guess again: 75 
Too Big, Guess again: 63 
Too Big, Guess again: 56 
Too Small, Guess again: 59 
Too Small, Guess again: 61 
Vou Got It! 
Play again (Ves or No)? no 
Thanks for playing. 

Figure 1: RELATION-A game played with the sample 
program. 



---j I REM I t-___, __ ---------'· F 

Syntax 

BASIC command-makes anything that 
follows it a non-executing comment. 

ITJ REM This is a remark. 

Causes the computer to ignore anything following the REM keyword. 

[l] !This is a remark. 

Causes the computer to ignore anything following the exclamation 
point. 

Description 
REM, which stands for remark, allows you to add comments to your pro

gram code. After the keyword REM, or the exclamation point that abbrevi
ates it, you may write any kind of comment or information that you think will 
help you remember what your program does and how. 

A remark may be denoted by the keyword REM followed by a space. Any
thing following the keyword REM on the same line will not be executed. You 
may add a REM statement at the end of a line of executable code, but you 
must precede it by a colon. 

A remark may also be denoted by an exclamation point. The exclamation 
point should not be enclosed in quotes and need not be followed by a space. A 
remark at the end of a line of executable code does not have to be preceded by 
a colon when the exclamation point is used. 



Syntax 

Numeric function-calculates the remainder 
of a division operation. 

Result = REMAINDER(A,B) 

Returns the remainder of the division operation A/B. 

Description 
Macintosh BASIC has a special REMAINDER function that calculates the 

number left over as the remainder of a division operation. The number is 
calculated so that there is some integer C for which the following identity 
holds true: 

A = B * C + REMAINDER(A,B) 

The Macintosh REMAINDER function may return a positive or negative 
result; the number C is chosen so that the remainder is as close to zero as pos
sible. Therefore, REMAINDER (10,3) returns the number + 1, while 
REMAINDER (11,3) returns -1, because that result is closer to 0 than the 
positive remainder, + 2. 

The REMAINDER function is similar to the MOD arithmetic operator. 
Unlike MOD, REMAINDER returns a real number, rather than an integer: 

REMAINDER(l0.3,3) 

has the value 1.3, rather than 1, which would be the result of 

10.3 MOD 3 

REMAINDER also permits numbers that are outside the range of normal 
integers ( - 32768 ~ N ~ + 32767). These larger numbers give an "Integer over
flow" error when used with the MOD operator. 



o REMAINDER o 

The REMAINDER function is used to test whether the smaller number 
evenly divides into the larger. If the division comes out even, the remainder is 
exactly zero. 

If the number survives all of the division tests up to the square root, it is 
prime. If, however, one of the divisions comes out evenly, the number is not 
prime, and is said to have the no-remainder divisor as a factor. The first num
ber that evenly divides a non-prime number is printed out as the number's 
smallest factor. 

Figures 2 and 3 show some sample runs of this program. From Figure 2, 
you can see that 13 and 17 are prime, but that 15 is evenly divisible by 3 (also 
5, but this program doesn't worry about factors other than the smallest). Fig
ure 3 shows that this program can also deal with large numbers, although the 
computation time increases greatly as the numbers become larger (about 2 
minutes for the last number: 2,147,483,647). 

Notes 
-Many other dialects of BASIC do not have a REMAINDER function of 

this type. If you are translating a Macintosh BASIC program that has a 

_REMAINDER-Prime numbers~ 
Whal number do you want to lest? • 
==>13 
***13 is prime*** 

What number do you want to test? 
==> 15 
*** 15 is not prime*** 
***Smallest factor is 3*** 

Whal number do you want to test? 
==>17 
*** 17 is prime*** 

What number do you want to test? 
==> 

Figure 2: REMAINDER-Output of prime numbers 
application program. 



o REMAINDER o 

What number do you want to test? 
==> 10001 
*** 10001 is not prime*** 
***Smallest factor is 73*** 

What number do you want to test? 
==> 1000003 
*** 1000003 is prime*** 

What number do you want to test? 
==>2147483647 
***2147483647 is prime*** 

What number do you want to test? 
==> 

Figure 3: REMAINDER-The prime numbers program, 
with large numbers. 

remainder function, you can rewrite it as the following expression: 

A - B * INT(A/B) 

-See MOD for further information and applications of the MOD operator 
and the REMAINDER function. 



o REMAINDER o 

Applications 
Prime numbers are a standard mathematical problem that involves the 

REMAINDER function. A prime number is any integer that is not evenly 
divisible by any integer other than 1 and itself. The first ten primes are 2, 3, 5, 
7, 11, 13, 17, 19, 23, and 29. 

The program in Figure 1 tests numbers and tells whether they are prime. To 
verify that a number is prime, the program would normally have to try divid
ing the given number by every number less than it. It turns out, however, that 
it is sufficient to test only the prime numbers less than the square root of the 
given number. Since 2 is the only even prime, this program simply tests 2 as a 
special case, then tests every odd number up to the square root. 

! REMAINDER-Application program 

! Tests to see If e number is prime. If not, prints out the smallest factor. 

DO 
PRINT ·whet number do you went to test?" 
INPUT ·==>·;Number 
IF REMAINDER(Number,2):0 THEN 

Factor= 2 
ELSE 

Factor = Number 
FOR 1:3 TO SQR(Number) STEP 2 

IF REMAINDER(Number,1):0 THEN 
Factor= I 
EXIT FOR 

ENDIF 
NEXT I 

ENDIF 
IF Factor= Number THEN 

PRINT·***·; Number;· Is prime***
ELSE 

! Number is eYen 
! smallest rector = 2 
! Number 1 s odd 
! Assume prime unl11 factored 
! Test en odd numbers 1 ./N 
! Does I divide Number eYenly? 
! If so, it Is a factor. 
! Number Is not prime, 
! so exit from loop. 
! If Factor stm equals Number 
! et end or loop, Number Is 
! prime. 

PRINT·***·; Number; - 1s not prime***" 
PRINT ·***Smallest factor is·; Factor;"***. 

ENDIF 
PRINT 

LOOP 

Figure 1: REMAINDER-Prime numbers application program. 



-----J I RENAME I t--==i L...-. _______ ___,, F 

Disk command-renames a file on a disk. 

Syntax 
RENAME OldName$,NewName$ 

The file named OldName$ is renamed NewName$. 

Description 
The RENAME command changes the name of a file on the current disk. 

The syntax of the command is: 

RENAME OldName$,NewName$ 

where OldName$ and NewName$ are strings representing legal file names. 
The names can be any string expressions, but they are usually literal text 
enclosed in quotation marks: 

RENAME "File1","File2" 

RENAME simply replaces the old string with the new string in the disk direc
tory, without changing the file itself in any way. It does not copy the file. 

If you want to rename a file contained on the disk in the external drive, you 
must change the current disk drive, using SETVOL. Or, you can specify the 
volume name before the file name, separated by a colon from the file name 
itself: 

RENAME "Disk1 :Old File", "Disk1 :NewFile" 

The RENAME command only changes the file's directory name; it will not 
copy or move the renamed file to a different disk. 



o RENAME o 

Users of Applesoft BASIC should note that Macintosh BASIC expects the 
two file names to be strings enclosed in quotation marks. If you omit the quo
tation marks, as in Applesoft BASIC, the names will be interpreted as 
numeric variables, and will not work. 

RENAME does not work on files that are locked. See LOCK for further 
details. 

RENAME-Translation Key 

Microsoft BASIC 

Applesoft BASIC 

NAME ••• AS 

RENAME 



=11 RESTORE It-==i L...-. --------...J, F 

BASIC command-resets the data pointer. 

Syntax 
DJ RESTORE 

Resets the data pointer to the first DATA statement in the program. 

[l] RESTORE Label: 

Resets the data pointer to the first DATA statement following the 
specified label. 

Description 
The RESTORE statement is used in conjunction with the READ and DATA 

statements. Ordinarily the program reads values from a DATA statement just 
once into the variables in READ statements. RESTORE allows the same data 
values to be read all over again. Each time a READ statement is executed, the 
data pointer is set to the data item following the last one read. A RESTORE 
statement without a label resets the data pointer to the first data item of the 
first DATA statement in the program. The next READ statement then reads 
values starting from that first item. 

The RESTORE statement can optionally ref er to a label, in which case the 
data pointer goes to the first item in the first DATA statement following that 
label. 

A program can have any number of RESTORE statements, and any num
ber of labels, giving DATA statements a great deal of flexibility. 

For additional information on the use of the RESTORE statement, see the 
READ and DATA entries. For more on the use of labels see the GOSUB 
entry. 



==JI RETURN ll::=: 
~.___ -------~F 

BASIC command-closes a subroutine called 
with GOSUB. 

Syntax 
Label: 

• 
• 
• 

RETURN 

RETURN marks the end of a subroutine called by a GOSUB and 
beginning with Label:. 

Description 
The RETURN statement marks the end of a subroutine that has been called 

with a GOSUB statement. When the computer encounters a RETURN state
ment, program flow returns to the statement immediately following the 
GOSUB statement that called the subroutine. 

The RETURN statement appears on a line by itself at the end of a subrou
tine. Statements between Label and RETURN are indented. 

It is possible to exit a subroutine before reaching RETURN by using the 
POP statement. You can also exit early with a statement of the form 

IF Condition- THEN RETURN 

Both are considered poor programming practice, and probably indicate poor 
planning or faulty logic. For further information see the entries under 
GOSUB and POP. 



o RETURN o 

RETURN-Translation key 

Microsoft BASIC 

Applesoft BASIC 

RETURN 

RETURN 



File output command-rewrites a record in a 
RECSIZE DATA file. 

Syntax 
REWRITE #Channel: //0 List 

Writes the spCcified I/O List to the current record of the RECSIZE 
DATA file open on the specified channel, whether or not that 
record already contains data. 

Description 
The REWRITE# command writes information to a relative DATA file 

opened with either the OUTIN or the APPEND access attribute. It consists of 
the keyword REWRITE#, the channel number of the open file, followed 
optionally by a file pointer command (which tells where in the file the data 
should go), an optional.file contingency statement, and one or more values are 
to be sent to the file. These values can be of any data type, and can be con
stants enclosed in quotes, variables, or expressions. 

The REWRI1E # command will write to the current record whether or not 
it already contains data. Consequently you cannot use the THERE' con
tingency, which is normally used to avoid the error message generated by 
attempting to overwrite an existing record with the WRITE # command. You 
can write an entire file with REWRITE #instead of WRITE #, if you have no 
need to preserve any preexisting records. 

Values in the 1/0 list of a REWRI1E #statement should be treated exactly 
like those in a WRITE # statement. REWRI1E statements are subject to all 
the same limitations as WRITE # statments. The principal difference is that 
you will get an error message if you try to write to an existing non-empty 
record with WRITE #, whereas with REWRITE #, you will get an error mes
sage if you try to preclude overwriting by use of the THERE' contingency. 



oREWRITE#o 

Application Program 
The program in Figure 1 generates a file of 12-tone rows of the kind used 

by some twentieth-century composers, stores them in a file, and plays them 
back from the file while simultaneously displaying them on a musical staff on 
the screen. The rows are generated randomly, and tested to see that no note is 
repeated. When a row has been played and displayed, it is then played and 
displayed in reversed, or retrograde, form. 

! REWRITE "'-Tone Row Generator 

! Create a 12-tone row ancl store 1n a RECSIZE me. 
! Reacl the file forwarcl ancl play the row, 
! Reacl the file backwards, ancl play the retrograde. 

! Set up variables ancl dimension arrays. 

DIM NotePos:C( 11) 
DIM Acc1c1-c 11) 
DIM TakenNote-c 11) 
Key:C = 5 

Left:C = 30 
Rlght:C = 440 
Bottom:c = 1 ao 
Space:c = 2 

Contains position on Staff of all 12 semitones. 
Contains 'TRUE' for each semitone that Is flattecl. 
Logical array usecl when creating ranclom tone row. 
Tone value from mlclclle c. Po1nts to F of bottom 

of treble staff for this program. 
Pixel value of left margin of staff. 
Pixel value of left margin of staff. 
P1xel value of bottom of staff. 
Vertical spacing In pixels between notes on the staff. 

Position$= '011223345566' 
FOR N = 0 to 11 

NotePoslf>(N) = VAL(MIDS( Position$, N+l, 1)) 
NEXT N 

Acclclentals$ = 'FTFTFTFFTFTF' 
FOR N = 0 TO 11 

Test$= MID$( Acciclentals$, N+ 1, 1) 
IF (Test$:T) THEN Acc1c1-(N):TRUE 

NEXT N 

! Set up the screen buttons 
SET OUTPUT ToScreen 
PAINT RECT 17.17 + 0*16; 32,32 + 0*16 

F'igure 1: REWRITE #-Tone Row Generator. 



o REWRITE# o 

SPRINT at 36,32;. Ne><l row. 
PAINT RECT 17,17 + 2*16; 32,32+ 2*16 
SPRINT at 36,64; · Pr1or row · 
PAINT RECT 17, 17+4*16; 32,32+4*16 
SPRINT at 36,96; ·New row· 
PA I NT RECT 1 7, 17 + 6* 16; 32,32 + 6* 16 
SPRINT at 36, 126; ' Quit ' 

I Open data file. 
OPEN "'2: "Rows· ,OUTIN, DATA, RECSIZE 6 

WHEN ERR 
PR I NT "ERROR ..,. ; ERR 
PRINT "Program terminated!" 
CLOSE "'2 

END WHEN 

DO ! Main loop 
BTNWAIT 
H = MOUSEH 
V =MOUSEY 
H% = I NT(H/ 16)- 1 
V% = INT (V/ 16)-1 

1 This sect.ion responds to· Next· button. 
IF (H%:0) AND (V%:0) THEN Row%:Row%+ I 

! This section responds to· Prior· button. 
IF (H%:0) AND (V%:2) THEN 

Row% = Row%- 1 
IF Row%<0 THEN Row%:0 

ENDIF 

! This section responds to ·New· button. 
IF (H%:0) AND V%:) THEN CALL Empty 

! This section responds to the 'Quit' button. 
IF(H%:0)AND(V%:6)THEN 

CLOSE "'2 
END 

ENDIF 

Figure 1: REWRITE #-Tone Row Generator (continued). 



o REWRITE #o 

! Clear the board. Print treble clef and staff. 
ERASE RECT Left%,Bottom%-40; Right%+40, Bottom%+20 
SET FONT 1 
SET FONTSIZE 12 
GPRINT AT Right%/2-60, Bottom%+20; ·Tone row number·, Row%+1 
SET FONT 11 ! Cairo 
SET FONTSIZE 18 
GPRINT AT Left%,Bottom%; ·;; 
ASK PENPOS CurH%,CurV% 
DO 

ASK PENPOS HPos%, VPos% 
IF ( HPos% < Right% ) THEN 

GPRINT '.'; 
ELSE 

GPRINT ',' 
EXIT DO 

ENDIF 
LOOP 
GPRINT at CurH%,CurV%; '&.'; 
ASK PENPOS CurH%,CurV% 
ASK PENPOS FirstH%,FirstV% 

! Print and play the random 12-tone row and its retrograde. 
CurH% = FirstH% 
CurV% = FirstV% 
SOUND 
FOR Rec% = Row%* 12 TO Row%* 12+ 11 

READ #2, RECORD Rec%, IF MISSING- THEN CALL Empty: Pitch%,Positi 
CALL Play 

NEXT Rec% 
! Play the retrograde of the random 12-tone row. 
GPRINT at CurH%,Bottorn%; · ... · .: 
ASK PENPOS CurH%,Cur\l% 
SOUND 
FOR Rec% = Row%* 12+ 11 TO Row%* 12 STEP -1 

READ #2, RECORD Rec%: Pitch%,Position%, Flat~ 
CALL Play 

NEXT Rec% 

LOOP 

I This subroutine creates a new row when there is none in existence. 

Figure 1: REWRITE #-Tone Row Generator (continued). 



oREWRITE#o 

SUB Empty 
I Reset some variables. 
RANDOMIZE 
FOR N = 0 TO 11 

TakenNote-(N) =FALSE 
Next N 
I This loop creates and plays a 12 tone row. 
FOR Rec 1 I = 12*Rowl TO 12*Row:C+ 11 

I This DO Loop makes sure that unique randomly selected notes are 
I used in the tone row. 
DO 

Seedl = INT( RND( 12) ) 
IF ( TakenNote-cseedl):FALSE) THEN 

TakenNote-cseedl) =TRUE 
Pi tch:C = Key:C + Seedl 
Positionl = NotePosl(Seed:C) 
Flat- = Accid-(Seed:C) 
EXIT DO 

ENDIF 
LOOP 
REWRITE "'2, RECORD Rec 1 I: Pitchl, Positionl, Flat

NEXT Rec11 
END SUB I Empty 

I This subroutine plays and prints one notes. 
SUB Play 

I= 0 
DO 

IF SOUNDOVER-THEN EXIT DO 
IF I> 200 THEN EXIT DO 
I = I+ 1 

LOOP 
SOUND TONES( Pitch:C ), 10, 20 
Curv:g = Botlom:C-Spece%*Position:g 
IF Flat- THEN 

SET FONT 1 
SET FONTSIZE 10 
SPRINT AT CurH:C,CurVI; 'b' ; 
ASK PENPOS CurHl,CurV:C 
SET FONT 11 
SET FONTSIZE 18 

ENDIF 
SPRINT AT CurH:C,CurV:g; 'A' ; 
ASK PENPOS CurHl,CurV:C 

END SUB !Pl ey 

Figure 1: REWRITE #-Tone Row Generator (continued). 



oAEWAITE#o 

The first block of the program initializ.es some variables needed to generate 
the notes correctly, then it draws the staff on the screen. Next, four boxes are 
drawn on the screen, which will be clicked with the mouse pointer to choose 
the desired row. 

In the file "Rows," each row of 12 notes is stored as a set of 12 records, 
one for each note in a row. Each record holds three parameters for its note. If 
the program has not been run, the file will be empty. After the file is opened 
as a RECSIZE DATA file, the main loop begins. 

The boxes give you four choices, a new row, a previous row, the next row, 
or ending the program. Choosing the next row or the previous row tells the 
program which set of records in the file to read, by adding or subtracting 12 
to the record number, respectively. 

If the file is empty, the MISSING- contingency in the READ statement calls 
the subroutine Empty, which creates a new row. This subroutine is also called 
any time a new row is asked for. It uses the REWRITE # command to write 
the rows to the file, and will create a new row if an empty record is encoun
tered, or rewrite the previously played row if a new row is asked for. 

If the mouse button is clicked outside any of the boxes on the screen, the num
ber in the RECORD command is unchanged, so the same row is played again. 

The actual producing of the tones is accomplished by the Play subroutine, 
which is called from within a FOR loop each time a record is read. After a 
row is played in its normal form, the same set of 12 records is read in reverse, 
to generate the retrograde row, which is also printed on the screen, using the 
note symbols from the Cairo font. A sample screen appears in Figure 2. 

Notes 
-For further information, see the WRITE #, RECSIZE, DATA, and TYP 

entries. 

-If a new record written with REWRITE # is shorter than the record it 
replaces, the record will be filled with ASCII zeros (nulls) from where the new 
value ends to the end of the record. 



• Nei<:t row 

• Prior row 

• Ne'N ro·w 

•Quit 

o REWRITE #o 

REWRITE # Tone Row Generator 

1141 JJiriibJbJu.iJr1ur1.lJ11 Jri.lpuJ.iubJbJriiiuJ 11 

Tone row number 

Figure 2:-REWRITE #-Tone Row Generator Screen. 



-=-JI RIGHTS I~ ____, .___ -------------"· F 

String function-returns the rightmost part of 
a string. 

Syntax 
Result$ = RIGHT$(5tring$, StartPoint) 

Returns the rightmost part of String$ as a string starting at Start
Point (counting from the right). 

Description 
The RIGHTS function returns a portion of a string, when given a string 

expression and the starting point of the string to be returned. The string on 
which the RIGHTS function operates may be a literal string enclosed in 
quotes, the value held by a string variable, or the value of a string expression. 

The starting point is counted from the right. For a meaningful result, the 
value of StartPoint must be a number from 0 to 32767. StartPoint may be a 
constant, a variable, or an expression. 

For example: 

String$ = "Macintosh BASIC" 
PRINT RICiHT$(String$,5) 

will result in 

BASIC 

appearing in the output window. 
RIGHTS may be used in expressions with other string functions. For 

example: 

New$= RICiHT$(01d$,LEN(Old$-4)) 

will assign to New$ all but the first four characters of Old$. 



o RIGHT$ o 

Notes 
-For related functions, see the entries under MID$ and LEFT$ which also 

return portions of strings. 

-You will find programs in the entries under MID$, SELECT, and DATE$ 
that illustrate applications of RIGHT$. 

-If the value of StartPoint is a non-integer, it will be rounded to the closest 
integer. If its value is greater than the length of the string, the entire string will 
be returned. If its value is negative or greater than 32767, an empty string 
is returned. 

RIGHT$-Translation Key 

Microsoft BASIC 

Applesoft BASIC 

RIGHT$ 

RIGHT$ 



Numeric function-rounds to nearest integer. 

Syntax 
Result = RINT(X) 

Rounds the number X to an integer, following the preset rounding 
mode. 

Description 
Macintosh BASIC has a special RINT function that rounds numbers to the 

nearest integer. This nonstandard function supplements the INT function of 
standard BASIC, which is also available in Macintosh BASIC. 

By default, the RINT function uses a complex arithmetic rounding test to 
round to the nearest integer: 

• If the fractional part is between .0 and .4999999999, the function rounds 
down. 

• If the fractional part is between .5000000001 and .9999999999, the func
tion rounds up. 

• If the fractional part is exactly .5, the function rounds to whichever inte
ger above or below is an even number. RND(l.5) and RND(2.5) will both 
give the result 2. 

The last part of this procedure is designed to ensure that when you add up a 
list of rounded numbers ending in exact .5 decimals, there will be no consis
tent bias in the rounding operation towards either the lower or higher number. 

It is possible to change to a different rounding method, using the numeric 
set-option ROUND. For example, the statement 

SET ROUND TowardZero 



o RINT o 

will cause all numbers (both positive and negative) to be rounded in the direc
tion of zero. See ROUND for further details. 

In standard BASIC, this rounding function is usually simulated by the INT 
function, operating on a number with 0.5 added to it so that all of the num
bers that would have been rounded upward will now be greater than the next 
integer: 

RoundedResult = INTO<+ 0.5) 

RINT is not necessary for converting from floating-point variables to inte
ger variables. The assignment statement 

Int%= Real 

automatically does a RINT-style rounding operation on the real number to 
arrive at the integer. 

See the entry for INT for further details and a sample program that com
pares the INT, RINT, and TRUNC functions. 



Numeric function-returns a random number. 

Syntax 
Result = RND(Limit) 

Returns a pseudorandom real number between 0 and Limit. 

Description 
Each call to the RND function returns one random number. Actually, the 

numbers that RND generates are not truly random; they are the result of a 
complex calculation the computer performs. However, they are random 
enough for most programs. 

The RND function always takes an argument, which limits the range in 
which the resulting random number should fall. If the limit is positive, RND 
will return a random number in the following range: 

0 < RND(Limit) < Limit 

If the limit is negative, the number will be in the range: 

Limit < RND(Limit) < 0 

So, for example, if you write the expression: 

N = RND(SOO) 

you can expect to receive a random number between 0 and 500. A zero argu
ment will always produce the value 0. 

Often, you want only random integers, rather than all real numbers. To get 
random integers, use the greatest integer function INT with RND: 

N = INT(RND(SOO)) 

This will return integer values between 0 and 499, inclusive. To get integers 
starting from 1, add 1 to N. 



oRNDo 

The RND function returns the same series of values each time you run the 
program. The function determines each random number using the previous 
number as a seed. Since Macintosh BASIC always uses the same number as 
the initial seed, the random numbers fall in a repeatable sequence. 

You can have the RND function generate different numbers on different 
runs by giving the RANDOMIZE command before using the function: 

RANDOMIZE 
DifferNum = RND(10) 

In this case, Diff erNum will be generated differently each time you run the 
program. 

You might not always want to use RANDOMIZE. In some programming 
situations, you may have reasons for wanting the computer to produce the 
same series of random numbers time after time. For example, you might wish 
to reexamine the play of a game that depends on random numbers, or to repli
cate a certain scenario with a simulation model. Both of these examples might 
involve running a program several times and being certain that the computer 
will generate the same sequence of random numbers each time. 

Applications 
Random numbers are extremely useful in all kinds of programs. In graphics 

programs, for example, you can use random numbers to set the coordinates of 
points to be plotted, as in the sample programs for PLOT. Or, you can use a 
random number to give an unpredictable element to a repeated operation, like 
shooting the bullets in the Shooting Gallery program under OVAL. 

Games, of course, often have a random element. The program in Figure 1 uses 
the RND function to shuffle a deck of cards. The output from this program is 
simply a list of the 52 cards in their shuffled order, as shown in Figure 2. 

Each card is represented by an integer from 1 to 52 in an array called Deck. 
It is these integers that the program "shuffles," by rearranging them in a ran
dom order in the array: a FOR loop chooses, at random, a new position in 
Deck for each card. In this program, the deck is shuffled five times before the 
name of each card is printed out. 

Notes 
There are several other random-number functions available in Macintosh 

BASIC. One of these is RANDOMX, which allows you to provide your own 



oRNDo 

RND-Application Program --- card shuffler 

DIM Suit$(4), Rank$( 13) 
FOR I= I TO 13 ! Create strings for card ranks 

READ Rank$(1) 
DAT A Ace,Two,Three,Four,Fi ve,Six,Seven, Ei ght,Nine,Ten,Jack,Queen,Ki ng 

NEXT I 
FOR I= 1 TO 4 ! creates strings for suits. 

READ Su1t$(1) 
DATA Clubs,Diamonds,Hearts,Spades 

NEXT I 

DIM Deck(52) 
FOR 1:1TO52 

Deck(()= I 
NEXT I 
RANDOMIZE 
FOR Times: 1 TO 6 

FOR 1:1TO52 
R = INT(RND(52))+ I 
H = Deck(R) 
Deck(R) = Deck(() 
Deck(I) = H 

NEXT I 
NEXT Times 

SET OUTPUT ToScreen 

! Create the deck 

! Get unpredictable seed 
! Shuffle six times 

! Random pointer to array 
! Swap elements I and R 

SET GTEXTFAC:E 1 +4 ! Boldface and underline 
GPRINT AT 160,30; "Shuffled Deck of 52 Cards" 
SET 6TEXTF AC:E 0 ! Standard text 
SET FONTSIZE 9 ! 9-polnt, so that it Will flt 
HI= 10 
Vl = 60 
FOR Column = 0 TO 3 

FOR Row= 0 TO 12 
Card = 13*Column + Row + 1 
GPRINT AT H 1+125*Coll1mn,Vl + 12*Row; FORMATS("••·;card); 
c = Deck(Card) 
S = INT((C-1)/13)+ 1 
R = C- 13*(S-1) 
GPRINT .. ";Rank$(R);" of ";Suit.$(5) 

NEXT Row 
NEXT Column 

f'igure 1: RND-Application Program to shuffle cards. 



oRNDo 

RND-Rpplication Program 

Shuffled Deck of 52 Cards 

1 King of Clubs 14 Jack of Spades 27 Jack of Diamonds 40 Eit;iht of Diamonds 
2 King of Spades 15 Nine of Diamonds 28 Nine of Hearts 41 Six of Diamonds 
3 Two of Clubs 16 Six of Hearts 29 Jack of Cl1Jbs 42 Jack of Hearts 
4 Senn of Club 17 Four of Clubs 30 Two of Hearts 43 Six of Spades 
5 Queen of Clubs 18 Queen of Spades 31 Ten of Clubs 44 Eight of Hearts 
6 Seven of Spades 19 Ace of Clubs 32 Ten of Diamonds 45 Four of Spades 
7 Three of Hearts 20 Five of Hearts 33 Two of Spades 46 Three of Clubs 
8 Nine of Spades 21 Ace of Diamonds 34 Five of Clubs 47 Eight of Spades 
9 Nine of Clubs 22 Four of Diamonds 35 Ace of Spades 48 Three of Diamonds 

10 Ten of Hearts 23 Severi of Diamonds 36 Eight of Clubs 49 Six of Clubs 
11 Five of Diamonds 24 Queen of Hearts 37 King of Hearts 50 Five of Spades 
12 Seven of Hearts 25 Ten of Spades 38 Four of Hearts 51 Ace of Hearts 
13 Two of Diamonds 26 King of Diamonds 39 Queen of Diamonds 52 Three of Spades 

Figure 2: RND-Output of Application Program. 

seed from which to calculate the starting point of the random-number series. 
RANDOMX results in an extended-precision real number in the range 0 to 
2,147,483,646. Because RANDOMX is considerably more difficult to use, you 
should use it only for the specialized cases where you need to choose your own 
random seed. 

In other Macintosh languages, there is a Random toolbox function that 
supplements the graphics system by returning a random integer in the range 
- 32768 to + 32767. This is the exact range of many toolbox graphics parame
ters, such as the elements of a pattern array, so you can assign random values 
with a function such as 

Pat%(0) =TOOL Random 

While this statement is recognized by the TOOL command in Macintosh 
BASIC, it worked improperly in the first release of the language, causing sys
tem crashes. Its syntax is included in Appendix D. 

--..For other commands that involve the random-number generator, see the 
entries for RANDOMX and RANDOMIZE. 

• 



----1] ROUND ]t--===i ..___ -------------· F 
Numeric set-option-sets the rounding 

direction for floating-point calculations. 

Syntax 
IIJ SET ROUND N 

~ASK ROUND N 

Sets the rounding direction for the RINT function and other 
floating-point rounding operations. Associated with the following 
system constants: 

To Nearest 0 
Upward 
Downward 2 

TowardZero 3 

Description 
With the numeric set-option ROUND, you can change the rounding direc

tion that is used for real-to-integer conversions and for rounding operations 
such as the RINT function. By default, Macintosh BASIC uses a rounding 
formula that rounds to the nearest integer based on whether the fractional 
part is greater than or less than .5. 

SET ROUND is associated with a series of four system constants. System 
constants are mnemonic words which represent the numbers used in set
options such as these. ToNearest, for example, represents the value 0 in the 
SET ROUND statement, so that the following two forms are identical: 

SET ROUND ToNearest 

and 

SET ROUNDO 



o ROUND o 

Appendix C provides a list and description of the system constants in Macin
tosh BASIC. 

The four possible rounding directions are: 

• ToNearest (0)-The default setting, rounds downward for fractional 
parts less than .5, upward for fractions greater than .5. Rounds to the 
nearest even integer if the fraction is exactly .5. 

• Upward (1)-Rounds all non-integer numbers to the next higher integer, 
in the direction of + oo. 

• Downward (2)-Rounds all non-integer numbers to the next lower inte
ger, in the direction of - oo. The effect of such a rounding operation is 
like that of the INT function. 

• TowardZero (3)-Rounds all numbers to a lower absolute value, that is, 
in the direction of 0. The effect of such a rounding operation is a trunca
tion, like the TRUNC function. 

Figure 1 shows the effect of the rounding operation under each of these set
options. 

See INT, RINT, and TRUNC for details on related functions. 

SET ROUND 

Before 
-1.8 -1.5 -1.2 1.2 1.5 1.8 Round1ng 

ToNearest -2 -2 -1 1 2 2 

Upward -1 -1 -1 2 2 2 

Downward -2 -2 -2 1 1 1 

Towarnzero -1 -1 -1 1 1 1 

Figure 1: ROUND-The four possible rounding directions. 



~.___I _R_O_U_N_D_R_E_C_T _ __,I p 

Syntax 

Graphics shape-names a rectangle with 
rounded corners. 

DJ ERASE ROUNDRECT H1,V1; H2,V2 WITH H3,V3 

~FRAME ROUNDRECT Hl,Vl; H2,V2 WITH H3,V3 

CTJ INVERT ROUNDRECT Hl,Vl; H2,V2 WITH H3,V3 

@J PAINT ROUNDRECT Hl,Vl; H2,V2 WITH H3,V3 

Performs a graphics operation on a round-rectangle shape. 

Description 
Round rectangles are one of the three QuickDraw shapes that can be drawn 

directly in BASIC, without using toolbox commands. As with the other two 
shapes-rectangles and ovals-the ROUNDRECT keyword must always be 
used together with a command word for a graphics action, such as ERASE, 
FRAME, INVERT, or FRAME. ROUNDRECT therefore is always the sec
ond word of a two-word command. 

A round rectangle is a cross between an oval and a rectangle. As shown in 
Figure 1, its basic form is like a rectangle. At each of the four comers, how
ever, a sector of an oval is drawn instead of a sharp point. 

Like rectangles and ovals, the ROUNDRECT shape is defined by four 
coordinates, which name the points at the upper-left and lower-right corners 
of an imaginary rectangle that bounds the shape: 

operation ROUNDRECT Hl,Vl; H2,V2 WITH ••. 

In the case of round rectangles, the bounding rectangle is the shape that would 
be drawn if each rounded corner were extended out to a point. 



o ROUNDRECT o 

H 1 (Left) H2 (R1ght) 

V 1 (Top) _H_1....:;.., V--t1 -:;;111~rr.:~":'":":::"':":'=~;H~3~ V3 ••••••••••••••••• ••••••••••••••••••••• ••••••••••••••••••••• •••••••••••••••••••••• •••••••••••••••••••••• •••••••••••••••••••••• •••••••••••••••••••••• ••••••••••••••••••••• •••••••••••••••••••••• •••••••••••••••••••••• •••••••••••••••••••••• ••••••••••••••••••••• ••••••••••••••••••••• 

Figure 1: The ROUNDRECT shape is defined by the points at the corners of the bounding 
rectangle. 

You can also think of the round rectangle as defined by the coordinates of 
its four edges. The two horizontal coordinates position the left and right edges 
of the shape, and the two vertical coordinates position the top and bottom. 
The coordinates would then be written: 

operation ROUNDRECT Left,Top; Right,Bottom WITH ••• 

Figure 1 also shows the relation between these two ways of naming the coordi
nates. 

The rounded corner is drawn by replacing each square corner with a quar
ter of an oval. Indeed, you can think of a ROUNDRECT shape as having an 
imaginary oval fitted into each corner, with one quarter of the oval forming 
the actual boundary of the shape. These imaginary ovals are shaded with ver
tical lines in Figure 2. 

You control the roundedness of the corners by adjusting the dimensions of 
the corner ovals. At the end of the ROUNDRECT command, you must 
include the keyword WITH and another pair of numbers, which determine 
the width and height of the inscribed ovals: 

operation ROUNDRECT H1,V1; H2,V2 WITH H3,V3 



o ROUNORECT o 

············----------------------------. 

................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

:........u.u.~ l l l l ~ l~ 1l1 l l ~ l ll ll l l j: jj l l ~ ~ ~ l ~ l l ~ ~ll 
: : ~ ~ ~ ~~ ~ ~ ~ ~ ~~~ ~ ~ ~~ ~ ~~ ~ ~~ ~~ ~ ~~~~ ~ ~ ~ ~ :: 

................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 2: The corner of a ROUNDRECT shape is formed by the edge of an inscribed oval. 

The same size oval is used to draw all four corners. Note that the keyword 
WITH and this third pair of numbers are not optional: they must be a part of 
any ROUNDRECT definition. 

The actual width and height of the rounded corners is half of H3 and V3. 
These two numbers give the full dimensions of the oval that is used to draw 
the corners. As shown in Figure 3, only one corner of this imaginary oval is 
actually used to form the outside of the rectangle, but the numbers still refer 
to the oval as a whole. For example, the command 

FRAME ROUNDRECT H1,V1; H2,V2 WITH 14,10 

will produce a round rectangle with each corner rounded through 7 pixels in the 
horizontal direction and 5 pixels in the vertical, measured from the mathemati
cal corner point to the point where the curver departs from the straight edge. 

If H3 and V3 are large, the ROUNDRECT shape will approach a normal 
oval. The command 

PAINT ROUNDRECT 0,0; 200,200 WITH 150, 150 

will produce a rounded square 200 pixels on a side. Each of the corners is 
rounded with an oval 150 pixels wide, or 75 pixels in from the corner of the 
bounding rectangle. With two corners at the end of each edge, only 50 pixels 
are left in the straight part of the shape. 



o ROUNDRECT o 

H3/2 

V3/2 

V3 

H3 

Figure 3: ROUNDRECT-H3 and V3 determine the width and height of the ovals used to draw 
the corners. 

Sample Programs 
The following program shows the effect of different values of the rounded

ness parameters H3 and V3: 

I ROUNDRECT-Sample Program #1 
FOR Corner = 0 TO 200 STEP 20 

FRAME ROUNDRECT 20,20; 220,220 WITH Corner,Corner 
NEXT Corner 

The result, shown in Figure 4, is a family of rounded rectangles all with the 
same corner points. By changing the roundedness, the program can draw 
shapes ranging from the outermost, a square (Corner= 0), to the innermost, a 
true circle (Corner= 200). 

The second sample program varies the width of the boxes while holding the 
roundedness fixed at 25: 

I ROUNDRECT-Sample Program #2 
Hl = 110 
Vl = 20 



o ROUNDRECT o 

FOR Width = 10 TO 50 STEP 10 
GPRINT AT Hl - 30, Vl + 4+ Width/2; Width 
H2 = Hl +Width 
V2 = Vl +Width 
FRAME ROUNDRECT Hl,Yl; H2,V2 WITH 25,25 
Vl = Vl +Width+ 10 I Starting point for next shape 

NEXT Width 

This program draws rounded squares with sides ranging from 10 to 50, as 
shown in Figure 5. 

Note how the proportions of the shapes change, even though the rounded
ness values stay the same. With the squares for 10 and 20 pixels, the rounded 
corners are larger than the entire edge, so the ROUNDRECT is painted as a 
circle. As the squares grow larger, the straight portion of the side becomes 
longer, and so the same rounding now appears relatively small. 

If you want the rounding to remain the same in proportion to the sides, 
express H3 and V3 as a fractional portion of H2- Hl and V2- Vl. For 
example, the statement 

PAINT ROUNDRECT Hl,Vl; H2,V2 WITH (H2-H1)/2,(V2-Y1)/2 

will always produce a round rectangle with corners running one-fourth of the 
way across the edge, leaving half of each edge straight. This technique is used 
in the Application program below. 

-~ ROUNDRECT-Sample Program #1 

Figure 4: ROUNDRECT-Output of Sample Pro
gram #1. 

• 



o ROUNDRECT o 

- ROUNDRECT-Sample Program #2 a 

10 0 

20 0 
30 0 
40 0 
soO 

Figure 5: ROUNDRECT-Output of Sample Pro
gram #2. 

Applications 

• 

Round rectangles are used less frequently than rectangles or ovals, because 
they cannot be combined as easily into larger figures. As an artistic tool, how
ever, round rectangles are extremely useful. With just a few statements, you 
can often produce very attractive results. 

The program in Figure 6 is an example of this artistic use of the ROUND
RECT shape. Like MacPaint, this simple program lets you use the mouse to 
draw round rectangles. You press the mouse down at one corner of the rectan
gle you want to draw, drag with the mouse button down until you have the 
shape just the size you want, then release the button to put the shape in place. 
The same proportion of roundness is preserved for all siz.es, as in the last pro
gram line above. By drawing a series of round rectangles in this way, you can 
create pictures like the one in Figure 7. 

This program uses the standard animation technique of inverting a shape 
twice with the same coordinates, so that the shape can move across the screen 
without leaving a trail of the pixels it has changed. See PENMODE for more 
information on animation. 



o ROUNDRECT o 

! ROUNDRECT-Appllcet1on program 
! Mouse art with round rectangles 

! Resize output window to f111 the whole screen 
SET OUTPUT 0.01, 4.5; 6.86, 0.51 

DO 
BTNWAIT 
Hl:MOUSEH 
Vl:MOUSEV 
DO 

H2 = MOUSEH 
V2 =MOUSEY 
H3 = (H2-H 1 )/2 
V3 = (V2-V 1 )/2 

! Weit unt11 mouse-down 
! First corner of round rectangle 

! Do while mouse is down 
! Second corner of round rectangle 

IF MOUSED- THEN ! Invert twice for enimet1on 
INVERT ROUNDRECT Hl,\/1; H2,V2 WITH H3,V3 
INVERT ROUNDRECT H 1, V I ; H2, V2 WITH H3, V3 

ELSE ! Invert only once, then exit to outer loop 
INVERT ROUNDRECT Hl,\/1; H2,V2 WITH H3,V3 
EXIT 

ENDIF 
LOOP 

LOOP 

Figure 6: ROUNDRECT-Application program. 

Notes 
-In addition to the four shape operators in BASIC, you can also use a 

fifth operator, Fill, through calls to the Macintosh toolbox. Fill is very similar 
to PAINT, except that it allows you to use a pattern different from the one set 
for the graphics pen. The Fill routine for round rectangles is FillRoundRect. It 
is described fully in the entry titled "Fill." 

-For more information on round rectangles and the QuickDraw graphics 
system, see the entries for the shape graphics operators ERASE, FRAME, 
INVERT, and PAINT. See also the entries for RECT and OVAL, which 
describe the two shapes from which round rectangles are formed. 



o ROUNDRECT o 

• 

Figure 7: ROUNDRECT-A picture created with the application program. 



File pointer command-moves the file pointer 
to the beginning of the record most recently 

accessed. 

Syntax 
filecommand #Channel, SAME: //0 List 

Moves the file pointer back to the beginning of the most recently 
accessed record prior to executing the specified file command. 

Description 
SAME moves the file pointer to the beginning of the record in which it is 

currently located. SAME may be used in the commands READ#, INPUT#, 
WRITE #, REWRITE #, and PRINT #, to move the pointer. It is most com
monly used with REWRITE# and PRINT#, to revise an entry in the file. 
When one of these commands includes the SAME statement, it tells the pro
gram to perform the file command on the most recently accessed record, and 
moves the record pointer to the beginning of that record. 

SAME can be used with any type of relative (RECSIZE) file, and with 
SEQUENTIAL TEXT files. It cannot be used with STREAM files. 

For further details on the use of file pointer commands, see the entry for 
OPEN#. For a sample program using SAME, see the SEQUENTIAL entry. 



---j I SCALB It= 
=-1....._-----------Jc F 

Numeric function-multiplies a given number 
by a given integer power of two. 

Syntax 
Result = SCALB(Exponent%, X) 

Multiplies the number X by 2 with the integer exponent 
ExponentOJo. 

Description 
Macintosh BASIC has a special binary scaling function that lets you multi

ply a number by a power of two. Since numbers are stored as binary in the 
computer, the SCALB function merely adds the given exponent to the stored 
exponent of the given floating-point number. SCALB might be used for mov
ing bits to the left or right in a stored integer variable. 

The SCALB function takes two arguments: the number to be scaled and the 
binary exponent. In the argument list, the exponent comes first: 

Result ~ SCALB(Exponent%, X) 

The exponent is marked with the integer type identifier (OJo) to show that it 
expects an integral value. An integer variable is not actually required, but if you 
use a floating-point variable or constant, the value will be rounded before being 
passed. Use the EXP2 function if you need to use non-integer exponents. 

If the exponent is zero, SCALB returns the value X itself as its result. If the 
exponent is positive, the function will return a value greater than X; if the 
exponent is negative, the result will be closer to 0 than X is. The result of 
SCALB always has the same sign as X. 



o SCALB o 

The result of this function is the same as that of the following expression: 

Result = X * 2 "Exponent% 

For integer exponents, however, the SCALB function is faster and more accu
rate than this formula. 



Syntax 

Graphics set-option-changes the scale and 
origin of the coordinate axes. 

ITJ SET SCALE Left,Bottom; Right,Top 

l1J ASK SCALE Left,Bottom; Right,Top 

Sets or checks the coordinate system of the LOCATION box in the 
output window. 

Description 
The SET SCALE command lets you define your own coordinate system for 

the output window, so that you don't have to calculate your coordinates in the 
standard one-pixel units, and you don't have to count down and across from 
the standard point of origin at the upper-left corner of the output window. 

SET SCALE, like the related set-options OUTPUT and LOCATION, takes 
a series of four numbers: 

SET SCALE Left,Bottom; Right,Top 

These numbers are the limits of the coordinate system that you want to use. 
The coordinate pair Left,Bottom will become the coordinate of the lower-left 
corner of the box; Right, Tup will be the coordinate of the upper-right. In each 
axis of the box between them, the coordinates will be measured in equal
interval units from one limit to the other. 

SCALE is tied to the LOCATION set-option. The boundary coordinates 
are the coordinates of the corners of the LOCATION box, not the coordinates 
of the corners of the output window. The output window and location box 
will be the same only if you give the command 

SET LOCATION ToWindow 



oSCALE o 

and then only until the window is resized. 
The default values for the SCALE set-option are 0,792;612,0. The LOCA

TION box has the initial size 0,11;8.5,0 (inches), so that scale works out to 72 
units per inch, or exactly one unit per pixel. The default scale is therefore the 
pixel coordinate system that is used by all of the programs in this book. If you 
were to set the LOCATION box to the size of the window, you would have to 
change the SCALE to maintain the unit of one pixel: 

SET LOCATION ToWindow 
SET SCALE 0,240;240,0 

You can also use the command with no parameters: 

SET SCALE 

This command restores the default one-pixel coordinates, calculated with 
respect to whichever LOCATION box is in effect. 

The scale can be chosen so that the axes no longer start in the upper-left 
corner and no longer count left to right and top to bottom from their point of 
origin. The statements 

SET LOCATION ToWindow 
SET SCALE 0,0;1, 1 

would define a Cartesian coordinate system for which the origin is at the 
lower-left corner of the output window and the point 1,1 is at the upper-right. 
All of the points in the rest of the window would then have fractional coordi
nates between 0 and 1. 

The SCALE set-option affects all BASIC coordinates, including those in 
shape graphics, PLOT, and GPRINT commands. It does not, however change 
the size of the pen or the f ontsize of GPRINT text. SCALE does not affect 
toolbox commands. 

Applications 
There are many cases where a problem can be simplified by abandoning the 

default coordinate system and using another system. The line graph program 
under PLOT, for example, might have been written with more natural coordi
nates, rather than running a complex calculation to find each point's pixel 
coordinate. 

The program in Figure 1 is a version of the program used to draw the 
graphs in this book for such numeric functions as EXP and SIN. This pro
gram asks, in a series of INPUT statements, what scales to use for the vertical 



o SCALE o 

and horizontal axes, then creates a Cartesian coordinate system for the graph. 
From that point on, the rest of the program can be written as if the coordi
nates have the exact mathematical coordinates shown on the graph. You can 
see the output of this program near the beginning of the entry under EXP. 

SCALE-Translation Key 

Microsoft BASIC 

Applesoft BASIC 

WINDOW 

! SCALE-Application program to draw graphs of functions 

DEF F(X) = EXP()() 

SET OUTPUT ToScreen 
INPUT "Xleft?",Xleft 
INPUT "Xright?", Xright 
INPUT "Xtick? ", Xtick 
PRINT 
INPUT "Vbottom?", Vbottom 
INPUT "Vtop?",Vtop 
INPUT "Vtick? ", Vtick 
PRINT 
Xabs = ADS(Xleft-Xright) 
Xmarg = Xabs*.1 
Vabs = ADS(Vtop-Vbottom) 
Vmarg = Vabs*. I 
CLEARWINDOW 
SET LOCATION ToWindow 

! Difference between max and min 
! Fractional width for margin 

SET SCALE Xl eft-Xmarg, Vbot tom-Vmarg; Xright + 1.2*Xmarg, Vtop+ 1.2*Vmarg 
PLOT Xleft-Xmarg/2,0; Xright+Xmarg/2,0 ! X-axis 
PLOT O,Vbottom-Vmarg/2; O,Vtop+Vmarg/2 ! V-axis 
XtickHigh = Xabs*0.010 ! Width of ticks on y-axis 
VtickHigh = Vabs*0.015 ! Height of ticks on x-axis 
FOR X=Xleft TD Xright STEP Xtick ! Tick marks on x-axis 

PLOT X,-VtickHigh; X,VtickHigh 
IF X;eO THEN ! Labels for x-axis 

GPRINT AT X-Xabs*O. 1, -0.05*Vabs-Vt ickHigh; FORMAT$("""1"""""""""; X) 

Figure 1: SCALE-Application Program. 



ENDIF 
NEXT X 

oSCALE o 

FOR V=Vbottom TO Vtop STEP Vtick ! Tick marks on y-axis 
PLOT -XtickHigh,V; XtickHigh,V 
IF v~o THEN I Labels for y-axis 

GPR I NT AT Xt i ck Hi gh-Xabs*0.12, V-Vabs*0.02; FORMAT$("•••••· ;V) 
END IF 

NEXT V 
GPR I NT AT Xri ght +O. 7*Xmarg, -0.02*Vabs; "X" 
GPRINT AT -0.05*Xabs.Vtop+0.7*Vmarg; "EXP(X)" 
SET PENSIZE 2,2 
FOR X=Xleft TO )(right STEP ABS(:~Jeft-Xright)/405 

IF ABS(F(X)-OldF)>O 1 O*Vabs THEN PLOT 
PLOT X,F(X); 
01 dF = F(X) 

NEXT X 

Figure 1: SCALE-Application Program (continued). 

! Plot the function 



~_I _S_e_ct_R_ec_t/_/_S_ec_tR_g_n __ I ~ 

Syntax 

Graphics toolbox function and 
command-find the intersection of two 

rectangles or regions. 

DJ B- = TOOL SectRect(@RectA%(0),@RectB%(0),@ResultRect%(0)) 

~ TOOLBOX SectRgn(RgnA}, RgnB}, ResultRgn}) 

Performs an intersection operation on two rectangles or regions: 
finds the set of points that are common to both shapes. 

Description 
The intersection of two shapes is the set of all points that are common to 

both shapes. To be in the intersection, a point must be in both the first shape 
and the second. This is in contrast to the union, which contains all of the 
points that are present in either of the two shapes. 

Using the routines SectRect and SectRgn in the Macintosh toolbox, you can 
find the intersection of two rectangles or two regions. SectRect compares two 
rectangles and returns a third and SectRgn does the same with the region 
shape, defined with the OpenRgn toolbox command. There is no intersection 
operation for polygons. 

The toolbox prefix "Sect" is an abbreviation of "intersection." Don't con
fuse this abbreviation with "Set," another important prefix for toolbox 
names. This confusion· is particularly dangerous with rectangles, since Sect
Rect looks so much like another important toolbox name: SetRect. 

DJ s- = TOOL SectRect(@RectA%(0),@RectB%(0),@ResultRect%(0)) 

SectRect is a function, which takes three rectangle arrays as arguments. 
Rectangle arrays must be dimensioned with four elements numbered 0 to 3, 
and must be prefixed in the toolbox parameter list with the indirect addressing 



o SectAect/ /SectAgn o 

symbol, @. The first two arrays in the parameter list are the two source rec
tangles on which the intersection operation will be performed. These two 
arrays must have been defined in previous calls to SetRect. The third array is 
the result returned by the function. 

As shown on the left side of Figure 1, the intersection is the small shaded 
rectangle that is shared by the two source rectangles. If the two rectangles do 
not touch, the intersection is an empty rectangle. SectRect, unlike UnionRect, 
returns the true mathematical intersection of the two rectangles. This is 
because the intersection is always another rectangle, and not a more complex 
shape like the true union. So there is no reason to convert rectangles to 
regions before the intersection operation. 

SectRect is a function, not a procedure, and must therefore be introduced 
by the keyword TOOL, rather than TOOLBOX. The functional result is of a 
Boolean (TRUE or FALSE) type, identified by a tilde c- ). The Boolean result 
indicates whether the result region contains any points, and consequently 
whether the two source rectangles had any points in common. The function 
returns TRUE if the intersection is a valid rectangle containing at least one 
point, FALSE if the intersection is empty-that is, if the two source rectangles 
had no points in common. (Note that these logical values are the inverse of 
those returned by EmptyRect and EmptyRgn, which return TRUE if the 
shape is empty, FALSE if it contains points). 

sec meet 
(TOOL function) 

RectA:g 

RectB:f> 

SectKgn 
(TOOLBOX procedure) 

Figure 1: SectRect-The intersections (shaded) of two rectangles and of two regions. 



o SectRect/ /SectRgn o 

The function syntax of SectRect may seem rather strange, because the main 
result you are looking for is usually the rectangle array that is passed back in 
the parameter list. Don't be confused by the fact that you have to set up this 
command as a function, even if you never make us use of its Boolean value. 

SectRect is the only exception to the usual procedure syntax of the set
theory operations Union, Sect, Diff, and Xor. All of the related rectangle and 
region operations are standard TOOLBOX procedures, including the SectRgn 
procedure described below. None of the others returns a Boolean value. 

~ TOOLBOX SectRgn(RgnA},RgnB},ResultRgn}) 

The intersection of two regions is created by the toolbox command Sect
Rgn. As with SectRect, you pass three parameters. The first two are the han
dles of the source regions that you want to operate on. The third parameter is 
the region handle that will receive the result. Note that you must create this 
region handle using NewRgn before you can pass it to the SectRect routine. 

The resulting region is shown on the right side of Figure 1. The intersection 
operation produces the region that is contained within both of the source 
regions. If the source regions do not intersect, the result region is empty. 

Unlike SectRect, SectRgn is a normal toolbox procedure, called with the 
TOOLBOX command. It does not return a Boolean flag to tell whether the 
result is empty. It merely returns the handle for the result region. 

Of course, it is still possible to test whether the regions do intersect, by 
using the EmptyRgn or EqualRgn toolbox commands. That is especially 
important for games and other programs, which must detect when two objects 
collide on the screen. You can simply define both objects as regions, then test 
the intersection until you find one that is not empty. That shows that the two 
objects are touching. This technique is used to create the explosion in the aster
oids application program below. 

Unfortunately, the EmptyRgn toolbox function does not work correctly in 
the initial release of Macintosh BASIC. Until this problem is corrected in a 
future release, you must simulate the EmptyRgn function with another Bool
ean test, EqualRgn. To do this, create an empty region with a call to NewRgn: 

EmptyR} = TOOL NewRgn 

Then use the EqualRgn function to compare the Intersect} region to this 
empty region: 

Empty- = TOOL EqualRgn (Intersect}, EmptyR}) 

The result will be the same as that which the EmptyRgn function would return 
if it were working: TRUE if the intersection is empty (the source regions have 



o SectRect/ /SectRgn o 

no point in common), and FALSE if the intersection contains some points. 
This simulation of the EmptyRgn function is used in the asteroids application 
program. 

Once EmptyRgn is fixed it will be easier to test the result with EmptyRgn: 

TOOLBOX SectRgn (RgnA}, RgnB}, Intersect}) 
Empty- = TOOL EmptyRgn (Intersect}) 

The Boolean variable Empty- is TRUE if the intersection is empty, that is, if 
the source regions do not intersect. 

Sample Program 
The following program frames two rectangles, then fills the intersection rec

tangle with a pattern, using FillRect with a gray pattern stuffed into a pattern 
array: 

! SectRect-Sample Program 
DIM Rectl %(3), Rect2%(3), lntersection%(3) 
DIM Pat%(3) 
TOOLBOX StuffHex (@Pat%(0), "55M55M55M55M") 
TOOLBOX SetRect (@Rectl %(0), 50,50, 150, 150) 
FRAME RECT 50,50; 150, 150 
TOOLBOX SetRect (@Rect2%(0), 100, 100,200,200) 
FRAME RECT 100, 100; 200,200 
Ir = TOOL SectRect (@Rectl %(0), @Rect2%(0), @lntersection%(0)) 
TOOLBOX FillRect (@lntersection%(0), @Pat%(0)) 
GPRINT AT 20,20; ''The rectangles"; 
IF Ir = FALSE THEN GPRINT "do not"; 
GPRINT "intersect." 

Since the two rectangles do intersect, the resulting Boolean value is TRUE, 
and the phrase "do not" is not printed, as in Figure 2. If the second rectangle 
were given the coordinates (160,160,200,200), however, the intersection would 
be empty and the output would look like Figure 3. 

Applications 
A common use of SectRect is illustrated in the asteroids application pro

gram in Figure 4. This program is an adaptation of the polygon program of 
the entry for OpenPoly, changed slightly to use regions instead of polygons. 



o SectRect/ /SectRgn o 

§0§ SectRec:t-Somple Program ~ 

The rectangles intersect. • 

Figure 2: SectRect-lf the rectangles intersect, the 
function returns the Boolean value TRUE. 

§0~ SectRect-Somple (Modified) ~ 

The rectangles do not intersect. • 

!~! 

D 
Figure 3: SectRect-With different coordinates, the 

rectangles may not intersect, and the func
tion will be FALSE. 



o SectRect/ /SectRgn o 

! SectRgn-Application Program 

! Asteroids program adapted to use regions for greater speed and flexibility 
1 Includes a ship that can be moved with the mouse. 

Ship explodes on contact with an asteroid. 

SET OUTPUT ToScreen 

Asteroid} = TOOL NewRgn 
TOOLBOX OpenRgn 

FirstTime- =TRUE 
DO 

READ H,V 
IF H:O AND V:O THEN EXIT 
IF FirstTime- THEN 

! Full-screen output 

! Create Asteroid. 

! Flag to force move to 1st poin 

! Read 1n boundary coordiantes 
! (0,0) indicates last point. 

TOOLBOX MoveTo (H,V) ! Move to first point 
F1rstT1me- =FALSE 

ELSE 
TOOLBOX uneTo CH,V) ! Draw to other points 

ENDIF 
LOOP 
DATA 20,-30, 100,-100, 120, 120,-40, 150,-120,40 
DATA -100,20,-120,-100,0,-120,20,-30,0,0 

TOOLBOX CloseRgn (Asteroid}) 

READ NumberOf Ast ! Number of Asteroids ( 1 o here) 
DIM NewAst}(NumberOf Ast) ! Define handle array for moving 
DIM DH(NumberOfAst), DV(NumberOfAst) ! Displacement per step. 
DIM HH(NumberOf Ast), VV(NumberOf Ast) ! Absolute position of shape. 
DIM 01dRect:g(3), NewRect:g(3) ! Mapping rectangles. 
TOOLBOX SetRect (@01dRect%(0), - I 00,-100, 100, 100) 
FOR N=1 TO NumberOfAst ! Define moving Regions. 

READ DH(N), DV(N), S ! Sis size in pixels. 
HH(N) = 120 ! Starting position= 
VV(N) = 120 ! (120, 120) 
NewAst}(N) = Asteroid} ! Create new handles 
TOOLBOX SetRect (@NewRect%(0), 120-S, 120-5, 120+5, 120+5) 
TOOLBOX MepRgn (NewAst}(N), @01dRect%(0), @NewRect%(0)) 
TOOLBOX lnvertRgn (NewAst}(N)) ! Draw first copy. 

NEXT N 
DATA10 
DATA 3,3,10 
DATA 2,-4, 15 

Figure 4: SectRect/SectRgn-Application program. 



DATA 2,5,25 
DATA -5, 1,6 
DATA -4,-5,5 
DATA -1 .. -6,8 
DATA -8,6, 8 
DATA 10,-1,8 
DATA 6,7,8 
DATA 2,3,20 

o SectRect/ /SectRgn o 

605UB Set.UpShip: !Set up ship as a region. 
ShipH = MOUSEH 
ShipV = MOUSEV 
TOOLBOX Off setRgn(Shi p}_.ShipH,Shi~•V) 
SET PENMOOE 1 0 

! Position ship. 
! ~;et pen for animation. 

TOOLBOX FnmeRgn(Ship}) 
Empty} = TOOL NewRgn 
Result} = TOOL NewRgn 
00 

FOR N: 1 TO NumberOf Ast 
HH(N) = HH(N)+DH(N) 
SELECT HH(N) 

! Loop repeatedly for continuous motion. 
! Move each asteroid separately. 
! Increment horizontal position 
! Wrap horizontally if too far off screen. 

CASE< -40 
TOOLBOX OffsetRgn(NewAst}(N), +580, 0) 
HH(N) = HH(N)+580 

CASE> 540 
TOOLBOX OffsetRgn(NewAst}(N), -580, 0) 
HH(N) = HH(N)-580 

CASE ELSE 
END SELECT 
VV(N) = VV(N)+DV(N) 
SELECT VV(N) 

! Increment vertical position 
! Wrap vertically if too far off screen. 

CASE< -40 
TOOLBOX OffsetRgn(NewAst}(N), 0, +380) 
VV(N) = VV(N)+380 

CASE> 340 
TOOLBOX OffsetRgn(NewAst}(N), 0, -380) 
VV(N) = VV(N)-380 

CASE ELSE 
ENO SELECT 
TOOLBOX lnvertRgn (NewAst}(N)) 
TOOLBOX OffsetRgn (NewAst}(N), DH(N), DV(N)) 
TOOLBOX lnvertRgn (NewAst}(N)) 
Down~= MOUSEB-
NewShi pH = MOUSEH 

Figure 4: SectRect/SectRgn-Application program (continued). 

! Undraw old 
! Move 
I Draw new 



o SectAect/ /SectAgn o 

NewShipV =MOUSEY I If Mouse button down, 
IF Down- AND (N MOD 2 = 0) THEN I then move ship. 

IF ABS(NewShipH-ShipH)<30 AND ABS(NewShipV-ShipV)<30 then 
TOOLBOX FremeRgn(Ship}) ! Undraw old ship (XOR). 
TOOLBOX Off setRgn(Shi p} ,NewShi pH-Shi pH,NewShi pV-ShipV) 
TOOLBOX Fr-ameRgn(Ship}) ! Draw new ship. 
ShipH:NewShipH ! Update ship position. 
ShipV:NewShipV 

END IF 
END IF 
TOOLBOX SectRgn(Ship},NewAst}(N),Result}) ! Check for collision 
IF NOT(TOOL EquaJRgn(ResuJt),E"mpty})) THEN GOSUB Explode: 

NEXT N 
LOOP 

Explode: 
FOR Twice= 1 TO 2 

DeadShip} =TOOL NewRgn 
DeadShip} =Ship} 
DO 

TOOLBOX lnvertRgn(DeadSh1p)) 
TOOLBOX lnsetRgn(DeadShip}, 1, 1) 

! Explosion routine. 

IF TOOL EquaJRgn(DeadShip},Empty}) THEN EXIT 
FOR Pause= 1 TO 600 
NEXT Pause 

LOOP 
TOOLBOX FremeRgn(Ship}) 

NEXT Twice 
TOOLBOX Fr-ameRgn(Ship}) 
Ship} = Empty} 

RETURN 

SetupShip: 
Ship}= TOOL NewRgn 
TOOLBOX OpenRgn 

FirstTime- =TRUE 
DO !Read each point. 

READ H,V 
IF H=O AND V:O THEN EXIT 
IF FirstTime-THEN 

TOOLBOX MoveTo (H,V) 
FirstTime- =FALSE 

! Undraw remnant of ship 
! Eliminate ship. 

! Set up ship region. 

Figure 4: SectRect/SectRgn-Application program (continued). 



::0 

o SectRect/ /SectRgn o 

ELSE 
TOOLBOX LineTo (H,V) 

ENDIF 
LOOP 
DAT A -15, 15, 15,0,-15,-15,-5,0,-15, 15,0,0 

TOOLBOX CloseRgn(Ship} ) 
RETURN 

Figure 4: SectRect/SectRgn-Application program (continued). 

This region version is, in fact, an improvement over the polygon version, 
because the regions are drawn faster and therefore move more realistically. 

The primary reason for changing to regions, however, is so that we can use 
SectRect to detect collisions between the asteroids and a small ship. The ship is 
defined as a region Ship}, which can be moved around the screen with the 
mouse. Whenever the EqualRgn routine in the animation loop detects that the 
ship has a point in common with one of the moving asteroid regions, it knows 
the objects have collided. A small Explosion subroutine creates a realistic 
explosion effect by inverting the ship several times and making it smaller. Fig
ure 5 shows the ship just as it is hitting an asteroid. 

SectRgn-Rsteroids with Ship 

Figure 5: SectRect/SectRgn-Asteroids program with a colliding ship. 



o SectRect/ /SectRgn o 

To make this program into a real video game would take a different design 
and more sophisticated programming. One major problem with this BASIC 
game is speed, because the asteroids slow down and move jerkily when the 
ship is being moved or exploded. Also, the mouse is not a good device for 
moving a ship in a game such as this-the keyboard might be better. A true 
video game will also have a complex apparatus for making sure that shapes 
always move at the same rate, even when an explosion or ship movement is 
occurring. 

Notes 
-The intersection operation is one of four operators for combining rectan

gles or regions. You can also use the UnionRect, UnionRgn, DiffRgn, and 
XorRgn commands to achieve related effects. 

-See the entries for SetRect and OpenRgn for more information on tool
box rectangles and regions. 



q l ___ S_E_LE_C_T __ ___,I ~ 
BASIC command structure-selects one out 

of a set of alternative actions. 

Syntax 
III SELECT Expression 

CASE Value1 

Statement(s) 

CASE Value2 

Statement(s) 

• 
• 
• 
CASE ELSE 

Statement(s) 

END SELECT 

Selects and executes the statements nested under that CASE state
ment which contains the value currently held by Expression. 

III SELECT [CASE] Expression 

CASE [IS] Value1, Value2, ••• 

Statement(s) 

CASE [IS] Relational Value3 

Statement(s) 

CASE RangeStart TO RangeFinish 



o SELECT o 

Statement(s) 

• 
• 
• 

END SELECT 

Same a form (1), but includes multiple-valued, relational, and range 
cases. 

CTJ SELECT RELATION (A,B) 

CASE GreaterThan 

Statement(s) 

CASE LessThan 

Statement(s) 

CASE EqualTo 

Statement(s) 

CASE Unordered 

Statement(s) 

END SELECT 

! Does this if A > B 

! Does this if A < B 

!Does this if A = B 

! A or B not a valid number 

Selects and executes the CASE block whose ordering relation 
matches the relation between numbers A and B. 

Description 
The SELECT command marks the beginning of a SELECT /CASE struc

ture. The SELECT /CASE structure is a control structure that allows your 
program to choose among a number of alternative actions, based on the value 
held by the controlling variable or expression named in the opening SELECT 
statement. 

When a SELECT I CASE structure is entered, the computer checks for the 
value of the controlling expression, finds the CASE statement that includes 



o SELECT o 

this value, and performs the procedure(s) nested under that CASE statement. 
(The CASE statement and its associated commands constitute a CASE block.) 
After those procedures are performed, execution continues at the line follow
ing the END SELECT statement. 

The SELECT /CASE structure is a more general form of the IF /THEN/ 
ELSE block, and is more useful when you need to select among more than 
two alternatives. See Figure 1 for a diagrammed representation of the 
SELECT /CASE structure. 

IIl SELECT Expression 

CASE Value1 

Statement(s) 

CASE Value2 

Statement(s) 

• 
• 
• 
CASE ELSE 

CASE 

Veluel 

SELECT/CASE 

Statement( s) 1 Statement ( s) 2 • • • 

Continue program 

Figure 1: Flowchart of SELECT/CASE Structure. 

CASE ELSE 

Other 
Values 

Statement(s) 



Statement(s) 

END SELECT 

o SELECT o 

In the most basic form of the SELECT I CASE structure, several alterna
tives are presented, each of which specifies a single value of the expression in 
the SELECT statement. The expression may be of any data type: numeric, 
string, or even Boolean. The values represented by Valuel and Value2 must be 
constants. 

Any number of CASE blocks may be included in a SELECT /CASE struc
ture. Any number of BASIC commands, including transfers of control, may 
be included in each CASE block. 

If the specific values listed in your CASE statements do not exhaust all the 
possible values that the expression can take, you should include a CASE 
ELSE statement to take care of the remaining values. CASE ELSE means, in 
essence, "if the value of the expression is none of those already specified." If 
your program generates a value for the expression that is not included among 
any of your CASE statements, you will get an error message. 

[£] SE[ECT [CASE] Expression 

CASE [IS] Valuel, Value2, ••• 

Statement(s) 

CASE [IS] Relational Value3 

Statement(s) 

CASE RangeStart TO RangeFinish 

Statement(s) 

• 
• 
• 

END SELECT 

The syntax forms of the CASE statement allow you great flexibility in spec
ifying the values that go with each alternative CASE. You may simply list 
more than one value in the CASE statement: 

CASE Valuel, Value2, ••• 



o SELECT o 

Each value listed must be a constant, not a variable. The values must be 
separated by commas, and need not be consecutive. Thus, 

CASE 2,4,7 

is an acceptable CASE statement. 
A range of values may als be specified by a relational operator. 

CASE Relational Value3 

All of the following are valid CASE statements: 

CASE >72 

CASE +"end of data" 

CASE <=2 

You can also set up a range of values by using the keyword TO: 

CASE 6TO13 

CASE "here" TO "there" 

In the first instance, the CASE block will be performed any time the control
ling expression falls between 6 and 13, inclusive. In the second, the block will 
be executed when the ASCII value of a string variable specified in the 
SELECT statement falls within the range represented by the characters in the 
strings "here" and "there." If the string variable holds "heretofore," "hexa
gon," "miffed," or "them," this CASE will be selected. If it holds "her" or 
"therefore," it will not be. 

For clarity, in addition, the SELECT and CASE statements may include 
some optional, inoperative words. You may include the word CASE in the 
SELECT statement, and the word IS in the CASE statement. 

SELECT CASE PayRate 
CASE IS > 11.75 

Statement(s) 
CASE IS 10.25 TO 11.75 

Statement(s) 

[] SELECT RELATION (A,B) 

CASE GreaterThan 

Statement(s) 

CASE LessThan 

Statement(s) 

! Does this if A > B 

! Does this if A < B 



CASE EqualTo 

Statement(s) 

CASE Unordered 

Statement(s) 

END SELECT 

o SELECT o 

!Does this if A = B 

! A or B not a valid number 

A special form of the SEIECT /CASE structure involves RELATION, a 
numeric function that compares two numbers and returns a value 0, 1, 2, or 3, 
depending on which number is larger. Each of these four numbers is associ
ated with a system constant that explains its meaning: 

GreaterThan 
Less Than 
Equal Th 
Unordered 

0 
1 
2 
3 

These system constants are simply alternative names for the integers 0 through 
3, so that the results of the RELATION function can be interpreted easily. The 
"Unordered" value, 3, indicates that one of the compared expressions was a 
NAN, that is, the result of an invalid operation. 

When placed in a SEIECT /CASE structure, as shown above, the RELA
TION function becomes very useful. Because the RELATION functions and 
the system constants are all numbers, this is really just a standard SEIECT 
statement. It evaluates the numeric expression RELATION(A,B), then uses its 
value to choose among the four valid results, which are also mere numbers in 
spite of their fancy names. Conceptually, however, you may want to think of 
this as a special SELECT RELATION form of the SELECT /CASE command. 

The SELECT RELATION is often used in place of an IF statement, to 
avoid having to make three separate comparisons: 

IF A>B THEN ! GreaterThan block 
IF A<B THEN I LessThan block 
IF A= B THEN ! EqualTo block 

For further details, see the entry under RELATION. 

Sample Programs 
The first sample program tests the validity of string input in response to a 

prompt. It asks for a yes or no answer and checks for valid input by passing the 



o SELECT o 

response through a three-part SELECT I CASE structure that includes an 
ELSE. 

I Select-Sample Program #1 
Start: 
INPUT "Answer Yes or No:"; Query$ 
Query$ - UPSHIFT$(LEFT$(Query$, 1)) 
SELECT CASE Query$ 

CASE ''Y" 
PRINT "OK, let's do it." 

CASE "N" 
PRINT "Let's forget it then:' 

CASE ELSE 
PRINT ''You did not answer yes or no!" 
PRINT 
PRINT "Please"; 
GOTO Start: 

END SELECT 

First, the LEFTS function extracts only the first letter. Next, the UPSHIFT$ 
function turns all the letters input by the user into capitals, so the program 
does not have to check for both upper- and lowercase letters. Thus, "yes," 
"Yep," "yeah," "NO," "nix," and "Never" would all be among the accept
able responses. If the user does not come up with an acceptable response, 
CASE ELSE is activated, and another input is requested. Output from the 
program appears in Figure 2. 

(Dogmatic structural programmers may object to the use of GOTO in this 
program. The program could certainly be rewritten to avoid the GOTO state
ment, but it would be notably more complex. In cases such as this, it is often 
better to choose clarity instead of strictness of structure.) 

The second sample program accepts a value from the keyboard, and exe
cutes one of three different PRINT statements, depending on the value 
entered. 

I SELECT-Sample Program #2 
00 

INPUT "Enter a number:", N 
SELECT N 

CASE IS >O 
PRINT "Positive" 

CASE IS <O 
PRINT "Negative" 

CASE IS 0 
PRINT "Zero" 

END SELECT 
LOOP 

Output from this program appears in Figure 3. 



o SELECT o 

CE SELECT-Sample Program #J 
Answer Ves or No: What for? 
Vou did not answer yes or no! 

Pl ease Answer Ves or No: ok 
Vou did not answer yes or no! 

Please Answer Ves or No: yeah 
DK, let's do it. 

Figure 2: SELECT-Output of Sample Program #1. 

SELECT-Sample Program #2 ~ 
Enter a number: 32768 ? 
Positive 
Enter a number: -0 
Zero 
Enter a number: -.42 
Negative 
Enter a number: 3. 14159 
Positive 
Enter a number: O 
Zero 
Enter a number: -1 
Negative 
Enter a number: 

Figure 3: SELECT-Output of Sample Program #2. 



o SELECT o 

The third sample program is virtually identical to the second, but uses a 
SELECT RELATION structure. 

I SELEO:-Sample Program #3 
DO 

INPUT "Enter a number: ";N 
SELECT RElATION (N,0) 

CASE GreaterThan 
PRINT "Positive" 

CASE LessThan 
PRINT "Negative" 

CASE EqualTo 
PRINT "Zero" 

CASE Unordered 
END SELECT 

LOOP 

Output is identical to that of the previous program. 

Applications 
The SELECT I CASE structure should be used any time you need to select 

among a wide range of alternatives. You might use it, for example, when you 
want to distinguish alphabetic from numeric input, by specifying the range of 
ASCII values for numbers in one CASE, the range for letters in another, and 
the list of unacceptable ASCII values in a third. 

The following program accepts user input for a value and writes a check for 
that amount on the screen. The SELECT I CASE structure is used in the func
tions Ten$(L) and One$(K) to convert numbers into words for the line on 
which the amount of the check is to be written out. You will notice the nested 
SELECT structure in the function Tun$(L), which deals with the tens place in 
the dollar figure. The "teens" have to be treated differently from the other 
numbers in the tens place: if the value in the tens place is 1, the proper "teen" 
number must be selected. 

Notes 
-You do not have to include commands in every CASE block. If nothing 

is to be done when the controlling variable or expression holds certain values, 
the CASE block for those values may be null. 



o SELECT o 

! SELECT -Check-writing program. 
! Convert a numeric value into English words and write out a check. 

SET OUTPUT ToScreen 
A$=·· 

! Resize output window for full screen. 

INPUT "Name: "; Name$ 
DO 

INPUT "Amount: $";N 
IF N < 1000000 AND N > 0 THEN EXIT 

LOOP 
Thousands= INT(N/ 1000) 
Dollars = INT(N-1 OOO*Thousands) 
Cents= INT(100*(N-INT(N))) 
IF N i 1000 THEN 

! Split number into $TTT,DDD.CC 
! Dollars = Hundreds, tens, and ones. 
! Cents = Fractional pert 

A$ = Hundreds$(Thousends) & " thousand • 
ENDIF 
A$= A$ & Hundreds$(Dollers) 
IF A$ = •• THEN A$ ="zero" 
IF RIGHT$(A$, 1 )=" "THEN A$ = LEFT$(A$,LEN(A$)-1) 
A$ = UPSHIFT$(LEFT$(A$, 1)) & RIGHT$(A$,LEN(A$)-1) 
GOSUB DispleyCheck: 
END t1AIN 

FUNCTION Hundreds$(N) 
B$ =·· 
IF N ~ 100 THEN 

B$ = Ones$(1NT(N/ 100)) & • hundred • 
END IF 
TensAndOnes = N t10D 100 
B$ = B$ & Tens$(TensAndOnes) 
Hundreds$ = B$ 

END FUNCTION 

FUNCTION Tens$(L) 
TensPlace = INT(L/ 10) 
OnesPlece = L t10D 1 O 
SELECT TensPlace 

CASE 0: C$ = Ones$(0nesPlece) 
CASE 1 ! Treat teens es a special case. 

SELECT OnesPlace 
CASE 0: C$ = "ten" 
CASE 1: C$ = "eleven· 
CASE 2: C$ ="twelve" 

Figure 4: SELECT-Check-Writing Program. 



o SELECT o 

CASE 3: C$ = "thirteen· 
CASE 5: C$ ="fifteen· 
CASE B: C$ = "eighteen· 
CASE ELSE: C$ = Ones$(L-10) & "teen· 

END SELECT 
CASE 2: C$ = "twenty" I Hyphen and ones added below 
CASE 3: C$ = "thirty" 
CASE 4: C$ ="forty" 
CASE 5: C$ = "fifty" 
CASE 6: C$ ="sixty· 
CASE 7: C$ = "seventy" 
CASE B: C$ ="eighty" 
CASE 9: C$ ="ninety" 

END SELECT 
IF TensPlece> 1 AND OnesPlece>O THEN 

C$ = C$ & ·-· & Ones$(0nesP1ece) 
ENDIF 
Tens$= C$ 

END FUNCTION 

FUNCTION Ones$(K) 
SELECT K 

CASE 1: 0$ = "one· 
CASE 2: 0$ = "two· 
CASE 3: 0$ = "three" 
CASE 4: 0$ ="four· 
CASE 5: 0$ ="five· 
CASE 6: 0$ = "six" 
CASE 7: 0$ = "seven" 
CASE B: 0$ ="eight" 
CASE 9: 0$ ="nine· 
CASE 0: 0$ = •• 

END SELECT 
Ones$= 0$ 

END FUNCTION 

I --------------------Graphics Routine--------------------- I 
OispleyCheck: 

IN is the decimel number, A$ is its English equivalent 
SET PATTERN Lt6ray 
PAINT RECT 0,0; 500,300 
SET PATTERN Black 
H1=25 
V1=40 

I All coordinates ere relative to the 
upper-left corner of the check 

Figure 4: SELECT-Check-Writing Program (continued). 



o SELECT o 

H2 = H1+443 
V2 = V1+205 
LeftH = H 1+10 
RightH = H2-10 

! Drew outline for the check. 
SET PENSIZE 2,2 
FRAttE RECT H 1, V 1; H2, V2 

I Lower-right corner 

I Left end, 
I Right end of ell lines for text. 

ERASE RECT H1+2,V1+2; H2-2,V2-2 

I Print Name end Address 
H:H1+80 
V=V1+30 
SET FONTSIZE 10 I 10-point Geneva for name end address 
SPRINT AT H,V; .JOHN Q. CHECKWRITER" 
SPRINT "1 Lazy Lene· 
SPRINT "Bigtown, USA. 

! Print date 
H:H1+310 
V = V1+45 
SET PENSIZE 1, 1 
SET FONT 0 
SET FONTSIZE 12 
PLOT H,V; H+80,V 
SPRINT AT H+S,V-3; DATU 

! Print "Pey to the order or 
SET FONT 3 
SET FONTSIZE 9 
H = LeftH 
V = V1+90 

I H,V ere alweys the starting point 
! for the line we're working on. 

! Chicago (system font) 
! 12-point 
! Line for date 

I Geneva font 
I 9-polnt 

SPRINT AT H,V-10; "PAV TO THE. 
SPRINT AT H,V; "ORDER OF·; 

! Print name of person. 
ASK PENPOS H, V 
SET FONT 2 
SET STEXTFACE 1 
SET FONTSIZE 14 
PLOT H+S,V; H1+340,V 
GPRINT AT H+20,V-3; Name$ 

! Print numeric value of check 
H:H1+347 

I Sterling point is end of previous text 
I New York Font 
I Boldface 
I 14-polnt 

Figure 4: SELECT-Check-Writing Program (continued). 



o SELECT o 

SET FONTSIZE 12 ! 12-point New Vork 
SET GTEXTFACE 0 I Plain text (no boldface) 
FRAME RECT H, V-17; RightH, V+ 1 
GPRINT AT H+ 1,V-3; FORMAT$("$"'"'"',"'"'"' "'"'";N) 

! Write out the amount in English. 
H = LeftH 
V = Vl+ 120 
EndH = RightH - 45 ! Right end of amount line 
PLOT H,V; EndH,V ! Draw amount line 
IF LEN(A$)>40 THEN 

SET FONTSIZE 9 ! 9-point New Vork for long lines 
END IF I Otherwise, leave as 12-point New Vork 
GPRINT AT H+5,V-3; A$&" end"; 

! Print fraction for cents. 
ASK PENPOS H, V 
SET FONTSIZE 9 
&PRINT AT H,V-7; Cents 
PLOT H+2,V; H+14,V-12 
&PRINT AT H+10,V; 100; 

! Fraction is 9-point New Vork 

I Slash for fraction ber 

! Line right from fraction to DOLLARS 
ASK PENPOS H, V 
PLOT H+2,V-5; EndH,V-5 

I Print the word DOLLARS 
H = EndH+3 
SET FONT 3 
SET FONTSIZE 9 
&PRINT AT H,V; "DOLLARS" 
! Print memo line 
H = LeftH 
V = V2-35 
SPRINT AT H,V;"FOR"; 
ASK PENPOS H, V 
PLOT H+3,V; H1+200,V 

I Print signature line. 
H:H1+240 
PLOT H,V; RightH,V 

RETURN 

I Geneva font 
! 9-pofnt 

Figure 4: SELECT-Check-Writing Program (continued). 



o SELECT o 

JOHN Q. CHECKWRITER 
1 Lazy Lane 
Bi gt own , LISA 

10/25/84 

~E~0JHE Joan Q_ Public I $12,345.67 I 
Twelve thousand three hundred forty-five and 9f oo---

Figure 5: SELECT-Output of Check-Writing Program. 

-A SELECT/CASE structure should be used in conjunction with WHEN 
KBD blocks when you want the user to press one of several keys to make a 
choice. The ASCII value of the key is the value that should appear in the 
CASE statement. 

-If a given value appears in more than one CASE, the first instance of it 
in the series of CASE statements will determine the course of action chosen. 
For example, if the statements: 

CASE 2 TO 7 
CASE 5 

appear in that order in a SELECT /CASE structure, CASE 2 TO 7 will always 
be chosen when the value of the SELECT expression is 5. 



o SELECT o 

-SELECT /CASE is Macintosh BASIC's alternative to standard BASIC's 
ON/GOTO or ON/GOSUB. See the application program in the GOSUB entry 
for an example of how to use SELECT /CASE in place of these statements. 

SELECT-Translation Key 

Microsoft BASIC 
Applesoft BASIC 

ON/GOTO, ON/GOSUB 

ON/GOTO, ON/GOSUB 



Syntax 

File organization attribute-marks a file as 
sequential. 

OPEN #Channel: "FileName", Access, Format, SEQUENTIAL 

Opens or creates a sequential file on the specified channel, with the 
specified attributes. 

Description 
SEQUENTIAL is a file organization attribute of disk files. In a SEQUEN

TIAL file, data are stored on disk as a series of consecutive records. The 
records need not be of the same structure, so you can store a variety of types 
of information in them. 

The organization of fields within the records in a SEQUENTIAL file 
depends on the file's format attribute-it may be a TEXT, BINY, or DATA 
file. In a TEXT file, fields are separated by tab characters, and records must 
end with a carriage return. In DATA files, each field begins with a data type 
tag, and is of a fixed length depending on its data type. (See the TYP entry 
for more on type tags.) In BINY files, the field length is determined by the 
data type of the data in the field, but there are no type tags or other separa
tors between the fields. With BINY files, therefore, you must be especially 
careful to read the contents of your fields into the same types of variables that 
you used for writing them. 

Although the various file formats may structure their data differently on 
disk, they are written to and read from in the standard BASIC method: vari
able names for fields are separated by commas in program statements, both 
for input and output. 



o SEQUENTIAL o 

SEQUENTIAL files can be added to, either by opening them with the 
APPEND access attribute, or by using the file pointer command END to 
move the file pointer to the end of the file. You can overwrite existing records 
by using the file pointer commands to move to the record you want to over
write. BEGIN will place the pointer at the start of the file, so you can rewrite 
the first record. If you want to access a record other than the first or the last, 
the program has to step through the file, reading each entry until you come to 
the one you want. For example, suppose you have a SEQUENTIAL DATA 
file in which the first field in each record is the name of a city. You might use 
the following technique to find a record for a given city: 

INPUT 'What city do you want?"; Find$ 
READ #12, BEGIN: City$, 
DO IF City$- Find$ THEN EXIT 

READ #12, NEXT: 
LOOP 
READ #12, SAME: City$, Fieldl, Field2, ... 

In this program fragment, the computer will read the file opened on chan
nel 12. In the initial READ # statement, the program will read the first field, 
which is always City$, and will leave the file pointer in the record because of 
the comma at the end. Then, inside the loop, the IF statement will test 
whether City$ matches the string to be located. If it does match, the EXIT 
statement branches out of the loop and goes on to the READ # statement 
after the loop. If it does not match, however, the program continues reading 
records until it finds an initial field that does match. That way, once you have 
reached the READ # statement after the loop, you can be certain that the file 
pointer is positioned at the proper record, which can then be reread with the 
pointer operator SAME. Alternatively, when the correct record is found, a 
new record could be written, by using a WRITE # 12, SAME statement in 
place of the READ # statement. 

Applications 
Macintosh BASIC SEQUENTIAL DATA files are programmed much like 

standard BASIC sequential files, even though their internal organization is 
different. The following pair of programs create and read a SEQUENTIAL 
DATA file called Employee File 1. (The program in the APPEND entry is 
designed to revise this file. These programs illustrate an important point: once 
a data file is created and stored on disk, any program may access it-even 
programs written in languages other than Macintosh BASIC.) 



o SEQUENTIAL o 

Employee File 1, as it initially created by the program in Figure 1, contains 
records for eight employees of an imaginary company. Each record in the file 
contains four items of information, in the following order: 

1. A single-character status indicator-S or W-indicating whether the 
employee receives a biweekly salary or hourly wages; 

2. The employee's last name; 

3. The employee's first name; 

4. The employee's hourly or biweekly wage, depending on the status indicator. 

Each item will be a field in the data file. Thus, for the eight employees the file 
will contain 32 sequential fields of data. 

! SEQUENTIAL-Write 
! Writes a sequential Employee File 
OPEN •2: -Employee File 1",0UTIN,DATA,SEQUENTIAL 
DELETE "Employee File 1· ! Delete old file 
CREATE •2: "Employee File 1",0UTIN,DATA,SEQUENTIAL 
WHEN ERR ! Allow for graceful exit on error 

CLOSE •2 
PRINT "ERROR•"; ERR 
PRINT "Program terminated." 
END 

END WHEN 
NRecs =8 
WRITE "'2: NRecs 
FOR Employee= 1 TO 8 ! Read DATA statements, write to file 

READ Pay Stat$ ,Last$ ,First$ ,PayRate 
WRITE •2: PayStat$,Last$,First$,PayRate 

NEXT Employee 
CLOSE •2 
PERFORM SEQUENTIAL-Read ! Look at the results 
DATA S, Richman, Bernard, 4000 
DAT A s, Perez, Federico, 1486.22 
DATA W, Lee, Julia, 9.55 
DATA W, Brown, Ruth, 7.32 
DATA S, Lathem, Sue, 1846.15 
DATA S, Franklin, Howard, 1269.23 
DATA W, Mccloskey, Dennis, 9.55 
DATA S, Denton, Arthur, 2019.23 

Figure 1: SEQUENTIAL-Write Program. 



o SEQUENTIAL o 

It is relatively simple to create programs that write data files. The main 
problem to solve is how the program acquires the data. 

If this were an actual application, rather than a demonstration, the entries 
would probably come from a keyboard input dialogue. In fact, this technique 
is used in the program that modifies this file in the APPEND entry. 

Here however, for simplicity, the data are included in DATA statements 
within the program itself. The main part of the program is a short FOR loop 
that reads the data from the DATA statements into variables, and then writes 
them to the file. 

The file opens with an OPEN # statement, which creates a file if none 
exists, in order to avoid an error message when the next line is executed. The 
next statement will delete this new file. If the file already exists it will delete 
the old file. Because we can now be sure that no such file exists, the next line 
uses CREATE #instead of OPEN #, and proceeds to create the file. The file is 
specified as OUTIN so we can write to the beginning of it, and it will be a 
DATA file, with separate fields of specified types. 

The WHEN block is a precautionary measure that should be used whenever 
reading or writing to files. See the OPEN# statement for further details. 

The program creates no output on the screen, only on disk. Therefore, a 
second program is included to read the file once it is created and to display the 
results. The second program is called by the first program with a PERFORM 
statement. This second program appears in Figure 2. 

PROGRAM SEQUENTIAL-Read 
! Read the file created by SEQUENTIAL-Write, and modified by 
! the APPEND application program. 
! This program is designed to be called from disk by the other 
! programs, but will run by itself if the file exists. 

OPEN •4: "Employee File 1",INPUT,DATA,SEQUENTIAL 
WHEN ERR ! Allow for graceful exit on error 

CLOSE •4 
PRINT "ERROR•"; ERR 
PRINT "Program terminated" 
END 

END WHEN 
READ • 4: NRecs 
DIM StatS(NRecs), Last$(NRecs), First$(NRecs), Rate(NRecs) 
FOR Emp = 1 TO NRecs 

Figure 2: SEQUENTIAL-Read program. 



o SEQUENTIAL o 

READ "'4: Stat$(Emp), Last$(Emp),First$(Emp), Rete(Emp) 
NEXT Emp 
CLOSE "'4 
SET TABWIDTH 120 I Wide space between columns 
Doi$="$"',"'"'"'·"'"'" ! Format for printing doJlars 
SET 6TEXTFACE I ! Headings for first block 
6PRINT AT 50, 14; "Salaried Employees· 
6PRINT AT 7,30; "Name", "Biweekly Wage" 
PLOT 7,34; 232,34 
SET 6TEXTFACE 0 
SET PENPOS 7 ,50 
FOR Emp = 1 TO NRecs 

IF Stat$(Emp):"S" THEN ! List salaried employees 
&PRINT Lest$(Emp); ", "; First$(Emp), FORMAT$(Dol$;Rate(Emp)) 

ENDIF 
NEXT Emp 
ASK PENPOS H, V 
SET GTEXTF ACE I 
GPRINT AT 50, V+ 18; "Hourly Employees" 
6PRINT AT 7, V+34; "Name·, "Hourly Wege· 
PLOT 7, V+38; 214,V+38 
SET PENPOS 7, V+54 
SET GTEXTF ACE 0 
FOR Emp = 1 TO NRecs 

! Headings for second block 

IF Stat$(Emp):"W" THEN ! List hourly employees 
&PRINT Last$(Emp); ", "; First$(Emp), FORMAT$(Dol$;Rate(Emp)) 

ENDIF 
NEXT Emp 
END PROGRAM 

Figure 2: SEQUENTIAL-Read program (continued). 

The program for reading the file is specified as an INPUT file, since we will 
not be writing to it. It opens with the required PROGRAM statement, that 
allows it to be called by other programs. As above, a WHEN ERR block pro
vides for a graceful exit in the event of error. 

The first record to be read holds the total number of records in the file. 
This number is used to dimension the arrays into which the fields will be read 
since, for example, the first fields from all the records will all go into one 
array, and they must all fit. The records are read in a FOR loop. 

Once the file has been read, the channel is closed, and the data are sepa
rated into two categories for printing. The first FOR loop prints out the 
records for the salaried employees, using an IF statement to select them. A 
second FOR loop does the same for the hourly employees. The final output 
appears in Figure 3. 



Notes 

D SEQUENTIAL D 

0 SEQUENTIRL Write 

Soloried Employees ~ 
Nome Biweekly Woge ~ 

Ri ct1man, Bernard $4,000.00 
Perez .. Federf co $1,486.22 
Lathom, Sue 
Franklin, Howard 
Denton, Arthur 

$1,846. 15 
$1,269.23 
$2,019.23 

Hourly Employees 
Nome Hourly Woge 

Lee .. Julia 
Brown, Ruth 
r1cc1 oskey, Dennis 

$9.55 
$7.32 
$9.55 

RJI u:m:rnJm::m:::mrnmm::mmm:m:m:m:mm:mmm:mmrn:mirnm-i::> IQJ 
Figure 3: SEQUENTIAL-Output of programs. 

-For sample programs that read and write SEQUENTIAL TEXT files, see 
the TEXT entry. For more on the use of file attribute specifiers, see the OPEN 
#entry. 

-If you do not specify a file organization, SEQUENTIAL is assumed. If 
you specify a file organization, this should be the last attribute in the OPEN # 
or CREATE# statement's attribute list. 



---j I SET I t--==i .__ -----------'· F 

BASIC command word-gives a new value to 
a set-option. 

Syntax 

SET set-option NewValue(s) 

Gives one or more new values to a specific set-option. 

Description 

Set-options are one of the special features of Macintosh BASIC that give 
the language its unusual flexibility. A set-option is a special variable that holds 
a value or flag used by other BASIC commands. Set-options can be used to 
alter the way BASIC draws graphics, prints text, or performs computations. 

The reverse of SET is ASK. The SET command stores a new value or val
ues into a set-option, changing the way BASIC responds to future commands. 
ASK finds out the current value of a set-option variable without changing it. 
Set-option values cannot be set or retrieved in standard assignment statements. 
The set-option names themselves are keywords, but they are only valid in the 
SET and ASK statements. 

Figure 1 shows the set-options of Macintosh BASIC. Most important are 
the graphics and text options, particularly the ones that affect the graphics pen 
and font: PENMODE, PATTERN, FONT, and GTEXTFACE, among others. 
The File I/O set-options are used to read specific positions out of a record in 
a file. The numeric set-options are minor and technical, except for SHOW
DIGITS, which can be quite useful. 



oSETo 

Name Type Values Defaults 
CURPOS# File 1/0 1 number (varies) 
DOCUMENT Graphics 4 numbers 0, 11; 8.5,0 
ENVIRONMENT Numerics 1 number 0 
EOF# File 1/0 1 number (varies) 
EXCEPTION Numerics 1 number, 1 Boolean FALSE 
FONT Text 1 number 
FONTSIZE Text 1 number 12 
GTEXTFACE Text 1 number 0 
GTEXTMODE Text 1 number 9 
HALT Numerics 1 number, 1 Boolean FALSE 
HPOS Text 1 number 0 
HPOS# File 1/0 1 number 0 
LOCATION Graphics 4 numbers 0, 11; 8.5,0 
OUTPUT Graphics 4 numbers (varies) 
PATIERN Graphics 1 number 0 = Black 
PEN [POS] Graphics 2 numbers 0,0 
PENMODE Graphics 1 number 8 
PENPOS Graphics 2 numbers 0,0 
PEN SIZE Graphics 2 numbers 1, 1 
PICSIZE Graphics 1 number 2048 
PRECISION Numerics 1 number 0 (ExtPrecision) 
ROUND Numerics 1 number 0 (TowardZero) 
SCALE Graphics 4 numbers (varies) 
SHOWDIGITS Numerics 1 number 10 
TABWIDTH Text 1 number 100 
VPOS Text 1 number 

figure 1: SET-The set-options in Macintosh BASIC. 

Most set-options take one numeric value, though some take two or more. 
With the graphics set-options DOCUMENT, LOCATION, OUTPUT, and 
SCALE, you must supply four coordinates, with a semicolon separating the 
first two from the last two. Some numeric set-options take a single number and 
a Boolean. In those cases, the number is considered an extension of the set
option name, and is not separated by a comma from the Boolean expression. 

The syntax of the SET command is generally made up of three different 
parts: the keyword SET, the name of the set-option, and the value(s) that you 
want to store. The PATTERN set-option, for example, takes one numeric 
value, so it will be written like this: 

SET PATTERN 19 



oSETo 

For a set-option such as PENSIZE, which takes more than one value, the val
ues are arranged in a list after the option name: 

SET PENSIZE 2,2 

Each set-option expects a specific number of values. You must supply the exact 
number of values expected by the option, and you must separate each value with 
a comma. The values can be either constants, variables, or expressions. 

Some set-option values are associated with system constants that have spe
cific names. These system constants are English words that can be substituted 
for commonly used numeric values. For SET PATTERN, for example, five 
common patterns are given the names Black (0), DkGray (2), Gray (3), 
LtGray (21), and White (19). You could therefore write the above SET PAT
TERN statement in a form that is more clearly understandable: 

SET PATTERN White 

All of the system constants represent single numeric values, except for ToScreen 
and To Window, which represent a series of four values in the statements: 

SET OUTPUT ToScreen 

and 

SET LOCATION ToWindow 

These system constants are recognized and boldfaced as keywords when you 
type them in, but they are actually treated just like numeric constants they rep
resent. If you use ASK to find out the value of a set-option that has been set 
with a system constant, you will get back the simple numeric value that it rep
resents. Appendix C gives a complete list of the system constants in Macintosh 
BASIC. 

In a few cases, you can reset the default value for a set-option by giving the 
SET command with no parameters. For example, 

SET OUTPUT 

with no parameters will restore the default size and position of the output win
dow. To restore the defaults in other cases, however, you will need to give a 
SET command with a specific value: 

SET PENMODE 8 

The default values are shown in the right column of Figure 1. 
Each set-option is really a separate command, with its own special syntax. 

For complete details on specific set-options, please refer to the entries under 
their respective names in this book. See ASK for information on the com
mand that is the reverse of SET. 



~I SETFILEINFO I l::= ==i-------------'· F 

Syntax 

Disk command-changes the Finder's 
information block about a file. 

SETFILEINFO Filename$ @filelnfo%(0) 

Saves 48 bytes of information as the information block for the 
named file. The information is taken from the array FileinfoOJo, 
which must have at least 24 integer elements. 

Description 
Macintosh BASIC gives you access to the information the Fmder uses to orga

ni7.e the file directory. The safest thing, of course, is simply to design a program 
that uses the read-only command GETFll..EINFO to read this information. For 
those who know what they're doing, however, BASIC provides a write com
mand, SETFILEINFO, that lets you change this identification information. 

Tu use SETFILEINFO, you should first know how to use GETFILEINFO. 
The two commands have exactly the same syntax, and the FilelnfoOJo array's 
elements are arranged in the same order. 

The Filelnf oOJo array is always stored as a unit, not as individual elements. 
The standard procedure is to use GETFILEINFO to read the block as a whole 
into the FilelnfoOJo array, change whichever items you wish, then use SET
FILEINFO to save the array back onto the disk. 

Be very careful when using SETFILEINFO. You are changing the actual 
disk directory with this command. Any false move could render your disk 
unreadable. 

See GETFILEINFO for details. 



---j I SetPt I f---= 
==i------------, F 

Graphics toolbox command-Defines a point 
array for use in other toolbox commands. 

Syntax 
[I] TOOLBOX SetPt (@Pt%(0), H,V) 

Stores the coordinates of the point (H, V) into a two-element point 
array for use in other toolbox comamnds. 

Description 
In Macintosh BASIC, points are normally specified by pairs of numbers: H,V. 

This is also true of some toolbox commands, such as LineTo and MoveTo; other 
toolbox commands, however, require a special point data structure. Since Macin
tosh BASIC does not have a point data type, you must simulate one with a two
element integer array (dimensioned with two elements, 0 and 1). 

The point data structure is defined by the SetPt toolbox routine, in a way 
analogous to the SetRect routine that defines a rectangle array. You pass the 
name of the point array as an indirect reference (prefix: @) to the first ele
ment of the two-element array (element number 0). Then, following the array 
name in the toolbox list, you pass two coordinates, H and V, which the SetPt 
routine simply stores into the point array. As with SetRect, the two coordi
nates are actually reversed in the array, because this is the form required for 
other toolbox routines. 

There are quite a number of toolbox routines for manipulating points. 
Unfortunately, most do not work correctly in the initial release of Macintosh 
BASIC. For completeness, some are described in the entries for SetRect and 
OpenRgn, as well as under their own names: EmptyPt, MapPt, and 
PtinRect/PtinRgn. All of the others are included in Appendix D. 



----j I SetRect I l:::: __, __ ~~~~~~~~CF 

Graphics toolbox command-defines a 
rectangle for use in a later toolbox command. 

Syntax 
DJ TOOLBOX SetRect (@RectArray%(0), H1,V1,H2,V2) 

Defines a rectangle array with upper-left corner Hl,Vl and lower
right corner H2, V2. 

Ill Related Toolbox Commands 

OffsetRect 
lnsetRect 

MapRect 
UnionRect 

SectRect 
EqualRect 

EmptyRect 
RectRgn 

RectlnRgn 
PtlnRect 
Pt2Rect 
PtToAngle 

This entry also includes a general description of the toolbox rou
tines and functions that allow you to manipulate a rectangle as 
a unit. 

Description 
Many of the toolbox graphics statements depend on rectangles for their def

initions. Before using the Fill command, for example, or any of the arc com
mands, you must , define at least one rectangle. You may also want to use 
rectangles in defining regions and other toolbox graphics structures. 

The SetRect routine defines a rectangle for use by other toolbox commands. 
It does not do any drawing by itself, but merely stores numbers in an array. 



D SetRect D 

However, since it is the most convenient way of defining a rectangle, SetRect 
is one of the most common QuickDraw toolbox commands. 

SetRect is not required for the standard BASIC commands ERASE, 
FRAME, INVERT, and PAINT. These commands get all the defining infor
mation they need in the four or six numbers that you supply as a part of the 
BASIC command. See RECT, OVAL, and ROUNDRECT for information on 
defining these three shapes. 

[I] TOOLBOX SetRect (@RectArray%(0), H1 ,V1 ,H2,V2) 

In most other Macintosh languages, rectangles are defined as their own 
variable type. In Macintosh Pascal, for example, there is a predefined data 
type for rectangles, so a single rectangle variable can hold all the information 
needed to set the corners of a rectangle. Many of the Macintosh toolbox com
mands are therefore designed to expect a rectangle variable as a parameter. 

In Macintosh BASIC, however, there is no rectangle variable type. In a 
BASIC command such as FRAME RECT or PAINT OVAL, you define a rec
tangle with a simple series of four integers, rather than a complex rectangle 
data structure. This simplifies the graphics operations that you are most likely 
to use in a program. 

Things are different when you want to go beyond the BASIC graphics com
mands and use toolbox routines such as FillRect or PaintArc. These com
mands are direct calls to machine-language routines inside the Macintosh's 
ROM operating system. Because you are calling these routines directly, you 
must prepare the parameters in exactly the form that is expected-which 
means something that resembles a Pascal rectangle data type. 

In Macintosh Pascal, a rectangle is a series of four integers, stored as a 
sequence of four 16-bit words in the computer's memory. As far as the tool
box routines are concerned, however, a rectangle can be any set of four con
tiguous words in the memory. So, in BASIC, you can simulate a rectangle 
with a four-element integer array, dimensioned with elements numbered 0, 1, 
2, and 3. Arrays are always stored sequentially in the computer's memory, 
starting with the element numbered 0. Integer arrays have elements of 16 bits 
each-exactly the same as the Pascal rectangle structure. So in BASIC, we can 
talk of defining a rectangle array, in place of a rectangle variable type. 

When you use a rectangle array in a toolbox calling statement, you must use 
a very special form to make sure it is passed correctly. First, you must precede 
the array name with an @ sign, to show that it should be passed not as an 
actual value, but as the address of the array's memory location. Second, the 
indirect reference must be specifically to the array's 0 element, which is at the 



o SetRect o 

array's starting address in the computer's memory. The reference in the tool
box parameter list will therefore be of this form: 

@ArrayName%(0) 

Any departure from this form might pass an incorrect address to the toolbox 
routine, and the toolbox might write over some essential information in the 
memory, leading to a system error. If that happens, you may need to reboot 
the computer and reload both BASIC and your program. 

The rectangle array is made up of four integers, which define the corners of 
the rectangle. As shown in Figure 1, these integers correspond to the coordi
nates of the upper-left and lower-right corners of the rectangle: (Hl,Vl) and 
(H2, V2). Alternatively, you can think of these numbers as positioning the Top, 
Left, Bottom, and Right edges. If you have used the rectangle commands in· 
Macintosh BASIC, these four numbers will be familiar to you. 

You can legally store the four numbers directly into the rectangle array, but 
you're likely to create confusion if you do. The problem is that the array ele
ments are arranged in a different order from what you would expect. When a 
point is defined in Macintosh BASIC, the horizontal ("H" or "X") coordinate 
is always placed before the vertical ("V" or "Y") coordinate-just as it is in 
mathematics. So, in a BASIC command such as FRAME RECT, the four 

RectArray:C( 0:3)=1 .... _v_1_=T_o_P_.._H_1_=_Le_tt_l_v_2_=eo_tt_om_j _H_2·_Ri_. '-ht
H 1 =Left 

\11 :Top ••••••• • •••••• ••••••••••••••••••••• ••••••••••••••••••••• ••••••••••••••••••••• ••••••••••••••••••••• ••••••••••••••••••••• ••••••••••••••••••••• ••••••••••••••••••••• ••••••••••••••••••••• ••••••••••••••••••••• ••••••••••••••••••••• ••••••••••••••••••••• ••••••••••••••••••••• 
\12:Bottom 

H2:R1ght 

Figure 1: SetRect-The rectangle array contains four integers that specify the upper-left and 
bottom-right corners. 



o SetRect o 

numbers that define a rectangle are arranged in the order you would expect if 
you thought of them as representing two points: 

Hl,Vl; H2,V2 

In the toolbox's rectangle array, however, the order within each pair of coordi
nates is reversed: 

Vl, Hl, V2, H2 

The toolbox does this so that the coordinates can be read in the order 

Top, Left, Bottom, Right 

If you try to remember this second order, however, you may just end up 
confusing yourself. Fortunately, you don't have to worry about the second 
order, because the toolbox has a routine SetRect, which lets you just defme the 
rectangle in the usual order and forget about it: 

TOOLBOX SetRect (@RectArray%(0), Hl, Vl, H2, V2) 

The numbers in SetRect and in regular BASIC commands will have the same 
order. If you use SetRect, then manipulate the rectangle array as a unit, you 
will never have to worry about the different order in which its elements are 
actually stored. 

If you wish to know exactly how SetRect stores the four numbers in the rec
tangle array, refer to Figure 2. You might want to know this order if you are 
debugging a program and need to check the contents of the array. 

TOOLDOX SetRect (@RectArray(O), H 1, v 1, H2, V2) 

RectArray:g(Q:3)= 

Figure 2: SetRect-The rectangle's coordinates are stored in an inverted order in the rectangle 
array. 



o SetRect o 

A call to SetRect is always the second step in the three-step procedure for 
drawing with the toolbox. The first step is to dimension the array, and the 
third is to call the toolbox routine that does the actual drawing. The entire 
procedure is therefore as follows: 

1. Use a dimension statement to set aside space for the rectangle array: 

DIM RectArray%(3) 

2. Call SetRect, using the coordinates of the upper-left corner (Hl,Vl) and 
lower-right corner (H2, V2): 

TOOLBOX SetRect (@RectArray%(0), H1,V1,H2,V2) 

3. Call the toolbox routine that draws the shape involving the rectangle 
array. 

This three-step procedure will be a fixed feature of any program that uses rec
tangles with the toolbox. 

The toolbox graphics commands will not draw a rectangle for which the 
second point (H2,V2) is above or to the left of the first (Hl,Vl). Unlike the 
BASIC shape commands, the toolbox commands do not automatically read
just the coordinates, they simply do not draw if the points are out of order. 

Even if the second point is above or to the left of the first, SetRect will still 
store the coordinates in the rectangle array. However, if you try to draw the 
resulting rectangle, the drawing routine will not work. In this case, SetRect 
has worked, but it has created a non-drawable or empty rectangle. See the 
description of EmptyRect below for more information on drawable and non
drawable rectangles. 

~ Related Toolbox Commands 

You can perform a great number of operations on the rectangle, once you 
have defmed it. Using special toolbox routines, you can move a rectangle, 
shrink it, or fmd other rectangles that are related to it. 

These special operations are generally trans/ ormations of the rectangle 
array.· You pass the rectangle and the transformation information to the tool
box routine. You get back a new rectangle, which you can then draw with one 
of the rectangle toolbox commands. The transformation must always be 
performed prior to the actual drawing-between steps 2 and 3 of the above 
procedure. 



o SetRect o 

Unfortunately, these transformation routines operate only on a rectangle 
array set up for the toolbox, so they don't help with the standard BASIC 
drawing commands such as FRAME RECT. While it is possible to pull the 
individual numbers out of the rectangle array and use them as integers in a 
BASIC statement, it is usually more trouble than it's worth. If, however, you 
are using toolbox commands such as FillRect or PaintArc, you may find these 
rectangle transformations useful. 

For all of these rectangle transformations, there are equivalent region tool
box commands that perform these same operations on the QuickDraw region 
shape. The region transformations are described both under the entry for each 
routine and within the general description of regions in the entry for 
OpenRgn. 

Offset Red 
lnsetRect 

The two simplest transformations are OffsetRect and InsetRect. OffsetRect 
moves the rectangle to another location without changing its size. InsetRect 
shrinks the rectangle toward its center, without moving it. These two opera
tions are illustrated in Figure 3. 

Off setRect 
(mo?eS re<:tangle) 

DY 

InsetRect 
(shrinks to'W&J'd ¢enter) 

Figure 3: SetRect-Once defined, a rectangle array can be transformed by the OffsetRect and 
lnsetRect routines. 



o SetRect o 

OffsetRect and InsetRect require two extra arguments, in addition to the 
name of the rectangle array: 

TOOLBOX OffsetRect (@RectArray%(0), DH, DV) 

and 

TOOLBOX lnsetRect (@RectArray%(0), DH, DV) 

For OffsetRect, these two numbers represent the displacement of the rectan
gle in pixels. If both numbers are positive, the rectangle will be moved DH 
pixels to the right and DV pixels down-the direction shown in Figure 3. If 
the numbers are negative, the rectangle will move in the opposite direction. 

For InsetRect, DH and DV tell the number of pixels each edge will shrink 
inward from its former position and toward the center of the rectangle. In 
shrinking the rectangle, the routine moves the left edge DH pixels to the right, 
and the right edge DH pixels to the left. The total horizontal shrinkage is 
therefore twice DH. Likewise, the top and bottom are each moved in by DV 
pixels, for a vertical shrinkage of 2*DV. Negative values of DH or DV will 
cause the rectangle to expand rather than shrink, in that dimension. 

Both OffsetRect and InsetRect perform the transformation and then store 
the new values back into the original rectangle array. The previous settings of 
the rectangle are therefore replaced. If you want to keep the old rectangle 
array too, you should dimension another array and copy the old values before 
you call OffsetRect or InsetRect. 

Map Reel 

A mapping is a more complex type of transformation that can be applied to 
rectangles and other shapes. A mapping moves and stretches both dimensions 
of the rectangle independently, so that the result has a different placement and 
proportions from the original rectangle. 

The rectangle that you want to transform is the first element in the toolbox 
parameter list. The other two parameters are a pair of rectangles that define 
the mapping transformation: 

TOOLBOX MapRect (@Rect%(0), @SourceRect%(0), @DestRect%(0)) 

SourceRectOJo and DestRectOJo are not themselves transformed. Instead, they 
define the relation between the original coordinates of RectOJo and the new 
coordinates that the mapping operation will give to the rectangle. If RectOJo 
has exactly the same position and size as SourceRectO/o, the mapping will 
transform it exactly into DestRectOJo. If RectOJo is a different size, the resulting 



o SetRect o 

rectangle will bear the same relation to DestRectOJo as it originally bore to 
SourceRectOJo. The original rectangle RectOJo need not be contained within 
SourceRectOJo: the mapping will transform rectangles of any dimensions. 

Mappings are described more completely in the entry for MapPt. 

Union Red 
Sect Red 

1\vo other toolbox routines combine rectangles using the set-theory opera
tions Union and Intersection (abbreviated as "Sect" in the toolbox name). As 
shown in Figure 4, these routines take two rectangles, RectAOJo and RectBOJo, 
and combine them into a third, ResultRectOJo. UnionRect returns the rectangle 
that entirely includes both source rectangles, and SectRect yields the smaller 
rectangle that is common to both. Put another way, the result of UnionRect is 
large enough to contain at least all the points that fall in either RectA OJo or 
RectBOJo, whereas the result of SectRect is small enough to contain only those 
points that are in both RectA OJo and RectBOJo. 

(Mathematically speaking, UnionRect is only a "union" operation in a loose 
sense. The rectangle returned by UnionRect contains some points that were 
not in either source rectangle, because the small rectangles forming the upper
right and lower-left corners in Figure 4 must be added to make the result a rec
tangle. A true union would include only those points that were actually inside 

UnionRect 
(union) 

SectRect 
(intersection) 

RectAW> a('ResultRectW> 

RectBW> 

Figure 4: SetRect-Rectangle shapes can be combined using the set-theory operators Union 
and Intersection. 



o SetRect o 

one source rectangle or the other. The result of a strict union would be a 
QuickDraw region, not a rectangle. Use UnionRgn to get the true set union of 
two rectangles.) 

UnionRect is a standard TOOLBOX command, with three rectangles as 
arguments: 

TOOLBOX UnionRect (@RectA%(0), @RectB%(0), @ResultRect%(0)) 

The result is stored in ResultRect OJo. The RectA OJo and RectB OJo arrays are 
unchanged by the operation. 

The syntax of SectRect is a little different from UnionRect, because it acts 
as a Boolean function. It must be placed in a logical assignment statement and 
must be introduced by the keyword TOOL rather than TOOLBOX: 

s- = TOOL SectRect (@RectA%(0), @Rect8%(0), @ResultRect%(0)) 

The three parameters are the same, but the routine also returns a Boolean 
value to show whether the two rectangles had any points in common. The 
Boolean value is TRUE if the two rectangles did have some points in com
mon. The function returns FALSE if there were no points in common. In that 
case, ResultRectOJo is set equal to the empty rectangle (0,0,0,0). 

This function syntax of SectRect is rather odd, because the real result is still 
the third rectangle in the parameter list: ResultRectOJo. It is particularly odd 
because SectRgn, the equivalent routine for regions, is a TOOLBOX proce
dure just like UnionRect. Just think of B- as a supplementary flag that shows 
whether the result can be used as a real rectangle. 

Equal Reel 
EmptyRect 

1\vo other routines, EqualRect and EmptyRect, are true TOOL functions, 
both with Boolean results. EqualRect tests two rectangle arrays and returns 
TRUE if they have exactly the same coordinates. EmptyRect operates only on 
one rectangle, returning TRUE if the rectangle is empty, FALSE if it contains 
any points at all. The syntax of the commands is as follows: 

ResulC = TOOL EqualRect (@RectA%(0), @RectB%(0)) 

and 

Resulr =TOOL EmptyRect (@Rect%(0)) 

EmptyRect is useful for finding out whether a rectangle is drawable or not. 
If either H2 or V2 is less than the corresponding first coordinate, the toolbox 



o SetRect o 

routines will produce no result, because they require that Hl,Vl be the upper
left corner of the rectangle. Often, you will want to readjust the coordinates 
so that the rectangle can be drawn (BASIC does this automatically). Whenever 
H2 or V2 becomes less than Hl or Vl, EmptyRect will return TRUE to show 
that the rectangle is not drawable. By checking with EmptyRect, you can 
detect occasions when the coordinates need to be exchanged. 

RectRgn 
RectlnRgn 

Rectangle arrays can also be used in combination with other graphic 
structures-notably regions. Like a rectangle, a region is an area on the screen 
that can be drawn as a unit. However, a region's boundary can be any closed 
curve, not just four straight lines at right angles. 

Regions are usually defined with a pair of toolbox calls-one to OpenRgn 
and one to CloseRgn. In the block between these two statements, all drawing 
operations are stored in the region's definition, rather than being painted 
immediately on the screen. The shape, once defined, remains stored as a data 
structure in the computer's memory. You refer to a region through a handle 
variable (type identifier: } ), which points to the data structure in the memory. 

There are two toolbox routines that link rectangles and regions. One, 
RectRgn, simply defines a region that happens to be a rectangle: 

TOOLBOX RectRgn (ResultRgn}, @Rect%(0)) 

This routine allows you to bypass the normal OpenRgn/CloseRgn block that 
defines a region. Instead, you simply create a region whose outline is the given 
rectangle. ResultRgn} is the handle variable that points to the region you want 
to define. You must create this region handle first in a call to NewRgn. Any 
previous structure stored in ResultRgn} will be erased. 

This statement is useful when you want to use a rectangle as part of a more 
complex shape. You might, for example, want to do a true union operation on 
two rectangles, to get exactly the set of all points that were inside one rectan
gle or the other, instead of a union rectangle that also includes some points 
that were outside both rectangles. To do this, you would have to change both 
rectangles into regions and then perform the UnionRgn operation. The result
ing union of the two regions would still reflect the actual boundaries of the 
original two rectangles, as shown on the right in Figure 5. 

The other hybrid rectangle-region operation is a Boolean function that tests 
whether a rectangle intersects a given region: 

ResulC = TOOL RectlnRgn (@Rect%(0), Rgn}) 



o SetAect o 

UDionRec:t 
(union of rectangles) 

UDIODRga 
(union of regions) 

Figure 5: SetRect-By using RectRgn to change rectangles into regions, you can perform a true 
union operation. 

This function compares the rectangle Rect% with the region Rgn} and returns 
TRUE if they intersect. The function returns FALSE if the two structures have 
no points in common. Note that the rectangle does not have to be contained 
within the region: it just has to touch it at some point. 

For more information on region commands, see the entry for OpenRgn. 

PtlnRect 
Pt2Rect 
PtToAngle 

The last three rectangle commands-PtinRect, Pt2Rect, and PtToAngle
relate rectangles to another graphics structure: the point. In Macintosh Pascal, 
points are defined as a special variable type that contains a single ordered pair 
of numbers. This ordered pair can therefore represent the coordinates of a 
point. In Macintosh BASIC, point variables must be simulated with a two
element integer array, called a point a"ay. A point array is defined in much 
the same way as a rectangle array-see SetPt for details. 

In the initial release of Macintosh BASIC, none of these point-rectangle com
mands was working properly. While they won't generally crash the program, they 
will not produce the results they ought to. Since these commands will probably be 
fixed in a later release, they are described here for completeness. 



o SetRect o 

The first of the point-rectangle commands is PtlnRect, a Boolean test to see 
whether a given point is contained within a rectangle: 

Resulf = TOOL PtlnRect (@Pt%(0), @Rect%(0)) 

The result is TRUE if the point is inside the rectangle, FALSE if it is not. 
The Pt2Rect routine creates a rectangle out of two points: 

TOOLBOX Pt2Rect (@PtA%(0), @PtB%(0), @ResultRect%(0)) 

The rectangle array ResultRectO/o will be defined with PtA O/o and PtBOJo at 
opposite corners. Pt2Rect is therefore equivalent to SetRect, except that it 
defines the rectangle array using two point arrays as arguments, rather than 
four integer coordinates. (Note that the numeral 2 in the command name 
means "two," as in "two points," rather than "to," as in "RectToRgn.") 

The last routine is PtToAngle, which tells what angle a line from a given 
point to the center of a rectangle makes with a vertical line through the center: 

TOOLBOX PtToAngle (@Rect%(0), @Pt%(0), @ResultAngle%) 

ResultAngleOJo returns the angle between the line going straight up through the 
center and the line from the point PtO/o to the center. The result is an integer 
number of degrees, measured clockwise from the straight up direction. 

If the rectangle is not a square, the angles are adjusted so that 45 degrees 
always measures the angle through the upper-right corner of the rectangle. 
Individual angles may therefore be stretched or contracted, depending on the 
actual proportions of the rectangle. The reason for this is that PtToAngle is 
designed to work with the arc commands such as PaintArc, in which angles 
may be stretched or shortened so that when the arc is sliced from an ellipse it 
acts like a perfect circle instead. If you use PtToAngle with the arc's bounding 
rectangle, the routine will calculate the angles in a way that would allow the 
arc commands to use them. 

For more information on these point commands, read the entry for SetPt. 

Sample Programs 
The following sample program uses SetRect to define a rectangle array: 

! SetRect-Sample Program #1 
DIM Rect%(3) 
TOOLBOX SetRect (@Rect%(0),20,50,220,200) 
SET TABWIDTH 40 



FORI = OT03 
PRINT Rect%(1), 

NEXTI 

o SetAect o 

TOOLBOX PaintArc (@Rect%(0), 45, 270) 

The FOR loop prints out the four array elements in the order they are stored 
by the SetRect statement. At the end of the program, a PaintArc command 
draws a 270-degree arc, starting at 45 degrees. Note that the horizontal and 
vertical coordinates of the rectangle array are reversed by the SetRect state
ment, as shown in the output in Figure 6. 

The second sample program uses a formatting subroutine called Print Values 
to display the results of different rectangle commands: 

! SetRect-Sample Program #2 
DIM RectA%(3), RectB%(3), ResultRect%(3) 
DIM Array%(3) 
GPRINT AT 100, 14; "Vl Hl V2 H2" 
TOOLBOX SetRect (@RectA%(0), 10,20,200,100) 

CALL PrintValues ("RectA% :", RectA%( )) 
TOOLBOX OffsetRect (@RectA%(0), 15, 27) 

CALL PrintValues ("After Offset:", RectA%( )) 
TOOLBOX SetRect (@RectB%(0), 50,50,220, 150) 

CALL PrintValues ("RectB% :", RectB%( )) 

Figure 6: SetRect-Output of Sample Program #1. 



o SetRect o 

TOOLBOX lnsetRect (@RectB%(0), 10, - 5) 
CALL PrintValues ("After Inset:", RectB%( )) 

TOOLBOX UnionRect (@RectA%(0), @RectB%(0), @ResultRect%(0)) 
CALL PrintValues ("UnionRect:", ResultRect%( )) 

S- = TOOL SectRect (@RectA%(0), @RectB%(0), @ResultRect%(0)) 
CALL PrintValues ("SectRect:", ResultRect%( )) 
GPRINT AT 7, V+ 16; "B- flag is"; s-

SUB PrintValues (Title$, Array%( )) 

ASK PENPOS H,V 
GPRINT AT 7,V; Title$ 
FOR I= 0 TO 3 

GPRINT AT 100+ 1*35,V; Array%(!); 
NEXT I 
GPRINT 

END SUB 

This program uses five different toolbox routines: 

• Two SetRect calls define the rectangles RectA O/o and RectBO/o. 

• OffsetRect moves RectA OJo 15 pixels to the right and 27 pixels down. 

• InsetRect shrinks RectBOJo 10 pixels horizontally and expands it 5 pixels 
vertically. 

• UnionRect finds the union rectangle of RectAOJo and RectBOJo. 

• SectRect finds the intersection of RectAOJo and RectBOJo, and returns 
TRUE because the result does contain some points. 

After each toolbox reference, a CALL statement asks the PrintValues subrou
tine to print one line of output, showing the values of the four elements of the 
rectangle array, as in Figure 7. By comparing the numbers in each column, 
you can see how each of the routines changes the rectangles' values. 

Applications 
The SetRect command is essential for setting up the rectangle arrays used by 

the toolbox. Any program that calls a toolbox routine with a rectangle as an 
argument must also use at least one call to SetRect to define the rectangle. The 
most common toolbox commands that require rectangles are the arc com
mands (EraseArc, FillArc, InvertArc, and PaintArc) and the Fill commands 
(FillRect, FillOval, FillRoundRect, and again FillArc). 



D SetRect D 

V1 H1 V2 H2 
RectA:g: 20 10 100 200 
After Offset: 47 25 127 215 
RectB:l';: 50 50 150 220 
After Inset: 45 60 155 210 . 
Un1onRect: 45 25 155 215 
SectRect: 47 60 127 210 
5- flag 1s true 

Figure 7: SetRect-Output of Sample Program #2. 

Through the RectRgn routine described above, rectangles also become 
important tools for defining regions. Any rectangle can be transformed into a 
region and then combined into more complex shapes. See OpenRgn for a full 
description of regions. See also SetRectRgn, a command that lets you define a 
rectangular region without creating a rectangle array. 

The transformation routines such as OffsetRect, InsetRect, MapRect, 
UnionRect, and SectRect can simplify many operations. If you want to move 
an arc shape slightly out of a circle, for example, just apply an offset to its 
bounding rectangle before you draw the arc. Or, if you need an arc of a 
slightly different radius around the same center, you can use InsetRect. Both 
of these routines are used in the pie-chart application program for PaintArc. 

Notes 
-Don't worry about learning the transformation routines if you fmd them 

confusing. Offsets, insets, unions, and intersections are not for everyone. If 
you are a non-mathematical type, you will probably find it easier just to 
define a new rectangle when you need one. 

If you do become accustomed to the rectangle transformations, however, 
you may want to use them frequently in your toolbox programs. You may, in 



D SetRect D 

fact, find it frustrating that you cannot use rectangle arrays with the standard 
BASIC shape graphics commands such as FRAME RECT and PAINT OVAL. 
It would be very convenient if you could define a toolbox rectangle, perform 
transformations on it, and use it with the standard BASIC command. As it is, 
however, you must use four integers to define all the QuickDraw commands 
except Fill. 

You can, of course, use the rectangle array's elements as individual integers, 
taking care to arrange the coordinates in the proper order: 

PAINT RECT Rect%(1), Rect%(0); Rect%(3), Rect%(2) 

This, however, is cumbersome. 
You can usually find a toolbox graphics routine that can replace the BASIC 

statements. The ideal in this case would be PaintRect, the toolbox routine 
which is actually used by the BASIC PAINT RECT command. Unfortunately, 
BASIC does not allow access to PaintRect or the other toolbox routines that 
are precisely duplicated by BASIC statements. 

However, there is no reason why you can't replace PAINT RECT with 
another toolbox routine. FillRect is an obvious candidate, since it does essen
tially the same thing as PAINT RECT. Another circuitous but effective solu
tion is to use RectRgn to define a region, and then paint the region with 
PaintRgn. 

You can often duplicate the oval shape with an arc running from 0 to 360 
degrees. The following two commands have identical results: 

PAINT OVAL Rect%(1), Rect%(0); Rect%(3), Rect%(2) 

TOOLBOX PaintArc (@Rect%(0), 0, 360) 

Take your pick. 

-You are on your own any time you use the toolbox. The TOOL and 
TOOLBOX statements are direct calls to the machine-language routines in the 
Macintosh ROM. They call routines outside of the BASIC language, and are 
not protected by the interpreter's checks. 

Be prepared for frequent bugs and system crashes when using the toolbox, 
especially if you have one of the earliest versions of Macintosh BASIC. Apple 
is not officially supporting the TOOLBOX calls in the initial release, and it 
makes no claims that the toolbox commands are bug-free. Several of the com
mands described in this entry (PtinRect, Pt2Rect, PtToAngle) do not work 
correctly in the initial release. Most of these problems should be corrected in 
future releases of the language. 



o SetRect o 

If you have a rectangle toolbox program that does not work or that runs 
into unexplained system crashes, check the exact format of the rectangle array 
in the dimension statement and in the TOOLBOX statement. The procedures 
given in this entry for using rectangle arrays are very specific, and cannot be 
varied in any way. A missing @ sign or a misdimensioned subscript can 
be fatal. 

For more information on the toolbox, see the general entry under 
TOOLBOX. 



=:::l I SetRectRgn 11-=: 
=-1....._· ---------F 

Graphics toolbox command-defines a region 
with the shape of a rectangle. 

Syntax 
TOOLBOX SetRectRgn (Rgn}, H1,V1,H2,V2) 

Defines a region with the rectangle (Hl,Vl,H2,V2) as its boundary. 

Description 
A region is any area bounded by a closed set of pixels. It is the most com

plex of the Macintosh's six QuickDraw graphics shapes, because it can be 
defined to have any closed border. 

The simplest region, however, is a rectangle with four straight edges joined 
at right angles. Although such a region is duplicated by the QuickDraw rec
tangle shape, there are many times when you may want to define a rectangular 
region instead of a simple rectangle. You might, for example, want to start 
with a rectangular region as a building block for a more complicated region. 

Since rectangular regions are quite common, the toolbox has two special 
routines for defining them. The first one, RectRgn, converts a rectangle array 
into a region: 

TOOLBOX RectRgn (Rgn}, @Rect%(0)) 

This is useful if you have defined a rectangle array already, using the SetRect 
toolbox command, and now want to change it into a region. The rectangle 
array itself will remain intact. 

The other command, SetRectRgn, can be used without defining a rectangle 
array. You just pass the rectangle's four defining coordinates, in the same 
order as in the SetRect toolbox call: 

TOOLBOX SetRectRgn (Rgn}, Hl,Vl,H2,V2) 



o SetRectRgn o 

The four coordinates are simple integers-the same four numbers used in 
defining a standard rectangle shape. 

You can think of SetRectRgn as a combination of a call to SetRect and to 
RectRgn. The SetRect part of the command first creates a rectangle out of the 
four integer coordinates. Then the rectangle is transferred in a RectRgn com
mand into a region and returned as the region's handle. A single SetRectRgn 
command is therefore a shorthand for the following: 

DIM lntermediateRect%(3) 
TOOLBOX SetRect (@lntermediateRect%(0), H1 ,V1 ,H2,V2) 
TOOLBOX RectRgn (Rgn}, @lntermediateRect%(0)) 

You can remember the full command's name, SetRectRgn, by the fact that it 
contains the names of the two intermediate commands. 

Neither RectRgn nor SetRectRgn creates the region that they store the rec
tangle in. You must precede them with a call to NewRgn to create the region 
and obtain a valid handle to it. 

See OpenRgn for full details on defining and manipulating regions. 



=-11 SETVOL It--==i ...__ ________ ___, F 

Syntax 

Disk command-changes the current disk 
drive. 

DJ SETVOL N 

Makes drive number N the current disk drive. 

~ SETVOL DiskName$ 

Finds the disk drive containing the named disk, and makes it the 
current drive. 

Description 
The SETVOL command lets you change the current disk drive from the 

preset built-in drive (number 1) to an external drive or hard disk. The current 
drive is the one that is assumed by all disk and file 1/0 commands unless you 
specifically name another one as part of the file name string. 

Disks on the Macintosh are organized as volumes. A hard disk may be split 
up into many different volumes, each of which acts like a separate disk with 
its own directory. With a hard disk, SETVOL can specify one of these vol
umes as the current one. Floppy disks, however, have only one volume per 
disk. If you are using only the standard Macintosh and an external disk drive, 
you can think of "volume" and "disk" as synonymous. "Setting the volume" 
means simply "change to a given disk drive." 

You can choose the current volume either by drive number or by volume name. 
If you use numbers, you are referring to the drive that contains the disk: 

1 The built-in 3112-inch floppy disk drive. 
2 The external floppy disk. 
3 or more A hard disk attached to the serial port. 



o SETVOL o 

If you give a volume name, the SETVOL command will search the disks cur
rently in the system and change to the volume by that name. If there is no vol
ume with a name matching the string you pass, the command will be ignored. 

SETVOL is the only way you can change the current disk drive. Simply 
including a drive name in one of the other file commands, in order to specify 
a file on a different drive, does not make that drive the current one. 

Macintosh floppy disks cannot be divided into tree-structured subdirectories 
as dis~s can be divided on the IBM PC (under DOS 2.0) or the Apple II 
(under ProDOS). The folders in the Finder (Desktop operating system) are 
just logical organizations of the main disk directory; they have no separate 
directory structure. 

SETVOL-Translation Key 

Microsoft BASIC -
Applesoft BASIC PREFIX 

(under ProDOS) 



Numeric function-determines the sign of a 
number. 

Syntax 
DJ Result = SGN(X) 

Returns the numbers -1, 0, and 1, depending on whether X is nega
tive, zero, or positive. 

[i:] Result2 = SIGNNUM(X) 

A related function, SIGNNUM, returns 1 if its argument is negative 
sign, 0 if the argument is 0 or positive. 

Description 
The SGN function identifies the sign of any number. SGN takes the form: 

SGN(N) 

where N is a literal numeric value, a numeric variable, or an arithmetic 
expression. 

The SGN function returns one of the following values: 

- 1 if N is negative (N < 0) 
0 if N is zero (N =0) 

+ 1 if N is positive (N >O) 

As shown by the graph in Figure 1, the SGN function remains a constant - 1 
for all negative numbers right up to zero. It jumps to 0 for the number 0, and 
then to + 1 for all positive values of X, however small. 



• -

oSGN o 

SGN Function 6roph 
SGN(X) 

2 

Figure 1: SGN-A graph of the SGN function . 

On the Macintosh, - 0 is an allowed value, and it is distinguished from + 0 
in a few cases. SON will actually separate these two values of 0 from each 
other: 

SGN(O) returns 0 

but 

SGN( - 0) returns - 1 

Macintosh BASIC also has a special SIONNUM function that does the 
same thing as the SON function, but returns different values. SIONNUM 
returns only two values: 

+ 1 if N has a negative sign 
0 if N has a positive sign 

(includes - 0) 
(includes + 0) 

For certain applications, it may be useful to choose this alternative function. 

• 



oSGN o 

Sample Program 
The SON function is sometimes used with the CASE statement to distinguish 

positive, negative, and zero values of a variable, as in the following program: 

I SGN-Sample Program 
DO 

INPUT "Type a number = = >"; N 
PRINT N;" is"; 
SELECT SGN(N) 

CASE -1: PRINT "negative." 
CASE 0: PRINT "zero." 
CASE 1: PRINT "positive." 

END SELECT 
PRINT 

LOOP 

The output, shown in Figure 2, shows the three different values that the SON 
function can take. Note that 0 and - 0 have different results. 

Note that this use of the SON statement can be avoided with a relational 
CASE condition: 

! SGN-Sample Program 
DO 

INPUT ''Type a number = = >"; N 
PRINT N;" is"; 
SELECT N 

CASE <O: PRINT "negative." 
CASE 0: PRINT "zero." 
CASE >O: PRINT "positive." 

END SELECT 
PRINT 

LOOP 

This special form also has the advantage of treating - 0 as the value 0. 

Notes 
In addition to the SIONNUM variation on this function, Macintosh BASIC 

also has a two-argument function, COPYSION, which transfers the sign of 
one number onto another. This COPYSION function eliminates the need for 
one of the other traditional uses of the SON function, which is to transfer a 



oSGN o 

:':O SGN-Sample Program 
Type a number ==> 13 ? 
13 is positive. 

Type a number==> -2 
-2 is negative. 

Type a number==> 0 
0 is zero. 

Type a number==> -0 
0 is negative. 

Type a number==> 

Figure 2: SGN-Output of sample program. 

sign back into a variable that has been calculated as an absolute value: 

RestoredSign = SGN(OldA) *ABS(OldA) 

will yield the same result as OldA. See COPYSIGN for more details on this 
function. 

SGN-Translation key 

Microsoft BASIC SGN 

Applesoft BASIC SGN 



q l..____S_H_O_WD_I_G_IT_S_-----JI µ 

Syntax 

Numeric set-option-sets the maximum 
number of digits of any numeric output. 

DJ SET SHOWDIGITS N 

[I] ASK SHOWDIGITS N 

Sets the maximum number of significant digits of any number dis
played by a PRINT or GPRINT statement. 

Description 
When printing tables of numbers, it is often desirable to limit the number of 

decimal places with which each number is displayed. This is useful in scientific 
output, for example, where numbers are commonly written with only as many 
digits of precision as there were in the data on which the calculations were 
based. 

The numeric set-option SHOWDIGITS sets the number of digits of accu
racy with which each number is displayed. You can choose any number of dig
its from 1 to 19, the latter being the maximum accuracy of extended-precision 
real numbers. The default is 10. 

SET SHOWDIGITS is also a simple way to control the printing of numbers 
in columnar tables. In such programs, it is important to constrain each 
column to a limited number of digits, so that the number will not run out past 
the tab stop where the next column is to begin. This, however, will not align 
numbers by decimal columns. For more sophisticated formatting of numeric 
output, use the FORMAT$ function. 



o SHOWDIGITS o 

Sample Program 
The following sample program prints the value of n, rounded to every num-

ber of digits from 1 to 19: 

! SHOWDIGITS-Sample Program 
SET FONTSIZE 9 
SET TABWIDTH 50 
GPRINT AT 7, 10; "Digits", " Pl" 
FOR 1=1TO19 

SET SHOWDIGITS I 
GPRINT I, Pl 

NEXT I 

Note that, in the output shown in Figure 1, the last significant digit at the 
right end of each decimal is rounded from the digits that follow. If the right
hand digit is a 0, the digit is not printed. 

§0§ SHOWOIGITS-Sample Program~ 
Digits Pl • 
1 3 
2 3.1 
3 3.14 
4 3.142 
5 3.1416 
6 3.14159 
7 3.141593 
8 3.1415927 
9 3.14159265 
10 3.141592654 
11 3.1415926536 
12 3.14159265359 
13 3.14159265359 
14 3.1415926535898 
15 3.14159265358979 
16 3.141592653589793 
17 3 .1415926535897932 
18 3 .14159265358979324 
19 3 .141592653589793239 

Figure 1: SHOWDIGITS-Output of Sample Program. 



-----J I ShowPen I l--==i ......___ ----------'· F 

Syntax 

Graphics toolbox commands-displays 
graphics pen drawings that would otherwise 

be hidden. 

III TOOLBOX ShowPen 

Restores the graphics pen to drawing on the screen after HidePen 
has caused drawings to be stored but not displayed. 

Description 
ShowPen restores visibility to what is drawn with the graphics pen when the 

drawings would otherwise be stored but not displayed, because of a HidePen 
call. ShowPen and HidePen are exact opposites, and they should always be 
called as a matching pair. The toolbox keeps track of the relative number of 
times each routine has been called and turns the pen off when HidePen is 
leading ShowPen in calls. Any unbalanced calls will confuse the counter, and 
may lead to the pen being turned off when you want it on. 

ShowPen is sometimes used at the beginning of a region or polygon defini
tion block. Because the definition blocks use the graphics pen for creating the 
region or polygon, the OpenRgn and OpenPoly automatically call HidePen at 
the beginning of the block and ShowPen at the end. That way, the pen will 
not draw lines on the screen that are intended only to be stored as the shape's 
definition. 

If you want to see the border as it is being drawn, you can call ShowPen 
right after the OpenRgn or OpenPoly command. That makes the pen draw 
visible points on the screen again. For consistency, you should call HidePen at 
the end of the definition block, so that the ShowPen and HidePen calls are 
balanced. 

There is also a ShowCursor toolbox routine, which is the parallel command 
for the mouse pointer. It is described in Appendix D. 

See also the entry for HidePen. 



---j I SIGNNUM I~ --=i .....___ ----------J. F 

Numeric function-returns a number to show 
whether the sign of a number is negative or 

positive. 

Syntax 
Result = SIGNNUM(X) 

Returns 1 if the sign of X is negative, 0 if the sign is positive. 

Description 
Standard BASIC has only one sign function, SON, which returns the values 

-1, 0, and 1, depending on whether its argument is negative, zero, or positive. 
Macintosh BASIC also adds another function that tests the sign and returns a 
different result: 

+ 1 if the sign is negative 
0 if the sign is positive 

Note that the signs of these results are opposite from the sign of the argument 
and from the results of the SON function. 



~I SIN It= =1.__· --------F 

Numeric function-sine of an angle measured 
in radians. 

Syntax 
Resu It = SIN (Angle) 

Returns the sine of Angle, where Angle is expressed in radians. 

Description 
The SIN function returns the value of the trigonometric sine function for a 

given angle. SIN takes a single argument, the angle expressed in radians, and 
returns a value between - 1 and 1. 

The graph of the SIN function is shown in Figure 1. The function is peri
odic, repeating the same series of values after each interval of 2n in the angle. 
This period of 2n is the number of radians in a circle, and is equivalent to 360 
degrees. The entry for PI provides functions for converting degrees to radians 
and radians to degrees. 

The geometrical meaning of the sine function is shown in Figure 2. The sine 
function measures the vertical distance that a line at any given angle will rise 
(or fall) from the center of a circle to a point on the circumference. If the cir
cle has a radius of R, the vertical coordinate will rise by a distance of 

R*SIN(Angle) 

above the center. The horizontal coordinate will change by a distance of 

R*COS(Angle) 

You can therefore define a point with horizontal and vertical coordinates 

(R*COS(Angle), R*SIN(Angle)) 



oSIN o 

SIN-Function Graph 
SIN(X) 

Figure 1: SIN-Graph of the sine function. 

and be sure it will lie on the circumference. As Angle is increased from 0 to 
2n, the point will run smoothly one time around the edge of the circle. This is 
the basis of many animation programs, such as the sample program below. 

Another way of thinking about the sine function is as a proportion between 
the sides of a right triangle. The sine is the ratio of the length of the side oppo
site the angle to the length of the hypotenuse. In the triangle inside the circle 
of Figure 2, the sine of the angle should be equal to R*SIN(Angle) divided by 
R, which is an identity. 

Sample Programs 
The following program simply draws lines from the center to the edge of a 

circle, at intervals of n/90 radians (2 degrees): 

! SIN-Sample Program #1 
FOR Angle= 0 TO 2*PI STEP Pl/90 

PLOT 120,120; 120+90*COS(Angle), 120-90*SIN(Angle) 
NEXT Angle 

The output is shown in Figure 3. 

• 



oSIN o 

(R*COS(Angl e), R*S I N(Angl e)) 

Angle 

R*COS(Angle) 

SIN= 
Opposite/ 
Hypotenuse. 

Figure 2: SIN-The geometrical interpretation of the sine function. 

=~ SIN-Sample Program # 1 

• 

Figure 3: SIN-Output of sample program #3. 



oSIN o 

The SIN function is essential for many types of graphics and animation. In 
the spinning disk program under OVAL, for example, the SIN function was 
used to make the oval look as if it were rotating. The key to this is that when 
you look at the profile of a spinning object, you see a change in only one 
dimension. For a circular motion, this changing component describes a sine 
curve as a function of time. 

The following program illustrates another animation technique: 

! SIN-Sample Program #2 
FRAME OVAL 30,30; 210,210 
SET PENMODE 10 
FOR Angle= 0 TO 2*PI STEP Pl/90 

H = 90*COS(Angle) + 120 
V = 90*SIN(Angle) + 120 
PAINT OVAL H-7,Y'-7; H+7,V+7 
FOR Delay= 1 TO 300: NEXT Delay 
PAINT OVAL H-7,V-7; H+7,V+7 

NEXT Angle 

This program simply draws a circle, then moves an animated box once around 
the circumference. By painting the box twice in each position with PEN
MODE 10, the box is made to appear and then to disappear before it is 
painted again in the next position. Figure 4 shows the box at one point along 
its way. 

- SIN-Sample Program #2 

Figure 4: SIN-Sample Program #2 moves a box 
around the circumference of a circle. 



oSIN o 

Finally, the third program shows how pretty you can make the sine curve 
itself: 

! SIN-Sample Program #3 
SET OUTPUT ToScreen 
FOR X= 20 TO 600 STEP 2 

Y = 45 + 110*(1-SIN((X-20)*Pl/110)) 
PAINT RECT X-19,Y-19; X,Y 
ERASE RECTX-19,Y-19; X-2,Y-2 
FRAME RECT X-20,Y-20; X-1 ,Y-1 

NEXT X 

As shown in Figure 5, the effect of the three-step PAINT-ERASE-FRAME 
drawing sequence is to create each box with a shadow behind it. This shadow 
technique is described in the entry under FRAME. 

A version of this program is also included under COS, modified so that it 
draws both the sine and cosine curves. 

SIN-Sample Program #3 

Figure 5: SIN-Output of Sample Program #3. 



oSIN o 

Notes 
-The SIN function is closely related to the trigonometric functions, COS 

and TAN. There are a variety of conversion formulas and identities that link 
the three functions. 

You may sometimes want the inverse of the SIN function, or arc sine, which 
returns the angle for which the sine is X. This function is not available in 
BASIC, but it can be calculated directly from the arc tangent function ATN, 
which is available: 

DEF ArcSin(X) = ATN(X/SQR(1-X "2)) 

See ATN for details. 

SIN-Translation Key 

Microsoft BASIC SIN 

Applesoft BASIC SIN 



----l 1 SOUND I~ ____,.....___ --------· F 

Sound command-plays a note or a series of 
notes. 

Syntax 
DJ SOUND Frequency, Volume, Duration 

Plays a single musical note, of a given frequency, volume, and 
duration. 

[l] SOUND N @NoteArray%(0) 

Plays a series of N notes, stored as triplets in NoteArrayO/o. 

[J] SOUND 

Sounds a beep. 

Description 
Macintosh BASIC gives you access to the Macintosh's square-wave sound 

generator, which plays a series of notes through the machine's built-in speaker. 
The square-wave generator is the simplest of the three sound systems in the 
Macintosh. The other two are much more complicated and are not available 
in BASIC. Harmony is not possible with the square-wave sound system. 

The Macintosh sound generator uses a sound buffer. which stores a series of 
notes that are to be played. Using the SOUND command, you can put notes 
into this buffer as quickly as you wish, but each note then waits its turn in the 
buffer until all the notes before it have been played. While the note is waiting, 
your program may go on to other things. 

You must make sure you do not try to send notes so fast to the sound buffer 
that it gets full and starts losing the notes you send. If you have a loop that does 



oSOUND o 

nothing but play notes, you will probably fill the buffer almost instantly. If you 
are playing repeated notes, you must tie the execution of your program to the 
completion of the notes being played, using either the SOUNDOVER- function 
or the S'IOPSOUND command, descnbed in separate entries. 

ITl SOUND Frequency, Volume, Duration 

To put a note into the sound buffer you enter a series of three integers, rep
resenting the frequency, volume, and duration of the note. The three integers 
in each note triplet are chosen as follows: 

• Frequency sets the pitch of the note. The higher the frequency, the higher 
the pitch that will be played. The SOUND statement will accurately play 
a note of any frequency from 33 to 4186 cycles per second. (In most 
cases, you will want to use the TONES function to get notes of the musi
cal scale. TONES(O) = 262 cycles per second, or middle C. TONES with 
positive arguments gives notes above middle C, with negative arguments . 
it gives notes below middle C.) 

• Volume is a number from 0 (silent) to 255 (loud). The actual speaker vol
ume depends concurrently on the volume setting in the Control Panel 
desk accessory. 

• Duration is the length of the note in tick counts of 1I60 sec. The value 
can range from 0 (non-existent) to 255 (a little over 4 seconds). 

Each time you give this simple SOUND command, you place one note into 
the queue of the sound buffer. You can include more than one note in a single 
SOUND statement, separating the triplets with semicolons: 

SOUND Freql, Voll, Durl; Freq2, Vol2, Dur2; ... 

In general, though, it's a good idea to put only one note into each statement, 
because the syntax quickly becomes confusing. 

III SOUND N @NoteArray%(0) 

An alternate form of the SOUND command lets you take a series of note 
triplets out of an array. The number N in this syntax form is a simple integer 
that tells how many notes are to be played. The array must be of type integer, 
and dimensioned with at least 3•N elements. It must be prefixed in the 
SOUND statement by the indirect-addressing symbol (@). 

In the array, each sequence of three elements corresponds to the three num
bers of a one-triplet SOUND statement: the array elements 0 through 2 give 



oSOUND o 

the first note, elements 3 through S give the second note, 6 through 8 the 
third, and so forth. The three numbers in each group are arranged in the same 
order as in the standard form of the SOUND $tatement: Frequency, Volume, 
and Duration. 

If you want, you can play just some of the notes out of the array. 1b play 
just K notes starting from note number L, you could give the command: 

SOUND K@NoteArray°lo((L-1)*3) 

Just make sure that K does not go all the way through the remainder of the 
list and out the other end of the array. If it does, you could get anything from 
gibberish to a system crash. 

[l] SOUND 
A SOUND command with no parameters merely sounds a beep. It can be 

used as an alert sound in any program, to draw attention to an error message, 
for example. 

Applications 
The program in Figure 1 creates S different sound effects, using the 

SOUND statement and the TONES function: 

1. Random tones from pure space. 

2. A high tone varied in pitch by a sine wave. 

3. An arpeggio, or sequence of tones out of a major chord, going up and 
down several octaves. 

4. A "busy signal" made up of two notes alternating so quickly that they 
sound like they're being played together. 

S. A European ambulance siren. The sound decreases in pitch and volume 
with time, so that it sounds like the ambulance is moving away. 

Each of the five sound effects is stored as an element of a 20-note ((j()..element) 
array that is played twice before the loop is repeated. 1b go on to the next 
sound, you press the mouse. 



oSOUND o 

! SOUND-Appllcatton Program ! ! ! ! ! ! ! sound Effects!!!!!!! 

Slze:t: = 60 - I ! Room for 20 notes In array 
DIM ToneData:t:(Slze:t:) 

PRINT ·press the mouse button when you·re· 
PRINT - ready for each new sound." 
PRINT 
BTNWAIT 

FOR I= 1to5 
SOUND 
PRINT ·sound Number-, I 
DO 

RANDOMIZE 

! This loop starts a new sound 
! Beep to Indicate new sound 
! Message 
! This loop repeats cont1nual1y 

FDR N = o to INTCSlzeJ;/3) ! Fiii ToneData:r; array 
ToneData:t:C 3*N + 2) = 2 ! Default duration= 2 (short) 
ToneData:t:C 3*N + I ) = 10 ! Default volume= 10 Cmedtum) 
SELECT I ! Choose one or rtve sounds 
CASE I ! Random tones - Space notse 

ToneDataJ;( 3*N) = TONES(INT(RND(65)) - 35) 
CASE 2 ! Warble w1th sine wave 

ToneDatall( 3*N) =INT(100 * SIN(N*6*Pl/Stze:I)) + 1640 
CASE 3 ! Arpeggio up and down 

ToneData:I( 3*N + 2) = 9 ! Volume = 9 
ToneDatall( 3*N) =TONES( 45 - INT(4*ABS(N-SlzeJ;/6))) 

CASE 4 ! Busy signal 
ToneData:t:( 3*N + 2) = 1 ! Duratton = 1 (very short) 
IF ( REMAINDER(N,2) = 0) THEN ! Alternate between 

Toneoata:t:C 3*N) =TONES( 35) ! two notes. 
ELSE 

ToneData:t:C 3*N ) = TONES( 39 ) 
ENDIF 

CASE 5 ! European ambulance stren. 
ToneData:t:( 3*N + 1) = 256 - 14*N ! Volume decreastng 
ToneDataJ;( 3*N + 2) = 15 ! Duration = 15 
IF ( REMAINDER(N,2) = 0) THEN ! Alternating notes. 

ToneDatalt:( 3*N ) =TONES( 26 ) - 1 O*N 
ELSE 

ToneData:t:( 3*N ) =TONES( 23 ) - I O*N 
END IF 

END SELECT 
NEXT N 

Figure 1: SOUND-Application Program. 



o SOUND o 

DO 
IF SOUNDOVER-THEN EXIT 

LOOP 
SOUND 20 @ToneData:f;(O) 
SOUND 20 @ToneData:f;(O) 

IF MOUSED-THEN 
STOP SOUND 
EXIT 

ENDIF 

! Walt unt11 buffer empty 

! Play sound series twice 

! Mouse click means 
! k111 the present sound 
! and go on to next one 

LOOP 
NEXT I 

! This loop repeats continually 
! This loop starts a new sound 

Figure 1: SOUND-Application Program (continued). 

This program illustrates some of the techniques involved in programming 
complex sounds: 

• The sounds are calculated and stored in an array before they are played, 
rather than being calculated at the time when they are played. This 
allows the calculations to be performed while the last group of sounds 
are being played through the sound buffer. 

• A SOUNOOVER- trap is included, so that the new sounds are sent to 
the buffer only after the sound buffer is empty. If this test were left out, 
the sound buffer would quickly fill up. 

• For all but one of the sounds, the TONES function was used, rather than 
a continuous range of numeric frequencies. Even in random, "pure 
space" noises, musical tones are more pleasing than random frequencies. 

See also the application program under TONES for another way of using 
the sound generator. Also, the REWRITE # file 1/0 command has an 
example of a file program involving sound. 

Note 
-See SOUNDOVER- , STOPSOUND, and TONES for information about 

the other sound commands. All four are used in most sound programs. 



oSOUNOo 

SOUND-Translation Key 

Microsoft BASIC 
Applesoft BASIC 

SOUND 

BEEP 



~ l ___ S_O_U_N_D_O_iVE_R_-______.I~ 

Boolean system function-shows whether the 
sound buff er is empty. 

Syntax 
ResulC = SOUNDOVElr 

Returns TRUE if the sound buff er is completely empty, FALSE if 
there are still sounds waiting to be played. 

Description 
The SOUNDOVER- function checks the sound buffer, which holds all of 

the notes that have been sent by a SOUND command and are still waiting to 
be played. By testing this system function, you can link other operations in 
your programs to the timing of notes as they are played. 

The standard technique for this is to place a DO loop just before the state
ment that you want linked to the sounds: 

00 
IF SOUNOOVElr' THEN EXIT 

LOOP 

This loop will wait until SOUNDOVER- becomes TRUE, which indicates that 
the last tone in the buffer has been played. The program then continues with 
whatever statement follows. 
It is standard practice to place a test like this just before any SOUND state
ment inside a loop. Otherwise, the repeating SOUND statement would rapidly 
fill up the sound buffer and stop playing. 



---41 SOR lt--==l.__· ---------------'' F 

Syntax 
Result = SQR(X) 

Numeric function-square root. 

Returns the positive square root of a number. 

Description 
The SQR function supplies the positive square root of any nonnegative 

number. The square root of X is the number which results in X when multi
plied by itself. Both of the following identities are true: 

X = SQR(X) * SQR(X) 

and 

X = SQR(X) " 2 

Figure 1 shows a graph of the square root function for positive values of X. 
Every positive number has two square roots: SQR(X) and - SQR(X). Both 

of these numbers give back X when multiplied by themselves. The positive 
square root is called the principal square root, and that is the value returned 
by the SQR function. In many mathematical equations, the negative square 
root, - SQR(X), is also a valid solution to the equation, though the quality 
may not have a meaning in the real world. 

You cannot take the square root of a negative number. If you could, it 
would mean that you could multiply that number by itself and get a negative 
number. This is impossible, because the square of any number is always 
positive. 

Unlike other versions of BASIC, however, Macintosh BASIC will not stop 
the program with an error message when it encounters an invalid number as 



SQR(X) 

2 

oSQR o 

SUH-Function Graph 

~-t-~~~~--~~~---i~~~~--t-~~~~-r-~~~~-t-- x 
-1 2 3 4 

-1 

Figure 1: SQR-Graph of the square root function . 

• 

I 

the argument of the SQR function. Instead, it assigns a "Not A Number" 
(NAN) code to the result, to signal that it is the result of an invalid operation. 
The following program segment, for example, will not produce an error 
message: 

A= SQR(-1) 
PRINT A 

As its result, however, the program will print the NAN (1), a code which indi
cates an invalid square root. See the entry under NAN for information about 
NAN codes and the Macintosh's numeric errors. 

Sample Program 
Square roots are used frequently in all branches of mathematics. In geome

try, for example, the Pythagorean theorem uses a square root to calculate the 
length of the hypotenuse of a right triangle given the lengths of its two legs: 

Hypotenuse - SQR(Leg1 "2 + Leg2 "2) 



oSQRo 

In coordinate geometry, the Pythagorean theorem becomes the distance for
mula. If two points are given by the coordinates (Hl,Vl) and (H2,V2), the 
distance between them is 

SQR((Hl-H2) "2 + {Vl-V2) "2) 

The following sample program uses the distance formula to calculate the 
length of lines: 

! SQR-Sample Program 
[)() 

BTNWAIT 
H - MOUSEH 
V - MOUSEV 
Dist = SQR((l 20-H) "2 + (120-V) "2) 
PLOT 120,120; H,V 
GPRINT AT H,V; Dist 

LOOP 

Each time you press the mouse, this program makes one pass through the 
loop. The program reads the position of the mouse and then calculates its dis
tance from the point at the center of the output window: (120,120). It then 
draws a line between the point and the mouse, and prints the calculated dis
tance. Figure 2 shows the output after several clicks of the mouse. 

~O= SQR-Somple Program 
? 

108.240473 

4.51530134 

Figure 2: SQR-Output of sample program. 



::--i I STANDARD 11:--__, .___ --------F 

String comparison option-restores the 
default ASCII ordering for string 

comparisons. 

Syntax 
OPTION COLLATE STANDARD 

Selects the standard ASCII ordering for use in all further string 
comparisons. 

Description 
Strings, like numbers, can be compared using relational operators: 

= 
+,<>,or>< 
> 
~.>=,or=> 

< 
~<=,or=< 

Equal to 
Not equal to 
Greater than 
Greater than or equal to 
Less than 
Less than or equal to 

(The non-standard optional forms +, ~. and :E;;are unique to Macintosh 
BASIC-type them with the option-key sequences Option-=, Option->, and 
Option-< .) 

The Macintosh, like most computers, normally compares strings by com
paring the ASCII codes of their stored characters. Since the letters of the 
alphabet are arranged in alphabetical order in the ASCII table, an ASCII 
comparison generally tells whether one string comes before the other in the 
alphabet. The string that comes earlier in the alphabet is considered to be less 
than the other because its ASCII code is less. The Macintosh ASCII codes are 
listed in Appendix A. 

If the strings have more than one letter, they are compared starting with the 
leftmost character-like alphabetized entries in a dictionary or telephone 



o STANDARD o 

book. If the leftmost characters are the same, the strings are searched until a 
character is found that differs. If one string runs out of letters before a differ
ence is found, the shorter string is considered to be the smaller. Spaces in the 
string are treated as the ASCII code 33, which comes before the codes of all 
other alphabetic characters. According to this scheme, the following strings 
are arranged in order from small to large: 

A 
APPLE 
APPLICATION 
ARCTANGENT 
ARCHER 
ARCTURUS 
ARNLEY 
B 

Note that numbers are compared as strings, not by their numeric values, so 
that ".l" < "0" < "324" < "4.2". To get a correct numeric ordering, use the 
VAL string conversion function. 

The major problem with ASCII ordering is that lowercase letters are not 
compared correctly. The ASCII codes for the capital letters run from 65 (A) to 
90 (Z). The lowercase letters, however, are given ASCII codes from 97 (a) 
to 122 (z). All lowercase letters are therefore considered to be greater than 
even the last of the capital letters, so that a lowercase a will be ranked after a 
capital Z. So, if a list includes names with lowercase letters, it will come out 
looking like this: 

ARCHER 
ARNLEY 
Apple 
Arcturus 
B 
a 
application 
arc tangent 

To overcome this defect, Macintosh BASIC has an alternative ordering, called 
NATIVE (for "native language"). The NATIVE ordering ignores all differ
ences between capital and lowercase letters, except where there is no other dif
ference between the strings. This "intelligent" ordering system is therefore 
much better suited for alphabetizing strings. 



o STANDARD o 

Macintosh BASIC retains compatibility with standard BASIC by using 
ASCII ordering as its default setting. Since most other dialects of BASIC do 
not have the NATIVE ordering option, you should use the standard ordering 
whenever there is any possibility you might later translate the program into 
another version of BASIC. Also, if you are only using string comparisons of 
the equal/not-equal variety, you often won't need to change to the alternative 
ordering, since ASCII ordering can accurately tell whether two strings are 
identical. 

If you have switched over to NATIVE ordering, you can restore the default 
ASCII ordering with the statement 

OPTION COLLATE STANDARD 

If you have not switched to the alternative ordering, you do not need to use 
this statement, since it merely restores the default. 

See the entry under NATIVE for a complete description of the native
language ordering system. 



Syntax 
STOP 

BASIC command-interrupts program 
execution 

Interrupts execution of the program; treated as an error condition. 

Description 
The STOP statement unconditionally interrupts program execution. It may 

be included in an IF statement or block: 

IF Condition- THEN STOP 

Macintosh BASIC responds to a STOP statement by halting the program and 
turning on the debugger, as if an error had occurred. A beep will sound, and 
you will fmd a fmger pointing to the line of code where the STOP statement 
appears in the listing window. 

The effect is essentially the same as clicking Halt on the Program Menu, or 
pressing Control-H, except that you cannot resume execution once a STOP 
command is encountered. 

The STOP command is useful mainly when debugging a program. You can 
insert a STOP command to be sure that a program has reached a certain line 
of code. Similarly, you want to determine whether a value has exceeded the 
range within which it is supposed to fall, you can include a STOP statement to 
alert you to the point where the error occurs: 

IF Value>ExpectedValue THEN STOP 

It is considered bad programming practice to use STOP to interrupt programs 
that you plan to use for general circulation. 



~...__I _S_T_O_P_S_O_U_N_D __ I p 
Sound command-cuts off the sounds being 

played by the sound system. 

Syntax 
STOPSOUND 

Turns off the output of the sound system and discards any sounds 
still pending in the sound buff er. 

Description 
The SOUND command in Macintosh BASIC sends its output to a sound 

buffer, which stores the notes in a queue so that the notes do not have to be 
played all at once. While the notes are waiting in the buff er to be played, your 
BASIC program may go on to other things. 

If you want the pending sounds cut off at some point before the buffer's 
contents are exhausted, you can use a STOPSOUND command. In the sound 
effects application program under SOUND, for example, a STOPSOUND 
command was used to cut off the sound when the mouse was clicked to call 
for a new sound effect. 

STOPSOUND is less useful than the other sound commands, because it 
gives a rather annoying click as it shuts the sound system off. It is also slow 
compared with the SOUNDOVER- function, and is therefore not adapted to 
real-time programming. The same result can usually be achieved by using 
SOUNDOVER- to make certain that the program does not get too far ahead 
of the sound buffer. 

See SOUND for further details. 



---j I STR$ I t--__, ____________ ____,c F 

Syntax 

String conversion function-converts a 
number to a string equivalent. 

Result$ = STR$(NumericValue) 

Returns a string representation of the numeric value that is its 
argument. 

Description 
Given a numeric argument, the STR$ function returns a string version of 

the numeric value. Specifically, the string returned by STR$ consists of the 
characters the computer would put on the screen to display the number. STR$ 
works with all numeric data types. The principal difference between the value 
returned by STR$ and its argument is that the returned value is stored in the 
computer's memory as a series of ASCII characters, one to a byte, rather than 
as a numeric quantity. 

The STR$ function can be used to insert the values currently held by 
numeric variables into a concatenated string for printing: 

Final$ = "On" & DATE$ & "you will receive" & STR$(Amount) & "." 
PRINT Final$ 

Under some circumstances, however, this can be done more gracefully using 
the FORMAT$ function. 

You can also use STR$ in conjunction with other string functions when you 
want to extract a part of a number: 

Amount = 1200.72 
PRINT RIGHT$(STR$(Amount),3) 

This pair of statements would print ". 72". 
The inverse of STR$ is VAL, which returns the numeric value of a string. 



--=11 STREAM It--==i .__· --------F 

Syntax 

File organization specifier-designates a file 
as a STREAM file. 

OPEN #Channel:"FileName",Access,format,STREAM 

Opens the specified file as a STREAM file consisting of continuous 
data. 

Description 
A STREAM file is a continuous sequence of data, which is always read or 

written from start to finish. STREAM files are organized like SEQUENTIAL 
files, except that they have no file pointer that you can move to an individual 
record. None of the file pointer commands can be used with a STREAM file. 

A stream file can have any format attribute-TEXT, DATA, or BINY. Like 
a SEQUENTIAL file, a STREAM file is read or written with the statements 
INPUT #, LINE INPUT #, and PRINT #. Each of these statements works on 
fields within an individual record within the file; however, there is no file 
pointer that you can move to a specific record out of the start-to-finish 
sequence. 

STREAM files are characteristically used to send data to devices other than 
a disk drive, such as a modem or a printer. You can, for example, read a file 
from disk and send it directly to the printer as a STREAM file. 



-=--J I SUB I t-==i L-----------J F 

BASIC command-defines a subroutine. 

Syntax 
CALL Subroutine(A 1,A2, ... ) 

• 
• 
• 

END MAIN 

SUB Subroutine(Arg1 ,Arg2, ... ) 

• 
• 
• 

END SUB 

Marks the beginning of a subroutine. When a subroutine is called 
by a CALL statement, the statements within the subroutine are exe
cuted sequentially up to the END SUB statement. 

Description 
The SUB statement defines a subroutine to be called by a CALL statement. 

A subroutine is a block of statements separated from the main body of a pro
gram. They are used to code a group of statements that must be executed 
repeatedly at different points in the program, and to break a program up into 
convenient modular units. 

The SUB statement marks the beginning of a subroutine. The command 
must contain the keyword SUB and the name of the subroutine. Optionally, it 
may also contain a list of dummy arguments that receive values from the 
CALL statement. 



oSUB o 

The end of the subroutine is marked by an END SUB statement. By con
vention, intervening lines are indented. 

A subroutine defined with SUB is called by a CALL statement, containing the 
keyword CALL, the name of the subroutine, and a parameter list of arguments 
to be passed to the dummy arguments in the subroutine definition SQ different 
arguments can be passed to the subroutine by different CALL statements. When 
the computer encounters a CALL statement, it assigns the values, variables, or 
expressions in the list of calling parameters to the dummy arguments in order. 
The parameters in the two statements must match in number and type, but need 
not have the same names. Only those values passed as variable names, arrays, 
and array elements can receive values from the subroutine. 

Any type of variable can be passed to a subroutine, including an entire 
array. To pass an array, the array name, followed by empty parentheses should 
appear in the calling statement. If the array has more than one dimension, a 
comma should be placed within the parentheses for each dimension other than 
the first. 

When the subroutine is called, the statements within it are executed as a 
block. Before the end of the subroutine, any values to be passed back to the 
calling program should be assigned to variables from the list of dummy argu
ments. They will then be transferred automatically to the corresponding call
ing variables. When the END SUB statement is reached, execution resumes at 
the line following the CALL statement. 

For further information see the entry under CALL. 



Syntax 

Text output function-moves the insertion 
point horizontally in a PRINT statement. 

PRINT ... TAB(Column); ••• 

In the middle of a PRINT statement output list, the TAB function 
moves the insertion point to a given column. 

Description 
The insertion point, a flashing vertical line, marks the place in the output 

window where the next PRINT or INPUT statement will begin displaying its 
text. This is the Macintosh equivalent of a cursor. 

There are two ways to position the insertion point for PRINT output. One 
way is to use SET VPOS and SET HPOS before the PRINT command to 
move the insertion point. The other way is to use the TAB function in the 
middle of the output list. 

As a PRINT statement displays a line of text on the screen, it scans through 
its list of expressions to be printed. Each new variable or expression from left 
to right is evaluated and displayed. Initially, the insertion point marks the 
starting position of the first field of output. Then it moves continually to 
the right, keeping just ahead of the characters appearing on the screen. The 
insertion point always comes right after the last character printed, so that it 
can properly position the next item in the PRINT list. 

The TAB function jumps the insertion point horizontally to another posi
tion on the output line. Its argument is a positive integer, that names the 
column to which the insertion point will move. If the function's argument is 
greater than the current character position of the insertion point, TAB will 
move the point, and therefore the next output field, to the right. If the argu
ment is less than the current character position, TAB moves the insertion point 
leftward, generally across ~~xt that is already on the screen. The tab column is 
always counted from the left edge of the screen. Each column space is equal to 
the width of a one-digit number in the type font being used (all numbers have 
the same width within each Macintosh font). 



oTABo 

TAB has no relation to the tab fields set by TABWIDTH. Tab fields are 
used by typing a comma in the PRINT output list. 

TAB itself is a function that can only be used in a PRINT statement, 
embedded within the output list. The TAB function cannot be used by itself, 
or in any other statement besides PRINT. With GPRINT, it sometimes gives 
correct results, but it is a matter of chance. Like other PRINT output fields, 
TAB should be followed by a semicolon (;). 

The main problem with TAB is that the standard Macintosh type fonts are 
proportionally spaced, meaning that they allot a narrower space to a thin 
character such as an i than to a wide letter like m. Try the following two com
mands, for example: 

PRINT "mmmmm"; TAB(lO); "Column 10'' 
PRINT "iiiii"; TAB(lO); "Column 10" 

Generally in a case like this, you would want the two messages reading 
"Column 10" to line up one above the other. Instead, the wide m's stretch out 
the first line so that its tenth column is well to the right of the tenth column in 
the second row. 

This is not a problem if you are just printing columns of numbers, because 
within each font all the numeric digits have the same width. If you need to 
arrange ordinary text in columns, you can avoid proportional spacing prob
lems by using Monaco font, which uses a fixed width for letters as well as 
numerals. 

TAB and SET HPOS work in exactly the same way. However, because TAB 
is embedded within the output list, it is easier to use than SET HPOS. With 
SET HPOS, the "mmmmm" example above would have required three state
ments instead of one. 

PRINT "mmmmm"; 
SET HPOS 10 
PRINT "Column 10" 

For more details on moving the text insertion point, see PRINT and HPOS. 

TAB-Translation Key 

Microsoft BASIC TAB 

Applesoft BASIC TAB 



----11 TABWIDTH lt--=-1-----------'·F 

Text set-option-sets the width of tab fields. 

Syntax 
ITJ SET TABWIDTH X 

(1) ASK TABWIDTH X 

Changes or checks the width of the tab stops for PRINT and 
GPRINT text. 

Description 
If you separate two items by a comma in a PRINT or GPRINT output list, 

the second item will be moved over to the next tab stop. The tab stops are set 
arbitrarily at 100-pixel intervals, starting at H = 7. The standard output win
dow is 240 pixels across, so you can only see the first two tab columns, plus a 
little of a third. Of course, you can scroll or resize the window to see columns 
beyond the right edge. 

Using the TABWIDTH set-option, you can change the width of these tab 
fields. For example, if you give the command: 

SET TABWIDTH 40 

you will be able to fit six tab fields in the standard output window. The six 
fields will start at the horizontal coordinates 7, 47, 87, 127, 167, and 207. 

You should remember that these tab stops are counted from the fixed win
dow edge, regardless of the place you choose to start your text. With the 
above TABWIDTH setting in effect, try a GPRINT starting from horizontal 
coordinate 20: 

GPRINT AT 20,12; "A","B","C","D","E","F" 



oTABWIDTH o 

The leftmost column of the resulting output will be narrower than the others, 
since the GPRINT message did not start at the left margin of the field. The 
messages at the other five tab stops are not moved over. 

Do not confuse TABWIDTH with TAB, the text output function that 
moves PRINT text a specified number of character positions horizontally. 
TABWIDTH measures its tab stops in graphics pixels, not in text character 
positions. It is therefore independent of the commands such as TAB and 
HPOS, which work in character positions. TABWIDTH deals only with the 
spacing of the fields defmed by commas in the output list. 

TABWIDTH is one of the few commands that affects both PRINT and 
GPRINT. For further information, see the entries for those two commands. 



:---11 TAN II:= 
==i----------~F 

Numeric function-finds the tangent of an 
angle measured in radians. 

Syntax 
Result = TAN(Angle) 

Returns the trigonometric tangent of the specified angle, which 
must be given in radians. 

Description 
Given an angle expressed in radians, the TAN function returns the tangent 

of the angle. The tangent is defined simply as the sine of the angle divided by 
the cosine. 

Figure 1 shows a graph of the tangent function. Unlike the trigonometric 
functions SIN and COS, the tangent function is discontinuous, going to infin
ity at every odd multiple of n/2. 

Figure 2 illustrates one geometric meaning of the tangent function. On a 
right triangle, the tangent gives the length of the side opposite a given angle 
divided by the length of the side adjacent to the angle. In the triangles in Fig
ure 2, the tangent could measure either the ratio Vl/Hl for the smaller trian
gle or the ratio V2/H2 for the larger triangle. Since the angle is the same for 
both triangles, the ratios are also the same. 

Notes 
-There is an inverse function for the tangent, called the arc tangent, repre

sented in BASIC by the function name ATN. The arc tangent does the oppo
site operation from the tangent: it takes a number and returns the angle that 
has that number as its tangent. See ATN for further details. For a full descrip
tion of the trigonometric functions, see SIN. 



oTANo 

TAN-function Graph 
TAN{X) 

3 

2 

Figure 1: TAN-Graph of the tangent function. 

TAN(Angle) 
= H 1/V1 
= H2/V2 

~----- H2 -----~ 

V2 

TAN= 
Oppos1te/ 
Adjacent 

Figure 2: TAN-The geometric meaning of the tangent function. 



---j I TEXT I f--:==i ------------'· F 

Syntax 

File format specifier-marks a file as a text 
file. 

OPEN #Channel: "FileName" ,Access, TEXT,Organization 

Opens the specified file as a TEXT file with the specified access and 
organization attributes. 

Description 
TEXT files are files consisting of ASCII characters. All data, regardless of 

its composition, is stored as ASCII characters in TEXT files. Fields in TEXT 
files are separated by tab stops, and records are separated by carriage returns. 

You write to a TEXT file with the PRINT # statement instead of the 
WRITE # statement used for other types of files, and writing to a TEXT file 
is, in fact, quite similar to printing characters on the screen. A comma 
between variable names in a PRINT # statement specifies the end of a field by 
placing a tab stop in the file. A semicolon at the end of a variable name (or a 
literal) indicates that the end of the field has not yet been reached, and the 
next entry should be included as part of the same field. The field will not end 
until a comma or carriage return is entered. 

To read from a TEXT file, you use the INPUT # statement, rather than the 
READ # statement. The variables into which you want to read the data should 
appear in the INPUT # statement, separated by commas. Since all the data are 
in ASCII format, you can avoid type mismatch errors by using only string 
variables in INPUT #statements. You can convert any numeric quantities 
later with the VAL function if you wish. Entire records can be read into a sin
gle variable with the LINE INPUT # statement. 



oTEXTo 

TEXT file operations are somewhat slower than operations on other types 
of files. As each character is sent to the file, it must first be converted from 
ASCII to binary, and then back to ASCII. This double conversion, which con
sumes some time, is not necessary with other types of files. 

On the other hand, with TEXT files you get added flexibility. Because all 
the data can be treated as string data, you can read and write it easily, without 
worrying about data types. At the same time, you are assured of a degree of 
compatibility with other Macintosh applications-data in the form of ASCII 
characters can easily be cut and pasted into other Macintosh documents. 

Sample Program 
The following program demonstrates some of the flexibility of TEXT files. 

A SEQUENTIAL TEXT file is opened both for input and output by the 
OUTIN access attribute. 

1\vo variables are input from the keyboard and written to the file as a single 
record. They are both stored in string variables to assure that leading zeros 
will be written to the file. Next the file is read several different ways, and the 
results printed on the screen. 

I TEXT-Sample Program 
OPEN #12: "TestText",OUTIN, TEXT, SEQUENTIAL 
INPUT "Name?"; Name$ 
INPUT "Number?"; Number$ 
PRINT #12: Name$, Number$ 
INPUT #12, BEGIN: String$, Numeric$ 
PRINT String$, Numeric$ 
LINE INPUT #12, SAME: String$ 
PRINT String$ 
INPUT #12, SAME: String$, Numeric 
PRINT String$, Numeric 
CLOSE #12 

The output appears in Figure 1. Notice what happens with each of three 
ways of reading the data in the file. First, the two fields of the first record are 
read into a pair of string variables, just as they were written. So, the output is 
identical to the input. Next, a LINE INPUT # statement is used to read the 
entire record into a single string. Note how, when it is printed on the screen, 
the tab stop that separates the fields functions as a tab stop on the screen. 
Finally, the third pass divides the data, reading the name field into a string 
variable and the number field into a numeric variable. The data for the second 



o TEXTo 

field is numeric, so there is no problem assigning it to a numeric variable 
although it does cause the leading zeros to be stripped. Reading "Fred" into a 
numeric variable, however, would cause a "type mismatch" error. 

Notes 
-For additional programs that read and write text files, see the INPUT# 

and PRINT # entries. 

-Other file format specifiers are DATA and BINY. If you do not specify a 
format, your file will automatically be a IBXT file. 

§0 TEHT-Sample Program 

Name? Fred • 
Number? 0023 
Fred 0023 
Fred 0023 
Fred 23 

Figure 1: TEXT-Output of Sample Program. 



Syntax 

File contingency function-determines 
whether record in a DATA RECSIZE file is 

present. 

WRITE #Channel, IF THERE- THEN Statement: 110 List 

Directs the computer to execute the given statement if the file 
pointer in the file open on the channel specified points to an exist
ing record. 

Description 
THERE"' is a file contingency function used for writing to random access 

DATA files. It returns TRUE if the file pointer is pointing to a record that has 
already been written, so you can avoid writing over a record by accident. 

THERE"' is used in file contingency statements as part of the file command 
WRITE#. The contingency statement follows immediately after the channel 
number in the WRITE # command, separated from it by a comma. It is a 
simple IF /THEN statement directing the program to perform a specific action 
if the condition is true. The 1/0 list is one or more values (constants, vari
ables, or expressions) to be written to the file. 

Random access files are files of fixed-length, numbered records. The length 
of a record is indicated in the RECSIZE command in the OPEN # statement. 
Such a file is set up as a series of storage segments of equal length, each with 
its own number. Since deleting a record will leave a record number with no 
corresponding record, and since a RECSIZE file can be longer than the num
ber of records it contains (i.e., can contain empty records at the end), you 
might want to write to empty records than might not be at the end of the file. 



o THERE-o 

To save space, you would write to the first available empty record. The 
THERE" contingency can be used to check whether a record is filled, so you 
can skip that record in a WRITE # operation. For example: 

DO 
WRITE #4, IF THERE"" THEN GOSUB Save:Name$,Address$ 
IF ATEOF" (#4) THEN EXIT 

LOOP 
CLOSE #4 

This loop sends the program to a subroutine in the event of an existing record, 
and has a provision to close the file if the end is reached, to avoid an error 
condition. 

Notes 
-THERE" is the inverse of MISSING - , which is used in READ # opera

tions to avoid reading a nonexistent record. 



~l __ TI_C_K_C_O_U_N_T __ I~ 

System function-the system tick clock 
increments approximately every 1I60 second 

Syntax 
T = TICKCOUNT 

Assigns to T the current value of the system tick clock. 

Description 
TICKCOUNT is a function tied to an internal timer on the Macintosh that 

increments by 1 approximately 60 times per second. The exact frequency is 
60.1474 Hz, the vertical scan frequency of the Macintosh screen. 

TICKCOUNT is useful for timing events in a program precisely. Unlike the 
tick clock of some other Macintosh programming languages, Macintosh 
BASIC's TICKCOUNT is returned as a real variable. Its value represents a 
long (32-bit) integer, which can increment up to over a billion before starting 
again at 0. TICKCOUNT is reset to 0 every time you reset the computer, 
unlike the system clock, which runs continuously. The TICKCOUNT function 
takes no argument. 

Sample Program 
The program below tests the TICKCOUNT function to determine precisely 

how many ticks there are per minute. 

I TICKCOUNT-Sample Program 
I Figure number of ticks per minute 
I (Answer = 3609, or 60.15 per second) 



OldT = 0 
00 

o TICKCOUNT o 

! Initialize counter 

T = TICKCOUNT 
T$ =TIME$ ! System dock 

! Seconds digits IF MID$(T$,LEN(T$)-4,2)="00" THEN 
PRINT T$, T, T - OldT ! T - OldT = ticks/min. 
OldT = T 
FOR Delay= 1TO5000:NEXT Delay 

END IF 
! Avoid multiple prints 

LOOP 

As the output shown in Figure 1 indicates, there are approximately 3609 
ticks per minute, or 60.15 per second. If you want to time things to the second 
using TICKCOUNT, you can use statements of the form: 

T = TICKCOUNT 
IF TICKCOUNT;;il: T + 3609 THEN 

OldT = T 
T = TICKCOUNT 
Statement(s) 

END IF 

_ = TICKCOUNT-Sample Program~ 
4:20:00 PM 94043 94043 
4:21 :00 PM 97652 3609 
4:22:00 PM 101261 3609 
4:23:00 PM 1 04870 3609 
4:24:00 PM 1 08479 3609 
4:25:00 PM 1 12087 3608 
4:26:00 PM 1 15696 3609 
4:27:00 PM 1 1 9305 3609 
4:28:00 PM 1229 14 3609 
4:29:00 PM 126523 3609 
4:30:00 PM 1 30 132 3609 

Figure 1: TICKCOUNT-Output of Sample Program. 



o TICKCOUNT o 

Applications 
TICKCOUNT can be used for much more precise timing than the system 

clock TIME$, which changes only once every second. Any program that must 
detect precise timing intervals should use TICKCOUNT. For a timed delay of 
one second, for example, you could use the following program segment: 

StartTick = TICKCOUNT 
00 

IF TICKCOUNT - StartTick>60 THEN EXIT 
LOOP 

Note that simply detecting the change of TIME$ from one second to the next will 
not give a precise second, since the program might encounter the loop either just 
before or just after the change of the seconds digit. The TICKCOUNT timing 
loop is also more precise than an empty FOR/NEXT delay loop: 

FOR Delay= 1 TO 10000 
NEXT Delay 

In animation programs, TICKCOUNT is frequently used for clocking the 
movement of an object. Objects may be drawn at different speeds depending 
on their sizes, so a program that uses only the timing of graphics operations 
may not run smoothly. By calculating the object's position in relation to the 
number returned by TICKCOUNT, the actions of different objects can be 
made to proceed at the same speed, no matter how long the graphics opera
tions themselves may take. See the spinning disk program under OVAL for an 
example of this technique. 

Notes 
-If you need to time events only to the second, you can use the TIME$ 

function. Since it changes once a second, statements of the form: 

T$ =TIME$ 
00 

IF T$< >TIME$ THEN 
Statement(S) 

END IF 
T$ =TIME$ 

LOOP 

See the TIME$ entry for further information. 



o TICKCOUNT o 

-A program using TICKCOUNT to measure precise timing can be found 
in the Notes section of the FOR entry. 

-Since the number returned by TICKCOUNT does not roll over to 0 until 
it passes 2 "31, or more than 2 billion, it will keep steadily increasing for more 
than a year-longer than the longest program you're ever likely to run. So you 
can compare a new TICKCOUNT value to an old value without worrying that 
the new value will be lower than the old one because of a turnover. 



---j I TIMES I t--===i ....._· --------F 

String function-returns the current time on 
the system clock 

Syntax 
T$ =TIME$ 

Returns the current time on the system clock as a string of the form 
Hours:Minutes:Seconds AM/PM, and assigns it to T$. 

Description 
The TIME$ function reads the system clock, and returns the current time as 

a string containing numerals for the hour, minute, and second, separated by 
colons and followed by AM or PM. If the hour Is less than 10, it is repre
sented by a one-digit number; otherwise it is two digits. The TIME$ function 
takes no argument. 

The value returned by TIME$, which is updated every second, can be 
assigned to another variable. This is useful if you wish to compare a previous 
time to the current time. TIME$ can therefore be used to time events in a pro
gram. If you want a certain group of statements to be executed once every 
second, you can use the following statements: 

DO 
T$ =TIME$ 
IF T$;1:01dT$ THEN 

• 
• 
• 

END IF 
OldT$=T$ 

LOOP 



o TIME$ o 

If you need to time events more precisely than to the nearest second, use the 
TICKCOUNT function, which counts "ticks," or intervals of approximately 
1/60 second. 

The TIME$ function is often used in a simple PRINT statement: 

PRINT TIME$ 

This can be used in a program to show the current time on output documents, 
or to write the time to a file, in conjunction with the DATE$, to indicate the 
last time the file was updated. (The Macintosh automatically dates all files 
with a code in the FILEINFO block, but the codes are hard to translate back 
into a string date. See GETFILEINFO for details.) 

The accuracy of TIME$ depends on the setting of the system clock, which 
is set through the Alarm Clock or through the Control Panel on the desktop. 
The system clock is battery-operated, so it keeps time even when the power is 
turned off or unplugged. 

The operating system on the international version of the Macintosh uses a 
localized resource file to determine the form of the time string. On a Macin
tosh sold in Germany, for instance, the TIME$ function returns the time in 
the standard German format: 

13.30.00 Uhr 

instead of 

1:30:00 PM 

Sample Program 
This sample program uses Macintosh BASIC's string functions to extract 

the four parts of the time string-hours, minutes, seconds, and meridian
from TIME$, then the program prints the time with the units expressed in 
English words using the 24-hour military-clock system. 

T$ =TIME$ 
PRINT T$ 
Meridian$ = RIGHT$ (f$,2) 
Sec = VAL(MID$(f$,LEN(f$) - 4,2)) 
Min = VAL(MID$(f$,LEN(f$) - 7,2)) 
Hrs = VAL(MID$(f$,LEN(f$) -10,2)) 
IF Meridian$= "PM" THEN Hrs = Hrs+ 12 
PRINT Hrs; " hours," Min; "minutes,"; Sec; "seconds" 



o TIME$ o 

The technique is virtually the same for extracting hours, minutes, or sec
onds from the string. First the length of the string is taken by the LEN func
tion; the length can vary depending on whether the hour is one or two digits. 
The characters after the hours always keep the same form. Therefore, a num
ber subtracted from the length of the string can be used to locate the starting 
point for each value. This is accomplished by subtracting a number from the 
result returned by the LEN function. This process is carried out in the second 
argument to MID$, which is set to extract two characters. Finally, the 
numeral-string result is converted to a numeric quantity by the VAL function. 
This is necessary if any numeric calculations are to be performed based on the 
various time values. In this program, only Hrs is involved in such a calcula
tion: if the Meridian$ is "PM", 12 is added to Hrs to get the 24-hour time. 
Sample output appears in Figure 1. 

Applications 
In the program shown in Figure 2, the TIME$ function is used to determine 

the setting for a running analog clock, which is drawn in the output window 
and updated every second. 

§0 Tl MES-Sample Program 
2:46:14 PM • 
14 hours, 46 minutes, 14 seconds 

Figure 1: TIME$-Output of Sample Program. 



o TIME$ o 

CALL DrawClockFace 
SET PENMODE 10 ! XOR for animation 
OldT$ =TIME$ 
CALL Decode(OldT$, OldSec, OldMin, OldHrs) 
CALL DrawSec(OldSec) 
CALL DrawMin(OldMin) 
CALL DrawHrs(OldHrs) 
DO 

T$ =TIME$ 
CALL Decode(T$,Sec,Min,Hrs) 
IF Sec ;e OJ dSec THEN 

CALL DrawSec(OldSec) 
CALL DrawSec(Sec) 
OldSec =Sec 

ENDIF 
IF Min .e OldMin THEN 

CALL DrawMin(OldMin) 
CALL DrawMin(Min) 
OldMin = Min 
CALL DrawHrs(OldHrs) 
CALL DrawHrs(Hrs) 
OldHrs =Hrs 

ENDIF 
LOOP 
END MAIN 

SUB DrawClockFace 
SET PENSIZE 2,2 
SET PATTERN ltGray 
PAINT RECT 0,0; 241,241 
ERASE OVAL 20,20; 220,220 
SET PATTERN Black 
FRAME OVAL 20,20; 220,220 
PAINT OVAL 117,117; 123,123 
SET PENSIZE 1, 1 
SET FONT 2 
SET FONTSIZE 14 
SET GTEXTF ACE I 

! Venice font 
I 14-point 
I Outline style 

FOR Number = 1 TO 12 
Angle= (Number/ 12)*2*11 
H = SIN(Angle) 
V = -COS(Angle) 
PLOT 120+94*H,120+94*V; 120+99*H, 120+99*V 
IF Number= 12 THEN H=H-5/84 ! Adjust for 2-digit number 

Figure 2: TIME$-Clock Program. 



oTIME$ o 

GPR I NT AT 1 15+84*H, 125+84*V; Number 
NEXT Number 

END SUB 

SUB Decode(T$, Sec, Min, Hrs) 
Sec= \IAL(MIDS(T$,LEN(T$)-4,2)) 
Min= VAL(MIDS(T$,LEN(T$)-7,2)) 
Hrs= VAL(MIDS(T$,LEN(T$)-10,2)) 
Hrs = Hrs+ Min/60 

END SUB 

SUB DrawSec(Sec) 
Angle = (Sec:/60)*2*11 
H = 90*SIN(Angle) 
v = -90*COS(Angle) 
SET PENSIZE 1, 1 
PLOT 120, 120; 120+H, 120+\I 

END SUB 

SUB DrawMin(Min) 
Angle= (Min/60)*2*11 
H = 80*SIN(Angle) 
V = -80*COS(Angle) 
SET PENS I ZE 2,2 
PLOT 120, 120; 120+H, 120+\I 

END SUB 

SUB DrawHrs(Hrs) 
Angle = (Hrs/ 12)*2*11 
H = 60*SIN(Angle) 
V = -60*COS(Angle) 
SET PENSIZE 3,3 
PLOT 120, 120; 120+H, 120+V 

END SUB 

Figure 2: TIME$-Clock Program (continued). 

In the main program, a subroutine to draw the clock face is called, the ini
tial placement of the hands is determined, and the hands are drawn. The 
remainder of the main program is a loop which continually updates the posi
tions of the hands. 

The Decode subroutine uses the functions illustrated in the sample program 
above to determine the value for Hrs, Min, and Sec. A separate subroutine 
for each of the units of time draws its corresponding clockhand. Three sub
routines are needed because each hand is drawn differently. In each, a line is 



o TIME$ o 

plotted from the center of the clock to a point on a line intersecting the rim of 
the clock face. The position of the line is determined by the variable Angle, 
which calculates an appropriate angle for each hand, and by the SIN and COS 
functions, which determine the point on the circle toward which the line 
should be drawn. A sample output appears in Figure 3. 

A digital clock would, of course, be much easier, since it could simply print 
the time string. The application program for ERASE simulates the digital 
Alarm Clock desk accessory. 

Notes 
-Unlike the TIME$ function in Microsoft BASIC, you cannot assign a 

value to TIME$. The Macintosh BASIC system clock can only be reset 
through the Control Panel or Alarm Clock desk accessories. 

TIME$-Translation Key 

Microsoft BASIC 

Applesoft BASIC 

TIME$ 

9
1

~ 3 

~ 

Figure 3: TIME$-Output of Clock Program. 



----J I TONES I t-==i '--· ---------'· F 

Syntax 

Sound function-returns the numeric 
frequency of a given musical note. 

DJ Result = TONES(X) 

Returns an integer corresponding to the frequency of a given note 
on the musical scale. 

[I] SOUND TONES(X), Volume, Duration 

TONES is often used as a part of the SOUND statement, to play 
the notes whose frequency it returns. 

Description 
In Macintosh BASIC, the SOUND statement plays musical notes through the 

Macintosh sound system. To choose the tone, however, the SOUND statement 
requires a numeric value for the frequency, in cycles per second. That is fine for 
arbitrary sound effects that do not require musical tones; for playing musical 
scales, however, you would have to look the notes' frequencies up in a table. 

The TONES function lets you specify the notes in terms of the musical 
scale, without knowing the frequency. You pass it an identifying code number, 
an integer argument in the range from - 36 to 48, and it returns the frequency 
of a note in the chromatic scale. These are the notes that could be played on a 
piano keyboard using both the white and black keys. Middle C is given by 
TONES(O); negative arguments for TONES give below middle C; positive 
arguments give the notes above. (Frequencies will also be returned for tone 
numbers outside the allowed range, but they will not play correctly in the 
SOUND command.) 



oTONES o 

The values returned by TONES are shown in Figure 1. These numbers rep
resent the frequencies of notes in the musical scale, rounded to the nearest 
integer. The notes are arranged in vertical columns of twelve notes each, which 
are the musical octaves. Middle C, at the top of the fourth octave in this 
chart, has the frequency 262. 

The TONES function is a standard numeric function, but it is almost 
always used as a part of a SOUND statement: 

SOUND TONES(X), Volume, Duration 

You can also use TONES to store values into an array for later use in the 
array form of the SOUND statement. 

Applications 
The program in Figure 2 shows how you could use the TONES function to 

play music. The program paints a graphics keyboard on the screen, as in Fig
ure 3, and lets you play notes by moving the mouse across the keys. The notes 
are always chosen from the same C-major scale, so that they will sound like 
improvised music. 

The TONES Function 

Not& TI Fr.-.q TI Frir.q TI F1·&q TI Freq TI Freq T / Frir.q T / Fr&q T /Freq 

c -36 33 -24 65 -12 131 0 262 12 523 24 1047 36 2093 48 4186 
(:# -35 35 -23 69 -11 139 1 277 13 554 25 1109 37 2217 

D -34 37 -22 73 -10 147 2 294 14 587 26 1175 38 2349 
1)# -a:a: a:9 -:2' 79 -9 15(, :; a:t 1 '5 6:22 27 1245 a:9 2499 

E -32 41 -20 82 -8 165 4 330 16 659 28 1319 40 2637 

F -31 44 -19 87 -7 175 5 349 17 698 29 1397 41 2794 

F'• -a:o 4€. -19 92 -6 195 6 37(1 19 740 3(1 149(1 42 296(1 

G -:29 49 -17 99 -5 196 7 392 19 784 31 1568 43 3136 
G# -28 52 -16 104 -4 208 8 415 20 831 32 1661 44 3322 

A -27 55 -15 110 -3 220 9 440 21 880 33 1760 45 3520 
A• -26 58 -14 117 -2 233 10 466 22 932 34 1865 46 3729 

B -25 62 -13 123 -1 247 11 494 23 988 35 1976 47 3951 

figure 1: For the code number T, the TONES function returns the frequency of a note on the 
· musical scale. 



oTONES o 

! ----------------------Jazz Musician----------------------! 

! -----Initialize variables----- ! 
Transpose%= o ! Defines key for improvisation {0 =key of C) 
Leftl = 50 ! Left margin for keyboard. 
WWidth:C = 8 ! Width of white keys. 
BWidth:C = 6 ! Width of black keys. Make sure this number is even! 
WBottom:C = 170 ! Bottom pixel location of white keys. 
BBottom:C = 160 ! Bottom pixel location of black keys. 
Right%= Left% + 7 * 7 * WWidth:C + WWidth:C I Right margin 
Topi= 130 ! Top pixel location of the keyboard. 
Conv = 85/{Right%-Left%) ! Constant avoids calculations in real-time loop. 

! -----Set up Boolean array for major scale----- I 
Dlt1 MScale-{ 11) 
lnMScale$ = "TFTFTTFTFTFT" ! T means allowed note in scale 
FOR N = 0 to 11 

Test$= t11DS{ lnMScale$, N+ 1, 1) 
IF (Test$ = "T") THEN MScale-(N) =TRUE 

NEXT N 

! -----Print messages -----! 
SET OUTPUT ToScreen 
SET FONT 2 ! New Vork 
SET FONTSIZE 18 ! 18-point 
SET GTEXTFACE 3 ! Boldface and italic 
GPRINT AT Leftl+90,Topl-25; "The Jazz Musician· 

! -----Draw the keyboard----- ! 
H% =Left% 
!SET PENMODE 9 
FOR N = -36 to 48 

Note%= REt1AINDER(N, 12) 
IF SGN{ Note% ) = -1 THEN Note% = Note% + 12 
IF MScale-c Note%) THEN 

FRAME RECT H:C, Top%; H:C + WWidth:C, WBottom:C 
H:C = H:C + WWidth:C 
ELSE 
PAINT RECT H%-BWidth%/2, Top%; H:C + BWidth:C/2, BBottom% 

ENDIF 
NEXT N 

Figure 2: TONES-Application Program 



oTONES o 

! -----Action-packed real-time loop----- ! 
DO 

H = t10USEH ! Is the mouse over the keyboard? 
V = HOUSEY ! (button doesn't have to be down) 
IF (V < WBottom:l)AND(V > Top:&)AND(H > Left:&)AND(H < Right:&) THEN 

I The mouse position is converted to a pitch. 
Note:& = RINT((H - Left:&)*Conv) - 36 

! This loop produces the note in the major scale closest to the mouse. 
DO 

NoteNum:& = REHA I NDER(Note:&-Transpose:&, 12) 
IF SGN( NoteNum:& ) = -1 THEN NoteNum:& = NoteNum:& + 12 

IF MScale~( NoteNum:& ) THEN ! If note is in scale, go onward 
EXIT ! If not in scale, try next note in 

ELSE I direction of previous pitch. 
Note:& = Note:& + SGN( OldNote:& - Note:& ) 

ENDIF 
LOOP 
DldNote:& = Note:& 

I Wait for the sound buffer to finish the preYious tone 
DO 

IF SOUNDOVER-THEN EXIT DO 
LOOP 

I This section handles pitch, duration, and performance. 
IF t10USEB- THEN ! If button down, play Jong tones 

SOUND TONES( Note:&), 10,25 
ELSE I If button up, play swing rhythm 

IF ( REMAINDER( 1,2) = 0 ) THEN 
SOUND TONES( Note:&), 10, 7 

ELSE 
SOUND TONES( Notelr), 10, 5 

ENDIF 
I = I + I 

ENDIF 
ENDIF 

LOOP ! Back to the top of the real-time loop. 

Figure 2: TONES-Application Program (continued) 



oTONES o 

TONES The Jazz Musician 

Tile Jazz Musician 

111111111111111111111111111111111111111111111111111 
tt-

Figure 3: TONES-Output of jazz musician application program. 

Rather than clicking on notes the way you would play a piano, you simply 
move the mouse across the keyboard. Whenever the mouse is over one of the 
keys, the program plays a continuous stream of notes, in a long-short swing 
rhythm. With the mouse down, it changes the rhythm to single long tone. 

If you sweep the mouse across the keys, the notes will be chosen by the keys 
you happen to be above. However, the program constrains the choice of pitches 
so that all of the notes are part of the same C-major scale. What you'll get is an 
instant improvisation, which is always playing notes from the same key. 

This program could be modified in many ways, to suit your musical tastes. 
Just by changing the value of the variable Transpose%, you can play an 
improvisation in a different key. With minor modifications, you could add 
minor scales and arpeggios. 

Notes 
-See SOUND for a full description of the Macintosh SOUND command. 



~I TOOLBOX/ /TOOL 

Syntax 

BASIC command words-call a 
machine-language toolbox routine or 

function. 

[]]TOOLBOX ProcedureName (Parameterlist) 

11:--: 
F 

Calls a machine-language routine in the Macintosh toolbox. 

~ Result= TOOL FundionName (Parameterlist) 

Gets a value from a machine-language function in the toolbox. 

Description 
The TOOLBOX and 100L statements are special additions to the Macin

tosh BASIC language. With these statements, you can call about 300 of the 
approximately 500 machine-language routines inside the toolbox-the Macin
tosh's ROM-based operating system. These routines are not BASIC com
mands or functions, but they provide a powerful supplement to the Macintosh 
BASIC language. 

In version 1.0 of Macintosh BASIC, the TOOLBOX and 100L commands 
were not even mentioned in Apple's documentation. The reason is that the two 
commands were not working perfectly at the time of the release, and Apple 
did not want to be held responsible for debugging them. The toolbox com
mands, however, are in the language, and they can be used by anyone willing 
to do a little experimentation. 

In this entry and a number of others in this book, you will get the directions 
you '11 need to do some initial explorations of the toolbox. This entry is a gen
eral overview of the toolbox and of each of four major sections of the toolbox 
that are accessible through BASIC. The most important toolbox graphics rou
tines are discussed under their own names in separate entries in this book. 



o TOOLBOX/ /TOOL o 

And, in Appendix D, you can fmd a detailed syntax description of all of the 
toolbox commands that are recognized by version 1.0 of Macintosh BASIC. 

You must be prepared for some bugs as you explore the toolbox. Not all of 
the toolbox commands work perfectly in the initial release of Macintosh 
BASIC, and some even cause system crashes. In certain cases, a toolbox com
mand will not recognize its parameters correctly, and it may not give the cor
rect results. There are usually other means within the toolbox to solve any 
problem, so you can generally work around a bug if you need to. Apple has 
plans to fix all of these bugs and at some point may include the TOOLBOX 
command as an official part of the language. 

You must remember that the toolbox routines are outside the relatively 
friendly realm of the BASIC language, which recognizes and signals many 
common errors. If you make an error on the type or number of parameters, 
the TOOLBOX statement will usually give a BASIC error message. With 
other types of mistakes, however, you can easily get a system crash or bi7.arre 
results, such as a fluttering screen image or a mouse pointer that refuses to 
move. These problems will not permanently damage your computer, but they 
will probably force you to reboot your system and start your program up 
again. Always save a toolbox program to disk before you try to run it! That 
way, if it crashes, you won't have to type it over again from scratch. 

DJ TOOLBOX ProcedureName (Parameterlist) 

The TOOLBOX command is a general command for calling a toolbox pro
cedure. A toolbox call consists of the BASIC keyword TOOLBOX, the name 
of a toolbox procedure, and the precise list of parameters expected by that 
procedure. The TOOLBOX command is used with every toolbox routine that 
is a procedure-the equivalent of a BASIC subroutine call. If these routines 
need to return a value, they must do so through a variable in the parameter 
list. The TOOL command, described below, calls those few toolbox routines 
that are functions, rather than procedures. 

The names of the toolbox procedures are fixed-they are standard names 
established by Apple for all Macintosh software. By convention, the toolbox 
names are typed with initial capital letters, but they will be recognized with 
either capital or lowercase letters. You must, however, spell the names exactly 
as they are listed in Appendix D, or they will not be recognized. 

There are other toolbox names that are not recognized by the TOOLBOX 
statement, even though they can be used by other Macintosh programming 
languages, such as Pascal. In Macintosh BASIC, the toolbox interface is lim
ited to four groups of toolbox commands: the QuickDraw graphics system, 



o TOOLBOX/ /TOOL o 

the window manager, the menu manager, and the control manager. Even 
within those groups, there are a few commands that have been omitted, either 
because they would have disastrous side effects on the BASIC system, or 
because they are fully duplicated by regular BASIC statements. You can tell 
whether a command is recogized by typing it into the TOOLBOX command: 
if the name is changed to boldface on the screen after you press Return, the 
name has been recognized. 

111 Result = TOOL functionName (ParameterList) 

A small fraction of the toolbox routines are not procedures, but functions, 
which return a value through the function name. For these routines, BASIC 
has a special function-call syntax, which uses the keyword TOOL rather 
than TOOLBOX. 

All TOOL functions are associated with a specific variable type, usually 
Boolean, integer, pointer, or handle. Even though the toolbox name itself does 
not contain a type identifier, it must be used as if it were a function of its spec
ified data type. These types are indicated in this book by the type identifier of 
the Result variable c- is a Boolean type, % is an integer, ] is a pointer, and } is 
a handle). 

Although a TOOL function is usually assigned directly to a variable in an 
assignment statement, it can be used in any place where a BASIC function of 
the same type could be used. A Boolean TOOL function, for example, could 
be placed as the condition of an IF statement. 

The Parameter List 

The trickiest part of using any toolbox routine is the parameter list. As with 
a BASIC subroutine call, each toolbox routine takes a very specific parameter 
list, which contains all of the values required for the routine's action. 

For any given toolbox command, the parameter list is absolutely fixed. 
Every command has a precise number of parameters (a few have none at all), 
and each parameter has a precise meaning. Any variation in the prescribed 
parameter list will lead to an error or even to a full system crash. Appendix D 
shows the exact parameter list expected by each toolbox routine. 

In many cases, the toolbox routines expect a data type in the parameter list 
which is not available in BASIC. The toolbox routines are designed for lan
guages such as Macintosh Pascal, which have specialized data types for points, 
rectangles, patterns, and cursors. These data types are lacking in Macintosh 
BASIC, so you need to take a somewhat roundabout route to simulate them. 



o TOOLBOX/ /TOOL o 

The best way to simulate a Macintosh Pascal data structure is to use an 
integer array with dimensions sufficient to hold the entire structure. Floating
point and other types of arrays are not good, because the complex exponent 
may change the bit patterns of the numbers that are stored. In simulating a 
data structure, you must define an array that is a bit-for-bit equivalent of the 
Pascal structure. Most of the Pascal data structures for toolbox routines are 
based on integer variables. 

In a few cases, you can also use a Boolean array, which is stored as a series 
of individual bits. Graphics patterns, for example, are represented by an 8 x 8-
square array of bits, which correspond to the individual dots of the pattern. 
While a pattern structure can be represented by a 4-element integer array, it is 
usually more convenient to use a 64-element Boolean array, in which each ele
ment represents an individual bit. This structure is usually defined as a 8 x 8-
element two-dimensional array, in order to match the structure of the pattern. 

When using arrays, remember that the first element of a BASIC array is 
numbered 0, rather than 1. The array can therefore be dimensioned with one 
number less than the total number of elements required. For example, a rec
tangle array requires four elements, and therefore should be given a dimension 
of 3-the four elements being numbered 0, 1, 2, and 3. An array with too 
large a dimension usually causes no problem (except to waste memory space). 
An array with a dimension too small, however, will often crash the system, 
because the toolbox routines will mistakenly take in numbers from somewhere 
outside the intended array. 

The following are the specialized Pascal data structures most commonly 
used with the toolbox, and the BASIC arrays that are used to simulate them: 

• Points (4 bytes). A 2-element integer array (elements numbered 0 and 1). 
Each element corresponds to one integer coordinate. See the SetPt entry 
for details. 

• Rectangles (8 bytes). A 4-element integer array, containing the coordi
nates of the points in the upper-left and lower-right corners, in that order, 
with the vertical coordinate coming first within each pair. Rectangle 
arrays are usually defined using the SetRect routine. See the SetRect 
entry for details. 

• Patterns (8 bytes). A 4-element integer array, or a 64-element Boolean 
array. Pattern arrays are described in the entry under PenPat. 



o TOOLBOX/ /TOOL o 

• Cursors (68 bytes). A 34-element integer array, used for the cursor rou
tines appearing in Appendix D. The first 16 elements contain the 16x16-
dot pattern for the cursor, the next 16 contain a 16x 16-dot mask, and 
the last two contain coordinates of the hot spot-the exact point to 
which the cursor is pointing within the field. 

• PenState (18 bytes). The routines GetPenState and SetPenState are used 
to store and retrieve the status of the graphics pen. A 9-element integer 
array will simulate the PenState data type as follows: elements 0 and 1 
give the pen position (as a point array), 2 and 3 give the pensize, 4 gives 
the penmode, and S through 8 give the current pattern. 

• Fontinfo (8 bytes). The routines GetFontlnfo and SetFontlnfo allow you 
to find out information about the current type font, and to alter it as you 
choose. A 4-element integer array will consist of elements as follows: ele
ment 0 gives the ascent height of the font (the height of a capital letter 
above the base line), element 1 gives the maximum depth of a descender 
(such as the tail of a letter y) below the base line, element 2 gives the 
maximum width of a character in the font, and element 3 the leading 
(space between lines). 

• Character (1 byte). For graphics routines that expect a character data 
type, you cannot use a BASIC Character data type. Instead, you must 
use an integer that contains the ASCII value of the character multiplied 
by 256. 

When passing a simulated array to the toolbox, you must prefix its name with 
the indirect addressing symbol, @, and you must pass the array as its zero ele
ment: @ArrayName%(0). Any other syntax will not work, and may cause a 
system crash. 

There are, fortunately, several BASIC data types that do work perfectly well 
with the toolbox: 

• Integers. Whenever a toolbox routine calls for a single numeric value, 
you can use an integer variable or constant. In most cases, a real con
stant or variable will be converted to an integer by the TOOLBOX state
ment as it passes the value to the routine. 

• Booleans. In the few cases where the toolbox expects a Boolean value, 
you can use a Boolean variable or constant. 

• Strings. A few toolbox routines require strings, which represent titles 
or text. 



o TOOLBOX/ /TOOL o 

• Pointers. Macintosh BASIC has a special pointer variable type, which 
holds the memory address of another object. In the window manager's 
toolbox routines, pointers are frequently used to refer to windows. 

• Handles. One of the most important structures provided by Macintosh 
BASIC is the handle, which is a pointer to a pointer. This complex struc
ture is required for representing any data structure that might be moved 
to a different memory location by the Macintosh's dynamic memory 
management system. Handles are used for all of the following toolbox 
structures: polygons, regions, menus, and controls. 

When you are in doubt about a toolbox parameter list, consuh the sum
mary in Appendix D. 

The Graphics Toolbox 
The most useful part of the toolbox is the QuickDraw graphics system, the 

set of sophisticated graphics routines that form the heart of the Macintosh. 
These routines are both powerful and fast-the ideal combinations for com
plex graphics. 

Much of the QuickDraw graphics system is already included in Macintosh 
BASIC in the form of BASIC graphics shape commands. In fact, all of the 
Macintosh BASIC graphics commands are simplified implementations of rou
tines that are actually in the toolbox: when you give a FRAME RECT com
mand in BASIC, you are indirectly calling the toolbox routine FrameRect. 
The toolbox routines such as FrameRect that are exactly duplicated by BASIC 
commands cannot be referenced by the TOOLBOX statement. 

The BASIC graphics system, however, gives access only to part of the 
QuickDraw graphics system available in the toolbox. Other important graph
ics features, not available directly in BASIC, can be used through the TOOL
BOX statement. These added features include an additional shape graphics 
command verb (Fill), three additional graphics shapes (arcs, polygons, and 
regions,), and other specialized features such as cursors. These additional tool
box features can be used as if they were additional BASIC commands. 
Because these toolbox graphics statements augment the BASIC language so 
significantly, many of them are descnbed in detail in this book. The rest are all 
contained in Appendix D: Summary of Toolbox Commands. 

The Fill commands add a fifth command verb to the four graphics verbs 
already available in BASIC (ERASE, FRAME, INVERT, and PAINl). There 
are six different Fill commands in the toolbox, each dealing with one of the 



o TOOLBOX/ /TOOL o 

specific QuickDraw graphics shape: FillRect, FillOval, FillRoundRect, Fill
Arc, FillPoly, and FtllRgn. All six Fill commands are descnbed in the entry 
under Fill. 

In addition to the three shapes that are already available in BASIC (rectan
gles, ovals, and round rectangles), the toolbox routines add three entirely new 
shapes: arcs, polygons, and regions. Arcs are wedge-shaped pie sections sliced 
out of a circle or oval. Polygons are areas defmed by a boundary of straight 
edges, and regions are areas that can be def med by any closed curve. Polygons 
and regions are user-defined shapes, in that their boundaries are not prede
fmed, but are established by the drawing commands you give in a definition 
block. Arcs, polygons, and regions are described in the entries for PaintArc, 
OpenPoly, and OpenRgn. 

Polygons and regions are data structures that can be operated on as units, 
with commands such as offset (a shift in location), and mappings (a transfor
mation into a new coordinate system). In addition, certain transformations 
can also be applied to rectangle a"ays, a data structure that represents a rect
angle in a toolbox command (this structure is not the same as the normal 
BASIC rectangle shape). The rectangle data structure is described in the entry 
for SetRect. 

Figure 1 shows a list of all of the operations that can be performed on rect
angles, polygons, and regions. Spaces in the chart show that a command is 
not available for that particular shape--very few of the transformations are 
available for polygons, for example. Ovals, round rectangles, and arcs are 
manipulated in exactly the same ways as rectangles, and are not shown in 
this table. 

You can use this grid as an index to the toolbox graphics commands given 
specific entries in this book. All of the commands in each vertical column are 
described in the central entry for each data structure: SetRect for rectangle 
arrays, OpenPoly for polygons, and OpenRgn for regions. Then, the toolbox 
commands in each horizontal row are grouped together into entries according 
to the command verb they share: all of the offset commands, for example, are 
descn"bed jointly under a single entry, OffsetRect/OffsetPoly/OffsetRgn. You 
can rmd the information you need either by looking under the command at 
the top of a vertical column, or under the command at the left of a horizontal 
column. Mapping operations are described in the entry under MapPt. 

Besides these commands, the toolbox also provides a variety of miscellane
ous graphics commands. The commands LineTo, Line, MoveTo, and Move, 
for example, draw lines and move the graphics pen in ways similar to the 
BASIC PLOT statement. PenPat and related commands allow you to store 



o TOOLBOX/ /TOOL D 

GRAPIDCS STRUCTURFS 

Rectangles Polygons Regions 
(SetRec) (OpenPoly) (OpenRgn) 

Definition 
New NewRgn 
Dispose KillPoly DisposeRgn 
Open OpenPoly OpenRgn 
Close ClosePoly OoseRgn 
Set SetRect SetRectRegn 
Pt2 Pt2Rect 
Rect RectRgn 
Copy = = = 

Drawing 
Erase ERASE* ErasePoly EraseRgn 
Frame FRAME* FramePoly FrameRgn 
Invert INVERT* InvertPoly InvertRgn 
Paint PAINT* PaintPoly PaintRgn 
Fill FillRect FillPoly FillRgn 

Transformation 
Offset OffsetRect OffsetPoly OffsetRgn 
Inset InsetRect InsetRgn 
Map MapRect Map Poly MapRgn 

Operations 
Union UnionRect UnionRgn 
Sect SectRect SectRgn 
Diff DiffRgn 
Xor XorRgn 

Boolean tests 
Equal EqualRect EqualRgn 
Empty EmptyRect EmptyRgn 
Ptln PtlnRect PtlnRgn 
Rectin RectinRgn 

*BASIC command, rather than toolbox. 

f'igure 1: TOOLBOX/TOOL-Summary of the operations that can be performed on graphics 
data structures. 



o TOOLBOX/ /TOOL o 

your own patterns for the graphics pen. All of these commands are described 
in entries under their own names. 

A number of commands allow specialized graphics operations. The cursor 
commands allow you to change the appearance of the arrow pointer, which the 
mouse moves around the screen. The penstate commands let you set and retrieve 
the settings of the graphics pen-useful in connection with PenPat. The fontirifo 
commands let you find out the actual size and 1ine spacing of the font currently 
in effect, so that you can control the spacing of GPRINT statements. These and 
all remaining graphics commands are included in Appendix D. 

The Window Manager 
Three other sections of the toolbox available through the BASIC 'IOOL

BOX command are the window manager, menu manager, and control 
manager-the parts of the operating system that arrange windows, pull-down 
menus, and interactive control buttons. Using these sections of the toolbox, 
unfortunately, requires a considerably higher degree of technical knowledge 
than do the graphics. Also, in its initial release, Macintosh BASIC does not 
have an environment adapted for true systems programming. Unless you 
really know your way around the Macintosh system, you can really use these 
routines only for experimentation. 

In the next few pages, this entry will give a very brief overview of the win
dow, menu, and control managers, with just a short sample program for each 
to show what is involved. The syntax forms of all of the commands are 
included in Appendix D for your reference. For a more specific technical 
introduction, get a copy of Apple's Inside Macintosh documentation, or wait 
for the upcoming SYBEX book, Tire Macintosh 1bo/box. 

You have been using windows all the time with Macintosh BASIC. Every 
program's listing is contained within a text window, and, when you run the 
program, an output window is created to hold the graphics and text output. 
All of these functions are handled by the window manager routines within 
the toolbox. 

To get a taste of the window manager, type and run the following program: 

I Window Manager-Sample Program 
W] = TOOL FrontWindow 
FOR 1=110 10 

Title$ = "Loop Counter = "&STR$(1) 
TOOLBOX SetWT'dle(W],1itle$) 
TOOLBOX HideWindow(W]) 
TOOLBOX BringTofront(W]) 
TOOLBOX ShowWindow(W]) 

NEXTI 
TOOLBOX SetWTdle (W], "Loop is done.") 



o TOOLBOX/ /TOOL o 

When you run this program, it will create an output window, like any other 
program. Then, however, it will change the title of the output window to a line 
containing successive values of the loop counter. The HideW'mdow routine 
makes the window invisible and highlights the text window; BringToFront 
reactivates the output window, and fmally the ShowWindow routine brings it 
back on the screen. The window is flashed ten times in this way, then the pro
gram leaves it with the title "Loop is done." 

Note particularly the first statement, a call to the FrontWindow IDOL 
function. This function returns a window pointer to the frontmost, or active, 
window. While a BASIC program is running, the active window is the output 
window' so the pointer variable W] will contain the address of this window. 
This pointer is then used in all other window-manager calls that refer to 
that window. 

Ideally, it would be nice if you could create your own windows. At the 
moment, that is impossible, because the appropriate toolbox routines are not 
working well enough. At some point in the future, Apple will probably fix 
these routines and provide BASIC with control structures that can handle 
multiple windows. 

The Menu Manager 

With the menu manager routines, you can arrange the pull-down menus at 
the top of the screen. You can delete or add menus to the menu bar, check or 
change the names of individual items, enable and disable items, and create 
your own menus. 

The following program deletes the Search menu (number 4), and adds a 
new menu numbered 7: 

I Menu Manager-Sample Program 
OldBar} = TOOL CietMenuBar 
TOOLBOX DeleteMenu (4) 
MyMenu} =TOOL NewMenu (7,"Added Menu") 
TOOLBOX AppendMenu(MyMenu},''This item enabled;This item disabled(") 
TOOLBOX AppendMenu(MyMenu},''This item has an associated key/E") 
TOOLBOX AppendMenu(MyMenu},''This item has a check markl"&CHR$(18)) 
TOOLBOX AppendMenu(MyMenu }, ''This item is outlined <O'') 
TOOLBOX lnsertMenu(MyMenu} ,0) 
TOOLBOX DrawMenuBar 
PRINT "Press mouse to restore original bar" 
BTNWAIT 
TOOLBOX SetMenuBar (OldBar}) 
TOOLBOX DrawMenuBar 



o TOOLBOX/ /TOOL o 

The first statement of this program stores the BASIC menu bar in a handle vari
able, so that it can be restored at the end of the program (an important step if 
you're changing the menu bar, unless you want to leave yourself with a menu bar 
that can't be used to control BASIC). After that, a DeleteMenu routine removes 
the Search menu-the BASIC menus are numbered from 1 to 6. 

The NewMenu routine is then used to create a new menu, numbered 7. The 
AppendMenu routine adds items under this pull-down menu. Each item is 
given as a string (or part of a string, separated from other items by a semico
lon). The following special characters can be used following an item's name to 
define special treatment for certain items: 

; Delimiter to set off two different items in the same string. 
( Disables an item, so that it will appear gray and cannot be selected. 
I Defmes a control-key equivalent for the item. 
I Marks the item with a check mark or another character (CHR$(18) is a 

check mark). 
< Sets a style option for an item (B =Boldface, I =Italic, U =Underline, 

0 =Outline, S =Shadow). 
" Displays an icon next to an item (the icon must be present as a resource 

on the disk-it cannot be defined in BASIC). 

The InsertMenu routine is used to add the menu to the menu bar (its second 
argument, 0, tells it to add the menu after all others on the bar). Figure 2 
shows the menu as it will appear when pulled down. 

The DrawMenuBar call following the menu change is very important. A 
change in the menu bar is put into effect immediately, but the titles on the 
menu bar are not updated unless you specifically call DrawMenuBar. You 
should therefore use this routine after any change in the menu bar. 

s File Edit Fonts Program Added Menu[ 

This item enabled 
This item di~nbh~ii 
This item hos an associated key 3CE 

.llhis Item has a check mark 
'li'lil00 on©1ID 00 IDmnoorn@l!I 

Figure 2: TOOLBOX/TOOL-A menu created with the menu manager sample program. 



o TOOLBOX/ /TOOL o 

The one thing that this program will not do is actually read the items on the 
menu bar-you will get a system crash if you try to select one of these items. 
Th detect the items, you will need to use much more complex toolbox pro
gramming techniques. 

The Control Manager 

Another part of the toolbox that you can as yet merely explore is the control 
managei; which keeps track of the push buttons, checlc boxes, and scroll bars that 
are used to make choices and scroll windows in Macintosh applications. 

Macintosh BASIC lets you define the four major types of controls, as in the 
following sample program: 

I Controls-Sample Program 
W] = lOOL FrontWlndow 
DIM R%(3), Control}(3) 
FOR l=OTO 3 

TOOLBOX SetRect (@R%(0), 20,34+50*1,220,50+50*1) 
READ T$,Type 
Control}CO - TOOL NewControl(W],@R%(0),T$,TRUE, 100,0, 152,Type,O,O) 

NEXTI 
DO I Do-nothing infinite loop 
LOOP I to leave controls on screen. 
DATA "Push Button (Type O)" ,0 
DATA "Check Box (Type 1)", 1 
DATA "Radio Button (Type 2)" ,2 
DATA "Continuous (Type 16)",16 

There are four different types of controls, with identifying type numbers 0, 1, 
2, and 16. The FOR loop in this program merely defines each of the various 
types of controls, including their titles. Note that the continuous scroll bar 
(control type 16) has no title; however, it has a value associated with it, which 
is represented visually by the position of the box in the bar. Figure 3 shows 
these four controls in the program's output. 

The only complex statement in this program is the call to NewControl, 
which defmes a new control on the screen. The actual syntax of this complex 
parameter list is shown in Appendix D, but a few of the parameters are worth 
pointing out. The fust three specify the window where the control will be 
placed, the rectangle that bounds it, and the title. Near the end of the list is 
another important parameter, Type, which specifies which kind of control this 
will be. The numbers near the end of the parameter list set the minimum, 
maximum, and initial values for a continuous-type control. They are not used 
for button controls. 



o TOOLBOX/ /TOOL o 

=[]§ Controls-Sample Program ~ 

• 
Push Button (Type 0) 

D C:heck BoH (Type 1 ) 

O Radio Button (Type 2) 

Figure 3: TOOLBOX/TOOL-The four types of con
trols, displayed by the control manager sam
ple program. 

The Rest of the Toolbox 

There are many other routines in the toolbox besides the graphics, window, 
menu, and control managers. The Macintosh BASIC TOOLBOX statement 
recognizes over 300 different toolbox words, including some that no one 
would think to use. 

One important additional group is the resource manager, a group of com
mands that let you manipulate resource files on the disk. A resource is a file of 
information which is used by other programs as they need it. Fonts and icons 
are both treated as resource files. 

Other commands listed in Appendix D involve fonts, dialog and alert boxes 
(messages), desk accessories (on the "Apple" menu), memory management, 
and mouse-button events. If you're interested in exploring these parts of the 
system, please refer to Appendix D. 

Keep your spirit of adventure as you rummage through the toolbox. Armed 
with the TOOLBOX commands and the syntax forms in Appendix D, you 
can do some interesting explorations, as long as you don't mind a few system 
crashes here and there. 

And send in your registration card to Apple. In time, Apple may come out 
with an improved version of the language, in which the toolbox is a really use
ful system, rather than a field for experimenters. 



---ii TRUNC It-___, __ --------F 

Numeric function-truncates a number. 

Syntax 
Result = TRUNC(X) 

Removes the fractional part of a number and returns the next inte
ger closer to 0. 

Description 
Macintosh BASIC has a special function that truncates a number and 

returns its integer part. A truncation operation simply lops off any part of the 
number to the right of the decimal point and returns a simple integer. 

The TRUNC function is not the same as the greatest-integer function INT. 
For positive numbers, the two functions yield the same result, because both 
reduce the number toward zero. For negative numbers, however, TRUNC 
removes the fractional part and results in a number with a smaller absolute 
value, whereas INT changes it into the next lesser integer, in the direction of 
-oo: TRUNC(-1.3) = -1 and INT(-1.3) = -2. 

See INT and RINT for details on the related greatest-integer and rounding 
functions. 



File function-returns the data type tag of a 
variable in a DATA file. 

Syntax 
Result = TYP(#Channel) 

Returns the data type of the current field in a DATA file. 

Description 
The TYP function takes as its argument the channel number of an open 

DATA file (including the # sign), and returns as a value a numeric representa
tion of the data type of the current field. 

When reading a DATA file of unknown contents, you might find the TYP 
function especially useful. You can set up a case structure with an array for 
each data type, and assign each piece of incoming data to the array of the 
appropriate type. In any case where you have different types of record in a 
DATA file, each containing data of a different type, you can use a similar 
structure to determine to which variable a given record should be assigned. 

TYPE returns the tag of the current field. Each type tag itself occupies a single 
byte of storage space on the disk, in addition to the storage space needed for the 
variable. Table 1 shows the numeric tag associated with each data type, and the 
number of bytes of storage allocated for a variable of that type: 

DATA TYPE NUMERIC NUMBER OF 
TAG BYTES USED 

Integer (OJo) 0 2 
String($) 2 2 +length 

Extended precision (\) 4 10 



oTYPo 

Single Precision d> 5 4 

Double precision (no id.) 6 8 

Comp(#) 7 8 

Boolean[) 12 1 

Character ( ©) 13 1 

Handle(}) 14 variable length 

End of file -1 0 

Strings are stored one byte per character, preceded by two bytes that store a 
number indicating the maximum length of the string. Handles are stored as 
the full data structure that the handle was pointing to. (See the Introduction 
for more information on data types.) 

Application Program 
The program in Figure 1 creates a SEQUENTIAL DATA file and then 

reads it. After the first record, which contains the headings for the output, 
entered as literals, the file contains two types of single-field records: customer 
names and transaction amounts. The data are stored in DATA statements, and 
read from these statements into the file. Each customer has four transactions, 
just to simplify the writing of the file. In a real-world application, these data 
would probably be entered from the keyboard, and a varying number of 
transactions could be entered. The routine that reads the file would work 
equally well with a varying number. The different data types are handled by a 
SELECT /CASE structure in the read routine. Figure 2 shows the output. 

Once the program is written, the file pointer is reset to the beginning of the 
file, so that the file can be read consecutively from beginning to end. The zero 
record was set up to contain the headings for the report so this record is read 
outside the loop, in a separate READ # statement. 

The SELECT I CASE structure is enclosed in a DO loop that reads the file 
record by record until the end is reached. There are four cases: one for strings 
(the customer names). one for double-precision numerics (the transaction 
amounts), one for the end-of-file condition, and an ELSE block to take care 
of any unforeseen circumstances. 

As each customer's name is read, it is assigned to the variable OldC$. Then, 
when the next customer's name is read, the transaction records associated with 



oTYPo 

I TVP-Application Program 
! Creates and reads a DAT A fi I e of customer names and 
I transaction amounts, and prints total per customer. 

OPEN • 17:'Transact ions" ,OUT IN, DAT A, SEQUENT I AL 
WHEN ERR ! Provide for graceful exit. 

CLOSE •17 
PR I NT "ERROR ,.. .. ; ERR 
PR I NT" Program termi natedl" 
END 

END WHEN 

! ********Routine to create file************ 
WRITE • 11: 'Transaction File" ,"Customer","Amount Due" 1 First record. 
FOR Cust = 1 TO 7 

READ CustName$ 
WRITE "'17: CustName$ 
FORT = 1 TO 4 ! Transactions for each customer. 

READ Amount 
WRITE • 17: Amount 

NEXTT 
NEXT Cust 
!***************Data statements**************** 
DATA Elliott & Co., 111.17, 12.06,99.73,.39 
DATA Gruen's Groaning Board, 19.99, 11.53, 17.33,.06 
DATA Amon Graphics,3.07,7.77,4.22,6.03 
DATA Val's Words, 4.44,8.12,32.79,.83 
DAT A Donna's My Type,.11,. 11,. 11,. 11 
DAT A OK's Whi zbang, 7 .22,8.33 ,.27' 95.62 
DATA Dawn of Time, 12.08,0,.77, 19.45 

!****************Routine to read file************* 
READ• 17,8E61N: Title$,Head 1 $,Head2$ ! Reset pointer, read first record. 
SET OUTPUT ToScreen ! Set type for heading. 
SET 6TEXTFACE 1 
SET TABWIDTH 120 ! Wide spaces. 
&PRINT AT 192, 12; Title$ 
&PRINT AT 50,40; Heael1$ 
&PRINT AT 340,40; Head2$ 
PLOT 50,43;422,43 
SET &TEXTFACE 0 

CASE ELSE ! Erroneous data types. 
PRINT "ERROR-unknown data 1n f11e!" 
GOTO Quit: 

Figure 1: TYP-Application Program. 



SET PENPOS 50, 60 
OldC$ = --
DO 

T = TYP(•17) 
SELECT CASE T 

CASE 2 
READ • 17: Cust$ 
GOSUB Total 

CASE 6 
READ • 1 7: Amount 
Total =Total + Amount 

CASE -1 
GOTO Quit: 

END SELECT 
LOOP 
Ou1t: 

CLOSE •17 
GOSUB Total: 

END MAIN 

oTYPo 

! Stnng data. 

! Double-precision numeric. 

! End of file. 

!**********Add up totals and print results********** 
Total: 

IF OldC$£" THEN 
SPRINT "Total for customer"; OldC$; ":",FORMATS("$••••••"; Total) 
Total = O ! Reset counter for next customer. 

ENDIF 
OldC$= Cust$ ! Remember customer. 

RETURN 

Figure 1: TYP-Application Program (continued). 

tne previous customer are printed, and the accumulator variable Total is 
cleared for the next customer. These tasks are accomplished in the subroutine 
called Total:. 

Because the total is not printed until a new customer name is read, any number 
of transaction records could be read for each customer and added to that cus
tomer's total. The customer name is assigned to a holding variable after it is read 
to keep track of which records are associated with each customer. 

You could use a similar technique with multiplc:>-field records. You would 
structure the records so that each type of record had an initial field of a differ
ent data type. Then you could use the case structure and the type tag to deter
mine the type of record being read. 



oTYPo 

TYP-Rpplication Program 
Transaction Flle 

Customer 

Total for customer Elliott:;. Co.: 
Total for customer- GnJ8n'::; Grnaning Bo;:ir-d: 
Total for customer Arnon Graphic~: : 

Total for customer Veil's 'w'ord:::: 
Tot.el for cu::::torner Donne·~: l"ly T!JPe : 
Total for customer DK's 'vilhizbeing: 
Total for customer Dawn of Time: 

Figure 2: TYP-Output of Application Program. 

Notes 

Amount Due 

$223.35 
$46 91 
$21.09 
$4618 

$044 
$111.44 

$32 30 

-See the OPEN # entry for a graphic representation of file storage of tags, 
and a comparison of BINY and DATA storage. 

-For further information on DATA files, see the DATA entry. 

• 



=::l 1 UND IM I f:= ==i ....___ ----------F 

Syntax 

BASIC command word-undimensions an 
array and deallocates its storage space. 

UNDIM Single(), Double (,) 

Undimensions the one-dimensional and multidimensional arrays. 
Single and Double. 

Description 
Macintosh BASIC has a unique UNDIM statement that disposes of an 

array created by a DIM statement. By undimensioning an array after you've 
finished using it, you can free up the memory it was taking up, and use the 
space for other purposes within your program. 

In its syntax, the UNDIM statement simply takes the name of the array, fol
lowed by an empty set of parentheses. For a multidimensional array, add 
place-holding commas inside the empty parentheses to show how many 
dimensions there are: 

UNDIM SingleArray( ), DoubleArray(,), TripleArray (,,) 

These three array names will now no longer be valid. Any values stored in 
their structures will be lost. 

After using UNDIM, you can redimension arrays with the same names by 
using another DIM statement. This practice is frowned upon, however, 
because it can lead to ·confusion about which dimension the array is conform
ing to. It is better just to create a new array name. 



~I UnionRect/ /UnionRgn I~ 
Graphics toolbox commands-find the union 

of two rectangles or regions. 

Syntax 
IIJ TOOLBOX UnionRed (@RectA%(0), @RectB%(0), @ResultRect%(0)) 

~TOOLBOX UnionRgn (RgnA}, RgnB}, ResultRgn}) 

Performs a union operation on two rectangles or two regions, yield
ing the set of all points contained in either shape or in both. 

Description 
In mathematics, the union of two sets is the set of all objects contained in 

either set. Both original sets are contained as subsets of the union. 
In the Macintosh toolbox, union operations are available to combine rec

tangles and regions. These operations act on two shapes and produce a third 
shape that contains all of the points that were inside either of the original 
shapes. The resulting rectangle or region will be at least as large as each of the 
shapes that went into it. There are two union operations: UnionRect and 
UnionRgn. There is no union operation for polygons. 

The operation of UnionRect and UnionRgn is shown in Figure 1. For both 
commands, you supply three shape references of the same type: three rectan
gle arrays for UnionRect and three region handles for UnionRgn. In the 
parameter list of the toolbox command, the two original shapes are named 
first, followed by the name of the shape in which you want the answer to 
be stored: 

TOOLBOX UnionRect (@RectA%(0), @RectB%(0), @ResultRect%(0)) 

TOOLBOX UnionRgn (RgnA}, RgnB}, ResultRgn})(B 



o UnionRect/ /UnionRgn o 

In the case of UnionRect, the three rectangles must be supplied as indirect ref
erences (prefix: @) to a four-element rectangle array, dimensioned in a pre
vious DIM statement. UnionRgn, on the other hand, requires three region 
handles, which are indirect pointers to the region's data structure stored in the 
computer's memory. UnionRgn does not create the handle for the result 
region: you must call NewRgn first to set aside space for it. Rectangle arrays 
and region handles are discussed in the entries for SetRect and OpenRgn. 

UnionRect, shown on the left side of Figure l, returns the smallest rectangle 
that can include both initial rectangles. Because the result rectangle must have 
four straight edges, it will usually have to contain some areas that were not in 
either of the original rectangles. In Figure 1, these extra areas are the small rect
angles in the upper-right and lower-left corners of the large result rectangle. 

UnionRgn returns the region that contains every point from both source 
regions. As shown in the right side of Figure 1, UnionRgn simply adds the 
two regions and returns the boundary common to both. No new boundaries 
are drawn; if the two source regions do not touch, the union is simply the two 
regions combined under a single handle variable. 

Mathematical purists will note that UnionRect does not technically give the 
true union of the sets, because it adds areas that were not in either source rect
angle. Properly, the union should contain only those points that are in one or 
both of the rectangles, and should contain no other points at all. 

UnlonRect UnionRgn 

Figure 1: The UnionRect and UnionRgn toolbox commands. 



o UnionRect/ /UnionRgn o 

The true mathematical union is the more complex shape shown on the right 
side of Figure 2. This true mathematical union is not a rectangle at all, but a 
region. It can therefore be produced by using RectRgn to convert the two rect
angles into regions, then calling UnionRgn, rather than UnionRect. The 
result, from that time on, must be treated as a region, rather than as a rect
angle array. 

Sample Programs 
The following program shows how UnionRgn can be used to coJ;nbine 

regions: 

I UnionRect/UnionRgn-Sample Program 
RgnA} - TOOL NewRgn 
RgnB} - TOOL NewRgn 
TOOLBOX SetRedRgn (RgnA}, 40,40,80,80) 
RgnB} = RgnA} 
FOR H=80 TO 160 mp 40 

TOOLBOX OffsetRgn (RgnB}, 40,40) 
TOOLBOX UnionRgn (RgnA}, RgnB}, RgnA}) 

NEXTH 
TOOLBOX PaintRgn (RgnA}) 

UnionRect 
(produces a rectangle) 

~llllll:~~:~\;:~!~!~!~! ;!!!!!~~~~!~~!~~~~: 

!!!JJ!jj!\!j!i!!l! il!!!il!i~~~!!~l'-i!ilili 

RectRgn + UnionRgn 
(produces a region) 

Figure 2: UnionRect/UnionRgn-To get the true union of two rectangles, use rectangular 
regions. 



o UnionRect/ /UnionRgn o 

RgnA} initially contains a single rectangular region. This region is then trans
ferred into RgnB} and offset down and to the right three times. After each 
offset operation, RgnB} is added back into RgnA}, so that at the end, RgnA} 
contains all four versions of the rectangle. It is then painted as a unit. 

Note that the result region handle need not be different from the two source 
regions' handles. If you repeat a region's handle for the result region, the 
result will simply replace the source region's definition under that handle. 

Notes 
-The union operation is closely related to these other set-theory opera

tions: SectRect/SectRgn, DiffRgn, and XorRgn. You can find other examples 
of the union commands in those entries. 

-See SetRect and OpenRgn for general information on toolbox rectangles 
and regions. 

§§0§ UnionRgn-Sample Program ~ 

• 

Figure 3: UnionRect/UnionRgn-Output of Sample 
Program. 



:::::JI UNLOCK lt--==i .___ -----------Jc F 

Disk command-unlocks a file so that it can 
be altered or deleted. 

Syntax 
UNLOCK FileName$ 

Clears the lock flag of a file on the disk. 

Description 
Macintosh BASIC has a LOCK command that sets a locking flag on a file 

to keep it safe from accidental deletion or alteration. UNLOCK reverses the 
effect of this LOCK command, so that once again you can delete the file or 
change information inside it. 

See LOCK for further details. 

UN LOCK-Translation Key 

Microsoft BASIC 

Applesoft BASIC UNLOCK 



String function-converts alphabetic 
characters to uppercase. 

Syntax 
UPSHIFT$(StringVa/ue$) 

Converts all alphabetic characters in its argument to uppercase 
characters. 

Description 
The UPSHIFI'$ function converts all alphabetic characters in the string 

value that is its argument to uppercase letters. It has no effect on non
alphabetic characters. It may take either a string literal or a string variable as 
its argument. 

Since the ASCII code differentiates between uppercase and lowercase let
ters, the UPSHIFr$ function can be useful in determining whether an input 
value is within a range of acceptable values. For example, a user may be asked 
to select something from a menu with a single letter: 

INPUT Choice$ 
SELECT Choice$ 

CASE "I'<': GOSUB Search: 
CASE "B" : GOSUB Sort: 
CASE "D": GOSUB Delete: 
CASE "M" : GOSUB MainMenu: 
CASE ELSE: GOSUB Error: 

END SELECT 

If the user were to enter a lowercase a, b, d, or m as a response to the input 
prompt, the CASE ELSE error routine would be activated. 



o UPSHIFT$ o 

If you want to allow lowercase as well as uppercase responses, add the fol
lowing statement after the INPUT statement: 

Choice$ = UPSHIFT$(Choice$) 

You can use the UPSHIFr$ function in a PRINT statement without perma
nently altering the argument: 

Arg$ = ''This is a string." 
PRINT Arg$ 
PRINT UPSHIFT$(Arg$) 

This will result in the output: 

This is a string. 
THIS IS A STRING. 

Other string functions may be used in conjunction with the UPSHIFT$ 
function: 

Arg$ = ''This is a string." 
PRINT UPSHIFT$(LEFT$(Arg$,4)) 

This will result in the output: 

THIS 

To convert uppercase characters to lowercase, use the DOWNSHIFT$ 
function. 

For a sample program using the UPSHIFT$ function in conjunction with 
the LEFT$ function to validate input, see Sample Program #1 in the entry 
for SELECT. 



=11 VAL I I--
~ ...___ --------F 

Syntax 

String conversion function-returns the 
numeric value of a numeral string. 

Result = VAL(String$) 

Returns the numeric value of the numeral characters in String$ up 
to the first non-numeral character. 

Description 
The VAL function examines the string that is its argument, and returns the 

numeric value of any numeral characters in the string up to the first non
numeral character. It may take as its argument either a literal string, enclosed 
in quotes, or a string variable. Characters that may be included as parts of 
numbers-leading plus and minus signs, decimal points, and the E for 
exponentiation will all be evaluated as part of the numeric value if they are 
appropriately placed. 

If the first character is not a numeral, or if the string is contains no numer
als, VAL will return a value of 0. 

The VAL function can be used in conjunction with other string functions. 
You can, for example, use RIGHT$ or MID$ to extract numerals from a 
string and use VAL to convert those characters to their numeric equivalent. 
This allows you to skip over any leading non-numeric characters, or to select 
only a part of a numeral string: 

Year = RIGHT$(DATE$,2) 

This statement would assign to Year the last two digits returned by the DATE$ 
function. Similarly: 

Cents = VAL(RIGHT$(FORMAT$("#####.##'',Dollars),2)) 



oVALo 

will return the value in cents of the two digits to the right of the decimal point 
in Dollars. This can be especially useful if the value of Dollars is the result of 
an equation that may yield a numeric value with more or fewer than two deci
mal places. 

Notes 
-VAL can be used any time you need to convert a string of numerals into 

its numeric equivalent. This is very useful for validating input. For example, if 
you want a numeric input, you can store the input in a string variable, and 
then convert it with VAL to see that the entry contains only numbers, thereby 
avoiding the "expected a number" system error message: 

INPUT "Choose by number:"; Choice$ 
Choice = VAL(Choice$) 
IF Choice=O THEN PRINT "Not a number." 

If the user were to input a non-numeral character by accident, you could use 
VAL to trap the error and provision could be made to return to the input 
statement. 

-For applications making use of the VAL function, see the programs under 
the entries DATES and TIMES. 

-The inverse of VAL is the STR$ function, which converts a number to its 
string equivalent. 

VAL-Translation Key 

Microsoft BASIC VAL 

Applesoft BASIC VAL 



---j I VPOS I t--==i ...._· ---------· F 

Syntax 

Text set-option-moves the insertion point 
for text displayed by PRINT and INPUT 

statements. 

[j] SET VPOS V 

[J] ASK VPOS V 

Sets or checks the text line where the insertion point is located. 

Description 
The position of text displayed by the PRINT statement is controlled by the 

insertion point, the flashing vertical line in the output window. The insertion 
point is independent of the position of the graphics pen used by GPRINT 
statements. 

VPOS sets the vertical position of the insertion point. It is a set-option that 
takes an integer constant, variable, or expression: 

SET VPOS 10 

will move the insertion point to line 10 in the output window. 
As with the other set-options, you can also ASK the value of VPOS: 

ASK VPOS LineNumber 

This statement will return to the variable LineNumber the current vertical 
position of the insertion point. This form of the command might be useful for 
determining when text is getting close to the bottom of the screen. The default 
type font (12-point Geneva) displays 15 lines in the standard output window. 

Note that this number corresponds to a text line number, and not to the ver
tical graphics coordinate. Text output and graphics output are measured by 



oVPOS o 

different coordinates. The exact conversion depends on the fontsize and other 
factors-see the note under PRINT. 

VPOS is related to the HPOS set-option, which moves the insertion point 
horizontally across a line of text. Both commands are based on the Applesoft 
BASIC commands VTAB and HTAB; however, they have been changed to the 
syntax of a set-option. 

VPOS affects only text displayed by PRINT and INPUT statements, not 
graphics text displayed by GPRINT. See PRINT for more details. 

VPOS-Translation Key 

Microsoft BASIC 

Applesoft BASIC 

LOCATION 

VTAB 



----jl WHEN lt-:
==f----------F 

BASIC command-sets up an asynchronous 
interrupt block. 

Syntax 
DJ WHEN KBD 

• 
• 
• 

END WHEN 

Sets up an aysnchronous interrupt block to be executed whenever a 
key is pressed. 

III WHEN ERR 

• 
• 
• 

END WHEN 

Sets up an asynchronous interrupt block to be executed whenever a 
system or program error occurs. 

Description 
The WHEN statement sets up an asynchronous interrupt block. This is a 

block of code to be executed any time a given condition is encountered in the 
program. The two conditions for which Macintosh BASIC provides asyn
chronous interrupts are keypresses and error conditions. 



oWHEN o 

Whenever the specified condition occurs during the program, the program 
will temporarily alter its course and execute the statements in the WHEN 
block, up to the END WHEN statement that always closes such a block. Exe
cution will then continue at the line of code following the one that triggered 
the WHEN block. 

ITJ WHEN KBD 

• 
• 
• 

END WHEN 

The WHEN KBD statement sets up a block of code to be executed when
ever a key is pressed. Normally, the block contains IF statements or a 
SELECT I CASE structure in which various conditions and the proper 
responses to them are laid out. Since the KBD function returns the ASCII 
code of the key that is pressed (if it has one), the conditional statements 
should be based on those values: 

or 

IF KBD= 32 THEN ... 

SELECT KBD 
CASE 65,97 

Statement(s) 

CASE 66,98 
Statement(s) 

• 
• 
• 

END SELECT 

! Space bar 

! Upper- or lowercase A 

! Upper- or lowercase B 

You can have any number of WHEN KBD blocks in a program. When a 
new one is encountered, the previous one is ignored. The new block will 
remain in effect until another supersedes it or an IGNORE WHEN statement 
is encountered. 

The IGNORE WHEN statement which simply takes the form 

IGNORE WHEN 

automatically turns off all interrupt blocks currently in effect. You can, how
ever, place another WHEN KBD after an IGNORE WHEN statement, and it 



oWHEN o 

will become active when execution reaches it. To turn off WHEN KBD state
ments while leaving WHEN ERR in effect, use the form: 

IGNORE WHEN KBD 

For a sample program illustrating the WHEN KBD block, see the KBD 
entry. For more on the ASCII code, see the ASC and CHR$ entries. 

111 WHEN ERR 

• 
• 
• 

END WHEN 

The WHEN ERR statement sets up a block of code to be executed when
ever a system or program error occurs. It can trap only those types of errors 
that have error code numbers. Normally, the block contains IF statements or a 
SELECT /CASE structure in which various error conditions and the proper 
responses to them are laid out. Since the ERR function returns the error code 
number, the conditional statements should be based on those values: 

or 

IF ERR~ 168 THEN ... 

SELECT ERR 
CASE 66 TO 97 

• 
• 
• 

Statement(s) 

END SELECT 

I Out of memory 

I System errors 

Like WHEN KBD, WHEN ERR will be turned off by an IGNORE WHEN 
statement. To turn off WHEN ERR blocks while leaving WHEN KBD blocks 
active, use 

IGNORE WHEN ERR 

Any number of WHEN ERR blocks may be included in a program. Any new 
block turns off the previous one. 

For more on error trapping, see the ERR entry, which includes a sample 
program demonstrating use of the WHEN ERR block. For a list of error mes
sages and their codes, see Appendix B. 



o WHEN o 

Application Program 
The program in Figure 1 is an elaboration of the demonstration program in 

the KBD entry. It contains a WHEN KBD block which includes a SELECT I 
CASE structure with two active cases and a null case. The program will plot 
random points on a white field until the Return key is pressed. When that key 
is pressed, the colors will reverse to white points on a black field. When the 
Space Bar is pressed, the window clears and the colors are reset to black on 
white. The null case assures that other keys have no effect. A sample run 
appears in Figure 2. 

! WHEN-Application Program 
OldPatn = WHITE 
WHEN KBD 

SELECT CASE KBD 
CASE 32 

Clear= TRUE 
CASE 13 

Flag-= TRUE 
CASE ELSE 

END SELECT 
END WHEN 
SET PENSIZE 4,4 
DO 

IF Flag- THEN 
INVERT RECT 0,0; 241,241 
ASK PATTERN Patn 

! Set alternate color 

! Space bar pressed 

! Return key pressed 

! Null case 

! Large po1nts 

! Return key pressed 
! Change background 

IF Patn:.tOldPatn THEN SET PATTERN OldPatn ! Change foreground 
OldPatn = Patn ! Remember new foreground 
Flag- = FALSE ! Reset flag 

END IF 
IF Clear- THEN 

CLEARWINDOW 
SET PATTERN BLACK 
OldPatn =WHITE 
Clear-= FALSE 

ENDIF 
PLOT RND(240),RND(240) 

LOOP 

Figure 1: WHEN-Application Program. 

! Space Bar pressed 

! Reset foreground to black 
! Set alternate color 
! Reset clear-screen flag 

! Plot po1nts 



oWHENo 

~~ WHEN-Application Program 

• . . • ·o .. .. ·oo • . ::• ,,.. . .. 
~ 

. . 
. . . . . . . .. . . . . . . . . 

' .. . . . . .. 
. . 

../ .. . . . . . . . . . . .. • . ... .. .. . .. . . 
-~ .. 

~J• r~~ 
Figure 2: WHEN-Output of Application Program . 



---j I WRITE # I t-__, .....__ ---------JF 

File output command-sends information to 
a DATA or BINY file. 

Syntax 
WRITE #Channel: //0 List 

Send the contents of the specified variable(s) to the DATA or BINY 
file open the given channel. 

Description 
WRITE # is the command used to send data to DATA or BINY files that 

have been opened with either the OUTIN or the APPEND access attribute. It 
consists of the keyword WRITE #, followed optionally by a file pointer com
mand (which tells where in the file the data is to go), and finally a list of one 
or more expressions whose value is to be sent to the file. The expressions can 
be of any data type, and can be constants, variables, or other expressions. 

Values in the 1/0 list of a WRITE# statement must be separated by com
mas. If the last variable is followed by a fumma, the next WRITE # statement 
will begin writing on the next field of the same record. When the last variable 
is not followed by a comma, the file pointer will move on to the beginning of 
the next record before writing the next value. T\vo records cannot be written 
with the same WRITE # statement. 

In DATA files, records are separated from each other by type tags. Each 
data type is automatically alloted a specific number of bytes of disk storage 
space. You must be careful, therefore, to make sure that the record length you 
specify in RECSIZE files is great enough to hold all the fields you intend to 
include within the records. 



oWRITE#o 

Notes 
-If you use WRITE # in place of PRINT #with a TEXT ftle, you will get 

an error message. You will also get an error if you exceed the specified record 
length of a RECSIZE file. 

For further information see the entries DATA, BINY, TYP, OPEN#, and 
READ#. 

-You cannot use WRITE # to overwrite an entry in a RECSIZE DATA 
file. To do so, you must use the REWRITE # command. 

-Sample programs using WRITE # can be found in the SEQUENTIAL, 
RECSIZE, and APPEND entries. 

WRITE #-Translation Key 

Microsoft BASIC 
Applesoft BASIC 

WRITE# 

WRITE 



---j I XorRgn I f--
~ ------------F 

Syntax 

Graphics toolbox command-finds the 
exclusive-or of two regions. 

TOOLBOX XorRgn (RgnA}, RgnB}, ResultRgn}) 

Performs an exclusive-or operation on two regions: the set of all 
points in either one of the two regions, but not in both. 

Description 
"Exclusive or," usually abbreviated "XOR," is the logical operation that 

yields TRUE whenever just one of two conditions is true, but not both of 
them. If both are FALSE or both are TRUE, the result is FALSE. 

Although Macintosh BASIC does not have a logical XOR operator, the 
exclusive-or concept is embedded in several other constructions of the lan
guage. With the graphics PENMODE 10, for example, an exclusive-or test is 
made on the old and new pixels to determine what state each pixel under a 
pattern should be set to. 

The Macintosh toolbox has another exclusive-or operation that combines 
two regions into a third region. As shown in Figure 1, this XorRgn command 
produces a region that contains the set of all points that are in either of two 
source regions, but not in both of them. 

The syntax of XorRgn is like that of the other toolbox operators that com
bine two regions. In the toolbox parameter list, you must supply the handles 
of three regions-two for the regions that you want to combine, and a third to 
receive the result: 

TOOLBOX XorRgn (RgnA}, RgnB}, ResultRgn}) 

All three regions, including the result, must have been previously defined by calls 



D XorRgn D 

IorRgn 

Figure 1: XorRgn yields the set of all points that are in one but not both of the source regions. 

to NewRgn. The result region may have the same handle as one of the source 
regions, in which case it will replace the source region's previous structure. 

Applications 
Because XorRgn produces a more complex result than the other three set

theory operators for regions, it can often be used as a simple way of creating 
complex region shapes. In operation, the exclusive-or resembles the graphics 
command INVERT, which paints black points white, and white points black. 

The application program in Figure 2 is a simple way to draw a checker
board without having to draw 64 individual squares. Instead of creating the 
squares individually, this program creates two regions and combines them with 
an XorRgn. 

The first region, Vert}, is built up as the union of four vertical stripes, as 
shown in Figure 3. Each stripe and each space between each stripe is the exact 
width of a square on the fmal checkerboard. Likewise, a second region, 
Horiz}, is defmed to hold four horizontal stripes, as in Figure 4. 

Now comes the trick. The two regions are combined by an XorRgn opera
tion into a third region, Both}. This third region contains the set of all points 
that are in one of the two sets of bars, but not in both. The two sets of bars 



D XorRgn D 

! XorRgn-Application Program 

! Fest checkerboard, with all gray squares drawn as a single region. 

Box} = TOOL NewRgn 
Vert} = TOOL NewRgn 
Horiz} =TOOL NewRgn 
Board} = TOOL NewRgn 

! Temporary storage 
! Will contain 4 vertlcal bars 
! Will contain 4 horizontal bars 
! Alternating squares of checkerboard 

FOR H:24 TO 168 STEP 48 I Create vertical bars 
TOOLBOX SetRectRgn (Box}. H, 24, H+24, 216) 
TOOLBOX Uni onRgn (Box}, Vert}, Vert}) 

NEXT H 
TOOLBOX PaintRgn (Vert}) ! Display vertical bars for Figure 3 
BTNWAIT 
CLEARWINDOW 

FOR V:24 TO 168 STEP 48 ! Create horizontal bars 
TOOLBOX SetRectRgn (Box}, 24, V, 216, V+24) 
TOOLBOX UnionRgn (Box}, Horiz}, Horiz}) 

NEXT V 
TOOLBOX PaintRgn (Horiz}) ! Display horizontal bars for Figure 4 
BTNWAIT 
CLEARW I NDOW 

TOOLBOX XorRgn (Vert}, Horiz}, Both}) 
SET PATTERN LtGray 
TOOLBOX PaintRgn (Both}) 
SET PATTERN Black 
TOOLBOX FrameRgn (Both}) 
SET PENSIZE 2,2 
FRAME RECT 23,23; 217,217 

! Paint squares with Ii ght gray pattern 

! Draw edges of squares. 
! 2-pixel-wide border for entire board 
! Figure 5 is complete. 

Figure 2: XorRgn-Application program for drawing a checkerboard using regions. 

contain the alternate rows and columns, respectively. Combined, they give a 
region that consists of every other square-the black squares on the checker
board. The resulting region is painted and framed in two simple drawing oper
ations, and a FRAME RECT statement adds a 2-pixel frame around the 
outside of the board. Figure 5 shows the result. 

There are many advantages to using regions in this way. First, the algorithm 
is simpler than drawing the squares individually, as was done in the checker
board application programs for RECT and IR 



D XorRgn D 

§0= HorRgn-Checlcerboard 
? 

Figure 3: XorRgn-The first step is to create a region 
with four vertical stripes. 

~[] HorRgn-Checlcerboard 
? 

Figure 4: XorRgn-The second step is a similar region 
with horizontal stripes. 



o XorRgn o 

§0 HorRgn-Checkerboord 

• 

II 
l!I 

Figure 5: XorRgn- Finally, with a single call to XorRgn, 
the checkerboard can be created all at once. 

More importantly, the single region-drawing operation is much faster than 
drawing 64 separate rectangles. Once the checkerboard region has been 
defined, the PaintRgn and FrameRgn commands take place almost instantly. 
This is a great advantage in a program that must repeatedly draw the board, 
such as the working checkerboard of the IF entry. Since the region checker
board needs to be created only once at the beginning of the program, the 
board can be redrawn quickly at any time, with two simple toolbox calls. 

Notes 
-Unlike Microsoft BASIC and other advanced dialects of the language, 

Macintosh BASIC does not have an XOR logical operator for use in logical 
expressions and IF statements. See the entry under OR for a Boolean function 
that will simulate the XOR operation. 

-The exclusive-or operation can be thought of as a special combination of 
the other three set-theory operations. There are two different ways you could 
achieve the same result: 

• The union of the two regions, minus their intersection. 



D XorRgn D 

• The union of two DiffRgn operations-one with the first region minus 
the second, and the other with the second region minus the first. 

Anytime you find yourself needing to do one of these combined operations, 
you can substitute an exclusive-or. 

-For more information and other examples of XorRgn and the set-theory 
operations, see the entries for UnionRect/UnionRgn, SectRect/SectRgn, and 
DiffRgn. For general information on regions and the toolbox, read the entries 
for OpenRgn and TOOLBOX. 



:=:l I Appendix A I f=: ---, ...__ _______ _____._ F 

ASCll Codes 

ASCII Table for Geneva (Application) Font 

0 null 16 D 32 space 46 0 64 @I 60 p 96 112 p 
1 D 17 D 33 ! 49 1 65 A 61 a 97 8 113 Q 
2 16 D 34 .. 50 2 66 B 62 R 96 b 114 r 
3 19 D 35 • 51 3 67 c 63 s 99 c 115 s 
4 20 D 36 $ 52 4 66 D 64 T 100 d 116 t 
5 21 D 37 ~ 53 5 69 E 65 u 101 e 117 u 
6 D 22 D 36 & 54 6 70 F 66 v 102 f 116 y 

7 D 23 D 39 55 7 71 G 67 w 103 g 119 w 
a D 24 D 40 ( 56 a 72 H BB )( 104 h 120 x 
9 25 D 41 ) 57 9 73 I 69 v 105 i 121 y 

10 J!':i 26 D 42 * 56 74 J 90 z 106 j 122 z 
11 D 27 D 43 + 59 

' 
75 K 91 [ 107 k 123 { 

12 D 26 D 44 
' 

60 < 76 L 92 \ 106 1 124 I 
13return 29 D 45 - 61 = 77 M 93 I 109 m 125 } 
14 D 30 D 46 62 > 76 N 94 - 110 n 126 -
15 D 31 0 47 I 63 ? 79 0 95 - 111 0 127 delete 

ASCII Table for Geneva (Application) Foot 

128 A 144 e 160 ' 176 00 192 l 208 - 224 D 240 0 
129 l 145 e 161 0 177 t 193 I 209 - 225 D 241 D 
130 c; 146 i 162 ¢ 176 i 194 ~ 210 " 226 D 242 0 
131 E 147 1 163 £ 179 1 195 I 211 " 227 0 243 D 
132 N 146 i 164 § 180 ¥ 196 I 212 226 D 244 D 
133 ti 149 I 165 • 181 µ 197 "' 213 229 D 245 D 
134 Li 150 ii 166 qi 182 (! 198 6 214 - 230 D 246 D 
135 ii 151 ci 167 f3 183 }; 199 « 215 <> 231 D 247 D 
136 6 152 0 166 ® 184 n 200 » 216 y 232 0 248 D 
137 ii 153 6 169 © 185 11 201 217 .... 233 D 249 D 
138 e 154 0 170 ... 186 J 202 218 D 234 D 250 D 
139 ii 155 a 171 187 g 203 A 219 D 235 D 251 D 
140 • 156 u 172 188 Q 204 A 220 D 236 D 252 D e 
141 ~ 157 u 173 " 189 0 205 5 221 D 237 D 253 •gJd 
142 e 158 u 174 iE 190 ~ 206 a: 222 D 238 D 254 ~~~d 
143 e 159 IJ 175 0 191 8 207 ce 223 D 239 D 255 0 

D denotes en uness1gned cherecter 



--j I Appendix B It-
=i -----------F 

Error Codes 

The following codes can be used in WHEN ERR blocks, and in the event of 
an error, will be printed by a PRINT ERR statement. Errors numbered 66 
through 97 are system errors. 

98 File is open for input only 
99 Disk directory is damaged 

101 External File System Error (hard 
disk error) 

102 Disk not initialized for Macintosh 
103 No such drive 
105 Illegal file command for type of file 

in use 
106 Volume not on line 
107 Can't position pointer there 
110 Your program tried to open the 

same file twice 
111 Duplicate file name-rename file 
112 Can't delete an open file 
113 Volume is locked 
114 File is locked 
115 Disk is write-protected 
116 File not found 
117 You attempted to open more than 

ten files 
118 Memory full (OPEN #) or file 

won't fit (LOAD) 
119 Tried to move file pointer to before 

start of file 
120 Tried to read or input beyond end 

of file 
121 File not open 
122 Illegal file name in an OPEN # 

statement 

123 Disk 1/0 error-problem with drive 
or disk 

124 Attempted to access a nonexistent 
disk or drive 

125 Disk full 
126 Disk directory full 
127 Another file open on the same 

channel 
128 Channel not in range 0-32767 
129 Array is too small for GETFI-

LEINFO or DEVSTATUS 
130 File is not BASIC DATA type 
131 No such channel has been opened 
132 File Directory index must be greater 

than 0 
133 RECORD command can be used 

only with RECSIZE files 
134 Record pointer commands illegal 

with STREAM files 
135 Data exceeds record length in a 

RECSIZE file 
136 Not enough values in record 
137 Use REWRITE #, not WRITE #, to 

alter RECSIZE record 
138 Record is empty 
139 Channel 0 (console) implies a 

TEXT file 
140 Last output was not finished 
141 Index must be ;;i:. 0 



o APPENDIX B o 

142 This call does not work with chan
nel 0 

143 File must be DATA type 
144 This call doesn't work with a 

STREAM file 
154 Undefmed or nonexistent label 
155 Illegal quantity 
156 Syntax error 
157 Undimensioned array reference 
158 Array dimension is too big for 

BASIC or memory 
159 Negative array subscripts not 

allowed 
160 Subscript out-of-bounds 
161 Type mismatch 
162 NEXT without FOR 
163 LOOP without DO 
164 IF block without corresponding 

END IF 
165 DO without LOOP 
166 Integer overflow 
167 RETURN without OOSUB 
168 Out of memory 
169 Can delete text only on INPUT 

prompt line 

170 Parameters don't match 
171 SELECT I CASE block not closed 

by END SELECT 
172 Couldn't fmd a CASE for an exist

ing condition 
173 Missing END WHEN statment 
174 END WHEN without a matching 

WHEN statement 
178 FOR without NEXT 
179 Already a DIM for this array 
180 Can't assign strings to pointer or 

handle variables 
181 Not enough values for INPUT list 
182 Expected a number in INPUT 

response 
183 Too many values for INPUT list 
184 Out of DATA to READ 
185 Insertion point must be moved back 

to INPUT prompt 
186 Floating point halt-value preset to 

stop program 
187 FUNCTION definition must not 

inlcude parentheses 
188 END SUB or END FUNCTION 

statement missing 



::::! I 
=i 

Appendix C It-= 
F 

System Constants 

Constant name Used with Value 

Black SET PATTERN 0 
DblPrecision SET PRECISION 1 
DenormalNum CLASSCOMP, etc. s 
DivByZero SET EXCEPTION 3 
DkGray SET PATTERN 2 
Downward SET ROUND 2 
EqualTo RELATION 2 
ExtPrecision SET PRECISION 0 
Gray SET PATTERN 3 
GreaterThan RELATION 0 
Inexact SET EXCEPTION 4 
Infinite CLASSCOMP, etc. 2 
Invalid SET EXCEPTION 2 
Less Than RELATION 1 
Lt Gray SET PATTERN 22 
NormalNum CLASSCOMP, etc. 4 
Overflow SET EXCEPTION 2 
QNAN CLASSCOMP, etc. 1 
SglPrecision SET PRECISION 2 
SNAN CLASSCOMP, etc. 0 
To Nearest SET ROUND 0 
TowardZero SET ROUND 3 
Underflow SET EXCEPTION 1 
Unordered RELATION 3 
Upward SET ROUND 1 
White SET PATTERN 19 
ZeroNum CLASSCOMP, etc. 3 



----j I Appendix D I t-
==1....._· --------F 

Summary of Toolbox Commands 
TOOLBOX AddPt (@AddedPtO/o(O), TOOLBOX Checkltel! (MenuName}, 

@ResultPtO/o(O)) ltemO/o, Checked ) 
TOOLBOX AddReference TOOLBOX OearMenuBar 

(ResourceHandle}, @ResourcelDO/o(O), TOOLBOX OipRect (@ClipRectOJo(O)) 
ResourceName$) TOOLBOX OoseDeskAcc 

TOOLBOX AddResMenu (MenuName}, (ReferenceNumberOJo) 
@ResourceTypeO/o(O)) TOOLBOX OoseDialog (DialogName}) 

ItemNumberO/o = TOOL Alert (AlertlDO/o, TOOLBOX aosePicture 
FilterProc]) *TOOLBOX OosePoly 

TOOLBOX AppendMeno (MenuName}, TOOLBOX aosePort (GrafPort]) 
ltemData$) TOOLBOX aoseResFile 

TOOLBOX BackColor (ColorNumber#) (ResourceFileName$) 
TOOLBOX BackPat (@PatOfo(O)) *TOOLBOX aoseRgn (RgnName}) 
TOOLBOX BlockMove (SourcePtr], TOOLBOX aoseWindow (WindowName]) 

DestPtr], ByteCount#) 
.. D.esul # = TOOL BitAnd (L I tl# TOOLBOX C.OlorBit (ColorPlaneO/o) 

Lon~ t t2 ong n ' TOOLBOX C.OpyBits 
ngln #) . (@SourceBitMapO/o(O), 

TOOLBOX Bitar (BytePtr], BitNumber#) @DestBitMapOfo(O), @SourceRectO/o(O), 
LongResult# = TOOL BitNot (Longlnt#) @DestRectOfo(O), TransferModeOJo, 
LongResult# = TOOL BitOr (Longlntl#, MaskRgn}) 

Longlnt2#) NumberOfltemsOfo = TOOL C.OuntMltems 
TOOLBOX BitSet (BytePtr], BitNumber#) (MenuName}) 
LongResult# = TOOL BitShift (Longlnt#, NumberOfResTypesO/o = TOOL 

ShiftCountOfo) C.OuntTypes 
BitResult- = TOOL BitTst (BytePtr], NumberOIThatTypeO/o = TOOL 

BitNumber#) C.OuntResoorces (@ResourceTypeOJo(O)) 
LongResult# = TOOL BitXor (Longlntl#, TOOLBOX CreateResFile 

Longlnt2#) (ResourceFileName$) 
TOOLBOX BringToFront (WindowName]) ResourceRefNumberO/o = TOOL 
B - = TOOL Botton CurResFile 
TOOLBOX CalcMenuSize (MenuName}) TOOLBOX Date2Secs 
ItemNumberOfo = TOOL CautionAlert (@DateT1meRecordO/o(O)) 

(AlertIDO/o FilterProc]) TOOLBOX Delay (DelayTicks#, 
TOOLBOX Cll~edResoorce @FinalTicks#) 

(ResourceHandle}) TOOLBOX DeleteMenu (MenulDO/o) 
PixelsWideO/o = TOOL OiarWidth TOOLBOX DetachResoorce 

(CharO/o) (ResourceHandle}) 



o APPENDIX 0 o 

UserEvent - = TOOL DialogSelect 
(@EventRecordO/o(O), @DialogName], 
@ltemHitO/o) 

•TOOLBOX DiffRgn (RgnA}, RgnB}, 
ResultRgn}) 

TOOLBOX Disableltem (MenuName}, 
ItemO/o) 

TOOLBOX DlsposDialog (DialogName}) 
TOOLBOX DlsposeControl (ControlName}) 
TOOLBOX DlsposeMenu (MenuName}) 
•TOOLBOX DlsposeRgn (RgnName}) 
TOOLBOX DlsposeWlndow 

(Window Name]) 
TOOLBOX DlsposHandle (HandleName}) 
TOOLBOX DlsposPtr (PtrName]) 
TOOLBOX DragControl (ControlName}, 

@StartPtO/o(O), @LimitRectO/o(O), 
@SlopRectO'/o(O), AxisO'/o) 

TOOLBOX DrawChar (CharO'/o) 
TOOLBOX DrawControls (WmdowName]) 
TOOLBOX DrawMenuBar 

TOOLBOX DrawPicture (PictureName}, 
@DestFrameRectO'/o(O)) 

TOOLBOX DrawString (String$) 
TOOLBOX Draw'Iext (TextBuffer], 

FirstByteO/o, ByteCountO/o) 
•Result - = TOOL EmptyRect 

(@RectO'/o(O)) 
•Result- =TOOL EmptyRgn (Rgn}) 

TOOLBOX Enableltem (MenuName}, 
ltemO'/o) 

•Result - = TOOL EqualPt (@PtAO'/o(O), 
@PtBO'/o(O)) 

•Result - = TOOL EqualRect 
(@RectAO'/o(O), @RectBO'/o(O)) 

•Result - = TOOL EqualRgn (RgnA}, 
RgnB}) 

•TOOLBOX EraseArc (@BoundRectO'/o(O), 
StartAngleO'/o, IncAngleO'/o) 

•TOOLBOX ErasePoly (Poly}) 
•TOOLBOX EraseRgn (Rgn}) 
UserEvent - = TOOL EventAvall 

(EventMaskO'/o, @EventRecordO'/o(O)) 
TOOLBOX Exifl'oShell 
•TOOLBOX FiDArc (@BoundRectO'/o(O), 

StartAngleO'/o, IncAngleO'/o) 

•TOOLBOX FDIOval (@BoundRectO/o(O)) 
•TOOLBOX FDIPoly (Poly}) 
*TOOLBOX FD1Rect (@BoundRectOfo(O)) 
•TOOLBOX FDIRgn (Rgn}) 
*TOOLBOX FDIRoundRect 

(@BoundRectO'/o(O), H30'/o, V30/o, 
@PatO'/o(O)) 

PartCodeO'/o = TOOL FindControl 
(@PtO'/o(O), WmdowName], 
@ControlName}) 

WbereCodeO'/o = TOOL FlndWlndow 
(@PtO'/o(O), @WhichWindow]) 

FixedResult# = TOOL FlxMul (Longlntl#, 
Longlnt2#) 

FixedResult# = TOOL FlxRado 
(Numerator#, Denominator#) 

FixedResult# = TOOL FlxRound 
(Longlnt#) 

TOOLBOX FlashMenuBar (MenulDO/o) 
TOOLBOX DushEvents (EventMaskO'/o, 

StopMaskO'/o) 
TOOLBOX ForeColor (ColorNumber#) 
•TOOLBOX FrameArc (@BoundRectO'/o(O), 

StartAngleO/o, IncAngleO'/o) 
•TOOLBOX FramePoly (Poly}) 
*TOOLBOX FrameRgn (Rgn}) 
WindowName] = TOOL FrontWlndow 
TOOLBOX GetAppParms 

(@ApplicationName$, 
@ApplicationRetNumberO'/o, 
@ApplicationParameters}) 

TOOLBOX Get<lip (ClipRgn}) 
ReferenceConstant# = TOOL GetCRefCon 

(ControlName}) 
TOOLBOX GetCI'itle (ControlName}, 

@Title$) 
MaxValueO/o = TOOL GetCtlMax 

(ControlName}) 
Min Value% = TOOL GetCtlMin 

(ControlName}) 
CurrentValueO'/o = TOOL GetCtlValue 

(ControlName}) 
CursorHandle} =TOOL GetCunor 

(CursorIDO'/o) 
TOOLBOX GetDitem (DialogName], 

ltemNumber%, @Type%, 
@Dialogltem}, @BoxRectO'/o(O)) 



o APPENDIX 0 o 

TOOLBOX GetFNum (FontName$, 
@FontNumberO/o) 

TOOLBOX GetFontlnfo (@FontlnfoOJo(O)) 
TOOLBOX GetFontName (FontNumberOJo, 

@FontName$) 

LogicalSize# = TOOL GetHandleSize 
(HandleName}) 

IconHandle} = TOOL Getlcon (IconlDOJo) 
TOOLBOX GetlndType 

(@ResourceTypeO/o(O), IndexOJo) 
TOOLBOX Getltem (MenuName}, ItemOJo, 

@ltemText$) 

TOOLBOX Getltemlcon (MenuName}, 
Item%, @IconNumberOJo) 

TOOLBOX GetltemMark (MenuName}, 
ItemO/o, @MarkCharOJo) 

TOOLBOX GetltemStyle (MenuName}, 
Item OJo, @StyleOJo) 

TOOLBOX GetIText (Dialogltem}, Text$) 

MenuName} = TOOL GetMenu 
(MenuIDOJo) 

MenuBar} = TOOL GetMenuBar 
MenuName} =TOOL GetMHandle 

(MenuIDOJo) 
TOOLBOX GetMouse (@MousePtO/o(O)) 

ResourceHandle} = TOOL 
GetNamedResource 
(@ResourceTypeO/o(O), 
ResourceNameOJo) 

ControlName} = TOOL GetNewControl 
(ControllDO/o, WindowName]) 

DialogName] = TOOL GetNewDialog 
(DialogID%, DialogStorage], 
BehindWindow]) 

MenuBar} =TOOL GetNewMBar 
(MenuBarIDO/o) 

WindowName] = TOOL GetNewWindow 
(WindowID%, WindowStorage], 
BehindWmdow]) 

UserEvent - = TOOL GetNextEvent 
(EventMaskO/o, @EventRecord OJo(O)) 

PatHandle} = TOOL GetPattem (PatIDOJo) 
TOOLBOX GetPenState (@PenStateOJo(O)) 
PixelOn - = TOOL GetPixel (H, V) 
TOOLBOX GetPort (@GrafPort]) 
LogicalSize# = TOOL GetPtrSize 

(PtrName]) 

ResourceAttributesOJo = TOOL GetResAttrs 
(ResourceHandle}) 

ResourceAttributesO/o = TOOL 
GetResFileAttrs 
(ResourceRetNumberO/o) 

TOOLBOX GetReslnfo (ResourceHandle}, 
@ResourceIDO/o, @ResourceTypeO/o(O), 
@ResourceName$) 

ResourceHandle} = TOOL GetResource 
(@ResourceTypeOJo(O), ResourcelD) 

OSErrorCode# = TOOL GetScrap 
(DestHandle}, @ResourceTypeO/o(O), 
@Offset#) 

Stringllandle} = TOOL GetString 
(StringIDO/o) 

PictureName} = TOOL GetWindowPic 
(WindowName]) 

RefCon# = TOOL GetWRefCon 
(WindowName]) 

TOOLBOX GetWTitle (WindowName], 
@Title$) 

TOOLBOX GlobalToLocal (@PtOJo(O)) 

TOOLBOX GrafDevice (DeviceCodeOJo) 

TOOLBOX HideControl (ControlName}) 

TOOLBOX HideCursor 

TOOLBOX HidePen 
TOOLBOX HideWindow (WindowName]) 

TOOLBOX HiliteControl (ControlName}, 
HiliteStateO/o) 

TOOLBOX HiliteMenu (MenuIDO/o) 
TOOLBOX HiliteWindow (WindowName, 

HiliteFlag - ) 
TOOLBOX llLock (HandleName}) 
TOOLBOX llNoPurge (HandleName}) 
ResourceRetNumberOJo = TOOL 

HomeResFile (ResourceHandle}) 
TOOLBOX HPurge (HandleName}) 
ScrapStuff] = TOOL Inf~rap 
TOOLBOX lnitCursor 
TOOLBOX lnitPort (GrafPort]) 
TOOLBOX InsertMenu (MenuName}, 

BeforeIDOJo) 
TOOLBOX InsertResMenu (MenuName}, 

@ResourceTypeO/o(O), Afterltem O/o) 
•TOOLBOX InsetRect (@RectArrayOJo(O), 

DH, DV) 



o APPENDIX D o 

•TOOLBOX InsetRgn (Rgn}, DH, DV) 
TOOLBOX lnvalRect (@BadRectOJo(O)) 
TOOLBOX InvalRgn (BadRgn}) 
*TOOLBOX InvertArc (@BoundRectOJo(O), 

StartAngleO/o, IncAngleOJo) 
•TOOLBOX InvertPoly (Poly}) 
•TOOLBOX InvertRgn (Rgn}) 
YesEvent - = TOOL lsDialogEvent 

(@EventRecordOJo(O))) 
TOOLBOX .KillPicture (PictureName}) 
•TOOLBOX KillPoly (PolyName}) 
•TOOLBOX Une (DHOJo, DVO/o) 
•TOOLBOX UneTo (HOJo, VO/o) 
TOOLBOX LoadResource 

(ResourceHandle}) 
OSErrorCode# = TOOL LoadScrap 
TOOLBOX LocalToGlobal (@PtO/o(O)) 
•TOOLBOX MapPoly (Poly}, 

@SourceRect%(0), @DestRect%(0)) 
•TOOLBOX MapPt (@Pt%(0), 

@SourceRect%(0), @DestRectO/o(O)) 
•TOOLBOX MapRect (@Rect%(0), 

@SourceRectO/o(O), @DestRectO/o(O)) 
•TOOLBOX MapRgn (Rgn}, 

@SourceRectO/o(O), @DestRectO/o(O)) 
SelectedMenuAndltem# = TOOL MenuKey 

(Char%) 
SelectedMenuAndltem# = TOOL 

MenuSelect (@StartPt%(0)) 
TOOLBOX ModalDialog (FilterProc], 

@ltemHit%) 
TOOLBOX MoreMasters 
*TOOLBOX Move (DHO/o, DV%) 
TOOLBOX MoveControl (ControlName}, 

H%, VO/o) 
TOOLBOX MovePortTo (HO/o, V%) 
•TOOLBOX MoveTo (HO/o, V%) 
TOOLBOX MoveWindow (W"mdowName], 

HGlobal%, VGlobal%, Front-) 
Result# = TOOL Munger (ByteHandle}, 

Offset#, Ptrl], Length!#, Ptr2], 
Length2#) 

ControlName} = TOOL NewControl 
(WindowNameI, @BoundRect%(0), 
Title$, Visible , InitialValueO/o, 
MinValueO/o, MaxValue%, ProcIDO/o, 
Ref Constant#) 

DialogName] = TOOL NewDialog 
(DialogStorage], @BoundRectO'/o(O), 
Title$, Visible - , ProclDO/o, 
BehindWmdow], GoAwayFlag - , 
RefConstant#, Items}) 

HandleName} = TOOL NewHandle 
(LogicalSize#) 

MenuName} = TOOL NewMenu 
(MenulDO'/o, Title$) 

PtrName} = TOOL NewPtr (LogicalSize#) 
•RgnName} =TOOL NewRgn 
StringHandle} = TOOL NewString 

(String$) 
WindowName] = TOOL NewWindow 

(WindowStorag_e], @BoundRectO'/o(O), 
Title$, Visible , ProclDO'/o, 
BehindWindow], GoAwayFlag-, 
RefConstant#) 

ltemNumberO/o = TOOL NoteAlert 
(AlertIDO'/o, FilterProc]) 

TOOLBOX ObscureCursor 
•TOOLBOX OffsetPoly (Poly}, DH, DV) 
•TOOLBOX OffsetRect (@RectArrayO'/o(O), 

DH, DV) 
•TOOLBOX OffsetRgn (Rgn}, DH, DV) 
ReferenceNumber% = TOOL 

OpenDeskAcc (AccessoryName$) 
PictureName} = TOOL OpenPicture 

(@PicFrameRectO'/o(O)) 
•PolyName} = TOOL OpenPoly 
TOOLBOX OpenPort (GrafPort]) 

ResourceRetNumber = TOOL OpenResFile 
(ResourceFileName$) 

•TOOLBOX OpenRgn 

•TOOLBOX PaintArc (@BoundRectO'/o(O), 
StartAngleO/o, IncAngleO'/o) 

•TOOLBOX PaintPoly (Poly}) 

•TOOLBOX PaintRgn (Rgn}) 

TOOLBOX ParamText (Param0$, Param1$, 
Para.ml$, Param3$) 

•TOOLBOX PenPat (@PatO'/o(O)) 

TOOLBOX PicComment (Kind%, 
CommentSizeO/o, CommentData}) 

CodedPt# = TOOL PinRect (@RectO'/o(O), 
@PtO/o(O)) 

TOOLBOX Plotlcon (@RectO/o(O), 
IconHandle}) 



o APPENDIX D o 

TOOLBOX PortSi7.e (WidthO/o, Height%) 
*Result - = TOOL PtlnRect (@Pt%(0), 

@Rect%(0)) 
*Result - = TOOL PtlnRgn (@Pt%(0), 

Rgn}) 
TOOLBOX PtToAngle (@Rect%(0), 

@PtO/o(O), @ResultAngle%) 
*TOOLBOX Pt2Reet (@PtAO/o(O), 

@PtBO/o(O), @ResultRect%(0)) 
OSErrorCode# = TOOL PutScrap 

(Length#, @ResourceType%(0), 
Source]) 

Result% = TOOL Random 
OSError% = TOOL ReadDateTime 

(@Seconds#) 
FontlsReal - = TOOL RealFont 

(FontNmnber%, FontSizeO/o) 
*Result- =TOOL RectlnRgn 

(@Rect%(0), Rgn}) 
*TOOLBOX RectRgn (Rgn}, @Rect%(0)) 
TOOLBOX ReleaseResource 

(ResourceHandle}) 
ResourceErrorCodeO/o = TOOL ResError 
TOOLBOX RmveReference 

(ResourceHandle}) 
TOOLBOX RmveResource 

(ResourceHandle}) 
TOOLBOX ScalePt (@PtOJo(O), 

@SourceRectOJo(O), @DestRectO/o(O)) 
TOOLBOX ScroDRect (@MovedRect%(0), 

DH, DV, UpdateRgn}) 
TOOLBOX Secs2Date (Seconds#, 

@DateThneRecordOJo(O)) 
*NotEmpty - = TOOL SectRect 

(@RectAOJo(O), @RectBOJo(O), 
@ResultRectOJo(O)) 

*TOOLBOX SectRgn (RgnA}, RgnB}, 
ResultRgn}) 

TOOLBOX SelectWindow (WmdowName]) 
TOOLBOX Seimxt (DialogName], 

ItemNumber%, StartSelect%, 
EndSelectOJo) 

TOOLBOX SendBehind (WmdowName], 
BehindWmdow]) 

TOOLBOX SetClip (ClipRgn}) 
TOOLBOX SetCRefCon (ControIName, 

ReferenceConstant#) 

TOOLBOX SetCI'ide (ControIName}, 
Title$) 

TOOLBOX SetCtlMax (ControIName}, 
MaxValueOJo) 

TOOLBOX SetCtIMin (ControIName}, 
Min ValueOJo) 

TOOLBOX SetCtlValue (ControIName}, 
Current Value%) 

TOOLBOX SetCunor (@CursorOJo(O)) 
TOOLBOX SetDltem (DialogName], 

ItemNumberOJo, Type%, Dialogltem}, 
@BoxRectOJo(O)) 

TOOLBOX SetF..mptyRgn (Rgn}) 
TOOLBOX SetBandleSi7.e (HandleName}, 

LogicalSize#) 
TOOLBOX Setltem (MenuName}, Item%, 

Item Text$) 
TOOLBOX Setltemlcon (MenuName}, 

ItemOJo, IconNumberOJo) 
TOOLBOX SetltemMark (MenuName}, 

ItemOJo, MarkCharOJo) 
TOOLBOX SetltemStyle (MenuName}, 

Item%, Style%) 
TOOLBOX Setl'Iext (Dialogltem}, Text$) 
TOOLBOX SetMenuBar (MenuBar}) 
TOOLBOX SetMenuFlash (MenuHandle}, 

FlashCountO/o) 
TOOLBOX SetOrigin (H, V) 
TOOLBOX SetPenState (@PenState%(0)) 
TOOLBOX SetPort (GrafPort]) 
TOOLBOX SetPortBits (@BitMap%(0)) 
*TOOLBOX SetPt (@PtO/o(O), H, V) 
TOOLBOX SetPtrSi7.e (PtrName], 

LogicalSize#) 
*TOOLBOX SetReet (@RectArray%(0), 

Hl, Vl, H2, V2) 
*TOOLBOX SetReetRgn (Rgn}, Hl, VI, 

H2, V2) 
TOOLBOX SetResAttrs (ResourceHandle }, 

ResourceAttributesOJo) 
TOOLBOX SetResFDeAttrs 

(ResourceRefNumber%, 
ResourceAttributesOJo) 

TOOLBOX SetReslnfo (ResourceHandle}, 
@ResourceIDOJo, @ResourceName$) 

TOOLBOX SetResLoad (ResourceLoad - ) 
TOOLBOX SetResPurge (PurgeHook - ) 



o APPENDIX D o 

TOOLBOX SetString (StringHandle}, 
String$) 

TOOLBOX SetWlndowPic (WmdowName], 
PictureName}) 

TOOLBOX SetWRefCon (WindowName], 
ReferenceConstant#) · 

TOOLBOX SetWTitle (WindowName], 
Tide$) 

TOOLBOX ShowControl (ControlName}) 
TOOLBOX ShowCunor 
TOOLBOX ShowPen 
TOOLBOX ShowWlndow (WmdowName]) 
TOOLBOX SbeControl (ControlName, 

WidthO/o, HeigbtO/o) 
TOOLBOX SizeWindow (WindowName], 

WidthO/o, HeightO/o, UpdateFJag - ) 
TOOLBOX SpaceExtra (ExtraPixelsO/o) 
MouseStillDown - = TOOL StiDDown 
ItemNumberO/o = TOOL StopAlert 

(AlertIDO/o, FilterProc]) 
PixelsWideO/o = TOOL StringWidth 

(String$) 
TOOLBOX Stuffllex (@ObjectO/o(O), 

HexString$) 
TOOLBOX SubPt (@Subtracted.PtO/o(O), 

@ResultPtO/o(O)) 
TOOLBOX SysBeep (BeepDurationO/o) 
TOOLBOX SystemOick 

(@EventRecordO/o(O), WindowName]) 
SystemCommand - = TOOL SystemF.dit 

(EditCommandCodeO/o) 
TOOLBOX System'IBsk 
TOOLBOX TE.Activate (TuxtHandle}) 
TOOLBOX TECllck (@PtO/o(O), Extend , 

TuxtHandle}) 
TOOLBOX TECopy (TuxtHandle}) 
TOOLBOX TECut (TuxtHandle}) 
TOOLBOX TEDeactivate (TuxtHandle}) 
TOOLBOX TEDelete (TuxtHandle}) 
TOOLBOX TEDispose (TextHandle}) 
CharsHandle} = TOOL TEGemxt 

(TuxtHandle}) 
TOOLBOX TEidle (TuxtHandle}) 
TOOLBOX TElnsert (Text], Length#, 

TextHandle}) 
TOOLBOX TEKey (KeyCharO/o, 

TuxtHandle}) 

TuxtHandle} = TOOL TENew 
(@DestRectO/o(O), @ViewRectO/o(O)) 

TOOLBOX TEPaste (TuxtHandle}) 
TOOLBOX TEScroD (DHO/o, DVO/o, 

TuxtHandle}) 
TOOLBOX TF.SetJ'ust (JustificationO/o, 

TuxtHandle}) 
TOOLBOX TESetSelect (StartSelect#, 

EndSelect#, TuxtHandle}) 
TOOLBOX TESetText (Text], Length#, 

TextHandle}) 
PartCodeO/o = TOOL testControl 

(ControlName}, @PtO/o(O)) 
TOOLBOX TEUpdate (@UpdateRectO/o(O), 

TuxtHandle}) 
TOOLBOX TuxtBox (Text], Length#, 

@BoxRectO/o(O), JustificationO/o) 
TOOLBOX 'JextFace (StyleO/o) 
TOOLBOX 'JextFont (FontNumberO/o) 
TOOLBOX '&xtMode (ModeO/o) 
TOOLBOX TextSize (PointSizeO/o) 
PixelsWideOfo = TOOL 'IextWidth 

(TextBuffer], FirstByteOfo, ByteCountO/o) 
PartCodeO/o = TOOL TrackControl 

(ControlName}, @StartPtO/o(O), 
ActionProc]) 

•TOOLBOX UnionRect (@RectAO/o(O), 
@RectBO/o(O), @ResultRectO/o(O)) 

•TOOLBOX UnionRgn (RgnA}, RgnB}, 
ResultRgn}) 

NewResourceIDO/o = TOOL UniqueID 
(@ResourceTypeO/o(O)) 

OSErrorCode# = TOOL UnioadScrap 
TOOLBOX UnloadSeg (RoutineAddress]) 
TOOLBOX UpdateResFDe 

(ResourceRefNumberO/o) 
TOOLBOX UprString (@String$, Marks-) 
TOOLBOX UseResFDe 

(@ResourceRefNumberO/o) 
TOOLBOX \\dldRect (@GoodRectO/o(O)) 
TOOLBOX \\dldRgn (OoodRgn}) 
MouseStiUDown - = TOOL WaitMouseUp 
TOOLBOX \\TlteResource 

(ResourceHandle}) 
•TOOLBOX XOrRgn (RgnA, RgnB}, 

ResultRgn}) 
OSErrorCode# = TOOL 7.eroScrap 



o APPENDIX D o 

Key to special symbols in Appendix D: 

O/o Integer type identifier. When identified as an array, it should be 
dimensioned with maximum subscript as follows: PointO/o{l), 
Rectangle0fo(3), Pattern0/o(3), ResourceTypeO/o(l), Cursor0/o(33), 
Fontlnfo0/o(3), PenStateO/o(8). 

# Represents a 32-bit long integer data type not available in Macintosh 
BASIC. In a parameter list, it can be simulated by two integer vari
ables. As the result of a function, it can be assigned to a comp (#) 
variable, or to a real. 

Boolean variable type identifier. 

$ String variable type identifier. 

] Pointer variable type identifier. 

} Handle variable type identifier. 

@ Prefix to a variable, indicating an indirect reference. Must be used as a 
prefix to all array parameters, and to any parameter that would be 
a Pascal VAR parameter. 

• Indicates a command described in the text of this book. 



--::l I Appendix E I t= ___,....___ ---------F 
Index to Application Programs 

Program Name 

Air pressure 
Alarm clock 
Analog clock 
Append sequential file 
ASCII table 
Asteroids 
Asteroids with explosion 
Average test scores 
Bar graph 
Cairo font train 
Card shuffler 
Checkerboard 
Check-writing program 
Dictionary order 
Filled regions 
Flashing text 
Function graphs 
Icon menu 
Inverse text 
Jazz musician 
Last name first 
Line graph 
Master /transaction file 
Menu by number 
Menu-single keystroke 
Mouse art 
Mouse coordinates 
Surplus-and-deficit graph 
Multiplication table 
Password entry 
Pattern editor 
Pie chart 
Prime numbers 
QuickSort 
Read sequential file 
Reversing random points 
Shooting gallery 
Snowflake curve 
Sound effects 
Sum-of-year's-digits depreciation 
Thoe row generator 
Write sequential file 

Entry 

EXP 
ERASE 
TIME$ 
APPEND 
CHRS 
OpenPoly 
SectRgn 
AND 
PAINT 
FONr 
RND 
IF, RECT, XorRgn 
SELECf 
NATIVE 
OpenRgn 
INVERT 
SCALE 
MOUSED 
INVERT 
10NES 
MIDS 
PLOT 
TYP 
GOSUB 
INKEYS 
ROUNDRECT, MOUSEB -
FRAME 
DiffRgn 
FOR 
INKEYS 
PenPat 
PaintArc 
REMAINDER 
DO 
SEQUENrIAL 
WHEN 
OVAL 
CALL 
SOUND 
DEF 
REWRITE# 
SEQUENrIAL 



Selections from 
The SYBEX Library 

Introduction to 
Computers 
THE MACINTOSH™ BASIC 
HANDBOOK 
by Thomas Blackadar/Jonathan 
Kamin 
840 pp., illustr., Ref. 0-257 
This is the essential desk-side reference 
book for the Macintosh programmer. All 
the BASIC statements and toolbox com
mands in Macintosh BASIC can be found 
in this one convenient volume. Organized 
like a dictionary, it features a useful sam
ple program for each command word, a 
listing of the exact syntax, and special tips 
on advanced programming techniques. 
This is the only complete reference book 
available for detailed information on Mac
intosh BASIC's graphics features and 
operating system interface. 

PROGRAMMING THE 
MACINTOSH™ IN ASSEMBLY 
LANGUAGE 
by Steve Wiiiiams 
400 pp., illustr., Ref. 0-263 
If you would like to develop assembly lan
guage programs for efficient execution on 
the Macintosh, this book is for you. All 
information, examples, and guidelines for 
programming the 68000 are given in 
terms of Apple's resident Macintosh 
assembler. The entire instruction set of the 
68000 microprocessor is covered. 
Numerous examples of programming 
techniques useful in the Macintosh envi
ronment are given, including use of the 
ROM-resident "toolbox" routines. 

JAZZ ON THE MACINTOSH™ 
by Douglas Cobb 
400 pp., illustr., Ref. 0-265 
Bestselling author Douglas Cobb has 
once again produced a definitive work on 
the season's hottest software. This is the 
complete tutorial on the ins and outs of 

Lotus's new integrated software package 
for the Macintosh. Step by step lessons 
on using each of the functions are supple
mented with important tips on how to inte
grate them into efficient solutions to 
business problems. 

THE MACINTOSH™: A 
PRACTICAL GUIDE 
by Joseph Ceggiano 
280 pp., illustr., Ref. 0-216 
This easy-to-read guide takes you all the 
way from set-up to more advanced activi
ties such as using Macwrite, Macpaint, 
and Multiplan. 

MACINTOSH™ FOR COLLEGE 
STUDENTS 
by Bryan Pfaffenberger 
250 pp., illustr., Ref. 0-227 
Find out how to give yourself an edge in 
the race to get papers in on time and pre
pare for exams. This book covers every
thing you need to know about how to use 
the Macintosh for college study. 

OVERCOMING COMPUTER 
FEAR 
by Jeff Berner 
112 pp., illustr., Ref. 0-145 
This easy-going introduction to com
puters helps you separate the facts from 
the myths. 

INTRODUCTION TO WORD 
PROCESSING 
by Hal Glatzer 
205 pp., 140 illustr., Ref. 0-076 
Explains in plain language what a word 
processor can do, how it improves pro
ductivity, how to use a word processor 
and how to buy one wisely. 

PARENTS, KIDS, AND 
COMPUTERS 
by Lynne Alper and Meg Holmberg 
145 pp., illustr., Ref. 0-151 
This book answers your questions about 

j 



\, 

the educational possibilities of home 
computers. 

PROTECTING YOUR COMPUTER 
by Rodnay Zaks 
214 pp., 100 illustr., Ref. 0-239 
The correct way to handle and care for all 
elements of a computer system, including 
what to do when something doesn't work. 

YOUR FIRST COMPUTER 
by Rodney Zaks 
258 pp., 150 illustr., Ref. 0-142 
The most popular introduction to small 
computers and their peripherals: what 
they do and how to buy one. 

THE SYBEX PERSONAL 
COMPUTER DICTIONARY 
120 pp., Ref. 0-199 
All the definitions and acronyms of micro
computer jargon defined in a handy 
pocket-sized edition. Includes translations 
of the most popular terms into ten 
languages. 

Special Interest 
THE COLLEGE STUDENT'S 
PERSONAL COMPUTER 
HANDBOOK 
by Bryan Pfaffenberger 
210 pp., illustr., Ref. 0-170 
This friendly guide will aid students in 
selecting a computer system for college 
study, managing information in a college 
course, and writing research papers. 

CELESTIAL BASIC 
by Eric Burgess 
300 pp., 65 illustr., Ref. 0-087 
A collection of BASIC programs that rap
idly complete the chores of typical astro
nomical computations. It's like having a 
planetarium in your own home! Displays 
apparent movement of stars, planets and 
meteor showers. 

COMPUTER POWER FOR YOUR 
ACCOUNTING FIRM 
by James Morgan, C.P.A. 
250 pp., illustr., Ref. 0-164 
This book is a convenient source of infor
mation about computerizing your 

accounting office, with an emphasis on 
hardware and software options. 

PERSONAL COMPUTERS AND 
SPECIAL NEEDS 
by Frank G. Bowe 
175 pp., illustr., Ref. 0-193 
Learn how people are overcoming prob
lems with hearing, vision, mobility, and 
learning, through the use of computer 
technology. 

ESPIONAGE IN THE SILICON 
VALLEY 
by John D. Halamka 
200 pp., illustr., Ref. 0-225 
Discover the behind-the-scenes stories of 
famous high-tech spy cases you've seen 
in the headlines. 

ASTROLOGY ON YOUR 
PERSONAL COMPUTER 
by Hank Friedman 
225 pp., illustr., Ref. 0-226 
An invaluable aid for astrologers who 
want to streamline their calculation and 
data management chores with the right 
combination of hardware and software. 

Languages 

BASIC 
YOUR FIRST BASIC PROGRAM 
by Rodney Zaks 
182 pp., illustr. in color, Ref. 0-092 
A "how-to-program" book for the first time 
computer. user, aged 8 to 88. 

FIFTY BASIC EXERCISES 
by J. P. Lamoltler 
232 pp., 90 illustr., Ref. 0-056 
Teaches BASIC through actual practice, 
using graduated exercises drawn from 
everyday applications. Programs written 
in Microsoft BASIC. 

BASIC FOR BUSINESS 
by Douglas Hergert 
224 pp., 15 illustr., Ref. 0-080 
A logically organized, no-nonsense intro
duction to BASIC programming for busi
ness applications. Includes many 



fully-explained accounting programs, and 
shows you how to write your own. 

EXECUTIVE PLANNING 
WITH BASIC 
by X. T. Bui 
196 pp., 19 illustr., Ref. 0-083 
An important collection of business man
agement decision models in BASIC, 
including inventory management (EOQ), 
critical path analysis and PERT, financial 
ratio analysis, portfolio management, and 
much more. 

BASIC PROGRAMS FOR 
SCIENTISTS AND ENGINEERS 
by Alan R. Miller 
318 pp., 120 illustr., Ref. 0-073 
This book from the "Programs for Scien
tists and Engineers" series provides a 
library of problem-solving programs while 
developing the reader's proficiency in 
BASIC. 

Pascal 
INTRODUCTION TO PASCAL 
(Including UCSD Pascal™) 
by Rodnay Zaks 
420 pp., 130 illustr., Ref. 0-066 
A step-by-step introduction for anyone 
who wants to learn the Pascal language. 
Describes UCSD and Standard Pascals. 
No technical background is assumed. 

THE PASCAL HANDBOOK 
by Jacques Tlberghlen 
486 pp., 270 illustr., Ref. 0-053 
A dictionary of the Pascal language, 
defining every reserved word, operator, 
procedure, and function found in all major 
versions of Pascal. 

APPLE® PASCAL GAMES 
by Douglas Hergert and 
Joseph T. Kalash 
372 pp., 40 illustr., Ref. 0-074 
A collection of the most popular computer 
games in Pascal, challenging the reader 
not only to play but to investigate how 
games are implemented on the computer. 

PASCAL PROGRAMS FOR 
SCIENTISTS AND ENGINEERS 
by Alan R. Miiier 
374 pp., 120 illustr., Ref. 0-058 
A comprehensive collection of frequently 

used algorithms for scientific and techni
cal applications, programmed in Pascal. 
Includes programs for curve-fitting, inte
grals, statistical techniques, and more. 

DOING BUSINESS WITH 
PASCAL 
by Richard Hergert and 
Douglas Hergert 
371 pp., illustr., Ref. 0-091 
Practical tips for using Pascal program
ming in business. Covers design consid
erations, language extensions, and 
applications examples. 

Other Languages 

FORTRAN PROGRAMS FOR 
SCIENTISTS AND ENGINEERS 
by Alan R. Miiier 
280 pp., 120 illustr., Ref. 0-082 
This book from the "Programs for Scien
tists and Engineers" series provides a 
library of problem-solving programs while 
developing the reader's proficiency in 
FORTRAN. 

A MICROPROGRAMMED APL 
IMPLEMENTATION 
by Rodnay Zaks 
350 pp., Ref. 0-005 
An expert-level text presenting the com
plete conceptual analysis and design of 
an APL interpreter, and actual listing of 
the microcode. 

UNDERSTANDING C 
by Bruce H. Hunter 
320 pp., Ref 0-123 
Explains how to program in powerful C 
language for a variety of applications. 
Some programming experience 
assumed. 

FIFTY PASCAL PROGRAMS 
by Bruce H. Hunter 
338 pp., illustr., Ref. 0-110 
More than just a collection of useful pro
grams! Structured programming tech
niques are emphasized and concepts 
such as data type creation and array 
manipulation are clearly illustrated. 

I 



· eCOMPUTERBOOKS 

are different. 

Here is why. • • 

At SYBEX, each book is designed with you in mind. Every manuscript is 
carefully selected and supervised by our editors, who are themselves 
computer experts. We publish the best authors, whose technical expertise 
is matched by an ability to write clearly and to communicate effectively. 
Programs are thoroughly tested for accuracy by our technical staff. Our 
computerized production department goes to great lengths to make 
sure that each book is well-designed. 

In the pursuit of timeliness, SYBEX has achieved many publishing firsts. 
SYBEX was among the first to integrate personal computers used by 
authors and staff into the publishing process. SYBEX was the first to 
publish books on the CP/M operating system, microprocessor interfacing 
techniques, word processing, and many more topics. 

Expertise in computers and dedication to the highest quality product 
have made SYBEX a world leader in computer book publishing. Trans
lated into fourteen languages, SYBEX books have helped millions of 
people around the world to get the most from their computers. We hope 
we have helped you, too. 

For a complete catalog of our publications 
please contact: 

U.S.A. FRANCE GERMANY UNITED KINGDOM 
SYBEX, Inc. SYBEX SYBEX-Verlag GmbH SYBEX, Ltd. 
2344 Sixth Street 6-8 Impasse du Cure Vogelsanger Weg 111 Unit 4-Bourne Industrial Park 
Berkeley, 75018 Paris 4000 DUsseldorf 30 Bourne Road, Crayford 
California 94710 France West Germany Kent DA1 4BZ England 
Tel: (415) 848-8233 Tel: 01/203-9595 Tel: (0211) 626441 Tel: (0322) 57717 
Telex: 336311 Telex: 211801 Telex: 8588163 Telex: 896939 



The 

Macintosh BASIC 
H A N D B 0 0 K 

The complete chair-side reference guide for daily use by all Macin
tosh users interested in BASIC programming. 

Its A-to-Z collection of 300 entries describes every Macintosh 
BASIC command word. 

This book includes full details of previously undocumented Macin
tosh graphics and TOOLBOX command words-words that can 
be used as powerful extensions of Macintosh BASIC. 

Each entry includes: 

• A quic,k-reference syntax chart 
• A detailep explanation of the command 
• Examples of useful applications 
• Notes on subtleties, common errors to avoid, and advanced 

programming techniques 

About the authors: 

Thomas Blackadar is an experienced technical writer on the 
SYBEX staff, who has written bestselling titles such as The Best of 
Commodore 64 Software, The Atari BOOXL: A Practical Guide, and 
The Apple lie: A Practical Guide. 

Jonathan Kamin is also ·an experienced SYBEX staff writer, who 
has recently completed a book on the ThinkTank program. 

ISBN 0-89588-257-4 




